]> rtime.felk.cvut.cz Git - can-eth-gw-linux.git/blob - drivers/md/raid5.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[can-eth-gw-linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60
61 /*
62  * Stripe cache
63  */
64
65 #define NR_STRIPES              256
66 #define STRIPE_SIZE             PAGE_SIZE
67 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
69 #define IO_THRESHOLD            1
70 #define BYPASS_THRESHOLD        1
71 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK               (NR_HASH - 1)
73
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77         return &conf->stripe_hashtbl[hash];
78 }
79
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81  * order without overlap.  There may be several bio's per stripe+device, and
82  * a bio could span several devices.
83  * When walking this list for a particular stripe+device, we must never proceed
84  * beyond a bio that extends past this device, as the next bio might no longer
85  * be valid.
86  * This function is used to determine the 'next' bio in the list, given the sector
87  * of the current stripe+device
88  */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91         int sectors = bio->bi_size >> 9;
92         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93                 return bio->bi_next;
94         else
95                 return NULL;
96 }
97
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_processed_stripes(struct bio *bio)
103 {
104         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
105         return (atomic_read(segments) >> 16) & 0xffff;
106 }
107
108 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
109 {
110         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
111         return atomic_sub_return(1, segments) & 0xffff;
112 }
113
114 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
115 {
116         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
117         atomic_inc(segments);
118 }
119
120 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
121         unsigned int cnt)
122 {
123         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
124         int old, new;
125
126         do {
127                 old = atomic_read(segments);
128                 new = (old & 0xffff) | (cnt << 16);
129         } while (atomic_cmpxchg(segments, old, new) != old);
130 }
131
132 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
133 {
134         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
135         atomic_set(segments, cnt);
136 }
137
138 /* Find first data disk in a raid6 stripe */
139 static inline int raid6_d0(struct stripe_head *sh)
140 {
141         if (sh->ddf_layout)
142                 /* ddf always start from first device */
143                 return 0;
144         /* md starts just after Q block */
145         if (sh->qd_idx == sh->disks - 1)
146                 return 0;
147         else
148                 return sh->qd_idx + 1;
149 }
150 static inline int raid6_next_disk(int disk, int raid_disks)
151 {
152         disk++;
153         return (disk < raid_disks) ? disk : 0;
154 }
155
156 /* When walking through the disks in a raid5, starting at raid6_d0,
157  * We need to map each disk to a 'slot', where the data disks are slot
158  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
159  * is raid_disks-1.  This help does that mapping.
160  */
161 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
162                              int *count, int syndrome_disks)
163 {
164         int slot = *count;
165
166         if (sh->ddf_layout)
167                 (*count)++;
168         if (idx == sh->pd_idx)
169                 return syndrome_disks;
170         if (idx == sh->qd_idx)
171                 return syndrome_disks + 1;
172         if (!sh->ddf_layout)
173                 (*count)++;
174         return slot;
175 }
176
177 static void return_io(struct bio *return_bi)
178 {
179         struct bio *bi = return_bi;
180         while (bi) {
181
182                 return_bi = bi->bi_next;
183                 bi->bi_next = NULL;
184                 bi->bi_size = 0;
185                 bio_endio(bi, 0);
186                 bi = return_bi;
187         }
188 }
189
190 static void print_raid5_conf (struct r5conf *conf);
191
192 static int stripe_operations_active(struct stripe_head *sh)
193 {
194         return sh->check_state || sh->reconstruct_state ||
195                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
196                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
197 }
198
199 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
200 {
201         BUG_ON(!list_empty(&sh->lru));
202         BUG_ON(atomic_read(&conf->active_stripes)==0);
203         if (test_bit(STRIPE_HANDLE, &sh->state)) {
204                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
205                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
206                         list_add_tail(&sh->lru, &conf->delayed_list);
207                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
208                            sh->bm_seq - conf->seq_write > 0)
209                         list_add_tail(&sh->lru, &conf->bitmap_list);
210                 else {
211                         clear_bit(STRIPE_DELAYED, &sh->state);
212                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
213                         list_add_tail(&sh->lru, &conf->handle_list);
214                 }
215                 md_wakeup_thread(conf->mddev->thread);
216         } else {
217                 BUG_ON(stripe_operations_active(sh));
218                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
219                         if (atomic_dec_return(&conf->preread_active_stripes)
220                             < IO_THRESHOLD)
221                                 md_wakeup_thread(conf->mddev->thread);
222                 atomic_dec(&conf->active_stripes);
223                 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
224                         list_add_tail(&sh->lru, &conf->inactive_list);
225                         wake_up(&conf->wait_for_stripe);
226                         if (conf->retry_read_aligned)
227                                 md_wakeup_thread(conf->mddev->thread);
228                 }
229         }
230 }
231
232 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
233 {
234         if (atomic_dec_and_test(&sh->count))
235                 do_release_stripe(conf, sh);
236 }
237
238 static void release_stripe(struct stripe_head *sh)
239 {
240         struct r5conf *conf = sh->raid_conf;
241         unsigned long flags;
242
243         local_irq_save(flags);
244         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
245                 do_release_stripe(conf, sh);
246                 spin_unlock(&conf->device_lock);
247         }
248         local_irq_restore(flags);
249 }
250
251 static inline void remove_hash(struct stripe_head *sh)
252 {
253         pr_debug("remove_hash(), stripe %llu\n",
254                 (unsigned long long)sh->sector);
255
256         hlist_del_init(&sh->hash);
257 }
258
259 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
260 {
261         struct hlist_head *hp = stripe_hash(conf, sh->sector);
262
263         pr_debug("insert_hash(), stripe %llu\n",
264                 (unsigned long long)sh->sector);
265
266         hlist_add_head(&sh->hash, hp);
267 }
268
269
270 /* find an idle stripe, make sure it is unhashed, and return it. */
271 static struct stripe_head *get_free_stripe(struct r5conf *conf)
272 {
273         struct stripe_head *sh = NULL;
274         struct list_head *first;
275
276         if (list_empty(&conf->inactive_list))
277                 goto out;
278         first = conf->inactive_list.next;
279         sh = list_entry(first, struct stripe_head, lru);
280         list_del_init(first);
281         remove_hash(sh);
282         atomic_inc(&conf->active_stripes);
283 out:
284         return sh;
285 }
286
287 static void shrink_buffers(struct stripe_head *sh)
288 {
289         struct page *p;
290         int i;
291         int num = sh->raid_conf->pool_size;
292
293         for (i = 0; i < num ; i++) {
294                 p = sh->dev[i].page;
295                 if (!p)
296                         continue;
297                 sh->dev[i].page = NULL;
298                 put_page(p);
299         }
300 }
301
302 static int grow_buffers(struct stripe_head *sh)
303 {
304         int i;
305         int num = sh->raid_conf->pool_size;
306
307         for (i = 0; i < num; i++) {
308                 struct page *page;
309
310                 if (!(page = alloc_page(GFP_KERNEL))) {
311                         return 1;
312                 }
313                 sh->dev[i].page = page;
314         }
315         return 0;
316 }
317
318 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
319 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
320                             struct stripe_head *sh);
321
322 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
323 {
324         struct r5conf *conf = sh->raid_conf;
325         int i;
326
327         BUG_ON(atomic_read(&sh->count) != 0);
328         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
329         BUG_ON(stripe_operations_active(sh));
330
331         pr_debug("init_stripe called, stripe %llu\n",
332                 (unsigned long long)sh->sector);
333
334         remove_hash(sh);
335
336         sh->generation = conf->generation - previous;
337         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
338         sh->sector = sector;
339         stripe_set_idx(sector, conf, previous, sh);
340         sh->state = 0;
341
342
343         for (i = sh->disks; i--; ) {
344                 struct r5dev *dev = &sh->dev[i];
345
346                 if (dev->toread || dev->read || dev->towrite || dev->written ||
347                     test_bit(R5_LOCKED, &dev->flags)) {
348                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
349                                (unsigned long long)sh->sector, i, dev->toread,
350                                dev->read, dev->towrite, dev->written,
351                                test_bit(R5_LOCKED, &dev->flags));
352                         WARN_ON(1);
353                 }
354                 dev->flags = 0;
355                 raid5_build_block(sh, i, previous);
356         }
357         insert_hash(conf, sh);
358 }
359
360 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
361                                          short generation)
362 {
363         struct stripe_head *sh;
364         struct hlist_node *hn;
365
366         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
367         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
368                 if (sh->sector == sector && sh->generation == generation)
369                         return sh;
370         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
371         return NULL;
372 }
373
374 /*
375  * Need to check if array has failed when deciding whether to:
376  *  - start an array
377  *  - remove non-faulty devices
378  *  - add a spare
379  *  - allow a reshape
380  * This determination is simple when no reshape is happening.
381  * However if there is a reshape, we need to carefully check
382  * both the before and after sections.
383  * This is because some failed devices may only affect one
384  * of the two sections, and some non-in_sync devices may
385  * be insync in the section most affected by failed devices.
386  */
387 static int calc_degraded(struct r5conf *conf)
388 {
389         int degraded, degraded2;
390         int i;
391
392         rcu_read_lock();
393         degraded = 0;
394         for (i = 0; i < conf->previous_raid_disks; i++) {
395                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
396                 if (rdev && test_bit(Faulty, &rdev->flags))
397                         rdev = rcu_dereference(conf->disks[i].replacement);
398                 if (!rdev || test_bit(Faulty, &rdev->flags))
399                         degraded++;
400                 else if (test_bit(In_sync, &rdev->flags))
401                         ;
402                 else
403                         /* not in-sync or faulty.
404                          * If the reshape increases the number of devices,
405                          * this is being recovered by the reshape, so
406                          * this 'previous' section is not in_sync.
407                          * If the number of devices is being reduced however,
408                          * the device can only be part of the array if
409                          * we are reverting a reshape, so this section will
410                          * be in-sync.
411                          */
412                         if (conf->raid_disks >= conf->previous_raid_disks)
413                                 degraded++;
414         }
415         rcu_read_unlock();
416         if (conf->raid_disks == conf->previous_raid_disks)
417                 return degraded;
418         rcu_read_lock();
419         degraded2 = 0;
420         for (i = 0; i < conf->raid_disks; i++) {
421                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
422                 if (rdev && test_bit(Faulty, &rdev->flags))
423                         rdev = rcu_dereference(conf->disks[i].replacement);
424                 if (!rdev || test_bit(Faulty, &rdev->flags))
425                         degraded2++;
426                 else if (test_bit(In_sync, &rdev->flags))
427                         ;
428                 else
429                         /* not in-sync or faulty.
430                          * If reshape increases the number of devices, this
431                          * section has already been recovered, else it
432                          * almost certainly hasn't.
433                          */
434                         if (conf->raid_disks <= conf->previous_raid_disks)
435                                 degraded2++;
436         }
437         rcu_read_unlock();
438         if (degraded2 > degraded)
439                 return degraded2;
440         return degraded;
441 }
442
443 static int has_failed(struct r5conf *conf)
444 {
445         int degraded;
446
447         if (conf->mddev->reshape_position == MaxSector)
448                 return conf->mddev->degraded > conf->max_degraded;
449
450         degraded = calc_degraded(conf);
451         if (degraded > conf->max_degraded)
452                 return 1;
453         return 0;
454 }
455
456 static struct stripe_head *
457 get_active_stripe(struct r5conf *conf, sector_t sector,
458                   int previous, int noblock, int noquiesce)
459 {
460         struct stripe_head *sh;
461
462         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
463
464         spin_lock_irq(&conf->device_lock);
465
466         do {
467                 wait_event_lock_irq(conf->wait_for_stripe,
468                                     conf->quiesce == 0 || noquiesce,
469                                     conf->device_lock, /* nothing */);
470                 sh = __find_stripe(conf, sector, conf->generation - previous);
471                 if (!sh) {
472                         if (!conf->inactive_blocked)
473                                 sh = get_free_stripe(conf);
474                         if (noblock && sh == NULL)
475                                 break;
476                         if (!sh) {
477                                 conf->inactive_blocked = 1;
478                                 wait_event_lock_irq(conf->wait_for_stripe,
479                                                     !list_empty(&conf->inactive_list) &&
480                                                     (atomic_read(&conf->active_stripes)
481                                                      < (conf->max_nr_stripes *3/4)
482                                                      || !conf->inactive_blocked),
483                                                     conf->device_lock,
484                                                     );
485                                 conf->inactive_blocked = 0;
486                         } else
487                                 init_stripe(sh, sector, previous);
488                 } else {
489                         if (atomic_read(&sh->count)) {
490                                 BUG_ON(!list_empty(&sh->lru)
491                                     && !test_bit(STRIPE_EXPANDING, &sh->state)
492                                     && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
493                         } else {
494                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
495                                         atomic_inc(&conf->active_stripes);
496                                 if (list_empty(&sh->lru) &&
497                                     !test_bit(STRIPE_EXPANDING, &sh->state))
498                                         BUG();
499                                 list_del_init(&sh->lru);
500                         }
501                 }
502         } while (sh == NULL);
503
504         if (sh)
505                 atomic_inc(&sh->count);
506
507         spin_unlock_irq(&conf->device_lock);
508         return sh;
509 }
510
511 /* Determine if 'data_offset' or 'new_data_offset' should be used
512  * in this stripe_head.
513  */
514 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
515 {
516         sector_t progress = conf->reshape_progress;
517         /* Need a memory barrier to make sure we see the value
518          * of conf->generation, or ->data_offset that was set before
519          * reshape_progress was updated.
520          */
521         smp_rmb();
522         if (progress == MaxSector)
523                 return 0;
524         if (sh->generation == conf->generation - 1)
525                 return 0;
526         /* We are in a reshape, and this is a new-generation stripe,
527          * so use new_data_offset.
528          */
529         return 1;
530 }
531
532 static void
533 raid5_end_read_request(struct bio *bi, int error);
534 static void
535 raid5_end_write_request(struct bio *bi, int error);
536
537 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
538 {
539         struct r5conf *conf = sh->raid_conf;
540         int i, disks = sh->disks;
541
542         might_sleep();
543
544         for (i = disks; i--; ) {
545                 int rw;
546                 int replace_only = 0;
547                 struct bio *bi, *rbi;
548                 struct md_rdev *rdev, *rrdev = NULL;
549                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
550                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
551                                 rw = WRITE_FUA;
552                         else
553                                 rw = WRITE;
554                         if (test_bit(R5_Discard, &sh->dev[i].flags))
555                                 rw |= REQ_DISCARD;
556                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
557                         rw = READ;
558                 else if (test_and_clear_bit(R5_WantReplace,
559                                             &sh->dev[i].flags)) {
560                         rw = WRITE;
561                         replace_only = 1;
562                 } else
563                         continue;
564                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
565                         rw |= REQ_SYNC;
566
567                 bi = &sh->dev[i].req;
568                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
569
570                 bi->bi_rw = rw;
571                 rbi->bi_rw = rw;
572                 if (rw & WRITE) {
573                         bi->bi_end_io = raid5_end_write_request;
574                         rbi->bi_end_io = raid5_end_write_request;
575                 } else
576                         bi->bi_end_io = raid5_end_read_request;
577
578                 rcu_read_lock();
579                 rrdev = rcu_dereference(conf->disks[i].replacement);
580                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
581                 rdev = rcu_dereference(conf->disks[i].rdev);
582                 if (!rdev) {
583                         rdev = rrdev;
584                         rrdev = NULL;
585                 }
586                 if (rw & WRITE) {
587                         if (replace_only)
588                                 rdev = NULL;
589                         if (rdev == rrdev)
590                                 /* We raced and saw duplicates */
591                                 rrdev = NULL;
592                 } else {
593                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
594                                 rdev = rrdev;
595                         rrdev = NULL;
596                 }
597
598                 if (rdev && test_bit(Faulty, &rdev->flags))
599                         rdev = NULL;
600                 if (rdev)
601                         atomic_inc(&rdev->nr_pending);
602                 if (rrdev && test_bit(Faulty, &rrdev->flags))
603                         rrdev = NULL;
604                 if (rrdev)
605                         atomic_inc(&rrdev->nr_pending);
606                 rcu_read_unlock();
607
608                 /* We have already checked bad blocks for reads.  Now
609                  * need to check for writes.  We never accept write errors
610                  * on the replacement, so we don't to check rrdev.
611                  */
612                 while ((rw & WRITE) && rdev &&
613                        test_bit(WriteErrorSeen, &rdev->flags)) {
614                         sector_t first_bad;
615                         int bad_sectors;
616                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
617                                               &first_bad, &bad_sectors);
618                         if (!bad)
619                                 break;
620
621                         if (bad < 0) {
622                                 set_bit(BlockedBadBlocks, &rdev->flags);
623                                 if (!conf->mddev->external &&
624                                     conf->mddev->flags) {
625                                         /* It is very unlikely, but we might
626                                          * still need to write out the
627                                          * bad block log - better give it
628                                          * a chance*/
629                                         md_check_recovery(conf->mddev);
630                                 }
631                                 /*
632                                  * Because md_wait_for_blocked_rdev
633                                  * will dec nr_pending, we must
634                                  * increment it first.
635                                  */
636                                 atomic_inc(&rdev->nr_pending);
637                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
638                         } else {
639                                 /* Acknowledged bad block - skip the write */
640                                 rdev_dec_pending(rdev, conf->mddev);
641                                 rdev = NULL;
642                         }
643                 }
644
645                 if (rdev) {
646                         if (s->syncing || s->expanding || s->expanded
647                             || s->replacing)
648                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
649
650                         set_bit(STRIPE_IO_STARTED, &sh->state);
651
652                         bi->bi_bdev = rdev->bdev;
653                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
654                                 __func__, (unsigned long long)sh->sector,
655                                 bi->bi_rw, i);
656                         atomic_inc(&sh->count);
657                         if (use_new_offset(conf, sh))
658                                 bi->bi_sector = (sh->sector
659                                                  + rdev->new_data_offset);
660                         else
661                                 bi->bi_sector = (sh->sector
662                                                  + rdev->data_offset);
663                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
664                                 bi->bi_rw |= REQ_FLUSH;
665
666                         bi->bi_flags = 1 << BIO_UPTODATE;
667                         bi->bi_idx = 0;
668                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
669                         bi->bi_io_vec[0].bv_offset = 0;
670                         bi->bi_size = STRIPE_SIZE;
671                         bi->bi_next = NULL;
672                         if (rrdev)
673                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
674                         generic_make_request(bi);
675                 }
676                 if (rrdev) {
677                         if (s->syncing || s->expanding || s->expanded
678                             || s->replacing)
679                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
680
681                         set_bit(STRIPE_IO_STARTED, &sh->state);
682
683                         rbi->bi_bdev = rrdev->bdev;
684                         pr_debug("%s: for %llu schedule op %ld on "
685                                  "replacement disc %d\n",
686                                 __func__, (unsigned long long)sh->sector,
687                                 rbi->bi_rw, i);
688                         atomic_inc(&sh->count);
689                         if (use_new_offset(conf, sh))
690                                 rbi->bi_sector = (sh->sector
691                                                   + rrdev->new_data_offset);
692                         else
693                                 rbi->bi_sector = (sh->sector
694                                                   + rrdev->data_offset);
695                         rbi->bi_flags = 1 << BIO_UPTODATE;
696                         rbi->bi_idx = 0;
697                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
698                         rbi->bi_io_vec[0].bv_offset = 0;
699                         rbi->bi_size = STRIPE_SIZE;
700                         rbi->bi_next = NULL;
701                         generic_make_request(rbi);
702                 }
703                 if (!rdev && !rrdev) {
704                         if (rw & WRITE)
705                                 set_bit(STRIPE_DEGRADED, &sh->state);
706                         pr_debug("skip op %ld on disc %d for sector %llu\n",
707                                 bi->bi_rw, i, (unsigned long long)sh->sector);
708                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
709                         set_bit(STRIPE_HANDLE, &sh->state);
710                 }
711         }
712 }
713
714 static struct dma_async_tx_descriptor *
715 async_copy_data(int frombio, struct bio *bio, struct page *page,
716         sector_t sector, struct dma_async_tx_descriptor *tx)
717 {
718         struct bio_vec *bvl;
719         struct page *bio_page;
720         int i;
721         int page_offset;
722         struct async_submit_ctl submit;
723         enum async_tx_flags flags = 0;
724
725         if (bio->bi_sector >= sector)
726                 page_offset = (signed)(bio->bi_sector - sector) * 512;
727         else
728                 page_offset = (signed)(sector - bio->bi_sector) * -512;
729
730         if (frombio)
731                 flags |= ASYNC_TX_FENCE;
732         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
733
734         bio_for_each_segment(bvl, bio, i) {
735                 int len = bvl->bv_len;
736                 int clen;
737                 int b_offset = 0;
738
739                 if (page_offset < 0) {
740                         b_offset = -page_offset;
741                         page_offset += b_offset;
742                         len -= b_offset;
743                 }
744
745                 if (len > 0 && page_offset + len > STRIPE_SIZE)
746                         clen = STRIPE_SIZE - page_offset;
747                 else
748                         clen = len;
749
750                 if (clen > 0) {
751                         b_offset += bvl->bv_offset;
752                         bio_page = bvl->bv_page;
753                         if (frombio)
754                                 tx = async_memcpy(page, bio_page, page_offset,
755                                                   b_offset, clen, &submit);
756                         else
757                                 tx = async_memcpy(bio_page, page, b_offset,
758                                                   page_offset, clen, &submit);
759                 }
760                 /* chain the operations */
761                 submit.depend_tx = tx;
762
763                 if (clen < len) /* hit end of page */
764                         break;
765                 page_offset +=  len;
766         }
767
768         return tx;
769 }
770
771 static void ops_complete_biofill(void *stripe_head_ref)
772 {
773         struct stripe_head *sh = stripe_head_ref;
774         struct bio *return_bi = NULL;
775         int i;
776
777         pr_debug("%s: stripe %llu\n", __func__,
778                 (unsigned long long)sh->sector);
779
780         /* clear completed biofills */
781         for (i = sh->disks; i--; ) {
782                 struct r5dev *dev = &sh->dev[i];
783
784                 /* acknowledge completion of a biofill operation */
785                 /* and check if we need to reply to a read request,
786                  * new R5_Wantfill requests are held off until
787                  * !STRIPE_BIOFILL_RUN
788                  */
789                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
790                         struct bio *rbi, *rbi2;
791
792                         BUG_ON(!dev->read);
793                         rbi = dev->read;
794                         dev->read = NULL;
795                         while (rbi && rbi->bi_sector <
796                                 dev->sector + STRIPE_SECTORS) {
797                                 rbi2 = r5_next_bio(rbi, dev->sector);
798                                 if (!raid5_dec_bi_active_stripes(rbi)) {
799                                         rbi->bi_next = return_bi;
800                                         return_bi = rbi;
801                                 }
802                                 rbi = rbi2;
803                         }
804                 }
805         }
806         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
807
808         return_io(return_bi);
809
810         set_bit(STRIPE_HANDLE, &sh->state);
811         release_stripe(sh);
812 }
813
814 static void ops_run_biofill(struct stripe_head *sh)
815 {
816         struct dma_async_tx_descriptor *tx = NULL;
817         struct async_submit_ctl submit;
818         int i;
819
820         pr_debug("%s: stripe %llu\n", __func__,
821                 (unsigned long long)sh->sector);
822
823         for (i = sh->disks; i--; ) {
824                 struct r5dev *dev = &sh->dev[i];
825                 if (test_bit(R5_Wantfill, &dev->flags)) {
826                         struct bio *rbi;
827                         spin_lock_irq(&sh->stripe_lock);
828                         dev->read = rbi = dev->toread;
829                         dev->toread = NULL;
830                         spin_unlock_irq(&sh->stripe_lock);
831                         while (rbi && rbi->bi_sector <
832                                 dev->sector + STRIPE_SECTORS) {
833                                 tx = async_copy_data(0, rbi, dev->page,
834                                         dev->sector, tx);
835                                 rbi = r5_next_bio(rbi, dev->sector);
836                         }
837                 }
838         }
839
840         atomic_inc(&sh->count);
841         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
842         async_trigger_callback(&submit);
843 }
844
845 static void mark_target_uptodate(struct stripe_head *sh, int target)
846 {
847         struct r5dev *tgt;
848
849         if (target < 0)
850                 return;
851
852         tgt = &sh->dev[target];
853         set_bit(R5_UPTODATE, &tgt->flags);
854         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
855         clear_bit(R5_Wantcompute, &tgt->flags);
856 }
857
858 static void ops_complete_compute(void *stripe_head_ref)
859 {
860         struct stripe_head *sh = stripe_head_ref;
861
862         pr_debug("%s: stripe %llu\n", __func__,
863                 (unsigned long long)sh->sector);
864
865         /* mark the computed target(s) as uptodate */
866         mark_target_uptodate(sh, sh->ops.target);
867         mark_target_uptodate(sh, sh->ops.target2);
868
869         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
870         if (sh->check_state == check_state_compute_run)
871                 sh->check_state = check_state_compute_result;
872         set_bit(STRIPE_HANDLE, &sh->state);
873         release_stripe(sh);
874 }
875
876 /* return a pointer to the address conversion region of the scribble buffer */
877 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
878                                  struct raid5_percpu *percpu)
879 {
880         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
881 }
882
883 static struct dma_async_tx_descriptor *
884 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
885 {
886         int disks = sh->disks;
887         struct page **xor_srcs = percpu->scribble;
888         int target = sh->ops.target;
889         struct r5dev *tgt = &sh->dev[target];
890         struct page *xor_dest = tgt->page;
891         int count = 0;
892         struct dma_async_tx_descriptor *tx;
893         struct async_submit_ctl submit;
894         int i;
895
896         pr_debug("%s: stripe %llu block: %d\n",
897                 __func__, (unsigned long long)sh->sector, target);
898         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
899
900         for (i = disks; i--; )
901                 if (i != target)
902                         xor_srcs[count++] = sh->dev[i].page;
903
904         atomic_inc(&sh->count);
905
906         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
907                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
908         if (unlikely(count == 1))
909                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
910         else
911                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
912
913         return tx;
914 }
915
916 /* set_syndrome_sources - populate source buffers for gen_syndrome
917  * @srcs - (struct page *) array of size sh->disks
918  * @sh - stripe_head to parse
919  *
920  * Populates srcs in proper layout order for the stripe and returns the
921  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
922  * destination buffer is recorded in srcs[count] and the Q destination
923  * is recorded in srcs[count+1]].
