]> rtime.felk.cvut.cz Git - lisovros/qemu_apohw.git/blob - hw/rtl8139.c
pci: convert to QEMU Object Model
[lisovros/qemu_apohw.git] / hw / rtl8139.c
1 /**
2  * QEMU RTL8139 emulation
3  *
4  * Copyright (c) 2006 Igor Kovalenko
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23
24  * Modifications:
25  *  2006-Jan-28  Mark Malakanov :   TSAD and CSCR implementation (for Windows driver)
26  *
27  *  2006-Apr-28  Juergen Lock   :   EEPROM emulation changes for FreeBSD driver
28  *                                  HW revision ID changes for FreeBSD driver
29  *
30  *  2006-Jul-01  Igor Kovalenko :   Implemented loopback mode for FreeBSD driver
31  *                                  Corrected packet transfer reassembly routine for 8139C+ mode
32  *                                  Rearranged debugging print statements
33  *                                  Implemented PCI timer interrupt (disabled by default)
34  *                                  Implemented Tally Counters, increased VM load/save version
35  *                                  Implemented IP/TCP/UDP checksum task offloading
36  *
37  *  2006-Jul-04  Igor Kovalenko :   Implemented TCP segmentation offloading
38  *                                  Fixed MTU=1500 for produced ethernet frames
39  *
40  *  2006-Jul-09  Igor Kovalenko :   Fixed TCP header length calculation while processing
41  *                                  segmentation offloading
42  *                                  Removed slirp.h dependency
43  *                                  Added rx/tx buffer reset when enabling rx/tx operation
44  *
45  *  2010-Feb-04  Frediano Ziglio:   Rewrote timer support using QEMU timer only
46  *                                  when strictly needed (required for for
47  *                                  Darwin)
48  *  2011-Mar-22  Benjamin Poirier:  Implemented VLAN offloading
49  */
50
51 /* For crc32 */
52 #include <zlib.h>
53
54 #include "hw.h"
55 #include "pci.h"
56 #include "dma.h"
57 #include "qemu-timer.h"
58 #include "net.h"
59 #include "loader.h"
60 #include "sysemu.h"
61 #include "iov.h"
62
63 /* debug RTL8139 card */
64 //#define DEBUG_RTL8139 1
65
66 #define PCI_FREQUENCY 33000000L
67
68 /* debug RTL8139 card C+ mode only */
69 //#define DEBUG_RTL8139CP 1
70
71 #define SET_MASKED(input, mask, curr) \
72     ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
73
74 /* arg % size for size which is a power of 2 */
75 #define MOD2(input, size) \
76     ( ( input ) & ( size - 1 )  )
77
78 #define ETHER_ADDR_LEN 6
79 #define ETHER_TYPE_LEN 2
80 #define ETH_HLEN (ETHER_ADDR_LEN * 2 + ETHER_TYPE_LEN)
81 #define ETH_P_IP    0x0800      /* Internet Protocol packet */
82 #define ETH_P_8021Q 0x8100      /* 802.1Q VLAN Extended Header  */
83 #define ETH_MTU     1500
84
85 #define VLAN_TCI_LEN 2
86 #define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
87
88 #if defined (DEBUG_RTL8139)
89 #  define DPRINTF(fmt, ...) \
90     do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
91 #else
92 static inline GCC_FMT_ATTR(1, 2) int DPRINTF(const char *fmt, ...)
93 {
94     return 0;
95 }
96 #endif
97
98 /* Symbolic offsets to registers. */
99 enum RTL8139_registers {
100     MAC0 = 0,        /* Ethernet hardware address. */
101     MAR0 = 8,        /* Multicast filter. */
102     TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
103                      /* Dump Tally Conter control register(64bit). C+ mode only */
104     TxAddr0 = 0x20,  /* Tx descriptors (also four 32bit). */
105     RxBuf = 0x30,
106     ChipCmd = 0x37,
107     RxBufPtr = 0x38,
108     RxBufAddr = 0x3A,
109     IntrMask = 0x3C,
110     IntrStatus = 0x3E,
111     TxConfig = 0x40,
112     RxConfig = 0x44,
113     Timer = 0x48,        /* A general-purpose counter. */
114     RxMissed = 0x4C,    /* 24 bits valid, write clears. */
115     Cfg9346 = 0x50,
116     Config0 = 0x51,
117     Config1 = 0x52,
118     FlashReg = 0x54,
119     MediaStatus = 0x58,
120     Config3 = 0x59,
121     Config4 = 0x5A,        /* absent on RTL-8139A */
122     HltClk = 0x5B,
123     MultiIntr = 0x5C,
124     PCIRevisionID = 0x5E,
125     TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
126     BasicModeCtrl = 0x62,
127     BasicModeStatus = 0x64,
128     NWayAdvert = 0x66,
129     NWayLPAR = 0x68,
130     NWayExpansion = 0x6A,
131     /* Undocumented registers, but required for proper operation. */
132     FIFOTMS = 0x70,        /* FIFO Control and test. */
133     CSCR = 0x74,        /* Chip Status and Configuration Register. */
134     PARA78 = 0x78,
135     PARA7c = 0x7c,        /* Magic transceiver parameter register. */
136     Config5 = 0xD8,        /* absent on RTL-8139A */
137     /* C+ mode */
138     TxPoll        = 0xD9,    /* Tell chip to check Tx descriptors for work */
139     RxMaxSize    = 0xDA, /* Max size of an Rx packet (8169 only) */
140     CpCmd        = 0xE0, /* C+ Command register (C+ mode only) */
141     IntrMitigate    = 0xE2,    /* rx/tx interrupt mitigation control */
142     RxRingAddrLO    = 0xE4, /* 64-bit start addr of Rx ring */
143     RxRingAddrHI    = 0xE8, /* 64-bit start addr of Rx ring */
144     TxThresh    = 0xEC, /* Early Tx threshold */
145 };
146
147 enum ClearBitMasks {
148     MultiIntrClear = 0xF000,
149     ChipCmdClear = 0xE2,
150     Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
151 };
152
153 enum ChipCmdBits {
154     CmdReset = 0x10,
155     CmdRxEnb = 0x08,
156     CmdTxEnb = 0x04,
157     RxBufEmpty = 0x01,
158 };
159
160 /* C+ mode */
161 enum CplusCmdBits {
162     CPlusRxVLAN   = 0x0040, /* enable receive VLAN detagging */
163     CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
164     CPlusRxEnb    = 0x0002,
165     CPlusTxEnb    = 0x0001,
166 };
167
168 /* Interrupt register bits, using my own meaningful names. */
169 enum IntrStatusBits {
170     PCIErr = 0x8000,
171     PCSTimeout = 0x4000,
172     RxFIFOOver = 0x40,
173     RxUnderrun = 0x20,
174     RxOverflow = 0x10,
175     TxErr = 0x08,
176     TxOK = 0x04,
177     RxErr = 0x02,
178     RxOK = 0x01,
179
180     RxAckBits = RxFIFOOver | RxOverflow | RxOK,
181 };
182
183 enum TxStatusBits {
184     TxHostOwns = 0x2000,
185     TxUnderrun = 0x4000,
186     TxStatOK = 0x8000,
187     TxOutOfWindow = 0x20000000,
188     TxAborted = 0x40000000,
189     TxCarrierLost = 0x80000000,
190 };
191 enum RxStatusBits {
192     RxMulticast = 0x8000,
193     RxPhysical = 0x4000,
194     RxBroadcast = 0x2000,
195     RxBadSymbol = 0x0020,
196     RxRunt = 0x0010,
197     RxTooLong = 0x0008,
198     RxCRCErr = 0x0004,
199     RxBadAlign = 0x0002,
200     RxStatusOK = 0x0001,
201 };
202
203 /* Bits in RxConfig. */
204 enum rx_mode_bits {
205     AcceptErr = 0x20,
206     AcceptRunt = 0x10,
207     AcceptBroadcast = 0x08,
208     AcceptMulticast = 0x04,
209     AcceptMyPhys = 0x02,
210     AcceptAllPhys = 0x01,
211 };
212
213 /* Bits in TxConfig. */
214 enum tx_config_bits {
215
216         /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
217         TxIFGShift = 24,
218         TxIFG84 = (0 << TxIFGShift),    /* 8.4us / 840ns (10 / 100Mbps) */
219         TxIFG88 = (1 << TxIFGShift),    /* 8.8us / 880ns (10 / 100Mbps) */
220         TxIFG92 = (2 << TxIFGShift),    /* 9.2us / 920ns (10 / 100Mbps) */
221         TxIFG96 = (3 << TxIFGShift),    /* 9.6us / 960ns (10 / 100Mbps) */
222
223     TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
224     TxCRC = (1 << 16),    /* DISABLE appending CRC to end of Tx packets */
225     TxClearAbt = (1 << 0),    /* Clear abort (WO) */
226     TxDMAShift = 8,        /* DMA burst value (0-7) is shifted this many bits */
227     TxRetryShift = 4,    /* TXRR value (0-15) is shifted this many bits */
228
229     TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
230 };
231
232
233 /* Transmit Status of All Descriptors (TSAD) Register */
234 enum TSAD_bits {
235  TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
236  TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
237  TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
238  TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
239  TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
240  TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
241  TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
242  TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
243  TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
244  TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
245  TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
246  TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
247  TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
248  TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
249  TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
250  TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
251 };
252
253
254 /* Bits in Config1 */
255 enum Config1Bits {
256     Cfg1_PM_Enable = 0x01,
257     Cfg1_VPD_Enable = 0x02,
258     Cfg1_PIO = 0x04,
259     Cfg1_MMIO = 0x08,
260     LWAKE = 0x10,        /* not on 8139, 8139A */
261     Cfg1_Driver_Load = 0x20,
262     Cfg1_LED0 = 0x40,
263     Cfg1_LED1 = 0x80,
264     SLEEP = (1 << 1),    /* only on 8139, 8139A */
265     PWRDN = (1 << 0),    /* only on 8139, 8139A */
266 };
267
268 /* Bits in Config3 */
269 enum Config3Bits {
270     Cfg3_FBtBEn    = (1 << 0), /* 1 = Fast Back to Back */
271     Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
272     Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
273     Cfg3_CardB_En  = (1 << 3), /* 1 = enable CardBus registers */
274     Cfg3_LinkUp    = (1 << 4), /* 1 = wake up on link up */
275     Cfg3_Magic     = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
276     Cfg3_PARM_En   = (1 << 6), /* 0 = software can set twister parameters */
277     Cfg3_GNTSel    = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
278 };
279
280 /* Bits in Config4 */
281 enum Config4Bits {
282     LWPTN = (1 << 2),    /* not on 8139, 8139A */
283 };
284
285 /* Bits in Config5 */
286 enum Config5Bits {
287     Cfg5_PME_STS     = (1 << 0), /* 1 = PCI reset resets PME_Status */
288     Cfg5_LANWake     = (1 << 1), /* 1 = enable LANWake signal */
289     Cfg5_LDPS        = (1 << 2), /* 0 = save power when link is down */
290     Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
291     Cfg5_UWF         = (1 << 4), /* 1 = accept unicast wakeup frame */
292     Cfg5_MWF         = (1 << 5), /* 1 = accept multicast wakeup frame */
293     Cfg5_BWF         = (1 << 6), /* 1 = accept broadcast wakeup frame */
294 };
295
296 enum RxConfigBits {
297     /* rx fifo threshold */
298     RxCfgFIFOShift = 13,
299     RxCfgFIFONone = (7 << RxCfgFIFOShift),
300
301     /* Max DMA burst */
302     RxCfgDMAShift = 8,
303     RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
304
305     /* rx ring buffer length */
306     RxCfgRcv8K = 0,
307     RxCfgRcv16K = (1 << 11),
308     RxCfgRcv32K = (1 << 12),
309     RxCfgRcv64K = (1 << 11) | (1 << 12),
310
311     /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
312     RxNoWrap = (1 << 7),
313 };
314
315 /* Twister tuning parameters from RealTek.
