]> rtime.felk.cvut.cz Git - can-eth-gw-linux.git/blob - tools/perf/builtin-timechart.c
Fix bug
[can-eth-gw-linux.git] / tools / perf / builtin-timechart.c
1 /*
2  * builtin-timechart.c - make an svg timechart of system activity
3  *
4  * (C) Copyright 2009 Intel Corporation
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14
15 #include "builtin.h"
16
17 #include "util/util.h"
18
19 #include "util/color.h"
20 #include <linux/list.h>
21 #include "util/cache.h"
22 #include "util/evsel.h"
23 #include <linux/rbtree.h>
24 #include "util/symbol.h"
25 #include "util/callchain.h"
26 #include "util/strlist.h"
27
28 #include "perf.h"
29 #include "util/header.h"
30 #include "util/parse-options.h"
31 #include "util/parse-events.h"
32 #include "util/event.h"
33 #include "util/session.h"
34 #include "util/svghelper.h"
35 #include "util/tool.h"
36
37 #define SUPPORT_OLD_POWER_EVENTS 1
38 #define PWR_EVENT_EXIT -1
39
40
41 static unsigned int     numcpus;
42 static u64              min_freq;       /* Lowest CPU frequency seen */
43 static u64              max_freq;       /* Highest CPU frequency seen */
44 static u64              turbo_frequency;
45
46 static u64              first_time, last_time;
47
48 static bool             power_only;
49
50
51 struct per_pid;
52 struct per_pidcomm;
53
54 struct cpu_sample;
55 struct power_event;
56 struct wake_event;
57
58 struct sample_wrapper;
59
60 /*
61  * Datastructure layout:
62  * We keep an list of "pid"s, matching the kernels notion of a task struct.
63  * Each "pid" entry, has a list of "comm"s.
64  *      this is because we want to track different programs different, while
65  *      exec will reuse the original pid (by design).
66  * Each comm has a list of samples that will be used to draw
67  * final graph.
68  */
69
70 struct per_pid {
71         struct per_pid *next;
72
73         int             pid;
74         int             ppid;
75
76         u64             start_time;
77         u64             end_time;
78         u64             total_time;
79         int             display;
80
81         struct per_pidcomm *all;
82         struct per_pidcomm *current;
83 };
84
85
86 struct per_pidcomm {
87         struct per_pidcomm *next;
88
89         u64             start_time;
90         u64             end_time;
91         u64             total_time;
92
93         int             Y;
94         int             display;
95
96         long            state;
97         u64             state_since;
98
99         char            *comm;
100
101         struct cpu_sample *samples;
102 };
103
104 struct sample_wrapper {
105         struct sample_wrapper *next;
106
107         u64             timestamp;
108         unsigned char   data[0];
109 };
110
111 #define TYPE_NONE       0
112 #define TYPE_RUNNING    1
113 #define TYPE_WAITING    2
114 #define TYPE_BLOCKED    3
115
116 struct cpu_sample {
117         struct cpu_sample *next;
118
119         u64 start_time;
120         u64 end_time;
121         int type;
122         int cpu;
123 };
124
125 static struct per_pid *all_data;
126
127 #define CSTATE 1
128 #define PSTATE 2
129
130 struct power_event {
131         struct power_event *next;
132         int type;
133         int state;
134         u64 start_time;
135         u64 end_time;
136         int cpu;
137 };
138
139 struct wake_event {
140         struct wake_event *next;
141         int waker;
142         int wakee;
143         u64 time;
144 };
145
146 static struct power_event    *power_events;
147 static struct wake_event     *wake_events;
148
149 struct process_filter;
150 struct process_filter {
151         char                    *name;
152         int                     pid;
153         struct process_filter   *next;
154 };
155
156 static struct process_filter *process_filter;
157
158
159 static struct per_pid *find_create_pid(int pid)
160 {
161         struct per_pid *cursor = all_data;
162
163         while (cursor) {
164                 if (cursor->pid == pid)
165                         return cursor;
166                 cursor = cursor->next;
167         }
168         cursor = zalloc(sizeof(*cursor));
169         assert(cursor != NULL);
170         cursor->pid = pid;
171         cursor->next = all_data;
172         all_data = cursor;
173         return cursor;
174 }
175
176 static void pid_set_comm(int pid, char *comm)
177 {
178         struct per_pid *p;
179         struct per_pidcomm *c;
180         p = find_create_pid(pid);
181         c = p->all;
182         while (c) {
