]> rtime.felk.cvut.cz Git - lisovros/linux_canprio.git/blob - fs/splice.c
0d92dabcc5767434e29890e73140f0af825fc9cd
[lisovros/linux_canprio.git] / fs / splice.c
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
34
35 /*
36  * Attempt to steal a page from a pipe buffer. This should perhaps go into
37  * a vm helper function, it's already simplified quite a bit by the
38  * addition of remove_mapping(). If success is returned, the caller may
39  * attempt to reuse this page for another destination.
40  */
41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42                                      struct pipe_buffer *buf)
43 {
44         struct page *page = buf->page;
45         struct address_space *mapping;
46
47         lock_page(page);
48
49         mapping = page_mapping(page);
50         if (mapping) {
51                 WARN_ON(!PageUptodate(page));
52
53                 /*
54                  * At least for ext2 with nobh option, we need to wait on
55                  * writeback completing on this page, since we'll remove it
56                  * from the pagecache.  Otherwise truncate wont wait on the
57                  * page, allowing the disk blocks to be reused by someone else
58                  * before we actually wrote our data to them. fs corruption
59                  * ensues.
60                  */
61                 wait_on_page_writeback(page);
62
63                 if (page_has_private(page) &&
64                     !try_to_release_page(page, GFP_KERNEL))
65                         goto out_unlock;
66
67                 /*
68                  * If we succeeded in removing the mapping, set LRU flag
69                  * and return good.
70                  */
71                 if (remove_mapping(mapping, page)) {
72                         buf->flags |= PIPE_BUF_FLAG_LRU;
73                         return 0;
74                 }
75         }
76
77         /*
78          * Raced with truncate or failed to remove page from current
79          * address space, unlock and return failure.
80          */
81 out_unlock:
82         unlock_page(page);
83         return 1;
84 }
85
86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87                                         struct pipe_buffer *buf)
88 {
89         page_cache_release(buf->page);
90         buf->flags &= ~PIPE_BUF_FLAG_LRU;
91 }
92
93 /*
94  * Check whether the contents of buf is OK to access. Since the content
95  * is a page cache page, IO may be in flight.
96  */
97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98                                        struct pipe_buffer *buf)
99 {
100         struct page *page = buf->page;
101         int err;
102
103         if (!PageUptodate(page)) {
104                 lock_page(page);
105
106                 /*
107                  * Page got truncated/unhashed. This will cause a 0-byte
108                  * splice, if this is the first page.
109                  */
110                 if (!page->mapping) {
111                         err = -ENODATA;
112                         goto error;
113                 }
114
115                 /*
116                  * Uh oh, read-error from disk.
117                  */
118                 if (!PageUptodate(page)) {
119                         err = -EIO;
120                         goto error;
121                 }
122
123                 /*
124                  * Page is ok afterall, we are done.
125                  */
126                 unlock_page(page);
127         }
128
129         return 0;
130 error:
131         unlock_page(page);
132         return err;
133 }
134
135 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136         .can_merge = 0,
137         .map = generic_pipe_buf_map,
138         .unmap = generic_pipe_buf_unmap,
139         .confirm = page_cache_pipe_buf_confirm,
140         .release = page_cache_pipe_buf_release,
141         .steal = page_cache_pipe_buf_steal,
142         .get = generic_pipe_buf_get,
143 };
144
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146                                     struct pipe_buffer *buf)
147 {
148         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149                 return 1;
150
151         buf->flags |= PIPE_BUF_FLAG_LRU;
152         return generic_pipe_buf_steal(pipe, buf);
153 }
154
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156         .can_merge = 0,
157         .map = generic_pipe_buf_map,
158         .unmap = generic_pipe_buf_unmap,
159         .confirm = generic_pipe_buf_confirm,
160         .release = page_cache_pipe_buf_release,
161         .steal = user_page_pipe_buf_steal,
162         .get = generic_pipe_buf_get,
163 };
164
165 /**
166  * splice_to_pipe - fill passed data into a pipe
167  * @pipe:       pipe to fill
168  * @spd:        data to fill
169  *
170  * Description:
171  *    @spd contains a map of pages and len/offset tuples, along with
172  *    the struct pipe_buf_operations associated with these pages. This
173  *    function will link that data to the pipe.
174  *
175  */
176 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177                        struct splice_pipe_desc *spd)
178 {
179         unsigned int spd_pages = spd->nr_pages;
180         int ret, do_wakeup, page_nr;
181
182         ret = 0;
183         do_wakeup = 0;
184         page_nr = 0;
185
186         pipe_lock(pipe);
187
188         for (;;) {
189                 if (!pipe->readers) {
190                         send_sig(SIGPIPE, current, 0);
191                         if (!ret)
192                                 ret = -EPIPE;
193                         break;
194                 }
195
196                 if (pipe->nrbufs < pipe->buffers) {
197                         int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
198                         struct pipe_buffer *buf = pipe->bufs + newbuf;
199
200                         buf->page = spd->pages[page_nr];
201                         buf->offset = spd->partial[page_nr].offset;
202                         buf->len = spd->partial[page_nr].len;
203                         buf->private = spd->partial[page_nr].private;
204                         buf->ops = spd->ops;
205                         if (spd->flags & SPLICE_F_GIFT)
206                                 buf->flags |= PIPE_BUF_FLAG_GIFT;
207
208                         pipe->nrbufs++;
209                         page_nr++;
210                         ret += buf->len;
211
212                         if (pipe->inode)
213                                 do_wakeup = 1;
214
215                         if (!--spd->nr_pages)
216                                 break;
217                         if (pipe->nrbufs < pipe->buffers)
218                                 continue;
219
220                         break;
221                 }
222
223                 if (spd->flags & SPLICE_F_NONBLOCK) {
224                         if (!ret)
225                                 ret = -EAGAIN;
226                         break;
227                 }
228
229                 if (signal_pending(current)) {
230                         if (!ret)
231                                 ret = -ERESTARTSYS;
232                         break;
233                 }
234
235                 if (do_wakeup) {
236                         smp_mb();
237                         if (waitqueue_active(&pipe->wait))
238                                 wake_up_interruptible_sync(&pipe->wait);
239                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
240                         do_wakeup = 0;
241                 }
242
243                 pipe->waiting_writers++;
244                 pipe_wait(pipe);
245                 pipe->waiting_writers--;
246         }
247
248         pipe_unlock(pipe);
249
250         if (do_wakeup) {
251                 smp_mb();
252                 if (waitqueue_active(&pipe->wait))
253                         wake_up_interruptible(&pipe->wait);
254                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
255         }
256
257         while (page_nr < spd_pages)
258                 spd->spd_release(spd, page_nr++);
259
260         return ret;
261 }
262
263 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
264 {
265         page_cache_release(spd->pages[i]);
266 }
267
268 /*
269  * Check if we need to grow the arrays holding pages and partial page
270  * descriptions.
