]> rtime.felk.cvut.cz Git - lisovros/qemu_apohw.git/blob - migration-rdma.c
rdma: check if RDMAControlHeader::len match transferred byte
[lisovros/qemu_apohw.git] / migration-rdma.c
1 /*
2  * RDMA protocol and interfaces
3  *
4  * Copyright IBM, Corp. 2010-2013
5  *
6  * Authors:
7  *  Michael R. Hines <mrhines@us.ibm.com>
8  *  Jiuxing Liu <jl@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or
11  * later.  See the COPYING file in the top-level directory.
12  *
13  */
14 #include "qemu-common.h"
15 #include "migration/migration.h"
16 #include "migration/qemu-file.h"
17 #include "exec/cpu-common.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/sockets.h"
20 #include "qemu/bitmap.h"
21 #include "block/coroutine.h"
22 #include <stdio.h>
23 #include <sys/types.h>
24 #include <sys/socket.h>
25 #include <netdb.h>
26 #include <arpa/inet.h>
27 #include <string.h>
28 #include <rdma/rdma_cma.h>
29
30 //#define DEBUG_RDMA
31 //#define DEBUG_RDMA_VERBOSE
32 //#define DEBUG_RDMA_REALLY_VERBOSE
33
34 #ifdef DEBUG_RDMA
35 #define DPRINTF(fmt, ...) \
36     do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF(fmt, ...) \
39     do { } while (0)
40 #endif
41
42 #ifdef DEBUG_RDMA_VERBOSE
43 #define DDPRINTF(fmt, ...) \
44     do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
45 #else
46 #define DDPRINTF(fmt, ...) \
47     do { } while (0)
48 #endif
49
50 #ifdef DEBUG_RDMA_REALLY_VERBOSE
51 #define DDDPRINTF(fmt, ...) \
52     do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
53 #else
54 #define DDDPRINTF(fmt, ...) \
55     do { } while (0)
56 #endif
57
58 /*
59  * Print and error on both the Monitor and the Log file.
60  */
61 #define ERROR(errp, fmt, ...) \
62     do { \
63         fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
64         if (errp && (*(errp) == NULL)) { \
65             error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
66         } \
67     } while (0)
68
69 #define RDMA_RESOLVE_TIMEOUT_MS 10000
70
71 /* Do not merge data if larger than this. */
72 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
73 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
74
75 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
76
77 /*
78  * This is only for non-live state being migrated.
79  * Instead of RDMA_WRITE messages, we use RDMA_SEND
80  * messages for that state, which requires a different
81  * delivery design than main memory.
82  */
83 #define RDMA_SEND_INCREMENT 32768
84
85 /*
86  * Maximum size infiniband SEND message
87  */
88 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
89 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
90
91 #define RDMA_CONTROL_VERSION_CURRENT 1
92 /*
93  * Capabilities for negotiation.
94  */
95 #define RDMA_CAPABILITY_PIN_ALL 0x01
96
97 /*
98  * Add the other flags above to this list of known capabilities
99  * as they are introduced.
100  */
101 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
102
103 #define CHECK_ERROR_STATE() \
104     do { \
105         if (rdma->error_state) { \
106             if (!rdma->error_reported) { \
107                 fprintf(stderr, "RDMA is in an error state waiting migration" \
108                                 " to abort!\n"); \
109                 rdma->error_reported = 1; \
110             } \
111             return rdma->error_state; \
112         } \
113     } while (0);
114
115 /*
116  * A work request ID is 64-bits and we split up these bits
117  * into 3 parts:
118  *
119  * bits 0-15 : type of control message, 2^16
120  * bits 16-29: ram block index, 2^14
121  * bits 30-63: ram block chunk number, 2^34
122  *
123  * The last two bit ranges are only used for RDMA writes,
124  * in order to track their completion and potentially
125  * also track unregistration status of the message.
126  */
127 #define RDMA_WRID_TYPE_SHIFT  0UL
128 #define RDMA_WRID_BLOCK_SHIFT 16UL
129 #define RDMA_WRID_CHUNK_SHIFT 30UL
130
131 #define RDMA_WRID_TYPE_MASK \
132     ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
133
134 #define RDMA_WRID_BLOCK_MASK \
135     (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
136
137 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
138
139 /*
140  * RDMA migration protocol:
141  * 1. RDMA Writes (data messages, i.e. RAM)
142  * 2. IB Send/Recv (control channel messages)
143  */
144 enum {
145     RDMA_WRID_NONE = 0,
146     RDMA_WRID_RDMA_WRITE = 1,
147     RDMA_WRID_SEND_CONTROL = 2000,
148     RDMA_WRID_RECV_CONTROL = 4000,
149 };
150
151 const char *wrid_desc[] = {
152     [RDMA_WRID_NONE] = "NONE",
153     [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
154     [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
155     [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
156 };
157
158 /*
159  * Work request IDs for IB SEND messages only (not RDMA writes).
160  * This is used by the migration protocol to transmit
161  * control messages (such as device state and registration commands)
162  *
163  * We could use more WRs, but we have enough for now.
164  */
165 enum {
166     RDMA_WRID_READY = 0,
167     RDMA_WRID_DATA,
168     RDMA_WRID_CONTROL,
169     RDMA_WRID_MAX,
170 };
171
172 /*
173  * SEND/RECV IB Control Messages.
174  */
175 enum {
176     RDMA_CONTROL_NONE = 0,
177     RDMA_CONTROL_ERROR,
178     RDMA_CONTROL_READY,               /* ready to receive */
179     RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
180     RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
181     RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
182     RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
183     RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
184     RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
185     RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
186     RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
187     RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
188 };
189
190 const char *control_desc[] = {
191     [RDMA_CONTROL_NONE] = "NONE",
192     [RDMA_CONTROL_ERROR] = "ERROR",
193     [RDMA_CONTROL_READY] = "READY",
194     [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
195     [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
196     [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
197     [RDMA_CONTROL_COMPRESS] = "COMPRESS",
198     [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
199     [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
200     [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
201     [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
202     [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
203 };
204
205 /*
206  * Memory and MR structures used to represent an IB Send/Recv work request.
207  * This is *not* used for RDMA writes, only IB Send/Recv.
208  */
209 typedef struct {
210     uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
211     struct   ibv_mr *control_mr;               /* registration metadata */
212     size_t   control_len;                      /* length of the message */
213     uint8_t *control_curr;                     /* start of unconsumed bytes */
214 } RDMAWorkRequestData;
215
216 /*
217  * Negotiate RDMA capabilities during connection-setup time.
218  */
219 typedef struct {
220     uint32_t version;
221     uint32_t flags;
222 } RDMACapabilities;
223
224 static void caps_to_network(RDMACapabilities *cap)
225 {
226     cap->version = htonl(cap->version);
227     cap->flags = htonl(cap->flags);
228 }
229
230 static void network_to_caps(RDMACapabilities *cap)
231 {
232     cap->version = ntohl(cap->version);
233     cap->flags = ntohl(cap->flags);
234 }
235
236 /*
237  * Representation of a RAMBlock from an RDMA perspective.
238  * This is not transmitted, only local.
239  * This and subsequent structures cannot be linked lists
240  * because we're using a single IB message to transmit
241  * the information. It's small anyway, so a list is overkill.
242  */
243 typedef struct RDMALocalBlock {
244     uint8_t  *local_host_addr; /* local virtual address */
245     uint64_t remote_host_addr; /* remote virtual address */
246     uint64_t offset;
247     uint64_t length;
248     struct   ibv_mr **pmr;     /* MRs for chunk-level registration */
249     struct   ibv_mr *mr;       /* MR for non-chunk-level registration */
250     uint32_t *remote_keys;     /* rkeys for chunk-level registration */
251     uint32_t remote_rkey;      /* rkeys for non-chunk-level registration */
252     int      index;            /* which block are we */
253     bool     is_ram_block;
254     int      nb_chunks;
255     unsigned long *transit_bitmap;
256     unsigned long *unregister_bitmap;
257 } RDMALocalBlock;
258
259 /*
260  * Also represents a RAMblock, but only on the dest.
261  * This gets transmitted by the dest during connection-time
262  * to the source VM and then is used to populate the
263  * corresponding RDMALocalBlock with
264  * the information needed to perform the actual RDMA.
265  */
266 typedef struct QEMU_PACKED RDMARemoteBlock {
267     uint64_t remote_host_addr;
268     uint64_t offset;
269     uint64_t length;
270     uint32_t remote_rkey;
271     uint32_t padding;
272 } RDMARemoteBlock;
273
274 static uint64_t htonll(uint64_t v)
275 {
276     union { uint32_t lv[2]; uint64_t llv; } u;
277     u.lv[0] = htonl(v >> 32);
278     u.lv[1] = htonl(v & 0xFFFFFFFFULL);
279     return u.llv;
280 }
281
282 static uint64_t ntohll(uint64_t v) {
283     union { uint32_t lv[2]; uint64_t llv; } u;
284     u.llv = v;
285     return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
286 }
287
288 static void remote_block_to_network(RDMARemoteBlock *rb)
289 {
290     rb->remote_host_addr = htonll(rb->remote_host_addr);
291     rb->offset = htonll(rb->offset);
292     rb->length = htonll(rb->length);
293     rb->remote_rkey = htonl(rb->remote_rkey);
294 }
295
296 static void network_to_remote_block(RDMARemoteBlock *rb)
297 {
298     rb->remote_host_addr = ntohll(rb->remote_host_addr);
299     rb->offset = ntohll(rb->offset);
300     rb->length = ntohll(rb->length);
301     rb->remote_rkey = ntohl(rb->remote_rkey);
302 }
303
304 /*
305  * Virtual address of the above structures used for transmitting
306  * the RAMBlock descriptions at connection-time.
307  * This structure is *not* transmitted.
308  */
309 typedef struct RDMALocalBlocks {
310     int nb_blocks;
311     bool     init;             /* main memory init complete */
312     RDMALocalBlock *block;
313 } RDMALocalBlocks;
314
315 /*
316  * Main data structure for RDMA state.
317  * While there is only one copy of this structure being allocated right now,
318  * this is the place where one would start if you wanted to consider
319  * having more than one RDMA connection open at the same time.
320  */
321 typedef struct RDMAContext {
322     char *host;
323     int port;
324
325     RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
326
327     /*
328      * This is used by *_exchange_send() to figure out whether or not
329      * the initial "READY" message has already been received or not.
330      * This is because other functions may potentially poll() and detect
331      * the READY message before send() does, in which case we need to
332      * know if it completed.
333      */
334     int control_ready_expected;
335
336     /* number of outstanding writes */
337     int nb_sent;
338
339     /* store info about current buffer so that we can
340        merge it with future sends */
341     uint64_t current_addr;
342     uint64_t current_length;
343     /* index of ram block the current buffer belongs to */
344     int current_index;
345     /* index of the chunk in the current ram block */
346     int current_chunk;
347
348     bool pin_all;
349
350     /*
351      * infiniband-specific variables for opening the device
352      * and maintaining connection state and so forth.
353      *
354      * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
355      * cm_id->verbs, cm_id->channel, and cm_id->qp.
356      */
357     struct rdma_cm_id *cm_id;               /* connection manager ID */
358     struct rdma_cm_id *listen_id;
359
360     struct ibv_context          *verbs;
361     struct rdma_event_channel   *channel;
362     struct ibv_qp *qp;                      /* queue pair */
363     struct ibv_comp_channel *comp_channel;  /* completion channel */
364     struct ibv_pd *pd;                      /* protection domain */
365     struct ibv_cq *cq;                      /* completion queue */
366
367     /*
368      * If a previous write failed (perhaps because of a failed
369      * memory registration, then do not attempt any future work
370      * and remember the error state.
371      */
372     int error_state;
373     int error_reported;
374
375     /*
376      * Description of ram blocks used throughout the code.
377      */
378     RDMALocalBlocks local_ram_blocks;
379     RDMARemoteBlock *block;
380
381     /*
382      * Migration on *destination* started.
383      * Then use coroutine yield function.
384      * Source runs in a thread, so we don't care.
385      */
386     int migration_started_on_destination;
387
388     int total_registrations;
389     int total_writes;
390
391     int unregister_current, unregister_next;
392     uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
393
394     GHashTable *blockmap;
395     bool ipv6;
396 } RDMAContext;
397
398 /*
399  * Interface to the rest of the migration call stack.
400  */
401 typedef struct QEMUFileRDMA {
402     RDMAContext *rdma;
403     size_t len;
404     void *file;
405 } QEMUFileRDMA;
406
407 /*
408  * Main structure for IB Send/Recv control messages.
409  * This gets prepended at the beginning of every Send/Recv.
