]> rtime.felk.cvut.cz Git - fpga/lx-cpu1/binutils-tumbl.git/blob - gold/symtab.cc
Change cond. branching to BRC/BRCI and add CLZ instruction
[fpga/lx-cpu1/binutils-tumbl.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol.  This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55                     elfcpp::STT type, elfcpp::STB binding,
56                     elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91   if (!parameters->options().do_demangle())
92     return name;
93
94   // cplus_demangle allocates memory for the result it returns,
95   // and returns NULL if the name is already demangled.
96   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97   if (demangled_name == NULL)
98     return name;
99
100   std::string retval(demangled_name);
101   free(demangled_name);
102   return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108   return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116                          const elfcpp::Sym<size, big_endian>& sym,
117                          unsigned int st_shndx, bool is_ordinary)
118 {
119   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120                     sym.get_st_visibility(), sym.get_st_nonvis());
121   this->u_.from_object.object = object;
122   this->u_.from_object.shndx = st_shndx;
123   this->is_ordinary_shndx_ = is_ordinary;
124   this->source_ = FROM_OBJECT;
125   this->in_reg_ = !object->is_dynamic();
126   this->in_dyn_ = object->is_dynamic();
127   this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135                               Output_data* od, elfcpp::STT type,
136                               elfcpp::STB binding, elfcpp::STV visibility,
137                               unsigned char nonvis, bool offset_is_from_end,
138                               bool is_predefined)
139 {
140   this->init_fields(name, version, type, binding, visibility, nonvis);
141   this->u_.in_output_data.output_data = od;
142   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143   this->source_ = IN_OUTPUT_DATA;
144   this->in_reg_ = true;
145   this->in_real_elf_ = true;
146   this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154                                  Output_segment* os, elfcpp::STT type,
155                                  elfcpp::STB binding, elfcpp::STV visibility,
156                                  unsigned char nonvis,
157                                  Segment_offset_base offset_base,
158                                  bool is_predefined)
159 {
160   this->init_fields(name, version, type, binding, visibility, nonvis);
161   this->u_.in_output_segment.output_segment = os;
162   this->u_.in_output_segment.offset_base = offset_base;
163   this->source_ = IN_OUTPUT_SEGMENT;
164   this->in_reg_ = true;
165   this->in_real_elf_ = true;
166   this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174                            elfcpp::STT type, elfcpp::STB binding,
175                            elfcpp::STV visibility, unsigned char nonvis,
176                            bool is_predefined)
177 {
178   this->init_fields(name, version, type, binding, visibility, nonvis);
179   this->source_ = IS_CONSTANT;
180   this->in_reg_ = true;
181   this->in_real_elf_ = true;
182   this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190                             elfcpp::STT type, elfcpp::STB binding,
191                             elfcpp::STV visibility, unsigned char nonvis)
192 {
193   this->init_fields(name, version, type, binding, visibility, nonvis);
194   this->dynsym_index_ = -1U;
195   this->source_ = IS_UNDEFINED;
196   this->in_reg_ = true;
197   this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205   gold_assert(this->is_common());
206   this->source_ = IN_OUTPUT_DATA;
207   this->u_.in_output_data.output_data = od;
208   this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217                                 Object* object,
218                                 const elfcpp::Sym<size, big_endian>& sym,
219                                 unsigned int st_shndx, bool is_ordinary)
220 {
221   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222   this->value_ = sym.get_st_value();
223   this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232                                      Output_data* od, Value_type value,
233                                      Size_type symsize, elfcpp::STT type,
234                                      elfcpp::STB binding,
235                                      elfcpp::STV visibility,
236                                      unsigned char nonvis,
237                                      bool offset_is_from_end,
238                                      bool is_predefined)
239 {
240   this->init_base_output_data(name, version, od, type, binding, visibility,
241                               nonvis, offset_is_from_end, is_predefined);
242   this->value_ = value;
243   this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252                                         Output_segment* os, Value_type value,
253                                         Size_type symsize, elfcpp::STT type,
254                                         elfcpp::STB binding,
255                                         elfcpp::STV visibility,
256                                         unsigned char nonvis,
257                                         Segment_offset_base offset_base,
258                                         bool is_predefined)
259 {
260   this->init_base_output_segment(name, version, os, type, binding, visibility,
261                                  nonvis, offset_base, is_predefined);
262   this->value_ = value;
263   this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272                                   Value_type value, Size_type symsize,
273                                   elfcpp::STT type, elfcpp::STB binding,
274                                   elfcpp::STV visibility, unsigned char nonvis,
275                                   bool is_predefined)
276 {
277   this->init_base_constant(name, version, type, binding, visibility, nonvis,
278                            is_predefined);
279   this->value_ = value;
280   this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288                                    elfcpp::STT type, elfcpp::STB binding,
289                                    elfcpp::STV visibility, unsigned char nonvis)
290 {
291   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292   this->value_ = 0;
293   this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version.  This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302   gold_assert(this->version_ != NULL);
303   std::string ret = this->name_;
304   ret.push_back('@');
305   if (this->is_def_)
306     ret.push_back('@');
307   ret += this->version_;
308   return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316   return (shndx == elfcpp::SHN_COMMON
317           || shndx == parameters->target().small_common_shndx()
318           || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327   this->allocate_base_common(od);
328   this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 inline bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340   // If the symbol is only present on plugin files, the plugin decided we
341   // don't need it.
342   if (!this->in_real_elf())
343     return false;
344
345   // If the symbol is used by a dynamic relocation, we need to add it.
346   if (this->needs_dynsym_entry())
347     return true;
348
349   // If this symbol's section is not added, the symbol need not be added. 
350   // The section may have been GCed.  Note that export_dynamic is being 
351   // overridden here.  This should not be done for shared objects.
352   if (parameters->options().gc_sections() 
353       && !parameters->options().shared()
354       && this->source() == Symbol::FROM_OBJECT
355       && !this->object()->is_dynamic())
356     {
357       Relobj* relobj = static_cast<Relobj*>(this->object());
358       bool is_ordinary;
359       unsigned int shndx = this->shndx(&is_ordinary);
360       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361           && !relobj->is_section_included(shndx)
362           && !symtab->is_section_folded(relobj, shndx))
363         return false;
364     }
365
366   // If the symbol was forced dynamic in a --dynamic-list file
367   // or an --export-dynamic-symbol option, add it.
368   if (!this->is_from_dynobj()
369       && (parameters->options().in_dynamic_list(this->name())
370           || parameters->options().is_export_dynamic_symbol(this->name())))
371     {
372       if (!this->is_forced_local())
373         return true;
374       gold_warning(_("Cannot export local symbol '%s'"),
375                    this->demangled_name().c_str());
376       return false;
377     }
378
379   // If the symbol was forced local in a version script, do not add it.
380   if (this->is_forced_local())
381     return false;
382
383   // If dynamic-list-data was specified, add any STT_OBJECT.
384   if (parameters->options().dynamic_list_data()
385       && !this->is_from_dynobj()
386       && this->type() == elfcpp::STT_OBJECT)
387     return true;
388
389   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391   if ((parameters->options().dynamic_list_cpp_new()
392        || parameters->options().dynamic_list_cpp_typeinfo())
393       && !this->is_from_dynobj())
394     {
395       // TODO(csilvers): We could probably figure out if we're an operator
396       //                 new/delete or typeinfo without the need to demangle.
397       char* demangled_name = cplus_demangle(this->name(),
398                                             DMGL_ANSI | DMGL_PARAMS);
399       if (demangled_name == NULL)
400         {
401           // Not a C++ symbol, so it can't satisfy these flags
402         }
403       else if (parameters->options().dynamic_list_cpp_new()
404                && (strprefix(demangled_name, "operator new")
405                    || strprefix(demangled_name, "operator delete")))
406         {
407           free(demangled_name);
408           return true;
409         }
410       else if (parameters->options().dynamic_list_cpp_typeinfo()
411                && (strprefix(demangled_name, "typeinfo name for")
412                    || strprefix(demangled_name, "typeinfo for")))
413         {
414           free(demangled_name);
415           return true;
416         }
417       else
418         free(demangled_name);
419     }
420
421   // If exporting all symbols or building a shared library,
422   // and the symbol is defined in a regular object and is
423   // externally visible, we need to add it.
424   if ((parameters->options().export_dynamic() || parameters->options().shared())
425       && !this->is_from_dynobj()
426       && !this->is_undefined()
427       && this->is_externally_visible())
428     return true;
429
430   return false;
431 }
432
433 // Return true if the final value of this symbol is known at link
434 // time.
435
436 bool
437 Symbol::final_value_is_known() const
438 {
439   // If we are not generating an executable, then no final values are
440   // known, since they will change at runtime.
441   if (parameters->options().output_is_position_independent()
442       || parameters->options().relocatable())
443     return false;
444
445   // If the symbol is not from an object file, and is not undefined,
446   // then it is defined, and known.
447   if (this->source_ != FROM_OBJECT)
448     {
449       if (this->source_ != IS_UNDEFINED)
450         return true;
451     }
452   else
453     {
454       // If the symbol is from a dynamic object, then the final value
455       // is not known.
456       if (this->object()->is_dynamic())
457         return false;
458
459       // If the symbol is not undefined (it is defined or common),
460       // then the final value is known.
461       if (!this->is_undefined())
462         return true;
463     }
464
465   // If the symbol is undefined, then whether the final value is known
466   // depends on whether we are doing a static link.  If we are doing a
467   // dynamic link, then the final value could be filled in at runtime.
468   // This could reasonably be the case for a weak undefined symbol.
469   return parameters->doing_static_link();
470 }
471
472 // Return the output section where this symbol is defined.
473
474 Output_section*
475 Symbol::output_section() const
476 {
477   switch (this->source_)
478     {
479     case FROM_OBJECT:
480       {
481         unsigned int shndx = this->u_.from_object.shndx;
482         if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
483           {
484             gold_assert(!this->u_.from_object.object->is_dynamic());
485             gold_assert(this->u_.from_object.object->pluginobj() == NULL);
486             Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
487             return relobj->output_section(shndx);
488           }
489         return NULL;
490       }
491
492     case IN_OUTPUT_DATA:
493       return this->u_.in_output_data.output_data->output_section();
494
495     case IN_OUTPUT_SEGMENT:
496     case IS_CONSTANT:
497     case IS_UNDEFINED:
498       return NULL;
499
500     default:
501       gold_unreachable();
502     }
503 }
504
505 // Set the symbol's output section.  This is used for symbols defined
506 // in scripts.  This should only be called after the symbol table has
507 // been finalized.
508
509 void
510 Symbol::set_output_section(Output_section* os)
511 {
512   switch (this->source_)
513     {
514     case FROM_OBJECT:
515     case IN_OUTPUT_DATA:
516       gold_assert(this->output_section() == os);
517       break;
518     case IS_CONSTANT:
519       this->source_ = IN_OUTPUT_DATA;
520       this->u_.in_output_data.output_data = os;
521       this->u_.in_output_data.offset_is_from_end = false;
522       break;
523     case IN_OUTPUT_SEGMENT:
524     case IS_UNDEFINED:
525     default:
526       gold_unreachable();
527     }
528 }
529
530 // Class Symbol_table.
531
532 Symbol_table::Symbol_table(unsigned int count,
533                            const Version_script_info& version_script)
534   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
535     forwarders_(), commons_(), tls_commons_(), small_commons_(),
536     large_commons_(), forced_locals_(), warnings_(),
537     version_script_(version_script), gc_(NULL), icf_(NULL)
538 {
539   namepool_.reserve(count);
540 }
541
542 Symbol_table::~Symbol_table()
543 {
544 }
545
546 // The symbol table key equality function.  This is called with
547 // Stringpool keys.
548
549 inline bool
550 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
551                                           const Symbol_table_key& k2) const
552 {
553   return k1.first == k2.first && k1.second == k2.second;
554 }
555
556 bool
557 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
558 {
559   return (parameters->options().icf_enabled()
560           && this->icf_->is_section_folded(obj, shndx));
561 }
562
563 // For symbols that have been listed with a -u or --export-dynamic-symbol
564 // option, add them to the work list to avoid gc'ing them.
565
566 void 
567 Symbol_table::gc_mark_undef_symbols(Layout* layout)
568 {
569   for (options::String_set::const_iterator p =
570          parameters->options().undefined_begin();
571        p != parameters->options().undefined_end();
572        ++p)
573     {
574       const char* name = p->c_str();
575       Symbol* sym = this->lookup(name);
576       gold_assert(sym != NULL);
577       if (sym->source() == Symbol::FROM_OBJECT 
578           && !sym->object()->is_dynamic())
579         {
580           Relobj* obj = static_cast<Relobj*>(sym->object());
581           bool is_ordinary;
582           unsigned int shndx = sym->shndx(&is_ordinary);
583           if (is_ordinary)
584             {
585               gold_assert(this->gc_ != NULL);
586               this->gc_->worklist().push(Section_id(obj, shndx));
587             }
588         }
589     }
590
591   for (options::String_set::const_iterator p =
592          parameters->options().export_dynamic_symbol_begin();
593        p != parameters->options().export_dynamic_symbol_end();
594        ++p)
595     {
596       const char* name = p->c_str();
597       Symbol* sym = this->lookup(name);
598       gold_assert(sym != NULL);
599       if (sym->source() == Symbol::FROM_OBJECT 
600           && !sym->object()->is_dynamic())
601         {
602           Relobj* obj = static_cast<Relobj*>(sym->object());
603           bool is_ordinary;
604           unsigned int shndx = sym->shndx(&is_ordinary);
605           if (is_ordinary)
606             {
607               gold_assert(this->gc_ != NULL);
608               this->gc_->worklist().push(Section_id(obj, shndx));
609             }
610         }
611     }
612
613   for (Script_options::referenced_const_iterator p =
614          layout->script_options()->referenced_begin();
615        p != layout->script_options()->referenced_end();
616        ++p)
617     {
618       Symbol* sym = this->lookup(p->c_str());
619       gold_assert(sym != NULL);
620       if (sym->source() == Symbol::FROM_OBJECT
621           && !sym->object()->is_dynamic())
622         {
623           Relobj* obj = static_cast<Relobj*>(sym->object());
624           bool is_ordinary;
625           unsigned int shndx = sym->shndx(&is_ordinary);
626           if (is_ordinary)
627             {
628               gold_assert(this->gc_ != NULL);
629               this->gc_->worklist().push(Section_id(obj, shndx));
630             }
631         }
632     }
633 }
634
635 void
636 Symbol_table::gc_mark_symbol(Symbol* sym)
637 {
638   // Add the object and section to the work list.
