]> rtime.felk.cvut.cz Git - can-eth-gw-linux.git/blob - arch/x86/kvm/vmx.c
Merge tag 'kvm-3.8-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[can-eth-gw-linux.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include "kvm_cache_regs.h"
35 #include "x86.h"
36
37 #include <asm/io.h>
38 #include <asm/desc.h>
39 #include <asm/vmx.h>
40 #include <asm/virtext.h>
41 #include <asm/mce.h>
42 #include <asm/i387.h>
43 #include <asm/xcr.h>
44 #include <asm/perf_event.h>
45 #include <asm/kexec.h>
46
47 #include "trace.h"
48
49 #define __ex(x) __kvm_handle_fault_on_reboot(x)
50 #define __ex_clear(x, reg) \
51         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
52
53 MODULE_AUTHOR("Qumranet");
54 MODULE_LICENSE("GPL");
55
56 static const struct x86_cpu_id vmx_cpu_id[] = {
57         X86_FEATURE_MATCH(X86_FEATURE_VMX),
58         {}
59 };
60 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
61
62 static bool __read_mostly enable_vpid = 1;
63 module_param_named(vpid, enable_vpid, bool, 0444);
64
65 static bool __read_mostly flexpriority_enabled = 1;
66 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
67
68 static bool __read_mostly enable_ept = 1;
69 module_param_named(ept, enable_ept, bool, S_IRUGO);
70
71 static bool __read_mostly enable_unrestricted_guest = 1;
72 module_param_named(unrestricted_guest,
73                         enable_unrestricted_guest, bool, S_IRUGO);
74
75 static bool __read_mostly enable_ept_ad_bits = 1;
76 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
77
78 static bool __read_mostly emulate_invalid_guest_state = true;
79 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
80
81 static bool __read_mostly vmm_exclusive = 1;
82 module_param(vmm_exclusive, bool, S_IRUGO);
83
84 static bool __read_mostly fasteoi = 1;
85 module_param(fasteoi, bool, S_IRUGO);
86
87 /*
88  * If nested=1, nested virtualization is supported, i.e., guests may use
89  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
90  * use VMX instructions.
91  */
92 static bool __read_mostly nested = 0;
93 module_param(nested, bool, S_IRUGO);
94
95 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST                           \
96         (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
97 #define KVM_GUEST_CR0_MASK                                              \
98         (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
99 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST                         \
100         (X86_CR0_WP | X86_CR0_NE)
101 #define KVM_VM_CR0_ALWAYS_ON                                            \
102         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
103 #define KVM_CR4_GUEST_OWNED_BITS                                      \
104         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
105          | X86_CR4_OSXMMEXCPT)
106
107 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
108 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
109
110 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
111
112 /*
113  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
114  * ple_gap:    upper bound on the amount of time between two successive
115  *             executions of PAUSE in a loop. Also indicate if ple enabled.
116  *             According to test, this time is usually smaller than 128 cycles.
117  * ple_window: upper bound on the amount of time a guest is allowed to execute
118  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
119  *             less than 2^12 cycles
120  * Time is measured based on a counter that runs at the same rate as the TSC,
121  * refer SDM volume 3b section 21.6.13 & 22.1.3.
122  */
123 #define KVM_VMX_DEFAULT_PLE_GAP    128
124 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
125 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
126 module_param(ple_gap, int, S_IRUGO);
127
128 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
129 module_param(ple_window, int, S_IRUGO);
130
131 extern const ulong vmx_return;
132
133 #define NR_AUTOLOAD_MSRS 8
134 #define VMCS02_POOL_SIZE 1
135
136 struct vmcs {
137         u32 revision_id;
138         u32 abort;
139         char data[0];
140 };
141
142 /*
143  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
144  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
145  * loaded on this CPU (so we can clear them if the CPU goes down).
146  */
147 struct loaded_vmcs {
148         struct vmcs *vmcs;
149         int cpu;
150         int launched;
151         struct list_head loaded_vmcss_on_cpu_link;
152 };
153
154 struct shared_msr_entry {
155         unsigned index;
156         u64 data;
157         u64 mask;
158 };
159
160 /*
161  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
162  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
163  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
164  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
165  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
166  * More than one of these structures may exist, if L1 runs multiple L2 guests.
167  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
168  * underlying hardware which will be used to run L2.
169  * This structure is packed to ensure that its layout is identical across
170  * machines (necessary for live migration).
171  * If there are changes in this struct, VMCS12_REVISION must be changed.
172  */
173 typedef u64 natural_width;
174 struct __packed vmcs12 {
175         /* According to the Intel spec, a VMCS region must start with the
176          * following two fields. Then follow implementation-specific data.
177          */
178         u32 revision_id;
179         u32 abort;
180
181         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
182         u32 padding[7]; /* room for future expansion */
183
184         u64 io_bitmap_a;
185         u64 io_bitmap_b;
186         u64 msr_bitmap;
187         u64 vm_exit_msr_store_addr;
188         u64 vm_exit_msr_load_addr;
189         u64 vm_entry_msr_load_addr;
190         u64 tsc_offset;
191         u64 virtual_apic_page_addr;
192         u64 apic_access_addr;
193         u64 ept_pointer;
194         u64 guest_physical_address;
195         u64 vmcs_link_pointer;
196         u64 guest_ia32_debugctl;
197         u64 guest_ia32_pat;
198         u64 guest_ia32_efer;
199         u64 guest_ia32_perf_global_ctrl;
200         u64 guest_pdptr0;
201         u64 guest_pdptr1;
202         u64 guest_pdptr2;
203         u64 guest_pdptr3;
204         u64 host_ia32_pat;
205         u64 host_ia32_efer;
206         u64 host_ia32_perf_global_ctrl;
207         u64 padding64[8]; /* room for future expansion */
208         /*
209          * To allow migration of L1 (complete with its L2 guests) between
210          * machines of different natural widths (32 or 64 bit), we cannot have
211          * unsigned long fields with no explict size. We use u64 (aliased
212          * natural_width) instead. Luckily, x86 is little-endian.
213          */
214         natural_width cr0_guest_host_mask;
215         natural_width cr4_guest_host_mask;
216         natural_width cr0_read_shadow;
217         natural_width cr4_read_shadow;
218         natural_width cr3_target_value0;
219         natural_width cr3_target_value1;
220         natural_width cr3_target_value2;
221         natural_width cr3_target_value3;
222         natural_width exit_qualification;
223         natural_width guest_linear_address;
224         natural_width guest_cr0;
225         natural_width guest_cr3;
226         natural_width guest_cr4;
227         natural_width guest_es_base;
228         natural_width guest_cs_base;
229         natural_width guest_ss_base;
230         natural_width guest_ds_base;
231         natural_width guest_fs_base;
232         natural_width guest_gs_base;
233         natural_width guest_ldtr_base;
234         natural_width guest_tr_base;
235         natural_width guest_gdtr_base;
236         natural_width guest_idtr_base;
237         natural_width guest_dr7;
238         natural_width guest_rsp;
239         natural_width guest_rip;
240         natural_width guest_rflags;
241         natural_width guest_pending_dbg_exceptions;
242         natural_width guest_sysenter_esp;
243         natural_width guest_sysenter_eip;
244         natural_width host_cr0;
245         natural_width host_cr3;
246         natural_width host_cr4;
247         natural_width host_fs_base;
248         natural_width host_gs_base;
249         natural_width host_tr_base;
250         natural_width host_gdtr_base;
251         natural_width host_idtr_base;
252         natural_width host_ia32_sysenter_esp;
253         natural_width host_ia32_sysenter_eip;
254         natural_width host_rsp;
255         natural_width host_rip;
256         natural_width paddingl[8]; /* room for future expansion */
257         u32 pin_based_vm_exec_control;
258         u32 cpu_based_vm_exec_control;
259         u32 exception_bitmap;
260         u32 page_fault_error_code_mask;
261         u32 page_fault_error_code_match;
262         u32 cr3_target_count;
263         u32 vm_exit_controls;
264         u32 vm_exit_msr_store_count;
265         u32 vm_exit_msr_load_count;
266         u32 vm_entry_controls;
267         u32 vm_entry_msr_load_count;
268         u32 vm_entry_intr_info_field;
269         u32 vm_entry_exception_error_code;
270         u32 vm_entry_instruction_len;
271         u32 tpr_threshold;
272         u32 secondary_vm_exec_control;
273         u32 vm_instruction_error;
274         u32 vm_exit_reason;
275         u32 vm_exit_intr_info;
276         u32 vm_exit_intr_error_code;
277         u32 idt_vectoring_info_field;
278         u32 idt_vectoring_error_code;
279         u32 vm_exit_instruction_len;
280         u32 vmx_instruction_info;
281         u32 guest_es_limit;
282         u32 guest_cs_limit;
283         u32 guest_ss_limit;
284         u32 guest_ds_limit;
285         u32 guest_fs_limit;
286         u32 guest_gs_limit;
287         u32 guest_ldtr_limit;
288         u32 guest_tr_limit;
289         u32 guest_gdtr_limit;
290         u32 guest_idtr_limit;
291         u32 guest_es_ar_bytes;
292         u32 guest_cs_ar_bytes;
293         u32 guest_ss_ar_bytes;
294         u32 guest_ds_ar_bytes;
295         u32 guest_fs_ar_bytes;
296         u32 guest_gs_ar_bytes;
297         u32 guest_ldtr_ar_bytes;
298         u32 guest_tr_ar_bytes;
299         u32 guest_interruptibility_info;
300         u32 guest_activity_state;
301         u32 guest_sysenter_cs;
302         u32 host_ia32_sysenter_cs;
303         u32 padding32[8]; /* room for future expansion */
304         u16 virtual_processor_id;
305         u16 guest_es_selector;
306         u16 guest_cs_selector;
307         u16 guest_ss_selector;
308         u16 guest_ds_selector;
309         u16 guest_fs_selector;
310         u16 guest_gs_selector;
311         u16 guest_ldtr_selector;
312         u16 guest_tr_selector;
313         u16 host_es_selector;
314         u16 host_cs_selector;
315         u16 host_ss_selector;
316         u16 host_ds_selector;
317         u16 host_fs_selector;
318         u16 host_gs_selector;
319         u16 host_tr_selector;
320 };
321
322 /*
323  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
324  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
325  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
326  */
327 #define VMCS12_REVISION 0x11e57ed0
328
329 /*
330  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
331  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
332  * current implementation, 4K are reserved to avoid future complications.
333  */
334 #define VMCS12_SIZE 0x1000
335
336 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
337 struct vmcs02_list {
338         struct list_head list;
339         gpa_t vmptr;
340         struct loaded_vmcs vmcs02;
341 };
342
343 /*
344  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
345  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
346  */
347 struct nested_vmx {
348         /* Has the level1 guest done vmxon? */
349         bool vmxon;
350
351         /* The guest-physical address of the current VMCS L1 keeps for L2 */
352         gpa_t current_vmptr;
353         /* The host-usable pointer to the above */
354         struct page *current_vmcs12_page;
355         struct vmcs12 *current_vmcs12;
356
357         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
358         struct list_head vmcs02_pool;
359         int vmcs02_num;
360         u64 vmcs01_tsc_offset;
361         /* L2 must run next, and mustn't decide to exit to L1. */
362         bool nested_run_pending;
363         /*
364          * Guest pages referred to in vmcs02 with host-physical pointers, so
365          * we must keep them pinned while L2 runs.
366          */
367         struct page *apic_access_page;
368 };
369
370 struct vcpu_vmx {
371         struct kvm_vcpu       vcpu;
372         unsigned long         host_rsp;
373         u8                    fail;
374         u8                    cpl;
375         bool                  nmi_known_unmasked;
376         u32                   exit_intr_info;
377         u32                   idt_vectoring_info;
378         ulong                 rflags;
379         struct shared_msr_entry *guest_msrs;
380         int                   nmsrs;
381         int                   save_nmsrs;
382 #ifdef CONFIG_X86_64
383         u64                   msr_host_kernel_gs_base;
384         u64                   msr_guest_kernel_gs_base;
385 #endif
386         /*
387          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
388          * non-nested (L1) guest, it always points to vmcs01. For a nested
389          * guest (L2), it points to a different VMCS.
390          */
391         struct loaded_vmcs    vmcs01;
392         struct loaded_vmcs   *loaded_vmcs;
393         bool                  __launched; /* temporary, used in vmx_vcpu_run */
394         struct msr_autoload {
395                 unsigned nr;
396                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
397                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
398         } msr_autoload;
399         struct {
400                 int           loaded;
401                 u16           fs_sel, gs_sel, ldt_sel;
402 #ifdef CONFIG_X86_64
403                 u16           ds_sel, es_sel;
404 #endif
405                 int           gs_ldt_reload_needed;
406                 int           fs_reload_needed;
407         } host_state;
408         struct {
409                 int vm86_active;
410                 ulong save_rflags;
411                 struct kvm_segment segs[8];
412         } rmode;
413         struct {
414                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
415                 struct kvm_save_segment {
416                         u16 selector;
417                         unsigned long base;
418                         u32 limit;
419                         u32 ar;
420                 } seg[8];
421         } segment_cache;
422         int vpid;
423         bool emulation_required;
424
425         /* Support for vnmi-less CPUs */
426         int soft_vnmi_blocked;
427         ktime_t entry_time;
428         s64 vnmi_blocked_time;
429         u32 exit_reason;
430
431         bool rdtscp_enabled;
432
433         /* Support for a guest hypervisor (nested VMX) */
434         struct nested_vmx nested;
435 };
436
437 enum segment_cache_field {
438         SEG_FIELD_SEL = 0,
439         SEG_FIELD_BASE = 1,
440         SEG_FIELD_LIMIT = 2,
441         SEG_FIELD_AR = 3,
442
443         SEG_FIELD_NR = 4
444 };
445
446 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
447 {
448         return container_of(vcpu, struct vcpu_vmx, vcpu);
449 }
450
451 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
452 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
453 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
454                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
455
456 static const unsigned short vmcs_field_to_offset_table[] = {
457         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
458         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
459         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
460         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
461         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
462         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
463         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
464         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
465         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
466         FIELD(HOST_ES_SELECTOR, host_es_selector),
467         FIELD(HOST_CS_SELECTOR, host_cs_selector),
468         FIELD(HOST_SS_SELECTOR, host_ss_selector),
469         FIELD(HOST_DS_SELECTOR, host_ds_selector),
470         FIELD(HOST_FS_SELECTOR, host_fs_selector),
471         FIELD(HOST_GS_SELECTOR, host_gs_selector),
472         FIELD(HOST_TR_SELECTOR, host_tr_selector),
473         FIELD64(IO_BITMAP_A, io_bitmap_a),
474         FIELD64(IO_BITMAP_B, io_bitmap_b),
475         FIELD64(MSR_BITMAP, msr_bitmap),
476         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
477         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
478         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
479         FIELD64(TSC_OFFSET, tsc_offset),
480         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
481         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
482         FIELD64(EPT_POINTER, ept_pointer),
483         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
484         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
485         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
486         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
487         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
488         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
489         FIELD64(GUEST_PDPTR0, guest_pdptr0),
490         FIELD64(GUEST_PDPTR1, guest_pdptr1),
491         FIELD64(GUEST_PDPTR2, guest_pdptr2),
492         FIELD64(GUEST_PDPTR3, guest_pdptr3),
493         FIELD64(HOST_IA32_PAT, host_ia32_pat),
494         FIELD64(HOST_IA32_EFER, host_ia32_efer),
495         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
496         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
497         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
498         FIELD(EXCEPTION_BITMAP, exception_bitmap),
499         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
500         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
501         FIELD(CR3_TARGET_COUNT, cr3_target_count),
502         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
503         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
504         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
505         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
506         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
507         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
508         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
509         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
510         FIELD(TPR_THRESHOLD, tpr_threshold),
511         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
512         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
513         FIELD(VM_EXIT_REASON, vm_exit_reason),
514         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
515         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
516         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
517         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
518         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
519         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
520         FIELD(GUEST_ES_LIMIT, guest_es_limit),
521         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
522         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
523         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
524         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
525         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
526         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
527         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
528         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
529         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
530         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
531         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
532         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
533         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
534         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
535         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
536         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
537         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
538         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
539         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
540         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
541         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
542         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
543         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
544         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
545         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
546         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
547         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
548         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
549         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
550         FIELD(EXIT_QUALIFICATION, exit_qualification),
551         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
552         FIELD(GUEST_CR0, guest_cr0),
553         FIELD(GUEST_CR3, guest_cr3),
554         FIELD(GUEST_CR4, guest_cr4),
555         FIELD(GUEST_ES_BASE, guest_es_base),
556         FIELD(GUEST_CS_BASE, guest_cs_base),
557         FIELD(GUEST_SS_BASE, guest_ss_base),
558         FIELD(GUEST_DS_BASE, guest_ds_base),
559         FIELD(GUEST_FS_BASE, guest_fs_base),
560         FIELD(GUEST_GS_BASE, guest_gs_base),
561         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
562         FIELD(GUEST_TR_BASE, guest_tr_base),
563         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
564         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
565         FIELD(GUEST_DR7, guest_dr7),
566         FIELD(GUEST_RSP, guest_rsp),
567         FIELD(GUEST_RIP, guest_rip),
568         FIELD(GUEST_RFLAGS, guest_rflags),
569         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
570         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
571         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
572         FIELD(HOST_CR0, host_cr0),
573         FIELD(HOST_CR3, host_cr3),
574         FIELD(HOST_CR4, host_cr4),
575         FIELD(HOST_FS_BASE, host_fs_base),
576         FIELD(HOST_GS_BASE, host_gs_base),
577         FIELD(HOST_TR_BASE, host_tr_base),
578         FIELD(HOST_GDTR_BASE, host_gdtr_base),
579         FIELD(HOST_IDTR_BASE, host_idtr_base),
580         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
581         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
582         FIELD(HOST_RSP, host_rsp),
583         FIELD(HOST_RIP, host_rip),
584 };
585 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
586
587 static inline short vmcs_field_to_offset(unsigned long field)
588 {
589         if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
590                 return -1;
591         return vmcs_field_to_offset_table[field];
592 }
593
594 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
595 {
596         return to_vmx(vcpu)->nested.current_vmcs12;
597 }
598
599 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
600 {
601         struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
602         if (is_error_page(page))
603                 return NULL;
604
605         return page;
606 }
607
608 static void nested_release_page(struct page *page)
609 {
610         kvm_release_page_dirty(page);
611 }
612
613 static void nested_release_page_clean(struct page *page)
614 {
615         kvm_release_page_clean(page);
616 }
617
618 static u64 construct_eptp(unsigned long root_hpa);
619 static void kvm_cpu_vmxon(u64 addr);
620 static void kvm_cpu_vmxoff(void);
621 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
622 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
623 static void vmx_set_segment(struct kvm_vcpu *vcpu,
624                             struct kvm_segment *var, int seg);
625 static void vmx_get_segment(struct kvm_vcpu *vcpu,
626                             struct kvm_segment *var, int seg);
627
628 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
629 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
630 /*
631  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
632  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
633  */
634 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
635 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
636
637 static unsigned long *vmx_io_bitmap_a;
638 static unsigned long *vmx_io_bitmap_b;
639 static unsigned long *vmx_msr_bitmap_legacy;
640 static unsigned long *vmx_msr_bitmap_longmode;
641
642 static bool cpu_has_load_ia32_efer;
643 static bool cpu_has_load_perf_global_ctrl;
644
645 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
646 static DEFINE_SPINLOCK(vmx_vpid_lock);
647
648 static struct vmcs_config {
649         int size;
650         int order;
651         u32 revision_id;
652         u32 pin_based_exec_ctrl;
653         u32 cpu_based_exec_ctrl;
654         u32 cpu_based_2nd_exec_ctrl;
655         u32 vmexit_ctrl;
656         u32 vmentry_ctrl;
657 } vmcs_config;
658
659 static struct vmx_capability {
660         u32 ept;
661         u32 vpid;
662 } vmx_capability;
663
664 #define VMX_SEGMENT_FIELD(seg)                                  \
665         [VCPU_SREG_##seg] = {                                   \
666                 .selector = GUEST_##seg##_SELECTOR,             \
667                 .base = GUEST_##seg##_BASE,                     \
668                 .limit = GUEST_##seg##_LIMIT,                   \
669                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
670         }
671
672 static const struct kvm_vmx_segment_field {
673         unsigned selector;
674         unsigned base;
675         unsigned limit;
676         unsigned ar_bytes;
677 } kvm_vmx_segment_fields[] = {
678         VMX_SEGMENT_FIELD(CS),
679         VMX_SEGMENT_FIELD(DS),
680         VMX_SEGMENT_FIELD(ES),
681         VMX_SEGMENT_FIELD(FS),
682         VMX_SEGMENT_FIELD(GS),
683         VMX_SEGMENT_FIELD(SS),
684         VMX_SEGMENT_FIELD(TR),
685         VMX_SEGMENT_FIELD(LDTR),
686 };
687
688 static u64 host_efer;
689
690 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
691
692 /*
693  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
694  * away by decrementing the array size.
695  */
696 static const u32 vmx_msr_index[] = {
697 #ifdef CONFIG_X86_64
698         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
699 #endif
700         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
701 };
702 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
703
704 static inline bool is_page_fault(u32 intr_info)
705 {
706         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
707                              INTR_INFO_VALID_MASK)) ==
708                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
709 }
710
711 static inline bool is_no_device(u32 intr_info)
712 {
713         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
714                              INTR_INFO_VALID_MASK)) ==
715                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
716 }
717
718 static inline bool is_invalid_opcode(u32 intr_info)
719 {
720         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
721                              INTR_INFO_VALID_MASK)) ==
722                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
723 }
724
725 static inline bool is_external_interrupt(u32 intr_info)
726 {
727         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
728                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
729 }
730
731 static inline bool is_machine_check(u32 intr_info)
732 {
733         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
734                              INTR_INFO_VALID_MASK)) ==
735                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
736 }
737
738 static inline bool cpu_has_vmx_msr_bitmap(void)
739 {
740         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
741 }
742
743 static inline bool cpu_has_vmx_tpr_shadow(void)
744 {
745         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
746 }
747
748 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
749 {
750         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
751 }
752
753 static inline bool cpu_has_secondary_exec_ctrls(void)
754 {
755         return vmcs_config.cpu_based_exec_ctrl &
756                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
757 }
758
759 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
760 {
761         return vmcs_config.cpu_based_2nd_exec_ctrl &
762                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
763 }
764
765 static inline bool cpu_has_vmx_flexpriority(void)
766 {
767         return cpu_has_vmx_tpr_shadow() &&
768                 cpu_has_vmx_virtualize_apic_accesses();
769 }
770
771 static inline bool cpu_has_vmx_ept_execute_only(void)
772 {
773         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
774 }
775
776 static inline bool cpu_has_vmx_eptp_uncacheable(void)
777 {
778         return vmx_capability.ept & VMX_EPTP_UC_BIT;
779 }
780
781 static inline bool cpu_has_vmx_eptp_writeback(void)
782 {
783         return vmx_capability.ept & VMX_EPTP_WB_BIT;
784 }
785
786 static inline bool cpu_has_vmx_ept_2m_page(void)
787 {
788         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
789 }
790
791 static inline bool cpu_has_vmx_ept_1g_page(void)
792 {
793         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
794 }
795
796 static inline bool cpu_has_vmx_ept_4levels(void)
797 {
798         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
799 }
800
801 static inline bool cpu_has_vmx_ept_ad_bits(void)
802 {
803         return vmx_capability.ept & VMX_EPT_AD_BIT;
804 }
805
806 static inline bool cpu_has_vmx_invept_context(void)
807 {
808         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
809 }
810
811 static inline bool cpu_has_vmx_invept_global(void)
812 {
813         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
814 }
815
816 static inline bool cpu_has_vmx_invvpid_single(void)
817 {
818         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
819 }
820
821 static inline bool cpu_has_vmx_invvpid_global(void)
822 {
823         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
824 }
825
826 static inline bool cpu_has_vmx_ept(void)
827 {
828         return vmcs_config.cpu_based_2nd_exec_ctrl &
829                 SECONDARY_EXEC_ENABLE_EPT;
830 }
831
832 static inline bool cpu_has_vmx_unrestricted_guest(void)
833 {
834         return vmcs_config.cpu_based_2nd_exec_ctrl &
835                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
836 }
837
838 static inline bool cpu_has_vmx_ple(void)
839 {
840         return vmcs_config.cpu_based_2nd_exec_ctrl &
841                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
842 }
843
844 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
845 {
846         return flexpriority_enabled && irqchip_in_kernel(kvm);
847 }
848
849 static inline bool cpu_has_vmx_vpid(void)
850 {
851         return vmcs_config.cpu_based_2nd_exec_ctrl &
852                 SECONDARY_EXEC_ENABLE_VPID;
853 }
854
855 static inline bool cpu_has_vmx_rdtscp(void)
856 {
857         return vmcs_config.cpu_based_2nd_exec_ctrl &
858                 SECONDARY_EXEC_RDTSCP;
859 }
860
861 static inline bool cpu_has_vmx_invpcid(void)
862 {
863         return vmcs_config.cpu_based_2nd_exec_ctrl &
864                 SECONDARY_EXEC_ENABLE_INVPCID;
865 }
866
867 static inline bool cpu_has_virtual_nmis(void)
868 {
869         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
870 }
871
872 static inline bool cpu_has_vmx_wbinvd_exit(void)
873 {
874         return vmcs_config.cpu_based_2nd_exec_ctrl &
875                 SECONDARY_EXEC_WBINVD_EXITING;
876 }
877
878 static inline bool report_flexpriority(void)
879 {
880         return flexpriority_enabled;
881 }
882
883 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
884 {
885         return vmcs12->cpu_based_vm_exec_control & bit;
886 }
887
888 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
889 {
890         return (vmcs12->cpu_based_vm_exec_control &
891                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
892                 (vmcs12->secondary_vm_exec_control & bit);
893 }
894
895 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
896         struct kvm_vcpu *vcpu)
897 {
898         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
899 }
900
901 static inline bool is_exception(u32 intr_info)
902 {
903         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
904                 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
905 }
906
907 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
908 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
909                         struct vmcs12 *vmcs12,
910                         u32 reason, unsigned long qualification);
911
912 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
913 {
914         int i;
915
916         for (i = 0; i < vmx->nmsrs; ++i)
917                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
918                         return i;
919         return -1;
920 }
921
922 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
923 {
924     struct {
925         u64 vpid : 16;
926         u64 rsvd : 48;
927         u64 gva;
928     } operand = { vpid, 0, gva };
929
930     asm volatile (__ex(ASM_VMX_INVVPID)
931                   /* CF==1 or ZF==1 --> rc = -1 */
932                   "; ja 1f ; ud2 ; 1:"
933                   : : "a"(&operand), "c"(ext) : "cc", "memory");
934 }
935
936 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
937 {
938         struct {
939                 u64 eptp, gpa;
940         } operand = {eptp, gpa};
941
942         asm volatile (__ex(ASM_VMX_INVEPT)
943                         /* CF==1 or ZF==1 --> rc = -1 */
944                         "; ja 1f ; ud2 ; 1:\n"
945                         : : "a" (&operand), "c" (ext) : "cc", "memory");
946 }
947
948 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
949 {
950         int i;
951
952         i = __find_msr_index(vmx, msr);
953         if (i >= 0)
954                 return &vmx->guest_msrs[i];
955         return NULL;
956 }
957
958 static void vmcs_clear(struct vmcs *vmcs)
959 {
960         u64 phys_addr = __pa(vmcs);
961         u8 error;
962
963         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
964                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
965                       : "cc", "memory");
966         if (error)
967                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
968                        vmcs, phys_addr);
969 }
970
971 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
972 {
973         vmcs_clear(loaded_vmcs->vmcs);
974         loaded_vmcs->cpu = -1;
975         loaded_vmcs->launched = 0;
976 }
977
978 static void vmcs_load(struct vmcs *vmcs)
979 {
980         u64 phys_addr = __pa(vmcs);
981         u8 error;
982
983         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
984                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
985                         : "cc", "memory");
986         if (error)
987                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
988                        vmcs, phys_addr);
989 }
990
991 #ifdef CONFIG_KEXEC
992 /*
993  * This bitmap is used to indicate whether the vmclear
994  * operation is enabled on all cpus. All disabled by
995  * default.