410  */
411 typedef struct QEMU_PACKED {
412     uint32_t len;     /* Total length of data portion */
413     uint32_t type;    /* which control command to perform */
414     uint32_t repeat;  /* number of commands in data portion of same type */
415     uint32_t padding;
416 } RDMAControlHeader;
417
418 static void control_to_network(RDMAControlHeader *control)
419 {
420     control->type = htonl(control->type);
421     control->len = htonl(control->len);
422     control->repeat = htonl(control->repeat);
423 }
424
425 static void network_to_control(RDMAControlHeader *control)
426 {
427     control->type = ntohl(control->type);
428     control->len = ntohl(control->len);
429     control->repeat = ntohl(control->repeat);
430 }
431
432 /*
433  * Register a single Chunk.
434  * Information sent by the source VM to inform the dest
435  * to register an single chunk of memory before we can perform
436  * the actual RDMA operation.
437  */
438 typedef struct QEMU_PACKED {
439     union QEMU_PACKED {
440         uint64_t current_addr;  /* offset into the ramblock of the chunk */
441         uint64_t chunk;         /* chunk to lookup if unregistering */
442     } key;
443     uint32_t current_index; /* which ramblock the chunk belongs to */
444     uint32_t padding;
445     uint64_t chunks;            /* how many sequential chunks to register */
446 } RDMARegister;
447
448 static void register_to_network(RDMARegister *reg)
449 {
450     reg->key.current_addr = htonll(reg->key.current_addr);
451     reg->current_index = htonl(reg->current_index);
452     reg->chunks = htonll(reg->chunks);
453 }
454
455 static void network_to_register(RDMARegister *reg)
456 {
457     reg->key.current_addr = ntohll(reg->key.current_addr);
458     reg->current_index = ntohl(reg->current_index);
459     reg->chunks = ntohll(reg->chunks);
460 }
461
462 typedef struct QEMU_PACKED {
463     uint32_t value;     /* if zero, we will madvise() */
464     uint32_t block_idx; /* which ram block index */
465     uint64_t offset;    /* where in the remote ramblock this chunk */
466     uint64_t length;    /* length of the chunk */
467 } RDMACompress;
468
469 static void compress_to_network(RDMACompress *comp)
470 {
471     comp->value = htonl(comp->value);
472     comp->block_idx = htonl(comp->block_idx);
473     comp->offset = htonll(comp->offset);
474     comp->length = htonll(comp->length);
475 }
476
477 static void network_to_compress(RDMACompress *comp)
478 {
479     comp->value = ntohl(comp->value);
480     comp->block_idx = ntohl(comp->block_idx);
481     comp->offset = ntohll(comp->offset);
482     comp->length = ntohll(comp->length);
483 }
484
485 /*
486  * The result of the dest's memory registration produces an "rkey"
487  * which the source VM must reference in order to perform
488  * the RDMA operation.
489  */
490 typedef struct QEMU_PACKED {
491     uint32_t rkey;
492     uint32_t padding;
493     uint64_t host_addr;
494 } RDMARegisterResult;
495
496 static void result_to_network(RDMARegisterResult *result)
497 {
498     result->rkey = htonl(result->rkey);
499     result->host_addr = htonll(result->host_addr);
500 };
501
502 static void network_to_result(RDMARegisterResult *result)
503 {
504     result->rkey = ntohl(result->rkey);
505     result->host_addr = ntohll(result->host_addr);
506 };
507
508 const char *print_wrid(int wrid);
509 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
510                                    uint8_t *data, RDMAControlHeader *resp,
511                                    int *resp_idx,
512                                    int (*callback)(RDMAContext *rdma));
513
514 static inline uint64_t ram_chunk_index(uint8_t *start, uint8_t *host)
515 {
516     return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
517 }
518
519 static inline uint8_t *ram_chunk_start(RDMALocalBlock *rdma_ram_block,
520                                        uint64_t i)
521 {
522     return (uint8_t *) (((uintptr_t) rdma_ram_block->local_host_addr)
523                                     + (i << RDMA_REG_CHUNK_SHIFT));
524 }
525
526 static inline uint8_t *ram_chunk_end(RDMALocalBlock *rdma_ram_block, uint64_t i)
527 {
528     uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
529                                          (1UL << RDMA_REG_CHUNK_SHIFT);
530
531     if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
532         result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
533     }
534
535     return result;
536 }
537
538 static int __qemu_rdma_add_block(RDMAContext *rdma, void *host_addr,
539                          ram_addr_t block_offset, uint64_t length)
540 {
541     RDMALocalBlocks *local = &rdma->local_ram_blocks;
542     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
543         (void *) block_offset);
544     RDMALocalBlock *old = local->block;
545
546     assert(block == NULL);
547
548     local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1));
549
550     if (local->nb_blocks) {
551         int x;
552
553         for (x = 0; x < local->nb_blocks; x++) {
554             g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
555             g_hash_table_insert(rdma->blockmap, (void *)old[x].offset,
556                                                 &local->block[x]);
557         }
558         memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
559         g_free(old);
560     }
561
562     block = &local->block[local->nb_blocks];
563
564     block->local_host_addr = host_addr;
565     block->offset = block_offset;
566     block->length = length;
567     block->index = local->nb_blocks;
568     block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
569     block->transit_bitmap = bitmap_new(block->nb_chunks);
570     bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
571     block->unregister_bitmap = bitmap_new(block->nb_chunks);
572     bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
573     block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t));
574
575     block->is_ram_block = local->init ? false : true;
576
577     g_hash_table_insert(rdma->blockmap, (void *) block_offset, block);
578
579     DDPRINTF("Added Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
580            " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
581             local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
582             block->length, (uint64_t) (block->local_host_addr + block->length),
583                 BITS_TO_LONGS(block->nb_chunks) *
584                     sizeof(unsigned long) * 8, block->nb_chunks);
585
586     local->nb_blocks++;
587
588     return 0;
589 }
590
591 /*
592  * Memory regions need to be registered with the device and queue pairs setup
593  * in advanced before the migration starts. This tells us where the RAM blocks
594  * are so that we can register them individually.
595  */
596 static void qemu_rdma_init_one_block(void *host_addr,
597     ram_addr_t block_offset, ram_addr_t length, void *opaque)
598 {
599     __qemu_rdma_add_block(opaque, host_addr, block_offset, length);
600 }
601
602 /*
603  * Identify the RAMBlocks and their quantity. They will be references to
604  * identify chunk boundaries inside each RAMBlock and also be referenced
605  * during dynamic page registration.
606  */
607 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
608 {
609     RDMALocalBlocks *local = &rdma->local_ram_blocks;
610
611     assert(rdma->blockmap == NULL);
612     rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
613     memset(local, 0, sizeof *local);
614     qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
615     DPRINTF("Allocated %d local ram block structures\n", local->nb_blocks);
616     rdma->block = (RDMARemoteBlock *) g_malloc0(sizeof(RDMARemoteBlock) *
617                         rdma->local_ram_blocks.nb_blocks);
618     local->init = true;
619     return 0;
620 }
621
622 static int __qemu_rdma_delete_block(RDMAContext *rdma, ram_addr_t block_offset)
623 {
624     RDMALocalBlocks *local = &rdma->local_ram_blocks;
625     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
626         (void *) block_offset);
627     RDMALocalBlock *old = local->block;
628     int x;
629
630     assert(block);
631
632     if (block->pmr) {
633         int j;
634
635         for (j = 0; j < block->nb_chunks; j++) {
636             if (!block->pmr[j]) {
637                 continue;
638             }
639             ibv_dereg_mr(block->pmr[j]);
640             rdma->total_registrations--;
641         }
642         g_free(block->pmr);
643         block->pmr = NULL;
644     }
645
646     if (block->mr) {
647         ibv_dereg_mr(block->mr);
648         rdma->total_registrations--;
649         block->mr = NULL;
650     }
651
652     g_free(block->transit_bitmap);
653     block->transit_bitmap = NULL;
654
655     g_free(block->unregister_bitmap);
656     block->unregister_bitmap = NULL;
657
658     g_free(block->remote_keys);
659     block->remote_keys = NULL;
660
661     for (x = 0; x < local->nb_blocks; x++) {
662         g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
663     }
664
665     if (local->nb_blocks > 1) {
666
667         local->block = g_malloc0(sizeof(RDMALocalBlock) *
668                                     (local->nb_blocks - 1));
669
670         if (block->index) {
671             memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
672         }
673
674         if (block->index < (local->nb_blocks - 1)) {
675             memcpy(local->block + block->index, old + (block->index + 1),
676                 sizeof(RDMALocalBlock) *
677                     (local->nb_blocks - (block->index + 1)));
678         }
679     } else {
680         assert(block == local->block);
681         local->block = NULL;
682     }
683
684     DDPRINTF("Deleted Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
685            " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
686             local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
687             block->length, (uint64_t) (block->local_host_addr + block->length),
688                 BITS_TO_LONGS(block->nb_chunks) *
689                     sizeof(unsigned long) * 8, block->nb_chunks);
690
691     g_free(old);
692
693     local->nb_blocks--;
694
695     if (local->nb_blocks) {
696         for (x = 0; x < local->nb_blocks; x++) {
697             g_hash_table_insert(rdma->blockmap, (void *)local->block[x].offset,
698                                                 &local->block[x]);
699         }
700     }
701
702     return 0;
703 }
704
705 /*
706  * Put in the log file which RDMA device was opened and the details
707  * associated with that device.
708  */
709 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
710 {
711     printf("%s RDMA Device opened: kernel name %s "
712            "uverbs device name %s, "
713            "infiniband_verbs class device path %s,"
714            " infiniband class device path %s\n",
715                 who,
716                 verbs->device->name,
717                 verbs->device->dev_name,
718                 verbs->device->dev_path,
719                 verbs->device->ibdev_path);
720 }
721
722 /*
723  * Put in the log file the RDMA gid addressing information,
724  * useful for folks who have trouble understanding the
725  * RDMA device hierarchy in the kernel.
726  */
727 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
728 {
729     char sgid[33];
730     char dgid[33];
731     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
732     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
733     DPRINTF("%s Source GID: %s, Dest GID: %s\n", who, sgid, dgid);
734 }
735
736 /*
737  * Figure out which RDMA device corresponds to the requested IP hostname
738  * Also create the initial connection manager identifiers for opening
739  * the connection.
740  */
741 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
742 {
743     int ret;
744     struct addrinfo *res;
745     char port_str[16];
746     struct rdma_cm_event *cm_event;
747     char ip[40] = "unknown";
748     int af = rdma->ipv6 ? PF_INET6 : PF_INET;
749
750     if (rdma->host == NULL || !strcmp(rdma->host, "")) {
751         ERROR(errp, "RDMA hostname has not been set");
752         return -1;
753     }
754
755     /* create CM channel */
756     rdma->channel = rdma_create_event_channel();
757     if (!rdma->channel) {
758         ERROR(errp, "could not create CM channel");
759         return -1;
760     }
761
762     /* create CM id */
763     ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
764     if (ret) {
765         ERROR(errp, "could not create channel id");
766         goto err_resolve_create_id;
767     }
768
769     snprintf(port_str, 16, "%d", rdma->port);
770     port_str[15] = '\0';
771
772     ret = getaddrinfo(rdma->host, port_str, NULL, &res);
773     if (ret < 0) {
774         ERROR(errp, "could not getaddrinfo address %s", rdma->host);
775         goto err_resolve_get_addr;
776     }
777
778     inet_ntop(af, &((struct sockaddr_in *) res->ai_addr)->sin_addr,
779                                 ip, sizeof ip);
780     DPRINTF("%s => %s\n", rdma->host, ip);
781
782     /* resolve the first address */
783     ret = rdma_resolve_addr(rdma->cm_id, NULL, res->ai_addr,
784             RDMA_RESOLVE_TIMEOUT_MS);
785     if (ret) {
786         ERROR(errp, "could not resolve address %s", rdma->host);
787         goto err_resolve_get_addr;
788     }
789
790     qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
791
792     ret = rdma_get_cm_event(rdma->channel, &cm_event);
793     if (ret) {
794         ERROR(errp, "could not perform event_addr_resolved");
795         goto err_resolve_get_addr;
796     }
797
798     if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
799         ERROR(errp, "result not equal to event_addr_resolved %s",
800                 rdma_event_str(cm_event->event));
801         perror("rdma_resolve_addr");
802         goto err_resolve_get_addr;
803     }
804     rdma_ack_cm_event(cm_event);
805
806     /* resolve route */
807     ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
808     if (ret) {
809         ERROR(errp, "could not resolve rdma route");
810         goto err_resolve_get_addr;
811     }
812
813     ret = rdma_get_cm_event(rdma->channel, &cm_event);
814     if (ret) {
815         ERROR(errp, "could not perform event_route_resolved");
816         goto err_resolve_get_addr;
817     }
818     if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
819         ERROR(errp, "result not equal to event_route_resolved: %s",
820                         rdma_event_str(cm_event->event));
821         rdma_ack_cm_event(cm_event);
822         goto err_resolve_get_addr;
823     }
824     rdma_ack_cm_event(cm_event);
825     rdma->verbs = rdma->cm_id->verbs;
826     qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
827     qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
828     return 0;
829
830 err_resolve_get_addr:
831     rdma_destroy_id(rdma->cm_id);
832     rdma->cm_id = NULL;
833 err_resolve_create_id:
834     rdma_destroy_event_channel(rdma->channel);
835     rdma->channel = NULL;
836
837     return -1;
838 }
839
840 /*
841  * Create protection domain and completion queues
842  */
843 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
844 {
845     /* allocate pd */
846     rdma->pd = ibv_alloc_pd(rdma->verbs);
847     if (!rdma->pd) {
848         fprintf(stderr, "failed to allocate protection domain\n");
849         return -1;
850     }
851
852     /* create completion channel */
853     rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
854     if (!rdma->comp_channel) {
855         fprintf(stderr, "failed to allocate completion channel\n");
856         goto err_alloc_pd_cq;
857     }
858
859     /*
860      * Completion queue can be filled by both read and write work requests,
861      * so must reflect the sum of both possible queue sizes.
