]> rtime.felk.cvut.cz Git - lisovros/qemu_apohw.git/blob - migration-rdma.c
rdma: use RDMA_WRID_READY
[lisovros/qemu_apohw.git] / migration-rdma.c
1 /*
2  * RDMA protocol and interfaces
3  *
4  * Copyright IBM, Corp. 2010-2013
5  *
6  * Authors:
7  *  Michael R. Hines <mrhines@us.ibm.com>
8  *  Jiuxing Liu <jl@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or
11  * later.  See the COPYING file in the top-level directory.
12  *
13  */
14 #include "qemu-common.h"
15 #include "migration/migration.h"
16 #include "migration/qemu-file.h"
17 #include "exec/cpu-common.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/sockets.h"
20 #include "qemu/bitmap.h"
21 #include "block/coroutine.h"
22 #include <stdio.h>
23 #include <sys/types.h>
24 #include <sys/socket.h>
25 #include <netdb.h>
26 #include <arpa/inet.h>
27 #include <string.h>
28 #include <rdma/rdma_cma.h>
29
30 //#define DEBUG_RDMA
31 //#define DEBUG_RDMA_VERBOSE
32 //#define DEBUG_RDMA_REALLY_VERBOSE
33
34 #ifdef DEBUG_RDMA
35 #define DPRINTF(fmt, ...) \
36     do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF(fmt, ...) \
39     do { } while (0)
40 #endif
41
42 #ifdef DEBUG_RDMA_VERBOSE
43 #define DDPRINTF(fmt, ...) \
44     do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
45 #else
46 #define DDPRINTF(fmt, ...) \
47     do { } while (0)
48 #endif
49
50 #ifdef DEBUG_RDMA_REALLY_VERBOSE
51 #define DDDPRINTF(fmt, ...) \
52     do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
53 #else
54 #define DDDPRINTF(fmt, ...) \
55     do { } while (0)
56 #endif
57
58 /*
59  * Print and error on both the Monitor and the Log file.
60  */
61 #define ERROR(errp, fmt, ...) \
62     do { \
63         fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
64         if (errp && (*(errp) == NULL)) { \
65             error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
66         } \
67     } while (0)
68
69 #define RDMA_RESOLVE_TIMEOUT_MS 10000
70
71 /* Do not merge data if larger than this. */
72 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
73 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
74
75 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
76
77 /*
78  * This is only for non-live state being migrated.
79  * Instead of RDMA_WRITE messages, we use RDMA_SEND
80  * messages for that state, which requires a different
81  * delivery design than main memory.
82  */
83 #define RDMA_SEND_INCREMENT 32768
84
85 /*
86  * Maximum size infiniband SEND message
87  */
88 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
89 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
90
91 #define RDMA_CONTROL_VERSION_CURRENT 1
92 /*
93  * Capabilities for negotiation.
94  */
95 #define RDMA_CAPABILITY_PIN_ALL 0x01
96
97 /*
98  * Add the other flags above to this list of known capabilities
99  * as they are introduced.
100  */
101 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
102
103 #define CHECK_ERROR_STATE() \
104     do { \
105         if (rdma->error_state) { \
106             if (!rdma->error_reported) { \
107                 fprintf(stderr, "RDMA is in an error state waiting migration" \
108                                 " to abort!\n"); \
109                 rdma->error_reported = 1; \
110             } \
111             return rdma->error_state; \
112         } \
113     } while (0);
114
115 /*
116  * A work request ID is 64-bits and we split up these bits
117  * into 3 parts:
118  *
119  * bits 0-15 : type of control message, 2^16
120  * bits 16-29: ram block index, 2^14
121  * bits 30-63: ram block chunk number, 2^34
122  *
123  * The last two bit ranges are only used for RDMA writes,
124  * in order to track their completion and potentially
125  * also track unregistration status of the message.
126  */
127 #define RDMA_WRID_TYPE_SHIFT  0UL
128 #define RDMA_WRID_BLOCK_SHIFT 16UL
129 #define RDMA_WRID_CHUNK_SHIFT 30UL
130
131 #define RDMA_WRID_TYPE_MASK \
132     ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
133
134 #define RDMA_WRID_BLOCK_MASK \
135     (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
136
137 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
138
139 /*
140  * RDMA migration protocol:
141  * 1. RDMA Writes (data messages, i.e. RAM)
142  * 2. IB Send/Recv (control channel messages)
143  */
144 enum {
145     RDMA_WRID_NONE = 0,
146     RDMA_WRID_RDMA_WRITE = 1,
147     RDMA_WRID_SEND_CONTROL = 2000,
148     RDMA_WRID_RECV_CONTROL = 4000,
149 };
150
151 const char *wrid_desc[] = {
152     [RDMA_WRID_NONE] = "NONE",
153     [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
154     [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
155     [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
156 };
157
158 /*
159  * Work request IDs for IB SEND messages only (not RDMA writes).
160  * This is used by the migration protocol to transmit
161  * control messages (such as device state and registration commands)
162  *
163  * We could use more WRs, but we have enough for now.
164  */
165 enum {
166     RDMA_WRID_READY = 0,
167     RDMA_WRID_DATA,
168     RDMA_WRID_CONTROL,
169     RDMA_WRID_MAX,
170 };
171
172 /*
173  * SEND/RECV IB Control Messages.
174  */
175 enum {
176     RDMA_CONTROL_NONE = 0,
177     RDMA_CONTROL_ERROR,
178     RDMA_CONTROL_READY,               /* ready to receive */
179     RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
180     RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
181     RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
182     RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
183     RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
184     RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
185     RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
186     RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
187     RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
188 };
189
190 const char *control_desc[] = {
191     [RDMA_CONTROL_NONE] = "NONE",
192     [RDMA_CONTROL_ERROR] = "ERROR",
193     [RDMA_CONTROL_READY] = "READY",
194     [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
195     [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
196     [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
197     [RDMA_CONTROL_COMPRESS] = "COMPRESS",
198     [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
199     [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
200     [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
201     [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
202     [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
203 };
204
205 /*
206  * Memory and MR structures used to represent an IB Send/Recv work request.
207  * This is *not* used for RDMA writes, only IB Send/Recv.
208  */
209 typedef struct {
210     uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
211     struct   ibv_mr *control_mr;               /* registration metadata */
212     size_t   control_len;                      /* length of the message */
213     uint8_t *control_curr;                     /* start of unconsumed bytes */
214 } RDMAWorkRequestData;
215
216 /*
217  * Negotiate RDMA capabilities during connection-setup time.
218  */
219 typedef struct {
220     uint32_t version;
221     uint32_t flags;
222 } RDMACapabilities;
223
224 static void caps_to_network(RDMACapabilities *cap)
225 {
226     cap->version = htonl(cap->version);
227     cap->flags = htonl(cap->flags);
228 }
229
230 static void network_to_caps(RDMACapabilities *cap)
231 {
232     cap->version = ntohl(cap->version);
233     cap->flags = ntohl(cap->flags);
234 }
235
236 /*
237  * Representation of a RAMBlock from an RDMA perspective.
238  * This is not transmitted, only local.
239  * This and subsequent structures cannot be linked lists
240  * because we're using a single IB message to transmit
241  * the information. It's small anyway, so a list is overkill.
242  */
243 typedef struct RDMALocalBlock {
244     uint8_t  *local_host_addr; /* local virtual address */
245     uint64_t remote_host_addr; /* remote virtual address */
246     uint64_t offset;
247     uint64_t length;
248     struct   ibv_mr **pmr;     /* MRs for chunk-level registration */
249     struct   ibv_mr *mr;       /* MR for non-chunk-level registration */
250     uint32_t *remote_keys;     /* rkeys for chunk-level registration */
251     uint32_t remote_rkey;      /* rkeys for non-chunk-level registration */
252     int      index;            /* which block are we */
253     bool     is_ram_block;
254     int      nb_chunks;
255     unsigned long *transit_bitmap;
256     unsigned long *unregister_bitmap;
257 } RDMALocalBlock;
258
259 /*
260  * Also represents a RAMblock, but only on the dest.
261  * This gets transmitted by the dest during connection-time
262  * to the source VM and then is used to populate the
263  * corresponding RDMALocalBlock with
264  * the information needed to perform the actual RDMA.
265  */
266 typedef struct QEMU_PACKED RDMARemoteBlock {
267     uint64_t remote_host_addr;
268     uint64_t offset;
269     uint64_t length;
270     uint32_t remote_rkey;
271     uint32_t padding;
272 } RDMARemoteBlock;
273
274 static uint64_t htonll(uint64_t v)
275 {
276     union { uint32_t lv[2]; uint64_t llv; } u;
277     u.lv[0] = htonl(v >> 32);
278     u.lv[1] = htonl(v & 0xFFFFFFFFULL);
279     return u.llv;
280 }
281
282 static uint64_t ntohll(uint64_t v) {
283     union { uint32_t lv[2]; uint64_t llv; } u;
284     u.llv = v;
285     return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
286 }
287
288 static void remote_block_to_network(RDMARemoteBlock *rb)
289 {
290     rb->remote_host_addr = htonll(rb->remote_host_addr);
291     rb->offset = htonll(rb->offset);
292     rb->length = htonll(rb->length);
293     rb->remote_rkey = htonl(rb->remote_rkey);
294 }
295
296 static void network_to_remote_block(RDMARemoteBlock *rb)
297 {
298     rb->remote_host_addr = ntohll(rb->remote_host_addr);
299     rb->offset = ntohll(rb->offset);
300     rb->length = ntohll(rb->length);
301     rb->remote_rkey = ntohl(rb->remote_rkey);
302 }
303
304 /*
305  * Virtual address of the above structures used for transmitting
306  * the RAMBlock descriptions at connection-time.
307  * This structure is *not* transmitted.
308  */
309 typedef struct RDMALocalBlocks {
310     int nb_blocks;
311     bool     init;             /* main memory init complete */
312     RDMALocalBlock *block;
313 } RDMALocalBlocks;
314
315 /*
316  * Main data structure for RDMA state.
317  * While there is only one copy of this structure being allocated right now,
318  * this is the place where one would start if you wanted to consider
319  * having more than one RDMA connection open at the same time.
320  */
321 typedef struct RDMAContext {
322     char *host;
323     int port;
324
325     RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
326
327     /*
328      * This is used by *_exchange_send() to figure out whether or not
329      * the initial "READY" message has already been received or not.
330      * This is because other functions may potentially poll() and detect
331      * the READY message before send() does, in which case we need to
332      * know if it completed.
333      */
334     int control_ready_expected;
335
336     /* number of outstanding writes */
337     int nb_sent;
338
339     /* store info about current buffer so that we can
340        merge it with future sends */
341     uint64_t current_addr;
342     uint64_t current_length;
343     /* index of ram block the current buffer belongs to */
344     int current_index;
345     /* index of the chunk in the current ram block */
346     int current_chunk;
347
348     bool pin_all;
349
350     /*
351      * infiniband-specific variables for opening the device
352      * and maintaining connection state and so forth.
353      *
354      * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
355      * cm_id->verbs, cm_id->channel, and cm_id->qp.
356      */
357     struct rdma_cm_id *cm_id;               /* connection manager ID */
358     struct rdma_cm_id *listen_id;
359
360     struct ibv_context          *verbs;
361     struct rdma_event_channel   *channel;
362     struct ibv_qp *qp;                      /* queue pair */
363     struct ibv_comp_channel *comp_channel;  /* completion channel */
364     struct ibv_pd *pd;                      /* protection domain */
365     struct ibv_cq *cq;                      /* completion queue */
366
367     /*
368      * If a previous write failed (perhaps because of a failed
369      * memory registration, then do not attempt any future work
370      * and remember the error state.
371      */
372     int error_state;
373     int error_reported;
374
375     /*
376      * Description of ram blocks used throughout the code.
377      */
378     RDMALocalBlocks local_ram_blocks;
379     RDMARemoteBlock *block;
380
381     /*
382      * Migration on *destination* started.
383      * Then use coroutine yield function.
384      * Source runs in a thread, so we don't care.
385      */
386     int migration_started_on_destination;
387
388     int total_registrations;
389     int total_writes;
390
391     int unregister_current, unregister_next;
392     uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
393
394     GHashTable *blockmap;
395     bool ipv6;
396 } RDMAContext;
397
398 /*
399  * Interface to the rest of the migration call stack.
400  */
401 typedef struct QEMUFileRDMA {
402     RDMAContext *rdma;
403     size_t len;
404     void *file;
405 } QEMUFileRDMA;
406
407 /*
408  * Main structure for IB Send/Recv control messages.
409  * This gets prepended at the beginning of every Send/Recv.
