]> rtime.felk.cvut.cz Git - lisovros/qemu_apohw.git/blob - memory.c
memory: introduce memory_region_set_enabled()
[lisovros/qemu_apohw.git] / memory.c
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13
14 #include "memory.h"
15 #include "exec-memory.h"
16 #include "ioport.h"
17 #include "bitops.h"
18 #include "kvm.h"
19 #include <assert.h>
20
21 unsigned memory_region_transaction_depth = 0;
22
23 typedef struct AddrRange AddrRange;
24
25 /*
26  * Note using signed integers limits us to physical addresses at most
27  * 63 bits wide.  They are needed for negative offsetting in aliases
28  * (large MemoryRegion::alias_offset).
29  */
30 struct AddrRange {
31     Int128 start;
32     Int128 size;
33 };
34
35 static AddrRange addrrange_make(Int128 start, Int128 size)
36 {
37     return (AddrRange) { start, size };
38 }
39
40 static bool addrrange_equal(AddrRange r1, AddrRange r2)
41 {
42     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
43 }
44
45 static Int128 addrrange_end(AddrRange r)
46 {
47     return int128_add(r.start, r.size);
48 }
49
50 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
51 {
52     int128_addto(&range.start, delta);
53     return range;
54 }
55
56 static bool addrrange_contains(AddrRange range, Int128 addr)
57 {
58     return int128_ge(addr, range.start)
59         && int128_lt(addr, addrrange_end(range));
60 }
61
62 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
63 {
64     return addrrange_contains(r1, r2.start)
65         || addrrange_contains(r2, r1.start);
66 }
67
68 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
69 {
70     Int128 start = int128_max(r1.start, r2.start);
71     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
72     return addrrange_make(start, int128_sub(end, start));
73 }
74
75 struct CoalescedMemoryRange {
76     AddrRange addr;
77     QTAILQ_ENTRY(CoalescedMemoryRange) link;
78 };
79
80 struct MemoryRegionIoeventfd {
81     AddrRange addr;
82     bool match_data;
83     uint64_t data;
84     int fd;
85 };
86
87 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
88                                            MemoryRegionIoeventfd b)
89 {
90     if (int128_lt(a.addr.start, b.addr.start)) {
91         return true;
92     } else if (int128_gt(a.addr.start, b.addr.start)) {
93         return false;
94     } else if (int128_lt(a.addr.size, b.addr.size)) {
95         return true;
96     } else if (int128_gt(a.addr.size, b.addr.size)) {
97         return false;
98     } else if (a.match_data < b.match_data) {
99         return true;
100     } else  if (a.match_data > b.match_data) {
101         return false;
102     } else if (a.match_data) {
103         if (a.data < b.data) {
104             return true;
105         } else if (a.data > b.data) {
106             return false;
107         }
108     }
109     if (a.fd < b.fd) {
110         return true;
111     } else if (a.fd > b.fd) {
112         return false;
113     }
114     return false;
115 }
116
117 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
118                                           MemoryRegionIoeventfd b)
119 {
120     return !memory_region_ioeventfd_before(a, b)
121         && !memory_region_ioeventfd_before(b, a);
122 }
123
124 typedef struct FlatRange FlatRange;
125 typedef struct FlatView FlatView;
126
127 /* Range of memory in the global map.  Addresses are absolute. */
128 struct FlatRange {
129     MemoryRegion *mr;
130     target_phys_addr_t offset_in_region;
131     AddrRange addr;
132     uint8_t dirty_log_mask;
133     bool readable;
134     bool readonly;
135 };
136
137 /* Flattened global view of current active memory hierarchy.  Kept in sorted
138  * order.
139  */
140 struct FlatView {
141     FlatRange *ranges;
142     unsigned nr;
143     unsigned nr_allocated;
144 };
145
146 typedef struct AddressSpace AddressSpace;
147 typedef struct AddressSpaceOps AddressSpaceOps;
148
149 /* A system address space - I/O, memory, etc. */
150 struct AddressSpace {
151     const AddressSpaceOps *ops;
152     MemoryRegion *root;
153     FlatView current_map;
154     int ioeventfd_nb;
155     MemoryRegionIoeventfd *ioeventfds;
156 };
157
158 struct AddressSpaceOps {
159     void (*range_add)(AddressSpace *as, FlatRange *fr);
160     void (*range_del)(AddressSpace *as, FlatRange *fr);
161     void (*log_start)(AddressSpace *as, FlatRange *fr);
162     void (*log_stop)(AddressSpace *as, FlatRange *fr);
163     void (*ioeventfd_add)(AddressSpace *as, MemoryRegionIoeventfd *fd);
164     void (*ioeventfd_del)(AddressSpace *as, MemoryRegionIoeventfd *fd);
165 };
166
167 #define FOR_EACH_FLAT_RANGE(var, view)          \
168     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
169
170 static bool flatrange_equal(FlatRange *a, FlatRange *b)
171 {
172     return a->mr == b->mr
173         && addrrange_equal(a->addr, b->addr)
174         && a->offset_in_region == b->offset_in_region
175         && a->readable == b->readable
176         && a->readonly == b->readonly;
177 }
178
179 static void flatview_init(FlatView *view)
180 {
181     view->ranges = NULL;
182     view->nr = 0;
183     view->nr_allocated = 0;
184 }
185
186 /* Insert a range into a given position.  Caller is responsible for maintaining
187  * sorting order.