862      */
863     rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
864             NULL, rdma->comp_channel, 0);
865     if (!rdma->cq) {
866         fprintf(stderr, "failed to allocate completion queue\n");
867         goto err_alloc_pd_cq;
868     }
869
870     return 0;
871
872 err_alloc_pd_cq:
873     if (rdma->pd) {
874         ibv_dealloc_pd(rdma->pd);
875     }
876     if (rdma->comp_channel) {
877         ibv_destroy_comp_channel(rdma->comp_channel);
878     }
879     rdma->pd = NULL;
880     rdma->comp_channel = NULL;
881     return -1;
882
883 }
884
885 /*
886  * Create queue pairs.
887  */
888 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
889 {
890     struct ibv_qp_init_attr attr = { 0 };
891     int ret;
892
893     attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
894     attr.cap.max_recv_wr = 3;
895     attr.cap.max_send_sge = 1;
896     attr.cap.max_recv_sge = 1;
897     attr.send_cq = rdma->cq;
898     attr.recv_cq = rdma->cq;
899     attr.qp_type = IBV_QPT_RC;
900
901     ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
902     if (ret) {
903         return -1;
904     }
905
906     rdma->qp = rdma->cm_id->qp;
907     return 0;
908 }
909
910 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
911 {
912     int i;
913     RDMALocalBlocks *local = &rdma->local_ram_blocks;
914
915     for (i = 0; i < local->nb_blocks; i++) {
916         local->block[i].mr =
917             ibv_reg_mr(rdma->pd,
918                     local->block[i].local_host_addr,
919                     local->block[i].length,
920                     IBV_ACCESS_LOCAL_WRITE |
921                     IBV_ACCESS_REMOTE_WRITE
922                     );
923         if (!local->block[i].mr) {
924             perror("Failed to register local dest ram block!\n");
925             break;
926         }
927         rdma->total_registrations++;
928     }
929
930     if (i >= local->nb_blocks) {
931         return 0;
932     }
933
934     for (i--; i >= 0; i--) {
935         ibv_dereg_mr(local->block[i].mr);
936         rdma->total_registrations--;
937     }
938
939     return -1;
940
941 }
942
943 /*
944  * Find the ram block that corresponds to the page requested to be
945  * transmitted by QEMU.
946  *
947  * Once the block is found, also identify which 'chunk' within that
948  * block that the page belongs to.
949  *
950  * This search cannot fail or the migration will fail.
951  */
952 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
953                                       uint64_t block_offset,
954                                       uint64_t offset,
955                                       uint64_t length,
956                                       uint64_t *block_index,
957                                       uint64_t *chunk_index)
958 {
959     uint64_t current_addr = block_offset + offset;
960     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
961                                                 (void *) block_offset);
962     assert(block);
963     assert(current_addr >= block->offset);
964     assert((current_addr + length) <= (block->offset + block->length));
965
966     *block_index = block->index;
967     *chunk_index = ram_chunk_index(block->local_host_addr,
968                 block->local_host_addr + (current_addr - block->offset));
969
970     return 0;
971 }
972
973 /*
974  * Register a chunk with IB. If the chunk was already registered
975  * previously, then skip.
976  *
977  * Also return the keys associated with the registration needed
978  * to perform the actual RDMA operation.
979  */
980 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
981         RDMALocalBlock *block, uint8_t *host_addr,
982         uint32_t *lkey, uint32_t *rkey, int chunk,
983         uint8_t *chunk_start, uint8_t *chunk_end)
984 {
985     if (block->mr) {
986         if (lkey) {
987             *lkey = block->mr->lkey;
988         }
989         if (rkey) {
990             *rkey = block->mr->rkey;
991         }
992         return 0;
993     }
994
995     /* allocate memory to store chunk MRs */
996     if (!block->pmr) {
997         block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *));
998         if (!block->pmr) {
999             return -1;
1000         }
1001     }
1002
1003     /*
1004      * If 'rkey', then we're the destination, so grant access to the source.
1005      *
1006      * If 'lkey', then we're the source VM, so grant access only to ourselves.
1007      */
1008     if (!block->pmr[chunk]) {
1009         uint64_t len = chunk_end - chunk_start;
1010
1011         DDPRINTF("Registering %" PRIu64 " bytes @ %p\n",
1012                  len, chunk_start);
1013
1014         block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1015                 chunk_start, len,
1016                 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1017                         IBV_ACCESS_REMOTE_WRITE) : 0));
1018
1019         if (!block->pmr[chunk]) {
1020             perror("Failed to register chunk!");
1021             fprintf(stderr, "Chunk details: block: %d chunk index %d"
1022                             " start %" PRIu64 " end %" PRIu64 " host %" PRIu64
1023                             " local %" PRIu64 " registrations: %d\n",
1024                             block->index, chunk, (uint64_t) chunk_start,
1025                             (uint64_t) chunk_end, (uint64_t) host_addr,
1026                             (uint64_t) block->local_host_addr,
1027                             rdma->total_registrations);
1028             return -1;
1029         }
1030         rdma->total_registrations++;
1031     }
1032
1033     if (lkey) {
1034         *lkey = block->pmr[chunk]->lkey;
1035     }
1036     if (rkey) {
1037         *rkey = block->pmr[chunk]->rkey;
1038     }
1039     return 0;
1040 }
1041
1042 /*
1043  * Register (at connection time) the memory used for control
1044  * channel messages.
1045  */
1046 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1047 {
1048     rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1049             rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1050             IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1051     if (rdma->wr_data[idx].control_mr) {
1052         rdma->total_registrations++;
1053         return 0;
1054     }
1055     fprintf(stderr, "qemu_rdma_reg_control failed!\n");
1056     return -1;
1057 }
1058
1059 const char *print_wrid(int wrid)
1060 {
1061     if (wrid >= RDMA_WRID_RECV_CONTROL) {
1062         return wrid_desc[RDMA_WRID_RECV_CONTROL];
1063     }
1064     return wrid_desc[wrid];
1065 }
1066
1067 /*
1068  * RDMA requires memory registration (mlock/pinning), but this is not good for
1069  * overcommitment.
1070  *
1071  * In preparation for the future where LRU information or workload-specific
1072  * writable writable working set memory access behavior is available to QEMU
1073  * it would be nice to have in place the ability to UN-register/UN-pin
1074  * particular memory regions from the RDMA hardware when it is determine that
1075  * those regions of memory will likely not be accessed again in the near future.
1076  *
1077  * While we do not yet have such information right now, the following
1078  * compile-time option allows us to perform a non-optimized version of this
1079  * behavior.
1080  *
1081  * By uncommenting this option, you will cause *all* RDMA transfers to be
1082  * unregistered immediately after the transfer completes on both sides of the
1083  * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1084  *
1085  * This will have a terrible impact on migration performance, so until future
1086  * workload information or LRU information is available, do not attempt to use
1087  * this feature except for basic testing.
1088  */
1089 //#define RDMA_UNREGISTRATION_EXAMPLE
1090
1091 /*
1092  * Perform a non-optimized memory unregistration after every transfer
1093  * for demonsration purposes, only if pin-all is not requested.
1094  *
1095  * Potential optimizations:
1096  * 1. Start a new thread to run this function continuously
1097         - for bit clearing
1098         - and for receipt of unregister messages
1099  * 2. Use an LRU.
1100  * 3. Use workload hints.
1101  */
1102 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1103 {
1104     while (rdma->unregistrations[rdma->unregister_current]) {
1105         int ret;
1106         uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1107         uint64_t chunk =
1108             (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1109         uint64_t index =
1110             (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1111         RDMALocalBlock *block =
1112             &(rdma->local_ram_blocks.block[index]);
1113         RDMARegister reg = { .current_index = index };
1114         RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1115                                  };
1116         RDMAControlHeader head = { .len = sizeof(RDMARegister),
1117                                    .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1118                                    .repeat = 1,
1119                                  };
1120
1121         DDPRINTF("Processing unregister for chunk: %" PRIu64
1122                  " at position %d\n", chunk, rdma->unregister_current);
1123
1124         rdma->unregistrations[rdma->unregister_current] = 0;
1125         rdma->unregister_current++;
1126
1127         if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1128             rdma->unregister_current = 0;
1129         }
1130
1131
1132         /*
1133          * Unregistration is speculative (because migration is single-threaded
1134          * and we cannot break the protocol's inifinband message ordering).
1135          * Thus, if the memory is currently being used for transmission,
1136          * then abort the attempt to unregister and try again
1137          * later the next time a completion is received for this memory.
1138          */
1139         clear_bit(chunk, block->unregister_bitmap);
1140
1141         if (test_bit(chunk, block->transit_bitmap)) {
1142             DDPRINTF("Cannot unregister inflight chunk: %" PRIu64 "\n", chunk);
1143             continue;
1144         }
1145
1146         DDPRINTF("Sending unregister for chunk: %" PRIu64 "\n", chunk);
1147
1148         ret = ibv_dereg_mr(block->pmr[chunk]);
1149         block->pmr[chunk] = NULL;
1150         block->remote_keys[chunk] = 0;
1151
1152         if (ret != 0) {
1153             perror("unregistration chunk failed");
1154             return -ret;
1155         }
1156         rdma->total_registrations--;
1157
1158         reg.key.chunk = chunk;
1159         register_to_network(&reg);
1160         ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1161                                 &resp, NULL, NULL);
1162         if (ret < 0) {
1163             return ret;
1164         }
1165
1166         DDPRINTF("Unregister for chunk: %" PRIu64 " complete.\n", chunk);
1167     }
1168
1169     return 0;
1170 }
1171
1172 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1173                                          uint64_t chunk)
1174 {
1175     uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1176
1177     result |= (index << RDMA_WRID_BLOCK_SHIFT);
1178     result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1179
1180     return result;
1181 }
1182
1183 /*
1184  * Set bit for unregistration in the next iteration.
1185  * We cannot transmit right here, but will unpin later.
1186  */
1187 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1188                                         uint64_t chunk, uint64_t wr_id)
1189 {
1190     if (rdma->unregistrations[rdma->unregister_next] != 0) {
1191         fprintf(stderr, "rdma migration: queue is full!\n");
1192     } else {
1193         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1194
1195         if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1196             DDPRINTF("Appending unregister chunk %" PRIu64
1197                     " at position %d\n", chunk, rdma->unregister_next);
1198
1199             rdma->unregistrations[rdma->unregister_next++] =
1200                     qemu_rdma_make_wrid(wr_id, index, chunk);
1201
1202             if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1203                 rdma->unregister_next = 0;
1204             }
1205         } else {
1206             DDPRINTF("Unregister chunk %" PRIu64 " already in queue.\n",
1207                     chunk);
1208         }
1209     }
1210 }
1211
1212 /*
1213  * Consult the connection manager to see a work request
1214  * (of any kind) has completed.
1215  * Return the work request ID that completed.
1216  */
1217 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1218                                uint32_t *byte_len)
1219 {
1220     int ret;
1221     struct ibv_wc wc;
1222     uint64_t wr_id;
1223
1224     ret = ibv_poll_cq(rdma->cq, 1, &wc);
1225
1226     if (!ret) {
1227         *wr_id_out = RDMA_WRID_NONE;
1228         return 0;
1229     }
1230
1231     if (ret < 0) {
1232         fprintf(stderr, "ibv_poll_cq return %d!\n", ret);
1233         return ret;
1234     }
1235
1236     wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1237
1238     if (wc.status != IBV_WC_SUCCESS) {
1239         fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1240                         wc.status, ibv_wc_status_str(wc.status));
1241         fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1242
1243         return -1;
1244     }
1245
1246     if (rdma->control_ready_expected &&
1247         (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1248         DDDPRINTF("completion %s #%" PRId64 " received (%" PRId64 ")"
1249                   " left %d\n", wrid_desc[RDMA_WRID_RECV_CONTROL],
1250                   wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1251         rdma->control_ready_expected = 0;
1252     }
1253
1254     if (wr_id == RDMA_WRID_RDMA_WRITE) {
1255         uint64_t chunk =
1256             (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1257         uint64_t index =
1258             (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1259         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1260
1261         DDDPRINTF("completions %s (%" PRId64 ") left %d, "
1262                  "block %" PRIu64 ", chunk: %" PRIu64 " %p %p\n",
1263                  print_wrid(wr_id), wr_id, rdma->nb_sent, index, chunk,
1264                  block->local_host_addr, (void *)block->remote_host_addr);
1265
1266         clear_bit(chunk, block->transit_bitmap);
1267
1268         if (rdma->nb_sent > 0) {
1269             rdma->nb_sent--;
1270         }
1271
1272         if (!rdma->pin_all) {
1273             /*
1274              * FYI: If one wanted to signal a specific chunk to be unregistered
1275              * using LRU or workload-specific information, this is the function
1276              * you would call to do so. That chunk would then get asynchronously
1277              * unregistered later.
