]> rtime.felk.cvut.cz Git - lisovros/qemu_apohw.git/blob - memory.c
Merge remote-tracking branch 'aneesh/for-upstream-8' into staging
[lisovros/qemu_apohw.git] / memory.c
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13
14 #include "memory.h"
15 #include "exec-memory.h"
16 #include "ioport.h"
17 #include "bitops.h"
18 #include "kvm.h"
19 #include <assert.h>
20
21 unsigned memory_region_transaction_depth = 0;
22
23 typedef struct AddrRange AddrRange;
24
25 /*
26  * Note using signed integers limits us to physical addresses at most
27  * 63 bits wide.  They are needed for negative offsetting in aliases
28  * (large MemoryRegion::alias_offset).
29  */
30 struct AddrRange {
31     Int128 start;
32     Int128 size;
33 };
34
35 static AddrRange addrrange_make(Int128 start, Int128 size)
36 {
37     return (AddrRange) { start, size };
38 }
39
40 static bool addrrange_equal(AddrRange r1, AddrRange r2)
41 {
42     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
43 }
44
45 static Int128 addrrange_end(AddrRange r)
46 {
47     return int128_add(r.start, r.size);
48 }
49
50 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
51 {
52     int128_addto(&range.start, delta);
53     return range;
54 }
55
56 static bool addrrange_contains(AddrRange range, Int128 addr)
57 {
58     return int128_ge(addr, range.start)
59         && int128_lt(addr, addrrange_end(range));
60 }
61
62 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
63 {
64     return addrrange_contains(r1, r2.start)
65         || addrrange_contains(r2, r1.start);
66 }
67
68 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
69 {
70     Int128 start = int128_max(r1.start, r2.start);
71     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
72     return addrrange_make(start, int128_sub(end, start));
73 }
74
75 struct CoalescedMemoryRange {
76     AddrRange addr;
77     QTAILQ_ENTRY(CoalescedMemoryRange) link;
78 };
79
80 struct MemoryRegionIoeventfd {
81     AddrRange addr;
82     bool match_data;
83     uint64_t data;
84     int fd;
85 };
86
87 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
88                                            MemoryRegionIoeventfd b)
89 {
90     if (int128_lt(a.addr.start, b.addr.start)) {
91         return true;
92     } else if (int128_gt(a.addr.start, b.addr.start)) {
93         return false;
94     } else if (int128_lt(a.addr.size, b.addr.size)) {
95         return true;
96     } else if (int128_gt(a.addr.size, b.addr.size)) {
97         return false;
98     } else if (a.match_data < b.match_data) {
99         return true;
100     } else  if (a.match_data > b.match_data) {
101         return false;
102     } else if (a.match_data) {
103         if (a.data < b.data) {
104             return true;
105         } else if (a.data > b.data) {
106             return false;
107         }
108     }
109     if (a.fd < b.fd) {
110         return true;
111     } else if (a.fd > b.fd) {
112         return false;
113     }
114     return false;
115 }
116
117 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
118                                           MemoryRegionIoeventfd b)
119 {
120     return !memory_region_ioeventfd_before(a, b)
121         && !memory_region_ioeventfd_before(b, a);
122 }
123
124 typedef struct FlatRange FlatRange;
125 typedef struct FlatView FlatView;
126
127 /* Range of memory in the global map.  Addresses are absolute. */
128 struct FlatRange {
129     MemoryRegion *mr;
130     target_phys_addr_t offset_in_region;
131     AddrRange addr;
132     uint8_t dirty_log_mask;
133     bool readable;
134     bool readonly;
135 };
136
137 /* Flattened global view of current active memory hierarchy.  Kept in sorted
138  * order.
139  */
140 struct FlatView {
141     FlatRange *ranges;
142     unsigned nr;
143     unsigned nr_allocated;
144 };
145
146 typedef struct AddressSpace AddressSpace;
147 typedef struct AddressSpaceOps AddressSpaceOps;
148
149 /* A system address space - I/O, memory, etc. */
150 struct AddressSpace {
151     const AddressSpaceOps *ops;
152     MemoryRegion *root;
153     FlatView current_map;
154     int ioeventfd_nb;
155     MemoryRegionIoeventfd *ioeventfds;
156 };
157
158 struct AddressSpaceOps {
159     void (*range_add)(AddressSpace *as, FlatRange *fr);
160     void (*range_del)(AddressSpace *as, FlatRange *fr);
161     void (*log_start)(AddressSpace *as, FlatRange *fr);
162     void (*log_stop)(AddressSpace *as, FlatRange *fr);
163     void (*ioeventfd_add)(AddressSpace *as, MemoryRegionIoeventfd *fd);
164     void (*ioeventfd_del)(AddressSpace *as, MemoryRegionIoeventfd *fd);
165 };
166
167 #define FOR_EACH_FLAT_RANGE(var, view)          \
168     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
169
170 static bool flatrange_equal(FlatRange *a, FlatRange *b)
171 {
172     return a->mr == b->mr
173         && addrrange_equal(a->addr, b->addr)
174         && a->offset_in_region == b->offset_in_region
175         && a->readable == b->readable
176         && a->readonly == b->readonly;
177 }
178
179 static void flatview_init(FlatView *view)
180 {
181     view->ranges = NULL;
182     view->nr = 0;
183     view->nr_allocated = 0;
184 }
185
186 /* Insert a range into a given position.  Caller is responsible for maintaining
187  * sorting order.