996  */
997 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
998
999 static inline void crash_enable_local_vmclear(int cpu)
1000 {
1001         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1002 }
1003
1004 static inline void crash_disable_local_vmclear(int cpu)
1005 {
1006         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1007 }
1008
1009 static inline int crash_local_vmclear_enabled(int cpu)
1010 {
1011         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1012 }
1013
1014 static void crash_vmclear_local_loaded_vmcss(void)
1015 {
1016         int cpu = raw_smp_processor_id();
1017         struct loaded_vmcs *v;
1018
1019         if (!crash_local_vmclear_enabled(cpu))
1020                 return;
1021
1022         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1023                             loaded_vmcss_on_cpu_link)
1024                 vmcs_clear(v->vmcs);
1025 }
1026 #else
1027 static inline void crash_enable_local_vmclear(int cpu) { }
1028 static inline void crash_disable_local_vmclear(int cpu) { }
1029 #endif /* CONFIG_KEXEC */
1030
1031 static void __loaded_vmcs_clear(void *arg)
1032 {
1033         struct loaded_vmcs *loaded_vmcs = arg;
1034         int cpu = raw_smp_processor_id();
1035
1036         if (loaded_vmcs->cpu != cpu)
1037                 return; /* vcpu migration can race with cpu offline */
1038         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1039                 per_cpu(current_vmcs, cpu) = NULL;
1040         crash_disable_local_vmclear(cpu);
1041         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1042
1043         /*
1044          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1045          * is before setting loaded_vmcs->vcpu to -1 which is done in
1046          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1047          * then adds the vmcs into percpu list before it is deleted.
1048          */
1049         smp_wmb();
1050
1051         loaded_vmcs_init(loaded_vmcs);
1052         crash_enable_local_vmclear(cpu);
1053 }
1054
1055 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1056 {
1057         int cpu = loaded_vmcs->cpu;
1058
1059         if (cpu != -1)
1060                 smp_call_function_single(cpu,
1061                          __loaded_vmcs_clear, loaded_vmcs, 1);
1062 }
1063
1064 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1065 {
1066         if (vmx->vpid == 0)
1067                 return;
1068
1069         if (cpu_has_vmx_invvpid_single())
1070                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1071 }
1072
1073 static inline void vpid_sync_vcpu_global(void)
1074 {
1075         if (cpu_has_vmx_invvpid_global())
1076                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1077 }
1078
1079 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1080 {
1081         if (cpu_has_vmx_invvpid_single())
1082                 vpid_sync_vcpu_single(vmx);
1083         else
1084                 vpid_sync_vcpu_global();
1085 }
1086
1087 static inline void ept_sync_global(void)
1088 {
1089         if (cpu_has_vmx_invept_global())
1090                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1091 }
1092
1093 static inline void ept_sync_context(u64 eptp)
1094 {
1095         if (enable_ept) {
1096                 if (cpu_has_vmx_invept_context())
1097                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1098                 else
1099                         ept_sync_global();
1100         }
1101 }
1102
1103 static __always_inline unsigned long vmcs_readl(unsigned long field)
1104 {
1105         unsigned long value;
1106
1107         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1108                       : "=a"(value) : "d"(field) : "cc");
1109         return value;
1110 }
1111
1112 static __always_inline u16 vmcs_read16(unsigned long field)
1113 {
1114         return vmcs_readl(field);
1115 }
1116
1117 static __always_inline u32 vmcs_read32(unsigned long field)
1118 {
1119         return vmcs_readl(field);
1120 }
1121
1122 static __always_inline u64 vmcs_read64(unsigned long field)
1123 {
1124 #ifdef CONFIG_X86_64
1125         return vmcs_readl(field);
1126 #else
1127         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1128 #endif
1129 }
1130
1131 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1132 {
1133         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1134                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1135         dump_stack();
1136 }
1137
1138 static void vmcs_writel(unsigned long field, unsigned long value)
1139 {
1140         u8 error;
1141
1142         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1143                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1144         if (unlikely(error))
1145                 vmwrite_error(field, value);
1146 }
1147
1148 static void vmcs_write16(unsigned long field, u16 value)
1149 {
1150         vmcs_writel(field, value);
1151 }
1152
1153 static void vmcs_write32(unsigned long field, u32 value)
1154 {
1155         vmcs_writel(field, value);
1156 }
1157
1158 static void vmcs_write64(unsigned long field, u64 value)
1159 {
1160         vmcs_writel(field, value);
1161 #ifndef CONFIG_X86_64
1162         asm volatile ("");
1163         vmcs_writel(field+1, value >> 32);
1164 #endif
1165 }
1166
1167 static void vmcs_clear_bits(unsigned long field, u32 mask)
1168 {
1169         vmcs_writel(field, vmcs_readl(field) & ~mask);
1170 }
1171
1172 static void vmcs_set_bits(unsigned long field, u32 mask)
1173 {
1174         vmcs_writel(field, vmcs_readl(field) | mask);
1175 }
1176
1177 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1178 {
1179         vmx->segment_cache.bitmask = 0;
1180 }
1181
1182 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1183                                        unsigned field)
1184 {
1185         bool ret;
1186         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1187
1188         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1189                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1190                 vmx->segment_cache.bitmask = 0;
1191         }
1192         ret = vmx->segment_cache.bitmask & mask;
1193         vmx->segment_cache.bitmask |= mask;
1194         return ret;
1195 }
1196
1197 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1198 {
1199         u16 *p = &vmx->segment_cache.seg[seg].selector;
1200
1201         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1202                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1203         return *p;
1204 }
1205
1206 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1207 {
1208         ulong *p = &vmx->segment_cache.seg[seg].base;
1209
1210         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1211                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1212         return *p;
1213 }
1214
1215 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1216 {
1217         u32 *p = &vmx->segment_cache.seg[seg].limit;
1218
1219         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1220                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1221         return *p;
1222 }
1223
1224 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1225 {
1226         u32 *p = &vmx->segment_cache.seg[seg].ar;
1227
1228         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1229                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1230         return *p;
1231 }
1232
1233 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1234 {
1235         u32 eb;
1236
1237         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1238              (1u << NM_VECTOR) | (1u << DB_VECTOR);
1239         if ((vcpu->guest_debug &
1240              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1241             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1242                 eb |= 1u << BP_VECTOR;
1243         if (to_vmx(vcpu)->rmode.vm86_active)
1244                 eb = ~0;
1245         if (enable_ept)
1246                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1247         if (vcpu->fpu_active)
1248                 eb &= ~(1u << NM_VECTOR);
1249
1250         /* When we are running a nested L2 guest and L1 specified for it a
1251          * certain exception bitmap, we must trap the same exceptions and pass
1252          * them to L1. When running L2, we will only handle the exceptions
1253          * specified above if L1 did not want them.
1254          */
1255         if (is_guest_mode(vcpu))
1256                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1257
1258         vmcs_write32(EXCEPTION_BITMAP, eb);
1259 }
1260
1261 static void clear_atomic_switch_msr_special(unsigned long entry,
1262                 unsigned long exit)
1263 {
1264         vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1265         vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1266 }
1267
1268 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1269 {
1270         unsigned i;
1271         struct msr_autoload *m = &vmx->msr_autoload;
1272
1273         switch (msr) {
1274         case MSR_EFER:
1275                 if (cpu_has_load_ia32_efer) {
1276                         clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1277                                         VM_EXIT_LOAD_IA32_EFER);
1278                         return;
1279                 }
1280                 break;
1281         case MSR_CORE_PERF_GLOBAL_CTRL:
1282                 if (cpu_has_load_perf_global_ctrl) {
1283                         clear_atomic_switch_msr_special(
1284                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1285                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1286                         return;
1287                 }
1288                 break;
1289         }
1290
1291         for (i = 0; i < m->nr; ++i)
1292                 if (m->guest[i].index == msr)
1293                         break;
1294
1295         if (i == m->nr)
1296                 return;
1297         --m->nr;
1298         m->guest[i] = m->guest[m->nr];
1299         m->host[i] = m->host[m->nr];
1300         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1301         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1302 }
1303
1304 static void add_atomic_switch_msr_special(unsigned long entry,
1305                 unsigned long exit, unsigned long guest_val_vmcs,
1306                 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1307 {
1308         vmcs_write64(guest_val_vmcs, guest_val);
1309         vmcs_write64(host_val_vmcs, host_val);
1310         vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1311         vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1312 }
1313
1314 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1315                                   u64 guest_val, u64 host_val)
1316 {
1317         unsigned i;
1318         struct msr_autoload *m = &vmx->msr_autoload;
1319
1320         switch (msr) {
1321         case MSR_EFER:
1322                 if (cpu_has_load_ia32_efer) {
1323                         add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1324                                         VM_EXIT_LOAD_IA32_EFER,
1325                                         GUEST_IA32_EFER,
1326                                         HOST_IA32_EFER,
1327                                         guest_val, host_val);
1328                         return;
1329                 }
1330                 break;
1331         case MSR_CORE_PERF_GLOBAL_CTRL:
1332                 if (cpu_has_load_perf_global_ctrl) {
1333                         add_atomic_switch_msr_special(
1334                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1335                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1336                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1337                                         HOST_IA32_PERF_GLOBAL_CTRL,
1338                                         guest_val, host_val);
1339                         return;
1340                 }
1341                 break;
1342         }
1343
1344         for (i = 0; i < m->nr; ++i)
1345                 if (m->guest[i].index == msr)
1346                         break;
1347
1348         if (i == NR_AUTOLOAD_MSRS) {
1349                 printk_once(KERN_WARNING"Not enough mst switch entries. "
1350                                 "Can't add msr %x\n", msr);
1351                 return;
1352         } else if (i == m->nr) {
1353                 ++m->nr;
1354                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1355                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1356         }
1357
1358         m->guest[i].index = msr;
1359         m->guest[i].value = guest_val;
1360         m->host[i].index = msr;
1361         m->host[i].value = host_val;
1362 }
1363
1364 static void reload_tss(void)
1365 {
1366         /*
1367          * VT restores TR but not its size.  Useless.
1368          */
1369         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1370         struct desc_struct *descs;
1371
1372         descs = (void *)gdt->address;
1373         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1374         load_TR_desc();
1375 }
1376
1377 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1378 {
1379         u64 guest_efer;
1380         u64 ignore_bits;
1381
1382         guest_efer = vmx->vcpu.arch.efer;
1383
1384         /*
1385          * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1386          * outside long mode
1387          */
1388         ignore_bits = EFER_NX | EFER_SCE;
1389 #ifdef CONFIG_X86_64
1390         ignore_bits |= EFER_LMA | EFER_LME;
1391         /* SCE is meaningful only in long mode on Intel */
1392         if (guest_efer & EFER_LMA)
1393                 ignore_bits &= ~(u64)EFER_SCE;
1394 #endif
1395         guest_efer &= ~ignore_bits;
1396         guest_efer |= host_efer & ignore_bits;
1397         vmx->guest_msrs[efer_offset].data = guest_efer;
1398         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1399
1400         clear_atomic_switch_msr(vmx, MSR_EFER);
1401         /* On ept, can't emulate nx, and must switch nx atomically */
1402         if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1403                 guest_efer = vmx->vcpu.arch.efer;
1404                 if (!(guest_efer & EFER_LMA))
1405                         guest_efer &= ~EFER_LME;
1406                 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1407                 return false;
1408         }
1409
1410         return true;
1411 }
1412
1413 static unsigned long segment_base(u16 selector)
1414 {
1415         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1416         struct desc_struct *d;
1417         unsigned long table_base;
1418         unsigned long v;
1419
1420         if (!(selector & ~3))
1421                 return 0;
1422
1423         table_base = gdt->address;
1424
1425         if (selector & 4) {           /* from ldt */
1426                 u16 ldt_selector = kvm_read_ldt();
1427
1428                 if (!(ldt_selector & ~3))
1429                         return 0;
1430
1431                 table_base = segment_base(ldt_selector);
1432         }
1433         d = (struct desc_struct *)(table_base + (selector & ~7));
1434         v = get_desc_base(d);
1435 #ifdef CONFIG_X86_64
1436        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1437                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1438 #endif
1439         return v;
1440 }
1441
1442 static inline unsigned long kvm_read_tr_base(void)
1443 {
1444         u16 tr;
1445         asm("str %0" : "=g"(tr));
1446         return segment_base(tr);
1447 }
1448
1449 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1450 {
1451         struct vcpu_vmx *vmx = to_vmx(vcpu);
1452         int i;
1453
1454         if (vmx->host_state.loaded)
1455                 return;
1456
1457         vmx->host_state.loaded = 1;
1458         /*
1459          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1460          * allow segment selectors with cpl > 0 or ti == 1.
1461          */
1462         vmx->host_state.ldt_sel = kvm_read_ldt();
1463         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1464         savesegment(fs, vmx->host_state.fs_sel);
1465         if (!(vmx->host_state.fs_sel & 7)) {
1466                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1467                 vmx->host_state.fs_reload_needed = 0;
1468         } else {
1469                 vmcs_write16(HOST_FS_SELECTOR, 0);
1470                 vmx->host_state.fs_reload_needed = 1;
1471         }
1472         savesegment(gs, vmx->host_state.gs_sel);
1473         if (!(vmx->host_state.gs_sel & 7))
1474                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1475         else {
1476                 vmcs_write16(HOST_GS_SELECTOR, 0);
1477                 vmx->host_state.gs_ldt_reload_needed = 1;
1478         }
1479
1480 #ifdef CONFIG_X86_64
1481         savesegment(ds, vmx->host_state.ds_sel);
1482         savesegment(es, vmx->host_state.es_sel);
1483 #endif
1484
1485 #ifdef CONFIG_X86_64
1486         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1487         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1488 #else
1489         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1490         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1491 #endif
1492
1493 #ifdef CONFIG_X86_64
1494         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1495         if (is_long_mode(&vmx->vcpu))
1496                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1497 #endif
1498         for (i = 0; i < vmx->save_nmsrs; ++i)
1499                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1500                                    vmx->guest_msrs[i].data,
1501                                    vmx->guest_msrs[i].mask);
1502 }
1503
1504 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1505 {
1506         if (!vmx->host_state.loaded)
1507                 return;
1508
1509         ++vmx->vcpu.stat.host_state_reload;
1510         vmx->host_state.loaded = 0;
1511 #ifdef CONFIG_X86_64
1512         if (is_long_mode(&vmx->vcpu))
1513                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1514 #endif
1515         if (vmx->host_state.gs_ldt_reload_needed) {
1516                 kvm_load_ldt(vmx->host_state.ldt_sel);
1517 #ifdef CONFIG_X86_64
1518                 load_gs_index(vmx->host_state.gs_sel);
1519 #else
1520                 loadsegment(gs, vmx->host_state.gs_sel);
1521 #endif
1522         }
1523         if (vmx->host_state.fs_reload_needed)
1524                 loadsegment(fs, vmx->host_state.fs_sel);
1525 #ifdef CONFIG_X86_64
1526         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1527                 loadsegment(ds, vmx->host_state.ds_sel);
1528                 loadsegment(es, vmx->host_state.es_sel);
1529         }
1530 #endif
1531         reload_tss();
1532 #ifdef CONFIG_X86_64
1533         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1534 #endif
1535         /*
1536          * If the FPU is not active (through the host task or
1537          * the guest vcpu), then restore the cr0.TS bit.
1538          */
1539         if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1540                 stts();
1541         load_gdt(&__get_cpu_var(host_gdt));
1542 }
1543
1544 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1545 {
1546         preempt_disable();
1547         __vmx_load_host_state(vmx);
1548         preempt_enable();
1549 }
1550
1551 /*
1552  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1553  * vcpu mutex is already taken.
1554  */
1555 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1556 {
1557         struct vcpu_vmx *vmx = to_vmx(vcpu);
1558         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1559
1560         if (!vmm_exclusive)
1561                 kvm_cpu_vmxon(phys_addr);
1562         else if (vmx->loaded_vmcs->cpu != cpu)
1563                 loaded_vmcs_clear(vmx->loaded_vmcs);
1564
1565         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1566                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1567                 vmcs_load(vmx->loaded_vmcs->vmcs);
1568         }
1569
1570         if (vmx->loaded_vmcs->cpu != cpu) {
1571                 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1572                 unsigned long sysenter_esp;
1573
1574                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1575                 local_irq_disable();
1576                 crash_disable_local_vmclear(cpu);
1577
1578                 /*
1579                  * Read loaded_vmcs->cpu should be before fetching
1580                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1581                  * See the comments in __loaded_vmcs_clear().
1582                  */
1583                 smp_rmb();
1584
1585                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1586                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1587                 crash_enable_local_vmclear(cpu);
1588                 local_irq_enable();
1589
1590                 /*
1591                  * Linux uses per-cpu TSS and GDT, so set these when switching
1592                  * processors.
1593                  */
1594                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1595                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1596
1597                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1598                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1599                 vmx->loaded_vmcs->cpu = cpu;
1600         }
1601 }
1602
1603 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1604 {
1605         __vmx_load_host_state(to_vmx(vcpu));
1606         if (!vmm_exclusive) {
1607                 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1608                 vcpu->cpu = -1;
1609                 kvm_cpu_vmxoff();
1610         }
1611 }
1612
1613 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1614 {
1615         ulong cr0;
1616
1617         if (vcpu->fpu_active)
1618                 return;
1619         vcpu->fpu_active = 1;
1620         cr0 = vmcs_readl(GUEST_CR0);
1621         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1622         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1623         vmcs_writel(GUEST_CR0, cr0);
1624         update_exception_bitmap(vcpu);
1625         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1626         if (is_guest_mode(vcpu))
1627                 vcpu->arch.cr0_guest_owned_bits &=
1628                         ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1629         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1630 }
1631
1632 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1633
1634 /*
1635  * Return the cr0 value that a nested guest would read. This is a combination
1636  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1637  * its hypervisor (cr0_read_shadow).
1638  */
1639 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1640 {
1641         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1642                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1643 }
1644 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1645 {
1646         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1647                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1648 }
1649
1650 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1651 {
1652         /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1653          * set this *before* calling this function.
1654          */
1655         vmx_decache_cr0_guest_bits(vcpu);
1656         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1657         update_exception_bitmap(vcpu);
1658         vcpu->arch.cr0_guest_owned_bits = 0;
1659         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1660         if (is_guest_mode(vcpu)) {
1661                 /*
1662                  * L1's specified read shadow might not contain the TS bit,
1663                  * so now that we turned on shadowing of this bit, we need to
1664                  * set this bit of the shadow. Like in nested_vmx_run we need
1665                  * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1666                  * up-to-date here because we just decached cr0.TS (and we'll
1667                  * only update vmcs12->guest_cr0 on nested exit).
1668                  */
1669                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1670                 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1671                         (vcpu->arch.cr0 & X86_CR0_TS);
1672                 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1673         } else
1674                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1675 }
1676
1677 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1678 {
1679         unsigned long rflags, save_rflags;
1680
1681         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1682                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1683                 rflags = vmcs_readl(GUEST_RFLAGS);
1684                 if (to_vmx(vcpu)->rmode.vm86_active) {
1685                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1686                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1687                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1688                 }
1689                 to_vmx(vcpu)->rflags = rflags;
1690         }
1691         return to_vmx(vcpu)->rflags;
1692 }
1693
1694 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1695 {
1696         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1697         __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
1698         to_vmx(vcpu)->rflags = rflags;
1699         if (to_vmx(vcpu)->rmode.vm86_active) {
1700                 to_vmx(vcpu)->rmode.save_rflags = rflags;
1701                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1702         }
1703         vmcs_writel(GUEST_RFLAGS, rflags);
1704 }
1705
1706 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1707 {
1708         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1709         int ret = 0;
1710
1711         if (interruptibility & GUEST_INTR_STATE_STI)
1712                 ret |= KVM_X86_SHADOW_INT_STI;
1713         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1714                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1715
1716         return ret & mask;
1717 }
1718
1719 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1720 {
1721         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1722         u32 interruptibility = interruptibility_old;
1723
1724         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1725
1726         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1727                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1728         else if (mask & KVM_X86_SHADOW_INT_STI)
1729                 interruptibility |= GUEST_INTR_STATE_STI;
1730
1731         if ((interruptibility != interruptibility_old))
1732                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1733 }
1734
1735 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1736 {
1737         unsigned long rip;
1738
1739         rip = kvm_rip_read(vcpu);
1740         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1741         kvm_rip_write(vcpu, rip);
1742
1743         /* skipping an emulated instruction also counts */
1744         vmx_set_interrupt_shadow(vcpu, 0);
1745 }
1746
1747 /*
1748  * KVM wants to inject page-faults which it got to the guest. This function
1749  * checks whether in a nested guest, we need to inject them to L1 or L2.
1750  * This function assumes it is called with the exit reason in vmcs02 being
1751  * a #PF exception (this is the only case in which KVM injects a #PF when L2
1752  * is running).
1753  */
1754 static int nested_pf_handled(struct kvm_vcpu *vcpu)
1755 {
1756         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1757
1758         /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1759         if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
1760                 return 0;
1761
1762         nested_vmx_vmexit(vcpu);
1763         return 1;
1764 }
1765
1766 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1767                                 bool has_error_code, u32 error_code,
1768                                 bool reinject)
1769 {
1770         struct vcpu_vmx *vmx = to_vmx(vcpu);
1771         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1772
1773         if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1774                 nested_pf_handled(vcpu))
1775                 return;
1776
1777         if (has_error_code) {
1778                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1779                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1780         }
1781
1782         if (vmx->rmode.vm86_active) {
1783                 int inc_eip = 0;
1784                 if (kvm_exception_is_soft(nr))
1785                         inc_eip = vcpu->arch.event_exit_inst_len;
1786                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1787                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1788                 return;
1789         }
1790
1791         if (kvm_exception_is_soft(nr)) {
1792                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1793                              vmx->vcpu.arch.event_exit_inst_len);
1794                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1795         } else
1796                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1797
1798         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1799 }
1800
1801 static bool vmx_rdtscp_supported(void)
1802 {
1803         return cpu_has_vmx_rdtscp();
1804 }
1805
1806 static bool vmx_invpcid_supported(void)
1807 {
1808         return cpu_has_vmx_invpcid() && enable_ept;
1809 }
1810
1811 /*
1812  * Swap MSR entry in host/guest MSR entry array.
1813  */
1814 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1815 {
1816         struct shared_msr_entry tmp;
1817
1818         tmp = vmx->guest_msrs[to];
1819         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1820         vmx->guest_msrs[from] = tmp;
1821 }
1822
1823 /*
1824  * Set up the vmcs to automatically save and restore system
1825  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1826  * mode, as fiddling with msrs is very expensive.
1827  */
1828 static void setup_msrs(struct vcpu_vmx *vmx)
1829 {
1830         int save_nmsrs, index;
1831         unsigned long *msr_bitmap;
1832
1833         save_nmsrs = 0;
1834 #ifdef CONFIG_X86_64
1835         if (is_long_mode(&vmx->vcpu)) {
1836                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1837                 if (index >= 0)
1838                         move_msr_up(vmx, index, save_nmsrs++);
1839                 index = __find_msr_index(vmx, MSR_LSTAR);
1840                 if (index >= 0)
1841                         move_msr_up(vmx, index, save_nmsrs++);
1842                 index = __find_msr_index(vmx, MSR_CSTAR);
1843                 if (index >= 0)
1844                         move_msr_up(vmx, index, save_nmsrs++);
1845                 index = __find_msr_index(vmx, MSR_TSC_AUX);
1846                 if (index >= 0 && vmx->rdtscp_enabled)
1847                         move_msr_up(vmx, index, save_nmsrs++);
1848                 /*
1849                  * MSR_STAR is only needed on long mode guests, and only
1850                  * if efer.sce is enabled.
1851                  */
1852                 index = __find_msr_index(vmx, MSR_STAR);
1853                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1854                         move_msr_up(vmx, index, save_nmsrs++);
1855         }
1856 #endif
1857         index = __find_msr_index(vmx, MSR_EFER);
1858         if (index >= 0 && update_transition_efer(vmx, index))
1859                 move_msr_up(vmx, index, save_nmsrs++);
1860
1861         vmx->save_nmsrs = save_nmsrs;
1862
1863         if (cpu_has_vmx_msr_bitmap()) {
1864                 if (is_long_mode(&vmx->vcpu))
1865                         msr_bitmap = vmx_msr_bitmap_longmode;
1866                 else
1867                         msr_bitmap = vmx_msr_bitmap_legacy;
1868
1869                 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1870         }
1871 }
1872
1873 /*
1874  * reads and returns guest's timestamp counter "register"
1875  * guest_tsc = host_tsc + tsc_offset    -- 21.3
1876  */
1877 static u64 guest_read_tsc(void)
1878 {
1879         u64 host_tsc, tsc_offset;
1880
1881         rdtscll(host_tsc);
1882         tsc_offset = vmcs_read64(TSC_OFFSET);
1883         return host_tsc + tsc_offset;
1884 }
1885
1886 /*
1887  * Like guest_read_tsc, but always returns L1's notion of the timestamp
1888  * counter, even if a nested guest (L2) is currently running.
1889  */
1890 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1891 {
1892         u64 tsc_offset;
1893
1894         tsc_offset = is_guest_mode(vcpu) ?
1895                 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
1896                 vmcs_read64(TSC_OFFSET);
1897         return host_tsc + tsc_offset;
1898 }
1899
1900 /*
1901  * Engage any workarounds for mis-matched TSC rates.  Currently limited to
1902  * software catchup for faster rates on slower CPUs.
1903  */
1904 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1905 {
1906         if (!scale)
1907                 return;
1908
1909         if (user_tsc_khz > tsc_khz) {
1910                 vcpu->arch.tsc_catchup = 1;
1911                 vcpu->arch.tsc_always_catchup = 1;
1912         } else
1913                 WARN(1, "user requested TSC rate below hardware speed\n");
1914 }
1915
1916 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
1917 {
1918         return vmcs_read64(TSC_OFFSET);
1919 }
1920
1921 /*
1922  * writes 'offset' into guest's timestamp counter offset register
1923  */
1924 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1925 {
1926         if (is_guest_mode(vcpu)) {
1927                 /*
1928                  * We're here if L1 chose not to trap WRMSR to TSC. According
1929                  * to the spec, this should set L1's TSC; The offset that L1
1930                  * set for L2 remains unchanged, and still needs to be added
1931                  * to the newly set TSC to get L2's TSC.