1278              */
1279 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1280             qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1281 #endif
1282         }
1283     } else {
1284         DDDPRINTF("other completion %s (%" PRId64 ") received left %d\n",
1285             print_wrid(wr_id), wr_id, rdma->nb_sent);
1286     }
1287
1288     *wr_id_out = wc.wr_id;
1289     if (byte_len) {
1290         *byte_len = wc.byte_len;
1291     }
1292
1293     return  0;
1294 }
1295
1296 /*
1297  * Block until the next work request has completed.
1298  *
1299  * First poll to see if a work request has already completed,
1300  * otherwise block.
1301  *
1302  * If we encounter completed work requests for IDs other than
1303  * the one we're interested in, then that's generally an error.
1304  *
1305  * The only exception is actual RDMA Write completions. These
1306  * completions only need to be recorded, but do not actually
1307  * need further processing.
1308  */
1309 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1310                                     uint32_t *byte_len)
1311 {
1312     int num_cq_events = 0, ret = 0;
1313     struct ibv_cq *cq;
1314     void *cq_ctx;
1315     uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1316
1317     if (ibv_req_notify_cq(rdma->cq, 0)) {
1318         return -1;
1319     }
1320     /* poll cq first */
1321     while (wr_id != wrid_requested) {
1322         ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1323         if (ret < 0) {
1324             return ret;
1325         }
1326
1327         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1328
1329         if (wr_id == RDMA_WRID_NONE) {
1330             break;
1331         }
1332         if (wr_id != wrid_requested) {
1333             DDDPRINTF("A Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1334                 print_wrid(wrid_requested),
1335                 wrid_requested, print_wrid(wr_id), wr_id);
1336         }
1337     }
1338
1339     if (wr_id == wrid_requested) {
1340         return 0;
1341     }
1342
1343     while (1) {
1344         /*
1345          * Coroutine doesn't start until process_incoming_migration()
1346          * so don't yield unless we know we're running inside of a coroutine.
1347          */
1348         if (rdma->migration_started_on_destination) {
1349             yield_until_fd_readable(rdma->comp_channel->fd);
1350         }
1351
1352         if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
1353             perror("ibv_get_cq_event");
1354             goto err_block_for_wrid;
1355         }
1356
1357         num_cq_events++;
1358
1359         if (ibv_req_notify_cq(cq, 0)) {
1360             goto err_block_for_wrid;
1361         }
1362
1363         while (wr_id != wrid_requested) {
1364             ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1365             if (ret < 0) {
1366                 goto err_block_for_wrid;
1367             }
1368
1369             wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1370
1371             if (wr_id == RDMA_WRID_NONE) {
1372                 break;
1373             }
1374             if (wr_id != wrid_requested) {
1375                 DDDPRINTF("B Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1376                     print_wrid(wrid_requested), wrid_requested,
1377                     print_wrid(wr_id), wr_id);
1378             }
1379         }
1380
1381         if (wr_id == wrid_requested) {
1382             goto success_block_for_wrid;
1383         }
1384     }
1385
1386 success_block_for_wrid:
1387     if (num_cq_events) {
1388         ibv_ack_cq_events(cq, num_cq_events);
1389     }
1390     return 0;
1391
1392 err_block_for_wrid:
1393     if (num_cq_events) {
1394         ibv_ack_cq_events(cq, num_cq_events);
1395     }
1396     return ret;
1397 }
1398
1399 /*
1400  * Post a SEND message work request for the control channel
1401  * containing some data and block until the post completes.
1402  */
1403 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1404                                        RDMAControlHeader *head)
1405 {
1406     int ret = 0;
1407     RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1408     struct ibv_send_wr *bad_wr;
1409     struct ibv_sge sge = {
1410                            .addr = (uint64_t)(wr->control),
1411                            .length = head->len + sizeof(RDMAControlHeader),
1412                            .lkey = wr->control_mr->lkey,
1413                          };
1414     struct ibv_send_wr send_wr = {
1415                                    .wr_id = RDMA_WRID_SEND_CONTROL,
1416                                    .opcode = IBV_WR_SEND,
1417                                    .send_flags = IBV_SEND_SIGNALED,
1418                                    .sg_list = &sge,
1419                                    .num_sge = 1,
1420                                 };
1421
1422     DDDPRINTF("CONTROL: sending %s..\n", control_desc[head->type]);
1423
1424     /*
1425      * We don't actually need to do a memcpy() in here if we used
1426      * the "sge" properly, but since we're only sending control messages
1427      * (not RAM in a performance-critical path), then its OK for now.
1428      *
1429      * The copy makes the RDMAControlHeader simpler to manipulate
1430      * for the time being.
1431      */
1432     assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1433     memcpy(wr->control, head, sizeof(RDMAControlHeader));
1434     control_to_network((void *) wr->control);
1435
1436     if (buf) {
1437         memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1438     }
1439
1440
1441     if (ibv_post_send(rdma->qp, &send_wr, &bad_wr)) {
1442         return -1;
1443     }
1444
1445     if (ret < 0) {
1446         fprintf(stderr, "Failed to use post IB SEND for control!\n");
1447         return ret;
1448     }
1449
1450     ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1451     if (ret < 0) {
1452         fprintf(stderr, "rdma migration: send polling control error!\n");
1453     }
1454
1455     return ret;
1456 }
1457
1458 /*
1459  * Post a RECV work request in anticipation of some future receipt
1460  * of data on the control channel.
1461  */
1462 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1463 {
1464     struct ibv_recv_wr *bad_wr;
1465     struct ibv_sge sge = {
1466                             .addr = (uint64_t)(rdma->wr_data[idx].control),
1467                             .length = RDMA_CONTROL_MAX_BUFFER,
1468                             .lkey = rdma->wr_data[idx].control_mr->lkey,
1469                          };
1470
1471     struct ibv_recv_wr recv_wr = {
1472                                     .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1473                                     .sg_list = &sge,
1474                                     .num_sge = 1,
1475                                  };
1476
1477
1478     if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1479         return -1;
1480     }
1481
1482     return 0;
1483 }
1484
1485 /*
1486  * Block and wait for a RECV control channel message to arrive.
1487  */
1488 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1489                 RDMAControlHeader *head, int expecting, int idx)
1490 {
1491     uint32_t byte_len;
1492     int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1493                                        &byte_len);
1494
1495     if (ret < 0) {
1496         fprintf(stderr, "rdma migration: recv polling control error!\n");
1497         return ret;
1498     }
1499
1500     network_to_control((void *) rdma->wr_data[idx].control);
1501     memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1502
1503     DDDPRINTF("CONTROL: %s receiving...\n", control_desc[expecting]);
1504
1505     if (expecting == RDMA_CONTROL_NONE) {
1506         DDDPRINTF("Surprise: got %s (%d)\n",
1507                   control_desc[head->type], head->type);
1508     } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1509         fprintf(stderr, "Was expecting a %s (%d) control message"
1510                 ", but got: %s (%d), length: %d\n",
1511                 control_desc[expecting], expecting,
1512                 control_desc[head->type], head->type, head->len);
1513         return -EIO;
1514     }
1515     if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1516         fprintf(stderr, "too long length: %d\n", head->len);
1517         return -EINVAL;
1518     }
1519     if (sizeof(*head) + head->len != byte_len) {
1520         fprintf(stderr, "Malformed length: %d byte_len %d\n",
1521                 head->len, byte_len);
1522         return -EINVAL;
1523     }
1524
1525     return 0;
1526 }
1527
1528 /*
1529  * When a RECV work request has completed, the work request's
1530  * buffer is pointed at the header.
1531  *
1532  * This will advance the pointer to the data portion
1533  * of the control message of the work request's buffer that
1534  * was populated after the work request finished.
1535  */
1536 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1537                                   RDMAControlHeader *head)
1538 {
1539     rdma->wr_data[idx].control_len = head->len;
1540     rdma->wr_data[idx].control_curr =
1541         rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1542 }
1543
1544 /*
1545  * This is an 'atomic' high-level operation to deliver a single, unified
1546  * control-channel message.
1547  *
1548  * Additionally, if the user is expecting some kind of reply to this message,
1549  * they can request a 'resp' response message be filled in by posting an
1550  * additional work request on behalf of the user and waiting for an additional
1551  * completion.
1552  *
1553  * The extra (optional) response is used during registration to us from having
1554  * to perform an *additional* exchange of message just to provide a response by
1555  * instead piggy-backing on the acknowledgement.
1556  */
1557 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1558                                    uint8_t *data, RDMAControlHeader *resp,
1559                                    int *resp_idx,
1560                                    int (*callback)(RDMAContext *rdma))
1561 {
1562     int ret = 0;
1563
1564     /*
1565      * Wait until the dest is ready before attempting to deliver the message
1566      * by waiting for a READY message.
1567      */
1568     if (rdma->control_ready_expected) {
1569         RDMAControlHeader resp;
1570         ret = qemu_rdma_exchange_get_response(rdma,
1571                                     &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1572         if (ret < 0) {
1573             return ret;
1574         }
1575     }
1576
1577     /*
1578      * If the user is expecting a response, post a WR in anticipation of it.
1579      */
1580     if (resp) {
1581         ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1582         if (ret) {
1583             fprintf(stderr, "rdma migration: error posting"
1584                     " extra control recv for anticipated result!");
1585             return ret;
1586         }
1587     }
1588
1589     /*
1590      * Post a WR to replace the one we just consumed for the READY message.
1591      */
1592     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1593     if (ret) {
1594         fprintf(stderr, "rdma migration: error posting first control recv!");
1595         return ret;
1596     }
1597
1598     /*
1599      * Deliver the control message that was requested.
1600      */
1601     ret = qemu_rdma_post_send_control(rdma, data, head);
1602
1603     if (ret < 0) {
1604         fprintf(stderr, "Failed to send control buffer!\n");
1605         return ret;
1606     }
1607
1608     /*
1609      * If we're expecting a response, block and wait for it.
1610      */
1611     if (resp) {
1612         if (callback) {
1613             DDPRINTF("Issuing callback before receiving response...\n");
1614             ret = callback(rdma);
1615             if (ret < 0) {
1616                 return ret;
1617             }
1618         }
1619
1620         DDPRINTF("Waiting for response %s\n", control_desc[resp->type]);
1621         ret = qemu_rdma_exchange_get_response(rdma, resp,
1622                                               resp->type, RDMA_WRID_DATA);
1623
1624         if (ret < 0) {
1625             return ret;
1626         }
1627
1628         qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1629         if (resp_idx) {
1630             *resp_idx = RDMA_WRID_DATA;
1631         }
1632         DDPRINTF("Response %s received.\n", control_desc[resp->type]);
1633     }
1634
1635     rdma->control_ready_expected = 1;
1636
1637     return 0;
1638 }
1639
1640 /*
1641  * This is an 'atomic' high-level operation to receive a single, unified
1642  * control-channel message.
1643  */
1644 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1645                                 int expecting)
1646 {
1647     RDMAControlHeader ready = {
1648                                 .len = 0,
1649                                 .type = RDMA_CONTROL_READY,
1650                                 .repeat = 1,
1651                               };
1652     int ret;
1653
1654     /*
1655      * Inform the source that we're ready to receive a message.
1656      */
1657     ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1658
1659     if (ret < 0) {
1660         fprintf(stderr, "Failed to send control buffer!\n");
1661         return ret;
1662     }
1663
1664     /*
1665      * Block and wait for the message.
1666      */
1667     ret = qemu_rdma_exchange_get_response(rdma, head,
1668                                           expecting, RDMA_WRID_READY);
1669
1670     if (ret < 0) {
1671         return ret;
1672     }
1673
1674     qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1675
1676     /*
1677      * Post a new RECV work request to replace the one we just consumed.
1678      */
1679     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1680     if (ret) {
1681         fprintf(stderr, "rdma migration: error posting second control recv!");
1682         return ret;
1683     }
1684
1685     return 0;
1686 }
1687
1688 /*
1689  * Write an actual chunk of memory using RDMA.
1690  *
1691  * If we're using dynamic registration on the dest-side, we have to
1692  * send a registration command first.