188  */
189 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
190 {
191     if (view->nr == view->nr_allocated) {
192         view->nr_allocated = MAX(2 * view->nr, 10);
193         view->ranges = g_realloc(view->ranges,
194                                     view->nr_allocated * sizeof(*view->ranges));
195     }
196     memmove(view->ranges + pos + 1, view->ranges + pos,
197             (view->nr - pos) * sizeof(FlatRange));
198     view->ranges[pos] = *range;
199     ++view->nr;
200 }
201
202 static void flatview_destroy(FlatView *view)
203 {
204     g_free(view->ranges);
205 }
206
207 static bool can_merge(FlatRange *r1, FlatRange *r2)
208 {
209     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
210         && r1->mr == r2->mr
211         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
212                                 r1->addr.size),
213                      int128_make64(r2->offset_in_region))
214         && r1->dirty_log_mask == r2->dirty_log_mask
215         && r1->readable == r2->readable
216         && r1->readonly == r2->readonly;
217 }
218
219 /* Attempt to simplify a view by merging ajacent ranges */
220 static void flatview_simplify(FlatView *view)
221 {
222     unsigned i, j;
223
224     i = 0;
225     while (i < view->nr) {
226         j = i + 1;
227         while (j < view->nr
228                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
229             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
230             ++j;
231         }
232         ++i;
233         memmove(&view->ranges[i], &view->ranges[j],
234                 (view->nr - j) * sizeof(view->ranges[j]));
235         view->nr -= j - i;
236     }
237 }
238
239 static void memory_region_read_accessor(void *opaque,
240                                         target_phys_addr_t addr,
241                                         uint64_t *value,
242                                         unsigned size,
243                                         unsigned shift,
244                                         uint64_t mask)
245 {
246     MemoryRegion *mr = opaque;
247     uint64_t tmp;
248
249     tmp = mr->ops->read(mr->opaque, addr, size);
250     *value |= (tmp & mask) << shift;
251 }
252
253 static void memory_region_write_accessor(void *opaque,
254                                          target_phys_addr_t addr,
255                                          uint64_t *value,
256                                          unsigned size,
257                                          unsigned shift,
258                                          uint64_t mask)
259 {
260     MemoryRegion *mr = opaque;
261     uint64_t tmp;
262
263     tmp = (*value >> shift) & mask;
264     mr->ops->write(mr->opaque, addr, tmp, size);
265 }
266
267 static void access_with_adjusted_size(target_phys_addr_t addr,
268                                       uint64_t *value,
269                                       unsigned size,
270                                       unsigned access_size_min,
271                                       unsigned access_size_max,
272                                       void (*access)(void *opaque,
273                                                      target_phys_addr_t addr,
274                                                      uint64_t *value,
275                                                      unsigned size,
276                                                      unsigned shift,
277                                                      uint64_t mask),
278                                       void *opaque)
279 {
280     uint64_t access_mask;
281     unsigned access_size;
282     unsigned i;
283
284     if (!access_size_min) {
285         access_size_min = 1;
286     }
287     if (!access_size_max) {
288         access_size_max = 4;
289     }
290     access_size = MAX(MIN(size, access_size_max), access_size_min);
291     access_mask = -1ULL >> (64 - access_size * 8);
292     for (i = 0; i < size; i += access_size) {
293         /* FIXME: big-endian support */
294         access(opaque, addr + i, value, access_size, i * 8, access_mask);
295     }
296 }
297
298 static void memory_region_prepare_ram_addr(MemoryRegion *mr);
299
300 static void as_memory_range_add(AddressSpace *as, FlatRange *fr)
301 {
302     ram_addr_t phys_offset, region_offset;
303
304     memory_region_prepare_ram_addr(fr->mr);
305
306     phys_offset = fr->mr->ram_addr;
307     region_offset = fr->offset_in_region;
308     /* cpu_register_physical_memory_log() wants region_offset for
309      * mmio, but prefers offseting phys_offset for RAM.  Humour it.
310      */
311     if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
312         phys_offset += region_offset;
313         region_offset = 0;
314     }
315
316     if (!fr->readable) {
317         phys_offset &= ~TARGET_PAGE_MASK & ~IO_MEM_ROMD;
318     }
319
320     if (fr->readonly) {
321         phys_offset |= IO_MEM_ROM;
322     }
323
324     cpu_register_physical_memory_log(int128_get64(fr->addr.start),
325                                      int128_get64(fr->addr.size),
326                                      phys_offset,
327                                      region_offset,
328                                      fr->dirty_log_mask);
329 }
330
331 static void as_memory_range_del(AddressSpace *as, FlatRange *fr)
332 {
333     if (fr->dirty_log_mask) {
334         Int128 end = addrrange_end(fr->addr);
335         cpu_physical_sync_dirty_bitmap(int128_get64(fr->addr.start),
336                                        int128_get64(end));
337     }
338     cpu_register_physical_memory(int128_get64(fr->addr.start),
339                                  int128_get64(fr->addr.size),
340                                  IO_MEM_UNASSIGNED);
341 }
342
343 static void as_memory_log_start(AddressSpace *as, FlatRange *fr)
344 {
345     cpu_physical_log_start(int128_get64(fr->addr.start),
