]> rtime.felk.cvut.cz Git - linux-imx.git/blob - drivers/usb/host/xhci-mem.c
USB: xhci - fix interval calculation for FS isoc endpoints
[linux-imx.git] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27
28 #include "xhci.h"
29
30 /*
31  * Allocates a generic ring segment from the ring pool, sets the dma address,
32  * initializes the segment to zero, and sets the private next pointer to NULL.
33  *
34  * Section 4.11.1.1:
35  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36  */
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38 {
39         struct xhci_segment *seg;
40         dma_addr_t      dma;
41
42         seg = kzalloc(sizeof *seg, flags);
43         if (!seg)
44                 return NULL;
45         xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
46
47         seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48         if (!seg->trbs) {
49                 kfree(seg);
50                 return NULL;
51         }
52         xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53                         seg->trbs, (unsigned long long)dma);
54
55         memset(seg->trbs, 0, SEGMENT_SIZE);
56         seg->dma = dma;
57         seg->next = NULL;
58
59         return seg;
60 }
61
62 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
63 {
64         if (!seg)
65                 return;
66         if (seg->trbs) {
67                 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68                                 seg->trbs, (unsigned long long)seg->dma);
69                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70                 seg->trbs = NULL;
71         }
72         xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
73         kfree(seg);
74 }
75
76 /*
77  * Make the prev segment point to the next segment.
78  *
79  * Change the last TRB in the prev segment to be a Link TRB which points to the
80  * DMA address of the next segment.  The caller needs to set any Link TRB
81  * related flags, such as End TRB, Toggle Cycle, and no snoop.
82  */
83 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
84                 struct xhci_segment *next, bool link_trbs)
85 {
86         u32 val;
87
88         if (!prev || !next)
89                 return;
90         prev->next = next;
91         if (link_trbs) {
92                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
93
94                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
95                 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
96                 val &= ~TRB_TYPE_BITMASK;
97                 val |= TRB_TYPE(TRB_LINK);
98                 /* Always set the chain bit with 0.95 hardware */
99                 if (xhci_link_trb_quirk(xhci))
100                         val |= TRB_CHAIN;
101                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
102         }
103         xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
104                         (unsigned long long)prev->dma,
105                         (unsigned long long)next->dma);
106 }
107
108 /* XXX: Do we need the hcd structure in all these functions? */
109 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
110 {
111         struct xhci_segment *seg;
112         struct xhci_segment *first_seg;
113
114         if (!ring || !ring->first_seg)
115                 return;
116         first_seg = ring->first_seg;
117         seg = first_seg->next;
118         xhci_dbg(xhci, "Freeing ring at %p\n", ring);
119         while (seg != first_seg) {
120                 struct xhci_segment *next = seg->next;
121                 xhci_segment_free(xhci, seg);
122                 seg = next;
123         }
124         xhci_segment_free(xhci, first_seg);
125         ring->first_seg = NULL;
126         kfree(ring);
127 }
128
129 static void xhci_initialize_ring_info(struct xhci_ring *ring)
130 {
131         /* The ring is empty, so the enqueue pointer == dequeue pointer */
132         ring->enqueue = ring->first_seg->trbs;
133         ring->enq_seg = ring->first_seg;
134         ring->dequeue = ring->enqueue;
135         ring->deq_seg = ring->first_seg;
136         /* The ring is initialized to 0. The producer must write 1 to the cycle
137          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
138          * compare CCS to the cycle bit to check ownership, so CCS = 1.
139          */
140         ring->cycle_state = 1;
141         /* Not necessary for new rings, but needed for re-initialized rings */
142         ring->enq_updates = 0;
143         ring->deq_updates = 0;
144 }
145
146 /**
147  * Create a new ring with zero or more segments.
148  *
149  * Link each segment together into a ring.
150  * Set the end flag and the cycle toggle bit on the last segment.
151  * See section 4.9.1 and figures 15 and 16.
152  */
153 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
154                 unsigned int num_segs, bool link_trbs, gfp_t flags)
155 {
156         struct xhci_ring        *ring;
157         struct xhci_segment     *prev;
158
159         ring = kzalloc(sizeof *(ring), flags);
160         xhci_dbg(xhci, "Allocating ring at %p\n", ring);
161         if (!ring)
162                 return NULL;
163
164         INIT_LIST_HEAD(&ring->td_list);
165         if (num_segs == 0)
166                 return ring;
167
168         ring->first_seg = xhci_segment_alloc(xhci, flags);
169         if (!ring->first_seg)
170                 goto fail;
171         num_segs--;
172
173         prev = ring->first_seg;
174         while (num_segs > 0) {
175                 struct xhci_segment     *next;
176
177                 next = xhci_segment_alloc(xhci, flags);
178                 if (!next)
179                         goto fail;
180                 xhci_link_segments(xhci, prev, next, link_trbs);
181
182                 prev = next;
183                 num_segs--;
184         }
185         xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
186
187         if (link_trbs) {
188                 /* See section 4.9.2.1 and 6.4.4.1 */
189                 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
190                 xhci_dbg(xhci, "Wrote link toggle flag to"
191                                 " segment %p (virtual), 0x%llx (DMA)\n",
192                                 prev, (unsigned long long)prev->dma);
193         }
194         xhci_initialize_ring_info(ring);
195         return ring;
196
197 fail:
198         xhci_ring_free(xhci, ring);
199         return NULL;
200 }
201
202 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
203                 struct xhci_virt_device *virt_dev,
204                 unsigned int ep_index)
205 {
206         int rings_cached;
207
208         rings_cached = virt_dev->num_rings_cached;
209         if (rings_cached < XHCI_MAX_RINGS_CACHED) {
210                 virt_dev->num_rings_cached++;
211                 rings_cached = virt_dev->num_rings_cached;
212                 virt_dev->ring_cache[rings_cached] =
213                         virt_dev->eps[ep_index].ring;
214                 xhci_dbg(xhci, "Cached old ring, "
215                                 "%d ring%s cached\n",
216                                 rings_cached,
217                                 (rings_cached > 1) ? "s" : "");
218         } else {
219                 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
220                 xhci_dbg(xhci, "Ring cache full (%d rings), "
221                                 "freeing ring\n",
222                                 virt_dev->num_rings_cached);
223         }
224         virt_dev->eps[ep_index].ring = NULL;
225 }
226
227 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
228  * pointers to the beginning of the ring.
229  */
230 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
231                 struct xhci_ring *ring)
232 {
233         struct xhci_segment     *seg = ring->first_seg;
234         do {
235                 memset(seg->trbs, 0,
236                                 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
237                 /* All endpoint rings have link TRBs */
238                 xhci_link_segments(xhci, seg, seg->next, 1);
239                 seg = seg->next;
240         } while (seg != ring->first_seg);
241         xhci_initialize_ring_info(ring);
242         /* td list should be empty since all URBs have been cancelled,
243          * but just in case...
244          */
245         INIT_LIST_HEAD(&ring->td_list);
246 }
247
248 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
249
250 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
251                                                     int type, gfp_t flags)
252 {
253         struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
254         if (!ctx)
255                 return NULL;
256
257         BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
258         ctx->type = type;
259         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
260         if (type == XHCI_CTX_TYPE_INPUT)
261                 ctx->size += CTX_SIZE(xhci->hcc_params);
262
263         ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
264         memset(ctx->bytes, 0, ctx->size);
265         return ctx;
266 }
267
268 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
269                              struct xhci_container_ctx *ctx)
270 {
271         if (!ctx)
272                 return;
273         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
274         kfree(ctx);
275 }
276
277 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
278                                               struct xhci_container_ctx *ctx)
279 {
280         BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
281         return (struct xhci_input_control_ctx *)ctx->bytes;
282 }
283
284 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
285                                         struct xhci_container_ctx *ctx)
286 {
287         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
288                 return (struct xhci_slot_ctx *)ctx->bytes;
289
290         return (struct xhci_slot_ctx *)
291                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
292 }
293
294 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
295                                     struct xhci_container_ctx *ctx,
296                                     unsigned int ep_index)
297 {
298         /* increment ep index by offset of start of ep ctx array */
299         ep_index++;
300         if (ctx->type == XHCI_CTX_TYPE_INPUT)
301                 ep_index++;
302
303         return (struct xhci_ep_ctx *)
304                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
305 }
306
307
308 /***************** Streams structures manipulation *************************/
309
310 void xhci_free_stream_ctx(struct xhci_hcd *xhci,
311                 unsigned int num_stream_ctxs,
312                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
313 {
314         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
315
316         if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
317                 pci_free_consistent(pdev,
318                                 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
319                                 stream_ctx, dma);
320         else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
321                 return dma_pool_free(xhci->small_streams_pool,
322                                 stream_ctx, dma);
323         else
324                 return dma_pool_free(xhci->medium_streams_pool,
325                                 stream_ctx, dma);
326 }
327
328 /*
329  * The stream context array for each endpoint with bulk streams enabled can
330  * vary in size, based on:
331  *  - how many streams the endpoint supports,
332  *  - the maximum primary stream array size the host controller supports,
333  *  - and how many streams the device driver asks for.