1693  */
1694 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1695                                int current_index, uint64_t current_addr,
1696                                uint64_t length)
1697 {
1698     struct ibv_sge sge;
1699     struct ibv_send_wr send_wr = { 0 };
1700     struct ibv_send_wr *bad_wr;
1701     int reg_result_idx, ret, count = 0;
1702     uint64_t chunk, chunks;
1703     uint8_t *chunk_start, *chunk_end;
1704     RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1705     RDMARegister reg;
1706     RDMARegisterResult *reg_result;
1707     RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1708     RDMAControlHeader head = { .len = sizeof(RDMARegister),
1709                                .type = RDMA_CONTROL_REGISTER_REQUEST,
1710                                .repeat = 1,
1711                              };
1712
1713 retry:
1714     sge.addr = (uint64_t)(block->local_host_addr +
1715                             (current_addr - block->offset));
1716     sge.length = length;
1717
1718     chunk = ram_chunk_index(block->local_host_addr, (uint8_t *) sge.addr);
1719     chunk_start = ram_chunk_start(block, chunk);
1720
1721     if (block->is_ram_block) {
1722         chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1723
1724         if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1725             chunks--;
1726         }
1727     } else {
1728         chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1729
1730         if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1731             chunks--;
1732         }
1733     }
1734
1735     DDPRINTF("Writing %" PRIu64 " chunks, (%" PRIu64 " MB)\n",
1736         chunks + 1, (chunks + 1) * (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
1737
1738     chunk_end = ram_chunk_end(block, chunk + chunks);
1739
1740     if (!rdma->pin_all) {
1741 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1742         qemu_rdma_unregister_waiting(rdma);
1743 #endif
1744     }
1745
1746     while (test_bit(chunk, block->transit_bitmap)) {
1747         (void)count;
1748         DDPRINTF("(%d) Not clobbering: block: %d chunk %" PRIu64
1749                 " current %" PRIu64 " len %" PRIu64 " %d %d\n",
1750                 count++, current_index, chunk,
1751                 sge.addr, length, rdma->nb_sent, block->nb_chunks);
1752
1753         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
1754
1755         if (ret < 0) {
1756             fprintf(stderr, "Failed to Wait for previous write to complete "
1757                     "block %d chunk %" PRIu64
1758                     " current %" PRIu64 " len %" PRIu64 " %d\n",
1759                     current_index, chunk, sge.addr, length, rdma->nb_sent);
1760             return ret;
1761         }
1762     }
1763
1764     if (!rdma->pin_all || !block->is_ram_block) {
1765         if (!block->remote_keys[chunk]) {
1766             /*
1767              * This chunk has not yet been registered, so first check to see
1768              * if the entire chunk is zero. If so, tell the other size to
1769              * memset() + madvise() the entire chunk without RDMA.
1770              */
1771
1772             if (can_use_buffer_find_nonzero_offset((void *)sge.addr, length)
1773                    && buffer_find_nonzero_offset((void *)sge.addr,
1774                                                     length) == length) {
1775                 RDMACompress comp = {
1776                                         .offset = current_addr,
1777                                         .value = 0,
1778                                         .block_idx = current_index,
1779                                         .length = length,
1780                                     };
1781
1782                 head.len = sizeof(comp);
1783                 head.type = RDMA_CONTROL_COMPRESS;
1784
1785                 DDPRINTF("Entire chunk is zero, sending compress: %"
1786                     PRIu64 " for %d "
1787                     "bytes, index: %d, offset: %" PRId64 "...\n",
1788                     chunk, sge.length, current_index, current_addr);
1789
1790                 compress_to_network(&comp);
1791                 ret = qemu_rdma_exchange_send(rdma, &head,
1792                                 (uint8_t *) &comp, NULL, NULL, NULL);
1793
1794                 if (ret < 0) {
1795                     return -EIO;
1796                 }
1797
1798                 acct_update_position(f, sge.length, true);
1799
1800                 return 1;
1801             }
1802
1803             /*
1804              * Otherwise, tell other side to register.
1805              */
1806             reg.current_index = current_index;
1807             if (block->is_ram_block) {
1808                 reg.key.current_addr = current_addr;
1809             } else {
1810                 reg.key.chunk = chunk;
1811             }
1812             reg.chunks = chunks;
1813
1814             DDPRINTF("Sending registration request chunk %" PRIu64 " for %d "
1815                     "bytes, index: %d, offset: %" PRId64 "...\n",
1816                     chunk, sge.length, current_index, current_addr);
1817
1818             register_to_network(&reg);
1819             ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1820                                     &resp, &reg_result_idx, NULL);
1821             if (ret < 0) {
1822                 return ret;
1823             }
1824
1825             /* try to overlap this single registration with the one we sent. */
1826             if (qemu_rdma_register_and_get_keys(rdma, block,
1827                                                 (uint8_t *) sge.addr,
1828                                                 &sge.lkey, NULL, chunk,
1829                                                 chunk_start, chunk_end)) {
1830                 fprintf(stderr, "cannot get lkey!\n");
1831                 return -EINVAL;
1832             }
1833
1834             reg_result = (RDMARegisterResult *)
1835                     rdma->wr_data[reg_result_idx].control_curr;
1836
1837             network_to_result(reg_result);
1838
1839             DDPRINTF("Received registration result:"
1840                     " my key: %x their key %x, chunk %" PRIu64 "\n",
1841                     block->remote_keys[chunk], reg_result->rkey, chunk);
1842
1843             block->remote_keys[chunk] = reg_result->rkey;
1844             block->remote_host_addr = reg_result->host_addr;
1845         } else {
1846             /* already registered before */
1847             if (qemu_rdma_register_and_get_keys(rdma, block,
1848                                                 (uint8_t *)sge.addr,
1849                                                 &sge.lkey, NULL, chunk,
1850                                                 chunk_start, chunk_end)) {
1851                 fprintf(stderr, "cannot get lkey!\n");
1852                 return -EINVAL;
1853             }
1854         }
1855
1856         send_wr.wr.rdma.rkey = block->remote_keys[chunk];
1857     } else {
1858         send_wr.wr.rdma.rkey = block->remote_rkey;
1859
1860         if (qemu_rdma_register_and_get_keys(rdma, block, (uint8_t *)sge.addr,
1861                                                      &sge.lkey, NULL, chunk,
1862                                                      chunk_start, chunk_end)) {
1863             fprintf(stderr, "cannot get lkey!\n");
1864             return -EINVAL;
1865         }
1866     }
1867
1868     /*
1869      * Encode the ram block index and chunk within this wrid.
1870      * We will use this information at the time of completion
1871      * to figure out which bitmap to check against and then which
1872      * chunk in the bitmap to look for.
1873      */
1874     send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
1875                                         current_index, chunk);
1876
1877     send_wr.opcode = IBV_WR_RDMA_WRITE;
1878     send_wr.send_flags = IBV_SEND_SIGNALED;
1879     send_wr.sg_list = &sge;
1880     send_wr.num_sge = 1;
1881     send_wr.wr.rdma.remote_addr = block->remote_host_addr +
1882                                 (current_addr - block->offset);
1883
1884     DDDPRINTF("Posting chunk: %" PRIu64 ", addr: %lx"
1885               " remote: %lx, bytes %" PRIu32 "\n",
1886               chunk, sge.addr, send_wr.wr.rdma.remote_addr,
1887               sge.length);
1888
1889     /*
1890      * ibv_post_send() does not return negative error numbers,
1891      * per the specification they are positive - no idea why.
1892      */
1893     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1894
1895     if (ret == ENOMEM) {
1896         DDPRINTF("send queue is full. wait a little....\n");
1897         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
1898         if (ret < 0) {
1899             fprintf(stderr, "rdma migration: failed to make "
1900                             "room in full send queue! %d\n", ret);
1901             return ret;
1902         }
1903
1904         goto retry;
1905
1906     } else if (ret > 0) {
1907         perror("rdma migration: post rdma write failed");
1908         return -ret;
1909     }
1910
1911     set_bit(chunk, block->transit_bitmap);
1912     acct_update_position(f, sge.length, false);
1913     rdma->total_writes++;
1914
1915     return 0;
1916 }
1917
1918 /*
1919  * Push out any unwritten RDMA operations.
1920  *
1921  * We support sending out multiple chunks at the same time.
1922  * Not all of them need to get signaled in the completion queue.
1923  */
1924 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
1925 {
1926     int ret;
1927
1928     if (!rdma->current_length) {
1929         return 0;
1930     }
1931
1932     ret = qemu_rdma_write_one(f, rdma,
1933             rdma->current_index, rdma->current_addr, rdma->current_length);
1934
1935     if (ret < 0) {
1936         return ret;
1937     }
1938
1939     if (ret == 0) {
1940         rdma->nb_sent++;
1941         DDDPRINTF("sent total: %d\n", rdma->nb_sent);
1942     }
1943
1944     rdma->current_length = 0;
1945     rdma->current_addr = 0;
1946
1947     return 0;
1948 }
1949
1950 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
1951                     uint64_t offset, uint64_t len)
1952 {
1953     RDMALocalBlock *block;
1954     uint8_t *host_addr;
1955     uint8_t *chunk_end;
1956
1957     if (rdma->current_index < 0) {
1958         return 0;
1959     }
1960
1961     if (rdma->current_chunk < 0) {
1962         return 0;
1963     }
1964
1965     block = &(rdma->local_ram_blocks.block[rdma->current_index]);
1966     host_addr = block->local_host_addr + (offset - block->offset);
1967     chunk_end = ram_chunk_end(block, rdma->current_chunk);
1968
1969     if (rdma->current_length == 0) {
1970         return 0;
1971     }
1972
1973     /*
1974      * Only merge into chunk sequentially.
1975      */
1976     if (offset != (rdma->current_addr + rdma->current_length)) {
1977         return 0;
1978     }
1979
1980     if (offset < block->offset) {
1981         return 0;
1982     }
1983
1984     if ((offset + len) > (block->offset + block->length)) {
1985         return 0;
1986     }
1987
1988     if ((host_addr + len) > chunk_end) {
1989         return 0;
1990     }
1991
1992     return 1;
1993 }
1994
1995 /*
1996  * We're not actually writing here, but doing three things:
1997  *
1998  * 1. Identify the chunk the buffer belongs to.
1999  * 2. If the chunk is full or the buffer doesn't belong to the current
2000  *    chunk, then start a new chunk and flush() the old chunk.
2001  * 3. To keep the hardware busy, we also group chunks into batches
2002  *    and only require that a batch gets acknowledged in the completion
2003  *    qeueue instead of each individual chunk.
2004  */
2005 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2006                            uint64_t block_offset, uint64_t offset,
2007                            uint64_t len)
2008 {
2009     uint64_t current_addr = block_offset + offset;
2010     uint64_t index = rdma->current_index;
2011     uint64_t chunk = rdma->current_chunk;
2012     int ret;
2013
2014     /* If we cannot merge it, we flush the current buffer first. */
2015     if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2016         ret = qemu_rdma_write_flush(f, rdma);
2017         if (ret) {
2018             return ret;
2019         }
2020         rdma->current_length = 0;
2021         rdma->current_addr = current_addr;
2022
2023         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2024                                          offset, len, &index, &chunk);
2025         if (ret) {
2026             fprintf(stderr, "ram block search failed\n");
2027             return ret;
2028         }
2029         rdma->current_index = index;
2030         rdma->current_chunk = chunk;
2031     }
2032
2033     /* merge it */
2034     rdma->current_length += len;
2035
2036     /* flush it if buffer is too large */
2037     if (rdma->current_length >= RDMA_MERGE_MAX) {
2038         return qemu_rdma_write_flush(f, rdma);
2039     }
2040
2041     return 0;
2042 }
2043
2044 static void qemu_rdma_cleanup(RDMAContext *rdma)
2045 {
2046     struct rdma_cm_event *cm_event;
2047     int ret, idx;
2048
2049     if (rdma->cm_id) {
2050         if (rdma->error_state) {
2051             RDMAControlHeader head = { .len = 0,
2052                                        .type = RDMA_CONTROL_ERROR,
2053                                        .repeat = 1,
2054                                      };
2055             fprintf(stderr, "Early error. Sending error.\n");
2056             qemu_rdma_post_send_control(rdma, NULL, &head);
2057         }
2058
2059         ret = rdma_disconnect(rdma->cm_id);
2060         if (!ret) {
2061             DDPRINTF("waiting for disconnect\n");
2062             ret = rdma_get_cm_event(rdma->channel, &cm_event);
2063             if (!ret) {
2064                 rdma_ack_cm_event(cm_event);
2065             }
2066         }
2067         DDPRINTF("Disconnected.\n");
2068         rdma->cm_id = NULL;
2069     }
2070
2071     g_free(rdma->block);
2072     rdma->block = NULL;
2073
2074     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2075         if (rdma->wr_data[idx].control_mr) {
2076             rdma->total_registrations--;
2077             ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2078         }
2079         rdma->wr_data[idx].control_mr = NULL;
2080     }
2081
2082     if (rdma->local_ram_blocks.block) {
2083         while (rdma->local_ram_blocks.nb_blocks) {
2084             __qemu_rdma_delete_block(rdma,
2085                     rdma->local_ram_blocks.block->offset);
2086         }
2087     }
2088
2089     if (rdma->qp) {
2090         ibv_destroy_qp(rdma->qp);
2091         rdma->qp = NULL;
2092     }
2093     if (rdma->cq) {
2094         ibv_destroy_cq(rdma->cq);
2095         rdma->cq = NULL;
2096     }
2097     if (rdma->comp_channel) {
2098         ibv_destroy_comp_channel(rdma->comp_channel);
2099         rdma->comp_channel = NULL;
2100     }
2101     if (rdma->pd) {
2102         ibv_dealloc_pd(rdma->pd);
2103         rdma->pd = NULL;
2104     }
2105     if (rdma->listen_id) {
2106         rdma_destroy_id(rdma->listen_id);
2107         rdma->listen_id = NULL;
2108     }
2109     if (rdma->cm_id) {
2110         rdma_destroy_id(rdma->cm_id);
2111         rdma->cm_id = NULL;
2112     }
2113     if (rdma->channel) {
2114         rdma_destroy_event_channel(rdma->channel);
2115         rdma->channel = NULL;
2116     }
2117     g_free(rdma->host);
2118     rdma->host = NULL;
2119 }
2120
2121
2122 static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
2123 {
2124     int ret, idx;
2125     Error *local_err = NULL, **temp = &local_err;
2126
2127     /*
2128      * Will be validated against destination's actual capabilities
2129      * after the connect() completes.