271  */
272 int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
273 {
274         if (pipe->buffers <= PIPE_DEF_BUFFERS)
275                 return 0;
276
277         spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
278         spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
279
280         if (spd->pages && spd->partial)
281                 return 0;
282
283         kfree(spd->pages);
284         kfree(spd->partial);
285         return -ENOMEM;
286 }
287
288 void splice_shrink_spd(struct pipe_inode_info *pipe,
289                        struct splice_pipe_desc *spd)
290 {
291         if (pipe->buffers <= PIPE_DEF_BUFFERS)
292                 return;
293
294         kfree(spd->pages);
295         kfree(spd->partial);
296 }
297
298 static int
299 __generic_file_splice_read(struct file *in, loff_t *ppos,
300                            struct pipe_inode_info *pipe, size_t len,
301                            unsigned int flags)
302 {
303         struct address_space *mapping = in->f_mapping;
304         unsigned int loff, nr_pages, req_pages;
305         struct page *pages[PIPE_DEF_BUFFERS];
306         struct partial_page partial[PIPE_DEF_BUFFERS];
307         struct page *page;
308         pgoff_t index, end_index;
309         loff_t isize;
310         int error, page_nr;
311         struct splice_pipe_desc spd = {
312                 .pages = pages,
313                 .partial = partial,
314                 .flags = flags,
315                 .ops = &page_cache_pipe_buf_ops,
316                 .spd_release = spd_release_page,
317         };
318
319         if (splice_grow_spd(pipe, &spd))
320                 return -ENOMEM;
321
322         index = *ppos >> PAGE_CACHE_SHIFT;
323         loff = *ppos & ~PAGE_CACHE_MASK;
324         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
325         nr_pages = min(req_pages, pipe->buffers);
326
327         /*
328          * Lookup the (hopefully) full range of pages we need.
329          */
330         spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
331         index += spd.nr_pages;
332
333         /*
334          * If find_get_pages_contig() returned fewer pages than we needed,
335          * readahead/allocate the rest and fill in the holes.
336          */
337         if (spd.nr_pages < nr_pages)
338                 page_cache_sync_readahead(mapping, &in->f_ra, in,
339                                 index, req_pages - spd.nr_pages);
340
341         error = 0;
342         while (spd.nr_pages < nr_pages) {
343                 /*
344                  * Page could be there, find_get_pages_contig() breaks on
345                  * the first hole.
346                  */
347                 page = find_get_page(mapping, index);
348                 if (!page) {
349                         /*
350                          * page didn't exist, allocate one.
351                          */
352                         page = page_cache_alloc_cold(mapping);
353                         if (!page)
354                                 break;
355
356                         error = add_to_page_cache_lru(page, mapping, index,
357                                                 GFP_KERNEL);
358                         if (unlikely(error)) {
359                                 page_cache_release(page);
360                                 if (error == -EEXIST)
361                                         continue;
362                                 break;
363                         }
364                         /*
365                          * add_to_page_cache() locks the page, unlock it
366                          * to avoid convoluting the logic below even more.
367                          */
368                         unlock_page(page);
369                 }
370
371                 spd.pages[spd.nr_pages++] = page;
372                 index++;
373         }
374
375         /*
376          * Now loop over the map and see if we need to start IO on any
377          * pages, fill in the partial map, etc.
378          */
379         index = *ppos >> PAGE_CACHE_SHIFT;
380         nr_pages = spd.nr_pages;
381         spd.nr_pages = 0;
382         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
383                 unsigned int this_len;
384
385                 if (!len)
386                         break;
387
388                 /*
389                  * this_len is the max we'll use from this page
390                  */
391                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
392                 page = spd.pages[page_nr];
393
394                 if (PageReadahead(page))
395                         page_cache_async_readahead(mapping, &in->f_ra, in,
396                                         page, index, req_pages - page_nr);
397
398                 /*
399                  * If the page isn't uptodate, we may need to start io on it
400                  */
401                 if (!PageUptodate(page)) {
402                         lock_page(page);
403
404                         /*
405                          * Page was truncated, or invalidated by the
406                          * filesystem.  Redo the find/create, but this time the
407                          * page is kept locked, so there's no chance of another
408                          * race with truncate/invalidate.
409                          */
410                         if (!page->mapping) {
411                                 unlock_page(page);
412                                 page = find_or_create_page(mapping, index,
413                                                 mapping_gfp_mask(mapping));
414
415                                 if (!page) {
416                                         error = -ENOMEM;
417                                         break;
418                                 }
419                                 page_cache_release(spd.pages[page_nr]);
420                                 spd.pages[page_nr] = page;
421                         }
422                         /*
423                          * page was already under io and is now done, great
424                          */
425                         if (PageUptodate(page)) {
426                                 unlock_page(page);
427                                 goto fill_it;
428                         }
429
430                         /*
431                          * need to read in the page
432                          */
433                         error = mapping->a_ops->readpage(in, page);
434                         if (unlikely(error)) {
435                                 /*
436                                  * We really should re-lookup the page here,
437                                  * but it complicates things a lot. Instead
438                                  * lets just do what we already stored, and
439                                  * we'll get it the next time we are called.
440                                  */
441                                 if (error == AOP_TRUNCATED_PAGE)
442                                         error = 0;
443
444                                 break;
445                         }
446                 }
447 fill_it:
448                 /*
449                  * i_size must be checked after PageUptodate.
450                  */
451                 isize = i_size_read(mapping->host);
452                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
453                 if (unlikely(!isize || index > end_index))
454                         break;
455
456                 /*
457                  * if this is the last page, see if we need to shrink
458                  * the length and stop
459                  */
460                 if (end_index == index) {
461                         unsigned int plen;
462
463                         /*
464                          * max good bytes in this page
465                          */
466                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
467                         if (plen <= loff)
468                                 break;
469
470                         /*
471                          * force quit after adding this page
472                          */
473                         this_len = min(this_len, plen - loff);
474                         len = this_len;
475                 }
476
477                 spd.partial[page_nr].offset = loff;
478                 spd.partial[page_nr].len = this_len;
479                 len -= this_len;
480                 loff = 0;
481                 spd.nr_pages++;
482                 index++;
483         }
484
485         /*
486          * Release any pages at the end, if we quit early. 'page_nr' is how far
487          * we got, 'nr_pages' is how many pages are in the map.
488          */
489         while (page_nr < nr_pages)
490                 page_cache_release(spd.pages[page_nr++]);
491         in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
492
493         if (spd.nr_pages)
494                 error = splice_to_pipe(pipe, &spd);
495
496         splice_shrink_spd(pipe, &spd);
497         return error;
498 }
499
500 /**
501  * generic_file_splice_read - splice data from file to a pipe
502  * @in:         file to splice from
503  * @ppos:       position in @in
504  * @pipe:       pipe to splice to
505  * @len:        number of bytes to splice
506  * @flags:      splice modifier flags
507  *
508  * Description:
509  *    Will read pages from given file and fill them into a pipe. Can be
510  *    used as long as the address_space operations for the source implements
511  *    a readpage() hook.