183                 if (c->comm && strcmp(c->comm, comm) == 0) {
184                         p->current = c;
185                         return;
186                 }
187                 if (!c->comm) {
188                         c->comm = strdup(comm);
189                         p->current = c;
190                         return;
191                 }
192                 c = c->next;
193         }
194         c = zalloc(sizeof(*c));
195         assert(c != NULL);
196         c->comm = strdup(comm);
197         p->current = c;
198         c->next = p->all;
199         p->all = c;
200 }
201
202 static void pid_fork(int pid, int ppid, u64 timestamp)
203 {
204         struct per_pid *p, *pp;
205         p = find_create_pid(pid);
206         pp = find_create_pid(ppid);
207         p->ppid = ppid;
208         if (pp->current && pp->current->comm && !p->current)
209                 pid_set_comm(pid, pp->current->comm);
210
211         p->start_time = timestamp;
212         if (p->current) {
213                 p->current->start_time = timestamp;
214                 p->current->state_since = timestamp;
215         }
216 }
217
218 static void pid_exit(int pid, u64 timestamp)
219 {
220         struct per_pid *p;
221         p = find_create_pid(pid);
222         p->end_time = timestamp;
223         if (p->current)
224                 p->current->end_time = timestamp;
225 }
226
227 static void
228 pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
229 {
230         struct per_pid *p;
231         struct per_pidcomm *c;
232         struct cpu_sample *sample;
233
234         p = find_create_pid(pid);
235         c = p->current;
236         if (!c) {
237                 c = zalloc(sizeof(*c));
238                 assert(c != NULL);
239                 p->current = c;
240                 c->next = p->all;
241                 p->all = c;
242         }
243
244         sample = zalloc(sizeof(*sample));
245         assert(sample != NULL);
246         sample->start_time = start;
247         sample->end_time = end;
248         sample->type = type;
249         sample->next = c->samples;
250         sample->cpu = cpu;
251         c->samples = sample;
252
253         if (sample->type == TYPE_RUNNING && end > start && start > 0) {
254                 c->total_time += (end-start);
255                 p->total_time += (end-start);
256         }
257
258         if (c->start_time == 0 || c->start_time > start)
259                 c->start_time = start;
260         if (p->start_time == 0 || p->start_time > start)
261                 p->start_time = start;
262 }
263
264 #define MAX_CPUS 4096
265
266 static u64 cpus_cstate_start_times[MAX_CPUS];
267 static int cpus_cstate_state[MAX_CPUS];
268 static u64 cpus_pstate_start_times[MAX_CPUS];
269 static u64 cpus_pstate_state[MAX_CPUS];
270
271 static int process_comm_event(struct perf_tool *tool __maybe_unused,
272                               union perf_event *event,
273                               struct perf_sample *sample __maybe_unused,
274                               struct machine *machine __maybe_unused)
275 {
276         pid_set_comm(event->comm.tid, event->comm.comm);
277         return 0;
278 }
279
280 static int process_fork_event(struct perf_tool *tool __maybe_unused,
281                               union perf_event *event,
282                               struct perf_sample *sample __maybe_unused,
283                               struct machine *machine __maybe_unused)
284 {
285         pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
286         return 0;
287 }
288
289 static int process_exit_event(struct perf_tool *tool __maybe_unused,
290                               union perf_event *event,
291                               struct perf_sample *sample __maybe_unused,
292                               struct machine *machine __maybe_unused)
293 {
294         pid_exit(event->fork.pid, event->fork.time);
295         return 0;
296 }
297
298 struct trace_entry {
299         unsigned short          type;
300         unsigned char           flags;
301         unsigned char           preempt_count;
302         int                     pid;
303         int                     lock_depth;
304 };
305
306 #ifdef SUPPORT_OLD_POWER_EVENTS
307 static int use_old_power_events;
308 struct power_entry_old {
309         struct trace_entry te;
310         u64     type;
311         u64     value;
312         u64     cpu_id;
313 };
314 #endif
315
316 struct power_processor_entry {
317         struct trace_entry te;