346                            int128_get64(fr->addr.size));
347 }
348
349 static void as_memory_log_stop(AddressSpace *as, FlatRange *fr)
350 {
351     cpu_physical_log_stop(int128_get64(fr->addr.start),
352                           int128_get64(fr->addr.size));
353 }
354
355 static void as_memory_ioeventfd_add(AddressSpace *as, MemoryRegionIoeventfd *fd)
356 {
357     int r;
358
359     assert(fd->match_data && int128_get64(fd->addr.size) == 4);
360
361     r = kvm_set_ioeventfd_mmio_long(fd->fd, int128_get64(fd->addr.start),
362                                     fd->data, true);
363     if (r < 0) {
364         abort();
365     }
366 }
367
368 static void as_memory_ioeventfd_del(AddressSpace *as, MemoryRegionIoeventfd *fd)
369 {
370     int r;
371
372     r = kvm_set_ioeventfd_mmio_long(fd->fd, int128_get64(fd->addr.start),
373                                     fd->data, false);
374     if (r < 0) {
375         abort();
376     }
377 }
378
379 static const AddressSpaceOps address_space_ops_memory = {
380     .range_add = as_memory_range_add,
381     .range_del = as_memory_range_del,
382     .log_start = as_memory_log_start,
383     .log_stop = as_memory_log_stop,
384     .ioeventfd_add = as_memory_ioeventfd_add,
385     .ioeventfd_del = as_memory_ioeventfd_del,
386 };
387
388 static AddressSpace address_space_memory = {
389     .ops = &address_space_ops_memory,
390 };
391
392 static const MemoryRegionPortio *find_portio(MemoryRegion *mr, uint64_t offset,
393                                              unsigned width, bool write)
394 {
395     const MemoryRegionPortio *mrp;
396
397     for (mrp = mr->ops->old_portio; mrp->size; ++mrp) {
398         if (offset >= mrp->offset && offset < mrp->offset + mrp->len
399             && width == mrp->size
400             && (write ? (bool)mrp->write : (bool)mrp->read)) {
401             return mrp;
402         }
403     }
404     return NULL;
405 }
406
407 static void memory_region_iorange_read(IORange *iorange,
408                                        uint64_t offset,
409                                        unsigned width,
410                                        uint64_t *data)
411 {
412     MemoryRegion *mr = container_of(iorange, MemoryRegion, iorange);
413
414     if (mr->ops->old_portio) {
415         const MemoryRegionPortio *mrp = find_portio(mr, offset, width, false);
416
417         *data = ((uint64_t)1 << (width * 8)) - 1;
418         if (mrp) {
419             *data = mrp->read(mr->opaque, offset + mr->offset);
420         } else if (width == 2) {
421             mrp = find_portio(mr, offset, 1, false);
422             assert(mrp);
423             *data = mrp->read(mr->opaque, offset + mr->offset) |
424                     (mrp->read(mr->opaque, offset + mr->offset + 1) << 8);
425         }
426         return;
427     }
428     *data = 0;
429     access_with_adjusted_size(offset + mr->offset, data, width,
430                               mr->ops->impl.min_access_size,
431                               mr->ops->impl.max_access_size,
432                               memory_region_read_accessor, mr);
433 }
434
435 static void memory_region_iorange_write(IORange *iorange,
436                                         uint64_t offset,
437                                         unsigned width,
438                                         uint64_t data)
439 {
440     MemoryRegion *mr = container_of(iorange, MemoryRegion, iorange);
441
442     if (mr->ops->old_portio) {
443         const MemoryRegionPortio *mrp = find_portio(mr, offset, width, true);
444
445         if (mrp) {
446             mrp->write(mr->opaque, offset + mr->offset, data);
447         } else if (width == 2) {
448             mrp = find_portio(mr, offset, 1, false);
449             assert(mrp);
450             mrp->write(mr->opaque, offset + mr->offset, data & 0xff);
451             mrp->write(mr->opaque, offset + mr->offset + 1, data >> 8);
452         }
453         return;
454     }
455     access_with_adjusted_size(offset + mr->offset, &data, width,
456                               mr->ops->impl.min_access_size,
457                               mr->ops->impl.max_access_size,
458                               memory_region_write_accessor, mr);
459 }
460
461 static const IORangeOps memory_region_iorange_ops = {
462     .read = memory_region_iorange_read,
463     .write = memory_region_iorange_write,
464 };
465
466 static void as_io_range_add(AddressSpace *as, FlatRange *fr)
467 {
468     iorange_init(&fr->mr->iorange, &memory_region_iorange_ops,
469                  int128_get64(fr->addr.start), int128_get64(fr->addr.size));
470     ioport_register(&fr->mr->iorange);
471 }
472
473 static void as_io_range_del(AddressSpace *as, FlatRange *fr)
474 {
475     isa_unassign_ioport(int128_get64(fr->addr.start),
476                         int128_get64(fr->addr.size));
477 }
478
479 static void as_io_ioeventfd_add(AddressSpace *as, MemoryRegionIoeventfd *fd)
480 {
481     int r;
482
483     assert(fd->match_data && int128_get64(fd->addr.size) == 2);
484
485     r = kvm_set_ioeventfd_pio_word(fd->fd, int128_get64(fd->addr.start),
486                                    fd->data, true);
487     if (r < 0) {
488         abort();
489     }
490 }
491
492 static void as_io_ioeventfd_del(AddressSpace *as, MemoryRegionIoeventfd *fd)
493 {
494     int r;
495
496     r = kvm_set_ioeventfd_pio_word(fd->fd, int128_get64(fd->addr.start),
497                                    fd->data, false);
498     if (r < 0) {
499         abort();
500     }
501 }
502
503 static const AddressSpaceOps address_space_ops_io = {
504     .range_add = as_io_range_add,
505     .range_del = as_io_range_del,
506     .ioeventfd_add = as_io_ioeventfd_add,
507     .ioeventfd_del = as_io_ioeventfd_del,
508 };
509
510 static AddressSpace address_space_io = {
511     .ops = &address_space_ops_io,
512 };
513
514 /* Render a memory region into the global view.  Ranges in @view obscure
515  * ranges in @mr.