1932                  */
1933                 struct vmcs12 *vmcs12;
1934                 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
1935                 /* recalculate vmcs02.TSC_OFFSET: */
1936                 vmcs12 = get_vmcs12(vcpu);
1937                 vmcs_write64(TSC_OFFSET, offset +
1938                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
1939                          vmcs12->tsc_offset : 0));
1940         } else {
1941                 vmcs_write64(TSC_OFFSET, offset);
1942         }
1943 }
1944
1945 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1946 {
1947         u64 offset = vmcs_read64(TSC_OFFSET);
1948         vmcs_write64(TSC_OFFSET, offset + adjustment);
1949         if (is_guest_mode(vcpu)) {
1950                 /* Even when running L2, the adjustment needs to apply to L1 */
1951                 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1952         }
1953 }
1954
1955 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1956 {
1957         return target_tsc - native_read_tsc();
1958 }
1959
1960 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1961 {
1962         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1963         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1964 }
1965
1966 /*
1967  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1968  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1969  * all guests if the "nested" module option is off, and can also be disabled
1970  * for a single guest by disabling its VMX cpuid bit.
1971  */
1972 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1973 {
1974         return nested && guest_cpuid_has_vmx(vcpu);
1975 }
1976
1977 /*
1978  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1979  * returned for the various VMX controls MSRs when nested VMX is enabled.
1980  * The same values should also be used to verify that vmcs12 control fields are
1981  * valid during nested entry from L1 to L2.
1982  * Each of these control msrs has a low and high 32-bit half: A low bit is on
1983  * if the corresponding bit in the (32-bit) control field *must* be on, and a
1984  * bit in the high half is on if the corresponding bit in the control field
1985  * may be on. See also vmx_control_verify().
1986  * TODO: allow these variables to be modified (downgraded) by module options
1987  * or other means.
1988  */
1989 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1990 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1991 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1992 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1993 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
1994 static __init void nested_vmx_setup_ctls_msrs(void)
1995 {
1996         /*
1997          * Note that as a general rule, the high half of the MSRs (bits in
1998          * the control fields which may be 1) should be initialized by the
1999          * intersection of the underlying hardware's MSR (i.e., features which
2000          * can be supported) and the list of features we want to expose -
2001          * because they are known to be properly supported in our code.
2002          * Also, usually, the low half of the MSRs (bits which must be 1) can
2003          * be set to 0, meaning that L1 may turn off any of these bits. The
2004          * reason is that if one of these bits is necessary, it will appear
2005          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2006          * fields of vmcs01 and vmcs02, will turn these bits off - and
2007          * nested_vmx_exit_handled() will not pass related exits to L1.
2008          * These rules have exceptions below.
2009          */
2010
2011         /* pin-based controls */
2012         /*
2013          * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2014          * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2015          */
2016         nested_vmx_pinbased_ctls_low = 0x16 ;
2017         nested_vmx_pinbased_ctls_high = 0x16 |
2018                 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
2019                 PIN_BASED_VIRTUAL_NMIS;
2020
2021         /* exit controls */
2022         nested_vmx_exit_ctls_low = 0;
2023         /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
2024 #ifdef CONFIG_X86_64
2025         nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
2026 #else
2027         nested_vmx_exit_ctls_high = 0;
2028 #endif
2029
2030         /* entry controls */
2031         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2032                 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2033         nested_vmx_entry_ctls_low = 0;
2034         nested_vmx_entry_ctls_high &=
2035                 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
2036
2037         /* cpu-based controls */
2038         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2039                 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2040         nested_vmx_procbased_ctls_low = 0;
2041         nested_vmx_procbased_ctls_high &=
2042                 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2043                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2044                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2045                 CPU_BASED_CR3_STORE_EXITING |
2046 #ifdef CONFIG_X86_64
2047                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2048 #endif
2049                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2050                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2051                 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2052                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2053         /*
2054          * We can allow some features even when not supported by the
2055          * hardware. For example, L1 can specify an MSR bitmap - and we
2056          * can use it to avoid exits to L1 - even when L0 runs L2
2057          * without MSR bitmaps.
2058          */
2059         nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2060
2061         /* secondary cpu-based controls */
2062         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2063                 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2064         nested_vmx_secondary_ctls_low = 0;
2065         nested_vmx_secondary_ctls_high &=
2066                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2067 }
2068
2069 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2070 {
2071         /*
2072          * Bits 0 in high must be 0, and bits 1 in low must be 1.
2073          */
2074         return ((control & high) | low) == control;
2075 }
2076
2077 static inline u64 vmx_control_msr(u32 low, u32 high)
2078 {
2079         return low | ((u64)high << 32);
2080 }
2081
2082 /*
2083  * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
2084  * also let it use VMX-specific MSRs.
2085  * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2086  * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2087  * like all other MSRs).
2088  */
2089 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2090 {
2091         if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2092                      msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2093                 /*
2094                  * According to the spec, processors which do not support VMX
2095                  * should throw a #GP(0) when VMX capability MSRs are read.
2096                  */
2097                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2098                 return 1;
2099         }
2100
2101         switch (msr_index) {
2102         case MSR_IA32_FEATURE_CONTROL:
2103                 *pdata = 0;
2104                 break;
2105         case MSR_IA32_VMX_BASIC:
2106                 /*
2107                  * This MSR reports some information about VMX support. We
2108                  * should return information about the VMX we emulate for the
2109                  * guest, and the VMCS structure we give it - not about the
2110                  * VMX support of the underlying hardware.
2111                  */
2112                 *pdata = VMCS12_REVISION |
2113                            ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2114                            (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2115                 break;
2116         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2117         case MSR_IA32_VMX_PINBASED_CTLS:
2118                 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2119                                         nested_vmx_pinbased_ctls_high);
2120                 break;
2121         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2122         case MSR_IA32_VMX_PROCBASED_CTLS:
2123                 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2124                                         nested_vmx_procbased_ctls_high);
2125                 break;
2126         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2127         case MSR_IA32_VMX_EXIT_CTLS:
2128                 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2129                                         nested_vmx_exit_ctls_high);
2130                 break;
2131         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2132         case MSR_IA32_VMX_ENTRY_CTLS:
2133                 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2134                                         nested_vmx_entry_ctls_high);
2135                 break;
2136         case MSR_IA32_VMX_MISC:
2137                 *pdata = 0;
2138                 break;
2139         /*
2140          * These MSRs specify bits which the guest must keep fixed (on or off)
2141          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2142          * We picked the standard core2 setting.
2143          */
2144 #define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2145 #define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2146         case MSR_IA32_VMX_CR0_FIXED0:
2147                 *pdata = VMXON_CR0_ALWAYSON;
2148                 break;
2149         case MSR_IA32_VMX_CR0_FIXED1:
2150                 *pdata = -1ULL;
2151                 break;
2152         case MSR_IA32_VMX_CR4_FIXED0:
2153                 *pdata = VMXON_CR4_ALWAYSON;
2154                 break;
2155         case MSR_IA32_VMX_CR4_FIXED1:
2156                 *pdata = -1ULL;
2157                 break;
2158         case MSR_IA32_VMX_VMCS_ENUM:
2159                 *pdata = 0x1f;
2160                 break;
2161         case MSR_IA32_VMX_PROCBASED_CTLS2:
2162                 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2163                                         nested_vmx_secondary_ctls_high);
2164                 break;
2165         case MSR_IA32_VMX_EPT_VPID_CAP:
2166                 /* Currently, no nested ept or nested vpid */
2167                 *pdata = 0;
2168                 break;
2169         default:
2170                 return 0;
2171         }
2172
2173         return 1;
2174 }
2175
2176 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2177 {
2178         if (!nested_vmx_allowed(vcpu))
2179                 return 0;
2180
2181         if (msr_index == MSR_IA32_FEATURE_CONTROL)
2182                 /* TODO: the right thing. */
2183                 return 1;
2184         /*
2185          * No need to treat VMX capability MSRs specially: If we don't handle
2186          * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2187          */
2188         return 0;
2189 }
2190
2191 /*
2192  * Reads an msr value (of 'msr_index') into 'pdata'.
2193  * Returns 0 on success, non-0 otherwise.
2194  * Assumes vcpu_load() was already called.
2195  */
2196 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2197 {
2198         u64 data;
2199         struct shared_msr_entry *msr;
2200
2201         if (!pdata) {
2202                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2203                 return -EINVAL;
2204         }
2205
2206         switch (msr_index) {
2207 #ifdef CONFIG_X86_64
2208         case MSR_FS_BASE:
2209                 data = vmcs_readl(GUEST_FS_BASE);
2210                 break;
2211         case MSR_GS_BASE:
2212                 data = vmcs_readl(GUEST_GS_BASE);
2213                 break;
2214         case MSR_KERNEL_GS_BASE:
2215                 vmx_load_host_state(to_vmx(vcpu));
2216                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2217                 break;
2218 #endif
2219         case MSR_EFER:
2220                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2221         case MSR_IA32_TSC:
2222                 data = guest_read_tsc();
2223                 break;
2224         case MSR_IA32_SYSENTER_CS:
2225                 data = vmcs_read32(GUEST_SYSENTER_CS);
2226                 break;
2227         case MSR_IA32_SYSENTER_EIP:
2228                 data = vmcs_readl(GUEST_SYSENTER_EIP);
2229                 break;
2230         case MSR_IA32_SYSENTER_ESP:
2231                 data = vmcs_readl(GUEST_SYSENTER_ESP);
2232                 break;
2233         case MSR_TSC_AUX:
2234                 if (!to_vmx(vcpu)->rdtscp_enabled)
2235                         return 1;
2236                 /* Otherwise falls through */
2237         default:
2238                 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2239                         return 0;
2240                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2241                 if (msr) {
2242                         data = msr->data;
2243                         break;
2244                 }
2245                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2246         }
2247
2248         *pdata = data;
2249         return 0;
2250 }
2251
2252 /*
2253  * Writes msr value into into the appropriate "register".
2254  * Returns 0 on success, non-0 otherwise.
2255  * Assumes vcpu_load() was already called.
2256  */
2257 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2258 {
2259         struct vcpu_vmx *vmx = to_vmx(vcpu);
2260         struct shared_msr_entry *msr;
2261         int ret = 0;
2262         u32 msr_index = msr_info->index;
2263         u64 data = msr_info->data;
2264
2265         switch (msr_index) {
2266         case MSR_EFER:
2267                 ret = kvm_set_msr_common(vcpu, msr_info);
2268                 break;
2269 #ifdef CONFIG_X86_64
2270         case MSR_FS_BASE:
2271                 vmx_segment_cache_clear(vmx);
2272                 vmcs_writel(GUEST_FS_BASE, data);
2273                 break;
2274         case MSR_GS_BASE:
2275                 vmx_segment_cache_clear(vmx);
2276                 vmcs_writel(GUEST_GS_BASE, data);
2277                 break;
2278         case MSR_KERNEL_GS_BASE:
2279                 vmx_load_host_state(vmx);
2280                 vmx->msr_guest_kernel_gs_base = data;
2281                 break;
2282 #endif
2283         case MSR_IA32_SYSENTER_CS:
2284                 vmcs_write32(GUEST_SYSENTER_CS, data);
2285                 break;
2286         case MSR_IA32_SYSENTER_EIP:
2287                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2288                 break;
2289         case MSR_IA32_SYSENTER_ESP:
2290                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2291                 break;
2292         case MSR_IA32_TSC:
2293                 kvm_write_tsc(vcpu, msr_info);
2294                 break;
2295         case MSR_IA32_CR_PAT:
2296                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2297                         vmcs_write64(GUEST_IA32_PAT, data);
2298                         vcpu->arch.pat = data;
2299                         break;
2300                 }
2301                 ret = kvm_set_msr_common(vcpu, msr_info);
2302                 break;
2303         case MSR_IA32_TSC_ADJUST:
2304                 ret = kvm_set_msr_common(vcpu, msr_info);
2305                 break;
2306         case MSR_TSC_AUX:
2307                 if (!vmx->rdtscp_enabled)
2308                         return 1;
2309                 /* Check reserved bit, higher 32 bits should be zero */
2310                 if ((data >> 32) != 0)
2311                         return 1;
2312                 /* Otherwise falls through */
2313         default:
2314                 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2315                         break;
2316                 msr = find_msr_entry(vmx, msr_index);
2317                 if (msr) {
2318                         msr->data = data;
2319                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2320                                 preempt_disable();
2321                                 kvm_set_shared_msr(msr->index, msr->data,
2322                                                    msr->mask);
2323                                 preempt_enable();
2324                         }
2325                         break;
2326                 }
2327                 ret = kvm_set_msr_common(vcpu, msr_info);
2328         }
2329
2330         return ret;
2331 }
2332
2333 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2334 {
2335         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2336         switch (reg) {
2337         case VCPU_REGS_RSP:
2338                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2339                 break;
2340         case VCPU_REGS_RIP:
2341                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2342                 break;
2343         case VCPU_EXREG_PDPTR:
2344                 if (enable_ept)
2345                         ept_save_pdptrs(vcpu);
2346                 break;
2347         default:
2348                 break;
2349         }
2350 }
2351
2352 static __init int cpu_has_kvm_support(void)
2353 {
2354         return cpu_has_vmx();
2355 }
2356
2357 static __init int vmx_disabled_by_bios(void)
2358 {
2359         u64 msr;
2360
2361         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2362         if (msr & FEATURE_CONTROL_LOCKED) {
2363                 /* launched w/ TXT and VMX disabled */
2364                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2365                         && tboot_enabled())
2366                         return 1;
2367                 /* launched w/o TXT and VMX only enabled w/ TXT */
2368                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2369                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2370                         && !tboot_enabled()) {
2371                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2372                                 "activate TXT before enabling KVM\n");
2373                         return 1;
2374                 }
2375                 /* launched w/o TXT and VMX disabled */
2376                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2377                         && !tboot_enabled())
2378                         return 1;
2379         }
2380
2381         return 0;
2382 }
2383
2384 static void kvm_cpu_vmxon(u64 addr)
2385 {
2386         asm volatile (ASM_VMX_VMXON_RAX
2387                         : : "a"(&addr), "m"(addr)
2388                         : "memory", "cc");
2389 }
2390
2391 static int hardware_enable(void *garbage)
2392 {
2393         int cpu = raw_smp_processor_id();
2394         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2395         u64 old, test_bits;
2396
2397         if (read_cr4() & X86_CR4_VMXE)
2398                 return -EBUSY;
2399
2400         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2401
2402         /*
2403          * Now we can enable the vmclear operation in kdump
2404          * since the loaded_vmcss_on_cpu list on this cpu
2405          * has been initialized.
2406          *
2407          * Though the cpu is not in VMX operation now, there
2408          * is no problem to enable the vmclear operation
2409          * for the loaded_vmcss_on_cpu list is empty!
2410          */
2411         crash_enable_local_vmclear(cpu);
2412
2413         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2414
2415         test_bits = FEATURE_CONTROL_LOCKED;
2416         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2417         if (tboot_enabled())
2418                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2419
2420         if ((old & test_bits) != test_bits) {
2421                 /* enable and lock */
2422                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2423         }
2424         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2425
2426         if (vmm_exclusive) {
2427                 kvm_cpu_vmxon(phys_addr);
2428                 ept_sync_global();
2429         }
2430
2431         store_gdt(&__get_cpu_var(host_gdt));
2432
2433         return 0;
2434 }
2435
2436 static void vmclear_local_loaded_vmcss(void)
2437 {
2438         int cpu = raw_smp_processor_id();
2439         struct loaded_vmcs *v, *n;
2440
2441         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2442                                  loaded_vmcss_on_cpu_link)
2443                 __loaded_vmcs_clear(v);
2444 }
2445
2446
2447 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2448  * tricks.
2449  */
2450 static void kvm_cpu_vmxoff(void)
2451 {
2452         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2453 }
2454
2455 static void hardware_disable(void *garbage)
2456 {
2457         if (vmm_exclusive) {
2458                 vmclear_local_loaded_vmcss();
2459                 kvm_cpu_vmxoff();
2460         }
2461         write_cr4(read_cr4() & ~X86_CR4_VMXE);
2462 }
2463
2464 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2465                                       u32 msr, u32 *result)
2466 {
2467         u32 vmx_msr_low, vmx_msr_high;
2468         u32 ctl = ctl_min | ctl_opt;
2469
2470         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2471
2472         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2473         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2474
2475         /* Ensure minimum (required) set of control bits are supported. */
2476         if (ctl_min & ~ctl)
2477                 return -EIO;
2478
2479         *result = ctl;
2480         return 0;
2481 }
2482
2483 static __init bool allow_1_setting(u32 msr, u32 ctl)
2484 {
2485         u32 vmx_msr_low, vmx_msr_high;
2486
2487         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2488         return vmx_msr_high & ctl;
2489 }
2490
2491 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2492 {
2493         u32 vmx_msr_low, vmx_msr_high;
2494         u32 min, opt, min2, opt2;
2495         u32 _pin_based_exec_control = 0;
2496         u32 _cpu_based_exec_control = 0;
2497         u32 _cpu_based_2nd_exec_control = 0;
2498         u32 _vmexit_control = 0;
2499         u32 _vmentry_control = 0;
2500
2501         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2502         opt = PIN_BASED_VIRTUAL_NMIS;
2503         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2504                                 &_pin_based_exec_control) < 0)
2505                 return -EIO;
2506
2507         min = CPU_BASED_HLT_EXITING |
2508 #ifdef CONFIG_X86_64
2509               CPU_BASED_CR8_LOAD_EXITING |
2510               CPU_BASED_CR8_STORE_EXITING |
2511 #endif
2512               CPU_BASED_CR3_LOAD_EXITING |
2513               CPU_BASED_CR3_STORE_EXITING |
2514               CPU_BASED_USE_IO_BITMAPS |
2515               CPU_BASED_MOV_DR_EXITING |
2516               CPU_BASED_USE_TSC_OFFSETING |
2517               CPU_BASED_MWAIT_EXITING |
2518               CPU_BASED_MONITOR_EXITING |
2519               CPU_BASED_INVLPG_EXITING |
2520               CPU_BASED_RDPMC_EXITING;
2521
2522         opt = CPU_BASED_TPR_SHADOW |
2523               CPU_BASED_USE_MSR_BITMAPS |
2524               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2525         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2526                                 &_cpu_based_exec_control) < 0)
2527                 return -EIO;
2528 #ifdef CONFIG_X86_64
2529         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2530                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2531                                            ~CPU_BASED_CR8_STORE_EXITING;
2532 #endif
2533         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2534                 min2 = 0;
2535                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2536                         SECONDARY_EXEC_WBINVD_EXITING |
2537                         SECONDARY_EXEC_ENABLE_VPID |
2538                         SECONDARY_EXEC_ENABLE_EPT |
2539                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2540                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2541                         SECONDARY_EXEC_RDTSCP |
2542                         SECONDARY_EXEC_ENABLE_INVPCID;
2543                 if (adjust_vmx_controls(min2, opt2,
2544                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2545                                         &_cpu_based_2nd_exec_control) < 0)
2546                         return -EIO;
2547         }
2548 #ifndef CONFIG_X86_64
2549         if (!(_cpu_based_2nd_exec_control &
2550                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2551                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2552 #endif
2553         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2554                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2555                    enabled */
2556                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2557                                              CPU_BASED_CR3_STORE_EXITING |
2558                                              CPU_BASED_INVLPG_EXITING);
2559                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2560                       vmx_capability.ept, vmx_capability.vpid);
2561         }
2562
2563         min = 0;
2564 #ifdef CONFIG_X86_64
2565         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2566 #endif
2567         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
2568         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2569                                 &_vmexit_control) < 0)
2570                 return -EIO;
2571
2572         min = 0;
2573         opt = VM_ENTRY_LOAD_IA32_PAT;
2574         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2575                                 &_vmentry_control) < 0)
2576                 return -EIO;
2577
2578         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2579
2580         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2581         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2582                 return -EIO;
2583
2584 #ifdef CONFIG_X86_64
2585         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2586         if (vmx_msr_high & (1u<<16))
2587                 return -EIO;
2588 #endif
2589
2590         /* Require Write-Back (WB) memory type for VMCS accesses. */
2591         if (((vmx_msr_high >> 18) & 15) != 6)
2592                 return -EIO;
2593
2594         vmcs_conf->size = vmx_msr_high & 0x1fff;
2595         vmcs_conf->order = get_order(vmcs_config.size);
2596         vmcs_conf->revision_id = vmx_msr_low;
2597
2598         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2599         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2600         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2601         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2602         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2603
2604         cpu_has_load_ia32_efer =
2605                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2606                                 VM_ENTRY_LOAD_IA32_EFER)
2607                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2608                                    VM_EXIT_LOAD_IA32_EFER);
2609
2610         cpu_has_load_perf_global_ctrl =
2611                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2612                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2613                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2614                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2615
2616         /*
2617          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2618          * but due to arrata below it can't be used. Workaround is to use
2619          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2620          *
2621          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2622          *
2623          * AAK155             (model 26)
2624          * AAP115             (model 30)
2625          * AAT100             (model 37)
2626          * BC86,AAY89,BD102   (model 44)
2627          * BA97               (model 46)
2628          *
2629          */
2630         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2631                 switch (boot_cpu_data.x86_model) {
2632                 case 26:
2633                 case 30:
2634                 case 37:
2635                 case 44:
2636                 case 46:
2637                         cpu_has_load_perf_global_ctrl = false;
2638                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2639                                         "does not work properly. Using workaround\n");
2640                         break;
2641                 default:
2642                         break;
2643                 }
2644         }
2645
2646         return 0;
2647 }
2648
2649 static struct vmcs *alloc_vmcs_cpu(int cpu)
2650 {
2651         int node = cpu_to_node(cpu);
2652         struct page *pages;
2653         struct vmcs *vmcs;
2654
2655         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2656         if (!pages)
2657                 return NULL;
2658         vmcs = page_address(pages);
2659         memset(vmcs, 0, vmcs_config.size);
2660         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2661         return vmcs;
2662 }
2663
2664 static struct vmcs *alloc_vmcs(void)
2665 {
2666         return alloc_vmcs_cpu(raw_smp_processor_id());
2667 }
2668
2669 static void free_vmcs(struct vmcs *vmcs)
2670 {
2671         free_pages((unsigned long)vmcs, vmcs_config.order);
2672 }
2673
2674 /*
2675  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2676  */
2677 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2678 {
2679         if (!loaded_vmcs->vmcs)
2680                 return;
2681         loaded_vmcs_clear(loaded_vmcs);
2682         free_vmcs(loaded_vmcs->vmcs);
2683         loaded_vmcs->vmcs = NULL;
2684 }
2685
2686 static void free_kvm_area(void)
2687 {
2688         int cpu;
2689
2690         for_each_possible_cpu(cpu) {
2691                 free_vmcs(per_cpu(vmxarea, cpu));
2692                 per_cpu(vmxarea, cpu) = NULL;
2693         }
2694 }
2695
2696 static __init int alloc_kvm_area(void)
2697 {
2698         int cpu;
2699
2700         for_each_possible_cpu(cpu) {
2701                 struct vmcs *vmcs;
2702
2703                 vmcs = alloc_vmcs_cpu(cpu);
2704                 if (!vmcs) {
2705                         free_kvm_area();
2706                         return -ENOMEM;
2707                 }
2708
2709                 per_cpu(vmxarea, cpu) = vmcs;
2710         }
2711         return 0;
2712 }
2713
2714 static __init int hardware_setup(void)
2715 {
2716         if (setup_vmcs_config(&vmcs_config) < 0)
2717                 return -EIO;
2718
2719         if (boot_cpu_has(X86_FEATURE_NX))
2720                 kvm_enable_efer_bits(EFER_NX);
2721
2722         if (!cpu_has_vmx_vpid())
2723                 enable_vpid = 0;
2724
2725         if (!cpu_has_vmx_ept() ||
2726             !cpu_has_vmx_ept_4levels()) {
2727                 enable_ept = 0;
2728                 enable_unrestricted_guest = 0;
2729                 enable_ept_ad_bits = 0;
2730         }
2731
2732         if (!cpu_has_vmx_ept_ad_bits())
2733                 enable_ept_ad_bits = 0;
2734
2735         if (!cpu_has_vmx_unrestricted_guest())
2736                 enable_unrestricted_guest = 0;
2737
2738         if (!cpu_has_vmx_flexpriority())
2739                 flexpriority_enabled = 0;
2740
2741         if (!cpu_has_vmx_tpr_shadow())
2742                 kvm_x86_ops->update_cr8_intercept = NULL;
2743
2744         if (enable_ept && !cpu_has_vmx_ept_2m_page())
2745                 kvm_disable_largepages();
2746
2747         if (!cpu_has_vmx_ple())
2748                 ple_gap = 0;
2749
2750         if (nested)
2751                 nested_vmx_setup_ctls_msrs();
2752
2753         return alloc_kvm_area();
2754 }
2755
2756 static __exit void hardware_unsetup(void)
2757 {
2758         free_kvm_area();
2759 }
2760
2761 static void fix_pmode_dataseg(struct kvm_vcpu *vcpu, int seg, struct kvm_segment *save)
2762 {
2763         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2764         struct kvm_segment tmp = *save;
2765
2766         if (!(vmcs_readl(sf->base) == tmp.base && tmp.s)) {
2767                 tmp.base = vmcs_readl(sf->base);
2768                 tmp.selector = vmcs_read16(sf->selector);
2769                 tmp.dpl = tmp.selector & SELECTOR_RPL_MASK;
2770                 tmp.s = 1;
2771         }
2772         vmx_set_segment(vcpu, &tmp, seg);
2773 }
2774
2775 static void enter_pmode(struct kvm_vcpu *vcpu)
2776 {
2777         unsigned long flags;
2778         struct vcpu_vmx *vmx = to_vmx(vcpu);
2779
2780         vmx->emulation_required = 1;
2781         vmx->rmode.vm86_active = 0;
2782
2783         vmx_segment_cache_clear(vmx);
2784
2785         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2786
2787         flags = vmcs_readl(GUEST_RFLAGS);
2788         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2789         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2790         vmcs_writel(GUEST_RFLAGS, flags);
2791
2792         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2793                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2794
2795         update_exception_bitmap(vcpu);
2796
2797         if (emulate_invalid_guest_state)
2798                 return;
2799
2800         fix_pmode_dataseg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2801         fix_pmode_dataseg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2802         fix_pmode_dataseg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2803         fix_pmode_dataseg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2804
2805         vmx_segment_cache_clear(vmx);
2806
2807         vmcs_write16(GUEST_SS_SELECTOR, 0);
2808         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2809
2810         vmcs_write16(GUEST_CS_SELECTOR,
2811                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2812         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2813 }
2814
2815 static gva_t rmode_tss_base(struct kvm *kvm)
2816 {
2817         if (!kvm->arch.tss_addr) {
2818                 struct kvm_memslots *slots;
2819                 struct kvm_memory_slot *slot;
2820                 gfn_t base_gfn;
2821
2822                 slots = kvm_memslots(kvm);
2823                 slot = id_to_memslot(slots, 0);
2824                 base_gfn = slot->base_gfn + slot->npages - 3;
2825
2826                 return base_gfn << PAGE_SHIFT;
2827         }
2828         return kvm->arch.tss_addr;
2829 }
2830
2831 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2832 {
2833         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2834
2835         vmcs_write16(sf->selector, save->base >> 4);
2836         vmcs_write32(sf->base, save->base & 0xffff0);
2837         vmcs_write32(sf->limit, 0xffff);
2838         vmcs_write32(sf->ar_bytes, 0xf3);
2839         if (save->base & 0xf)
2840                 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2841                             " aligned when entering protected mode (seg=%d)",
2842                             seg);
2843 }
2844
2845 static void enter_rmode(struct kvm_vcpu *vcpu)
2846 {
2847         unsigned long flags;
2848         struct vcpu_vmx *vmx = to_vmx(vcpu);
2849         struct kvm_segment var;
2850
2851         if (enable_unrestricted_guest)
2852                 return;
2853
2854         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2855         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2856         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2857         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2858         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2859
2860         vmx->emulation_required = 1;
2861         vmx->rmode.vm86_active = 1;
2862
2863
2864         /*
2865          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2866          * vcpu. Call it here with phys address pointing 16M below 4G.