334  *
335  * The stream context array must be a power of 2, and can be as small as
336  * 64 bytes or as large as 1MB.
337  */
338 struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
339                 unsigned int num_stream_ctxs, dma_addr_t *dma,
340                 gfp_t mem_flags)
341 {
342         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
343
344         if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
345                 return pci_alloc_consistent(pdev,
346                                 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
347                                 dma);
348         else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
349                 return dma_pool_alloc(xhci->small_streams_pool,
350                                 mem_flags, dma);
351         else
352                 return dma_pool_alloc(xhci->medium_streams_pool,
353                                 mem_flags, dma);
354 }
355
356 struct xhci_ring *xhci_dma_to_transfer_ring(
357                 struct xhci_virt_ep *ep,
358                 u64 address)
359 {
360         if (ep->ep_state & EP_HAS_STREAMS)
361                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
362                                 address >> SEGMENT_SHIFT);
363         return ep->ring;
364 }
365
366 /* Only use this when you know stream_info is valid */
367 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
368 static struct xhci_ring *dma_to_stream_ring(
369                 struct xhci_stream_info *stream_info,
370                 u64 address)
371 {
372         return radix_tree_lookup(&stream_info->trb_address_map,
373                         address >> SEGMENT_SHIFT);
374 }
375 #endif  /* CONFIG_USB_XHCI_HCD_DEBUGGING */
376
377 struct xhci_ring *xhci_stream_id_to_ring(
378                 struct xhci_virt_device *dev,
379                 unsigned int ep_index,
380                 unsigned int stream_id)
381 {
382         struct xhci_virt_ep *ep = &dev->eps[ep_index];
383
384         if (stream_id == 0)
385                 return ep->ring;
386         if (!ep->stream_info)
387                 return NULL;
388
389         if (stream_id > ep->stream_info->num_streams)
390                 return NULL;
391         return ep->stream_info->stream_rings[stream_id];
392 }
393
394 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
395                 unsigned int slot_id, unsigned int ep_index,
396                 unsigned int stream_id)
397 {
398         struct xhci_virt_ep *ep;
399
400         ep = &xhci->devs[slot_id]->eps[ep_index];
401         /* Common case: no streams */
402         if (!(ep->ep_state & EP_HAS_STREAMS))
403                 return ep->ring;
404
405         if (stream_id == 0) {
406                 xhci_warn(xhci,
407                                 "WARN: Slot ID %u, ep index %u has streams, "
408                                 "but URB has no stream ID.\n",
409                                 slot_id, ep_index);
410                 return NULL;
411         }
412
413         if (stream_id < ep->stream_info->num_streams)
414                 return ep->stream_info->stream_rings[stream_id];
415
416         xhci_warn(xhci,
417                         "WARN: Slot ID %u, ep index %u has "
418                         "stream IDs 1 to %u allocated, "
419                         "but stream ID %u is requested.\n",
420                         slot_id, ep_index,
421                         ep->stream_info->num_streams - 1,
422                         stream_id);
423         return NULL;
424 }
425
426 /* Get the right ring for the given URB.
427  * If the endpoint supports streams, boundary check the URB's stream ID.
428  * If the endpoint doesn't support streams, return the singular endpoint ring.
429  */
430 struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
431                 struct urb *urb)
432 {
433         return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
434                 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
435 }
436
437 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
438 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
439                 unsigned int num_streams,
440                 struct xhci_stream_info *stream_info)
441 {
442         u32 cur_stream;
443         struct xhci_ring *cur_ring;
444         u64 addr;
445
446         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
447                 struct xhci_ring *mapped_ring;
448                 int trb_size = sizeof(union xhci_trb);
449
450                 cur_ring = stream_info->stream_rings[cur_stream];
451                 for (addr = cur_ring->first_seg->dma;
452                                 addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
453                                 addr += trb_size) {
454                         mapped_ring = dma_to_stream_ring(stream_info, addr);
455                         if (cur_ring != mapped_ring) {
456                                 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
457                                                 "didn't map to stream ID %u; "
458                                                 "mapped to ring %p\n",
459                                                 (unsigned long long) addr,
460                                                 cur_stream,
461                                                 mapped_ring);
462                                 return -EINVAL;
463                         }
464                 }
465                 /* One TRB after the end of the ring segment shouldn't return a
466                  * pointer to the current ring (although it may be a part of a
467                  * different ring).
468                  */
469                 mapped_ring = dma_to_stream_ring(stream_info, addr);
470                 if (mapped_ring != cur_ring) {
471                         /* One TRB before should also fail */
472                         addr = cur_ring->first_seg->dma - trb_size;
473                         mapped_ring = dma_to_stream_ring(stream_info, addr);
474                 }
475                 if (mapped_ring == cur_ring) {
476                         xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
477                                         "mapped to valid stream ID %u; "
478                                         "mapped ring = %p\n",
479                                         (unsigned long long) addr,
480                                         cur_stream,
481                                         mapped_ring);
482                         return -EINVAL;
483                 }
484         }
485         return 0;
486 }
487 #endif  /* CONFIG_USB_XHCI_HCD_DEBUGGING */
488
489 /*
490  * Change an endpoint's internal structure so it supports stream IDs.  The
491  * number of requested streams includes stream 0, which cannot be used by device
492  * drivers.
493  *
494  * The number of stream contexts in the stream context array may be bigger than
495  * the number of streams the driver wants to use.  This is because the number of
496  * stream context array entries must be a power of two.
497  *
498  * We need a radix tree for mapping physical addresses of TRBs to which stream
499  * ID they belong to.  We need to do this because the host controller won't tell
500  * us which stream ring the TRB came from.  We could store the stream ID in an
501  * event data TRB, but that doesn't help us for the cancellation case, since the
502  * endpoint may stop before it reaches that event data TRB.
503  *
504  * The radix tree maps the upper portion of the TRB DMA address to a ring
505  * segment that has the same upper portion of DMA addresses.  For example, say I
506  * have segments of size 1KB, that are always 64-byte aligned.  A segment may
507  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
508  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
509  * pass the radix tree a key to get the right stream ID:
510  *
511  *      0x10c90fff >> 10 = 0x43243
512  *      0x10c912c0 >> 10 = 0x43244
513  *      0x10c91400 >> 10 = 0x43245
514  *
515  * Obviously, only those TRBs with DMA addresses that are within the segment
516  * will make the radix tree return the stream ID for that ring.
517  *
518  * Caveats for the radix tree:
519  *
520  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
521  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
522  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
523  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
524  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
525  * extended systems (where the DMA address can be bigger than 32-bits),
526  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
527  */
528 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
529                 unsigned int num_stream_ctxs,
530                 unsigned int num_streams, gfp_t mem_flags)
531 {
532         struct xhci_stream_info *stream_info;
533         u32 cur_stream;
534         struct xhci_ring *cur_ring;
535         unsigned long key;
536         u64 addr;
537         int ret;
538
539         xhci_dbg(xhci, "Allocating %u streams and %u "
540                         "stream context array entries.\n",
541                         num_streams, num_stream_ctxs);
542         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
543                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
544                 return NULL;
545         }
546         xhci->cmd_ring_reserved_trbs++;
547
548         stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
549         if (!stream_info)
550                 goto cleanup_trbs;
551
552         stream_info->num_streams = num_streams;
553         stream_info->num_stream_ctxs = num_stream_ctxs;
554
555         /* Initialize the array of virtual pointers to stream rings. */
556         stream_info->stream_rings = kzalloc(
557                         sizeof(struct xhci_ring *)*num_streams,
558                         mem_flags);
559         if (!stream_info->stream_rings)
560                 goto cleanup_info;
561
562         /* Initialize the array of DMA addresses for stream rings for the HW. */
563         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
564                         num_stream_ctxs, &stream_info->ctx_array_dma,
565                         mem_flags);
566         if (!stream_info->stream_ctx_array)
567                 goto cleanup_ctx;
568         memset(stream_info->stream_ctx_array, 0,
569                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
570
571         /* Allocate everything needed to free the stream rings later */
572         stream_info->free_streams_command =
573                 xhci_alloc_command(xhci, true, true, mem_flags);
574         if (!stream_info->free_streams_command)
575                 goto cleanup_ctx;
576
577         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
578
579         /* Allocate rings for all the streams that the driver will use,
580          * and add their segment DMA addresses to the radix tree.
