]> rtime.felk.cvut.cz Git - lisovros/qemu_apohw.git/blob - memory.c
Merge remote-tracking branch 'remotes/spice/tags/pull-spice-20140711-1' into staging
[lisovros/qemu_apohw.git] / memory.c
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15
16 #include "exec/memory.h"
17 #include "exec/address-spaces.h"
18 #include "exec/ioport.h"
19 #include "qapi/visitor.h"
20 #include "qemu/bitops.h"
21 #include "qom/object.h"
22 #include "trace.h"
23 #include <assert.h>
24
25 #include "exec/memory-internal.h"
26 #include "exec/ram_addr.h"
27 #include "sysemu/sysemu.h"
28
29 //#define DEBUG_UNASSIGNED
30
31 static unsigned memory_region_transaction_depth;
32 static bool memory_region_update_pending;
33 static bool ioeventfd_update_pending;
34 static bool global_dirty_log = false;
35
36 /* flat_view_mutex is taken around reading as->current_map; the critical
37  * section is extremely short, so I'm using a single mutex for every AS.
38  * We could also RCU for the read-side.
39  *
40  * The BQL is taken around transaction commits, hence both locks are taken
41  * while writing to as->current_map (with the BQL taken outside).
42  */
43 static QemuMutex flat_view_mutex;
44
45 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
46     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
47
48 static QTAILQ_HEAD(, AddressSpace) address_spaces
49     = QTAILQ_HEAD_INITIALIZER(address_spaces);
50
51 static void memory_init(void)
52 {
53     qemu_mutex_init(&flat_view_mutex);
54 }
55
56 typedef struct AddrRange AddrRange;
57
58 /*
59  * Note using signed integers limits us to physical addresses at most
60  * 63 bits wide.  They are needed for negative offsetting in aliases
61  * (large MemoryRegion::alias_offset).
62  */
63 struct AddrRange {
64     Int128 start;
65     Int128 size;
66 };
67
68 static AddrRange addrrange_make(Int128 start, Int128 size)
69 {
70     return (AddrRange) { start, size };
71 }
72
73 static bool addrrange_equal(AddrRange r1, AddrRange r2)
74 {
75     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
76 }
77
78 static Int128 addrrange_end(AddrRange r)
79 {
80     return int128_add(r.start, r.size);
81 }
82
83 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
84 {
85     int128_addto(&range.start, delta);
86     return range;
87 }
88
89 static bool addrrange_contains(AddrRange range, Int128 addr)
90 {
91     return int128_ge(addr, range.start)
92         && int128_lt(addr, addrrange_end(range));
93 }
94
95 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
96 {
97     return addrrange_contains(r1, r2.start)
98         || addrrange_contains(r2, r1.start);
99 }
100
101 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
102 {
103     Int128 start = int128_max(r1.start, r2.start);
104     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
105     return addrrange_make(start, int128_sub(end, start));
106 }
107
108 enum ListenerDirection { Forward, Reverse };
109
110 static bool memory_listener_match(MemoryListener *listener,
111                                   MemoryRegionSection *section)
112 {
113     return !listener->address_space_filter
114         || listener->address_space_filter == section->address_space;
115 }
116
117 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
118     do {                                                                \
119         MemoryListener *_listener;                                      \
120                                                                         \
121         switch (_direction) {                                           \
122         case Forward:                                                   \
123             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
124                 if (_listener->_callback) {                             \
125                     _listener->_callback(_listener, ##_args);           \
126                 }                                                       \
127             }                                                           \
128             break;                                                      \
129         case Reverse:                                                   \
130             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
131                                    memory_listeners, link) {            \
132                 if (_listener->_callback) {                             \
133                     _listener->_callback(_listener, ##_args);           \
134                 }                                                       \
135             }                                                           \
136             break;                                                      \
137         default:                                                        \
138             abort();                                                    \
139         }                                                               \
140     } while (0)
141
142 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
143     do {                                                                \
144         MemoryListener *_listener;                                      \
145                                                                         \
146         switch (_direction) {                                           \
147         case Forward:                                                   \
148             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
149                 if (_listener->_callback                                \
150                     && memory_listener_match(_listener, _section)) {    \
151                     _listener->_callback(_listener, _section, ##_args); \
152                 }                                                       \
153             }                                                           \
154             break;                                                      \
155         case Reverse:                                                   \
156             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
157                                    memory_listeners, link) {            \
158                 if (_listener->_callback                                \
159                     && memory_listener_match(_listener, _section)) {    \
160                     _listener->_callback(_listener, _section, ##_args); \
161                 }                                                       \
162             }                                                           \
163             break;                                                      \
164         default:                                                        \
165             abort();                                                    \
166         }                                                               \
167     } while (0)
168
169 /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
170 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback)            \
171     MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
172         .mr = (fr)->mr,                                                 \
173         .address_space = (as),                                          \
174         .offset_within_region = (fr)->offset_in_region,                 \
175         .size = (fr)->addr.size,                                        \
176         .offset_within_address_space = int128_get64((fr)->addr.start),  \
177         .readonly = (fr)->readonly,                                     \
178               }))
179
180 struct CoalescedMemoryRange {
181     AddrRange addr;
182     QTAILQ_ENTRY(CoalescedMemoryRange) link;
183 };
184
185 struct MemoryRegionIoeventfd {
186     AddrRange addr;
187     bool match_data;
188     uint64_t data;
189     EventNotifier *e;
190 };
191
192 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
193                                            MemoryRegionIoeventfd b)
194 {
195     if (int128_lt(a.addr.start, b.addr.start)) {
196         return true;
197     } else if (int128_gt(a.addr.start, b.addr.start)) {
198         return false;
199     } else if (int128_lt(a.addr.size, b.addr.size)) {
200         return true;
201     } else if (int128_gt(a.addr.size, b.addr.size)) {
202         return false;
203     } else if (a.match_data < b.match_data) {
204         return true;
205     } else  if (a.match_data > b.match_data) {
206         return false;
207     } else if (a.match_data) {
208         if (a.data < b.data) {
209             return true;
210         } else if (a.data > b.data) {
211             return false;
212         }
213     }
214     if (a.e < b.e) {
215         return true;
216     } else if (a.e > b.e) {
217         return false;
218     }
219     return false;
220 }
221
222 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
223                                           MemoryRegionIoeventfd b)
224 {
225     return !memory_region_ioeventfd_before(a, b)
226         && !memory_region_ioeventfd_before(b, a);
227 }
228
229 typedef struct FlatRange FlatRange;
230 typedef struct FlatView FlatView;
231
232 /* Range of memory in the global map.  Addresses are absolute. */
233 struct FlatRange {
234     MemoryRegion *mr;
235     hwaddr offset_in_region;
236     AddrRange addr;
237     uint8_t dirty_log_mask;
238     bool romd_mode;
239     bool readonly;
240 };
241
242 /* Flattened global view of current active memory hierarchy.  Kept in sorted
243  * order.
244  */
245 struct FlatView {
246     unsigned ref;
247     FlatRange *ranges;
248     unsigned nr;
249     unsigned nr_allocated;
250 };
251
252 typedef struct AddressSpaceOps AddressSpaceOps;
253
254 #define FOR_EACH_FLAT_RANGE(var, view)          \
255     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
256
257 static bool flatrange_equal(FlatRange *a, FlatRange *b)
258 {
259     return a->mr == b->mr
260         && addrrange_equal(a->addr, b->addr)
261         && a->offset_in_region == b->offset_in_region
262         && a->romd_mode == b->romd_mode
263         && a->readonly == b->readonly;
264 }
265
266 static void flatview_init(FlatView *view)
267 {
268     view->ref = 1;
269     view->ranges = NULL;
270     view->nr = 0;
271     view->nr_allocated = 0;
272 }
273
274 /* Insert a range into a given position.  Caller is responsible for maintaining
275  * sorting order.
