]> rtime.felk.cvut.cz Git - lisovros/qemu_apohw.git/blob - memory.c
vmdk: Fix creating big description file
[lisovros/qemu_apohw.git] / memory.c
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15
16 #include "exec/memory.h"
17 #include "exec/address-spaces.h"
18 #include "exec/ioport.h"
19 #include "qemu/bitops.h"
20 #include "qom/object.h"
21 #include "trace.h"
22 #include <assert.h>
23
24 #include "exec/memory-internal.h"
25
26 //#define DEBUG_UNASSIGNED
27
28 static unsigned memory_region_transaction_depth;
29 static bool memory_region_update_pending;
30 static bool global_dirty_log = false;
31
32 /* flat_view_mutex is taken around reading as->current_map; the critical
33  * section is extremely short, so I'm using a single mutex for every AS.
34  * We could also RCU for the read-side.
35  *
36  * The BQL is taken around transaction commits, hence both locks are taken
37  * while writing to as->current_map (with the BQL taken outside).
38  */
39 static QemuMutex flat_view_mutex;
40
41 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
42     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
43
44 static QTAILQ_HEAD(, AddressSpace) address_spaces
45     = QTAILQ_HEAD_INITIALIZER(address_spaces);
46
47 static void memory_init(void)
48 {
49     qemu_mutex_init(&flat_view_mutex);
50 }
51
52 typedef struct AddrRange AddrRange;
53
54 /*
55  * Note using signed integers limits us to physical addresses at most
56  * 63 bits wide.  They are needed for negative offsetting in aliases
57  * (large MemoryRegion::alias_offset).
58  */
59 struct AddrRange {
60     Int128 start;
61     Int128 size;
62 };
63
64 static AddrRange addrrange_make(Int128 start, Int128 size)
65 {
66     return (AddrRange) { start, size };
67 }
68
69 static bool addrrange_equal(AddrRange r1, AddrRange r2)
70 {
71     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
72 }
73
74 static Int128 addrrange_end(AddrRange r)
75 {
76     return int128_add(r.start, r.size);
77 }
78
79 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
80 {
81     int128_addto(&range.start, delta);
82     return range;
83 }
84
85 static bool addrrange_contains(AddrRange range, Int128 addr)
86 {
87     return int128_ge(addr, range.start)
88         && int128_lt(addr, addrrange_end(range));
89 }
90
91 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
92 {
93     return addrrange_contains(r1, r2.start)
94         || addrrange_contains(r2, r1.start);
95 }
96
97 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
98 {
99     Int128 start = int128_max(r1.start, r2.start);
100     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
101     return addrrange_make(start, int128_sub(end, start));
102 }
103
104 enum ListenerDirection { Forward, Reverse };
105
106 static bool memory_listener_match(MemoryListener *listener,
107                                   MemoryRegionSection *section)
108 {
109     return !listener->address_space_filter
110         || listener->address_space_filter == section->address_space;
111 }
112
113 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
114     do {                                                                \
115         MemoryListener *_listener;                                      \
116                                                                         \
117         switch (_direction) {                                           \
118         case Forward:                                                   \
119             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
120                 if (_listener->_callback) {                             \
121                     _listener->_callback(_listener, ##_args);           \
122                 }                                                       \
123             }                                                           \
124             break;                                                      \
125         case Reverse:                                                   \
126             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
127                                    memory_listeners, link) {            \
128                 if (_listener->_callback) {                             \
129                     _listener->_callback(_listener, ##_args);           \
130                 }                                                       \
131             }                                                           \
132             break;                                                      \
133         default:                                                        \
134             abort();                                                    \
135         }                                                               \
136     } while (0)
137
138 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
139     do {                                                                \
140         MemoryListener *_listener;                                      \
141                                                                         \
142         switch (_direction) {                                           \
143         case Forward:                                                   \
144             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
145                 if (_listener->_callback                                \
146                     && memory_listener_match(_listener, _section)) {    \
147                     _listener->_callback(_listener, _section, ##_args); \
148                 }                                                       \
149             }                                                           \
150             break;                                                      \
151         case Reverse:                                                   \
152             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
153                                    memory_listeners, link) {            \
154                 if (_listener->_callback                                \
155                     && memory_listener_match(_listener, _section)) {    \
156                     _listener->_callback(_listener, _section, ##_args); \
157                 }                                                       \
158             }                                                           \
159             break;                                                      \
160         default:                                                        \
161             abort();                                                    \
162         }                                                               \
163     } while (0)
164
165 /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
166 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback)            \
167     MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
168         .mr = (fr)->mr,                                                 \
169         .address_space = (as),                                          \
170         .offset_within_region = (fr)->offset_in_region,                 \
171         .size = (fr)->addr.size,                                        \
172         .offset_within_address_space = int128_get64((fr)->addr.start),  \
173         .readonly = (fr)->readonly,                                     \
174               }))
175
176 struct CoalescedMemoryRange {
177     AddrRange addr;
178     QTAILQ_ENTRY(CoalescedMemoryRange) link;
179 };
180
181 struct MemoryRegionIoeventfd {
182     AddrRange addr;
183     bool match_data;
184     uint64_t data;
185     EventNotifier *e;
186 };
187
188 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
189                                            MemoryRegionIoeventfd b)
190 {
191     if (int128_lt(a.addr.start, b.addr.start)) {
192         return true;
193     } else if (int128_gt(a.addr.start, b.addr.start)) {
194         return false;
195     } else if (int128_lt(a.addr.size, b.addr.size)) {
196         return true;
197     } else if (int128_gt(a.addr.size, b.addr.size)) {
198         return false;
199     } else if (a.match_data < b.match_data) {
200         return true;
201     } else  if (a.match_data > b.match_data) {
202         return false;
203     } else if (a.match_data) {
204         if (a.data < b.data) {
205             return true;
206         } else if (a.data > b.data) {
207             return false;
208         }
209     }
210     if (a.e < b.e) {
211         return true;
212     } else if (a.e > b.e) {
213         return false;
214     }
215     return false;
216 }
217
218 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
219                                           MemoryRegionIoeventfd b)
220 {
221     return !memory_region_ioeventfd_before(a, b)
222         && !memory_region_ioeventfd_before(b, a);
223 }
224
225 typedef struct FlatRange FlatRange;
226 typedef struct FlatView FlatView;
227
228 /* Range of memory in the global map.  Addresses are absolute. */
229 struct FlatRange {
230     MemoryRegion *mr;
231     hwaddr offset_in_region;
232     AddrRange addr;
233     uint8_t dirty_log_mask;
234     bool romd_mode;
235     bool readonly;
236 };
237
238 /* Flattened global view of current active memory hierarchy.  Kept in sorted
239  * order.