2867          */
2868         if (!vcpu->kvm->arch.tss_addr) {
2869                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2870                              "called before entering vcpu\n");
2871                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2872                 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2873                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2874         }
2875
2876         vmx_segment_cache_clear(vmx);
2877
2878         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2879         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2880         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2881
2882         flags = vmcs_readl(GUEST_RFLAGS);
2883         vmx->rmode.save_rflags = flags;
2884
2885         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2886
2887         vmcs_writel(GUEST_RFLAGS, flags);
2888         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2889         update_exception_bitmap(vcpu);
2890
2891         if (emulate_invalid_guest_state)
2892                 goto continue_rmode;
2893
2894         vmx_get_segment(vcpu, &var, VCPU_SREG_SS);
2895         vmx_set_segment(vcpu, &var, VCPU_SREG_SS);
2896
2897         vmx_get_segment(vcpu, &var, VCPU_SREG_CS);
2898         vmx_set_segment(vcpu, &var, VCPU_SREG_CS);
2899
2900         vmx_get_segment(vcpu, &var, VCPU_SREG_ES);
2901         vmx_set_segment(vcpu, &var, VCPU_SREG_ES);
2902
2903         vmx_get_segment(vcpu, &var, VCPU_SREG_DS);
2904         vmx_set_segment(vcpu, &var, VCPU_SREG_DS);
2905
2906         vmx_get_segment(vcpu, &var, VCPU_SREG_GS);
2907         vmx_set_segment(vcpu, &var, VCPU_SREG_GS);
2908
2909         vmx_get_segment(vcpu, &var, VCPU_SREG_FS);
2910         vmx_set_segment(vcpu, &var, VCPU_SREG_FS);
2911
2912 continue_rmode:
2913         kvm_mmu_reset_context(vcpu);
2914 }
2915
2916 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2917 {
2918         struct vcpu_vmx *vmx = to_vmx(vcpu);
2919         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2920
2921         if (!msr)
2922                 return;
2923
2924         /*
2925          * Force kernel_gs_base reloading before EFER changes, as control
2926          * of this msr depends on is_long_mode().
2927          */
2928         vmx_load_host_state(to_vmx(vcpu));
2929         vcpu->arch.efer = efer;
2930         if (efer & EFER_LMA) {
2931                 vmcs_write32(VM_ENTRY_CONTROLS,
2932                              vmcs_read32(VM_ENTRY_CONTROLS) |
2933                              VM_ENTRY_IA32E_MODE);
2934                 msr->data = efer;
2935         } else {
2936                 vmcs_write32(VM_ENTRY_CONTROLS,
2937                              vmcs_read32(VM_ENTRY_CONTROLS) &
2938                              ~VM_ENTRY_IA32E_MODE);
2939
2940                 msr->data = efer & ~EFER_LME;
2941         }
2942         setup_msrs(vmx);
2943 }
2944
2945 #ifdef CONFIG_X86_64
2946
2947 static void enter_lmode(struct kvm_vcpu *vcpu)
2948 {
2949         u32 guest_tr_ar;
2950
2951         vmx_segment_cache_clear(to_vmx(vcpu));
2952
2953         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2954         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
2955                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2956                                      __func__);
2957                 vmcs_write32(GUEST_TR_AR_BYTES,
2958                              (guest_tr_ar & ~AR_TYPE_MASK)
2959                              | AR_TYPE_BUSY_64_TSS);
2960         }
2961         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2962 }
2963
2964 static void exit_lmode(struct kvm_vcpu *vcpu)
2965 {
2966         vmcs_write32(VM_ENTRY_CONTROLS,
2967                      vmcs_read32(VM_ENTRY_CONTROLS)
2968                      & ~VM_ENTRY_IA32E_MODE);
2969         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2970 }
2971
2972 #endif
2973
2974 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2975 {
2976         vpid_sync_context(to_vmx(vcpu));
2977         if (enable_ept) {
2978                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2979                         return;
2980                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
2981         }
2982 }
2983
2984 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2985 {
2986         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2987
2988         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2989         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2990 }
2991
2992 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2993 {
2994         if (enable_ept && is_paging(vcpu))
2995                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2996         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2997 }
2998
2999 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3000 {
3001         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3002
3003         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3004         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3005 }
3006
3007 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3008 {
3009         if (!test_bit(VCPU_EXREG_PDPTR,
3010                       (unsigned long *)&vcpu->arch.regs_dirty))
3011                 return;
3012
3013         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3014                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
3015                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
3016                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
3017                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
3018         }
3019 }
3020
3021 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3022 {
3023         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3024                 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3025                 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3026                 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3027                 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3028         }
3029
3030         __set_bit(VCPU_EXREG_PDPTR,
3031                   (unsigned long *)&vcpu->arch.regs_avail);
3032         __set_bit(VCPU_EXREG_PDPTR,
3033                   (unsigned long *)&vcpu->arch.regs_dirty);
3034 }
3035
3036 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3037
3038 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3039                                         unsigned long cr0,
3040                                         struct kvm_vcpu *vcpu)
3041 {
3042         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3043                 vmx_decache_cr3(vcpu);
3044         if (!(cr0 & X86_CR0_PG)) {
3045                 /* From paging/starting to nonpaging */
3046                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3047                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3048                              (CPU_BASED_CR3_LOAD_EXITING |
3049                               CPU_BASED_CR3_STORE_EXITING));
3050                 vcpu->arch.cr0 = cr0;
3051                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3052         } else if (!is_paging(vcpu)) {
3053                 /* From nonpaging to paging */
3054                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3055                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3056                              ~(CPU_BASED_CR3_LOAD_EXITING |
3057                                CPU_BASED_CR3_STORE_EXITING));
3058                 vcpu->arch.cr0 = cr0;
3059                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3060         }
3061
3062         if (!(cr0 & X86_CR0_WP))
3063                 *hw_cr0 &= ~X86_CR0_WP;
3064 }
3065
3066 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3067 {
3068         struct vcpu_vmx *vmx = to_vmx(vcpu);
3069         unsigned long hw_cr0;
3070
3071         if (enable_unrestricted_guest)
3072                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
3073                         | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3074         else
3075                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
3076
3077         if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3078                 enter_pmode(vcpu);
3079
3080         if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3081                 enter_rmode(vcpu);
3082
3083 #ifdef CONFIG_X86_64
3084         if (vcpu->arch.efer & EFER_LME) {
3085                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3086                         enter_lmode(vcpu);
3087                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3088                         exit_lmode(vcpu);
3089         }
3090 #endif
3091
3092         if (enable_ept)
3093                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3094
3095         if (!vcpu->fpu_active)
3096                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3097
3098         vmcs_writel(CR0_READ_SHADOW, cr0);
3099         vmcs_writel(GUEST_CR0, hw_cr0);
3100         vcpu->arch.cr0 = cr0;
3101         __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3102 }
3103
3104 static u64 construct_eptp(unsigned long root_hpa)
3105 {
3106         u64 eptp;
3107
3108         /* TODO write the value reading from MSR */
3109         eptp = VMX_EPT_DEFAULT_MT |
3110                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3111         if (enable_ept_ad_bits)
3112                 eptp |= VMX_EPT_AD_ENABLE_BIT;
3113         eptp |= (root_hpa & PAGE_MASK);
3114
3115         return eptp;
3116 }
3117
3118 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3119 {
3120         unsigned long guest_cr3;
3121         u64 eptp;
3122
3123         guest_cr3 = cr3;
3124         if (enable_ept) {
3125                 eptp = construct_eptp(cr3);
3126                 vmcs_write64(EPT_POINTER, eptp);
3127                 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
3128                         vcpu->kvm->arch.ept_identity_map_addr;
3129                 ept_load_pdptrs(vcpu);
3130         }
3131
3132         vmx_flush_tlb(vcpu);
3133         vmcs_writel(GUEST_CR3, guest_cr3);
3134 }
3135
3136 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3137 {
3138         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3139                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3140
3141         if (cr4 & X86_CR4_VMXE) {
3142                 /*
3143                  * To use VMXON (and later other VMX instructions), a guest
3144                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3145                  * So basically the check on whether to allow nested VMX
3146                  * is here.
3147                  */
3148                 if (!nested_vmx_allowed(vcpu))
3149                         return 1;
3150         } else if (to_vmx(vcpu)->nested.vmxon)
3151                 return 1;
3152
3153         vcpu->arch.cr4 = cr4;
3154         if (enable_ept) {
3155                 if (!is_paging(vcpu)) {
3156                         hw_cr4 &= ~X86_CR4_PAE;
3157                         hw_cr4 |= X86_CR4_PSE;
3158                 } else if (!(cr4 & X86_CR4_PAE)) {
3159                         hw_cr4 &= ~X86_CR4_PAE;
3160                 }
3161         }
3162
3163         vmcs_writel(CR4_READ_SHADOW, cr4);
3164         vmcs_writel(GUEST_CR4, hw_cr4);
3165         return 0;
3166 }
3167
3168 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3169                             struct kvm_segment *var, int seg)
3170 {
3171         struct vcpu_vmx *vmx = to_vmx(vcpu);
3172         u32 ar;
3173
3174         if (vmx->rmode.vm86_active
3175             && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
3176                 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
3177                 || seg == VCPU_SREG_GS)) {
3178                 *var = vmx->rmode.segs[seg];
3179                 if (seg == VCPU_SREG_TR
3180                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3181                         return;
3182                 var->base = vmx_read_guest_seg_base(vmx, seg);
3183                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3184                 return;
3185         }
3186         var->base = vmx_read_guest_seg_base(vmx, seg);
3187         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3188         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3189         ar = vmx_read_guest_seg_ar(vmx, seg);
3190         if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
3191                 ar = 0;
3192         var->type = ar & 15;
3193         var->s = (ar >> 4) & 1;
3194         var->dpl = (ar >> 5) & 3;
3195         var->present = (ar >> 7) & 1;
3196         var->avl = (ar >> 12) & 1;
3197         var->l = (ar >> 13) & 1;
3198         var->db = (ar >> 14) & 1;
3199         var->g = (ar >> 15) & 1;
3200         var->unusable = (ar >> 16) & 1;
3201 }
3202
3203 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3204 {
3205         struct kvm_segment s;
3206
3207         if (to_vmx(vcpu)->rmode.vm86_active) {
3208                 vmx_get_segment(vcpu, &s, seg);
3209                 return s.base;
3210         }
3211         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3212 }
3213
3214 static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
3215 {
3216         if (!is_protmode(vcpu))
3217                 return 0;
3218
3219         if (!is_long_mode(vcpu)
3220             && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3221                 return 3;
3222
3223         return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
3224 }
3225
3226 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3227 {
3228         struct vcpu_vmx *vmx = to_vmx(vcpu);
3229
3230         /*
3231          * If we enter real mode with cs.sel & 3 != 0, the normal CPL calculations
3232          * fail; use the cache instead.
3233          */
3234         if (unlikely(vmx->emulation_required && emulate_invalid_guest_state)) {
3235                 return vmx->cpl;
3236         }
3237
3238         if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3239                 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3240                 vmx->cpl = __vmx_get_cpl(vcpu);
3241         }
3242
3243         return vmx->cpl;
3244 }
3245
3246
3247 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3248 {
3249         u32 ar;
3250
3251         if (var->unusable || !var->present)
3252                 ar = 1 << 16;
3253         else {
3254                 ar = var->type & 15;
3255                 ar |= (var->s & 1) << 4;
3256                 ar |= (var->dpl & 3) << 5;
3257                 ar |= (var->present & 1) << 7;
3258                 ar |= (var->avl & 1) << 12;
3259                 ar |= (var->l & 1) << 13;
3260                 ar |= (var->db & 1) << 14;
3261                 ar |= (var->g & 1) << 15;
3262         }
3263
3264         return ar;
3265 }
3266
3267 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3268                             struct kvm_segment *var, int seg)
3269 {
3270         struct vcpu_vmx *vmx = to_vmx(vcpu);
3271         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3272         u32 ar;
3273
3274         vmx_segment_cache_clear(vmx);
3275
3276         if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
3277                 vmcs_write16(sf->selector, var->selector);
3278                 vmx->rmode.segs[VCPU_SREG_TR] = *var;
3279                 return;
3280         }
3281         vmcs_writel(sf->base, var->base);
3282         vmcs_write32(sf->limit, var->limit);
3283         vmcs_write16(sf->selector, var->selector);
3284         if (vmx->rmode.vm86_active && var->s) {
3285                 vmx->rmode.segs[seg] = *var;
3286                 /*
3287                  * Hack real-mode segments into vm86 compatibility.
3288                  */
3289                 if (var->base == 0xffff0000 && var->selector == 0xf000)
3290                         vmcs_writel(sf->base, 0xf0000);
3291                 ar = 0xf3;
3292         } else
3293                 ar = vmx_segment_access_rights(var);
3294
3295         /*
3296          *   Fix the "Accessed" bit in AR field of segment registers for older
3297          * qemu binaries.
3298          *   IA32 arch specifies that at the time of processor reset the
3299          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3300          * is setting it to 0 in the userland code. This causes invalid guest
3301          * state vmexit when "unrestricted guest" mode is turned on.
3302          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3303          * tree. Newer qemu binaries with that qemu fix would not need this
3304          * kvm hack.
3305          */
3306         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3307                 ar |= 0x1; /* Accessed */
3308
3309         vmcs_write32(sf->ar_bytes, ar);
3310         __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3311
3312         /*
3313          * Fix segments for real mode guest in hosts that don't have
3314          * "unrestricted_mode" or it was disabled.
3315          * This is done to allow migration of the guests from hosts with
3316          * unrestricted guest like Westmere to older host that don't have
3317          * unrestricted guest like Nehelem.
3318          */
3319         if (vmx->rmode.vm86_active) {
3320                 switch (seg) {
3321                 case VCPU_SREG_CS:
3322                         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
3323                         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
3324                         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
3325                                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
3326                         vmcs_write16(GUEST_CS_SELECTOR,
3327                                      vmcs_readl(GUEST_CS_BASE) >> 4);
3328                         break;
3329                 case VCPU_SREG_ES:
3330                 case VCPU_SREG_DS:
3331                 case VCPU_SREG_GS:
3332                 case VCPU_SREG_FS:
3333                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3334                         break;
3335                 case VCPU_SREG_SS:
3336                         vmcs_write16(GUEST_SS_SELECTOR,
3337                                      vmcs_readl(GUEST_SS_BASE) >> 4);
3338                         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
3339                         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
3340                         break;
3341                 }
3342         }
3343 }
3344
3345 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3346 {
3347         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3348
3349         *db = (ar >> 14) & 1;
3350         *l = (ar >> 13) & 1;
3351 }
3352
3353 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3354 {
3355         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3356         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3357 }
3358
3359 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3360 {
3361         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3362         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3363 }
3364
3365 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3366 {
3367         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3368         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3369 }
3370
3371 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3372 {
3373         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3374         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3375 }
3376
3377 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3378 {
3379         struct kvm_segment var;
3380         u32 ar;
3381
3382         vmx_get_segment(vcpu, &var, seg);
3383         ar = vmx_segment_access_rights(&var);
3384
3385         if (var.base != (var.selector << 4))
3386                 return false;
3387         if (var.limit < 0xffff)
3388                 return false;
3389         if (((ar | (3 << AR_DPL_SHIFT)) & ~(AR_G_MASK | AR_DB_MASK)) != 0xf3)
3390                 return false;
3391
3392         return true;
3393 }
3394
3395 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3396 {
3397         struct kvm_segment cs;
3398         unsigned int cs_rpl;
3399
3400         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3401         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3402
3403         if (cs.unusable)
3404                 return false;
3405         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3406                 return false;
3407         if (!cs.s)
3408                 return false;
3409         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3410                 if (cs.dpl > cs_rpl)
3411                         return false;
3412         } else {
3413                 if (cs.dpl != cs_rpl)
3414                         return false;
3415         }
3416         if (!cs.present)
3417                 return false;
3418
3419         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3420         return true;
3421 }
3422
3423 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3424 {
3425         struct kvm_segment ss;
3426         unsigned int ss_rpl;
3427
3428         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3429         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3430
3431         if (ss.unusable)
3432                 return true;
3433         if (ss.type != 3 && ss.type != 7)
3434                 return false;
3435         if (!ss.s)
3436                 return false;
3437         if (ss.dpl != ss_rpl) /* DPL != RPL */
3438                 return false;
3439         if (!ss.present)
3440                 return false;
3441
3442         return true;
3443 }
3444
3445 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3446 {
3447         struct kvm_segment var;
3448         unsigned int rpl;
3449
3450         vmx_get_segment(vcpu, &var, seg);
3451         rpl = var.selector & SELECTOR_RPL_MASK;
3452
3453         if (var.unusable)
3454                 return true;
3455         if (!var.s)
3456                 return false;
3457         if (!var.present)
3458                 return false;
3459         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3460                 if (var.dpl < rpl) /* DPL < RPL */
3461                         return false;
3462         }
3463
3464         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3465          * rights flags
3466          */
3467         return true;
3468 }
3469
3470 static bool tr_valid(struct kvm_vcpu *vcpu)
3471 {
3472         struct kvm_segment tr;
3473
3474         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3475
3476         if (tr.unusable)
3477                 return false;
3478         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
3479                 return false;
3480         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3481                 return false;
3482         if (!tr.present)
3483                 return false;
3484
3485         return true;
3486 }
3487
3488 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3489 {
3490         struct kvm_segment ldtr;
3491
3492         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3493
3494         if (ldtr.unusable)
3495                 return true;
3496         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
3497                 return false;
3498         if (ldtr.type != 2)
3499                 return false;
3500         if (!ldtr.present)
3501                 return false;
3502
3503         return true;
3504 }
3505
3506 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3507 {
3508         struct kvm_segment cs, ss;
3509
3510         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3511         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3512
3513         return ((cs.selector & SELECTOR_RPL_MASK) ==
3514                  (ss.selector & SELECTOR_RPL_MASK));
3515 }
3516
3517 /*
3518  * Check if guest state is valid. Returns true if valid, false if
3519  * not.
3520  * We assume that registers are always usable
3521  */
3522 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3523 {
3524         /* real mode guest state checks */
3525         if (!is_protmode(vcpu)) {
3526                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3527                         return false;
3528                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3529                         return false;
3530                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3531                         return false;
3532                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3533                         return false;
3534                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3535                         return false;
3536                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3537                         return false;
3538         } else {
3539         /* protected mode guest state checks */
3540                 if (!cs_ss_rpl_check(vcpu))
3541                         return false;
3542                 if (!code_segment_valid(vcpu))
3543                         return false;
3544                 if (!stack_segment_valid(vcpu))
3545                         return false;
3546                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3547                         return false;
3548                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3549                         return false;
3550                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3551                         return false;
3552                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3553                         return false;
3554                 if (!tr_valid(vcpu))
3555                         return false;
3556                 if (!ldtr_valid(vcpu))
3557                         return false;
3558         }
3559         /* TODO:
3560          * - Add checks on RIP
3561          * - Add checks on RFLAGS
3562          */
3563
3564         return true;
3565 }
3566
3567 static int init_rmode_tss(struct kvm *kvm)
3568 {
3569         gfn_t fn;
3570         u16 data = 0;
3571         int r, idx, ret = 0;
3572
3573         idx = srcu_read_lock(&kvm->srcu);
3574         fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
3575         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3576         if (r < 0)
3577                 goto out;
3578         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3579         r = kvm_write_guest_page(kvm, fn++, &data,
3580                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3581         if (r < 0)
3582                 goto out;
3583         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3584         if (r < 0)
3585                 goto out;
3586         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3587         if (r < 0)
3588                 goto out;
3589         data = ~0;
3590         r = kvm_write_guest_page(kvm, fn, &data,
3591                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3592                                  sizeof(u8));
3593         if (r < 0)
3594                 goto out;
3595
3596         ret = 1;
3597 out:
3598         srcu_read_unlock(&kvm->srcu, idx);
3599         return ret;
3600 }
3601
3602 static int init_rmode_identity_map(struct kvm *kvm)
3603 {
3604         int i, idx, r, ret;
3605         pfn_t identity_map_pfn;
3606         u32 tmp;
3607
3608         if (!enable_ept)
3609                 return 1;
3610         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3611                 printk(KERN_ERR "EPT: identity-mapping pagetable "
3612                         "haven't been allocated!\n");
3613                 return 0;
3614         }
3615         if (likely(kvm->arch.ept_identity_pagetable_done))
3616                 return 1;
3617         ret = 0;
3618         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3619         idx = srcu_read_lock(&kvm->srcu);
3620         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3621         if (r < 0)
3622                 goto out;
3623         /* Set up identity-mapping pagetable for EPT in real mode */
3624         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3625                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3626                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3627                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3628                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3629                 if (r < 0)
3630                         goto out;
3631         }
3632         kvm->arch.ept_identity_pagetable_done = true;
3633         ret = 1;
3634 out:
3635         srcu_read_unlock(&kvm->srcu, idx);
3636         return ret;
3637 }
3638
3639 static void seg_setup(int seg)
3640 {
3641         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3642         unsigned int ar;
3643
3644         vmcs_write16(sf->selector, 0);
3645         vmcs_writel(sf->base, 0);
3646         vmcs_write32(sf->limit, 0xffff);
3647         if (enable_unrestricted_guest) {
3648                 ar = 0x93;
3649                 if (seg == VCPU_SREG_CS)
3650                         ar |= 0x08; /* code segment */
3651         } else
3652                 ar = 0xf3;
3653
3654         vmcs_write32(sf->ar_bytes, ar);
3655 }
3656
3657 static int alloc_apic_access_page(struct kvm *kvm)
3658 {
3659         struct page *page;
3660         struct kvm_userspace_memory_region kvm_userspace_mem;
3661         int r = 0;
3662
3663         mutex_lock(&kvm->slots_lock);
3664         if (kvm->arch.apic_access_page)
3665                 goto out;
3666         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3667         kvm_userspace_mem.flags = 0;
3668         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3669         kvm_userspace_mem.memory_size = PAGE_SIZE;
3670         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3671         if (r)
3672                 goto out;
3673
3674         page = gfn_to_page(kvm, 0xfee00);
3675         if (is_error_page(page)) {
3676                 r = -EFAULT;
3677                 goto out;
3678         }
3679
3680         kvm->arch.apic_access_page = page;
3681 out:
3682         mutex_unlock(&kvm->slots_lock);
3683         return r;
3684 }
3685
3686 static int alloc_identity_pagetable(struct kvm *kvm)
3687 {
3688         struct page *page;
3689         struct kvm_userspace_memory_region kvm_userspace_mem;
3690         int r = 0;
3691
3692         mutex_lock(&kvm->slots_lock);
3693         if (kvm->arch.ept_identity_pagetable)
3694                 goto out;
3695         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3696         kvm_userspace_mem.flags = 0;
3697         kvm_userspace_mem.guest_phys_addr =
3698                 kvm->arch.ept_identity_map_addr;
3699         kvm_userspace_mem.memory_size = PAGE_SIZE;
3700         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3701         if (r)
3702                 goto out;
3703
3704         page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3705         if (is_error_page(page)) {
3706                 r = -EFAULT;
3707                 goto out;
3708         }
3709
3710         kvm->arch.ept_identity_pagetable = page;
3711 out:
3712         mutex_unlock(&kvm->slots_lock);
3713         return r;
3714 }
3715
3716 static void allocate_vpid(struct vcpu_vmx *vmx)
3717 {
3718         int vpid;
3719
3720         vmx->vpid = 0;
3721         if (!enable_vpid)
3722                 return;
3723         spin_lock(&vmx_vpid_lock);
3724         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3725         if (vpid < VMX_NR_VPIDS) {
3726                 vmx->vpid = vpid;
3727                 __set_bit(vpid, vmx_vpid_bitmap);
3728         }
3729         spin_unlock(&vmx_vpid_lock);
3730 }
3731
3732 static void free_vpid(struct vcpu_vmx *vmx)
3733 {
3734         if (!enable_vpid)
3735                 return;
3736         spin_lock(&vmx_vpid_lock);
3737         if (vmx->vpid != 0)
3738                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3739         spin_unlock(&vmx_vpid_lock);
3740 }
3741
3742 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
3743 {
3744         int f = sizeof(unsigned long);
3745
3746         if (!cpu_has_vmx_msr_bitmap())
3747                 return;
3748
3749         /*
3750          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3751          * have the write-low and read-high bitmap offsets the wrong way round.
3752          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3753          */
3754         if (msr <= 0x1fff) {
3755                 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3756                 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
3757         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3758                 msr &= 0x1fff;
3759                 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3760                 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
3761         }
3762 }
3763
3764 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3765 {
3766         if (!longmode_only)
3767                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3768         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3769 }
3770
3771 /*
3772  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3773  * will not change in the lifetime of the guest.
3774  * Note that host-state that does change is set elsewhere. E.g., host-state
3775  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3776  */
3777 static void vmx_set_constant_host_state(void)
3778 {
3779         u32 low32, high32;
3780         unsigned long tmpl;
3781         struct desc_ptr dt;
3782
3783         vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
3784         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
3785         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
3786
3787         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3788 #ifdef CONFIG_X86_64
3789         /*
3790          * Load null selectors, so we can avoid reloading them in
3791          * __vmx_load_host_state(), in case userspace uses the null selectors
3792          * too (the expected case).