924  */
925 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
926 {
927         int disks = sh->disks;
928         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
929         int d0_idx = raid6_d0(sh);
930         int count;
931         int i;
932
933         for (i = 0; i < disks; i++)
934                 srcs[i] = NULL;
935
936         count = 0;
937         i = d0_idx;
938         do {
939                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
940
941                 srcs[slot] = sh->dev[i].page;
942                 i = raid6_next_disk(i, disks);
943         } while (i != d0_idx);
944
945         return syndrome_disks;
946 }
947
948 static struct dma_async_tx_descriptor *
949 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
950 {
951         int disks = sh->disks;
952         struct page **blocks = percpu->scribble;
953         int target;
954         int qd_idx = sh->qd_idx;
955         struct dma_async_tx_descriptor *tx;
956         struct async_submit_ctl submit;
957         struct r5dev *tgt;
958         struct page *dest;
959         int i;
960         int count;
961
962         if (sh->ops.target < 0)
963                 target = sh->ops.target2;
964         else if (sh->ops.target2 < 0)
965                 target = sh->ops.target;
966         else
967                 /* we should only have one valid target */
968                 BUG();
969         BUG_ON(target < 0);
970         pr_debug("%s: stripe %llu block: %d\n",
971                 __func__, (unsigned long long)sh->sector, target);
972
973         tgt = &sh->dev[target];
974         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
975         dest = tgt->page;
976
977         atomic_inc(&sh->count);
978
979         if (target == qd_idx) {
980                 count = set_syndrome_sources(blocks, sh);
981                 blocks[count] = NULL; /* regenerating p is not necessary */
982                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
983                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
984                                   ops_complete_compute, sh,
985                                   to_addr_conv(sh, percpu));
986                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
987         } else {
988                 /* Compute any data- or p-drive using XOR */
989                 count = 0;
990                 for (i = disks; i-- ; ) {
991                         if (i == target || i == qd_idx)
992                                 continue;
993                         blocks[count++] = sh->dev[i].page;
994                 }
995
996                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
997                                   NULL, ops_complete_compute, sh,
998                                   to_addr_conv(sh, percpu));
999                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1000         }
1001
1002         return tx;
1003 }
1004
1005 static struct dma_async_tx_descriptor *
1006 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1007 {
1008         int i, count, disks = sh->disks;
1009         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1010         int d0_idx = raid6_d0(sh);
1011         int faila = -1, failb = -1;
1012         int target = sh->ops.target;
1013         int target2 = sh->ops.target2;
1014         struct r5dev *tgt = &sh->dev[target];
1015         struct r5dev *tgt2 = &sh->dev[target2];
1016         struct dma_async_tx_descriptor *tx;
1017         struct page **blocks = percpu->scribble;
1018         struct async_submit_ctl submit;
1019
1020         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1021                  __func__, (unsigned long long)sh->sector, target, target2);
1022         BUG_ON(target < 0 || target2 < 0);
1023         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1024         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1025
1026         /* we need to open-code set_syndrome_sources to handle the
1027          * slot number conversion for 'faila' and 'failb'
1028          */
1029         for (i = 0; i < disks ; i++)
1030                 blocks[i] = NULL;
1031         count = 0;
1032         i = d0_idx;
1033         do {
1034                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1035
1036                 blocks[slot] = sh->dev[i].page;
1037
1038                 if (i == target)
1039                         faila = slot;
1040                 if (i == target2)
1041                         failb = slot;
1042                 i = raid6_next_disk(i, disks);
1043         } while (i != d0_idx);
1044
1045         BUG_ON(faila == failb);
1046         if (failb < faila)
1047                 swap(faila, failb);
1048         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1049                  __func__, (unsigned long long)sh->sector, faila, failb);
1050
1051         atomic_inc(&sh->count);
1052
1053         if (failb == syndrome_disks+1) {
1054                 /* Q disk is one of the missing disks */
1055                 if (faila == syndrome_disks) {
1056                         /* Missing P+Q, just recompute */
1057                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1058                                           ops_complete_compute, sh,
1059                                           to_addr_conv(sh, percpu));
1060                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1061                                                   STRIPE_SIZE, &submit);
1062                 } else {
1063                         struct page *dest;
1064                         int data_target;
1065                         int qd_idx = sh->qd_idx;
1066
1067                         /* Missing D+Q: recompute D from P, then recompute Q */
1068                         if (target == qd_idx)
1069                                 data_target = target2;
1070                         else
1071                                 data_target = target;
1072
1073                         count = 0;
1074                         for (i = disks; i-- ; ) {
1075                                 if (i == data_target || i == qd_idx)
1076                                         continue;
1077                                 blocks[count++] = sh->dev[i].page;
1078                         }
1079                         dest = sh->dev[data_target].page;
1080                         init_async_submit(&submit,
1081                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1082                                           NULL, NULL, NULL,
1083                                           to_addr_conv(sh, percpu));
1084                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1085                                        &submit);
1086
1087                         count = set_syndrome_sources(blocks, sh);
1088                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1089                                           ops_complete_compute, sh,
1090                                           to_addr_conv(sh, percpu));
1091                         return async_gen_syndrome(blocks, 0, count+2,
1092                                                   STRIPE_SIZE, &submit);
1093                 }
1094         } else {
1095                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1096                                   ops_complete_compute, sh,
1097                                   to_addr_conv(sh, percpu));
1098                 if (failb == syndrome_disks) {
1099                         /* We're missing D+P. */
1100                         return async_raid6_datap_recov(syndrome_disks+2,
1101                                                        STRIPE_SIZE, faila,
1102                                                        blocks, &submit);
1103                 } else {
1104                         /* We're missing D+D. */
1105                         return async_raid6_2data_recov(syndrome_disks+2,
1106                                                        STRIPE_SIZE, faila, failb,
1107                                                        blocks, &submit);
1108                 }
1109         }
1110 }
1111
1112
1113 static void ops_complete_prexor(void *stripe_head_ref)
1114 {
1115         struct stripe_head *sh = stripe_head_ref;
1116
1117         pr_debug("%s: stripe %llu\n", __func__,
1118                 (unsigned long long)sh->sector);
1119 }
1120
1121 static struct dma_async_tx_descriptor *
1122 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1123                struct dma_async_tx_descriptor *tx)
1124 {
1125         int disks = sh->disks;
1126         struct page **xor_srcs = percpu->scribble;
1127         int count = 0, pd_idx = sh->pd_idx, i;
1128         struct async_submit_ctl submit;
1129
1130         /* existing parity data subtracted */
1131         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1132
1133         pr_debug("%s: stripe %llu\n", __func__,
1134                 (unsigned long long)sh->sector);
1135
1136         for (i = disks; i--; ) {
1137                 struct r5dev *dev = &sh->dev[i];
1138                 /* Only process blocks that are known to be uptodate */
1139                 if (test_bit(R5_Wantdrain, &dev->flags))
1140                         xor_srcs[count++] = dev->page;
1141         }
1142
1143         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1144                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1145         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1146
1147         return tx;
1148 }
1149
1150 static struct dma_async_tx_descriptor *
1151 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1152 {
1153         int disks = sh->disks;
1154         int i;
1155
1156         pr_debug("%s: stripe %llu\n", __func__,
1157                 (unsigned long long)sh->sector);
1158
1159         for (i = disks; i--; ) {
1160                 struct r5dev *dev = &sh->dev[i];
1161                 struct bio *chosen;
1162
1163                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1164                         struct bio *wbi;
1165
1166                         spin_lock_irq(&sh->stripe_lock);
1167                         chosen = dev->towrite;
1168                         dev->towrite = NULL;
1169                         BUG_ON(dev->written);
1170                         wbi = dev->written = chosen;
1171                         spin_unlock_irq(&sh->stripe_lock);
1172
1173                         while (wbi && wbi->bi_sector <
1174                                 dev->sector + STRIPE_SECTORS) {
1175                                 if (wbi->bi_rw & REQ_FUA)
1176                                         set_bit(R5_WantFUA, &dev->flags);
1177                                 if (wbi->bi_rw & REQ_SYNC)
1178                                         set_bit(R5_SyncIO, &dev->flags);
1179                                 if (wbi->bi_rw & REQ_DISCARD)
1180                                         set_bit(R5_Discard, &dev->flags);
1181                                 else
1182                                         tx = async_copy_data(1, wbi, dev->page,
1183                                                 dev->sector, tx);
1184                                 wbi = r5_next_bio(wbi, dev->sector);
1185                         }
1186                 }
1187         }
1188
1189         return tx;
1190 }
1191
1192 static void ops_complete_reconstruct(void *stripe_head_ref)
1193 {
1194         struct stripe_head *sh = stripe_head_ref;
1195         int disks = sh->disks;
1196         int pd_idx = sh->pd_idx;
1197         int qd_idx = sh->qd_idx;
1198         int i;
1199         bool fua = false, sync = false, discard = false;
1200
1201         pr_debug("%s: stripe %llu\n", __func__,
1202                 (unsigned long long)sh->sector);
1203
1204         for (i = disks; i--; ) {
1205                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1206                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1207                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1208         }
1209
1210         for (i = disks; i--; ) {
1211                 struct r5dev *dev = &sh->dev[i];
1212
1213                 if (dev->written || i == pd_idx || i == qd_idx) {
1214                         if (!discard)
1215                                 set_bit(R5_UPTODATE, &dev->flags);
1216                         if (fua)
1217                                 set_bit(R5_WantFUA, &dev->flags);
1218                         if (sync)
1219                                 set_bit(R5_SyncIO, &dev->flags);
1220                 }
1221         }
1222
1223         if (sh->reconstruct_state == reconstruct_state_drain_run)
1224                 sh->reconstruct_state = reconstruct_state_drain_result;
1225         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1226                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1227         else {
1228                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1229                 sh->reconstruct_state = reconstruct_state_result;
1230         }
1231
1232         set_bit(STRIPE_HANDLE, &sh->state);
1233         release_stripe(sh);
1234 }
1235
1236 static void
1237 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1238                      struct dma_async_tx_descriptor *tx)
1239 {
1240         int disks = sh->disks;
1241         struct page **xor_srcs = percpu->scribble;
1242         struct async_submit_ctl submit;
1243         int count = 0, pd_idx = sh->pd_idx, i;
1244         struct page *xor_dest;
1245         int prexor = 0;
1246         unsigned long flags;
1247
1248         pr_debug("%s: stripe %llu\n", __func__,
1249                 (unsigned long long)sh->sector);
1250
1251         for (i = 0; i < sh->disks; i++) {
1252                 if (pd_idx == i)
1253                         continue;
1254                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1255                         break;
1256         }
1257         if (i >= sh->disks) {
1258                 atomic_inc(&sh->count);
1259                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1260                 ops_complete_reconstruct(sh);
1261                 return;
1262         }
1263         /* check if prexor is active which means only process blocks
1264          * that are part of a read-modify-write (written)
1265          */
1266         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1267                 prexor = 1;
1268                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1269                 for (i = disks; i--; ) {
1270                         struct r5dev *dev = &sh->dev[i];
1271                         if (dev->written)
1272                                 xor_srcs[count++] = dev->page;
1273                 }
1274         } else {
1275                 xor_dest = sh->dev[pd_idx].page;
1276                 for (i = disks; i--; ) {
1277                         struct r5dev *dev = &sh->dev[i];
1278                         if (i != pd_idx)
1279                                 xor_srcs[count++] = dev->page;
1280                 }
1281         }
1282
1283         /* 1/ if we prexor'd then the dest is reused as a source
1284          * 2/ if we did not prexor then we are redoing the parity
1285          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1286          * for the synchronous xor case
1287          */
1288         flags = ASYNC_TX_ACK |
1289                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1290
1291         atomic_inc(&sh->count);
1292
1293         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1294                           to_addr_conv(sh, percpu));
1295         if (unlikely(count == 1))
1296                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1297         else
1298                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1299 }
1300
1301 static void
1302 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1303                      struct dma_async_tx_descriptor *tx)
1304 {
1305         struct async_submit_ctl submit;
1306         struct page **blocks = percpu->scribble;
1307         int count, i;
1308
1309         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1310
1311         for (i = 0; i < sh->disks; i++) {
1312                 if (sh->pd_idx == i || sh->qd_idx == i)
1313                         continue;
1314                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1315                         break;
1316         }
1317         if (i >= sh->disks) {
1318                 atomic_inc(&sh->count);
1319                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1320                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1321                 ops_complete_reconstruct(sh);
1322                 return;
1323         }
1324
1325         count = set_syndrome_sources(blocks, sh);
1326
1327         atomic_inc(&sh->count);
1328
1329         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1330                           sh, to_addr_conv(sh, percpu));
1331         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1332 }
1333
1334 static void ops_complete_check(void *stripe_head_ref)
1335 {
1336         struct stripe_head *sh = stripe_head_ref;
1337
1338         pr_debug("%s: stripe %llu\n", __func__,
1339                 (unsigned long long)sh->sector);
1340
1341         sh->check_state = check_state_check_result;
1342         set_bit(STRIPE_HANDLE, &sh->state);
1343         release_stripe(sh);
1344 }
1345
1346 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1347 {
1348         int disks = sh->disks;
1349         int pd_idx = sh->pd_idx;
1350         int qd_idx = sh->qd_idx;
1351         struct page *xor_dest;
1352         struct page **xor_srcs = percpu->scribble;
1353         struct dma_async_tx_descriptor *tx;
1354         struct async_submit_ctl submit;
1355         int count;
1356         int i;
1357
1358         pr_debug("%s: stripe %llu\n", __func__,
1359                 (unsigned long long)sh->sector);
1360
1361         count = 0;
1362         xor_dest = sh->dev[pd_idx].page;
1363         xor_srcs[count++] = xor_dest;
1364         for (i = disks; i--; ) {
1365                 if (i == pd_idx || i == qd_idx)
1366                         continue;
1367                 xor_srcs[count++] = sh->dev[i].page;
1368         }
1369
1370         init_async_submit(&submit, 0, NULL, NULL, NULL,
1371                           to_addr_conv(sh, percpu));
1372         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1373                            &sh->ops.zero_sum_result, &submit);
1374
1375         atomic_inc(&sh->count);
1376         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1377         tx = async_trigger_callback(&submit);
1378 }
1379
1380 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1381 {
1382         struct page **srcs = percpu->scribble;
1383         struct async_submit_ctl submit;
1384         int count;
1385
1386         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1387                 (unsigned long long)sh->sector, checkp);
1388
1389         count = set_syndrome_sources(srcs, sh);
1390         if (!checkp)
1391                 srcs[count] = NULL;
1392
1393         atomic_inc(&sh->count);
1394         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1395                           sh, to_addr_conv(sh, percpu));
1396         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1397                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1398 }
1399
1400 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1401 {
1402         int overlap_clear = 0, i, disks = sh->disks;
1403         struct dma_async_tx_descriptor *tx = NULL;
1404         struct r5conf *conf = sh->raid_conf;
1405         int level = conf->level;
1406         struct raid5_percpu *percpu;
1407         unsigned long cpu;
1408
1409         cpu = get_cpu();
1410         percpu = per_cpu_ptr(conf->percpu, cpu);
1411         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1412                 ops_run_biofill(sh);
1413                 overlap_clear++;
1414         }
1415
1416         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1417                 if (level < 6)
1418                         tx = ops_run_compute5(sh, percpu);
1419                 else {
1420                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1421                                 tx = ops_run_compute6_1(sh, percpu);
1422                         else
1423                                 tx = ops_run_compute6_2(sh, percpu);
1424                 }
1425                 /* terminate the chain if reconstruct is not set to be run */
1426                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1427                         async_tx_ack(tx);
1428         }
1429
1430         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1431                 tx = ops_run_prexor(sh, percpu, tx);
1432
1433         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1434                 tx = ops_run_biodrain(sh, tx);
1435                 overlap_clear++;
1436         }
1437
1438         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1439                 if (level < 6)
1440                         ops_run_reconstruct5(sh, percpu, tx);
1441                 else
1442                         ops_run_reconstruct6(sh, percpu, tx);
1443         }
1444
1445         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1446                 if (sh->check_state == check_state_run)
1447                         ops_run_check_p(sh, percpu);
1448                 else if (sh->check_state == check_state_run_q)
1449                         ops_run_check_pq(sh, percpu, 0);
1450                 else if (sh->check_state == check_state_run_pq)
1451                         ops_run_check_pq(sh, percpu, 1);
1452                 else
1453                         BUG();
1454         }
1455
1456         if (overlap_clear)
1457                 for (i = disks; i--; ) {
1458                         struct r5dev *dev = &sh->dev[i];
1459                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1460                                 wake_up(&sh->raid_conf->wait_for_overlap);
1461                 }
1462         put_cpu();
1463 }
1464
1465 #ifdef CONFIG_MULTICORE_RAID456
1466 static void async_run_ops(void *param, async_cookie_t cookie)
1467 {
1468         struct stripe_head *sh = param;
1469         unsigned long ops_request = sh->ops.request;
1470
1471         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1472         wake_up(&sh->ops.wait_for_ops);
1473
1474         __raid_run_ops(sh, ops_request);
1475         release_stripe(sh);
1476 }
1477
1478 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1479 {
1480         /* since handle_stripe can be called outside of raid5d context
1481          * we need to ensure sh->ops.request is de-staged before another
1482          * request arrives
1483          */
1484         wait_event(sh->ops.wait_for_ops,
1485                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1486         sh->ops.request = ops_request;
1487
1488         atomic_inc(&sh->count);
1489         async_schedule(async_run_ops, sh);
1490 }
1491 #else
1492 #define raid_run_ops __raid_run_ops
1493 #endif
1494
1495 static int grow_one_stripe(struct r5conf *conf)
1496 {
1497         struct stripe_head *sh;
1498         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1499         if (!sh)
1500                 return 0;
1501
1502         sh->raid_conf = conf;
1503         #ifdef CONFIG_MULTICORE_RAID456
1504         init_waitqueue_head(&sh->ops.wait_for_ops);
1505         #endif
1506
1507         spin_lock_init(&sh->stripe_lock);
1508
1509         if (grow_buffers(sh)) {
1510                 shrink_buffers(sh);
1511                 kmem_cache_free(conf->slab_cache, sh);
1512                 return 0;
1513         }
1514         /* we just created an active stripe so... */
1515         atomic_set(&sh->count, 1);
1516         atomic_inc(&conf->active_stripes);
1517         INIT_LIST_HEAD(&sh->lru);
1518         release_stripe(sh);
1519         return 1;
1520 }
1521
1522 static int grow_stripes(struct r5conf *conf, int num)
1523 {
1524         struct kmem_cache *sc;
1525         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1526
1527         if (conf->mddev->gendisk)
1528                 sprintf(conf->cache_name[0],
1529                         "raid%d-%s", conf->level, mdname(conf->mddev));
1530         else
1531                 sprintf(conf->cache_name[0],
1532                         "raid%d-%p", conf->level, conf->mddev);
1533         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1534
1535         conf->active_name = 0;
1536         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1537                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1538                                0, 0, NULL);
1539         if (!sc)
1540                 return 1;
1541         conf->slab_cache = sc;
1542         conf->pool_size = devs;
1543         while (num--)
1544                 if (!grow_one_stripe(conf))
1545                         return 1;
1546         return 0;
1547 }
1548
1549 /**
1550  * scribble_len - return the required size of the scribble region
1551  * @num - total number of disks in the array
1552  *
1553  * The size must be enough to contain:
1554  * 1/ a struct page pointer for each device in the array +2
1555  * 2/ room to convert each entry in (1) to its corresponding dma
1556  *    (dma_map_page()) or page (page_address()) address.
1557  *
1558  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1559  * calculate over all devices (not just the data blocks), using zeros in place
1560  * of the P and Q blocks.
1561  */
1562 static size_t scribble_len(int num)
1563 {
1564         size_t len;
1565
1566         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1567
1568         return len;
1569 }
1570
1571 static int resize_stripes(struct r5conf *conf, int newsize)
1572 {
1573         /* Make all the stripes able to hold 'newsize' devices.
1574          * New slots in each stripe get 'page' set to a new page.
1575          *
1576          * This happens in stages:
1577          * 1/ create a new kmem_cache and allocate the required number of
1578          *    stripe_heads.
1579          * 2/ gather all the old stripe_heads and transfer the pages across
1580          *    to the new stripe_heads.  This will have the side effect of
1581          *    freezing the array as once all stripe_heads have been collected,
1582          *    no IO will be possible.  Old stripe heads are freed once their
1583          *    pages have been transferred over, and the old kmem_cache is
1584          *    freed when all stripes are done.
1585          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1586          *    we simple return a failre status - no need to clean anything up.
1587          * 4/ allocate new pages for the new slots in the new stripe_heads.
1588          *    If this fails, we don't bother trying the shrink the
1589          *    stripe_heads down again, we just leave them as they are.
1590          *    As each stripe_head is processed the new one is released into
1591          *    active service.
1592          *
1593          * Once step2 is started, we cannot afford to wait for a write,
1594          * so we use GFP_NOIO allocations.
1595          */
1596         struct stripe_head *osh, *nsh;
1597         LIST_HEAD(newstripes);
1598         struct disk_info *ndisks;
1599         unsigned long cpu;
1600         int err;
1601         struct kmem_cache *sc;
1602         int i;
1603
1604         if (newsize <= conf->pool_size)
1605                 return 0; /* never bother to shrink */
1606
1607         err = md_allow_write(conf->mddev);
1608         if (err)
1609                 return err;
1610
1611         /* Step 1 */
1612         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1613                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1614                                0, 0, NULL);
1615         if (!sc)
1616                 return -ENOMEM;
1617
1618         for (i = conf->max_nr_stripes; i; i--) {
1619                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1620                 if (!nsh)
1621                         break;
1622
1623                 nsh->raid_conf = conf;
1624                 #ifdef CONFIG_MULTICORE_RAID456
1625                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1626                 #endif
1627                 spin_lock_init(&nsh->stripe_lock);
1628
1629                 list_add(&nsh->lru, &newstripes);
1630         }
1631         if (i) {
1632                 /* didn't get enough, give up */
1633                 while (!list_empty(&newstripes)) {
1634                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1635                         list_del(&nsh->lru);
1636                         kmem_cache_free(sc, nsh);
1637                 }
1638                 kmem_cache_destroy(sc);
1639                 return -ENOMEM;
1640         }
1641         /* Step 2 - Must use GFP_NOIO now.
1642          * OK, we have enough stripes, start collecting inactive
1643          * stripes and copying them over
1644          */
1645         list_for_each_entry(nsh, &newstripes, lru) {
1646                 spin_lock_irq(&conf->device_lock);
1647                 wait_event_lock_irq(conf->wait_for_stripe,
1648                                     !list_empty(&conf->inactive_list),
1649                                     conf->device_lock,
1650                                     );
1651                 osh = get_free_stripe(conf);
1652                 spin_unlock_irq(&conf->device_lock);
1653                 atomic_set(&nsh->count, 1);
1654                 for(i=0; i<conf->pool_size; i++)
1655                         nsh->dev[i].page = osh->dev[i].page;
1656                 for( ; i<newsize; i++)
1657                         nsh->dev[i].page = NULL;
1658                 kmem_cache_free(conf->slab_cache, osh);
1659         }
1660         kmem_cache_destroy(conf->slab_cache);
1661
1662         /* Step 3.
1663          * At this point, we are holding all the stripes so the array
1664          * is completely stalled, so now is a good time to resize
1665          * conf->disks and the scribble region
1666          */
1667         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1668         if (ndisks) {
1669                 for (i=0; i<conf->raid_disks; i++)
1670                         ndisks[i] = conf->disks[i];
1671                 kfree(conf->disks);
1672                 conf->disks = ndisks;
1673         } else
1674                 err = -ENOMEM;
1675
1676         get_online_cpus();
1677         conf->scribble_len = scribble_len(newsize);
1678         for_each_present_cpu(cpu) {
1679                 struct raid5_percpu *percpu;
1680                 void *scribble;
1681
1682                 percpu = per_cpu_ptr(conf->percpu, cpu);
1683                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1684
1685                 if (scribble) {
1686                         kfree(percpu->scribble);
1687                         percpu->scribble = scribble;
1688                 } else {
1689                         err = -ENOMEM;
1690                         break;
1691                 }
1692         }
1693         put_online_cpus();
1694
1695         /* Step 4, return new stripes to service */
1696         while(!list_empty(&newstripes)) {
1697                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1698                 list_del_init(&nsh->lru);
1699
1700                 for (i=conf->raid_disks; i < newsize; i++)
1701                         if (nsh->dev[i].page == NULL) {
1702                                 struct page *p = alloc_page(GFP_NOIO);
1703                                 nsh->dev[i].page = p;
1704                                 if (!p)
1705                                         err = -ENOMEM;
1706                         }
1707                 release_stripe(nsh);
1708         }
1709         /* critical section pass, GFP_NOIO no longer needed */
1710
1711         conf->slab_cache = sc;
1712         conf->active_name = 1-conf->active_name;
1713         conf->pool_size = newsize;
1714         return err;
1715 }
1716
1717 static int drop_one_stripe(struct r5conf *conf)
1718 {
1719         struct stripe_head *sh;
1720
1721         spin_lock_irq(&conf->device_lock);
1722         sh = get_free_stripe(conf);
1723         spin_unlock_irq(&conf->device_lock);
1724         if (!sh)
1725                 return 0;
1726         BUG_ON(atomic_read(&sh->count));
1727         shrink_buffers(sh);
1728         kmem_cache_free(conf->slab_cache, sh);
1729         atomic_dec(&conf->active_stripes);
1730         return 1;
1731 }
1732
1733 static void shrink_stripes(struct r5conf *conf)
1734 {
1735         while (drop_one_stripe(conf))
1736                 ;
1737
1738         if (conf->slab_cache)
1739                 kmem_cache_destroy(conf->slab_cache);
1740         conf->slab_cache = NULL;
1741 }
1742
1743 static void raid5_end_read_request(struct bio * bi, int error)
1744 {
1745         struct stripe_head *sh = bi->bi_private;
1746         struct r5conf *conf = sh->raid_conf;
1747         int disks = sh->disks, i;
1748         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1749         char b[BDEVNAME_SIZE];
1750         struct md_rdev *rdev = NULL;
1751         sector_t s;
1752
1753         for (i=0 ; i<disks; i++)
1754                 if (bi == &sh->dev[i].req)
1755                         break;
1756
1757         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1758                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1759                 uptodate);
1760         if (i == disks) {
1761                 BUG();
1762                 return;
1763         }
1764         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1765                 /* If replacement finished while this request was outstanding,
1766                  * 'replacement' might be NULL already.
1767                  * In that case it moved down to 'rdev'.
1768                  * rdev is not removed until all requests are finished.
