]> rtime.felk.cvut.cz Git - hubacji1/rrts.git/blob - src/rrts.cc
Update changelog
[hubacji1/rrts.git] / src / rrts.cc
1 #include <algorithm>
2 #include "rrts.h"
3
4 #include "reeds_shepp.h"
5 #include <iostream>
6 template <typename T> int sgn(T val) {
7         return (T(0) < val) - (val < T(0));
8 }
9
10 RRTNode::RRTNode()
11 {
12 }
13
14 RRTNode::RRTNode(const BicycleCar &bc) : BicycleCar(bc)
15 {
16 }
17
18 Obstacle::Obstacle()
19 {
20 }
21
22 double RRTS::elapsed()
23 {
24         std::chrono::duration<double> dt;
25         dt = std::chrono::duration_cast<std::chrono::duration<double>>(
26                 std::chrono::high_resolution_clock::now()
27                 - this->tstart_
28         );
29         this->scnt_ = dt.count();
30         return this->scnt_;
31 }
32
33 bool RRTS::should_stop()
34 {
35         // the following counters must be updated, do not comment
36         this->icnt_++;
37         this->elapsed();
38         // current iteration stop conditions
39         if (this->should_finish()) return true;
40         if (this->should_break()) return true;
41         // but continue by default
42         return false;
43 }
44
45 bool RRTS::should_finish()
46 {
47         // decide finish conditions (maybe comment some lines)
48         //if (this->icnt_ > 999) return true;
49         if (this->scnt_ > 50) return true;
50         if (this->gf()) return true;
51         // but continue by default
52         return false;
53 }
54
55 bool RRTS::should_break()
56 {
57         // decide break conditions (maybe comment some lines)
58         //if (this->scnt_ - this->pcnt_ > 2) return true;
59         // but continue by default
60         return false;
61 }
62
63 bool RRTS::should_continue()
64 {
65         // decide the stop conditions (maybe comment some lines)
66         // it is exact opposite of `should_stop`
67         //if (this->icnt_ > 999) return false;
68         if (this->scnt_ > 10) return false;
69         if (this->gf()) return false;
70         // and reset pause counter if should continue
71         this->pcnt_ = this->scnt_;
72         return true;
73 }
74
75 void RRTS::store_node(RRTNode n)
76 {
77         this->nodes().push_back(n);
78 }
79
80 // RRT procedures
81 std::tuple<bool, unsigned int, unsigned int>
82 RRTS::collide(std::vector<std::tuple<double, double>> &poly)
83 {
84         for (auto &o: this->obstacles())
85                 if (std::get<0>(::collide(poly, o.poly())))
86                         return ::collide(poly, o.poly());
87         return std::make_tuple(false, 0, 0);
88 }
89
90 std::tuple<bool, unsigned int, unsigned int>
91 RRTS::collide_steered_from(RRTNode &f)
92 {
93         std::vector<std::tuple<double, double>> s;
94         s.push_back(std::make_tuple(f.x(), f.y()));
95         for (auto &n: this->steered()) {
96                 s.push_back(std::make_tuple(n.lfx(), n.lfy()));
97                 s.push_back(std::make_tuple(n.lrx(), n.lry()));
98                 s.push_back(std::make_tuple(n.rrx(), n.rry()));
99                 s.push_back(std::make_tuple(n.rfx(), n.rfy()));
100         }
101         auto col = this->collide(s);
102         auto strip_from = this->steered().size() - std::get<1>(col) / 4;
103         if (std::get<0>(col) && strip_from > 0) {
104                 while (strip_from-- > 0) {
105                         this->steered().pop_back();
106                 }
107                 return this->collide_steered_from(f);
108         }
109         return col;
110 }
111
112 std::tuple<bool, unsigned int, unsigned int>
113 RRTS::collide_two_nodes(RRTNode &f, RRTNode &t)
114 {
115         std::vector<std::tuple<double, double>> p;
116         p.push_back(std::make_tuple(f.lfx(), f.lfy()));
117         p.push_back(std::make_tuple(f.lrx(), f.lry()));
118         p.push_back(std::make_tuple(f.rrx(), f.rry()));
119         p.push_back(std::make_tuple(f.rfx(), f.rfy()));
120         p.push_back(std::make_tuple(t.lfx(), t.lfy()));
121         p.push_back(std::make_tuple(t.lrx(), t.lry()));