512  *
513  */
514 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
515                                  struct pipe_inode_info *pipe, size_t len,
516                                  unsigned int flags)
517 {
518         loff_t isize, left;
519         int ret;
520
521         isize = i_size_read(in->f_mapping->host);
522         if (unlikely(*ppos >= isize))
523                 return 0;
524
525         left = isize - *ppos;
526         if (unlikely(left < len))
527                 len = left;
528
529         ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
530         if (ret > 0) {
531                 *ppos += ret;
532                 file_accessed(in);
533         }
534
535         return ret;
536 }
537 EXPORT_SYMBOL(generic_file_splice_read);
538
539 static const struct pipe_buf_operations default_pipe_buf_ops = {
540         .can_merge = 0,
541         .map = generic_pipe_buf_map,
542         .unmap = generic_pipe_buf_unmap,
543         .confirm = generic_pipe_buf_confirm,
544         .release = generic_pipe_buf_release,
545         .steal = generic_pipe_buf_steal,
546         .get = generic_pipe_buf_get,
547 };
548
549 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
550                             unsigned long vlen, loff_t offset)
551 {
552         mm_segment_t old_fs;
553         loff_t pos = offset;
554         ssize_t res;
555
556         old_fs = get_fs();
557         set_fs(get_ds());
558         /* The cast to a user pointer is valid due to the set_fs() */
559         res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
560         set_fs(old_fs);
561
562         return res;
563 }
564
565 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
566                             loff_t pos)
567 {
568         mm_segment_t old_fs;
569         ssize_t res;
570
571         old_fs = get_fs();
572         set_fs(get_ds());
573         /* The cast to a user pointer is valid due to the set_fs() */
574         res = vfs_write(file, (const char __user *)buf, count, &pos);
575         set_fs(old_fs);
576
577         return res;
578 }
579
580 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
581                                  struct pipe_inode_info *pipe, size_t len,
582                                  unsigned int flags)
583 {
584         unsigned int nr_pages;
585         unsigned int nr_freed;
586         size_t offset;
587         struct page *pages[PIPE_DEF_BUFFERS];
588         struct partial_page partial[PIPE_DEF_BUFFERS];
589         struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
590         ssize_t res;
591         size_t this_len;
592         int error;
593         int i;
594         struct splice_pipe_desc spd = {
595                 .pages = pages,
596                 .partial = partial,
597                 .flags = flags,
598                 .ops = &default_pipe_buf_ops,
599                 .spd_release = spd_release_page,
600         };
601
602         if (splice_grow_spd(pipe, &spd))
603                 return -ENOMEM;
604
605         res = -ENOMEM;
606         vec = __vec;
607         if (pipe->buffers > PIPE_DEF_BUFFERS) {
608                 vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
609                 if (!vec)
610                         goto shrink_ret;
611         }
612
613         offset = *ppos & ~PAGE_CACHE_MASK;
614         nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
615
616         for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
617                 struct page *page;
618
619                 page = alloc_page(GFP_USER);
620                 error = -ENOMEM;
621                 if (!page)
622                         goto err;
623
624                 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
625                 vec[i].iov_base = (void __user *) page_address(page);
626                 vec[i].iov_len = this_len;
627                 spd.pages[i] = page;
628                 spd.nr_pages++;
629                 len -= this_len;
630                 offset = 0;
631         }
632
633         res = kernel_readv(in, vec, spd.nr_pages, *ppos);
634         if (res < 0) {
635                 error = res;
636                 goto err;
637         }
638
639         error = 0;
640         if (!res)
641                 goto err;
642
643         nr_freed = 0;
644         for (i = 0; i < spd.nr_pages; i++) {
645                 this_len = min_t(size_t, vec[i].iov_len, res);
646                 spd.partial[i].offset = 0;
647                 spd.partial[i].len = this_len;
648                 if (!this_len) {
649                         __free_page(spd.pages[i]);
650                         spd.pages[i] = NULL;
651                         nr_freed++;
652                 }
653                 res -= this_len;
654         }
655         spd.nr_pages -= nr_freed;
656
657         res = splice_to_pipe(pipe, &spd);
658         if (res > 0)
659                 *ppos += res;
660
661 shrink_ret:
662         if (vec != __vec)
663                 kfree(vec);
664         splice_shrink_spd(pipe, &spd);
665         return res;
666
667 err:
668         for (i = 0; i < spd.nr_pages; i++)
669                 __free_page(spd.pages[i]);
670
671         res = error;
672         goto shrink_ret;
673 }
674 EXPORT_SYMBOL(default_file_splice_read);
675
676 /*
677  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
678  * using sendpage(). Return the number of bytes sent.
679  */
680 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
681                             struct pipe_buffer *buf, struct splice_desc *sd)
682 {
683         struct file *file = sd->u.file;
684         loff_t pos = sd->pos;
685         int ret, more;
686
687         ret = buf->ops->confirm(pipe, buf);
688         if (!ret) {
689                 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
690                 if (file->f_op && file->f_op->sendpage)
691                         ret = file->f_op->sendpage(file, buf->page, buf->offset,
692                                                    sd->len, &pos, more);
693                 else
694                         ret = -EINVAL;
695         }
696
697         return ret;
698 }
699
700 /*
701  * This is a little more tricky than the file -> pipe splicing. There are
702  * basically three cases:
703  *
704  *      - Destination page already exists in the address space and there
705  *        are users of it. For that case we have no other option that
706  *        copying the data. Tough luck.
707  *      - Destination page already exists in the address space, but there
708  *        are no users of it. Make sure it's uptodate, then drop it. Fall
709  *        through to last case.
710  *      - Destination page does not exist, we can add the pipe page to
711  *        the page cache and avoid the copy.
712  *
713  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
714  * sd->flags), we attempt to migrate pages from the pipe to the output
715  * file address space page cache. This is possible if no one else has
716  * the pipe page referenced outside of the pipe and page cache. If
717  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
718  * a new page in the output file page cache and fill/dirty that.
719  */
720 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
721                  struct splice_desc *sd)
722 {
723         struct file *file = sd->u.file;
724         struct address_space *mapping = file->f_mapping;
725         unsigned int offset, this_len;
726         struct page *page;
727         void *fsdata;
728         int ret;
729
730         /*
731          * make sure the data in this buffer is uptodate
732          */
733         ret = buf->ops->confirm(pipe, buf);
734         if (unlikely(ret))
735                 return ret;
736
737         offset = sd->pos & ~PAGE_CACHE_MASK;
738
739         this_len = sd->len;
740         if (this_len + offset > PAGE_CACHE_SIZE)
741                 this_len = PAGE_CACHE_SIZE - offset;
742
743         ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
744                                 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
745         if (unlikely(ret))
746                 goto out;
747
748         if (buf->page != page) {
749                 /*
750                  * Careful, ->map() uses KM_USER0!
751                  */
752                 char *src = buf->ops->map(pipe, buf, 1);
753                 char *dst = kmap_atomic(page, KM_USER1);
754
755                 memcpy(dst + offset, src + buf->offset, this_len);
756                 flush_dcache_page(page);
757                 kunmap_atomic(dst, KM_USER1);
758                 buf->ops->unmap(pipe, buf, src);
759         }
760         ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
761                                 page, fsdata);
762 out:
763         return ret;
764 }
765 EXPORT_SYMBOL(pipe_to_file);
766
767 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
768 {
769         smp_mb();
770         if (waitqueue_active(&pipe->wait))
771                 wake_up_interruptible(&pipe->wait);
772         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
773 }
774
775 /**
776  * splice_from_pipe_feed - feed available data from a pipe to a file
777  * @pipe:       pipe to splice from
778  * @sd:         information to @actor
779  * @actor:      handler that splices the data
780  *
781  * Description:
782  *    This function loops over the pipe and calls @actor to do the
783  *    actual moving of a single struct pipe_buffer to the desired
784  *    destination.  It returns when there's no more buffers left in
785  *    the pipe or if the requested number of bytes (@sd->total_len)
786  *    have been copied.  It returns a positive number (one) if the
787  *    pipe needs to be filled with more data, zero if the required
788  *    number of bytes have been copied and -errno on error.
789  *
790  *    This, together with splice_from_pipe_{begin,end,next}, may be
791  *    used to implement the functionality of __splice_from_pipe() when
792  *    locking is required around copying the pipe buffers to the
793  *    destination.