1769                  */
1770                 rdev = conf->disks[i].replacement;
1771         if (!rdev)
1772                 rdev = conf->disks[i].rdev;
1773
1774         if (use_new_offset(conf, sh))
1775                 s = sh->sector + rdev->new_data_offset;
1776         else
1777                 s = sh->sector + rdev->data_offset;
1778         if (uptodate) {
1779                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1780                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1781                         /* Note that this cannot happen on a
1782                          * replacement device.  We just fail those on
1783                          * any error
1784                          */
1785                         printk_ratelimited(
1786                                 KERN_INFO
1787                                 "md/raid:%s: read error corrected"
1788                                 " (%lu sectors at %llu on %s)\n",
1789                                 mdname(conf->mddev), STRIPE_SECTORS,
1790                                 (unsigned long long)s,
1791                                 bdevname(rdev->bdev, b));
1792                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1793                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1794                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1795                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1796                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1797
1798                 if (atomic_read(&rdev->read_errors))
1799                         atomic_set(&rdev->read_errors, 0);
1800         } else {
1801                 const char *bdn = bdevname(rdev->bdev, b);
1802                 int retry = 0;
1803                 int set_bad = 0;
1804
1805                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1806                 atomic_inc(&rdev->read_errors);
1807                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1808                         printk_ratelimited(
1809                                 KERN_WARNING
1810                                 "md/raid:%s: read error on replacement device "
1811                                 "(sector %llu on %s).\n",
1812                                 mdname(conf->mddev),
1813                                 (unsigned long long)s,
1814                                 bdn);
1815                 else if (conf->mddev->degraded >= conf->max_degraded) {
1816                         set_bad = 1;
1817                         printk_ratelimited(
1818                                 KERN_WARNING
1819                                 "md/raid:%s: read error not correctable "
1820                                 "(sector %llu on %s).\n",
1821                                 mdname(conf->mddev),
1822                                 (unsigned long long)s,
1823                                 bdn);
1824                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1825                         /* Oh, no!!! */
1826                         set_bad = 1;
1827                         printk_ratelimited(
1828                                 KERN_WARNING
1829                                 "md/raid:%s: read error NOT corrected!! "
1830                                 "(sector %llu on %s).\n",
1831                                 mdname(conf->mddev),
1832                                 (unsigned long long)s,
1833                                 bdn);
1834                 } else if (atomic_read(&rdev->read_errors)
1835                          > conf->max_nr_stripes)
1836                         printk(KERN_WARNING
1837                                "md/raid:%s: Too many read errors, failing device %s.\n",
1838                                mdname(conf->mddev), bdn);
1839                 else
1840                         retry = 1;
1841                 if (retry)
1842                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1843                                 set_bit(R5_ReadError, &sh->dev[i].flags);
1844                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1845                         } else
1846                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1847                 else {
1848                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1849                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1850                         if (!(set_bad
1851                               && test_bit(In_sync, &rdev->flags)
1852                               && rdev_set_badblocks(
1853                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
1854                                 md_error(conf->mddev, rdev);
1855                 }
1856         }
1857         rdev_dec_pending(rdev, conf->mddev);
1858         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1859         set_bit(STRIPE_HANDLE, &sh->state);
1860         release_stripe(sh);
1861 }
1862
1863 static void raid5_end_write_request(struct bio *bi, int error)
1864 {
1865         struct stripe_head *sh = bi->bi_private;
1866         struct r5conf *conf = sh->raid_conf;
1867         int disks = sh->disks, i;
1868         struct md_rdev *uninitialized_var(rdev);
1869         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1870         sector_t first_bad;
1871         int bad_sectors;
1872         int replacement = 0;
1873
1874         for (i = 0 ; i < disks; i++) {
1875                 if (bi == &sh->dev[i].req) {
1876                         rdev = conf->disks[i].rdev;
1877                         break;
1878                 }
1879                 if (bi == &sh->dev[i].rreq) {
1880                         rdev = conf->disks[i].replacement;
1881                         if (rdev)
1882                                 replacement = 1;
1883                         else
1884                                 /* rdev was removed and 'replacement'
1885                                  * replaced it.  rdev is not removed
1886                                  * until all requests are finished.
1887                                  */
1888                                 rdev = conf->disks[i].rdev;
1889                         break;
1890                 }
1891         }
1892         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1893                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1894                 uptodate);
1895         if (i == disks) {
1896                 BUG();
1897                 return;
1898         }
1899
1900         if (replacement) {
1901                 if (!uptodate)
1902                         md_error(conf->mddev, rdev);
1903                 else if (is_badblock(rdev, sh->sector,
1904                                      STRIPE_SECTORS,
1905                                      &first_bad, &bad_sectors))
1906                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1907         } else {
1908                 if (!uptodate) {
1909                         set_bit(WriteErrorSeen, &rdev->flags);
1910                         set_bit(R5_WriteError, &sh->dev[i].flags);
1911                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1912                                 set_bit(MD_RECOVERY_NEEDED,
1913                                         &rdev->mddev->recovery);
1914                 } else if (is_badblock(rdev, sh->sector,
1915                                        STRIPE_SECTORS,
1916                                        &first_bad, &bad_sectors))
1917                         set_bit(R5_MadeGood, &sh->dev[i].flags);
1918         }
1919         rdev_dec_pending(rdev, conf->mddev);
1920
1921         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1922                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1923         set_bit(STRIPE_HANDLE, &sh->state);
1924         release_stripe(sh);
1925 }
1926
1927 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1928         
1929 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1930 {
1931         struct r5dev *dev = &sh->dev[i];
1932
1933         bio_init(&dev->req);
1934         dev->req.bi_io_vec = &dev->vec;
1935         dev->req.bi_vcnt++;
1936         dev->req.bi_max_vecs++;
1937         dev->req.bi_private = sh;
1938         dev->vec.bv_page = dev->page;
1939
1940         bio_init(&dev->rreq);
1941         dev->rreq.bi_io_vec = &dev->rvec;
1942         dev->rreq.bi_vcnt++;
1943         dev->rreq.bi_max_vecs++;
1944         dev->rreq.bi_private = sh;
1945         dev->rvec.bv_page = dev->page;
1946
1947         dev->flags = 0;
1948         dev->sector = compute_blocknr(sh, i, previous);
1949 }
1950
1951 static void error(struct mddev *mddev, struct md_rdev *rdev)
1952 {
1953         char b[BDEVNAME_SIZE];
1954         struct r5conf *conf = mddev->private;
1955         unsigned long flags;
1956         pr_debug("raid456: error called\n");
1957
1958         spin_lock_irqsave(&conf->device_lock, flags);
1959         clear_bit(In_sync, &rdev->flags);
1960         mddev->degraded = calc_degraded(conf);
1961         spin_unlock_irqrestore(&conf->device_lock, flags);
1962         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1963
1964         set_bit(Blocked, &rdev->flags);
1965         set_bit(Faulty, &rdev->flags);
1966         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1967         printk(KERN_ALERT
1968                "md/raid:%s: Disk failure on %s, disabling device.\n"
1969                "md/raid:%s: Operation continuing on %d devices.\n",
1970                mdname(mddev),
1971                bdevname(rdev->bdev, b),
1972                mdname(mddev),
1973                conf->raid_disks - mddev->degraded);
1974 }
1975
1976 /*
1977  * Input: a 'big' sector number,
1978  * Output: index of the data and parity disk, and the sector # in them.
1979  */
1980 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1981                                      int previous, int *dd_idx,
1982                                      struct stripe_head *sh)
1983 {
1984         sector_t stripe, stripe2;
1985         sector_t chunk_number;
1986         unsigned int chunk_offset;
1987         int pd_idx, qd_idx;
1988         int ddf_layout = 0;
1989         sector_t new_sector;
1990         int algorithm = previous ? conf->prev_algo
1991                                  : conf->algorithm;
1992         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1993                                          : conf->chunk_sectors;
1994         int raid_disks = previous ? conf->previous_raid_disks
1995                                   : conf->raid_disks;
1996         int data_disks = raid_disks - conf->max_degraded;
1997
1998         /* First compute the information on this sector */
1999
2000         /*
2001          * Compute the chunk number and the sector offset inside the chunk
2002          */
2003         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2004         chunk_number = r_sector;
2005
2006         /*
2007          * Compute the stripe number
2008          */
2009         stripe = chunk_number;
2010         *dd_idx = sector_div(stripe, data_disks);
2011         stripe2 = stripe;
2012         /*
2013          * Select the parity disk based on the user selected algorithm.
2014          */
2015         pd_idx = qd_idx = -1;
2016         switch(conf->level) {
2017         case 4:
2018                 pd_idx = data_disks;
2019                 break;
2020         case 5:
2021                 switch (algorithm) {
2022                 case ALGORITHM_LEFT_ASYMMETRIC:
2023                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2024                         if (*dd_idx >= pd_idx)
2025                                 (*dd_idx)++;
2026                         break;
2027                 case ALGORITHM_RIGHT_ASYMMETRIC:
2028                         pd_idx = sector_div(stripe2, raid_disks);
2029                         if (*dd_idx >= pd_idx)
2030                                 (*dd_idx)++;
2031                         break;
2032                 case ALGORITHM_LEFT_SYMMETRIC:
2033                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2034                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2035                         break;
2036                 case ALGORITHM_RIGHT_SYMMETRIC:
2037                         pd_idx = sector_div(stripe2, raid_disks);
2038                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2039                         break;
2040                 case ALGORITHM_PARITY_0:
2041                         pd_idx = 0;
2042                         (*dd_idx)++;
2043                         break;
2044                 case ALGORITHM_PARITY_N:
2045                         pd_idx = data_disks;
2046                         break;
2047                 default:
2048                         BUG();
2049                 }
2050                 break;
2051         case 6:
2052
2053                 switch (algorithm) {
2054                 case ALGORITHM_LEFT_ASYMMETRIC:
2055                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2056                         qd_idx = pd_idx + 1;
2057                         if (pd_idx == raid_disks-1) {
2058                                 (*dd_idx)++;    /* Q D D D P */
2059                                 qd_idx = 0;
2060                         } else if (*dd_idx >= pd_idx)
2061                                 (*dd_idx) += 2; /* D D P Q D */
2062                         break;
2063                 case ALGORITHM_RIGHT_ASYMMETRIC:
2064                         pd_idx = sector_div(stripe2, raid_disks);
2065                         qd_idx = pd_idx + 1;
2066                         if (pd_idx == raid_disks-1) {
2067                                 (*dd_idx)++;    /* Q D D D P */
2068                                 qd_idx = 0;
2069                         } else if (*dd_idx >= pd_idx)
2070                                 (*dd_idx) += 2; /* D D P Q D */
2071                         break;
2072                 case ALGORITHM_LEFT_SYMMETRIC:
2073                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2074                         qd_idx = (pd_idx + 1) % raid_disks;
2075                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2076                         break;
2077                 case ALGORITHM_RIGHT_SYMMETRIC:
2078                         pd_idx = sector_div(stripe2, raid_disks);
2079                         qd_idx = (pd_idx + 1) % raid_disks;
2080                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2081                         break;
2082
2083                 case ALGORITHM_PARITY_0:
2084                         pd_idx = 0;
2085                         qd_idx = 1;
2086                         (*dd_idx) += 2;
2087                         break;
2088                 case ALGORITHM_PARITY_N:
2089                         pd_idx = data_disks;
2090                         qd_idx = data_disks + 1;
2091                         break;
2092
2093                 case ALGORITHM_ROTATING_ZERO_RESTART:
2094                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2095                          * of blocks for computing Q is different.
2096                          */
2097                         pd_idx = sector_div(stripe2, raid_disks);
2098                         qd_idx = pd_idx + 1;
2099                         if (pd_idx == raid_disks-1) {
2100                                 (*dd_idx)++;    /* Q D D D P */
2101                                 qd_idx = 0;
2102                         } else if (*dd_idx >= pd_idx)
2103                                 (*dd_idx) += 2; /* D D P Q D */
2104                         ddf_layout = 1;
2105                         break;
2106
2107                 case ALGORITHM_ROTATING_N_RESTART:
2108                         /* Same a left_asymmetric, by first stripe is
2109                          * D D D P Q  rather than
2110                          * Q D D D P
2111                          */
2112                         stripe2 += 1;
2113                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2114                         qd_idx = pd_idx + 1;
2115                         if (pd_idx == raid_disks-1) {
2116                                 (*dd_idx)++;    /* Q D D D P */
2117                                 qd_idx = 0;
2118                         } else if (*dd_idx >= pd_idx)
2119                                 (*dd_idx) += 2; /* D D P Q D */
2120                         ddf_layout = 1;
2121                         break;
2122
2123                 case ALGORITHM_ROTATING_N_CONTINUE:
2124                         /* Same as left_symmetric but Q is before P */
2125                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2126                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2127                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2128                         ddf_layout = 1;
2129                         break;
2130
2131                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2132                         /* RAID5 left_asymmetric, with Q on last device */
2133                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2134                         if (*dd_idx >= pd_idx)
2135                                 (*dd_idx)++;
2136                         qd_idx = raid_disks - 1;
2137                         break;
2138
2139                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2140                         pd_idx = sector_div(stripe2, raid_disks-1);
2141                         if (*dd_idx >= pd_idx)
2142                                 (*dd_idx)++;
2143                         qd_idx = raid_disks - 1;
2144                         break;
2145
2146                 case ALGORITHM_LEFT_SYMMETRIC_6:
2147                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2148                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2149                         qd_idx = raid_disks - 1;
2150                         break;
2151
2152                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2153                         pd_idx = sector_div(stripe2, raid_disks-1);
2154                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2155                         qd_idx = raid_disks - 1;
2156                         break;
2157
2158                 case ALGORITHM_PARITY_0_6:
2159                         pd_idx = 0;
2160                         (*dd_idx)++;
2161                         qd_idx = raid_disks - 1;
2162                         break;
2163
2164                 default:
2165                         BUG();
2166                 }
2167                 break;
2168         }
2169
2170         if (sh) {
2171                 sh->pd_idx = pd_idx;
2172                 sh->qd_idx = qd_idx;
2173                 sh->ddf_layout = ddf_layout;
2174         }
2175         /*
2176          * Finally, compute the new sector number
2177          */
2178         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2179         return new_sector;
2180 }
2181
2182
2183 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2184 {
2185         struct r5conf *conf = sh->raid_conf;
2186         int raid_disks = sh->disks;
2187         int data_disks = raid_disks - conf->max_degraded;
2188         sector_t new_sector = sh->sector, check;
2189         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2190                                          : conf->chunk_sectors;
2191         int algorithm = previous ? conf->prev_algo
2192                                  : conf->algorithm;
2193         sector_t stripe;
2194         int chunk_offset;
2195         sector_t chunk_number;
2196         int dummy1, dd_idx = i;
2197         sector_t r_sector;
2198         struct stripe_head sh2;
2199
2200
2201         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2202         stripe = new_sector;
2203
2204         if (i == sh->pd_idx)
2205                 return 0;
2206         switch(conf->level) {
2207         case 4: break;
2208         case 5:
2209                 switch (algorithm) {
2210                 case ALGORITHM_LEFT_ASYMMETRIC:
2211                 case ALGORITHM_RIGHT_ASYMMETRIC:
2212                         if (i > sh->pd_idx)
2213                                 i--;
2214                         break;
2215                 case ALGORITHM_LEFT_SYMMETRIC:
2216                 case ALGORITHM_RIGHT_SYMMETRIC:
2217                         if (i < sh->pd_idx)
2218                                 i += raid_disks;
2219                         i -= (sh->pd_idx + 1);
2220                         break;
2221                 case ALGORITHM_PARITY_0:
2222                         i -= 1;
2223                         break;
2224                 case ALGORITHM_PARITY_N:
2225                         break;
2226                 default:
2227                         BUG();
2228                 }
2229                 break;
2230         case 6:
2231                 if (i == sh->qd_idx)
2232                         return 0; /* It is the Q disk */
2233                 switch (algorithm) {
2234                 case ALGORITHM_LEFT_ASYMMETRIC:
2235                 case ALGORITHM_RIGHT_ASYMMETRIC:
2236                 case ALGORITHM_ROTATING_ZERO_RESTART:
2237                 case ALGORITHM_ROTATING_N_RESTART:
2238                         if (sh->pd_idx == raid_disks-1)
2239                                 i--;    /* Q D D D P */
2240                         else if (i > sh->pd_idx)
2241                                 i -= 2; /* D D P Q D */
2242                         break;
2243                 case ALGORITHM_LEFT_SYMMETRIC:
2244                 case ALGORITHM_RIGHT_SYMMETRIC:
2245                         if (sh->pd_idx == raid_disks-1)
2246                                 i--; /* Q D D D P */
2247                         else {
2248                                 /* D D P Q D */
2249                                 if (i < sh->pd_idx)
2250                                         i += raid_disks;
2251                                 i -= (sh->pd_idx + 2);
2252                         }
2253                         break;
2254                 case ALGORITHM_PARITY_0:
2255                         i -= 2;
2256                         break;
2257                 case ALGORITHM_PARITY_N:
2258                         break;
2259                 case ALGORITHM_ROTATING_N_CONTINUE:
2260                         /* Like left_symmetric, but P is before Q */
2261                         if (sh->pd_idx == 0)
2262                                 i--;    /* P D D D Q */
2263                         else {
2264                                 /* D D Q P D */
2265                                 if (i < sh->pd_idx)
2266                                         i += raid_disks;
2267                                 i -= (sh->pd_idx + 1);
2268                         }
2269                         break;
2270                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2271                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2272                         if (i > sh->pd_idx)
2273                                 i--;
2274                         break;
2275                 case ALGORITHM_LEFT_SYMMETRIC_6:
2276                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2277                         if (i < sh->pd_idx)
2278                                 i += data_disks + 1;
2279                         i -= (sh->pd_idx + 1);
2280                         break;
2281                 case ALGORITHM_PARITY_0_6:
2282                         i -= 1;
2283                         break;
2284                 default:
2285                         BUG();
2286                 }
2287                 break;
2288         }
2289
2290         chunk_number = stripe * data_disks + i;
2291         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2292
2293         check = raid5_compute_sector(conf, r_sector,
2294                                      previous, &dummy1, &sh2);
2295         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2296                 || sh2.qd_idx != sh->qd_idx) {
2297                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2298                        mdname(conf->mddev));
2299                 return 0;
2300         }
2301         return r_sector;
2302 }
2303
2304
2305 static void
2306 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2307                          int rcw, int expand)
2308 {
2309         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2310         struct r5conf *conf = sh->raid_conf;
2311         int level = conf->level;
2312
2313         if (rcw) {
2314                 /* if we are not expanding this is a proper write request, and
2315                  * there will be bios with new data to be drained into the
2316                  * stripe cache
2317                  */
2318                 if (!expand) {
2319                         sh->reconstruct_state = reconstruct_state_drain_run;
2320                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2321                 } else
2322                         sh->reconstruct_state = reconstruct_state_run;
2323
2324                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2325
2326                 for (i = disks; i--; ) {
2327                         struct r5dev *dev = &sh->dev[i];
2328
2329                         if (dev->towrite) {
2330                                 set_bit(R5_LOCKED, &dev->flags);
2331                                 set_bit(R5_Wantdrain, &dev->flags);
2332                                 if (!expand)
2333                                         clear_bit(R5_UPTODATE, &dev->flags);
2334                                 s->locked++;
2335                         }
2336                 }
2337                 if (s->locked + conf->max_degraded == disks)
2338                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2339                                 atomic_inc(&conf->pending_full_writes);
2340         } else {
2341                 BUG_ON(level == 6);
2342                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2343                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2344
2345                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2346                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2347                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2348                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2349
2350                 for (i = disks; i--; ) {
2351                         struct r5dev *dev = &sh->dev[i];
2352                         if (i == pd_idx)
2353                                 continue;
2354
2355                         if (dev->towrite &&
2356                             (test_bit(R5_UPTODATE, &dev->flags) ||
2357                              test_bit(R5_Wantcompute, &dev->flags))) {
2358                                 set_bit(R5_Wantdrain, &dev->flags);
2359                                 set_bit(R5_LOCKED, &dev->flags);
2360                                 clear_bit(R5_UPTODATE, &dev->flags);
2361                                 s->locked++;
2362                         }
2363                 }
2364         }
2365
2366         /* keep the parity disk(s) locked while asynchronous operations
2367          * are in flight
2368          */
2369         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2370         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2371         s->locked++;
2372
2373         if (level == 6) {
2374                 int qd_idx = sh->qd_idx;
2375                 struct r5dev *dev = &sh->dev[qd_idx];
2376
2377                 set_bit(R5_LOCKED, &dev->flags);
2378                 clear_bit(R5_UPTODATE, &dev->flags);
2379                 s->locked++;
2380         }
2381
2382         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2383                 __func__, (unsigned long long)sh->sector,
2384                 s->locked, s->ops_request);
2385 }
2386
2387 /*
2388  * Each stripe/dev can have one or more bion attached.
2389  * toread/towrite point to the first in a chain.
2390  * The bi_next chain must be in order.
2391  */
2392 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2393 {
2394         struct bio **bip;
2395         struct r5conf *conf = sh->raid_conf;
2396         int firstwrite=0;
2397
2398         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2399                 (unsigned long long)bi->bi_sector,
2400                 (unsigned long long)sh->sector);
2401
2402         /*
2403          * If several bio share a stripe. The bio bi_phys_segments acts as a
2404          * reference count to avoid race. The reference count should already be
2405          * increased before this function is called (for example, in
2406          * make_request()), so other bio sharing this stripe will not free the
2407          * stripe. If a stripe is owned by one stripe, the stripe lock will
2408          * protect it.
2409          */
2410         spin_lock_irq(&sh->stripe_lock);
2411         if (forwrite) {
2412                 bip = &sh->dev[dd_idx].towrite;
2413                 if (*bip == NULL)
2414                         firstwrite = 1;
2415         } else
2416                 bip = &sh->dev[dd_idx].toread;
2417         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2418                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2419                         goto overlap;
2420                 bip = & (*bip)->bi_next;
2421         }
2422         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2423                 goto overlap;
2424
2425         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2426         if (*bip)
2427                 bi->bi_next = *bip;
2428         *bip = bi;
2429         raid5_inc_bi_active_stripes(bi);
2430
2431         if (forwrite) {
2432                 /* check if page is covered */
2433                 sector_t sector = sh->dev[dd_idx].sector;
2434                 for (bi=sh->dev[dd_idx].towrite;
2435                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2436                              bi && bi->bi_sector <= sector;
2437                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2438                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2439                                 sector = bi->bi_sector + (bi->bi_size>>9);
2440                 }
2441                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2442                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2443         }
2444
2445         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2446                 (unsigned long long)(*bip)->bi_sector,
2447                 (unsigned long long)sh->sector, dd_idx);
2448         spin_unlock_irq(&sh->stripe_lock);
2449
2450         if (conf->mddev->bitmap && firstwrite) {
2451                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2452                                   STRIPE_SECTORS, 0);
2453                 sh->bm_seq = conf->seq_flush+1;
2454                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2455         }
2456         return 1;
2457
2458  overlap:
2459         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2460         spin_unlock_irq(&sh->stripe_lock);
2461         return 0;
2462 }
2463
2464 static void end_reshape(struct r5conf *conf);
2465
2466 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2467                             struct stripe_head *sh)
2468 {
2469         int sectors_per_chunk =
2470                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2471         int dd_idx;
2472         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2473         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2474
2475         raid5_compute_sector(conf,
2476                              stripe * (disks - conf->max_degraded)
2477                              *sectors_per_chunk + chunk_offset,
2478                              previous,
2479                              &dd_idx, sh);
2480 }
2481
2482 static void
2483 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2484                                 struct stripe_head_state *s, int disks,
2485                                 struct bio **return_bi)
2486 {
2487         int i;
2488         for (i = disks; i--; ) {
2489                 struct bio *bi;
2490                 int bitmap_end = 0;
2491
2492                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2493                         struct md_rdev *rdev;
2494                         rcu_read_lock();
2495                         rdev = rcu_dereference(conf->disks[i].rdev);
2496                         if (rdev && test_bit(In_sync, &rdev->flags))
2497                                 atomic_inc(&rdev->nr_pending);
2498                         else
2499                                 rdev = NULL;
2500                         rcu_read_unlock();
2501                         if (rdev) {
2502                                 if (!rdev_set_badblocks(
2503                                             rdev,
2504                                             sh->sector,
2505                                             STRIPE_SECTORS, 0))
2506                                         md_error(conf->mddev, rdev);
2507                                 rdev_dec_pending(rdev, conf->mddev);
2508                         }
2509                 }
2510                 spin_lock_irq(&sh->stripe_lock);
2511                 /* fail all writes first */
2512                 bi = sh->dev[i].towrite;
2513                 sh->dev[i].towrite = NULL;
2514                 spin_unlock_irq(&sh->stripe_lock);
2515                 if (bi)
2516                         bitmap_end = 1;
2517
2518                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2519                         wake_up(&conf->wait_for_overlap);
2520
2521                 while (bi && bi->bi_sector <
2522                         sh->dev[i].sector + STRIPE_SECTORS) {
2523                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2524                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2525                         if (!raid5_dec_bi_active_stripes(bi)) {
2526                                 md_write_end(conf->mddev);
2527                                 bi->bi_next = *return_bi;
2528                                 *return_bi = bi;
2529                         }
2530                         bi = nextbi;
2531                 }
2532                 if (bitmap_end)
2533                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2534                                 STRIPE_SECTORS, 0, 0);
2535                 bitmap_end = 0;
2536                 /* and fail all 'written' */
2537                 bi = sh->dev[i].written;
2538                 sh->dev[i].written = NULL;
2539                 if (bi) bitmap_end = 1;
2540                 while (bi && bi->bi_sector <
2541                        sh->dev[i].sector + STRIPE_SECTORS) {
2542                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2543                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2544                         if (!raid5_dec_bi_active_stripes(bi)) {
2545                                 md_write_end(conf->mddev);
2546                                 bi->bi_next = *return_bi;
2547                                 *return_bi = bi;
2548                         }
2549                         bi = bi2;
2550                 }
2551
2552                 /* fail any reads if this device is non-operational and
2553                  * the data has not reached the cache yet.