516  */
517 static void render_memory_region(FlatView *view,
518                                  MemoryRegion *mr,
519                                  Int128 base,
520                                  AddrRange clip,
521                                  bool readonly)
522 {
523     MemoryRegion *subregion;
524     unsigned i;
525     target_phys_addr_t offset_in_region;
526     Int128 remain;
527     Int128 now;
528     FlatRange fr;
529     AddrRange tmp;
530
531     if (!mr->enabled) {
532         return;
533     }
534
535     int128_addto(&base, int128_make64(mr->addr));
536     readonly |= mr->readonly;
537
538     tmp = addrrange_make(base, mr->size);
539
540     if (!addrrange_intersects(tmp, clip)) {
541         return;
542     }
543
544     clip = addrrange_intersection(tmp, clip);
545
546     if (mr->alias) {
547         int128_subfrom(&base, int128_make64(mr->alias->addr));
548         int128_subfrom(&base, int128_make64(mr->alias_offset));
549         render_memory_region(view, mr->alias, base, clip, readonly);
550         return;
551     }
552
553     /* Render subregions in priority order. */
554     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
555         render_memory_region(view, subregion, base, clip, readonly);
556     }
557
558     if (!mr->terminates) {
559         return;
560     }
561
562     offset_in_region = int128_get64(int128_sub(clip.start, base));
563     base = clip.start;
564     remain = clip.size;
565
566     /* Render the region itself into any gaps left by the current view. */
567     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
568         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
569             continue;
570         }
571         if (int128_lt(base, view->ranges[i].addr.start)) {
572             now = int128_min(remain,
573                              int128_sub(view->ranges[i].addr.start, base));
574             fr.mr = mr;
575             fr.offset_in_region = offset_in_region;
576             fr.addr = addrrange_make(base, now);
577             fr.dirty_log_mask = mr->dirty_log_mask;
578             fr.readable = mr->readable;
579             fr.readonly = readonly;
580             flatview_insert(view, i, &fr);
581             ++i;
582             int128_addto(&base, now);
583             offset_in_region += int128_get64(now);
584             int128_subfrom(&remain, now);
585         }
586         if (int128_eq(base, view->ranges[i].addr.start)) {
587             now = int128_min(remain, view->ranges[i].addr.size);
588             int128_addto(&base, now);
589             offset_in_region += int128_get64(now);
590             int128_subfrom(&remain, now);
591         }
592     }
593     if (int128_nz(remain)) {
594         fr.mr = mr;
595         fr.offset_in_region = offset_in_region;
596         fr.addr = addrrange_make(base, remain);
597         fr.dirty_log_mask = mr->dirty_log_mask;
598         fr.readable = mr->readable;
599         fr.readonly = readonly;
600         flatview_insert(view, i, &fr);
601     }
602 }
603
604 /* Render a memory topology into a list of disjoint absolute ranges. */
605 static FlatView generate_memory_topology(MemoryRegion *mr)
606 {
607     FlatView view;
608
609     flatview_init(&view);
610
611     render_memory_region(&view, mr, int128_zero(),
612                          addrrange_make(int128_zero(), int128_2_64()), false);
613     flatview_simplify(&view);
614
615     return view;
616 }
617
618 static void address_space_add_del_ioeventfds(AddressSpace *as,
619                                              MemoryRegionIoeventfd *fds_new,
620                                              unsigned fds_new_nb,
621                                              MemoryRegionIoeventfd *fds_old,
622                                              unsigned fds_old_nb)
623 {
624     unsigned iold, inew;
625
626     /* Generate a symmetric difference of the old and new fd sets, adding
627      * and deleting as necessary.
628      */
629
630     iold = inew = 0;
631     while (iold < fds_old_nb || inew < fds_new_nb) {
632         if (iold < fds_old_nb
633             && (inew == fds_new_nb
634                 || memory_region_ioeventfd_before(fds_old[iold],
635                                                   fds_new[inew]))) {
636             as->ops->ioeventfd_del(as, &fds_old[iold]);
637             ++iold;
638         } else if (inew < fds_new_nb
639                    && (iold == fds_old_nb
640                        || memory_region_ioeventfd_before(fds_new[inew],
641                                                          fds_old[iold]))) {
642             as->ops->ioeventfd_add(as, &fds_new[inew]);
643             ++inew;
644         } else {
645             ++iold;
646             ++inew;
647         }
648     }
649 }
650
651 static void address_space_update_ioeventfds(AddressSpace *as)
652 {
653     FlatRange *fr;
654     unsigned ioeventfd_nb = 0;
655     MemoryRegionIoeventfd *ioeventfds = NULL;
656     AddrRange tmp;
657     unsigned i;
658
659     FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
660         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
661             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
662                                   int128_sub(fr->addr.start,
663                                              int128_make64(fr->offset_in_region)));
664             if (addrrange_intersects(fr->addr, tmp)) {
665                 ++ioeventfd_nb;
666                 ioeventfds = g_realloc(ioeventfds,
667                                           ioeventfd_nb * sizeof(*ioeventfds));
668                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
669                 ioeventfds[ioeventfd_nb-1].addr = tmp;
670             }
671         }
672     }
673
674     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
675                                      as->ioeventfds, as->ioeventfd_nb);
676
677     g_free(as->ioeventfds);
678     as->ioeventfds = ioeventfds;
679     as->ioeventfd_nb = ioeventfd_nb;
680 }
681
682 static void address_space_update_topology_pass(AddressSpace *as,
683                                                FlatView old_view,
684                                                FlatView new_view,
685                                                bool adding)
686 {
687     unsigned iold, inew;
688     FlatRange *frold, *frnew;
689
690     /* Generate a symmetric difference of the old and new memory maps.
691      * Kill ranges in the old map, and instantiate ranges in the new map.