794  */
795 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
796                           splice_actor *actor)
797 {
798         int ret;
799
800         while (pipe->nrbufs) {
801                 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
802                 const struct pipe_buf_operations *ops = buf->ops;
803
804                 sd->len = buf->len;
805                 if (sd->len > sd->total_len)
806                         sd->len = sd->total_len;
807
808                 ret = actor(pipe, buf, sd);
809                 if (ret <= 0) {
810                         if (ret == -ENODATA)
811                                 ret = 0;
812                         return ret;
813                 }
814                 buf->offset += ret;
815                 buf->len -= ret;
816
817                 sd->num_spliced += ret;
818                 sd->len -= ret;
819                 sd->pos += ret;
820                 sd->total_len -= ret;
821
822                 if (!buf->len) {
823                         buf->ops = NULL;
824                         ops->release(pipe, buf);
825                         pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
826                         pipe->nrbufs--;
827                         if (pipe->inode)
828                                 sd->need_wakeup = true;
829                 }
830
831                 if (!sd->total_len)
832                         return 0;
833         }
834
835         return 1;
836 }
837 EXPORT_SYMBOL(splice_from_pipe_feed);
838
839 /**
840  * splice_from_pipe_next - wait for some data to splice from
841  * @pipe:       pipe to splice from
842  * @sd:         information about the splice operation
843  *
844  * Description:
845  *    This function will wait for some data and return a positive
846  *    value (one) if pipe buffers are available.  It will return zero
847  *    or -errno if no more data needs to be spliced.
848  */
849 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
850 {
851         while (!pipe->nrbufs) {
852                 if (!pipe->writers)
853                         return 0;
854
855                 if (!pipe->waiting_writers && sd->num_spliced)
856                         return 0;
857
858                 if (sd->flags & SPLICE_F_NONBLOCK)
859                         return -EAGAIN;
860
861                 if (signal_pending(current))
862                         return -ERESTARTSYS;
863
864                 if (sd->need_wakeup) {
865                         wakeup_pipe_writers(pipe);
866                         sd->need_wakeup = false;
867                 }
868
869                 pipe_wait(pipe);
870         }
871
872         return 1;
873 }
874 EXPORT_SYMBOL(splice_from_pipe_next);
875
876 /**
877  * splice_from_pipe_begin - start splicing from pipe
878  * @sd:         information about the splice operation
879  *
880  * Description:
881  *    This function should be called before a loop containing
882  *    splice_from_pipe_next() and splice_from_pipe_feed() to
883  *    initialize the necessary fields of @sd.
884  */
885 void splice_from_pipe_begin(struct splice_desc *sd)
886 {
887         sd->num_spliced = 0;
888         sd->need_wakeup = false;
889 }
890 EXPORT_SYMBOL(splice_from_pipe_begin);
891
892 /**
893  * splice_from_pipe_end - finish splicing from pipe
894  * @pipe:       pipe to splice from
895  * @sd:         information about the splice operation
896  *
897  * Description:
898  *    This function will wake up pipe writers if necessary.  It should
899  *    be called after a loop containing splice_from_pipe_next() and
900  *    splice_from_pipe_feed().
901  */
902 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
903 {
904         if (sd->need_wakeup)
905                 wakeup_pipe_writers(pipe);
906 }
907 EXPORT_SYMBOL(splice_from_pipe_end);
908
909 /**
910  * __splice_from_pipe - splice data from a pipe to given actor
911  * @pipe:       pipe to splice from
912  * @sd:         information to @actor
913  * @actor:      handler that splices the data
914  *
915  * Description:
916  *    This function does little more than loop over the pipe and call
917  *    @actor to do the actual moving of a single struct pipe_buffer to
918  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
919  *    pipe_to_user.
920  *
921  */
922 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
923                            splice_actor *actor)
924 {
925         int ret;
926
927         splice_from_pipe_begin(sd);
928         do {
929                 ret = splice_from_pipe_next(pipe, sd);
930                 if (ret > 0)
931                         ret = splice_from_pipe_feed(pipe, sd, actor);
932         } while (ret > 0);
933         splice_from_pipe_end(pipe, sd);
934
935         return sd->num_spliced ? sd->num_spliced : ret;
936 }
937 EXPORT_SYMBOL(__splice_from_pipe);
938
939 /**
940  * splice_from_pipe - splice data from a pipe to a file
941  * @pipe:       pipe to splice from
942  * @out:        file to splice to
943  * @ppos:       position in @out
944  * @len:        how many bytes to splice
945  * @flags:      splice modifier flags
946  * @actor:      handler that splices the data
947  *
948  * Description:
949  *    See __splice_from_pipe. This function locks the pipe inode,
950  *    otherwise it's identical to __splice_from_pipe().
951  *
952  */
953 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
954                          loff_t *ppos, size_t len, unsigned int flags,
955                          splice_actor *actor)
956 {
957         ssize_t ret;
958         struct splice_desc sd = {
959                 .total_len = len,
960                 .flags = flags,
961                 .pos = *ppos,
962                 .u.file = out,
963         };
964
965         pipe_lock(pipe);
966         ret = __splice_from_pipe(pipe, &sd, actor);
967         pipe_unlock(pipe);
968
969         return ret;
970 }
971
972 /**
973  * generic_file_splice_write - splice data from a pipe to a file
974  * @pipe:       pipe info
975  * @out:        file to write to
976  * @ppos:       position in @out
977  * @len:        number of bytes to splice
978  * @flags:      splice modifier flags
979  *
980  * Description:
981  *    Will either move or copy pages (determined by @flags options) from
982  *    the given pipe inode to the given file.
983  *
984  */
985 ssize_t
986 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
987                           loff_t *ppos, size_t len, unsigned int flags)
988 {
989         struct address_space *mapping = out->f_mapping;
990         struct inode *inode = mapping->host;
991         struct splice_desc sd = {
992                 .total_len = len,
993                 .flags = flags,
994                 .pos = *ppos,
995                 .u.file = out,
996         };
997         ssize_t ret;
998
999         pipe_lock(pipe);
1000
1001         splice_from_pipe_begin(&sd);
1002         do {
1003                 ret = splice_from_pipe_next(pipe, &sd);
1004                 if (ret <= 0)
1005                         break;
1006
1007                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1008                 ret = file_remove_suid(out);
1009                 if (!ret) {
1010                         file_update_time(out);
1011                         ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1012                 }
1013                 mutex_unlock(&inode->i_mutex);
1014         } while (ret > 0);
1015         splice_from_pipe_end(pipe, &sd);
1016
1017         pipe_unlock(pipe);
1018
1019         if (sd.num_spliced)
1020                 ret = sd.num_spliced;
1021
1022         if (ret > 0) {
1023                 unsigned long nr_pages;
1024                 int err;
1025
1026                 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1027
1028                 err = generic_write_sync(out, *ppos, ret);
1029                 if (err)
1030                         ret = err;
1031                 else
1032                         *ppos += ret;
1033                 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1034         }
1035
1036         return ret;
1037 }
1038
1039 EXPORT_SYMBOL(generic_file_splice_write);
1040
1041 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1042                           struct splice_desc *sd)
1043 {
1044         int ret;
1045         void *data;
1046
1047         ret = buf->ops->confirm(pipe, buf);
1048         if (ret)
1049                 return ret;
1050
1051         data = buf->ops->map(pipe, buf, 0);
1052         ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1053         buf->ops->unmap(pipe, buf, data);
1054
1055         return ret;
1056 }
1057
1058 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1059                                          struct file *out, loff_t *ppos,
1060                                          size_t len, unsigned int flags)
1061 {
1062         ssize_t ret;
1063
1064         ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1065         if (ret > 0)
1066                 *ppos += ret;
1067
1068         return ret;
1069 }
1070
1071 /**
1072  * generic_splice_sendpage - splice data from a pipe to a socket
1073  * @pipe:       pipe to splice from
1074  * @out:        socket to write to
1075  * @ppos:       position in @out
1076  * @len:        number of bytes to splice
1077  * @flags:      splice modifier flags
1078  *
1079  * Description:
1080  *    Will send @len bytes from the pipe to a network socket. No data copying
1081  *    is involved.