122         p.push_back(std::make_tuple(t.rrx(), t.rry()));
123         p.push_back(std::make_tuple(t.rfx(), t.rfy()));
124         return this->collide(p);
125 }
126
127 double RRTS::cost_build(RRTNode &f, RRTNode &t)
128 {
129         double cost = 0;
130         cost = sqrt(pow(t.y() - f.y(), 2) + pow(t.x() - f.x(), 2));
131         return cost;
132 }
133
134 double RRTS::cost_search(RRTNode &f, RRTNode &t)
135 {
136         double cost = 0;
137         cost = sqrt(pow(t.y() - f.y(), 2) + pow(t.x() - f.x(), 2));
138         return cost;
139 }
140
141 void RRTS::sample()
142 {
143         double x = 0;
144         double y = 0;
145         double h = 0;
146         switch (this->sample_dist_type()) {
147         case 1:
148                 x = this->udx_(this->gen_);
149                 y = this->udy_(this->gen_);
150                 h = this->udh_(this->gen_);
151                 break;
152         default:
153                 x = this->ndx_(this->gen_);
154                 y = this->ndy_(this->gen_);
155                 h = this->ndh_(this->gen_);
156         }
157         this->samples().push_back(RRTNode());
158         this->samples().back().x(x);
159         this->samples().back().y(y);
160         this->samples().back().h(h);
161 }
162
163 RRTNode *RRTS::nn(RRTNode &t)
164 {
165         RRTNode *nn = &this->nodes().front();
166         double cost = this->cost_search(*nn, t);
167         for (auto &f: this->nodes()) {
168                 if (this->cost_search(f, t) < cost) {
169                         nn = &f;
170                         cost = this->cost_search(f, t);
171                 }
172         }
173         return nn;
174 }
175
176 std::vector<RRTNode *> RRTS::nv(RRTNode &t)
177 {
178         std::vector<RRTNode *> nv;
179         double cost = std::min(GAMMA(this->nodes().size()), ETA);
180         for (auto &f: this->nodes())
181                 if (this->cost_search(f, t) < cost)
182                         nv.push_back(&f);
183         return nv;
184 }
185
186 int cb_rs_steer(double q[4], void *user_data)
187 {
188         std::vector<RRTNode> *nodes = (std::vector<RRTNode> *) user_data;
189         RRTNode *ln = nullptr;
190         if (nodes->size() > 0)
191                 ln = &nodes->back();
192         nodes->push_back(RRTNode());
193         nodes->back().x(q[0]);
194         nodes->back().y(q[1]);
195         nodes->back().h(q[2]);
196         nodes->back().sp(q[3]);
197         if (nodes->back().sp() == 0)
198                 nodes->back().set_t(RRTNodeType::cusp);
199         else if (ln != nullptr && sgn(ln->sp()) != sgn(nodes->back().sp()))
200                 ln->set_t(RRTNodeType::cusp);
201         return 0;
202 }
203
204 void RRTS::steer(RRTNode &f, RRTNode &t)
205 {
206         this->steered().clear();
207         double q0[] = {f.x(), f.y(), f.h()};
208         double q1[] = {t.x(), t.y(), t.h()};
209         ReedsSheppStateSpace rsss(f.mtr());
210         rsss.sample(q0, q1, 0.5, cb_rs_steer, &this->steered());
211 }
212
213 void RRTS::join_steered(RRTNode *f)
214 {
215         while (this->steered().size() > 0) {
216                 this->store_node(this->steered().front());
217                 RRTNode *t = &this->nodes().back();
218                 t->p(f);
219                 t->c(this->cost_build(*f, *t));
220                 this->steered().erase(this->steered().begin());
221                 f = t;
222         }
223 }
224
225 bool RRTS::goal_found(RRTNode &f)
226 {
227         bool found = false;
228         auto &g = this->goals().front();
229         bool in_zone = false;
230         double cost = this->cost_build(f, g);
231         double h_d = f.h() - g.h();
232         if (h_d < -M_PI/2 || h_d > M_PI/2)
233                 return false;
234         double max_dist = g.mtr() * 2 * sin(M_PI/2 / 2); // mtr circle chord
235         if (sqrt(pow(f.x() - g.x(), 2) + pow(f.y() - g.y(), 2)) > max_dist)
236                 return false;
237         double x_mtr = g.ccr().x();
238         double y_mtr = g.ccr().y();
239         if (h_d > 0) {
