]> rtime.felk.cvut.cz Git - hornmich/skoda-qr-demo.git/blob - QRScanner/mobile/jni/thirdparty/openjpeg/libopenjpeg/mct.c
Add MuPDF native source codes
[hornmich/skoda-qr-demo.git] / QRScanner / mobile / jni / thirdparty / openjpeg / libopenjpeg / mct.c
1 /*
2  * Copyright (c) 2002-2007, Communications and Remote Sensing Laboratory, Universite catholique de Louvain (UCL), Belgium
3  * Copyright (c) 2002-2007, Professor Benoit Macq
4  * Copyright (c) 2001-2003, David Janssens
5  * Copyright (c) 2002-2003, Yannick Verschueren
6  * Copyright (c) 2003-2007, Francois-Olivier Devaux and Antonin Descampe
7  * Copyright (c) 2005, Herve Drolon, FreeImage Team
8  * Copyright (c) 2008;2011-2012, Centre National d'Etudes Spatiales (CNES), France 
9  * Copyright (c) 2012, CS Systemes d'Information, France
10  * All rights reserved.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #ifdef __SSE__
35 #include <xmmintrin.h>
36 #endif
37
38 #include "opj_includes.h"
39
40 /* <summary> */
41 /* This table contains the norms of the basis function of the reversible MCT. */
42 /* </summary> */
43 static const OPJ_FLOAT64 opj_mct_norms[3] = { 1.732, .8292, .8292 };
44
45 /* <summary> */
46 /* This table contains the norms of the basis function of the irreversible MCT. */
47 /* </summary> */
48 static const OPJ_FLOAT64 opj_mct_norms_real[3] = { 1.732, 1.805, 1.573 };
49
50 const OPJ_FLOAT64 * opj_mct_get_mct_norms ()
51 {
52         return opj_mct_norms;
53 }
54
55 const OPJ_FLOAT64 * opj_mct_get_mct_norms_real ()
56 {
57         return opj_mct_norms_real;
58 }
59
60 /* <summary> */
61 /* Foward reversible MCT. */
62 /* </summary> */
63 void opj_mct_encode(
64                 OPJ_INT32* restrict c0,
65                 OPJ_INT32* restrict c1,
66                 OPJ_INT32* restrict c2,
67                 OPJ_UINT32 n)
68 {
69         OPJ_UINT32 i;
70         for(i = 0; i < n; ++i) {
71                 OPJ_INT32 r = c0[i];
72                 OPJ_INT32 g = c1[i];
73                 OPJ_INT32 b = c2[i];
74                 OPJ_INT32 y = (r + (g * 2) + b) >> 2;
75                 OPJ_INT32 u = b - g;
76                 OPJ_INT32 v = r - g;
77                 c0[i] = y;
78                 c1[i] = u;
79                 c2[i] = v;
80         }
81 }
82
83 /* <summary> */
84 /* Inverse reversible MCT. */
85 /* </summary> */
86 void opj_mct_decode(
87                 OPJ_INT32* restrict c0,
88                 OPJ_INT32* restrict c1, 
89                 OPJ_INT32* restrict c2, 
90                 OPJ_UINT32 n)
91 {
92         OPJ_UINT32 i;
93         for (i = 0; i < n; ++i) {
94                 OPJ_INT32 y = c0[i];
95                 OPJ_INT32 u = c1[i];
96                 OPJ_INT32 v = c2[i];
97                 OPJ_INT32 g = y - ((u + v) >> 2);
98                 OPJ_INT32 r = v + g;
99                 OPJ_INT32 b = u + g;
100                 c0[i] = r;
101                 c1[i] = g;
102                 c2[i] = b;
103         }
104 }
105
106 /* <summary> */
107 /* Get norm of basis function of reversible MCT. */
108 /* </summary> */
109 OPJ_FLOAT64 opj_mct_getnorm(OPJ_UINT32 compno) {
110         return opj_mct_norms[compno];
111 }
112
113 /* <summary> */
114 /* Foward irreversible MCT. */
115 /* </summary> */
116 void opj_mct_encode_real(
117                 OPJ_INT32* restrict c0,
118                 OPJ_INT32* restrict c1,
119                 OPJ_INT32* restrict c2,
120                 OPJ_UINT32 n)
121 {
122         OPJ_UINT32 i;
123         for(i = 0; i < n; ++i) {
124                 OPJ_INT32 r = c0[i];
125                 OPJ_INT32 g = c1[i];
126                 OPJ_INT32 b = c2[i];