581          * Stream 0 is reserved.
582          */
583         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
584                 stream_info->stream_rings[cur_stream] =
585                         xhci_ring_alloc(xhci, 1, true, mem_flags);
586                 cur_ring = stream_info->stream_rings[cur_stream];
587                 if (!cur_ring)
588                         goto cleanup_rings;
589                 cur_ring->stream_id = cur_stream;
590                 /* Set deq ptr, cycle bit, and stream context type */
591                 addr = cur_ring->first_seg->dma |
592                         SCT_FOR_CTX(SCT_PRI_TR) |
593                         cur_ring->cycle_state;
594                 stream_info->stream_ctx_array[cur_stream].stream_ring = addr;
595                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
596                                 cur_stream, (unsigned long long) addr);
597
598                 key = (unsigned long)
599                         (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
600                 ret = radix_tree_insert(&stream_info->trb_address_map,
601                                 key, cur_ring);
602                 if (ret) {
603                         xhci_ring_free(xhci, cur_ring);
604                         stream_info->stream_rings[cur_stream] = NULL;
605                         goto cleanup_rings;
606                 }
607         }
608         /* Leave the other unused stream ring pointers in the stream context
609          * array initialized to zero.  This will cause the xHC to give us an
610          * error if the device asks for a stream ID we don't have setup (if it
611          * was any other way, the host controller would assume the ring is
612          * "empty" and wait forever for data to be queued to that stream ID).
613          */
614 #if XHCI_DEBUG
615         /* Do a little test on the radix tree to make sure it returns the
616          * correct values.
617          */
618         if (xhci_test_radix_tree(xhci, num_streams, stream_info))
619                 goto cleanup_rings;
620 #endif
621
622         return stream_info;
623
624 cleanup_rings:
625         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
626                 cur_ring = stream_info->stream_rings[cur_stream];
627                 if (cur_ring) {
628                         addr = cur_ring->first_seg->dma;
629                         radix_tree_delete(&stream_info->trb_address_map,
630                                         addr >> SEGMENT_SHIFT);
631                         xhci_ring_free(xhci, cur_ring);
632                         stream_info->stream_rings[cur_stream] = NULL;
633                 }
634         }
635         xhci_free_command(xhci, stream_info->free_streams_command);
636 cleanup_ctx:
637         kfree(stream_info->stream_rings);
638 cleanup_info:
639         kfree(stream_info);
640 cleanup_trbs:
641         xhci->cmd_ring_reserved_trbs--;
642         return NULL;
643 }
644 /*
645  * Sets the MaxPStreams field and the Linear Stream Array field.
646  * Sets the dequeue pointer to the stream context array.
647  */
648 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
649                 struct xhci_ep_ctx *ep_ctx,
650                 struct xhci_stream_info *stream_info)
651 {
652         u32 max_primary_streams;
653         /* MaxPStreams is the number of stream context array entries, not the
654          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
655          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
656          */
657         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
658         xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
659                         1 << (max_primary_streams + 1));
660         ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
661         ep_ctx->ep_info |= EP_MAXPSTREAMS(max_primary_streams);
662         ep_ctx->ep_info |= EP_HAS_LSA;
663         ep_ctx->deq  = stream_info->ctx_array_dma;
664 }
665
666 /*
667  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
668  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
669  * not at the beginning of the ring).
670  */
671 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
672                 struct xhci_ep_ctx *ep_ctx,
673                 struct xhci_virt_ep *ep)
674 {
675         dma_addr_t addr;
676         ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
677         ep_ctx->ep_info &= ~EP_HAS_LSA;
678         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
679         ep_ctx->deq  = addr | ep->ring->cycle_state;
680 }
681
682 /* Frees all stream contexts associated with the endpoint,
683  *
684  * Caller should fix the endpoint context streams fields.
685  */
686 void xhci_free_stream_info(struct xhci_hcd *xhci,
687                 struct xhci_stream_info *stream_info)
688 {
689         int cur_stream;
690         struct xhci_ring *cur_ring;
691         dma_addr_t addr;
692
693         if (!stream_info)
694                 return;
695
696         for (cur_stream = 1; cur_stream < stream_info->num_streams;
697                         cur_stream++) {
698                 cur_ring = stream_info->stream_rings[cur_stream];
699                 if (cur_ring) {
700                         addr = cur_ring->first_seg->dma;
701                         radix_tree_delete(&stream_info->trb_address_map,
702                                         addr >> SEGMENT_SHIFT);
703                         xhci_ring_free(xhci, cur_ring);
704                         stream_info->stream_rings[cur_stream] = NULL;
705                 }
706         }
707         xhci_free_command(xhci, stream_info->free_streams_command);
708         xhci->cmd_ring_reserved_trbs--;
709         if (stream_info->stream_ctx_array)
710                 xhci_free_stream_ctx(xhci,
711                                 stream_info->num_stream_ctxs,
712                                 stream_info->stream_ctx_array,
713                                 stream_info->ctx_array_dma);
714
715         if (stream_info)
716                 kfree(stream_info->stream_rings);
717         kfree(stream_info);
718 }
719
720
721 /***************** Device context manipulation *************************/
722
723 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
724                 struct xhci_virt_ep *ep)
725 {
726         init_timer(&ep->stop_cmd_timer);
727         ep->stop_cmd_timer.data = (unsigned long) ep;
728         ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
729         ep->xhci = xhci;
730 }
731
732 /* All the xhci_tds in the ring's TD list should be freed at this point */
733 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
734 {
735         struct xhci_virt_device *dev;
736         int i;
737
738         /* Slot ID 0 is reserved */
739         if (slot_id == 0 || !xhci->devs[slot_id])
740                 return;
741
742         dev = xhci->devs[slot_id];
743         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
744         if (!dev)
745                 return;
746
747         for (i = 0; i < 31; ++i) {
748                 if (dev->eps[i].ring)
749                         xhci_ring_free(xhci, dev->eps[i].ring);
750                 if (dev->eps[i].stream_info)
751                         xhci_free_stream_info(xhci,
752                                         dev->eps[i].stream_info);
753         }
754
755         if (dev->ring_cache) {
756                 for (i = 0; i < dev->num_rings_cached; i++)
757                         xhci_ring_free(xhci, dev->ring_cache[i]);
758                 kfree(dev->ring_cache);
759         }
760
761         if (dev->in_ctx)
762                 xhci_free_container_ctx(xhci, dev->in_ctx);
763         if (dev->out_ctx)
764                 xhci_free_container_ctx(xhci, dev->out_ctx);
765
766         kfree(xhci->devs[slot_id]);
767         xhci->devs[slot_id] = NULL;
768 }
769
770 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
771                 struct usb_device *udev, gfp_t flags)
772 {
773         struct xhci_virt_device *dev;
774         int i;
775
776         /* Slot ID 0 is reserved */
777         if (slot_id == 0 || xhci->devs[slot_id]) {
778                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
779                 return 0;
780         }
781
782         xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
783         if (!xhci->devs[slot_id])
784                 return 0;
785         dev = xhci->devs[slot_id];
786
787         /* Allocate the (output) device context that will be used in the HC. */
788         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
789         if (!dev->out_ctx)
790                 goto fail;
791
792         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
793                         (unsigned long long)dev->out_ctx->dma);
794
795         /* Allocate the (input) device context for address device command */
796         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
797         if (!dev->in_ctx)
798                 goto fail;
799
800         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
801                         (unsigned long long)dev->in_ctx->dma);
802
803         /* Initialize the cancellation list and watchdog timers for each ep */
804         for (i = 0; i < 31; i++) {
805                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
806                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
807         }
808
809         /* Allocate endpoint 0 ring */
810         dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
811         if (!dev->eps[0].ring)
812                 goto fail;
813
814         /* Allocate pointers to the ring cache */
815         dev->ring_cache = kzalloc(
816                         sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
817                         flags);
818         if (!dev->ring_cache)
819                 goto fail;
820         dev->num_rings_cached = 0;
821
822         init_completion(&dev->cmd_completion);
823         INIT_LIST_HEAD(&dev->cmd_list);
824
825         /* Point to output device context in dcbaa. */
826         xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
827         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
828                         slot_id,
829                         &xhci->dcbaa->dev_context_ptrs[slot_id],
830                         (unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
831
832         return 1;
833 fail:
834         xhci_free_virt_device(xhci, slot_id);
835         return 0;
836 }
837
838 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
839                 struct usb_device *udev)
840 {
841         struct xhci_virt_device *virt_dev;
842         struct xhci_ep_ctx      *ep0_ctx;
843         struct xhci_ring        *ep_ring;
844
845         virt_dev = xhci->devs[udev->slot_id];
846         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
847         ep_ring = virt_dev->eps[0].ring;
848         /*
849          * FIXME we don't keep track of the dequeue pointer very well after a
850          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
851          * host to our enqueue pointer.  This should only be called after a
852          * configured device has reset, so all control transfers should have
853          * been completed or cancelled before the reset.