318         u32     state;
319         u32     cpu_id;
320 };
321
322 #define TASK_COMM_LEN 16
323 struct wakeup_entry {
324         struct trace_entry te;
325         char comm[TASK_COMM_LEN];
326         int   pid;
327         int   prio;
328         int   success;
329 };
330
331 /*
332  * trace_flag_type is an enumeration that holds different
333  * states when a trace occurs. These are:
334  *  IRQS_OFF            - interrupts were disabled
335  *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags
336  *  NEED_RESCED         - reschedule is requested
337  *  HARDIRQ             - inside an interrupt handler
338  *  SOFTIRQ             - inside a softirq handler
339  */
340 enum trace_flag_type {
341         TRACE_FLAG_IRQS_OFF             = 0x01,
342         TRACE_FLAG_IRQS_NOSUPPORT       = 0x02,
343         TRACE_FLAG_NEED_RESCHED         = 0x04,
344         TRACE_FLAG_HARDIRQ              = 0x08,
345         TRACE_FLAG_SOFTIRQ              = 0x10,
346 };
347
348
349
350 struct sched_switch {
351         struct trace_entry te;
352         char prev_comm[TASK_COMM_LEN];
353         int  prev_pid;
354         int  prev_prio;
355         long prev_state; /* Arjan weeps. */
356         char next_comm[TASK_COMM_LEN];
357         int  next_pid;
358         int  next_prio;
359 };
360
361 static void c_state_start(int cpu, u64 timestamp, int state)
362 {
363         cpus_cstate_start_times[cpu] = timestamp;
364         cpus_cstate_state[cpu] = state;
365 }
366
367 static void c_state_end(int cpu, u64 timestamp)
368 {
369         struct power_event *pwr = zalloc(sizeof(*pwr));
370
371         if (!pwr)
372                 return;
373
374         pwr->state = cpus_cstate_state[cpu];
375         pwr->start_time = cpus_cstate_start_times[cpu];
376         pwr->end_time = timestamp;
377         pwr->cpu = cpu;
378         pwr->type = CSTATE;
379         pwr->next = power_events;
380
381         power_events = pwr;
382 }
383
384 static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
385 {
386         struct power_event *pwr;
387
388         if (new_freq > 8000000) /* detect invalid data */
389                 return;
390
391         pwr = zalloc(sizeof(*pwr));
392         if (!pwr)
393                 return;
394
395         pwr->state = cpus_pstate_state[cpu];
396         pwr->start_time = cpus_pstate_start_times[cpu];
397         pwr->end_time = timestamp;
398         pwr->cpu = cpu;
399         pwr->type = PSTATE;
400         pwr->next = power_events;
401
402         if (!pwr->start_time)
403                 pwr->start_time = first_time;
404
405         power_events = pwr;
406
407         cpus_pstate_state[cpu] = new_freq;
408         cpus_pstate_start_times[cpu] = timestamp;
409
410         if ((u64)new_freq > max_freq)
411                 max_freq = new_freq;
412
413         if (new_freq < min_freq || min_freq == 0)
414                 min_freq = new_freq;
415
416         if (new_freq == max_freq - 1000)
417                         turbo_frequency = max_freq;
418 }
419
420 static void
421 sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
422 {
423         struct per_pid *p;
424         struct wakeup_entry *wake = (void *)te;
425         struct wake_event *we = zalloc(sizeof(*we));
426
427         if (!we)
428                 return;
429
430         we->time = timestamp;
431         we->waker = pid;
432
433         if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
434                 we->waker = -1;
435
436         we->wakee = wake->pid;
437         we->next = wake_events;
438         wake_events = we;
439         p = find_create_pid(we->wakee);
440
441         if (p && p->current && p->current->state == TYPE_NONE) {
442                 p->current->state_since = timestamp;
443                 p->current->state = TYPE_WAITING;
444         }
445         if (p && p->current && p->current->state == TYPE_BLOCKED) {
446                 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
447                 p->current->state_since = timestamp;
448                 p->current->state = TYPE_WAITING;
449         }
450 }
451
452 static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
453 {
454         struct per_pid *p = NULL, *prev_p;
455         struct sched_switch *sw = (void *)te;
456
457
458         prev_p = find_create_pid(sw->prev_pid);
459
460         p = find_create_pid(sw->next_pid);
461
462         if (prev_p->current && prev_p->current->state != TYPE_NONE)
463                 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