188  */
189 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
190 {
191     if (view->nr == view->nr_allocated) {
192         view->nr_allocated = MAX(2 * view->nr, 10);
193         view->ranges = g_realloc(view->ranges,
194                                     view->nr_allocated * sizeof(*view->ranges));
195     }
196     memmove(view->ranges + pos + 1, view->ranges + pos,
197             (view->nr - pos) * sizeof(FlatRange));
198     view->ranges[pos] = *range;
199     ++view->nr;
200 }
201
202 static void flatview_destroy(FlatView *view)
203 {
204     g_free(view->ranges);
205 }
206
207 static bool can_merge(FlatRange *r1, FlatRange *r2)
208 {
209     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
210         && r1->mr == r2->mr
211         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
212                                 r1->addr.size),
213                      int128_make64(r2->offset_in_region))
214         && r1->dirty_log_mask == r2->dirty_log_mask
215         && r1->readable == r2->readable
216         && r1->readonly == r2->readonly;
217 }
218
219 /* Attempt to simplify a view by merging ajacent ranges */
220 static void flatview_simplify(FlatView *view)
221 {
222     unsigned i, j;
223
224     i = 0;
225     while (i < view->nr) {
226         j = i + 1;
227         while (j < view->nr
228                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
229             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
230             ++j;
231         }
232         ++i;
233         memmove(&view->ranges[i], &view->ranges[j],
234                 (view->nr - j) * sizeof(view->ranges[j]));
235         view->nr -= j - i;
236     }
237 }
238
239 static void memory_region_read_accessor(void *opaque,
240                                         target_phys_addr_t addr,
241                                         uint64_t *value,
242                                         unsigned size,
243                                         unsigned shift,
244                                         uint64_t mask)
245 {
246     MemoryRegion *mr = opaque;
247     uint64_t tmp;
248
249     tmp = mr->ops->read(mr->opaque, addr, size);
250     *value |= (tmp & mask) << shift;
251 }
252
253 static void memory_region_write_accessor(void *opaque,
254                                          target_phys_addr_t addr,
255                                          uint64_t *value,
256                                          unsigned size,
257                                          unsigned shift,
258                                          uint64_t mask)
259 {
260     MemoryRegion *mr = opaque;
261     uint64_t tmp;
262
263     tmp = (*value >> shift) & mask;
264     mr->ops->write(mr->opaque, addr, tmp, size);
265 }
266
267 static void access_with_adjusted_size(target_phys_addr_t addr,
268                                       uint64_t *value,
269                                       unsigned size,
270                                       unsigned access_size_min,
271                                       unsigned access_size_max,
272                                       void (*access)(void *opaque,
273                                                      target_phys_addr_t addr,
274                                                      uint64_t *value,
275                                                      unsigned size,
276                                                      unsigned shift,
277                                                      uint64_t mask),
278                                       void *opaque)
279 {
280     uint64_t access_mask;
281     unsigned access_size;
282     unsigned i;
283
284     if (!access_size_min) {
285         access_size_min = 1;
286     }
287     if (!access_size_max) {
288         access_size_max = 4;
289     }
290     access_size = MAX(MIN(size, access_size_max), access_size_min);
291     access_mask = -1ULL >> (64 - access_size * 8);
292     for (i = 0; i < size; i += access_size) {
293         /* FIXME: big-endian support */
294         access(opaque, addr + i, value, access_size, i * 8, access_mask);
295     }
296 }
297
298 static void memory_region_prepare_ram_addr(MemoryRegion *mr);
299
300 static void as_memory_range_add(AddressSpace *as, FlatRange *fr)
301 {
302     ram_addr_t phys_offset, region_offset;
303
304     memory_region_prepare_ram_addr(fr->mr);
305
306     phys_offset = fr->mr->ram_addr;
307     region_offset = fr->offset_in_region;
308     /* cpu_register_physical_memory_log() wants region_offset for
309      * mmio, but prefers offseting phys_offset for RAM.  Humour it.
310      */
311     if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
312         phys_offset += region_offset;
313         region_offset = 0;
314     }
315
316     if (!fr->readable) {
317         phys_offset &= ~TARGET_PAGE_MASK & ~IO_MEM_ROMD;
318     }
319
320     if (fr->readonly) {
321         phys_offset |= IO_MEM_ROM;
322     }
323
324     cpu_register_physical_memory_log(int128_get64(fr->addr.start),
325                                      int128_get64(fr->addr.size),
326                                      phys_offset,
327                                      region_offset,
328                                      fr->dirty_log_mask);
329 }
330
331 static void as_memory_range_del(AddressSpace *as, FlatRange *fr)
332 {
333     if (fr->dirty_log_mask) {
334         Int128 end = addrrange_end(fr->addr);
335         cpu_physical_sync_dirty_bitmap(int128_get64(fr->addr.start),
336                                        int128_get64(end));
337     }
338     cpu_register_physical_memory(int128_get64(fr->addr.start),
339                                  int128_get64(fr->addr.size),
340                                  IO_MEM_UNASSIGNED);
341 }
342
343 static void as_memory_log_start(AddressSpace *as, FlatRange *fr)
344 {
345     cpu_physical_log_start(int128_get64(fr->addr.start),