639   Relobj* obj = static_cast<Relobj*>(sym->object());
640   bool is_ordinary;
641   unsigned int shndx = sym->shndx(&is_ordinary);
642   if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
643     {
644       gold_assert(this->gc_!= NULL);
645       this->gc_->worklist().push(Section_id(obj, shndx));
646     }
647 }
648
649 // When doing garbage collection, keep symbols that have been seen in
650 // dynamic objects.
651 inline void 
652 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
653 {
654   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
655       && !sym->object()->is_dynamic())
656     this->gc_mark_symbol(sym);
657 }
658
659 // Make TO a symbol which forwards to FROM.
660
661 void
662 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
663 {
664   gold_assert(from != to);
665   gold_assert(!from->is_forwarder() && !to->is_forwarder());
666   this->forwarders_[from] = to;
667   from->set_forwarder();
668 }
669
670 // Resolve the forwards from FROM, returning the real symbol.
671
672 Symbol*
673 Symbol_table::resolve_forwards(const Symbol* from) const
674 {
675   gold_assert(from->is_forwarder());
676   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
677     this->forwarders_.find(from);
678   gold_assert(p != this->forwarders_.end());
679   return p->second;
680 }
681
682 // Look up a symbol by name.
683
684 Symbol*
685 Symbol_table::lookup(const char* name, const char* version) const
686 {
687   Stringpool::Key name_key;
688   name = this->namepool_.find(name, &name_key);
689   if (name == NULL)
690     return NULL;
691
692   Stringpool::Key version_key = 0;
693   if (version != NULL)
694     {
695       version = this->namepool_.find(version, &version_key);
696       if (version == NULL)
697         return NULL;
698     }
699
700   Symbol_table_key key(name_key, version_key);
701   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
702   if (p == this->table_.end())
703     return NULL;
704   return p->second;
705 }
706
707 // Resolve a Symbol with another Symbol.  This is only used in the
708 // unusual case where there are references to both an unversioned
709 // symbol and a symbol with a version, and we then discover that that
710 // version is the default version.  Because this is unusual, we do
711 // this the slow way, by converting back to an ELF symbol.
712
713 template<int size, bool big_endian>
714 void
715 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
716 {
717   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
718   elfcpp::Sym_write<size, big_endian> esym(buf);
719   // We don't bother to set the st_name or the st_shndx field.
720   esym.put_st_value(from->value());
721   esym.put_st_size(from->symsize());
722   esym.put_st_info(from->binding(), from->type());
723   esym.put_st_other(from->visibility(), from->nonvis());
724   bool is_ordinary;
725   unsigned int shndx = from->shndx(&is_ordinary);
726   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
727                 from->version());
728   if (from->in_reg())
729     to->set_in_reg();
730   if (from->in_dyn())
731     to->set_in_dyn();
732   if (parameters->options().gc_sections())
733     this->gc_mark_dyn_syms(to);
734 }
735
736 // Record that a symbol is forced to be local by a version script or
737 // by visibility.
738
739 void
740 Symbol_table::force_local(Symbol* sym)
741 {
742   if (!sym->is_defined() && !sym->is_common())
743     return;
744   if (sym->is_forced_local())
745     {
746       // We already got this one.
747       return;
748     }
749   sym->set_is_forced_local();
750   this->forced_locals_.push_back(sym);
751 }
752
753 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
754 // is only called for undefined symbols, when at least one --wrap
755 // option was used.
756
757 const char*
758 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
759 {
760   // For some targets, we need to ignore a specific character when
761   // wrapping, and add it back later.
762   char prefix = '\0';
763   if (name[0] == parameters->target().wrap_char())
764     {
765       prefix = name[0];
766       ++name;
767     }
768
769   if (parameters->options().is_wrap(name))
770     {
771       // Turn NAME into __wrap_NAME.
772       std::string s;
773       if (prefix != '\0')
774         s += prefix;
775       s += "__wrap_";
776       s += name;
777
778       // This will give us both the old and new name in NAMEPOOL_, but
779       // that is OK.  Only the versions we need will wind up in the
780       // real string table in the output file.
781       return this->namepool_.add(s.c_str(), true, name_key);
782     }
783
784   const char* const real_prefix = "__real_";
785   const size_t real_prefix_length = strlen(real_prefix);
786   if (strncmp(name, real_prefix, real_prefix_length) == 0
787       && parameters->options().is_wrap(name + real_prefix_length))
788     {
789       // Turn __real_NAME into NAME.
790       std::string s;
791       if (prefix != '\0')
792         s += prefix;
793       s += name + real_prefix_length;
794       return this->namepool_.add(s.c_str(), true, name_key);
795     }
796
797   return name;
798 }
799
800 // This is called when we see a symbol NAME/VERSION, and the symbol
801 // already exists in the symbol table, and VERSION is marked as being
802 // the default version.  SYM is the NAME/VERSION symbol we just added.
803 // DEFAULT_IS_NEW is true if this is the first time we have seen the
804 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
805
806 template<int size, bool big_endian>
807 void
808 Symbol_table::define_default_version(Sized_symbol<size>* sym,
809                                      bool default_is_new,
810                                      Symbol_table_type::iterator pdef)
811 {
812   if (default_is_new)
813     {
814       // This is the first time we have seen NAME/NULL.  Make
815       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
816       // version.
817       pdef->second = sym;
818       sym->set_is_default();
819     }
820   else if (pdef->second == sym)
821     {
822       // NAME/NULL already points to NAME/VERSION.  Don't mark the
823       // symbol as the default if it is not already the default.
824     }
825   else
826     {
827       // This is the unfortunate case where we already have entries
828       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
829       // NAME/VERSION where VERSION is the default version.  We have
830       // already resolved this new symbol with the existing
831       // NAME/VERSION symbol.
832
833       // It's possible that NAME/NULL and NAME/VERSION are both
834       // defined in regular objects.  This can only happen if one
835       // object file defines foo and another defines foo@@ver.  This
836       // is somewhat obscure, but we call it a multiple definition
837       // error.
838
839       // It's possible that NAME/NULL actually has a version, in which
840       // case it won't be the same as VERSION.  This happens with
841       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
842       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
843       // then see an unadorned t2_2 in an object file and give it
844       // version VER1 from the version script.  This looks like a
845       // default definition for VER1, so it looks like we should merge
846       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
847       // not obvious that this is an error, either.  So we just punt.
848
849       // If one of the symbols has non-default visibility, and the
850       // other is defined in a shared object, then they are different
851       // symbols.
852
853       // Otherwise, we just resolve the symbols as though they were
854       // the same.
855
856       if (pdef->second->version() != NULL)
857         gold_assert(pdef->second->version() != sym->version());
858       else if (sym->visibility() != elfcpp::STV_DEFAULT
859                && pdef->second->is_from_dynobj())
860         ;
861       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
862                && sym->is_from_dynobj())
863         ;
864       else
865         {
866           const Sized_symbol<size>* symdef;
867           symdef = this->get_sized_symbol<size>(pdef->second);
868           Symbol_table::resolve<size, big_endian>(sym, symdef);
869           this->make_forwarder(pdef->second, sym);
870           pdef->second = sym;
871           sym->set_is_default();
872         }
873     }
874 }
875
876 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
877 // name and VERSION is the version; both are canonicalized.  DEF is
878 // whether this is the default version.  ST_SHNDX is the symbol's
879 // section index; IS_ORDINARY is whether this is a normal section
880 // rather than a special code.
881
882 // If IS_DEFAULT_VERSION is true, then this is the definition of a
883 // default version of a symbol.  That means that any lookup of
884 // NAME/NULL and any lookup of NAME/VERSION should always return the
885 // same symbol.  This is obvious for references, but in particular we
886 // want to do this for definitions: overriding NAME/NULL should also
887 // override NAME/VERSION.  If we don't do that, it would be very hard
888 // to override functions in a shared library which uses versioning.
889
890 // We implement this by simply making both entries in the hash table
891 // point to the same Symbol structure.  That is easy enough if this is
892 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
893 // that we have seen both already, in which case they will both have
894 // independent entries in the symbol table.  We can't simply change
895 // the symbol table entry, because we have pointers to the entries
896 // attached to the object files.  So we mark the entry attached to the
897 // object file as a forwarder, and record it in the forwarders_ map.
898 // Note that entries in the hash table will never be marked as
899 // forwarders.
900 //
901 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
902 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
903 // for a special section code.  ST_SHNDX may be modified if the symbol
904 // is defined in a section being discarded.
905
906 template<int size, bool big_endian>
907 Sized_symbol<size>*
908 Symbol_table::add_from_object(Object* object,
909                               const char* name,
910                               Stringpool::Key name_key,
911                               const char* version,
912                               Stringpool::Key version_key,
913                               bool is_default_version,
914                               const elfcpp::Sym<size, big_endian>& sym,
915                               unsigned int st_shndx,
916                               bool is_ordinary,
917                               unsigned int orig_st_shndx)
918 {
919   // Print a message if this symbol is being traced.
920   if (parameters->options().is_trace_symbol(name))
921     {
922       if (orig_st_shndx == elfcpp::SHN_UNDEF)
923         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
924       else
925         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
926     }
927
928   // For an undefined symbol, we may need to adjust the name using
929   // --wrap.
930   if (orig_st_shndx == elfcpp::SHN_UNDEF
931       && parameters->options().any_wrap())
932     {
933       const char* wrap_name = this->wrap_symbol(name, &name_key);
934       if (wrap_name != name)
935         {
936           // If we see a reference to malloc with version GLIBC_2.0,
937           // and we turn it into a reference to __wrap_malloc, then we
938           // discard the version number.  Otherwise the user would be
939           // required to specify the correct version for
940           // __wrap_malloc.
941           version = NULL;
942           version_key = 0;
943           name = wrap_name;
944         }
945     }
946
947   Symbol* const snull = NULL;
948   std::pair<typename Symbol_table_type::iterator, bool> ins =
949     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
950                                        snull));
951
952   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
953     std::make_pair(this->table_.end(), false);
954   if (is_default_version)
955     {
956       const Stringpool::Key vnull_key = 0;
957       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
958                                                                      vnull_key),
959                                                       snull));
960     }
961
962   // ins.first: an iterator, which is a pointer to a pair.
963   // ins.first->first: the key (a pair of name and version).
964   // ins.first->second: the value (Symbol*).
965   // ins.second: true if new entry was inserted, false if not.
966
967   Sized_symbol<size>* ret;
968   bool was_undefined;
969   bool was_common;
970   if (!ins.second)
971     {
972       // We already have an entry for NAME/VERSION.
973       ret = this->get_sized_symbol<size>(ins.first->second);
974       gold_assert(ret != NULL);
975
976       was_undefined = ret->is_undefined();
977       was_common = ret->is_common();
978
979       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
980                     version);
981       if (parameters->options().gc_sections())
982         this->gc_mark_dyn_syms(ret);
983
984       if (is_default_version)
985         this->define_default_version<size, big_endian>(ret, insdefault.second,
986                                                        insdefault.first);
987     }
988   else
989     {
990       // This is the first time we have seen NAME/VERSION.
991       gold_assert(ins.first->second == NULL);
992
993       if (is_default_version && !insdefault.second)
994         {
995           // We already have an entry for NAME/NULL.  If we override
996           // it, then change it to NAME/VERSION.
997           ret = this->get_sized_symbol<size>(insdefault.first->second);
998
999           was_undefined = ret->is_undefined();
1000           was_common = ret->is_common();
1001
1002           this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1003                         version);
1004           if (parameters->options().gc_sections())
1005             this->gc_mark_dyn_syms(ret);
1006           ins.first->second = ret;
1007         }
1008       else
1009         {
1010           was_undefined = false;
1011           was_common = false;
1012
1013           Sized_target<size, big_endian>* target =
1014             parameters->sized_target<size, big_endian>();
1015           if (!target->has_make_symbol())
1016             ret = new Sized_symbol<size>();
1017           else
1018             {
1019               ret = target->make_symbol();
1020               if (ret == NULL)
1021                 {
1022                   // This means that we don't want a symbol table
1023                   // entry after all.
1024                   if (!is_default_version)
1025                     this->table_.erase(ins.first);
1026                   else
1027                     {
1028                       this->table_.erase(insdefault.first);
1029                       // Inserting INSDEFAULT invalidated INS.
1030                       this->table_.erase(std::make_pair(name_key,
1031                                                         version_key));
1032                     }
1033                   return NULL;
1034                 }
1035             }
1036
1037           ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1038
1039           ins.first->second = ret;
1040           if (is_default_version)
1041             {
1042               // This is the first time we have seen NAME/NULL.  Point
1043               // it at the new entry for NAME/VERSION.
1044               gold_assert(insdefault.second);
1045               insdefault.first->second = ret;
1046             }
1047         }
1048
1049       if (is_default_version)
1050         ret->set_is_default();
1051     }
1052
1053   // Record every time we see a new undefined symbol, to speed up
1054   // archive groups.