854          */
855         ep0_ctx->deq = xhci_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue);
856         ep0_ctx->deq |= ep_ring->cycle_state;
857 }
858
859 /* Setup an xHCI virtual device for a Set Address command */
860 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
861 {
862         struct xhci_virt_device *dev;
863         struct xhci_ep_ctx      *ep0_ctx;
864         struct usb_device       *top_dev;
865         struct xhci_slot_ctx    *slot_ctx;
866         struct xhci_input_control_ctx *ctrl_ctx;
867
868         dev = xhci->devs[udev->slot_id];
869         /* Slot ID 0 is reserved */
870         if (udev->slot_id == 0 || !dev) {
871                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
872                                 udev->slot_id);
873                 return -EINVAL;
874         }
875         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
876         ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
877         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
878
879         /* 2) New slot context and endpoint 0 context are valid*/
880         ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
881
882         /* 3) Only the control endpoint is valid - one endpoint context */
883         slot_ctx->dev_info |= LAST_CTX(1);
884
885         slot_ctx->dev_info |= (u32) udev->route;
886         switch (udev->speed) {
887         case USB_SPEED_SUPER:
888                 slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
889                 break;
890         case USB_SPEED_HIGH:
891                 slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
892                 break;
893         case USB_SPEED_FULL:
894                 slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
895                 break;
896         case USB_SPEED_LOW:
897                 slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
898                 break;
899         case USB_SPEED_WIRELESS:
900                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
901                 return -EINVAL;
902                 break;
903         default:
904                 /* Speed was set earlier, this shouldn't happen. */
905                 BUG();
906         }
907         /* Find the root hub port this device is under */
908         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
909                         top_dev = top_dev->parent)
910                 /* Found device below root hub */;
911         slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
912         xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
913
914         /* Is this a LS/FS device under a HS hub? */
915         if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
916                         udev->tt) {
917                 slot_ctx->tt_info = udev->tt->hub->slot_id;
918                 slot_ctx->tt_info |= udev->ttport << 8;
919                 if (udev->tt->multi)
920                         slot_ctx->dev_info |= DEV_MTT;
921         }
922         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
923         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
924
925         /* Step 4 - ring already allocated */
926         /* Step 5 */
927         ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
928         /*
929          * XXX: Not sure about wireless USB devices.
930          */
931         switch (udev->speed) {
932         case USB_SPEED_SUPER:
933                 ep0_ctx->ep_info2 |= MAX_PACKET(512);
934                 break;
935         case USB_SPEED_HIGH:
936         /* USB core guesses at a 64-byte max packet first for FS devices */
937         case USB_SPEED_FULL:
938                 ep0_ctx->ep_info2 |= MAX_PACKET(64);
939                 break;
940         case USB_SPEED_LOW:
941                 ep0_ctx->ep_info2 |= MAX_PACKET(8);
942                 break;
943         case USB_SPEED_WIRELESS:
944                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
945                 return -EINVAL;
946                 break;
947         default:
948                 /* New speed? */
949                 BUG();
950         }
951         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
952         ep0_ctx->ep_info2 |= MAX_BURST(0);
953         ep0_ctx->ep_info2 |= ERROR_COUNT(3);
954
955         ep0_ctx->deq =
956                 dev->eps[0].ring->first_seg->dma;
957         ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
958
959         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
960
961         return 0;
962 }
963
964 /*
965  * Convert interval expressed as 2^(bInterval - 1) == interval into
966  * straight exponent value 2^n == interval.
967  *
968  */
969 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
970                 struct usb_host_endpoint *ep)
971 {
972         unsigned int interval;
973
974         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
975         if (interval != ep->desc.bInterval - 1)
976                 dev_warn(&udev->dev,
977                          "ep %#x - rounding interval to %d %sframes\n",
978                          ep->desc.bEndpointAddress,
979                          1 << interval,
980                          udev->speed == USB_SPEED_FULL ? "" : "micro");
981
982         if (udev->speed == USB_SPEED_FULL) {
983                 /*
984                  * Full speed isoc endpoints specify interval in frames,
985                  * not microframes. We are using microframes everywhere,
986                  * so adjust accordingly.
987                  */
988                 interval += 3;  /* 1 frame = 2^3 uframes */
989         }
990
991         return interval;
992 }
993
994 /*
995  * Convert bInterval expressed in frames (in 1-255 range) to exponent of
996  * microframes, rounded down to nearest power of 2.
997  */
998 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
999                 struct usb_host_endpoint *ep)
1000 {
1001         unsigned int interval;
1002
1003         interval = fls(8 * ep->desc.bInterval) - 1;
1004         interval = clamp_val(interval, 3, 10);
1005         if ((1 << interval) != 8 * ep->desc.bInterval)
1006                 dev_warn(&udev->dev,
1007                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1008                          ep->desc.bEndpointAddress,
1009                          1 << interval,
1010                          8 * ep->desc.bInterval);
1011
1012         return interval;
1013 }
1014
1015 /* Return the polling or NAK interval.
1016  *
1017  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1018  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1019  *
1020  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1021  * is set to 0.
1022  */
1023 static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1024                 struct usb_host_endpoint *ep)
1025 {
1026         unsigned int interval = 0;
1027
1028         switch (udev->speed) {
1029         case USB_SPEED_HIGH:
1030                 /* Max NAK rate */
1031                 if (usb_endpoint_xfer_control(&ep->desc) ||
1032                     usb_endpoint_xfer_bulk(&ep->desc)) {
1033                         interval = ep->desc.bInterval;
1034                         break;
1035                 }
1036                 /* Fall through - SS and HS isoc/int have same decoding */
1037         case USB_SPEED_SUPER:
1038                 if (usb_endpoint_xfer_int(&ep->desc) ||
1039                     usb_endpoint_xfer_isoc(&ep->desc)) {
1040                         interval = xhci_parse_exponent_interval(udev, ep);
1041                 }
1042                 break;
1043         /* Convert bInterval (in 1-255 frames) to microframes and round down to
1044          * nearest power of 2.
1045          */
1046         case USB_SPEED_FULL:
1047                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1048                         interval = xhci_parse_exponent_interval(udev, ep);
1049                         break;
1050                 }
1051                 /*
1052                  * Fall through for interrupt endpoint interval decoding
1053                  * since it uses the same rules as low speed interrupt
1054                  * endpoints.
1055                  */
1056         case USB_SPEED_LOW:
1057                 if (usb_endpoint_xfer_int(&ep->desc) ||
1058                     usb_endpoint_xfer_isoc(&ep->desc)) {
1059
1060                         interval = xhci_parse_frame_interval(udev, ep);
1061                 }
1062                 break;
1063         default:
1064                 BUG();
1065         }
1066         return EP_INTERVAL(interval);
1067 }
1068
1069 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1070  * High speed endpoint descriptors can define "the number of additional
1071  * transaction opportunities per microframe", but that goes in the Max Burst
1072  * endpoint context field.