240  */
241 struct FlatView {
242     unsigned ref;
243     FlatRange *ranges;
244     unsigned nr;
245     unsigned nr_allocated;
246 };
247
248 typedef struct AddressSpaceOps AddressSpaceOps;
249
250 #define FOR_EACH_FLAT_RANGE(var, view)          \
251     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
252
253 static bool flatrange_equal(FlatRange *a, FlatRange *b)
254 {
255     return a->mr == b->mr
256         && addrrange_equal(a->addr, b->addr)
257         && a->offset_in_region == b->offset_in_region
258         && a->romd_mode == b->romd_mode
259         && a->readonly == b->readonly;
260 }
261
262 static void flatview_init(FlatView *view)
263 {
264     view->ref = 1;
265     view->ranges = NULL;
266     view->nr = 0;
267     view->nr_allocated = 0;
268 }
269
270 /* Insert a range into a given position.  Caller is responsible for maintaining
271  * sorting order.
272  */
273 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
274 {
275     if (view->nr == view->nr_allocated) {
276         view->nr_allocated = MAX(2 * view->nr, 10);
277         view->ranges = g_realloc(view->ranges,
278                                     view->nr_allocated * sizeof(*view->ranges));
279     }
280     memmove(view->ranges + pos + 1, view->ranges + pos,
281             (view->nr - pos) * sizeof(FlatRange));
282     view->ranges[pos] = *range;
283     memory_region_ref(range->mr);
284     ++view->nr;
285 }
286
287 static void flatview_destroy(FlatView *view)
288 {
289     int i;
290
291     for (i = 0; i < view->nr; i++) {
292         memory_region_unref(view->ranges[i].mr);
293     }
294     g_free(view->ranges);
295     g_free(view);
296 }
297
298 static void flatview_ref(FlatView *view)
299 {
300     atomic_inc(&view->ref);
301 }
302
303 static void flatview_unref(FlatView *view)
304 {
305     if (atomic_fetch_dec(&view->ref) == 1) {
306         flatview_destroy(view);
307     }
308 }
309
310 static bool can_merge(FlatRange *r1, FlatRange *r2)
311 {
312     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
313         && r1->mr == r2->mr
314         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
315                                 r1->addr.size),
316                      int128_make64(r2->offset_in_region))
317         && r1->dirty_log_mask == r2->dirty_log_mask
318         && r1->romd_mode == r2->romd_mode
319         && r1->readonly == r2->readonly;
320 }
321
322 /* Attempt to simplify a view by merging adjacent ranges */
323 static void flatview_simplify(FlatView *view)
324 {
325     unsigned i, j;
326
327     i = 0;
328     while (i < view->nr) {
329         j = i + 1;
330         while (j < view->nr
331                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
332             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
333             ++j;
334         }
335         ++i;
336         memmove(&view->ranges[i], &view->ranges[j],
337                 (view->nr - j) * sizeof(view->ranges[j]));
338         view->nr -= j - i;
339     }
340 }
341
342 static bool memory_region_big_endian(MemoryRegion *mr)
343 {
344 #ifdef TARGET_WORDS_BIGENDIAN
345     return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
346 #else
347     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
348 #endif
349 }
350
351 static bool memory_region_wrong_endianness(MemoryRegion *mr)
352 {
353 #ifdef TARGET_WORDS_BIGENDIAN
354     return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
355 #else
356     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
357 #endif
358 }
359
360 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
361 {
362     if (memory_region_wrong_endianness(mr)) {
363         switch (size) {
364         case 1:
365             break;
366         case 2:
367             *data = bswap16(*data);
368             break;
369         case 4:
370             *data = bswap32(*data);
371             break;
372         case 8:
373             *data = bswap64(*data);
374             break;
375         default:
376             abort();
377         }
378     }
379 }
380
381 static void memory_region_oldmmio_read_accessor(MemoryRegion *mr,
382                                                 hwaddr addr,
383                                                 uint64_t *value,
384                                                 unsigned size,
385                                                 unsigned shift,
386                                                 uint64_t mask)
387 {
388     uint64_t tmp;
389
390     tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
391     trace_memory_region_ops_read(mr, addr, tmp, size);
392     *value |= (tmp & mask) << shift;
393 }
394
395 static void memory_region_read_accessor(MemoryRegion *mr,
396                                         hwaddr addr,
397                                         uint64_t *value,
398                                         unsigned size,
399                                         unsigned shift,
400                                         uint64_t mask)
401 {
402     uint64_t tmp;
403
404     if (mr->flush_coalesced_mmio) {
405         qemu_flush_coalesced_mmio_buffer();
406     }
407     tmp = mr->ops->read(mr->opaque, addr, size);
408     trace_memory_region_ops_read(mr, addr, tmp, size);
409     *value |= (tmp & mask) << shift;
410 }
411
412 static void memory_region_oldmmio_write_accessor(MemoryRegion *mr,
413                                                  hwaddr addr,
414                                                  uint64_t *value,
415                                                  unsigned size,
416                                                  unsigned shift,
417                                                  uint64_t mask)
418 {
419     uint64_t tmp;
420
421     tmp = (*value >> shift) & mask;
422     trace_memory_region_ops_write(mr, addr, tmp, size);
423     mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
424 }
425
426 static void memory_region_write_accessor(MemoryRegion *mr,
427                                          hwaddr addr,
428                                          uint64_t *value,
429                                          unsigned size,
430                                          unsigned shift,
431                                          uint64_t mask)
432 {
433     uint64_t tmp;
434
435     if (mr->flush_coalesced_mmio) {
436         qemu_flush_coalesced_mmio_buffer();
437     }
438     tmp = (*value >> shift) & mask;
439     trace_memory_region_ops_write(mr, addr, tmp, size);
440     mr->ops->write(mr->opaque, addr, tmp, size);
441 }
442
443 static void access_with_adjusted_size(hwaddr addr,
444                                       uint64_t *value,
445                                       unsigned size,
446                                       unsigned access_size_min,
447                                       unsigned access_size_max,
448                                       void (*access)(MemoryRegion *mr,
449                                                      hwaddr addr,
450                                                      uint64_t *value,
451                                                      unsigned size,
452                                                      unsigned shift,
453                                                      uint64_t mask),
454                                       MemoryRegion *mr)
455 {
456     uint64_t access_mask;
457     unsigned access_size;
458     unsigned i;
459
460     if (!access_size_min) {
461         access_size_min = 1;
462     }
463     if (!access_size_max) {
464         access_size_max = 4;
465     }
466
467     /* FIXME: support unaligned access? */
468     access_size = MAX(MIN(size, access_size_max), access_size_min);
469     access_mask = -1ULL >> (64 - access_size * 8);
470     if (memory_region_big_endian(mr)) {
471         for (i = 0; i < size; i += access_size) {
472             access(mr, addr + i, value, access_size,
473                    (size - access_size - i) * 8, access_mask);
474         }
475     } else {
476         for (i = 0; i < size; i += access_size) {
477             access(mr, addr + i, value, access_size, i * 8, access_mask);
478         }
479     }
480 }
481
482 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
483 {
484     AddressSpace *as;
485
486     while (mr->parent) {
487         mr = mr->parent;
488     }
489     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
490         if (mr == as->root) {
491             return as;
492         }
493     }
494     abort();
495 }
496
497 /* Render a memory region into the global view.  Ranges in @view obscure
498  * ranges in @mr.