2130      */
2131     rdma->pin_all = pin_all;
2132
2133     ret = qemu_rdma_resolve_host(rdma, temp);
2134     if (ret) {
2135         goto err_rdma_source_init;
2136     }
2137
2138     ret = qemu_rdma_alloc_pd_cq(rdma);
2139     if (ret) {
2140         ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2141                     " limits may be too low. Please check $ ulimit -a # and "
2142                     "search for 'ulimit -l' in the output");
2143         goto err_rdma_source_init;
2144     }
2145
2146     ret = qemu_rdma_alloc_qp(rdma);
2147     if (ret) {
2148         ERROR(temp, "rdma migration: error allocating qp!");
2149         goto err_rdma_source_init;
2150     }
2151
2152     ret = qemu_rdma_init_ram_blocks(rdma);
2153     if (ret) {
2154         ERROR(temp, "rdma migration: error initializing ram blocks!");
2155         goto err_rdma_source_init;
2156     }
2157
2158     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2159         ret = qemu_rdma_reg_control(rdma, idx);
2160         if (ret) {
2161             ERROR(temp, "rdma migration: error registering %d control!",
2162                                                             idx);
2163             goto err_rdma_source_init;
2164         }
2165     }
2166
2167     return 0;
2168
2169 err_rdma_source_init:
2170     error_propagate(errp, local_err);
2171     qemu_rdma_cleanup(rdma);
2172     return -1;
2173 }
2174
2175 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2176 {
2177     RDMACapabilities cap = {
2178                                 .version = RDMA_CONTROL_VERSION_CURRENT,
2179                                 .flags = 0,
2180                            };
2181     struct rdma_conn_param conn_param = { .initiator_depth = 2,
2182                                           .retry_count = 5,
2183                                           .private_data = &cap,
2184                                           .private_data_len = sizeof(cap),
2185                                         };
2186     struct rdma_cm_event *cm_event;
2187     int ret;
2188
2189     /*
2190      * Only negotiate the capability with destination if the user
2191      * on the source first requested the capability.
2192      */
2193     if (rdma->pin_all) {
2194         DPRINTF("Server pin-all memory requested.\n");
2195         cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2196     }
2197
2198     caps_to_network(&cap);
2199
2200     ret = rdma_connect(rdma->cm_id, &conn_param);
2201     if (ret) {
2202         perror("rdma_connect");
2203         ERROR(errp, "connecting to destination!");
2204         rdma_destroy_id(rdma->cm_id);
2205         rdma->cm_id = NULL;
2206         goto err_rdma_source_connect;
2207     }
2208
2209     ret = rdma_get_cm_event(rdma->channel, &cm_event);
2210     if (ret) {
2211         perror("rdma_get_cm_event after rdma_connect");
2212         ERROR(errp, "connecting to destination!");
2213         rdma_ack_cm_event(cm_event);
2214         rdma_destroy_id(rdma->cm_id);
2215         rdma->cm_id = NULL;
2216         goto err_rdma_source_connect;
2217     }
2218
2219     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2220         perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2221         ERROR(errp, "connecting to destination!");
2222         rdma_ack_cm_event(cm_event);
2223         rdma_destroy_id(rdma->cm_id);
2224         rdma->cm_id = NULL;
2225         goto err_rdma_source_connect;
2226     }
2227
2228     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2229     network_to_caps(&cap);
2230
2231     /*
2232      * Verify that the *requested* capabilities are supported by the destination
2233      * and disable them otherwise.
2234      */
2235     if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2236         ERROR(errp, "Server cannot support pinning all memory. "
2237                         "Will register memory dynamically.");
2238         rdma->pin_all = false;
2239     }
2240
2241     DPRINTF("Pin all memory: %s\n", rdma->pin_all ? "enabled" : "disabled");
2242
2243     rdma_ack_cm_event(cm_event);
2244
2245     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2246     if (ret) {
2247         ERROR(errp, "posting second control recv!");
2248         goto err_rdma_source_connect;
2249     }
2250
2251     rdma->control_ready_expected = 1;
2252     rdma->nb_sent = 0;
2253     return 0;
2254
2255 err_rdma_source_connect:
2256     qemu_rdma_cleanup(rdma);
2257     return -1;
2258 }
2259
2260 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2261 {
2262     int ret = -EINVAL, idx;
2263     int af = rdma->ipv6 ? PF_INET6 : PF_INET;
2264     struct sockaddr_in sin;
2265     struct rdma_cm_id *listen_id;
2266     char ip[40] = "unknown";
2267     struct addrinfo *res;
2268     char port_str[16];
2269
2270     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2271         rdma->wr_data[idx].control_len = 0;
2272         rdma->wr_data[idx].control_curr = NULL;
2273     }
2274
2275     if (rdma->host == NULL) {
2276         ERROR(errp, "RDMA host is not set!");
2277         rdma->error_state = -EINVAL;
2278         return -1;
2279     }
2280     /* create CM channel */
2281     rdma->channel = rdma_create_event_channel();
2282     if (!rdma->channel) {
2283         ERROR(errp, "could not create rdma event channel");
2284         rdma->error_state = -EINVAL;
2285         return -1;
2286     }
2287
2288     /* create CM id */
2289     ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2290     if (ret) {
2291         ERROR(errp, "could not create cm_id!");
2292         goto err_dest_init_create_listen_id;
2293     }
2294
2295     memset(&sin, 0, sizeof(sin));
2296     sin.sin_family = af;
2297     sin.sin_port = htons(rdma->port);
2298     snprintf(port_str, 16, "%d", rdma->port);
2299     port_str[15] = '\0';
2300
2301     if (rdma->host && strcmp("", rdma->host)) {
2302         ret = getaddrinfo(rdma->host, port_str, NULL, &res);
2303         if (ret < 0) {
2304             ERROR(errp, "could not getaddrinfo address %s", rdma->host);
2305             goto err_dest_init_bind_addr;
2306         }
2307
2308
2309         inet_ntop(af, &((struct sockaddr_in *) res->ai_addr)->sin_addr,
2310                                     ip, sizeof ip);
2311     } else {
2312         ERROR(errp, "migration host and port not specified!");
2313         ret = -EINVAL;
2314         goto err_dest_init_bind_addr;
2315     }
2316
2317     DPRINTF("%s => %s\n", rdma->host, ip);
2318
2319     ret = rdma_bind_addr(listen_id, res->ai_addr);
2320     if (ret) {
2321         ERROR(errp, "Error: could not rdma_bind_addr!");
2322         goto err_dest_init_bind_addr;
2323     }
2324
2325     rdma->listen_id = listen_id;
2326     qemu_rdma_dump_gid("dest_init", listen_id);
2327     return 0;
2328
2329 err_dest_init_bind_addr:
2330     rdma_destroy_id(listen_id);
2331 err_dest_init_create_listen_id:
2332     rdma_destroy_event_channel(rdma->channel);
2333     rdma->channel = NULL;
2334     rdma->error_state = ret;
2335     return ret;
2336
2337 }
2338
2339 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2340 {
2341     RDMAContext *rdma = NULL;
2342     InetSocketAddress *addr;
2343
2344     if (host_port) {
2345         rdma = g_malloc0(sizeof(RDMAContext));
2346         memset(rdma, 0, sizeof(RDMAContext));
2347         rdma->current_index = -1;
2348         rdma->current_chunk = -1;
2349
2350         addr = inet_parse(host_port, NULL);
2351         if (addr != NULL) {
2352             rdma->port = atoi(addr->port);
2353             rdma->host = g_strdup(addr->host);
2354             rdma->ipv6 = addr->ipv6;
2355         } else {
2356             ERROR(errp, "bad RDMA migration address '%s'", host_port);
2357             g_free(rdma);
2358             return NULL;
2359         }
2360     }
2361
2362     return rdma;
2363 }
2364
2365 /*
2366  * QEMUFile interface to the control channel.
2367  * SEND messages for control only.
2368  * pc.ram is handled with regular RDMA messages.
2369  */
2370 static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf,
2371                                 int64_t pos, int size)
2372 {
2373     QEMUFileRDMA *r = opaque;
2374     QEMUFile *f = r->file;
2375     RDMAContext *rdma = r->rdma;
2376     size_t remaining = size;
2377     uint8_t * data = (void *) buf;
2378     int ret;
2379
2380     CHECK_ERROR_STATE();
2381
2382     /*
2383      * Push out any writes that
2384      * we're queued up for pc.ram.
2385      */
2386     ret = qemu_rdma_write_flush(f, rdma);
2387     if (ret < 0) {
2388         rdma->error_state = ret;
2389         return ret;
2390     }
2391
2392     while (remaining) {
2393         RDMAControlHeader head;
2394
2395         r->len = MIN(remaining, RDMA_SEND_INCREMENT);
2396         remaining -= r->len;
2397
2398         head.len = r->len;
2399         head.type = RDMA_CONTROL_QEMU_FILE;
2400
2401         ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2402
2403         if (ret < 0) {
2404             rdma->error_state = ret;
2405             return ret;
2406         }
2407
2408         data += r->len;
2409     }
2410
2411     return size;
2412 }
2413
2414 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2415                              int size, int idx)
2416 {
2417     size_t len = 0;
2418
2419     if (rdma->wr_data[idx].control_len) {
2420         DDDPRINTF("RDMA %" PRId64 " of %d bytes already in buffer\n",
2421                     rdma->wr_data[idx].control_len, size);
2422
2423         len = MIN(size, rdma->wr_data[idx].control_len);
2424         memcpy(buf, rdma->wr_data[idx].control_curr, len);
2425         rdma->wr_data[idx].control_curr += len;
2426         rdma->wr_data[idx].control_len -= len;
2427     }
2428
2429     return len;
2430 }
2431
2432 /*
2433  * QEMUFile interface to the control channel.
2434  * RDMA links don't use bytestreams, so we have to
2435  * return bytes to QEMUFile opportunistically.
2436  */
2437 static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf,
2438                                 int64_t pos, int size)
2439 {
2440     QEMUFileRDMA *r = opaque;
2441     RDMAContext *rdma = r->rdma;
2442     RDMAControlHeader head;
2443     int ret = 0;
2444
2445     CHECK_ERROR_STATE();
2446
2447     /*
2448      * First, we hold on to the last SEND message we
2449      * were given and dish out the bytes until we run
2450      * out of bytes.
2451      */
2452     r->len = qemu_rdma_fill(r->rdma, buf, size, 0);
2453     if (r->len) {
2454         return r->len;
2455     }
2456
2457     /*
2458      * Once we run out, we block and wait for another
2459      * SEND message to arrive.
2460      */
2461     ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2462
2463     if (ret < 0) {
2464         rdma->error_state = ret;
2465         return ret;
2466     }
2467
2468     /*
2469      * SEND was received with new bytes, now try again.
2470      */
2471     return qemu_rdma_fill(r->rdma, buf, size, 0);
2472 }
2473
2474 /*
2475  * Block until all the outstanding chunks have been delivered by the hardware.
2476  */
2477 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2478 {
2479     int ret;
2480
2481     if (qemu_rdma_write_flush(f, rdma) < 0) {
2482         return -EIO;
2483     }
2484
2485     while (rdma->nb_sent) {
2486         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2487         if (ret < 0) {
2488             fprintf(stderr, "rdma migration: complete polling error!\n");
2489             return -EIO;
2490         }
2491     }
2492
2493     qemu_rdma_unregister_waiting(rdma);
2494
2495     return 0;
2496 }
2497
2498 static int qemu_rdma_close(void *opaque)
2499 {
2500     DPRINTF("Shutting down connection.\n");
2501     QEMUFileRDMA *r = opaque;
2502     if (r->rdma) {
2503         qemu_rdma_cleanup(r->rdma);
2504         g_free(r->rdma);
2505     }
2506     g_free(r);
2507     return 0;
2508 }
2509
2510 /*
2511  * Parameters:
2512  *    @offset == 0 :
2513  *        This means that 'block_offset' is a full virtual address that does not
2514  *        belong to a RAMBlock of the virtual machine and instead
2515  *        represents a private malloc'd memory area that the caller wishes to
2516  *        transfer.