692      */
693     iold = inew = 0;
694     while (iold < old_view.nr || inew < new_view.nr) {
695         if (iold < old_view.nr) {
696             frold = &old_view.ranges[iold];
697         } else {
698             frold = NULL;
699         }
700         if (inew < new_view.nr) {
701             frnew = &new_view.ranges[inew];
702         } else {
703             frnew = NULL;
704         }
705
706         if (frold
707             && (!frnew
708                 || int128_lt(frold->addr.start, frnew->addr.start)
709                 || (int128_eq(frold->addr.start, frnew->addr.start)
710                     && !flatrange_equal(frold, frnew)))) {
711             /* In old, but (not in new, or in new but attributes changed). */
712
713             if (!adding) {
714                 as->ops->range_del(as, frold);
715             }
716
717             ++iold;
718         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
719             /* In both (logging may have changed) */
720
721             if (adding) {
722                 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
723                     as->ops->log_stop(as, frnew);
724                 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
725                     as->ops->log_start(as, frnew);
726                 }
727             }
728
729             ++iold;
730             ++inew;
731         } else {
732             /* In new */
733
734             if (adding) {
735                 as->ops->range_add(as, frnew);
736             }
737
738             ++inew;
739         }
740     }
741 }
742
743
744 static void address_space_update_topology(AddressSpace *as)
745 {
746     FlatView old_view = as->current_map;
747     FlatView new_view = generate_memory_topology(as->root);
748
749     address_space_update_topology_pass(as, old_view, new_view, false);
750     address_space_update_topology_pass(as, old_view, new_view, true);
751
752     as->current_map = new_view;
753     flatview_destroy(&old_view);
754     address_space_update_ioeventfds(as);
755 }
756
757 static void memory_region_update_topology(MemoryRegion *mr)
758 {
759     if (memory_region_transaction_depth) {
760         return;
761     }
762
763     if (mr && !mr->enabled) {
764         return;
765     }
766
767     if (address_space_memory.root) {
768         address_space_update_topology(&address_space_memory);
769     }
770     if (address_space_io.root) {
771         address_space_update_topology(&address_space_io);
772     }
773 }
774
775 void memory_region_transaction_begin(void)
776 {
777     ++memory_region_transaction_depth;
778 }
779
780 void memory_region_transaction_commit(void)
781 {
782     assert(memory_region_transaction_depth);
783     --memory_region_transaction_depth;
784     memory_region_update_topology(NULL);
785 }
786
787 static void memory_region_destructor_none(MemoryRegion *mr)
788 {
789 }
790
791 static void memory_region_destructor_ram(MemoryRegion *mr)
792 {
793     qemu_ram_free(mr->ram_addr);
794 }
795
796 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
797 {
798     qemu_ram_free_from_ptr(mr->ram_addr);
799 }
800
801 static void memory_region_destructor_iomem(MemoryRegion *mr)
802 {
803     cpu_unregister_io_memory(mr->ram_addr);
804 }
805
806 static void memory_region_destructor_rom_device(MemoryRegion *mr)
807 {
808     qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
809     cpu_unregister_io_memory(mr->ram_addr & ~(TARGET_PAGE_MASK | IO_MEM_ROMD));
810 }
811
812 void memory_region_init(MemoryRegion *mr,
813                         const char *name,
814                         uint64_t size)
815 {
816     mr->ops = NULL;
817     mr->parent = NULL;
818     mr->size = int128_make64(size);
819     if (size == UINT64_MAX) {
820         mr->size = int128_2_64();
821     }
822     mr->addr = 0;
823     mr->offset = 0;
824     mr->enabled = true;
825     mr->terminates = false;
826     mr->readable = true;
827     mr->readonly = false;
828     mr->destructor = memory_region_destructor_none;
829     mr->priority = 0;
830     mr->may_overlap = false;
831     mr->alias = NULL;
832     QTAILQ_INIT(&mr->subregions);
833     memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
834     QTAILQ_INIT(&mr->coalesced);
835     mr->name = g_strdup(name);
836     mr->dirty_log_mask = 0;
837     mr->ioeventfd_nb = 0;
838     mr->ioeventfds = NULL;
839 }
840
841 static bool memory_region_access_valid(MemoryRegion *mr,
842                                        target_phys_addr_t addr,
843                                        unsigned size,
844                                        bool is_write)
845 {
846     if (mr->ops->valid.accepts
847         && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write)) {
848         return false;
849     }
850
851     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
852         return false;
853     }
854
855     /* Treat zero as compatibility all valid */
856     if (!mr->ops->valid.max_access_size) {
857         return true;
858     }
859
860     if (size > mr->ops->valid.max_access_size
861         || size < mr->ops->valid.min_access_size) {
862         return false;
863     }
864     return true;
865 }
866
867 static uint32_t memory_region_read_thunk_n(void *_mr,
868                                            target_phys_addr_t addr,
869                                            unsigned size)
870 {
871     MemoryRegion *mr = _mr;
872     uint64_t data = 0;
873
874     if (!memory_region_access_valid(mr, addr, size, false)) {
875         return -1U; /* FIXME: better signalling */
876     }
877
878     if (!mr->ops->read) {
879         return mr->ops->old_mmio.read[bitops_ffsl(size)](mr->opaque, addr);
880     }
881
882     /* FIXME: support unaligned access */
883     access_with_adjusted_size(addr + mr->offset, &data, size,
884                               mr->ops->impl.min_access_size,
885                               mr->ops->impl.max_access_size,
886                               memory_region_read_accessor, mr);
887
888     return data;
889 }
890
891 static void memory_region_write_thunk_n(void *_mr,
892                                         target_phys_addr_t addr,
893                                         unsigned size,
894                                         uint64_t data)
895 {
896     MemoryRegion *mr = _mr;
897
898     if (!memory_region_access_valid(mr, addr, size, true)) {
899         return; /* FIXME: better signalling */
900     }
901
902     if (!mr->ops->write) {
903         mr->ops->old_mmio.write[bitops_ffsl(size)](mr->opaque, addr, data);
904         return;
905     }
906