1055   if (!was_undefined && ret->is_undefined())
1056     {
1057       ++this->saw_undefined_;
1058       if (parameters->options().has_plugins())
1059         parameters->options().plugins()->new_undefined_symbol(ret);
1060     }
1061
1062   // Keep track of common symbols, to speed up common symbol
1063   // allocation.
1064   if (!was_common && ret->is_common())
1065     {
1066       if (ret->type() == elfcpp::STT_TLS)
1067         this->tls_commons_.push_back(ret);
1068       else if (!is_ordinary
1069                && st_shndx == parameters->target().small_common_shndx())
1070         this->small_commons_.push_back(ret);
1071       else if (!is_ordinary
1072                && st_shndx == parameters->target().large_common_shndx())
1073         this->large_commons_.push_back(ret);
1074       else
1075         this->commons_.push_back(ret);
1076     }
1077
1078   // If we're not doing a relocatable link, then any symbol with
1079   // hidden or internal visibility is local.
1080   if ((ret->visibility() == elfcpp::STV_HIDDEN
1081        || ret->visibility() == elfcpp::STV_INTERNAL)
1082       && (ret->binding() == elfcpp::STB_GLOBAL
1083           || ret->binding() == elfcpp::STB_GNU_UNIQUE
1084           || ret->binding() == elfcpp::STB_WEAK)
1085       && !parameters->options().relocatable())
1086     this->force_local(ret);
1087
1088   return ret;
1089 }
1090
1091 // Add all the symbols in a relocatable object to the hash table.
1092
1093 template<int size, bool big_endian>
1094 void
1095 Symbol_table::add_from_relobj(
1096     Sized_relobj_file<size, big_endian>* relobj,
1097     const unsigned char* syms,
1098     size_t count,
1099     size_t symndx_offset,
1100     const char* sym_names,
1101     size_t sym_name_size,
1102     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1103     size_t* defined)
1104 {
1105   *defined = 0;
1106
1107   gold_assert(size == parameters->target().get_size());
1108
1109   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1110
1111   const bool just_symbols = relobj->just_symbols();
1112
1113   const unsigned char* p = syms;
1114   for (size_t i = 0; i < count; ++i, p += sym_size)
1115     {
1116       (*sympointers)[i] = NULL;
1117
1118       elfcpp::Sym<size, big_endian> sym(p);
1119
1120       unsigned int st_name = sym.get_st_name();
1121       if (st_name >= sym_name_size)
1122         {
1123           relobj->error(_("bad global symbol name offset %u at %zu"),
1124                         st_name, i);
1125           continue;
1126         }
1127
1128       const char* name = sym_names + st_name;
1129
1130       bool is_ordinary;
1131       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1132                                                        sym.get_st_shndx(),
1133                                                        &is_ordinary);
1134       unsigned int orig_st_shndx = st_shndx;
1135       if (!is_ordinary)
1136         orig_st_shndx = elfcpp::SHN_UNDEF;
1137
1138       if (st_shndx != elfcpp::SHN_UNDEF)
1139         ++*defined;
1140
1141       // A symbol defined in a section which we are not including must
1142       // be treated as an undefined symbol.
1143       bool is_defined_in_discarded_section = false;
1144       if (st_shndx != elfcpp::SHN_UNDEF
1145           && is_ordinary
1146           && !relobj->is_section_included(st_shndx)
1147           && !this->is_section_folded(relobj, st_shndx))
1148         {
1149           st_shndx = elfcpp::SHN_UNDEF;
1150           is_defined_in_discarded_section = true;
1151         }
1152
1153       // In an object file, an '@' in the name separates the symbol
1154       // name from the version name.  If there are two '@' characters,
1155       // this is the default version.
1156       const char* ver = strchr(name, '@');
1157       Stringpool::Key ver_key = 0;
1158       int namelen = 0;
1159       // IS_DEFAULT_VERSION: is the version default?
1160       // IS_FORCED_LOCAL: is the symbol forced local?
1161       bool is_default_version = false;
1162       bool is_forced_local = false;
1163
1164       // FIXME: For incremental links, we don't store version information,
1165       // so we need to ignore version symbols for now.
1166       if (parameters->incremental_update() && ver != NULL)
1167         {
1168           namelen = ver - name;
1169           ver = NULL;
1170         }
1171
1172       if (ver != NULL)
1173         {
1174           // The symbol name is of the form foo@VERSION or foo@@VERSION
1175           namelen = ver - name;
1176           ++ver;
1177           if (*ver == '@')
1178             {
1179               is_default_version = true;
1180               ++ver;
1181             }
1182           ver = this->namepool_.add(ver, true, &ver_key);
1183         }
1184       // We don't want to assign a version to an undefined symbol,
1185       // even if it is listed in the version script.  FIXME: What
1186       // about a common symbol?
1187       else
1188         {
1189           namelen = strlen(name);
1190           if (!this->version_script_.empty()
1191               && st_shndx != elfcpp::SHN_UNDEF)
1192             {
1193               // The symbol name did not have a version, but the
1194               // version script may assign a version anyway.
1195               std::string version;
1196               bool is_global;
1197               if (this->version_script_.get_symbol_version(name, &version,
1198                                                            &is_global))
1199                 {
1200                   if (!is_global)
1201                     is_forced_local = true;
1202                   else if (!version.empty())
1203                     {
1204                       ver = this->namepool_.add_with_length(version.c_str(),
1205                                                             version.length(),
1206                                                             true,
1207                                                             &ver_key);
1208                       is_default_version = true;
1209                     }
1210                 }
1211             }
1212         }
1213
1214       elfcpp::Sym<size, big_endian>* psym = &sym;
1215       unsigned char symbuf[sym_size];
1216       elfcpp::Sym<size, big_endian> sym2(symbuf);
1217       if (just_symbols)
1218         {
1219           memcpy(symbuf, p, sym_size);
1220           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1221           if (orig_st_shndx != elfcpp::SHN_UNDEF
1222               && is_ordinary
1223               && relobj->e_type() == elfcpp::ET_REL)
1224             {
1225               // Symbol values in relocatable object files are section
1226               // relative.  This is normally what we want, but since here
1227               // we are converting the symbol to absolute we need to add
1228               // the section address.  The section address in an object
1229               // file is normally zero, but people can use a linker
1230               // script to change it.
1231               sw.put_st_value(sym.get_st_value()
1232                               + relobj->section_address(orig_st_shndx));
1233             }
1234           st_shndx = elfcpp::SHN_ABS;
1235           is_ordinary = false;
1236           psym = &sym2;
1237         }
1238
1239       // Fix up visibility if object has no-export set.
1240       if (relobj->no_export()
1241           && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1242         {
1243           // We may have copied symbol already above.
1244           if (psym != &sym2)
1245             {
1246               memcpy(symbuf, p, sym_size);
1247               psym = &sym2;
1248             }
1249
1250           elfcpp::STV visibility = sym2.get_st_visibility();
1251           if (visibility == elfcpp::STV_DEFAULT
1252               || visibility == elfcpp::STV_PROTECTED)
1253             {
1254               elfcpp::Sym_write<size, big_endian> sw(symbuf);
1255               unsigned char nonvis = sym2.get_st_nonvis();
1256               sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1257             }
1258         }
1259
1260       Stringpool::Key name_key;
1261       name = this->namepool_.add_with_length(name, namelen, true,
1262                                              &name_key);
1263
1264       Sized_symbol<size>* res;
1265       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1266                                   is_default_version, *psym, st_shndx,
1267                                   is_ordinary, orig_st_shndx);
1268       
1269       if (is_forced_local)
1270         this->force_local(res);
1271
1272       // Do not treat this symbol as garbage if this symbol will be
1273       // exported to the dynamic symbol table.  This is true when
1274       // building a shared library or using --export-dynamic and
1275       // the symbol is externally visible.
1276       if (parameters->options().gc_sections()
1277           && res->is_externally_visible()
1278           && !res->is_from_dynobj()
1279           && (parameters->options().shared()
1280               || parameters->options().export_dynamic()))
1281         this->gc_mark_symbol(res);
1282
1283       if (is_defined_in_discarded_section)
1284         res->set_is_defined_in_discarded_section();
1285
1286       (*sympointers)[i] = res;
1287     }
1288 }
1289
1290 // Add a symbol from a plugin-claimed file.
1291
1292 template<int size, bool big_endian>
1293 Symbol*
1294 Symbol_table::add_from_pluginobj(
1295     Sized_pluginobj<size, big_endian>* obj,
1296     const char* name,
1297     const char* ver,
1298     elfcpp::Sym<size, big_endian>* sym)
1299 {
1300   unsigned int st_shndx = sym->get_st_shndx();
1301   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1302
1303   Stringpool::Key ver_key = 0;
1304   bool is_default_version = false;
1305   bool is_forced_local = false;
1306
1307   if (ver != NULL)
1308     {
1309       ver = this->namepool_.add(ver, true, &ver_key);
1310     }
1311   // We don't want to assign a version to an undefined symbol,
1312   // even if it is listed in the version script.  FIXME: What
1313   // about a common symbol?
1314   else
1315     {
1316       if (!this->version_script_.empty()
1317           && st_shndx != elfcpp::SHN_UNDEF)
1318         {
1319           // The symbol name did not have a version, but the
1320           // version script may assign a version anyway.
1321           std::string version;
1322           bool is_global;
1323           if (this->version_script_.get_symbol_version(name, &version,
1324                                                        &is_global))
1325             {
1326               if (!is_global)
1327                 is_forced_local = true;
1328               else if (!version.empty())
1329                 {
1330                   ver = this->namepool_.add_with_length(version.c_str(),
1331                                                         version.length(),
1332                                                         true,
1333                                                         &ver_key);
1334                   is_default_version = true;
1335                 }
1336             }
1337         }
1338     }
1339
1340   Stringpool::Key name_key;
1341   name = this->namepool_.add(name, true, &name_key);
1342
1343   Sized_symbol<size>* res;
1344   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1345                               is_default_version, *sym, st_shndx,
1346                               is_ordinary, st_shndx);
1347
1348   if (is_forced_local)
1349     this->force_local(res);
1350
1351   return res;
1352 }
1353
1354 // Add all the symbols in a dynamic object to the hash table.
1355
1356 template<int size, bool big_endian>
1357 void
1358 Symbol_table::add_from_dynobj(
1359     Sized_dynobj<size, big_endian>* dynobj,
1360     const unsigned char* syms,
1361     size_t count,
1362     const char* sym_names,
1363     size_t sym_name_size,
1364     const unsigned char* versym,
1365     size_t versym_size,
1366     const std::vector<const char*>* version_map,
1367     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1368     size_t* defined)
1369 {
1370   *defined = 0;
1371
1372   gold_assert(size == parameters->target().get_size());
1373
1374   if (dynobj->just_symbols())
1375     {
1376       gold_error(_("--just-symbols does not make sense with a shared object"));
1377       return;
1378     }
1379
1380   // FIXME: For incremental links, we don't store version information,
1381   // so we need to ignore version symbols for now.
1382   if (parameters->incremental_update())
1383     versym = NULL;
1384
1385   if (versym != NULL && versym_size / 2 < count)
1386     {
1387       dynobj->error(_("too few symbol versions"));
1388       return;
1389     }
1390
1391   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1392
1393   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1394   // weak aliases.  This is necessary because if the dynamic object
1395   // provides the same variable under two names, one of which is a
1396   // weak definition, and the regular object refers to the weak
1397   // definition, we have to put both the weak definition and the
1398   // strong definition into the dynamic symbol table.  Given a weak
1399   // definition, the only way that we can find the corresponding
1400   // strong definition, if any, is to search the symbol table.
1401   std::vector<Sized_symbol<size>*> object_symbols;
1402
1403   const unsigned char* p = syms;
1404   const unsigned char* vs = versym;
1405   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1406     {
1407       elfcpp::Sym<size, big_endian> sym(p);
1408
1409       if (sympointers != NULL)
1410         (*sympointers)[i] = NULL;
1411
1412       // Ignore symbols with local binding or that have
1413       // internal or hidden visibility.
1414       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1415           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1416           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1417         continue;
1418
1419       // A protected symbol in a shared library must be treated as a
1420       // normal symbol when viewed from outside the shared library.
1421       // Implement this by overriding the visibility here.
1422       elfcpp::Sym<size, big_endian>* psym = &sym;
1423       unsigned char symbuf[sym_size];
1424       elfcpp::Sym<size, big_endian> sym2(symbuf);
1425       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1426         {
1427           memcpy(symbuf, p, sym_size);
1428           elfcpp::Sym_write<size, big_endian> sw(symbuf);
1429           sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1430           psym = &sym2;
1431         }
1432
1433       unsigned int st_name = psym->get_st_name();
1434       if (st_name >= sym_name_size)
1435         {
1436           dynobj->error(_("bad symbol name offset %u at %zu"),
1437                         st_name, i);
1438           continue;
1439         }
1440
1441       const char* name = sym_names + st_name;
1442
1443       bool is_ordinary;
1444       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1445                                                        &is_ordinary);
1446
1447       if (st_shndx != elfcpp::SHN_UNDEF)
1448         ++*defined;
1449
1450       Sized_symbol<size>* res;
1451
1452       if (versym == NULL)
1453         {
1454           Stringpool::Key name_key;
1455           name = this->namepool_.add(name, true, &name_key);
1456           res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1457                                       false, *psym, st_shndx, is_ordinary,
1458                                       st_shndx);
1459         }
1460       else
1461         {
1462           // Read the version information.
1463
1464           unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1465
1466           bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1467           v &= elfcpp::VERSYM_VERSION;
1468
1469           // The Sun documentation says that V can be VER_NDX_LOCAL,
1470           // or VER_NDX_GLOBAL, or a version index.  The meaning of
1471           // VER_NDX_LOCAL is defined as "Symbol has local scope."