346                            int128_get64(fr->addr.size));
347 }
348
349 static void as_memory_log_stop(AddressSpace *as, FlatRange *fr)
350 {
351     cpu_physical_log_stop(int128_get64(fr->addr.start),
352                           int128_get64(fr->addr.size));
353 }
354
355 static void as_memory_ioeventfd_add(AddressSpace *as, MemoryRegionIoeventfd *fd)
356 {
357     int r;
358
359     assert(fd->match_data && int128_get64(fd->addr.size) == 4);
360
361     r = kvm_set_ioeventfd_mmio_long(fd->fd, int128_get64(fd->addr.start),
362                                     fd->data, true);
363     if (r < 0) {
364         abort();
365     }
366 }
367
368 static void as_memory_ioeventfd_del(AddressSpace *as, MemoryRegionIoeventfd *fd)
369 {
370     int r;
371
372     r = kvm_set_ioeventfd_mmio_long(fd->fd, int128_get64(fd->addr.start),
373                                     fd->data, false);
374     if (r < 0) {
375         abort();
376     }
377 }
378
379 static const AddressSpaceOps address_space_ops_memory = {
380     .range_add = as_memory_range_add,
381     .range_del = as_memory_range_del,
382     .log_start = as_memory_log_start,
383     .log_stop = as_memory_log_stop,
384     .ioeventfd_add = as_memory_ioeventfd_add,
385     .ioeventfd_del = as_memory_ioeventfd_del,
386 };
387
388 static AddressSpace address_space_memory = {
389     .ops = &address_space_ops_memory,
390 };
391
392 static const MemoryRegionPortio *find_portio(MemoryRegion *mr, uint64_t offset,
393                                              unsigned width, bool write)
394 {
395     const MemoryRegionPortio *mrp;
396
397     for (mrp = mr->ops->old_portio; mrp->size; ++mrp) {
398         if (offset >= mrp->offset && offset < mrp->offset + mrp->len
399             && width == mrp->size
400             && (write ? (bool)mrp->write : (bool)mrp->read)) {
401             return mrp;
402         }
403     }
404     return NULL;
405 }
406
407 static void memory_region_iorange_read(IORange *iorange,
408                                        uint64_t offset,
409                                        unsigned width,
410                                        uint64_t *data)
411 {
412     MemoryRegion *mr = container_of(iorange, MemoryRegion, iorange);
413
414     if (mr->ops->old_portio) {
415         const MemoryRegionPortio *mrp = find_portio(mr, offset, width, false);
416
417         *data = ((uint64_t)1 << (width * 8)) - 1;
418         if (mrp) {
419             *data = mrp->read(mr->opaque, offset + mr->offset);
420         } else if (width == 2) {
421             mrp = find_portio(mr, offset, 1, false);
422             assert(mrp);
423             *data = mrp->read(mr->opaque, offset + mr->offset) |
424                     (mrp->read(mr->opaque, offset + mr->offset + 1) << 8);
425         }
426         return;
427     }
428     *data = 0;
429     access_with_adjusted_size(offset + mr->offset, data, width,
430                               mr->ops->impl.min_access_size,
431                               mr->ops->impl.max_access_size,
432                               memory_region_read_accessor, mr);
433 }
434
435 static void memory_region_iorange_write(IORange *iorange,
436                                         uint64_t offset,
437                                         unsigned width,
438                                         uint64_t data)
439 {
440     MemoryRegion *mr = container_of(iorange, MemoryRegion, iorange);
441
442     if (mr->ops->old_portio) {
443         const MemoryRegionPortio *mrp = find_portio(mr, offset, width, true);
444
445         if (mrp) {
446             mrp->write(mr->opaque, offset + mr->offset, data);
447         } else if (width == 2) {
448             mrp = find_portio(mr, offset, 1, false);
449             assert(mrp);
450             mrp->write(mr->opaque, offset + mr->offset, data & 0xff);
451             mrp->write(mr->opaque, offset + mr->offset + 1, data >> 8);
452         }
453         return;
454     }
455     access_with_adjusted_size(offset + mr->offset, &data, width,
456                               mr->ops->impl.min_access_size,
457                               mr->ops->impl.max_access_size,
458                               memory_region_write_accessor, mr);
459 }
460
461 static const IORangeOps memory_region_iorange_ops = {
462     .read = memory_region_iorange_read,
463     .write = memory_region_iorange_write,
464 };
465
466 static void as_io_range_add(AddressSpace *as, FlatRange *fr)
467 {
468     iorange_init(&fr->mr->iorange, &memory_region_iorange_ops,
469                  int128_get64(fr->addr.start), int128_get64(fr->addr.size));
470     ioport_register(&fr->mr->iorange);
471 }
472
473 static void as_io_range_del(AddressSpace *as, FlatRange *fr)
474 {
475     isa_unassign_ioport(int128_get64(fr->addr.start),
476                         int128_get64(fr->addr.size));
477 }
478
479 static void as_io_ioeventfd_add(AddressSpace *as, MemoryRegionIoeventfd *fd)
480 {
481     int r;
482
483     assert(fd->match_data && int128_get64(fd->addr.size) == 2);
484
485     r = kvm_set_ioeventfd_pio_word(fd->fd, int128_get64(fd->addr.start),
486                                    fd->data, true);
487     if (r < 0) {
488         abort();
489     }
490 }
491
492 static void as_io_ioeventfd_del(AddressSpace *as, MemoryRegionIoeventfd *fd)
493 {
494     int r;
495
496     r = kvm_set_ioeventfd_pio_word(fd->fd, int128_get64(fd->addr.start),
497                                    fd->data, false);
498     if (r < 0) {
499         abort();
500     }
501 }
502
503 static const AddressSpaceOps address_space_ops_io = {
504     .range_add = as_io_range_add,
505     .range_del = as_io_range_del,
506     .ioeventfd_add = as_io_ioeventfd_add,
507     .ioeventfd_del = as_io_ioeventfd_del,
508 };
509
510 static AddressSpace address_space_io = {
511     .ops = &address_space_ops_io,
512 };
513
514 /* Render a memory region into the global view.  Ranges in @view obscure
515  * ranges in @mr.