316    Completely undocumented, but required to tune bad links on some boards. */
317 /*
318 enum CSCRBits {
319     CSCR_LinkOKBit = 0x0400,
320     CSCR_LinkChangeBit = 0x0800,
321     CSCR_LinkStatusBits = 0x0f000,
322     CSCR_LinkDownOffCmd = 0x003c0,
323     CSCR_LinkDownCmd = 0x0f3c0,
324 */
325 enum CSCRBits {
326     CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
327     CSCR_LD  = 1<<9,  /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
328     CSCR_HEART_BIT = 1<<8,  /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
329     CSCR_JBEN = 1<<7,  /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
330     CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
331     CSCR_F_Connect  = 1<<5,  /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
332     CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
333     CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
334     CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
335 };
336
337 enum Cfg9346Bits {
338     Cfg9346_Lock = 0x00,
339     Cfg9346_Unlock = 0xC0,
340 };
341
342 typedef enum {
343     CH_8139 = 0,
344     CH_8139_K,
345     CH_8139A,
346     CH_8139A_G,
347     CH_8139B,
348     CH_8130,
349     CH_8139C,
350     CH_8100,
351     CH_8100B_8139D,
352     CH_8101,
353 } chip_t;
354
355 enum chip_flags {
356     HasHltClk = (1 << 0),
357     HasLWake = (1 << 1),
358 };
359
360 #define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
361     (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
362 #define HW_REVID_MASK    HW_REVID(1, 1, 1, 1, 1, 1, 1)
363
364 #define RTL8139_PCI_REVID_8139      0x10
365 #define RTL8139_PCI_REVID_8139CPLUS 0x20
366
367 #define RTL8139_PCI_REVID           RTL8139_PCI_REVID_8139CPLUS
368
369 /* Size is 64 * 16bit words */
370 #define EEPROM_9346_ADDR_BITS 6
371 #define EEPROM_9346_SIZE  (1 << EEPROM_9346_ADDR_BITS)
372 #define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
373
374 enum Chip9346Operation
375 {
376     Chip9346_op_mask = 0xc0,          /* 10 zzzzzz */
377     Chip9346_op_read = 0x80,          /* 10 AAAAAA */
378     Chip9346_op_write = 0x40,         /* 01 AAAAAA D(15)..D(0) */
379     Chip9346_op_ext_mask = 0xf0,      /* 11 zzzzzz */
380     Chip9346_op_write_enable = 0x30,  /* 00 11zzzz */
381     Chip9346_op_write_all = 0x10,     /* 00 01zzzz */
382     Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
383 };
384
385 enum Chip9346Mode
386 {
387     Chip9346_none = 0,
388     Chip9346_enter_command_mode,
389     Chip9346_read_command,
390     Chip9346_data_read,      /* from output register */
391     Chip9346_data_write,     /* to input register, then to contents at specified address */
392     Chip9346_data_write_all, /* to input register, then filling contents */
393 };
394
395 typedef struct EEprom9346
396 {
397     uint16_t contents[EEPROM_9346_SIZE];
398     int      mode;
399     uint32_t tick;
400     uint8_t  address;
401     uint16_t input;
402     uint16_t output;
403
404     uint8_t eecs;
405     uint8_t eesk;
406     uint8_t eedi;
407     uint8_t eedo;
408 } EEprom9346;
409
410 typedef struct RTL8139TallyCounters
411 {
412     /* Tally counters */
413     uint64_t   TxOk;
414     uint64_t   RxOk;
415     uint64_t   TxERR;
416     uint32_t   RxERR;
417     uint16_t   MissPkt;
418     uint16_t   FAE;
419     uint32_t   Tx1Col;
420     uint32_t   TxMCol;
421     uint64_t   RxOkPhy;
422     uint64_t   RxOkBrd;
423     uint32_t   RxOkMul;
424     uint16_t   TxAbt;
425     uint16_t   TxUndrn;
426 } RTL8139TallyCounters;
427
428 /* Clears all tally counters */
429 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
430
431 typedef struct RTL8139State {
432     PCIDevice dev;
433     uint8_t phys[8]; /* mac address */
434     uint8_t mult[8]; /* multicast mask array */
435
436     uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
437     uint32_t TxAddr[4];   /* TxAddr0 */
438     uint32_t RxBuf;       /* Receive buffer */
439     uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
440     uint32_t RxBufPtr;
441     uint32_t RxBufAddr;
442
443     uint16_t IntrStatus;
444     uint16_t IntrMask;
445
446     uint32_t TxConfig;
447     uint32_t RxConfig;
448     uint32_t RxMissed;
449
450     uint16_t CSCR;
451
452     uint8_t  Cfg9346;
453     uint8_t  Config0;
454     uint8_t  Config1;
455     uint8_t  Config3;
456     uint8_t  Config4;
457     uint8_t  Config5;
458
459     uint8_t  clock_enabled;
460     uint8_t  bChipCmdState;
461
462     uint16_t MultiIntr;
463
464     uint16_t BasicModeCtrl;
465     uint16_t BasicModeStatus;
466     uint16_t NWayAdvert;
467     uint16_t NWayLPAR;
468     uint16_t NWayExpansion;
469
470     uint16_t CpCmd;
471     uint8_t  TxThresh;
472
473     NICState *nic;
474     NICConf conf;
475
476     /* C ring mode */
477     uint32_t   currTxDesc;
478
479     /* C+ mode */
480     uint32_t   cplus_enabled;
481
482     uint32_t   currCPlusRxDesc;
483     uint32_t   currCPlusTxDesc;
484
485     uint32_t   RxRingAddrLO;
486     uint32_t   RxRingAddrHI;
487
488     EEprom9346 eeprom;
489
490     uint32_t   TCTR;
491     uint32_t   TimerInt;
492     int64_t    TCTR_base;
493
494     /* Tally counters */
495     RTL8139TallyCounters tally_counters;
496
497     /* Non-persistent data */
498     uint8_t   *cplus_txbuffer;
499     int        cplus_txbuffer_len;
500     int        cplus_txbuffer_offset;
501
502     /* PCI interrupt timer */
503     QEMUTimer *timer;
504     int64_t TimerExpire;
505
506     MemoryRegion bar_io;
507     MemoryRegion bar_mem;
508
509     /* Support migration to/from old versions */
510     int rtl8139_mmio_io_addr_dummy;
511 } RTL8139State;
512
513 /* Writes tally counters to memory via DMA */
514 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr);
515
516 static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time);
517
518 static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
519 {
520     DPRINTF("eeprom command 0x%02x\n", command);
521
522     switch (command & Chip9346_op_mask)
523     {
524         case Chip9346_op_read:
525         {
526             eeprom->address = command & EEPROM_9346_ADDR_MASK;
527             eeprom->output = eeprom->contents[eeprom->address];
528             eeprom->eedo = 0;
529             eeprom->tick = 0;
530             eeprom->mode = Chip9346_data_read;
531             DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
532                 eeprom->address, eeprom->output);
533         }
534         break;
535
536         case Chip9346_op_write:
537         {
538             eeprom->address = command & EEPROM_9346_ADDR_MASK;
539             eeprom->input = 0;
540             eeprom->tick = 0;
541             eeprom->mode = Chip9346_none; /* Chip9346_data_write */
542             DPRINTF("eeprom begin write to address 0x%02x\n",
543                 eeprom->address);
544         }
545         break;
546         default:
547             eeprom->mode = Chip9346_none;
548             switch (command & Chip9346_op_ext_mask)
549             {
550                 case Chip9346_op_write_enable:
551                     DPRINTF("eeprom write enabled\n");
552                     break;
553                 case Chip9346_op_write_all:
554                     DPRINTF("eeprom begin write all\n");
555                     break;
556                 case Chip9346_op_write_disable:
557                     DPRINTF("eeprom write disabled\n");
558                     break;
559             }
560             break;
561     }
562 }
563
564 static void prom9346_shift_clock(EEprom9346 *eeprom)
565 {
566     int bit = eeprom->eedi?1:0;
567
568     ++ eeprom->tick;
569
570     DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
571         eeprom->eedo);
572
573     switch (eeprom->mode)
574     {
575         case Chip9346_enter_command_mode:
576             if (bit)
577             {
578                 eeprom->mode = Chip9346_read_command;
579                 eeprom->tick = 0;
580                 eeprom->input = 0;
581                 DPRINTF("eeprom: +++ synchronized, begin command read\n");
582             }
583             break;
584
585         case Chip9346_read_command:
586             eeprom->input = (eeprom->input << 1) | (bit & 1);
587             if (eeprom->tick == 8)
588             {
589                 prom9346_decode_command(eeprom, eeprom->input & 0xff);
590             }
591             break;
592
593         case Chip9346_data_read:
594             eeprom->eedo = (eeprom->output & 0x8000)?1:0;
595             eeprom->output <<= 1;
596             if (eeprom->tick == 16)
597             {
598 #if 1
599         // the FreeBSD drivers (rl and re) don't explicitly toggle
600         // CS between reads (or does setting Cfg9346 to 0 count too?),
601         // so we need to enter wait-for-command state here
602                 eeprom->mode = Chip9346_enter_command_mode;
603                 eeprom->input = 0;
604                 eeprom->tick = 0;
605
606                 DPRINTF("eeprom: +++ end of read, awaiting next command\n");
607 #else
608         // original behaviour
609                 ++eeprom->address;
610                 eeprom->address &= EEPROM_9346_ADDR_MASK;
611                 eeprom->output = eeprom->contents[eeprom->address];
612                 eeprom->tick = 0;
613
614                 DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
615                     eeprom->address, eeprom->output);
616 #endif
617             }
618             break;
619
620         case Chip9346_data_write:
621             eeprom->input = (eeprom->input << 1) | (bit & 1);
622             if (eeprom->tick == 16)
623             {
624                 DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
625                     eeprom->address, eeprom->input);
626
627                 eeprom->contents[eeprom->address] = eeprom->input;
628                 eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
629                 eeprom->tick = 0;
630                 eeprom->input = 0;
631             }
632             break;
633
634         case Chip9346_data_write_all:
635             eeprom->input = (eeprom->input << 1) | (bit & 1);
636             if (eeprom->tick == 16)
637             {
638                 int i;
639                 for (i = 0; i < EEPROM_9346_SIZE; i++)
640                 {
641                     eeprom->contents[i] = eeprom->input;
642                 }
643                 DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
644
645                 eeprom->mode = Chip9346_enter_command_mode;
646                 eeprom->tick = 0;
647                 eeprom->input = 0;
648             }
649             break;
650
651         default:
652             break;
653     }
654 }
655
656 static int prom9346_get_wire(RTL8139State *s)
657 {
658     EEprom9346 *eeprom = &s->eeprom;
659     if (!eeprom->eecs)
660         return 0;
661
662     return eeprom->eedo;
663 }
664
665 /* FIXME: This should be merged into/replaced by eeprom93xx.c.  */
666 static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
667 {
668     EEprom9346 *eeprom = &s->eeprom;
669     uint8_t old_eecs = eeprom->eecs;
670     uint8_t old_eesk = eeprom->eesk;
671
672     eeprom->eecs = eecs;
673     eeprom->eesk = eesk;
674     eeprom->eedi = eedi;
675
676     DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
677         eeprom->eesk, eeprom->eedi, eeprom->eedo);
678
679     if (!old_eecs && eecs)
680     {
681         /* Synchronize start */
682         eeprom->tick = 0;
683         eeprom->input = 0;
684         eeprom->output = 0;
685         eeprom->mode = Chip9346_enter_command_mode;
686
687         DPRINTF("=== eeprom: begin access, enter command mode\n");
688     }
689
690     if (!eecs)
691     {
692         DPRINTF("=== eeprom: end access\n");
693         return;
694     }
695
696     if (!old_eesk && eesk)
697     {
698         /* SK front rules */
699         prom9346_shift_clock(eeprom);
700     }
701 }
702
703 static void rtl8139_update_irq(RTL8139State *s)
704 {
705     int isr;
706     isr = (s->IntrStatus & s->IntrMask) & 0xffff;
707
708     DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
709         s->IntrMask);
710
711     qemu_set_irq(s->dev.irq[0], (isr != 0));
712 }
713
714 #define POLYNOMIAL 0x04c11db6
715
716 /* From FreeBSD */
717 /* XXX: optimize */
718 static int compute_mcast_idx(const uint8_t *ep)
719 {
720     uint32_t crc;
721     int carry, i, j;
722     uint8_t b;
723
724     crc = 0xffffffff;
725     for (i = 0; i < 6; i++) {
726         b = *ep++;
727         for (j = 0; j < 8; j++) {
728             carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
729             crc <<= 1;
730             b >>= 1;
731             if (carry)
732                 crc = ((crc ^ POLYNOMIAL) | carry);
733         }
734     }
735     return (crc >> 26);
736 }
737
738 static int rtl8139_RxWrap(RTL8139State *s)
739 {
740     /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
741     return (s->RxConfig & (1 << 7));
742 }
743
744 static int rtl8139_receiver_enabled(RTL8139State *s)
745 {
746     return s->bChipCmdState & CmdRxEnb;
747 }
748
749 static int rtl8139_transmitter_enabled(RTL8139State *s)
750 {
751     return s->bChipCmdState & CmdTxEnb;
752 }
753
754 static int rtl8139_cp_receiver_enabled(RTL8139State *s)
755 {
756     return s->CpCmd & CPlusRxEnb;
757 }
758
759 static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
760 {
761     return s->CpCmd & CPlusTxEnb;
762 }
763
764 static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
765 {
766     if (s->RxBufAddr + size > s->RxBufferSize)
767     {
768         int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
769
770         /* write packet data */
771         if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
772         {
773             DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
774
775             if (size > wrapped)
776             {
777                 pci_dma_write(&s->dev, s->RxBuf + s->RxBufAddr,
778                               buf, size-wrapped);
779             }
780
781             /* reset buffer pointer */
782             s->RxBufAddr = 0;
783
784             pci_dma_write(&s->dev, s->RxBuf + s->RxBufAddr,
785                           buf + (size-wrapped), wrapped);
786
787             s->RxBufAddr = wrapped;
788
789             return;
790         }
791     }
792
793     /* non-wrapping path or overwrapping enabled */
794     pci_dma_write(&s->dev, s->RxBuf + s->RxBufAddr, buf, size);
795
796     s->RxBufAddr += size;
797 }
798
799 #define MIN_BUF_SIZE 60
800 static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
801 {
802 #if TARGET_PHYS_ADDR_BITS > 32
803     return low | ((target_phys_addr_t)high << 32);
804 #else
805     return low;
806 #endif
807 }
808
809 static int rtl8139_can_receive(VLANClientState *nc)
810 {
811     RTL8139State *s = DO_UPCAST(NICState, nc, nc)->opaque;
812     int avail;
813
814     /* Receive (drop) packets if card is disabled.  */
815     if (!s->clock_enabled)
816       return 1;
817     if (!rtl8139_receiver_enabled(s))
818       return 1;
819
820     if (rtl8139_cp_receiver_enabled(s)) {
821         /* ??? Flow control not implemented in c+ mode.
