]> rtime.felk.cvut.cz Git - hercules2020/kcf.git/blobdiff - src/fft_cufft.cpp
Add cudaStreamSynchronize after FFT
[hercules2020/kcf.git] / src / fft_cufft.cpp
index f349b9e267eaf9fcf95d9016871c499e0315c12a..e551eaa41726690a1bce8d42b1f415931e691ff6 100644 (file)
 #include "fft_cufft.h"
 
+cuFFT::cuFFT()
+{
+    CudaSafeCall(cudaSetDeviceFlags(cudaDeviceMapHost));
+    cudaErrorCheck(cublasCreate(&cublas));
+}
+
+cufftHandle cuFFT::create_plan_fwd(uint howmany) const
+{
+    int rank = 2;
+    int n[] = {(int)m_height, (int)m_width};
+    int idist = m_height * m_width, odist = m_height * (m_width / 2 + 1);
+    int istride = 1, ostride = 1;
+    int *inembed = n, onembed[] = {(int)m_height, (int)m_width / 2 + 1};
+
+    cufftHandle plan;
+    cudaErrorCheck(cufftPlanMany(&plan, rank, n, inembed, istride, idist, onembed, ostride, odist, CUFFT_R2C, howmany));
+    cudaErrorCheck(cufftSetStream(plan, cudaStreamPerThread));
+    return plan;
+}
+
+cufftHandle cuFFT::create_plan_inv(uint howmany) const
+{
+    int rank = 2;
+    int n[] = {(int)m_height, (int)m_width};
+    int idist = m_height * (m_width / 2 + 1), odist = m_height * m_width;
+    int istride = 1, ostride = 1;
+    int inembed[] = {(int)m_height, (int)m_width / 2 + 1}, *onembed = n;
+
+    cufftHandle plan;
+    cudaErrorCheck(cufftPlanMany(&plan, rank, n, inembed, istride, idist, onembed, ostride, odist, CUFFT_C2R, howmany));
+    cudaErrorCheck(cufftSetStream(plan, cudaStreamPerThread));
+    return plan;
+}
+
+
 void cuFFT::init(unsigned width, unsigned height, unsigned num_of_feats, unsigned num_of_scales)
 {
-    m_width = width;
-    m_height = height;
-    m_num_of_feats = num_of_feats;
-    m_num_of_scales = num_of_scales;
+    Fft::init(width, height, num_of_feats, num_of_scales);
+
     std::cout << "FFT: cuFFT" << std::endl;
+
+    plan_f = create_plan_fwd(1);
+    plan_fw = create_plan_fwd(m_num_of_feats);
+    plan_i_1ch = create_plan_inv(1);
+
+#ifdef BIG_BATCH
+    plan_f_all_scales = create_plan_fwd(m_num_of_scales);
+    plan_fw_all_scales = create_plan_fwd(m_num_of_scales * m_num_of_feats);
+    plan_i_all_scales = create_plan_inv(m_num_of_scales);
+#endif
 }
 
-void cuFFT::set_window(const cv::Mat &window)
+void cuFFT::set_window(const MatDynMem &window)
 {
-     m_window = window;
+    Fft::set_window(window);
+    m_window = window;
 }
 
-ComplexMat cuFFT::forward(const cv::Mat &input)
+void cuFFT::forward(const MatScales &real_input, ComplexMat &complex_result)
 {
-    cv::Mat complex_result;
-    cv::dft(input, complex_result, cv::DFT_COMPLEX_OUTPUT);
-    return ComplexMat(complex_result);
+    Fft::forward(real_input, complex_result);
+    auto in = static_cast<cufftReal *>(const_cast<MatScales&>(real_input).deviceMem());
+
+    if (real_input.size[0] == 1)
+        cudaErrorCheck(cufftExecR2C(plan_f, in, complex_result.get_dev_data()));
+#ifdef BIG_BATCH
+    else
+        cudaErrorCheck(cufftExecR2C(plan_f_all_scales, in, complex_result.get_dev_data()));
+#endif
 }
 