499  */
500 static void render_memory_region(FlatView *view,
501                                  MemoryRegion *mr,
502                                  Int128 base,
503                                  AddrRange clip,
504                                  bool readonly)
505 {
506     MemoryRegion *subregion;
507     unsigned i;
508     hwaddr offset_in_region;
509     Int128 remain;
510     Int128 now;
511     FlatRange fr;
512     AddrRange tmp;
513
514     if (!mr->enabled) {
515         return;
516     }
517
518     int128_addto(&base, int128_make64(mr->addr));
519     readonly |= mr->readonly;
520
521     tmp = addrrange_make(base, mr->size);
522
523     if (!addrrange_intersects(tmp, clip)) {
524         return;
525     }
526
527     clip = addrrange_intersection(tmp, clip);
528
529     if (mr->alias) {
530         int128_subfrom(&base, int128_make64(mr->alias->addr));
531         int128_subfrom(&base, int128_make64(mr->alias_offset));
532         render_memory_region(view, mr->alias, base, clip, readonly);
533         return;
534     }
535
536     /* Render subregions in priority order. */
537     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
538         render_memory_region(view, subregion, base, clip, readonly);
539     }
540
541     if (!mr->terminates) {
542         return;
543     }
544
545     offset_in_region = int128_get64(int128_sub(clip.start, base));
546     base = clip.start;
547     remain = clip.size;
548
549     fr.mr = mr;
550     fr.dirty_log_mask = mr->dirty_log_mask;
551     fr.romd_mode = mr->romd_mode;
552     fr.readonly = readonly;
553
554     /* Render the region itself into any gaps left by the current view. */
555     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
556         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
557             continue;
558         }
559         if (int128_lt(base, view->ranges[i].addr.start)) {
560             now = int128_min(remain,
561                              int128_sub(view->ranges[i].addr.start, base));
562             fr.offset_in_region = offset_in_region;
563             fr.addr = addrrange_make(base, now);
564             flatview_insert(view, i, &fr);
565             ++i;
566             int128_addto(&base, now);
567             offset_in_region += int128_get64(now);
568             int128_subfrom(&remain, now);
569         }
570         now = int128_sub(int128_min(int128_add(base, remain),
571                                     addrrange_end(view->ranges[i].addr)),
572                          base);
573         int128_addto(&base, now);
574         offset_in_region += int128_get64(now);
575         int128_subfrom(&remain, now);
576     }
577     if (int128_nz(remain)) {
578         fr.offset_in_region = offset_in_region;
579         fr.addr = addrrange_make(base, remain);
580         flatview_insert(view, i, &fr);
581     }
582 }
583
584 /* Render a memory topology into a list of disjoint absolute ranges. */
585 static FlatView *generate_memory_topology(MemoryRegion *mr)
586 {
587     FlatView *view;
588
589     view = g_new(FlatView, 1);
590     flatview_init(view);
591
592     if (mr) {
593         render_memory_region(view, mr, int128_zero(),
594                              addrrange_make(int128_zero(), int128_2_64()), false);
595     }
596     flatview_simplify(view);
597
598     return view;
599 }
600
601 static void address_space_add_del_ioeventfds(AddressSpace *as,
602                                              MemoryRegionIoeventfd *fds_new,
603                                              unsigned fds_new_nb,
604                                              MemoryRegionIoeventfd *fds_old,
605                                              unsigned fds_old_nb)
606 {
607     unsigned iold, inew;
608     MemoryRegionIoeventfd *fd;
609     MemoryRegionSection section;
610
611     /* Generate a symmetric difference of the old and new fd sets, adding
612      * and deleting as necessary.
613      */
614
615     iold = inew = 0;
616     while (iold < fds_old_nb || inew < fds_new_nb) {
617         if (iold < fds_old_nb
618             && (inew == fds_new_nb
619                 || memory_region_ioeventfd_before(fds_old[iold],
620                                                   fds_new[inew]))) {
621             fd = &fds_old[iold];
622             section = (MemoryRegionSection) {
623                 .address_space = as,
624                 .offset_within_address_space = int128_get64(fd->addr.start),
625                 .size = fd->addr.size,
626             };
627             MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
628                                  fd->match_data, fd->data, fd->e);
629             ++iold;
630         } else if (inew < fds_new_nb
631                    && (iold == fds_old_nb
632                        || memory_region_ioeventfd_before(fds_new[inew],
633                                                          fds_old[iold]))) {
634             fd = &fds_new[inew];
635             section = (MemoryRegionSection) {
636                 .address_space = as,
637                 .offset_within_address_space = int128_get64(fd->addr.start),
638                 .size = fd->addr.size,
639             };
640             MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
641                                  fd->match_data, fd->data, fd->e);
642             ++inew;
643         } else {
644             ++iold;
645             ++inew;
646         }
647     }
648 }
649
650 static FlatView *address_space_get_flatview(AddressSpace *as)
651 {
652     FlatView *view;
653
654     qemu_mutex_lock(&flat_view_mutex);
655     view = as->current_map;
656     flatview_ref(view);
657     qemu_mutex_unlock(&flat_view_mutex);
658     return view;
659 }
660
661 static void address_space_update_ioeventfds(AddressSpace *as)
662 {
663     FlatView *view;
664     FlatRange *fr;
665     unsigned ioeventfd_nb = 0;
666     MemoryRegionIoeventfd *ioeventfds = NULL;
667     AddrRange tmp;
668     unsigned i;
669
670     view = address_space_get_flatview(as);
671     FOR_EACH_FLAT_RANGE(fr, view) {
672         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
673             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
674                                   int128_sub(fr->addr.start,
675                                              int128_make64(fr->offset_in_region)));
676             if (addrrange_intersects(fr->addr, tmp)) {
677                 ++ioeventfd_nb;
678                 ioeventfds = g_realloc(ioeventfds,
679                                           ioeventfd_nb * sizeof(*ioeventfds));
680                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
681                 ioeventfds[ioeventfd_nb-1].addr = tmp;
682             }
683         }
684     }
685
686     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
687                                      as->ioeventfds, as->ioeventfd_nb);
688
689     g_free(as->ioeventfds);
690     as->ioeventfds = ioeventfds;
691     as->ioeventfd_nb = ioeventfd_nb;
692     flatview_unref(view);
693 }
694
695 static void address_space_update_topology_pass(AddressSpace *as,
696                                                const FlatView *old_view,
697                                                const FlatView *new_view,
698                                                bool adding)
699 {
700     unsigned iold, inew;
701     FlatRange *frold, *frnew;
702
703     /* Generate a symmetric difference of the old and new memory maps.
704      * Kill ranges in the old map, and instantiate ranges in the new map.