822            This is a hack to work around slirp deficiencies anyway.  */
823         return 1;
824     } else {
825         avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
826                      s->RxBufferSize);
827         return (avail == 0 || avail >= 1514);
828     }
829 }
830
831 static ssize_t rtl8139_do_receive(VLANClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
832 {
833     RTL8139State *s = DO_UPCAST(NICState, nc, nc)->opaque;
834     /* size is the length of the buffer passed to the driver */
835     int size = size_;
836     const uint8_t *dot1q_buf = NULL;
837
838     uint32_t packet_header = 0;
839
840     uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN];
841     static const uint8_t broadcast_macaddr[6] =
842         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
843
844     DPRINTF(">>> received len=%d\n", size);
845
846     /* test if board clock is stopped */
847     if (!s->clock_enabled)
848     {
849         DPRINTF("stopped ==========================\n");
850         return -1;
851     }
852
853     /* first check if receiver is enabled */
854
855     if (!rtl8139_receiver_enabled(s))
856     {
857         DPRINTF("receiver disabled ================\n");
858         return -1;
859     }
860
861     /* XXX: check this */
862     if (s->RxConfig & AcceptAllPhys) {
863         /* promiscuous: receive all */
864         DPRINTF(">>> packet received in promiscuous mode\n");
865
866     } else {
867         if (!memcmp(buf,  broadcast_macaddr, 6)) {
868             /* broadcast address */
869             if (!(s->RxConfig & AcceptBroadcast))
870             {
871                 DPRINTF(">>> broadcast packet rejected\n");
872
873                 /* update tally counter */
874                 ++s->tally_counters.RxERR;
875
876                 return size;
877             }
878
879             packet_header |= RxBroadcast;
880
881             DPRINTF(">>> broadcast packet received\n");
882
883             /* update tally counter */
884             ++s->tally_counters.RxOkBrd;
885
886         } else if (buf[0] & 0x01) {
887             /* multicast */
888             if (!(s->RxConfig & AcceptMulticast))
889             {
890                 DPRINTF(">>> multicast packet rejected\n");
891
892                 /* update tally counter */
893                 ++s->tally_counters.RxERR;
894
895                 return size;
896             }
897
898             int mcast_idx = compute_mcast_idx(buf);
899
900             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
901             {
902                 DPRINTF(">>> multicast address mismatch\n");
903
904                 /* update tally counter */
905                 ++s->tally_counters.RxERR;
906
907                 return size;
908             }
909
910             packet_header |= RxMulticast;
911
912             DPRINTF(">>> multicast packet received\n");
913
914             /* update tally counter */
915             ++s->tally_counters.RxOkMul;
916
917         } else if (s->phys[0] == buf[0] &&
918                    s->phys[1] == buf[1] &&
919                    s->phys[2] == buf[2] &&
920                    s->phys[3] == buf[3] &&
921                    s->phys[4] == buf[4] &&
922                    s->phys[5] == buf[5]) {
923             /* match */
924             if (!(s->RxConfig & AcceptMyPhys))
925             {
926                 DPRINTF(">>> rejecting physical address matching packet\n");
927
928                 /* update tally counter */
929                 ++s->tally_counters.RxERR;
930
931                 return size;
932             }
933
934             packet_header |= RxPhysical;
935
936             DPRINTF(">>> physical address matching packet received\n");
937
938             /* update tally counter */
939             ++s->tally_counters.RxOkPhy;
940
941         } else {
942
943             DPRINTF(">>> unknown packet\n");
944
945             /* update tally counter */
946             ++s->tally_counters.RxERR;
947
948             return size;
949         }
950     }
951
952     /* if too small buffer, then expand it
953      * Include some tailroom in case a vlan tag is later removed. */
954     if (size < MIN_BUF_SIZE + VLAN_HLEN) {
955         memcpy(buf1, buf, size);
956         memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size);
957         buf = buf1;
958         if (size < MIN_BUF_SIZE) {
959             size = MIN_BUF_SIZE;
960         }
961     }
962
963     if (rtl8139_cp_receiver_enabled(s))
964     {
965         DPRINTF("in C+ Rx mode ================\n");
966
967         /* begin C+ receiver mode */
968
969 /* w0 ownership flag */
970 #define CP_RX_OWN (1<<31)
971 /* w0 end of ring flag */
972 #define CP_RX_EOR (1<<30)
973 /* w0 bits 0...12 : buffer size */
974 #define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
975 /* w1 tag available flag */
976 #define CP_RX_TAVA (1<<16)
977 /* w1 bits 0...15 : VLAN tag */
978 #define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
979 /* w2 low  32bit of Rx buffer ptr */
980 /* w3 high 32bit of Rx buffer ptr */
981
982         int descriptor = s->currCPlusRxDesc;
983         dma_addr_t cplus_rx_ring_desc;
984
985         cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
986         cplus_rx_ring_desc += 16 * descriptor;
987
988         DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
989             "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI,
990             s->RxRingAddrLO, cplus_rx_ring_desc);
991
992         uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
993
994         pci_dma_read(&s->dev, cplus_rx_ring_desc, &val, 4);
995         rxdw0 = le32_to_cpu(val);
996         pci_dma_read(&s->dev, cplus_rx_ring_desc+4, &val, 4);
997         rxdw1 = le32_to_cpu(val);
998         pci_dma_read(&s->dev, cplus_rx_ring_desc+8, &val, 4);
999         rxbufLO = le32_to_cpu(val);
1000         pci_dma_read(&s->dev, cplus_rx_ring_desc+12, &val, 4);
1001         rxbufHI = le32_to_cpu(val);
1002
1003         DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
1004             descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
1005
1006         if (!(rxdw0 & CP_RX_OWN))
1007         {
1008             DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
1009                 descriptor);
1010
1011             s->IntrStatus |= RxOverflow;
1012             ++s->RxMissed;
1013
1014             /* update tally counter */
1015             ++s->tally_counters.RxERR;
1016             ++s->tally_counters.MissPkt;
1017
1018             rtl8139_update_irq(s);
1019             return size_;
1020         }
1021
1022         uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1023
1024         /* write VLAN info to descriptor variables. */
1025         if (s->CpCmd & CPlusRxVLAN && be16_to_cpup((uint16_t *)
1026                 &buf[ETHER_ADDR_LEN * 2]) == ETH_P_8021Q) {
1027             dot1q_buf = &buf[ETHER_ADDR_LEN * 2];
1028             size -= VLAN_HLEN;
1029             /* if too small buffer, use the tailroom added duing expansion */
1030             if (size < MIN_BUF_SIZE) {
1031                 size = MIN_BUF_SIZE;
1032             }
1033
1034             rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1035             /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1036             rxdw1 |= CP_RX_TAVA | le16_to_cpup((uint16_t *)
1037                 &dot1q_buf[ETHER_TYPE_LEN]);
1038
1039             DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1040                 be16_to_cpup((uint16_t *)&dot1q_buf[ETHER_TYPE_LEN]));
1041         } else {
1042             /* reset VLAN tag flag */
1043             rxdw1 &= ~CP_RX_TAVA;
1044         }
1045
1046         /* TODO: scatter the packet over available receive ring descriptors space */
1047
1048         if (size+4 > rx_space)
1049         {
1050             DPRINTF("C+ Rx mode : descriptor %d size %d received %d + 4\n",
1051                 descriptor, rx_space, size);
1052
1053             s->IntrStatus |= RxOverflow;
1054             ++s->RxMissed;
1055
1056             /* update tally counter */
1057             ++s->tally_counters.RxERR;
1058             ++s->tally_counters.MissPkt;
1059
1060             rtl8139_update_irq(s);
1061             return size_;
1062         }
1063
1064         dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1065
1066         /* receive/copy to target memory */
1067         if (dot1q_buf) {
1068             pci_dma_write(&s->dev, rx_addr, buf, 2 * ETHER_ADDR_LEN);
1069             pci_dma_write(&s->dev, rx_addr + 2 * ETHER_ADDR_LEN,
1070                           buf + 2 * ETHER_ADDR_LEN + VLAN_HLEN,
1071                           size - 2 * ETHER_ADDR_LEN);
1072         } else {
1073             pci_dma_write(&s->dev, rx_addr, buf, size);
1074         }
1075
1076         if (s->CpCmd & CPlusRxChkSum)
1077         {
1078             /* do some packet checksumming */
1079         }
1080
1081         /* write checksum */
1082         val = cpu_to_le32(crc32(0, buf, size_));
1083         pci_dma_write(&s->dev, rx_addr+size, (uint8_t *)&val, 4);
1084
1085 /* first segment of received packet flag */
1086 #define CP_RX_STATUS_FS (1<<29)
1087 /* last segment of received packet flag */
1088 #define CP_RX_STATUS_LS (1<<28)
1089 /* multicast packet flag */
1090 #define CP_RX_STATUS_MAR (1<<26)
1091 /* physical-matching packet flag */
1092 #define CP_RX_STATUS_PAM (1<<25)
1093 /* broadcast packet flag */
1094 #define CP_RX_STATUS_BAR (1<<24)
1095 /* runt packet flag */
1096 #define CP_RX_STATUS_RUNT (1<<19)
1097 /* crc error flag */
1098 #define CP_RX_STATUS_CRC (1<<18)
1099 /* IP checksum error flag */
1100 #define CP_RX_STATUS_IPF (1<<15)
1101 /* UDP checksum error flag */
1102 #define CP_RX_STATUS_UDPF (1<<14)
1103 /* TCP checksum error flag */
1104 #define CP_RX_STATUS_TCPF (1<<13)
1105
1106         /* transfer ownership to target */
1107         rxdw0 &= ~CP_RX_OWN;
1108
1109         /* set first segment bit */
1110         rxdw0 |= CP_RX_STATUS_FS;
1111
1112         /* set last segment bit */
1113         rxdw0 |= CP_RX_STATUS_LS;
1114
1115         /* set received packet type flags */
1116         if (packet_header & RxBroadcast)
1117             rxdw0 |= CP_RX_STATUS_BAR;
1118         if (packet_header & RxMulticast)
1119             rxdw0 |= CP_RX_STATUS_MAR;
1120         if (packet_header & RxPhysical)
1121             rxdw0 |= CP_RX_STATUS_PAM;
1122
1123         /* set received size */
1124         rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1125         rxdw0 |= (size+4);
1126
1127         /* update ring data */
1128         val = cpu_to_le32(rxdw0);
1129         pci_dma_write(&s->dev, cplus_rx_ring_desc, (uint8_t *)&val, 4);
1130         val = cpu_to_le32(rxdw1);
1131         pci_dma_write(&s->dev, cplus_rx_ring_desc+4, (uint8_t *)&val, 4);
1132
1133         /* update tally counter */
1134         ++s->tally_counters.RxOk;
1135
1136         /* seek to next Rx descriptor */
1137         if (rxdw0 & CP_RX_EOR)
1138         {
1139             s->currCPlusRxDesc = 0;
1140         }
1141         else
1142         {
1143             ++s->currCPlusRxDesc;
1144         }
1145
1146         DPRINTF("done C+ Rx mode ----------------\n");
1147
1148     }
1149     else
1150     {
1151         DPRINTF("in ring Rx mode ================\n");
1152
1153         /* begin ring receiver mode */
1154         int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1155
1156         /* if receiver buffer is empty then avail == 0 */
1157
1158         if (avail != 0 && size + 8 >= avail)
1159         {
1160             DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1161                 "read 0x%04x === available 0x%04x need 0x%04x\n",
1162                 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1163
1164             s->IntrStatus |= RxOverflow;
1165             ++s->RxMissed;
1166             rtl8139_update_irq(s);
1167             return size_;
1168         }
1169
1170         packet_header |= RxStatusOK;
1171
1172         packet_header |= (((size+4) << 16) & 0xffff0000);
1173
1174         /* write header */
1175         uint32_t val = cpu_to_le32(packet_header);
1176
1177         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1178
1179         rtl8139_write_buffer(s, buf, size);
1180
1181         /* write checksum */
1182         val = cpu_to_le32(crc32(0, buf, size));
1183         rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1184
1185         /* correct buffer write pointer */
1186         s->RxBufAddr = MOD2((s->RxBufAddr + 3) & ~0x3, s->RxBufferSize);
1187
1188         /* now we can signal we have received something */
1189
1190         DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1191             s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1192     }
1193
1194     s->IntrStatus |= RxOK;
1195
1196     if (do_interrupt)
1197     {
1198         rtl8139_update_irq(s);
1199     }
1200
1201     return size_;
1202 }
1203
1204 static ssize_t rtl8139_receive(VLANClientState *nc, const uint8_t *buf, size_t size)
1205 {
1206     return rtl8139_do_receive(nc, buf, size, 1);
1207 }
1208
1209 static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1210 {
1211     s->RxBufferSize = bufferSize;
1212     s->RxBufPtr  = 0;
1213     s->RxBufAddr = 0;
1214 }
1215
1216 static void rtl8139_reset(DeviceState *d)
1217 {
1218     RTL8139State *s = container_of(d, RTL8139State, dev.qdev);
1219     int i;
1220
1221     /* restore MAC address */
1222     memcpy(s->phys, s->conf.macaddr.a, 6);
1223
1224     /* reset interrupt mask */
1225     s->IntrStatus = 0;
1226     s->IntrMask = 0;
1227
1228     rtl8139_update_irq(s);
1229
1230     /* mark all status registers as owned by host */
1231     for (i = 0; i < 4; ++i)
1232     {
1233         s->TxStatus[i] = TxHostOwns;
1234     }
1235
1236     s->currTxDesc = 0;
1237     s->currCPlusRxDesc = 0;
1238     s->currCPlusTxDesc = 0;
1239
1240     s->RxRingAddrLO = 0;
1241     s->RxRingAddrHI = 0;
1242
1243     s->RxBuf = 0;
1244
1245     rtl8139_reset_rxring(s, 8192);
1246
1247     /* ACK the reset */
1248     s->TxConfig = 0;
1249
1250 #if 0
1251 //    s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139  HasHltClk
1252     s->clock_enabled = 0;
1253 #else
1254     s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1255     s->clock_enabled = 1;
1256 #endif
1257
1258     s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1259
1260     /* set initial state data */
1261     s->Config0 = 0x0; /* No boot ROM */
1262     s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1263     s->Config3 = 0x1; /* fast back-to-back compatible */
1264     s->Config5 = 0x0;
1265
1266     s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1267
1268     s->CpCmd   = 0x0; /* reset C+ mode */
1269     s->cplus_enabled = 0;
1270
1271