2554                  */
2555                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2556                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2557                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2558                         spin_lock_irq(&sh->stripe_lock);
2559                         bi = sh->dev[i].toread;
2560                         sh->dev[i].toread = NULL;
2561                         spin_unlock_irq(&sh->stripe_lock);
2562                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2563                                 wake_up(&conf->wait_for_overlap);
2564                         while (bi && bi->bi_sector <
2565                                sh->dev[i].sector + STRIPE_SECTORS) {
2566                                 struct bio *nextbi =
2567                                         r5_next_bio(bi, sh->dev[i].sector);
2568                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2569                                 if (!raid5_dec_bi_active_stripes(bi)) {
2570                                         bi->bi_next = *return_bi;
2571                                         *return_bi = bi;
2572                                 }
2573                                 bi = nextbi;
2574                         }
2575                 }
2576                 if (bitmap_end)
2577                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2578                                         STRIPE_SECTORS, 0, 0);
2579                 /* If we were in the middle of a write the parity block might
2580                  * still be locked - so just clear all R5_LOCKED flags
2581                  */
2582                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2583         }
2584
2585         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2586                 if (atomic_dec_and_test(&conf->pending_full_writes))
2587                         md_wakeup_thread(conf->mddev->thread);
2588 }
2589
2590 static void
2591 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2592                    struct stripe_head_state *s)
2593 {
2594         int abort = 0;
2595         int i;
2596
2597         clear_bit(STRIPE_SYNCING, &sh->state);
2598         s->syncing = 0;
2599         s->replacing = 0;
2600         /* There is nothing more to do for sync/check/repair.
2601          * Don't even need to abort as that is handled elsewhere
2602          * if needed, and not always wanted e.g. if there is a known
2603          * bad block here.
2604          * For recover/replace we need to record a bad block on all
2605          * non-sync devices, or abort the recovery
2606          */
2607         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2608                 /* During recovery devices cannot be removed, so
2609                  * locking and refcounting of rdevs is not needed
2610                  */
2611                 for (i = 0; i < conf->raid_disks; i++) {
2612                         struct md_rdev *rdev = conf->disks[i].rdev;
2613                         if (rdev
2614                             && !test_bit(Faulty, &rdev->flags)
2615                             && !test_bit(In_sync, &rdev->flags)
2616                             && !rdev_set_badblocks(rdev, sh->sector,
2617                                                    STRIPE_SECTORS, 0))
2618                                 abort = 1;
2619                         rdev = conf->disks[i].replacement;
2620                         if (rdev
2621                             && !test_bit(Faulty, &rdev->flags)
2622                             && !test_bit(In_sync, &rdev->flags)
2623                             && !rdev_set_badblocks(rdev, sh->sector,
2624                                                    STRIPE_SECTORS, 0))
2625                                 abort = 1;
2626                 }
2627                 if (abort)
2628                         conf->recovery_disabled =
2629                                 conf->mddev->recovery_disabled;
2630         }
2631         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2632 }
2633
2634 static int want_replace(struct stripe_head *sh, int disk_idx)
2635 {
2636         struct md_rdev *rdev;
2637         int rv = 0;
2638         /* Doing recovery so rcu locking not required */
2639         rdev = sh->raid_conf->disks[disk_idx].replacement;
2640         if (rdev
2641             && !test_bit(Faulty, &rdev->flags)
2642             && !test_bit(In_sync, &rdev->flags)
2643             && (rdev->recovery_offset <= sh->sector
2644                 || rdev->mddev->recovery_cp <= sh->sector))
2645                 rv = 1;
2646
2647         return rv;
2648 }
2649
2650 /* fetch_block - checks the given member device to see if its data needs
2651  * to be read or computed to satisfy a request.
2652  *
2653  * Returns 1 when no more member devices need to be checked, otherwise returns
2654  * 0 to tell the loop in handle_stripe_fill to continue
2655  */
2656 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2657                        int disk_idx, int disks)
2658 {
2659         struct r5dev *dev = &sh->dev[disk_idx];
2660         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2661                                   &sh->dev[s->failed_num[1]] };
2662
2663         /* is the data in this block needed, and can we get it? */
2664         if (!test_bit(R5_LOCKED, &dev->flags) &&
2665             !test_bit(R5_UPTODATE, &dev->flags) &&
2666             (dev->toread ||
2667              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2668              s->syncing || s->expanding ||
2669              (s->replacing && want_replace(sh, disk_idx)) ||
2670              (s->failed >= 1 && fdev[0]->toread) ||
2671              (s->failed >= 2 && fdev[1]->toread) ||
2672              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2673               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2674              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2675                 /* we would like to get this block, possibly by computing it,
2676                  * otherwise read it if the backing disk is insync
2677                  */
2678                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2679                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2680                 if ((s->uptodate == disks - 1) &&
2681                     (s->failed && (disk_idx == s->failed_num[0] ||
2682                                    disk_idx == s->failed_num[1]))) {
2683                         /* have disk failed, and we're requested to fetch it;
2684                          * do compute it
2685                          */
2686                         pr_debug("Computing stripe %llu block %d\n",
2687                                (unsigned long long)sh->sector, disk_idx);
2688                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2689                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2690                         set_bit(R5_Wantcompute, &dev->flags);
2691                         sh->ops.target = disk_idx;
2692                         sh->ops.target2 = -1; /* no 2nd target */
2693                         s->req_compute = 1;
2694                         /* Careful: from this point on 'uptodate' is in the eye
2695                          * of raid_run_ops which services 'compute' operations
2696                          * before writes. R5_Wantcompute flags a block that will
2697                          * be R5_UPTODATE by the time it is needed for a
2698                          * subsequent operation.
2699                          */
2700                         s->uptodate++;
2701                         return 1;
2702                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2703                         /* Computing 2-failure is *very* expensive; only
2704                          * do it if failed >= 2
2705                          */
2706                         int other;
2707                         for (other = disks; other--; ) {
2708                                 if (other == disk_idx)
2709                                         continue;
2710                                 if (!test_bit(R5_UPTODATE,
2711                                       &sh->dev[other].flags))
2712                                         break;
2713                         }
2714                         BUG_ON(other < 0);
2715                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2716                                (unsigned long long)sh->sector,
2717                                disk_idx, other);
2718                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2719                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2720                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2721                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2722                         sh->ops.target = disk_idx;
2723                         sh->ops.target2 = other;
2724                         s->uptodate += 2;
2725                         s->req_compute = 1;
2726                         return 1;
2727                 } else if (test_bit(R5_Insync, &dev->flags)) {
2728                         set_bit(R5_LOCKED, &dev->flags);
2729                         set_bit(R5_Wantread, &dev->flags);
2730                         s->locked++;
2731                         pr_debug("Reading block %d (sync=%d)\n",
2732                                 disk_idx, s->syncing);
2733                 }
2734         }
2735
2736         return 0;
2737 }
2738
2739 /**
2740  * handle_stripe_fill - read or compute data to satisfy pending requests.
2741  */
2742 static void handle_stripe_fill(struct stripe_head *sh,
2743                                struct stripe_head_state *s,
2744                                int disks)
2745 {
2746         int i;
2747
2748         /* look for blocks to read/compute, skip this if a compute
2749          * is already in flight, or if the stripe contents are in the
2750          * midst of changing due to a write
2751          */
2752         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2753             !sh->reconstruct_state)
2754                 for (i = disks; i--; )
2755                         if (fetch_block(sh, s, i, disks))
2756                                 break;
2757         set_bit(STRIPE_HANDLE, &sh->state);
2758 }
2759
2760
2761 /* handle_stripe_clean_event
2762  * any written block on an uptodate or failed drive can be returned.
2763  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2764  * never LOCKED, so we don't need to test 'failed' directly.
2765  */
2766 static void handle_stripe_clean_event(struct r5conf *conf,
2767         struct stripe_head *sh, int disks, struct bio **return_bi)
2768 {
2769         int i;
2770         struct r5dev *dev;
2771
2772         for (i = disks; i--; )
2773                 if (sh->dev[i].written) {
2774                         dev = &sh->dev[i];
2775                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2776                             (test_bit(R5_UPTODATE, &dev->flags) ||
2777                              test_bit(R5_Discard, &dev->flags))) {
2778                                 /* We can return any write requests */
2779                                 struct bio *wbi, *wbi2;
2780                                 pr_debug("Return write for disc %d\n", i);
2781                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
2782                                         clear_bit(R5_UPTODATE, &dev->flags);
2783                                 wbi = dev->written;
2784                                 dev->written = NULL;
2785                                 while (wbi && wbi->bi_sector <
2786                                         dev->sector + STRIPE_SECTORS) {
2787                                         wbi2 = r5_next_bio(wbi, dev->sector);
2788                                         if (!raid5_dec_bi_active_stripes(wbi)) {
2789                                                 md_write_end(conf->mddev);
2790                                                 wbi->bi_next = *return_bi;
2791                                                 *return_bi = wbi;
2792                                         }
2793                                         wbi = wbi2;
2794                                 }
2795                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2796                                                 STRIPE_SECTORS,
2797                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2798                                                 0);
2799                         }
2800                 } else if (test_bit(R5_Discard, &sh->dev[i].flags))
2801                         clear_bit(R5_Discard, &sh->dev[i].flags);
2802
2803         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2804                 if (atomic_dec_and_test(&conf->pending_full_writes))
2805                         md_wakeup_thread(conf->mddev->thread);
2806 }
2807
2808 static void handle_stripe_dirtying(struct r5conf *conf,
2809                                    struct stripe_head *sh,
2810                                    struct stripe_head_state *s,
2811                                    int disks)
2812 {
2813         int rmw = 0, rcw = 0, i;
2814         sector_t recovery_cp = conf->mddev->recovery_cp;
2815
2816         /* RAID6 requires 'rcw' in current implementation.
2817          * Otherwise, check whether resync is now happening or should start.
2818          * If yes, then the array is dirty (after unclean shutdown or
2819          * initial creation), so parity in some stripes might be inconsistent.
2820          * In this case, we need to always do reconstruct-write, to ensure
2821          * that in case of drive failure or read-error correction, we
2822          * generate correct data from the parity.
2823          */
2824         if (conf->max_degraded == 2 ||
2825             (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2826                 /* Calculate the real rcw later - for now make it
2827                  * look like rcw is cheaper
2828                  */
2829                 rcw = 1; rmw = 2;
2830                 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2831                          conf->max_degraded, (unsigned long long)recovery_cp,
2832                          (unsigned long long)sh->sector);
2833         } else for (i = disks; i--; ) {
2834                 /* would I have to read this buffer for read_modify_write */
2835                 struct r5dev *dev = &sh->dev[i];
2836                 if ((dev->towrite || i == sh->pd_idx) &&
2837                     !test_bit(R5_LOCKED, &dev->flags) &&
2838                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2839                       test_bit(R5_Wantcompute, &dev->flags))) {
2840                         if (test_bit(R5_Insync, &dev->flags))
2841                                 rmw++;
2842                         else
2843                                 rmw += 2*disks;  /* cannot read it */
2844                 }
2845                 /* Would I have to read this buffer for reconstruct_write */
2846                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2847                     !test_bit(R5_LOCKED, &dev->flags) &&
2848                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2849                     test_bit(R5_Wantcompute, &dev->flags))) {
2850                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2851                         else
2852                                 rcw += 2*disks;
2853                 }
2854         }
2855         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2856                 (unsigned long long)sh->sector, rmw, rcw);
2857         set_bit(STRIPE_HANDLE, &sh->state);
2858         if (rmw < rcw && rmw > 0)
2859                 /* prefer read-modify-write, but need to get some data */
2860                 for (i = disks; i--; ) {
2861                         struct r5dev *dev = &sh->dev[i];
2862                         if ((dev->towrite || i == sh->pd_idx) &&
2863                             !test_bit(R5_LOCKED, &dev->flags) &&
2864                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2865                             test_bit(R5_Wantcompute, &dev->flags)) &&
2866                             test_bit(R5_Insync, &dev->flags)) {
2867                                 if (
2868                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2869                                         pr_debug("Read_old block "
2870                                                 "%d for r-m-w\n", i);
2871                                         set_bit(R5_LOCKED, &dev->flags);
2872                                         set_bit(R5_Wantread, &dev->flags);
2873                                         s->locked++;
2874                                 } else {
2875                                         set_bit(STRIPE_DELAYED, &sh->state);
2876                                         set_bit(STRIPE_HANDLE, &sh->state);
2877                                 }
2878                         }
2879                 }
2880         if (rcw <= rmw && rcw > 0) {
2881                 /* want reconstruct write, but need to get some data */
2882                 rcw = 0;
2883                 for (i = disks; i--; ) {
2884                         struct r5dev *dev = &sh->dev[i];
2885                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2886                             i != sh->pd_idx && i != sh->qd_idx &&
2887                             !test_bit(R5_LOCKED, &dev->flags) &&
2888                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2889                               test_bit(R5_Wantcompute, &dev->flags))) {
2890                                 rcw++;
2891                                 if (!test_bit(R5_Insync, &dev->flags))
2892                                         continue; /* it's a failed drive */
2893                                 if (
2894                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2895                                         pr_debug("Read_old block "
2896                                                 "%d for Reconstruct\n", i);
2897                                         set_bit(R5_LOCKED, &dev->flags);
2898                                         set_bit(R5_Wantread, &dev->flags);
2899                                         s->locked++;
2900                                 } else {
2901                                         set_bit(STRIPE_DELAYED, &sh->state);
2902                                         set_bit(STRIPE_HANDLE, &sh->state);
2903                                 }
2904                         }
2905                 }
2906         }
2907         /* now if nothing is locked, and if we have enough data,
2908          * we can start a write request
2909          */
2910         /* since handle_stripe can be called at any time we need to handle the
2911          * case where a compute block operation has been submitted and then a
2912          * subsequent call wants to start a write request.  raid_run_ops only
2913          * handles the case where compute block and reconstruct are requested
2914          * simultaneously.  If this is not the case then new writes need to be
2915          * held off until the compute completes.
2916          */
2917         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2918             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2919             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2920                 schedule_reconstruction(sh, s, rcw == 0, 0);
2921 }
2922
2923 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2924                                 struct stripe_head_state *s, int disks)
2925 {
2926         struct r5dev *dev = NULL;
2927
2928         set_bit(STRIPE_HANDLE, &sh->state);
2929
2930         switch (sh->check_state) {
2931         case check_state_idle:
2932                 /* start a new check operation if there are no failures */
2933                 if (s->failed == 0) {
2934                         BUG_ON(s->uptodate != disks);
2935                         sh->check_state = check_state_run;
2936                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2937                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2938                         s->uptodate--;
2939                         break;
2940                 }
2941                 dev = &sh->dev[s->failed_num[0]];
2942                 /* fall through */
2943         case check_state_compute_result:
2944                 sh->check_state = check_state_idle;
2945                 if (!dev)
2946                         dev = &sh->dev[sh->pd_idx];
2947
2948                 /* check that a write has not made the stripe insync */
2949                 if (test_bit(STRIPE_INSYNC, &sh->state))
2950                         break;
2951
2952                 /* either failed parity check, or recovery is happening */
2953                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2954                 BUG_ON(s->uptodate != disks);
2955
2956                 set_bit(R5_LOCKED, &dev->flags);
2957                 s->locked++;
2958                 set_bit(R5_Wantwrite, &dev->flags);
2959
2960                 clear_bit(STRIPE_DEGRADED, &sh->state);
2961                 set_bit(STRIPE_INSYNC, &sh->state);
2962                 break;
2963         case check_state_run:
2964                 break; /* we will be called again upon completion */
2965         case check_state_check_result:
2966                 sh->check_state = check_state_idle;
2967
2968                 /* if a failure occurred during the check operation, leave
2969                  * STRIPE_INSYNC not set and let the stripe be handled again
2970                  */
2971                 if (s->failed)
2972                         break;
2973
2974                 /* handle a successful check operation, if parity is correct
2975                  * we are done.  Otherwise update the mismatch count and repair
2976                  * parity if !MD_RECOVERY_CHECK
2977                  */
2978                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2979                         /* parity is correct (on disc,
2980                          * not in buffer any more)
2981                          */
2982                         set_bit(STRIPE_INSYNC, &sh->state);
2983                 else {
2984                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
2985                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2986                                 /* don't try to repair!! */
2987                                 set_bit(STRIPE_INSYNC, &sh->state);
2988                         else {
2989                                 sh->check_state = check_state_compute_run;
2990                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2991                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2992                                 set_bit(R5_Wantcompute,
2993                                         &sh->dev[sh->pd_idx].flags);
2994                                 sh->ops.target = sh->pd_idx;
2995                                 sh->ops.target2 = -1;
2996                                 s->uptodate++;
2997                         }
2998                 }
2999                 break;
3000         case check_state_compute_run:
3001                 break;
3002         default:
3003                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3004                        __func__, sh->check_state,
3005                        (unsigned long long) sh->sector);
3006                 BUG();
3007         }
3008 }
3009
3010
3011 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3012                                   struct stripe_head_state *s,
3013                                   int disks)
3014 {
3015         int pd_idx = sh->pd_idx;
3016         int qd_idx = sh->qd_idx;
3017         struct r5dev *dev;
3018
3019         set_bit(STRIPE_HANDLE, &sh->state);
3020
3021         BUG_ON(s->failed > 2);
3022
3023         /* Want to check and possibly repair P and Q.
3024          * However there could be one 'failed' device, in which
3025          * case we can only check one of them, possibly using the
3026          * other to generate missing data
3027          */
3028
3029         switch (sh->check_state) {
3030         case check_state_idle:
3031                 /* start a new check operation if there are < 2 failures */
3032                 if (s->failed == s->q_failed) {
3033                         /* The only possible failed device holds Q, so it
3034                          * makes sense to check P (If anything else were failed,
3035                          * we would have used P to recreate it).
3036                          */
3037                         sh->check_state = check_state_run;
3038                 }
3039                 if (!s->q_failed && s->failed < 2) {
3040                         /* Q is not failed, and we didn't use it to generate
3041                          * anything, so it makes sense to check it
3042                          */
3043                         if (sh->check_state == check_state_run)
3044                                 sh->check_state = check_state_run_pq;
3045                         else
3046                                 sh->check_state = check_state_run_q;
3047                 }
3048
3049                 /* discard potentially stale zero_sum_result */
3050                 sh->ops.zero_sum_result = 0;
3051
3052                 if (sh->check_state == check_state_run) {
3053                         /* async_xor_zero_sum destroys the contents of P */
3054                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3055                         s->uptodate--;
3056                 }
3057                 if (sh->check_state >= check_state_run &&
3058                     sh->check_state <= check_state_run_pq) {
3059                         /* async_syndrome_zero_sum preserves P and Q, so
3060                          * no need to mark them !uptodate here
3061                          */
3062                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3063                         break;
3064                 }
3065
3066                 /* we have 2-disk failure */
3067                 BUG_ON(s->failed != 2);
3068                 /* fall through */
3069         case check_state_compute_result:
3070                 sh->check_state = check_state_idle;
3071
3072                 /* check that a write has not made the stripe insync */
3073                 if (test_bit(STRIPE_INSYNC, &sh->state))
3074                         break;
3075
3076                 /* now write out any block on a failed drive,
3077                  * or P or Q if they were recomputed
3078                  */
3079                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3080                 if (s->failed == 2) {
3081                         dev = &sh->dev[s->failed_num[1]];
3082                         s->locked++;
3083                         set_bit(R5_LOCKED, &dev->flags);
3084                         set_bit(R5_Wantwrite, &dev->flags);
3085                 }
3086                 if (s->failed >= 1) {
3087                         dev = &sh->dev[s->failed_num[0]];
3088                         s->locked++;
3089                         set_bit(R5_LOCKED, &dev->flags);
3090                         set_bit(R5_Wantwrite, &dev->flags);
3091                 }
3092                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3093                         dev = &sh->dev[pd_idx];
3094                         s->locked++;
3095                         set_bit(R5_LOCKED, &dev->flags);
3096                         set_bit(R5_Wantwrite, &dev->flags);
3097                 }
3098                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3099                         dev = &sh->dev[qd_idx];
3100                         s->locked++;
3101                         set_bit(R5_LOCKED, &dev->flags);
3102                         set_bit(R5_Wantwrite, &dev->flags);
3103                 }
3104                 clear_bit(STRIPE_DEGRADED, &sh->state);
3105
3106                 set_bit(STRIPE_INSYNC, &sh->state);
3107                 break;
3108         case check_state_run:
3109         case check_state_run_q:
3110         case check_state_run_pq:
3111                 break; /* we will be called again upon completion */
3112         case check_state_check_result:
3113                 sh->check_state = check_state_idle;
3114
3115                 /* handle a successful check operation, if parity is correct
3116                  * we are done.  Otherwise update the mismatch count and repair
3117                  * parity if !MD_RECOVERY_CHECK
3118                  */
3119                 if (sh->ops.zero_sum_result == 0) {
3120                         /* both parities are correct */
3121                         if (!s->failed)
3122                                 set_bit(STRIPE_INSYNC, &sh->state);
3123                         else {
3124                                 /* in contrast to the raid5 case we can validate
3125                                  * parity, but still have a failure to write
3126                                  * back
3127                                  */
3128                                 sh->check_state = check_state_compute_result;
3129                                 /* Returning at this point means that we may go
3130                                  * off and bring p and/or q uptodate again so
3131                                  * we make sure to check zero_sum_result again
3132                                  * to verify if p or q need writeback
3133                                  */
3134                         }
3135                 } else {
3136                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3137                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3138                                 /* don't try to repair!! */
3139                                 set_bit(STRIPE_INSYNC, &sh->state);
3140                         else {
3141                                 int *target = &sh->ops.target;
3142
3143                                 sh->ops.target = -1;
3144                                 sh->ops.target2 = -1;
3145                                 sh->check_state = check_state_compute_run;
3146                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3147                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3148                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3149                                         set_bit(R5_Wantcompute,
3150                                                 &sh->dev[pd_idx].flags);
3151                                         *target = pd_idx;
3152                                         target = &sh->ops.target2;
3153                                         s->uptodate++;
3154                                 }
3155                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3156                                         set_bit(R5_Wantcompute,
3157                                                 &sh->dev[qd_idx].flags);
3158                                         *target = qd_idx;
3159                                         s->uptodate++;
3160                                 }
3161                         }
3162                 }
3163                 break;
3164         case check_state_compute_run:
3165                 break;
3166         default:
3167                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3168                        __func__, sh->check_state,
3169                        (unsigned long long) sh->sector);
3170                 BUG();
3171         }
3172 }
3173
3174 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3175 {
3176         int i;
3177
3178         /* We have read all the blocks in this stripe and now we need to
3179          * copy some of them into a target stripe for expand.
3180          */
3181         struct dma_async_tx_descriptor *tx = NULL;
3182         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3183         for (i = 0; i < sh->disks; i++)
3184                 if (i != sh->pd_idx && i != sh->qd_idx) {
3185                         int dd_idx, j;
3186                         struct stripe_head *sh2;
3187                         struct async_submit_ctl submit;
3188
3189                         sector_t bn = compute_blocknr(sh, i, 1);
3190                         sector_t s = raid5_compute_sector(conf, bn, 0,
3191                                                           &dd_idx, NULL);
3192                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3193                         if (sh2 == NULL)
3194                                 /* so far only the early blocks of this stripe
3195                                  * have been requested.  When later blocks
3196                                  * get requested, we will try again
3197                                  */
3198                                 continue;
3199                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3200                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3201                                 /* must have already done this block */
3202                                 release_stripe(sh2);
3203                                 continue;
3204                         }
3205
3206                         /* place all the copies on one channel */
3207                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3208                         tx = async_memcpy(sh2->dev[dd_idx].page,
3209                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3210                                           &submit);
3211
3212                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3213                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3214                         for (j = 0; j < conf->raid_disks; j++)
3215                                 if (j != sh2->pd_idx &&
3216                                     j != sh2->qd_idx &&
3217                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3218                                         break;
3219                         if (j == conf->raid_disks) {
3220                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3221                                 set_bit(STRIPE_HANDLE, &sh2->state);
3222                         }
3223                         release_stripe(sh2);
3224
3225                 }
3226         /* done submitting copies, wait for them to complete */
3227         if (tx) {
3228                 async_tx_ack(tx);
3229                 dma_wait_for_async_tx(tx);
3230         }
3231 }
3232
3233 /*
3234  * handle_stripe - do things to a stripe.
3235  *
3236  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3237  * state of various bits to see what needs to be done.
3238  * Possible results:
3239  *    return some read requests which now have data
3240  *    return some write requests which are safely on storage
3241  *    schedule a read on some buffers
3242  *    schedule a write of some buffers
3243  *    return confirmation of parity correctness
3244  *
3245  */
3246
3247 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3248 {
3249         struct r5conf *conf = sh->raid_conf;
3250         int disks = sh->disks;
3251         struct r5dev *dev;
3252         int i;
3253         int do_recovery = 0;
3254
3255         memset(s, 0, sizeof(*s));
3256
3257         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3258         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3259         s->failed_num[0] = -1;
3260         s->failed_num[1] = -1;
3261
3262         /* Now to look around and see what can be done */
3263         rcu_read_lock();
3264         for (i=disks; i--; ) {
3265                 struct md_rdev *rdev;
3266                 sector_t first_bad;
3267                 int bad_sectors;
3268                 int is_bad = 0;
3269
3270                 dev = &sh->dev[i];
3271
3272                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3273                          i, dev->flags,
3274                          dev->toread, dev->towrite, dev->written);
3275                 /* maybe we can reply to a read
3276                  *
3277                  * new wantfill requests are only permitted while
3278                  * ops_complete_biofill is guaranteed to be inactive
3279                  */
3280                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3281                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3282                         set_bit(R5_Wantfill, &dev->flags);
3283
3284                 /* now count some things */
3285                 if (test_bit(R5_LOCKED, &dev->flags))
3286                         s->locked++;
3287                 if (test_bit(R5_UPTODATE, &dev->flags))
3288                         s->uptodate++;
3289                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3290                         s->compute++;
3291                         BUG_ON(s->compute > 2);
3292                 }
3293
3294                 if (test_bit(R5_Wantfill, &dev->flags))
3295                         s->to_fill++;
3296                 else if (dev->toread)
3297                         s->to_read++;
3298                 if (dev->towrite) {
3299                         s->to_write++;
3300                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3301                                 s->non_overwrite++;
3302                 }
3303                 if (dev->written)
3304                         s->written++;
3305                 /* Prefer to use the replacement for reads, but only
3306                  * if it is recovered enough and has no bad blocks.