516  */
517 static void render_memory_region(FlatView *view,
518                                  MemoryRegion *mr,
519                                  Int128 base,
520                                  AddrRange clip,
521                                  bool readonly)
522 {
523     MemoryRegion *subregion;
524     unsigned i;
525     target_phys_addr_t offset_in_region;
526     Int128 remain;
527     Int128 now;
528     FlatRange fr;
529     AddrRange tmp;
530
531     int128_addto(&base, int128_make64(mr->addr));
532     readonly |= mr->readonly;
533
534     tmp = addrrange_make(base, mr->size);
535
536     if (!addrrange_intersects(tmp, clip)) {
537         return;
538     }
539
540     clip = addrrange_intersection(tmp, clip);
541
542     if (mr->alias) {
543         int128_subfrom(&base, int128_make64(mr->alias->addr));
544         int128_subfrom(&base, int128_make64(mr->alias_offset));
545         render_memory_region(view, mr->alias, base, clip, readonly);
546         return;
547     }
548
549     /* Render subregions in priority order. */
550     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
551         render_memory_region(view, subregion, base, clip, readonly);
552     }
553
554     if (!mr->terminates) {
555         return;
556     }
557
558     offset_in_region = int128_get64(int128_sub(clip.start, base));
559     base = clip.start;
560     remain = clip.size;
561
562     /* Render the region itself into any gaps left by the current view. */
563     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
564         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
565             continue;
566         }
567         if (int128_lt(base, view->ranges[i].addr.start)) {
568             now = int128_min(remain,
569                              int128_sub(view->ranges[i].addr.start, base));
570             fr.mr = mr;
571             fr.offset_in_region = offset_in_region;
572             fr.addr = addrrange_make(base, now);
573             fr.dirty_log_mask = mr->dirty_log_mask;
574             fr.readable = mr->readable;
575             fr.readonly = readonly;
576             flatview_insert(view, i, &fr);
577             ++i;
578             int128_addto(&base, now);
579             offset_in_region += int128_get64(now);
580             int128_subfrom(&remain, now);
581         }
582         if (int128_eq(base, view->ranges[i].addr.start)) {
583             now = int128_min(remain, view->ranges[i].addr.size);
584             int128_addto(&base, now);
585             offset_in_region += int128_get64(now);
586             int128_subfrom(&remain, now);
587         }
588     }
589     if (int128_nz(remain)) {
590         fr.mr = mr;
591         fr.offset_in_region = offset_in_region;
592         fr.addr = addrrange_make(base, remain);
593         fr.dirty_log_mask = mr->dirty_log_mask;
594         fr.readable = mr->readable;
595         fr.readonly = readonly;
596         flatview_insert(view, i, &fr);
597     }
598 }
599
600 /* Render a memory topology into a list of disjoint absolute ranges. */
601 static FlatView generate_memory_topology(MemoryRegion *mr)
602 {
603     FlatView view;
604
605     flatview_init(&view);
606
607     render_memory_region(&view, mr, int128_zero(),
608                          addrrange_make(int128_zero(), int128_2_64()), false);
609     flatview_simplify(&view);
610
611     return view;
612 }
613
614 static void address_space_add_del_ioeventfds(AddressSpace *as,
615                                              MemoryRegionIoeventfd *fds_new,
616                                              unsigned fds_new_nb,
617                                              MemoryRegionIoeventfd *fds_old,
618                                              unsigned fds_old_nb)
619 {
620     unsigned iold, inew;
621
622     /* Generate a symmetric difference of the old and new fd sets, adding
623      * and deleting as necessary.
624      */
625
626     iold = inew = 0;
627     while (iold < fds_old_nb || inew < fds_new_nb) {
628         if (iold < fds_old_nb
629             && (inew == fds_new_nb
630                 || memory_region_ioeventfd_before(fds_old[iold],
631                                                   fds_new[inew]))) {
632             as->ops->ioeventfd_del(as, &fds_old[iold]);
633             ++iold;
634         } else if (inew < fds_new_nb
635                    && (iold == fds_old_nb
636                        || memory_region_ioeventfd_before(fds_new[inew],
637                                                          fds_old[iold]))) {
638             as->ops->ioeventfd_add(as, &fds_new[inew]);
639             ++inew;
640         } else {
641             ++iold;
642             ++inew;
643         }
644     }
645 }
646
647 static void address_space_update_ioeventfds(AddressSpace *as)
648 {
649     FlatRange *fr;
650     unsigned ioeventfd_nb = 0;
651     MemoryRegionIoeventfd *ioeventfds = NULL;
652     AddrRange tmp;
653     unsigned i;
654
655     FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
656         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
657             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
658                                   int128_sub(fr->addr.start,
659                                              int128_make64(fr->offset_in_region)));
660             if (addrrange_intersects(fr->addr, tmp)) {
661                 ++ioeventfd_nb;
662                 ioeventfds = g_realloc(ioeventfds,
663                                           ioeventfd_nb * sizeof(*ioeventfds));
664                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
665                 ioeventfds[ioeventfd_nb-1].addr = tmp;
666             }
667         }
668     }
669
670     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
671                                      as->ioeventfds, as->ioeventfd_nb);
672
673     g_free(as->ioeventfds);
674     as->ioeventfds = ioeventfds;
675     as->ioeventfd_nb = ioeventfd_nb;
676 }
677
678 static void address_space_update_topology_pass(AddressSpace *as,
679                                                FlatView old_view,
680                                                FlatView new_view,
681                                                bool adding)
682 {
683     unsigned iold, inew;
684     FlatRange *frold, *frnew;
685
686     /* Generate a symmetric difference of the old and new memory maps.
687      * Kill ranges in the old map, and instantiate ranges in the new map.