1272 //    s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1273 //    s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1274     s->BasicModeCtrl = 0x1000; // autonegotiation
1275
1276     s->BasicModeStatus  = 0x7809;
1277     //s->BasicModeStatus |= 0x0040; /* UTP medium */
1278     s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1279     s->BasicModeStatus |= 0x0004; /* link is up */
1280
1281     s->NWayAdvert    = 0x05e1; /* all modes, full duplex */
1282     s->NWayLPAR      = 0x05e1; /* all modes, full duplex */
1283     s->NWayExpansion = 0x0001; /* autonegotiation supported */
1284
1285     /* also reset timer and disable timer interrupt */
1286     s->TCTR = 0;
1287     s->TimerInt = 0;
1288     s->TCTR_base = 0;
1289
1290     /* reset tally counters */
1291     RTL8139TallyCounters_clear(&s->tally_counters);
1292 }
1293
1294 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1295 {
1296     counters->TxOk = 0;
1297     counters->RxOk = 0;
1298     counters->TxERR = 0;
1299     counters->RxERR = 0;
1300     counters->MissPkt = 0;
1301     counters->FAE = 0;
1302     counters->Tx1Col = 0;
1303     counters->TxMCol = 0;
1304     counters->RxOkPhy = 0;
1305     counters->RxOkBrd = 0;
1306     counters->RxOkMul = 0;
1307     counters->TxAbt = 0;
1308     counters->TxUndrn = 0;
1309 }
1310
1311 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr)
1312 {
1313     RTL8139TallyCounters *tally_counters = &s->tally_counters;
1314     uint16_t val16;
1315     uint32_t val32;
1316     uint64_t val64;
1317
1318     val64 = cpu_to_le64(tally_counters->TxOk);
1319     pci_dma_write(&s->dev, tc_addr + 0,     (uint8_t *)&val64, 8);
1320
1321     val64 = cpu_to_le64(tally_counters->RxOk);
1322     pci_dma_write(&s->dev, tc_addr + 8,     (uint8_t *)&val64, 8);
1323
1324     val64 = cpu_to_le64(tally_counters->TxERR);
1325     pci_dma_write(&s->dev, tc_addr + 16,    (uint8_t *)&val64, 8);
1326
1327     val32 = cpu_to_le32(tally_counters->RxERR);
1328     pci_dma_write(&s->dev, tc_addr + 24,    (uint8_t *)&val32, 4);
1329
1330     val16 = cpu_to_le16(tally_counters->MissPkt);
1331     pci_dma_write(&s->dev, tc_addr + 28,    (uint8_t *)&val16, 2);
1332
1333     val16 = cpu_to_le16(tally_counters->FAE);
1334     pci_dma_write(&s->dev, tc_addr + 30,    (uint8_t *)&val16, 2);
1335
1336     val32 = cpu_to_le32(tally_counters->Tx1Col);
1337     pci_dma_write(&s->dev, tc_addr + 32,    (uint8_t *)&val32, 4);
1338
1339     val32 = cpu_to_le32(tally_counters->TxMCol);
1340     pci_dma_write(&s->dev, tc_addr + 36,    (uint8_t *)&val32, 4);
1341
1342     val64 = cpu_to_le64(tally_counters->RxOkPhy);
1343     pci_dma_write(&s->dev, tc_addr + 40,    (uint8_t *)&val64, 8);
1344
1345     val64 = cpu_to_le64(tally_counters->RxOkBrd);
1346     pci_dma_write(&s->dev, tc_addr + 48,    (uint8_t *)&val64, 8);
1347
1348     val32 = cpu_to_le32(tally_counters->RxOkMul);
1349     pci_dma_write(&s->dev, tc_addr + 56,    (uint8_t *)&val32, 4);
1350
1351     val16 = cpu_to_le16(tally_counters->TxAbt);
1352     pci_dma_write(&s->dev, tc_addr + 60,    (uint8_t *)&val16, 2);
1353
1354     val16 = cpu_to_le16(tally_counters->TxUndrn);
1355     pci_dma_write(&s->dev, tc_addr + 62,    (uint8_t *)&val16, 2);
1356 }
1357
1358 /* Loads values of tally counters from VM state file */
1359
1360 static const VMStateDescription vmstate_tally_counters = {
1361     .name = "tally_counters",
1362     .version_id = 1,
1363     .minimum_version_id = 1,
1364     .minimum_version_id_old = 1,
1365     .fields      = (VMStateField []) {
1366         VMSTATE_UINT64(TxOk, RTL8139TallyCounters),
1367         VMSTATE_UINT64(RxOk, RTL8139TallyCounters),
1368         VMSTATE_UINT64(TxERR, RTL8139TallyCounters),
1369         VMSTATE_UINT32(RxERR, RTL8139TallyCounters),
1370         VMSTATE_UINT16(MissPkt, RTL8139TallyCounters),
1371         VMSTATE_UINT16(FAE, RTL8139TallyCounters),
1372         VMSTATE_UINT32(Tx1Col, RTL8139TallyCounters),
1373         VMSTATE_UINT32(TxMCol, RTL8139TallyCounters),
1374         VMSTATE_UINT64(RxOkPhy, RTL8139TallyCounters),
1375         VMSTATE_UINT64(RxOkBrd, RTL8139TallyCounters),
1376         VMSTATE_UINT16(TxAbt, RTL8139TallyCounters),
1377         VMSTATE_UINT16(TxUndrn, RTL8139TallyCounters),
1378         VMSTATE_END_OF_LIST()
1379     }
1380 };
1381
1382 static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1383 {
1384     val &= 0xff;
1385
1386     DPRINTF("ChipCmd write val=0x%08x\n", val);
1387
1388     if (val & CmdReset)
1389     {
1390         DPRINTF("ChipCmd reset\n");
1391         rtl8139_reset(&s->dev.qdev);
1392     }
1393     if (val & CmdRxEnb)
1394     {
1395         DPRINTF("ChipCmd enable receiver\n");
1396
1397         s->currCPlusRxDesc = 0;
1398     }
1399     if (val & CmdTxEnb)
1400     {
1401         DPRINTF("ChipCmd enable transmitter\n");
1402
1403         s->currCPlusTxDesc = 0;
1404     }
1405
1406     /* mask unwritable bits */
1407     val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1408
1409     /* Deassert reset pin before next read */
1410     val &= ~CmdReset;
1411
1412     s->bChipCmdState = val;
1413 }
1414
1415 static int rtl8139_RxBufferEmpty(RTL8139State *s)
1416 {
1417     int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1418
1419     if (unread != 0)
1420     {
1421         DPRINTF("receiver buffer data available 0x%04x\n", unread);
1422         return 0;
1423     }
1424
1425     DPRINTF("receiver buffer is empty\n");
1426
1427     return 1;
1428 }
1429
1430 static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1431 {
1432     uint32_t ret = s->bChipCmdState;
1433
1434     if (rtl8139_RxBufferEmpty(s))
1435         ret |= RxBufEmpty;
1436
1437     DPRINTF("ChipCmd read val=0x%04x\n", ret);
1438
1439     return ret;
1440 }
1441
1442 static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1443 {
1444     val &= 0xffff;
1445
1446     DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1447
1448     s->cplus_enabled = 1;
1449
1450     /* mask unwritable bits */
1451     val = SET_MASKED(val, 0xff84, s->CpCmd);
1452
1453     s->CpCmd = val;
1454 }
1455
1456 static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1457 {
1458     uint32_t ret = s->CpCmd;
1459
1460     DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1461
1462     return ret;
1463 }
1464
1465 static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1466 {
1467     DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1468 }
1469
1470 static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1471 {
1472     uint32_t ret = 0;
1473
1474     DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1475
1476     return ret;
1477 }
1478
1479 static int rtl8139_config_writable(RTL8139State *s)
1480 {
1481     if (s->Cfg9346 & Cfg9346_Unlock)
1482     {
1483         return 1;
1484     }
1485
1486     DPRINTF("Configuration registers are write-protected\n");
1487
1488     return 0;
1489 }
1490
1491 static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1492 {
1493     val &= 0xffff;
1494
1495     DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1496
1497     /* mask unwritable bits */
1498     uint32_t mask = 0x4cff;
1499
1500     if (1 || !rtl8139_config_writable(s))
1501     {
1502         /* Speed setting and autonegotiation enable bits are read-only */
1503         mask |= 0x3000;
1504         /* Duplex mode setting is read-only */
1505         mask |= 0x0100;
1506     }
1507
1508     val = SET_MASKED(val, mask, s->BasicModeCtrl);
1509
1510     s->BasicModeCtrl = val;
1511 }
1512
1513 static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1514 {
1515     uint32_t ret = s->BasicModeCtrl;
1516
1517     DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1518
1519     return ret;
1520 }
1521
1522 static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1523 {
1524     val &= 0xffff;
1525
1526     DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1527
1528     /* mask unwritable bits */
1529     val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1530
1531     s->BasicModeStatus = val;
1532 }
1533
1534 static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1535 {
1536     uint32_t ret = s->BasicModeStatus;
1537
1538     DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1539
1540     return ret;
1541 }
1542
1543 static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1544 {
1545     val &= 0xff;
1546
1547     DPRINTF("Cfg9346 write val=0x%02x\n", val);
1548
1549     /* mask unwritable bits */
1550     val = SET_MASKED(val, 0x31, s->Cfg9346);
1551
1552     uint32_t opmode = val & 0xc0;
1553     uint32_t eeprom_val = val & 0xf;
1554
1555     if (opmode == 0x80) {
1556         /* eeprom access */
1557         int eecs = (eeprom_val & 0x08)?1:0;
1558         int eesk = (eeprom_val & 0x04)?1:0;
1559         int eedi = (eeprom_val & 0x02)?1:0;
1560         prom9346_set_wire(s, eecs, eesk, eedi);
1561     } else if (opmode == 0x40) {
1562         /* Reset.  */
1563         val = 0;
1564         rtl8139_reset(&s->dev.qdev);
1565     }
1566
1567     s->Cfg9346 = val;
1568 }
1569
1570 static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1571 {
1572     uint32_t ret = s->Cfg9346;
1573
1574     uint32_t opmode = ret & 0xc0;
1575
1576     if (opmode == 0x80)
1577     {
1578         /* eeprom access */
1579         int eedo = prom9346_get_wire(s);
1580         if (eedo)
1581         {
1582             ret |=  0x01;
1583         }
1584         else
1585         {
1586             ret &= ~0x01;
1587         }
1588     }
1589
1590     DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1591
1592     return ret;
1593 }
1594
1595 static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1596 {
1597     val &= 0xff;
1598
1599     DPRINTF("Config0 write val=0x%02x\n", val);
1600
1601     if (!rtl8139_config_writable(s)) {
1602         return;
1603     }
1604
1605     /* mask unwritable bits */
1606     val = SET_MASKED(val, 0xf8, s->Config0);
1607
1608     s->Config0 = val;
1609 }
1610
1611 static uint32_t rtl8139_Config0_read(RTL8139State *s)
1612 {
1613     uint32_t ret = s->Config0;
1614
1615     DPRINTF("Config0 read val=0x%02x\n", ret);
1616
1617     return ret;
1618 }
1619
1620 static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1621 {
1622     val &= 0xff;
1623
1624     DPRINTF("Config1 write val=0x%02x\n", val);
1625
1626     if (!rtl8139_config_writable(s)) {
1627         return;
1628     }
1629
1630     /* mask unwritable bits */
1631     val = SET_MASKED(val, 0xC, s->Config1);
1632
1633     s->Config1 = val;
1634 }
1635
1636 static uint32_t rtl8139_Config1_read(RTL8139State *s)
1637 {
1638     uint32_t ret = s->Config1;
1639
1640     DPRINTF("Config1 read val=0x%02x\n", ret);
1641
1642     return ret;
1643 }
1644
1645 static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1646 {
1647     val &= 0xff;
1648
1649     DPRINTF("Config3 write val=0x%02x\n", val);
1650
1651     if (!rtl8139_config_writable(s)) {
1652         return;
1653     }
1654
1655     /* mask unwritable bits */
1656     val = SET_MASKED(val, 0x8F, s->Config3);
1657
1658     s->Config3 = val;
1659 }
1660
1661 static uint32_t rtl8139_Config3_read(RTL8139State *s)
1662 {
1663     uint32_t ret = s->Config3;
1664
1665     DPRINTF("Config3 read val=0x%02x\n", ret);
1666
1667     return ret;
1668 }
1669
1670 static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1671 {
1672     val &= 0xff;
1673
1674     DPRINTF("Config4 write val=0x%02x\n", val);
1675
1676     if (!rtl8139_config_writable(s)) {
1677         return;
1678     }
1679
1680     /* mask unwritable bits */
1681     val = SET_MASKED(val, 0x0a, s->Config4);
1682
1683     s->Config4 = val;
1684 }
1685
1686 static uint32_t rtl8139_Config4_read(RTL8139State *s)
1687 {
1688     uint32_t ret = s->Config4;
1689
1690     DPRINTF("Config4 read val=0x%02x\n", ret);
1691
1692     return ret;
1693 }
1694
1695 static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1696 {
1697     val &= 0xff;
1698
1699     DPRINTF("Config5 write val=0x%02x\n", val);
1700
1701     /* mask unwritable bits */
1702     val = SET_MASKED(val, 0x80, s->Config5);
1703
1704     s->Config5 = val;
1705 }
1706
1707 static uint32_t rtl8139_Config5_read(RTL8139State *s)
1708 {
1709     uint32_t ret = s->Config5;
1710
1711     DPRINTF("Config5 read val=0x%02x\n", ret);
1712
1713     return ret;
1714 }
1715
1716 static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1717 {
1718     if (!rtl8139_transmitter_enabled(s))
1719     {
1720         DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1721         return;
1722     }
1723
1724     DPRINTF("TxConfig write val=0x%08x\n", val);
1725
1726     val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1727
1728     s->TxConfig = val;
1729 }
1730
1731 static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1732 {
1733     DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1734
1735     uint32_t tc = s->TxConfig;
1736     tc &= 0xFFFFFF00;
1737     tc |= (val & 0x000000FF);
1738     rtl8139_TxConfig_write(s, tc);
1739 }
1740
1741 static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1742 {
1743     uint32_t ret = s->TxConfig;
1744
1745     DPRINTF("TxConfig read val=0x%04x\n", ret);
1746
1747     return ret;
1748 }
1749
1750 static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1751 {
1752     DPRINTF("RxConfig write val=0x%08x\n", val);
1753
1754     /* mask unwritable bits */
1755     val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1756
1757     s->RxConfig = val;
1758
1759     /* reset buffer size and read/write pointers */
1760     rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1761
1762     DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1763 }
1764
1765 static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1766 {
1767     uint32_t ret = s->RxConfig;
1768
1769     DPRINTF("RxConfig read val=0x%08x\n", ret);
1770
1771     return ret;
1772 }
1773
1774 static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1775     int do_interrupt, const uint8_t *dot1q_buf)
1776 {
1777     struct iovec *iov = NULL;
1778
1779     if (!size)
1780     {
1781         DPRINTF("+++ empty ethernet frame\n");
1782         return;
1783     }
1784
1785     if (dot1q_buf && size >= ETHER_ADDR_LEN * 2) {
1786         iov = (struct iovec[3]) {
1787             { .iov_base = buf, .iov_len = ETHER_ADDR_LEN * 2 },
1788             { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1789             { .iov_base = buf + ETHER_ADDR_LEN * 2,
1790                 .iov_len = size - ETHER_ADDR_LEN * 2 },
1791         };
1792     }
1793
1794     if (TxLoopBack == (s->TxConfig & TxLoopBack))
1795     {
1796         size_t buf2_size;
1797         uint8_t *buf2;
1798
1799         if (iov) {
1800             buf2_size = iov_size(iov, 3);
1801             buf2 = g_malloc(buf2_size);
1802             iov_to_buf(iov, 3, buf2, 0, buf2_size);
1803             buf = buf2;