464         if (p && p->current) {
465                 if (p->current->state != TYPE_NONE)
466                         pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
467
468                 p->current->state_since = timestamp;
469                 p->current->state = TYPE_RUNNING;
470         }
471
472         if (prev_p->current) {
473                 prev_p->current->state = TYPE_NONE;
474                 prev_p->current->state_since = timestamp;
475                 if (sw->prev_state & 2)
476                         prev_p->current->state = TYPE_BLOCKED;
477                 if (sw->prev_state == 0)
478                         prev_p->current->state = TYPE_WAITING;
479         }
480 }
481
482
483 static int process_sample_event(struct perf_tool *tool __maybe_unused,
484                                 union perf_event *event __maybe_unused,
485                                 struct perf_sample *sample,
486                                 struct perf_evsel *evsel,
487                                 struct machine *machine __maybe_unused)
488 {
489         struct trace_entry *te;
490
491         if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
492                 if (!first_time || first_time > sample->time)
493                         first_time = sample->time;
494                 if (last_time < sample->time)
495                         last_time = sample->time;
496         }
497
498         te = (void *)sample->raw_data;
499         if ((evsel->attr.sample_type & PERF_SAMPLE_RAW) && sample->raw_size > 0) {
500                 char *event_str;
501 #ifdef SUPPORT_OLD_POWER_EVENTS
502                 struct power_entry_old *peo;
503                 peo = (void *)te;
504 #endif
505                 /*
506                  * FIXME: use evsel, its already mapped from id to perf_evsel,
507                  * remove perf_header__find_event infrastructure bits.
508                  * Mapping all these "power:cpu_idle" strings to the tracepoint
509                  * ID and then just comparing against evsel->attr.config.
510                  *
511                  * e.g.:
512                  *
513                  * if (evsel->attr.config == power_cpu_idle_id)
514                  */
515                 event_str = perf_header__find_event(te->type);
516
517                 if (!event_str)
518                         return 0;
519
520                 if (sample->cpu > numcpus)
521                         numcpus = sample->cpu;
522
523                 if (strcmp(event_str, "power:cpu_idle") == 0) {
524                         struct power_processor_entry *ppe = (void *)te;
525                         if (ppe->state == (u32)PWR_EVENT_EXIT)
526                                 c_state_end(ppe->cpu_id, sample->time);
527                         else
528                                 c_state_start(ppe->cpu_id, sample->time,
529                                               ppe->state);
530                 }
531                 else if (strcmp(event_str, "power:cpu_frequency") == 0) {
532                         struct power_processor_entry *ppe = (void *)te;
533                         p_state_change(ppe->cpu_id, sample->time, ppe->state);
534                 }
535
536                 else if (strcmp(event_str, "sched:sched_wakeup") == 0)
537                         sched_wakeup(sample->cpu, sample->time, sample->pid, te);
538
539                 else if (strcmp(event_str, "sched:sched_switch") == 0)
540                         sched_switch(sample->cpu, sample->time, te);
541
542 #ifdef SUPPORT_OLD_POWER_EVENTS
543                 if (use_old_power_events) {
544                         if (strcmp(event_str, "power:power_start") == 0)
545                                 c_state_start(peo->cpu_id, sample->time,
546                                               peo->value);
547
548                         else if (strcmp(event_str, "power:power_end") == 0)
549                                 c_state_end(sample->cpu, sample->time);
550
551                         else if (strcmp(event_str,
552                                         "power:power_frequency") == 0)
553                                 p_state_change(peo->cpu_id, sample->time,
554                                                peo->value);
555                 }
556 #endif
557         }
558         return 0;
559 }
560
561 /*
562  * After the last sample we need to wrap up the current C/P state
563  * and close out each CPU for these.