276  */
277 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
278 {
279     if (view->nr == view->nr_allocated) {
280         view->nr_allocated = MAX(2 * view->nr, 10);
281         view->ranges = g_realloc(view->ranges,
282                                     view->nr_allocated * sizeof(*view->ranges));
283     }
284     memmove(view->ranges + pos + 1, view->ranges + pos,
285             (view->nr - pos) * sizeof(FlatRange));
286     view->ranges[pos] = *range;
287     memory_region_ref(range->mr);
288     ++view->nr;
289 }
290
291 static void flatview_destroy(FlatView *view)
292 {
293     int i;
294
295     for (i = 0; i < view->nr; i++) {
296         memory_region_unref(view->ranges[i].mr);
297     }
298     g_free(view->ranges);
299     g_free(view);
300 }
301
302 static void flatview_ref(FlatView *view)
303 {
304     atomic_inc(&view->ref);
305 }
306
307 static void flatview_unref(FlatView *view)
308 {
309     if (atomic_fetch_dec(&view->ref) == 1) {
310         flatview_destroy(view);
311     }
312 }
313
314 static bool can_merge(FlatRange *r1, FlatRange *r2)
315 {
316     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
317         && r1->mr == r2->mr
318         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
319                                 r1->addr.size),
320                      int128_make64(r2->offset_in_region))
321         && r1->dirty_log_mask == r2->dirty_log_mask
322         && r1->romd_mode == r2->romd_mode
323         && r1->readonly == r2->readonly;
324 }
325
326 /* Attempt to simplify a view by merging adjacent ranges */
327 static void flatview_simplify(FlatView *view)
328 {
329     unsigned i, j;
330
331     i = 0;
332     while (i < view->nr) {
333         j = i + 1;
334         while (j < view->nr
335                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
336             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
337             ++j;
338         }
339         ++i;
340         memmove(&view->ranges[i], &view->ranges[j],
341                 (view->nr - j) * sizeof(view->ranges[j]));
342         view->nr -= j - i;
343     }
344 }
345
346 static bool memory_region_big_endian(MemoryRegion *mr)
347 {
348 #ifdef TARGET_WORDS_BIGENDIAN
349     return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
350 #else
351     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
352 #endif
353 }
354
355 static bool memory_region_wrong_endianness(MemoryRegion *mr)
356 {
357 #ifdef TARGET_WORDS_BIGENDIAN
358     return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
359 #else
360     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
361 #endif
362 }
363
364 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
365 {
366     if (memory_region_wrong_endianness(mr)) {
367         switch (size) {
368         case 1:
369             break;
370         case 2:
371             *data = bswap16(*data);
372             break;
373         case 4:
374             *data = bswap32(*data);
375             break;
376         case 8:
377             *data = bswap64(*data);
378             break;
379         default:
380             abort();
381         }
382     }
383 }
384
385 static void memory_region_oldmmio_read_accessor(MemoryRegion *mr,
386                                                 hwaddr addr,
387                                                 uint64_t *value,
388                                                 unsigned size,
389                                                 unsigned shift,
390                                                 uint64_t mask)
391 {
392     uint64_t tmp;
393
394     tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
395     trace_memory_region_ops_read(mr, addr, tmp, size);
396     *value |= (tmp & mask) << shift;
397 }
398
399 static void memory_region_read_accessor(MemoryRegion *mr,
400                                         hwaddr addr,
401                                         uint64_t *value,
402                                         unsigned size,
403                                         unsigned shift,
404                                         uint64_t mask)
405 {
406     uint64_t tmp;
407
408     if (mr->flush_coalesced_mmio) {
409         qemu_flush_coalesced_mmio_buffer();
410     }
411     tmp = mr->ops->read(mr->opaque, addr, size);
412     trace_memory_region_ops_read(mr, addr, tmp, size);
413     *value |= (tmp & mask) << shift;
414 }
415
416 static void memory_region_oldmmio_write_accessor(MemoryRegion *mr,
417                                                  hwaddr addr,
418                                                  uint64_t *value,
419                                                  unsigned size,
420                                                  unsigned shift,
421                                                  uint64_t mask)
422 {
423     uint64_t tmp;
424
425     tmp = (*value >> shift) & mask;
426     trace_memory_region_ops_write(mr, addr, tmp, size);
427     mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
428 }
429
430 static void memory_region_write_accessor(MemoryRegion *mr,
431                                          hwaddr addr,
432                                          uint64_t *value,
433                                          unsigned size,
434                                          unsigned shift,
435                                          uint64_t mask)
436 {
437     uint64_t tmp;
438
439     if (mr->flush_coalesced_mmio) {
440         qemu_flush_coalesced_mmio_buffer();
441     }
442     tmp = (*value >> shift) & mask;
443     trace_memory_region_ops_write(mr, addr, tmp, size);
444     mr->ops->write(mr->opaque, addr, tmp, size);
445 }
446
447 static void access_with_adjusted_size(hwaddr addr,
448                                       uint64_t *value,
449                                       unsigned size,
450                                       unsigned access_size_min,
451                                       unsigned access_size_max,
452                                       void (*access)(MemoryRegion *mr,
453                                                      hwaddr addr,
454                                                      uint64_t *value,
455                                                      unsigned size,
456                                                      unsigned shift,
457                                                      uint64_t mask),
458                                       MemoryRegion *mr)
459 {
460     uint64_t access_mask;
461     unsigned access_size;
462     unsigned i;
463
464     if (!access_size_min) {
465         access_size_min = 1;
466     }
467     if (!access_size_max) {
468         access_size_max = 4;
469     }
470
471     /* FIXME: support unaligned access? */
472     access_size = MAX(MIN(size, access_size_max), access_size_min);
473     access_mask = -1ULL >> (64 - access_size * 8);
474     if (memory_region_big_endian(mr)) {
475         for (i = 0; i < size; i += access_size) {
476             access(mr, addr + i, value, access_size,
477                    (size - access_size - i) * 8, access_mask);
478         }
479     } else {
480         for (i = 0; i < size; i += access_size) {
481             access(mr, addr + i, value, access_size, i * 8, access_mask);
482         }
483     }
484 }
485
486 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
487 {
488     AddressSpace *as;
489
490     while (mr->container) {
491         mr = mr->container;
492     }
493     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
494         if (mr == as->root) {
495             return as;
496         }
497     }
498     return NULL;
499 }
500
501 /* Render a memory region into the global view.  Ranges in @view obscure
502  * ranges in @mr.