1804         }
1805
1806         DPRINTF("+++ transmit loopback mode\n");
1807         rtl8139_do_receive(&s->nic->nc, buf, size, do_interrupt);
1808
1809         if (iov) {
1810             g_free(buf2);
1811         }
1812     }
1813     else
1814     {
1815         if (iov) {
1816             qemu_sendv_packet(&s->nic->nc, iov, 3);
1817         } else {
1818             qemu_send_packet(&s->nic->nc, buf, size);
1819         }
1820     }
1821 }
1822
1823 static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1824 {
1825     if (!rtl8139_transmitter_enabled(s))
1826     {
1827         DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1828             "disabled\n", descriptor);
1829         return 0;
1830     }
1831
1832     if (s->TxStatus[descriptor] & TxHostOwns)
1833     {
1834         DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1835             "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1836         return 0;
1837     }
1838
1839     DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1840
1841     int txsize = s->TxStatus[descriptor] & 0x1fff;
1842     uint8_t txbuffer[0x2000];
1843
1844     DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1845         txsize, s->TxAddr[descriptor]);
1846
1847     pci_dma_read(&s->dev, s->TxAddr[descriptor], txbuffer, txsize);
1848
1849     /* Mark descriptor as transferred */
1850     s->TxStatus[descriptor] |= TxHostOwns;
1851     s->TxStatus[descriptor] |= TxStatOK;
1852
1853     rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1854
1855     DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1856         descriptor);
1857
1858     /* update interrupt */
1859     s->IntrStatus |= TxOK;
1860     rtl8139_update_irq(s);
1861
1862     return 1;
1863 }
1864
1865 /* structures and macros for task offloading */
1866 typedef struct ip_header
1867 {
1868     uint8_t  ip_ver_len;    /* version and header length */
1869     uint8_t  ip_tos;        /* type of service */
1870     uint16_t ip_len;        /* total length */
1871     uint16_t ip_id;         /* identification */
1872     uint16_t ip_off;        /* fragment offset field */
1873     uint8_t  ip_ttl;        /* time to live */
1874     uint8_t  ip_p;          /* protocol */
1875     uint16_t ip_sum;        /* checksum */
1876     uint32_t ip_src,ip_dst; /* source and dest address */
1877 } ip_header;
1878
1879 #define IP_HEADER_VERSION_4 4
1880 #define IP_HEADER_VERSION(ip) ((ip->ip_ver_len >> 4)&0xf)
1881 #define IP_HEADER_LENGTH(ip) (((ip->ip_ver_len)&0xf) << 2)
1882
1883 typedef struct tcp_header
1884 {
1885     uint16_t th_sport;          /* source port */
1886     uint16_t th_dport;          /* destination port */
1887     uint32_t th_seq;                    /* sequence number */
1888     uint32_t th_ack;                    /* acknowledgement number */
1889     uint16_t th_offset_flags; /* data offset, reserved 6 bits, TCP protocol flags */
1890     uint16_t th_win;                    /* window */
1891     uint16_t th_sum;                    /* checksum */
1892     uint16_t th_urp;                    /* urgent pointer */
1893 } tcp_header;
1894
1895 typedef struct udp_header
1896 {
1897     uint16_t uh_sport; /* source port */
1898     uint16_t uh_dport; /* destination port */
1899     uint16_t uh_ulen;  /* udp length */
1900     uint16_t uh_sum;   /* udp checksum */
1901 } udp_header;
1902
1903 typedef struct ip_pseudo_header
1904 {
1905     uint32_t ip_src;
1906     uint32_t ip_dst;
1907     uint8_t  zeros;
1908     uint8_t  ip_proto;
1909     uint16_t ip_payload;
1910 } ip_pseudo_header;
1911
1912 #define IP_PROTO_TCP 6
1913 #define IP_PROTO_UDP 17
1914
1915 #define TCP_HEADER_DATA_OFFSET(tcp) (((be16_to_cpu(tcp->th_offset_flags) >> 12)&0xf) << 2)
1916 #define TCP_FLAGS_ONLY(flags) ((flags)&0x3f)
1917 #define TCP_HEADER_FLAGS(tcp) TCP_FLAGS_ONLY(be16_to_cpu(tcp->th_offset_flags))
1918
1919 #define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1920
1921 #define TCP_FLAG_FIN  0x01
1922 #define TCP_FLAG_PUSH 0x08
1923
1924 /* produces ones' complement sum of data */
1925 static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1926 {
1927     uint32_t result = 0;
1928
1929     for (; len > 1; data+=2, len-=2)
1930     {
1931         result += *(uint16_t*)data;
1932     }
1933
1934     /* add the remainder byte */
1935     if (len)
1936     {
1937         uint8_t odd[2] = {*data, 0};
1938         result += *(uint16_t*)odd;
1939     }
1940
1941     while (result>>16)
1942         result = (result & 0xffff) + (result >> 16);
1943
1944     return result;
1945 }
1946
1947 static uint16_t ip_checksum(void *data, size_t len)
1948 {
1949     return ~ones_complement_sum((uint8_t*)data, len);
1950 }
1951
1952 static int rtl8139_cplus_transmit_one(RTL8139State *s)
1953 {
1954     if (!rtl8139_transmitter_enabled(s))
1955     {
1956         DPRINTF("+++ C+ mode: transmitter disabled\n");
1957         return 0;
1958     }
1959
1960     if (!rtl8139_cp_transmitter_enabled(s))
1961     {
1962         DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1963         return 0 ;
1964     }
1965
1966     int descriptor = s->currCPlusTxDesc;
1967
1968     dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1969
1970     /* Normal priority ring */
1971     cplus_tx_ring_desc += 16 * descriptor;
1972
1973     DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1974         "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1],
1975         s->TxAddr[0], cplus_tx_ring_desc);
1976
1977     uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1978
1979     pci_dma_read(&s->dev, cplus_tx_ring_desc,    (uint8_t *)&val, 4);
1980     txdw0 = le32_to_cpu(val);
1981     pci_dma_read(&s->dev, cplus_tx_ring_desc+4,  (uint8_t *)&val, 4);
1982     txdw1 = le32_to_cpu(val);
1983     pci_dma_read(&s->dev, cplus_tx_ring_desc+8,  (uint8_t *)&val, 4);
1984     txbufLO = le32_to_cpu(val);
1985     pci_dma_read(&s->dev, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1986     txbufHI = le32_to_cpu(val);
1987
1988     DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1989         txdw0, txdw1, txbufLO, txbufHI);
1990
1991 /* w0 ownership flag */
1992 #define CP_TX_OWN (1<<31)
1993 /* w0 end of ring flag */
1994 #define CP_TX_EOR (1<<30)
1995 /* first segment of received packet flag */
1996 #define CP_TX_FS (1<<29)
1997 /* last segment of received packet flag */
1998 #define CP_TX_LS (1<<28)
1999 /* large send packet flag */
2000 #define CP_TX_LGSEN (1<<27)
2001 /* large send MSS mask, bits 16...25 */
2002 #define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1)
2003
2004 /* IP checksum offload flag */
2005 #define CP_TX_IPCS (1<<18)
2006 /* UDP checksum offload flag */
2007 #define CP_TX_UDPCS (1<<17)
2008 /* TCP checksum offload flag */
2009 #define CP_TX_TCPCS (1<<16)
2010
2011 /* w0 bits 0...15 : buffer size */
2012 #define CP_TX_BUFFER_SIZE (1<<16)
2013 #define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
2014 /* w1 add tag flag */
2015 #define CP_TX_TAGC (1<<17)
2016 /* w1 bits 0...15 : VLAN tag (big endian) */
2017 #define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
2018 /* w2 low  32bit of Rx buffer ptr */
2019 /* w3 high 32bit of Rx buffer ptr */
2020
2021 /* set after transmission */
2022 /* FIFO underrun flag */
2023 #define CP_TX_STATUS_UNF (1<<25)
2024 /* transmit error summary flag, valid if set any of three below */
2025 #define CP_TX_STATUS_TES (1<<23)
2026 /* out-of-window collision flag */
2027 #define CP_TX_STATUS_OWC (1<<22)
2028 /* link failure flag */
2029 #define CP_TX_STATUS_LNKF (1<<21)
2030 /* excessive collisions flag */
2031 #define CP_TX_STATUS_EXC (1<<20)
2032
2033     if (!(txdw0 & CP_TX_OWN))
2034     {
2035         DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
2036         return 0 ;
2037     }
2038
2039     DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
2040
2041     if (txdw0 & CP_TX_FS)
2042     {
2043         DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
2044             "descriptor\n", descriptor);
2045
2046         /* reset internal buffer offset */
2047         s->cplus_txbuffer_offset = 0;
2048     }
2049
2050     int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
2051     dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
2052
2053     /* make sure we have enough space to assemble the packet */
2054     if (!s->cplus_txbuffer)
2055     {
2056         s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
2057         s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
2058         s->cplus_txbuffer_offset = 0;
2059
2060         DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
2061             s->cplus_txbuffer_len);
2062     }
2063
2064     while (s->cplus_txbuffer && s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
2065     {
2066         s->cplus_txbuffer_len += CP_TX_BUFFER_SIZE;
2067         s->cplus_txbuffer = g_realloc(s->cplus_txbuffer, s->cplus_txbuffer_len);
2068
2069         DPRINTF("+++ C+ mode transmission buffer space changed to %d\n",
2070             s->cplus_txbuffer_len);
2071     }
2072
2073     if (!s->cplus_txbuffer)
2074     {
2075         /* out of memory */
2076
2077         DPRINTF("+++ C+ mode transmiter failed to reallocate %d bytes\n",
2078             s->cplus_txbuffer_len);
2079
2080         /* update tally counter */
2081         ++s->tally_counters.TxERR;
2082         ++s->tally_counters.TxAbt;
2083
2084         return 0;
2085     }
2086
2087     /* append more data to the packet */
2088
2089     DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
2090             DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr,
2091             s->cplus_txbuffer_offset);
2092
2093     pci_dma_read(&s->dev, tx_addr,
2094                  s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2095     s->cplus_txbuffer_offset += txsize;
2096
2097     /* seek to next Rx descriptor */
2098     if (txdw0 & CP_TX_EOR)
2099     {
2100         s->currCPlusTxDesc = 0;
2101     }
2102     else
2103     {
2104         ++s->currCPlusTxDesc;
2105         if (s->currCPlusTxDesc >= 64)
2106             s->currCPlusTxDesc = 0;
2107     }
2108
2109     /* transfer ownership to target */
2110     txdw0 &= ~CP_RX_OWN;
2111
2112     /* reset error indicator bits */
2113     txdw0 &= ~CP_TX_STATUS_UNF;
2114     txdw0 &= ~CP_TX_STATUS_TES;
2115     txdw0 &= ~CP_TX_STATUS_OWC;
2116     txdw0 &= ~CP_TX_STATUS_LNKF;
2117     txdw0 &= ~CP_TX_STATUS_EXC;
2118
2119     /* update ring data */
2120     val = cpu_to_le32(txdw0);
2121     pci_dma_write(&s->dev, cplus_tx_ring_desc, (uint8_t *)&val, 4);
2122
2123     /* Now decide if descriptor being processed is holding the last segment of packet */
2124     if (txdw0 & CP_TX_LS)
2125     {
2126         uint8_t dot1q_buffer_space[VLAN_HLEN];
2127         uint16_t *dot1q_buffer;
2128
2129         DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2130             descriptor);
2131
2132         /* can transfer fully assembled packet */
2133
2134         uint8_t *saved_buffer  = s->cplus_txbuffer;
2135         int      saved_size    = s->cplus_txbuffer_offset;
2136         int      saved_buffer_len = s->cplus_txbuffer_len;
2137
2138         /* create vlan tag */
2139         if (txdw1 & CP_TX_TAGC) {
2140             /* the vlan tag is in BE byte order in the descriptor
2141              * BE + le_to_cpu() + ~swap()~ = cpu */
2142             DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2143                 bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2144
2145             dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2146             dot1q_buffer[0] = cpu_to_be16(ETH_P_8021Q);
2147             /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2148             dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2149         } else {
2150             dot1q_buffer = NULL;
2151         }
2152
2153         /* reset the card space to protect from recursive call */
2154         s->cplus_txbuffer = NULL;
2155         s->cplus_txbuffer_offset = 0;
2156         s->cplus_txbuffer_len = 0;
2157
2158         if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2159         {
2160             DPRINTF("+++ C+ mode offloaded task checksum\n");
2161
2162             /* ip packet header */
2163             ip_header *ip = NULL;
2164             int hlen = 0;
2165             uint8_t  ip_protocol = 0;
2166             uint16_t ip_data_len = 0;
2167
2168             uint8_t *eth_payload_data = NULL;
2169             size_t   eth_payload_len  = 0;
2170
2171             int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2172             if (proto == ETH_P_IP)
2173             {
2174                 DPRINTF("+++ C+ mode has IP packet\n");
2175
2176                 /* not aligned */
2177                 eth_payload_data = saved_buffer + ETH_HLEN;
2178                 eth_payload_len  = saved_size   - ETH_HLEN;
2179
2180                 ip = (ip_header*)eth_payload_data;
2181
2182                 if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2183                     DPRINTF("+++ C+ mode packet has bad IP version %d "
2184                         "expected %d\n", IP_HEADER_VERSION(ip),
2185                         IP_HEADER_VERSION_4);
2186                     ip = NULL;
2187                 } else {
2188                     hlen = IP_HEADER_LENGTH(ip);
2189                     ip_protocol = ip->ip_p;
2190                     ip_data_len = be16_to_cpu(ip->ip_len) - hlen;
2191                 }
2192             }
2193
2194             if (ip)
2195             {
2196                 if (txdw0 & CP_TX_IPCS)
2197                 {
2198                     DPRINTF("+++ C+ mode need IP checksum\n");
2199
2200                     if (hlen<sizeof(ip_header) || hlen>eth_payload_len) {/* min header length */
2201                         /* bad packet header len */
2202                         /* or packet too short */
2203                     }
2204                     else
2205                     {
2206                         ip->ip_sum = 0;
2207                         ip->ip_sum = ip_checksum(ip, hlen);
2208                         DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2209                             hlen, ip->ip_sum);
2210                     }
2211                 }
2212
2213                 if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2214                 {
2215                     int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK;
2216
2217                     DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d "
2218                         "frame data %d specified MSS=%d\n", ETH_MTU,
2219                         ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2220
2221                     int tcp_send_offset = 0;
2222                     int send_count = 0;
2223