907     /* FIXME: support unaligned access */
908     access_with_adjusted_size(addr + mr->offset, &data, size,
909                               mr->ops->impl.min_access_size,
910                               mr->ops->impl.max_access_size,
911                               memory_region_write_accessor, mr);
912 }
913
914 static uint32_t memory_region_read_thunk_b(void *mr, target_phys_addr_t addr)
915 {
916     return memory_region_read_thunk_n(mr, addr, 1);
917 }
918
919 static uint32_t memory_region_read_thunk_w(void *mr, target_phys_addr_t addr)
920 {
921     return memory_region_read_thunk_n(mr, addr, 2);
922 }
923
924 static uint32_t memory_region_read_thunk_l(void *mr, target_phys_addr_t addr)
925 {
926     return memory_region_read_thunk_n(mr, addr, 4);
927 }
928
929 static void memory_region_write_thunk_b(void *mr, target_phys_addr_t addr,
930                                         uint32_t data)
931 {
932     memory_region_write_thunk_n(mr, addr, 1, data);
933 }
934
935 static void memory_region_write_thunk_w(void *mr, target_phys_addr_t addr,
936                                         uint32_t data)
937 {
938     memory_region_write_thunk_n(mr, addr, 2, data);
939 }
940
941 static void memory_region_write_thunk_l(void *mr, target_phys_addr_t addr,
942                                         uint32_t data)
943 {
944     memory_region_write_thunk_n(mr, addr, 4, data);
945 }
946
947 static CPUReadMemoryFunc * const memory_region_read_thunk[] = {
948     memory_region_read_thunk_b,
949     memory_region_read_thunk_w,
950     memory_region_read_thunk_l,
951 };
952
953 static CPUWriteMemoryFunc * const memory_region_write_thunk[] = {
954     memory_region_write_thunk_b,
955     memory_region_write_thunk_w,
956     memory_region_write_thunk_l,
957 };
958
959 static void memory_region_prepare_ram_addr(MemoryRegion *mr)
960 {
961     if (mr->backend_registered) {
962         return;
963     }
964
965     mr->destructor = memory_region_destructor_iomem;
966     mr->ram_addr = cpu_register_io_memory(memory_region_read_thunk,
967                                           memory_region_write_thunk,
968                                           mr,
969                                           mr->ops->endianness);
970     mr->backend_registered = true;
971 }
972
973 void memory_region_init_io(MemoryRegion *mr,
974                            const MemoryRegionOps *ops,
975                            void *opaque,
976                            const char *name,
977                            uint64_t size)
978 {
979     memory_region_init(mr, name, size);
980     mr->ops = ops;
981     mr->opaque = opaque;
982     mr->terminates = true;
983     mr->backend_registered = false;
984 }
985
986 void memory_region_init_ram(MemoryRegion *mr,
987                             DeviceState *dev,
988                             const char *name,
989                             uint64_t size)
990 {
991     memory_region_init(mr, name, size);
992     mr->terminates = true;
993     mr->destructor = memory_region_destructor_ram;
994     mr->ram_addr = qemu_ram_alloc(dev, name, size);
995     mr->backend_registered = true;
996 }
997
998 void memory_region_init_ram_ptr(MemoryRegion *mr,
999                                 DeviceState *dev,
1000                                 const char *name,
1001                                 uint64_t size,
1002                                 void *ptr)
1003 {
1004     memory_region_init(mr, name, size);
1005     mr->terminates = true;
1006     mr->destructor = memory_region_destructor_ram_from_ptr;
1007     mr->ram_addr = qemu_ram_alloc_from_ptr(dev, name, size, ptr);
1008     mr->backend_registered = true;
1009 }
1010
1011 void memory_region_init_alias(MemoryRegion *mr,
1012                               const char *name,
1013                               MemoryRegion *orig,
1014                               target_phys_addr_t offset,
1015                               uint64_t size)
1016 {
1017     memory_region_init(mr, name, size);
1018     mr->alias = orig;
1019     mr->alias_offset = offset;
1020 }
1021
1022 void memory_region_init_rom_device(MemoryRegion *mr,
1023                                    const MemoryRegionOps *ops,
1024                                    void *opaque,
1025                                    DeviceState *dev,
1026                                    const char *name,
1027                                    uint64_t size)
1028 {
1029     memory_region_init(mr, name, size);
1030     mr->ops = ops;
1031     mr->opaque = opaque;
1032     mr->terminates = true;
1033     mr->destructor = memory_region_destructor_rom_device;
1034     mr->ram_addr = qemu_ram_alloc(dev, name, size);
1035     mr->ram_addr |= cpu_register_io_memory(memory_region_read_thunk,
1036                                            memory_region_write_thunk,
1037                                            mr,
1038                                            mr->ops->endianness);
1039     mr->ram_addr |= IO_MEM_ROMD;
1040     mr->backend_registered = true;
1041 }
1042
1043 void memory_region_destroy(MemoryRegion *mr)
1044 {
1045     assert(QTAILQ_EMPTY(&mr->subregions));
1046     mr->destructor(mr);
1047     memory_region_clear_coalescing(mr);
1048     g_free((char *)mr->name);
1049     g_free(mr->ioeventfds);
1050 }
1051
1052 uint64_t memory_region_size(MemoryRegion *mr)
1053 {
1054     if (int128_eq(mr->size, int128_2_64())) {
1055         return UINT64_MAX;
1056     }
1057     return int128_get64(mr->size);
1058 }
1059
1060 void memory_region_set_offset(MemoryRegion *mr, target_phys_addr_t offset)
1061 {
1062     mr->offset = offset;
1063 }
1064
1065 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1066 {
1067     uint8_t mask = 1 << client;
1068
1069     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1070     memory_region_update_topology(mr);
1071 }
1072
1073 bool memory_region_get_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1074                              unsigned client)
1075 {
1076     assert(mr->terminates);
1077     return cpu_physical_memory_get_dirty(mr->ram_addr + addr, 1 << client);
1078 }
1079
1080 void memory_region_set_dirty(MemoryRegion *mr, target_phys_addr_t addr)
1081 {
1082     assert(mr->terminates);
1083     return cpu_physical_memory_set_dirty(mr->ram_addr + addr);
1084 }
1085
1086 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1087 {
1088     FlatRange *fr;
1089
1090     FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
1091         if (fr->mr == mr) {
1092             cpu_physical_sync_dirty_bitmap(int128_get64(fr->addr.start),