240                 x_mtr = g.ccl().x();
241                 y_mtr = g.ccl().y();
242         }
243         BicycleCar zone_border(g);
244         zone_border.rotate(x_mtr, y_mtr, h_d);
245         // zone_border.h() == f.h() now
246         double a_lb = 0;
247         double a_ub = g.h() - zone_border.h();
248         double a =
249                 atan2(f.y() - zone_border.y(), f.x() - zone_border.x())
250                 - zone_border.h()
251         ;
252         if (h_d > 0) {
253                 a_ub = zone_border.h() - g.h();
254                 a =
255                         atan2(f.y() - zone_border.y(), f.x() - zone_border.x())
256                         - g.h()
257                 ;
258         }
259         while (a_lb < 0) a_lb += 2 * M_PI;
260         while (a < 0) a += 2 * M_PI;
261         while (a_ub < 0) a_ub += 2 * M_PI;
262         if (a_lb <= a && a <= a_ub)
263                 in_zone = true;
264         if (in_zone) {
265                 found = true;
266                 if (g.p() == nullptr || cc(f) + cost < cc(g)) {
267                         g.p(&f);
268                         g.c(cost);
269                 }
270         }
271         return found;
272 }
273
274 // RRT* procedures
275 bool RRTS::connect()
276 {
277         RRTNode *t = &this->steered().front();
278         RRTNode *f = this->nn(this->samples().back());
279         double cost = this->cost_search(*f, *t);
280         for (auto n: this->nv(*t)) {
281                 if (
282                         !std::get<0>(this->collide_two_nodes(*n, *t))
283                         && this->cost_search(*n, *t) < cost
284                 ) {
285                         f = n;
286                         cost = this->cost_search(*n, *t);
287                 }
288         }
289         this->store_node(this->steered().front());
290         t = &this->nodes().back();
291         t->p(f);
292         t->c(this->cost_build(*f, *t));
293         t->set_t(RRTNodeType::connected);
294         return true;
295 }
296
297 void RRTS::rewire()
298 {
299         RRTNode *f = &this->nodes().back();
300         for (auto n: this->nv(*f)) {
301                 if (
302                         !std::get<0>(this->collide_two_nodes(*f, *n))
303                         && cc(*f) + this->cost_search(*f, *n) < cc(*n)
304                 ) {
305                         n->p(f);
306                         n->c(this->cost_build(*f, *n));
307                 }
308         }
309 }
310
311 // API
312 void RRTS::init()
313 {
314 }
315
316 void RRTS::deinit()
317 {
318         this->nodes().clear();
319         this->samples().clear();
320         this->steered().clear();
321         this->store_node(RRTNode()); // root
322         this->icnt_ = 0;
323         this->scnt_ = 0;
324         this->pcnt_ = 0;
325         this->gf_ = false;
326 }
327
328 std::vector<RRTNode *> RRTS::path()
329 {
330         std::vector<RRTNode *> path;
331         if (this->goals().size() == 0)
332                 return path;
333         RRTNode *goal = &this->goals().front();
334         if (goal->p() == nullptr)
335                 return path;
336         while (goal != nullptr) {
337                 path.push_back(goal);
338                 goal = goal->p();
339         }
340         std::reverse(path.begin(), path.end());
341         return path;
342 }
343
344 bool RRTS::next()
345 {
346         if (this->icnt_ == 0)
347                 this->tstart_ = std::chrono::high_resolution_clock::now();
348         bool next = true;
349         if (this->should_stop())
350                 return false;
351         this->sample();
352         this->steer(
353                 *this->nn(this->samples().back()),
354                 this->samples().back()
355         );
356         if (std::get<0>(this->collide_steered_from(
357                 *this->nn(this->samples().back())
358         )))
359                 return next;
360         if (!this->connect())
361                 return next;
362         this->rewire();
363         unsigned scnt = this->steered().size();