564  */
565 static void end_sample_processing(void)
566 {
567         u64 cpu;
568         struct power_event *pwr;
569
570         for (cpu = 0; cpu <= numcpus; cpu++) {
571                 /* C state */
572 #if 0
573                 pwr = zalloc(sizeof(*pwr));
574                 if (!pwr)
575                         return;
576
577                 pwr->state = cpus_cstate_state[cpu];
578                 pwr->start_time = cpus_cstate_start_times[cpu];
579                 pwr->end_time = last_time;
580                 pwr->cpu = cpu;
581                 pwr->type = CSTATE;
582                 pwr->next = power_events;
583
584                 power_events = pwr;
585 #endif
586                 /* P state */
587
588                 pwr = zalloc(sizeof(*pwr));
589                 if (!pwr)
590                         return;
591
592                 pwr->state = cpus_pstate_state[cpu];
593                 pwr->start_time = cpus_pstate_start_times[cpu];
594                 pwr->end_time = last_time;
595                 pwr->cpu = cpu;
596                 pwr->type = PSTATE;
597                 pwr->next = power_events;
598
599                 if (!pwr->start_time)
600                         pwr->start_time = first_time;
601                 if (!pwr->state)
602                         pwr->state = min_freq;
603                 power_events = pwr;
604         }
605 }
606
607 /*
608  * Sort the pid datastructure
609  */
610 static void sort_pids(void)
611 {
612         struct per_pid *new_list, *p, *cursor, *prev;
613         /* sort by ppid first, then by pid, lowest to highest */
614
615         new_list = NULL;
616
617         while (all_data) {
618                 p = all_data;
619                 all_data = p->next;
620                 p->next = NULL;
621
622                 if (new_list == NULL) {
623                         new_list = p;
624                         p->next = NULL;
625                         continue;
626                 }
627                 prev = NULL;
628                 cursor = new_list;
629                 while (cursor) {
630                         if (cursor->ppid > p->ppid ||
631                                 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
632                                 /* must insert before */
633                                 if (prev) {
634                                         p->next = prev->next;
635                                         prev->next = p;
636                                         cursor = NULL;
637                                         continue;
638                                 } else {
639                                         p->next = new_list;
640                                         new_list = p;
641                                         cursor = NULL;
642                                         continue;
643                                 }
644                         }
645
646                         prev = cursor;
647                         cursor = cursor->next;
648                         if (!cursor)
649                                 prev->next = p;
650                 }
651         }
652         all_data = new_list;
653 }
654
655
656 static void draw_c_p_states(void)
657 {
658         struct power_event *pwr;
659         pwr = power_events;
660
661         /*
662          * two pass drawing so that the P state bars are on top of the C state blocks
663          */
664         while (pwr) {
665                 if (pwr->type == CSTATE)
666                         svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
667                 pwr = pwr->next;
668         }
669
670         pwr = power_events;
671         while (pwr) {
672                 if (pwr->type == PSTATE) {
673                         if (!pwr->state)
674                                 pwr->state = min_freq;
675                         svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
676                 }
677                 pwr = pwr->next;
678         }
679 }
680
681 static void draw_wakeups(void)
682 {
683         struct wake_event *we;
684         struct per_pid *p;
685         struct per_pidcomm *c;
686
687         we = wake_events;
688         while (we) {
689                 int from = 0, to = 0;
690                 char *task_from = NULL, *task_to = NULL;
691
692                 /* locate the column of the waker and wakee */
693                 p = all_data;
694                 while (p) {
695                         if (p->pid == we->waker || p->pid == we->wakee) {
696                                 c = p->all;
697                                 while (c) {
698                                         if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
699                                                 if (p->pid == we->waker && !from) {