688      */
689     iold = inew = 0;
690     while (iold < old_view.nr || inew < new_view.nr) {
691         if (iold < old_view.nr) {
692             frold = &old_view.ranges[iold];
693         } else {
694             frold = NULL;
695         }
696         if (inew < new_view.nr) {
697             frnew = &new_view.ranges[inew];
698         } else {
699             frnew = NULL;
700         }
701
702         if (frold
703             && (!frnew
704                 || int128_lt(frold->addr.start, frnew->addr.start)
705                 || (int128_eq(frold->addr.start, frnew->addr.start)
706                     && !flatrange_equal(frold, frnew)))) {
707             /* In old, but (not in new, or in new but attributes changed). */
708
709             if (!adding) {
710                 as->ops->range_del(as, frold);
711             }
712
713             ++iold;
714         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
715             /* In both (logging may have changed) */
716
717             if (adding) {
718                 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
719                     as->ops->log_stop(as, frnew);
720                 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
721                     as->ops->log_start(as, frnew);
722                 }
723             }
724
725             ++iold;
726             ++inew;
727         } else {
728             /* In new */
729
730             if (adding) {
731                 as->ops->range_add(as, frnew);
732             }
733
734             ++inew;
735         }
736     }
737 }
738
739
740 static void address_space_update_topology(AddressSpace *as)
741 {
742     FlatView old_view = as->current_map;
743     FlatView new_view = generate_memory_topology(as->root);
744
745     address_space_update_topology_pass(as, old_view, new_view, false);
746     address_space_update_topology_pass(as, old_view, new_view, true);
747
748     as->current_map = new_view;
749     flatview_destroy(&old_view);
750     address_space_update_ioeventfds(as);
751 }
752
753 static void memory_region_update_topology(void)
754 {
755     if (memory_region_transaction_depth) {
756         return;
757     }
758
759     if (address_space_memory.root) {
760         address_space_update_topology(&address_space_memory);
761     }
762     if (address_space_io.root) {
763         address_space_update_topology(&address_space_io);
764     }
765 }
766
767 void memory_region_transaction_begin(void)
768 {
769     ++memory_region_transaction_depth;
770 }
771
772 void memory_region_transaction_commit(void)
773 {
774     assert(memory_region_transaction_depth);
775     --memory_region_transaction_depth;
776     memory_region_update_topology();
777 }
778
779 static void memory_region_destructor_none(MemoryRegion *mr)
780 {
781 }
782
783 static void memory_region_destructor_ram(MemoryRegion *mr)
784 {
785     qemu_ram_free(mr->ram_addr);
786 }
787
788 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
789 {
790     qemu_ram_free_from_ptr(mr->ram_addr);
791 }
792
793 static void memory_region_destructor_iomem(MemoryRegion *mr)
794 {
795     cpu_unregister_io_memory(mr->ram_addr);
796 }
797
798 static void memory_region_destructor_rom_device(MemoryRegion *mr)
799 {
800     qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
801     cpu_unregister_io_memory(mr->ram_addr & ~(TARGET_PAGE_MASK | IO_MEM_ROMD));
802 }
803
804 void memory_region_init(MemoryRegion *mr,
805                         const char *name,
806                         uint64_t size)
807 {
808     mr->ops = NULL;
809     mr->parent = NULL;
810     mr->size = int128_make64(size);
811     if (size == UINT64_MAX) {
812         mr->size = int128_2_64();
813     }
814     mr->addr = 0;
815     mr->offset = 0;
816     mr->terminates = false;
817     mr->readable = true;
818     mr->readonly = false;
819     mr->destructor = memory_region_destructor_none;
820     mr->priority = 0;
821     mr->may_overlap = false;
822     mr->alias = NULL;
823     QTAILQ_INIT(&mr->subregions);
824     memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
825     QTAILQ_INIT(&mr->coalesced);
826     mr->name = g_strdup(name);
827     mr->dirty_log_mask = 0;
828     mr->ioeventfd_nb = 0;
829     mr->ioeventfds = NULL;
830 }
831
832 static bool memory_region_access_valid(MemoryRegion *mr,
833                                        target_phys_addr_t addr,
834                                        unsigned size)
835 {
836     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
837         return false;
838     }
839
840     /* Treat zero as compatibility all valid */
841     if (!mr->ops->valid.max_access_size) {
842         return true;
843     }
844
845     if (size > mr->ops->valid.max_access_size
846         || size < mr->ops->valid.min_access_size) {
847         return false;
848     }
849     return true;
850 }
851
852 static uint32_t memory_region_read_thunk_n(void *_mr,
853                                            target_phys_addr_t addr,
854                                            unsigned size)
855 {
856     MemoryRegion *mr = _mr;
857     uint64_t data = 0;
858
859     if (!memory_region_access_valid(mr, addr, size)) {
860         return -1U; /* FIXME: better signalling */
861     }
862
863     if (!mr->ops->read) {
864         return mr->ops->old_mmio.read[bitops_ffsl(size)](mr->opaque, addr);
865     }
866
867     /* FIXME: support unaligned access */
868     access_with_adjusted_size(addr + mr->offset, &data, size,
869                               mr->ops->impl.min_access_size,
870                               mr->ops->impl.max_access_size,
871                               memory_region_read_accessor, mr);
872
873     return data;
874 }
875
876 static void memory_region_write_thunk_n(void *_mr,
877                                         target_phys_addr_t addr,
878                                         unsigned size,
879                                         uint64_t data)
880 {
881     MemoryRegion *mr = _mr;
882
883     if (!memory_region_access_valid(mr, addr, size)) {
884         return; /* FIXME: better signalling */
885     }
886
887     if (!mr->ops->write) {
888         mr->ops->old_mmio.write[bitops_ffsl(size)](mr->opaque, addr, data);
889         return;
890     }
891
892     /* FIXME: support unaligned access */
893     access_with_adjusted_size(addr + mr->offset, &data, size,
894                               mr->ops->impl.min_access_size,