364         this->steered().erase(this->steered().begin());
365         this->join_steered(&this->nodes().back());
366         RRTNode *just_added = &this->nodes().back();
367         while (scnt > 0) {
368                 scnt--;
369                 auto &g = this->goals().front();
370                 this->steer(*just_added, g);
371                 if (std::get<0>(this->collide_steered_from(
372                         *just_added
373                 )))
374                         continue;
375                 this->join_steered(just_added);
376                 this->gf(this->goal_found(this->nodes().back()));
377                 just_added = just_added->p();
378         }
379         return next;
380 }
381
382 void RRTS::set_sample_normal(
383         double mx, double dx,
384         double my, double dy,
385         double mh, double dh
386 )
387 {
388         this->ndx_ = std::normal_distribution<double>(mx, dx);
389         this->ndy_ = std::normal_distribution<double>(my, dy);
390         this->ndh_ = std::normal_distribution<double>(mh, dh);
391 }
392 void RRTS::set_sample_uniform(
393         double xmin, double xmax,
394         double ymin, double ymax,
395         double hmin, double hmax
396 )
397 {
398         this->udx_ = std::uniform_real_distribution<double>(xmin,xmax);
399         this->udy_ = std::uniform_real_distribution<double>(ymin,ymax);
400         this->udh_ = std::uniform_real_distribution<double>(hmin,hmax);
401 }
402 void RRTS::set_sample(
403         double x1, double x2,
404         double y1, double y2,
405         double h1, double h2
406 )
407 {
408         switch (this->sample_dist_type()) {
409         case 1:
410                 x1 += this->nodes().front().x();
411                 x2 += this->nodes().front().x();
412                 y1 += this->nodes().front().y();
413                 y2 += this->nodes().front().y();
414                 this->set_sample_uniform(x1, x2, y1, y2, h1, h2);
415                 break;
416         default:
417                 this->set_sample_normal(x1, x2, y1, y2, h1, h2);
418         }
419 }
420
421 Json::Value RRTS::json()
422 {
423         Json::Value jvo;
424         {
425                 jvo["time"] = this->scnt();
426         }
427         {
428                 jvo["iterations"] = this->icnt();
429         }
430         {
431                 jvo["init"][0] = this->nodes().front().x();
432                 jvo["init"][1] = this->nodes().front().y();
433                 jvo["init"][2] = this->nodes().front().h();
434         }
435         {
436                 if (this->path().size() > 0) {
437                         jvo["cost"] = cc(*this->path().back());
438                         jvo["goal"][0] = this->path().back()->x();
439                         jvo["goal"][1] = this->path().back()->y();
440                         jvo["goal"][2] = this->path().back()->h();
441                 }
442         }
443         {
444                 unsigned int cu = 0;
445                 unsigned int co = 0;
446                 unsigned int pcnt = 0;
447                 for (auto n: this->path()) {
448                         jvo["path"][pcnt][0] = n->x();
449                         jvo["path"][pcnt][1] = n->y();
450                         jvo["path"][pcnt][2] = n->h();
451                         if (n->t(RRTNodeType::cusp))
452                                 cu++;
453                         if (n->t(RRTNodeType::connected))
454                                 co++;
455                         pcnt++;
456                 }
457                 jvo["cusps-in-path"] = cu;
458                 jvo["connecteds-in-path"] = co;
459         }
460         {
461                 unsigned int gcnt = 0;
462                 for (auto g: this->goals()) {
463                         jvo["goals"][gcnt][0] = g.x();
464                         jvo["goals"][gcnt][1] = g.y();
465                         jvo["goals"][gcnt][2] = g.h();
466                         gcnt++;
467                 }
468         }
469         {