705      */
706     iold = inew = 0;
707     while (iold < old_view->nr || inew < new_view->nr) {
708         if (iold < old_view->nr) {
709             frold = &old_view->ranges[iold];
710         } else {
711             frold = NULL;
712         }
713         if (inew < new_view->nr) {
714             frnew = &new_view->ranges[inew];
715         } else {
716             frnew = NULL;
717         }
718
719         if (frold
720             && (!frnew
721                 || int128_lt(frold->addr.start, frnew->addr.start)
722                 || (int128_eq(frold->addr.start, frnew->addr.start)
723                     && !flatrange_equal(frold, frnew)))) {
724             /* In old but not in new, or in both but attributes changed. */
725
726             if (!adding) {
727                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
728             }
729
730             ++iold;
731         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
732             /* In both and unchanged (except logging may have changed) */
733
734             if (adding) {
735                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
736                 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
737                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
738                 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
739                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
740                 }
741             }
742
743             ++iold;
744             ++inew;
745         } else {
746             /* In new */
747
748             if (adding) {
749                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
750             }
751
752             ++inew;
753         }
754     }
755 }
756
757
758 static void address_space_update_topology(AddressSpace *as)
759 {
760     FlatView *old_view = address_space_get_flatview(as);
761     FlatView *new_view = generate_memory_topology(as->root);
762
763     address_space_update_topology_pass(as, old_view, new_view, false);
764     address_space_update_topology_pass(as, old_view, new_view, true);
765
766     qemu_mutex_lock(&flat_view_mutex);
767     flatview_unref(as->current_map);
768     as->current_map = new_view;
769     qemu_mutex_unlock(&flat_view_mutex);
770
771     /* Note that all the old MemoryRegions are still alive up to this
772      * point.  This relieves most MemoryListeners from the need to
773      * ref/unref the MemoryRegions they get---unless they use them
774      * outside the iothread mutex, in which case precise reference
775      * counting is necessary.
776      */
777     flatview_unref(old_view);
778
779     address_space_update_ioeventfds(as);
780 }
781
782 void memory_region_transaction_begin(void)
783 {
784     qemu_flush_coalesced_mmio_buffer();
785     ++memory_region_transaction_depth;
786 }
787
788 void memory_region_transaction_commit(void)
789 {
790     AddressSpace *as;
791
792     assert(memory_region_transaction_depth);
793     --memory_region_transaction_depth;
794     if (!memory_region_transaction_depth && memory_region_update_pending) {
795         memory_region_update_pending = false;
796         MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
797
798         QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
799             address_space_update_topology(as);
800         }
801
802         MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
803     }
804 }
805
806 static void memory_region_destructor_none(MemoryRegion *mr)
807 {
808 }
809
810 static void memory_region_destructor_ram(MemoryRegion *mr)
811 {
812     qemu_ram_free(mr->ram_addr);
813 }
814
815 static void memory_region_destructor_alias(MemoryRegion *mr)
816 {
817     memory_region_unref(mr->alias);
818 }
819
820 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
821 {
822     qemu_ram_free_from_ptr(mr->ram_addr);
823 }
824
825 static void memory_region_destructor_rom_device(MemoryRegion *mr)
826 {
827     qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
828 }
829
830 void memory_region_init(MemoryRegion *mr,
831                         Object *owner,
832                         const char *name,
833                         uint64_t size)
834 {
835     mr->ops = &unassigned_mem_ops;
836     mr->opaque = NULL;
837     mr->owner = owner;
838     mr->iommu_ops = NULL;
839     mr->parent = NULL;
840     mr->size = int128_make64(size);
841     if (size == UINT64_MAX) {
842         mr->size = int128_2_64();
843     }
844     mr->addr = 0;
845     mr->subpage = false;
846     mr->enabled = true;
847     mr->terminates = false;
848     mr->ram = false;
849     mr->romd_mode = true;
850     mr->readonly = false;
851     mr->rom_device = false;
852     mr->destructor = memory_region_destructor_none;
853     mr->priority = 0;
854     mr->may_overlap = false;
855     mr->alias = NULL;
856     QTAILQ_INIT(&mr->subregions);
857     memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
858     QTAILQ_INIT(&mr->coalesced);
859     mr->name = g_strdup(name);
860     mr->dirty_log_mask = 0;
861     mr->ioeventfd_nb = 0;
862     mr->ioeventfds = NULL;
863     mr->flush_coalesced_mmio = false;
864 }
865
866 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
867                                     unsigned size)
868 {
869 #ifdef DEBUG_UNASSIGNED
870     printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
871 #endif
872     if (current_cpu != NULL) {
873         cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
874     }
875     return 0;
876 }
877
878 static void unassigned_mem_write(void *opaque, hwaddr addr,
879                                  uint64_t val, unsigned size)
880 {
881 #ifdef DEBUG_UNASSIGNED
882     printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
883 #endif
884     if (current_cpu != NULL) {
885         cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
886     }
887 }
888
889 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
890                                    unsigned size, bool is_write)
891 {
892     return false;
893 }
894
895 const MemoryRegionOps unassigned_mem_ops = {
896     .valid.accepts = unassigned_mem_accepts,
897     .endianness = DEVICE_NATIVE_ENDIAN,
898 };
899
900 bool memory_region_access_valid(MemoryRegion *mr,
901                                 hwaddr addr,
902                                 unsigned size,
903                                 bool is_write)
904 {
905     int access_size_min, access_size_max;
906     int access_size, i;
907
908     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
909         return false;
910     }
911
912     if (!mr->ops->valid.accepts) {
913         return true;
914     }
915
916     access_size_min = mr->ops->valid.min_access_size;
917     if (!mr->ops->valid.min_access_size) {
918         access_size_min = 1;
919     }
920
921     access_size_max = mr->ops->valid.max_access_size;
922     if (!mr->ops->valid.max_access_size) {
923         access_size_max = 4;
924     }
925
926     access_size = MAX(MIN(size, access_size_max), access_size_min);
927     for (i = 0; i < size; i += access_size) {
928         if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
929                                     is_write)) {
930             return false;
931         }
932     }
933
934     return true;
935 }
936
937 static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
938                                              hwaddr addr,
939                                              unsigned size)
940 {
941     uint64_t data = 0;
942
943     if (mr->ops->read) {
944         access_with_adjusted_size(addr, &data, size,
945                                   mr->ops->impl.min_access_size,
946                                   mr->ops->impl.max_access_size,
947                                   memory_region_read_accessor, mr);
948     } else {
949         access_with_adjusted_size(addr, &data, size, 1, 4,
950                                   memory_region_oldmmio_read_accessor, mr);
951     }