503  */
504 static void render_memory_region(FlatView *view,
505                                  MemoryRegion *mr,
506                                  Int128 base,
507                                  AddrRange clip,
508                                  bool readonly)
509 {
510     MemoryRegion *subregion;
511     unsigned i;
512     hwaddr offset_in_region;
513     Int128 remain;
514     Int128 now;
515     FlatRange fr;
516     AddrRange tmp;
517
518     if (!mr->enabled) {
519         return;
520     }
521
522     int128_addto(&base, int128_make64(mr->addr));
523     readonly |= mr->readonly;
524
525     tmp = addrrange_make(base, mr->size);
526
527     if (!addrrange_intersects(tmp, clip)) {
528         return;
529     }
530
531     clip = addrrange_intersection(tmp, clip);
532
533     if (mr->alias) {
534         int128_subfrom(&base, int128_make64(mr->alias->addr));
535         int128_subfrom(&base, int128_make64(mr->alias_offset));
536         render_memory_region(view, mr->alias, base, clip, readonly);
537         return;
538     }
539
540     /* Render subregions in priority order. */
541     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
542         render_memory_region(view, subregion, base, clip, readonly);
543     }
544
545     if (!mr->terminates) {
546         return;
547     }
548
549     offset_in_region = int128_get64(int128_sub(clip.start, base));
550     base = clip.start;
551     remain = clip.size;
552
553     fr.mr = mr;
554     fr.dirty_log_mask = mr->dirty_log_mask;
555     fr.romd_mode = mr->romd_mode;
556     fr.readonly = readonly;
557
558     /* Render the region itself into any gaps left by the current view. */
559     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
560         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
561             continue;
562         }
563         if (int128_lt(base, view->ranges[i].addr.start)) {
564             now = int128_min(remain,
565                              int128_sub(view->ranges[i].addr.start, base));
566             fr.offset_in_region = offset_in_region;
567             fr.addr = addrrange_make(base, now);
568             flatview_insert(view, i, &fr);
569             ++i;
570             int128_addto(&base, now);
571             offset_in_region += int128_get64(now);
572             int128_subfrom(&remain, now);
573         }
574         now = int128_sub(int128_min(int128_add(base, remain),
575                                     addrrange_end(view->ranges[i].addr)),
576                          base);
577         int128_addto(&base, now);
578         offset_in_region += int128_get64(now);
579         int128_subfrom(&remain, now);
580     }
581     if (int128_nz(remain)) {
582         fr.offset_in_region = offset_in_region;
583         fr.addr = addrrange_make(base, remain);
584         flatview_insert(view, i, &fr);
585     }
586 }
587
588 /* Render a memory topology into a list of disjoint absolute ranges. */
589 static FlatView *generate_memory_topology(MemoryRegion *mr)
590 {
591     FlatView *view;
592
593     view = g_new(FlatView, 1);
594     flatview_init(view);
595
596     if (mr) {
597         render_memory_region(view, mr, int128_zero(),
598                              addrrange_make(int128_zero(), int128_2_64()), false);
599     }
600     flatview_simplify(view);
601
602     return view;
603 }
604
605 static void address_space_add_del_ioeventfds(AddressSpace *as,
606                                              MemoryRegionIoeventfd *fds_new,
607                                              unsigned fds_new_nb,
608                                              MemoryRegionIoeventfd *fds_old,
609                                              unsigned fds_old_nb)
610 {
611     unsigned iold, inew;
612     MemoryRegionIoeventfd *fd;
613     MemoryRegionSection section;
614
615     /* Generate a symmetric difference of the old and new fd sets, adding
616      * and deleting as necessary.
617      */
618
619     iold = inew = 0;
620     while (iold < fds_old_nb || inew < fds_new_nb) {
621         if (iold < fds_old_nb
622             && (inew == fds_new_nb
623                 || memory_region_ioeventfd_before(fds_old[iold],
624                                                   fds_new[inew]))) {
625             fd = &fds_old[iold];
626             section = (MemoryRegionSection) {
627                 .address_space = as,
628                 .offset_within_address_space = int128_get64(fd->addr.start),
629                 .size = fd->addr.size,
630             };
631             MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
632                                  fd->match_data, fd->data, fd->e);
633             ++iold;
634         } else if (inew < fds_new_nb
635                    && (iold == fds_old_nb
636                        || memory_region_ioeventfd_before(fds_new[inew],
637                                                          fds_old[iold]))) {
638             fd = &fds_new[inew];
639             section = (MemoryRegionSection) {
640                 .address_space = as,
641                 .offset_within_address_space = int128_get64(fd->addr.start),
642                 .size = fd->addr.size,
643             };
644             MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
645                                  fd->match_data, fd->data, fd->e);
646             ++inew;
647         } else {
648             ++iold;
649             ++inew;
650         }
651     }
652 }
653
654 static FlatView *address_space_get_flatview(AddressSpace *as)
655 {
656     FlatView *view;
657
658     qemu_mutex_lock(&flat_view_mutex);
659     view = as->current_map;
660     flatview_ref(view);
661     qemu_mutex_unlock(&flat_view_mutex);
662     return view;
663 }
664
665 static void address_space_update_ioeventfds(AddressSpace *as)
666 {
667     FlatView *view;
668     FlatRange *fr;
669     unsigned ioeventfd_nb = 0;
670     MemoryRegionIoeventfd *ioeventfds = NULL;
671     AddrRange tmp;
672     unsigned i;
673
674     view = address_space_get_flatview(as);
675     FOR_EACH_FLAT_RANGE(fr, view) {
676         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
677             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
678                                   int128_sub(fr->addr.start,
679                                              int128_make64(fr->offset_in_region)));
680             if (addrrange_intersects(fr->addr, tmp)) {
681                 ++ioeventfd_nb;
682                 ioeventfds = g_realloc(ioeventfds,
683                                           ioeventfd_nb * sizeof(*ioeventfds));
684                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
685                 ioeventfds[ioeventfd_nb-1].addr = tmp;
686             }
687         }
688     }
689
690     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
691                                      as->ioeventfds, as->ioeventfd_nb);
692
693     g_free(as->ioeventfds);
694     as->ioeventfds = ioeventfds;
695     as->ioeventfd_nb = ioeventfd_nb;
696     flatview_unref(view);
697 }
698
699 static void address_space_update_topology_pass(AddressSpace *as,
700                                                const FlatView *old_view,
701                                                const FlatView *new_view,
702                                                bool adding)
703 {
704     unsigned iold, inew;
705     FlatRange *frold, *frnew;
706
707     /* Generate a symmetric difference of the old and new memory maps.
708      * Kill ranges in the old map, and instantiate ranges in the new map.
709      */
710     iold = inew = 0;
711     while (iold < old_view->nr || inew < new_view->nr) {
712         if (iold < old_view->nr) {
713             frold = &old_view->ranges[iold];
714         } else {
715             frold = NULL;
716         }
717         if (inew < new_view->nr) {
718             frnew = &new_view->ranges[inew];
719         } else {
720             frnew = NULL;
721         }
722
723         if (frold
724             && (!frnew
725                 || int128_lt(frold->addr.start, frnew->addr.start)
726                 || (int128_eq(frold->addr.start, frnew->addr.start)
727                     && !flatrange_equal(frold, frnew)))) {
728             /* In old but not in new, or in both but attributes changed. */
729
730             if (!adding) {
731                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
732             }
733
734             ++iold;
735         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
736             /* In both and unchanged (except logging may have changed) */
737
738             if (adding) {
739                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
740                 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
741                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
742                 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
743                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
744                 }
745             }
746
747             ++iold;
748             ++inew;
749         } else {
750             /* In new */
751
752             if (adding) {
753                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
754             }
755
756             ++inew;
757         }
758     }
759 }
760
761
762 static void address_space_update_topology(AddressSpace *as)
763 {
764     FlatView *old_view = address_space_get_flatview(as);
765     FlatView *new_view = generate_memory_topology(as->root);
766
767     address_space_update_topology_pass(as, old_view, new_view, false);
768     address_space_update_topology_pass(as, old_view, new_view, true);
769
770     qemu_mutex_lock(&flat_view_mutex);
771     flatview_unref(as->current_map);
772     as->current_map = new_view;
773     qemu_mutex_unlock(&flat_view_mutex);
774
775     /* Note that all the old MemoryRegions are still alive up to this
776      * point.  This relieves most MemoryListeners from the need to
777      * ref/unref the MemoryRegions they get---unless they use them
778      * outside the iothread mutex, in which case precise reference
779      * counting is necessary.