3793          */
3794         vmcs_write16(HOST_DS_SELECTOR, 0);
3795         vmcs_write16(HOST_ES_SELECTOR, 0);
3796 #else
3797         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3798         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3799 #endif
3800         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3801         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3802
3803         native_store_idt(&dt);
3804         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
3805
3806         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
3807
3808         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3809         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3810         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3811         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3812
3813         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3814                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3815                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3816         }
3817 }
3818
3819 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3820 {
3821         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3822         if (enable_ept)
3823                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3824         if (is_guest_mode(&vmx->vcpu))
3825                 vmx->vcpu.arch.cr4_guest_owned_bits &=
3826                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3827         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3828 }
3829
3830 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3831 {
3832         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3833         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3834                 exec_control &= ~CPU_BASED_TPR_SHADOW;
3835 #ifdef CONFIG_X86_64
3836                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3837                                 CPU_BASED_CR8_LOAD_EXITING;
3838 #endif
3839         }
3840         if (!enable_ept)
3841                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3842                                 CPU_BASED_CR3_LOAD_EXITING  |
3843                                 CPU_BASED_INVLPG_EXITING;
3844         return exec_control;
3845 }
3846
3847 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3848 {
3849         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3850         if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3851                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3852         if (vmx->vpid == 0)
3853                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3854         if (!enable_ept) {
3855                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3856                 enable_unrestricted_guest = 0;
3857                 /* Enable INVPCID for non-ept guests may cause performance regression. */
3858                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
3859         }
3860         if (!enable_unrestricted_guest)
3861                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3862         if (!ple_gap)
3863                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3864         return exec_control;
3865 }
3866
3867 static void ept_set_mmio_spte_mask(void)
3868 {
3869         /*
3870          * EPT Misconfigurations can be generated if the value of bits 2:0
3871          * of an EPT paging-structure entry is 110b (write/execute).
3872          * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3873          * spte.
3874          */
3875         kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
3876 }
3877
3878 /*
3879  * Sets up the vmcs for emulated real mode.
3880  */
3881 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
3882 {
3883 #ifdef CONFIG_X86_64
3884         unsigned long a;
3885 #endif
3886         int i;
3887
3888         /* I/O */
3889         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3890         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
3891
3892         if (cpu_has_vmx_msr_bitmap())
3893                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
3894
3895         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3896
3897         /* Control */
3898         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3899                 vmcs_config.pin_based_exec_ctrl);
3900
3901         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
3902
3903         if (cpu_has_secondary_exec_ctrls()) {
3904                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
3905                                 vmx_secondary_exec_control(vmx));
3906         }
3907
3908         if (ple_gap) {
3909                 vmcs_write32(PLE_GAP, ple_gap);
3910                 vmcs_write32(PLE_WINDOW, ple_window);
3911         }
3912
3913         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
3914         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
3915         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
3916
3917         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
3918         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
3919         vmx_set_constant_host_state();
3920 #ifdef CONFIG_X86_64
3921         rdmsrl(MSR_FS_BASE, a);
3922         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3923         rdmsrl(MSR_GS_BASE, a);
3924         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3925 #else
3926         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3927         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3928 #endif
3929
3930         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3931         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3932         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
3933         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3934         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
3935
3936         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3937                 u32 msr_low, msr_high;
3938                 u64 host_pat;
3939                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3940                 host_pat = msr_low | ((u64) msr_high << 32);
3941                 /* Write the default value follow host pat */
3942                 vmcs_write64(GUEST_IA32_PAT, host_pat);
3943                 /* Keep arch.pat sync with GUEST_IA32_PAT */
3944                 vmx->vcpu.arch.pat = host_pat;
3945         }
3946
3947         for (i = 0; i < NR_VMX_MSR; ++i) {
3948                 u32 index = vmx_msr_index[i];
3949                 u32 data_low, data_high;
3950                 int j = vmx->nmsrs;
3951
3952                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
3953                         continue;
3954                 if (wrmsr_safe(index, data_low, data_high) < 0)
3955                         continue;
3956                 vmx->guest_msrs[j].index = i;
3957                 vmx->guest_msrs[j].data = 0;
3958                 vmx->guest_msrs[j].mask = -1ull;
3959                 ++vmx->nmsrs;
3960         }
3961
3962         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
3963
3964         /* 22.2.1, 20.8.1 */
3965         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3966
3967         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
3968         set_cr4_guest_host_mask(vmx);
3969
3970         return 0;
3971 }
3972
3973 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3974 {
3975         struct vcpu_vmx *vmx = to_vmx(vcpu);
3976         u64 msr;
3977         int ret;
3978
3979         vmx->rmode.vm86_active = 0;
3980
3981         vmx->soft_vnmi_blocked = 0;
3982
3983         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
3984         kvm_set_cr8(&vmx->vcpu, 0);
3985         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
3986         if (kvm_vcpu_is_bsp(&vmx->vcpu))
3987                 msr |= MSR_IA32_APICBASE_BSP;
3988         kvm_set_apic_base(&vmx->vcpu, msr);
3989
3990         vmx_segment_cache_clear(vmx);
3991
3992         seg_setup(VCPU_SREG_CS);
3993         /*
3994          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3995          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
3996          */
3997         if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
3998                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3999                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
4000         } else {
4001                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
4002                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
4003         }
4004
4005         seg_setup(VCPU_SREG_DS);
4006         seg_setup(VCPU_SREG_ES);
4007         seg_setup(VCPU_SREG_FS);
4008         seg_setup(VCPU_SREG_GS);
4009         seg_setup(VCPU_SREG_SS);
4010
4011         vmcs_write16(GUEST_TR_SELECTOR, 0);
4012         vmcs_writel(GUEST_TR_BASE, 0);
4013         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4014         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4015
4016         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4017         vmcs_writel(GUEST_LDTR_BASE, 0);
4018         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4019         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4020
4021         vmcs_write32(GUEST_SYSENTER_CS, 0);
4022         vmcs_writel(GUEST_SYSENTER_ESP, 0);
4023         vmcs_writel(GUEST_SYSENTER_EIP, 0);
4024
4025         vmcs_writel(GUEST_RFLAGS, 0x02);
4026         if (kvm_vcpu_is_bsp(&vmx->vcpu))
4027                 kvm_rip_write(vcpu, 0xfff0);
4028         else
4029                 kvm_rip_write(vcpu, 0);
4030
4031         vmcs_writel(GUEST_GDTR_BASE, 0);
4032         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4033
4034         vmcs_writel(GUEST_IDTR_BASE, 0);
4035         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4036
4037         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4038         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4039         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4040
4041         /* Special registers */
4042         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4043
4044         setup_msrs(vmx);
4045
4046         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4047
4048         if (cpu_has_vmx_tpr_shadow()) {
4049                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4050                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4051                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4052                                      __pa(vmx->vcpu.arch.apic->regs));
4053                 vmcs_write32(TPR_THRESHOLD, 0);
4054         }
4055
4056         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4057                 vmcs_write64(APIC_ACCESS_ADDR,
4058                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
4059
4060         if (vmx->vpid != 0)
4061                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4062
4063         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4064         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4065         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4066         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4067         vmx_set_cr4(&vmx->vcpu, 0);
4068         vmx_set_efer(&vmx->vcpu, 0);
4069         vmx_fpu_activate(&vmx->vcpu);
4070         update_exception_bitmap(&vmx->vcpu);
4071
4072         vpid_sync_context(vmx);
4073
4074         ret = 0;
4075
4076         /* HACK: Don't enable emulation on guest boot/reset */
4077         vmx->emulation_required = 0;
4078
4079         return ret;
4080 }
4081
4082 /*
4083  * In nested virtualization, check if L1 asked to exit on external interrupts.
4084  * For most existing hypervisors, this will always return true.
4085  */
4086 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4087 {
4088         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4089                 PIN_BASED_EXT_INTR_MASK;
4090 }
4091
4092 static void enable_irq_window(struct kvm_vcpu *vcpu)
4093 {
4094         u32 cpu_based_vm_exec_control;
4095         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4096                 /*
4097                  * We get here if vmx_interrupt_allowed() said we can't
4098                  * inject to L1 now because L2 must run. Ask L2 to exit
4099                  * right after entry, so we can inject to L1 more promptly.
4100                  */
4101                 kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
4102                 return;
4103         }
4104
4105         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4106         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4107         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4108 }
4109
4110 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4111 {
4112         u32 cpu_based_vm_exec_control;
4113
4114         if (!cpu_has_virtual_nmis()) {
4115                 enable_irq_window(vcpu);
4116                 return;
4117         }
4118
4119         if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4120                 enable_irq_window(vcpu);
4121                 return;
4122         }
4123         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4124         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4125         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4126 }
4127
4128 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4129 {
4130         struct vcpu_vmx *vmx = to_vmx(vcpu);
4131         uint32_t intr;
4132         int irq = vcpu->arch.interrupt.nr;
4133
4134         trace_kvm_inj_virq(irq);
4135
4136         ++vcpu->stat.irq_injections;
4137         if (vmx->rmode.vm86_active) {
4138                 int inc_eip = 0;
4139                 if (vcpu->arch.interrupt.soft)
4140                         inc_eip = vcpu->arch.event_exit_inst_len;
4141                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4142                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4143                 return;
4144         }
4145         intr = irq | INTR_INFO_VALID_MASK;
4146         if (vcpu->arch.interrupt.soft) {
4147                 intr |= INTR_TYPE_SOFT_INTR;
4148                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4149                              vmx->vcpu.arch.event_exit_inst_len);
4150         } else
4151                 intr |= INTR_TYPE_EXT_INTR;
4152         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4153 }
4154
4155 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4156 {
4157         struct vcpu_vmx *vmx = to_vmx(vcpu);
4158
4159         if (is_guest_mode(vcpu))
4160                 return;
4161
4162         if (!cpu_has_virtual_nmis()) {
4163                 /*
4164                  * Tracking the NMI-blocked state in software is built upon
4165                  * finding the next open IRQ window. This, in turn, depends on
4166                  * well-behaving guests: They have to keep IRQs disabled at
4167                  * least as long as the NMI handler runs. Otherwise we may
4168                  * cause NMI nesting, maybe breaking the guest. But as this is
4169                  * highly unlikely, we can live with the residual risk.
4170                  */
4171                 vmx->soft_vnmi_blocked = 1;
4172                 vmx->vnmi_blocked_time = 0;
4173         }
4174
4175         ++vcpu->stat.nmi_injections;
4176         vmx->nmi_known_unmasked = false;
4177         if (vmx->rmode.vm86_active) {
4178                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4179                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4180                 return;
4181         }
4182         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4183                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4184 }
4185
4186 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4187 {
4188         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4189                 return 0;
4190
4191         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4192                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4193                    | GUEST_INTR_STATE_NMI));
4194 }
4195
4196 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4197 {
4198         if (!cpu_has_virtual_nmis())
4199                 return to_vmx(vcpu)->soft_vnmi_blocked;
4200         if (to_vmx(vcpu)->nmi_known_unmasked)
4201                 return false;
4202         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4203 }
4204
4205 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4206 {
4207         struct vcpu_vmx *vmx = to_vmx(vcpu);
4208
4209         if (!cpu_has_virtual_nmis()) {
4210                 if (vmx->soft_vnmi_blocked != masked) {
4211                         vmx->soft_vnmi_blocked = masked;
4212                         vmx->vnmi_blocked_time = 0;
4213                 }
4214         } else {
4215                 vmx->nmi_known_unmasked = !masked;
4216                 if (masked)
4217                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4218                                       GUEST_INTR_STATE_NMI);
4219                 else
4220                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4221                                         GUEST_INTR_STATE_NMI);
4222         }
4223 }
4224
4225 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4226 {
4227         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4228                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4229                 if (to_vmx(vcpu)->nested.nested_run_pending ||
4230                     (vmcs12->idt_vectoring_info_field &
4231                      VECTORING_INFO_VALID_MASK))
4232                         return 0;
4233                 nested_vmx_vmexit(vcpu);
4234                 vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
4235                 vmcs12->vm_exit_intr_info = 0;
4236                 /* fall through to normal code, but now in L1, not L2 */
4237         }
4238
4239         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4240                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4241                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4242 }
4243
4244 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4245 {
4246         int ret;
4247         struct kvm_userspace_memory_region tss_mem = {
4248                 .slot = TSS_PRIVATE_MEMSLOT,
4249                 .guest_phys_addr = addr,
4250                 .memory_size = PAGE_SIZE * 3,
4251                 .flags = 0,
4252         };
4253
4254         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
4255         if (ret)
4256                 return ret;
4257         kvm->arch.tss_addr = addr;
4258         if (!init_rmode_tss(kvm))
4259                 return  -ENOMEM;
4260
4261         return 0;
4262 }
4263
4264 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4265                                   int vec, u32 err_code)
4266 {
4267         /*
4268          * Instruction with address size override prefix opcode 0x67
4269          * Cause the #SS fault with 0 error code in VM86 mode.
4270          */
4271         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
4272                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
4273                         return 1;
4274         /*
4275          * Forward all other exceptions that are valid in real mode.
4276          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4277          *        the required debugging infrastructure rework.
4278          */
4279         switch (vec) {
4280         case DB_VECTOR:
4281                 if (vcpu->guest_debug &
4282                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4283                         return 0;
4284                 kvm_queue_exception(vcpu, vec);
4285                 return 1;
4286         case BP_VECTOR:
4287                 /*
4288                  * Update instruction length as we may reinject the exception
4289                  * from user space while in guest debugging mode.
4290                  */
4291                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4292                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4293                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4294                         return 0;
4295                 /* fall through */
4296         case DE_VECTOR:
4297         case OF_VECTOR:
4298         case BR_VECTOR:
4299         case UD_VECTOR:
4300         case DF_VECTOR:
4301         case SS_VECTOR:
4302         case GP_VECTOR:
4303         case MF_VECTOR:
4304                 kvm_queue_exception(vcpu, vec);
4305                 return 1;
4306         }
4307         return 0;
4308 }
4309
4310 /*
4311  * Trigger machine check on the host. We assume all the MSRs are already set up
4312  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4313  * We pass a fake environment to the machine check handler because we want
4314  * the guest to be always treated like user space, no matter what context
4315  * it used internally.
4316  */
4317 static void kvm_machine_check(void)
4318 {
4319 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4320         struct pt_regs regs = {
4321                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4322                 .flags = X86_EFLAGS_IF,
4323         };
4324
4325         do_machine_check(&regs, 0);
4326 #endif
4327 }
4328
4329 static int handle_machine_check(struct kvm_vcpu *vcpu)
4330 {
4331         /* already handled by vcpu_run */
4332         return 1;
4333 }
4334
4335 static int handle_exception(struct kvm_vcpu *vcpu)
4336 {
4337         struct vcpu_vmx *vmx = to_vmx(vcpu);
4338         struct kvm_run *kvm_run = vcpu->run;
4339         u32 intr_info, ex_no, error_code;
4340         unsigned long cr2, rip, dr6;
4341         u32 vect_info;
4342         enum emulation_result er;
4343
4344         vect_info = vmx->idt_vectoring_info;
4345         intr_info = vmx->exit_intr_info;
4346
4347         if (is_machine_check(intr_info))
4348                 return handle_machine_check(vcpu);
4349
4350         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4351                 return 1;  /* already handled by vmx_vcpu_run() */
4352
4353         if (is_no_device(intr_info)) {
4354                 vmx_fpu_activate(vcpu);
4355                 return 1;
4356         }
4357
4358         if (is_invalid_opcode(intr_info)) {
4359                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4360                 if (er != EMULATE_DONE)
4361                         kvm_queue_exception(vcpu, UD_VECTOR);
4362                 return 1;
4363         }
4364
4365         error_code = 0;
4366         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4367                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4368
4369         /*
4370          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4371          * MMIO, it is better to report an internal error.
4372          * See the comments in vmx_handle_exit.
4373          */
4374         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4375             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4376                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4377                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4378                 vcpu->run->internal.ndata = 2;
4379                 vcpu->run->internal.data[0] = vect_info;
4380                 vcpu->run->internal.data[1] = intr_info;
4381                 return 0;
4382         }
4383
4384         if (is_page_fault(intr_info)) {
4385                 /* EPT won't cause page fault directly */
4386                 BUG_ON(enable_ept);
4387                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4388                 trace_kvm_page_fault(cr2, error_code);
4389
4390                 if (kvm_event_needs_reinjection(vcpu))
4391                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
4392                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4393         }
4394
4395         if (vmx->rmode.vm86_active &&
4396             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
4397                                                                 error_code)) {
4398                 if (vcpu->arch.halt_request) {
4399                         vcpu->arch.halt_request = 0;
4400                         return kvm_emulate_halt(vcpu);
4401                 }
4402                 return 1;
4403         }
4404
4405         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4406         switch (ex_no) {
4407         case DB_VECTOR:
4408                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4409                 if (!(vcpu->guest_debug &
4410                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4411                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4412                         kvm_queue_exception(vcpu, DB_VECTOR);
4413                         return 1;
4414                 }
4415                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4416                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4417                 /* fall through */
4418         case BP_VECTOR:
4419                 /*
4420                  * Update instruction length as we may reinject #BP from
4421                  * user space while in guest debugging mode. Reading it for
4422                  * #DB as well causes no harm, it is not used in that case.
4423                  */
4424                 vmx->vcpu.arch.event_exit_inst_len =
4425                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4426                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4427                 rip = kvm_rip_read(vcpu);
4428                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4429                 kvm_run->debug.arch.exception = ex_no;
4430                 break;
4431         default:
4432                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4433                 kvm_run->ex.exception = ex_no;
4434                 kvm_run->ex.error_code = error_code;
4435                 break;
4436         }
4437         return 0;
4438 }
4439
4440 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4441 {
4442         ++vcpu->stat.irq_exits;
4443         return 1;
4444 }
4445
4446 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4447 {
4448         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4449         return 0;
4450 }
4451
4452 static int handle_io(struct kvm_vcpu *vcpu)
4453 {
4454         unsigned long exit_qualification;
4455         int size, in, string;
4456         unsigned port;
4457
4458         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4459         string = (exit_qualification & 16) != 0;
4460         in = (exit_qualification & 8) != 0;
4461
4462         ++vcpu->stat.io_exits;
4463
4464         if (string || in)
4465                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4466
4467         port = exit_qualification >> 16;
4468         size = (exit_qualification & 7) + 1;
4469         skip_emulated_instruction(vcpu);
4470
4471         return kvm_fast_pio_out(vcpu, size, port);
4472 }
4473
4474 static void
4475 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4476 {
4477         /*
4478          * Patch in the VMCALL instruction:
4479          */
4480         hypercall[0] = 0x0f;
4481         hypercall[1] = 0x01;
4482         hypercall[2] = 0xc1;
4483 }
4484
4485 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4486 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4487 {
4488         if (to_vmx(vcpu)->nested.vmxon &&
4489             ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4490                 return 1;
4491
4492         if (is_guest_mode(vcpu)) {
4493                 /*
4494                  * We get here when L2 changed cr0 in a way that did not change
4495                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4496                  * but did change L0 shadowed bits. This can currently happen
4497                  * with the TS bit: L0 may want to leave TS on (for lazy fpu
4498                  * loading) while pretending to allow the guest to change it.
4499                  */
4500                 if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
4501                          (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
4502                         return 1;
4503                 vmcs_writel(CR0_READ_SHADOW, val);
4504                 return 0;
4505         } else
4506                 return kvm_set_cr0(vcpu, val);
4507 }
4508
4509 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4510 {
4511         if (is_guest_mode(vcpu)) {
4512                 if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
4513                          (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
4514                         return 1;
4515                 vmcs_writel(CR4_READ_SHADOW, val);
4516                 return 0;
4517         } else
4518                 return kvm_set_cr4(vcpu, val);
4519 }
4520
4521 /* called to set cr0 as approriate for clts instruction exit. */
4522 static void handle_clts(struct kvm_vcpu *vcpu)
4523 {
4524         if (is_guest_mode(vcpu)) {
4525                 /*
4526                  * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4527                  * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4528                  * just pretend it's off (also in arch.cr0 for fpu_activate).
4529                  */
4530                 vmcs_writel(CR0_READ_SHADOW,
4531                         vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4532                 vcpu->arch.cr0 &= ~X86_CR0_TS;
4533         } else
4534                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4535 }
4536
4537 static int handle_cr(struct kvm_vcpu *vcpu)
4538 {
4539         unsigned long exit_qualification, val;
4540         int cr;
4541         int reg;
4542         int err;
4543
4544         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4545         cr = exit_qualification & 15;
4546         reg = (exit_qualification >> 8) & 15;
4547         switch ((exit_qualification >> 4) & 3) {
4548         case 0: /* mov to cr */
4549                 val = kvm_register_read(vcpu, reg);
4550                 trace_kvm_cr_write(cr, val);
4551                 switch (cr) {
4552                 case 0:
4553                         err = handle_set_cr0(vcpu, val);
4554                         kvm_complete_insn_gp(vcpu, err);
4555                         return 1;
4556                 case 3:
4557                         err = kvm_set_cr3(vcpu, val);
4558                         kvm_complete_insn_gp(vcpu, err);
4559                         return 1;
4560                 case 4:
4561                         err = handle_set_cr4(vcpu, val);
4562                         kvm_complete_insn_gp(vcpu, err);
4563                         return 1;
4564                 case 8: {
4565                                 u8 cr8_prev = kvm_get_cr8(vcpu);
4566                                 u8 cr8 = kvm_register_read(vcpu, reg);
4567                                 err = kvm_set_cr8(vcpu, cr8);
4568                                 kvm_complete_insn_gp(vcpu, err);
4569                                 if (irqchip_in_kernel(vcpu->kvm))
4570                                         return 1;
4571                                 if (cr8_prev <= cr8)
4572                                         return 1;
4573                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4574                                 return 0;
4575                         }
4576                 }
4577                 break;
4578         case 2: /* clts */
4579                 handle_clts(vcpu);
4580                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4581                 skip_emulated_instruction(vcpu);
4582                 vmx_fpu_activate(vcpu);
4583                 return 1;
4584         case 1: /*mov from cr*/
4585                 switch (cr) {
4586                 case 3:
4587                         val = kvm_read_cr3(vcpu);
4588                         kvm_register_write(vcpu, reg, val);
4589                         trace_kvm_cr_read(cr, val);
4590                         skip_emulated_instruction(vcpu);
4591                         return 1;
4592                 case 8:
4593                         val = kvm_get_cr8(vcpu);
4594                         kvm_register_write(vcpu, reg, val);
4595                         trace_kvm_cr_read(cr, val);
4596                         skip_emulated_instruction(vcpu);
4597                         return 1;
4598                 }
4599                 break;
4600         case 3: /* lmsw */
4601                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4602                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4603                 kvm_lmsw(vcpu, val);
4604
4605                 skip_emulated_instruction(vcpu);
4606                 return 1;
4607         default:
4608                 break;
4609         }
4610         vcpu->run->exit_reason = 0;
4611         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4612                (int)(exit_qualification >> 4) & 3, cr);
4613         return 0;
4614 }
4615
4616 static int handle_dr(struct kvm_vcpu *vcpu)
4617 {
4618         unsigned long exit_qualification;
4619         int dr, reg;
4620
4621         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4622         if (!kvm_require_cpl(vcpu, 0))
4623                 return 1;
4624         dr = vmcs_readl(GUEST_DR7);
4625         if (dr & DR7_GD) {
4626                 /*
4627                  * As the vm-exit takes precedence over the debug trap, we
4628                  * need to emulate the latter, either for the host or the
4629                  * guest debugging itself.
4630                  */
4631                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4632                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4633                         vcpu->run->debug.arch.dr7 = dr;
4634                         vcpu->run->debug.arch.pc =
4635                                 vmcs_readl(GUEST_CS_BASE) +
4636                                 vmcs_readl(GUEST_RIP);
4637                         vcpu->run->debug.arch.exception = DB_VECTOR;
4638                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4639                         return 0;
4640                 } else {
4641                         vcpu->arch.dr7 &= ~DR7_GD;
4642                         vcpu->arch.dr6 |= DR6_BD;
4643                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4644                         kvm_queue_exception(vcpu, DB_VECTOR);
4645                         return 1;
4646                 }
4647         }
4648
4649         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4650         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4651         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4652         if (exit_qualification & TYPE_MOV_FROM_DR) {
4653                 unsigned long val;
4654                 if (!kvm_get_dr(vcpu, dr, &val))
4655                         kvm_register_write(vcpu, reg, val);
4656         } else
4657                 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
4658         skip_emulated_instruction(vcpu);
4659         return 1;
4660 }
4661
4662 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4663 {
4664         vmcs_writel(GUEST_DR7, val);
4665 }
4666
4667 static int handle_cpuid(struct kvm_vcpu *vcpu)
4668 {
4669         kvm_emulate_cpuid(vcpu);
4670         return 1;
4671 }
4672
4673 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4674 {
4675         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4676         u64 data;
4677
4678         if (vmx_get_msr(vcpu, ecx, &data)) {
4679                 trace_kvm_msr_read_ex(ecx);
4680                 kvm_inject_gp(vcpu, 0);
4681                 return 1;
4682         }
4683
4684         trace_kvm_msr_read(ecx, data);
4685
4686         /* FIXME: handling of bits 32:63 of rax, rdx */
4687         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4688         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
4689         skip_emulated_instruction(vcpu);
4690         return 1;
4691 }
4692
4693 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4694 {
4695         struct msr_data msr;
4696         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4697         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4698                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
4699
4700         msr.data = data;
4701         msr.index = ecx;
4702         msr.host_initiated = false;
4703         if (vmx_set_msr(vcpu, &msr) != 0) {
4704                 trace_kvm_msr_write_ex(ecx, data);
4705                 kvm_inject_gp(vcpu, 0);
4706                 return 1;
4707         }
4708
4709         trace_kvm_msr_write(ecx, data);
4710         skip_emulated_instruction(vcpu);
4711         return 1;
4712 }
4713
4714 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4715 {
4716         kvm_make_request(KVM_REQ_EVENT, vcpu);
4717         return 1;
4718 }
4719
4720 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4721 {
4722         u32 cpu_based_vm_exec_control;
4723
4724         /* clear pending irq */
4725         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4726         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4727         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4728
4729         kvm_make_request(KVM_REQ_EVENT, vcpu);
4730
4731         ++vcpu->stat.irq_window_exits;
4732
4733         /*
4734          * If the user space waits to inject interrupts, exit as soon as
4735          * possible
4736          */
4737         if (!irqchip_in_kernel(vcpu->kvm) &&
4738             vcpu->run->request_interrupt_window &&
4739             !kvm_cpu_has_interrupt(vcpu)) {
4740                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
4741                 return 0;
4742         }
4743         return 1;
4744 }
4745
4746 static int handle_halt(struct kvm_vcpu *vcpu)
4747 {
4748         skip_emulated_instruction(vcpu);
4749         return kvm_emulate_halt(vcpu);
4750 }
4751
4752 static int handle_vmcall(struct kvm_vcpu *vcpu)
4753 {
4754         skip_emulated_instruction(vcpu);
4755         kvm_emulate_hypercall(vcpu);
4756         return 1;
4757 }
4758
4759 static int handle_invd(struct kvm_vcpu *vcpu)
4760 {
4761         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4762 }
4763
4764 static int handle_invlpg(struct kvm_vcpu *vcpu)
4765 {
4766         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4767
4768         kvm_mmu_invlpg(vcpu, exit_qualification);
4769         skip_emulated_instruction(vcpu);
4770         return 1;
4771 }
4772
4773 static int handle_rdpmc(struct kvm_vcpu *vcpu)
4774 {
4775         int err;
4776
4777         err = kvm_rdpmc(vcpu);
4778         kvm_complete_insn_gp(vcpu, err);
4779
4780         return 1;
4781 }
4782
4783 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4784 {
4785         skip_emulated_instruction(vcpu);
4786         kvm_emulate_wbinvd(vcpu);
4787         return 1;
4788 }
4789
4790 static int handle_xsetbv(struct kvm_vcpu *vcpu)
4791 {
4792         u64 new_bv = kvm_read_edx_eax(vcpu);
4793         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4794
4795         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4796                 skip_emulated_instruction(vcpu);
4797         return 1;
4798 }
4799
4800 static int handle_apic_access(struct kvm_vcpu *vcpu)
4801 {
4802         if (likely(fasteoi)) {
4803                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4804                 int access_type, offset;
4805
4806                 access_type = exit_qualification & APIC_ACCESS_TYPE;
4807                 offset = exit_qualification & APIC_ACCESS_OFFSET;
4808                 /*
4809                  * Sane guest uses MOV to write EOI, with written value
4810                  * not cared. So make a short-circuit here by avoiding
4811                  * heavy instruction emulation.