410  */
411 typedef struct QEMU_PACKED {
412     uint32_t len;     /* Total length of data portion */
413     uint32_t type;    /* which control command to perform */
414     uint32_t repeat;  /* number of commands in data portion of same type */
415     uint32_t padding;
416 } RDMAControlHeader;
417
418 static void control_to_network(RDMAControlHeader *control)
419 {
420     control->type = htonl(control->type);
421     control->len = htonl(control->len);
422     control->repeat = htonl(control->repeat);
423 }
424
425 static void network_to_control(RDMAControlHeader *control)
426 {
427     control->type = ntohl(control->type);
428     control->len = ntohl(control->len);
429     control->repeat = ntohl(control->repeat);
430 }
431
432 /*
433  * Register a single Chunk.
434  * Information sent by the source VM to inform the dest
435  * to register an single chunk of memory before we can perform
436  * the actual RDMA operation.
437  */
438 typedef struct QEMU_PACKED {
439     union QEMU_PACKED {
440         uint64_t current_addr;  /* offset into the ramblock of the chunk */
441         uint64_t chunk;         /* chunk to lookup if unregistering */
442     } key;
443     uint32_t current_index; /* which ramblock the chunk belongs to */
444     uint32_t padding;
445     uint64_t chunks;            /* how many sequential chunks to register */
446 } RDMARegister;
447
448 static void register_to_network(RDMARegister *reg)
449 {
450     reg->key.current_addr = htonll(reg->key.current_addr);
451     reg->current_index = htonl(reg->current_index);
452     reg->chunks = htonll(reg->chunks);
453 }
454
455 static void network_to_register(RDMARegister *reg)
456 {
457     reg->key.current_addr = ntohll(reg->key.current_addr);
458     reg->current_index = ntohl(reg->current_index);
459     reg->chunks = ntohll(reg->chunks);
460 }
461
462 typedef struct QEMU_PACKED {
463     uint32_t value;     /* if zero, we will madvise() */
464     uint32_t block_idx; /* which ram block index */
465     uint64_t offset;    /* where in the remote ramblock this chunk */
466     uint64_t length;    /* length of the chunk */
467 } RDMACompress;
468
469 static void compress_to_network(RDMACompress *comp)
470 {
471     comp->value = htonl(comp->value);
472     comp->block_idx = htonl(comp->block_idx);
473     comp->offset = htonll(comp->offset);
474     comp->length = htonll(comp->length);
475 }
476
477 static void network_to_compress(RDMACompress *comp)
478 {
479     comp->value = ntohl(comp->value);
480     comp->block_idx = ntohl(comp->block_idx);
481     comp->offset = ntohll(comp->offset);
482     comp->length = ntohll(comp->length);
483 }
484
485 /*
486  * The result of the dest's memory registration produces an "rkey"
487  * which the source VM must reference in order to perform
488  * the RDMA operation.
489  */
490 typedef struct QEMU_PACKED {
491     uint32_t rkey;
492     uint32_t padding;
493     uint64_t host_addr;
494 } RDMARegisterResult;
495
496 static void result_to_network(RDMARegisterResult *result)
497 {
498     result->rkey = htonl(result->rkey);
499     result->host_addr = htonll(result->host_addr);
500 };
501
502 static void network_to_result(RDMARegisterResult *result)
503 {
504     result->rkey = ntohl(result->rkey);
505     result->host_addr = ntohll(result->host_addr);
506 };
507
508 const char *print_wrid(int wrid);
509 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
510                                    uint8_t *data, RDMAControlHeader *resp,
511                                    int *resp_idx,
512                                    int (*callback)(RDMAContext *rdma));
513
514 static inline uint64_t ram_chunk_index(uint8_t *start, uint8_t *host)
515 {
516     return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
517 }
518
519 static inline uint8_t *ram_chunk_start(RDMALocalBlock *rdma_ram_block,
520                                        uint64_t i)
521 {
522     return (uint8_t *) (((uintptr_t) rdma_ram_block->local_host_addr)
523                                     + (i << RDMA_REG_CHUNK_SHIFT));
524 }
525
526 static inline uint8_t *ram_chunk_end(RDMALocalBlock *rdma_ram_block, uint64_t i)
527 {
528     uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
529                                          (1UL << RDMA_REG_CHUNK_SHIFT);
530
531     if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
532         result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
533     }
534
535     return result;
536 }
537
538 static int __qemu_rdma_add_block(RDMAContext *rdma, void *host_addr,
539                          ram_addr_t block_offset, uint64_t length)
540 {
541     RDMALocalBlocks *local = &rdma->local_ram_blocks;
542     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
543         (void *) block_offset);
544     RDMALocalBlock *old = local->block;
545
546     assert(block == NULL);
547
548     local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1));
549
550     if (local->nb_blocks) {
551         int x;
552
553         for (x = 0; x < local->nb_blocks; x++) {
554             g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
555             g_hash_table_insert(rdma->blockmap, (void *)old[x].offset,
556                                                 &local->block[x]);
557         }
558         memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
559         g_free(old);
560     }
561
562     block = &local->block[local->nb_blocks];
563
564     block->local_host_addr = host_addr;
565     block->offset = block_offset;
566     block->length = length;
567     block->index = local->nb_blocks;
568     block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
569     block->transit_bitmap = bitmap_new(block->nb_chunks);
570     bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
571     block->unregister_bitmap = bitmap_new(block->nb_chunks);
572     bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
573     block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t));
574
575     block->is_ram_block = local->init ? false : true;
576
577     g_hash_table_insert(rdma->blockmap, (void *) block_offset, block);
578
579     DDPRINTF("Added Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
580            " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
581             local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
582             block->length, (uint64_t) (block->local_host_addr + block->length),
583                 BITS_TO_LONGS(block->nb_chunks) *
584                     sizeof(unsigned long) * 8, block->nb_chunks);
585
586     local->nb_blocks++;
587
588     return 0;
589 }
590
591 /*
592  * Memory regions need to be registered with the device and queue pairs setup
593  * in advanced before the migration starts. This tells us where the RAM blocks
594  * are so that we can register them individually.
595  */
596 static void qemu_rdma_init_one_block(void *host_addr,
597     ram_addr_t block_offset, ram_addr_t length, void *opaque)
598 {
599     __qemu_rdma_add_block(opaque, host_addr, block_offset, length);
600 }
601
602 /*
603  * Identify the RAMBlocks and their quantity. They will be references to
604  * identify chunk boundaries inside each RAMBlock and also be referenced
605  * during dynamic page registration.
606  */
607 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
608 {
609     RDMALocalBlocks *local = &rdma->local_ram_blocks;
610
611     assert(rdma->blockmap == NULL);
612     rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
613     memset(local, 0, sizeof *local);
614     qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
615     DPRINTF("Allocated %d local ram block structures\n", local->nb_blocks);
616     rdma->block = (RDMARemoteBlock *) g_malloc0(sizeof(RDMARemoteBlock) *
617                         rdma->local_ram_blocks.nb_blocks);
618     local->init = true;
619     return 0;
620 }
621
622 static int __qemu_rdma_delete_block(RDMAContext *rdma, ram_addr_t block_offset)
623 {
624     RDMALocalBlocks *local = &rdma->local_ram_blocks;
625     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
626         (void *) block_offset);
627     RDMALocalBlock *old = local->block;
628     int x;
629
630     assert(block);
631
632     if (block->pmr) {
633         int j;
634
635         for (j = 0; j < block->nb_chunks; j++) {
636             if (!block->pmr[j]) {
637                 continue;
638             }
639             ibv_dereg_mr(block->pmr[j]);
640             rdma->total_registrations--;
641         }
642         g_free(block->pmr);
643         block->pmr = NULL;
644     }
645
646     if (block->mr) {
647         ibv_dereg_mr(block->mr);
648         rdma->total_registrations--;
649         block->mr = NULL;
650     }
651
652     g_free(block->transit_bitmap);
653     block->transit_bitmap = NULL;
654
655     g_free(block->unregister_bitmap);
656     block->unregister_bitmap = NULL;
657
658     g_free(block->remote_keys);
659     block->remote_keys = NULL;
660
661     for (x = 0; x < local->nb_blocks; x++) {
662         g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
663     }
664
665     if (local->nb_blocks > 1) {
666
667         local->block = g_malloc0(sizeof(RDMALocalBlock) *
668                                     (local->nb_blocks - 1));
669
670         if (block->index) {
671             memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
672         }
673
674         if (block->index < (local->nb_blocks - 1)) {
675             memcpy(local->block + block->index, old + (block->index + 1),
676                 sizeof(RDMALocalBlock) *
677                     (local->nb_blocks - (block->index + 1)));
678         }
679     } else {
680         assert(block == local->block);
681         local->block = NULL;
682     }
683
684     DDPRINTF("Deleted Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
685            " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
686             local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
687             block->length, (uint64_t) (block->local_host_addr + block->length),
688                 BITS_TO_LONGS(block->nb_chunks) *
689                     sizeof(unsigned long) * 8, block->nb_chunks);
690
691     g_free(old);
692
693     local->nb_blocks--;
694
695     if (local->nb_blocks) {
696         for (x = 0; x < local->nb_blocks; x++) {
697             g_hash_table_insert(rdma->blockmap, (void *)local->block[x].offset,
698                                                 &local->block[x]);
699         }
700     }
701
702     return 0;
703 }
704
705 /*
706  * Put in the log file which RDMA device was opened and the details
707  * associated with that device.
708  */
709 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
710 {
711     printf("%s RDMA Device opened: kernel name %s "
712            "uverbs device name %s, "
713            "infiniband_verbs class device path %s,"
714            " infiniband class device path %s\n",
715                 who,
716                 verbs->device->name,
717                 verbs->device->dev_name,
718                 verbs->device->dev_path,
719                 verbs->device->ibdev_path);
720 }
721
722 /*
723  * Put in the log file the RDMA gid addressing information,
724  * useful for folks who have trouble understanding the
725  * RDMA device hierarchy in the kernel.
726  */
727 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
728 {
729     char sgid[33];
730     char dgid[33];
731     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
732     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
733     DPRINTF("%s Source GID: %s, Dest GID: %s\n", who, sgid, dgid);
734 }
735
736 /*
737  * Figure out which RDMA device corresponds to the requested IP hostname
738  * Also create the initial connection manager identifiers for opening
739  * the connection.
740  */
741 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
742 {
743     int ret;
744     struct addrinfo *res;
745     char port_str[16];
746     struct rdma_cm_event *cm_event;
747     char ip[40] = "unknown";
748     int af = rdma->ipv6 ? PF_INET6 : PF_INET;
749
750     if (rdma->host == NULL || !strcmp(rdma->host, "")) {
751         ERROR(errp, "RDMA hostname has not been set");
752         return -1;
753     }
754
755     /* create CM channel */
756     rdma->channel = rdma_create_event_channel();
757     if (!rdma->channel) {
758         ERROR(errp, "could not create CM channel");
759         return -1;
760     }
761
762     /* create CM id */
763     ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
764     if (ret) {
765         ERROR(errp, "could not create channel id");
766         goto err_resolve_create_id;
767     }
768
769     snprintf(port_str, 16, "%d", rdma->port);
770     port_str[15] = '\0';
771
772     ret = getaddrinfo(rdma->host, port_str, NULL, &res);
773     if (ret < 0) {
774         ERROR(errp, "could not getaddrinfo address %s", rdma->host);
775         goto err_resolve_get_addr;
776     }
777
778     inet_ntop(af, &((struct sockaddr_in *) res->ai_addr)->sin_addr,
779                                 ip, sizeof ip);
780     DPRINTF("%s => %s\n", rdma->host, ip);
781
782     /* resolve the first address */
783     ret = rdma_resolve_addr(rdma->cm_id, NULL, res->ai_addr,
784             RDMA_RESOLVE_TIMEOUT_MS);
785     if (ret) {
786         ERROR(errp, "could not resolve address %s", rdma->host);
787         goto err_resolve_get_addr;
788     }
789
790     qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
791
792     ret = rdma_get_cm_event(rdma->channel, &cm_event);
793     if (ret) {
794         ERROR(errp, "could not perform event_addr_resolved");
795         goto err_resolve_get_addr;
796     }
797
798     if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
799         ERROR(errp, "result not equal to event_addr_resolved %s",
800                 rdma_event_str(cm_event->event));
801         perror("rdma_resolve_addr");
802         goto err_resolve_get_addr;
803     }
804     rdma_ack_cm_event(cm_event);
805
806     /* resolve route */
807     ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
808     if (ret) {
809         ERROR(errp, "could not resolve rdma route");
810         goto err_resolve_get_addr;
811     }
812
813     ret = rdma_get_cm_event(rdma->channel, &cm_event);
814     if (ret) {
815         ERROR(errp, "could not perform event_route_resolved");
816         goto err_resolve_get_addr;
817     }
818     if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
819         ERROR(errp, "result not equal to event_route_resolved: %s",
820                         rdma_event_str(cm_event->event));
821         rdma_ack_cm_event(cm_event);
822         goto err_resolve_get_addr;
823     }
824     rdma_ack_cm_event(cm_event);
825     rdma->verbs = rdma->cm_id->verbs;
826     qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
827     qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
828     return 0;
829
830 err_resolve_get_addr:
831     rdma_destroy_id(rdma->cm_id);
832     rdma->cm_id = NULL;
833 err_resolve_create_id:
834     rdma_destroy_event_channel(rdma->channel);
835     rdma->channel = NULL;
836
837     return -1;
838 }
839
840 /*
841  * Create protection domain and completion queues
842  */
843 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
844 {
845     /* allocate pd */
846     rdma->pd = ibv_alloc_pd(rdma->verbs);
847     if (!rdma->pd) {
848         fprintf(stderr, "failed to allocate protection domain\n");
849         return -1;
850     }
851
852     /* create completion channel */
853     rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
854     if (!rdma->comp_channel) {
855         fprintf(stderr, "failed to allocate completion channel\n");
856         goto err_alloc_pd_cq;
857     }
858
859     /*
860      * Completion queue can be filled by both read and write work requests,
861      * so must reflect the sum of both possible queue sizes.