1082  *
1083  */
1084 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1085                                 loff_t *ppos, size_t len, unsigned int flags)
1086 {
1087         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1088 }
1089
1090 EXPORT_SYMBOL(generic_splice_sendpage);
1091
1092 /*
1093  * Attempt to initiate a splice from pipe to file.
1094  */
1095 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1096                            loff_t *ppos, size_t len, unsigned int flags)
1097 {
1098         ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1099                                 loff_t *, size_t, unsigned int);
1100         int ret;
1101
1102         if (unlikely(!(out->f_mode & FMODE_WRITE)))
1103                 return -EBADF;
1104
1105         if (unlikely(out->f_flags & O_APPEND))
1106                 return -EINVAL;
1107
1108         ret = rw_verify_area(WRITE, out, ppos, len);
1109         if (unlikely(ret < 0))
1110                 return ret;
1111
1112         if (out->f_op && out->f_op->splice_write)
1113                 splice_write = out->f_op->splice_write;
1114         else
1115                 splice_write = default_file_splice_write;
1116
1117         return splice_write(pipe, out, ppos, len, flags);
1118 }
1119
1120 /*
1121  * Attempt to initiate a splice from a file to a pipe.
1122  */
1123 static long do_splice_to(struct file *in, loff_t *ppos,
1124                          struct pipe_inode_info *pipe, size_t len,
1125                          unsigned int flags)
1126 {
1127         ssize_t (*splice_read)(struct file *, loff_t *,
1128                                struct pipe_inode_info *, size_t, unsigned int);
1129         int ret;
1130
1131         if (unlikely(!(in->f_mode & FMODE_READ)))
1132                 return -EBADF;
1133
1134         ret = rw_verify_area(READ, in, ppos, len);
1135         if (unlikely(ret < 0))
1136                 return ret;
1137
1138         if (in->f_op && in->f_op->splice_read)
1139                 splice_read = in->f_op->splice_read;
1140         else
1141                 splice_read = default_file_splice_read;
1142
1143         return splice_read(in, ppos, pipe, len, flags);
1144 }
1145
1146 /**
1147  * splice_direct_to_actor - splices data directly between two non-pipes
1148  * @in:         file to splice from
1149  * @sd:         actor information on where to splice to
1150  * @actor:      handles the data splicing
1151  *
1152  * Description:
1153  *    This is a special case helper to splice directly between two
1154  *    points, without requiring an explicit pipe. Internally an allocated
1155  *    pipe is cached in the process, and reused during the lifetime of
1156  *    that process.
1157  *
1158  */
1159 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1160                                splice_direct_actor *actor)
1161 {
1162         struct pipe_inode_info *pipe;
1163         long ret, bytes;
1164         umode_t i_mode;
1165         size_t len;
1166         int i, flags;
1167
1168         /*
1169          * We require the input being a regular file, as we don't want to
1170          * randomly drop data for eg socket -> socket splicing. Use the
1171          * piped splicing for that!
1172          */
1173         i_mode = in->f_path.dentry->d_inode->i_mode;
1174         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1175                 return -EINVAL;
1176
1177         /*
1178          * neither in nor out is a pipe, setup an internal pipe attached to
1179          * 'out' and transfer the wanted data from 'in' to 'out' through that
1180          */
1181         pipe = current->splice_pipe;
1182         if (unlikely(!pipe)) {
1183                 pipe = alloc_pipe_info(NULL);
1184                 if (!pipe)
1185                         return -ENOMEM;
1186
1187                 /*
1188                  * We don't have an immediate reader, but we'll read the stuff
1189                  * out of the pipe right after the splice_to_pipe(). So set
1190                  * PIPE_READERS appropriately.
1191                  */
1192                 pipe->readers = 1;
1193
1194                 current->splice_pipe = pipe;
1195         }
1196
1197         /*
1198          * Do the splice.
1199          */
1200         ret = 0;
1201         bytes = 0;
1202         len = sd->total_len;
1203         flags = sd->flags;
1204
1205         /*
1206          * Don't block on output, we have to drain the direct pipe.
1207          */
1208         sd->flags &= ~SPLICE_F_NONBLOCK;
1209
1210         while (len) {
1211                 size_t read_len;
1212                 loff_t pos = sd->pos, prev_pos = pos;
1213
1214                 ret = do_splice_to(in, &pos, pipe, len, flags);
1215                 if (unlikely(ret <= 0))
1216                         goto out_release;
1217
1218                 read_len = ret;
1219                 sd->total_len = read_len;
1220
1221                 /*
1222                  * NOTE: nonblocking mode only applies to the input. We
1223                  * must not do the output in nonblocking mode as then we
1224                  * could get stuck data in the internal pipe:
1225                  */
1226                 ret = actor(pipe, sd);
1227                 if (unlikely(ret <= 0)) {
1228                         sd->pos = prev_pos;
1229                         goto out_release;
1230                 }
1231
1232                 bytes += ret;
1233                 len -= ret;
1234                 sd->pos = pos;
1235
1236                 if (ret < read_len) {
1237                         sd->pos = prev_pos + ret;
1238                         goto out_release;
1239                 }
1240         }
1241
1242 done:
1243         pipe->nrbufs = pipe->curbuf = 0;
1244         file_accessed(in);
1245         return bytes;
1246
1247 out_release:
1248         /*
1249          * If we did an incomplete transfer we must release
1250          * the pipe buffers in question:
1251          */
1252         for (i = 0; i < pipe->buffers; i++) {
1253                 struct pipe_buffer *buf = pipe->bufs + i;
1254
1255                 if (buf->ops) {
1256                         buf->ops->release(pipe, buf);
1257                         buf->ops = NULL;
1258                 }
1259         }
1260
1261         if (!bytes)
1262                 bytes = ret;
1263
1264         goto done;
1265 }
1266 EXPORT_SYMBOL(splice_direct_to_actor);
1267
1268 static int direct_splice_actor(struct pipe_inode_info *pipe,
1269                                struct splice_desc *sd)
1270 {
1271         struct file *file = sd->u.file;
1272
1273         return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1274                               sd->flags);
1275 }
1276
1277 /**
1278  * do_splice_direct - splices data directly between two files
1279  * @in:         file to splice from
1280  * @ppos:       input file offset
1281  * @out:        file to splice to
1282  * @len:        number of bytes to splice
1283  * @flags:      splice modifier flags
1284  *
1285  * Description:
1286  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1287  *    doing it in the application would incur an extra system call
1288  *    (splice in + splice out, as compared to just sendfile()). So this helper
1289  *    can splice directly through a process-private pipe.
1290  *
1291  */
1292 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1293                       size_t len, unsigned int flags)
1294 {
1295         struct splice_desc sd = {
1296                 .len            = len,
1297                 .total_len      = len,
1298                 .flags          = flags,
1299                 .pos            = *ppos,
1300                 .u.file         = out,
1301         };
1302         long ret;
1303
1304         ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1305         if (ret > 0)
1306                 *ppos = sd.pos;
1307
1308         return ret;
1309 }
1310
1311 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1312                                struct pipe_inode_info *opipe,
1313                                size_t len, unsigned int flags);
1314 /*
1315  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1316  * location, so checking ->i_pipe is not enough to verify that this is a
1317  * pipe.