780      */
781     flatview_unref(old_view);
782
783     address_space_update_ioeventfds(as);
784 }
785
786 void memory_region_transaction_begin(void)
787 {
788     qemu_flush_coalesced_mmio_buffer();
789     ++memory_region_transaction_depth;
790 }
791
792 static void memory_region_clear_pending(void)
793 {
794     memory_region_update_pending = false;
795     ioeventfd_update_pending = false;
796 }
797
798 void memory_region_transaction_commit(void)
799 {
800     AddressSpace *as;
801
802     assert(memory_region_transaction_depth);
803     --memory_region_transaction_depth;
804     if (!memory_region_transaction_depth) {
805         if (memory_region_update_pending) {
806             MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
807
808             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
809                 address_space_update_topology(as);
810             }
811
812             MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
813         } else if (ioeventfd_update_pending) {
814             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
815                 address_space_update_ioeventfds(as);
816             }
817         }
818         memory_region_clear_pending();
819    }
820 }
821
822 static void memory_region_destructor_none(MemoryRegion *mr)
823 {
824 }
825
826 static void memory_region_destructor_ram(MemoryRegion *mr)
827 {
828     qemu_ram_free(mr->ram_addr);
829 }
830
831 static void memory_region_destructor_alias(MemoryRegion *mr)
832 {
833     memory_region_unref(mr->alias);
834 }
835
836 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
837 {
838     qemu_ram_free_from_ptr(mr->ram_addr);
839 }
840
841 static void memory_region_destructor_rom_device(MemoryRegion *mr)
842 {
843     qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
844 }
845
846 static bool memory_region_need_escape(char c)
847 {
848     return c == '/' || c == '[' || c == '\\' || c == ']';
849 }
850
851 static char *memory_region_escape_name(const char *name)
852 {
853     const char *p;
854     char *escaped, *q;
855     uint8_t c;
856     size_t bytes = 0;
857
858     for (p = name; *p; p++) {
859         bytes += memory_region_need_escape(*p) ? 4 : 1;
860     }
861     if (bytes == p - name) {
862        return g_memdup(name, bytes + 1);
863     }
864
865     escaped = g_malloc(bytes + 1);
866     for (p = name, q = escaped; *p; p++) {
867         c = *p;
868         if (unlikely(memory_region_need_escape(c))) {
869             *q++ = '\\';
870             *q++ = 'x';
871             *q++ = "0123456789abcdef"[c >> 4];
872             c = "0123456789abcdef"[c & 15];
873         }
874         *q++ = c;
875     }
876     *q = 0;
877     return escaped;
878 }
879
880 static void object_property_add_child_array(Object *owner,
881                                             const char *name,
882                                             Object *child)
883 {
884     int i;
885     char *base_name = memory_region_escape_name(name);
886
887     for (i = 0; ; i++) {
888         char *full_name = g_strdup_printf("%s[%d]", base_name, i);
889         Error *local_err = NULL;
890
891         object_property_add_child(owner, full_name, child, &local_err);
892         g_free(full_name);
893         if (!local_err) {
894             break;
895         }
896
897         error_free(local_err);
898     }
899
900     g_free(base_name);
901 }
902         
903
904 void memory_region_init(MemoryRegion *mr,
905                         Object *owner,
906                         const char *name,
907                         uint64_t size)
908 {
909     if (!owner) {
910         owner = qdev_get_machine();
911     }
912
913     object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
914     mr->size = int128_make64(size);
915     if (size == UINT64_MAX) {
916         mr->size = int128_2_64();
917     }
918     mr->name = g_strdup(name);
919
920     if (name) {
921         object_property_add_child_array(owner, name, OBJECT(mr));
922         object_unref(OBJECT(mr));
923     }
924 }
925
926 static void memory_region_get_addr(Object *obj, Visitor *v, void *opaque,
927                                    const char *name, Error **errp)
928 {
929     MemoryRegion *mr = MEMORY_REGION(obj);
930     uint64_t value = mr->addr;
931
932     visit_type_uint64(v, &value, name, errp);
933 }
934
935 static void memory_region_get_container(Object *obj, Visitor *v, void *opaque,
936                                         const char *name, Error **errp)
937 {
938     MemoryRegion *mr = MEMORY_REGION(obj);
939     gchar *path = (gchar *)"";
940
941     if (mr->container) {
942         path = object_get_canonical_path(OBJECT(mr->container));
943     }
944     visit_type_str(v, &path, name, errp);
945     if (mr->container) {
946         g_free(path);
947     }
948 }
949
950 static Object *memory_region_resolve_container(Object *obj, void *opaque,
951                                                const char *part)
952 {
953     MemoryRegion *mr = MEMORY_REGION(obj);
954
955     return OBJECT(mr->container);
956 }
957
958 static void memory_region_get_priority(Object *obj, Visitor *v, void *opaque,
959                                        const char *name, Error **errp)
960 {
961     MemoryRegion *mr = MEMORY_REGION(obj);
962     int32_t value = mr->priority;
963
964     visit_type_int32(v, &value, name, errp);
965 }
966
967 static bool memory_region_get_may_overlap(Object *obj, Error **errp)
968 {
969     MemoryRegion *mr = MEMORY_REGION(obj);
970
971     return mr->may_overlap;
972 }
973
974 static void memory_region_get_size(Object *obj, Visitor *v, void *opaque,
975                                    const char *name, Error **errp)
976 {
977     MemoryRegion *mr = MEMORY_REGION(obj);
978     uint64_t value = memory_region_size(mr);
979
980     visit_type_uint64(v, &value, name, errp);
981 }
982
983 static void memory_region_initfn(Object *obj)
984 {
985     MemoryRegion *mr = MEMORY_REGION(obj);
986     ObjectProperty *op;
987
988     mr->ops = &unassigned_mem_ops;
989     mr->enabled = true;
990     mr->romd_mode = true;
991     mr->destructor = memory_region_destructor_none;
992     QTAILQ_INIT(&mr->subregions);
993     QTAILQ_INIT(&mr->coalesced);
994
995     op = object_property_add(OBJECT(mr), "container",
996                              "link<" TYPE_MEMORY_REGION ">",
997                              memory_region_get_container,
998                              NULL, /* memory_region_set_container */
999                              NULL, NULL, &error_abort);
1000     op->resolve = memory_region_resolve_container;
1001
1002     object_property_add(OBJECT(mr), "addr", "uint64",
1003                         memory_region_get_addr,
1004                         NULL, /* memory_region_set_addr */
1005                         NULL, NULL, &error_abort);
1006     object_property_add(OBJECT(mr), "priority", "uint32",
1007                         memory_region_get_priority,
1008                         NULL, /* memory_region_set_priority */
1009                         NULL, NULL, &error_abort);
1010     object_property_add_bool(OBJECT(mr), "may-overlap",
1011                              memory_region_get_may_overlap,
1012                              NULL, /* memory_region_set_may_overlap */
1013                              &error_abort);
1014     object_property_add(OBJECT(mr), "size", "uint64",
1015                         memory_region_get_size,
1016                         NULL, /* memory_region_set_size, */
1017                         NULL, NULL, &error_abort);
1018 }
1019
1020 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1021                                     unsigned size)
1022 {
1023 #ifdef DEBUG_UNASSIGNED
1024     printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1025 #endif
1026     if (current_cpu != NULL) {
1027         cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1028     }
1029     return 0;
1030 }
1031
1032 static void unassigned_mem_write(void *opaque, hwaddr addr,
1033                                  uint64_t val, unsigned size)
1034 {
1035 #ifdef DEBUG_UNASSIGNED
1036     printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1037 #endif
1038     if (current_cpu != NULL) {
1039         cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1040     }
1041 }
1042
1043 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1044                                    unsigned size, bool is_write)
1045 {
1046     return false;
1047 }
1048
1049 const MemoryRegionOps unassigned_mem_ops = {
1050     .valid.accepts = unassigned_mem_accepts,
1051     .endianness = DEVICE_NATIVE_ENDIAN,
1052 };
1053
1054 bool memory_region_access_valid(MemoryRegion *mr,