1472           // The old GNU linker will happily generate VER_NDX_LOCAL
1473           // for an undefined symbol.  I don't know what the Sun
1474           // linker will generate.
1475
1476           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1477               && st_shndx != elfcpp::SHN_UNDEF)
1478             {
1479               // This symbol should not be visible outside the object.
1480               continue;
1481             }
1482
1483           // At this point we are definitely going to add this symbol.
1484           Stringpool::Key name_key;
1485           name = this->namepool_.add(name, true, &name_key);
1486
1487           if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1488               || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1489             {
1490               // This symbol does not have a version.
1491               res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1492                                           false, *psym, st_shndx, is_ordinary,
1493                                           st_shndx);
1494             }
1495           else
1496             {
1497               if (v >= version_map->size())
1498                 {
1499                   dynobj->error(_("versym for symbol %zu out of range: %u"),
1500                                 i, v);
1501                   continue;
1502                 }
1503
1504               const char* version = (*version_map)[v];
1505               if (version == NULL)
1506                 {
1507                   dynobj->error(_("versym for symbol %zu has no name: %u"),
1508                                 i, v);
1509                   continue;
1510                 }
1511
1512               Stringpool::Key version_key;
1513               version = this->namepool_.add(version, true, &version_key);
1514
1515               // If this is an absolute symbol, and the version name
1516               // and symbol name are the same, then this is the
1517               // version definition symbol.  These symbols exist to
1518               // support using -u to pull in particular versions.  We
1519               // do not want to record a version for them.
1520               if (st_shndx == elfcpp::SHN_ABS
1521                   && !is_ordinary
1522                   && name_key == version_key)
1523                 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1524                                             false, *psym, st_shndx, is_ordinary,
1525                                             st_shndx);
1526               else
1527                 {
1528                   const bool is_default_version =
1529                     !hidden && st_shndx != elfcpp::SHN_UNDEF;
1530                   res = this->add_from_object(dynobj, name, name_key, version,
1531                                               version_key, is_default_version,
1532                                               *psym, st_shndx,
1533                                               is_ordinary, st_shndx);
1534                 }
1535             }
1536         }
1537
1538       // Note that it is possible that RES was overridden by an
1539       // earlier object, in which case it can't be aliased here.
1540       if (st_shndx != elfcpp::SHN_UNDEF
1541           && is_ordinary
1542           && psym->get_st_type() == elfcpp::STT_OBJECT
1543           && res->source() == Symbol::FROM_OBJECT
1544           && res->object() == dynobj)
1545         object_symbols.push_back(res);
1546
1547       if (sympointers != NULL)
1548         (*sympointers)[i] = res;
1549     }
1550
1551   this->record_weak_aliases(&object_symbols);
1552 }
1553
1554 // Add a symbol from a incremental object file.
1555
1556 template<int size, bool big_endian>
1557 Sized_symbol<size>*
1558 Symbol_table::add_from_incrobj(
1559     Object* obj,
1560     const char* name,
1561     const char* ver,
1562     elfcpp::Sym<size, big_endian>* sym)
1563 {
1564   unsigned int st_shndx = sym->get_st_shndx();
1565   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1566
1567   Stringpool::Key ver_key = 0;
1568   bool is_default_version = false;
1569   bool is_forced_local = false;
1570
1571   Stringpool::Key name_key;
1572   name = this->namepool_.add(name, true, &name_key);
1573
1574   Sized_symbol<size>* res;
1575   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1576                               is_default_version, *sym, st_shndx,
1577                               is_ordinary, st_shndx);
1578
1579   if (is_forced_local)
1580     this->force_local(res);
1581
1582   return res;
1583 }
1584
1585 // This is used to sort weak aliases.  We sort them first by section
1586 // index, then by offset, then by weak ahead of strong.
1587
1588 template<int size>
1589 class Weak_alias_sorter
1590 {
1591  public:
1592   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1593 };
1594
1595 template<int size>
1596 bool
1597 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1598                                     const Sized_symbol<size>* s2) const
1599 {
1600   bool is_ordinary;
1601   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1602   gold_assert(is_ordinary);
1603   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1604   gold_assert(is_ordinary);
1605   if (s1_shndx != s2_shndx)
1606     return s1_shndx < s2_shndx;
1607
1608   if (s1->value() != s2->value())
1609     return s1->value() < s2->value();
1610   if (s1->binding() != s2->binding())
1611     {
1612       if (s1->binding() == elfcpp::STB_WEAK)
1613         return true;
1614       if (s2->binding() == elfcpp::STB_WEAK)
1615         return false;
1616     }
1617   return std::string(s1->name()) < std::string(s2->name());
1618 }
1619
1620 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1621 // for any weak aliases, and record them so that if we add the weak
1622 // alias to the dynamic symbol table, we also add the corresponding
1623 // strong symbol.
1624
1625 template<int size>
1626 void
1627 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1628 {
1629   // Sort the vector by section index, then by offset, then by weak
1630   // ahead of strong.
1631   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1632
1633   // Walk through the vector.  For each weak definition, record
1634   // aliases.
1635   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1636          symbols->begin();
1637        p != symbols->end();
1638        ++p)
1639     {
1640       if ((*p)->binding() != elfcpp::STB_WEAK)
1641         continue;
1642
1643       // Build a circular list of weak aliases.  Each symbol points to
1644       // the next one in the circular list.
1645
1646       Sized_symbol<size>* from_sym = *p;
1647       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1648       for (q = p + 1; q != symbols->end(); ++q)
1649         {
1650           bool dummy;
1651           if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1652               || (*q)->value() != from_sym->value())
1653             break;
1654
1655           this->weak_aliases_[from_sym] = *q;
1656           from_sym->set_has_alias();
1657           from_sym = *q;
1658         }
1659
1660       if (from_sym != *p)
1661         {
1662           this->weak_aliases_[from_sym] = *p;
1663           from_sym->set_has_alias();
1664         }
1665
1666       p = q - 1;
1667     }
1668 }
1669
1670 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1671 // true, then only create the symbol if there is a reference to it.
1672 // If this does not return NULL, it sets *POLDSYM to the existing
1673 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1674 // resolve the newly created symbol to the old one.  This
1675 // canonicalizes *PNAME and *PVERSION.
1676
1677 template<int size, bool big_endian>
1678 Sized_symbol<size>*
1679 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1680                                     bool only_if_ref,
1681                                     Sized_symbol<size>** poldsym,
1682                                     bool* resolve_oldsym)
1683 {
1684   *resolve_oldsym = false;
1685   *poldsym = NULL;
1686
1687   // If the caller didn't give us a version, see if we get one from
1688   // the version script.
1689   std::string v;
1690   bool is_default_version = false;
1691   if (*pversion == NULL)
1692     {
1693       bool is_global;
1694       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1695         {
1696           if (is_global && !v.empty())
1697             {
1698               *pversion = v.c_str();
1699               // If we get the version from a version script, then we
1700               // are also the default version.
1701               is_default_version = true;
1702             }
1703         }
1704     }
1705
1706   Symbol* oldsym;
1707   Sized_symbol<size>* sym;
1708
1709   bool add_to_table = false;
1710   typename Symbol_table_type::iterator add_loc = this->table_.end();
1711   bool add_def_to_table = false;
1712   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1713
1714   if (only_if_ref)
1715     {
1716       oldsym = this->lookup(*pname, *pversion);
1717       if (oldsym == NULL && is_default_version)
1718         oldsym = this->lookup(*pname, NULL);
1719       if (oldsym == NULL || !oldsym->is_undefined())
1720         return NULL;
1721
1722       *pname = oldsym->name();
1723       if (is_default_version)
1724         *pversion = this->namepool_.add(*pversion, true, NULL);
1725       else
1726         *pversion = oldsym->version();
1727     }
1728   else
1729     {
1730       // Canonicalize NAME and VERSION.
1731       Stringpool::Key name_key;
1732       *pname = this->namepool_.add(*pname, true, &name_key);
1733
1734       Stringpool::Key version_key = 0;
1735       if (*pversion != NULL)
1736         *pversion = this->namepool_.add(*pversion, true, &version_key);
1737
1738       Symbol* const snull = NULL;
1739       std::pair<typename Symbol_table_type::iterator, bool> ins =
1740         this->table_.insert(std::make_pair(std::make_pair(name_key,
1741                                                           version_key),
1742                                            snull));
1743
1744       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1745         std::make_pair(this->table_.end(), false);
1746       if (is_default_version)
1747         {
1748           const Stringpool::Key vnull = 0;
1749           insdefault =
1750             this->table_.insert(std::make_pair(std::make_pair(name_key,
1751                                                               vnull),
1752                                                snull));
1753         }
1754
1755       if (!ins.second)
1756         {
1757           // We already have a symbol table entry for NAME/VERSION.
1758           oldsym = ins.first->second;
1759           gold_assert(oldsym != NULL);
1760
1761           if (is_default_version)
1762             {
1763               Sized_symbol<size>* soldsym =
1764                 this->get_sized_symbol<size>(oldsym);
1765               this->define_default_version<size, big_endian>(soldsym,
1766                                                              insdefault.second,
1767                                                              insdefault.first);
1768             }
1769         }
1770       else
1771         {
1772           // We haven't seen this symbol before.
1773           gold_assert(ins.first->second == NULL);
1774
1775           add_to_table = true;
1776           add_loc = ins.first;
1777
1778           if (is_default_version && !insdefault.second)
1779             {
1780               // We are adding NAME/VERSION, and it is the default
1781               // version.  We already have an entry for NAME/NULL.
1782               oldsym = insdefault.first->second;
1783               *resolve_oldsym = true;
1784             }
1785           else
1786             {
1787               oldsym = NULL;
1788
1789               if (is_default_version)
1790                 {
1791                   add_def_to_table = true;
1792                   add_def_loc = insdefault.first;
1793                 }
1794             }
1795         }
1796     }
1797
1798   const Target& target = parameters->target();
1799   if (!target.has_make_symbol())
1800     sym = new Sized_symbol<size>();
1801   else
1802     {
1803       Sized_target<size, big_endian>* sized_target =
1804         parameters->sized_target<size, big_endian>();
1805       sym = sized_target->make_symbol();
1806       if (sym == NULL)
1807         return NULL;
1808     }
1809
1810   if (add_to_table)
1811     add_loc->second = sym;
1812   else
1813     gold_assert(oldsym != NULL);
1814
1815   if (add_def_to_table)
1816     add_def_loc->second = sym;
1817
1818   *poldsym = this->get_sized_symbol<size>(oldsym);
1819
1820   return sym;
1821 }
1822
1823 // Define a symbol based on an Output_data.
1824
1825 Symbol*
1826 Symbol_table::define_in_output_data(const char* name,
1827                                     const char* version,
1828                                     Defined defined,
1829                                     Output_data* od,
1830                                     uint64_t value,
1831                                     uint64_t symsize,
1832                                     elfcpp::STT type,
1833                                     elfcpp::STB binding,
1834                                     elfcpp::STV visibility,
1835                                     unsigned char nonvis,
1836                                     bool offset_is_from_end,
1837                                     bool only_if_ref)
1838 {
1839   if (parameters->target().get_size() == 32)
1840     {
1841 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1842       return this->do_define_in_output_data<32>(name, version, defined, od,
1843                                                 value, symsize, type, binding,
1844                                                 visibility, nonvis,
1845                                                 offset_is_from_end,
1846                                                 only_if_ref);
1847 #else
1848       gold_unreachable();
1849 #endif
1850     }
1851   else if (parameters->target().get_size() == 64)
1852     {
1853 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1854       return this->do_define_in_output_data<64>(name, version, defined, od,
1855                                                 value, symsize, type, binding,
1856                                                 visibility, nonvis,
1857                                                 offset_is_from_end,
1858                                                 only_if_ref);
1859 #else
1860       gold_unreachable();
1861 #endif
1862     }
1863   else
1864     gold_unreachable();
1865 }
1866
1867 // Define a symbol in an Output_data, sized version.
1868
1869 template<int size>
1870 Sized_symbol<size>*
1871 Symbol_table::do_define_in_output_data(
1872     const char* name,
1873     const char* version,
1874     Defined defined,
1875     Output_data* od,
1876     typename elfcpp::Elf_types<size>::Elf_Addr value,
1877     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1878     elfcpp::STT type,
1879     elfcpp::STB binding,
1880     elfcpp::STV visibility,
1881     unsigned char nonvis,
1882     bool offset_is_from_end,
1883     bool only_if_ref)
1884 {
1885   Sized_symbol<size>* sym;
1886   Sized_symbol<size>* oldsym;
1887   bool resolve_oldsym;
1888
1889   if (parameters->target().is_big_endian())
1890     {
1891 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1892       sym = this->define_special_symbol<size, true>(&name, &version,
1893                                                     only_if_ref, &oldsym,
1894                                                     &resolve_oldsym);
1895 #else
1896       gold_unreachable();
1897 #endif
1898     }
1899   else
1900     {
1901 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1902       sym = this->define_special_symbol<size, false>(&name, &version,
1903                                                      only_if_ref, &oldsym,
1904                                                      &resolve_oldsym);
1905 #else
1906       gold_unreachable();
1907 #endif
1908     }
1909
1910   if (sym == NULL)
1911     return NULL;
1912
1913   sym->init_output_data(name, version, od, value, symsize, type, binding,
1914                         visibility, nonvis, offset_is_from_end,
1915                         defined == PREDEFINED);
1916
1917   if (oldsym == NULL)
1918     {
1919       if (binding == elfcpp::STB_LOCAL
1920           || this->version_script_.symbol_is_local(name))
1921         this->force_local(sym);
1922       else if (version != NULL)
1923         sym->set_is_default();
1924       return sym;
1925     }
1926
1927   if (Symbol_table::should_override_with_special(oldsym, type, defined))
1928     this->override_with_special(oldsym, sym);
1929
1930   if (resolve_oldsym)
1931     return sym;
1932   else
1933     {
1934       delete sym;
1935       return oldsym;
1936     }
1937 }
1938
1939 // Define a symbol based on an Output_segment.