862      */
863     rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
864             NULL, rdma->comp_channel, 0);
865     if (!rdma->cq) {
866         fprintf(stderr, "failed to allocate completion queue\n");
867         goto err_alloc_pd_cq;
868     }
869
870     return 0;
871
872 err_alloc_pd_cq:
873     if (rdma->pd) {
874         ibv_dealloc_pd(rdma->pd);
875     }
876     if (rdma->comp_channel) {
877         ibv_destroy_comp_channel(rdma->comp_channel);
878     }
879     rdma->pd = NULL;
880     rdma->comp_channel = NULL;
881     return -1;
882
883 }
884
885 /*
886  * Create queue pairs.
887  */
888 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
889 {
890     struct ibv_qp_init_attr attr = { 0 };
891     int ret;
892
893     attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
894     attr.cap.max_recv_wr = 3;
895     attr.cap.max_send_sge = 1;
896     attr.cap.max_recv_sge = 1;
897     attr.send_cq = rdma->cq;
898     attr.recv_cq = rdma->cq;
899     attr.qp_type = IBV_QPT_RC;
900
901     ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
902     if (ret) {
903         return -1;
904     }
905
906     rdma->qp = rdma->cm_id->qp;
907     return 0;
908 }
909
910 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
911 {
912     int i;
913     RDMALocalBlocks *local = &rdma->local_ram_blocks;
914
915     for (i = 0; i < local->nb_blocks; i++) {
916         local->block[i].mr =
917             ibv_reg_mr(rdma->pd,
918                     local->block[i].local_host_addr,
919                     local->block[i].length,
920                     IBV_ACCESS_LOCAL_WRITE |
921                     IBV_ACCESS_REMOTE_WRITE
922                     );
923         if (!local->block[i].mr) {
924             perror("Failed to register local dest ram block!\n");
925             break;
926         }
927         rdma->total_registrations++;
928     }
929
930     if (i >= local->nb_blocks) {
931         return 0;
932     }
933
934     for (i--; i >= 0; i--) {
935         ibv_dereg_mr(local->block[i].mr);
936         rdma->total_registrations--;
937     }
938
939     return -1;
940
941 }
942
943 /*
944  * Find the ram block that corresponds to the page requested to be
945  * transmitted by QEMU.
946  *
947  * Once the block is found, also identify which 'chunk' within that
948  * block that the page belongs to.
949  *
950  * This search cannot fail or the migration will fail.
951  */
952 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
953                                       uint64_t block_offset,
954                                       uint64_t offset,
955                                       uint64_t length,
956                                       uint64_t *block_index,
957                                       uint64_t *chunk_index)
958 {
959     uint64_t current_addr = block_offset + offset;
960     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
961                                                 (void *) block_offset);
962     assert(block);
963     assert(current_addr >= block->offset);
964     assert((current_addr + length) <= (block->offset + block->length));
965
966     *block_index = block->index;
967     *chunk_index = ram_chunk_index(block->local_host_addr,
968                 block->local_host_addr + (current_addr - block->offset));
969
970     return 0;
971 }
972
973 /*
974  * Register a chunk with IB. If the chunk was already registered
975  * previously, then skip.
976  *
977  * Also return the keys associated with the registration needed
978  * to perform the actual RDMA operation.
979  */
980 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
981         RDMALocalBlock *block, uint8_t *host_addr,
982         uint32_t *lkey, uint32_t *rkey, int chunk,
983         uint8_t *chunk_start, uint8_t *chunk_end)
984 {
985     if (block->mr) {
986         if (lkey) {
987             *lkey = block->mr->lkey;
988         }
989         if (rkey) {
990             *rkey = block->mr->rkey;
991         }
992         return 0;
993     }
994
995     /* allocate memory to store chunk MRs */
996     if (!block->pmr) {
997         block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *));
998         if (!block->pmr) {
999             return -1;
1000         }
1001     }
1002
1003     /*
1004      * If 'rkey', then we're the destination, so grant access to the source.
1005      *
1006      * If 'lkey', then we're the source VM, so grant access only to ourselves.
1007      */
1008     if (!block->pmr[chunk]) {
1009         uint64_t len = chunk_end - chunk_start;
1010
1011         DDPRINTF("Registering %" PRIu64 " bytes @ %p\n",
1012                  len, chunk_start);
1013
1014         block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1015                 chunk_start, len,
1016                 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1017                         IBV_ACCESS_REMOTE_WRITE) : 0));
1018
1019         if (!block->pmr[chunk]) {
1020             perror("Failed to register chunk!");
1021             fprintf(stderr, "Chunk details: block: %d chunk index %d"
1022                             " start %" PRIu64 " end %" PRIu64 " host %" PRIu64
1023                             " local %" PRIu64 " registrations: %d\n",
1024                             block->index, chunk, (uint64_t) chunk_start,
1025                             (uint64_t) chunk_end, (uint64_t) host_addr,
1026                             (uint64_t) block->local_host_addr,
1027                             rdma->total_registrations);
1028             return -1;
1029         }
1030         rdma->total_registrations++;
1031     }
1032
1033     if (lkey) {
1034         *lkey = block->pmr[chunk]->lkey;
1035     }
1036     if (rkey) {
1037         *rkey = block->pmr[chunk]->rkey;
1038     }
1039     return 0;
1040 }
1041
1042 /*
1043  * Register (at connection time) the memory used for control
1044  * channel messages.
1045  */
1046 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1047 {
1048     rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1049             rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1050             IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1051     if (rdma->wr_data[idx].control_mr) {
1052         rdma->total_registrations++;
1053         return 0;
1054     }
1055     fprintf(stderr, "qemu_rdma_reg_control failed!\n");
1056     return -1;
1057 }
1058
1059 const char *print_wrid(int wrid)
1060 {
1061     if (wrid >= RDMA_WRID_RECV_CONTROL) {
1062         return wrid_desc[RDMA_WRID_RECV_CONTROL];
1063     }
1064     return wrid_desc[wrid];
1065 }
1066
1067 /*
1068  * RDMA requires memory registration (mlock/pinning), but this is not good for
1069  * overcommitment.
1070  *
1071  * In preparation for the future where LRU information or workload-specific
1072  * writable writable working set memory access behavior is available to QEMU
1073  * it would be nice to have in place the ability to UN-register/UN-pin
1074  * particular memory regions from the RDMA hardware when it is determine that
1075  * those regions of memory will likely not be accessed again in the near future.
1076  *
1077  * While we do not yet have such information right now, the following
1078  * compile-time option allows us to perform a non-optimized version of this
1079  * behavior.
1080  *
1081  * By uncommenting this option, you will cause *all* RDMA transfers to be
1082  * unregistered immediately after the transfer completes on both sides of the
1083  * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1084  *
1085  * This will have a terrible impact on migration performance, so until future
1086  * workload information or LRU information is available, do not attempt to use
1087  * this feature except for basic testing.
1088  */
1089 //#define RDMA_UNREGISTRATION_EXAMPLE
1090
1091 /*
1092  * Perform a non-optimized memory unregistration after every transfer
1093  * for demonsration purposes, only if pin-all is not requested.
1094  *
1095  * Potential optimizations:
1096  * 1. Start a new thread to run this function continuously
1097         - for bit clearing
1098         - and for receipt of unregister messages
1099  * 2. Use an LRU.
1100  * 3. Use workload hints.
1101  */
1102 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1103 {
1104     while (rdma->unregistrations[rdma->unregister_current]) {
1105         int ret;
1106         uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1107         uint64_t chunk =
1108             (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1109         uint64_t index =
1110             (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1111         RDMALocalBlock *block =
1112             &(rdma->local_ram_blocks.block[index]);
1113         RDMARegister reg = { .current_index = index };
1114         RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1115                                  };
1116         RDMAControlHeader head = { .len = sizeof(RDMARegister),
1117                                    .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1118                                    .repeat = 1,
1119                                  };
1120
1121         DDPRINTF("Processing unregister for chunk: %" PRIu64
1122                  " at position %d\n", chunk, rdma->unregister_current);
1123
1124         rdma->unregistrations[rdma->unregister_current] = 0;
1125         rdma->unregister_current++;
1126
1127         if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1128             rdma->unregister_current = 0;
1129         }
1130
1131
1132         /*
1133          * Unregistration is speculative (because migration is single-threaded
1134          * and we cannot break the protocol's inifinband message ordering).
1135          * Thus, if the memory is currently being used for transmission,
1136          * then abort the attempt to unregister and try again
1137          * later the next time a completion is received for this memory.
1138          */
1139         clear_bit(chunk, block->unregister_bitmap);
1140
1141         if (test_bit(chunk, block->transit_bitmap)) {
1142             DDPRINTF("Cannot unregister inflight chunk: %" PRIu64 "\n", chunk);
1143             continue;
1144         }
1145
1146         DDPRINTF("Sending unregister for chunk: %" PRIu64 "\n", chunk);
1147
1148         ret = ibv_dereg_mr(block->pmr[chunk]);
1149         block->pmr[chunk] = NULL;
1150         block->remote_keys[chunk] = 0;
1151
1152         if (ret != 0) {
1153             perror("unregistration chunk failed");
1154             return -ret;
1155         }
1156         rdma->total_registrations--;
1157
1158         reg.key.chunk = chunk;
1159         register_to_network(&reg);
1160         ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1161                                 &resp, NULL, NULL);
1162         if (ret < 0) {
1163             return ret;
1164         }
1165
1166         DDPRINTF("Unregister for chunk: %" PRIu64 " complete.\n", chunk);
1167     }
1168
1169     return 0;
1170 }
1171
1172 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1173                                          uint64_t chunk)
1174 {
1175     uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1176
1177     result |= (index << RDMA_WRID_BLOCK_SHIFT);
1178     result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1179
1180     return result;
1181 }
1182
1183 /*
1184  * Set bit for unregistration in the next iteration.
1185  * We cannot transmit right here, but will unpin later.
1186  */
1187 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1188                                         uint64_t chunk, uint64_t wr_id)
1189 {
1190     if (rdma->unregistrations[rdma->unregister_next] != 0) {
1191         fprintf(stderr, "rdma migration: queue is full!\n");
1192     } else {
1193         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1194
1195         if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1196             DDPRINTF("Appending unregister chunk %" PRIu64
1197                     " at position %d\n", chunk, rdma->unregister_next);
1198
1199             rdma->unregistrations[rdma->unregister_next++] =
1200                     qemu_rdma_make_wrid(wr_id, index, chunk);
1201
1202             if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1203                 rdma->unregister_next = 0;
1204             }
1205         } else {
1206             DDPRINTF("Unregister chunk %" PRIu64 " already in queue.\n",
1207                     chunk);
1208         }
1209     }
1210 }
1211
1212 /*
1213  * Consult the connection manager to see a work request
1214  * (of any kind) has completed.
1215  * Return the work request ID that completed.
1216  */
1217 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out)
1218 {
1219     int ret;
1220     struct ibv_wc wc;
1221     uint64_t wr_id;
1222
1223     ret = ibv_poll_cq(rdma->cq, 1, &wc);
1224
1225     if (!ret) {
1226         *wr_id_out = RDMA_WRID_NONE;
1227         return 0;
1228     }
1229
1230     if (ret < 0) {
1231         fprintf(stderr, "ibv_poll_cq return %d!\n", ret);
1232         return ret;
1233     }
1234
1235     wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1236
1237     if (wc.status != IBV_WC_SUCCESS) {
1238         fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1239                         wc.status, ibv_wc_status_str(wc.status));
1240         fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1241
1242         return -1;
1243     }
1244
1245     if (rdma->control_ready_expected &&
1246         (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1247         DDDPRINTF("completion %s #%" PRId64 " received (%" PRId64 ")"
1248                   " left %d\n", wrid_desc[RDMA_WRID_RECV_CONTROL],
1249                   wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1250         rdma->control_ready_expected = 0;
1251     }
1252
1253     if (wr_id == RDMA_WRID_RDMA_WRITE) {
1254         uint64_t chunk =
1255             (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1256         uint64_t index =
1257             (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1258         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1259
1260         DDDPRINTF("completions %s (%" PRId64 ") left %d, "
1261                  "block %" PRIu64 ", chunk: %" PRIu64 " %p %p\n",
1262                  print_wrid(wr_id), wr_id, rdma->nb_sent, index, chunk,
1263                  block->local_host_addr, (void *)block->remote_host_addr);
1264
1265         clear_bit(chunk, block->transit_bitmap);
1266
1267         if (rdma->nb_sent > 0) {
1268             rdma->nb_sent--;
1269         }
1270
1271         if (!rdma->pin_all) {
1272             /*
1273              * FYI: If one wanted to signal a specific chunk to be unregistered
1274              * using LRU or workload-specific information, this is the function
1275              * you would call to do so. That chunk would then get asynchronously
1276              * unregistered later.