1093                                            int128_get64(addrrange_end(fr->addr)));
1094         }
1095     }
1096 }
1097
1098 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1099 {
1100     if (mr->readonly != readonly) {
1101         mr->readonly = readonly;
1102         memory_region_update_topology(mr);
1103     }
1104 }
1105
1106 void memory_region_rom_device_set_readable(MemoryRegion *mr, bool readable)
1107 {
1108     if (mr->readable != readable) {
1109         mr->readable = readable;
1110         memory_region_update_topology(mr);
1111     }
1112 }
1113
1114 void memory_region_reset_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1115                                target_phys_addr_t size, unsigned client)
1116 {
1117     assert(mr->terminates);
1118     cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1119                                     mr->ram_addr + addr + size,
1120                                     1 << client);
1121 }
1122
1123 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1124 {
1125     if (mr->alias) {
1126         return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1127     }
1128
1129     assert(mr->terminates);
1130
1131     return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1132 }
1133
1134 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1135 {
1136     FlatRange *fr;
1137     CoalescedMemoryRange *cmr;
1138     AddrRange tmp;
1139
1140     FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
1141         if (fr->mr == mr) {
1142             qemu_unregister_coalesced_mmio(int128_get64(fr->addr.start),
1143                                            int128_get64(fr->addr.size));
1144             QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1145                 tmp = addrrange_shift(cmr->addr,
1146                                       int128_sub(fr->addr.start,
1147                                                  int128_make64(fr->offset_in_region)));
1148                 if (!addrrange_intersects(tmp, fr->addr)) {
1149                     continue;
1150                 }
1151                 tmp = addrrange_intersection(tmp, fr->addr);
1152                 qemu_register_coalesced_mmio(int128_get64(tmp.start),
1153                                              int128_get64(tmp.size));
1154             }
1155         }
1156     }
1157 }
1158
1159 void memory_region_set_coalescing(MemoryRegion *mr)
1160 {
1161     memory_region_clear_coalescing(mr);
1162     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1163 }
1164
1165 void memory_region_add_coalescing(MemoryRegion *mr,
1166                                   target_phys_addr_t offset,
1167                                   uint64_t size)
1168 {
1169     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1170
1171     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1172     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1173     memory_region_update_coalesced_range(mr);
1174 }
1175
1176 void memory_region_clear_coalescing(MemoryRegion *mr)
1177 {
1178     CoalescedMemoryRange *cmr;
1179
1180     while (!QTAILQ_EMPTY(&mr->coalesced)) {
1181         cmr = QTAILQ_FIRST(&mr->coalesced);
1182         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1183         g_free(cmr);
1184     }
1185     memory_region_update_coalesced_range(mr);
1186 }
1187
1188 void memory_region_add_eventfd(MemoryRegion *mr,
1189                                target_phys_addr_t addr,
1190                                unsigned size,
1191                                bool match_data,
1192                                uint64_t data,
1193                                int fd)
1194 {
1195     MemoryRegionIoeventfd mrfd = {
1196         .addr.start = int128_make64(addr),
1197         .addr.size = int128_make64(size),
1198         .match_data = match_data,
1199         .data = data,
1200         .fd = fd,
1201     };
1202     unsigned i;
1203
1204     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1205         if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1206             break;
1207         }
1208     }
1209     ++mr->ioeventfd_nb;
1210     mr->ioeventfds = g_realloc(mr->ioeventfds,
1211                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1212     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1213             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1214     mr->ioeventfds[i] = mrfd;
1215     memory_region_update_topology(mr);
1216 }
1217
1218 void memory_region_del_eventfd(MemoryRegion *mr,
1219                                target_phys_addr_t addr,
1220                                unsigned size,
1221                                bool match_data,
1222                                uint64_t data,
1223                                int fd)
1224 {
1225     MemoryRegionIoeventfd mrfd = {
1226         .addr.start = int128_make64(addr),
1227         .addr.size = int128_make64(size),
1228         .match_data = match_data,
1229         .data = data,
1230         .fd = fd,
1231     };
1232     unsigned i;
1233
1234     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1235         if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1236             break;
1237         }
1238     }
1239     assert(i != mr->ioeventfd_nb);
1240     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1241             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1242     --mr->ioeventfd_nb;
1243     mr->ioeventfds = g_realloc(mr->ioeventfds,
1244                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1245     memory_region_update_topology(mr);
1246 }
1247
1248 static void memory_region_add_subregion_common(MemoryRegion *mr,
1249                                                target_phys_addr_t offset,
1250                                                MemoryRegion *subregion)
1251 {
1252     MemoryRegion *other;
1253
1254     assert(!subregion->parent);
1255     subregion->parent = mr;
1256     subregion->addr = offset;
1257     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1258         if (subregion->may_overlap || other->may_overlap) {
1259             continue;
1260         }
1261         if (int128_gt(int128_make64(offset),
1262                       int128_add(int128_make64(other->addr), other->size))
1263             || int128_le(int128_add(int128_make64(offset), subregion->size),
1264                          int128_make64(other->addr))) {
1265             continue;
1266         }
1267 #if 0
1268         printf("warning: subregion collision %llx/%llx (%s) "
1269                "vs %llx/%llx (%s)\n",
1270                (unsigned long long)offset,