1940
1941 Symbol*
1942 Symbol_table::define_in_output_segment(const char* name,
1943                                        const char* version,
1944                                        Defined defined,
1945                                        Output_segment* os,
1946                                        uint64_t value,
1947                                        uint64_t symsize,
1948                                        elfcpp::STT type,
1949                                        elfcpp::STB binding,
1950                                        elfcpp::STV visibility,
1951                                        unsigned char nonvis,
1952                                        Symbol::Segment_offset_base offset_base,
1953                                        bool only_if_ref)
1954 {
1955   if (parameters->target().get_size() == 32)
1956     {
1957 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1958       return this->do_define_in_output_segment<32>(name, version, defined, os,
1959                                                    value, symsize, type,
1960                                                    binding, visibility, nonvis,
1961                                                    offset_base, only_if_ref);
1962 #else
1963       gold_unreachable();
1964 #endif
1965     }
1966   else if (parameters->target().get_size() == 64)
1967     {
1968 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1969       return this->do_define_in_output_segment<64>(name, version, defined, os,
1970                                                    value, symsize, type,
1971                                                    binding, visibility, nonvis,
1972                                                    offset_base, only_if_ref);
1973 #else
1974       gold_unreachable();
1975 #endif
1976     }
1977   else
1978     gold_unreachable();
1979 }
1980
1981 // Define a symbol in an Output_segment, sized version.
1982
1983 template<int size>
1984 Sized_symbol<size>*
1985 Symbol_table::do_define_in_output_segment(
1986     const char* name,
1987     const char* version,
1988     Defined defined,
1989     Output_segment* os,
1990     typename elfcpp::Elf_types<size>::Elf_Addr value,
1991     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1992     elfcpp::STT type,
1993     elfcpp::STB binding,
1994     elfcpp::STV visibility,
1995     unsigned char nonvis,
1996     Symbol::Segment_offset_base offset_base,
1997     bool only_if_ref)
1998 {
1999   Sized_symbol<size>* sym;
2000   Sized_symbol<size>* oldsym;
2001   bool resolve_oldsym;
2002
2003   if (parameters->target().is_big_endian())
2004     {
2005 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2006       sym = this->define_special_symbol<size, true>(&name, &version,
2007                                                     only_if_ref, &oldsym,
2008                                                     &resolve_oldsym);
2009 #else
2010       gold_unreachable();
2011 #endif
2012     }
2013   else
2014     {
2015 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2016       sym = this->define_special_symbol<size, false>(&name, &version,
2017                                                      only_if_ref, &oldsym,
2018                                                      &resolve_oldsym);
2019 #else
2020       gold_unreachable();
2021 #endif
2022     }
2023
2024   if (sym == NULL)
2025     return NULL;
2026
2027   sym->init_output_segment(name, version, os, value, symsize, type, binding,
2028                            visibility, nonvis, offset_base,
2029                            defined == PREDEFINED);
2030
2031   if (oldsym == NULL)
2032     {
2033       if (binding == elfcpp::STB_LOCAL
2034           || this->version_script_.symbol_is_local(name))
2035         this->force_local(sym);
2036       else if (version != NULL)
2037         sym->set_is_default();
2038       return sym;
2039     }
2040
2041   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2042     this->override_with_special(oldsym, sym);
2043
2044   if (resolve_oldsym)
2045     return sym;
2046   else
2047     {
2048       delete sym;
2049       return oldsym;
2050     }
2051 }
2052
2053 // Define a special symbol with a constant value.  It is a multiple
2054 // definition error if this symbol is already defined.
2055
2056 Symbol*
2057 Symbol_table::define_as_constant(const char* name,
2058                                  const char* version,
2059                                  Defined defined,
2060                                  uint64_t value,
2061                                  uint64_t symsize,
2062                                  elfcpp::STT type,
2063                                  elfcpp::STB binding,
2064                                  elfcpp::STV visibility,
2065                                  unsigned char nonvis,
2066                                  bool only_if_ref,
2067                                  bool force_override)
2068 {
2069   if (parameters->target().get_size() == 32)
2070     {
2071 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2072       return this->do_define_as_constant<32>(name, version, defined, value,
2073                                              symsize, type, binding,
2074                                              visibility, nonvis, only_if_ref,
2075                                              force_override);
2076 #else
2077       gold_unreachable();
2078 #endif
2079     }
2080   else if (parameters->target().get_size() == 64)
2081     {
2082 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2083       return this->do_define_as_constant<64>(name, version, defined, value,
2084                                              symsize, type, binding,
2085                                              visibility, nonvis, only_if_ref,
2086                                              force_override);
2087 #else
2088       gold_unreachable();
2089 #endif
2090     }
2091   else
2092     gold_unreachable();
2093 }
2094
2095 // Define a symbol as a constant, sized version.
2096
2097 template<int size>
2098 Sized_symbol<size>*
2099 Symbol_table::do_define_as_constant(
2100     const char* name,
2101     const char* version,
2102     Defined defined,
2103     typename elfcpp::Elf_types<size>::Elf_Addr value,
2104     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2105     elfcpp::STT type,
2106     elfcpp::STB binding,
2107     elfcpp::STV visibility,
2108     unsigned char nonvis,
2109     bool only_if_ref,
2110     bool force_override)
2111 {
2112   Sized_symbol<size>* sym;
2113   Sized_symbol<size>* oldsym;
2114   bool resolve_oldsym;
2115
2116   if (parameters->target().is_big_endian())
2117     {
2118 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2119       sym = this->define_special_symbol<size, true>(&name, &version,
2120                                                     only_if_ref, &oldsym,
2121                                                     &resolve_oldsym);
2122 #else
2123       gold_unreachable();
2124 #endif
2125     }
2126   else
2127     {
2128 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2129       sym = this->define_special_symbol<size, false>(&name, &version,
2130                                                      only_if_ref, &oldsym,
2131                                                      &resolve_oldsym);
2132 #else
2133       gold_unreachable();
2134 #endif
2135     }
2136
2137   if (sym == NULL)
2138     return NULL;
2139
2140   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2141                      nonvis, defined == PREDEFINED);
2142
2143   if (oldsym == NULL)
2144     {
2145       // Version symbols are absolute symbols with name == version.
2146       // We don't want to force them to be local.
2147       if ((version == NULL
2148            || name != version
2149            || value != 0)
2150           && (binding == elfcpp::STB_LOCAL
2151               || this->version_script_.symbol_is_local(name)))
2152         this->force_local(sym);
2153       else if (version != NULL
2154                && (name != version || value != 0))
2155         sym->set_is_default();
2156       return sym;
2157     }
2158
2159   if (force_override
2160       || Symbol_table::should_override_with_special(oldsym, type, defined))
2161     this->override_with_special(oldsym, sym);
2162
2163   if (resolve_oldsym)
2164     return sym;
2165   else
2166     {
2167       delete sym;
2168       return oldsym;
2169     }
2170 }
2171
2172 // Define a set of symbols in output sections.
2173
2174 void
2175 Symbol_table::define_symbols(const Layout* layout, int count,
2176                              const Define_symbol_in_section* p,
2177                              bool only_if_ref)
2178 {
2179   for (int i = 0; i < count; ++i, ++p)
2180     {
2181       Output_section* os = layout->find_output_section(p->output_section);
2182       if (os != NULL)
2183         this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2184                                     p->size, p->type, p->binding,
2185                                     p->visibility, p->nonvis,
2186                                     p->offset_is_from_end,
2187                                     only_if_ref || p->only_if_ref);
2188       else
2189         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2190                                  p->type, p->binding, p->visibility, p->nonvis,
2191                                  only_if_ref || p->only_if_ref,
2192                                  false);
2193     }
2194 }
2195
2196 // Define a set of symbols in output segments.
2197
2198 void
2199 Symbol_table::define_symbols(const Layout* layout, int count,
2200                              const Define_symbol_in_segment* p,
2201                              bool only_if_ref)
2202 {
2203   for (int i = 0; i < count; ++i, ++p)
2204     {
2205       Output_segment* os = layout->find_output_segment(p->segment_type,
2206                                                        p->segment_flags_set,
2207                                                        p->segment_flags_clear);
2208       if (os != NULL)
2209         this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2210                                        p->size, p->type, p->binding,
2211                                        p->visibility, p->nonvis,
2212                                        p->offset_base,
2213                                        only_if_ref || p->only_if_ref);
2214       else
2215         this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2216                                  p->type, p->binding, p->visibility, p->nonvis,
2217                                  only_if_ref || p->only_if_ref,
2218                                  false);
2219     }
2220 }
2221
2222 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2223 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2224 // the offset within POSD.
2225
2226 template<int size>
2227 void
2228 Symbol_table::define_with_copy_reloc(
2229     Sized_symbol<size>* csym,
2230     Output_data* posd,
2231     typename elfcpp::Elf_types<size>::Elf_Addr value)
2232 {
2233   gold_assert(csym->is_from_dynobj());
2234   gold_assert(!csym->is_copied_from_dynobj());
2235   Object* object = csym->object();
2236   gold_assert(object->is_dynamic());
2237   Dynobj* dynobj = static_cast<Dynobj*>(object);
2238
2239   // Our copied variable has to override any variable in a shared
2240   // library.
2241   elfcpp::STB binding = csym->binding();
2242   if (binding == elfcpp::STB_WEAK)
2243     binding = elfcpp::STB_GLOBAL;
2244
2245   this->define_in_output_data(csym->name(), csym->version(), COPY,
2246                               posd, value, csym->symsize(),
2247                               csym->type(), binding,
2248                               csym->visibility(), csym->nonvis(),
2249                               false, false);
2250
2251   csym->set_is_copied_from_dynobj();
2252   csym->set_needs_dynsym_entry();
2253
2254   this->copied_symbol_dynobjs_[csym] = dynobj;
2255
2256   // We have now defined all aliases, but we have not entered them all
2257   // in the copied_symbol_dynobjs_ map.
2258   if (csym->has_alias())
2259     {
2260       Symbol* sym = csym;
2261       while (true)
2262         {
2263           sym = this->weak_aliases_[sym];
2264           if (sym == csym)
2265             break;
2266           gold_assert(sym->output_data() == posd);
2267
2268           sym->set_is_copied_from_dynobj();
2269           this->copied_symbol_dynobjs_[sym] = dynobj;
2270         }
2271     }
2272 }
2273
2274 // SYM is defined using a COPY reloc.  Return the dynamic object where
2275 // the original definition was found.
2276
2277 Dynobj*
2278 Symbol_table::get_copy_source(const Symbol* sym) const
2279 {
2280   gold_assert(sym->is_copied_from_dynobj());
2281   Copied_symbol_dynobjs::const_iterator p =
2282     this->copied_symbol_dynobjs_.find(sym);
2283   gold_assert(p != this->copied_symbol_dynobjs_.end());
2284   return p->second;
2285 }
2286
2287 // Add any undefined symbols named on the command line.
2288
2289 void
2290 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2291 {
2292   if (parameters->options().any_undefined()
2293       || layout->script_options()->any_unreferenced())
2294     {
2295       if (parameters->target().get_size() == 32)
2296         {
2297 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2298           this->do_add_undefined_symbols_from_command_line<32>(layout);
2299 #else
2300           gold_unreachable();
2301 #endif
2302         }
2303       else if (parameters->target().get_size() == 64)
2304         {
2305 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2306           this->do_add_undefined_symbols_from_command_line<64>(layout);
2307 #else
2308           gold_unreachable();
2309 #endif
2310         }
2311       else
2312         gold_unreachable();
2313     }
2314 }
2315
2316 template<int size>
2317 void
2318 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2319 {
2320   for (options::String_set::const_iterator p =
2321          parameters->options().undefined_begin();
2322        p != parameters->options().undefined_end();
2323        ++p)
2324     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2325
2326   for (options::String_set::const_iterator p =
2327          parameters->options().export_dynamic_symbol_begin();
2328        p != parameters->options().export_dynamic_symbol_end();
2329        ++p)
2330     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2331
2332   for (Script_options::referenced_const_iterator p =
2333          layout->script_options()->referenced_begin();
2334        p != layout->script_options()->referenced_end();
2335        ++p)
2336     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2337 }
2338
2339 template<int size>
2340 void
2341 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2342 {
2343   if (this->lookup(name) != NULL)
2344     return;
2345
2346   const char* version = NULL;
2347
2348   Sized_symbol<size>* sym;
2349   Sized_symbol<size>* oldsym;
2350   bool resolve_oldsym;
2351   if (parameters->target().is_big_endian())
2352     {
2353 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2354       sym = this->define_special_symbol<size, true>(&name, &version,
2355                                                     false, &oldsym,
2356                                                     &resolve_oldsym);
2357 #else
2358       gold_unreachable();
2359 #endif
2360     }
2361   else
2362     {
2363 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2364       sym = this->define_special_symbol<size, false>(&name, &version,
2365                                                      false, &oldsym,
2366                                                      &resolve_oldsym);
2367 #else
2368       gold_unreachable();
2369 #endif
2370     }
2371
2372   gold_assert(oldsym == NULL);
2373
2374   sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2375                       elfcpp::STV_DEFAULT, 0);
2376   ++this->saw_undefined_;
2377 }
2378
2379 // Set the dynamic symbol indexes.  INDEX is the index of the first
2380 // global dynamic symbol.  Pointers to the symbols are stored into the
2381 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2382 // updated dynamic symbol index.