1073  */
1074 static inline u32 xhci_get_endpoint_mult(struct usb_device *udev,
1075                 struct usb_host_endpoint *ep)
1076 {
1077         if (udev->speed != USB_SPEED_SUPER ||
1078                         !usb_endpoint_xfer_isoc(&ep->desc))
1079                 return 0;
1080         return ep->ss_ep_comp.bmAttributes;
1081 }
1082
1083 static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
1084                 struct usb_host_endpoint *ep)
1085 {
1086         int in;
1087         u32 type;
1088
1089         in = usb_endpoint_dir_in(&ep->desc);
1090         if (usb_endpoint_xfer_control(&ep->desc)) {
1091                 type = EP_TYPE(CTRL_EP);
1092         } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1093                 if (in)
1094                         type = EP_TYPE(BULK_IN_EP);
1095                 else
1096                         type = EP_TYPE(BULK_OUT_EP);
1097         } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1098                 if (in)
1099                         type = EP_TYPE(ISOC_IN_EP);
1100                 else
1101                         type = EP_TYPE(ISOC_OUT_EP);
1102         } else if (usb_endpoint_xfer_int(&ep->desc)) {
1103                 if (in)
1104                         type = EP_TYPE(INT_IN_EP);
1105                 else
1106                         type = EP_TYPE(INT_OUT_EP);
1107         } else {
1108                 BUG();
1109         }
1110         return type;
1111 }
1112
1113 /* Return the maximum endpoint service interval time (ESIT) payload.
1114  * Basically, this is the maxpacket size, multiplied by the burst size
1115  * and mult size.
1116  */
1117 static inline u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1118                 struct usb_device *udev,
1119                 struct usb_host_endpoint *ep)
1120 {
1121         int max_burst;
1122         int max_packet;
1123
1124         /* Only applies for interrupt or isochronous endpoints */
1125         if (usb_endpoint_xfer_control(&ep->desc) ||
1126                         usb_endpoint_xfer_bulk(&ep->desc))
1127                 return 0;
1128
1129         if (udev->speed == USB_SPEED_SUPER)
1130                 return ep->ss_ep_comp.wBytesPerInterval;
1131
1132         max_packet = GET_MAX_PACKET(ep->desc.wMaxPacketSize);
1133         max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
1134         /* A 0 in max burst means 1 transfer per ESIT */
1135         return max_packet * (max_burst + 1);
1136 }
1137
1138 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1139  * Drivers will have to call usb_alloc_streams() to do that.
1140  */
1141 int xhci_endpoint_init(struct xhci_hcd *xhci,
1142                 struct xhci_virt_device *virt_dev,
1143                 struct usb_device *udev,
1144                 struct usb_host_endpoint *ep,
1145                 gfp_t mem_flags)
1146 {
1147         unsigned int ep_index;
1148         struct xhci_ep_ctx *ep_ctx;
1149         struct xhci_ring *ep_ring;
1150         unsigned int max_packet;
1151         unsigned int max_burst;
1152         u32 max_esit_payload;
1153
1154         ep_index = xhci_get_endpoint_index(&ep->desc);
1155         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1156
1157         /* Set up the endpoint ring */
1158         virt_dev->eps[ep_index].new_ring =
1159                 xhci_ring_alloc(xhci, 1, true, mem_flags);
1160         if (!virt_dev->eps[ep_index].new_ring) {
1161                 /* Attempt to use the ring cache */
1162                 if (virt_dev->num_rings_cached == 0)
1163                         return -ENOMEM;
1164                 virt_dev->eps[ep_index].new_ring =
1165                         virt_dev->ring_cache[virt_dev->num_rings_cached];
1166                 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1167                 virt_dev->num_rings_cached--;
1168                 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
1169         }
1170         ep_ring = virt_dev->eps[ep_index].new_ring;
1171         ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
1172
1173         ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
1174         ep_ctx->ep_info |= EP_MULT(xhci_get_endpoint_mult(udev, ep));
1175
1176         /* FIXME dig Mult and streams info out of ep companion desc */
1177
1178         /* Allow 3 retries for everything but isoc;
1179          * error count = 0 means infinite retries.
1180          */
1181         if (!usb_endpoint_xfer_isoc(&ep->desc))
1182                 ep_ctx->ep_info2 = ERROR_COUNT(3);
1183         else
1184                 ep_ctx->ep_info2 = ERROR_COUNT(1);
1185
1186         ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
1187
1188         /* Set the max packet size and max burst */
1189         switch (udev->speed) {
1190         case USB_SPEED_SUPER:
1191                 max_packet = ep->desc.wMaxPacketSize;
1192                 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
1193                 /* dig out max burst from ep companion desc */
1194                 max_packet = ep->ss_ep_comp.bMaxBurst;
1195                 if (!max_packet)
1196                         xhci_warn(xhci, "WARN no SS endpoint bMaxBurst\n");
1197                 ep_ctx->ep_info2 |= MAX_BURST(max_packet);
1198                 break;
1199         case USB_SPEED_HIGH:
1200                 /* bits 11:12 specify the number of additional transaction
1201                  * opportunities per microframe (USB 2.0, section 9.6.6)
1202                  */
1203                 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1204                                 usb_endpoint_xfer_int(&ep->desc)) {
1205                         max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
1206                         ep_ctx->ep_info2 |= MAX_BURST(max_burst);
1207                 }
1208                 /* Fall through */
1209         case USB_SPEED_FULL:
1210         case USB_SPEED_LOW:
1211                 max_packet = GET_MAX_PACKET(ep->desc.wMaxPacketSize);
1212                 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
1213                 break;
1214         default:
1215                 BUG();
1216         }
1217         max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1218         ep_ctx->tx_info = MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload);
1219
1220         /*
1221          * XXX no idea how to calculate the average TRB buffer length for bulk
1222          * endpoints, as the driver gives us no clue how big each scatter gather
1223          * list entry (or buffer) is going to be.
1224          *
1225          * For isochronous and interrupt endpoints, we set it to the max
1226          * available, until we have new API in the USB core to allow drivers to
1227          * declare how much bandwidth they actually need.
1228          *
1229          * Normally, it would be calculated by taking the total of the buffer
1230          * lengths in the TD and then dividing by the number of TRBs in a TD,
1231          * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1232          * use Event Data TRBs, and we don't chain in a link TRB on short
1233          * transfers, we're basically dividing by 1.
1234          */
1235         ep_ctx->tx_info |= AVG_TRB_LENGTH_FOR_EP(max_esit_payload);
1236
1237         /* FIXME Debug endpoint context */
1238         return 0;
1239 }
1240
1241 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1242                 struct xhci_virt_device *virt_dev,
1243                 struct usb_host_endpoint *ep)
1244 {
1245         unsigned int ep_index;
1246         struct xhci_ep_ctx *ep_ctx;
1247
1248         ep_index = xhci_get_endpoint_index(&ep->desc);
1249         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1250
1251         ep_ctx->ep_info = 0;
1252         ep_ctx->ep_info2 = 0;
1253         ep_ctx->deq = 0;
1254         ep_ctx->tx_info = 0;
1255         /* Don't free the endpoint ring until the set interface or configuration
1256          * request succeeds.
1257          */
1258 }
1259
1260 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1261  * Useful when you want to change one particular aspect of the endpoint and then
1262  * issue a configure endpoint command.
1263  */
1264 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1265                 struct xhci_container_ctx *in_ctx,
1266                 struct xhci_container_ctx *out_ctx,
1267                 unsigned int ep_index)
1268 {
1269         struct xhci_ep_ctx *out_ep_ctx;
1270         struct xhci_ep_ctx *in_ep_ctx;
1271
1272         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1273         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1274
1275         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1276         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1277         in_ep_ctx->deq = out_ep_ctx->deq;
1278         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1279 }
1280
1281 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1282  * Useful when you want to change one particular aspect of the endpoint and then
1283  * issue a configure endpoint command.  Only the context entries field matters,
1284  * but we'll copy the whole thing anyway.