895                               mr->ops->impl.max_access_size,
896                               memory_region_write_accessor, mr);
897 }
898
899 static uint32_t memory_region_read_thunk_b(void *mr, target_phys_addr_t addr)
900 {
901     return memory_region_read_thunk_n(mr, addr, 1);
902 }
903
904 static uint32_t memory_region_read_thunk_w(void *mr, target_phys_addr_t addr)
905 {
906     return memory_region_read_thunk_n(mr, addr, 2);
907 }
908
909 static uint32_t memory_region_read_thunk_l(void *mr, target_phys_addr_t addr)
910 {
911     return memory_region_read_thunk_n(mr, addr, 4);
912 }
913
914 static void memory_region_write_thunk_b(void *mr, target_phys_addr_t addr,
915                                         uint32_t data)
916 {
917     memory_region_write_thunk_n(mr, addr, 1, data);
918 }
919
920 static void memory_region_write_thunk_w(void *mr, target_phys_addr_t addr,
921                                         uint32_t data)
922 {
923     memory_region_write_thunk_n(mr, addr, 2, data);
924 }
925
926 static void memory_region_write_thunk_l(void *mr, target_phys_addr_t addr,
927                                         uint32_t data)
928 {
929     memory_region_write_thunk_n(mr, addr, 4, data);
930 }
931
932 static CPUReadMemoryFunc * const memory_region_read_thunk[] = {
933     memory_region_read_thunk_b,
934     memory_region_read_thunk_w,
935     memory_region_read_thunk_l,
936 };
937
938 static CPUWriteMemoryFunc * const memory_region_write_thunk[] = {
939     memory_region_write_thunk_b,
940     memory_region_write_thunk_w,
941     memory_region_write_thunk_l,
942 };
943
944 static void memory_region_prepare_ram_addr(MemoryRegion *mr)
945 {
946     if (mr->backend_registered) {
947         return;
948     }
949
950     mr->destructor = memory_region_destructor_iomem;
951     mr->ram_addr = cpu_register_io_memory(memory_region_read_thunk,
952                                           memory_region_write_thunk,
953                                           mr,
954                                           mr->ops->endianness);
955     mr->backend_registered = true;
956 }
957
958 void memory_region_init_io(MemoryRegion *mr,
959                            const MemoryRegionOps *ops,
960                            void *opaque,
961                            const char *name,
962                            uint64_t size)
963 {
964     memory_region_init(mr, name, size);
965     mr->ops = ops;
966     mr->opaque = opaque;
967     mr->terminates = true;
968     mr->backend_registered = false;
969 }
970
971 void memory_region_init_ram(MemoryRegion *mr,
972                             DeviceState *dev,
973                             const char *name,
974                             uint64_t size)
975 {
976     memory_region_init(mr, name, size);
977     mr->terminates = true;
978     mr->destructor = memory_region_destructor_ram;
979     mr->ram_addr = qemu_ram_alloc(dev, name, size);
980     mr->backend_registered = true;
981 }
982
983 void memory_region_init_ram_ptr(MemoryRegion *mr,
984                                 DeviceState *dev,
985                                 const char *name,
986                                 uint64_t size,
987                                 void *ptr)
988 {
989     memory_region_init(mr, name, size);
990     mr->terminates = true;
991     mr->destructor = memory_region_destructor_ram_from_ptr;
992     mr->ram_addr = qemu_ram_alloc_from_ptr(dev, name, size, ptr);
993     mr->backend_registered = true;
994 }
995
996 void memory_region_init_alias(MemoryRegion *mr,
997                               const char *name,
998                               MemoryRegion *orig,
999                               target_phys_addr_t offset,
1000                               uint64_t size)
1001 {
1002     memory_region_init(mr, name, size);
1003     mr->alias = orig;
1004     mr->alias_offset = offset;
1005 }
1006
1007 void memory_region_init_rom_device(MemoryRegion *mr,
1008                                    const MemoryRegionOps *ops,
1009                                    void *opaque,
1010                                    DeviceState *dev,
1011                                    const char *name,
1012                                    uint64_t size)
1013 {
1014     memory_region_init(mr, name, size);
1015     mr->ops = ops;
1016     mr->opaque = opaque;
1017     mr->terminates = true;
1018     mr->destructor = memory_region_destructor_rom_device;
1019     mr->ram_addr = qemu_ram_alloc(dev, name, size);
1020     mr->ram_addr |= cpu_register_io_memory(memory_region_read_thunk,
1021                                            memory_region_write_thunk,
1022                                            mr,
1023                                            mr->ops->endianness);
1024     mr->ram_addr |= IO_MEM_ROMD;
1025     mr->backend_registered = true;
1026 }
1027
1028 void memory_region_destroy(MemoryRegion *mr)
1029 {
1030     assert(QTAILQ_EMPTY(&mr->subregions));
1031     mr->destructor(mr);
1032     memory_region_clear_coalescing(mr);
1033     g_free((char *)mr->name);
1034     g_free(mr->ioeventfds);
1035 }
1036
1037 uint64_t memory_region_size(MemoryRegion *mr)
1038 {
1039     if (int128_eq(mr->size, int128_2_64())) {
1040         return UINT64_MAX;
1041     }
1042     return int128_get64(mr->size);
1043 }
1044
1045 void memory_region_set_offset(MemoryRegion *mr, target_phys_addr_t offset)
1046 {
1047     mr->offset = offset;
1048 }
1049
1050 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1051 {
1052     uint8_t mask = 1 << client;
1053
1054     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1055     memory_region_update_topology();
1056 }
1057
1058 bool memory_region_get_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1059                              unsigned client)
1060 {
1061     assert(mr->terminates);
1062     return cpu_physical_memory_get_dirty(mr->ram_addr + addr, 1 << client);
1063 }
1064
1065 void memory_region_set_dirty(MemoryRegion *mr, target_phys_addr_t addr)
1066 {
1067     assert(mr->terminates);
1068     return cpu_physical_memory_set_dirty(mr->ram_addr + addr);
1069 }
1070
1071 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1072 {
1073     FlatRange *fr;
1074
1075     FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
1076         if (fr->mr == mr) {
1077             cpu_physical_sync_dirty_bitmap(int128_get64(fr->addr.start),
1078                                            int128_get64(addrrange_end(fr->addr)));
1079         }