952
953     return data;
954 }
955
956 static bool memory_region_dispatch_read(MemoryRegion *mr,
957                                         hwaddr addr,
958                                         uint64_t *pval,
959                                         unsigned size)
960 {
961     if (!memory_region_access_valid(mr, addr, size, false)) {
962         *pval = unassigned_mem_read(mr, addr, size);
963         return true;
964     }
965
966     *pval = memory_region_dispatch_read1(mr, addr, size);
967     adjust_endianness(mr, pval, size);
968     return false;
969 }
970
971 static bool memory_region_dispatch_write(MemoryRegion *mr,
972                                          hwaddr addr,
973                                          uint64_t data,
974                                          unsigned size)
975 {
976     if (!memory_region_access_valid(mr, addr, size, true)) {
977         unassigned_mem_write(mr, addr, data, size);
978         return true;
979     }
980
981     adjust_endianness(mr, &data, size);
982
983     if (mr->ops->write) {
984         access_with_adjusted_size(addr, &data, size,
985                                   mr->ops->impl.min_access_size,
986                                   mr->ops->impl.max_access_size,
987                                   memory_region_write_accessor, mr);
988     } else {
989         access_with_adjusted_size(addr, &data, size, 1, 4,
990                                   memory_region_oldmmio_write_accessor, mr);
991     }
992     return false;
993 }
994
995 void memory_region_init_io(MemoryRegion *mr,
996                            Object *owner,
997                            const MemoryRegionOps *ops,
998                            void *opaque,
999                            const char *name,
1000                            uint64_t size)
1001 {
1002     memory_region_init(mr, owner, name, size);
1003     mr->ops = ops;
1004     mr->opaque = opaque;
1005     mr->terminates = true;
1006     mr->ram_addr = ~(ram_addr_t)0;
1007 }
1008
1009 void memory_region_init_ram(MemoryRegion *mr,
1010                             Object *owner,
1011                             const char *name,
1012                             uint64_t size)
1013 {
1014     memory_region_init(mr, owner, name, size);
1015     mr->ram = true;
1016     mr->terminates = true;
1017     mr->destructor = memory_region_destructor_ram;
1018     mr->ram_addr = qemu_ram_alloc(size, mr);
1019 }
1020
1021 void memory_region_init_ram_ptr(MemoryRegion *mr,
1022                                 Object *owner,
1023                                 const char *name,
1024                                 uint64_t size,
1025                                 void *ptr)
1026 {
1027     memory_region_init(mr, owner, name, size);
1028     mr->ram = true;
1029     mr->terminates = true;
1030     mr->destructor = memory_region_destructor_ram_from_ptr;
1031     mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
1032 }
1033
1034 void memory_region_init_alias(MemoryRegion *mr,
1035                               Object *owner,
1036                               const char *name,
1037                               MemoryRegion *orig,
1038                               hwaddr offset,
1039                               uint64_t size)
1040 {
1041     memory_region_init(mr, owner, name, size);
1042     memory_region_ref(orig);
1043     mr->destructor = memory_region_destructor_alias;
1044     mr->alias = orig;
1045     mr->alias_offset = offset;
1046 }
1047
1048 void memory_region_init_rom_device(MemoryRegion *mr,
1049                                    Object *owner,
1050                                    const MemoryRegionOps *ops,
1051                                    void *opaque,
1052                                    const char *name,
1053                                    uint64_t size)
1054 {
1055     memory_region_init(mr, owner, name, size);
1056     mr->ops = ops;
1057     mr->opaque = opaque;
1058     mr->terminates = true;
1059     mr->rom_device = true;
1060     mr->destructor = memory_region_destructor_rom_device;
1061     mr->ram_addr = qemu_ram_alloc(size, mr);
1062 }
1063
1064 void memory_region_init_iommu(MemoryRegion *mr,
1065                               Object *owner,
1066                               const MemoryRegionIOMMUOps *ops,
1067                               const char *name,
1068                               uint64_t size)
1069 {
1070     memory_region_init(mr, owner, name, size);
1071     mr->iommu_ops = ops,
1072     mr->terminates = true;  /* then re-forwards */
1073     notifier_list_init(&mr->iommu_notify);
1074 }
1075
1076 void memory_region_init_reservation(MemoryRegion *mr,
1077                                     Object *owner,
1078                                     const char *name,
1079                                     uint64_t size)
1080 {
1081     memory_region_init_io(mr, owner, &unassigned_mem_ops, mr, name, size);
1082 }
1083
1084 void memory_region_destroy(MemoryRegion *mr)
1085 {
1086     assert(QTAILQ_EMPTY(&mr->subregions));
1087     assert(memory_region_transaction_depth == 0);
1088     mr->destructor(mr);
1089     memory_region_clear_coalescing(mr);
1090     g_free((char *)mr->name);
1091     g_free(mr->ioeventfds);
1092 }
1093
1094 Object *memory_region_owner(MemoryRegion *mr)
1095 {
1096     return mr->owner;
1097 }
1098
1099 void memory_region_ref(MemoryRegion *mr)
1100 {
1101     if (mr && mr->owner) {
1102         object_ref(mr->owner);
1103     }
1104 }
1105
1106 void memory_region_unref(MemoryRegion *mr)
1107 {
1108     if (mr && mr->owner) {
1109         object_unref(mr->owner);
1110     }
1111 }
1112
1113 uint64_t memory_region_size(MemoryRegion *mr)
1114 {
1115     if (int128_eq(mr->size, int128_2_64())) {
1116         return UINT64_MAX;
1117     }
1118     return int128_get64(mr->size);
1119 }
1120
1121 const char *memory_region_name(MemoryRegion *mr)
1122 {
1123     return mr->name;
1124 }
1125
1126 bool memory_region_is_ram(MemoryRegion *mr)
1127 {
1128     return mr->ram;
1129 }
1130
1131 bool memory_region_is_logging(MemoryRegion *mr)
1132 {
1133     return mr->dirty_log_mask;
1134 }
1135
1136 bool memory_region_is_rom(MemoryRegion *mr)
1137 {
1138     return mr->ram && mr->readonly;
1139 }
1140
1141 bool memory_region_is_iommu(MemoryRegion *mr)
1142 {
1143     return mr->iommu_ops;
1144 }
1145
1146 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1147 {
1148     notifier_list_add(&mr->iommu_notify, n);
1149 }
1150
1151 void memory_region_unregister_iommu_notifier(Notifier *n)
1152 {
1153     notifier_remove(n);
1154 }
1155
1156 void memory_region_notify_iommu(MemoryRegion *mr,
1157                                 IOMMUTLBEntry entry)
1158 {
1159     assert(memory_region_is_iommu(mr));
1160     notifier_list_notify(&mr->iommu_notify, &entry);
1161 }
1162
1163 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1164 {
1165     uint8_t mask = 1 << client;
1166
1167     memory_region_transaction_begin();
1168     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1169     memory_region_update_pending |= mr->enabled;
1170     memory_region_transaction_commit();
1171 }
1172
1173 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1174                              hwaddr size, unsigned client)
1175 {
1176     assert(mr->terminates);
1177     return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size,
1178                                          1 << client);
1179 }
1180
1181 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1182                              hwaddr size)
1183 {
1184     assert(mr->terminates);
1185     return cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size, -1);
1186 }
1187
1188 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1189                                         hwaddr size, unsigned client)
1190 {
1191     bool ret;
1192     assert(mr->terminates);
1193     ret = cpu_physical_memory_get_dirty(mr->ram_addr + addr, size,
1194                                         1 << client);