1055                                 hwaddr addr,
1056                                 unsigned size,
1057                                 bool is_write)
1058 {
1059     int access_size_min, access_size_max;
1060     int access_size, i;
1061
1062     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1063         return false;
1064     }
1065
1066     if (!mr->ops->valid.accepts) {
1067         return true;
1068     }
1069
1070     access_size_min = mr->ops->valid.min_access_size;
1071     if (!mr->ops->valid.min_access_size) {
1072         access_size_min = 1;
1073     }
1074
1075     access_size_max = mr->ops->valid.max_access_size;
1076     if (!mr->ops->valid.max_access_size) {
1077         access_size_max = 4;
1078     }
1079
1080     access_size = MAX(MIN(size, access_size_max), access_size_min);
1081     for (i = 0; i < size; i += access_size) {
1082         if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1083                                     is_write)) {
1084             return false;
1085         }
1086     }
1087
1088     return true;
1089 }
1090
1091 static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
1092                                              hwaddr addr,
1093                                              unsigned size)
1094 {
1095     uint64_t data = 0;
1096
1097     if (mr->ops->read) {
1098         access_with_adjusted_size(addr, &data, size,
1099                                   mr->ops->impl.min_access_size,
1100                                   mr->ops->impl.max_access_size,
1101                                   memory_region_read_accessor, mr);
1102     } else {
1103         access_with_adjusted_size(addr, &data, size, 1, 4,
1104                                   memory_region_oldmmio_read_accessor, mr);
1105     }
1106
1107     return data;
1108 }
1109
1110 static bool memory_region_dispatch_read(MemoryRegion *mr,
1111                                         hwaddr addr,
1112                                         uint64_t *pval,
1113                                         unsigned size)
1114 {
1115     if (!memory_region_access_valid(mr, addr, size, false)) {
1116         *pval = unassigned_mem_read(mr, addr, size);
1117         return true;
1118     }
1119
1120     *pval = memory_region_dispatch_read1(mr, addr, size);
1121     adjust_endianness(mr, pval, size);
1122     return false;
1123 }
1124
1125 static bool memory_region_dispatch_write(MemoryRegion *mr,
1126                                          hwaddr addr,
1127                                          uint64_t data,
1128                                          unsigned size)
1129 {
1130     if (!memory_region_access_valid(mr, addr, size, true)) {
1131         unassigned_mem_write(mr, addr, data, size);
1132         return true;
1133     }
1134
1135     adjust_endianness(mr, &data, size);
1136
1137     if (mr->ops->write) {
1138         access_with_adjusted_size(addr, &data, size,
1139                                   mr->ops->impl.min_access_size,
1140                                   mr->ops->impl.max_access_size,
1141                                   memory_region_write_accessor, mr);
1142     } else {
1143         access_with_adjusted_size(addr, &data, size, 1, 4,
1144                                   memory_region_oldmmio_write_accessor, mr);
1145     }
1146     return false;
1147 }
1148
1149 void memory_region_init_io(MemoryRegion *mr,
1150                            Object *owner,
1151                            const MemoryRegionOps *ops,
1152                            void *opaque,
1153                            const char *name,
1154                            uint64_t size)
1155 {
1156     memory_region_init(mr, owner, name, size);
1157     mr->ops = ops;
1158     mr->opaque = opaque;
1159     mr->terminates = true;
1160     mr->ram_addr = ~(ram_addr_t)0;
1161 }
1162
1163 void memory_region_init_ram(MemoryRegion *mr,
1164                             Object *owner,
1165                             const char *name,
1166                             uint64_t size)
1167 {
1168     memory_region_init(mr, owner, name, size);
1169     mr->ram = true;
1170     mr->terminates = true;
1171     mr->destructor = memory_region_destructor_ram;
1172     mr->ram_addr = qemu_ram_alloc(size, mr);
1173 }
1174
1175 #ifdef __linux__
1176 void memory_region_init_ram_from_file(MemoryRegion *mr,
1177                                       struct Object *owner,
1178                                       const char *name,
1179                                       uint64_t size,
1180                                       bool share,
1181                                       const char *path,
1182                                       Error **errp)
1183 {
1184     memory_region_init(mr, owner, name, size);
1185     mr->ram = true;
1186     mr->terminates = true;
1187     mr->destructor = memory_region_destructor_ram;
1188     mr->ram_addr = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1189 }
1190 #endif
1191
1192 void memory_region_init_ram_ptr(MemoryRegion *mr,
1193                                 Object *owner,
1194                                 const char *name,
1195                                 uint64_t size,
1196                                 void *ptr)
1197 {
1198     memory_region_init(mr, owner, name, size);
1199     mr->ram = true;
1200     mr->terminates = true;
1201     mr->destructor = memory_region_destructor_ram_from_ptr;
1202     mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
1203 }
1204
1205 void memory_region_init_alias(MemoryRegion *mr,
1206                               Object *owner,
1207                               const char *name,
1208                               MemoryRegion *orig,
1209                               hwaddr offset,
1210                               uint64_t size)
1211 {
1212     memory_region_init(mr, owner, name, size);
1213     memory_region_ref(orig);
1214     mr->destructor = memory_region_destructor_alias;
1215     mr->alias = orig;
1216     mr->alias_offset = offset;
1217 }
1218
1219 void memory_region_init_rom_device(MemoryRegion *mr,
1220                                    Object *owner,
1221                                    const MemoryRegionOps *ops,
1222                                    void *opaque,
1223                                    const char *name,
1224                                    uint64_t size)
1225 {
1226     memory_region_init(mr, owner, name, size);
1227     mr->ops = ops;
1228     mr->opaque = opaque;
1229     mr->terminates = true;
1230     mr->rom_device = true;
1231     mr->destructor = memory_region_destructor_rom_device;
1232     mr->ram_addr = qemu_ram_alloc(size, mr);
1233 }
1234
1235 void memory_region_init_iommu(MemoryRegion *mr,
1236                               Object *owner,
1237                               const MemoryRegionIOMMUOps *ops,
1238                               const char *name,
1239                               uint64_t size)
1240 {
1241     memory_region_init(mr, owner, name, size);
1242     mr->iommu_ops = ops,
1243     mr->terminates = true;  /* then re-forwards */
1244     notifier_list_init(&mr->iommu_notify);
1245 }
1246
1247 void memory_region_init_reservation(MemoryRegion *mr,
1248                                     Object *owner,
1249                                     const char *name,
1250                                     uint64_t size)
1251 {
1252     memory_region_init_io(mr, owner, &unassigned_mem_ops, mr, name, size);
1253 }
1254
1255 static void memory_region_finalize(Object *obj)
1256 {
1257     MemoryRegion *mr = MEMORY_REGION(obj);
1258
1259     assert(QTAILQ_EMPTY(&mr->subregions));
1260     assert(memory_region_transaction_depth == 0);
1261     mr->destructor(mr);
1262     memory_region_clear_coalescing(mr);
1263     g_free((char *)mr->name);
1264     g_free(mr->ioeventfds);
1265 }
1266
1267 void memory_region_destroy(MemoryRegion *mr)
1268 {
1269     object_unparent(OBJECT(mr));
1270 }
1271
1272
1273 Object *memory_region_owner(MemoryRegion *mr)
1274 {
1275     Object *obj = OBJECT(mr);
1276     return obj->parent;
1277 }
1278
1279 void memory_region_ref(MemoryRegion *mr)
1280 {
1281     /* MMIO callbacks most likely will access data that belongs
1282      * to the owner, hence the need to ref/unref the owner whenever
1283      * the memory region is in use.
1284      *
1285      * The memory region is a child of its owner.  As long as the
1286      * owner doesn't call unparent itself on the memory region,
1287      * ref-ing the owner will also keep the memory region alive.
1288      * Memory regions without an owner are supposed to never go away,
1289      * but we still ref/unref them for debugging purposes.