2517  *
2518  *    @offset != 0 :
2519  *        Offset is an offset to be added to block_offset and used
2520  *        to also lookup the corresponding RAMBlock.
2521  *
2522  *    @size > 0 :
2523  *        Initiate an transfer this size.
2524  *
2525  *    @size == 0 :
2526  *        A 'hint' or 'advice' that means that we wish to speculatively
2527  *        and asynchronously unregister this memory. In this case, there is no
2528  *        guarantee that the unregister will actually happen, for example,
2529  *        if the memory is being actively transmitted. Additionally, the memory
2530  *        may be re-registered at any future time if a write within the same
2531  *        chunk was requested again, even if you attempted to unregister it
2532  *        here.
2533  *
2534  *    @size < 0 : TODO, not yet supported
2535  *        Unregister the memory NOW. This means that the caller does not
2536  *        expect there to be any future RDMA transfers and we just want to clean
2537  *        things up. This is used in case the upper layer owns the memory and
2538  *        cannot wait for qemu_fclose() to occur.
2539  *
2540  *    @bytes_sent : User-specificed pointer to indicate how many bytes were
2541  *                  sent. Usually, this will not be more than a few bytes of
2542  *                  the protocol because most transfers are sent asynchronously.
2543  */
2544 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
2545                                   ram_addr_t block_offset, ram_addr_t offset,
2546                                   size_t size, int *bytes_sent)
2547 {
2548     QEMUFileRDMA *rfile = opaque;
2549     RDMAContext *rdma = rfile->rdma;
2550     int ret;
2551
2552     CHECK_ERROR_STATE();
2553
2554     qemu_fflush(f);
2555
2556     if (size > 0) {
2557         /*
2558          * Add this page to the current 'chunk'. If the chunk
2559          * is full, or the page doen't belong to the current chunk,
2560          * an actual RDMA write will occur and a new chunk will be formed.
2561          */
2562         ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
2563         if (ret < 0) {
2564             fprintf(stderr, "rdma migration: write error! %d\n", ret);
2565             goto err;
2566         }
2567
2568         /*
2569          * We always return 1 bytes because the RDMA
2570          * protocol is completely asynchronous. We do not yet know
2571          * whether an  identified chunk is zero or not because we're
2572          * waiting for other pages to potentially be merged with
2573          * the current chunk. So, we have to call qemu_update_position()
2574          * later on when the actual write occurs.
2575          */
2576         if (bytes_sent) {
2577             *bytes_sent = 1;
2578         }
2579     } else {
2580         uint64_t index, chunk;
2581
2582         /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2583         if (size < 0) {
2584             ret = qemu_rdma_drain_cq(f, rdma);
2585             if (ret < 0) {
2586                 fprintf(stderr, "rdma: failed to synchronously drain"
2587                                 " completion queue before unregistration.\n");
2588                 goto err;
2589             }
2590         }
2591         */
2592
2593         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2594                                          offset, size, &index, &chunk);
2595
2596         if (ret) {
2597             fprintf(stderr, "ram block search failed\n");
2598             goto err;
2599         }
2600
2601         qemu_rdma_signal_unregister(rdma, index, chunk, 0);
2602
2603         /*
2604          * TODO: Synchronous, guaranteed unregistration (should not occur during
2605          * fast-path). Otherwise, unregisters will process on the next call to
2606          * qemu_rdma_drain_cq()
2607         if (size < 0) {
2608             qemu_rdma_unregister_waiting(rdma);
2609         }
2610         */
2611     }
2612
2613     /*
2614      * Drain the Completion Queue if possible, but do not block,
2615      * just poll.
2616      *
2617      * If nothing to poll, the end of the iteration will do this
2618      * again to make sure we don't overflow the request queue.
2619      */
2620     while (1) {
2621         uint64_t wr_id, wr_id_in;
2622         int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
2623         if (ret < 0) {
2624             fprintf(stderr, "rdma migration: polling error! %d\n", ret);
2625             goto err;
2626         }
2627
2628         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
2629
2630         if (wr_id == RDMA_WRID_NONE) {
2631             break;
2632         }
2633     }
2634
2635     return RAM_SAVE_CONTROL_DELAYED;
2636 err:
2637     rdma->error_state = ret;
2638     return ret;
2639 }
2640
2641 static int qemu_rdma_accept(RDMAContext *rdma)
2642 {
2643     RDMACapabilities cap;
2644     struct rdma_conn_param conn_param = {
2645                                             .responder_resources = 2,
2646                                             .private_data = &cap,
2647                                             .private_data_len = sizeof(cap),
2648                                          };
2649     struct rdma_cm_event *cm_event;
2650     struct ibv_context *verbs;
2651     int ret = -EINVAL;
2652     int idx;
2653
2654     ret = rdma_get_cm_event(rdma->channel, &cm_event);
2655     if (ret) {
2656         goto err_rdma_dest_wait;
2657     }
2658
2659     if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
2660         rdma_ack_cm_event(cm_event);
2661         goto err_rdma_dest_wait;
2662     }
2663
2664     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2665
2666     network_to_caps(&cap);
2667
2668     if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
2669             fprintf(stderr, "Unknown source RDMA version: %d, bailing...\n",
2670                             cap.version);
2671             rdma_ack_cm_event(cm_event);
2672             goto err_rdma_dest_wait;
2673     }
2674
2675     /*
2676      * Respond with only the capabilities this version of QEMU knows about.
2677      */
2678     cap.flags &= known_capabilities;
2679
2680     /*
2681      * Enable the ones that we do know about.
2682      * Add other checks here as new ones are introduced.
2683      */
2684     if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
2685         rdma->pin_all = true;
2686     }
2687
2688     rdma->cm_id = cm_event->id;
2689     verbs = cm_event->id->verbs;
2690
2691     rdma_ack_cm_event(cm_event);
2692
2693     DPRINTF("Memory pin all: %s\n", rdma->pin_all ? "enabled" : "disabled");
2694
2695     caps_to_network(&cap);
2696
2697     DPRINTF("verbs context after listen: %p\n", verbs);
2698
2699     if (!rdma->verbs) {
2700         rdma->verbs = verbs;
2701     } else if (rdma->verbs != verbs) {
2702             fprintf(stderr, "ibv context not matching %p, %p!\n",
2703                     rdma->verbs, verbs);
2704             goto err_rdma_dest_wait;
2705     }
2706
2707     qemu_rdma_dump_id("dest_init", verbs);
2708
2709     ret = qemu_rdma_alloc_pd_cq(rdma);
2710     if (ret) {
2711         fprintf(stderr, "rdma migration: error allocating pd and cq!\n");
2712         goto err_rdma_dest_wait;
2713     }
2714
2715     ret = qemu_rdma_alloc_qp(rdma);
2716     if (ret) {
2717         fprintf(stderr, "rdma migration: error allocating qp!\n");
2718         goto err_rdma_dest_wait;
2719     }
2720
2721     ret = qemu_rdma_init_ram_blocks(rdma);
2722     if (ret) {
2723         fprintf(stderr, "rdma migration: error initializing ram blocks!\n");
2724         goto err_rdma_dest_wait;
2725     }
2726
2727     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2728         ret = qemu_rdma_reg_control(rdma, idx);
2729         if (ret) {
2730             fprintf(stderr, "rdma: error registering %d control!\n", idx);
2731             goto err_rdma_dest_wait;
2732         }
2733     }
2734
2735     qemu_set_fd_handler2(rdma->channel->fd, NULL, NULL, NULL, NULL);
2736
2737     ret = rdma_accept(rdma->cm_id, &conn_param);
2738     if (ret) {
2739         fprintf(stderr, "rdma_accept returns %d!\n", ret);
2740         goto err_rdma_dest_wait;
2741     }
2742
2743     ret = rdma_get_cm_event(rdma->channel, &cm_event);
2744     if (ret) {
2745         fprintf(stderr, "rdma_accept get_cm_event failed %d!\n", ret);
2746         goto err_rdma_dest_wait;
2747     }
2748
2749     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2750         fprintf(stderr, "rdma_accept not event established!\n");
2751         rdma_ack_cm_event(cm_event);
2752         goto err_rdma_dest_wait;
2753     }
2754
2755     rdma_ack_cm_event(cm_event);
2756
2757     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2758     if (ret) {
2759         fprintf(stderr, "rdma migration: error posting second control recv!\n");
2760         goto err_rdma_dest_wait;
2761     }
2762
2763     qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
2764
2765     return 0;
2766
2767 err_rdma_dest_wait:
2768     rdma->error_state = ret;
2769     qemu_rdma_cleanup(rdma);
2770     return ret;
2771 }
2772
2773 /*
2774  * During each iteration of the migration, we listen for instructions
2775  * by the source VM to perform dynamic page registrations before they
2776  * can perform RDMA operations.
2777  *
2778  * We respond with the 'rkey'.
2779  *
2780  * Keep doing this until the source tells us to stop.
2781  */
2782 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque,
2783                                          uint64_t flags)
2784 {
2785     RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
2786                                .type = RDMA_CONTROL_REGISTER_RESULT,
2787                                .repeat = 0,
2788                              };
2789     RDMAControlHeader unreg_resp = { .len = 0,
2790                                .type = RDMA_CONTROL_UNREGISTER_FINISHED,
2791                                .repeat = 0,
2792                              };
2793     RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
2794                                  .repeat = 1 };
2795     QEMUFileRDMA *rfile = opaque;
2796     RDMAContext *rdma = rfile->rdma;
2797     RDMALocalBlocks *local = &rdma->local_ram_blocks;
2798     RDMAControlHeader head;
2799     RDMARegister *reg, *registers;
2800     RDMACompress *comp;
2801     RDMARegisterResult *reg_result;
2802     static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
2803     RDMALocalBlock *block;
2804     void *host_addr;
2805     int ret = 0;
2806     int idx = 0;
2807     int count = 0;
2808     int i = 0;
2809
2810     CHECK_ERROR_STATE();
2811
2812     do {
2813         DDDPRINTF("Waiting for next request %" PRIu64 "...\n", flags);
2814
2815         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
2816
2817         if (ret < 0) {
2818             break;
2819         }
2820
2821         if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
2822             fprintf(stderr, "rdma: Too many requests in this message (%d)."
2823                             "Bailing.\n", head.repeat);
2824             ret = -EIO;
2825             break;
2826         }
2827
2828         switch (head.type) {
2829         case RDMA_CONTROL_COMPRESS:
2830             comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
2831             network_to_compress(comp);
2832
2833             DDPRINTF("Zapping zero chunk: %" PRId64
2834                     " bytes, index %d, offset %" PRId64 "\n",
2835                     comp->length, comp->block_idx, comp->offset);
2836             block = &(rdma->local_ram_blocks.block[comp->block_idx]);
2837
2838             host_addr = block->local_host_addr +
2839                             (comp->offset - block->offset);
2840
2841             ram_handle_compressed(host_addr, comp->value, comp->length);
2842             break;
2843
2844         case RDMA_CONTROL_REGISTER_FINISHED:
2845             DDDPRINTF("Current registrations complete.\n");
2846             goto out;
2847
2848         case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
2849             DPRINTF("Initial setup info requested.\n");
2850
2851             if (rdma->pin_all) {
2852                 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
2853                 if (ret) {
2854                     fprintf(stderr, "rdma migration: error dest "
2855                                     "registering ram blocks!\n");
2856                     goto out;
2857                 }
2858             }
2859
2860             /*
2861              * Dest uses this to prepare to transmit the RAMBlock descriptions
2862              * to the source VM after connection setup.
2863              * Both sides use the "remote" structure to communicate and update
2864              * their "local" descriptions with what was sent.