700                                                         from = c->Y;
701                                                         task_from = strdup(c->comm);
702                                                 }
703                                                 if (p->pid == we->wakee && !to) {
704                                                         to = c->Y;
705                                                         task_to = strdup(c->comm);
706                                                 }
707                                         }
708                                         c = c->next;
709                                 }
710                                 c = p->all;
711                                 while (c) {
712                                         if (p->pid == we->waker && !from) {
713                                                 from = c->Y;
714                                                 task_from = strdup(c->comm);
715                                         }
716                                         if (p->pid == we->wakee && !to) {
717                                                 to = c->Y;
718                                                 task_to = strdup(c->comm);
719                                         }
720                                         c = c->next;
721                                 }
722                         }
723                         p = p->next;
724                 }
725
726                 if (!task_from) {
727                         task_from = malloc(40);
728                         sprintf(task_from, "[%i]", we->waker);
729                 }
730                 if (!task_to) {
731                         task_to = malloc(40);
732                         sprintf(task_to, "[%i]", we->wakee);
733                 }
734
735                 if (we->waker == -1)
736                         svg_interrupt(we->time, to);
737                 else if (from && to && abs(from - to) == 1)
738                         svg_wakeline(we->time, from, to);
739                 else
740                         svg_partial_wakeline(we->time, from, task_from, to, task_to);
741                 we = we->next;
742
743                 free(task_from);
744                 free(task_to);
745         }
746 }
747
748 static void draw_cpu_usage(void)
749 {
750         struct per_pid *p;
751         struct per_pidcomm *c;
752         struct cpu_sample *sample;
753         p = all_data;
754         while (p) {
755                 c = p->all;
756                 while (c) {
757                         sample = c->samples;
758                         while (sample) {
759                                 if (sample->type == TYPE_RUNNING)
760                                         svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
761
762                                 sample = sample->next;
763                         }
764                         c = c->next;
765                 }
766                 p = p->next;
767         }
768 }
769
770 static void draw_process_bars(void)
771 {
772         struct per_pid *p;
773         struct per_pidcomm *c;
774         struct cpu_sample *sample;
775         int Y = 0;
776
777         Y = 2 * numcpus + 2;
778
779         p = all_data;
780         while (p) {
781                 c = p->all;
782                 while (c) {
783                         if (!c->display) {
784                                 c->Y = 0;
785                                 c = c->next;
786                                 continue;
787                         }
788
789                         svg_box(Y, c->start_time, c->end_time, "process");
790                         sample = c->samples;
791                         while (sample) {
792                                 if (sample->type == TYPE_RUNNING)
793                                         svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
794                                 if (sample->type == TYPE_BLOCKED)
795                                         svg_box(Y, sample->start_time, sample->end_time, "blocked");
796                                 if (sample->type == TYPE_WAITING)
797                                         svg_waiting(Y, sample->start_time, sample->end_time);
798                                 sample = sample->next;
799                         }
800
801                         if (c->comm) {
802                                 char comm[256];
803                                 if (c->total_time > 5000000000) /* 5 seconds */
804                                         sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
805                                 else
806                                         sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
807