1285  */
1286 void xhci_slot_copy(struct xhci_hcd *xhci,
1287                 struct xhci_container_ctx *in_ctx,
1288                 struct xhci_container_ctx *out_ctx)
1289 {
1290         struct xhci_slot_ctx *in_slot_ctx;
1291         struct xhci_slot_ctx *out_slot_ctx;
1292
1293         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1294         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1295
1296         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1297         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1298         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1299         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1300 }
1301
1302 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1303 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1304 {
1305         int i;
1306         struct device *dev = xhci_to_hcd(xhci)->self.controller;
1307         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1308
1309         xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1310
1311         if (!num_sp)
1312                 return 0;
1313
1314         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1315         if (!xhci->scratchpad)
1316                 goto fail_sp;
1317
1318         xhci->scratchpad->sp_array =
1319                 pci_alloc_consistent(to_pci_dev(dev),
1320                                      num_sp * sizeof(u64),
1321                                      &xhci->scratchpad->sp_dma);
1322         if (!xhci->scratchpad->sp_array)
1323                 goto fail_sp2;
1324
1325         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1326         if (!xhci->scratchpad->sp_buffers)
1327                 goto fail_sp3;
1328
1329         xhci->scratchpad->sp_dma_buffers =
1330                 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1331
1332         if (!xhci->scratchpad->sp_dma_buffers)
1333                 goto fail_sp4;
1334
1335         xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
1336         for (i = 0; i < num_sp; i++) {
1337                 dma_addr_t dma;
1338                 void *buf = pci_alloc_consistent(to_pci_dev(dev),
1339                                                  xhci->page_size, &dma);
1340                 if (!buf)
1341                         goto fail_sp5;
1342
1343                 xhci->scratchpad->sp_array[i] = dma;
1344                 xhci->scratchpad->sp_buffers[i] = buf;
1345                 xhci->scratchpad->sp_dma_buffers[i] = dma;
1346         }
1347
1348         return 0;
1349
1350  fail_sp5:
1351         for (i = i - 1; i >= 0; i--) {
1352                 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
1353                                     xhci->scratchpad->sp_buffers[i],
1354                                     xhci->scratchpad->sp_dma_buffers[i]);
1355         }
1356         kfree(xhci->scratchpad->sp_dma_buffers);
1357
1358  fail_sp4:
1359         kfree(xhci->scratchpad->sp_buffers);
1360
1361  fail_sp3:
1362         pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
1363                             xhci->scratchpad->sp_array,
1364                             xhci->scratchpad->sp_dma);
1365
1366  fail_sp2:
1367         kfree(xhci->scratchpad);
1368         xhci->scratchpad = NULL;
1369
1370  fail_sp:
1371         return -ENOMEM;
1372 }
1373
1374 static void scratchpad_free(struct xhci_hcd *xhci)
1375 {
1376         int num_sp;
1377         int i;
1378         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1379
1380         if (!xhci->scratchpad)
1381                 return;
1382
1383         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1384
1385         for (i = 0; i < num_sp; i++) {
1386                 pci_free_consistent(pdev, xhci->page_size,
1387                                     xhci->scratchpad->sp_buffers[i],
1388                                     xhci->scratchpad->sp_dma_buffers[i]);
1389         }
1390         kfree(xhci->scratchpad->sp_dma_buffers);
1391         kfree(xhci->scratchpad->sp_buffers);
1392         pci_free_consistent(pdev, num_sp * sizeof(u64),
1393                             xhci->scratchpad->sp_array,
1394                             xhci->scratchpad->sp_dma);
1395         kfree(xhci->scratchpad);
1396         xhci->scratchpad = NULL;
1397 }
1398
1399 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1400                 bool allocate_in_ctx, bool allocate_completion,
1401                 gfp_t mem_flags)
1402 {
1403         struct xhci_command *command;
1404
1405         command = kzalloc(sizeof(*command), mem_flags);
1406         if (!command)
1407                 return NULL;
1408
1409         if (allocate_in_ctx) {
1410                 command->in_ctx =
1411                         xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1412                                         mem_flags);
1413                 if (!command->in_ctx) {
1414                         kfree(command);
1415                         return NULL;
1416                 }
1417         }
1418
1419         if (allocate_completion) {
1420                 command->completion =
1421                         kzalloc(sizeof(struct completion), mem_flags);
1422                 if (!command->completion) {
1423                         xhci_free_container_ctx(xhci, command->in_ctx);
1424                         kfree(command);
1425                         return NULL;
1426                 }
1427                 init_completion(command->completion);
1428         }
1429
1430         command->status = 0;
1431         INIT_LIST_HEAD(&command->cmd_list);
1432         return command;
1433 }
1434
1435 void xhci_free_command(struct xhci_hcd *xhci,
1436                 struct xhci_command *command)
1437 {
1438         xhci_free_container_ctx(xhci,
1439                         command->in_ctx);
1440         kfree(command->completion);
1441         kfree(command);
1442 }
1443
1444 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1445 {
1446         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1447         int size;
1448         int i;
1449
1450         /* Free the Event Ring Segment Table and the actual Event Ring */
1451         if (xhci->ir_set) {
1452                 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1453                 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1454                 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1455         }
1456         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1457         if (xhci->erst.entries)
1458                 pci_free_consistent(pdev, size,
1459                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
1460         xhci->erst.entries = NULL;
1461         xhci_dbg(xhci, "Freed ERST\n");
1462         if (xhci->event_ring)
1463                 xhci_ring_free(xhci, xhci->event_ring);
1464         xhci->event_ring = NULL;
1465         xhci_dbg(xhci, "Freed event ring\n");
1466
1467         xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1468         if (xhci->cmd_ring)
1469                 xhci_ring_free(xhci, xhci->cmd_ring);
1470         xhci->cmd_ring = NULL;
1471         xhci_dbg(xhci, "Freed command ring\n");
1472
1473         for (i = 1; i < MAX_HC_SLOTS; ++i)
1474                 xhci_free_virt_device(xhci, i);
1475
1476         if (xhci->segment_pool)
1477                 dma_pool_destroy(xhci->segment_pool);
1478         xhci->segment_pool = NULL;
1479         xhci_dbg(xhci, "Freed segment pool\n");
1480
1481         if (xhci->device_pool)
1482                 dma_pool_destroy(xhci->device_pool);
1483         xhci->device_pool = NULL;
1484         xhci_dbg(xhci, "Freed device context pool\n");
1485
1486         if (xhci->small_streams_pool)
1487                 dma_pool_destroy(xhci->small_streams_pool);
1488         xhci->small_streams_pool = NULL;
1489         xhci_dbg(xhci, "Freed small stream array pool\n");
1490
1491         if (xhci->medium_streams_pool)
1492                 dma_pool_destroy(xhci->medium_streams_pool);
1493         xhci->medium_streams_pool = NULL;
1494         xhci_dbg(xhci, "Freed medium stream array pool\n");
1495
1496         xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1497         if (xhci->dcbaa)
1498                 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
1499                                 xhci->dcbaa, xhci->dcbaa->dma);
1500         xhci->dcbaa = NULL;
1501
1502         scratchpad_free(xhci);
1503
1504         xhci->num_usb2_ports = 0;
1505         xhci->num_usb3_ports = 0;
1506         kfree(xhci->usb2_ports);
1507         kfree(xhci->usb3_ports);
1508         kfree(xhci->port_array);
1509
1510         xhci->page_size = 0;
1511         xhci->page_shift = 0;
1512 }
1513
1514 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1515                 struct xhci_segment *input_seg,
1516                 union xhci_trb *start_trb,
1517                 union xhci_trb *end_trb,
1518                 dma_addr_t input_dma,
1519                 struct xhci_segment *result_seg,
1520                 char *test_name, int test_number)
1521 {
1522         unsigned long long start_dma;
1523         unsigned long long end_dma;
1524         struct xhci_segment *seg;
1525
1526         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1527         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1528
1529         seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1530         if (seg != result_seg) {
1531                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1532                                 test_name, test_number);
1533                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1534                                 "input DMA 0x%llx\n",
1535                                 input_seg,
1536                                 (unsigned long long) input_dma);
1537                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1538                                 "ending TRB %p (0x%llx DMA)\n",
1539                                 start_trb, start_dma,
1540                                 end_trb, end_dma);
1541                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1542                                 result_seg, seg);
1543                 return -1;
1544         }
1545         return 0;
1546 }
1547
1548 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1549 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1550 {
1551         struct {
1552                 dma_addr_t              input_dma;
1553                 struct xhci_segment     *result_seg;
1554         } simple_test_vector [] = {
1555                 /* A zeroed DMA field should fail */
1556                 { 0, NULL },
1557                 /* One TRB before the ring start should fail */
1558                 { xhci->event_ring->first_seg->dma - 16, NULL },
1559                 /* One byte before the ring start should fail */
1560                 { xhci->event_ring->first_seg->dma - 1, NULL },
1561                 /* Starting TRB should succeed */
1562                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1563                 /* Ending TRB should succeed */