1195     if (ret) {
1196         cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1197                                         mr->ram_addr + addr + size,
1198                                         1 << client);
1199     }
1200     return ret;
1201 }
1202
1203
1204 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1205 {
1206     AddressSpace *as;
1207     FlatRange *fr;
1208
1209     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1210         FlatView *view = address_space_get_flatview(as);
1211         FOR_EACH_FLAT_RANGE(fr, view) {
1212             if (fr->mr == mr) {
1213                 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1214             }
1215         }
1216         flatview_unref(view);
1217     }
1218 }
1219
1220 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1221 {
1222     if (mr->readonly != readonly) {
1223         memory_region_transaction_begin();
1224         mr->readonly = readonly;
1225         memory_region_update_pending |= mr->enabled;
1226         memory_region_transaction_commit();
1227     }
1228 }
1229
1230 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1231 {
1232     if (mr->romd_mode != romd_mode) {
1233         memory_region_transaction_begin();
1234         mr->romd_mode = romd_mode;
1235         memory_region_update_pending |= mr->enabled;
1236         memory_region_transaction_commit();
1237     }
1238 }
1239
1240 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1241                                hwaddr size, unsigned client)
1242 {
1243     assert(mr->terminates);
1244     cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1245                                     mr->ram_addr + addr + size,
1246                                     1 << client);
1247 }
1248
1249 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1250 {
1251     if (mr->alias) {
1252         return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1253     }
1254
1255     assert(mr->terminates);
1256
1257     return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1258 }
1259
1260 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1261 {
1262     FlatView *view;
1263     FlatRange *fr;
1264     CoalescedMemoryRange *cmr;
1265     AddrRange tmp;
1266     MemoryRegionSection section;
1267
1268     view = address_space_get_flatview(as);
1269     FOR_EACH_FLAT_RANGE(fr, view) {
1270         if (fr->mr == mr) {
1271             section = (MemoryRegionSection) {
1272                 .address_space = as,
1273                 .offset_within_address_space = int128_get64(fr->addr.start),
1274                 .size = fr->addr.size,
1275             };
1276
1277             MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1278                                  int128_get64(fr->addr.start),
1279                                  int128_get64(fr->addr.size));
1280             QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1281                 tmp = addrrange_shift(cmr->addr,
1282                                       int128_sub(fr->addr.start,
1283                                                  int128_make64(fr->offset_in_region)));
1284                 if (!addrrange_intersects(tmp, fr->addr)) {
1285                     continue;
1286                 }
1287                 tmp = addrrange_intersection(tmp, fr->addr);
1288                 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1289                                      int128_get64(tmp.start),
1290                                      int128_get64(tmp.size));
1291             }
1292         }
1293     }
1294     flatview_unref(view);
1295 }
1296
1297 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1298 {
1299     AddressSpace *as;
1300
1301     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1302         memory_region_update_coalesced_range_as(mr, as);
1303     }
1304 }
1305
1306 void memory_region_set_coalescing(MemoryRegion *mr)
1307 {
1308     memory_region_clear_coalescing(mr);
1309     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1310 }
1311
1312 void memory_region_add_coalescing(MemoryRegion *mr,
1313                                   hwaddr offset,
1314                                   uint64_t size)
1315 {
1316     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1317
1318     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1319     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1320     memory_region_update_coalesced_range(mr);
1321     memory_region_set_flush_coalesced(mr);
1322 }
1323
1324 void memory_region_clear_coalescing(MemoryRegion *mr)
1325 {
1326     CoalescedMemoryRange *cmr;
1327
1328     qemu_flush_coalesced_mmio_buffer();
1329     mr->flush_coalesced_mmio = false;
1330
1331     while (!QTAILQ_EMPTY(&mr->coalesced)) {
1332         cmr = QTAILQ_FIRST(&mr->coalesced);
1333         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1334         g_free(cmr);
1335     }
1336     memory_region_update_coalesced_range(mr);
1337 }
1338
1339 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1340 {
1341     mr->flush_coalesced_mmio = true;
1342 }
1343
1344 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1345 {
1346     qemu_flush_coalesced_mmio_buffer();
1347     if (QTAILQ_EMPTY(&mr->coalesced)) {
1348         mr->flush_coalesced_mmio = false;
1349     }
1350 }
1351
1352 void memory_region_add_eventfd(MemoryRegion *mr,
1353                                hwaddr addr,
1354                                unsigned size,
1355                                bool match_data,
1356                                uint64_t data,
1357                                EventNotifier *e)
1358 {
1359     MemoryRegionIoeventfd mrfd = {
1360         .addr.start = int128_make64(addr),
1361         .addr.size = int128_make64(size),
1362         .match_data = match_data,
1363         .data = data,
1364         .e = e,
1365     };
1366     unsigned i;
1367
1368     adjust_endianness(mr, &mrfd.data, size);
1369     memory_region_transaction_begin();
1370     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1371         if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1372             break;
1373         }
1374     }
1375     ++mr->ioeventfd_nb;
1376     mr->ioeventfds = g_realloc(mr->ioeventfds,
1377                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1378     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1379             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1380     mr->ioeventfds[i] = mrfd;
1381     memory_region_update_pending |= mr->enabled;
1382     memory_region_transaction_commit();
1383 }
1384
1385 void memory_region_del_eventfd(MemoryRegion *mr,
1386                                hwaddr addr,
1387                                unsigned size,
1388                                bool match_data,
1389                                uint64_t data,
1390                                EventNotifier *e)
1391 {
1392     MemoryRegionIoeventfd mrfd = {
1393         .addr.start = int128_make64(addr),
1394         .addr.size = int128_make64(size),
1395         .match_data = match_data,
1396         .data = data,
1397         .e = e,
1398     };
1399     unsigned i;
1400
1401     adjust_endianness(mr, &mrfd.data, size);
1402     memory_region_transaction_begin();
1403     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1404         if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1405             break;
1406         }
1407     }
1408     assert(i != mr->ioeventfd_nb);
1409     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1410             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1411     --mr->ioeventfd_nb;
1412     mr->ioeventfds = g_realloc(mr->ioeventfds,
1413                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1414     memory_region_update_pending |= mr->enabled;
1415     memory_region_transaction_commit();
1416 }
1417
1418 static void memory_region_add_subregion_common(MemoryRegion *mr,
1419                                                hwaddr offset,