808                                 svg_text(Y, c->start_time, comm);
809                         }
810                         c->Y = Y;
811                         Y++;
812                         c = c->next;
813                 }
814                 p = p->next;
815         }
816 }
817
818 static void add_process_filter(const char *string)
819 {
820         int pid = strtoull(string, NULL, 10);
821         struct process_filter *filt = malloc(sizeof(*filt));
822
823         if (!filt)
824                 return;
825
826         filt->name = strdup(string);
827         filt->pid  = pid;
828         filt->next = process_filter;
829
830         process_filter = filt;
831 }
832
833 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
834 {
835         struct process_filter *filt;
836         if (!process_filter)
837                 return 1;
838
839         filt = process_filter;
840         while (filt) {
841                 if (filt->pid && p->pid == filt->pid)
842                         return 1;
843                 if (strcmp(filt->name, c->comm) == 0)
844                         return 1;
845                 filt = filt->next;
846         }
847         return 0;
848 }
849
850 static int determine_display_tasks_filtered(void)
851 {
852         struct per_pid *p;
853         struct per_pidcomm *c;
854         int count = 0;
855
856         p = all_data;
857         while (p) {
858                 p->display = 0;
859                 if (p->start_time == 1)
860                         p->start_time = first_time;
861
862                 /* no exit marker, task kept running to the end */
863                 if (p->end_time == 0)
864                         p->end_time = last_time;
865
866                 c = p->all;
867
868                 while (c) {
869                         c->display = 0;
870
871                         if (c->start_time == 1)
872                                 c->start_time = first_time;
873
874                         if (passes_filter(p, c)) {
875                                 c->display = 1;
876                                 p->display = 1;
877                                 count++;
878                         }
879
880                         if (c->end_time == 0)
881                                 c->end_time = last_time;
882
883                         c = c->next;
884                 }
885                 p = p->next;
886         }
887         return count;
888 }
889
890 static int determine_display_tasks(u64 threshold)
891 {
892         struct per_pid *p;
893         struct per_pidcomm *c;
894         int count = 0;
895
896         if (process_filter)
897                 return determine_display_tasks_filtered();
898
899         p = all_data;
900         while (p) {
901                 p->display = 0;
902                 if (p->start_time == 1)
903                         p->start_time = first_time;
904
905                 /* no exit marker, task kept running to the end */
906                 if (p->end_time == 0)
907                         p->end_time = last_time;
908                 if (p->total_time >= threshold && !power_only)
909                         p->display = 1;
910
911                 c = p->all;
912
913                 while (c) {
914                         c->display = 0;
915
916                         if (c->start_time == 1)
917                                 c->start_time = first_time;
918
919                         if (c->total_time >= threshold && !power_only) {
920                                 c->display = 1;
921                                 count++;
922                         }
923
924                         if (c->end_time == 0)
925                                 c->end_time = last_time;
926
927                         c = c->next;
928                 }
929                 p = p->next;
930         }
931         return count;
932 }
933
934
935
936 #define TIME_THRESH 10000000
937
938 static void write_svg_file(const char *filename)
939 {
940         u64 i;
941         int count;
942
943         numcpus++;
944
945
946         count = determine_display_tasks(TIME_THRESH);
947
948         /* We'd like to show at least 15 tasks; be less picky if we have fewer */
949         if (count < 15)
950                 count = determine_display_tasks(TIME_THRESH / 10);
951
952         open_svg(filename, numcpus, count, first_time, last_time);
953
954         svg_time_grid();
955         svg_legenda();
956
957         for (i = 0; i < numcpus; i++)
958                 svg_cpu_box(i, max_freq, turbo_frequency);
959
960         draw_cpu_usage();
961         draw_process_bars();
962         draw_c_p_states();
963         draw_wakeups();
964
965         svg_close();
966 }
967
968 static int __cmd_timechart(const char *output_name)
969 {
970         struct perf_tool perf_timechart = {