1277              */
1278 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1279             qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1280 #endif
1281         }
1282     } else {
1283         DDDPRINTF("other completion %s (%" PRId64 ") received left %d\n",
1284             print_wrid(wr_id), wr_id, rdma->nb_sent);
1285     }
1286
1287     *wr_id_out = wc.wr_id;
1288
1289     return  0;
1290 }
1291
1292 /*
1293  * Block until the next work request has completed.
1294  *
1295  * First poll to see if a work request has already completed,
1296  * otherwise block.
1297  *
1298  * If we encounter completed work requests for IDs other than
1299  * the one we're interested in, then that's generally an error.
1300  *
1301  * The only exception is actual RDMA Write completions. These
1302  * completions only need to be recorded, but do not actually
1303  * need further processing.
1304  */
1305 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested)
1306 {
1307     int num_cq_events = 0, ret = 0;
1308     struct ibv_cq *cq;
1309     void *cq_ctx;
1310     uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1311
1312     if (ibv_req_notify_cq(rdma->cq, 0)) {
1313         return -1;
1314     }
1315     /* poll cq first */
1316     while (wr_id != wrid_requested) {
1317         ret = qemu_rdma_poll(rdma, &wr_id_in);
1318         if (ret < 0) {
1319             return ret;
1320         }
1321
1322         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1323
1324         if (wr_id == RDMA_WRID_NONE) {
1325             break;
1326         }
1327         if (wr_id != wrid_requested) {
1328             DDDPRINTF("A Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1329                 print_wrid(wrid_requested),
1330                 wrid_requested, print_wrid(wr_id), wr_id);
1331         }
1332     }
1333
1334     if (wr_id == wrid_requested) {
1335         return 0;
1336     }
1337
1338     while (1) {
1339         /*
1340          * Coroutine doesn't start until process_incoming_migration()
1341          * so don't yield unless we know we're running inside of a coroutine.
1342          */
1343         if (rdma->migration_started_on_destination) {
1344             yield_until_fd_readable(rdma->comp_channel->fd);
1345         }
1346
1347         if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
1348             perror("ibv_get_cq_event");
1349             goto err_block_for_wrid;
1350         }
1351
1352         num_cq_events++;
1353
1354         if (ibv_req_notify_cq(cq, 0)) {
1355             goto err_block_for_wrid;
1356         }
1357
1358         while (wr_id != wrid_requested) {
1359             ret = qemu_rdma_poll(rdma, &wr_id_in);
1360             if (ret < 0) {
1361                 goto err_block_for_wrid;
1362             }
1363
1364             wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1365
1366             if (wr_id == RDMA_WRID_NONE) {
1367                 break;
1368             }
1369             if (wr_id != wrid_requested) {
1370                 DDDPRINTF("B Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1371                     print_wrid(wrid_requested), wrid_requested,
1372                     print_wrid(wr_id), wr_id);
1373             }
1374         }
1375
1376         if (wr_id == wrid_requested) {
1377             goto success_block_for_wrid;
1378         }
1379     }
1380
1381 success_block_for_wrid:
1382     if (num_cq_events) {
1383         ibv_ack_cq_events(cq, num_cq_events);
1384     }
1385     return 0;
1386
1387 err_block_for_wrid:
1388     if (num_cq_events) {
1389         ibv_ack_cq_events(cq, num_cq_events);
1390     }
1391     return ret;
1392 }
1393
1394 /*
1395  * Post a SEND message work request for the control channel
1396  * containing some data and block until the post completes.
1397  */
1398 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1399                                        RDMAControlHeader *head)
1400 {
1401     int ret = 0;
1402     RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1403     struct ibv_send_wr *bad_wr;
1404     struct ibv_sge sge = {
1405                            .addr = (uint64_t)(wr->control),
1406                            .length = head->len + sizeof(RDMAControlHeader),
1407                            .lkey = wr->control_mr->lkey,
1408                          };
1409     struct ibv_send_wr send_wr = {
1410                                    .wr_id = RDMA_WRID_SEND_CONTROL,
1411                                    .opcode = IBV_WR_SEND,
1412                                    .send_flags = IBV_SEND_SIGNALED,
1413                                    .sg_list = &sge,
1414                                    .num_sge = 1,
1415                                 };
1416
1417     DDDPRINTF("CONTROL: sending %s..\n", control_desc[head->type]);
1418
1419     /*
1420      * We don't actually need to do a memcpy() in here if we used
1421      * the "sge" properly, but since we're only sending control messages
1422      * (not RAM in a performance-critical path), then its OK for now.
1423      *
1424      * The copy makes the RDMAControlHeader simpler to manipulate
1425      * for the time being.
1426      */
1427     memcpy(wr->control, head, sizeof(RDMAControlHeader));
1428     control_to_network((void *) wr->control);
1429
1430     if (buf) {
1431         memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1432     }
1433
1434
1435     if (ibv_post_send(rdma->qp, &send_wr, &bad_wr)) {
1436         return -1;
1437     }
1438
1439     if (ret < 0) {
1440         fprintf(stderr, "Failed to use post IB SEND for control!\n");
1441         return ret;
1442     }
1443
1444     ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL);
1445     if (ret < 0) {
1446         fprintf(stderr, "rdma migration: send polling control error!\n");
1447     }
1448
1449     return ret;
1450 }
1451
1452 /*
1453  * Post a RECV work request in anticipation of some future receipt
1454  * of data on the control channel.
1455  */
1456 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1457 {
1458     struct ibv_recv_wr *bad_wr;
1459     struct ibv_sge sge = {
1460                             .addr = (uint64_t)(rdma->wr_data[idx].control),
1461                             .length = RDMA_CONTROL_MAX_BUFFER,
1462                             .lkey = rdma->wr_data[idx].control_mr->lkey,
1463                          };
1464
1465     struct ibv_recv_wr recv_wr = {
1466                                     .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1467                                     .sg_list = &sge,
1468                                     .num_sge = 1,
1469                                  };
1470
1471
1472     if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1473         return -1;
1474     }
1475
1476     return 0;
1477 }
1478
1479 /*
1480  * Block and wait for a RECV control channel message to arrive.
1481  */
1482 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1483                 RDMAControlHeader *head, int expecting, int idx)
1484 {
1485     int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx);
1486
1487     if (ret < 0) {
1488         fprintf(stderr, "rdma migration: recv polling control error!\n");
1489         return ret;
1490     }
1491
1492     network_to_control((void *) rdma->wr_data[idx].control);
1493     memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1494
1495     DDDPRINTF("CONTROL: %s receiving...\n", control_desc[expecting]);
1496
1497     if (expecting == RDMA_CONTROL_NONE) {
1498         DDDPRINTF("Surprise: got %s (%d)\n",
1499                   control_desc[head->type], head->type);
1500     } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1501         fprintf(stderr, "Was expecting a %s (%d) control message"
1502                 ", but got: %s (%d), length: %d\n",
1503                 control_desc[expecting], expecting,
1504                 control_desc[head->type], head->type, head->len);
1505         return -EIO;
1506     }
1507
1508     return 0;
1509 }
1510
1511 /*
1512  * When a RECV work request has completed, the work request's
1513  * buffer is pointed at the header.
1514  *
1515  * This will advance the pointer to the data portion
1516  * of the control message of the work request's buffer that
1517  * was populated after the work request finished.
1518  */
1519 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1520                                   RDMAControlHeader *head)
1521 {
1522     rdma->wr_data[idx].control_len = head->len;
1523     rdma->wr_data[idx].control_curr =
1524         rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1525 }
1526
1527 /*
1528  * This is an 'atomic' high-level operation to deliver a single, unified
1529  * control-channel message.
1530  *
1531  * Additionally, if the user is expecting some kind of reply to this message,
1532  * they can request a 'resp' response message be filled in by posting an
1533  * additional work request on behalf of the user and waiting for an additional
1534  * completion.
1535  *
1536  * The extra (optional) response is used during registration to us from having
1537  * to perform an *additional* exchange of message just to provide a response by
1538  * instead piggy-backing on the acknowledgement.
1539  */
1540 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1541                                    uint8_t *data, RDMAControlHeader *resp,
1542                                    int *resp_idx,
1543                                    int (*callback)(RDMAContext *rdma))
1544 {
1545     int ret = 0;
1546
1547     /*
1548      * Wait until the dest is ready before attempting to deliver the message
1549      * by waiting for a READY message.
1550      */
1551     if (rdma->control_ready_expected) {
1552         RDMAControlHeader resp;
1553         ret = qemu_rdma_exchange_get_response(rdma,
1554                                     &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1555         if (ret < 0) {
1556             return ret;
1557         }
1558     }
1559
1560     /*
1561      * If the user is expecting a response, post a WR in anticipation of it.
1562      */
1563     if (resp) {
1564         ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1565         if (ret) {
1566             fprintf(stderr, "rdma migration: error posting"
1567                     " extra control recv for anticipated result!");
1568             return ret;
1569         }
1570     }
1571
1572     /*
1573      * Post a WR to replace the one we just consumed for the READY message.
1574      */
1575     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1576     if (ret) {
1577         fprintf(stderr, "rdma migration: error posting first control recv!");
1578         return ret;
1579     }
1580
1581     /*
1582      * Deliver the control message that was requested.
1583      */
1584     ret = qemu_rdma_post_send_control(rdma, data, head);
1585
1586     if (ret < 0) {
1587         fprintf(stderr, "Failed to send control buffer!\n");
1588         return ret;
1589     }
1590
1591     /*
1592      * If we're expecting a response, block and wait for it.
1593      */
1594     if (resp) {
1595         if (callback) {
1596             DDPRINTF("Issuing callback before receiving response...\n");
1597             ret = callback(rdma);
1598             if (ret < 0) {
1599                 return ret;
1600             }
1601         }
1602
1603         DDPRINTF("Waiting for response %s\n", control_desc[resp->type]);
1604         ret = qemu_rdma_exchange_get_response(rdma, resp,
1605                                               resp->type, RDMA_WRID_DATA);
1606
1607         if (ret < 0) {
1608             return ret;
1609         }
1610
1611         qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1612         if (resp_idx) {
1613             *resp_idx = RDMA_WRID_DATA;
1614         }
1615         DDPRINTF("Response %s received.\n", control_desc[resp->type]);
1616     }
1617
1618     rdma->control_ready_expected = 1;
1619
1620     return 0;
1621 }
1622
1623 /*
1624  * This is an 'atomic' high-level operation to receive a single, unified
1625  * control-channel message.
1626  */
1627 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1628                                 int expecting)
1629 {
1630     RDMAControlHeader ready = {
1631                                 .len = 0,
1632                                 .type = RDMA_CONTROL_READY,
1633                                 .repeat = 1,
1634                               };
1635     int ret;
1636
1637     /*
1638      * Inform the source that we're ready to receive a message.
1639      */
1640     ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1641
1642     if (ret < 0) {
1643         fprintf(stderr, "Failed to send control buffer!\n");
1644         return ret;
1645     }
1646
1647     /*
1648      * Block and wait for the message.
1649      */
1650     ret = qemu_rdma_exchange_get_response(rdma, head,
1651                                           expecting, RDMA_WRID_READY);
1652
1653     if (ret < 0) {
1654         return ret;
1655     }
1656
1657     qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1658
1659     /*
1660      * Post a new RECV work request to replace the one we just consumed.
1661      */
1662     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1663     if (ret) {
1664         fprintf(stderr, "rdma migration: error posting second control recv!");
1665         return ret;
1666     }
1667
1668     return 0;
1669 }
1670
1671 /*
1672  * Write an actual chunk of memory using RDMA.
1673  *
1674  * If we're using dynamic registration on the dest-side, we have to
1675  * send a registration command first.