3307                  */
3308                 rdev = rcu_dereference(conf->disks[i].replacement);
3309                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3310                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3311                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3312                                  &first_bad, &bad_sectors))
3313                         set_bit(R5_ReadRepl, &dev->flags);
3314                 else {
3315                         if (rdev)
3316                                 set_bit(R5_NeedReplace, &dev->flags);
3317                         rdev = rcu_dereference(conf->disks[i].rdev);
3318                         clear_bit(R5_ReadRepl, &dev->flags);
3319                 }
3320                 if (rdev && test_bit(Faulty, &rdev->flags))
3321                         rdev = NULL;
3322                 if (rdev) {
3323                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3324                                              &first_bad, &bad_sectors);
3325                         if (s->blocked_rdev == NULL
3326                             && (test_bit(Blocked, &rdev->flags)
3327                                 || is_bad < 0)) {
3328                                 if (is_bad < 0)
3329                                         set_bit(BlockedBadBlocks,
3330                                                 &rdev->flags);
3331                                 s->blocked_rdev = rdev;
3332                                 atomic_inc(&rdev->nr_pending);
3333                         }
3334                 }
3335                 clear_bit(R5_Insync, &dev->flags);
3336                 if (!rdev)
3337                         /* Not in-sync */;
3338                 else if (is_bad) {
3339                         /* also not in-sync */
3340                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3341                             test_bit(R5_UPTODATE, &dev->flags)) {
3342                                 /* treat as in-sync, but with a read error
3343                                  * which we can now try to correct
3344                                  */
3345                                 set_bit(R5_Insync, &dev->flags);
3346                                 set_bit(R5_ReadError, &dev->flags);
3347                         }
3348                 } else if (test_bit(In_sync, &rdev->flags))
3349                         set_bit(R5_Insync, &dev->flags);
3350                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3351                         /* in sync if before recovery_offset */
3352                         set_bit(R5_Insync, &dev->flags);
3353                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3354                          test_bit(R5_Expanded, &dev->flags))
3355                         /* If we've reshaped into here, we assume it is Insync.
3356                          * We will shortly update recovery_offset to make
3357                          * it official.
3358                          */
3359                         set_bit(R5_Insync, &dev->flags);
3360
3361                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3362                         /* This flag does not apply to '.replacement'
3363                          * only to .rdev, so make sure to check that*/
3364                         struct md_rdev *rdev2 = rcu_dereference(
3365                                 conf->disks[i].rdev);
3366                         if (rdev2 == rdev)
3367                                 clear_bit(R5_Insync, &dev->flags);
3368                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3369                                 s->handle_bad_blocks = 1;
3370                                 atomic_inc(&rdev2->nr_pending);
3371                         } else
3372                                 clear_bit(R5_WriteError, &dev->flags);
3373                 }
3374                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3375                         /* This flag does not apply to '.replacement'
3376                          * only to .rdev, so make sure to check that*/
3377                         struct md_rdev *rdev2 = rcu_dereference(
3378                                 conf->disks[i].rdev);
3379                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3380                                 s->handle_bad_blocks = 1;
3381                                 atomic_inc(&rdev2->nr_pending);
3382                         } else
3383                                 clear_bit(R5_MadeGood, &dev->flags);
3384                 }
3385                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3386                         struct md_rdev *rdev2 = rcu_dereference(
3387                                 conf->disks[i].replacement);
3388                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3389                                 s->handle_bad_blocks = 1;
3390                                 atomic_inc(&rdev2->nr_pending);
3391                         } else
3392                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3393                 }
3394                 if (!test_bit(R5_Insync, &dev->flags)) {
3395                         /* The ReadError flag will just be confusing now */
3396                         clear_bit(R5_ReadError, &dev->flags);
3397                         clear_bit(R5_ReWrite, &dev->flags);
3398                 }
3399                 if (test_bit(R5_ReadError, &dev->flags))
3400                         clear_bit(R5_Insync, &dev->flags);
3401                 if (!test_bit(R5_Insync, &dev->flags)) {
3402                         if (s->failed < 2)
3403                                 s->failed_num[s->failed] = i;
3404                         s->failed++;
3405                         if (rdev && !test_bit(Faulty, &rdev->flags))
3406                                 do_recovery = 1;
3407                 }
3408         }
3409         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3410                 /* If there is a failed device being replaced,
3411                  *     we must be recovering.
3412                  * else if we are after recovery_cp, we must be syncing
3413                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3414                  * else we can only be replacing
3415                  * sync and recovery both need to read all devices, and so
3416                  * use the same flag.
3417                  */
3418                 if (do_recovery ||
3419                     sh->sector >= conf->mddev->recovery_cp ||
3420                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3421                         s->syncing = 1;
3422                 else
3423                         s->replacing = 1;
3424         }
3425         rcu_read_unlock();
3426 }
3427
3428 static void handle_stripe(struct stripe_head *sh)
3429 {
3430         struct stripe_head_state s;
3431         struct r5conf *conf = sh->raid_conf;
3432         int i;
3433         int prexor;
3434         int disks = sh->disks;
3435         struct r5dev *pdev, *qdev;
3436
3437         clear_bit(STRIPE_HANDLE, &sh->state);
3438         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3439                 /* already being handled, ensure it gets handled
3440                  * again when current action finishes */
3441                 set_bit(STRIPE_HANDLE, &sh->state);
3442                 return;
3443         }
3444
3445         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3446                 set_bit(STRIPE_SYNCING, &sh->state);
3447                 clear_bit(STRIPE_INSYNC, &sh->state);
3448         }
3449         clear_bit(STRIPE_DELAYED, &sh->state);
3450
3451         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3452                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3453                (unsigned long long)sh->sector, sh->state,
3454                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3455                sh->check_state, sh->reconstruct_state);
3456
3457         analyse_stripe(sh, &s);
3458
3459         if (s.handle_bad_blocks) {
3460                 set_bit(STRIPE_HANDLE, &sh->state);
3461                 goto finish;
3462         }
3463
3464         if (unlikely(s.blocked_rdev)) {
3465                 if (s.syncing || s.expanding || s.expanded ||
3466                     s.replacing || s.to_write || s.written) {
3467                         set_bit(STRIPE_HANDLE, &sh->state);
3468                         goto finish;
3469                 }
3470                 /* There is nothing for the blocked_rdev to block */
3471                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3472                 s.blocked_rdev = NULL;
3473         }
3474
3475         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3476                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3477                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3478         }
3479
3480         pr_debug("locked=%d uptodate=%d to_read=%d"
3481                " to_write=%d failed=%d failed_num=%d,%d\n",
3482                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3483                s.failed_num[0], s.failed_num[1]);
3484         /* check if the array has lost more than max_degraded devices and,
3485          * if so, some requests might need to be failed.
3486          */
3487         if (s.failed > conf->max_degraded) {
3488                 sh->check_state = 0;
3489                 sh->reconstruct_state = 0;
3490                 if (s.to_read+s.to_write+s.written)
3491                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3492                 if (s.syncing + s.replacing)
3493                         handle_failed_sync(conf, sh, &s);
3494         }
3495
3496         /* Now we check to see if any write operations have recently
3497          * completed
3498          */
3499         prexor = 0;
3500         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3501                 prexor = 1;
3502         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3503             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3504                 sh->reconstruct_state = reconstruct_state_idle;
3505
3506                 /* All the 'written' buffers and the parity block are ready to
3507                  * be written back to disk
3508                  */
3509                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3510                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3511                 BUG_ON(sh->qd_idx >= 0 &&
3512                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3513                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3514                 for (i = disks; i--; ) {
3515                         struct r5dev *dev = &sh->dev[i];
3516                         if (test_bit(R5_LOCKED, &dev->flags) &&
3517                                 (i == sh->pd_idx || i == sh->qd_idx ||
3518                                  dev->written)) {
3519                                 pr_debug("Writing block %d\n", i);
3520                                 set_bit(R5_Wantwrite, &dev->flags);
3521                                 if (prexor)
3522                                         continue;
3523                                 if (!test_bit(R5_Insync, &dev->flags) ||
3524                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3525                                      s.failed == 0))
3526                                         set_bit(STRIPE_INSYNC, &sh->state);
3527                         }
3528                 }
3529                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3530                         s.dec_preread_active = 1;
3531         }
3532
3533         /*
3534          * might be able to return some write requests if the parity blocks
3535          * are safe, or on a failed drive
3536          */
3537         pdev = &sh->dev[sh->pd_idx];
3538         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3539                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3540         qdev = &sh->dev[sh->qd_idx];
3541         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3542                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3543                 || conf->level < 6;
3544
3545         if (s.written &&
3546             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3547                              && !test_bit(R5_LOCKED, &pdev->flags)
3548                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
3549                                  test_bit(R5_Discard, &pdev->flags))))) &&
3550             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3551                              && !test_bit(R5_LOCKED, &qdev->flags)
3552                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
3553                                  test_bit(R5_Discard, &qdev->flags))))))
3554                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3555
3556         /* Now we might consider reading some blocks, either to check/generate
3557          * parity, or to satisfy requests
3558          * or to load a block that is being partially written.
3559          */
3560         if (s.to_read || s.non_overwrite
3561             || (conf->level == 6 && s.to_write && s.failed)
3562             || (s.syncing && (s.uptodate + s.compute < disks))
3563             || s.replacing
3564             || s.expanding)
3565                 handle_stripe_fill(sh, &s, disks);
3566
3567         /* Now to consider new write requests and what else, if anything
3568          * should be read.  We do not handle new writes when:
3569          * 1/ A 'write' operation (copy+xor) is already in flight.
3570          * 2/ A 'check' operation is in flight, as it may clobber the parity
3571          *    block.
3572          */
3573         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3574                 handle_stripe_dirtying(conf, sh, &s, disks);
3575
3576         /* maybe we need to check and possibly fix the parity for this stripe
3577          * Any reads will already have been scheduled, so we just see if enough
3578          * data is available.  The parity check is held off while parity
3579          * dependent operations are in flight.
3580          */
3581         if (sh->check_state ||
3582             (s.syncing && s.locked == 0 &&
3583              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3584              !test_bit(STRIPE_INSYNC, &sh->state))) {
3585                 if (conf->level == 6)
3586                         handle_parity_checks6(conf, sh, &s, disks);
3587                 else
3588                         handle_parity_checks5(conf, sh, &s, disks);
3589         }
3590
3591         if (s.replacing && s.locked == 0
3592             && !test_bit(STRIPE_INSYNC, &sh->state)) {
3593                 /* Write out to replacement devices where possible */
3594                 for (i = 0; i < conf->raid_disks; i++)
3595                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3596                             test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3597                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3598                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3599                                 s.locked++;
3600                         }
3601                 set_bit(STRIPE_INSYNC, &sh->state);
3602         }
3603         if ((s.syncing || s.replacing) && s.locked == 0 &&
3604             test_bit(STRIPE_INSYNC, &sh->state)) {
3605                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3606                 clear_bit(STRIPE_SYNCING, &sh->state);
3607         }
3608
3609         /* If the failed drives are just a ReadError, then we might need
3610          * to progress the repair/check process
3611          */
3612         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3613                 for (i = 0; i < s.failed; i++) {
3614                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3615                         if (test_bit(R5_ReadError, &dev->flags)
3616                             && !test_bit(R5_LOCKED, &dev->flags)
3617                             && test_bit(R5_UPTODATE, &dev->flags)
3618                                 ) {
3619                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3620                                         set_bit(R5_Wantwrite, &dev->flags);
3621                                         set_bit(R5_ReWrite, &dev->flags);
3622                                         set_bit(R5_LOCKED, &dev->flags);
3623                                         s.locked++;
3624                                 } else {
3625                                         /* let's read it back */
3626                                         set_bit(R5_Wantread, &dev->flags);
3627                                         set_bit(R5_LOCKED, &dev->flags);
3628                                         s.locked++;
3629                                 }
3630                         }
3631                 }
3632
3633
3634         /* Finish reconstruct operations initiated by the expansion process */
3635         if (sh->reconstruct_state == reconstruct_state_result) {
3636                 struct stripe_head *sh_src
3637                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3638                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3639                         /* sh cannot be written until sh_src has been read.
3640                          * so arrange for sh to be delayed a little
3641                          */
3642                         set_bit(STRIPE_DELAYED, &sh->state);
3643                         set_bit(STRIPE_HANDLE, &sh->state);
3644                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3645                                               &sh_src->state))
3646                                 atomic_inc(&conf->preread_active_stripes);
3647                         release_stripe(sh_src);
3648                         goto finish;
3649                 }
3650                 if (sh_src)
3651                         release_stripe(sh_src);
3652
3653                 sh->reconstruct_state = reconstruct_state_idle;
3654                 clear_bit(STRIPE_EXPANDING, &sh->state);
3655                 for (i = conf->raid_disks; i--; ) {
3656                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3657                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3658                         s.locked++;
3659                 }
3660         }
3661
3662         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3663             !sh->reconstruct_state) {
3664                 /* Need to write out all blocks after computing parity */
3665                 sh->disks = conf->raid_disks;
3666                 stripe_set_idx(sh->sector, conf, 0, sh);
3667                 schedule_reconstruction(sh, &s, 1, 1);
3668         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3669                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3670                 atomic_dec(&conf->reshape_stripes);
3671                 wake_up(&conf->wait_for_overlap);
3672                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3673         }
3674
3675         if (s.expanding && s.locked == 0 &&
3676             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3677                 handle_stripe_expansion(conf, sh);
3678
3679 finish:
3680         /* wait for this device to become unblocked */
3681         if (unlikely(s.blocked_rdev)) {
3682                 if (conf->mddev->external)
3683                         md_wait_for_blocked_rdev(s.blocked_rdev,
3684                                                  conf->mddev);
3685                 else
3686                         /* Internal metadata will immediately
3687                          * be written by raid5d, so we don't
3688                          * need to wait here.
3689                          */
3690                         rdev_dec_pending(s.blocked_rdev,
3691                                          conf->mddev);
3692         }
3693
3694         if (s.handle_bad_blocks)
3695                 for (i = disks; i--; ) {
3696                         struct md_rdev *rdev;
3697                         struct r5dev *dev = &sh->dev[i];
3698                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3699                                 /* We own a safe reference to the rdev */
3700                                 rdev = conf->disks[i].rdev;
3701                                 if (!rdev_set_badblocks(rdev, sh->sector,
3702                                                         STRIPE_SECTORS, 0))
3703                                         md_error(conf->mddev, rdev);
3704                                 rdev_dec_pending(rdev, conf->mddev);
3705                         }
3706                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3707                                 rdev = conf->disks[i].rdev;
3708                                 rdev_clear_badblocks(rdev, sh->sector,
3709                                                      STRIPE_SECTORS, 0);
3710                                 rdev_dec_pending(rdev, conf->mddev);
3711                         }
3712                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3713                                 rdev = conf->disks[i].replacement;
3714                                 if (!rdev)
3715                                         /* rdev have been moved down */
3716                                         rdev = conf->disks[i].rdev;
3717                                 rdev_clear_badblocks(rdev, sh->sector,
3718                                                      STRIPE_SECTORS, 0);
3719                                 rdev_dec_pending(rdev, conf->mddev);
3720                         }
3721                 }
3722
3723         if (s.ops_request)
3724                 raid_run_ops(sh, s.ops_request);
3725
3726         ops_run_io(sh, &s);
3727
3728         if (s.dec_preread_active) {
3729                 /* We delay this until after ops_run_io so that if make_request
3730                  * is waiting on a flush, it won't continue until the writes
3731                  * have actually been submitted.
3732                  */
3733                 atomic_dec(&conf->preread_active_stripes);
3734                 if (atomic_read(&conf->preread_active_stripes) <
3735                     IO_THRESHOLD)
3736                         md_wakeup_thread(conf->mddev->thread);
3737         }
3738
3739         return_io(s.return_bi);
3740
3741         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3742 }
3743
3744 static void raid5_activate_delayed(struct r5conf *conf)
3745 {
3746         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3747                 while (!list_empty(&conf->delayed_list)) {
3748                         struct list_head *l = conf->delayed_list.next;
3749                         struct stripe_head *sh;
3750                         sh = list_entry(l, struct stripe_head, lru);
3751                         list_del_init(l);
3752                         clear_bit(STRIPE_DELAYED, &sh->state);
3753                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3754                                 atomic_inc(&conf->preread_active_stripes);
3755                         list_add_tail(&sh->lru, &conf->hold_list);
3756                 }
3757         }
3758 }
3759
3760 static void activate_bit_delay(struct r5conf *conf)
3761 {
3762         /* device_lock is held */
3763         struct list_head head;
3764         list_add(&head, &conf->bitmap_list);
3765         list_del_init(&conf->bitmap_list);
3766         while (!list_empty(&head)) {
3767                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3768                 list_del_init(&sh->lru);
3769                 atomic_inc(&sh->count);
3770                 __release_stripe(conf, sh);
3771         }
3772 }
3773
3774 int md_raid5_congested(struct mddev *mddev, int bits)
3775 {
3776         struct r5conf *conf = mddev->private;
3777
3778         /* No difference between reads and writes.  Just check
3779          * how busy the stripe_cache is
3780          */
3781
3782         if (conf->inactive_blocked)
3783                 return 1;
3784         if (conf->quiesce)
3785                 return 1;
3786         if (list_empty_careful(&conf->inactive_list))
3787                 return 1;
3788
3789         return 0;
3790 }
3791 EXPORT_SYMBOL_GPL(md_raid5_congested);
3792
3793 static int raid5_congested(void *data, int bits)
3794 {
3795         struct mddev *mddev = data;
3796
3797         return mddev_congested(mddev, bits) ||
3798                 md_raid5_congested(mddev, bits);
3799 }
3800
3801 /* We want read requests to align with chunks where possible,
3802  * but write requests don't need to.
3803  */
3804 static int raid5_mergeable_bvec(struct request_queue *q,
3805                                 struct bvec_merge_data *bvm,
3806                                 struct bio_vec *biovec)
3807 {
3808         struct mddev *mddev = q->queuedata;
3809         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3810         int max;
3811         unsigned int chunk_sectors = mddev->chunk_sectors;
3812         unsigned int bio_sectors = bvm->bi_size >> 9;
3813
3814         if ((bvm->bi_rw & 1) == WRITE)
3815                 return biovec->bv_len; /* always allow writes to be mergeable */
3816
3817         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3818                 chunk_sectors = mddev->new_chunk_sectors;
3819         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3820         if (max < 0) max = 0;
3821         if (max <= biovec->bv_len && bio_sectors == 0)
3822                 return biovec->bv_len;
3823         else
3824                 return max;
3825 }
3826
3827
3828 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3829 {
3830         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3831         unsigned int chunk_sectors = mddev->chunk_sectors;
3832         unsigned int bio_sectors = bio->bi_size >> 9;
3833
3834         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3835                 chunk_sectors = mddev->new_chunk_sectors;
3836         return  chunk_sectors >=
3837                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3838 }
3839
3840 /*
3841  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3842  *  later sampled by raid5d.
3843  */
3844 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3845 {
3846         unsigned long flags;
3847
3848         spin_lock_irqsave(&conf->device_lock, flags);
3849
3850         bi->bi_next = conf->retry_read_aligned_list;
3851         conf->retry_read_aligned_list = bi;
3852
3853         spin_unlock_irqrestore(&conf->device_lock, flags);
3854         md_wakeup_thread(conf->mddev->thread);
3855 }
3856
3857
3858 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3859 {
3860         struct bio *bi;
3861
3862         bi = conf->retry_read_aligned;
3863         if (bi) {
3864                 conf->retry_read_aligned = NULL;
3865                 return bi;
3866         }
3867         bi = conf->retry_read_aligned_list;
3868         if(bi) {
3869                 conf->retry_read_aligned_list = bi->bi_next;
3870                 bi->bi_next = NULL;
3871                 /*
3872                  * this sets the active strip count to 1 and the processed
3873                  * strip count to zero (upper 8 bits)
3874                  */
3875                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3876         }
3877
3878         return bi;
3879 }
3880
3881
3882 /*
3883  *  The "raid5_align_endio" should check if the read succeeded and if it
3884  *  did, call bio_endio on the original bio (having bio_put the new bio
3885  *  first).
3886  *  If the read failed..
3887  */
3888 static void raid5_align_endio(struct bio *bi, int error)
3889 {
3890         struct bio* raid_bi  = bi->bi_private;
3891         struct mddev *mddev;
3892         struct r5conf *conf;
3893         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3894         struct md_rdev *rdev;
3895
3896         bio_put(bi);
3897
3898         rdev = (void*)raid_bi->bi_next;
3899         raid_bi->bi_next = NULL;
3900         mddev = rdev->mddev;
3901         conf = mddev->private;
3902
3903         rdev_dec_pending(rdev, conf->mddev);
3904
3905         if (!error && uptodate) {
3906                 bio_endio(raid_bi, 0);
3907                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3908                         wake_up(&conf->wait_for_stripe);
3909                 return;
3910         }
3911
3912
3913         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3914
3915         add_bio_to_retry(raid_bi, conf);
3916 }
3917
3918 static int bio_fits_rdev(struct bio *bi)
3919 {
3920         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3921
3922         if ((bi->bi_size>>9) > queue_max_sectors(q))
3923                 return 0;
3924         blk_recount_segments(q, bi);
3925         if (bi->bi_phys_segments > queue_max_segments(q))
3926                 return 0;
3927
3928         if (q->merge_bvec_fn)
3929                 /* it's too hard to apply the merge_bvec_fn at this stage,
3930                  * just just give up
3931                  */
3932                 return 0;
3933
3934         return 1;
3935 }
3936
3937
3938 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3939 {
3940         struct r5conf *conf = mddev->private;
3941         int dd_idx;
3942         struct bio* align_bi;
3943         struct md_rdev *rdev;
3944         sector_t end_sector;
3945
3946         if (!in_chunk_boundary(mddev, raid_bio)) {
3947                 pr_debug("chunk_aligned_read : non aligned\n");
3948                 return 0;
3949         }
3950         /*
3951          * use bio_clone_mddev to make a copy of the bio
3952          */
3953         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3954         if (!align_bi)
3955                 return 0;
3956         /*
3957          *   set bi_end_io to a new function, and set bi_private to the
3958          *     original bio.
3959          */
3960         align_bi->bi_end_io  = raid5_align_endio;
3961         align_bi->bi_private = raid_bio;
3962         /*
3963          *      compute position
3964          */
3965         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3966                                                     0,
3967                                                     &dd_idx, NULL);
3968
3969         end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3970         rcu_read_lock();
3971         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3972         if (!rdev || test_bit(Faulty, &rdev->flags) ||
3973             rdev->recovery_offset < end_sector) {
3974                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3975                 if (rdev &&
3976                     (test_bit(Faulty, &rdev->flags) ||
3977                     !(test_bit(In_sync, &rdev->flags) ||
3978                       rdev->recovery_offset >= end_sector)))
3979                         rdev = NULL;
3980         }
3981         if (rdev) {
3982                 sector_t first_bad;
3983                 int bad_sectors;
3984
3985                 atomic_inc(&rdev->nr_pending);
3986                 rcu_read_unlock();
3987                 raid_bio->bi_next = (void*)rdev;
3988                 align_bi->bi_bdev =  rdev->bdev;
3989                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3990
3991                 if (!bio_fits_rdev(align_bi) ||
3992                     is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3993                                 &first_bad, &bad_sectors)) {
3994                         /* too big in some way, or has a known bad block */
3995                         bio_put(align_bi);
3996                         rdev_dec_pending(rdev, mddev);
3997                         return 0;
3998                 }
3999
4000                 /* No reshape active, so we can trust rdev->data_offset */
4001                 align_bi->bi_sector += rdev->data_offset;
4002
4003                 spin_lock_irq(&conf->device_lock);
4004                 wait_event_lock_irq(conf->wait_for_stripe,
4005                                     conf->quiesce == 0,
4006                                     conf->device_lock, /* nothing */);
4007                 atomic_inc(&conf->active_aligned_reads);
4008                 spin_unlock_irq(&conf->device_lock);
4009
4010                 generic_make_request(align_bi);
4011                 return 1;
4012         } else {
4013                 rcu_read_unlock();
4014                 bio_put(align_bi);
4015                 return 0;
4016         }
4017 }
4018
4019 /* __get_priority_stripe - get the next stripe to process
4020  *
4021  * Full stripe writes are allowed to pass preread active stripes up until
4022  * the bypass_threshold is exceeded.  In general the bypass_count
4023  * increments when the handle_list is handled before the hold_list; however, it
4024  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4025  * stripe with in flight i/o.  The bypass_count will be reset when the
4026  * head of the hold_list has changed, i.e. the head was promoted to the
4027  * handle_list.