470                 unsigned int ocnt = 0;
471                 for (auto o: this->obstacles()) {
472                         unsigned int ccnt = 0;
473                         for (auto c: o.poly()) {
474                                 jvo["obst"][ocnt][ccnt][0] = std::get<0>(c);
475                                 jvo["obst"][ocnt][ccnt][1] = std::get<1>(c);
476                                 ccnt++;
477                         }
478                         ocnt++;
479                 }
480         }
481         {
482                 jvo["nodes"] = (unsigned int) this->nodes().size();
483         }
484         //{
485         //        unsigned int ncnt = 0;
486         //        for (auto n: this->nodes()) {
487         //                jvo["nodes_x"][ncnt] = n.x();
488         //                jvo["nodes_y"][ncnt] = n.y();
489         //                //jvo["nodes_h"][ncnt] = n.h();
490         //                ncnt++;
491         //        }
492         //}
493         return jvo;
494 }
495
496 void RRTS::json(Json::Value jvi)
497 {
498         assert(jvi["init"] != Json::nullValue);
499         assert(jvi["goal"] != Json::nullValue);
500         assert(jvi["goals"] != Json::nullValue);
501         assert(jvi["obst"] != Json::nullValue);
502
503         this->nodes().front().x(jvi["init"][0].asDouble());
504         this->nodes().front().y(jvi["init"][1].asDouble());
505         this->nodes().front().h(jvi["init"][2].asDouble());
506         {
507                 RRTNode tmp_node;
508                 tmp_node.x(jvi["goal"][0].asDouble());
509                 tmp_node.y(jvi["goal"][1].asDouble());
510                 tmp_node.h(jvi["goal"][2].asDouble());
511                 this->goals().push_back(tmp_node);
512                 for (auto g: jvi["goals"]) {
513                         tmp_node.x(g[0].asDouble());
514                         tmp_node.y(g[1].asDouble());
515                         tmp_node.h(g[2].asDouble());
516                         this->goals().push_back(tmp_node);
517                 }
518         }
519         {
520                 Obstacle tmp_obstacle;
521                 for (auto o: jvi["obst"]) {
522                         tmp_obstacle.poly().clear();
523                         for (auto c: o) {
524                                 double tmp_x = c[0].asDouble();
525                                 double tmp_y = c[1].asDouble();
526                                 auto tmp_tuple = std::make_tuple(tmp_x, tmp_y);
527                                 tmp_obstacle.poly().push_back(tmp_tuple);
528                         }
529                         this->obstacles().push_back(tmp_obstacle);
530                 }
531         }
532         {
533                 double edist_init_goal = sqrt(
534                         pow(
535                                 this->nodes().front().x()
536                                 - this->goals().front().x(),
537                                 2
538                         )
539                         + pow(
540                                 this->nodes().front().y()
541                                 - this->goals().front().y(),
542                                 2
543                         )
544                 );
545                 this->set_sample(
546                         this->nodes().front().x(), edist_init_goal,
547                         this->nodes().front().y(), edist_init_goal,
548                         0, 2 * M_PI
549                 );
550         }
551 }
552
553 RRTS::RRTS()
554         : gen_(std::random_device{}())
555 {
556         this->goals().reserve(100);
557         this->nodes().reserve(4000000);
558         this->samples().reserve(1000);
559         this->steered().reserve(20000);
560         this->store_node(RRTNode()); // root
561 }
562
563 double cc(RRTNode &t)
564 {
565         RRTNode *n = &t;
566         double cost = 0;
567         while (n != nullptr) {
568                 cost += n->c();
569                 n = n->p();
570         }
571         return cost;
572 }