1676  */
1677 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1678                                int current_index, uint64_t current_addr,
1679                                uint64_t length)
1680 {
1681     struct ibv_sge sge;
1682     struct ibv_send_wr send_wr = { 0 };
1683     struct ibv_send_wr *bad_wr;
1684     int reg_result_idx, ret, count = 0;
1685     uint64_t chunk, chunks;
1686     uint8_t *chunk_start, *chunk_end;
1687     RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1688     RDMARegister reg;
1689     RDMARegisterResult *reg_result;
1690     RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1691     RDMAControlHeader head = { .len = sizeof(RDMARegister),
1692                                .type = RDMA_CONTROL_REGISTER_REQUEST,
1693                                .repeat = 1,
1694                              };
1695
1696 retry:
1697     sge.addr = (uint64_t)(block->local_host_addr +
1698                             (current_addr - block->offset));
1699     sge.length = length;
1700
1701     chunk = ram_chunk_index(block->local_host_addr, (uint8_t *) sge.addr);
1702     chunk_start = ram_chunk_start(block, chunk);
1703
1704     if (block->is_ram_block) {
1705         chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1706
1707         if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1708             chunks--;
1709         }
1710     } else {
1711         chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1712
1713         if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1714             chunks--;
1715         }
1716     }
1717
1718     DDPRINTF("Writing %" PRIu64 " chunks, (%" PRIu64 " MB)\n",
1719         chunks + 1, (chunks + 1) * (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
1720
1721     chunk_end = ram_chunk_end(block, chunk + chunks);
1722
1723     if (!rdma->pin_all) {
1724 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1725         qemu_rdma_unregister_waiting(rdma);
1726 #endif
1727     }
1728
1729     while (test_bit(chunk, block->transit_bitmap)) {
1730         (void)count;
1731         DDPRINTF("(%d) Not clobbering: block: %d chunk %" PRIu64
1732                 " current %" PRIu64 " len %" PRIu64 " %d %d\n",
1733                 count++, current_index, chunk,
1734                 sge.addr, length, rdma->nb_sent, block->nb_chunks);
1735
1736         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE);
1737
1738         if (ret < 0) {
1739             fprintf(stderr, "Failed to Wait for previous write to complete "
1740                     "block %d chunk %" PRIu64
1741                     " current %" PRIu64 " len %" PRIu64 " %d\n",
1742                     current_index, chunk, sge.addr, length, rdma->nb_sent);
1743             return ret;
1744         }
1745     }
1746
1747     if (!rdma->pin_all || !block->is_ram_block) {
1748         if (!block->remote_keys[chunk]) {
1749             /*
1750              * This chunk has not yet been registered, so first check to see
1751              * if the entire chunk is zero. If so, tell the other size to
1752              * memset() + madvise() the entire chunk without RDMA.
1753              */
1754
1755             if (can_use_buffer_find_nonzero_offset((void *)sge.addr, length)
1756                    && buffer_find_nonzero_offset((void *)sge.addr,
1757                                                     length) == length) {
1758                 RDMACompress comp = {
1759                                         .offset = current_addr,
1760                                         .value = 0,
1761                                         .block_idx = current_index,
1762                                         .length = length,
1763                                     };
1764
1765                 head.len = sizeof(comp);
1766                 head.type = RDMA_CONTROL_COMPRESS;
1767
1768                 DDPRINTF("Entire chunk is zero, sending compress: %"
1769                     PRIu64 " for %d "
1770                     "bytes, index: %d, offset: %" PRId64 "...\n",
1771                     chunk, sge.length, current_index, current_addr);
1772
1773                 compress_to_network(&comp);
1774                 ret = qemu_rdma_exchange_send(rdma, &head,
1775                                 (uint8_t *) &comp, NULL, NULL, NULL);
1776
1777                 if (ret < 0) {
1778                     return -EIO;
1779                 }
1780
1781                 acct_update_position(f, sge.length, true);
1782
1783                 return 1;
1784             }
1785
1786             /*
1787              * Otherwise, tell other side to register.
1788              */
1789             reg.current_index = current_index;
1790             if (block->is_ram_block) {
1791                 reg.key.current_addr = current_addr;
1792             } else {
1793                 reg.key.chunk = chunk;
1794             }
1795             reg.chunks = chunks;
1796
1797             DDPRINTF("Sending registration request chunk %" PRIu64 " for %d "
1798                     "bytes, index: %d, offset: %" PRId64 "...\n",
1799                     chunk, sge.length, current_index, current_addr);
1800
1801             register_to_network(&reg);
1802             ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1803                                     &resp, &reg_result_idx, NULL);
1804             if (ret < 0) {
1805                 return ret;
1806             }
1807
1808             /* try to overlap this single registration with the one we sent. */
1809             if (qemu_rdma_register_and_get_keys(rdma, block,
1810                                                 (uint8_t *) sge.addr,
1811                                                 &sge.lkey, NULL, chunk,
1812                                                 chunk_start, chunk_end)) {
1813                 fprintf(stderr, "cannot get lkey!\n");
1814                 return -EINVAL;
1815             }
1816
1817             reg_result = (RDMARegisterResult *)
1818                     rdma->wr_data[reg_result_idx].control_curr;
1819
1820             network_to_result(reg_result);
1821
1822             DDPRINTF("Received registration result:"
1823                     " my key: %x their key %x, chunk %" PRIu64 "\n",
1824                     block->remote_keys[chunk], reg_result->rkey, chunk);
1825
1826             block->remote_keys[chunk] = reg_result->rkey;
1827             block->remote_host_addr = reg_result->host_addr;
1828         } else {
1829             /* already registered before */
1830             if (qemu_rdma_register_and_get_keys(rdma, block,
1831                                                 (uint8_t *)sge.addr,
1832                                                 &sge.lkey, NULL, chunk,
1833                                                 chunk_start, chunk_end)) {
1834                 fprintf(stderr, "cannot get lkey!\n");
1835                 return -EINVAL;
1836             }
1837         }
1838
1839         send_wr.wr.rdma.rkey = block->remote_keys[chunk];
1840     } else {
1841         send_wr.wr.rdma.rkey = block->remote_rkey;
1842
1843         if (qemu_rdma_register_and_get_keys(rdma, block, (uint8_t *)sge.addr,
1844                                                      &sge.lkey, NULL, chunk,
1845                                                      chunk_start, chunk_end)) {
1846             fprintf(stderr, "cannot get lkey!\n");
1847             return -EINVAL;
1848         }
1849     }
1850
1851     /*
1852      * Encode the ram block index and chunk within this wrid.
1853      * We will use this information at the time of completion
1854      * to figure out which bitmap to check against and then which
1855      * chunk in the bitmap to look for.
1856      */
1857     send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
1858                                         current_index, chunk);
1859
1860     send_wr.opcode = IBV_WR_RDMA_WRITE;
1861     send_wr.send_flags = IBV_SEND_SIGNALED;
1862     send_wr.sg_list = &sge;
1863     send_wr.num_sge = 1;
1864     send_wr.wr.rdma.remote_addr = block->remote_host_addr +
1865                                 (current_addr - block->offset);
1866
1867     DDDPRINTF("Posting chunk: %" PRIu64 ", addr: %lx"
1868               " remote: %lx, bytes %" PRIu32 "\n",
1869               chunk, sge.addr, send_wr.wr.rdma.remote_addr,
1870               sge.length);
1871
1872     /*
1873      * ibv_post_send() does not return negative error numbers,
1874      * per the specification they are positive - no idea why.
1875      */
1876     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1877
1878     if (ret == ENOMEM) {
1879         DDPRINTF("send queue is full. wait a little....\n");
1880         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE);
1881         if (ret < 0) {
1882             fprintf(stderr, "rdma migration: failed to make "
1883                             "room in full send queue! %d\n", ret);
1884             return ret;
1885         }
1886
1887         goto retry;
1888
1889     } else if (ret > 0) {
1890         perror("rdma migration: post rdma write failed");
1891         return -ret;
1892     }
1893
1894     set_bit(chunk, block->transit_bitmap);
1895     acct_update_position(f, sge.length, false);
1896     rdma->total_writes++;
1897
1898     return 0;
1899 }
1900
1901 /*
1902  * Push out any unwritten RDMA operations.
1903  *
1904  * We support sending out multiple chunks at the same time.
1905  * Not all of them need to get signaled in the completion queue.
1906  */
1907 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
1908 {
1909     int ret;
1910
1911     if (!rdma->current_length) {
1912         return 0;
1913     }
1914
1915     ret = qemu_rdma_write_one(f, rdma,
1916             rdma->current_index, rdma->current_addr, rdma->current_length);
1917
1918     if (ret < 0) {
1919         return ret;
1920     }
1921
1922     if (ret == 0) {
1923         rdma->nb_sent++;
1924         DDDPRINTF("sent total: %d\n", rdma->nb_sent);
1925     }
1926
1927     rdma->current_length = 0;
1928     rdma->current_addr = 0;
1929
1930     return 0;
1931 }
1932
1933 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
1934                     uint64_t offset, uint64_t len)
1935 {
1936     RDMALocalBlock *block;
1937     uint8_t *host_addr;
1938     uint8_t *chunk_end;
1939
1940     if (rdma->current_index < 0) {
1941         return 0;
1942     }
1943
1944     if (rdma->current_chunk < 0) {
1945         return 0;
1946     }
1947
1948     block = &(rdma->local_ram_blocks.block[rdma->current_index]);
1949     host_addr = block->local_host_addr + (offset - block->offset);
1950     chunk_end = ram_chunk_end(block, rdma->current_chunk);
1951
1952     if (rdma->current_length == 0) {
1953         return 0;
1954     }
1955
1956     /*
1957      * Only merge into chunk sequentially.
1958      */
1959     if (offset != (rdma->current_addr + rdma->current_length)) {
1960         return 0;
1961     }
1962
1963     if (offset < block->offset) {
1964         return 0;
1965     }
1966
1967     if ((offset + len) > (block->offset + block->length)) {
1968         return 0;
1969     }
1970
1971     if ((host_addr + len) > chunk_end) {
1972         return 0;
1973     }
1974
1975     return 1;
1976 }
1977
1978 /*
1979  * We're not actually writing here, but doing three things:
1980  *
1981  * 1. Identify the chunk the buffer belongs to.
1982  * 2. If the chunk is full or the buffer doesn't belong to the current
1983  *    chunk, then start a new chunk and flush() the old chunk.
1984  * 3. To keep the hardware busy, we also group chunks into batches
1985  *    and only require that a batch gets acknowledged in the completion
1986  *    qeueue instead of each individual chunk.
1987  */
1988 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
1989                            uint64_t block_offset, uint64_t offset,
1990                            uint64_t len)
1991 {
1992     uint64_t current_addr = block_offset + offset;
1993     uint64_t index = rdma->current_index;
1994     uint64_t chunk = rdma->current_chunk;
1995     int ret;
1996
1997     /* If we cannot merge it, we flush the current buffer first. */
1998     if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
1999         ret = qemu_rdma_write_flush(f, rdma);
2000         if (ret) {
2001             return ret;
2002         }
2003         rdma->current_length = 0;
2004         rdma->current_addr = current_addr;
2005
2006         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2007                                          offset, len, &index, &chunk);
2008         if (ret) {
2009             fprintf(stderr, "ram block search failed\n");
2010             return ret;
2011         }
2012         rdma->current_index = index;
2013         rdma->current_chunk = chunk;
2014     }
2015
2016     /* merge it */
2017     rdma->current_length += len;
2018
2019     /* flush it if buffer is too large */
2020     if (rdma->current_length >= RDMA_MERGE_MAX) {
2021         return qemu_rdma_write_flush(f, rdma);
2022     }
2023
2024     return 0;
2025 }
2026
2027 static void qemu_rdma_cleanup(RDMAContext *rdma)
2028 {
2029     struct rdma_cm_event *cm_event;
2030     int ret, idx;
2031
2032     if (rdma->cm_id) {
2033         if (rdma->error_state) {
2034             RDMAControlHeader head = { .len = 0,
2035                                        .type = RDMA_CONTROL_ERROR,
2036                                        .repeat = 1,
2037                                      };
2038             fprintf(stderr, "Early error. Sending error.\n");
2039             qemu_rdma_post_send_control(rdma, NULL, &head);
2040         }
2041
2042         ret = rdma_disconnect(rdma->cm_id);
2043         if (!ret) {
2044             DDPRINTF("waiting for disconnect\n");
2045             ret = rdma_get_cm_event(rdma->channel, &cm_event);
2046             if (!ret) {
2047                 rdma_ack_cm_event(cm_event);
2048             }
2049         }
2050         DDPRINTF("Disconnected.\n");
2051         rdma->cm_id = NULL;
2052     }
2053
2054     g_free(rdma->block);
2055     rdma->block = NULL;
2056
2057     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2058         if (rdma->wr_data[idx].control_mr) {
2059             rdma->total_registrations--;
2060             ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2061         }
2062         rdma->wr_data[idx].control_mr = NULL;
2063     }
2064
2065     if (rdma->local_ram_blocks.block) {
2066         while (rdma->local_ram_blocks.nb_blocks) {
2067             __qemu_rdma_delete_block(rdma,
2068                     rdma->local_ram_blocks.block->offset);
2069         }
2070     }
2071
2072     if (rdma->qp) {
2073         ibv_destroy_qp(rdma->qp);
2074         rdma->qp = NULL;
2075     }
2076     if (rdma->cq) {
2077         ibv_destroy_cq(rdma->cq);
2078         rdma->cq = NULL;
2079     }
2080     if (rdma->comp_channel) {
2081         ibv_destroy_comp_channel(rdma->comp_channel);
2082         rdma->comp_channel = NULL;
2083     }
2084     if (rdma->pd) {
2085         ibv_dealloc_pd(rdma->pd);
2086         rdma->pd = NULL;
2087     }
2088     if (rdma->listen_id) {
2089         rdma_destroy_id(rdma->listen_id);
2090         rdma->listen_id = NULL;
2091     }
2092     if (rdma->cm_id) {
2093         rdma_destroy_id(rdma->cm_id);
2094         rdma->cm_id = NULL;
2095     }
2096     if (rdma->channel) {
2097         rdma_destroy_event_channel(rdma->channel);
2098         rdma->channel = NULL;
2099     }
2100 }
2101
2102
2103 static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
2104 {
2105     int ret, idx;
2106     Error *local_err = NULL, **temp = &local_err;
2107
2108     /*
2109      * Will be validated against destination's actual capabilities
2110      * after the connect() completes.