4812                  */
4813                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4814                     (offset == APIC_EOI)) {
4815                         kvm_lapic_set_eoi(vcpu);
4816                         skip_emulated_instruction(vcpu);
4817                         return 1;
4818                 }
4819         }
4820         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4821 }
4822
4823 static int handle_task_switch(struct kvm_vcpu *vcpu)
4824 {
4825         struct vcpu_vmx *vmx = to_vmx(vcpu);
4826         unsigned long exit_qualification;
4827         bool has_error_code = false;
4828         u32 error_code = 0;
4829         u16 tss_selector;
4830         int reason, type, idt_v, idt_index;
4831
4832         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4833         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
4834         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
4835
4836         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4837
4838         reason = (u32)exit_qualification >> 30;
4839         if (reason == TASK_SWITCH_GATE && idt_v) {
4840                 switch (type) {
4841                 case INTR_TYPE_NMI_INTR:
4842                         vcpu->arch.nmi_injected = false;
4843                         vmx_set_nmi_mask(vcpu, true);
4844                         break;
4845                 case INTR_TYPE_EXT_INTR:
4846                 case INTR_TYPE_SOFT_INTR:
4847                         kvm_clear_interrupt_queue(vcpu);
4848                         break;
4849                 case INTR_TYPE_HARD_EXCEPTION:
4850                         if (vmx->idt_vectoring_info &
4851                             VECTORING_INFO_DELIVER_CODE_MASK) {
4852                                 has_error_code = true;
4853                                 error_code =
4854                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
4855                         }
4856                         /* fall through */
4857                 case INTR_TYPE_SOFT_EXCEPTION:
4858                         kvm_clear_exception_queue(vcpu);
4859                         break;
4860                 default:
4861                         break;
4862                 }
4863         }
4864         tss_selector = exit_qualification;
4865
4866         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4867                        type != INTR_TYPE_EXT_INTR &&
4868                        type != INTR_TYPE_NMI_INTR))
4869                 skip_emulated_instruction(vcpu);
4870
4871         if (kvm_task_switch(vcpu, tss_selector,
4872                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
4873                             has_error_code, error_code) == EMULATE_FAIL) {
4874                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4875                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4876                 vcpu->run->internal.ndata = 0;
4877                 return 0;
4878         }
4879
4880         /* clear all local breakpoint enable flags */
4881         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4882
4883         /*
4884          * TODO: What about debug traps on tss switch?
4885          *       Are we supposed to inject them and update dr6?
4886          */
4887
4888         return 1;
4889 }
4890
4891 static int handle_ept_violation(struct kvm_vcpu *vcpu)
4892 {
4893         unsigned long exit_qualification;
4894         gpa_t gpa;
4895         u32 error_code;
4896         int gla_validity;
4897
4898         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4899
4900         gla_validity = (exit_qualification >> 7) & 0x3;
4901         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4902                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4903                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4904                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
4905                         vmcs_readl(GUEST_LINEAR_ADDRESS));
4906                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4907                         (long unsigned int)exit_qualification);
4908                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4909                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
4910                 return 0;
4911         }
4912
4913         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4914         trace_kvm_page_fault(gpa, exit_qualification);
4915
4916         /* It is a write fault? */
4917         error_code = exit_qualification & (1U << 1);
4918         /* ept page table is present? */
4919         error_code |= (exit_qualification >> 3) & 0x1;
4920
4921         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
4922 }
4923
4924 static u64 ept_rsvd_mask(u64 spte, int level)
4925 {
4926         int i;
4927         u64 mask = 0;
4928
4929         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4930                 mask |= (1ULL << i);
4931
4932         if (level > 2)
4933                 /* bits 7:3 reserved */
4934                 mask |= 0xf8;
4935         else if (level == 2) {
4936                 if (spte & (1ULL << 7))
4937                         /* 2MB ref, bits 20:12 reserved */
4938                         mask |= 0x1ff000;
4939                 else
4940                         /* bits 6:3 reserved */
4941                         mask |= 0x78;
4942         }
4943
4944         return mask;
4945 }
4946
4947 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4948                                        int level)
4949 {
4950         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4951
4952         /* 010b (write-only) */
4953         WARN_ON((spte & 0x7) == 0x2);
4954
4955         /* 110b (write/execute) */
4956         WARN_ON((spte & 0x7) == 0x6);
4957
4958         /* 100b (execute-only) and value not supported by logical processor */
4959         if (!cpu_has_vmx_ept_execute_only())
4960                 WARN_ON((spte & 0x7) == 0x4);
4961
4962         /* not 000b */
4963         if ((spte & 0x7)) {
4964                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4965
4966                 if (rsvd_bits != 0) {
4967                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4968                                          __func__, rsvd_bits);
4969                         WARN_ON(1);
4970                 }
4971
4972                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4973                         u64 ept_mem_type = (spte & 0x38) >> 3;
4974
4975                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
4976                             ept_mem_type == 7) {
4977                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4978                                                 __func__, ept_mem_type);
4979                                 WARN_ON(1);
4980                         }
4981                 }
4982         }
4983 }
4984
4985 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
4986 {
4987         u64 sptes[4];
4988         int nr_sptes, i, ret;
4989         gpa_t gpa;
4990
4991         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4992
4993         ret = handle_mmio_page_fault_common(vcpu, gpa, true);
4994         if (likely(ret == 1))
4995                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
4996                                               EMULATE_DONE;
4997         if (unlikely(!ret))
4998                 return 1;
4999
5000         /* It is the real ept misconfig */
5001         printk(KERN_ERR "EPT: Misconfiguration.\n");
5002         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5003
5004         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5005
5006         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5007                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5008
5009         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5010         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5011
5012         return 0;
5013 }
5014
5015 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5016 {
5017         u32 cpu_based_vm_exec_control;
5018
5019         /* clear pending NMI */
5020         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5021         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5022         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5023         ++vcpu->stat.nmi_window_exits;
5024         kvm_make_request(KVM_REQ_EVENT, vcpu);
5025
5026         return 1;
5027 }
5028
5029 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5030 {
5031         struct vcpu_vmx *vmx = to_vmx(vcpu);
5032         enum emulation_result err = EMULATE_DONE;
5033         int ret = 1;
5034         u32 cpu_exec_ctrl;
5035         bool intr_window_requested;
5036         unsigned count = 130;
5037
5038         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5039         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5040
5041         while (!guest_state_valid(vcpu) && count-- != 0) {
5042                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5043                         return handle_interrupt_window(&vmx->vcpu);
5044
5045                 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5046                         return 1;
5047
5048                 err = emulate_instruction(vcpu, 0);
5049
5050                 if (err == EMULATE_DO_MMIO) {
5051                         ret = 0;
5052                         goto out;
5053                 }
5054
5055                 if (err != EMULATE_DONE) {
5056                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5057                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5058                         vcpu->run->internal.ndata = 0;
5059                         return 0;
5060                 }
5061
5062                 if (signal_pending(current))
5063                         goto out;
5064                 if (need_resched())
5065                         schedule();
5066         }
5067
5068         vmx->emulation_required = !guest_state_valid(vcpu);
5069 out:
5070         return ret;
5071 }
5072
5073 /*
5074  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5075  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5076  */
5077 static int handle_pause(struct kvm_vcpu *vcpu)
5078 {
5079         skip_emulated_instruction(vcpu);
5080         kvm_vcpu_on_spin(vcpu);
5081
5082         return 1;
5083 }
5084
5085 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5086 {
5087         kvm_queue_exception(vcpu, UD_VECTOR);
5088         return 1;
5089 }
5090
5091 /*
5092  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5093  * We could reuse a single VMCS for all the L2 guests, but we also want the
5094  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5095  * allows keeping them loaded on the processor, and in the future will allow
5096  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5097  * every entry if they never change.
5098  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5099  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5100  *
5101  * The following functions allocate and free a vmcs02 in this pool.
5102  */
5103
5104 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5105 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5106 {
5107         struct vmcs02_list *item;
5108         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5109                 if (item->vmptr == vmx->nested.current_vmptr) {
5110                         list_move(&item->list, &vmx->nested.vmcs02_pool);
5111                         return &item->vmcs02;
5112                 }
5113
5114         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5115                 /* Recycle the least recently used VMCS. */
5116                 item = list_entry(vmx->nested.vmcs02_pool.prev,
5117                         struct vmcs02_list, list);
5118                 item->vmptr = vmx->nested.current_vmptr;
5119                 list_move(&item->list, &vmx->nested.vmcs02_pool);
5120                 return &item->vmcs02;
5121         }
5122
5123         /* Create a new VMCS */
5124         item = (struct vmcs02_list *)
5125                 kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5126         if (!item)
5127                 return NULL;
5128         item->vmcs02.vmcs = alloc_vmcs();
5129         if (!item->vmcs02.vmcs) {
5130                 kfree(item);
5131                 return NULL;
5132         }
5133         loaded_vmcs_init(&item->vmcs02);
5134         item->vmptr = vmx->nested.current_vmptr;
5135         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5136         vmx->nested.vmcs02_num++;
5137         return &item->vmcs02;
5138 }
5139
5140 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5141 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5142 {
5143         struct vmcs02_list *item;
5144         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5145                 if (item->vmptr == vmptr) {
5146                         free_loaded_vmcs(&item->vmcs02);
5147                         list_del(&item->list);
5148                         kfree(item);
5149                         vmx->nested.vmcs02_num--;
5150                         return;
5151                 }
5152 }
5153
5154 /*
5155  * Free all VMCSs saved for this vcpu, except the one pointed by
5156  * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5157  * currently used, if running L2), and vmcs01 when running L2.
5158  */
5159 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5160 {
5161         struct vmcs02_list *item, *n;
5162         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5163                 if (vmx->loaded_vmcs != &item->vmcs02)
5164                         free_loaded_vmcs(&item->vmcs02);
5165                 list_del(&item->list);
5166                 kfree(item);
5167         }
5168         vmx->nested.vmcs02_num = 0;
5169
5170         if (vmx->loaded_vmcs != &vmx->vmcs01)
5171                 free_loaded_vmcs(&vmx->vmcs01);
5172 }
5173
5174 /*
5175  * Emulate the VMXON instruction.
5176  * Currently, we just remember that VMX is active, and do not save or even
5177  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5178  * do not currently need to store anything in that guest-allocated memory
5179  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5180  * argument is different from the VMXON pointer (which the spec says they do).
5181  */
5182 static int handle_vmon(struct kvm_vcpu *vcpu)
5183 {
5184         struct kvm_segment cs;
5185         struct vcpu_vmx *vmx = to_vmx(vcpu);
5186
5187         /* The Intel VMX Instruction Reference lists a bunch of bits that
5188          * are prerequisite to running VMXON, most notably cr4.VMXE must be
5189          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5190          * Otherwise, we should fail with #UD. We test these now:
5191          */
5192         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5193             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5194             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5195                 kvm_queue_exception(vcpu, UD_VECTOR);
5196                 return 1;
5197         }
5198
5199         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5200         if (is_long_mode(vcpu) && !cs.l) {
5201                 kvm_queue_exception(vcpu, UD_VECTOR);
5202                 return 1;
5203         }
5204
5205         if (vmx_get_cpl(vcpu)) {
5206                 kvm_inject_gp(vcpu, 0);
5207                 return 1;
5208         }
5209
5210         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5211         vmx->nested.vmcs02_num = 0;
5212
5213         vmx->nested.vmxon = true;
5214
5215         skip_emulated_instruction(vcpu);
5216         return 1;
5217 }
5218
5219 /*
5220  * Intel's VMX Instruction Reference specifies a common set of prerequisites
5221  * for running VMX instructions (except VMXON, whose prerequisites are
5222  * slightly different). It also specifies what exception to inject otherwise.
5223  */
5224 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5225 {
5226         struct kvm_segment cs;
5227         struct vcpu_vmx *vmx = to_vmx(vcpu);
5228
5229         if (!vmx->nested.vmxon) {
5230                 kvm_queue_exception(vcpu, UD_VECTOR);
5231                 return 0;
5232         }
5233
5234         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5235         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5236             (is_long_mode(vcpu) && !cs.l)) {
5237                 kvm_queue_exception(vcpu, UD_VECTOR);
5238                 return 0;
5239         }
5240
5241         if (vmx_get_cpl(vcpu)) {
5242                 kvm_inject_gp(vcpu, 0);
5243                 return 0;
5244         }
5245
5246         return 1;
5247 }
5248
5249 /*
5250  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5251  * just stops using VMX.
5252  */
5253 static void free_nested(struct vcpu_vmx *vmx)
5254 {
5255         if (!vmx->nested.vmxon)
5256                 return;
5257         vmx->nested.vmxon = false;
5258         if (vmx->nested.current_vmptr != -1ull) {
5259                 kunmap(vmx->nested.current_vmcs12_page);
5260                 nested_release_page(vmx->nested.current_vmcs12_page);
5261                 vmx->nested.current_vmptr = -1ull;
5262                 vmx->nested.current_vmcs12 = NULL;
5263         }
5264         /* Unpin physical memory we referred to in current vmcs02 */
5265         if (vmx->nested.apic_access_page) {
5266                 nested_release_page(vmx->nested.apic_access_page);
5267                 vmx->nested.apic_access_page = 0;
5268         }
5269
5270         nested_free_all_saved_vmcss(vmx);
5271 }
5272
5273 /* Emulate the VMXOFF instruction */
5274 static int handle_vmoff(struct kvm_vcpu *vcpu)
5275 {
5276         if (!nested_vmx_check_permission(vcpu))
5277                 return 1;
5278         free_nested(to_vmx(vcpu));
5279         skip_emulated_instruction(vcpu);
5280         return 1;
5281 }
5282
5283 /*
5284  * Decode the memory-address operand of a vmx instruction, as recorded on an
5285  * exit caused by such an instruction (run by a guest hypervisor).
5286  * On success, returns 0. When the operand is invalid, returns 1 and throws
5287  * #UD or #GP.
5288  */
5289 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5290                                  unsigned long exit_qualification,
5291                                  u32 vmx_instruction_info, gva_t *ret)
5292 {
5293         /*
5294          * According to Vol. 3B, "Information for VM Exits Due to Instruction
5295          * Execution", on an exit, vmx_instruction_info holds most of the
5296          * addressing components of the operand. Only the displacement part
5297          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5298          * For how an actual address is calculated from all these components,
5299          * refer to Vol. 1, "Operand Addressing".
5300          */
5301         int  scaling = vmx_instruction_info & 3;
5302         int  addr_size = (vmx_instruction_info >> 7) & 7;
5303         bool is_reg = vmx_instruction_info & (1u << 10);
5304         int  seg_reg = (vmx_instruction_info >> 15) & 7;
5305         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5306         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5307         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5308         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5309
5310         if (is_reg) {
5311                 kvm_queue_exception(vcpu, UD_VECTOR);
5312                 return 1;
5313         }
5314
5315         /* Addr = segment_base + offset */
5316         /* offset = base + [index * scale] + displacement */
5317         *ret = vmx_get_segment_base(vcpu, seg_reg);
5318         if (base_is_valid)
5319                 *ret += kvm_register_read(vcpu, base_reg);
5320         if (index_is_valid)
5321                 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5322         *ret += exit_qualification; /* holds the displacement */
5323
5324         if (addr_size == 1) /* 32 bit */
5325                 *ret &= 0xffffffff;
5326
5327         /*
5328          * TODO: throw #GP (and return 1) in various cases that the VM*
5329          * instructions require it - e.g., offset beyond segment limit,
5330          * unusable or unreadable/unwritable segment, non-canonical 64-bit
5331          * address, and so on. Currently these are not checked.
5332          */
5333         return 0;
5334 }
5335
5336 /*
5337  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5338  * set the success or error code of an emulated VMX instruction, as specified
5339  * by Vol 2B, VMX Instruction Reference, "Conventions".
5340  */
5341 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5342 {
5343         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5344                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5345                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5346 }
5347
5348 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5349 {
5350         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5351                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5352                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5353                         | X86_EFLAGS_CF);
5354 }
5355
5356 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5357                                         u32 vm_instruction_error)
5358 {
5359         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5360                 /*
5361                  * failValid writes the error number to the current VMCS, which
5362                  * can't be done there isn't a current VMCS.
5363                  */
5364                 nested_vmx_failInvalid(vcpu);
5365                 return;
5366         }
5367         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5368                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5369                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5370                         | X86_EFLAGS_ZF);
5371         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5372 }
5373
5374 /* Emulate the VMCLEAR instruction */
5375 static int handle_vmclear(struct kvm_vcpu *vcpu)
5376 {
5377         struct vcpu_vmx *vmx = to_vmx(vcpu);
5378         gva_t gva;
5379         gpa_t vmptr;
5380         struct vmcs12 *vmcs12;
5381         struct page *page;
5382         struct x86_exception e;
5383
5384         if (!nested_vmx_check_permission(vcpu))
5385                 return 1;
5386
5387         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5388                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5389                 return 1;
5390
5391         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5392                                 sizeof(vmptr), &e)) {
5393                 kvm_inject_page_fault(vcpu, &e);
5394                 return 1;
5395         }
5396
5397         if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5398                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5399                 skip_emulated_instruction(vcpu);
5400                 return 1;
5401         }
5402
5403         if (vmptr == vmx->nested.current_vmptr) {
5404                 kunmap(vmx->nested.current_vmcs12_page);
5405                 nested_release_page(vmx->nested.current_vmcs12_page);
5406                 vmx->nested.current_vmptr = -1ull;
5407                 vmx->nested.current_vmcs12 = NULL;
5408         }
5409
5410         page = nested_get_page(vcpu, vmptr);
5411         if (page == NULL) {
5412                 /*
5413                  * For accurate processor emulation, VMCLEAR beyond available
5414                  * physical memory should do nothing at all. However, it is
5415                  * possible that a nested vmx bug, not a guest hypervisor bug,
5416                  * resulted in this case, so let's shut down before doing any
5417                  * more damage:
5418                  */
5419                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5420                 return 1;
5421         }
5422         vmcs12 = kmap(page);
5423         vmcs12->launch_state = 0;
5424         kunmap(page);
5425         nested_release_page(page);
5426
5427         nested_free_vmcs02(vmx, vmptr);
5428
5429         skip_emulated_instruction(vcpu);
5430         nested_vmx_succeed(vcpu);
5431         return 1;
5432 }
5433
5434 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5435
5436 /* Emulate the VMLAUNCH instruction */
5437 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5438 {
5439         return nested_vmx_run(vcpu, true);
5440 }
5441
5442 /* Emulate the VMRESUME instruction */
5443 static int handle_vmresume(struct kvm_vcpu *vcpu)
5444 {
5445
5446         return nested_vmx_run(vcpu, false);
5447 }
5448
5449 enum vmcs_field_type {
5450         VMCS_FIELD_TYPE_U16 = 0,
5451         VMCS_FIELD_TYPE_U64 = 1,
5452         VMCS_FIELD_TYPE_U32 = 2,
5453         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5454 };
5455
5456 static inline int vmcs_field_type(unsigned long field)
5457 {
5458         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
5459                 return VMCS_FIELD_TYPE_U32;
5460         return (field >> 13) & 0x3 ;
5461 }
5462
5463 static inline int vmcs_field_readonly(unsigned long field)
5464 {
5465         return (((field >> 10) & 0x3) == 1);
5466 }
5467
5468 /*
5469  * Read a vmcs12 field. Since these can have varying lengths and we return
5470  * one type, we chose the biggest type (u64) and zero-extend the return value
5471  * to that size. Note that the caller, handle_vmread, might need to use only
5472  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5473  * 64-bit fields are to be returned).
5474  */
5475 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5476                                         unsigned long field, u64 *ret)
5477 {
5478         short offset = vmcs_field_to_offset(field);
5479         char *p;
5480
5481         if (offset < 0)
5482                 return 0;
5483
5484         p = ((char *)(get_vmcs12(vcpu))) + offset;
5485
5486         switch (vmcs_field_type(field)) {
5487         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5488                 *ret = *((natural_width *)p);
5489                 return 1;
5490         case VMCS_FIELD_TYPE_U16:
5491                 *ret = *((u16 *)p);
5492                 return 1;
5493         case VMCS_FIELD_TYPE_U32:
5494                 *ret = *((u32 *)p);
5495                 return 1;
5496         case VMCS_FIELD_TYPE_U64:
5497                 *ret = *((u64 *)p);
5498                 return 1;
5499         default:
5500                 return 0; /* can never happen. */
5501         }
5502 }
5503
5504 /*
5505  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5506  * used before) all generate the same failure when it is missing.
5507  */
5508 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5509 {
5510         struct vcpu_vmx *vmx = to_vmx(vcpu);
5511         if (vmx->nested.current_vmptr == -1ull) {
5512                 nested_vmx_failInvalid(vcpu);
5513                 skip_emulated_instruction(vcpu);
5514                 return 0;
5515         }
5516         return 1;
5517 }
5518
5519 static int handle_vmread(struct kvm_vcpu *vcpu)
5520 {
5521         unsigned long field;
5522         u64 field_value;
5523         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5524         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5525         gva_t gva = 0;
5526
5527         if (!nested_vmx_check_permission(vcpu) ||
5528             !nested_vmx_check_vmcs12(vcpu))
5529                 return 1;
5530
5531         /* Decode instruction info and find the field to read */
5532         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5533         /* Read the field, zero-extended to a u64 field_value */
5534         if (!vmcs12_read_any(vcpu, field, &field_value)) {
5535                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5536                 skip_emulated_instruction(vcpu);
5537                 return 1;
5538         }
5539         /*
5540          * Now copy part of this value to register or memory, as requested.
5541          * Note that the number of bits actually copied is 32 or 64 depending
5542          * on the guest's mode (32 or 64 bit), not on the given field's length.
5543          */
5544         if (vmx_instruction_info & (1u << 10)) {
5545                 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5546                         field_value);
5547         } else {
5548                 if (get_vmx_mem_address(vcpu, exit_qualification,
5549                                 vmx_instruction_info, &gva))
5550                         return 1;
5551                 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5552                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5553                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5554         }
5555
5556         nested_vmx_succeed(vcpu);
5557         skip_emulated_instruction(vcpu);
5558         return 1;
5559 }
5560
5561
5562 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5563 {
5564         unsigned long field;
5565         gva_t gva;
5566         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5567         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5568         char *p;
5569         short offset;
5570         /* The value to write might be 32 or 64 bits, depending on L1's long
5571          * mode, and eventually we need to write that into a field of several
5572          * possible lengths. The code below first zero-extends the value to 64
5573          * bit (field_value), and then copies only the approriate number of
5574          * bits into the vmcs12 field.
5575          */
5576         u64 field_value = 0;
5577         struct x86_exception e;
5578
5579         if (!nested_vmx_check_permission(vcpu) ||
5580             !nested_vmx_check_vmcs12(vcpu))
5581                 return 1;
5582
5583         if (vmx_instruction_info & (1u << 10))
5584                 field_value = kvm_register_read(vcpu,
5585                         (((vmx_instruction_info) >> 3) & 0xf));
5586         else {
5587                 if (get_vmx_mem_address(vcpu, exit_qualification,
5588                                 vmx_instruction_info, &gva))
5589                         return 1;
5590                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5591                            &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5592                         kvm_inject_page_fault(vcpu, &e);
5593                         return 1;
5594                 }
5595         }
5596
5597
5598         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5599         if (vmcs_field_readonly(field)) {
5600                 nested_vmx_failValid(vcpu,
5601                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5602                 skip_emulated_instruction(vcpu);
5603                 return 1;
5604         }
5605
5606         offset = vmcs_field_to_offset(field);
5607         if (offset < 0) {
5608                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5609                 skip_emulated_instruction(vcpu);
5610                 return 1;
5611         }
5612         p = ((char *) get_vmcs12(vcpu)) + offset;
5613
5614         switch (vmcs_field_type(field)) {
5615         case VMCS_FIELD_TYPE_U16:
5616                 *(u16 *)p = field_value;
5617                 break;
5618         case VMCS_FIELD_TYPE_U32:
5619                 *(u32 *)p = field_value;
5620                 break;
5621         case VMCS_FIELD_TYPE_U64:
5622                 *(u64 *)p = field_value;
5623                 break;
5624         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5625                 *(natural_width *)p = field_value;
5626                 break;
5627         default:
5628                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5629                 skip_emulated_instruction(vcpu);
5630                 return 1;
5631         }
5632
5633         nested_vmx_succeed(vcpu);
5634         skip_emulated_instruction(vcpu);
5635         return 1;
5636 }
5637
5638 /* Emulate the VMPTRLD instruction */
5639 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5640 {
5641         struct vcpu_vmx *vmx = to_vmx(vcpu);
5642         gva_t gva;
5643         gpa_t vmptr;
5644         struct x86_exception e;
5645
5646         if (!nested_vmx_check_permission(vcpu))
5647                 return 1;
5648
5649         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5650                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5651                 return 1;
5652
5653         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5654                                 sizeof(vmptr), &e)) {
5655                 kvm_inject_page_fault(vcpu, &e);
5656                 return 1;
5657         }
5658
5659         if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5660                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5661                 skip_emulated_instruction(vcpu);
5662                 return 1;
5663         }
5664
5665         if (vmx->nested.current_vmptr != vmptr) {
5666                 struct vmcs12 *new_vmcs12;
5667                 struct page *page;
5668                 page = nested_get_page(vcpu, vmptr);
5669                 if (page == NULL) {
5670                         nested_vmx_failInvalid(vcpu);
5671                         skip_emulated_instruction(vcpu);
5672                         return 1;
5673                 }
5674                 new_vmcs12 = kmap(page);
5675                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
5676                         kunmap(page);
5677                         nested_release_page_clean(page);
5678                         nested_vmx_failValid(vcpu,
5679                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5680                         skip_emulated_instruction(vcpu);
5681                         return 1;
5682                 }
5683                 if (vmx->nested.current_vmptr != -1ull) {
5684                         kunmap(vmx->nested.current_vmcs12_page);
5685                         nested_release_page(vmx->nested.current_vmcs12_page);
5686                 }
5687
5688                 vmx->nested.current_vmptr = vmptr;
5689                 vmx->nested.current_vmcs12 = new_vmcs12;
5690                 vmx->nested.current_vmcs12_page = page;
5691         }
5692
5693         nested_vmx_succeed(vcpu);
5694         skip_emulated_instruction(vcpu);
5695         return 1;
5696 }
5697
5698 /* Emulate the VMPTRST instruction */
5699 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5700 {
5701         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5702         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5703         gva_t vmcs_gva;
5704         struct x86_exception e;
5705
5706         if (!nested_vmx_check_permission(vcpu))
5707                 return 1;
5708
5709         if (get_vmx_mem_address(vcpu, exit_qualification,
5710                         vmx_instruction_info, &vmcs_gva))
5711                 return 1;
5712         /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5713         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5714                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
5715                                  sizeof(u64), &e)) {
5716                 kvm_inject_page_fault(vcpu, &e);
5717                 return 1;
5718         }
5719         nested_vmx_succeed(vcpu);
5720         skip_emulated_instruction(vcpu);
5721         return 1;
5722 }
5723
5724 /*
5725  * The exit handlers return 1 if the exit was handled fully and guest execution
5726  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5727  * to be done to userspace and return 0.