1080     }
1081 }
1082
1083 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1084 {
1085     if (mr->readonly != readonly) {
1086         mr->readonly = readonly;
1087         memory_region_update_topology();
1088     }
1089 }
1090
1091 void memory_region_rom_device_set_readable(MemoryRegion *mr, bool readable)
1092 {
1093     if (mr->readable != readable) {
1094         mr->readable = readable;
1095         memory_region_update_topology();
1096     }
1097 }
1098
1099 void memory_region_reset_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1100                                target_phys_addr_t size, unsigned client)
1101 {
1102     assert(mr->terminates);
1103     cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1104                                     mr->ram_addr + addr + size,
1105                                     1 << client);
1106 }
1107
1108 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1109 {
1110     if (mr->alias) {
1111         return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1112     }
1113
1114     assert(mr->terminates);
1115
1116     return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1117 }
1118
1119 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1120 {
1121     FlatRange *fr;
1122     CoalescedMemoryRange *cmr;
1123     AddrRange tmp;
1124
1125     FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
1126         if (fr->mr == mr) {
1127             qemu_unregister_coalesced_mmio(int128_get64(fr->addr.start),
1128                                            int128_get64(fr->addr.size));
1129             QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1130                 tmp = addrrange_shift(cmr->addr,
1131                                       int128_sub(fr->addr.start,
1132                                                  int128_make64(fr->offset_in_region)));
1133                 if (!addrrange_intersects(tmp, fr->addr)) {
1134                     continue;
1135                 }
1136                 tmp = addrrange_intersection(tmp, fr->addr);
1137                 qemu_register_coalesced_mmio(int128_get64(tmp.start),
1138                                              int128_get64(tmp.size));
1139             }
1140         }
1141     }
1142 }
1143
1144 void memory_region_set_coalescing(MemoryRegion *mr)
1145 {
1146     memory_region_clear_coalescing(mr);
1147     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1148 }
1149
1150 void memory_region_add_coalescing(MemoryRegion *mr,
1151                                   target_phys_addr_t offset,
1152                                   uint64_t size)
1153 {
1154     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1155
1156     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1157     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1158     memory_region_update_coalesced_range(mr);
1159 }
1160
1161 void memory_region_clear_coalescing(MemoryRegion *mr)
1162 {
1163     CoalescedMemoryRange *cmr;
1164
1165     while (!QTAILQ_EMPTY(&mr->coalesced)) {
1166         cmr = QTAILQ_FIRST(&mr->coalesced);
1167         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1168         g_free(cmr);
1169     }
1170     memory_region_update_coalesced_range(mr);
1171 }
1172
1173 void memory_region_add_eventfd(MemoryRegion *mr,
1174                                target_phys_addr_t addr,
1175                                unsigned size,
1176                                bool match_data,
1177                                uint64_t data,
1178                                int fd)
1179 {
1180     MemoryRegionIoeventfd mrfd = {
1181         .addr.start = int128_make64(addr),
1182         .addr.size = int128_make64(size),
1183         .match_data = match_data,
1184         .data = data,
1185         .fd = fd,
1186     };
1187     unsigned i;
1188
1189     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1190         if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1191             break;
1192         }
1193     }
1194     ++mr->ioeventfd_nb;
1195     mr->ioeventfds = g_realloc(mr->ioeventfds,
1196                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1197     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1198             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1199     mr->ioeventfds[i] = mrfd;
1200     memory_region_update_topology();
1201 }
1202
1203 void memory_region_del_eventfd(MemoryRegion *mr,
1204                                target_phys_addr_t addr,
1205                                unsigned size,
1206                                bool match_data,
1207                                uint64_t data,
1208                                int fd)
1209 {
1210     MemoryRegionIoeventfd mrfd = {
1211         .addr.start = int128_make64(addr),
1212         .addr.size = int128_make64(size),
1213         .match_data = match_data,
1214         .data = data,
1215         .fd = fd,
1216     };
1217     unsigned i;
1218
1219     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1220         if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1221             break;
1222         }
1223     }
1224     assert(i != mr->ioeventfd_nb);
1225     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1226             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1227     --mr->ioeventfd_nb;
1228     mr->ioeventfds = g_realloc(mr->ioeventfds,
1229                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1230     memory_region_update_topology();
1231 }
1232
1233 static void memory_region_add_subregion_common(MemoryRegion *mr,
1234                                                target_phys_addr_t offset,
1235                                                MemoryRegion *subregion)
1236 {
1237     MemoryRegion *other;
1238
1239     assert(!subregion->parent);
1240     subregion->parent = mr;
1241     subregion->addr = offset;
1242     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1243         if (subregion->may_overlap || other->may_overlap) {
1244             continue;
1245         }
1246         if (int128_gt(int128_make64(offset),
1247                       int128_add(int128_make64(other->addr), other->size))
1248             || int128_le(int128_add(int128_make64(offset), subregion->size),
1249                          int128_make64(other->addr))) {
1250             continue;
1251         }
1252 #if 0
1253         printf("warning: subregion collision %llx/%llx (%s) "
1254                "vs %llx/%llx (%s)\n",