-ComplexMat cuFFT::forward_window(const std::vector<cv::Mat> &input)
+void cuFFT::forward_window(MatScaleFeats &feat, ComplexMat &complex_result, MatScaleFeats &temp)
 {
-    int n_channels = input.size();
-    ComplexMat result(input[0].rows, input[0].cols, n_channels);
+    Fft::forward_window(feat, complex_result, temp);
+
+    cufftReal *temp_data = temp.deviceMem();
+    uint n_scales = feat.size[0];
 
-    for (int i = 0; i < n_channels; ++i) {
-        cv::Mat complex_result;
-        cv::dft(input[i].mul(m_window), complex_result, cv::DFT_COMPLEX_OUTPUT);
-        result.set_channel(i, complex_result);
+    for (uint s = 0; s < n_scales; ++s) {
+        for (uint ch = 0; ch < uint(feat.size[1]); ++ch) {
+            cv::Mat feat_plane = feat.plane(s, ch);
+            cv::Mat temp_plane = temp.plane(s, ch);
+            temp_plane = feat_plane.mul(m_window);
+        }
     }
-    return result;
+
+    if (n_scales == 1)
+        cudaErrorCheck(cufftExecR2C(plan_fw, temp_data, complex_result.get_dev_data()));
+#ifdef BIG_BATCH
+    else
+        cudaErrorCheck(cufftExecR2C(plan_fw_all_scales, temp_data, complex_result.get_dev_data()));
+#endif
+    CudaSafeCall(cudaStreamSynchronize(cudaStreamPerThread));
 }
 
-cv::Mat cuFFT::inverse(const ComplexMat &inputf)
+void cuFFT::inverse(ComplexMat &complex_input, MatScales &real_result)
 {
-    cv::Mat real_result;
-    if (inputf.n_channels == 1) {
-        cv::dft(inputf.to_cv_mat(), real_result, cv::DFT_INVERSE | cv::DFT_REAL_OUTPUT | cv::DFT_SCALE);
-    } else {
-        std::vector<cv::Mat> mat_channels = inputf.to_cv_mat_vector();
-        std::vector<cv::Mat> ifft_mats(inputf.n_channels);
-        for (int i = 0; i < inputf.n_channels; ++i) {
-            cv::dft(mat_channels[i], ifft_mats[i], cv::DFT_INVERSE | cv::DFT_REAL_OUTPUT | cv::DFT_SCALE);
-        }
-        cv::merge(ifft_mats, real_result);
-    }
-    return real_result;
+    Fft::inverse(complex_input, real_result);
+
+    uint n_channels = complex_input.n_channels;
+    cufftComplex *in = reinterpret_cast<cufftComplex *>(complex_input.get_p_data());
+    cufftReal *out = real_result.deviceMem();
+    float alpha = 1.0 / (m_width * m_height);
+
+    if (n_channels == 1)
+        cudaErrorCheck(cufftExecC2R(plan_i_1ch, in, out));
+#ifdef BIG_BATCH
+        cudaErrorCheck(cufftExecC2R(plan_i_all_scales, in, out));
+#endif
+    // TODO: Investigate whether this scalling is needed or not
+    cudaErrorCheck(cublasSscal(cublas, real_result.total(), &alpha, out, 1));
+    CudaSafeCall(cudaStreamSynchronize(cudaStreamPerThread));
 }
 
 cuFFT::~cuFFT()
 {
+    cudaErrorCheck(cublasDestroy(cublas));
+
+    cudaErrorCheck(cufftDestroy(plan_f));
+    cudaErrorCheck(cufftDestroy(plan_fw));
+    cudaErrorCheck(cufftDestroy(plan_i_1ch));
 
+#ifdef BIG_BATCH
+    cudaErrorCheck(cufftDestroy(plan_f_all_scales));
+    cudaErrorCheck(cufftDestroy(plan_fw_all_scales));
+    cudaErrorCheck(cufftDestroy(plan_i_all_scales));
+#endif
 }