5728  */
5729 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5730         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
5731         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5732         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5733         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5734         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5735         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5736         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5737         [EXIT_REASON_CPUID]                   = handle_cpuid,
5738         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
5739         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
5740         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
5741         [EXIT_REASON_HLT]                     = handle_halt,
5742         [EXIT_REASON_INVD]                    = handle_invd,
5743         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5744         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
5745         [EXIT_REASON_VMCALL]                  = handle_vmcall,
5746         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
5747         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
5748         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
5749         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
5750         [EXIT_REASON_VMREAD]                  = handle_vmread,
5751         [EXIT_REASON_VMRESUME]                = handle_vmresume,
5752         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
5753         [EXIT_REASON_VMOFF]                   = handle_vmoff,
5754         [EXIT_REASON_VMON]                    = handle_vmon,
5755         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5756         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5757         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
5758         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
5759         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5760         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5761         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5762         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5763         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5764         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
5765         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
5766 };
5767
5768 static const int kvm_vmx_max_exit_handlers =
5769         ARRAY_SIZE(kvm_vmx_exit_handlers);
5770
5771 /*
5772  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5773  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5774  * disinterest in the current event (read or write a specific MSR) by using an
5775  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5776  */
5777 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5778         struct vmcs12 *vmcs12, u32 exit_reason)
5779 {
5780         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
5781         gpa_t bitmap;
5782
5783         if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
5784                 return 1;
5785
5786         /*
5787          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5788          * for the four combinations of read/write and low/high MSR numbers.
5789          * First we need to figure out which of the four to use:
5790          */
5791         bitmap = vmcs12->msr_bitmap;
5792         if (exit_reason == EXIT_REASON_MSR_WRITE)
5793                 bitmap += 2048;
5794         if (msr_index >= 0xc0000000) {
5795                 msr_index -= 0xc0000000;
5796                 bitmap += 1024;
5797         }
5798
5799         /* Then read the msr_index'th bit from this bitmap: */
5800         if (msr_index < 1024*8) {
5801                 unsigned char b;
5802                 kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
5803                 return 1 & (b >> (msr_index & 7));
5804         } else
5805                 return 1; /* let L1 handle the wrong parameter */
5806 }
5807
5808 /*
5809  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5810  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5811  * intercept (via guest_host_mask etc.) the current event.
5812  */
5813 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5814         struct vmcs12 *vmcs12)
5815 {
5816         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5817         int cr = exit_qualification & 15;
5818         int reg = (exit_qualification >> 8) & 15;
5819         unsigned long val = kvm_register_read(vcpu, reg);
5820
5821         switch ((exit_qualification >> 4) & 3) {
5822         case 0: /* mov to cr */
5823                 switch (cr) {
5824                 case 0:
5825                         if (vmcs12->cr0_guest_host_mask &
5826                             (val ^ vmcs12->cr0_read_shadow))
5827                                 return 1;
5828                         break;
5829                 case 3:
5830                         if ((vmcs12->cr3_target_count >= 1 &&
5831                                         vmcs12->cr3_target_value0 == val) ||
5832                                 (vmcs12->cr3_target_count >= 2 &&
5833                                         vmcs12->cr3_target_value1 == val) ||
5834                                 (vmcs12->cr3_target_count >= 3 &&
5835                                         vmcs12->cr3_target_value2 == val) ||
5836                                 (vmcs12->cr3_target_count >= 4 &&
5837                                         vmcs12->cr3_target_value3 == val))
5838                                 return 0;
5839                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5840                                 return 1;
5841                         break;
5842                 case 4:
5843                         if (vmcs12->cr4_guest_host_mask &
5844                             (vmcs12->cr4_read_shadow ^ val))
5845                                 return 1;
5846                         break;
5847                 case 8:
5848                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5849                                 return 1;
5850                         break;
5851                 }
5852                 break;
5853         case 2: /* clts */
5854                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5855                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5856                         return 1;
5857                 break;
5858         case 1: /* mov from cr */
5859                 switch (cr) {
5860                 case 3:
5861                         if (vmcs12->cpu_based_vm_exec_control &
5862                             CPU_BASED_CR3_STORE_EXITING)
5863                                 return 1;
5864                         break;
5865                 case 8:
5866                         if (vmcs12->cpu_based_vm_exec_control &
5867                             CPU_BASED_CR8_STORE_EXITING)
5868                                 return 1;
5869                         break;
5870                 }
5871                 break;
5872         case 3: /* lmsw */
5873                 /*
5874                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5875                  * cr0. Other attempted changes are ignored, with no exit.
5876                  */
5877                 if (vmcs12->cr0_guest_host_mask & 0xe &
5878                     (val ^ vmcs12->cr0_read_shadow))
5879                         return 1;
5880                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5881                     !(vmcs12->cr0_read_shadow & 0x1) &&
5882                     (val & 0x1))
5883                         return 1;
5884                 break;
5885         }
5886         return 0;
5887 }
5888
5889 /*
5890  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5891  * should handle it ourselves in L0 (and then continue L2). Only call this
5892  * when in is_guest_mode (L2).
5893  */
5894 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
5895 {
5896         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
5897         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5898         struct vcpu_vmx *vmx = to_vmx(vcpu);
5899         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5900
5901         if (vmx->nested.nested_run_pending)
5902                 return 0;
5903
5904         if (unlikely(vmx->fail)) {
5905                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5906                                     vmcs_read32(VM_INSTRUCTION_ERROR));
5907                 return 1;
5908         }
5909
5910         switch (exit_reason) {
5911         case EXIT_REASON_EXCEPTION_NMI:
5912                 if (!is_exception(intr_info))
5913                         return 0;
5914                 else if (is_page_fault(intr_info))
5915                         return enable_ept;
5916                 return vmcs12->exception_bitmap &
5917                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5918         case EXIT_REASON_EXTERNAL_INTERRUPT:
5919                 return 0;
5920         case EXIT_REASON_TRIPLE_FAULT:
5921                 return 1;
5922         case EXIT_REASON_PENDING_INTERRUPT:
5923         case EXIT_REASON_NMI_WINDOW:
5924                 /*
5925                  * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
5926                  * (aka Interrupt Window Exiting) only when L1 turned it on,
5927                  * so if we got a PENDING_INTERRUPT exit, this must be for L1.
5928                  * Same for NMI Window Exiting.
5929                  */
5930                 return 1;
5931         case EXIT_REASON_TASK_SWITCH:
5932                 return 1;
5933         case EXIT_REASON_CPUID:
5934                 return 1;
5935         case EXIT_REASON_HLT:
5936                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5937         case EXIT_REASON_INVD:
5938                 return 1;
5939         case EXIT_REASON_INVLPG:
5940                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5941         case EXIT_REASON_RDPMC:
5942                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5943         case EXIT_REASON_RDTSC:
5944                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5945         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5946         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5947         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
5948         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
5949         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5950                 /*
5951                  * VMX instructions trap unconditionally. This allows L1 to
5952                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5953                  */
5954                 return 1;
5955         case EXIT_REASON_CR_ACCESS:
5956                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5957         case EXIT_REASON_DR_ACCESS:
5958                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5959         case EXIT_REASON_IO_INSTRUCTION:
5960                 /* TODO: support IO bitmaps */
5961                 return 1;
5962         case EXIT_REASON_MSR_READ:
5963         case EXIT_REASON_MSR_WRITE:
5964                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5965         case EXIT_REASON_INVALID_STATE:
5966                 return 1;
5967         case EXIT_REASON_MWAIT_INSTRUCTION:
5968                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5969         case EXIT_REASON_MONITOR_INSTRUCTION:
5970                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5971         case EXIT_REASON_PAUSE_INSTRUCTION:
5972                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5973                         nested_cpu_has2(vmcs12,
5974                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5975         case EXIT_REASON_MCE_DURING_VMENTRY:
5976                 return 0;
5977         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5978                 return 1;
5979         case EXIT_REASON_APIC_ACCESS:
5980                 return nested_cpu_has2(vmcs12,
5981                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
5982         case EXIT_REASON_EPT_VIOLATION:
5983         case EXIT_REASON_EPT_MISCONFIG:
5984                 return 0;
5985         case EXIT_REASON_WBINVD:
5986                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5987         case EXIT_REASON_XSETBV:
5988                 return 1;
5989         default:
5990                 return 1;
5991         }
5992 }
5993
5994 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5995 {
5996         *info1 = vmcs_readl(EXIT_QUALIFICATION);
5997         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5998 }
5999
6000 /*
6001  * The guest has exited.  See if we can fix it or if we need userspace
6002  * assistance.
6003  */
6004 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6005 {
6006         struct vcpu_vmx *vmx = to_vmx(vcpu);
6007         u32 exit_reason = vmx->exit_reason;
6008         u32 vectoring_info = vmx->idt_vectoring_info;
6009
6010         /* If guest state is invalid, start emulating */
6011         if (vmx->emulation_required && emulate_invalid_guest_state)
6012                 return handle_invalid_guest_state(vcpu);
6013
6014         /*
6015          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
6016          * we did not inject a still-pending event to L1 now because of
6017          * nested_run_pending, we need to re-enable this bit.
6018          */
6019         if (vmx->nested.nested_run_pending)
6020                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6021
6022         if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
6023             exit_reason == EXIT_REASON_VMRESUME))
6024                 vmx->nested.nested_run_pending = 1;
6025         else
6026                 vmx->nested.nested_run_pending = 0;
6027
6028         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
6029                 nested_vmx_vmexit(vcpu);
6030                 return 1;
6031         }
6032
6033         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6034                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6035                 vcpu->run->fail_entry.hardware_entry_failure_reason
6036                         = exit_reason;
6037                 return 0;
6038         }
6039
6040         if (unlikely(vmx->fail)) {
6041                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6042                 vcpu->run->fail_entry.hardware_entry_failure_reason
6043                         = vmcs_read32(VM_INSTRUCTION_ERROR);
6044                 return 0;
6045         }
6046
6047         /*
6048          * Note:
6049          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6050          * delivery event since it indicates guest is accessing MMIO.
6051          * The vm-exit can be triggered again after return to guest that
6052          * will cause infinite loop.
6053          */
6054         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6055                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6056                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
6057                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
6058                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6059                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6060                 vcpu->run->internal.ndata = 2;
6061                 vcpu->run->internal.data[0] = vectoring_info;
6062                 vcpu->run->internal.data[1] = exit_reason;
6063                 return 0;
6064         }
6065
6066         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
6067             !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
6068                                         get_vmcs12(vcpu), vcpu)))) {
6069                 if (vmx_interrupt_allowed(vcpu)) {
6070                         vmx->soft_vnmi_blocked = 0;
6071                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
6072                            vcpu->arch.nmi_pending) {
6073                         /*
6074                          * This CPU don't support us in finding the end of an
6075                          * NMI-blocked window if the guest runs with IRQs
6076                          * disabled. So we pull the trigger after 1 s of
6077                          * futile waiting, but inform the user about this.
6078                          */
6079                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6080                                "state on VCPU %d after 1 s timeout\n",
6081                                __func__, vcpu->vcpu_id);
6082                         vmx->soft_vnmi_blocked = 0;
6083                 }
6084         }
6085
6086         if (exit_reason < kvm_vmx_max_exit_handlers
6087             && kvm_vmx_exit_handlers[exit_reason])
6088                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6089         else {
6090                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6091                 vcpu->run->hw.hardware_exit_reason = exit_reason;
6092         }
6093         return 0;
6094 }
6095
6096 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6097 {
6098         if (irr == -1 || tpr < irr) {
6099                 vmcs_write32(TPR_THRESHOLD, 0);
6100                 return;
6101         }
6102
6103         vmcs_write32(TPR_THRESHOLD, irr);
6104 }
6105
6106 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6107 {
6108         u32 exit_intr_info;
6109
6110         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6111               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
6112                 return;
6113
6114         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6115         exit_intr_info = vmx->exit_intr_info;
6116
6117         /* Handle machine checks before interrupts are enabled */
6118         if (is_machine_check(exit_intr_info))
6119                 kvm_machine_check();
6120
6121         /* We need to handle NMIs before interrupts are enabled */
6122         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
6123             (exit_intr_info & INTR_INFO_VALID_MASK)) {
6124                 kvm_before_handle_nmi(&vmx->vcpu);
6125                 asm("int $2");
6126                 kvm_after_handle_nmi(&vmx->vcpu);
6127         }
6128 }
6129
6130 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6131 {
6132         u32 exit_intr_info;
6133         bool unblock_nmi;
6134         u8 vector;
6135         bool idtv_info_valid;
6136
6137         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6138
6139         if (cpu_has_virtual_nmis()) {
6140                 if (vmx->nmi_known_unmasked)
6141                         return;
6142                 /*
6143                  * Can't use vmx->exit_intr_info since we're not sure what
6144                  * the exit reason is.
6145                  */
6146                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6147                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6148                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6149                 /*
6150                  * SDM 3: 27.7.1.2 (September 2008)
6151                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6152                  * a guest IRET fault.
6153                  * SDM 3: 23.2.2 (September 2008)
6154                  * Bit 12 is undefined in any of the following cases:
6155                  *  If the VM exit sets the valid bit in the IDT-vectoring
6156                  *   information field.
6157                  *  If the VM exit is due to a double fault.
6158                  */
6159                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6160                     vector != DF_VECTOR && !idtv_info_valid)
6161                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6162                                       GUEST_INTR_STATE_NMI);
6163                 else
6164                         vmx->nmi_known_unmasked =
6165                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6166                                   & GUEST_INTR_STATE_NMI);
6167         } else if (unlikely(vmx->soft_vnmi_blocked))
6168                 vmx->vnmi_blocked_time +=
6169                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
6170 }
6171
6172 static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
6173                                       u32 idt_vectoring_info,
6174                                       int instr_len_field,
6175                                       int error_code_field)
6176 {
6177         u8 vector;
6178         int type;
6179         bool idtv_info_valid;
6180
6181         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6182
6183         vmx->vcpu.arch.nmi_injected = false;
6184         kvm_clear_exception_queue(&vmx->vcpu);
6185         kvm_clear_interrupt_queue(&vmx->vcpu);
6186
6187         if (!idtv_info_valid)
6188                 return;
6189
6190         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6191
6192         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6193         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6194
6195         switch (type) {
6196         case INTR_TYPE_NMI_INTR:
6197                 vmx->vcpu.arch.nmi_injected = true;
6198                 /*
6199                  * SDM 3: 27.7.1.2 (September 2008)
6200                  * Clear bit "block by NMI" before VM entry if a NMI
6201                  * delivery faulted.
6202                  */
6203                 vmx_set_nmi_mask(&vmx->vcpu, false);
6204                 break;
6205         case INTR_TYPE_SOFT_EXCEPTION:
6206                 vmx->vcpu.arch.event_exit_inst_len =
6207                         vmcs_read32(instr_len_field);
6208                 /* fall through */
6209         case INTR_TYPE_HARD_EXCEPTION:
6210                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6211                         u32 err = vmcs_read32(error_code_field);
6212                         kvm_queue_exception_e(&vmx->vcpu, vector, err);
6213                 } else
6214                         kvm_queue_exception(&vmx->vcpu, vector);
6215                 break;
6216         case INTR_TYPE_SOFT_INTR:
6217                 vmx->vcpu.arch.event_exit_inst_len =
6218                         vmcs_read32(instr_len_field);
6219                 /* fall through */
6220         case INTR_TYPE_EXT_INTR:
6221                 kvm_queue_interrupt(&vmx->vcpu, vector,
6222                         type == INTR_TYPE_SOFT_INTR);
6223                 break;
6224         default:
6225                 break;
6226         }
6227 }
6228
6229 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6230 {
6231         if (is_guest_mode(&vmx->vcpu))
6232                 return;
6233         __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
6234                                   VM_EXIT_INSTRUCTION_LEN,
6235                                   IDT_VECTORING_ERROR_CODE);
6236 }
6237
6238 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6239 {
6240         if (is_guest_mode(vcpu))
6241                 return;
6242         __vmx_complete_interrupts(to_vmx(vcpu),
6243                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6244                                   VM_ENTRY_INSTRUCTION_LEN,
6245                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6246
6247         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6248 }
6249
6250 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6251 {
6252         int i, nr_msrs;
6253         struct perf_guest_switch_msr *msrs;
6254
6255         msrs = perf_guest_get_msrs(&nr_msrs);
6256
6257         if (!msrs)
6258                 return;
6259
6260         for (i = 0; i < nr_msrs; i++)
6261                 if (msrs[i].host == msrs[i].guest)
6262                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6263                 else
6264                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6265                                         msrs[i].host);
6266 }
6267
6268 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6269 {
6270         struct vcpu_vmx *vmx = to_vmx(vcpu);
6271         unsigned long debugctlmsr;
6272
6273         if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
6274                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6275                 if (vmcs12->idt_vectoring_info_field &
6276                                 VECTORING_INFO_VALID_MASK) {
6277                         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6278                                 vmcs12->idt_vectoring_info_field);
6279                         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6280                                 vmcs12->vm_exit_instruction_len);
6281                         if (vmcs12->idt_vectoring_info_field &
6282                                         VECTORING_INFO_DELIVER_CODE_MASK)
6283                                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6284                                         vmcs12->idt_vectoring_error_code);
6285                 }
6286         }
6287
6288         /* Record the guest's net vcpu time for enforced NMI injections. */
6289         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6290                 vmx->entry_time = ktime_get();
6291
6292         /* Don't enter VMX if guest state is invalid, let the exit handler
6293            start emulation until we arrive back to a valid state */
6294         if (vmx->emulation_required && emulate_invalid_guest_state)
6295                 return;
6296
6297         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6298                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6299         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6300                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6301
6302         /* When single-stepping over STI and MOV SS, we must clear the
6303          * corresponding interruptibility bits in the guest state. Otherwise
6304          * vmentry fails as it then expects bit 14 (BS) in pending debug
6305          * exceptions being set, but that's not correct for the guest debugging
6306          * case. */
6307         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6308                 vmx_set_interrupt_shadow(vcpu, 0);
6309
6310         atomic_switch_perf_msrs(vmx);
6311         debugctlmsr = get_debugctlmsr();
6312
6313         vmx->__launched = vmx->loaded_vmcs->launched;
6314         asm(
6315                 /* Store host registers */
6316                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
6317                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
6318                 "push %%" _ASM_CX " \n\t"
6319                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
6320                 "je 1f \n\t"
6321                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
6322                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
6323                 "1: \n\t"
6324                 /* Reload cr2 if changed */
6325                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
6326                 "mov %%cr2, %%" _ASM_DX " \n\t"
6327                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
6328                 "je 2f \n\t"
6329                 "mov %%" _ASM_AX", %%cr2 \n\t"
6330                 "2: \n\t"
6331                 /* Check if vmlaunch of vmresume is needed */
6332                 "cmpl $0, %c[launched](%0) \n\t"
6333                 /* Load guest registers.  Don't clobber flags. */
6334                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
6335                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
6336                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
6337                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
6338                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
6339                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
6340 #ifdef CONFIG_X86_64
6341                 "mov %c[r8](%0),  %%r8  \n\t"
6342                 "mov %c[r9](%0),  %%r9  \n\t"
6343                 "mov %c[r10](%0), %%r10 \n\t"
6344                 "mov %c[r11](%0), %%r11 \n\t"
6345                 "mov %c[r12](%0), %%r12 \n\t"
6346                 "mov %c[r13](%0), %%r13 \n\t"
6347                 "mov %c[r14](%0), %%r14 \n\t"
6348                 "mov %c[r15](%0), %%r15 \n\t"
6349 #endif
6350                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
6351
6352                 /* Enter guest mode */
6353                 "jne 1f \n\t"
6354                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
6355                 "jmp 2f \n\t"
6356                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
6357                 "2: "
6358                 /* Save guest registers, load host registers, keep flags */
6359                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
6360                 "pop %0 \n\t"
6361                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
6362                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
6363                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
6364                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
6365                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
6366                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
6367                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
6368 #ifdef CONFIG_X86_64
6369                 "mov %%r8,  %c[r8](%0) \n\t"
6370                 "mov %%r9,  %c[r9](%0) \n\t"
6371                 "mov %%r10, %c[r10](%0) \n\t"
6372                 "mov %%r11, %c[r11](%0) \n\t"
6373                 "mov %%r12, %c[r12](%0) \n\t"
6374                 "mov %%r13, %c[r13](%0) \n\t"
6375                 "mov %%r14, %c[r14](%0) \n\t"
6376                 "mov %%r15, %c[r15](%0) \n\t"
6377 #endif
6378                 "mov %%cr2, %%" _ASM_AX "   \n\t"
6379                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
6380
6381                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
6382                 "setbe %c[fail](%0) \n\t"
6383                 ".pushsection .rodata \n\t"
6384                 ".global vmx_return \n\t"
6385                 "vmx_return: " _ASM_PTR " 2b \n\t"
6386                 ".popsection"
6387               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
6388                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
6389                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
6390                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
6391                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6392                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6393                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6394                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6395                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6396                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6397                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
6398 #ifdef CONFIG_X86_64
6399                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6400                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6401                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6402                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6403                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6404                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6405                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6406                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6407 #endif
6408                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6409                 [wordsize]"i"(sizeof(ulong))
6410               : "cc", "memory"
6411 #ifdef CONFIG_X86_64
6412                 , "rax", "rbx", "rdi", "rsi"
6413                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6414 #else
6415                 , "eax", "ebx", "edi", "esi"
6416 #endif
6417               );
6418
6419         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6420         if (debugctlmsr)
6421                 update_debugctlmsr(debugctlmsr);
6422
6423 #ifndef CONFIG_X86_64
6424         /*
6425          * The sysexit path does not restore ds/es, so we must set them to
6426          * a reasonable value ourselves.
6427          *
6428          * We can't defer this to vmx_load_host_state() since that function
6429          * may be executed in interrupt context, which saves and restore segments
6430          * around it, nullifying its effect.
6431          */
6432         loadsegment(ds, __USER_DS);
6433         loadsegment(es, __USER_DS);
6434 #endif
6435
6436         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6437                                   | (1 << VCPU_EXREG_RFLAGS)
6438                                   | (1 << VCPU_EXREG_CPL)
6439                                   | (1 << VCPU_EXREG_PDPTR)
6440                                   | (1 << VCPU_EXREG_SEGMENTS)
6441                                   | (1 << VCPU_EXREG_CR3));
6442         vcpu->arch.regs_dirty = 0;
6443
6444         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6445
6446         if (is_guest_mode(vcpu)) {
6447                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6448                 vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
6449                 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
6450                         vmcs12->idt_vectoring_error_code =
6451                                 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6452                         vmcs12->vm_exit_instruction_len =
6453                                 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6454                 }
6455         }
6456
6457         vmx->loaded_vmcs->launched = 1;
6458
6459         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6460         trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
6461
6462         vmx_complete_atomic_exit(vmx);
6463         vmx_recover_nmi_blocking(vmx);
6464         vmx_complete_interrupts(vmx);
6465 }
6466
6467 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6468 {
6469         struct vcpu_vmx *vmx = to_vmx(vcpu);
6470
6471         free_vpid(vmx);
6472         free_nested(vmx);
6473         free_loaded_vmcs(vmx->loaded_vmcs);
6474         kfree(vmx->guest_msrs);
6475         kvm_vcpu_uninit(vcpu);
6476         kmem_cache_free(kvm_vcpu_cache, vmx);
6477 }
6478
6479 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6480 {
6481         int err;
6482         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
6483         int cpu;
6484
6485         if (!vmx)
6486                 return ERR_PTR(-ENOMEM);
6487
6488         allocate_vpid(vmx);
6489
6490         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6491         if (err)
6492                 goto free_vcpu;
6493
6494         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
6495         err = -ENOMEM;
6496         if (!vmx->guest_msrs) {
6497                 goto uninit_vcpu;
6498         }
6499
6500         vmx->loaded_vmcs = &vmx->vmcs01;
6501         vmx->loaded_vmcs->vmcs = alloc_vmcs();
6502         if (!vmx->loaded_vmcs->vmcs)
6503                 goto free_msrs;
6504         if (!vmm_exclusive)
6505                 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
6506         loaded_vmcs_init(vmx->loaded_vmcs);
6507         if (!vmm_exclusive)
6508                 kvm_cpu_vmxoff();
6509
6510         cpu = get_cpu();
6511         vmx_vcpu_load(&vmx->vcpu, cpu);
6512         vmx->vcpu.cpu = cpu;
6513         err = vmx_vcpu_setup(vmx);
6514         vmx_vcpu_put(&vmx->vcpu);
6515         put_cpu();
6516         if (err)
6517                 goto free_vmcs;
6518         if (vm_need_virtualize_apic_accesses(kvm))
6519                 err = alloc_apic_access_page(kvm);
6520                 if (err)
6521                         goto free_vmcs;
6522
6523         if (enable_ept) {
6524                 if (!kvm->arch.ept_identity_map_addr)
6525                         kvm->arch.ept_identity_map_addr =
6526                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
6527                 err = -ENOMEM;
6528                 if (alloc_identity_pagetable(kvm) != 0)
6529                         goto free_vmcs;
6530                 if (!init_rmode_identity_map(kvm))
6531                         goto free_vmcs;
6532         }
6533
6534         vmx->nested.current_vmptr = -1ull;
6535         vmx->nested.current_vmcs12 = NULL;
6536
6537         return &vmx->vcpu;
6538
6539 free_vmcs:
6540         free_loaded_vmcs(vmx->loaded_vmcs);
6541 free_msrs:
6542         kfree(vmx->guest_msrs);
6543 uninit_vcpu:
6544         kvm_vcpu_uninit(&vmx->vcpu);
6545 free_vcpu:
6546         free_vpid(vmx);
6547         kmem_cache_free(kvm_vcpu_cache, vmx);
6548         return ERR_PTR(err);
6549 }
6550
6551 static void __init vmx_check_processor_compat(void *rtn)
6552 {
6553         struct vmcs_config vmcs_conf;
6554
6555         *(int *)rtn = 0;
6556         if (setup_vmcs_config(&vmcs_conf) < 0)
6557                 *(int *)rtn = -EIO;
6558         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6559                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6560                                 smp_processor_id());
6561                 *(int *)rtn = -EIO;
6562         }
6563 }
6564
6565 static int get_ept_level(void)
6566 {
6567         return VMX_EPT_DEFAULT_GAW + 1;
6568 }
6569
6570 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6571 {
6572         u64 ret;
6573
6574         /* For VT-d and EPT combination
6575          * 1. MMIO: always map as UC
6576          * 2. EPT with VT-d:
6577          *   a. VT-d without snooping control feature: can't guarantee the
6578          *      result, try to trust guest.