2383
2384 unsigned int
2385 Symbol_table::set_dynsym_indexes(unsigned int index,
2386                                  std::vector<Symbol*>* syms,
2387                                  Stringpool* dynpool,
2388                                  Versions* versions)
2389 {
2390   for (Symbol_table_type::iterator p = this->table_.begin();
2391        p != this->table_.end();
2392        ++p)
2393     {
2394       Symbol* sym = p->second;
2395
2396       // Note that SYM may already have a dynamic symbol index, since
2397       // some symbols appear more than once in the symbol table, with
2398       // and without a version.
2399
2400       if (!sym->should_add_dynsym_entry(this))
2401         sym->set_dynsym_index(-1U);
2402       else if (!sym->has_dynsym_index())
2403         {
2404           sym->set_dynsym_index(index);
2405           ++index;
2406           syms->push_back(sym);
2407           dynpool->add(sym->name(), false, NULL);
2408
2409           // Record any version information.
2410           if (sym->version() != NULL)
2411             versions->record_version(this, dynpool, sym);
2412
2413           // If the symbol is defined in a dynamic object and is
2414           // referenced in a regular object, then mark the dynamic
2415           // object as needed.  This is used to implement --as-needed.
2416           if (sym->is_from_dynobj() && sym->in_reg())
2417             sym->object()->set_is_needed();
2418         }
2419     }
2420
2421   // Finish up the versions.  In some cases this may add new dynamic
2422   // symbols.
2423   index = versions->finalize(this, index, syms);
2424
2425   return index;
2426 }
2427
2428 // Set the final values for all the symbols.  The index of the first
2429 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2430 // file offset OFF.  Add their names to POOL.  Return the new file
2431 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2432
2433 off_t
2434 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2435                        size_t dyncount, Stringpool* pool,
2436                        unsigned int* plocal_symcount)
2437 {
2438   off_t ret;
2439
2440   gold_assert(*plocal_symcount != 0);
2441   this->first_global_index_ = *plocal_symcount;
2442
2443   this->dynamic_offset_ = dynoff;
2444   this->first_dynamic_global_index_ = dyn_global_index;
2445   this->dynamic_count_ = dyncount;
2446
2447   if (parameters->target().get_size() == 32)
2448     {
2449 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2450       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2451 #else
2452       gold_unreachable();
2453 #endif
2454     }
2455   else if (parameters->target().get_size() == 64)
2456     {
2457 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2458       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2459 #else
2460       gold_unreachable();
2461 #endif
2462     }
2463   else
2464     gold_unreachable();
2465
2466   // Now that we have the final symbol table, we can reliably note
2467   // which symbols should get warnings.
2468   this->warnings_.note_warnings(this);
2469
2470   return ret;
2471 }
2472
2473 // SYM is going into the symbol table at *PINDEX.  Add the name to
2474 // POOL, update *PINDEX and *POFF.
2475
2476 template<int size>
2477 void
2478 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2479                                   unsigned int* pindex, off_t* poff)
2480 {
2481   sym->set_symtab_index(*pindex);
2482   if (sym->version() == NULL || !parameters->options().relocatable())
2483     pool->add(sym->name(), false, NULL);
2484   else
2485     pool->add(sym->versioned_name(), true, NULL);
2486   ++*pindex;
2487   *poff += elfcpp::Elf_sizes<size>::sym_size;
2488 }
2489
2490 // Set the final value for all the symbols.  This is called after
2491 // Layout::finalize, so all the output sections have their final
2492 // address.
2493
2494 template<int size>
2495 off_t
2496 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2497                              unsigned int* plocal_symcount)
2498 {
2499   off = align_address(off, size >> 3);
2500   this->offset_ = off;
2501
2502   unsigned int index = *plocal_symcount;
2503   const unsigned int orig_index = index;
2504
2505   // First do all the symbols which have been forced to be local, as
2506   // they must appear before all global symbols.
2507   for (Forced_locals::iterator p = this->forced_locals_.begin();
2508        p != this->forced_locals_.end();
2509        ++p)
2510     {
2511       Symbol* sym = *p;
2512       gold_assert(sym->is_forced_local());
2513       if (this->sized_finalize_symbol<size>(sym))
2514         {
2515           this->add_to_final_symtab<size>(sym, pool, &index, &off);
2516           ++*plocal_symcount;
2517         }
2518     }
2519
2520   // Now do all the remaining symbols.
2521   for (Symbol_table_type::iterator p = this->table_.begin();
2522        p != this->table_.end();
2523        ++p)
2524     {
2525       Symbol* sym = p->second;
2526       if (this->sized_finalize_symbol<size>(sym))
2527         this->add_to_final_symtab<size>(sym, pool, &index, &off);
2528     }
2529
2530   this->output_count_ = index - orig_index;
2531
2532   return off;
2533 }
2534
2535 // Compute the final value of SYM and store status in location PSTATUS.
2536 // During relaxation, this may be called multiple times for a symbol to
2537 // compute its would-be final value in each relaxation pass.
2538
2539 template<int size>
2540 typename Sized_symbol<size>::Value_type
2541 Symbol_table::compute_final_value(
2542     const Sized_symbol<size>* sym,
2543     Compute_final_value_status* pstatus) const
2544 {
2545   typedef typename Sized_symbol<size>::Value_type Value_type;
2546   Value_type value;
2547
2548   switch (sym->source())
2549     {
2550     case Symbol::FROM_OBJECT:
2551       {
2552         bool is_ordinary;
2553         unsigned int shndx = sym->shndx(&is_ordinary);
2554
2555         if (!is_ordinary
2556             && shndx != elfcpp::SHN_ABS
2557             && !Symbol::is_common_shndx(shndx))
2558           {
2559             *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2560             return 0;
2561           }
2562
2563         Object* symobj = sym->object();
2564         if (symobj->is_dynamic())
2565           {
2566             value = 0;
2567             shndx = elfcpp::SHN_UNDEF;
2568           }
2569         else if (symobj->pluginobj() != NULL)
2570           {
2571             value = 0;
2572             shndx = elfcpp::SHN_UNDEF;
2573           }
2574         else if (shndx == elfcpp::SHN_UNDEF)
2575           value = 0;
2576         else if (!is_ordinary
2577                  && (shndx == elfcpp::SHN_ABS
2578                      || Symbol::is_common_shndx(shndx)))
2579           value = sym->value();
2580         else
2581           {
2582             Relobj* relobj = static_cast<Relobj*>(symobj);
2583             Output_section* os = relobj->output_section(shndx);
2584
2585             if (this->is_section_folded(relobj, shndx))
2586               {
2587                 gold_assert(os == NULL);
2588                 // Get the os of the section it is folded onto.
2589                 Section_id folded = this->icf_->get_folded_section(relobj,
2590                                                                    shndx);
2591                 gold_assert(folded.first != NULL);
2592                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2593                 unsigned folded_shndx = folded.second;
2594
2595                 os = folded_obj->output_section(folded_shndx);  
2596                 gold_assert(os != NULL);
2597
2598                 // Replace (relobj, shndx) with canonical ICF input section.
2599                 shndx = folded_shndx;
2600                 relobj = folded_obj;
2601               }
2602
2603             uint64_t secoff64 = relobj->output_section_offset(shndx);
2604             if (os == NULL)
2605               {
2606                 bool static_or_reloc = (parameters->doing_static_link() ||
2607                                         parameters->options().relocatable());
2608                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2609
2610                 *pstatus = CFVS_NO_OUTPUT_SECTION;
2611                 return 0;
2612               }
2613
2614             if (secoff64 == -1ULL)
2615               {
2616                 // The section needs special handling (e.g., a merge section).
2617
2618                 value = os->output_address(relobj, shndx, sym->value());
2619               }
2620             else
2621               {
2622                 Value_type secoff =
2623                   convert_types<Value_type, uint64_t>(secoff64);
2624                 if (sym->type() == elfcpp::STT_TLS)
2625                   value = sym->value() + os->tls_offset() + secoff;
2626                 else
2627                   value = sym->value() + os->address() + secoff;
2628               }
2629           }
2630       }
2631       break;
2632
2633     case Symbol::IN_OUTPUT_DATA:
2634       {
2635         Output_data* od = sym->output_data();
2636         value = sym->value();
2637         if (sym->type() != elfcpp::STT_TLS)
2638           value += od->address();
2639         else
2640           {
2641             Output_section* os = od->output_section();
2642             gold_assert(os != NULL);
2643             value += os->tls_offset() + (od->address() - os->address());
2644           }
2645         if (sym->offset_is_from_end())
2646           value += od->data_size();
2647       }
2648       break;
2649
2650     case Symbol::IN_OUTPUT_SEGMENT:
2651       {
2652         Output_segment* os = sym->output_segment();
2653         value = sym->value();
2654         if (sym->type() != elfcpp::STT_TLS)
2655           value += os->vaddr();
2656         switch (sym->offset_base())
2657           {
2658           case Symbol::SEGMENT_START:
2659             break;
2660           case Symbol::SEGMENT_END:
2661             value += os->memsz();
2662             break;
2663           case Symbol::SEGMENT_BSS:
2664             value += os->filesz();
2665             break;
2666           default:
2667             gold_unreachable();
2668           }
2669       }
2670       break;
2671
2672     case Symbol::IS_CONSTANT:
2673       value = sym->value();
2674       break;
2675
2676     case Symbol::IS_UNDEFINED:
2677       value = 0;
2678       break;
2679
2680     default:
2681       gold_unreachable();
2682     }
2683
2684   *pstatus = CFVS_OK;
2685   return value;
2686 }
2687
2688 // Finalize the symbol SYM.  This returns true if the symbol should be
2689 // added to the symbol table, false otherwise.
2690
2691 template<int size>
2692 bool
2693 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2694 {
2695   typedef typename Sized_symbol<size>::Value_type Value_type;
2696
2697   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2698
2699   // The default version of a symbol may appear twice in the symbol
2700   // table.  We only need to finalize it once.
2701   if (sym->has_symtab_index())
2702     return false;
2703
2704   if (!sym->in_reg())
2705     {
2706       gold_assert(!sym->has_symtab_index());
2707       sym->set_symtab_index(-1U);
2708       gold_assert(sym->dynsym_index() == -1U);
2709       return false;
2710     }
2711
2712   // If the symbol is only present on plugin files, the plugin decided we
2713   // don't need it.
2714   if (!sym->in_real_elf())
2715     {
2716       gold_assert(!sym->has_symtab_index());
2717       sym->set_symtab_index(-1U);
2718       return false;
2719     }
2720
2721   // Compute final symbol value.
2722   Compute_final_value_status status;
2723   Value_type value = this->compute_final_value(sym, &status);
2724
2725   switch (status)
2726     {
2727     case CFVS_OK:
2728       break;
2729     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2730       {
2731         bool is_ordinary;
2732         unsigned int shndx = sym->shndx(&is_ordinary);
2733         gold_error(_("%s: unsupported symbol section 0x%x"),
2734                    sym->demangled_name().c_str(), shndx);
2735       }
2736       break;
2737     case CFVS_NO_OUTPUT_SECTION:
2738       sym->set_symtab_index(-1U);
2739       return false;
2740     default:
2741       gold_unreachable();
2742     }
2743
2744   sym->set_value(value);
2745
2746   if (parameters->options().strip_all()
2747       || !parameters->options().should_retain_symbol(sym->name()))
2748     {
2749       sym->set_symtab_index(-1U);
2750       return false;
2751     }
2752
2753   return true;
2754 }
2755
2756 // Write out the global symbols.
2757
2758 void
2759 Symbol_table::write_globals(const Stringpool* sympool,
2760                             const Stringpool* dynpool,
2761                             Output_symtab_xindex* symtab_xindex,
2762                             Output_symtab_xindex* dynsym_xindex,
2763                             Output_file* of) const
2764 {
2765   switch (parameters->size_and_endianness())
2766     {
2767 #ifdef HAVE_TARGET_32_LITTLE
2768     case Parameters::TARGET_32_LITTLE:
2769       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2770                                            dynsym_xindex, of);
2771       break;
2772 #endif
2773 #ifdef HAVE_TARGET_32_BIG
2774     case Parameters::TARGET_32_BIG:
2775       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2776                                           dynsym_xindex, of);
2777       break;
2778 #endif
2779 #ifdef HAVE_TARGET_64_LITTLE
2780     case Parameters::TARGET_64_LITTLE:
2781       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2782                                            dynsym_xindex, of);
2783       break;
2784 #endif
2785 #ifdef HAVE_TARGET_64_BIG
2786     case Parameters::TARGET_64_BIG:
2787       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2788                                           dynsym_xindex, of);
2789       break;
2790 #endif
2791     default:
2792       gold_unreachable();
2793     }
2794 }
2795
2796 // Write out the global symbols.
2797
2798 template<int size, bool big_endian>
2799 void
2800 Symbol_table::sized_write_globals(const Stringpool* sympool,
2801                                   const Stringpool* dynpool,
2802                                   Output_symtab_xindex* symtab_xindex,
2803                                   Output_symtab_xindex* dynsym_xindex,
2804                                   Output_file* of) const
2805 {
2806   const Target& target = parameters->target();
2807
2808   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2809
2810   const unsigned int output_count = this->output_count_;
2811   const section_size_type oview_size = output_count * sym_size;
2812   const unsigned int first_global_index = this->first_global_index_;
2813   unsigned char* psyms;
2814   if (this->offset_ == 0 || output_count == 0)
2815     psyms = NULL;
2816   else
2817     psyms = of->get_output_view(this->offset_, oview_size);
2818
2819   const unsigned int dynamic_count = this->dynamic_count_;
2820   const section_size_type dynamic_size = dynamic_count * sym_size;
2821   const unsigned int first_dynamic_global_index =
2822     this->first_dynamic_global_index_;
2823   unsigned char* dynamic_view;
2824   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2825     dynamic_view = NULL;
2826   else
2827     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2828
2829   for (Symbol_table_type::const_iterator p = this->table_.begin();
2830        p != this->table_.end();
2831        ++p)
2832     {
2833       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2834
2835       // Possibly warn about unresolved symbols in shared libraries.