1290      */
1291     Object *obj = OBJECT(mr);
1292     if (obj && obj->parent) {
1293         object_ref(obj->parent);
1294     } else {
1295         object_ref(obj);
1296     }
1297 }
1298
1299 void memory_region_unref(MemoryRegion *mr)
1300 {
1301     Object *obj = OBJECT(mr);
1302     if (obj && obj->parent) {
1303         object_unref(obj->parent);
1304     } else {
1305         object_unref(obj);
1306     }
1307 }
1308
1309 uint64_t memory_region_size(MemoryRegion *mr)
1310 {
1311     if (int128_eq(mr->size, int128_2_64())) {
1312         return UINT64_MAX;
1313     }
1314     return int128_get64(mr->size);
1315 }
1316
1317 const char *memory_region_name(MemoryRegion *mr)
1318 {
1319     return mr->name;
1320 }
1321
1322 bool memory_region_is_ram(MemoryRegion *mr)
1323 {
1324     return mr->ram;
1325 }
1326
1327 bool memory_region_is_logging(MemoryRegion *mr)
1328 {
1329     return mr->dirty_log_mask;
1330 }
1331
1332 bool memory_region_is_rom(MemoryRegion *mr)
1333 {
1334     return mr->ram && mr->readonly;
1335 }
1336
1337 bool memory_region_is_iommu(MemoryRegion *mr)
1338 {
1339     return mr->iommu_ops;
1340 }
1341
1342 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1343 {
1344     notifier_list_add(&mr->iommu_notify, n);
1345 }
1346
1347 void memory_region_unregister_iommu_notifier(Notifier *n)
1348 {
1349     notifier_remove(n);
1350 }
1351
1352 void memory_region_notify_iommu(MemoryRegion *mr,
1353                                 IOMMUTLBEntry entry)
1354 {
1355     assert(memory_region_is_iommu(mr));
1356     notifier_list_notify(&mr->iommu_notify, &entry);
1357 }
1358
1359 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1360 {
1361     uint8_t mask = 1 << client;
1362
1363     memory_region_transaction_begin();
1364     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1365     memory_region_update_pending |= mr->enabled;
1366     memory_region_transaction_commit();
1367 }
1368
1369 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1370                              hwaddr size, unsigned client)
1371 {
1372     assert(mr->terminates);
1373     return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1374 }
1375
1376 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1377                              hwaddr size)
1378 {
1379     assert(mr->terminates);
1380     cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size);
1381 }
1382
1383 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1384                                         hwaddr size, unsigned client)
1385 {
1386     bool ret;
1387     assert(mr->terminates);
1388     ret = cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1389     if (ret) {
1390         cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1391     }
1392     return ret;
1393 }
1394
1395
1396 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1397 {
1398     AddressSpace *as;
1399     FlatRange *fr;
1400
1401     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1402         FlatView *view = address_space_get_flatview(as);
1403         FOR_EACH_FLAT_RANGE(fr, view) {
1404             if (fr->mr == mr) {
1405                 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1406             }
1407         }
1408         flatview_unref(view);
1409     }
1410 }
1411
1412 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1413 {
1414     if (mr->readonly != readonly) {
1415         memory_region_transaction_begin();
1416         mr->readonly = readonly;
1417         memory_region_update_pending |= mr->enabled;
1418         memory_region_transaction_commit();
1419     }
1420 }
1421
1422 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1423 {
1424     if (mr->romd_mode != romd_mode) {
1425         memory_region_transaction_begin();
1426         mr->romd_mode = romd_mode;
1427         memory_region_update_pending |= mr->enabled;
1428         memory_region_transaction_commit();
1429     }
1430 }
1431
1432 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1433                                hwaddr size, unsigned client)
1434 {
1435     assert(mr->terminates);
1436     cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1437 }
1438
1439 int memory_region_get_fd(MemoryRegion *mr)
1440 {
1441     if (mr->alias) {
1442         return memory_region_get_fd(mr->alias);
1443     }
1444
1445     assert(mr->terminates);
1446
1447     return qemu_get_ram_fd(mr->ram_addr & TARGET_PAGE_MASK);
1448 }
1449
1450 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1451 {
1452     if (mr->alias) {
1453         return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1454     }
1455
1456     assert(mr->terminates);
1457
1458     return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1459 }
1460
1461 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1462 {
1463     FlatView *view;
1464     FlatRange *fr;
1465     CoalescedMemoryRange *cmr;
1466     AddrRange tmp;
1467     MemoryRegionSection section;
1468
1469     view = address_space_get_flatview(as);
1470     FOR_EACH_FLAT_RANGE(fr, view) {
1471         if (fr->mr == mr) {
1472             section = (MemoryRegionSection) {
1473                 .address_space = as,
1474                 .offset_within_address_space = int128_get64(fr->addr.start),
1475                 .size = fr->addr.size,
1476             };
1477
1478             MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1479                                  int128_get64(fr->addr.start),
1480                                  int128_get64(fr->addr.size));
1481             QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1482                 tmp = addrrange_shift(cmr->addr,
1483                                       int128_sub(fr->addr.start,
1484                                                  int128_make64(fr->offset_in_region)));
1485                 if (!addrrange_intersects(tmp, fr->addr)) {
1486                     continue;
1487                 }
1488                 tmp = addrrange_intersection(tmp, fr->addr);
1489                 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1490                                      int128_get64(tmp.start),
1491                                      int128_get64(tmp.size));
1492             }
1493         }
1494     }
1495     flatview_unref(view);
1496 }
1497
1498 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1499 {
1500     AddressSpace *as;
1501
1502     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1503         memory_region_update_coalesced_range_as(mr, as);
1504     }
1505 }
1506
1507 void memory_region_set_coalescing(MemoryRegion *mr)
1508 {
1509     memory_region_clear_coalescing(mr);
1510     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1511 }
1512
1513 void memory_region_add_coalescing(MemoryRegion *mr,
1514                                   hwaddr offset,
1515                                   uint64_t size)
1516 {
1517     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1518
1519     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1520     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1521     memory_region_update_coalesced_range(mr);
1522     memory_region_set_flush_coalesced(mr);
1523 }
1524
1525 void memory_region_clear_coalescing(MemoryRegion *mr)
1526 {
1527     CoalescedMemoryRange *cmr;
1528     bool updated = false;
1529
1530     qemu_flush_coalesced_mmio_buffer();
1531     mr->flush_coalesced_mmio = false;
1532
1533     while (!QTAILQ_EMPTY(&mr->coalesced)) {
1534         cmr = QTAILQ_FIRST(&mr->coalesced);
1535         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1536         g_free(cmr);
1537         updated = true;
1538     }
1539
1540     if (updated) {
1541         memory_region_update_coalesced_range(mr);
1542     }
1543 }
1544
1545 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1546 {
1547     mr->flush_coalesced_mmio = true;
1548 }
1549
1550 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1551 {
1552     qemu_flush_coalesced_mmio_buffer();
1553     if (QTAILQ_EMPTY(&mr->coalesced)) {
1554         mr->flush_coalesced_mmio = false;
1555     }
1556 }
1557
1558 void memory_region_add_eventfd(MemoryRegion *mr,
1559                                hwaddr addr,
1560                                unsigned size,
1561                                bool match_data,
1562                                uint64_t data,
1563                                EventNotifier *e)
1564 {
1565     MemoryRegionIoeventfd mrfd = {
1566         .addr.start = int128_make64(addr),
1567         .addr.size = int128_make64(size),
1568         .match_data = match_data,
1569         .data = data,
1570         .e = e,
1571     };
1572     unsigned i;
1573
1574     adjust_endianness(mr, &mrfd.data, size);
1575     memory_region_transaction_begin();
1576     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1577         if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1578             break;
1579         }
1580     }
1581     ++mr->ioeventfd_nb;
1582     mr->ioeventfds = g_realloc(mr->ioeventfds,
1583                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1584     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1585             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1586     mr->ioeventfds[i] = mrfd;
1587     ioeventfd_update_pending |= mr->enabled;