1318  */
1319 static inline struct pipe_inode_info *get_pipe_info(struct file *file)
1320 {
1321         struct inode *i = file->f_path.dentry->d_inode;
1322
1323         return S_ISFIFO(i->i_mode) ? i->i_pipe : NULL;
1324 }
1325
1326 /*
1327  * Determine where to splice to/from.
1328  */
1329 static long do_splice(struct file *in, loff_t __user *off_in,
1330                       struct file *out, loff_t __user *off_out,
1331                       size_t len, unsigned int flags)
1332 {
1333         struct pipe_inode_info *ipipe;
1334         struct pipe_inode_info *opipe;
1335         loff_t offset, *off;
1336         long ret;
1337
1338         ipipe = get_pipe_info(in);
1339         opipe = get_pipe_info(out);
1340
1341         if (ipipe && opipe) {
1342                 if (off_in || off_out)
1343                         return -ESPIPE;
1344
1345                 if (!(in->f_mode & FMODE_READ))
1346                         return -EBADF;
1347
1348                 if (!(out->f_mode & FMODE_WRITE))
1349                         return -EBADF;
1350
1351                 /* Splicing to self would be fun, but... */
1352                 if (ipipe == opipe)
1353                         return -EINVAL;
1354
1355                 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1356         }
1357
1358         if (ipipe) {
1359                 if (off_in)
1360                         return -ESPIPE;
1361                 if (off_out) {
1362                         if (!(out->f_mode & FMODE_PWRITE))
1363                                 return -EINVAL;
1364                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1365                                 return -EFAULT;
1366                         off = &offset;
1367                 } else
1368                         off = &out->f_pos;
1369
1370                 ret = do_splice_from(ipipe, out, off, len, flags);
1371
1372                 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1373                         ret = -EFAULT;
1374
1375                 return ret;
1376         }
1377
1378         if (opipe) {
1379                 if (off_out)
1380                         return -ESPIPE;
1381                 if (off_in) {
1382                         if (!(in->f_mode & FMODE_PREAD))
1383                                 return -EINVAL;
1384                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1385                                 return -EFAULT;
1386                         off = &offset;
1387                 } else
1388                         off = &in->f_pos;
1389
1390                 ret = do_splice_to(in, off, opipe, len, flags);
1391
1392                 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1393                         ret = -EFAULT;
1394
1395                 return ret;
1396         }
1397
1398         return -EINVAL;
1399 }
1400
1401 /*
1402  * Map an iov into an array of pages and offset/length tupples. With the
1403  * partial_page structure, we can map several non-contiguous ranges into
1404  * our ones pages[] map instead of splitting that operation into pieces.
1405  * Could easily be exported as a generic helper for other users, in which
1406  * case one would probably want to add a 'max_nr_pages' parameter as well.
1407  */
1408 static int get_iovec_page_array(const struct iovec __user *iov,
1409                                 unsigned int nr_vecs, struct page **pages,
1410                                 struct partial_page *partial, int aligned,
1411                                 unsigned int pipe_buffers)
1412 {
1413         int buffers = 0, error = 0;
1414
1415         while (nr_vecs) {
1416                 unsigned long off, npages;
1417                 struct iovec entry;
1418                 void __user *base;
1419                 size_t len;
1420                 int i;
1421
1422                 error = -EFAULT;
1423                 if (copy_from_user(&entry, iov, sizeof(entry)))
1424                         break;
1425
1426                 base = entry.iov_base;
1427                 len = entry.iov_len;
1428
1429                 /*
1430                  * Sanity check this iovec. 0 read succeeds.
1431                  */
1432                 error = 0;
1433                 if (unlikely(!len))
1434                         break;
1435                 error = -EFAULT;
1436                 if (!access_ok(VERIFY_READ, base, len))
1437                         break;
1438
1439                 /*
1440                  * Get this base offset and number of pages, then map
1441                  * in the user pages.
1442                  */
1443                 off = (unsigned long) base & ~PAGE_MASK;
1444
1445                 /*
1446                  * If asked for alignment, the offset must be zero and the
1447                  * length a multiple of the PAGE_SIZE.
1448                  */
1449                 error = -EINVAL;
1450                 if (aligned && (off || len & ~PAGE_MASK))
1451                         break;
1452
1453                 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1454                 if (npages > pipe_buffers - buffers)
1455                         npages = pipe_buffers - buffers;
1456
1457                 error = get_user_pages_fast((unsigned long)base, npages,
1458                                         0, &pages[buffers]);
1459
1460                 if (unlikely(error <= 0))
1461                         break;
1462
1463                 /*
1464                  * Fill this contiguous range into the partial page map.
1465                  */
1466                 for (i = 0; i < error; i++) {
1467                         const int plen = min_t(size_t, len, PAGE_SIZE - off);
1468
1469                         partial[buffers].offset = off;
1470                         partial[buffers].len = plen;
1471
1472                         off = 0;
1473                         len -= plen;
1474                         buffers++;
1475                 }
1476
1477                 /*
1478                  * We didn't complete this iov, stop here since it probably
1479                  * means we have to move some of this into a pipe to
1480                  * be able to continue.
1481                  */
1482                 if (len)
1483                         break;
1484
1485                 /*
1486                  * Don't continue if we mapped fewer pages than we asked for,
1487                  * or if we mapped the max number of pages that we have
1488                  * room for.
1489                  */
1490                 if (error < npages || buffers == pipe_buffers)
1491                         break;
1492
1493                 nr_vecs--;
1494                 iov++;
1495         }
1496
1497         if (buffers)
1498                 return buffers;
1499
1500         return error;
1501 }
1502
1503 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1504                         struct splice_desc *sd)
1505 {
1506         char *src;
1507         int ret;
1508
1509         ret = buf->ops->confirm(pipe, buf);
1510         if (unlikely(ret))
1511                 return ret;
1512
1513         /*
1514          * See if we can use the atomic maps, by prefaulting in the
1515          * pages and doing an atomic copy
1516          */
1517         if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1518                 src = buf->ops->map(pipe, buf, 1);
1519                 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1520                                                         sd->len);
1521                 buf->ops->unmap(pipe, buf, src);
1522                 if (!ret) {
1523                         ret = sd->len;
1524                         goto out;
1525                 }
1526         }
1527
1528         /*
1529          * No dice, use slow non-atomic map and copy
1530          */
1531         src = buf->ops->map(pipe, buf, 0);
1532
1533         ret = sd->len;
1534         if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1535                 ret = -EFAULT;
1536
1537         buf->ops->unmap(pipe, buf, src);
1538 out:
1539         if (ret > 0)
1540                 sd->u.userptr += ret;
1541         return ret;
1542 }
1543
1544 /*
1545  * For lack of a better implementation, implement vmsplice() to userspace
1546  * as a simple copy of the pipes pages to the user iov.
1547  */
1548 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1549                              unsigned long nr_segs, unsigned int flags)
1550 {
1551         struct pipe_inode_info *pipe;
1552         struct splice_desc sd;
1553         ssize_t size;
1554         int error;
1555         long ret;
1556
1557         pipe = get_pipe_info(file);
1558         if (!pipe)
1559                 return -EBADF;
1560
1561         pipe_lock(pipe);
1562
1563         error = ret = 0;
1564         while (nr_segs) {
1565                 void __user *base;
1566                 size_t len;
1567
1568                 /*
1569                  * Get user address base and length for this iovec.