2111      */
2112     rdma->pin_all = pin_all;
2113
2114     ret = qemu_rdma_resolve_host(rdma, temp);
2115     if (ret) {
2116         goto err_rdma_source_init;
2117     }
2118
2119     ret = qemu_rdma_alloc_pd_cq(rdma);
2120     if (ret) {
2121         ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2122                     " limits may be too low. Please check $ ulimit -a # and "
2123                     "search for 'ulimit -l' in the output");
2124         goto err_rdma_source_init;
2125     }
2126
2127     ret = qemu_rdma_alloc_qp(rdma);
2128     if (ret) {
2129         ERROR(temp, "rdma migration: error allocating qp!");
2130         goto err_rdma_source_init;
2131     }
2132
2133     ret = qemu_rdma_init_ram_blocks(rdma);
2134     if (ret) {
2135         ERROR(temp, "rdma migration: error initializing ram blocks!");
2136         goto err_rdma_source_init;
2137     }
2138
2139     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2140         ret = qemu_rdma_reg_control(rdma, idx);
2141         if (ret) {
2142             ERROR(temp, "rdma migration: error registering %d control!",
2143                                                             idx);
2144             goto err_rdma_source_init;
2145         }
2146     }
2147
2148     return 0;
2149
2150 err_rdma_source_init:
2151     error_propagate(errp, local_err);
2152     qemu_rdma_cleanup(rdma);
2153     return -1;
2154 }
2155
2156 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2157 {
2158     RDMACapabilities cap = {
2159                                 .version = RDMA_CONTROL_VERSION_CURRENT,
2160                                 .flags = 0,
2161                            };
2162     struct rdma_conn_param conn_param = { .initiator_depth = 2,
2163                                           .retry_count = 5,
2164                                           .private_data = &cap,
2165                                           .private_data_len = sizeof(cap),
2166                                         };
2167     struct rdma_cm_event *cm_event;
2168     int ret;
2169
2170     /*
2171      * Only negotiate the capability with destination if the user
2172      * on the source first requested the capability.
2173      */
2174     if (rdma->pin_all) {
2175         DPRINTF("Server pin-all memory requested.\n");
2176         cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2177     }
2178
2179     caps_to_network(&cap);
2180
2181     ret = rdma_connect(rdma->cm_id, &conn_param);
2182     if (ret) {
2183         perror("rdma_connect");
2184         ERROR(errp, "connecting to destination!");
2185         rdma_destroy_id(rdma->cm_id);
2186         rdma->cm_id = NULL;
2187         goto err_rdma_source_connect;
2188     }
2189
2190     ret = rdma_get_cm_event(rdma->channel, &cm_event);
2191     if (ret) {
2192         perror("rdma_get_cm_event after rdma_connect");
2193         ERROR(errp, "connecting to destination!");
2194         rdma_ack_cm_event(cm_event);
2195         rdma_destroy_id(rdma->cm_id);
2196         rdma->cm_id = NULL;
2197         goto err_rdma_source_connect;
2198     }
2199
2200     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2201         perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2202         ERROR(errp, "connecting to destination!");
2203         rdma_ack_cm_event(cm_event);
2204         rdma_destroy_id(rdma->cm_id);
2205         rdma->cm_id = NULL;
2206         goto err_rdma_source_connect;
2207     }
2208
2209     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2210     network_to_caps(&cap);
2211
2212     /*
2213      * Verify that the *requested* capabilities are supported by the destination
2214      * and disable them otherwise.
2215      */
2216     if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2217         ERROR(errp, "Server cannot support pinning all memory. "
2218                         "Will register memory dynamically.");
2219         rdma->pin_all = false;
2220     }
2221
2222     DPRINTF("Pin all memory: %s\n", rdma->pin_all ? "enabled" : "disabled");
2223
2224     rdma_ack_cm_event(cm_event);
2225
2226     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2227     if (ret) {
2228         ERROR(errp, "posting second control recv!");
2229         goto err_rdma_source_connect;
2230     }
2231
2232     rdma->control_ready_expected = 1;
2233     rdma->nb_sent = 0;
2234     return 0;
2235
2236 err_rdma_source_connect:
2237     qemu_rdma_cleanup(rdma);
2238     return -1;
2239 }
2240
2241 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2242 {
2243     int ret = -EINVAL, idx;
2244     int af = rdma->ipv6 ? PF_INET6 : PF_INET;
2245     struct sockaddr_in sin;
2246     struct rdma_cm_id *listen_id;
2247     char ip[40] = "unknown";
2248     struct addrinfo *res;
2249     char port_str[16];
2250
2251     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2252         rdma->wr_data[idx].control_len = 0;
2253         rdma->wr_data[idx].control_curr = NULL;
2254     }
2255
2256     if (rdma->host == NULL) {
2257         ERROR(errp, "RDMA host is not set!");
2258         rdma->error_state = -EINVAL;
2259         return -1;
2260     }
2261     /* create CM channel */
2262     rdma->channel = rdma_create_event_channel();
2263     if (!rdma->channel) {
2264         ERROR(errp, "could not create rdma event channel");
2265         rdma->error_state = -EINVAL;
2266         return -1;
2267     }
2268
2269     /* create CM id */
2270     ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2271     if (ret) {
2272         ERROR(errp, "could not create cm_id!");
2273         goto err_dest_init_create_listen_id;
2274     }
2275
2276     memset(&sin, 0, sizeof(sin));
2277     sin.sin_family = af;
2278     sin.sin_port = htons(rdma->port);
2279     snprintf(port_str, 16, "%d", rdma->port);
2280     port_str[15] = '\0';
2281
2282     if (rdma->host && strcmp("", rdma->host)) {
2283         ret = getaddrinfo(rdma->host, port_str, NULL, &res);
2284         if (ret < 0) {
2285             ERROR(errp, "could not getaddrinfo address %s", rdma->host);
2286             goto err_dest_init_bind_addr;
2287         }
2288
2289
2290         inet_ntop(af, &((struct sockaddr_in *) res->ai_addr)->sin_addr,
2291                                     ip, sizeof ip);
2292     } else {
2293         ERROR(errp, "migration host and port not specified!");
2294         ret = -EINVAL;
2295         goto err_dest_init_bind_addr;
2296     }
2297
2298     DPRINTF("%s => %s\n", rdma->host, ip);
2299
2300     ret = rdma_bind_addr(listen_id, res->ai_addr);
2301     if (ret) {
2302         ERROR(errp, "Error: could not rdma_bind_addr!");
2303         goto err_dest_init_bind_addr;
2304     }
2305
2306     rdma->listen_id = listen_id;
2307     qemu_rdma_dump_gid("dest_init", listen_id);
2308     return 0;
2309
2310 err_dest_init_bind_addr:
2311     rdma_destroy_id(listen_id);
2312 err_dest_init_create_listen_id:
2313     rdma_destroy_event_channel(rdma->channel);
2314     rdma->channel = NULL;
2315     rdma->error_state = ret;
2316     return ret;
2317
2318 }
2319
2320 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2321 {
2322     RDMAContext *rdma = NULL;
2323     InetSocketAddress *addr;
2324
2325     if (host_port) {
2326         rdma = g_malloc0(sizeof(RDMAContext));
2327         memset(rdma, 0, sizeof(RDMAContext));
2328         rdma->current_index = -1;
2329         rdma->current_chunk = -1;
2330
2331         addr = inet_parse(host_port, NULL);
2332         if (addr != NULL) {
2333             rdma->port = atoi(addr->port);
2334             rdma->host = g_strdup(addr->host);
2335             rdma->ipv6 = addr->ipv6;
2336         } else {
2337             ERROR(errp, "bad RDMA migration address '%s'", host_port);
2338             g_free(rdma);
2339             return NULL;
2340         }
2341     }
2342
2343     return rdma;
2344 }
2345
2346 /*
2347  * QEMUFile interface to the control channel.
2348  * SEND messages for control only.
2349  * pc.ram is handled with regular RDMA messages.
2350  */
2351 static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf,
2352                                 int64_t pos, int size)
2353 {
2354     QEMUFileRDMA *r = opaque;
2355     QEMUFile *f = r->file;
2356     RDMAContext *rdma = r->rdma;
2357     size_t remaining = size;
2358     uint8_t * data = (void *) buf;
2359     int ret;
2360
2361     CHECK_ERROR_STATE();
2362
2363     /*
2364      * Push out any writes that
2365      * we're queued up for pc.ram.
2366      */
2367     ret = qemu_rdma_write_flush(f, rdma);
2368     if (ret < 0) {
2369         rdma->error_state = ret;
2370         return ret;
2371     }
2372
2373     while (remaining) {
2374         RDMAControlHeader head;
2375
2376         r->len = MIN(remaining, RDMA_SEND_INCREMENT);
2377         remaining -= r->len;
2378
2379         head.len = r->len;
2380         head.type = RDMA_CONTROL_QEMU_FILE;
2381
2382         ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2383
2384         if (ret < 0) {
2385             rdma->error_state = ret;
2386             return ret;
2387         }
2388
2389         data += r->len;
2390     }
2391
2392     return size;
2393 }
2394
2395 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2396                              int size, int idx)
2397 {
2398     size_t len = 0;
2399
2400     if (rdma->wr_data[idx].control_len) {
2401         DDDPRINTF("RDMA %" PRId64 " of %d bytes already in buffer\n",
2402                     rdma->wr_data[idx].control_len, size);
2403
2404         len = MIN(size, rdma->wr_data[idx].control_len);
2405         memcpy(buf, rdma->wr_data[idx].control_curr, len);
2406         rdma->wr_data[idx].control_curr += len;
2407         rdma->wr_data[idx].control_len -= len;
2408     }
2409
2410     return len;
2411 }
2412
2413 /*
2414  * QEMUFile interface to the control channel.
2415  * RDMA links don't use bytestreams, so we have to
2416  * return bytes to QEMUFile opportunistically.
2417  */
2418 static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf,
2419                                 int64_t pos, int size)
2420 {
2421     QEMUFileRDMA *r = opaque;
2422     RDMAContext *rdma = r->rdma;
2423     RDMAControlHeader head;
2424     int ret = 0;
2425
2426     CHECK_ERROR_STATE();
2427
2428     /*
2429      * First, we hold on to the last SEND message we
2430      * were given and dish out the bytes until we run
2431      * out of bytes.
2432      */
2433     r->len = qemu_rdma_fill(r->rdma, buf, size, 0);
2434     if (r->len) {
2435         return r->len;
2436     }
2437
2438     /*
2439      * Once we run out, we block and wait for another
2440      * SEND message to arrive.
2441      */
2442     ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2443
2444     if (ret < 0) {
2445         rdma->error_state = ret;
2446         return ret;
2447     }
2448
2449     /*
2450      * SEND was received with new bytes, now try again.
2451      */
2452     return qemu_rdma_fill(r->rdma, buf, size, 0);
2453 }
2454
2455 /*
2456  * Block until all the outstanding chunks have been delivered by the hardware.
2457  */
2458 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2459 {
2460     int ret;
2461
2462     if (qemu_rdma_write_flush(f, rdma) < 0) {
2463         return -EIO;
2464     }
2465
2466     while (rdma->nb_sent) {
2467         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE);
2468         if (ret < 0) {
2469             fprintf(stderr, "rdma migration: complete polling error!\n");
2470             return -EIO;
2471         }
2472     }
2473
2474     qemu_rdma_unregister_waiting(rdma);
2475
2476     return 0;
2477 }
2478
2479 static int qemu_rdma_close(void *opaque)
2480 {
2481     DPRINTF("Shutting down connection.\n");
2482     QEMUFileRDMA *r = opaque;
2483     if (r->rdma) {
2484         qemu_rdma_cleanup(r->rdma);
2485         g_free(r->rdma);
2486     }
2487     g_free(r);
2488     return 0;
2489 }
2490
2491 /*
2492  * Parameters:
2493  *    @offset == 0 :
2494  *        This means that 'block_offset' is a full virtual address that does not
2495  *        belong to a RAMBlock of the virtual machine and instead
2496  *        represents a private malloc'd memory area that the caller wishes to
2497  *        transfer.