127                 OPJ_INT32 y =  opj_int_fix_mul(r, 2449) + opj_int_fix_mul(g, 4809) + opj_int_fix_mul(b, 934);
128                 OPJ_INT32 u = -opj_int_fix_mul(r, 1382) - opj_int_fix_mul(g, 2714) + opj_int_fix_mul(b, 4096);
129                 OPJ_INT32 v =  opj_int_fix_mul(r, 4096) - opj_int_fix_mul(g, 3430) - opj_int_fix_mul(b, 666);
130                 c0[i] = y;
131                 c1[i] = u;
132                 c2[i] = v;
133         }
134 }
135
136 /* <summary> */
137 /* Inverse irreversible MCT. */
138 /* </summary> */
139 void opj_mct_decode_real(
140                 OPJ_FLOAT32* restrict c0,
141                 OPJ_FLOAT32* restrict c1,
142                 OPJ_FLOAT32* restrict c2,
143                 OPJ_UINT32 n)
144 {
145         OPJ_UINT32 i;
146 #ifdef __SSE__
147         __m128 vrv, vgu, vgv, vbu;
148         vrv = _mm_set1_ps(1.402f);
149         vgu = _mm_set1_ps(0.34413f);
150         vgv = _mm_set1_ps(0.71414f);
151         vbu = _mm_set1_ps(1.772f);
152         for (i = 0; i < (n >> 3); ++i) {
153                 __m128 vy, vu, vv;
154                 __m128 vr, vg, vb;
155
156                 vy = _mm_load_ps(c0);
157                 vu = _mm_load_ps(c1);
158                 vv = _mm_load_ps(c2);
159                 vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv));
160                 vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv));
161                 vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu));
162                 _mm_store_ps(c0, vr);
163                 _mm_store_ps(c1, vg);
164                 _mm_store_ps(c2, vb);
165                 c0 += 4;
166                 c1 += 4;
167                 c2 += 4;
168
169                 vy = _mm_load_ps(c0);
170                 vu = _mm_load_ps(c1);
171                 vv = _mm_load_ps(c2);
172                 vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv));
173                 vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv));
174                 vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu));
175                 _mm_store_ps(c0, vr);
176                 _mm_store_ps(c1, vg);
177                 _mm_store_ps(c2, vb);
178                 c0 += 4;
179                 c1 += 4;
180                 c2 += 4;
181         }
182         n &= 7;
183 #endif
184         for(i = 0; i < n; ++i) {
185                 OPJ_FLOAT32 y = c0[i];
186                 OPJ_FLOAT32 u = c1[i];
187                 OPJ_FLOAT32 v = c2[i];
188                 OPJ_FLOAT32 r = y + (v * 1.402f);
189                 OPJ_FLOAT32 g = y - (u * 0.34413f) - (v * (0.71414f));
190                 OPJ_FLOAT32 b = y + (u * 1.772f);
191                 c0[i] = r;
192                 c1[i] = g;
193                 c2[i] = b;
194         }
195 }
196
197 /* <summary> */
198 /* Get norm of basis function of irreversible MCT. */
199 /* </summary> */
200 OPJ_FLOAT64 opj_mct_getnorm_real(OPJ_UINT32 compno) {
201         return opj_mct_norms_real[compno];
202 }
203
204
205 OPJ_BOOL opj_mct_encode_custom(
206                                            OPJ_BYTE * pCodingdata,
207                                            OPJ_UINT32 n,
208                                            OPJ_BYTE ** pData,
209                                            OPJ_UINT32 pNbComp,
210                                            OPJ_UINT32 isSigned)
211 {
212         OPJ_FLOAT32 * lMct = (OPJ_FLOAT32 *) pCodingdata;
213         OPJ_UINT32 i;
214         OPJ_UINT32 j;
215         OPJ_UINT32 k;
216         OPJ_UINT32 lNbMatCoeff = pNbComp * pNbComp;
217         OPJ_INT32 * lCurrentData = 00;
218         OPJ_INT32 * lCurrentMatrix = 00;
219         OPJ_INT32 ** lData = (OPJ_INT32 **) pData;