2865              */
2866             for (i = 0; i < local->nb_blocks; i++) {
2867                 rdma->block[i].remote_host_addr =
2868                     (uint64_t)(local->block[i].local_host_addr);
2869
2870                 if (rdma->pin_all) {
2871                     rdma->block[i].remote_rkey = local->block[i].mr->rkey;
2872                 }
2873
2874                 rdma->block[i].offset = local->block[i].offset;
2875                 rdma->block[i].length = local->block[i].length;
2876
2877                 remote_block_to_network(&rdma->block[i]);
2878             }
2879
2880             blocks.len = rdma->local_ram_blocks.nb_blocks
2881                                                 * sizeof(RDMARemoteBlock);
2882
2883
2884             ret = qemu_rdma_post_send_control(rdma,
2885                                         (uint8_t *) rdma->block, &blocks);
2886
2887             if (ret < 0) {
2888                 fprintf(stderr, "rdma migration: error sending remote info!\n");
2889                 goto out;
2890             }
2891
2892             break;
2893         case RDMA_CONTROL_REGISTER_REQUEST:
2894             DDPRINTF("There are %d registration requests\n", head.repeat);
2895
2896             reg_resp.repeat = head.repeat;
2897             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
2898
2899             for (count = 0; count < head.repeat; count++) {
2900                 uint64_t chunk;
2901                 uint8_t *chunk_start, *chunk_end;
2902
2903                 reg = &registers[count];
2904                 network_to_register(reg);
2905
2906                 reg_result = &results[count];
2907
2908                 DDPRINTF("Registration request (%d): index %d, current_addr %"
2909                          PRIu64 " chunks: %" PRIu64 "\n", count,
2910                          reg->current_index, reg->key.current_addr, reg->chunks);
2911
2912                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
2913                 if (block->is_ram_block) {
2914                     host_addr = (block->local_host_addr +
2915                                 (reg->key.current_addr - block->offset));
2916                     chunk = ram_chunk_index(block->local_host_addr,
2917                                             (uint8_t *) host_addr);
2918                 } else {
2919                     chunk = reg->key.chunk;
2920                     host_addr = block->local_host_addr +
2921                         (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
2922                 }
2923                 chunk_start = ram_chunk_start(block, chunk);
2924                 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
2925                 if (qemu_rdma_register_and_get_keys(rdma, block,
2926                             (uint8_t *)host_addr, NULL, &reg_result->rkey,
2927                             chunk, chunk_start, chunk_end)) {
2928                     fprintf(stderr, "cannot get rkey!\n");
2929                     ret = -EINVAL;
2930                     goto out;
2931                 }
2932
2933                 reg_result->host_addr = (uint64_t) block->local_host_addr;
2934
2935                 DDPRINTF("Registered rkey for this request: %x\n",
2936                                 reg_result->rkey);
2937
2938                 result_to_network(reg_result);
2939             }
2940
2941             ret = qemu_rdma_post_send_control(rdma,
2942                             (uint8_t *) results, &reg_resp);
2943
2944             if (ret < 0) {
2945                 fprintf(stderr, "Failed to send control buffer!\n");
2946                 goto out;
2947             }
2948             break;
2949         case RDMA_CONTROL_UNREGISTER_REQUEST:
2950             DDPRINTF("There are %d unregistration requests\n", head.repeat);
2951             unreg_resp.repeat = head.repeat;
2952             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
2953
2954             for (count = 0; count < head.repeat; count++) {
2955                 reg = &registers[count];
2956                 network_to_register(reg);
2957
2958                 DDPRINTF("Unregistration request (%d): "
2959                          " index %d, chunk %" PRIu64 "\n",
2960                          count, reg->current_index, reg->key.chunk);
2961
2962                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
2963
2964                 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
2965                 block->pmr[reg->key.chunk] = NULL;
2966
2967                 if (ret != 0) {
2968                     perror("rdma unregistration chunk failed");
2969                     ret = -ret;
2970                     goto out;
2971                 }
2972
2973                 rdma->total_registrations--;
2974
2975                 DDPRINTF("Unregistered chunk %" PRIu64 " successfully.\n",
2976                             reg->key.chunk);
2977             }
2978
2979             ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
2980
2981             if (ret < 0) {
2982                 fprintf(stderr, "Failed to send control buffer!\n");
2983                 goto out;
2984             }
2985             break;
2986         case RDMA_CONTROL_REGISTER_RESULT:
2987             fprintf(stderr, "Invalid RESULT message at dest.\n");
2988             ret = -EIO;
2989             goto out;
2990         default:
2991             fprintf(stderr, "Unknown control message %s\n",
2992                                 control_desc[head.type]);
2993             ret = -EIO;
2994             goto out;
2995         }
2996     } while (1);
2997 out:
2998     if (ret < 0) {
2999         rdma->error_state = ret;
3000     }
3001     return ret;
3002 }
3003
3004 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3005                                         uint64_t flags)
3006 {
3007     QEMUFileRDMA *rfile = opaque;
3008     RDMAContext *rdma = rfile->rdma;
3009
3010     CHECK_ERROR_STATE();
3011
3012     DDDPRINTF("start section: %" PRIu64 "\n", flags);
3013     qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3014     qemu_fflush(f);
3015
3016     return 0;
3017 }
3018
3019 /*
3020  * Inform dest that dynamic registrations are done for now.
3021  * First, flush writes, if any.
3022  */
3023 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3024                                        uint64_t flags)
3025 {
3026     Error *local_err = NULL, **errp = &local_err;
3027     QEMUFileRDMA *rfile = opaque;
3028     RDMAContext *rdma = rfile->rdma;
3029     RDMAControlHeader head = { .len = 0, .repeat = 1 };
3030     int ret = 0;
3031
3032     CHECK_ERROR_STATE();
3033
3034     qemu_fflush(f);
3035     ret = qemu_rdma_drain_cq(f, rdma);
3036
3037     if (ret < 0) {
3038         goto err;
3039     }
3040
3041     if (flags == RAM_CONTROL_SETUP) {
3042         RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3043         RDMALocalBlocks *local = &rdma->local_ram_blocks;
3044         int reg_result_idx, i, j, nb_remote_blocks;
3045
3046         head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3047         DPRINTF("Sending registration setup for ram blocks...\n");
3048
3049         /*
3050          * Make sure that we parallelize the pinning on both sides.
3051          * For very large guests, doing this serially takes a really
3052          * long time, so we have to 'interleave' the pinning locally
3053          * with the control messages by performing the pinning on this
3054          * side before we receive the control response from the other
3055          * side that the pinning has completed.
3056          */
3057         ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3058                     &reg_result_idx, rdma->pin_all ?
3059                     qemu_rdma_reg_whole_ram_blocks : NULL);
3060         if (ret < 0) {
3061             ERROR(errp, "receiving remote info!");
3062             return ret;
3063         }
3064
3065         nb_remote_blocks = resp.len / sizeof(RDMARemoteBlock);
3066
3067         /*
3068          * The protocol uses two different sets of rkeys (mutually exclusive):
3069          * 1. One key to represent the virtual address of the entire ram block.
3070          *    (dynamic chunk registration disabled - pin everything with one rkey.)
3071          * 2. One to represent individual chunks within a ram block.
3072          *    (dynamic chunk registration enabled - pin individual chunks.)
3073          *
3074          * Once the capability is successfully negotiated, the destination transmits
3075          * the keys to use (or sends them later) including the virtual addresses
3076          * and then propagates the remote ram block descriptions to his local copy.
3077          */
3078
3079         if (local->nb_blocks != nb_remote_blocks) {
3080             ERROR(errp, "ram blocks mismatch #1! "
3081                         "Your QEMU command line parameters are probably "
3082                         "not identical on both the source and destination.");
3083             return -EINVAL;
3084         }
3085
3086         qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3087         memcpy(rdma->block,
3088             rdma->wr_data[reg_result_idx].control_curr, resp.len);
3089         for (i = 0; i < nb_remote_blocks; i++) {
3090             network_to_remote_block(&rdma->block[i]);
3091
3092             /* search local ram blocks */
3093             for (j = 0; j < local->nb_blocks; j++) {
3094                 if (rdma->block[i].offset != local->block[j].offset) {
3095                     continue;
3096                 }
3097
3098                 if (rdma->block[i].length != local->block[j].length) {
3099                     ERROR(errp, "ram blocks mismatch #2! "
3100                         "Your QEMU command line parameters are probably "
3101                         "not identical on both the source and destination.");
3102                     return -EINVAL;
3103                 }
3104                 local->block[j].remote_host_addr =
3105                         rdma->block[i].remote_host_addr;
3106                 local->block[j].remote_rkey = rdma->block[i].remote_rkey;
3107                 break;
3108             }
3109
3110             if (j >= local->nb_blocks) {
3111                 ERROR(errp, "ram blocks mismatch #3! "
3112                         "Your QEMU command line parameters are probably "
3113                         "not identical on both the source and destination.");
3114                 return -EINVAL;
3115             }
3116         }
3117     }
3118
3119     DDDPRINTF("Sending registration finish %" PRIu64 "...\n", flags);
3120
3121     head.type = RDMA_CONTROL_REGISTER_FINISHED;
3122     ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3123
3124     if (ret < 0) {
3125         goto err;
3126     }
3127
3128     return 0;
3129 err:
3130     rdma->error_state = ret;
3131     return ret;
3132 }
3133
3134 static int qemu_rdma_get_fd(void *opaque)
3135 {
3136     QEMUFileRDMA *rfile = opaque;
3137     RDMAContext *rdma = rfile->rdma;
3138
3139     return rdma->comp_channel->fd;
3140 }
3141
3142 const QEMUFileOps rdma_read_ops = {
3143     .get_buffer    = qemu_rdma_get_buffer,
3144     .get_fd        = qemu_rdma_get_fd,
3145     .close         = qemu_rdma_close,
3146     .hook_ram_load = qemu_rdma_registration_handle,
3147 };
3148
3149 const QEMUFileOps rdma_write_ops = {
3150     .put_buffer         = qemu_rdma_put_buffer,
3151     .close              = qemu_rdma_close,
3152     .before_ram_iterate = qemu_rdma_registration_start,
3153     .after_ram_iterate  = qemu_rdma_registration_stop,
3154     .save_page          = qemu_rdma_save_page,
3155 };
3156
3157 static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3158 {
3159     QEMUFileRDMA *r = g_malloc0(sizeof(QEMUFileRDMA));
3160
3161     if (qemu_file_mode_is_not_valid(mode)) {
3162         return NULL;
3163     }
3164
3165     r->rdma = rdma;
3166
3167     if (mode[0] == 'w') {
3168         r->file = qemu_fopen_ops(r, &rdma_write_ops);
3169     } else {
3170         r->file = qemu_fopen_ops(r, &rdma_read_ops);
3171     }
3172
3173     return r->file;
3174 }
3175
3176 static void rdma_accept_incoming_migration(void *opaque)
3177 {
3178     RDMAContext *rdma = opaque;
3179     int ret;
3180     QEMUFile *f;
3181     Error *local_err = NULL, **errp = &local_err;
3182
3183     DPRINTF("Accepting rdma connection...\n");
3184     ret = qemu_rdma_accept(rdma);
3185
3186     if (ret) {
3187         ERROR(errp, "RDMA Migration initialization failed!");
3188         return;
3189     }
3190
3191     DPRINTF("Accepted migration\n");
3192
3193     f = qemu_fopen_rdma(rdma, "rb");
3194     if (f == NULL) {
3195         ERROR(errp, "could not qemu_fopen_rdma!");
3196         qemu_rdma_cleanup(rdma);
3197         return;
3198     }
3199
3200     rdma->migration_started_on_destination = 1;
3201     process_incoming_migration(f);
3202 }
3203
3204 void rdma_start_incoming_migration(const char *host_port, Error **errp)
3205 {
3206     int ret;
3207     RDMAContext *rdma;
3208     Error *local_err = NULL;
3209
3210     DPRINTF("Starting RDMA-based incoming migration\n");
3211     rdma = qemu_rdma_data_init(host_port, &local_err);
3212
3213     if (rdma == NULL) {
3214         goto err;
3215     }
3216
3217     ret = qemu_rdma_dest_init(rdma, &local_err);
3218
3219     if (ret) {
3220         goto err;
3221     }
3222
3223     DPRINTF("qemu_rdma_dest_init success\n");
3224
3225     ret = rdma_listen(rdma->listen_id, 5);
3226
3227     if (ret) {
3228         ERROR(errp, "listening on socket!");
3229         goto err;
3230     }
3231
3232     DPRINTF("rdma_listen success\n");
3233
3234     qemu_set_fd_handler2(rdma->channel->fd, NULL,
3235                          rdma_accept_incoming_migration, NULL,
3236                             (void *)(intptr_t) rdma);
3237     return;
3238 err:
3239     error_propagate(errp, local_err);
3240     g_free(rdma);
3241 }
3242
3243 void rdma_start_outgoing_migration(void *opaque,
3244                             const char *host_port, Error **errp)
3245 {
3246     MigrationState *s = opaque;
3247     Error *local_err = NULL, **temp = &local_err;
3248     RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err);
3249     int ret = 0;
3250
3251     if (rdma == NULL) {
3252         ERROR(temp, "Failed to initialize RDMA data structures! %d", ret);
3253         goto err;
3254     }
3255
3256     ret = qemu_rdma_source_init(rdma, &local_err,
3257         s->enabled_capabilities[MIGRATION_CAPABILITY_X_RDMA_PIN_ALL]);
3258
3259     if (ret) {
3260         goto err;
3261     }
3262
3263     DPRINTF("qemu_rdma_source_init success\n");
3264     ret = qemu_rdma_connect(rdma, &local_err);
3265
3266     if (ret) {
3267         goto err;
3268     }
3269
3270     DPRINTF("qemu_rdma_source_connect success\n");
3271
3272     s->file = qemu_fopen_rdma(rdma, "wb");
3273     migrate_fd_connect(s);
3274     return;
3275 err:
3276     error_propagate(errp, local_err);
3277     g_free(rdma);
3278     migrate_fd_error(s);
3279 }