2498  *
2499  *    @offset != 0 :
2500  *        Offset is an offset to be added to block_offset and used
2501  *        to also lookup the corresponding RAMBlock.
2502  *
2503  *    @size > 0 :
2504  *        Initiate an transfer this size.
2505  *
2506  *    @size == 0 :
2507  *        A 'hint' or 'advice' that means that we wish to speculatively
2508  *        and asynchronously unregister this memory. In this case, there is no
2509  *        guarantee that the unregister will actually happen, for example,
2510  *        if the memory is being actively transmitted. Additionally, the memory
2511  *        may be re-registered at any future time if a write within the same
2512  *        chunk was requested again, even if you attempted to unregister it
2513  *        here.
2514  *
2515  *    @size < 0 : TODO, not yet supported
2516  *        Unregister the memory NOW. This means that the caller does not
2517  *        expect there to be any future RDMA transfers and we just want to clean
2518  *        things up. This is used in case the upper layer owns the memory and
2519  *        cannot wait for qemu_fclose() to occur.
2520  *
2521  *    @bytes_sent : User-specificed pointer to indicate how many bytes were
2522  *                  sent. Usually, this will not be more than a few bytes of
2523  *                  the protocol because most transfers are sent asynchronously.
2524  */
2525 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
2526                                   ram_addr_t block_offset, ram_addr_t offset,
2527                                   size_t size, int *bytes_sent)
2528 {
2529     QEMUFileRDMA *rfile = opaque;
2530     RDMAContext *rdma = rfile->rdma;
2531     int ret;
2532
2533     CHECK_ERROR_STATE();
2534
2535     qemu_fflush(f);
2536
2537     if (size > 0) {
2538         /*
2539          * Add this page to the current 'chunk'. If the chunk
2540          * is full, or the page doen't belong to the current chunk,
2541          * an actual RDMA write will occur and a new chunk will be formed.
2542          */
2543         ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
2544         if (ret < 0) {
2545             fprintf(stderr, "rdma migration: write error! %d\n", ret);
2546             goto err;
2547         }
2548
2549         /*
2550          * We always return 1 bytes because the RDMA
2551          * protocol is completely asynchronous. We do not yet know
2552          * whether an  identified chunk is zero or not because we're
2553          * waiting for other pages to potentially be merged with
2554          * the current chunk. So, we have to call qemu_update_position()
2555          * later on when the actual write occurs.
2556          */
2557         if (bytes_sent) {
2558             *bytes_sent = 1;
2559         }
2560     } else {
2561         uint64_t index, chunk;
2562
2563         /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2564         if (size < 0) {
2565             ret = qemu_rdma_drain_cq(f, rdma);
2566             if (ret < 0) {
2567                 fprintf(stderr, "rdma: failed to synchronously drain"
2568                                 " completion queue before unregistration.\n");
2569                 goto err;
2570             }
2571         }
2572         */
2573
2574         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2575                                          offset, size, &index, &chunk);
2576
2577         if (ret) {
2578             fprintf(stderr, "ram block search failed\n");
2579             goto err;
2580         }
2581
2582         qemu_rdma_signal_unregister(rdma, index, chunk, 0);
2583
2584         /*
2585          * TODO: Synchronous, guaranteed unregistration (should not occur during
2586          * fast-path). Otherwise, unregisters will process on the next call to
2587          * qemu_rdma_drain_cq()
2588         if (size < 0) {
2589             qemu_rdma_unregister_waiting(rdma);
2590         }
2591         */
2592     }
2593
2594     /*
2595      * Drain the Completion Queue if possible, but do not block,
2596      * just poll.
2597      *
2598      * If nothing to poll, the end of the iteration will do this
2599      * again to make sure we don't overflow the request queue.
2600      */
2601     while (1) {
2602         uint64_t wr_id, wr_id_in;
2603         int ret = qemu_rdma_poll(rdma, &wr_id_in);
2604         if (ret < 0) {
2605             fprintf(stderr, "rdma migration: polling error! %d\n", ret);
2606             goto err;
2607         }
2608
2609         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
2610
2611         if (wr_id == RDMA_WRID_NONE) {
2612             break;
2613         }
2614     }
2615
2616     return RAM_SAVE_CONTROL_DELAYED;
2617 err:
2618     rdma->error_state = ret;
2619     return ret;
2620 }
2621
2622 static int qemu_rdma_accept(RDMAContext *rdma)
2623 {
2624     RDMACapabilities cap;
2625     struct rdma_conn_param conn_param = {
2626                                             .responder_resources = 2,
2627                                             .private_data = &cap,
2628                                             .private_data_len = sizeof(cap),
2629                                          };
2630     struct rdma_cm_event *cm_event;
2631     struct ibv_context *verbs;
2632     int ret = -EINVAL;
2633     int idx;
2634
2635     ret = rdma_get_cm_event(rdma->channel, &cm_event);
2636     if (ret) {
2637         goto err_rdma_dest_wait;
2638     }
2639
2640     if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
2641         rdma_ack_cm_event(cm_event);
2642         goto err_rdma_dest_wait;
2643     }
2644
2645     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2646
2647     network_to_caps(&cap);
2648
2649     if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
2650             fprintf(stderr, "Unknown source RDMA version: %d, bailing...\n",
2651                             cap.version);
2652             rdma_ack_cm_event(cm_event);
2653             goto err_rdma_dest_wait;
2654     }
2655
2656     /*
2657      * Respond with only the capabilities this version of QEMU knows about.
2658      */
2659     cap.flags &= known_capabilities;
2660
2661     /*
2662      * Enable the ones that we do know about.
2663      * Add other checks here as new ones are introduced.
2664      */
2665     if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
2666         rdma->pin_all = true;
2667     }
2668
2669     rdma->cm_id = cm_event->id;
2670     verbs = cm_event->id->verbs;
2671
2672     rdma_ack_cm_event(cm_event);
2673
2674     DPRINTF("Memory pin all: %s\n", rdma->pin_all ? "enabled" : "disabled");
2675
2676     caps_to_network(&cap);
2677
2678     DPRINTF("verbs context after listen: %p\n", verbs);
2679
2680     if (!rdma->verbs) {
2681         rdma->verbs = verbs;
2682     } else if (rdma->verbs != verbs) {
2683             fprintf(stderr, "ibv context not matching %p, %p!\n",
2684                     rdma->verbs, verbs);
2685             goto err_rdma_dest_wait;
2686     }
2687
2688     qemu_rdma_dump_id("dest_init", verbs);
2689
2690     ret = qemu_rdma_alloc_pd_cq(rdma);
2691     if (ret) {
2692         fprintf(stderr, "rdma migration: error allocating pd and cq!\n");
2693         goto err_rdma_dest_wait;
2694     }
2695
2696     ret = qemu_rdma_alloc_qp(rdma);
2697     if (ret) {
2698         fprintf(stderr, "rdma migration: error allocating qp!\n");
2699         goto err_rdma_dest_wait;
2700     }
2701
2702     ret = qemu_rdma_init_ram_blocks(rdma);
2703     if (ret) {
2704         fprintf(stderr, "rdma migration: error initializing ram blocks!\n");
2705         goto err_rdma_dest_wait;
2706     }
2707
2708     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2709         ret = qemu_rdma_reg_control(rdma, idx);
2710         if (ret) {
2711             fprintf(stderr, "rdma: error registering %d control!\n", idx);
2712             goto err_rdma_dest_wait;
2713         }
2714     }
2715
2716     qemu_set_fd_handler2(rdma->channel->fd, NULL, NULL, NULL, NULL);
2717
2718     ret = rdma_accept(rdma->cm_id, &conn_param);
2719     if (ret) {
2720         fprintf(stderr, "rdma_accept returns %d!\n", ret);
2721         goto err_rdma_dest_wait;
2722     }
2723
2724     ret = rdma_get_cm_event(rdma->channel, &cm_event);
2725     if (ret) {
2726         fprintf(stderr, "rdma_accept get_cm_event failed %d!\n", ret);
2727         goto err_rdma_dest_wait;
2728     }
2729
2730     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2731         fprintf(stderr, "rdma_accept not event established!\n");
2732         rdma_ack_cm_event(cm_event);
2733         goto err_rdma_dest_wait;
2734     }
2735
2736     rdma_ack_cm_event(cm_event);
2737
2738     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2739     if (ret) {
2740         fprintf(stderr, "rdma migration: error posting second control recv!\n");
2741         goto err_rdma_dest_wait;
2742     }
2743
2744     qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
2745
2746     return 0;
2747
2748 err_rdma_dest_wait:
2749     rdma->error_state = ret;
2750     qemu_rdma_cleanup(rdma);
2751     return ret;
2752 }
2753
2754 /*
2755  * During each iteration of the migration, we listen for instructions
2756  * by the source VM to perform dynamic page registrations before they
2757  * can perform RDMA operations.
2758  *
2759  * We respond with the 'rkey'.
2760  *
2761  * Keep doing this until the source tells us to stop.
2762  */
2763 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque,
2764                                          uint64_t flags)
2765 {
2766     RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
2767                                .type = RDMA_CONTROL_REGISTER_RESULT,
2768                                .repeat = 0,
2769                              };
2770     RDMAControlHeader unreg_resp = { .len = 0,
2771                                .type = RDMA_CONTROL_UNREGISTER_FINISHED,
2772                                .repeat = 0,
2773                              };
2774     RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
2775                                  .repeat = 1 };
2776     QEMUFileRDMA *rfile = opaque;
2777     RDMAContext *rdma = rfile->rdma;
2778     RDMALocalBlocks *local = &rdma->local_ram_blocks;
2779     RDMAControlHeader head;
2780     RDMARegister *reg, *registers;
2781     RDMACompress *comp;
2782     RDMARegisterResult *reg_result;
2783     static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
2784     RDMALocalBlock *block;
2785     void *host_addr;
2786     int ret = 0;
2787     int idx = 0;
2788     int count = 0;
2789     int i = 0;
2790
2791     CHECK_ERROR_STATE();
2792
2793     do {
2794         DDDPRINTF("Waiting for next request %" PRIu64 "...\n", flags);
2795
2796         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
2797
2798         if (ret < 0) {
2799             break;
2800         }
2801
2802         if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
2803             fprintf(stderr, "rdma: Too many requests in this message (%d)."
2804                             "Bailing.\n", head.repeat);
2805             ret = -EIO;
2806             break;
2807         }
2808
2809         switch (head.type) {
2810         case RDMA_CONTROL_COMPRESS:
2811             comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
2812             network_to_compress(comp);
2813
2814             DDPRINTF("Zapping zero chunk: %" PRId64
2815                     " bytes, index %d, offset %" PRId64 "\n",
2816                     comp->length, comp->block_idx, comp->offset);
2817             block = &(rdma->local_ram_blocks.block[comp->block_idx]);
2818
2819             host_addr = block->local_host_addr +
2820                             (comp->offset - block->offset);
2821
2822             ram_handle_compressed(host_addr, comp->value, comp->length);
2823             break;
2824
2825         case RDMA_CONTROL_REGISTER_FINISHED:
2826             DDDPRINTF("Current registrations complete.\n");
2827             goto out;
2828
2829         case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
2830             DPRINTF("Initial setup info requested.\n");
2831
2832             if (rdma->pin_all) {
2833                 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
2834                 if (ret) {
2835                     fprintf(stderr, "rdma migration: error dest "
2836                                     "registering ram blocks!\n");
2837                     goto out;
2838                 }
2839             }
2840
2841             /*
2842              * Dest uses this to prepare to transmit the RAMBlock descriptions
2843              * to the source VM after connection setup.
2844              * Both sides use the "remote" structure to communicate and update
2845              * their "local" descriptions with what was sent.