1588     memory_region_transaction_commit();
1589 }
1590
1591 void memory_region_del_eventfd(MemoryRegion *mr,
1592                                hwaddr addr,
1593                                unsigned size,
1594                                bool match_data,
1595                                uint64_t data,
1596                                EventNotifier *e)
1597 {
1598     MemoryRegionIoeventfd mrfd = {
1599         .addr.start = int128_make64(addr),
1600         .addr.size = int128_make64(size),
1601         .match_data = match_data,
1602         .data = data,
1603         .e = e,
1604     };
1605     unsigned i;
1606
1607     adjust_endianness(mr, &mrfd.data, size);
1608     memory_region_transaction_begin();
1609     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1610         if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1611             break;
1612         }
1613     }
1614     assert(i != mr->ioeventfd_nb);
1615     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1616             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1617     --mr->ioeventfd_nb;
1618     mr->ioeventfds = g_realloc(mr->ioeventfds,
1619                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1620     ioeventfd_update_pending |= mr->enabled;
1621     memory_region_transaction_commit();
1622 }
1623
1624 static void memory_region_update_container_subregions(MemoryRegion *subregion)
1625 {
1626     hwaddr offset = subregion->addr;
1627     MemoryRegion *mr = subregion->container;
1628     MemoryRegion *other;
1629
1630     memory_region_transaction_begin();
1631
1632     memory_region_ref(subregion);
1633     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1634         if (subregion->may_overlap || other->may_overlap) {
1635             continue;
1636         }
1637         if (int128_ge(int128_make64(offset),
1638                       int128_add(int128_make64(other->addr), other->size))
1639             || int128_le(int128_add(int128_make64(offset), subregion->size),
1640                          int128_make64(other->addr))) {
1641             continue;
1642         }
1643 #if 0
1644         printf("warning: subregion collision %llx/%llx (%s) "
1645                "vs %llx/%llx (%s)\n",
1646                (unsigned long long)offset,
1647                (unsigned long long)int128_get64(subregion->size),
1648                subregion->name,
1649                (unsigned long long)other->addr,
1650                (unsigned long long)int128_get64(other->size),
1651                other->name);
1652 #endif
1653     }
1654     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1655         if (subregion->priority >= other->priority) {
1656             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1657             goto done;
1658         }
1659     }
1660     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1661 done:
1662     memory_region_update_pending |= mr->enabled && subregion->enabled;
1663     memory_region_transaction_commit();
1664 }
1665
1666 static void memory_region_add_subregion_common(MemoryRegion *mr,
1667                                                hwaddr offset,
1668                                                MemoryRegion *subregion)
1669 {
1670     assert(!subregion->container);
1671     subregion->container = mr;
1672     subregion->addr = offset;
1673     memory_region_update_container_subregions(subregion);
1674 }
1675
1676 void memory_region_add_subregion(MemoryRegion *mr,
1677                                  hwaddr offset,
1678                                  MemoryRegion *subregion)
1679 {
1680     subregion->may_overlap = false;
1681     subregion->priority = 0;
1682     memory_region_add_subregion_common(mr, offset, subregion);
1683 }
1684
1685 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1686                                          hwaddr offset,
1687                                          MemoryRegion *subregion,
1688                                          int priority)
1689 {
1690     subregion->may_overlap = true;
1691     subregion->priority = priority;
1692     memory_region_add_subregion_common(mr, offset, subregion);
1693 }
1694
1695 void memory_region_del_subregion(MemoryRegion *mr,
1696                                  MemoryRegion *subregion)
1697 {
1698     memory_region_transaction_begin();
1699     assert(subregion->container == mr);
1700     subregion->container = NULL;
1701     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1702     memory_region_unref(subregion);
1703     memory_region_update_pending |= mr->enabled && subregion->enabled;
1704     memory_region_transaction_commit();
1705 }
1706
1707 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1708 {
1709     if (enabled == mr->enabled) {
1710         return;
1711     }
1712     memory_region_transaction_begin();
1713     mr->enabled = enabled;
1714     memory_region_update_pending = true;
1715     memory_region_transaction_commit();
1716 }
1717
1718 static void memory_region_readd_subregion(MemoryRegion *mr)
1719 {
1720     MemoryRegion *container = mr->container;
1721
1722     if (container) {
1723         memory_region_transaction_begin();
1724         memory_region_ref(mr);
1725         memory_region_del_subregion(container, mr);
1726         mr->container = container;
1727         memory_region_update_container_subregions(mr);
1728         memory_region_unref(mr);
1729         memory_region_transaction_commit();
1730     }
1731 }
1732
1733 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1734 {
1735     if (addr != mr->addr) {
1736         mr->addr = addr;
1737         memory_region_readd_subregion(mr);
1738     }
1739 }
1740
1741 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1742 {
1743     assert(mr->alias);
1744
1745     if (offset == mr->alias_offset) {
1746         return;
1747     }
1748
1749     memory_region_transaction_begin();
1750     mr->alias_offset = offset;
1751     memory_region_update_pending |= mr->enabled;
1752     memory_region_transaction_commit();
1753 }
1754
1755 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1756 {
1757     return mr->ram_addr;
1758 }
1759
1760 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1761 {
1762     const AddrRange *addr = addr_;
1763     const FlatRange *fr = fr_;
1764
1765     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1766         return -1;
1767     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1768         return 1;
1769     }
1770     return 0;
1771 }
1772
1773 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
1774 {
1775     return bsearch(&addr, view->ranges, view->nr,
1776                    sizeof(FlatRange), cmp_flatrange_addr);
1777 }
1778
1779 bool memory_region_present(MemoryRegion *container, hwaddr addr)
1780 {
1781     MemoryRegion *mr = memory_region_find(container, addr, 1).mr;
1782     if (!mr || (mr == container)) {
1783         return false;
1784     }
1785     memory_region_unref(mr);
1786     return true;
1787 }
1788
1789 bool memory_region_is_mapped(MemoryRegion *mr)
1790 {
1791     return mr->container ? true : false;
1792 }
1793
1794 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1795                                        hwaddr addr, uint64_t size)
1796 {
1797     MemoryRegionSection ret = { .mr = NULL };
1798     MemoryRegion *root;
1799     AddressSpace *as;
1800     AddrRange range;
1801     FlatView *view;
1802     FlatRange *fr;
1803
1804     addr += mr->addr;
1805     for (root = mr; root->container; ) {
1806         root = root->container;
1807         addr += root->addr;
1808     }
1809
1810     as = memory_region_to_address_space(root);
1811     if (!as) {
1812         return ret;
1813     }
1814     range = addrrange_make(int128_make64(addr), int128_make64(size));
1815
1816     view = address_space_get_flatview(as);
1817     fr = flatview_lookup(view, range);
1818     if (!fr) {
1819         flatview_unref(view);
1820         return ret;
1821     }
1822
1823     while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
1824         --fr;
1825     }
1826
1827     ret.mr = fr->mr;
1828     ret.address_space = as;
1829     range = addrrange_intersection(range, fr->addr);
1830     ret.offset_within_region = fr->offset_in_region;
1831     ret.offset_within_region += int128_get64(int128_sub(range.start,
1832                                                         fr->addr.start));
1833     ret.size = range.size;
1834     ret.offset_within_address_space = int128_get64(range.start);
1835     ret.readonly = fr->readonly;
1836     memory_region_ref(ret.mr);
1837
1838     flatview_unref(view);
1839     return ret;
1840 }
1841
1842 void address_space_sync_dirty_bitmap(AddressSpace *as)
1843 {
1844     FlatView *view;
1845     FlatRange *fr;
1846
1847     view = address_space_get_flatview(as);
1848     FOR_EACH_FLAT_RANGE(fr, view) {
1849         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1850     }
1851     flatview_unref(view);
1852 }
1853
1854 void memory_global_dirty_log_start(void)
1855 {
1856     global_dirty_log = true;
1857     MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1858 }
1859
1860 void memory_global_dirty_log_stop(void)
1861 {
1862     global_dirty_log = false;
1863     MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1864 }
1865