1564                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1565                         xhci->event_ring->first_seg },
1566                 /* One byte after the ring end should fail */
1567                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1568                 /* One TRB after the ring end should fail */
1569                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1570                 /* An address of all ones should fail */
1571                 { (dma_addr_t) (~0), NULL },
1572         };
1573         struct {
1574                 struct xhci_segment     *input_seg;
1575                 union xhci_trb          *start_trb;
1576                 union xhci_trb          *end_trb;
1577                 dma_addr_t              input_dma;
1578                 struct xhci_segment     *result_seg;
1579         } complex_test_vector [] = {
1580                 /* Test feeding a valid DMA address from a different ring */
1581                 {       .input_seg = xhci->event_ring->first_seg,
1582                         .start_trb = xhci->event_ring->first_seg->trbs,
1583                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1584                         .input_dma = xhci->cmd_ring->first_seg->dma,
1585                         .result_seg = NULL,
1586                 },
1587                 /* Test feeding a valid end TRB from a different ring */
1588                 {       .input_seg = xhci->event_ring->first_seg,
1589                         .start_trb = xhci->event_ring->first_seg->trbs,
1590                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1591                         .input_dma = xhci->cmd_ring->first_seg->dma,
1592                         .result_seg = NULL,
1593                 },
1594                 /* Test feeding a valid start and end TRB from a different ring */
1595                 {       .input_seg = xhci->event_ring->first_seg,
1596                         .start_trb = xhci->cmd_ring->first_seg->trbs,
1597                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1598                         .input_dma = xhci->cmd_ring->first_seg->dma,
1599                         .result_seg = NULL,
1600                 },
1601                 /* TRB in this ring, but after this TD */
1602                 {       .input_seg = xhci->event_ring->first_seg,
1603                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
1604                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
1605                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1606                         .result_seg = NULL,
1607                 },
1608                 /* TRB in this ring, but before this TD */
1609                 {       .input_seg = xhci->event_ring->first_seg,
1610                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
1611                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
1612                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1613                         .result_seg = NULL,
1614                 },
1615                 /* TRB in this ring, but after this wrapped TD */
1616                 {       .input_seg = xhci->event_ring->first_seg,
1617                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1618                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1619                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1620                         .result_seg = NULL,
1621                 },
1622                 /* TRB in this ring, but before this wrapped TD */
1623                 {       .input_seg = xhci->event_ring->first_seg,
1624                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1625                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1626                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1627                         .result_seg = NULL,
1628                 },
1629                 /* TRB not in this ring, and we have a wrapped TD */
1630                 {       .input_seg = xhci->event_ring->first_seg,
1631                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1632                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1633                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1634                         .result_seg = NULL,
1635                 },
1636         };
1637
1638         unsigned int num_tests;
1639         int i, ret;
1640
1641         num_tests = sizeof(simple_test_vector) / sizeof(simple_test_vector[0]);
1642         for (i = 0; i < num_tests; i++) {
1643                 ret = xhci_test_trb_in_td(xhci,
1644                                 xhci->event_ring->first_seg,
1645                                 xhci->event_ring->first_seg->trbs,
1646                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1647                                 simple_test_vector[i].input_dma,
1648                                 simple_test_vector[i].result_seg,
1649                                 "Simple", i);
1650                 if (ret < 0)
1651                         return ret;
1652         }
1653
1654         num_tests = sizeof(complex_test_vector) / sizeof(complex_test_vector[0]);
1655         for (i = 0; i < num_tests; i++) {
1656                 ret = xhci_test_trb_in_td(xhci,
1657                                 complex_test_vector[i].input_seg,
1658                                 complex_test_vector[i].start_trb,
1659                                 complex_test_vector[i].end_trb,
1660                                 complex_test_vector[i].input_dma,
1661                                 complex_test_vector[i].result_seg,
1662                                 "Complex", i);
1663                 if (ret < 0)
1664                         return ret;
1665         }
1666         xhci_dbg(xhci, "TRB math tests passed.\n");
1667         return 0;
1668 }
1669
1670 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1671                 u32 __iomem *addr, u8 major_revision)
1672 {
1673         u32 temp, port_offset, port_count;
1674         int i;
1675
1676         if (major_revision > 0x03) {
1677                 xhci_warn(xhci, "Ignoring unknown port speed, "
1678                                 "Ext Cap %p, revision = 0x%x\n",
1679                                 addr, major_revision);
1680                 /* Ignoring port protocol we can't understand. FIXME */
1681                 return;
1682         }
1683
1684         /* Port offset and count in the third dword, see section 7.2 */
1685         temp = xhci_readl(xhci, addr + 2);
1686         port_offset = XHCI_EXT_PORT_OFF(temp);
1687         port_count = XHCI_EXT_PORT_COUNT(temp);
1688         xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1689                         "count = %u, revision = 0x%x\n",
1690                         addr, port_offset, port_count, major_revision);
1691         /* Port count includes the current port offset */
1692         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1693                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
1694                 return;
1695         port_offset--;
1696         for (i = port_offset; i < (port_offset + port_count); i++) {
1697                 /* Duplicate entry.  Ignore the port if the revisions differ. */
1698                 if (xhci->port_array[i] != 0) {
1699                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1700                                         " port %u\n", addr, i);
1701                         xhci_warn(xhci, "Port was marked as USB %u, "
1702                                         "duplicated as USB %u\n",
1703                                         xhci->port_array[i], major_revision);
1704                         /* Only adjust the roothub port counts if we haven't
1705                          * found a similar duplicate.
1706                          */
1707                         if (xhci->port_array[i] != major_revision &&
1708                                 xhci->port_array[i] != (u8) -1) {
1709                                 if (xhci->port_array[i] == 0x03)
1710                                         xhci->num_usb3_ports--;
1711                                 else
1712                                         xhci->num_usb2_ports--;
1713                                 xhci->port_array[i] = (u8) -1;
1714                         }
1715                         /* FIXME: Should we disable the port? */
1716                         continue;
1717                 }
1718                 xhci->port_array[i] = major_revision;
1719                 if (major_revision == 0x03)
1720                         xhci->num_usb3_ports++;
1721                 else
1722                         xhci->num_usb2_ports++;
1723         }
1724         /* FIXME: Should we disable ports not in the Extended Capabilities? */
1725 }
1726
1727 /*
1728  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
1729  * specify what speeds each port is supposed to be.  We can't count on the port
1730  * speed bits in the PORTSC register being correct until a device is connected,
1731  * but we need to set up the two fake roothubs with the correct number of USB
1732  * 3.0 and USB 2.0 ports at host controller initialization time.
1733  */
1734 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
1735 {
1736         u32 __iomem *addr;
1737         u32 offset;
1738         unsigned int num_ports;
1739         int i, port_index;
1740
1741         addr = &xhci->cap_regs->hcc_params;
1742         offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
1743         if (offset == 0) {
1744                 xhci_err(xhci, "No Extended Capability registers, "
1745                                 "unable to set up roothub.\n");
1746                 return -ENODEV;
1747         }
1748
1749         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1750         xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
1751         if (!xhci->port_array)
1752                 return -ENOMEM;
1753
1754         /*
1755          * For whatever reason, the first capability offset is from the
1756          * capability register base, not from the HCCPARAMS register.
1757          * See section 5.3.6 for offset calculation.
1758          */
1759         addr = &xhci->cap_regs->hc_capbase + offset;
1760         while (1) {
1761                 u32 cap_id;
1762
1763                 cap_id = xhci_readl(xhci, addr);
1764                 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
1765                         xhci_add_in_port(xhci, num_ports, addr,
1766                                         (u8) XHCI_EXT_PORT_MAJOR(cap_id));
1767                 offset = XHCI_EXT_CAPS_NEXT(cap_id);
1768                 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
1769                                 == num_ports)
1770                         break;
1771                 /*
1772                  * Once you're into the Extended Capabilities, the offset is
1773                  * always relative to the register holding the offset.