2224                     /* maximum IP header length is 60 bytes */
2225                     uint8_t saved_ip_header[60];
2226
2227                     /* save IP header template; data area is used in tcp checksum calculation */
2228                     memcpy(saved_ip_header, eth_payload_data, hlen);
2229
2230                     /* a placeholder for checksum calculation routine in tcp case */
2231                     uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2232                     //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2233
2234                     /* pointer to TCP header */
2235                     tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2236
2237                     int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2238
2239                     /* ETH_MTU = ip header len + tcp header len + payload */
2240                     int tcp_data_len = ip_data_len - tcp_hlen;
2241                     int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen;
2242
2243                     DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2244                         "data len %d TCP chunk size %d\n", ip_data_len,
2245                         tcp_hlen, tcp_data_len, tcp_chunk_size);
2246
2247                     /* note the cycle below overwrites IP header data,
2248                        but restores it from saved_ip_header before sending packet */
2249
2250                     int is_last_frame = 0;
2251
2252                     for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size)
2253                     {
2254                         uint16_t chunk_size = tcp_chunk_size;
2255
2256                         /* check if this is the last frame */
2257                         if (tcp_send_offset + tcp_chunk_size >= tcp_data_len)
2258                         {
2259                             is_last_frame = 1;
2260                             chunk_size = tcp_data_len - tcp_send_offset;
2261                         }
2262
2263                         DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2264                             be32_to_cpu(p_tcp_hdr->th_seq));
2265
2266                         /* add 4 TCP pseudoheader fields */
2267                         /* copy IP source and destination fields */
2268                         memcpy(data_to_checksum, saved_ip_header + 12, 8);
2269
2270                         DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2271                             "packet with %d bytes data\n", tcp_hlen +
2272                             chunk_size);
2273
2274                         if (tcp_send_offset)
2275                         {
2276                             memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2277                         }
2278
2279                         /* keep PUSH and FIN flags only for the last frame */
2280                         if (!is_last_frame)
2281                         {
2282                             TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TCP_FLAG_PUSH|TCP_FLAG_FIN);
2283                         }
2284
2285                         /* recalculate TCP checksum */
2286                         ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2287                         p_tcpip_hdr->zeros      = 0;
2288                         p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2289                         p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2290
2291                         p_tcp_hdr->th_sum = 0;
2292
2293                         int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2294                         DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2295                             tcp_checksum);
2296
2297                         p_tcp_hdr->th_sum = tcp_checksum;
2298
2299                         /* restore IP header */
2300                         memcpy(eth_payload_data, saved_ip_header, hlen);
2301
2302                         /* set IP data length and recalculate IP checksum */
2303                         ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2304
2305                         /* increment IP id for subsequent frames */
2306                         ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id));
2307
2308                         ip->ip_sum = 0;
2309                         ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2310                         DPRINTF("+++ C+ mode TSO IP header len=%d "
2311                             "checksum=%04x\n", hlen, ip->ip_sum);
2312
2313                         int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2314                         DPRINTF("+++ C+ mode TSO transferring packet size "
2315                             "%d\n", tso_send_size);
2316                         rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2317                             0, (uint8_t *) dot1q_buffer);
2318
2319                         /* add transferred count to TCP sequence number */
2320                         p_tcp_hdr->th_seq = cpu_to_be32(chunk_size + be32_to_cpu(p_tcp_hdr->th_seq));
2321                         ++send_count;
2322                     }
2323
2324                     /* Stop sending this frame */
2325                     saved_size = 0;
2326                 }
2327                 else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS))
2328                 {
2329                     DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2330
2331                     /* maximum IP header length is 60 bytes */
2332                     uint8_t saved_ip_header[60];
2333                     memcpy(saved_ip_header, eth_payload_data, hlen);
2334
2335                     uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2336                     //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2337
2338                     /* add 4 TCP pseudoheader fields */
2339                     /* copy IP source and destination fields */
2340                     memcpy(data_to_checksum, saved_ip_header + 12, 8);
2341
2342                     if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2343                     {
2344                         DPRINTF("+++ C+ mode calculating TCP checksum for "
2345                             "packet with %d bytes data\n", ip_data_len);
2346
2347                         ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2348                         p_tcpip_hdr->zeros      = 0;
2349                         p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2350                         p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2351
2352                         tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2353
2354                         p_tcp_hdr->th_sum = 0;
2355
2356                         int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2357                         DPRINTF("+++ C+ mode TCP checksum %04x\n",
2358                             tcp_checksum);
2359
2360                         p_tcp_hdr->th_sum = tcp_checksum;
2361                     }
2362                     else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2363                     {
2364                         DPRINTF("+++ C+ mode calculating UDP checksum for "
2365                             "packet with %d bytes data\n", ip_data_len);
2366
2367                         ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2368                         p_udpip_hdr->zeros      = 0;
2369                         p_udpip_hdr->ip_proto   = IP_PROTO_UDP;
2370                         p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2371
2372                         udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2373
2374                         p_udp_hdr->uh_sum = 0;
2375
2376                         int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2377                         DPRINTF("+++ C+ mode UDP checksum %04x\n",
2378                             udp_checksum);
2379
2380                         p_udp_hdr->uh_sum = udp_checksum;
2381                     }
2382
2383                     /* restore IP header */
2384                     memcpy(eth_payload_data, saved_ip_header, hlen);
2385                 }
2386             }
2387         }
2388
2389         /* update tally counter */
2390         ++s->tally_counters.TxOk;
2391
2392         DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2393
2394         rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2395             (uint8_t *) dot1q_buffer);
2396
2397         /* restore card space if there was no recursion and reset offset */
2398         if (!s->cplus_txbuffer)
2399         {
2400             s->cplus_txbuffer        = saved_buffer;
2401             s->cplus_txbuffer_len    = saved_buffer_len;
2402             s->cplus_txbuffer_offset = 0;
2403         }
2404         else
2405         {
2406             g_free(saved_buffer);
2407         }
2408     }
2409     else
2410     {
2411         DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2412     }
2413
2414     return 1;
2415 }
2416
2417 static void rtl8139_cplus_transmit(RTL8139State *s)
2418 {
2419     int txcount = 0;
2420
2421     while (rtl8139_cplus_transmit_one(s))
2422     {
2423         ++txcount;
2424     }
2425
2426     /* Mark transfer completed */
2427     if (!txcount)
2428     {
2429         DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2430             s->currCPlusTxDesc);
2431     }
2432     else
2433     {
2434         /* update interrupt status */
2435         s->IntrStatus |= TxOK;
2436         rtl8139_update_irq(s);
2437     }
2438 }
2439
2440 static void rtl8139_transmit(RTL8139State *s)
2441 {
2442     int descriptor = s->currTxDesc, txcount = 0;
2443
2444     /*while*/
2445     if (rtl8139_transmit_one(s, descriptor))
2446     {
2447         ++s->currTxDesc;
2448         s->currTxDesc %= 4;
2449         ++txcount;
2450     }
2451
2452     /* Mark transfer completed */
2453     if (!txcount)
2454     {
2455         DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2456             s->currTxDesc);
2457     }
2458 }
2459
2460 static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2461 {
2462
2463     int descriptor = txRegOffset/4;
2464
2465     /* handle C+ transmit mode register configuration */
2466
2467     if (s->cplus_enabled)
2468     {
2469         DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2470             "descriptor=%d\n", txRegOffset, val, descriptor);
2471
2472         /* handle Dump Tally Counters command */
2473         s->TxStatus[descriptor] = val;
2474
2475         if (descriptor == 0 && (val & 0x8))
2476         {
2477             target_phys_addr_t tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2478
2479             /* dump tally counters to specified memory location */
2480             RTL8139TallyCounters_dma_write(s, tc_addr);
2481
2482             /* mark dump completed */
2483             s->TxStatus[0] &= ~0x8;
2484         }
2485
2486         return;
2487     }
2488
2489     DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2490         txRegOffset, val, descriptor);
2491
2492     /* mask only reserved bits */
2493     val &= ~0xff00c000; /* these bits are reset on write */
2494     val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2495
2496     s->TxStatus[descriptor] = val;
2497
2498     /* attempt to start transmission */
2499     rtl8139_transmit(s);
2500 }
2501
2502 static uint32_t rtl8139_TxStatus_read(RTL8139State *s, uint32_t txRegOffset)
2503 {
2504     uint32_t ret = s->TxStatus[txRegOffset/4];
2505
2506     DPRINTF("TxStatus read offset=0x%x val=0x%08x\n", txRegOffset, ret);
2507
2508     return ret;
2509 }
2510
2511 static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2512 {
2513     uint16_t ret = 0;
2514
2515     /* Simulate TSAD, it is read only anyway */
2516
2517     ret = ((s->TxStatus[3] & TxStatOK  )?TSAD_TOK3:0)
2518          |((s->TxStatus[2] & TxStatOK  )?TSAD_TOK2:0)
2519          |((s->TxStatus[1] & TxStatOK  )?TSAD_TOK1:0)
2520          |((s->TxStatus[0] & TxStatOK  )?TSAD_TOK0:0)
2521
2522          |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2523          |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2524          |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2525          |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2526
2527          |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2528          |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2529          |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2530          |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2531
2532          |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2533          |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2534          |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2535          |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2536
2537
2538     DPRINTF("TSAD read val=0x%04x\n", ret);
2539
2540     return ret;
2541 }
2542
2543 static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2544 {
2545     uint16_t ret = s->CSCR;
2546
2547     DPRINTF("CSCR read val=0x%04x\n", ret);
2548
2549     return ret;
2550 }
2551
2552 static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2553 {
2554     DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2555
2556     s->TxAddr[txAddrOffset/4] = val;
2557 }
2558
2559 static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2560 {
2561     uint32_t ret = s->TxAddr[txAddrOffset/4];
2562
2563     DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2564
2565     return ret;
2566 }
2567
2568 static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2569 {
2570     DPRINTF("RxBufPtr write val=0x%04x\n", val);
2571
2572     /* this value is off by 16 */
2573     s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2574
2575     DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2576         s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2577 }
2578
2579 static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2580 {
2581     /* this value is off by 16 */
2582     uint32_t ret = s->RxBufPtr - 0x10;
2583
2584     DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2585
2586     return ret;
2587 }
2588
2589 static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2590 {
2591     /* this value is NOT off by 16 */
2592     uint32_t ret = s->RxBufAddr;
2593
2594     DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2595
2596     return ret;
2597 }
2598
2599 static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2600 {
2601     DPRINTF("RxBuf write val=0x%08x\n", val);
2602
2603     s->RxBuf = val;
2604
2605     /* may need to reset rxring here */
2606 }
2607
2608 static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2609 {
2610     uint32_t ret = s->RxBuf;