971                 .comm            = process_comm_event,
972                 .fork            = process_fork_event,
973                 .exit            = process_exit_event,
974                 .sample          = process_sample_event,
975                 .ordered_samples = true,
976         };
977         struct perf_session *session = perf_session__new(input_name, O_RDONLY,
978                                                          0, false, &perf_timechart);
979         int ret = -EINVAL;
980
981         if (session == NULL)
982                 return -ENOMEM;
983
984         if (!perf_session__has_traces(session, "timechart record"))
985                 goto out_delete;
986
987         ret = perf_session__process_events(session, &perf_timechart);
988         if (ret)
989                 goto out_delete;
990
991         end_sample_processing();
992
993         sort_pids();
994
995         write_svg_file(output_name);
996
997         pr_info("Written %2.1f seconds of trace to %s.\n",
998                 (last_time - first_time) / 1000000000.0, output_name);
999 out_delete:
1000         perf_session__delete(session);
1001         return ret;
1002 }
1003
1004 static int __cmd_record(int argc, const char **argv)
1005 {
1006 #ifdef SUPPORT_OLD_POWER_EVENTS
1007         const char * const record_old_args[] = {
1008                 "record", "-a", "-R", "-f", "-c", "1",
1009                 "-e", "power:power_start",
1010                 "-e", "power:power_end",
1011                 "-e", "power:power_frequency",
1012                 "-e", "sched:sched_wakeup",
1013                 "-e", "sched:sched_switch",
1014         };
1015 #endif
1016         const char * const record_new_args[] = {
1017                 "record", "-a", "-R", "-f", "-c", "1",
1018                 "-e", "power:cpu_frequency",
1019                 "-e", "power:cpu_idle",
1020                 "-e", "sched:sched_wakeup",
1021                 "-e", "sched:sched_switch",
1022         };
1023         unsigned int rec_argc, i, j;
1024         const char **rec_argv;
1025         const char * const *record_args = record_new_args;
1026         unsigned int record_elems = ARRAY_SIZE(record_new_args);
1027
1028 #ifdef SUPPORT_OLD_POWER_EVENTS
1029         if (!is_valid_tracepoint("power:cpu_idle") &&
1030             is_valid_tracepoint("power:power_start")) {
1031                 use_old_power_events = 1;
1032                 record_args = record_old_args;
1033                 record_elems = ARRAY_SIZE(record_old_args);
1034         }
1035 #endif
1036
1037         rec_argc = record_elems + argc - 1;
1038         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1039
1040         if (rec_argv == NULL)
1041                 return -ENOMEM;
1042
1043         for (i = 0; i < record_elems; i++)
1044                 rec_argv[i] = strdup(record_args[i]);
1045
1046         for (j = 1; j < (unsigned int)argc; j++, i++)
1047                 rec_argv[i] = argv[j];
1048
1049         return cmd_record(i, rec_argv, NULL);
1050 }
1051
1052 static int
1053 parse_process(const struct option *opt __maybe_unused, const char *arg,
1054               int __maybe_unused unset)
1055 {
1056         if (arg)
1057                 add_process_filter(arg);
1058         return 0;
1059 }
1060
1061 int cmd_timechart(int argc, const char **argv,
1062                   const char *prefix __maybe_unused)
1063 {
1064         const char *output_name = "output.svg";
1065         const struct option options[] = {
1066         OPT_STRING('i', "input", &input_name, "file", "input file name"),
1067         OPT_STRING('o', "output", &output_name, "file", "output file name"),
1068         OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1069         OPT_BOOLEAN('P', "power-only", &power_only, "output power data only"),
1070         OPT_CALLBACK('p', "process", NULL, "process",
1071                       "process selector. Pass a pid or process name.",
1072                        parse_process),
1073         OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1074                     "Look for files with symbols relative to this directory"),
1075         OPT_END()
1076         };
1077         const char * const timechart_usage[] = {
1078                 "perf timechart [<options>] {record}",
1079                 NULL
1080         };
1081
1082         argc = parse_options(argc, argv, options, timechart_usage,
1083                         PARSE_OPT_STOP_AT_NON_OPTION);
1084
1085         symbol__init();
1086
1087         if (argc && !strncmp(argv[0], "rec", 3))
1088                 return __cmd_record(argc, argv);
1089         else if (argc)
1090                 usage_with_options(timechart_usage, options);
1091
1092         setup_pager();
1093
1094         return __cmd_timechart(output_name);
1095 }