1420                                                MemoryRegion *subregion)
1421 {
1422     MemoryRegion *other;
1423
1424     memory_region_transaction_begin();
1425
1426     assert(!subregion->parent);
1427     memory_region_ref(subregion);
1428     subregion->parent = mr;
1429     subregion->addr = offset;
1430     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1431         if (subregion->may_overlap || other->may_overlap) {
1432             continue;
1433         }
1434         if (int128_ge(int128_make64(offset),
1435                       int128_add(int128_make64(other->addr), other->size))
1436             || int128_le(int128_add(int128_make64(offset), subregion->size),
1437                          int128_make64(other->addr))) {
1438             continue;
1439         }
1440 #if 0
1441         printf("warning: subregion collision %llx/%llx (%s) "
1442                "vs %llx/%llx (%s)\n",
1443                (unsigned long long)offset,
1444                (unsigned long long)int128_get64(subregion->size),
1445                subregion->name,
1446                (unsigned long long)other->addr,
1447                (unsigned long long)int128_get64(other->size),
1448                other->name);
1449 #endif
1450     }
1451     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1452         if (subregion->priority >= other->priority) {
1453             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1454             goto done;
1455         }
1456     }
1457     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1458 done:
1459     memory_region_update_pending |= mr->enabled && subregion->enabled;
1460     memory_region_transaction_commit();
1461 }
1462
1463
1464 void memory_region_add_subregion(MemoryRegion *mr,
1465                                  hwaddr offset,
1466                                  MemoryRegion *subregion)
1467 {
1468     subregion->may_overlap = false;
1469     subregion->priority = 0;
1470     memory_region_add_subregion_common(mr, offset, subregion);
1471 }
1472
1473 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1474                                          hwaddr offset,
1475                                          MemoryRegion *subregion,
1476                                          unsigned priority)
1477 {
1478     subregion->may_overlap = true;
1479     subregion->priority = priority;
1480     memory_region_add_subregion_common(mr, offset, subregion);
1481 }
1482
1483 void memory_region_del_subregion(MemoryRegion *mr,
1484                                  MemoryRegion *subregion)
1485 {
1486     memory_region_transaction_begin();
1487     assert(subregion->parent == mr);
1488     subregion->parent = NULL;
1489     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1490     memory_region_unref(subregion);
1491     memory_region_update_pending |= mr->enabled && subregion->enabled;
1492     memory_region_transaction_commit();
1493 }
1494
1495 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1496 {
1497     if (enabled == mr->enabled) {
1498         return;
1499     }
1500     memory_region_transaction_begin();
1501     mr->enabled = enabled;
1502     memory_region_update_pending = true;
1503     memory_region_transaction_commit();
1504 }
1505
1506 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1507 {
1508     MemoryRegion *parent = mr->parent;
1509     unsigned priority = mr->priority;
1510     bool may_overlap = mr->may_overlap;
1511
1512     if (addr == mr->addr || !parent) {
1513         mr->addr = addr;
1514         return;
1515     }
1516
1517     memory_region_transaction_begin();
1518     memory_region_ref(mr);
1519     memory_region_del_subregion(parent, mr);
1520     if (may_overlap) {
1521         memory_region_add_subregion_overlap(parent, addr, mr, priority);
1522     } else {
1523         memory_region_add_subregion(parent, addr, mr);
1524     }
1525     memory_region_unref(mr);
1526     memory_region_transaction_commit();
1527 }
1528
1529 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1530 {
1531     assert(mr->alias);
1532
1533     if (offset == mr->alias_offset) {
1534         return;
1535     }
1536
1537     memory_region_transaction_begin();
1538     mr->alias_offset = offset;
1539     memory_region_update_pending |= mr->enabled;
1540     memory_region_transaction_commit();
1541 }
1542
1543 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1544 {
1545     return mr->ram_addr;
1546 }
1547
1548 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1549 {
1550     const AddrRange *addr = addr_;
1551     const FlatRange *fr = fr_;
1552
1553     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1554         return -1;
1555     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1556         return 1;
1557     }
1558     return 0;
1559 }
1560
1561 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
1562 {
1563     return bsearch(&addr, view->ranges, view->nr,
1564                    sizeof(FlatRange), cmp_flatrange_addr);
1565 }
1566
1567 bool memory_region_present(MemoryRegion *parent, hwaddr addr)
1568 {
1569     MemoryRegion *mr = memory_region_find(parent, addr, 1).mr;
1570     if (!mr) {
1571         return false;
1572     }
1573     memory_region_unref(mr);
1574     return true;
1575 }
1576
1577 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1578                                        hwaddr addr, uint64_t size)
1579 {
1580     MemoryRegionSection ret = { .mr = NULL };
1581     MemoryRegion *root;
1582     AddressSpace *as;
1583     AddrRange range;
1584     FlatView *view;
1585     FlatRange *fr;
1586
1587     addr += mr->addr;
1588     for (root = mr; root->parent; ) {
1589         root = root->parent;
1590         addr += root->addr;
1591     }
1592
1593     as = memory_region_to_address_space(root);
1594     range = addrrange_make(int128_make64(addr), int128_make64(size));
1595
1596     view = address_space_get_flatview(as);
1597     fr = flatview_lookup(view, range);
1598     if (!fr) {
1599         return ret;
1600     }
1601
1602     while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
1603         --fr;
1604     }
1605
1606     ret.mr = fr->mr;
1607     ret.address_space = as;
1608     range = addrrange_intersection(range, fr->addr);
1609     ret.offset_within_region = fr->offset_in_region;
1610     ret.offset_within_region += int128_get64(int128_sub(range.start,
1611                                                         fr->addr.start));
1612     ret.size = range.size;
1613     ret.offset_within_address_space = int128_get64(range.start);
1614     ret.readonly = fr->readonly;
1615     memory_region_ref(ret.mr);
1616
1617     flatview_unref(view);
1618     return ret;
1619 }
1620
1621 void address_space_sync_dirty_bitmap(AddressSpace *as)
1622 {
1623     FlatView *view;
1624     FlatRange *fr;
1625
1626     view = address_space_get_flatview(as);
1627     FOR_EACH_FLAT_RANGE(fr, view) {
1628         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1629     }
1630     flatview_unref(view);
1631 }
1632
1633 void memory_global_dirty_log_start(void)
1634 {
1635     global_dirty_log = true;
1636     MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1637 }
1638
1639 void memory_global_dirty_log_stop(void)
1640 {
1641     global_dirty_log = false;
1642     MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1643 }
1644
1645 static void listener_add_address_space(MemoryListener *listener,
1646                                        AddressSpace *as)
1647 {
1648     FlatView *view;
1649     FlatRange *fr;
1650
1651     if (listener->address_space_filter
1652         && listener->address_space_filter != as) {
1653         return;
1654     }
1655
1656     if (global_dirty_log) {
1657         if (listener->log_global_start) {
1658             listener->log_global_start(listener);
1659         }
1660     }
1661
1662     view = address_space_get_flatview(as);
1663     FOR_EACH_FLAT_RANGE(fr, view) {
1664         MemoryRegionSection section = {
1665             .mr = fr->mr,