2836       this->warn_about_undefined_dynobj_symbol(sym);
2837
2838       unsigned int sym_index = sym->symtab_index();
2839       unsigned int dynsym_index;
2840       if (dynamic_view == NULL)
2841         dynsym_index = -1U;
2842       else
2843         dynsym_index = sym->dynsym_index();
2844
2845       if (sym_index == -1U && dynsym_index == -1U)
2846         {
2847           // This symbol is not included in the output file.
2848           continue;
2849         }
2850
2851       unsigned int shndx;
2852       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2853       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2854       elfcpp::STB binding = sym->binding();
2855
2856       // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2857       if (binding == elfcpp::STB_GNU_UNIQUE
2858           && !parameters->options().gnu_unique())
2859         binding = elfcpp::STB_GLOBAL;
2860
2861       switch (sym->source())
2862         {
2863         case Symbol::FROM_OBJECT:
2864           {
2865             bool is_ordinary;
2866             unsigned int in_shndx = sym->shndx(&is_ordinary);
2867
2868             if (!is_ordinary
2869                 && in_shndx != elfcpp::SHN_ABS
2870                 && !Symbol::is_common_shndx(in_shndx))
2871               {
2872                 gold_error(_("%s: unsupported symbol section 0x%x"),
2873                            sym->demangled_name().c_str(), in_shndx);
2874                 shndx = in_shndx;
2875               }
2876             else
2877               {
2878                 Object* symobj = sym->object();
2879                 if (symobj->is_dynamic())
2880                   {
2881                     if (sym->needs_dynsym_value())
2882                       dynsym_value = target.dynsym_value(sym);
2883                     shndx = elfcpp::SHN_UNDEF;
2884                     if (sym->is_undef_binding_weak())
2885                       binding = elfcpp::STB_WEAK;
2886                     else
2887                       binding = elfcpp::STB_GLOBAL;
2888                   }
2889                 else if (symobj->pluginobj() != NULL)
2890                   shndx = elfcpp::SHN_UNDEF;
2891                 else if (in_shndx == elfcpp::SHN_UNDEF
2892                          || (!is_ordinary
2893                              && (in_shndx == elfcpp::SHN_ABS
2894                                  || Symbol::is_common_shndx(in_shndx))))
2895                   shndx = in_shndx;
2896                 else
2897                   {
2898                     Relobj* relobj = static_cast<Relobj*>(symobj);
2899                     Output_section* os = relobj->output_section(in_shndx);
2900                     if (this->is_section_folded(relobj, in_shndx))
2901                       {
2902                         // This global symbol must be written out even though
2903                         // it is folded.
2904                         // Get the os of the section it is folded onto.
2905                         Section_id folded =
2906                              this->icf_->get_folded_section(relobj, in_shndx);
2907                         gold_assert(folded.first !=NULL);
2908                         Relobj* folded_obj = 
2909                           reinterpret_cast<Relobj*>(folded.first);
2910                         os = folded_obj->output_section(folded.second);  
2911                         gold_assert(os != NULL);
2912                       }
2913                     gold_assert(os != NULL);
2914                     shndx = os->out_shndx();
2915
2916                     if (shndx >= elfcpp::SHN_LORESERVE)
2917                       {
2918                         if (sym_index != -1U)
2919                           symtab_xindex->add(sym_index, shndx);
2920                         if (dynsym_index != -1U)
2921                           dynsym_xindex->add(dynsym_index, shndx);
2922                         shndx = elfcpp::SHN_XINDEX;
2923                       }
2924
2925                     // In object files symbol values are section
2926                     // relative.
2927                     if (parameters->options().relocatable())
2928                       sym_value -= os->address();
2929                   }
2930               }
2931           }
2932           break;
2933
2934         case Symbol::IN_OUTPUT_DATA:
2935           shndx = sym->output_data()->out_shndx();
2936           if (shndx >= elfcpp::SHN_LORESERVE)
2937             {
2938               if (sym_index != -1U)
2939                 symtab_xindex->add(sym_index, shndx);
2940               if (dynsym_index != -1U)
2941                 dynsym_xindex->add(dynsym_index, shndx);
2942               shndx = elfcpp::SHN_XINDEX;
2943             }
2944           break;
2945
2946         case Symbol::IN_OUTPUT_SEGMENT:
2947           shndx = elfcpp::SHN_ABS;
2948           break;
2949
2950         case Symbol::IS_CONSTANT:
2951           shndx = elfcpp::SHN_ABS;
2952           break;
2953
2954         case Symbol::IS_UNDEFINED:
2955           shndx = elfcpp::SHN_UNDEF;
2956           break;
2957
2958         default:
2959           gold_unreachable();
2960         }
2961
2962       if (sym_index != -1U)
2963         {
2964           sym_index -= first_global_index;
2965           gold_assert(sym_index < output_count);
2966           unsigned char* ps = psyms + (sym_index * sym_size);
2967           this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2968                                                      binding, sympool, ps);
2969         }
2970
2971       if (dynsym_index != -1U)
2972         {
2973           dynsym_index -= first_dynamic_global_index;
2974           gold_assert(dynsym_index < dynamic_count);
2975           unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2976           this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2977                                                      binding, dynpool, pd);
2978         }
2979     }
2980
2981   of->write_output_view(this->offset_, oview_size, psyms);
2982   if (dynamic_view != NULL)
2983     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2984 }
2985
2986 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
2987 // strtab holding the name.
2988
2989 template<int size, bool big_endian>
2990 void
2991 Symbol_table::sized_write_symbol(
2992     Sized_symbol<size>* sym,
2993     typename elfcpp::Elf_types<size>::Elf_Addr value,
2994     unsigned int shndx,
2995     elfcpp::STB binding,
2996     const Stringpool* pool,
2997     unsigned char* p) const
2998 {
2999   elfcpp::Sym_write<size, big_endian> osym(p);
3000   if (sym->version() == NULL || !parameters->options().relocatable())
3001     osym.put_st_name(pool->get_offset(sym->name()));
3002   else
3003     osym.put_st_name(pool->get_offset(sym->versioned_name()));
3004   osym.put_st_value(value);
3005   // Use a symbol size of zero for undefined symbols from shared libraries.
3006   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3007     osym.put_st_size(0);
3008   else
3009     osym.put_st_size(sym->symsize());
3010   elfcpp::STT type = sym->type();
3011   // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3012   if (type == elfcpp::STT_GNU_IFUNC
3013       && sym->is_from_dynobj())
3014     type = elfcpp::STT_FUNC;
3015   // A version script may have overridden the default binding.
3016   if (sym->is_forced_local())
3017     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3018   else
3019     osym.put_st_info(elfcpp::elf_st_info(binding, type));
3020   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3021   osym.put_st_shndx(shndx);
3022 }
3023
3024 // Check for unresolved symbols in shared libraries.  This is
3025 // controlled by the --allow-shlib-undefined option.
3026
3027 // We only warn about libraries for which we have seen all the
3028 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
3029 // which were not seen in this link.  If we didn't see a DT_NEEDED
3030 // entry, we aren't going to be able to reliably report whether the
3031 // symbol is undefined.
3032
3033 // We also don't warn about libraries found in a system library
3034 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3035 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
3036 // can have undefined references satisfied by ld-linux.so.
3037
3038 inline void
3039 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3040 {
3041   bool dummy;
3042   if (sym->source() == Symbol::FROM_OBJECT
3043       && sym->object()->is_dynamic()
3044       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3045       && sym->binding() != elfcpp::STB_WEAK
3046       && !parameters->options().allow_shlib_undefined()
3047       && !parameters->target().is_defined_by_abi(sym)
3048       && !sym->object()->is_in_system_directory())
3049     {
3050       // A very ugly cast.
3051       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3052       if (!dynobj->has_unknown_needed_entries())
3053         gold_undefined_symbol(sym);
3054     }
3055 }
3056
3057 // Write out a section symbol.  Return the update offset.
3058
3059 void
3060 Symbol_table::write_section_symbol(const Output_section* os,
3061                                    Output_symtab_xindex* symtab_xindex,
3062                                    Output_file* of,
3063                                    off_t offset) const
3064 {
3065   switch (parameters->size_and_endianness())
3066     {
3067 #ifdef HAVE_TARGET_32_LITTLE
3068     case Parameters::TARGET_32_LITTLE:
3069       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3070                                                   offset);
3071       break;
3072 #endif
3073 #ifdef HAVE_TARGET_32_BIG
3074     case Parameters::TARGET_32_BIG:
3075       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3076                                                  offset);
3077       break;
3078 #endif
3079 #ifdef HAVE_TARGET_64_LITTLE
3080     case Parameters::TARGET_64_LITTLE:
3081       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3082                                                   offset);
3083       break;
3084 #endif
3085 #ifdef HAVE_TARGET_64_BIG
3086     case Parameters::TARGET_64_BIG:
3087       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3088                                                  offset);
3089       break;
3090 #endif
3091     default:
3092       gold_unreachable();
3093     }
3094 }
3095
3096 // Write out a section symbol, specialized for size and endianness.
3097
3098 template<int size, bool big_endian>
3099 void
3100 Symbol_table::sized_write_section_symbol(const Output_section* os,
3101                                          Output_symtab_xindex* symtab_xindex,
3102                                          Output_file* of,
3103                                          off_t offset) const
3104 {
3105   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3106
3107   unsigned char* pov = of->get_output_view(offset, sym_size);
3108
3109   elfcpp::Sym_write<size, big_endian> osym(pov);
3110   osym.put_st_name(0);
3111   if (parameters->options().relocatable())
3112     osym.put_st_value(0);
3113   else
3114     osym.put_st_value(os->address());
3115   osym.put_st_size(0);
3116   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3117                                        elfcpp::STT_SECTION));
3118   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3119
3120   unsigned int shndx = os->out_shndx();
3121   if (shndx >= elfcpp::SHN_LORESERVE)
3122     {
3123       symtab_xindex->add(os->symtab_index(), shndx);
3124       shndx = elfcpp::SHN_XINDEX;
3125     }
3126   osym.put_st_shndx(shndx);
3127
3128   of->write_output_view(offset, sym_size, pov);
3129 }
3130
3131 // Print statistical information to stderr.  This is used for --stats.
3132
3133 void
3134 Symbol_table::print_stats() const
3135 {
3136 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3137   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3138           program_name, this->table_.size(), this->table_.bucket_count());
3139 #else
3140   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3141           program_name, this->table_.size());
3142 #endif
3143   this->namepool_.print_stats("symbol table stringpool");
3144 }
3145
3146 // We check for ODR violations by looking for symbols with the same
3147 // name for which the debugging information reports that they were
3148 // defined in disjoint source locations.  When comparing the source
3149 // location, we consider instances with the same base filename to be
3150 // the same.  This is because different object files/shared libraries
3151 // can include the same header file using different paths, and
3152 // different optimization settings can make the line number appear to
3153 // be a couple lines off, and we don't want to report an ODR violation
3154 // in those cases.
3155
3156 // This struct is used to compare line information, as returned by
3157 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3158 // operator used with std::sort.
3159
3160 struct Odr_violation_compare
3161 {
3162   bool
3163   operator()(const std::string& s1, const std::string& s2) const
3164   {
3165     // Inputs should be of the form "dirname/filename:linenum" where
3166     // "dirname/" is optional.  We want to compare just the filename:linenum.
3167
3168     // Find the last '/' in each string.
3169     std::string::size_type s1begin = s1.rfind('/');
3170     std::string::size_type s2begin = s2.rfind('/');
3171     // If there was no '/' in a string, start at the beginning.
3172     if (s1begin == std::string::npos)
3173       s1begin = 0;
3174     if (s2begin == std::string::npos)
3175       s2begin = 0;
3176     return s1.compare(s1begin, std::string::npos,
3177                       s2, s2begin, std::string::npos) < 0;
3178   }
3179 };
3180
3181 // Returns all of the lines attached to LOC, not just the one the
3182 // instruction actually came from.
3183 std::vector<std::string>
3184 Symbol_table::linenos_from_loc(const Task* task,
3185                                const Symbol_location& loc)
3186 {
3187   // We need to lock the object in order to read it.  This
3188   // means that we have to run in a singleton Task.  If we
3189   // want to run this in a general Task for better
3190   // performance, we will need one Task for object, plus
3191   // appropriate locking to ensure that we don't conflict with
3192   // other uses of the object.  Also note, one_addr2line is not
3193   // currently thread-safe.
3194   Task_lock_obj<Object> tl(task, loc.object);
3195
3196   std::vector<std::string> result;
3197   // 16 is the size of the object-cache that one_addr2line should use.
3198   std::string canonical_result = Dwarf_line_info::one_addr2line(
3199       loc.object, loc.shndx, loc.offset, 16, &result);
3200   if (!canonical_result.empty())
3201     result.push_back(canonical_result);
3202   return result;
3203 }
3204
3205 // OutputIterator that records if it was ever assigned to.  This
3206 // allows it to be used with std::set_intersection() to check for
3207 // intersection rather than computing the intersection.