4028  */
4029 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
4030 {
4031         struct stripe_head *sh;
4032
4033         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4034                   __func__,
4035                   list_empty(&conf->handle_list) ? "empty" : "busy",
4036                   list_empty(&conf->hold_list) ? "empty" : "busy",
4037                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4038
4039         if (!list_empty(&conf->handle_list)) {
4040                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
4041
4042                 if (list_empty(&conf->hold_list))
4043                         conf->bypass_count = 0;
4044                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4045                         if (conf->hold_list.next == conf->last_hold)
4046                                 conf->bypass_count++;
4047                         else {
4048                                 conf->last_hold = conf->hold_list.next;
4049                                 conf->bypass_count -= conf->bypass_threshold;
4050                                 if (conf->bypass_count < 0)
4051                                         conf->bypass_count = 0;
4052                         }
4053                 }
4054         } else if (!list_empty(&conf->hold_list) &&
4055                    ((conf->bypass_threshold &&
4056                      conf->bypass_count > conf->bypass_threshold) ||
4057                     atomic_read(&conf->pending_full_writes) == 0)) {
4058                 sh = list_entry(conf->hold_list.next,
4059                                 typeof(*sh), lru);
4060                 conf->bypass_count -= conf->bypass_threshold;
4061                 if (conf->bypass_count < 0)
4062                         conf->bypass_count = 0;
4063         } else
4064                 return NULL;
4065
4066         list_del_init(&sh->lru);
4067         atomic_inc(&sh->count);
4068         BUG_ON(atomic_read(&sh->count) != 1);
4069         return sh;
4070 }
4071
4072 struct raid5_plug_cb {
4073         struct blk_plug_cb      cb;
4074         struct list_head        list;
4075 };
4076
4077 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4078 {
4079         struct raid5_plug_cb *cb = container_of(
4080                 blk_cb, struct raid5_plug_cb, cb);
4081         struct stripe_head *sh;
4082         struct mddev *mddev = cb->cb.data;
4083         struct r5conf *conf = mddev->private;
4084
4085         if (cb->list.next && !list_empty(&cb->list)) {
4086                 spin_lock_irq(&conf->device_lock);
4087                 while (!list_empty(&cb->list)) {
4088                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4089                         list_del_init(&sh->lru);
4090                         /*
4091                          * avoid race release_stripe_plug() sees
4092                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4093                          * is still in our list
4094                          */
4095                         smp_mb__before_clear_bit();
4096                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4097                         __release_stripe(conf, sh);
4098                 }
4099                 spin_unlock_irq(&conf->device_lock);
4100         }
4101         kfree(cb);
4102 }
4103
4104 static void release_stripe_plug(struct mddev *mddev,
4105                                 struct stripe_head *sh)
4106 {
4107         struct blk_plug_cb *blk_cb = blk_check_plugged(
4108                 raid5_unplug, mddev,
4109                 sizeof(struct raid5_plug_cb));
4110         struct raid5_plug_cb *cb;
4111
4112         if (!blk_cb) {
4113                 release_stripe(sh);
4114                 return;
4115         }
4116
4117         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4118
4119         if (cb->list.next == NULL)
4120                 INIT_LIST_HEAD(&cb->list);
4121
4122         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4123                 list_add_tail(&sh->lru, &cb->list);
4124         else
4125                 release_stripe(sh);
4126 }
4127
4128 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4129 {
4130         struct r5conf *conf = mddev->private;
4131         sector_t logical_sector, last_sector;
4132         struct stripe_head *sh;
4133         int remaining;
4134         int stripe_sectors;
4135
4136         if (mddev->reshape_position != MaxSector)
4137                 /* Skip discard while reshape is happening */
4138                 return;
4139
4140         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4141         last_sector = bi->bi_sector + (bi->bi_size>>9);
4142
4143         bi->bi_next = NULL;
4144         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4145
4146         stripe_sectors = conf->chunk_sectors *
4147                 (conf->raid_disks - conf->max_degraded);
4148         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4149                                                stripe_sectors);
4150         sector_div(last_sector, stripe_sectors);
4151
4152         logical_sector *= conf->chunk_sectors;
4153         last_sector *= conf->chunk_sectors;
4154
4155         for (; logical_sector < last_sector;
4156              logical_sector += STRIPE_SECTORS) {
4157                 DEFINE_WAIT(w);
4158                 int d;
4159         again:
4160                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4161                 prepare_to_wait(&conf->wait_for_overlap, &w,
4162                                 TASK_UNINTERRUPTIBLE);
4163                 spin_lock_irq(&sh->stripe_lock);
4164                 for (d = 0; d < conf->raid_disks; d++) {
4165                         if (d == sh->pd_idx || d == sh->qd_idx)
4166                                 continue;
4167                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4168                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4169                                 spin_unlock_irq(&sh->stripe_lock);
4170                                 release_stripe(sh);
4171                                 schedule();
4172                                 goto again;
4173                         }
4174                 }
4175                 finish_wait(&conf->wait_for_overlap, &w);
4176                 for (d = 0; d < conf->raid_disks; d++) {
4177                         if (d == sh->pd_idx || d == sh->qd_idx)
4178                                 continue;
4179                         sh->dev[d].towrite = bi;
4180                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4181                         raid5_inc_bi_active_stripes(bi);
4182                 }
4183                 spin_unlock_irq(&sh->stripe_lock);
4184                 if (conf->mddev->bitmap) {
4185                         for (d = 0;
4186                              d < conf->raid_disks - conf->max_degraded;
4187                              d++)
4188                                 bitmap_startwrite(mddev->bitmap,
4189                                                   sh->sector,
4190                                                   STRIPE_SECTORS,
4191                                                   0);
4192                         sh->bm_seq = conf->seq_flush + 1;
4193                         set_bit(STRIPE_BIT_DELAY, &sh->state);
4194                 }
4195
4196                 set_bit(STRIPE_HANDLE, &sh->state);
4197                 clear_bit(STRIPE_DELAYED, &sh->state);
4198                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4199                         atomic_inc(&conf->preread_active_stripes);
4200                 release_stripe_plug(mddev, sh);
4201         }
4202
4203         remaining = raid5_dec_bi_active_stripes(bi);
4204         if (remaining == 0) {
4205                 md_write_end(mddev);
4206                 bio_endio(bi, 0);
4207         }
4208 }
4209
4210 static void make_request(struct mddev *mddev, struct bio * bi)
4211 {
4212         struct r5conf *conf = mddev->private;
4213         int dd_idx;
4214         sector_t new_sector;
4215         sector_t logical_sector, last_sector;
4216         struct stripe_head *sh;
4217         const int rw = bio_data_dir(bi);
4218         int remaining;
4219
4220         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4221                 md_flush_request(mddev, bi);
4222                 return;
4223         }
4224
4225         md_write_start(mddev, bi);
4226
4227         if (rw == READ &&
4228              mddev->reshape_position == MaxSector &&
4229              chunk_aligned_read(mddev,bi))
4230                 return;
4231
4232         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4233                 make_discard_request(mddev, bi);
4234                 return;
4235         }
4236
4237         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4238         last_sector = bi->bi_sector + (bi->bi_size>>9);
4239         bi->bi_next = NULL;
4240         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4241
4242         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4243                 DEFINE_WAIT(w);
4244                 int previous;
4245
4246         retry:
4247                 previous = 0;
4248                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4249                 if (unlikely(conf->reshape_progress != MaxSector)) {
4250                         /* spinlock is needed as reshape_progress may be
4251                          * 64bit on a 32bit platform, and so it might be
4252                          * possible to see a half-updated value
4253                          * Of course reshape_progress could change after
4254                          * the lock is dropped, so once we get a reference
4255                          * to the stripe that we think it is, we will have
4256                          * to check again.
4257                          */
4258                         spin_lock_irq(&conf->device_lock);
4259                         if (mddev->reshape_backwards
4260                             ? logical_sector < conf->reshape_progress
4261                             : logical_sector >= conf->reshape_progress) {
4262                                 previous = 1;
4263                         } else {
4264                                 if (mddev->reshape_backwards
4265                                     ? logical_sector < conf->reshape_safe
4266                                     : logical_sector >= conf->reshape_safe) {
4267                                         spin_unlock_irq(&conf->device_lock);
4268                                         schedule();
4269                                         goto retry;
4270                                 }
4271                         }
4272                         spin_unlock_irq(&conf->device_lock);
4273                 }
4274
4275                 new_sector = raid5_compute_sector(conf, logical_sector,
4276                                                   previous,
4277                                                   &dd_idx, NULL);
4278                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4279                         (unsigned long long)new_sector, 
4280                         (unsigned long long)logical_sector);
4281
4282                 sh = get_active_stripe(conf, new_sector, previous,
4283                                        (bi->bi_rw&RWA_MASK), 0);
4284                 if (sh) {
4285                         if (unlikely(previous)) {
4286                                 /* expansion might have moved on while waiting for a
4287                                  * stripe, so we must do the range check again.
4288                                  * Expansion could still move past after this
4289                                  * test, but as we are holding a reference to
4290                                  * 'sh', we know that if that happens,
4291                                  *  STRIPE_EXPANDING will get set and the expansion
4292                                  * won't proceed until we finish with the stripe.
4293                                  */
4294                                 int must_retry = 0;
4295                                 spin_lock_irq(&conf->device_lock);
4296                                 if (mddev->reshape_backwards
4297                                     ? logical_sector >= conf->reshape_progress
4298                                     : logical_sector < conf->reshape_progress)
4299                                         /* mismatch, need to try again */
4300                                         must_retry = 1;
4301                                 spin_unlock_irq(&conf->device_lock);
4302                                 if (must_retry) {
4303                                         release_stripe(sh);
4304                                         schedule();
4305                                         goto retry;
4306                                 }
4307                         }
4308
4309                         if (rw == WRITE &&
4310                             logical_sector >= mddev->suspend_lo &&
4311                             logical_sector < mddev->suspend_hi) {
4312                                 release_stripe(sh);
4313                                 /* As the suspend_* range is controlled by
4314                                  * userspace, we want an interruptible
4315                                  * wait.
4316                                  */
4317                                 flush_signals(current);
4318                                 prepare_to_wait(&conf->wait_for_overlap,
4319                                                 &w, TASK_INTERRUPTIBLE);
4320                                 if (logical_sector >= mddev->suspend_lo &&
4321                                     logical_sector < mddev->suspend_hi)
4322                                         schedule();
4323                                 goto retry;
4324                         }
4325
4326                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4327                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4328                                 /* Stripe is busy expanding or
4329                                  * add failed due to overlap.  Flush everything
4330                                  * and wait a while
4331                                  */
4332                                 md_wakeup_thread(mddev->thread);
4333                                 release_stripe(sh);
4334                                 schedule();
4335                                 goto retry;
4336                         }
4337                         finish_wait(&conf->wait_for_overlap, &w);
4338                         set_bit(STRIPE_HANDLE, &sh->state);
4339                         clear_bit(STRIPE_DELAYED, &sh->state);
4340                         if ((bi->bi_rw & REQ_SYNC) &&
4341                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4342                                 atomic_inc(&conf->preread_active_stripes);
4343                         release_stripe_plug(mddev, sh);
4344                 } else {
4345                         /* cannot get stripe for read-ahead, just give-up */
4346                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4347                         finish_wait(&conf->wait_for_overlap, &w);
4348                         break;
4349                 }
4350         }
4351
4352         remaining = raid5_dec_bi_active_stripes(bi);
4353         if (remaining == 0) {
4354
4355                 if ( rw == WRITE )
4356                         md_write_end(mddev);
4357
4358                 bio_endio(bi, 0);
4359         }
4360 }
4361
4362 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4363
4364 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4365 {
4366         /* reshaping is quite different to recovery/resync so it is
4367          * handled quite separately ... here.
4368          *
4369          * On each call to sync_request, we gather one chunk worth of
4370          * destination stripes and flag them as expanding.
4371          * Then we find all the source stripes and request reads.
4372          * As the reads complete, handle_stripe will copy the data
4373          * into the destination stripe and release that stripe.
4374          */
4375         struct r5conf *conf = mddev->private;
4376         struct stripe_head *sh;
4377         sector_t first_sector, last_sector;
4378         int raid_disks = conf->previous_raid_disks;
4379         int data_disks = raid_disks - conf->max_degraded;
4380         int new_data_disks = conf->raid_disks - conf->max_degraded;
4381         int i;
4382         int dd_idx;
4383         sector_t writepos, readpos, safepos;
4384         sector_t stripe_addr;
4385         int reshape_sectors;
4386         struct list_head stripes;
4387
4388         if (sector_nr == 0) {
4389                 /* If restarting in the middle, skip the initial sectors */
4390                 if (mddev->reshape_backwards &&
4391                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4392                         sector_nr = raid5_size(mddev, 0, 0)
4393                                 - conf->reshape_progress;
4394                 } else if (!mddev->reshape_backwards &&
4395                            conf->reshape_progress > 0)
4396                         sector_nr = conf->reshape_progress;
4397                 sector_div(sector_nr, new_data_disks);
4398                 if (sector_nr) {
4399                         mddev->curr_resync_completed = sector_nr;
4400                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4401                         *skipped = 1;
4402                         return sector_nr;
4403                 }
4404         }
4405
4406         /* We need to process a full chunk at a time.
4407          * If old and new chunk sizes differ, we need to process the
4408          * largest of these
4409          */
4410         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4411                 reshape_sectors = mddev->new_chunk_sectors;
4412         else
4413                 reshape_sectors = mddev->chunk_sectors;
4414
4415         /* We update the metadata at least every 10 seconds, or when
4416          * the data about to be copied would over-write the source of
4417          * the data at the front of the range.  i.e. one new_stripe
4418          * along from reshape_progress new_maps to after where
4419          * reshape_safe old_maps to
4420          */
4421         writepos = conf->reshape_progress;
4422         sector_div(writepos, new_data_disks);
4423         readpos = conf->reshape_progress;
4424         sector_div(readpos, data_disks);
4425         safepos = conf->reshape_safe;
4426         sector_div(safepos, data_disks);
4427         if (mddev->reshape_backwards) {
4428                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4429                 readpos += reshape_sectors;
4430                 safepos += reshape_sectors;
4431         } else {
4432                 writepos += reshape_sectors;
4433                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4434                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4435         }
4436
4437         /* Having calculated the 'writepos' possibly use it
4438          * to set 'stripe_addr' which is where we will write to.
4439          */
4440         if (mddev->reshape_backwards) {
4441                 BUG_ON(conf->reshape_progress == 0);
4442                 stripe_addr = writepos;
4443                 BUG_ON((mddev->dev_sectors &
4444                         ~((sector_t)reshape_sectors - 1))
4445                        - reshape_sectors - stripe_addr
4446                        != sector_nr);
4447         } else {
4448                 BUG_ON(writepos != sector_nr + reshape_sectors);
4449                 stripe_addr = sector_nr;
4450         }
4451
4452         /* 'writepos' is the most advanced device address we might write.
4453          * 'readpos' is the least advanced device address we might read.
4454          * 'safepos' is the least address recorded in the metadata as having
4455          *     been reshaped.
4456          * If there is a min_offset_diff, these are adjusted either by
4457          * increasing the safepos/readpos if diff is negative, or
4458          * increasing writepos if diff is positive.
4459          * If 'readpos' is then behind 'writepos', there is no way that we can
4460          * ensure safety in the face of a crash - that must be done by userspace
4461          * making a backup of the data.  So in that case there is no particular
4462          * rush to update metadata.
4463          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4464          * update the metadata to advance 'safepos' to match 'readpos' so that
4465          * we can be safe in the event of a crash.
4466          * So we insist on updating metadata if safepos is behind writepos and
4467          * readpos is beyond writepos.
4468          * In any case, update the metadata every 10 seconds.
4469          * Maybe that number should be configurable, but I'm not sure it is
4470          * worth it.... maybe it could be a multiple of safemode_delay???
4471          */
4472         if (conf->min_offset_diff < 0) {
4473                 safepos += -conf->min_offset_diff;
4474                 readpos += -conf->min_offset_diff;
4475         } else
4476                 writepos += conf->min_offset_diff;
4477
4478         if ((mddev->reshape_backwards
4479              ? (safepos > writepos && readpos < writepos)
4480              : (safepos < writepos && readpos > writepos)) ||
4481             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4482                 /* Cannot proceed until we've updated the superblock... */
4483                 wait_event(conf->wait_for_overlap,
4484                            atomic_read(&conf->reshape_stripes)==0);
4485                 mddev->reshape_position = conf->reshape_progress;
4486                 mddev->curr_resync_completed = sector_nr;
4487                 conf->reshape_checkpoint = jiffies;
4488                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4489                 md_wakeup_thread(mddev->thread);
4490                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4491                            kthread_should_stop());
4492                 spin_lock_irq(&conf->device_lock);
4493                 conf->reshape_safe = mddev->reshape_position;
4494                 spin_unlock_irq(&conf->device_lock);
4495                 wake_up(&conf->wait_for_overlap);
4496                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4497         }
4498
4499         INIT_LIST_HEAD(&stripes);
4500         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4501                 int j;
4502                 int skipped_disk = 0;
4503                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4504                 set_bit(STRIPE_EXPANDING, &sh->state);
4505                 atomic_inc(&conf->reshape_stripes);
4506                 /* If any of this stripe is beyond the end of the old
4507                  * array, then we need to zero those blocks
4508                  */
4509                 for (j=sh->disks; j--;) {
4510                         sector_t s;
4511                         if (j == sh->pd_idx)
4512                                 continue;
4513                         if (conf->level == 6 &&
4514                             j == sh->qd_idx)
4515                                 continue;
4516                         s = compute_blocknr(sh, j, 0);
4517                         if (s < raid5_size(mddev, 0, 0)) {
4518                                 skipped_disk = 1;
4519                                 continue;
4520                         }
4521                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4522                         set_bit(R5_Expanded, &sh->dev[j].flags);
4523                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4524                 }
4525                 if (!skipped_disk) {
4526                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4527                         set_bit(STRIPE_HANDLE, &sh->state);
4528                 }
4529                 list_add(&sh->lru, &stripes);
4530         }
4531         spin_lock_irq(&conf->device_lock);
4532         if (mddev->reshape_backwards)
4533                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4534         else
4535                 conf->reshape_progress += reshape_sectors * new_data_disks;
4536         spin_unlock_irq(&conf->device_lock);
4537         /* Ok, those stripe are ready. We can start scheduling
4538          * reads on the source stripes.
4539          * The source stripes are determined by mapping the first and last
4540          * block on the destination stripes.
4541          */
4542         first_sector =
4543                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4544                                      1, &dd_idx, NULL);
4545         last_sector =
4546                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4547                                             * new_data_disks - 1),
4548                                      1, &dd_idx, NULL);
4549         if (last_sector >= mddev->dev_sectors)
4550                 last_sector = mddev->dev_sectors - 1;
4551         while (first_sector <= last_sector) {
4552                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4553                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4554                 set_bit(STRIPE_HANDLE, &sh->state);
4555                 release_stripe(sh);
4556                 first_sector += STRIPE_SECTORS;
4557         }
4558         /* Now that the sources are clearly marked, we can release
4559          * the destination stripes
4560          */
4561         while (!list_empty(&stripes)) {
4562                 sh = list_entry(stripes.next, struct stripe_head, lru);
4563                 list_del_init(&sh->lru);
4564                 release_stripe(sh);
4565         }
4566         /* If this takes us to the resync_max point where we have to pause,
4567          * then we need to write out the superblock.
4568          */
4569         sector_nr += reshape_sectors;
4570         if ((sector_nr - mddev->curr_resync_completed) * 2
4571             >= mddev->resync_max - mddev->curr_resync_completed) {
4572                 /* Cannot proceed until we've updated the superblock... */
4573                 wait_event(conf->wait_for_overlap,
4574                            atomic_read(&conf->reshape_stripes) == 0);
4575                 mddev->reshape_position = conf->reshape_progress;
4576                 mddev->curr_resync_completed = sector_nr;
4577                 conf->reshape_checkpoint = jiffies;
4578                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4579                 md_wakeup_thread(mddev->thread);
4580                 wait_event(mddev->sb_wait,
4581                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4582                            || kthread_should_stop());
4583                 spin_lock_irq(&conf->device_lock);
4584                 conf->reshape_safe = mddev->reshape_position;
4585                 spin_unlock_irq(&conf->device_lock);
4586                 wake_up(&conf->wait_for_overlap);
4587                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4588         }
4589         return reshape_sectors;
4590 }
4591
4592 /* FIXME go_faster isn't used */
4593 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4594 {
4595         struct r5conf *conf = mddev->private;
4596         struct stripe_head *sh;
4597         sector_t max_sector = mddev->dev_sectors;
4598         sector_t sync_blocks;
4599         int still_degraded = 0;
4600         int i;
4601
4602         if (sector_nr >= max_sector) {
4603                 /* just being told to finish up .. nothing much to do */
4604
4605                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4606                         end_reshape(conf);
4607                         return 0;
4608                 }
4609
4610                 if (mddev->curr_resync < max_sector) /* aborted */
4611                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4612                                         &sync_blocks, 1);
4613                 else /* completed sync */
4614                         conf->fullsync = 0;
4615                 bitmap_close_sync(mddev->bitmap);
4616
4617                 return 0;
4618         }
4619
4620         /* Allow raid5_quiesce to complete */
4621         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4622
4623         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4624                 return reshape_request(mddev, sector_nr, skipped);
4625
4626         /* No need to check resync_max as we never do more than one
4627          * stripe, and as resync_max will always be on a chunk boundary,
4628          * if the check in md_do_sync didn't fire, there is no chance
4629          * of overstepping resync_max here
4630          */
4631
4632         /* if there is too many failed drives and we are trying
4633          * to resync, then assert that we are finished, because there is
4634          * nothing we can do.
4635          */
4636         if (mddev->degraded >= conf->max_degraded &&
4637             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4638                 sector_t rv = mddev->dev_sectors - sector_nr;
4639                 *skipped = 1;
4640                 return rv;
4641         }
4642         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4643             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4644             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4645                 /* we can skip this block, and probably more */
4646                 sync_blocks /= STRIPE_SECTORS;
4647                 *skipped = 1;
4648                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4649         }
4650
4651         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4652
4653         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4654         if (sh == NULL) {
4655                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4656                 /* make sure we don't swamp the stripe cache if someone else
4657                  * is trying to get access
4658                  */
4659                 schedule_timeout_uninterruptible(1);
4660         }
4661         /* Need to check if array will still be degraded after recovery/resync
4662          * We don't need to check the 'failed' flag as when that gets set,
4663          * recovery aborts.
4664          */
4665         for (i = 0; i < conf->raid_disks; i++)
4666                 if (conf->disks[i].rdev == NULL)
4667                         still_degraded = 1;
4668
4669         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4670
4671         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4672
4673         handle_stripe(sh);
4674         release_stripe(sh);
4675
4676         return STRIPE_SECTORS;
4677 }
4678
4679 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4680 {
4681         /* We may not be able to submit a whole bio at once as there
4682          * may not be enough stripe_heads available.
4683          * We cannot pre-allocate enough stripe_heads as we may need
4684          * more than exist in the cache (if we allow ever large chunks).
4685          * So we do one stripe head at a time and record in
4686          * ->bi_hw_segments how many have been done.
4687          *
4688          * We *know* that this entire raid_bio is in one chunk, so
4689          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4690          */
4691         struct stripe_head *sh;
4692         int dd_idx;
4693         sector_t sector, logical_sector, last_sector;
4694         int scnt = 0;
4695         int remaining;
4696         int handled = 0;
4697
4698         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4699         sector = raid5_compute_sector(conf, logical_sector,
4700                                       0, &dd_idx, NULL);
4701         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4702
4703         for (; logical_sector < last_sector;
4704              logical_sector += STRIPE_SECTORS,
4705                      sector += STRIPE_SECTORS,
4706                      scnt++) {
4707
4708                 if (scnt < raid5_bi_processed_stripes(raid_bio))
4709                         /* already done this stripe */
4710                         continue;
4711
4712                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4713
4714                 if (!sh) {
4715                         /* failed to get a stripe - must wait */
4716                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4717                         conf->retry_read_aligned = raid_bio;
4718                         return handled;
4719                 }
4720
4721                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4722                         release_stripe(sh);
4723                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4724                         conf->retry_read_aligned = raid_bio;
4725                         return handled;
4726                 }
4727
4728                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4729                 handle_stripe(sh);
4730                 release_stripe(sh);
4731                 handled++;
4732         }
4733         remaining = raid5_dec_bi_active_stripes(raid_bio);
4734         if (remaining == 0)
4735                 bio_endio(raid_bio, 0);
4736         if (atomic_dec_and_test(&conf->active_aligned_reads))
4737                 wake_up(&conf->wait_for_stripe);
4738         return handled;
4739 }
4740
4741 #define MAX_STRIPE_BATCH 8
4742 static int handle_active_stripes(struct r5conf *conf)
4743 {
4744         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4745         int i, batch_size = 0;
4746
4747         while (batch_size < MAX_STRIPE_BATCH &&
4748                         (sh = __get_priority_stripe(conf)) != NULL)
4749                 batch[batch_size++] = sh;
4750
4751         if (batch_size == 0)
4752                 return batch_size;
4753         spin_unlock_irq(&conf->device_lock);
4754
4755         for (i = 0; i < batch_size; i++)
4756                 handle_stripe(batch[i]);
4757
4758         cond_resched();
4759
4760         spin_lock_irq(&conf->device_lock);
4761         for (i = 0; i < batch_size; i++)
4762                 __release_stripe(conf, batch[i]);
4763         return batch_size;
4764 }
4765
4766 /*
4767  * This is our raid5 kernel thread.
4768  *
4769  * We scan the hash table for stripes which can be handled now.
4770  * During the scan, completed stripes are saved for us by the interrupt
4771  * handler, so that they will not have to wait for our next wakeup.