1255                (unsigned long long)offset,
1256                (unsigned long long)int128_get64(subregion->size),
1257                subregion->name,
1258                (unsigned long long)other->addr,
1259                (unsigned long long)int128_get64(other->size),
1260                other->name);
1261 #endif
1262     }
1263     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1264         if (subregion->priority >= other->priority) {
1265             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1266             goto done;
1267         }
1268     }
1269     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1270 done:
1271     memory_region_update_topology();
1272 }
1273
1274
1275 void memory_region_add_subregion(MemoryRegion *mr,
1276                                  target_phys_addr_t offset,
1277                                  MemoryRegion *subregion)
1278 {
1279     subregion->may_overlap = false;
1280     subregion->priority = 0;
1281     memory_region_add_subregion_common(mr, offset, subregion);
1282 }
1283
1284 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1285                                          target_phys_addr_t offset,
1286                                          MemoryRegion *subregion,
1287                                          unsigned priority)
1288 {
1289     subregion->may_overlap = true;
1290     subregion->priority = priority;
1291     memory_region_add_subregion_common(mr, offset, subregion);
1292 }
1293
1294 void memory_region_del_subregion(MemoryRegion *mr,
1295                                  MemoryRegion *subregion)
1296 {
1297     assert(subregion->parent == mr);
1298     subregion->parent = NULL;
1299     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1300     memory_region_update_topology();
1301 }
1302
1303 void set_system_memory_map(MemoryRegion *mr)
1304 {
1305     address_space_memory.root = mr;
1306     memory_region_update_topology();
1307 }
1308
1309 void set_system_io_map(MemoryRegion *mr)
1310 {
1311     address_space_io.root = mr;
1312     memory_region_update_topology();
1313 }
1314
1315 typedef struct MemoryRegionList MemoryRegionList;
1316
1317 struct MemoryRegionList {
1318     const MemoryRegion *mr;
1319     bool printed;
1320     QTAILQ_ENTRY(MemoryRegionList) queue;
1321 };
1322
1323 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1324
1325 static void mtree_print_mr(fprintf_function mon_printf, void *f,
1326                            const MemoryRegion *mr, unsigned int level,
1327                            target_phys_addr_t base,
1328                            MemoryRegionListHead *alias_print_queue)
1329 {
1330     MemoryRegionList *new_ml, *ml, *next_ml;
1331     MemoryRegionListHead submr_print_queue;
1332     const MemoryRegion *submr;
1333     unsigned int i;
1334
1335     if (!mr) {
1336         return;
1337     }
1338
1339     for (i = 0; i < level; i++) {
1340         mon_printf(f, "  ");
1341     }
1342
1343     if (mr->alias) {
1344         MemoryRegionList *ml;
1345         bool found = false;
1346
1347         /* check if the alias is already in the queue */
1348         QTAILQ_FOREACH(ml, alias_print_queue, queue) {
1349             if (ml->mr == mr->alias && !ml->printed) {
1350                 found = true;
1351             }
1352         }
1353
1354         if (!found) {
1355             ml = g_new(MemoryRegionList, 1);
1356             ml->mr = mr->alias;
1357             ml->printed = false;
1358             QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
1359         }
1360         mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d): alias %s @%s "
1361                    TARGET_FMT_plx "-" TARGET_FMT_plx "\n",
1362                    base + mr->addr,
1363                    base + mr->addr
1364                    + (target_phys_addr_t)int128_get64(mr->size) - 1,
1365                    mr->priority,
1366                    mr->name,
1367                    mr->alias->name,
1368                    mr->alias_offset,
1369                    mr->alias_offset
1370                    + (target_phys_addr_t)int128_get64(mr->size) - 1);
1371     } else {
1372         mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d): %s\n",
1373                    base + mr->addr,
1374                    base + mr->addr
1375                    + (target_phys_addr_t)int128_get64(mr->size) - 1,
1376                    mr->priority,
1377                    mr->name);
1378     }
1379
1380     QTAILQ_INIT(&submr_print_queue);
1381
1382     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
1383         new_ml = g_new(MemoryRegionList, 1);
1384         new_ml->mr = submr;
1385         QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1386             if (new_ml->mr->addr < ml->mr->addr ||
1387                 (new_ml->mr->addr == ml->mr->addr &&
1388                  new_ml->mr->priority > ml->mr->priority)) {
1389                 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
1390                 new_ml = NULL;
1391                 break;
1392             }
1393         }
1394         if (new_ml) {
1395             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
1396         }
1397     }
1398
1399     QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1400         mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
1401                        alias_print_queue);
1402     }
1403
1404     QTAILQ_FOREACH_SAFE(next_ml, &submr_print_queue, queue, ml) {
1405         g_free(ml);
1406     }
1407 }
1408
1409 void mtree_info(fprintf_function mon_printf, void *f)
1410 {
1411     MemoryRegionListHead ml_head;
1412     MemoryRegionList *ml, *ml2;
1413
1414     QTAILQ_INIT(&ml_head);
1415
1416     mon_printf(f, "memory\n");
1417     mtree_print_mr(mon_printf, f, address_space_memory.root, 0, 0, &ml_head);
1418
1419     /* print aliased regions */
1420     QTAILQ_FOREACH(ml, &ml_head, queue) {
1421         if (!ml->printed) {
1422             mon_printf(f, "%s\n", ml->mr->name);
1423             mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
1424         }
1425     }
1426
1427     QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
1428         g_free(ml2);
1429     }
1430
1431     if (address_space_io.root &&
1432         !QTAILQ_EMPTY(&address_space_io.root->subregions)) {
1433         QTAILQ_INIT(&ml_head);
1434         mon_printf(f, "I/O\n");
1435         mtree_print_mr(mon_printf, f, address_space_io.root, 0, 0, &ml_head);
1436     }
1437 }