6579          *   b. VT-d with snooping control feature: snooping control feature of
6580          *      VT-d engine can guarantee the cache correctness. Just set it
6581          *      to WB to keep consistent with host. So the same as item 3.
6582          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6583          *    consistent with host MTRR
6584          */
6585         if (is_mmio)
6586                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
6587         else if (vcpu->kvm->arch.iommu_domain &&
6588                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
6589                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
6590                       VMX_EPT_MT_EPTE_SHIFT;
6591         else
6592                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
6593                         | VMX_EPT_IPAT_BIT;
6594
6595         return ret;
6596 }
6597
6598 static int vmx_get_lpage_level(void)
6599 {
6600         if (enable_ept && !cpu_has_vmx_ept_1g_page())
6601                 return PT_DIRECTORY_LEVEL;
6602         else
6603                 /* For shadow and EPT supported 1GB page */
6604                 return PT_PDPE_LEVEL;
6605 }
6606
6607 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6608 {
6609         struct kvm_cpuid_entry2 *best;
6610         struct vcpu_vmx *vmx = to_vmx(vcpu);
6611         u32 exec_control;
6612
6613         vmx->rdtscp_enabled = false;
6614         if (vmx_rdtscp_supported()) {
6615                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6616                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
6617                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
6618                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
6619                                 vmx->rdtscp_enabled = true;
6620                         else {
6621                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6622                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6623                                                 exec_control);
6624                         }
6625                 }
6626         }
6627
6628         /* Exposing INVPCID only when PCID is exposed */
6629         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6630         if (vmx_invpcid_supported() &&
6631             best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
6632             guest_cpuid_has_pcid(vcpu)) {
6633                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6634                 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
6635                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6636                              exec_control);
6637         } else {
6638                 if (cpu_has_secondary_exec_ctrls()) {
6639                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6640                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
6641                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6642                                      exec_control);
6643                 }
6644                 if (best)
6645                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
6646         }
6647 }
6648
6649 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6650 {
6651         if (func == 1 && nested)
6652                 entry->ecx |= bit(X86_FEATURE_VMX);
6653 }
6654
6655 /*
6656  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6657  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6658  * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6659  * guest in a way that will both be appropriate to L1's requests, and our
6660  * needs. In addition to modifying the active vmcs (which is vmcs02), this
6661  * function also has additional necessary side-effects, like setting various
6662  * vcpu->arch fields.
6663  */
6664 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6665 {
6666         struct vcpu_vmx *vmx = to_vmx(vcpu);
6667         u32 exec_control;
6668
6669         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
6670         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
6671         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
6672         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
6673         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
6674         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
6675         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
6676         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
6677         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
6678         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
6679         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
6680         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
6681         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
6682         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
6683         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
6684         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
6685         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
6686         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
6687         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
6688         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
6689         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
6690         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
6691         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
6692         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
6693         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
6694         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
6695         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
6696         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
6697         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
6698         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
6699         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
6700         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
6701         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
6702         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
6703         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
6704         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
6705
6706         vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
6707         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6708                 vmcs12->vm_entry_intr_info_field);
6709         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6710                 vmcs12->vm_entry_exception_error_code);
6711         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6712                 vmcs12->vm_entry_instruction_len);
6713         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
6714                 vmcs12->guest_interruptibility_info);
6715         vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
6716         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
6717         vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
6718         vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
6719         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
6720                 vmcs12->guest_pending_dbg_exceptions);
6721         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
6722         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
6723
6724         vmcs_write64(VMCS_LINK_POINTER, -1ull);
6725
6726         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
6727                 (vmcs_config.pin_based_exec_ctrl |
6728                  vmcs12->pin_based_vm_exec_control));
6729
6730         /*
6731          * Whether page-faults are trapped is determined by a combination of
6732          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
6733          * If enable_ept, L0 doesn't care about page faults and we should
6734          * set all of these to L1's desires. However, if !enable_ept, L0 does
6735          * care about (at least some) page faults, and because it is not easy
6736          * (if at all possible?) to merge L0 and L1's desires, we simply ask
6737          * to exit on each and every L2 page fault. This is done by setting
6738          * MASK=MATCH=0 and (see below) EB.PF=1.
6739          * Note that below we don't need special code to set EB.PF beyond the
6740          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
6741          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
6742          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
6743          *
6744          * A problem with this approach (when !enable_ept) is that L1 may be
6745          * injected with more page faults than it asked for. This could have
6746          * caused problems, but in practice existing hypervisors don't care.
6747          * To fix this, we will need to emulate the PFEC checking (on the L1
6748          * page tables), using walk_addr(), when injecting PFs to L1.
6749          */
6750         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
6751                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
6752         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
6753                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
6754
6755         if (cpu_has_secondary_exec_ctrls()) {
6756                 u32 exec_control = vmx_secondary_exec_control(vmx);
6757                 if (!vmx->rdtscp_enabled)
6758                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
6759                 /* Take the following fields only from vmcs12 */
6760                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6761                 if (nested_cpu_has(vmcs12,
6762                                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
6763                         exec_control |= vmcs12->secondary_vm_exec_control;
6764
6765                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
6766                         /*
6767                          * Translate L1 physical address to host physical
6768                          * address for vmcs02. Keep the page pinned, so this
6769                          * physical address remains valid. We keep a reference
6770                          * to it so we can release it later.
6771                          */
6772                         if (vmx->nested.apic_access_page) /* shouldn't happen */
6773                                 nested_release_page(vmx->nested.apic_access_page);
6774                         vmx->nested.apic_access_page =
6775                                 nested_get_page(vcpu, vmcs12->apic_access_addr);
6776                         /*
6777                          * If translation failed, no matter: This feature asks
6778                          * to exit when accessing the given address, and if it
6779                          * can never be accessed, this feature won't do
6780                          * anything anyway.
6781                          */
6782                         if (!vmx->nested.apic_access_page)
6783                                 exec_control &=
6784                                   ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6785                         else
6786                                 vmcs_write64(APIC_ACCESS_ADDR,
6787                                   page_to_phys(vmx->nested.apic_access_page));
6788                 }
6789
6790                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6791         }
6792
6793
6794         /*
6795          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
6796          * Some constant fields are set here by vmx_set_constant_host_state().
6797          * Other fields are different per CPU, and will be set later when
6798          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
6799          */
6800         vmx_set_constant_host_state();
6801
6802         /*
6803          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
6804          * entry, but only if the current (host) sp changed from the value
6805          * we wrote last (vmx->host_rsp). This cache is no longer relevant
6806          * if we switch vmcs, and rather than hold a separate cache per vmcs,
6807          * here we just force the write to happen on entry.
6808          */
6809         vmx->host_rsp = 0;
6810
6811         exec_control = vmx_exec_control(vmx); /* L0's desires */
6812         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
6813         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6814         exec_control &= ~CPU_BASED_TPR_SHADOW;
6815         exec_control |= vmcs12->cpu_based_vm_exec_control;
6816         /*
6817          * Merging of IO and MSR bitmaps not currently supported.
6818          * Rather, exit every time.
6819          */
6820         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
6821         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
6822         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
6823
6824         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
6825
6826         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
6827          * bitwise-or of what L1 wants to trap for L2, and what we want to
6828          * trap. Note that CR0.TS also needs updating - we do this later.
6829          */
6830         update_exception_bitmap(vcpu);
6831         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
6832         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6833
6834         /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
6835         vmcs_write32(VM_EXIT_CONTROLS,
6836                 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
6837         vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
6838                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
6839
6840         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
6841                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
6842         else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6843                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6844
6845
6846         set_cr4_guest_host_mask(vmx);
6847
6848         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
6849                 vmcs_write64(TSC_OFFSET,
6850                         vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
6851         else
6852                 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
6853
6854         if (enable_vpid) {
6855                 /*
6856                  * Trivially support vpid by letting L2s share their parent
6857                  * L1's vpid. TODO: move to a more elaborate solution, giving
6858                  * each L2 its own vpid and exposing the vpid feature to L1.
6859                  */
6860                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6861                 vmx_flush_tlb(vcpu);
6862         }
6863
6864         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
6865                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
6866         if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
6867                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6868         else
6869                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6870         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
6871         vmx_set_efer(vcpu, vcpu->arch.efer);
6872
6873         /*
6874          * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
6875          * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
6876          * The CR0_READ_SHADOW is what L2 should have expected to read given
6877          * the specifications by L1; It's not enough to take
6878          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
6879          * have more bits than L1 expected.
6880          */
6881         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
6882         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
6883
6884         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
6885         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
6886
6887         /* shadow page tables on either EPT or shadow page tables */
6888         kvm_set_cr3(vcpu, vmcs12->guest_cr3);
6889         kvm_mmu_reset_context(vcpu);
6890
6891         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
6892         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
6893 }
6894
6895 /*
6896  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
6897  * for running an L2 nested guest.
6898  */
6899 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
6900 {
6901         struct vmcs12 *vmcs12;
6902         struct vcpu_vmx *vmx = to_vmx(vcpu);
6903         int cpu;
6904         struct loaded_vmcs *vmcs02;
6905
6906         if (!nested_vmx_check_permission(vcpu) ||
6907             !nested_vmx_check_vmcs12(vcpu))
6908                 return 1;
6909
6910         skip_emulated_instruction(vcpu);
6911         vmcs12 = get_vmcs12(vcpu);
6912
6913         /*
6914          * The nested entry process starts with enforcing various prerequisites
6915          * on vmcs12 as required by the Intel SDM, and act appropriately when
6916          * they fail: As the SDM explains, some conditions should cause the
6917          * instruction to fail, while others will cause the instruction to seem
6918          * to succeed, but return an EXIT_REASON_INVALID_STATE.
6919          * To speed up the normal (success) code path, we should avoid checking
6920          * for misconfigurations which will anyway be caught by the processor
6921          * when using the merged vmcs02.
6922          */
6923         if (vmcs12->launch_state == launch) {
6924                 nested_vmx_failValid(vcpu,
6925                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
6926                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
6927                 return 1;
6928         }
6929
6930         if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
6931                         !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
6932                 /*TODO: Also verify bits beyond physical address width are 0*/
6933                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6934                 return 1;
6935         }
6936
6937         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
6938                         !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
6939                 /*TODO: Also verify bits beyond physical address width are 0*/
6940                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6941                 return 1;
6942         }
6943
6944         if (vmcs12->vm_entry_msr_load_count > 0 ||
6945             vmcs12->vm_exit_msr_load_count > 0 ||
6946             vmcs12->vm_exit_msr_store_count > 0) {
6947                 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
6948                                     __func__);
6949                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6950                 return 1;
6951         }
6952
6953         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
6954               nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
6955             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
6956               nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
6957             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
6958               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
6959             !vmx_control_verify(vmcs12->vm_exit_controls,
6960               nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
6961             !vmx_control_verify(vmcs12->vm_entry_controls,
6962               nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
6963         {
6964                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6965                 return 1;
6966         }
6967
6968         if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6969             ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6970                 nested_vmx_failValid(vcpu,
6971                         VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6972                 return 1;
6973         }
6974
6975         if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6976             ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6977                 nested_vmx_entry_failure(vcpu, vmcs12,
6978                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
6979                 return 1;
6980         }
6981         if (vmcs12->vmcs_link_pointer != -1ull) {
6982                 nested_vmx_entry_failure(vcpu, vmcs12,
6983                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
6984                 return 1;
6985         }
6986
6987         /*
6988          * We're finally done with prerequisite checking, and can start with
6989          * the nested entry.
6990          */
6991
6992         vmcs02 = nested_get_current_vmcs02(vmx);
6993         if (!vmcs02)
6994                 return -ENOMEM;
6995
6996         enter_guest_mode(vcpu);
6997
6998         vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
6999
7000         cpu = get_cpu();
7001         vmx->loaded_vmcs = vmcs02;
7002         vmx_vcpu_put(vcpu);
7003         vmx_vcpu_load(vcpu, cpu);
7004         vcpu->cpu = cpu;
7005         put_cpu();
7006
7007         vmcs12->launch_state = 1;
7008
7009         prepare_vmcs02(vcpu, vmcs12);
7010
7011         /*
7012          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
7013          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
7014          * returned as far as L1 is concerned. It will only return (and set
7015          * the success flag) when L2 exits (see nested_vmx_vmexit()).
7016          */
7017         return 1;
7018 }
7019
7020 /*
7021  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
7022  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
7023  * This function returns the new value we should put in vmcs12.guest_cr0.
7024  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
7025  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
7026  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
7027  *     didn't trap the bit, because if L1 did, so would L0).
7028  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
7029  *     been modified by L2, and L1 knows it. So just leave the old value of
7030  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
7031  *     isn't relevant, because if L0 traps this bit it can set it to anything.
7032  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
7033  *     changed these bits, and therefore they need to be updated, but L0
7034  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
7035  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
7036  */
7037 static inline unsigned long
7038 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7039 {
7040         return
7041         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
7042         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
7043         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
7044                         vcpu->arch.cr0_guest_owned_bits));
7045 }
7046
7047 static inline unsigned long
7048 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7049 {
7050         return
7051         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
7052         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
7053         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
7054                         vcpu->arch.cr4_guest_owned_bits));
7055 }
7056
7057 /*
7058  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
7059  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
7060  * and this function updates it to reflect the changes to the guest state while
7061  * L2 was running (and perhaps made some exits which were handled directly by L0
7062  * without going back to L1), and to reflect the exit reason.
7063  * Note that we do not have to copy here all VMCS fields, just those that
7064  * could have changed by the L2 guest or the exit - i.e., the guest-state and
7065  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
7066  * which already writes to vmcs12 directly.
7067  */
7068 void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7069 {
7070         /* update guest state fields: */
7071         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
7072         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
7073
7074         kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
7075         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7076         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
7077         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
7078
7079         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
7080         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
7081         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
7082         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
7083         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
7084         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
7085         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
7086         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
7087         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
7088         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
7089         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
7090         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
7091         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
7092         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
7093         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
7094         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
7095         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
7096         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
7097         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
7098         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
7099         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
7100         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
7101         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
7102         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
7103         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
7104         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
7105         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
7106         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
7107         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
7108         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
7109         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
7110         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
7111         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
7112         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
7113         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
7114         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
7115
7116         vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
7117         vmcs12->guest_interruptibility_info =
7118                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
7119         vmcs12->guest_pending_dbg_exceptions =
7120                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
7121
7122         /* TODO: These cannot have changed unless we have MSR bitmaps and
7123          * the relevant bit asks not to trap the change */
7124         vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
7125         if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
7126                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
7127         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
7128         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
7129         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
7130
7131         /* update exit information fields: */
7132
7133         vmcs12->vm_exit_reason  = vmcs_read32(VM_EXIT_REASON);
7134         vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7135
7136         vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7137         vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
7138         vmcs12->idt_vectoring_info_field =
7139                 vmcs_read32(IDT_VECTORING_INFO_FIELD);
7140         vmcs12->idt_vectoring_error_code =
7141                 vmcs_read32(IDT_VECTORING_ERROR_CODE);
7142         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
7143         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7144
7145         /* clear vm-entry fields which are to be cleared on exit */
7146         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
7147                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
7148 }
7149
7150 /*
7151  * A part of what we need to when the nested L2 guest exits and we want to
7152  * run its L1 parent, is to reset L1's guest state to the host state specified
7153  * in vmcs12.
7154  * This function is to be called not only on normal nested exit, but also on
7155  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
7156  * Failures During or After Loading Guest State").
7157  * This function should be called when the active VMCS is L1's (vmcs01).
7158  */
7159 void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7160 {
7161         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
7162                 vcpu->arch.efer = vmcs12->host_ia32_efer;
7163         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
7164                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7165         else
7166                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7167         vmx_set_efer(vcpu, vcpu->arch.efer);
7168
7169         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
7170         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
7171         /*
7172          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
7173          * actually changed, because it depends on the current state of
7174          * fpu_active (which may have changed).
7175          * Note that vmx_set_cr0 refers to efer set above.
7176          */
7177         kvm_set_cr0(vcpu, vmcs12->host_cr0);
7178         /*
7179          * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
7180          * to apply the same changes to L1's vmcs. We just set cr0 correctly,
7181          * but we also need to update cr0_guest_host_mask and exception_bitmap.
7182          */
7183         update_exception_bitmap(vcpu);
7184         vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
7185         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7186
7187         /*
7188          * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
7189          * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
7190          */
7191         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
7192         kvm_set_cr4(vcpu, vmcs12->host_cr4);
7193
7194         /* shadow page tables on either EPT or shadow page tables */
7195         kvm_set_cr3(vcpu, vmcs12->host_cr3);
7196         kvm_mmu_reset_context(vcpu);
7197
7198         if (enable_vpid) {
7199                 /*
7200                  * Trivially support vpid by letting L2s share their parent
7201                  * L1's vpid. TODO: move to a more elaborate solution, giving
7202                  * each L2 its own vpid and exposing the vpid feature to L1.
7203                  */
7204                 vmx_flush_tlb(vcpu);
7205         }
7206
7207
7208         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
7209         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
7210         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
7211         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
7212         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
7213         vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
7214         vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
7215         vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
7216         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
7217         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
7218         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
7219         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
7220         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
7221         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
7222         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
7223
7224         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
7225                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
7226         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7227                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
7228                         vmcs12->host_ia32_perf_global_ctrl);
7229 }
7230
7231 /*
7232  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7233  * and modify vmcs12 to make it see what it would expect to see there if
7234  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7235  */
7236 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
7237 {
7238         struct vcpu_vmx *vmx = to_vmx(vcpu);
7239         int cpu;
7240         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7241
7242         leave_guest_mode(vcpu);
7243         prepare_vmcs12(vcpu, vmcs12);
7244
7245         cpu = get_cpu();
7246         vmx->loaded_vmcs = &vmx->vmcs01;
7247         vmx_vcpu_put(vcpu);
7248         vmx_vcpu_load(vcpu, cpu);
7249         vcpu->cpu = cpu;
7250         put_cpu();
7251
7252         /* if no vmcs02 cache requested, remove the one we used */
7253         if (VMCS02_POOL_SIZE == 0)
7254                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
7255
7256         load_vmcs12_host_state(vcpu, vmcs12);
7257
7258         /* Update TSC_OFFSET if TSC was changed while L2 ran */
7259         vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7260
7261         /* This is needed for same reason as it was needed in prepare_vmcs02 */
7262         vmx->host_rsp = 0;
7263
7264         /* Unpin physical memory we referred to in vmcs02 */
7265         if (vmx->nested.apic_access_page) {
7266                 nested_release_page(vmx->nested.apic_access_page);
7267                 vmx->nested.apic_access_page = 0;
7268         }
7269
7270         /*
7271          * Exiting from L2 to L1, we're now back to L1 which thinks it just
7272          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7273          * success or failure flag accordingly.
7274          */
7275         if (unlikely(vmx->fail)) {
7276                 vmx->fail = 0;
7277                 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
7278         } else
7279                 nested_vmx_succeed(vcpu);
7280 }
7281
7282 /*
7283  * L1's failure to enter L2 is a subset of a normal exit, as explained in
7284  * 23.7 "VM-entry failures during or after loading guest state" (this also
7285  * lists the acceptable exit-reason and exit-qualification parameters).
7286  * It should only be called before L2 actually succeeded to run, and when
7287  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
7288  */
7289 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
7290                         struct vmcs12 *vmcs12,
7291                         u32 reason, unsigned long qualification)
7292 {
7293         load_vmcs12_host_state(vcpu, vmcs12);
7294         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
7295         vmcs12->exit_qualification = qualification;
7296         nested_vmx_succeed(vcpu);
7297 }
7298
7299 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7300                                struct x86_instruction_info *info,
7301                                enum x86_intercept_stage stage)
7302 {
7303         return X86EMUL_CONTINUE;
7304 }
7305
7306 static struct kvm_x86_ops vmx_x86_ops = {
7307         .cpu_has_kvm_support = cpu_has_kvm_support,
7308         .disabled_by_bios = vmx_disabled_by_bios,
7309         .hardware_setup = hardware_setup,
7310         .hardware_unsetup = hardware_unsetup,
7311         .check_processor_compatibility = vmx_check_processor_compat,
7312         .hardware_enable = hardware_enable,
7313         .hardware_disable = hardware_disable,
7314         .cpu_has_accelerated_tpr = report_flexpriority,
7315
7316         .vcpu_create = vmx_create_vcpu,
7317         .vcpu_free = vmx_free_vcpu,
7318         .vcpu_reset = vmx_vcpu_reset,
7319
7320         .prepare_guest_switch = vmx_save_host_state,
7321         .vcpu_load = vmx_vcpu_load,
7322         .vcpu_put = vmx_vcpu_put,
7323
7324         .update_db_bp_intercept = update_exception_bitmap,
7325         .get_msr = vmx_get_msr,
7326         .set_msr = vmx_set_msr,
7327         .get_segment_base = vmx_get_segment_base,
7328         .get_segment = vmx_get_segment,
7329         .set_segment = vmx_set_segment,
7330         .get_cpl = vmx_get_cpl,
7331         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7332         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7333         .decache_cr3 = vmx_decache_cr3,
7334         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7335         .set_cr0 = vmx_set_cr0,
7336         .set_cr3 = vmx_set_cr3,
7337         .set_cr4 = vmx_set_cr4,
7338         .set_efer = vmx_set_efer,
7339         .get_idt = vmx_get_idt,
7340         .set_idt = vmx_set_idt,
7341         .get_gdt = vmx_get_gdt,
7342         .set_gdt = vmx_set_gdt,
7343         .set_dr7 = vmx_set_dr7,
7344         .cache_reg = vmx_cache_reg,
7345         .get_rflags = vmx_get_rflags,
7346         .set_rflags = vmx_set_rflags,
7347         .fpu_activate = vmx_fpu_activate,
7348         .fpu_deactivate = vmx_fpu_deactivate,
7349
7350         .tlb_flush = vmx_flush_tlb,
7351
7352         .run = vmx_vcpu_run,
7353         .handle_exit = vmx_handle_exit,
7354         .skip_emulated_instruction = skip_emulated_instruction,
7355         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7356         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7357         .patch_hypercall = vmx_patch_hypercall,
7358         .set_irq = vmx_inject_irq,
7359         .set_nmi = vmx_inject_nmi,
7360         .queue_exception = vmx_queue_exception,
7361         .cancel_injection = vmx_cancel_injection,
7362         .interrupt_allowed = vmx_interrupt_allowed,
7363         .nmi_allowed = vmx_nmi_allowed,
7364         .get_nmi_mask = vmx_get_nmi_mask,
7365         .set_nmi_mask = vmx_set_nmi_mask,
7366         .enable_nmi_window = enable_nmi_window,
7367         .enable_irq_window = enable_irq_window,
7368         .update_cr8_intercept = update_cr8_intercept,
7369
7370         .set_tss_addr = vmx_set_tss_addr,
7371         .get_tdp_level = get_ept_level,
7372         .get_mt_mask = vmx_get_mt_mask,
7373
7374         .get_exit_info = vmx_get_exit_info,
7375
7376         .get_lpage_level = vmx_get_lpage_level,
7377
7378         .cpuid_update = vmx_cpuid_update,
7379
7380         .rdtscp_supported = vmx_rdtscp_supported,
7381         .invpcid_supported = vmx_invpcid_supported,
7382
7383         .set_supported_cpuid = vmx_set_supported_cpuid,
7384
7385         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7386
7387         .set_tsc_khz = vmx_set_tsc_khz,
7388         .read_tsc_offset = vmx_read_tsc_offset,
7389         .write_tsc_offset = vmx_write_tsc_offset,
7390         .adjust_tsc_offset = vmx_adjust_tsc_offset,
7391         .compute_tsc_offset = vmx_compute_tsc_offset,
7392         .read_l1_tsc = vmx_read_l1_tsc,
7393
7394         .set_tdp_cr3 = vmx_set_cr3,
7395
7396         .check_intercept = vmx_check_intercept,
7397 };
7398
7399 static int __init vmx_init(void)
7400 {
7401         int r, i;
7402
7403         rdmsrl_safe(MSR_EFER, &host_efer);
7404
7405         for (i = 0; i < NR_VMX_MSR; ++i)
7406                 kvm_define_shared_msr(i, vmx_msr_index[i]);
7407
7408         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
7409         if (!vmx_io_bitmap_a)
7410                 return -ENOMEM;
7411
7412         r = -ENOMEM;
7413
7414         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
7415         if (!vmx_io_bitmap_b)
7416                 goto out;
7417
7418         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
7419         if (!vmx_msr_bitmap_legacy)
7420                 goto out1;
7421
7422
7423         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
7424         if (!vmx_msr_bitmap_longmode)
7425                 goto out2;
7426
7427
7428         /*
7429          * Allow direct access to the PC debug port (it is often used for I/O
7430          * delays, but the vmexits simply slow things down).
7431          */
7432         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7433         clear_bit(0x80, vmx_io_bitmap_a);
7434
7435         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
7436
7437         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
7438         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
7439
7440         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7441
7442         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7443                      __alignof__(struct vcpu_vmx), THIS_MODULE);
7444         if (r)
7445                 goto out3;
7446
7447 #ifdef CONFIG_KEXEC
7448         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
7449                            crash_vmclear_local_loaded_vmcss);
7450 #endif
7451
7452         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
7453         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
7454         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
7455         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
7456         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
7457         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
7458
7459         if (enable_ept) {
7460                 kvm_mmu_set_mask_ptes(0ull,
7461                         (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
7462                         (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
7463                         0ull, VMX_EPT_EXECUTABLE_MASK);
7464                 ept_set_mmio_spte_mask();
7465                 kvm_enable_tdp();
7466         } else
7467                 kvm_disable_tdp();
7468
7469         return 0;
7470
7471 out3:
7472         free_page((unsigned long)vmx_msr_bitmap_longmode);
7473 out2:
7474         free_page((unsigned long)vmx_msr_bitmap_legacy);
7475 out1:
7476         free_page((unsigned long)vmx_io_bitmap_b);
7477 out:
7478         free_page((unsigned long)vmx_io_bitmap_a);
7479         return r;
7480 }
7481
7482 static void __exit vmx_exit(void)
7483 {
7484         free_page((unsigned long)vmx_msr_bitmap_legacy);
7485         free_page((unsigned long)vmx_msr_bitmap_longmode);
7486         free_page((unsigned long)vmx_io_bitmap_b);
7487         free_page((unsigned long)vmx_io_bitmap_a);
7488
7489 #ifdef CONFIG_KEXEC
7490         rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
7491         synchronize_rcu();
7492 #endif
7493
7494         kvm_exit();
7495 }
7496
7497 module_init(vmx_init)
7498 module_exit(vmx_exit)