2846              */
2847             for (i = 0; i < local->nb_blocks; i++) {
2848                 rdma->block[i].remote_host_addr =
2849                     (uint64_t)(local->block[i].local_host_addr);
2850
2851                 if (rdma->pin_all) {
2852                     rdma->block[i].remote_rkey = local->block[i].mr->rkey;
2853                 }
2854
2855                 rdma->block[i].offset = local->block[i].offset;
2856                 rdma->block[i].length = local->block[i].length;
2857
2858                 remote_block_to_network(&rdma->block[i]);
2859             }
2860
2861             blocks.len = rdma->local_ram_blocks.nb_blocks
2862                                                 * sizeof(RDMARemoteBlock);
2863
2864
2865             ret = qemu_rdma_post_send_control(rdma,
2866                                         (uint8_t *) rdma->block, &blocks);
2867
2868             if (ret < 0) {
2869                 fprintf(stderr, "rdma migration: error sending remote info!\n");
2870                 goto out;
2871             }
2872
2873             break;
2874         case RDMA_CONTROL_REGISTER_REQUEST:
2875             DDPRINTF("There are %d registration requests\n", head.repeat);
2876
2877             reg_resp.repeat = head.repeat;
2878             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
2879
2880             for (count = 0; count < head.repeat; count++) {
2881                 uint64_t chunk;
2882                 uint8_t *chunk_start, *chunk_end;
2883
2884                 reg = &registers[count];
2885                 network_to_register(reg);
2886
2887                 reg_result = &results[count];
2888
2889                 DDPRINTF("Registration request (%d): index %d, current_addr %"
2890                          PRIu64 " chunks: %" PRIu64 "\n", count,
2891                          reg->current_index, reg->key.current_addr, reg->chunks);
2892
2893                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
2894                 if (block->is_ram_block) {
2895                     host_addr = (block->local_host_addr +
2896                                 (reg->key.current_addr - block->offset));
2897                     chunk = ram_chunk_index(block->local_host_addr,
2898                                             (uint8_t *) host_addr);
2899                 } else {
2900                     chunk = reg->key.chunk;
2901                     host_addr = block->local_host_addr +
2902                         (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
2903                 }
2904                 chunk_start = ram_chunk_start(block, chunk);
2905                 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
2906                 if (qemu_rdma_register_and_get_keys(rdma, block,
2907                             (uint8_t *)host_addr, NULL, &reg_result->rkey,
2908                             chunk, chunk_start, chunk_end)) {
2909                     fprintf(stderr, "cannot get rkey!\n");
2910                     ret = -EINVAL;
2911                     goto out;
2912                 }
2913
2914                 reg_result->host_addr = (uint64_t) block->local_host_addr;
2915
2916                 DDPRINTF("Registered rkey for this request: %x\n",
2917                                 reg_result->rkey);
2918
2919                 result_to_network(reg_result);
2920             }
2921
2922             ret = qemu_rdma_post_send_control(rdma,
2923                             (uint8_t *) results, &reg_resp);
2924
2925             if (ret < 0) {
2926                 fprintf(stderr, "Failed to send control buffer!\n");
2927                 goto out;
2928             }
2929             break;
2930         case RDMA_CONTROL_UNREGISTER_REQUEST:
2931             DDPRINTF("There are %d unregistration requests\n", head.repeat);
2932             unreg_resp.repeat = head.repeat;
2933             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
2934
2935             for (count = 0; count < head.repeat; count++) {
2936                 reg = &registers[count];
2937                 network_to_register(reg);
2938
2939                 DDPRINTF("Unregistration request (%d): "
2940                          " index %d, chunk %" PRIu64 "\n",
2941                          count, reg->current_index, reg->key.chunk);
2942
2943                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
2944
2945                 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
2946                 block->pmr[reg->key.chunk] = NULL;
2947
2948                 if (ret != 0) {
2949                     perror("rdma unregistration chunk failed");
2950                     ret = -ret;
2951                     goto out;
2952                 }
2953
2954                 rdma->total_registrations--;
2955
2956                 DDPRINTF("Unregistered chunk %" PRIu64 " successfully.\n",
2957                             reg->key.chunk);
2958             }
2959
2960             ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
2961
2962             if (ret < 0) {
2963                 fprintf(stderr, "Failed to send control buffer!\n");
2964                 goto out;
2965             }
2966             break;
2967         case RDMA_CONTROL_REGISTER_RESULT:
2968             fprintf(stderr, "Invalid RESULT message at dest.\n");
2969             ret = -EIO;
2970             goto out;
2971         default:
2972             fprintf(stderr, "Unknown control message %s\n",
2973                                 control_desc[head.type]);
2974             ret = -EIO;
2975             goto out;
2976         }
2977     } while (1);
2978 out:
2979     if (ret < 0) {
2980         rdma->error_state = ret;
2981     }
2982     return ret;
2983 }
2984
2985 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
2986                                         uint64_t flags)
2987 {
2988     QEMUFileRDMA *rfile = opaque;
2989     RDMAContext *rdma = rfile->rdma;
2990
2991     CHECK_ERROR_STATE();
2992
2993     DDDPRINTF("start section: %" PRIu64 "\n", flags);
2994     qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
2995     qemu_fflush(f);
2996
2997     return 0;
2998 }
2999
3000 /*
3001  * Inform dest that dynamic registrations are done for now.
3002  * First, flush writes, if any.
3003  */
3004 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3005                                        uint64_t flags)
3006 {
3007     Error *local_err = NULL, **errp = &local_err;
3008     QEMUFileRDMA *rfile = opaque;
3009     RDMAContext *rdma = rfile->rdma;
3010     RDMAControlHeader head = { .len = 0, .repeat = 1 };
3011     int ret = 0;
3012
3013     CHECK_ERROR_STATE();
3014
3015     qemu_fflush(f);
3016     ret = qemu_rdma_drain_cq(f, rdma);
3017
3018     if (ret < 0) {
3019         goto err;
3020     }
3021
3022     if (flags == RAM_CONTROL_SETUP) {
3023         RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3024         RDMALocalBlocks *local = &rdma->local_ram_blocks;
3025         int reg_result_idx, i, j, nb_remote_blocks;
3026
3027         head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3028         DPRINTF("Sending registration setup for ram blocks...\n");
3029
3030         /*
3031          * Make sure that we parallelize the pinning on both sides.
3032          * For very large guests, doing this serially takes a really
3033          * long time, so we have to 'interleave' the pinning locally
3034          * with the control messages by performing the pinning on this
3035          * side before we receive the control response from the other
3036          * side that the pinning has completed.
3037          */
3038         ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3039                     &reg_result_idx, rdma->pin_all ?
3040                     qemu_rdma_reg_whole_ram_blocks : NULL);
3041         if (ret < 0) {
3042             ERROR(errp, "receiving remote info!");
3043             return ret;
3044         }
3045
3046         qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3047         memcpy(rdma->block,
3048             rdma->wr_data[reg_result_idx].control_curr, resp.len);
3049
3050         nb_remote_blocks = resp.len / sizeof(RDMARemoteBlock);
3051
3052         /*
3053          * The protocol uses two different sets of rkeys (mutually exclusive):
3054          * 1. One key to represent the virtual address of the entire ram block.
3055          *    (dynamic chunk registration disabled - pin everything with one rkey.)
3056          * 2. One to represent individual chunks within a ram block.
3057          *    (dynamic chunk registration enabled - pin individual chunks.)
3058          *
3059          * Once the capability is successfully negotiated, the destination transmits
3060          * the keys to use (or sends them later) including the virtual addresses
3061          * and then propagates the remote ram block descriptions to his local copy.
3062          */
3063
3064         if (local->nb_blocks != nb_remote_blocks) {
3065             ERROR(errp, "ram blocks mismatch #1! "
3066                         "Your QEMU command line parameters are probably "
3067                         "not identical on both the source and destination.");
3068             return -EINVAL;
3069         }
3070
3071         for (i = 0; i < nb_remote_blocks; i++) {
3072             network_to_remote_block(&rdma->block[i]);
3073
3074             /* search local ram blocks */
3075             for (j = 0; j < local->nb_blocks; j++) {
3076                 if (rdma->block[i].offset != local->block[j].offset) {
3077                     continue;
3078                 }
3079
3080                 if (rdma->block[i].length != local->block[j].length) {
3081                     ERROR(errp, "ram blocks mismatch #2! "
3082                         "Your QEMU command line parameters are probably "
3083                         "not identical on both the source and destination.");
3084                     return -EINVAL;
3085                 }
3086                 local->block[j].remote_host_addr =
3087                         rdma->block[i].remote_host_addr;
3088                 local->block[j].remote_rkey = rdma->block[i].remote_rkey;
3089                 break;
3090             }
3091
3092             if (j >= local->nb_blocks) {
3093                 ERROR(errp, "ram blocks mismatch #3! "
3094                         "Your QEMU command line parameters are probably "
3095                         "not identical on both the source and destination.");
3096                 return -EINVAL;
3097             }
3098         }
3099     }
3100
3101     DDDPRINTF("Sending registration finish %" PRIu64 "...\n", flags);
3102
3103     head.type = RDMA_CONTROL_REGISTER_FINISHED;
3104     ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3105
3106     if (ret < 0) {
3107         goto err;
3108     }
3109
3110     return 0;
3111 err:
3112     rdma->error_state = ret;
3113     return ret;
3114 }
3115
3116 static int qemu_rdma_get_fd(void *opaque)
3117 {
3118     QEMUFileRDMA *rfile = opaque;
3119     RDMAContext *rdma = rfile->rdma;
3120
3121     return rdma->comp_channel->fd;
3122 }
3123
3124 const QEMUFileOps rdma_read_ops = {
3125     .get_buffer    = qemu_rdma_get_buffer,
3126     .get_fd        = qemu_rdma_get_fd,
3127     .close         = qemu_rdma_close,
3128     .hook_ram_load = qemu_rdma_registration_handle,
3129 };
3130
3131 const QEMUFileOps rdma_write_ops = {
3132     .put_buffer         = qemu_rdma_put_buffer,
3133     .close              = qemu_rdma_close,
3134     .before_ram_iterate = qemu_rdma_registration_start,
3135     .after_ram_iterate  = qemu_rdma_registration_stop,
3136     .save_page          = qemu_rdma_save_page,
3137 };
3138
3139 static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3140 {
3141     QEMUFileRDMA *r = g_malloc0(sizeof(QEMUFileRDMA));
3142
3143     if (qemu_file_mode_is_not_valid(mode)) {
3144         return NULL;
3145     }
3146
3147     r->rdma = rdma;
3148
3149     if (mode[0] == 'w') {
3150         r->file = qemu_fopen_ops(r, &rdma_write_ops);
3151     } else {
3152         r->file = qemu_fopen_ops(r, &rdma_read_ops);
3153     }
3154
3155     return r->file;
3156 }
3157
3158 static void rdma_accept_incoming_migration(void *opaque)
3159 {
3160     RDMAContext *rdma = opaque;
3161     int ret;
3162     QEMUFile *f;
3163     Error *local_err = NULL, **errp = &local_err;
3164
3165     DPRINTF("Accepting rdma connection...\n");
3166     ret = qemu_rdma_accept(rdma);
3167
3168     if (ret) {
3169         ERROR(errp, "RDMA Migration initialization failed!");
3170         return;
3171     }
3172
3173     DPRINTF("Accepted migration\n");
3174
3175     f = qemu_fopen_rdma(rdma, "rb");
3176     if (f == NULL) {
3177         ERROR(errp, "could not qemu_fopen_rdma!");
3178         qemu_rdma_cleanup(rdma);
3179         return;
3180     }
3181
3182     rdma->migration_started_on_destination = 1;
3183     process_incoming_migration(f);
3184 }
3185
3186 void rdma_start_incoming_migration(const char *host_port, Error **errp)
3187 {
3188     int ret;
3189     RDMAContext *rdma;
3190     Error *local_err = NULL;
3191
3192     DPRINTF("Starting RDMA-based incoming migration\n");
3193     rdma = qemu_rdma_data_init(host_port, &local_err);
3194
3195     if (rdma == NULL) {
3196         goto err;
3197     }
3198
3199     ret = qemu_rdma_dest_init(rdma, &local_err);
3200
3201     if (ret) {
3202         goto err;
3203     }
3204
3205     DPRINTF("qemu_rdma_dest_init success\n");
3206
3207     ret = rdma_listen(rdma->listen_id, 5);
3208
3209     if (ret) {
3210         ERROR(errp, "listening on socket!");
3211         goto err;
3212     }
3213
3214     DPRINTF("rdma_listen success\n");
3215
3216     qemu_set_fd_handler2(rdma->channel->fd, NULL,
3217                          rdma_accept_incoming_migration, NULL,
3218                             (void *)(intptr_t) rdma);
3219     return;
3220 err:
3221     error_propagate(errp, local_err);
3222     g_free(rdma);
3223 }
3224
3225 void rdma_start_outgoing_migration(void *opaque,
3226                             const char *host_port, Error **errp)
3227 {
3228     MigrationState *s = opaque;
3229     Error *local_err = NULL, **temp = &local_err;
3230     RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err);
3231     int ret = 0;
3232
3233     if (rdma == NULL) {
3234         ERROR(temp, "Failed to initialize RDMA data structures! %d", ret);
3235         goto err;
3236     }
3237
3238     ret = qemu_rdma_source_init(rdma, &local_err,
3239         s->enabled_capabilities[MIGRATION_CAPABILITY_X_RDMA_PIN_ALL]);
3240
3241     if (ret) {
3242         goto err;
3243     }
3244
3245     DPRINTF("qemu_rdma_source_init success\n");
3246     ret = qemu_rdma_connect(rdma, &local_err);
3247
3248     if (ret) {
3249         goto err;
3250     }
3251
3252     DPRINTF("qemu_rdma_source_connect success\n");
3253
3254     s->file = qemu_fopen_rdma(rdma, "wb");
3255     migrate_fd_connect(s);
3256     return;
3257 err:
3258     error_propagate(errp, local_err);
3259     g_free(rdma);
3260     migrate_fd_error(s);
3261 }