1271                (unsigned long long)int128_get64(subregion->size),
1272                subregion->name,
1273                (unsigned long long)other->addr,
1274                (unsigned long long)int128_get64(other->size),
1275                other->name);
1276 #endif
1277     }
1278     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1279         if (subregion->priority >= other->priority) {
1280             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1281             goto done;
1282         }
1283     }
1284     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1285 done:
1286     memory_region_update_topology(mr);
1287 }
1288
1289
1290 void memory_region_add_subregion(MemoryRegion *mr,
1291                                  target_phys_addr_t offset,
1292                                  MemoryRegion *subregion)
1293 {
1294     subregion->may_overlap = false;
1295     subregion->priority = 0;
1296     memory_region_add_subregion_common(mr, offset, subregion);
1297 }
1298
1299 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1300                                          target_phys_addr_t offset,
1301                                          MemoryRegion *subregion,
1302                                          unsigned priority)
1303 {
1304     subregion->may_overlap = true;
1305     subregion->priority = priority;
1306     memory_region_add_subregion_common(mr, offset, subregion);
1307 }
1308
1309 void memory_region_del_subregion(MemoryRegion *mr,
1310                                  MemoryRegion *subregion)
1311 {
1312     assert(subregion->parent == mr);
1313     subregion->parent = NULL;
1314     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1315     memory_region_update_topology(mr);
1316 }
1317
1318 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1319 {
1320     if (enabled == mr->enabled) {
1321         return;
1322     }
1323     mr->enabled = enabled;
1324     memory_region_update_topology(NULL);
1325 }
1326
1327 void set_system_memory_map(MemoryRegion *mr)
1328 {
1329     address_space_memory.root = mr;
1330     memory_region_update_topology(NULL);
1331 }
1332
1333 void set_system_io_map(MemoryRegion *mr)
1334 {
1335     address_space_io.root = mr;
1336     memory_region_update_topology(NULL);
1337 }
1338
1339 typedef struct MemoryRegionList MemoryRegionList;
1340
1341 struct MemoryRegionList {
1342     const MemoryRegion *mr;
1343     bool printed;
1344     QTAILQ_ENTRY(MemoryRegionList) queue;
1345 };
1346
1347 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1348
1349 static void mtree_print_mr(fprintf_function mon_printf, void *f,
1350                            const MemoryRegion *mr, unsigned int level,
1351                            target_phys_addr_t base,
1352                            MemoryRegionListHead *alias_print_queue)
1353 {
1354     MemoryRegionList *new_ml, *ml, *next_ml;
1355     MemoryRegionListHead submr_print_queue;
1356     const MemoryRegion *submr;
1357     unsigned int i;
1358
1359     if (!mr) {
1360         return;
1361     }
1362
1363     for (i = 0; i < level; i++) {
1364         mon_printf(f, "  ");
1365     }
1366
1367     if (mr->alias) {
1368         MemoryRegionList *ml;
1369         bool found = false;
1370
1371         /* check if the alias is already in the queue */
1372         QTAILQ_FOREACH(ml, alias_print_queue, queue) {
1373             if (ml->mr == mr->alias && !ml->printed) {
1374                 found = true;
1375             }
1376         }
1377
1378         if (!found) {
1379             ml = g_new(MemoryRegionList, 1);
1380             ml->mr = mr->alias;
1381             ml->printed = false;
1382             QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
1383         }
1384         mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d): alias %s @%s "
1385                    TARGET_FMT_plx "-" TARGET_FMT_plx "\n",
1386                    base + mr->addr,
1387                    base + mr->addr
1388                    + (target_phys_addr_t)int128_get64(mr->size) - 1,
1389                    mr->priority,
1390                    mr->name,
1391                    mr->alias->name,
1392                    mr->alias_offset,
1393                    mr->alias_offset
1394                    + (target_phys_addr_t)int128_get64(mr->size) - 1);
1395     } else {
1396         mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d): %s\n",
1397                    base + mr->addr,
1398                    base + mr->addr
1399                    + (target_phys_addr_t)int128_get64(mr->size) - 1,
1400                    mr->priority,
1401                    mr->name);
1402     }
1403
1404     QTAILQ_INIT(&submr_print_queue);
1405
1406     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
1407         new_ml = g_new(MemoryRegionList, 1);
1408         new_ml->mr = submr;
1409         QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1410             if (new_ml->mr->addr < ml->mr->addr ||
1411                 (new_ml->mr->addr == ml->mr->addr &&
1412                  new_ml->mr->priority > ml->mr->priority)) {
1413                 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
1414                 new_ml = NULL;
1415                 break;
1416             }
1417         }
1418         if (new_ml) {
1419             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
1420         }
1421     }
1422
1423     QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1424         mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
1425                        alias_print_queue);
1426     }
1427
1428     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
1429         g_free(ml);
1430     }
1431 }
1432
1433 void mtree_info(fprintf_function mon_printf, void *f)
1434 {
1435     MemoryRegionListHead ml_head;
1436     MemoryRegionList *ml, *ml2;
1437
1438     QTAILQ_INIT(&ml_head);
1439
1440     mon_printf(f, "memory\n");
1441     mtree_print_mr(mon_printf, f, address_space_memory.root, 0, 0, &ml_head);
1442
1443     /* print aliased regions */
1444     QTAILQ_FOREACH(ml, &ml_head, queue) {
1445         if (!ml->printed) {
1446             mon_printf(f, "%s\n", ml->mr->name);
1447             mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
1448         }
1449     }
1450
1451     QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
1452         g_free(ml);
1453     }
1454
1455     if (address_space_io.root &&
1456         !QTAILQ_EMPTY(&address_space_io.root->subregions)) {
1457         QTAILQ_INIT(&ml_head);
1458         mon_printf(f, "I/O\n");
1459         mtree_print_mr(mon_printf, f, address_space_io.root, 0, 0, &ml_head);
1460     }
1461 }