3208 struct Check_intersection
3209 {
3210   Check_intersection()
3211     : value_(false)
3212   {}
3213
3214   bool had_intersection() const
3215   { return this->value_; }
3216
3217   Check_intersection& operator++()
3218   { return *this; }
3219
3220   Check_intersection& operator*()
3221   { return *this; }
3222
3223   template<typename T>
3224   Check_intersection& operator=(const T&)
3225   {
3226     this->value_ = true;
3227     return *this;
3228   }
3229
3230  private:
3231   bool value_;
3232 };
3233
3234 // Check candidate_odr_violations_ to find symbols with the same name
3235 // but apparently different definitions (different source-file/line-no
3236 // for each line assigned to the first instruction).
3237
3238 void
3239 Symbol_table::detect_odr_violations(const Task* task,
3240                                     const char* output_file_name) const
3241 {
3242   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3243        it != candidate_odr_violations_.end();
3244        ++it)
3245     {
3246       const char* const symbol_name = it->first;
3247
3248       std::string first_object_name;
3249       std::vector<std::string> first_object_linenos;
3250
3251       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3252           locs = it->second.begin();
3253       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3254           locs_end = it->second.end();
3255       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3256         {
3257           // Save the line numbers from the first definition to
3258           // compare to the other definitions.  Ideally, we'd compare
3259           // every definition to every other, but we don't want to
3260           // take O(N^2) time to do this.  This shortcut may cause
3261           // false negatives that appear or disappear depending on the
3262           // link order, but it won't cause false positives.
3263           first_object_name = locs->object->name();
3264           first_object_linenos = this->linenos_from_loc(task, *locs);
3265         }
3266
3267       // Sort by Odr_violation_compare to make std::set_intersection work.
3268       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3269                 Odr_violation_compare());
3270
3271       for (; locs != locs_end; ++locs)
3272         {
3273           std::vector<std::string> linenos =
3274               this->linenos_from_loc(task, *locs);
3275           // linenos will be empty if we couldn't parse the debug info.
3276           if (linenos.empty())
3277             continue;
3278           // Sort by Odr_violation_compare to make std::set_intersection work.
3279           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3280
3281           Check_intersection intersection_result =
3282               std::set_intersection(first_object_linenos.begin(),
3283                                     first_object_linenos.end(),
3284                                     linenos.begin(),
3285                                     linenos.end(),
3286                                     Check_intersection(),
3287                                     Odr_violation_compare());
3288           if (!intersection_result.had_intersection())
3289             {
3290               gold_warning(_("while linking %s: symbol '%s' defined in "
3291                              "multiple places (possible ODR violation):"),
3292                            output_file_name, demangle(symbol_name).c_str());
3293               // This only prints one location from each definition,
3294               // which may not be the location we expect to intersect
3295               // with another definition.  We could print the whole
3296               // set of locations, but that seems too verbose.
3297               gold_assert(!first_object_linenos.empty());
3298               gold_assert(!linenos.empty());
3299               fprintf(stderr, _("  %s from %s\n"),
3300                       first_object_linenos[0].c_str(),
3301                       first_object_name.c_str());
3302               fprintf(stderr, _("  %s from %s\n"),
3303                       linenos[0].c_str(),
3304                       locs->object->name().c_str());
3305               // Only print one broken pair, to avoid needing to
3306               // compare against a list of the disjoint definition
3307               // locations we've found so far.  (If we kept comparing
3308               // against just the first one, we'd get a lot of
3309               // redundant complaints about the second definition
3310               // location.)
3311               break;
3312             }
3313         }
3314     }
3315   // We only call one_addr2line() in this function, so we can clear its cache.
3316   Dwarf_line_info::clear_addr2line_cache();
3317 }
3318
3319 // Warnings functions.
3320
3321 // Add a new warning.
3322
3323 void
3324 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3325                       const std::string& warning)
3326 {
3327   name = symtab->canonicalize_name(name);
3328   this->warnings_[name].set(obj, warning);
3329 }
3330
3331 // Look through the warnings and mark the symbols for which we should
3332 // warn.  This is called during Layout::finalize when we know the
3333 // sources for all the symbols.
3334
3335 void
3336 Warnings::note_warnings(Symbol_table* symtab)
3337 {
3338   for (Warning_table::iterator p = this->warnings_.begin();
3339        p != this->warnings_.end();
3340        ++p)
3341     {
3342       Symbol* sym = symtab->lookup(p->first, NULL);
3343       if (sym != NULL
3344           && sym->source() == Symbol::FROM_OBJECT
3345           && sym->object() == p->second.object)
3346         sym->set_has_warning();
3347     }
3348 }
3349
3350 // Issue a warning.  This is called when we see a relocation against a
3351 // symbol for which has a warning.
3352
3353 template<int size, bool big_endian>
3354 void
3355 Warnings::issue_warning(const Symbol* sym,
3356                         const Relocate_info<size, big_endian>* relinfo,
3357                         size_t relnum, off_t reloffset) const
3358 {
3359   gold_assert(sym->has_warning());
3360
3361   // We don't want to issue a warning for a relocation against the
3362   // symbol in the same object file in which the symbol is defined.
3363   if (sym->object() == relinfo->object)
3364     return;
3365
3366   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3367   gold_assert(p != this->warnings_.end());
3368   gold_warning_at_location(relinfo, relnum, reloffset,
3369                            "%s", p->second.text.c_str());
3370 }
3371
3372 // Instantiate the templates we need.  We could use the configure
3373 // script to restrict this to only the ones needed for implemented
3374 // targets.
3375
3376 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3377 template
3378 void
3379 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3380 #endif
3381
3382 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3383 template
3384 void
3385 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3386 #endif
3387
3388 #ifdef HAVE_TARGET_32_LITTLE
3389 template
3390 void
3391 Symbol_table::add_from_relobj<32, false>(
3392     Sized_relobj_file<32, false>* relobj,
3393     const unsigned char* syms,
3394     size_t count,
3395     size_t symndx_offset,
3396     const char* sym_names,
3397     size_t sym_name_size,
3398     Sized_relobj_file<32, false>::Symbols* sympointers,
3399     size_t* defined);
3400 #endif
3401
3402 #ifdef HAVE_TARGET_32_BIG
3403 template
3404 void
3405 Symbol_table::add_from_relobj<32, true>(
3406     Sized_relobj_file<32, true>* relobj,
3407     const unsigned char* syms,
3408     size_t count,
3409     size_t symndx_offset,
3410     const char* sym_names,
3411     size_t sym_name_size,
3412     Sized_relobj_file<32, true>::Symbols* sympointers,
3413     size_t* defined);
3414 #endif
3415
3416 #ifdef HAVE_TARGET_64_LITTLE
3417 template
3418 void
3419 Symbol_table::add_from_relobj<64, false>(
3420     Sized_relobj_file<64, false>* relobj,
3421     const unsigned char* syms,
3422     size_t count,
3423     size_t symndx_offset,
3424     const char* sym_names,
3425     size_t sym_name_size,
3426     Sized_relobj_file<64, false>::Symbols* sympointers,
3427     size_t* defined);
3428 #endif
3429
3430 #ifdef HAVE_TARGET_64_BIG
3431 template
3432 void
3433 Symbol_table::add_from_relobj<64, true>(
3434     Sized_relobj_file<64, true>* relobj,
3435     const unsigned char* syms,
3436     size_t count,
3437     size_t symndx_offset,
3438     const char* sym_names,
3439     size_t sym_name_size,
3440     Sized_relobj_file<64, true>::Symbols* sympointers,
3441     size_t* defined);
3442 #endif
3443
3444 #ifdef HAVE_TARGET_32_LITTLE
3445 template
3446 Symbol*
3447 Symbol_table::add_from_pluginobj<32, false>(
3448     Sized_pluginobj<32, false>* obj,
3449     const char* name,
3450     const char* ver,
3451     elfcpp::Sym<32, false>* sym);
3452 #endif
3453
3454 #ifdef HAVE_TARGET_32_BIG
3455 template
3456 Symbol*
3457 Symbol_table::add_from_pluginobj<32, true>(
3458     Sized_pluginobj<32, true>* obj,
3459     const char* name,
3460     const char* ver,
3461     elfcpp::Sym<32, true>* sym);
3462 #endif
3463
3464 #ifdef HAVE_TARGET_64_LITTLE
3465 template
3466 Symbol*
3467 Symbol_table::add_from_pluginobj<64, false>(
3468     Sized_pluginobj<64, false>* obj,
3469     const char* name,
3470     const char* ver,
3471     elfcpp::Sym<64, false>* sym);
3472 #endif
3473
3474 #ifdef HAVE_TARGET_64_BIG
3475 template
3476 Symbol*
3477 Symbol_table::add_from_pluginobj<64, true>(
3478     Sized_pluginobj<64, true>* obj,
3479     const char* name,
3480     const char* ver,
3481     elfcpp::Sym<64, true>* sym);
3482 #endif
3483
3484 #ifdef HAVE_TARGET_32_LITTLE
3485 template
3486 void
3487 Symbol_table::add_from_dynobj<32, false>(
3488     Sized_dynobj<32, false>* dynobj,
3489     const unsigned char* syms,
3490     size_t count,
3491     const char* sym_names,
3492     size_t sym_name_size,
3493     const unsigned char* versym,
3494     size_t versym_size,
3495     const std::vector<const char*>* version_map,
3496     Sized_relobj_file<32, false>::Symbols* sympointers,
3497     size_t* defined);
3498 #endif
3499
3500 #ifdef HAVE_TARGET_32_BIG
3501 template
3502 void
3503 Symbol_table::add_from_dynobj<32, true>(
3504     Sized_dynobj<32, true>* dynobj,
3505     const unsigned char* syms,
3506     size_t count,
3507     const char* sym_names,
3508     size_t sym_name_size,
3509     const unsigned char* versym,
3510     size_t versym_size,
3511     const std::vector<const char*>* version_map,
3512     Sized_relobj_file<32, true>::Symbols* sympointers,
3513     size_t* defined);
3514 #endif
3515
3516 #ifdef HAVE_TARGET_64_LITTLE
3517 template
3518 void
3519 Symbol_table::add_from_dynobj<64, false>(
3520     Sized_dynobj<64, false>* dynobj,
3521     const unsigned char* syms,
3522     size_t count,
3523     const char* sym_names,
3524     size_t sym_name_size,
3525     const unsigned char* versym,
3526     size_t versym_size,
3527     const std::vector<const char*>* version_map,
3528     Sized_relobj_file<64, false>::Symbols* sympointers,
3529     size_t* defined);
3530 #endif
3531
3532 #ifdef HAVE_TARGET_64_BIG
3533 template
3534 void
3535 Symbol_table::add_from_dynobj<64, true>(
3536     Sized_dynobj<64, true>* dynobj,
3537     const unsigned char* syms,
3538     size_t count,
3539     const char* sym_names,
3540     size_t sym_name_size,
3541     const unsigned char* versym,
3542     size_t versym_size,
3543     const std::vector<const char*>* version_map,
3544     Sized_relobj_file<64, true>::Symbols* sympointers,
3545     size_t* defined);
3546 #endif
3547
3548 #ifdef HAVE_TARGET_32_LITTLE
3549 template
3550 Sized_symbol<32>*
3551 Symbol_table::add_from_incrobj(
3552     Object* obj,
3553     const char* name,
3554     const char* ver,
3555     elfcpp::Sym<32, false>* sym);
3556 #endif
3557
3558 #ifdef HAVE_TARGET_32_BIG
3559 template
3560 Sized_symbol<32>*
3561 Symbol_table::add_from_incrobj(
3562     Object* obj,
3563     const char* name,
3564     const char* ver,
3565     elfcpp::Sym<32, true>* sym);
3566 #endif
3567
3568 #ifdef HAVE_TARGET_64_LITTLE
3569 template
3570 Sized_symbol<64>*
3571 Symbol_table::add_from_incrobj(
3572     Object* obj,
3573     const char* name,
3574     const char* ver,
3575     elfcpp::Sym<64, false>* sym);
3576 #endif
3577
3578 #ifdef HAVE_TARGET_64_BIG
3579 template
3580 Sized_symbol<64>*
3581 Symbol_table::add_from_incrobj(
3582     Object* obj,
3583     const char* name,
3584     const char* ver,
3585     elfcpp::Sym<64, true>* sym);
3586 #endif
3587
3588 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3589 template
3590 void
3591 Symbol_table::define_with_copy_reloc<32>(
3592     Sized_symbol<32>* sym,
3593     Output_data* posd,
3594     elfcpp::Elf_types<32>::Elf_Addr value);
3595 #endif
3596
3597 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3598 template
3599 void
3600 Symbol_table::define_with_copy_reloc<64>(
3601     Sized_symbol<64>* sym,
3602     Output_data* posd,
3603     elfcpp::Elf_types<64>::Elf_Addr value);
3604 #endif
3605
3606 #ifdef HAVE_TARGET_32_LITTLE
3607 template
3608 void
3609 Warnings::issue_warning<32, false>(const Symbol* sym,
3610                                    const Relocate_info<32, false>* relinfo,
3611                                    size_t relnum, off_t reloffset) const;
3612 #endif
3613
3614 #ifdef HAVE_TARGET_32_BIG
3615 template
3616 void
3617 Warnings::issue_warning<32, true>(const Symbol* sym,
3618                                   const Relocate_info<32, true>* relinfo,
3619                                   size_t relnum, off_t reloffset) const;
3620 #endif
3621
3622 #ifdef HAVE_TARGET_64_LITTLE
3623 template
3624 void
3625 Warnings::issue_warning<64, false>(const Symbol* sym,
3626                                    const Relocate_info<64, false>* relinfo,
3627                                    size_t relnum, off_t reloffset) const;
3628 #endif
3629
3630 #ifdef HAVE_TARGET_64_BIG
3631 template
3632 void
3633 Warnings::issue_warning<64, true>(const Symbol* sym,
3634                                   const Relocate_info<64, true>* relinfo,
3635                                   size_t relnum, off_t reloffset) const;
3636 #endif
3637
3638 } // End namespace gold.