1570                  */
1571                 error = get_user(base, &iov->iov_base);
1572                 if (unlikely(error))
1573                         break;
1574                 error = get_user(len, &iov->iov_len);
1575                 if (unlikely(error))
1576                         break;
1577
1578                 /*
1579                  * Sanity check this iovec. 0 read succeeds.
1580                  */
1581                 if (unlikely(!len))
1582                         break;
1583                 if (unlikely(!base)) {
1584                         error = -EFAULT;
1585                         break;
1586                 }
1587
1588                 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1589                         error = -EFAULT;
1590                         break;
1591                 }
1592
1593                 sd.len = 0;
1594                 sd.total_len = len;
1595                 sd.flags = flags;
1596                 sd.u.userptr = base;
1597                 sd.pos = 0;
1598
1599                 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1600                 if (size < 0) {
1601                         if (!ret)
1602                                 ret = size;
1603
1604                         break;
1605                 }
1606
1607                 ret += size;
1608
1609                 if (size < len)
1610                         break;
1611
1612                 nr_segs--;
1613                 iov++;
1614         }
1615
1616         pipe_unlock(pipe);
1617
1618         if (!ret)
1619                 ret = error;
1620
1621         return ret;
1622 }
1623
1624 /*
1625  * vmsplice splices a user address range into a pipe. It can be thought of
1626  * as splice-from-memory, where the regular splice is splice-from-file (or
1627  * to file). In both cases the output is a pipe, naturally.
1628  */
1629 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1630                              unsigned long nr_segs, unsigned int flags)
1631 {
1632         struct pipe_inode_info *pipe;
1633         struct page *pages[PIPE_DEF_BUFFERS];
1634         struct partial_page partial[PIPE_DEF_BUFFERS];
1635         struct splice_pipe_desc spd = {
1636                 .pages = pages,
1637                 .partial = partial,
1638                 .flags = flags,
1639                 .ops = &user_page_pipe_buf_ops,
1640                 .spd_release = spd_release_page,
1641         };
1642         long ret;
1643
1644         pipe = get_pipe_info(file);
1645         if (!pipe)
1646                 return -EBADF;
1647
1648         if (splice_grow_spd(pipe, &spd))
1649                 return -ENOMEM;
1650
1651         spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1652                                             spd.partial, flags & SPLICE_F_GIFT,
1653                                             pipe->buffers);
1654         if (spd.nr_pages <= 0)
1655                 ret = spd.nr_pages;
1656         else
1657                 ret = splice_to_pipe(pipe, &spd);
1658
1659         splice_shrink_spd(pipe, &spd);
1660         return ret;
1661 }
1662
1663 /*
1664  * Note that vmsplice only really supports true splicing _from_ user memory
1665  * to a pipe, not the other way around. Splicing from user memory is a simple
1666  * operation that can be supported without any funky alignment restrictions
1667  * or nasty vm tricks. We simply map in the user memory and fill them into
1668  * a pipe. The reverse isn't quite as easy, though. There are two possible
1669  * solutions for that:
1670  *
1671  *      - memcpy() the data internally, at which point we might as well just
1672  *        do a regular read() on the buffer anyway.
1673  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1674  *        has restriction limitations on both ends of the pipe).
1675  *
1676  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1677  *
1678  */
1679 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1680                 unsigned long, nr_segs, unsigned int, flags)
1681 {
1682         struct file *file;
1683         long error;
1684         int fput;
1685
1686         if (unlikely(nr_segs > UIO_MAXIOV))
1687                 return -EINVAL;
1688         else if (unlikely(!nr_segs))
1689                 return 0;
1690
1691         error = -EBADF;
1692         file = fget_light(fd, &fput);
1693         if (file) {
1694                 if (file->f_mode & FMODE_WRITE)
1695                         error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1696                 else if (file->f_mode & FMODE_READ)
1697                         error = vmsplice_to_user(file, iov, nr_segs, flags);
1698
1699                 fput_light(file, fput);
1700         }
1701
1702         return error;
1703 }
1704
1705 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1706                 int, fd_out, loff_t __user *, off_out,
1707                 size_t, len, unsigned int, flags)
1708 {
1709         long error;
1710         struct file *in, *out;
1711         int fput_in, fput_out;
1712
1713         if (unlikely(!len))
1714                 return 0;
1715
1716         error = -EBADF;
1717         in = fget_light(fd_in, &fput_in);
1718         if (in) {
1719                 if (in->f_mode & FMODE_READ) {
1720                         out = fget_light(fd_out, &fput_out);
1721                         if (out) {
1722                                 if (out->f_mode & FMODE_WRITE)
1723                                         error = do_splice(in, off_in,
1724                                                           out, off_out,
1725                                                           len, flags);
1726                                 fput_light(out, fput_out);
1727                         }
1728                 }
1729
1730                 fput_light(in, fput_in);
1731         }
1732
1733         return error;
1734 }
1735
1736 /*
1737  * Make sure there's data to read. Wait for input if we can, otherwise
1738  * return an appropriate error.
1739  */
1740 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1741 {
1742         int ret;
1743
1744         /*
1745          * Check ->nrbufs without the inode lock first. This function
1746          * is speculative anyways, so missing one is ok.
1747          */
1748         if (pipe->nrbufs)
1749                 return 0;
1750
1751         ret = 0;
1752         pipe_lock(pipe);
1753
1754         while (!pipe->nrbufs) {
1755                 if (signal_pending(current)) {
1756                         ret = -ERESTARTSYS;
1757                         break;
1758                 }
1759                 if (!pipe->writers)
1760                         break;
1761                 if (!pipe->waiting_writers) {
1762                         if (flags & SPLICE_F_NONBLOCK) {
1763                                 ret = -EAGAIN;
1764                                 break;
1765                         }
1766                 }
1767                 pipe_wait(pipe);
1768         }
1769
1770         pipe_unlock(pipe);
1771         return ret;
1772 }
1773
1774 /*
1775  * Make sure there's writeable room. Wait for room if we can, otherwise
1776  * return an appropriate error.
1777  */
1778 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1779 {
1780         int ret;
1781
1782         /*
1783          * Check ->nrbufs without the inode lock first. This function
1784          * is speculative anyways, so missing one is ok.
1785          */
1786         if (pipe->nrbufs < pipe->buffers)
1787                 return 0;
1788
1789         ret = 0;
1790         pipe_lock(pipe);
1791
1792         while (pipe->nrbufs >= pipe->buffers) {
1793                 if (!pipe->readers) {
1794                         send_sig(SIGPIPE, current, 0);
1795                         ret = -EPIPE;
1796                         break;
1797                 }
1798                 if (flags & SPLICE_F_NONBLOCK) {
1799                         ret = -EAGAIN;
1800                         break;
1801                 }
1802                 if (signal_pending(current)) {
1803                         ret = -ERESTARTSYS;
1804                         break;
1805                 }
1806                 pipe->waiting_writers++;
1807                 pipe_wait(pipe);
1808                 pipe->waiting_writers--;
1809         }
1810
1811         pipe_unlock(pipe);
1812         return ret;
1813 }
1814
1815 /*
1816  * Splice contents of ipipe to opipe.