1774                  */
1775                 addr += offset;
1776         }
1777
1778         if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
1779                 xhci_warn(xhci, "No ports on the roothubs?\n");
1780                 return -ENODEV;
1781         }
1782         xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
1783                         xhci->num_usb2_ports, xhci->num_usb3_ports);
1784         /*
1785          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
1786          * Not sure how the USB core will handle a hub with no ports...
1787          */
1788         if (xhci->num_usb2_ports) {
1789                 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
1790                                 xhci->num_usb2_ports, flags);
1791                 if (!xhci->usb2_ports)
1792                         return -ENOMEM;
1793
1794                 port_index = 0;
1795                 for (i = 0; i < num_ports; i++) {
1796                         if (xhci->port_array[i] == 0x03 ||
1797                                         xhci->port_array[i] == 0 ||
1798                                         xhci->port_array[i] == -1)
1799                                 continue;
1800
1801                         xhci->usb2_ports[port_index] =
1802                                 &xhci->op_regs->port_status_base +
1803                                 NUM_PORT_REGS*i;
1804                         xhci_dbg(xhci, "USB 2.0 port at index %u, "
1805                                         "addr = %p\n", i,
1806                                         xhci->usb2_ports[port_index]);
1807                         port_index++;
1808                 }
1809         }
1810         if (xhci->num_usb3_ports) {
1811                 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
1812                                 xhci->num_usb3_ports, flags);
1813                 if (!xhci->usb3_ports)
1814                         return -ENOMEM;
1815
1816                 port_index = 0;
1817                 for (i = 0; i < num_ports; i++)
1818                         if (xhci->port_array[i] == 0x03) {
1819                                 xhci->usb3_ports[port_index] =
1820                                         &xhci->op_regs->port_status_base +
1821                                         NUM_PORT_REGS*i;
1822                                 xhci_dbg(xhci, "USB 3.0 port at index %u, "
1823                                                 "addr = %p\n", i,
1824                                                 xhci->usb3_ports[port_index]);
1825                                 port_index++;
1826                         }
1827         }
1828         return 0;
1829 }
1830
1831 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1832 {
1833         dma_addr_t      dma;
1834         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
1835         unsigned int    val, val2;
1836         u64             val_64;
1837         struct xhci_segment     *seg;
1838         u32 page_size;
1839         int i;
1840
1841         page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1842         xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1843         for (i = 0; i < 16; i++) {
1844                 if ((0x1 & page_size) != 0)
1845                         break;
1846                 page_size = page_size >> 1;
1847         }
1848         if (i < 16)
1849                 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1850         else
1851                 xhci_warn(xhci, "WARN: no supported page size\n");
1852         /* Use 4K pages, since that's common and the minimum the HC supports */
1853         xhci->page_shift = 12;
1854         xhci->page_size = 1 << xhci->page_shift;
1855         xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1856
1857         /*
1858          * Program the Number of Device Slots Enabled field in the CONFIG
1859          * register with the max value of slots the HC can handle.
1860          */
1861         val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1862         xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1863                         (unsigned int) val);
1864         val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1865         val |= (val2 & ~HCS_SLOTS_MASK);
1866         xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1867                         (unsigned int) val);
1868         xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1869
1870         /*
1871          * Section 5.4.8 - doorbell array must be
1872          * "physically contiguous and 64-byte (cache line) aligned".
1873          */
1874         xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1875                         sizeof(*xhci->dcbaa), &dma);
1876         if (!xhci->dcbaa)
1877                 goto fail;
1878         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1879         xhci->dcbaa->dma = dma;
1880         xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1881                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1882         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1883
1884         /*
1885          * Initialize the ring segment pool.  The ring must be a contiguous
1886          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
1887          * however, the command ring segment needs 64-byte aligned segments,
1888          * so we pick the greater alignment need.
1889          */
1890         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1891                         SEGMENT_SIZE, 64, xhci->page_size);
1892
1893         /* See Table 46 and Note on Figure 55 */
1894         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1895                         2112, 64, xhci->page_size);
1896         if (!xhci->segment_pool || !xhci->device_pool)
1897                 goto fail;
1898
1899         /* Linear stream context arrays don't have any boundary restrictions,
1900          * and only need to be 16-byte aligned.
1901          */
1902         xhci->small_streams_pool =
1903                 dma_pool_create("xHCI 256 byte stream ctx arrays",
1904                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
1905         xhci->medium_streams_pool =
1906                 dma_pool_create("xHCI 1KB stream ctx arrays",
1907                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
1908         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
1909          * will be allocated with pci_alloc_consistent()
1910          */
1911
1912         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
1913                 goto fail;
1914
1915         /* Set up the command ring to have one segments for now. */
1916         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
1917         if (!xhci->cmd_ring)
1918                 goto fail;
1919         xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
1920         xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
1921                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
1922
1923         /* Set the address in the Command Ring Control register */
1924         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1925         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
1926                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
1927                 xhci->cmd_ring->cycle_state;
1928         xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
1929         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
1930         xhci_dbg_cmd_ptrs(xhci);
1931
1932         val = xhci_readl(xhci, &xhci->cap_regs->db_off);
1933         val &= DBOFF_MASK;
1934         xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
1935                         " from cap regs base addr\n", val);
1936         xhci->dba = (void *) xhci->cap_regs + val;
1937         xhci_dbg_regs(xhci);
1938         xhci_print_run_regs(xhci);
1939         /* Set ir_set to interrupt register set 0 */
1940         xhci->ir_set = (void *) xhci->run_regs->ir_set;
1941
1942         /*
1943          * Event ring setup: Allocate a normal ring, but also setup
1944          * the event ring segment table (ERST).  Section 4.9.3.
1945          */
1946         xhci_dbg(xhci, "// Allocating event ring\n");
1947         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
1948         if (!xhci->event_ring)
1949                 goto fail;
1950         if (xhci_check_trb_in_td_math(xhci, flags) < 0)
1951                 goto fail;
1952
1953         xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
1954                         sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
1955         if (!xhci->erst.entries)
1956                 goto fail;
1957         xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
1958                         (unsigned long long)dma);
1959
1960         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
1961         xhci->erst.num_entries = ERST_NUM_SEGS;
1962         xhci->erst.erst_dma_addr = dma;
1963         xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
1964                         xhci->erst.num_entries,
1965                         xhci->erst.entries,
1966                         (unsigned long long)xhci->erst.erst_dma_addr);
1967
1968         /* set ring base address and size for each segment table entry */
1969         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
1970                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
1971                 entry->seg_addr = seg->dma;
1972                 entry->seg_size = TRBS_PER_SEGMENT;
1973                 entry->rsvd = 0;
1974                 seg = seg->next;
1975         }
1976
1977         /* set ERST count with the number of entries in the segment table */
1978         val = xhci_readl(xhci, &xhci->ir_set->erst_size);
1979         val &= ERST_SIZE_MASK;
1980         val |= ERST_NUM_SEGS;
1981         xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
1982                         val);
1983         xhci_writel(xhci, val, &xhci->ir_set->erst_size);
1984
1985         xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
1986         /* set the segment table base address */
1987         xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
1988                         (unsigned long long)xhci->erst.erst_dma_addr);
1989         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
1990         val_64 &= ERST_PTR_MASK;
1991         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
1992         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
1993
1994         /* Set the event ring dequeue address */
1995         xhci_set_hc_event_deq(xhci);
1996         xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
1997         xhci_print_ir_set(xhci, xhci->ir_set, 0);
1998
1999         /*
2000          * XXX: Might need to set the Interrupter Moderation Register to
2001          * something other than the default (~1ms minimum between interrupts).
2002          * See section 5.5.1.2.
2003          */
2004         init_completion(&xhci->addr_dev);
2005         for (i = 0; i < MAX_HC_SLOTS; ++i)
2006                 xhci->devs[i] = NULL;
2007
2008         if (scratchpad_alloc(xhci, flags))
2009                 goto fail;
2010         if (xhci_setup_port_arrays(xhci, flags))
2011                 goto fail;
2012
2013         return 0;
2014
2015 fail:
2016         xhci_warn(xhci, "Couldn't initialize memory\n");
2017         xhci_mem_cleanup(xhci);
2018         return -ENOMEM;
2019 }