4772  */
4773 static void raid5d(struct md_thread *thread)
4774 {
4775         struct mddev *mddev = thread->mddev;
4776         struct r5conf *conf = mddev->private;
4777         int handled;
4778         struct blk_plug plug;
4779
4780         pr_debug("+++ raid5d active\n");
4781
4782         md_check_recovery(mddev);
4783
4784         blk_start_plug(&plug);
4785         handled = 0;
4786         spin_lock_irq(&conf->device_lock);
4787         while (1) {
4788                 struct bio *bio;
4789                 int batch_size;
4790
4791                 if (
4792                     !list_empty(&conf->bitmap_list)) {
4793                         /* Now is a good time to flush some bitmap updates */
4794                         conf->seq_flush++;
4795                         spin_unlock_irq(&conf->device_lock);
4796                         bitmap_unplug(mddev->bitmap);
4797                         spin_lock_irq(&conf->device_lock);
4798                         conf->seq_write = conf->seq_flush;
4799                         activate_bit_delay(conf);
4800                 }
4801                 raid5_activate_delayed(conf);
4802
4803                 while ((bio = remove_bio_from_retry(conf))) {
4804                         int ok;
4805                         spin_unlock_irq(&conf->device_lock);
4806                         ok = retry_aligned_read(conf, bio);
4807                         spin_lock_irq(&conf->device_lock);
4808                         if (!ok)
4809                                 break;
4810                         handled++;
4811                 }
4812
4813                 batch_size = handle_active_stripes(conf);
4814                 if (!batch_size)
4815                         break;
4816                 handled += batch_size;
4817
4818                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4819                         spin_unlock_irq(&conf->device_lock);
4820                         md_check_recovery(mddev);
4821                         spin_lock_irq(&conf->device_lock);
4822                 }
4823         }
4824         pr_debug("%d stripes handled\n", handled);
4825
4826         spin_unlock_irq(&conf->device_lock);
4827
4828         async_tx_issue_pending_all();
4829         blk_finish_plug(&plug);
4830
4831         pr_debug("--- raid5d inactive\n");
4832 }
4833
4834 static ssize_t
4835 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4836 {
4837         struct r5conf *conf = mddev->private;
4838         if (conf)
4839                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4840         else
4841                 return 0;
4842 }
4843
4844 int
4845 raid5_set_cache_size(struct mddev *mddev, int size)
4846 {
4847         struct r5conf *conf = mddev->private;
4848         int err;
4849
4850         if (size <= 16 || size > 32768)
4851                 return -EINVAL;
4852         while (size < conf->max_nr_stripes) {
4853                 if (drop_one_stripe(conf))
4854                         conf->max_nr_stripes--;
4855                 else
4856                         break;
4857         }
4858         err = md_allow_write(mddev);
4859         if (err)
4860                 return err;
4861         while (size > conf->max_nr_stripes) {
4862                 if (grow_one_stripe(conf))
4863                         conf->max_nr_stripes++;
4864                 else break;
4865         }
4866         return 0;
4867 }
4868 EXPORT_SYMBOL(raid5_set_cache_size);
4869
4870 static ssize_t
4871 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4872 {
4873         struct r5conf *conf = mddev->private;
4874         unsigned long new;
4875         int err;
4876
4877         if (len >= PAGE_SIZE)
4878                 return -EINVAL;
4879         if (!conf)
4880                 return -ENODEV;
4881
4882         if (strict_strtoul(page, 10, &new))
4883                 return -EINVAL;
4884         err = raid5_set_cache_size(mddev, new);
4885         if (err)
4886                 return err;
4887         return len;
4888 }
4889
4890 static struct md_sysfs_entry
4891 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4892                                 raid5_show_stripe_cache_size,
4893                                 raid5_store_stripe_cache_size);
4894
4895 static ssize_t
4896 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4897 {
4898         struct r5conf *conf = mddev->private;
4899         if (conf)
4900                 return sprintf(page, "%d\n", conf->bypass_threshold);
4901         else
4902                 return 0;
4903 }
4904
4905 static ssize_t
4906 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4907 {
4908         struct r5conf *conf = mddev->private;
4909         unsigned long new;
4910         if (len >= PAGE_SIZE)
4911                 return -EINVAL;
4912         if (!conf)
4913                 return -ENODEV;
4914
4915         if (strict_strtoul(page, 10, &new))
4916                 return -EINVAL;
4917         if (new > conf->max_nr_stripes)
4918                 return -EINVAL;
4919         conf->bypass_threshold = new;
4920         return len;
4921 }
4922
4923 static struct md_sysfs_entry
4924 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4925                                         S_IRUGO | S_IWUSR,
4926                                         raid5_show_preread_threshold,
4927                                         raid5_store_preread_threshold);
4928
4929 static ssize_t
4930 stripe_cache_active_show(struct mddev *mddev, char *page)
4931 {
4932         struct r5conf *conf = mddev->private;
4933         if (conf)
4934                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4935         else
4936                 return 0;
4937 }
4938
4939 static struct md_sysfs_entry
4940 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4941
4942 static struct attribute *raid5_attrs[] =  {
4943         &raid5_stripecache_size.attr,
4944         &raid5_stripecache_active.attr,
4945         &raid5_preread_bypass_threshold.attr,
4946         NULL,
4947 };
4948 static struct attribute_group raid5_attrs_group = {
4949         .name = NULL,
4950         .attrs = raid5_attrs,
4951 };
4952
4953 static sector_t
4954 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4955 {
4956         struct r5conf *conf = mddev->private;
4957
4958         if (!sectors)
4959                 sectors = mddev->dev_sectors;
4960         if (!raid_disks)
4961                 /* size is defined by the smallest of previous and new size */
4962                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4963
4964         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4965         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4966         return sectors * (raid_disks - conf->max_degraded);
4967 }
4968
4969 static void raid5_free_percpu(struct r5conf *conf)
4970 {
4971         struct raid5_percpu *percpu;
4972         unsigned long cpu;
4973
4974         if (!conf->percpu)
4975                 return;
4976
4977         get_online_cpus();
4978         for_each_possible_cpu(cpu) {
4979                 percpu = per_cpu_ptr(conf->percpu, cpu);
4980                 safe_put_page(percpu->spare_page);
4981                 kfree(percpu->scribble);
4982         }
4983 #ifdef CONFIG_HOTPLUG_CPU
4984         unregister_cpu_notifier(&conf->cpu_notify);
4985 #endif
4986         put_online_cpus();
4987
4988         free_percpu(conf->percpu);
4989 }
4990
4991 static void free_conf(struct r5conf *conf)
4992 {
4993         shrink_stripes(conf);
4994         raid5_free_percpu(conf);
4995         kfree(conf->disks);
4996         kfree(conf->stripe_hashtbl);
4997         kfree(conf);
4998 }
4999
5000 #ifdef CONFIG_HOTPLUG_CPU
5001 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5002                               void *hcpu)
5003 {
5004         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5005         long cpu = (long)hcpu;
5006         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5007
5008         switch (action) {
5009         case CPU_UP_PREPARE:
5010         case CPU_UP_PREPARE_FROZEN:
5011                 if (conf->level == 6 && !percpu->spare_page)
5012                         percpu->spare_page = alloc_page(GFP_KERNEL);
5013                 if (!percpu->scribble)
5014                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5015
5016                 if (!percpu->scribble ||
5017                     (conf->level == 6 && !percpu->spare_page)) {
5018                         safe_put_page(percpu->spare_page);
5019                         kfree(percpu->scribble);
5020                         pr_err("%s: failed memory allocation for cpu%ld\n",
5021                                __func__, cpu);
5022                         return notifier_from_errno(-ENOMEM);
5023                 }
5024                 break;
5025         case CPU_DEAD:
5026         case CPU_DEAD_FROZEN:
5027                 safe_put_page(percpu->spare_page);
5028                 kfree(percpu->scribble);
5029                 percpu->spare_page = NULL;
5030                 percpu->scribble = NULL;
5031                 break;
5032         default:
5033                 break;
5034         }
5035         return NOTIFY_OK;
5036 }
5037 #endif
5038
5039 static int raid5_alloc_percpu(struct r5conf *conf)
5040 {
5041         unsigned long cpu;
5042         struct page *spare_page;
5043         struct raid5_percpu __percpu *allcpus;
5044         void *scribble;
5045         int err;
5046
5047         allcpus = alloc_percpu(struct raid5_percpu);
5048         if (!allcpus)
5049                 return -ENOMEM;
5050         conf->percpu = allcpus;
5051
5052         get_online_cpus();
5053         err = 0;
5054         for_each_present_cpu(cpu) {
5055                 if (conf->level == 6) {
5056                         spare_page = alloc_page(GFP_KERNEL);
5057                         if (!spare_page) {
5058                                 err = -ENOMEM;
5059                                 break;
5060                         }
5061                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5062                 }
5063                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5064                 if (!scribble) {
5065                         err = -ENOMEM;
5066                         break;
5067                 }
5068                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5069         }
5070 #ifdef CONFIG_HOTPLUG_CPU
5071         conf->cpu_notify.notifier_call = raid456_cpu_notify;
5072         conf->cpu_notify.priority = 0;
5073         if (err == 0)
5074                 err = register_cpu_notifier(&conf->cpu_notify);
5075 #endif
5076         put_online_cpus();
5077
5078         return err;
5079 }
5080
5081 static struct r5conf *setup_conf(struct mddev *mddev)
5082 {
5083         struct r5conf *conf;
5084         int raid_disk, memory, max_disks;
5085         struct md_rdev *rdev;
5086         struct disk_info *disk;
5087         char pers_name[6];
5088
5089         if (mddev->new_level != 5
5090             && mddev->new_level != 4
5091             && mddev->new_level != 6) {
5092                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5093                        mdname(mddev), mddev->new_level);
5094                 return ERR_PTR(-EIO);
5095         }
5096         if ((mddev->new_level == 5
5097              && !algorithm_valid_raid5(mddev->new_layout)) ||
5098             (mddev->new_level == 6
5099              && !algorithm_valid_raid6(mddev->new_layout))) {
5100                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5101                        mdname(mddev), mddev->new_layout);
5102                 return ERR_PTR(-EIO);
5103         }
5104         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5105                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5106                        mdname(mddev), mddev->raid_disks);
5107                 return ERR_PTR(-EINVAL);
5108         }
5109
5110         if (!mddev->new_chunk_sectors ||
5111             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5112             !is_power_of_2(mddev->new_chunk_sectors)) {
5113                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5114                        mdname(mddev), mddev->new_chunk_sectors << 9);
5115                 return ERR_PTR(-EINVAL);
5116         }
5117
5118         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5119         if (conf == NULL)
5120                 goto abort;
5121         spin_lock_init(&conf->device_lock);
5122         init_waitqueue_head(&conf->wait_for_stripe);
5123         init_waitqueue_head(&conf->wait_for_overlap);
5124         INIT_LIST_HEAD(&conf->handle_list);
5125         INIT_LIST_HEAD(&conf->hold_list);
5126         INIT_LIST_HEAD(&conf->delayed_list);
5127         INIT_LIST_HEAD(&conf->bitmap_list);
5128         INIT_LIST_HEAD(&conf->inactive_list);
5129         atomic_set(&conf->active_stripes, 0);
5130         atomic_set(&conf->preread_active_stripes, 0);
5131         atomic_set(&conf->active_aligned_reads, 0);
5132         conf->bypass_threshold = BYPASS_THRESHOLD;
5133         conf->recovery_disabled = mddev->recovery_disabled - 1;
5134
5135         conf->raid_disks = mddev->raid_disks;
5136         if (mddev->reshape_position == MaxSector)
5137                 conf->previous_raid_disks = mddev->raid_disks;
5138         else
5139                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5140         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5141         conf->scribble_len = scribble_len(max_disks);
5142
5143         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5144                               GFP_KERNEL);
5145         if (!conf->disks)
5146                 goto abort;
5147
5148         conf->mddev = mddev;
5149
5150         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5151                 goto abort;
5152
5153         conf->level = mddev->new_level;
5154         if (raid5_alloc_percpu(conf) != 0)
5155                 goto abort;
5156
5157         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5158
5159         rdev_for_each(rdev, mddev) {
5160                 raid_disk = rdev->raid_disk;
5161                 if (raid_disk >= max_disks
5162                     || raid_disk < 0)
5163                         continue;
5164                 disk = conf->disks + raid_disk;
5165
5166                 if (test_bit(Replacement, &rdev->flags)) {
5167                         if (disk->replacement)
5168                                 goto abort;
5169                         disk->replacement = rdev;
5170                 } else {
5171                         if (disk->rdev)
5172                                 goto abort;
5173                         disk->rdev = rdev;
5174                 }
5175
5176                 if (test_bit(In_sync, &rdev->flags)) {
5177                         char b[BDEVNAME_SIZE];
5178                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5179                                " disk %d\n",
5180                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5181                 } else if (rdev->saved_raid_disk != raid_disk)
5182                         /* Cannot rely on bitmap to complete recovery */
5183                         conf->fullsync = 1;
5184         }
5185
5186         conf->chunk_sectors = mddev->new_chunk_sectors;
5187         conf->level = mddev->new_level;
5188         if (conf->level == 6)
5189                 conf->max_degraded = 2;
5190         else
5191                 conf->max_degraded = 1;
5192         conf->algorithm = mddev->new_layout;
5193         conf->max_nr_stripes = NR_STRIPES;
5194         conf->reshape_progress = mddev->reshape_position;
5195         if (conf->reshape_progress != MaxSector) {
5196                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5197                 conf->prev_algo = mddev->layout;
5198         }
5199
5200         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5201                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5202         if (grow_stripes(conf, conf->max_nr_stripes)) {
5203                 printk(KERN_ERR
5204                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5205                        mdname(mddev), memory);
5206                 goto abort;
5207         } else
5208                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5209                        mdname(mddev), memory);
5210
5211         sprintf(pers_name, "raid%d", mddev->new_level);
5212         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5213         if (!conf->thread) {
5214                 printk(KERN_ERR
5215                        "md/raid:%s: couldn't allocate thread.\n",
5216                        mdname(mddev));
5217                 goto abort;
5218         }
5219
5220         return conf;
5221
5222  abort:
5223         if (conf) {
5224                 free_conf(conf);
5225                 return ERR_PTR(-EIO);
5226         } else
5227                 return ERR_PTR(-ENOMEM);
5228 }
5229
5230
5231 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5232 {
5233         switch (algo) {
5234         case ALGORITHM_PARITY_0:
5235                 if (raid_disk < max_degraded)
5236                         return 1;
5237                 break;
5238         case ALGORITHM_PARITY_N:
5239                 if (raid_disk >= raid_disks - max_degraded)
5240                         return 1;
5241                 break;
5242         case ALGORITHM_PARITY_0_6:
5243                 if (raid_disk == 0 || 
5244                     raid_disk == raid_disks - 1)
5245                         return 1;
5246                 break;
5247         case ALGORITHM_LEFT_ASYMMETRIC_6:
5248         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5249         case ALGORITHM_LEFT_SYMMETRIC_6:
5250         case ALGORITHM_RIGHT_SYMMETRIC_6:
5251                 if (raid_disk == raid_disks - 1)
5252                         return 1;
5253         }
5254         return 0;
5255 }
5256
5257 static int run(struct mddev *mddev)
5258 {
5259         struct r5conf *conf;
5260         int working_disks = 0;
5261         int dirty_parity_disks = 0;
5262         struct md_rdev *rdev;
5263         sector_t reshape_offset = 0;
5264         int i;
5265         long long min_offset_diff = 0;
5266         int first = 1;
5267
5268         if (mddev->recovery_cp != MaxSector)
5269                 printk(KERN_NOTICE "md/raid:%s: not clean"
5270                        " -- starting background reconstruction\n",
5271                        mdname(mddev));
5272
5273         rdev_for_each(rdev, mddev) {
5274                 long long diff;
5275                 if (rdev->raid_disk < 0)
5276                         continue;
5277                 diff = (rdev->new_data_offset - rdev->data_offset);
5278                 if (first) {
5279                         min_offset_diff = diff;
5280                         first = 0;
5281                 } else if (mddev->reshape_backwards &&
5282                          diff < min_offset_diff)
5283                         min_offset_diff = diff;
5284                 else if (!mddev->reshape_backwards &&
5285                          diff > min_offset_diff)
5286                         min_offset_diff = diff;
5287         }
5288
5289         if (mddev->reshape_position != MaxSector) {
5290                 /* Check that we can continue the reshape.
5291                  * Difficulties arise if the stripe we would write to
5292                  * next is at or after the stripe we would read from next.
5293                  * For a reshape that changes the number of devices, this
5294                  * is only possible for a very short time, and mdadm makes
5295                  * sure that time appears to have past before assembling
5296                  * the array.  So we fail if that time hasn't passed.
5297                  * For a reshape that keeps the number of devices the same
5298                  * mdadm must be monitoring the reshape can keeping the
5299                  * critical areas read-only and backed up.  It will start
5300                  * the array in read-only mode, so we check for that.
5301                  */
5302                 sector_t here_new, here_old;
5303                 int old_disks;
5304                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5305
5306                 if (mddev->new_level != mddev->level) {
5307                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5308                                "required - aborting.\n",
5309                                mdname(mddev));
5310                         return -EINVAL;
5311                 }
5312                 old_disks = mddev->raid_disks - mddev->delta_disks;
5313                 /* reshape_position must be on a new-stripe boundary, and one
5314                  * further up in new geometry must map after here in old
5315                  * geometry.
5316                  */
5317                 here_new = mddev->reshape_position;
5318                 if (sector_div(here_new, mddev->new_chunk_sectors *
5319                                (mddev->raid_disks - max_degraded))) {
5320                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5321                                "on a stripe boundary\n", mdname(mddev));
5322                         return -EINVAL;
5323                 }
5324                 reshape_offset = here_new * mddev->new_chunk_sectors;
5325                 /* here_new is the stripe we will write to */
5326                 here_old = mddev->reshape_position;
5327                 sector_div(here_old, mddev->chunk_sectors *
5328                            (old_disks-max_degraded));
5329                 /* here_old is the first stripe that we might need to read
5330                  * from */
5331                 if (mddev->delta_disks == 0) {
5332                         if ((here_new * mddev->new_chunk_sectors !=
5333                              here_old * mddev->chunk_sectors)) {
5334                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5335                                        " confused - aborting\n", mdname(mddev));
5336                                 return -EINVAL;
5337                         }
5338                         /* We cannot be sure it is safe to start an in-place
5339                          * reshape.  It is only safe if user-space is monitoring
5340                          * and taking constant backups.
5341                          * mdadm always starts a situation like this in
5342                          * readonly mode so it can take control before
5343                          * allowing any writes.  So just check for that.
5344                          */
5345                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5346                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
5347                                 /* not really in-place - so OK */;
5348                         else if (mddev->ro == 0) {
5349                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
5350                                        "must be started in read-only mode "
5351                                        "- aborting\n",
5352                                        mdname(mddev));
5353                                 return -EINVAL;
5354                         }
5355                 } else if (mddev->reshape_backwards
5356                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5357                        here_old * mddev->chunk_sectors)
5358                     : (here_new * mddev->new_chunk_sectors >=
5359                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5360                         /* Reading from the same stripe as writing to - bad */
5361                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5362                                "auto-recovery - aborting.\n",
5363                                mdname(mddev));
5364                         return -EINVAL;
5365                 }
5366                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5367                        mdname(mddev));
5368                 /* OK, we should be able to continue; */
5369         } else {
5370                 BUG_ON(mddev->level != mddev->new_level);
5371                 BUG_ON(mddev->layout != mddev->new_layout);
5372                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5373                 BUG_ON(mddev->delta_disks != 0);
5374         }
5375
5376         if (mddev->private == NULL)
5377                 conf = setup_conf(mddev);
5378         else
5379                 conf = mddev->private;
5380
5381         if (IS_ERR(conf))
5382                 return PTR_ERR(conf);
5383
5384         conf->min_offset_diff = min_offset_diff;
5385         mddev->thread = conf->thread;
5386         conf->thread = NULL;
5387         mddev->private = conf;
5388
5389         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5390              i++) {
5391                 rdev = conf->disks[i].rdev;
5392                 if (!rdev && conf->disks[i].replacement) {
5393                         /* The replacement is all we have yet */
5394                         rdev = conf->disks[i].replacement;
5395                         conf->disks[i].replacement = NULL;
5396                         clear_bit(Replacement, &rdev->flags);
5397                         conf->disks[i].rdev = rdev;
5398                 }
5399                 if (!rdev)
5400                         continue;
5401                 if (conf->disks[i].replacement &&
5402                     conf->reshape_progress != MaxSector) {
5403                         /* replacements and reshape simply do not mix. */
5404                         printk(KERN_ERR "md: cannot handle concurrent "
5405                                "replacement and reshape.\n");
5406                         goto abort;
5407                 }
5408                 if (test_bit(In_sync, &rdev->flags)) {
5409                         working_disks++;
5410                         continue;
5411                 }
5412                 /* This disc is not fully in-sync.  However if it
5413                  * just stored parity (beyond the recovery_offset),
5414                  * when we don't need to be concerned about the
5415                  * array being dirty.
5416                  * When reshape goes 'backwards', we never have
5417                  * partially completed devices, so we only need
5418                  * to worry about reshape going forwards.
5419                  */
5420                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5421                 if (mddev->major_version == 0 &&
5422                     mddev->minor_version > 90)
5423                         rdev->recovery_offset = reshape_offset;
5424                         
5425                 if (rdev->recovery_offset < reshape_offset) {
5426                         /* We need to check old and new layout */
5427                         if (!only_parity(rdev->raid_disk,
5428                                          conf->algorithm,
5429                                          conf->raid_disks,
5430                                          conf->max_degraded))
5431                                 continue;
5432                 }
5433                 if (!only_parity(rdev->raid_disk,
5434                                  conf->prev_algo,
5435                                  conf->previous_raid_disks,
5436                                  conf->max_degraded))
5437                         continue;
5438                 dirty_parity_disks++;
5439         }
5440
5441         /*
5442          * 0 for a fully functional array, 1 or 2 for a degraded array.
5443          */
5444         mddev->degraded = calc_degraded(conf);
5445
5446         if (has_failed(conf)) {
5447                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5448                         " (%d/%d failed)\n",
5449                         mdname(mddev), mddev->degraded, conf->raid_disks);
5450                 goto abort;
5451         }
5452
5453         /* device size must be a multiple of chunk size */
5454         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5455         mddev->resync_max_sectors = mddev->dev_sectors;
5456
5457         if (mddev->degraded > dirty_parity_disks &&
5458             mddev->recovery_cp != MaxSector) {
5459                 if (mddev->ok_start_degraded)
5460                         printk(KERN_WARNING
5461                                "md/raid:%s: starting dirty degraded array"
5462                                " - data corruption possible.\n",
5463                                mdname(mddev));
5464                 else {
5465                         printk(KERN_ERR
5466                                "md/raid:%s: cannot start dirty degraded array.\n",
5467                                mdname(mddev));
5468                         goto abort;
5469                 }
5470         }
5471
5472         if (mddev->degraded == 0)
5473                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5474                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5475                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5476                        mddev->new_layout);
5477         else
5478                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5479                        " out of %d devices, algorithm %d\n",
5480                        mdname(mddev), conf->level,
5481                        mddev->raid_disks - mddev->degraded,
5482                        mddev->raid_disks, mddev->new_layout);
5483
5484         print_raid5_conf(conf);
5485
5486         if (conf->reshape_progress != MaxSector) {
5487                 conf->reshape_safe = conf->reshape_progress;
5488                 atomic_set(&conf->reshape_stripes, 0);
5489                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5490                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5491                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5492                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5493                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5494                                                         "reshape");
5495         }
5496
5497
5498         /* Ok, everything is just fine now */
5499         if (mddev->to_remove == &raid5_attrs_group)
5500                 mddev->to_remove = NULL;
5501         else if (mddev->kobj.sd &&
5502             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5503                 printk(KERN_WARNING
5504                        "raid5: failed to create sysfs attributes for %s\n",
5505                        mdname(mddev));
5506         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5507
5508         if (mddev->queue) {
5509                 int chunk_size;
5510                 bool discard_supported = true;
5511                 /* read-ahead size must cover two whole stripes, which
5512                  * is 2 * (datadisks) * chunksize where 'n' is the
5513                  * number of raid devices
5514                  */
5515                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5516                 int stripe = data_disks *
5517                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5518                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5519                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5520
5521                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5522
5523                 mddev->queue->backing_dev_info.congested_data = mddev;
5524                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5525
5526                 chunk_size = mddev->chunk_sectors << 9;
5527                 blk_queue_io_min(mddev->queue, chunk_size);
5528                 blk_queue_io_opt(mddev->queue, chunk_size *
5529                                  (conf->raid_disks - conf->max_degraded));
5530                 /*
5531                  * We can only discard a whole stripe. It doesn't make sense to
5532                  * discard data disk but write parity disk
5533                  */
5534                 stripe = stripe * PAGE_SIZE;
5535                 /* Round up to power of 2, as discard handling
5536                  * currently assumes that */
5537                 while ((stripe-1) & stripe)
5538                         stripe = (stripe | (stripe-1)) + 1;
5539                 mddev->queue->limits.discard_alignment = stripe;
5540                 mddev->queue->limits.discard_granularity = stripe;
5541                 /*
5542                  * unaligned part of discard request will be ignored, so can't
5543                  * guarantee discard_zerors_data
5544                  */
5545                 mddev->queue->limits.discard_zeroes_data = 0;
5546
5547                 rdev_for_each(rdev, mddev) {
5548                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5549                                           rdev->data_offset << 9);
5550                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5551                                           rdev->new_data_offset << 9);
5552                         /*
5553                          * discard_zeroes_data is required, otherwise data
5554                          * could be lost. Consider a scenario: discard a stripe
5555                          * (the stripe could be inconsistent if
5556                          * discard_zeroes_data is 0); write one disk of the
5557                          * stripe (the stripe could be inconsistent again
5558                          * depending on which disks are used to calculate
5559                          * parity); the disk is broken; The stripe data of this
5560                          * disk is lost.
5561                          */
5562                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5563                             !bdev_get_queue(rdev->bdev)->
5564                                                 limits.discard_zeroes_data)
5565                                 discard_supported = false;
5566                 }
5567
5568                 if (discard_supported &&
5569                    mddev->queue->limits.max_discard_sectors >= stripe &&
5570                    mddev->queue->limits.discard_granularity >= stripe)
5571                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5572                                                 mddev->queue);
5573                 else
5574                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5575                                                 mddev->queue);
5576         }
5577
5578         return 0;
5579 abort:
5580         md_unregister_thread(&mddev->thread);
5581         print_raid5_conf(conf);
5582         free_conf(conf);
5583         mddev->private = NULL;
5584         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5585         return -EIO;
5586 }
5587
5588 static int stop(struct mddev *mddev)
5589 {
5590         struct r5conf *conf = mddev->private;
5591
5592         md_unregister_thread(&mddev->thread);
5593         if (mddev->queue)
5594                 mddev->queue->backing_dev_info.congested_fn = NULL;
5595         free_conf(conf);
5596         mddev->private = NULL;
5597         mddev->to_remove = &raid5_attrs_group;
5598         return 0;
5599 }
5600
5601 static void status(struct seq_file *seq, struct mddev *mddev)
5602 {
5603         struct r5conf *conf = mddev->private;
5604         int i;
5605
5606         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5607                 mddev->chunk_sectors / 2, mddev->layout);
5608         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5609         for (i = 0; i < conf->raid_disks; i++)
5610                 seq_printf (seq, "%s",
5611                                conf->disks[i].rdev &&
5612                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5613         seq_printf (seq, "]");
5614 }
5615
5616 static void print_raid5_conf (struct r5conf *conf)
5617 {
5618         int i;
5619         struct disk_info *tmp;
5620
5621         printk(KERN_DEBUG "RAID conf printout:\n");
5622         if (!conf) {
5623                 printk("(conf==NULL)\n");
5624                 return;
5625         }
5626         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5627                conf->raid_disks,
5628                conf->raid_disks - conf->mddev->degraded);
5629
5630         for (i = 0; i < conf->raid_disks; i++) {
5631                 char b[BDEVNAME_SIZE];
5632                 tmp = conf->disks + i;
5633                 if (tmp->rdev)
5634                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5635                                i, !test_bit(Faulty, &tmp->rdev->flags),
5636                                bdevname(tmp->rdev->bdev, b));
5637         }
5638 }
5639
5640 static int raid5_spare_active(struct mddev *mddev)
5641 {
5642         int i;
5643         struct r5conf *conf = mddev->private;
5644         struct disk_info *tmp;
5645         int count = 0;
5646         unsigned long flags;
5647
5648         for (i = 0; i < conf->raid_disks; i++) {
5649                 tmp = conf->disks + i;
5650                 if (tmp->replacement
5651                     && tmp->replacement->recovery_offset == MaxSector
5652                     && !test_bit(Faulty, &tmp->replacement->flags)
5653                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5654                         /* Replacement has just become active. */
5655                         if (!tmp->rdev
5656                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5657                                 count++;
5658                         if (tmp->rdev) {
5659                                 /* Replaced device not technically faulty,
5660                                  * but we need to be sure it gets removed
5661                                  * and never re-added.
5662                                  */
5663                                 set_bit(Faulty, &tmp->rdev->flags);
5664                                 sysfs_notify_dirent_safe(
5665                                         tmp->rdev->sysfs_state);
5666                         }
5667                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5668                 } else if (tmp->rdev
5669                     && tmp->rdev->recovery_offset == MaxSector
5670                     && !test_bit(Faulty, &tmp->rdev->flags)
5671                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5672                         count++;
5673                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5674                 }
5675         }
5676         spin_lock_irqsave(&conf->device_lock, flags);
5677         mddev->degraded = calc_degraded(conf);
5678         spin_unlock_irqrestore(&conf->device_lock, flags);
5679         print_raid5_conf(conf);
5680         return count;
5681 }
5682
5683 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5684 {
5685         struct r5conf *conf = mddev->private;
5686         int err = 0;
5687         int number = rdev->raid_disk;
5688         struct md_rdev **rdevp;
5689         struct disk_info *p = conf->disks + number;
5690
5691         print_raid5_conf(conf);
5692         if (rdev == p->rdev)
5693                 rdevp = &p->rdev;
5694         else if (rdev == p->replacement)
5695                 rdevp = &p->replacement;
5696         else
5697                 return 0;
5698
5699         if (number >= conf->raid_disks &&
5700             conf->reshape_progress == MaxSector)
5701                 clear_bit(In_sync, &rdev->flags);
5702
5703         if (test_bit(In_sync, &rdev->flags) ||
5704             atomic_read(&rdev->nr_pending)) {
5705                 err = -EBUSY;
5706                 goto abort;
5707         }
5708         /* Only remove non-faulty devices if recovery
5709          * isn't possible.