220         OPJ_UINT32 lMultiplicator = 1 << 13;
221         OPJ_INT32 * lMctPtr;
222
223     OPJ_ARG_NOT_USED(isSigned);
224
225         lCurrentData = (OPJ_INT32 *) opj_malloc((pNbComp + lNbMatCoeff) * sizeof(OPJ_INT32));
226         if (! lCurrentData) {
227                 return OPJ_FALSE;
228         }
229
230         lCurrentMatrix = lCurrentData + pNbComp;
231
232         for (i =0;i<lNbMatCoeff;++i) {
233                 lCurrentMatrix[i] = (OPJ_INT32) (*(lMct++) * lMultiplicator);
234         }
235
236         for (i = 0; i < n; ++i)  {
237                 lMctPtr = lCurrentMatrix;
238                 for (j=0;j<pNbComp;++j) {
239                         lCurrentData[j] = (*(lData[j]));
240                 }
241
242                 for (j=0;j<pNbComp;++j) {
243                         *(lData[j]) = 0;
244                         for (k=0;k<pNbComp;++k) {
245                                 *(lData[j]) += opj_int_fix_mul(*lMctPtr, lCurrentData[k]);
246                                 ++lMctPtr;
247                         }
248
249                         ++lData[j];
250                 }
251         }
252
253         opj_free(lCurrentData);
254
255         return OPJ_TRUE;
256 }
257
258 OPJ_BOOL opj_mct_decode_custom(
259                                            OPJ_BYTE * pDecodingData,
260                                            OPJ_UINT32 n,
261                                            OPJ_BYTE ** pData,
262                                            OPJ_UINT32 pNbComp,
263                                            OPJ_UINT32 isSigned)
264 {
265         OPJ_FLOAT32 * lMct;
266         OPJ_UINT32 i;
267         OPJ_UINT32 j;
268         OPJ_UINT32 k;
269
270         OPJ_FLOAT32 * lCurrentData = 00;
271         OPJ_FLOAT32 * lCurrentResult = 00;
272         OPJ_FLOAT32 ** lData = (OPJ_FLOAT32 **) pData;
273
274     OPJ_ARG_NOT_USED(isSigned);
275
276         lCurrentData = (OPJ_FLOAT32 *) opj_malloc (2 * pNbComp * sizeof(OPJ_FLOAT32));
277         if (! lCurrentData) {
278                 return OPJ_FALSE;
279         }
280         lCurrentResult = lCurrentData + pNbComp;
281
282         for (i = 0; i < n; ++i) {
283                 lMct = (OPJ_FLOAT32 *) pDecodingData;
284                 for (j=0;j<pNbComp;++j) {
285                         lCurrentData[j] = (OPJ_FLOAT32) (*(lData[j]));
286                 }
287                 for (j=0;j<pNbComp;++j) {
288                         lCurrentResult[j] = 0;
289                         for     (k=0;k<pNbComp;++k)     {
290                                 lCurrentResult[j] += *(lMct++) * lCurrentData[k];
291                         }
292                         *(lData[j]++) = (OPJ_FLOAT32) (lCurrentResult[j]);
293                 }
294         }
295         opj_free(lCurrentData);
296         return OPJ_TRUE;
297 }
298
299 void opj_calculate_norms(       OPJ_FLOAT64 * pNorms,
300                                                         OPJ_UINT32 pNbComps,
301                                                         OPJ_FLOAT32 * pMatrix)
302 {
303         OPJ_UINT32 i,j,lIndex;
304         OPJ_FLOAT32 lCurrentValue;
305         OPJ_FLOAT64 * lNorms = (OPJ_FLOAT64 *) pNorms;
306         OPJ_FLOAT32 * lMatrix = (OPJ_FLOAT32 *) pMatrix;
307
308         for     (i=0;i<pNbComps;++i) {
309                 lNorms[i] = 0;
310                 lIndex = i;
311
312                 for     (j=0;j<pNbComps;++j) {
313                         lCurrentValue = lMatrix[lIndex];
314                         lIndex += pNbComps;
315                         lNorms[i] += lCurrentValue * lCurrentValue;
316                 }
317                 lNorms[i] = sqrt(lNorms[i]);
318         }
319 }