1666             .address_space = as,
1667             .offset_within_region = fr->offset_in_region,
1668             .size = fr->addr.size,
1669             .offset_within_address_space = int128_get64(fr->addr.start),
1670             .readonly = fr->readonly,
1671         };
1672         if (listener->region_add) {
1673             listener->region_add(listener, &section);
1674         }
1675     }
1676     flatview_unref(view);
1677 }
1678
1679 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
1680 {
1681     MemoryListener *other = NULL;
1682     AddressSpace *as;
1683
1684     listener->address_space_filter = filter;
1685     if (QTAILQ_EMPTY(&memory_listeners)
1686         || listener->priority >= QTAILQ_LAST(&memory_listeners,
1687                                              memory_listeners)->priority) {
1688         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1689     } else {
1690         QTAILQ_FOREACH(other, &memory_listeners, link) {
1691             if (listener->priority < other->priority) {
1692                 break;
1693             }
1694         }
1695         QTAILQ_INSERT_BEFORE(other, listener, link);
1696     }
1697
1698     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1699         listener_add_address_space(listener, as);
1700     }
1701 }
1702
1703 void memory_listener_unregister(MemoryListener *listener)
1704 {
1705     QTAILQ_REMOVE(&memory_listeners, listener, link);
1706 }
1707
1708 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
1709 {
1710     if (QTAILQ_EMPTY(&address_spaces)) {
1711         memory_init();
1712     }
1713
1714     memory_region_transaction_begin();
1715     as->root = root;
1716     as->current_map = g_new(FlatView, 1);
1717     flatview_init(as->current_map);
1718     as->ioeventfd_nb = 0;
1719     as->ioeventfds = NULL;
1720     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
1721     as->name = g_strdup(name ? name : "anonymous");
1722     address_space_init_dispatch(as);
1723     memory_region_update_pending |= root->enabled;
1724     memory_region_transaction_commit();
1725 }
1726
1727 void address_space_destroy(AddressSpace *as)
1728 {
1729     /* Flush out anything from MemoryListeners listening in on this */
1730     memory_region_transaction_begin();
1731     as->root = NULL;
1732     memory_region_transaction_commit();
1733     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
1734     address_space_destroy_dispatch(as);
1735     flatview_unref(as->current_map);
1736     g_free(as->name);
1737     g_free(as->ioeventfds);
1738 }
1739
1740 bool io_mem_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size)
1741 {
1742     return memory_region_dispatch_read(mr, addr, pval, size);
1743 }
1744
1745 bool io_mem_write(MemoryRegion *mr, hwaddr addr,
1746                   uint64_t val, unsigned size)
1747 {
1748     return memory_region_dispatch_write(mr, addr, val, size);
1749 }
1750
1751 typedef struct MemoryRegionList MemoryRegionList;
1752
1753 struct MemoryRegionList {
1754     const MemoryRegion *mr;
1755     bool printed;
1756     QTAILQ_ENTRY(MemoryRegionList) queue;
1757 };
1758
1759 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1760
1761 static void mtree_print_mr(fprintf_function mon_printf, void *f,
1762                            const MemoryRegion *mr, unsigned int level,
1763                            hwaddr base,
1764                            MemoryRegionListHead *alias_print_queue)
1765 {
1766     MemoryRegionList *new_ml, *ml, *next_ml;
1767     MemoryRegionListHead submr_print_queue;
1768     const MemoryRegion *submr;
1769     unsigned int i;
1770
1771     if (!mr || !mr->enabled) {
1772         return;
1773     }
1774
1775     for (i = 0; i < level; i++) {
1776         mon_printf(f, "  ");
1777     }
1778
1779     if (mr->alias) {
1780         MemoryRegionList *ml;
1781         bool found = false;
1782
1783         /* check if the alias is already in the queue */
1784         QTAILQ_FOREACH(ml, alias_print_queue, queue) {
1785             if (ml->mr == mr->alias && !ml->printed) {
1786                 found = true;
1787             }
1788         }
1789
1790         if (!found) {
1791             ml = g_new(MemoryRegionList, 1);
1792             ml->mr = mr->alias;
1793             ml->printed = false;
1794             QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
1795         }
1796         mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
1797                    " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
1798                    "-" TARGET_FMT_plx "\n",
1799                    base + mr->addr,
1800                    base + mr->addr
1801                    + (int128_nz(mr->size) ?
1802                       (hwaddr)int128_get64(int128_sub(mr->size,
1803                                                       int128_one())) : 0),
1804                    mr->priority,
1805                    mr->romd_mode ? 'R' : '-',
1806                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
1807                                                                        : '-',
1808                    mr->name,
1809                    mr->alias->name,
1810                    mr->alias_offset,
1811                    mr->alias_offset
1812                    + (int128_nz(mr->size) ?
1813                       (hwaddr)int128_get64(int128_sub(mr->size,
1814                                                       int128_one())) : 0));
1815     } else {
1816         mon_printf(f,
1817                    TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
1818                    base + mr->addr,
1819                    base + mr->addr
1820                    + (int128_nz(mr->size) ?
1821                       (hwaddr)int128_get64(int128_sub(mr->size,
1822                                                       int128_one())) : 0),
1823                    mr->priority,
1824                    mr->romd_mode ? 'R' : '-',
1825                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
1826                                                                        : '-',
1827                    mr->name);
1828     }
1829
1830     QTAILQ_INIT(&submr_print_queue);
1831
1832     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
1833         new_ml = g_new(MemoryRegionList, 1);
1834         new_ml->mr = submr;
1835         QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1836             if (new_ml->mr->addr < ml->mr->addr ||
1837                 (new_ml->mr->addr == ml->mr->addr &&
1838                  new_ml->mr->priority > ml->mr->priority)) {
1839                 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
1840                 new_ml = NULL;
1841                 break;
1842             }
1843         }
1844         if (new_ml) {
1845             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
1846         }
1847     }
1848
1849     QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1850         mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
1851                        alias_print_queue);
1852     }
1853
1854     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
1855         g_free(ml);
1856     }
1857 }
1858
1859 void mtree_info(fprintf_function mon_printf, void *f)
1860 {
1861     MemoryRegionListHead ml_head;
1862     MemoryRegionList *ml, *ml2;
1863     AddressSpace *as;
1864
1865     QTAILQ_INIT(&ml_head);
1866
1867     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1868         mon_printf(f, "%s\n", as->name);
1869         mtree_print_mr(mon_printf, f, as->root, 0, 0, &ml_head);
1870     }
1871
1872     mon_printf(f, "aliases\n");
1873     /* print aliased regions */
1874     QTAILQ_FOREACH(ml, &ml_head, queue) {
1875         if (!ml->printed) {
1876             mon_printf(f, "%s\n", ml->mr->name);
1877             mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
1878         }
1879     }
1880
1881     QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
1882         g_free(ml);
1883     }
1884 }