5710          */
5711         if (!test_bit(Faulty, &rdev->flags) &&
5712             mddev->recovery_disabled != conf->recovery_disabled &&
5713             !has_failed(conf) &&
5714             (!p->replacement || p->replacement == rdev) &&
5715             number < conf->raid_disks) {
5716                 err = -EBUSY;
5717                 goto abort;
5718         }
5719         *rdevp = NULL;
5720         synchronize_rcu();
5721         if (atomic_read(&rdev->nr_pending)) {
5722                 /* lost the race, try later */
5723                 err = -EBUSY;
5724                 *rdevp = rdev;
5725         } else if (p->replacement) {
5726                 /* We must have just cleared 'rdev' */
5727                 p->rdev = p->replacement;
5728                 clear_bit(Replacement, &p->replacement->flags);
5729                 smp_mb(); /* Make sure other CPUs may see both as identical
5730                            * but will never see neither - if they are careful
5731                            */
5732                 p->replacement = NULL;
5733                 clear_bit(WantReplacement, &rdev->flags);
5734         } else
5735                 /* We might have just removed the Replacement as faulty-
5736                  * clear the bit just in case
5737                  */
5738                 clear_bit(WantReplacement, &rdev->flags);
5739 abort:
5740
5741         print_raid5_conf(conf);
5742         return err;
5743 }
5744
5745 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5746 {
5747         struct r5conf *conf = mddev->private;
5748         int err = -EEXIST;
5749         int disk;
5750         struct disk_info *p;
5751         int first = 0;
5752         int last = conf->raid_disks - 1;
5753
5754         if (mddev->recovery_disabled == conf->recovery_disabled)
5755                 return -EBUSY;
5756
5757         if (rdev->saved_raid_disk < 0 && has_failed(conf))
5758                 /* no point adding a device */
5759                 return -EINVAL;
5760
5761         if (rdev->raid_disk >= 0)
5762                 first = last = rdev->raid_disk;
5763
5764         /*
5765          * find the disk ... but prefer rdev->saved_raid_disk
5766          * if possible.
5767          */
5768         if (rdev->saved_raid_disk >= 0 &&
5769             rdev->saved_raid_disk >= first &&
5770             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5771                 first = rdev->saved_raid_disk;
5772
5773         for (disk = first; disk <= last; disk++) {
5774                 p = conf->disks + disk;
5775                 if (p->rdev == NULL) {
5776                         clear_bit(In_sync, &rdev->flags);
5777                         rdev->raid_disk = disk;
5778                         err = 0;
5779                         if (rdev->saved_raid_disk != disk)
5780                                 conf->fullsync = 1;
5781                         rcu_assign_pointer(p->rdev, rdev);
5782                         goto out;
5783                 }
5784         }
5785         for (disk = first; disk <= last; disk++) {
5786                 p = conf->disks + disk;
5787                 if (test_bit(WantReplacement, &p->rdev->flags) &&
5788                     p->replacement == NULL) {
5789                         clear_bit(In_sync, &rdev->flags);
5790                         set_bit(Replacement, &rdev->flags);
5791                         rdev->raid_disk = disk;
5792                         err = 0;
5793                         conf->fullsync = 1;
5794                         rcu_assign_pointer(p->replacement, rdev);
5795                         break;
5796                 }
5797         }
5798 out:
5799         print_raid5_conf(conf);
5800         return err;
5801 }
5802
5803 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5804 {
5805         /* no resync is happening, and there is enough space
5806          * on all devices, so we can resize.
5807          * We need to make sure resync covers any new space.
5808          * If the array is shrinking we should possibly wait until
5809          * any io in the removed space completes, but it hardly seems
5810          * worth it.
5811          */
5812         sector_t newsize;
5813         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5814         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5815         if (mddev->external_size &&
5816             mddev->array_sectors > newsize)
5817                 return -EINVAL;
5818         if (mddev->bitmap) {
5819                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5820                 if (ret)
5821                         return ret;
5822         }
5823         md_set_array_sectors(mddev, newsize);
5824         set_capacity(mddev->gendisk, mddev->array_sectors);
5825         revalidate_disk(mddev->gendisk);
5826         if (sectors > mddev->dev_sectors &&
5827             mddev->recovery_cp > mddev->dev_sectors) {
5828                 mddev->recovery_cp = mddev->dev_sectors;
5829                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5830         }
5831         mddev->dev_sectors = sectors;
5832         mddev->resync_max_sectors = sectors;
5833         return 0;
5834 }
5835
5836 static int check_stripe_cache(struct mddev *mddev)
5837 {
5838         /* Can only proceed if there are plenty of stripe_heads.
5839          * We need a minimum of one full stripe,, and for sensible progress
5840          * it is best to have about 4 times that.
5841          * If we require 4 times, then the default 256 4K stripe_heads will
5842          * allow for chunk sizes up to 256K, which is probably OK.
5843          * If the chunk size is greater, user-space should request more
5844          * stripe_heads first.
5845          */
5846         struct r5conf *conf = mddev->private;
5847         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5848             > conf->max_nr_stripes ||
5849             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5850             > conf->max_nr_stripes) {
5851                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5852                        mdname(mddev),
5853                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5854                         / STRIPE_SIZE)*4);
5855                 return 0;
5856         }
5857         return 1;
5858 }
5859
5860 static int check_reshape(struct mddev *mddev)
5861 {
5862         struct r5conf *conf = mddev->private;
5863
5864         if (mddev->delta_disks == 0 &&
5865             mddev->new_layout == mddev->layout &&
5866             mddev->new_chunk_sectors == mddev->chunk_sectors)
5867                 return 0; /* nothing to do */
5868         if (has_failed(conf))
5869                 return -EINVAL;
5870         if (mddev->delta_disks < 0) {
5871                 /* We might be able to shrink, but the devices must
5872                  * be made bigger first.
5873                  * For raid6, 4 is the minimum size.
5874                  * Otherwise 2 is the minimum
5875                  */
5876                 int min = 2;
5877                 if (mddev->level == 6)
5878                         min = 4;
5879                 if (mddev->raid_disks + mddev->delta_disks < min)
5880                         return -EINVAL;
5881         }
5882
5883         if (!check_stripe_cache(mddev))
5884                 return -ENOSPC;
5885
5886         return resize_stripes(conf, (conf->previous_raid_disks
5887                                      + mddev->delta_disks));
5888 }
5889
5890 static int raid5_start_reshape(struct mddev *mddev)
5891 {
5892         struct r5conf *conf = mddev->private;
5893         struct md_rdev *rdev;
5894         int spares = 0;
5895         unsigned long flags;
5896
5897         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5898                 return -EBUSY;
5899
5900         if (!check_stripe_cache(mddev))
5901                 return -ENOSPC;
5902
5903         if (has_failed(conf))
5904                 return -EINVAL;
5905
5906         rdev_for_each(rdev, mddev) {
5907                 if (!test_bit(In_sync, &rdev->flags)
5908                     && !test_bit(Faulty, &rdev->flags))
5909                         spares++;
5910         }
5911
5912         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5913                 /* Not enough devices even to make a degraded array
5914                  * of that size
5915                  */
5916                 return -EINVAL;
5917
5918         /* Refuse to reduce size of the array.  Any reductions in
5919          * array size must be through explicit setting of array_size
5920          * attribute.
5921          */
5922         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5923             < mddev->array_sectors) {
5924                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5925                        "before number of disks\n", mdname(mddev));
5926                 return -EINVAL;
5927         }
5928
5929         atomic_set(&conf->reshape_stripes, 0);
5930         spin_lock_irq(&conf->device_lock);
5931         conf->previous_raid_disks = conf->raid_disks;
5932         conf->raid_disks += mddev->delta_disks;
5933         conf->prev_chunk_sectors = conf->chunk_sectors;
5934         conf->chunk_sectors = mddev->new_chunk_sectors;
5935         conf->prev_algo = conf->algorithm;
5936         conf->algorithm = mddev->new_layout;
5937         conf->generation++;
5938         /* Code that selects data_offset needs to see the generation update
5939          * if reshape_progress has been set - so a memory barrier needed.
5940          */
5941         smp_mb();
5942         if (mddev->reshape_backwards)
5943                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5944         else
5945                 conf->reshape_progress = 0;
5946         conf->reshape_safe = conf->reshape_progress;
5947         spin_unlock_irq(&conf->device_lock);
5948
5949         /* Add some new drives, as many as will fit.
5950          * We know there are enough to make the newly sized array work.
5951          * Don't add devices if we are reducing the number of
5952          * devices in the array.  This is because it is not possible
5953          * to correctly record the "partially reconstructed" state of
5954          * such devices during the reshape and confusion could result.
5955          */
5956         if (mddev->delta_disks >= 0) {
5957                 rdev_for_each(rdev, mddev)
5958                         if (rdev->raid_disk < 0 &&
5959                             !test_bit(Faulty, &rdev->flags)) {
5960                                 if (raid5_add_disk(mddev, rdev) == 0) {
5961                                         if (rdev->raid_disk
5962                                             >= conf->previous_raid_disks)
5963                                                 set_bit(In_sync, &rdev->flags);
5964                                         else
5965                                                 rdev->recovery_offset = 0;
5966
5967                                         if (sysfs_link_rdev(mddev, rdev))
5968                                                 /* Failure here is OK */;
5969                                 }
5970                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5971                                    && !test_bit(Faulty, &rdev->flags)) {
5972                                 /* This is a spare that was manually added */
5973                                 set_bit(In_sync, &rdev->flags);
5974                         }
5975
5976                 /* When a reshape changes the number of devices,
5977                  * ->degraded is measured against the larger of the
5978                  * pre and post number of devices.
5979                  */
5980                 spin_lock_irqsave(&conf->device_lock, flags);
5981                 mddev->degraded = calc_degraded(conf);
5982                 spin_unlock_irqrestore(&conf->device_lock, flags);
5983         }
5984         mddev->raid_disks = conf->raid_disks;
5985         mddev->reshape_position = conf->reshape_progress;
5986         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5987
5988         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5989         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5990         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5991         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5992         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5993                                                 "reshape");
5994         if (!mddev->sync_thread) {
5995                 mddev->recovery = 0;
5996                 spin_lock_irq(&conf->device_lock);
5997                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5998                 rdev_for_each(rdev, mddev)
5999                         rdev->new_data_offset = rdev->data_offset;
6000                 smp_wmb();
6001                 conf->reshape_progress = MaxSector;
6002                 mddev->reshape_position = MaxSector;
6003                 spin_unlock_irq(&conf->device_lock);
6004                 return -EAGAIN;
6005         }
6006         conf->reshape_checkpoint = jiffies;
6007         md_wakeup_thread(mddev->sync_thread);
6008         md_new_event(mddev);
6009         return 0;
6010 }
6011
6012 /* This is called from the reshape thread and should make any
6013  * changes needed in 'conf'
6014  */
6015 static void end_reshape(struct r5conf *conf)
6016 {
6017
6018         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6019                 struct md_rdev *rdev;
6020
6021                 spin_lock_irq(&conf->device_lock);
6022                 conf->previous_raid_disks = conf->raid_disks;
6023                 rdev_for_each(rdev, conf->mddev)
6024                         rdev->data_offset = rdev->new_data_offset;
6025                 smp_wmb();
6026                 conf->reshape_progress = MaxSector;
6027                 spin_unlock_irq(&conf->device_lock);
6028                 wake_up(&conf->wait_for_overlap);
6029
6030                 /* read-ahead size must cover two whole stripes, which is
6031                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6032                  */
6033                 if (conf->mddev->queue) {
6034                         int data_disks = conf->raid_disks - conf->max_degraded;
6035                         int stripe = data_disks * ((conf->chunk_sectors << 9)
6036                                                    / PAGE_SIZE);
6037                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6038                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6039                 }
6040         }
6041 }
6042
6043 /* This is called from the raid5d thread with mddev_lock held.
6044  * It makes config changes to the device.
6045  */
6046 static void raid5_finish_reshape(struct mddev *mddev)
6047 {
6048         struct r5conf *conf = mddev->private;
6049
6050         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6051
6052                 if (mddev->delta_disks > 0) {
6053                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6054                         set_capacity(mddev->gendisk, mddev->array_sectors);
6055                         revalidate_disk(mddev->gendisk);
6056                 } else {
6057                         int d;
6058                         spin_lock_irq(&conf->device_lock);
6059                         mddev->degraded = calc_degraded(conf);
6060                         spin_unlock_irq(&conf->device_lock);
6061                         for (d = conf->raid_disks ;
6062                              d < conf->raid_disks - mddev->delta_disks;
6063                              d++) {
6064                                 struct md_rdev *rdev = conf->disks[d].rdev;
6065                                 if (rdev)
6066                                         clear_bit(In_sync, &rdev->flags);
6067                                 rdev = conf->disks[d].replacement;
6068                                 if (rdev)
6069                                         clear_bit(In_sync, &rdev->flags);
6070                         }
6071                 }
6072                 mddev->layout = conf->algorithm;
6073                 mddev->chunk_sectors = conf->chunk_sectors;
6074                 mddev->reshape_position = MaxSector;
6075                 mddev->delta_disks = 0;
6076                 mddev->reshape_backwards = 0;
6077         }
6078 }
6079
6080 static void raid5_quiesce(struct mddev *mddev, int state)
6081 {
6082         struct r5conf *conf = mddev->private;
6083
6084         switch(state) {
6085         case 2: /* resume for a suspend */
6086                 wake_up(&conf->wait_for_overlap);
6087                 break;
6088
6089         case 1: /* stop all writes */
6090                 spin_lock_irq(&conf->device_lock);
6091                 /* '2' tells resync/reshape to pause so that all
6092                  * active stripes can drain
6093                  */
6094                 conf->quiesce = 2;
6095                 wait_event_lock_irq(conf->wait_for_stripe,
6096                                     atomic_read(&conf->active_stripes) == 0 &&
6097                                     atomic_read(&conf->active_aligned_reads) == 0,
6098                                     conf->device_lock, /* nothing */);
6099                 conf->quiesce = 1;
6100                 spin_unlock_irq(&conf->device_lock);
6101                 /* allow reshape to continue */
6102                 wake_up(&conf->wait_for_overlap);
6103                 break;
6104
6105         case 0: /* re-enable writes */
6106                 spin_lock_irq(&conf->device_lock);
6107                 conf->quiesce = 0;
6108                 wake_up(&conf->wait_for_stripe);
6109                 wake_up(&conf->wait_for_overlap);
6110                 spin_unlock_irq(&conf->device_lock);
6111                 break;
6112         }
6113 }
6114
6115
6116 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6117 {
6118         struct r0conf *raid0_conf = mddev->private;
6119         sector_t sectors;
6120
6121         /* for raid0 takeover only one zone is supported */
6122         if (raid0_conf->nr_strip_zones > 1) {
6123                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6124                        mdname(mddev));
6125                 return ERR_PTR(-EINVAL);
6126         }
6127
6128         sectors = raid0_conf->strip_zone[0].zone_end;
6129         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6130         mddev->dev_sectors = sectors;
6131         mddev->new_level = level;
6132         mddev->new_layout = ALGORITHM_PARITY_N;
6133         mddev->new_chunk_sectors = mddev->chunk_sectors;
6134         mddev->raid_disks += 1;
6135         mddev->delta_disks = 1;
6136         /* make sure it will be not marked as dirty */
6137         mddev->recovery_cp = MaxSector;
6138
6139         return setup_conf(mddev);
6140 }
6141
6142
6143 static void *raid5_takeover_raid1(struct mddev *mddev)
6144 {
6145         int chunksect;
6146
6147         if (mddev->raid_disks != 2 ||
6148             mddev->degraded > 1)
6149                 return ERR_PTR(-EINVAL);
6150
6151         /* Should check if there are write-behind devices? */
6152
6153         chunksect = 64*2; /* 64K by default */
6154
6155         /* The array must be an exact multiple of chunksize */
6156         while (chunksect && (mddev->array_sectors & (chunksect-1)))
6157                 chunksect >>= 1;
6158
6159         if ((chunksect<<9) < STRIPE_SIZE)
6160                 /* array size does not allow a suitable chunk size */
6161                 return ERR_PTR(-EINVAL);
6162
6163         mddev->new_level = 5;
6164         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6165         mddev->new_chunk_sectors = chunksect;
6166
6167         return setup_conf(mddev);
6168 }
6169
6170 static void *raid5_takeover_raid6(struct mddev *mddev)
6171 {
6172         int new_layout;
6173
6174         switch (mddev->layout) {
6175         case ALGORITHM_LEFT_ASYMMETRIC_6:
6176                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6177                 break;
6178         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6179                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6180                 break;
6181         case ALGORITHM_LEFT_SYMMETRIC_6:
6182                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6183                 break;
6184         case ALGORITHM_RIGHT_SYMMETRIC_6:
6185                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6186                 break;
6187         case ALGORITHM_PARITY_0_6:
6188                 new_layout = ALGORITHM_PARITY_0;
6189                 break;
6190         case ALGORITHM_PARITY_N:
6191                 new_layout = ALGORITHM_PARITY_N;
6192                 break;
6193         default:
6194                 return ERR_PTR(-EINVAL);
6195         }
6196         mddev->new_level = 5;
6197         mddev->new_layout = new_layout;
6198         mddev->delta_disks = -1;
6199         mddev->raid_disks -= 1;
6200         return setup_conf(mddev);
6201 }
6202
6203
6204 static int raid5_check_reshape(struct mddev *mddev)
6205 {
6206         /* For a 2-drive array, the layout and chunk size can be changed
6207          * immediately as not restriping is needed.
6208          * For larger arrays we record the new value - after validation
6209          * to be used by a reshape pass.
6210          */
6211         struct r5conf *conf = mddev->private;
6212         int new_chunk = mddev->new_chunk_sectors;
6213
6214         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6215                 return -EINVAL;
6216         if (new_chunk > 0) {
6217                 if (!is_power_of_2(new_chunk))
6218                         return -EINVAL;
6219                 if (new_chunk < (PAGE_SIZE>>9))
6220                         return -EINVAL;
6221                 if (mddev->array_sectors & (new_chunk-1))
6222                         /* not factor of array size */
6223                         return -EINVAL;
6224         }
6225
6226         /* They look valid */
6227
6228         if (mddev->raid_disks == 2) {
6229                 /* can make the change immediately */
6230                 if (mddev->new_layout >= 0) {
6231                         conf->algorithm = mddev->new_layout;
6232                         mddev->layout = mddev->new_layout;
6233                 }
6234                 if (new_chunk > 0) {
6235                         conf->chunk_sectors = new_chunk ;
6236                         mddev->chunk_sectors = new_chunk;
6237                 }
6238                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6239                 md_wakeup_thread(mddev->thread);
6240         }
6241         return check_reshape(mddev);
6242 }
6243
6244 static int raid6_check_reshape(struct mddev *mddev)
6245 {
6246         int new_chunk = mddev->new_chunk_sectors;
6247
6248         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6249                 return -EINVAL;
6250         if (new_chunk > 0) {
6251                 if (!is_power_of_2(new_chunk))
6252                         return -EINVAL;
6253                 if (new_chunk < (PAGE_SIZE >> 9))
6254                         return -EINVAL;
6255                 if (mddev->array_sectors & (new_chunk-1))
6256                         /* not factor of array size */
6257                         return -EINVAL;
6258         }
6259
6260         /* They look valid */
6261         return check_reshape(mddev);
6262 }
6263
6264 static void *raid5_takeover(struct mddev *mddev)
6265 {
6266         /* raid5 can take over:
6267          *  raid0 - if there is only one strip zone - make it a raid4 layout
6268          *  raid1 - if there are two drives.  We need to know the chunk size
6269          *  raid4 - trivial - just use a raid4 layout.
6270          *  raid6 - Providing it is a *_6 layout
6271          */
6272         if (mddev->level == 0)
6273                 return raid45_takeover_raid0(mddev, 5);
6274         if (mddev->level == 1)
6275                 return raid5_takeover_raid1(mddev);
6276         if (mddev->level == 4) {
6277                 mddev->new_layout = ALGORITHM_PARITY_N;
6278                 mddev->new_level = 5;
6279                 return setup_conf(mddev);
6280         }
6281         if (mddev->level == 6)
6282                 return raid5_takeover_raid6(mddev);
6283
6284         return ERR_PTR(-EINVAL);
6285 }
6286
6287 static void *raid4_takeover(struct mddev *mddev)
6288 {
6289         /* raid4 can take over:
6290          *  raid0 - if there is only one strip zone
6291          *  raid5 - if layout is right
6292          */
6293         if (mddev->level == 0)
6294                 return raid45_takeover_raid0(mddev, 4);
6295         if (mddev->level == 5 &&
6296             mddev->layout == ALGORITHM_PARITY_N) {
6297                 mddev->new_layout = 0;
6298                 mddev->new_level = 4;
6299                 return setup_conf(mddev);
6300         }
6301         return ERR_PTR(-EINVAL);
6302 }
6303
6304 static struct md_personality raid5_personality;
6305
6306 static void *raid6_takeover(struct mddev *mddev)
6307 {
6308         /* Currently can only take over a raid5.  We map the
6309          * personality to an equivalent raid6 personality
6310          * with the Q block at the end.
6311          */
6312         int new_layout;
6313
6314         if (mddev->pers != &raid5_personality)
6315                 return ERR_PTR(-EINVAL);
6316         if (mddev->degraded > 1)
6317                 return ERR_PTR(-EINVAL);
6318         if (mddev->raid_disks > 253)
6319                 return ERR_PTR(-EINVAL);
6320         if (mddev->raid_disks < 3)
6321                 return ERR_PTR(-EINVAL);
6322
6323         switch (mddev->layout) {
6324         case ALGORITHM_LEFT_ASYMMETRIC:
6325                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6326                 break;
6327         case ALGORITHM_RIGHT_ASYMMETRIC:
6328                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6329                 break;
6330         case ALGORITHM_LEFT_SYMMETRIC:
6331                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6332                 break;
6333         case ALGORITHM_RIGHT_SYMMETRIC:
6334                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6335                 break;
6336         case ALGORITHM_PARITY_0:
6337                 new_layout = ALGORITHM_PARITY_0_6;
6338                 break;
6339         case ALGORITHM_PARITY_N:
6340                 new_layout = ALGORITHM_PARITY_N;
6341                 break;
6342         default:
6343                 return ERR_PTR(-EINVAL);
6344         }
6345         mddev->new_level = 6;
6346         mddev->new_layout = new_layout;
6347         mddev->delta_disks = 1;
6348         mddev->raid_disks += 1;
6349         return setup_conf(mddev);
6350 }
6351
6352
6353 static struct md_personality raid6_personality =
6354 {
6355         .name           = "raid6",
6356         .level          = 6,
6357         .owner          = THIS_MODULE,
6358         .make_request   = make_request,
6359         .run            = run,
6360         .stop           = stop,
6361         .status         = status,
6362         .error_handler  = error,
6363         .hot_add_disk   = raid5_add_disk,
6364         .hot_remove_disk= raid5_remove_disk,
6365         .spare_active   = raid5_spare_active,
6366         .sync_request   = sync_request,
6367         .resize         = raid5_resize,
6368         .size           = raid5_size,
6369         .check_reshape  = raid6_check_reshape,
6370         .start_reshape  = raid5_start_reshape,
6371         .finish_reshape = raid5_finish_reshape,
6372         .quiesce        = raid5_quiesce,
6373         .takeover       = raid6_takeover,
6374 };
6375 static struct md_personality raid5_personality =
6376 {
6377         .name           = "raid5",
6378         .level          = 5,
6379         .owner          = THIS_MODULE,
6380         .make_request   = make_request,
6381         .run            = run,
6382         .stop           = stop,
6383         .status         = status,
6384         .error_handler  = error,
6385         .hot_add_disk   = raid5_add_disk,
6386         .hot_remove_disk= raid5_remove_disk,
6387         .spare_active   = raid5_spare_active,
6388         .sync_request   = sync_request,
6389         .resize         = raid5_resize,
6390         .size           = raid5_size,
6391         .check_reshape  = raid5_check_reshape,
6392         .start_reshape  = raid5_start_reshape,
6393         .finish_reshape = raid5_finish_reshape,
6394         .quiesce        = raid5_quiesce,
6395         .takeover       = raid5_takeover,
6396 };
6397
6398 static struct md_personality raid4_personality =
6399 {
6400         .name           = "raid4",
6401         .level          = 4,
6402         .owner          = THIS_MODULE,
6403         .make_request   = make_request,
6404         .run            = run,
6405         .stop           = stop,
6406         .status         = status,
6407         .error_handler  = error,
6408         .hot_add_disk   = raid5_add_disk,
6409         .hot_remove_disk= raid5_remove_disk,
6410         .spare_active   = raid5_spare_active,
6411         .sync_request   = sync_request,
6412         .resize         = raid5_resize,
6413         .size           = raid5_size,
6414         .check_reshape  = raid5_check_reshape,
6415         .start_reshape  = raid5_start_reshape,
6416         .finish_reshape = raid5_finish_reshape,
6417         .quiesce        = raid5_quiesce,
6418         .takeover       = raid4_takeover,
6419 };
6420
6421 static int __init raid5_init(void)
6422 {
6423         register_md_personality(&raid6_personality);
6424         register_md_personality(&raid5_personality);
6425         register_md_personality(&raid4_personality);
6426         return 0;
6427 }
6428
6429 static void raid5_exit(void)
6430 {
6431         unregister_md_personality(&raid6_personality);
6432         unregister_md_personality(&raid5_personality);
6433         unregister_md_personality(&raid4_personality);
6434 }
6435
6436 module_init(raid5_init);
6437 module_exit(raid5_exit);
6438 MODULE_LICENSE("GPL");
6439 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6440 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6441 MODULE_ALIAS("md-raid5");
6442 MODULE_ALIAS("md-raid4");
6443 MODULE_ALIAS("md-level-5");
6444 MODULE_ALIAS("md-level-4");
6445 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6446 MODULE_ALIAS("md-raid6");
6447 MODULE_ALIAS("md-level-6");
6448
6449 /* This used to be two separate modules, they were: */
6450 MODULE_ALIAS("raid5");
6451 MODULE_ALIAS("raid6");