1817  */
1818 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1819                                struct pipe_inode_info *opipe,
1820                                size_t len, unsigned int flags)
1821 {
1822         struct pipe_buffer *ibuf, *obuf;
1823         int ret = 0, nbuf;
1824         bool input_wakeup = false;
1825
1826
1827 retry:
1828         ret = ipipe_prep(ipipe, flags);
1829         if (ret)
1830                 return ret;
1831
1832         ret = opipe_prep(opipe, flags);
1833         if (ret)
1834                 return ret;
1835
1836         /*
1837          * Potential ABBA deadlock, work around it by ordering lock
1838          * grabbing by pipe info address. Otherwise two different processes
1839          * could deadlock (one doing tee from A -> B, the other from B -> A).
1840          */
1841         pipe_double_lock(ipipe, opipe);
1842
1843         do {
1844                 if (!opipe->readers) {
1845                         send_sig(SIGPIPE, current, 0);
1846                         if (!ret)
1847                                 ret = -EPIPE;
1848                         break;
1849                 }
1850
1851                 if (!ipipe->nrbufs && !ipipe->writers)
1852                         break;
1853
1854                 /*
1855                  * Cannot make any progress, because either the input
1856                  * pipe is empty or the output pipe is full.
1857                  */
1858                 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1859                         /* Already processed some buffers, break */
1860                         if (ret)
1861                                 break;
1862
1863                         if (flags & SPLICE_F_NONBLOCK) {
1864                                 ret = -EAGAIN;
1865                                 break;
1866                         }
1867
1868                         /*
1869                          * We raced with another reader/writer and haven't
1870                          * managed to process any buffers.  A zero return
1871                          * value means EOF, so retry instead.
1872                          */
1873                         pipe_unlock(ipipe);
1874                         pipe_unlock(opipe);
1875                         goto retry;
1876                 }
1877
1878                 ibuf = ipipe->bufs + ipipe->curbuf;
1879                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1880                 obuf = opipe->bufs + nbuf;
1881
1882                 if (len >= ibuf->len) {
1883                         /*
1884                          * Simply move the whole buffer from ipipe to opipe
1885                          */
1886                         *obuf = *ibuf;
1887                         ibuf->ops = NULL;
1888                         opipe->nrbufs++;
1889                         ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1890                         ipipe->nrbufs--;
1891                         input_wakeup = true;
1892                 } else {
1893                         /*
1894                          * Get a reference to this pipe buffer,
1895                          * so we can copy the contents over.
1896                          */
1897                         ibuf->ops->get(ipipe, ibuf);
1898                         *obuf = *ibuf;
1899
1900                         /*
1901                          * Don't inherit the gift flag, we need to
1902                          * prevent multiple steals of this page.
1903                          */
1904                         obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1905
1906                         obuf->len = len;
1907                         opipe->nrbufs++;
1908                         ibuf->offset += obuf->len;
1909                         ibuf->len -= obuf->len;
1910                 }
1911                 ret += obuf->len;
1912                 len -= obuf->len;
1913         } while (len);
1914
1915         pipe_unlock(ipipe);
1916         pipe_unlock(opipe);
1917
1918         /*
1919          * If we put data in the output pipe, wakeup any potential readers.
1920          */
1921         if (ret > 0) {
1922                 smp_mb();
1923                 if (waitqueue_active(&opipe->wait))
1924                         wake_up_interruptible(&opipe->wait);
1925                 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1926         }
1927         if (input_wakeup)
1928                 wakeup_pipe_writers(ipipe);
1929
1930         return ret;
1931 }
1932
1933 /*
1934  * Link contents of ipipe to opipe.
1935  */
1936 static int link_pipe(struct pipe_inode_info *ipipe,
1937                      struct pipe_inode_info *opipe,
1938                      size_t len, unsigned int flags)
1939 {
1940         struct pipe_buffer *ibuf, *obuf;
1941         int ret = 0, i = 0, nbuf;
1942
1943         /*
1944          * Potential ABBA deadlock, work around it by ordering lock
1945          * grabbing by pipe info address. Otherwise two different processes
1946          * could deadlock (one doing tee from A -> B, the other from B -> A).
1947          */
1948         pipe_double_lock(ipipe, opipe);
1949
1950         do {
1951                 if (!opipe->readers) {
1952                         send_sig(SIGPIPE, current, 0);
1953                         if (!ret)
1954                                 ret = -EPIPE;
1955                         break;
1956                 }
1957
1958                 /*
1959                  * If we have iterated all input buffers or ran out of
1960                  * output room, break.
1961                  */
1962                 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1963                         break;
1964
1965                 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1966                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1967
1968                 /*
1969                  * Get a reference to this pipe buffer,
1970                  * so we can copy the contents over.
1971                  */
1972                 ibuf->ops->get(ipipe, ibuf);
1973
1974                 obuf = opipe->bufs + nbuf;
1975                 *obuf = *ibuf;
1976
1977                 /*
1978                  * Don't inherit the gift flag, we need to
1979                  * prevent multiple steals of this page.
1980                  */
1981                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1982
1983                 if (obuf->len > len)
1984                         obuf->len = len;
1985
1986                 opipe->nrbufs++;
1987                 ret += obuf->len;
1988                 len -= obuf->len;
1989                 i++;
1990         } while (len);
1991
1992         /*
1993          * return EAGAIN if we have the potential of some data in the
1994          * future, otherwise just return 0
1995          */
1996         if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1997                 ret = -EAGAIN;
1998
1999         pipe_unlock(ipipe);
2000         pipe_unlock(opipe);
2001
2002         /*
2003          * If we put data in the output pipe, wakeup any potential readers.
2004          */
2005         if (ret > 0) {
2006                 smp_mb();
2007                 if (waitqueue_active(&opipe->wait))
2008                         wake_up_interruptible(&opipe->wait);
2009                 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
2010         }
2011
2012         return ret;
2013 }
2014
2015 /*
2016  * This is a tee(1) implementation that works on pipes. It doesn't copy
2017  * any data, it simply references the 'in' pages on the 'out' pipe.
2018  * The 'flags' used are the SPLICE_F_* variants, currently the only
2019  * applicable one is SPLICE_F_NONBLOCK.
2020  */
2021 static long do_tee(struct file *in, struct file *out, size_t len,
2022                    unsigned int flags)
2023 {
2024         struct pipe_inode_info *ipipe = get_pipe_info(in);
2025         struct pipe_inode_info *opipe = get_pipe_info(out);
2026         int ret = -EINVAL;
2027
2028         /*
2029          * Duplicate the contents of ipipe to opipe without actually
2030          * copying the data.
2031          */
2032         if (ipipe && opipe && ipipe != opipe) {
2033                 /*
2034                  * Keep going, unless we encounter an error. The ipipe/opipe
2035                  * ordering doesn't really matter.
2036                  */
2037                 ret = ipipe_prep(ipipe, flags);
2038                 if (!ret) {
2039                         ret = opipe_prep(opipe, flags);
2040                         if (!ret)
2041                                 ret = link_pipe(ipipe, opipe, len, flags);
2042                 }
2043         }
2044
2045         return ret;
2046 }
2047
2048 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2049 {
2050         struct file *in;
2051         int error, fput_in;
2052
2053         if (unlikely(!len))
2054                 return 0;
2055
2056         error = -EBADF;
2057         in = fget_light(fdin, &fput_in);
2058         if (in) {
2059                 if (in->f_mode & FMODE_READ) {
2060                         int fput_out;
2061                         struct file *out = fget_light(fdout, &fput_out);
2062
2063                         if (out) {
2064                                 if (out->f_mode & FMODE_WRITE)
2065                                         error = do_tee(in, out, len, flags);
2066                                 fput_light(out, fput_out);
2067                         }
2068                 }
2069                 fput_light(in, fput_in);
2070         }
2071
2072         return error;
2073 }