1866 static void listener_add_address_space(MemoryListener *listener,
1867                                        AddressSpace *as)
1868 {
1869     FlatView *view;
1870     FlatRange *fr;
1871
1872     if (listener->address_space_filter
1873         && listener->address_space_filter != as) {
1874         return;
1875     }
1876
1877     if (global_dirty_log) {
1878         if (listener->log_global_start) {
1879             listener->log_global_start(listener);
1880         }
1881     }
1882
1883     view = address_space_get_flatview(as);
1884     FOR_EACH_FLAT_RANGE(fr, view) {
1885         MemoryRegionSection section = {
1886             .mr = fr->mr,
1887             .address_space = as,
1888             .offset_within_region = fr->offset_in_region,
1889             .size = fr->addr.size,
1890             .offset_within_address_space = int128_get64(fr->addr.start),
1891             .readonly = fr->readonly,
1892         };
1893         if (listener->region_add) {
1894             listener->region_add(listener, &section);
1895         }
1896     }
1897     flatview_unref(view);
1898 }
1899
1900 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
1901 {
1902     MemoryListener *other = NULL;
1903     AddressSpace *as;
1904
1905     listener->address_space_filter = filter;
1906     if (QTAILQ_EMPTY(&memory_listeners)
1907         || listener->priority >= QTAILQ_LAST(&memory_listeners,
1908                                              memory_listeners)->priority) {
1909         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1910     } else {
1911         QTAILQ_FOREACH(other, &memory_listeners, link) {
1912             if (listener->priority < other->priority) {
1913                 break;
1914             }
1915         }
1916         QTAILQ_INSERT_BEFORE(other, listener, link);
1917     }
1918
1919     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1920         listener_add_address_space(listener, as);
1921     }
1922 }
1923
1924 void memory_listener_unregister(MemoryListener *listener)
1925 {
1926     QTAILQ_REMOVE(&memory_listeners, listener, link);
1927 }
1928
1929 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
1930 {
1931     if (QTAILQ_EMPTY(&address_spaces)) {
1932         memory_init();
1933     }
1934
1935     memory_region_transaction_begin();
1936     as->root = root;
1937     as->current_map = g_new(FlatView, 1);
1938     flatview_init(as->current_map);
1939     as->ioeventfd_nb = 0;
1940     as->ioeventfds = NULL;
1941     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
1942     as->name = g_strdup(name ? name : "anonymous");
1943     address_space_init_dispatch(as);
1944     memory_region_update_pending |= root->enabled;
1945     memory_region_transaction_commit();
1946 }
1947
1948 void address_space_destroy(AddressSpace *as)
1949 {
1950     MemoryListener *listener;
1951
1952     /* Flush out anything from MemoryListeners listening in on this */
1953     memory_region_transaction_begin();
1954     as->root = NULL;
1955     memory_region_transaction_commit();
1956     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
1957     address_space_destroy_dispatch(as);
1958
1959     QTAILQ_FOREACH(listener, &memory_listeners, link) {
1960         assert(listener->address_space_filter != as);
1961     }
1962
1963     flatview_unref(as->current_map);
1964     g_free(as->name);
1965     g_free(as->ioeventfds);
1966 }
1967
1968 bool io_mem_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size)
1969 {
1970     return memory_region_dispatch_read(mr, addr, pval, size);
1971 }
1972
1973 bool io_mem_write(MemoryRegion *mr, hwaddr addr,
1974                   uint64_t val, unsigned size)
1975 {
1976     return memory_region_dispatch_write(mr, addr, val, size);
1977 }
1978
1979 typedef struct MemoryRegionList MemoryRegionList;
1980
1981 struct MemoryRegionList {
1982     const MemoryRegion *mr;
1983     bool printed;
1984     QTAILQ_ENTRY(MemoryRegionList) queue;
1985 };
1986
1987 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1988
1989 static void mtree_print_mr(fprintf_function mon_printf, void *f,
1990                            const MemoryRegion *mr, unsigned int level,
1991                            hwaddr base,
1992                            MemoryRegionListHead *alias_print_queue)
1993 {
1994     MemoryRegionList *new_ml, *ml, *next_ml;
1995     MemoryRegionListHead submr_print_queue;
1996     const MemoryRegion *submr;
1997     unsigned int i;
1998
1999     if (!mr || !mr->enabled) {
2000         return;
2001     }
2002
2003     for (i = 0; i < level; i++) {
2004         mon_printf(f, "  ");
2005     }
2006
2007     if (mr->alias) {
2008         MemoryRegionList *ml;
2009         bool found = false;
2010
2011         /* check if the alias is already in the queue */
2012         QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2013             if (ml->mr == mr->alias && !ml->printed) {
2014                 found = true;
2015             }
2016         }
2017
2018         if (!found) {
2019             ml = g_new(MemoryRegionList, 1);
2020             ml->mr = mr->alias;
2021             ml->printed = false;
2022             QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2023         }
2024         mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2025                    " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2026                    "-" TARGET_FMT_plx "\n",
2027                    base + mr->addr,
2028                    base + mr->addr
2029                    + (int128_nz(mr->size) ?
2030                       (hwaddr)int128_get64(int128_sub(mr->size,
2031                                                       int128_one())) : 0),
2032                    mr->priority,
2033                    mr->romd_mode ? 'R' : '-',
2034                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2035                                                                        : '-',
2036                    mr->name,
2037                    mr->alias->name,
2038                    mr->alias_offset,
2039                    mr->alias_offset
2040                    + (int128_nz(mr->size) ?
2041                       (hwaddr)int128_get64(int128_sub(mr->size,
2042                                                       int128_one())) : 0));
2043     } else {
2044         mon_printf(f,
2045                    TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
2046                    base + mr->addr,
2047                    base + mr->addr
2048                    + (int128_nz(mr->size) ?
2049                       (hwaddr)int128_get64(int128_sub(mr->size,
2050                                                       int128_one())) : 0),
2051                    mr->priority,
2052                    mr->romd_mode ? 'R' : '-',
2053                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2054                                                                        : '-',
2055                    mr->name);
2056     }
2057
2058     QTAILQ_INIT(&submr_print_queue);
2059
2060     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2061         new_ml = g_new(MemoryRegionList, 1);
2062         new_ml->mr = submr;
2063         QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2064             if (new_ml->mr->addr < ml->mr->addr ||
2065                 (new_ml->mr->addr == ml->mr->addr &&
2066                  new_ml->mr->priority > ml->mr->priority)) {
2067                 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2068                 new_ml = NULL;
2069                 break;
2070             }
2071         }
2072         if (new_ml) {
2073             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2074         }
2075     }
2076
2077     QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2078         mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2079                        alias_print_queue);
2080     }
2081
2082     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2083         g_free(ml);
2084     }
2085 }
2086
2087 void mtree_info(fprintf_function mon_printf, void *f)
2088 {
2089     MemoryRegionListHead ml_head;
2090     MemoryRegionList *ml, *ml2;
2091     AddressSpace *as;
2092
2093     QTAILQ_INIT(&ml_head);
2094
2095     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2096         mon_printf(f, "%s\n", as->name);
2097         mtree_print_mr(mon_printf, f, as->root, 0, 0, &ml_head);
2098     }
2099
2100     mon_printf(f, "aliases\n");
2101     /* print aliased regions */
2102     QTAILQ_FOREACH(ml, &ml_head, queue) {
2103         if (!ml->printed) {
2104             mon_printf(f, "%s\n", ml->mr->name);
2105             mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
2106         }
2107     }
2108
2109     QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2110         g_free(ml);
2111     }
2112 }
2113
2114 static const TypeInfo memory_region_info = {
2115     .parent             = TYPE_OBJECT,
2116     .name               = TYPE_MEMORY_REGION,
2117     .instance_size      = sizeof(MemoryRegion),
2118     .instance_init      = memory_region_initfn,
2119     .instance_finalize  = memory_region_finalize,
2120 };
2121
2122 static void memory_register_types(void)
2123 {
2124     type_register_static(&memory_region_info);
2125 }
2126
2127 type_init(memory_register_types)