2611
2612     DPRINTF("RxBuf read val=0x%08x\n", ret);
2613
2614     return ret;
2615 }
2616
2617 static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2618 {
2619     DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2620
2621     /* mask unwritable bits */
2622     val = SET_MASKED(val, 0x1e00, s->IntrMask);
2623
2624     s->IntrMask = val;
2625
2626     rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2627     rtl8139_update_irq(s);
2628
2629 }
2630
2631 static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2632 {
2633     uint32_t ret = s->IntrMask;
2634
2635     DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2636
2637     return ret;
2638 }
2639
2640 static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2641 {
2642     DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2643
2644 #if 0
2645
2646     /* writing to ISR has no effect */
2647
2648     return;
2649
2650 #else
2651     uint16_t newStatus = s->IntrStatus & ~val;
2652
2653     /* mask unwritable bits */
2654     newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2655
2656     /* writing 1 to interrupt status register bit clears it */
2657     s->IntrStatus = 0;
2658     rtl8139_update_irq(s);
2659
2660     s->IntrStatus = newStatus;
2661     /*
2662      * Computing if we miss an interrupt here is not that correct but
2663      * considered that we should have had already an interrupt
2664      * and probably emulated is slower is better to assume this resetting was
2665      * done before testing on previous rtl8139_update_irq lead to IRQ losing
2666      */
2667     rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2668     rtl8139_update_irq(s);
2669
2670 #endif
2671 }
2672
2673 static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2674 {
2675     rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2676
2677     uint32_t ret = s->IntrStatus;
2678
2679     DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2680
2681 #if 0
2682
2683     /* reading ISR clears all interrupts */
2684     s->IntrStatus = 0;
2685
2686     rtl8139_update_irq(s);
2687
2688 #endif
2689
2690     return ret;
2691 }
2692
2693 static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2694 {
2695     DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2696
2697     /* mask unwritable bits */
2698     val = SET_MASKED(val, 0xf000, s->MultiIntr);
2699
2700     s->MultiIntr = val;
2701 }
2702
2703 static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2704 {
2705     uint32_t ret = s->MultiIntr;
2706
2707     DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2708
2709     return ret;
2710 }
2711
2712 static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2713 {
2714     RTL8139State *s = opaque;
2715
2716     switch (addr)
2717     {
2718         case MAC0 ... MAC0+5:
2719             s->phys[addr - MAC0] = val;
2720             break;
2721         case MAC0+6 ... MAC0+7:
2722             /* reserved */
2723             break;
2724         case MAR0 ... MAR0+7:
2725             s->mult[addr - MAR0] = val;
2726             break;
2727         case ChipCmd:
2728             rtl8139_ChipCmd_write(s, val);
2729             break;
2730         case Cfg9346:
2731             rtl8139_Cfg9346_write(s, val);
2732             break;
2733         case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2734             rtl8139_TxConfig_writeb(s, val);
2735             break;
2736         case Config0:
2737             rtl8139_Config0_write(s, val);
2738             break;
2739         case Config1:
2740             rtl8139_Config1_write(s, val);
2741             break;
2742         case Config3:
2743             rtl8139_Config3_write(s, val);
2744             break;
2745         case Config4:
2746             rtl8139_Config4_write(s, val);
2747             break;
2748         case Config5:
2749             rtl8139_Config5_write(s, val);
2750             break;
2751         case MediaStatus:
2752             /* ignore */
2753             DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2754                 val);
2755             break;
2756
2757         case HltClk:
2758             DPRINTF("HltClk write val=0x%08x\n", val);
2759             if (val == 'R')
2760             {
2761                 s->clock_enabled = 1;
2762             }
2763             else if (val == 'H')
2764             {
2765                 s->clock_enabled = 0;
2766             }
2767             break;
2768
2769         case TxThresh:
2770             DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2771             s->TxThresh = val;
2772             break;
2773
2774         case TxPoll:
2775             DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2776             if (val & (1 << 7))
2777             {
2778                 DPRINTF("C+ TxPoll high priority transmission (not "
2779                     "implemented)\n");
2780                 //rtl8139_cplus_transmit(s);
2781             }
2782             if (val & (1 << 6))
2783             {
2784                 DPRINTF("C+ TxPoll normal priority transmission\n");
2785                 rtl8139_cplus_transmit(s);
2786             }
2787
2788             break;
2789
2790         default:
2791             DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2792                 val);
2793             break;
2794     }
2795 }
2796
2797 static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2798 {
2799     RTL8139State *s = opaque;
2800
2801     switch (addr)
2802     {
2803         case IntrMask:
2804             rtl8139_IntrMask_write(s, val);
2805             break;
2806
2807         case IntrStatus:
2808             rtl8139_IntrStatus_write(s, val);
2809             break;
2810
2811         case MultiIntr:
2812             rtl8139_MultiIntr_write(s, val);
2813             break;
2814
2815         case RxBufPtr:
2816             rtl8139_RxBufPtr_write(s, val);
2817             break;
2818
2819         case BasicModeCtrl:
2820             rtl8139_BasicModeCtrl_write(s, val);
2821             break;
2822         case BasicModeStatus:
2823             rtl8139_BasicModeStatus_write(s, val);
2824             break;
2825         case NWayAdvert:
2826             DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2827             s->NWayAdvert = val;
2828             break;
2829         case NWayLPAR:
2830             DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2831             break;
2832         case NWayExpansion:
2833             DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2834             s->NWayExpansion = val;
2835             break;
2836
2837         case CpCmd:
2838             rtl8139_CpCmd_write(s, val);
2839             break;
2840
2841         case IntrMitigate:
2842             rtl8139_IntrMitigate_write(s, val);
2843             break;
2844
2845         default:
2846             DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2847                 addr, val);
2848
2849             rtl8139_io_writeb(opaque, addr, val & 0xff);
2850             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2851             break;
2852     }
2853 }
2854
2855 static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time)
2856 {
2857     int64_t pci_time, next_time;
2858     uint32_t low_pci;
2859
2860     DPRINTF("entered rtl8139_set_next_tctr_time\n");
2861
2862     if (s->TimerExpire && current_time >= s->TimerExpire) {
2863         s->IntrStatus |= PCSTimeout;
2864         rtl8139_update_irq(s);
2865     }
2866
2867     /* Set QEMU timer only if needed that is
2868      * - TimerInt <> 0 (we have a timer)
2869      * - mask = 1 (we want an interrupt timer)
2870      * - irq = 0  (irq is not already active)
2871      * If any of above change we need to compute timer again
2872      * Also we must check if timer is passed without QEMU timer
2873      */
2874     s->TimerExpire = 0;
2875     if (!s->TimerInt) {
2876         return;
2877     }
2878
2879     pci_time = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
2880                                 get_ticks_per_sec());
2881     low_pci = pci_time & 0xffffffff;
2882     pci_time = pci_time - low_pci + s->TimerInt;
2883     if (low_pci >= s->TimerInt) {
2884         pci_time += 0x100000000LL;
2885     }
2886     next_time = s->TCTR_base + muldiv64(pci_time, get_ticks_per_sec(),
2887                                                 PCI_FREQUENCY);
2888     s->TimerExpire = next_time;
2889
2890     if ((s->IntrMask & PCSTimeout) != 0 && (s->IntrStatus & PCSTimeout) == 0) {
2891         qemu_mod_timer(s->timer, next_time);
2892     }
2893 }
2894
2895 static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2896 {
2897     RTL8139State *s = opaque;
2898
2899     switch (addr)
2900     {
2901         case RxMissed:
2902             DPRINTF("RxMissed clearing on write\n");
2903             s->RxMissed = 0;
2904             break;
2905
2906         case TxConfig:
2907             rtl8139_TxConfig_write(s, val);
2908             break;
2909
2910         case RxConfig:
2911             rtl8139_RxConfig_write(s, val);
2912             break;
2913
2914         case TxStatus0 ... TxStatus0+4*4-1:
2915             rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2916             break;
2917
2918         case TxAddr0 ... TxAddr0+4*4-1:
2919             rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2920             break;
2921
2922         case RxBuf:
2923             rtl8139_RxBuf_write(s, val);
2924             break;
2925
2926         case RxRingAddrLO:
2927             DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2928             s->RxRingAddrLO = val;
2929             break;
2930
2931         case RxRingAddrHI:
2932             DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2933             s->RxRingAddrHI = val;
2934             break;
2935
2936         case Timer:
2937             DPRINTF("TCTR Timer reset on write\n");
2938             s->TCTR_base = qemu_get_clock_ns(vm_clock);
2939             rtl8139_set_next_tctr_time(s, s->TCTR_base);
2940             break;
2941
2942         case FlashReg:
2943             DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2944             if (s->TimerInt != val) {
2945                 s->TimerInt = val;
2946                 rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2947             }
2948             break;
2949
2950         default:
2951             DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2952                 addr, val);
2953             rtl8139_io_writeb(opaque, addr, val & 0xff);
2954             rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2955             rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2956             rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2957             break;
2958     }
2959 }
2960
2961 static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2962 {
2963     RTL8139State *s = opaque;
2964     int ret;
2965
2966     switch (addr)
2967     {
2968         case MAC0 ... MAC0+5:
2969             ret = s->phys[addr - MAC0];
2970             break;
2971         case MAC0+6 ... MAC0+7:
2972             ret = 0;
2973             break;
2974         case MAR0 ... MAR0+7:
2975             ret = s->mult[addr - MAR0];
2976             break;
2977         case ChipCmd:
2978             ret = rtl8139_ChipCmd_read(s);
2979             break;
2980         case Cfg9346:
2981             ret = rtl8139_Cfg9346_read(s);
2982             break;
2983         case Config0:
2984             ret = rtl8139_Config0_read(s);
2985             break;
2986         case Config1:
2987             ret = rtl8139_Config1_read(s);
2988             break;
2989         case Config3:
2990             ret = rtl8139_Config3_read(s);
2991             break;
2992         case Config4:
2993             ret = rtl8139_Config4_read(s);
2994             break;
2995         case Config5:
2996             ret = rtl8139_Config5_read(s);
2997             break;
2998
2999         case MediaStatus:
3000             ret = 0xd0;
3001             DPRINTF("MediaStatus read 0x%x\n", ret);
3002             break;
3003
3004         case HltClk:
3005             ret = s->clock_enabled;
3006             DPRINTF("HltClk read 0x%x\n", ret);
3007             break;
3008
3009         case PCIRevisionID:
3010             ret = RTL8139_PCI_REVID;
3011             DPRINTF("PCI Revision ID read 0x%x\n", ret);
3012             break;
3013
3014         case TxThresh:
3015             ret = s->TxThresh;
3016             DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
3017             break;
3018
3019         case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
3020             ret = s->TxConfig >> 24;
3021             DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
3022             break;
3023
3024         default:
3025             DPRINTF("not implemented read(b) addr=0x%x\n", addr);
3026             ret = 0;
3027             break;
3028     }
3029
3030     return ret;
3031 }
3032
3033 static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
3034 {
3035     RTL8139State *s = opaque;
3036     uint32_t ret;
3037
3038     switch (addr)
3039     {
3040         case IntrMask:
3041             ret = rtl8139_IntrMask_read(s);
3042             break;
3043
3044         case IntrStatus:
3045             ret = rtl8139_IntrStatus_read(s);
3046             break;
3047
3048         case MultiIntr:
3049             ret = rtl8139_MultiIntr_read(s);
3050             break;
3051
3052         case RxBufPtr:
3053             ret = rtl8139_RxBufPtr_read(s);
3054             break;
3055
3056         case RxBufAddr:
3057             ret = rtl8139_RxBufAddr_read(s);
3058             break;
3059
3060         case BasicModeCtrl:
3061             ret = rtl8139_BasicModeCtrl_read(s);
3062             break;
3063         case BasicModeStatus:
3064             ret = rtl8139_BasicModeStatus_read(s);
3065             break;
3066         case NWayAdvert:
3067             ret = s->NWayAdvert;
3068             DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3069             break;
3070         case NWayLPAR:
3071             ret = s->NWayLPAR;
3072             DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3073             break;
3074         case NWayExpansion:
3075             ret = s->NWayExpansion;
3076             DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3077             break;
3078
3079         case CpCmd:
3080             ret = rtl8139_CpCmd_read(s);
3081             break;
3082
3083         case IntrMitigate:
3084             ret = rtl8139_IntrMitigate_read(s);
3085             break;
3086
3087         case TxSummary:
3088             ret = rtl8139_TSAD_read(s);
3089             break;
3090
3091         case CSCR:
3092             ret = rtl8139_CSCR_read(s);
3093             break;
3094
3095         default:
3096             DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3097
3098             ret  = rtl8139_io_readb(opaque, addr);
3099             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3100
3101             DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3102             break;
3103     }
3104
3105     return ret;
3106 }
3107
3108 static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3109 {
3110     RTL8139State *s = opaque;
3111     uint32_t ret;
3112
3113     switch (addr)
3114     {
3115         case RxMissed:
3116             ret = s->RxMissed;
3117
3118             DPRINTF("RxMissed read val=0x%08x\n", ret);
3119             break;
3120
3121         case TxConfig:
3122             ret = rtl8139_TxConfig_read(s);
3123             break;
3124
3125         case RxConfig:
3126             ret = rtl8139_RxConfig_read(s);
3127             break;
3128
3129         case TxStatus0 ... TxStatus0+4*4-1:
3130             ret = rtl8139_TxStatus_read(s, addr-TxStatus0);
3131             break;
3132
3133         case TxAddr0 ... TxAddr0+4*4-1:
3134             ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3135             break;
3136
3137         case RxBuf:
3138             ret = rtl8139_RxBuf_read(s);
3139             break;
3140
3141         case RxRingAddrLO:
3142             ret = s->RxRingAddrLO;
3143             DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3144             break;
3145
3146         case RxRingAddrHI:
3147             ret = s->RxRingAddrHI;
3148             DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3149             break;
3150
3151         case Timer:
3152             ret = muldiv64(qemu_get_clock_ns(vm_clock) - s->TCTR_base,
3153                            PCI_FREQUENCY, get_ticks_per_sec());
3154             DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3155             break;
3156
3157         case FlashReg:
3158             ret = s->TimerInt;
3159             DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3160             break;
3161
3162         default:
3163             DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3164
3165             ret  = rtl8139_io_readb(opaque, addr);
3166             ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3167             ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3168             ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3169
3170             DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3171             break;
3172     }
3173
3174     return ret;
3175 }
3176
3177 /* */
3178
3179 static void rtl8139_ioport_writeb(void *opaque, uint32_t addr, uint32_t val)
3180 {
3181     rtl8139_io_writeb(opaque, addr & 0xFF, val);
3182 }
3183
3184 static void rtl8139_ioport_writew(void *opaque, uint32_t addr, uint32_t val)
3185 {
3186     rtl8139_io_writew(opaque, addr & 0xFF, val);
3187 }
3188
3189 static void rtl8139_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
3190 {
3191     rtl8139_io_writel(opaque, addr & 0xFF, val);
3192 }
3193
3194 static uint32_t rtl8139_ioport_readb(void *opaque, uint32_t addr)
3195 {
3196     return rtl8139_io_readb(opaque, addr & 0xFF);
3197 }
3198
3199 static uint32_t rtl8139_ioport_readw(void *opaque, uint32_t addr)
3200 {
3201     return rtl8139_io_readw(opaque, addr & 0xFF);
3202 }
3203
3204 static uint32_t rtl8139_ioport_readl(void *opaque, uint32_t addr)
3205 {
3206     return rtl8139_io_readl(opaque, addr & 0xFF);
3207 }
3208
3209 /* */
3210
3211 static void rtl8139_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
3212 {
3213     rtl8139_io_writeb(opaque, addr & 0xFF, val);
3214 }
3215
3216 static void rtl8139_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
3217 {
3218     rtl8139_io_writew(opaque, addr & 0xFF, val);
3219 }
3220
3221 static void rtl8139_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
3222 {
3223     rtl8139_io_writel(opaque, addr & 0xFF, val);
3224 }
3225
3226 static uint32_t rtl8139_mmio_readb(void *opaque, target_phys_addr_t addr)
3227 {
3228     return rtl8139_io_readb(opaque, addr & 0xFF);
3229 }
3230
3231 static uint32_t rtl8139_mmio_readw(void *opaque, target_phys_addr_t addr)
3232 {
3233     uint32_t val = rtl8139_io_readw(opaque, addr & 0xFF);
3234     return val;
3235 }
3236
3237 static uint32_t rtl8139_mmio_readl(void *opaque, target_phys_addr_t addr)
3238 {
3239     uint32_t val = rtl8139_io_readl(opaque, addr & 0xFF);
3240     return val;
3241 }
3242
3243 static int rtl8139_post_load(void *opaque, int version_id)
3244 {
3245     RTL8139State* s = opaque;
3246     rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3247     if (version_id < 4) {
3248         s->cplus_enabled = s->CpCmd != 0;
3249     }
3250
3251     return 0;
3252 }
3253
3254 static bool rtl8139_hotplug_ready_needed(void *opaque)
3255 {
3256     return qdev_machine_modified();
3257 }
3258
3259 static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3260     .name = "rtl8139/hotplug_ready",
3261     .version_id = 1,
3262     .minimum_version_id = 1,
3263     .minimum_version_id_old = 1,
3264     .fields      = (VMStateField []) {
3265         VMSTATE_END_OF_LIST()
3266     }
3267 };
3268
3269 static void rtl8139_pre_save(void *opaque)
3270 {
3271     RTL8139State* s = opaque;
3272     int64_t current_time = qemu_get_clock_ns(vm_clock);
3273
3274     /* set IntrStatus correctly */
3275     rtl8139_set_next_tctr_time(s, current_time);
3276     s->TCTR = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
3277                        get_ticks_per_sec());
3278     s->rtl8139_mmio_io_addr_dummy = 0;
3279 }
3280
3281 static const VMStateDescription vmstate_rtl8139 = {
3282     .name = "rtl8139",
3283     .version_id = 4,
3284     .minimum_version_id = 3,
3285     .minimum_version_id_old = 3,
3286     .post_load = rtl8139_post_load,
3287     .pre_save  = rtl8139_pre_save,
3288     .fields      = (VMStateField []) {
3289         VMSTATE_PCI_DEVICE(dev, RTL8139State),
3290         VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3291         VMSTATE_BUFFER(mult, RTL8139State),
3292         VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3293         VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3294
3295         VMSTATE_UINT32(RxBuf, RTL8139State),
3296         VMSTATE_UINT32(RxBufferSize, RTL8139State),
3297         VMSTATE_UINT32(RxBufPtr, RTL8139State),
3298         VMSTATE_UINT32(RxBufAddr, RTL8139State),
3299
3300         VMSTATE_UINT16(IntrStatus, RTL8139State),
3301         VMSTATE_UINT16(IntrMask, RTL8139State),
3302
3303         VMSTATE_UINT32(TxConfig, RTL8139State),
3304         VMSTATE_UINT32(RxConfig, RTL8139State),
3305         VMSTATE_UINT32(RxMissed, RTL8139State),
3306         VMSTATE_UINT16(CSCR, RTL8139State),
3307
3308         VMSTATE_UINT8(Cfg9346, RTL8139State),
3309         VMSTATE_UINT8(Config0, RTL8139State),
3310         VMSTATE_UINT8(Config1, RTL8139State),
3311         VMSTATE_UINT8(Config3, RTL8139State),
3312         VMSTATE_UINT8(Config4, RTL8139State),
3313         VMSTATE_UINT8(Config5, RTL8139State),
3314
3315         VMSTATE_UINT8(clock_enabled, RTL8139State),
3316         VMSTATE_UINT8(bChipCmdState, RTL8139State),
3317
3318         VMSTATE_UINT16(MultiIntr, RTL8139State),
3319
3320         VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3321         VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3322         VMSTATE_UINT16(NWayAdvert, RTL8139State),
3323         VMSTATE_UINT16(NWayLPAR, RTL8139State),
3324         VMSTATE_UINT16(NWayExpansion, RTL8139State),
3325
3326         VMSTATE_UINT16(CpCmd, RTL8139State),
3327         VMSTATE_UINT8(TxThresh, RTL8139State),
3328
3329         VMSTATE_UNUSED(4),
3330         VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3331         VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3332
3333         VMSTATE_UINT32(currTxDesc, RTL8139State),
3334         VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3335         VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3336         VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3337         VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3338
3339         VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3340         VMSTATE_INT32(eeprom.mode, RTL8139State),
3341         VMSTATE_UINT32(eeprom.tick, RTL8139State),
3342         VMSTATE_UINT8(eeprom.address, RTL8139State),
3343         VMSTATE_UINT16(eeprom.input, RTL8139State),
3344         VMSTATE_UINT16(eeprom.output, RTL8139State),
3345
3346         VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3347         VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3348         VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3349         VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3350
3351         VMSTATE_UINT32(TCTR, RTL8139State),
3352         VMSTATE_UINT32(TimerInt, RTL8139State),
3353         VMSTATE_INT64(TCTR_base, RTL8139State),
3354
3355         VMSTATE_STRUCT(tally_counters, RTL8139State, 0,
3356                        vmstate_tally_counters, RTL8139TallyCounters),
3357
3358         VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3359         VMSTATE_END_OF_LIST()
3360     },
3361     .subsections = (VMStateSubsection []) {
3362         {
3363             .vmsd = &vmstate_rtl8139_hotplug_ready,
3364             .needed = rtl8139_hotplug_ready_needed,
3365         }, {
3366             /* empty */
3367         }
3368     }
3369 };
3370
3371 /***********************************************************/
3372 /* PCI RTL8139 definitions */
3373
3374 static const MemoryRegionPortio rtl8139_portio[] = {
3375     { 0, 0x100, 1, .read = rtl8139_ioport_readb, },
3376     { 0, 0x100, 1, .write = rtl8139_ioport_writeb, },
3377     { 0, 0x100, 2, .read = rtl8139_ioport_readw, },
3378     { 0, 0x100, 2, .write = rtl8139_ioport_writew, },
3379     { 0, 0x100, 4, .read = rtl8139_ioport_readl, },
3380     { 0, 0x100, 4, .write = rtl8139_ioport_writel, },
3381     PORTIO_END_OF_LIST()
3382 };
3383
3384 static const MemoryRegionOps rtl8139_io_ops = {
3385     .old_portio = rtl8139_portio,
3386     .endianness = DEVICE_LITTLE_ENDIAN,
3387 };
3388
3389 static const MemoryRegionOps rtl8139_mmio_ops = {
3390     .old_mmio = {
3391         .read = {
3392             rtl8139_mmio_readb,
3393             rtl8139_mmio_readw,
3394             rtl8139_mmio_readl,
3395         },
3396         .write = {
3397             rtl8139_mmio_writeb,
3398             rtl8139_mmio_writew,
3399             rtl8139_mmio_writel,
3400         },
3401     },
3402     .endianness = DEVICE_LITTLE_ENDIAN,
3403 };
3404
3405 static void rtl8139_timer(void *opaque)
3406 {
3407     RTL8139State *s = opaque;
3408
3409     if (!s->clock_enabled)
3410     {
3411         DPRINTF(">>> timer: clock is not running\n");
3412         return;
3413     }
3414
3415     s->IntrStatus |= PCSTimeout;
3416     rtl8139_update_irq(s);
3417     rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3418 }
3419
3420 static void rtl8139_cleanup(VLANClientState *nc)
3421 {
3422     RTL8139State *s = DO_UPCAST(NICState, nc, nc)->opaque;
3423
3424     s->nic = NULL;
3425 }
3426
3427 static int pci_rtl8139_uninit(PCIDevice *dev)
3428 {
3429     RTL8139State *s = DO_UPCAST(RTL8139State, dev, dev);
3430
3431     memory_region_destroy(&s->bar_io);
3432     memory_region_destroy(&s->bar_mem);
3433     if (s->cplus_txbuffer) {
3434         g_free(s->cplus_txbuffer);
3435         s->cplus_txbuffer = NULL;
3436     }
3437     qemu_del_timer(s->timer);
3438     qemu_free_timer(s->timer);
3439     qemu_del_vlan_client(&s->nic->nc);
3440     return 0;
3441 }
3442
3443 static NetClientInfo net_rtl8139_info = {
3444     .type = NET_CLIENT_TYPE_NIC,
3445     .size = sizeof(NICState),
3446     .can_receive = rtl8139_can_receive,
3447     .receive = rtl8139_receive,
3448     .cleanup = rtl8139_cleanup,
3449 };
3450
3451 static int pci_rtl8139_init(PCIDevice *dev)
3452 {
3453     RTL8139State * s = DO_UPCAST(RTL8139State, dev, dev);
3454     uint8_t *pci_conf;
3455
3456     pci_conf = s->dev.config;
3457     pci_conf[PCI_INTERRUPT_PIN] = 1;    /* interrupt pin A */
3458     /* TODO: start of capability list, but no capability
3459      * list bit in status register, and offset 0xdc seems unused. */
3460     pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3461
3462     memory_region_init_io(&s->bar_io, &rtl8139_io_ops, s, "rtl8139", 0x100);
3463     memory_region_init_io(&s->bar_mem, &rtl8139_mmio_ops, s, "rtl8139", 0x100);
3464     pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
3465     pci_register_bar(&s->dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
3466
3467     qemu_macaddr_default_if_unset(&s->conf.macaddr);
3468
3469     /* prepare eeprom */
3470     s->eeprom.contents[0] = 0x8129;
3471 #if 1
3472     /* PCI vendor and device ID should be mirrored here */
3473     s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3474     s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3475 #endif
3476     s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3477     s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3478     s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3479
3480     s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3481                           object_get_typename(OBJECT(dev)), dev->qdev.id, s);
3482     qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a);
3483
3484     s->cplus_txbuffer = NULL;
3485     s->cplus_txbuffer_len = 0;
3486     s->cplus_txbuffer_offset = 0;
3487
3488     s->TimerExpire = 0;
3489     s->timer = qemu_new_timer_ns(vm_clock, rtl8139_timer, s);
3490     rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3491
3492     add_boot_device_path(s->conf.bootindex, &dev->qdev, "/ethernet-phy@0");
3493
3494     return 0;
3495 }
3496
3497 static Property rtl8139_properties[] = {
3498     DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3499     DEFINE_PROP_END_OF_LIST(),
3500 };
3501
3502 static void rtl8139_class_init(ObjectClass *klass, void *data)
3503 {
3504     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
3505
3506     k->init = pci_rtl8139_init;
3507     k->exit = pci_rtl8139_uninit;
3508     k->romfile = "pxe-rtl8139.rom";
3509     k->vendor_id = PCI_VENDOR_ID_REALTEK;
3510     k->device_id = PCI_DEVICE_ID_REALTEK_8139;
3511     k->revision = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */
3512     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
3513 }
3514
3515 static DeviceInfo rtl8139_info = {
3516     .name = "rtl8139",
3517     .size = sizeof(RTL8139State),
3518     .reset = rtl8139_reset,
3519     .vmsd = &vmstate_rtl8139,
3520     .props = rtl8139_properties,
3521     .class_init = rtl8139_class_init,
3522 };
3523
3524 static void rtl8139_register_devices(void)
3525 {
3526     pci_qdev_register(&rtl8139_info);
3527 }
3528
3529 device_init(rtl8139_register_devices)