]> rtime.felk.cvut.cz Git - can-eth-gw-linux.git/blob - arch/arm64/kernel/perf_event.c
ARM: mxs_defconfig: Improve USB related support
[can-eth-gw-linux.git] / arch / arm64 / kernel / perf_event.c
1 /*
2  * PMU support
3  *
4  * Copyright (C) 2012 ARM Limited
5  * Author: Will Deacon <will.deacon@arm.com>
6  *
7  * This code is based heavily on the ARMv7 perf event code.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 #define pr_fmt(fmt) "hw perfevents: " fmt
22
23 #include <linux/bitmap.h>
24 #include <linux/interrupt.h>
25 #include <linux/kernel.h>
26 #include <linux/export.h>
27 #include <linux/perf_event.h>
28 #include <linux/platform_device.h>
29 #include <linux/spinlock.h>
30 #include <linux/uaccess.h>
31
32 #include <asm/cputype.h>
33 #include <asm/irq.h>
34 #include <asm/irq_regs.h>
35 #include <asm/pmu.h>
36 #include <asm/stacktrace.h>
37
38 /*
39  * ARMv8 supports a maximum of 32 events.
40  * The cycle counter is included in this total.
41  */
42 #define ARMPMU_MAX_HWEVENTS             32
43
44 static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
45 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
46 static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
47
48 #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
49
50 /* Set at runtime when we know what CPU type we are. */
51 static struct arm_pmu *cpu_pmu;
52
53 int
54 armpmu_get_max_events(void)
55 {
56         int max_events = 0;
57
58         if (cpu_pmu != NULL)
59                 max_events = cpu_pmu->num_events;
60
61         return max_events;
62 }
63 EXPORT_SYMBOL_GPL(armpmu_get_max_events);
64
65 int perf_num_counters(void)
66 {
67         return armpmu_get_max_events();
68 }
69 EXPORT_SYMBOL_GPL(perf_num_counters);
70
71 #define HW_OP_UNSUPPORTED               0xFFFF
72
73 #define C(_x) \
74         PERF_COUNT_HW_CACHE_##_x
75
76 #define CACHE_OP_UNSUPPORTED            0xFFFF
77
78 static int
79 armpmu_map_cache_event(const unsigned (*cache_map)
80                                       [PERF_COUNT_HW_CACHE_MAX]
81                                       [PERF_COUNT_HW_CACHE_OP_MAX]
82                                       [PERF_COUNT_HW_CACHE_RESULT_MAX],
83                        u64 config)
84 {
85         unsigned int cache_type, cache_op, cache_result, ret;
86
87         cache_type = (config >>  0) & 0xff;
88         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
89                 return -EINVAL;
90
91         cache_op = (config >>  8) & 0xff;
92         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
93                 return -EINVAL;
94
95         cache_result = (config >> 16) & 0xff;
96         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
97                 return -EINVAL;
98
99         ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
100
101         if (ret == CACHE_OP_UNSUPPORTED)
102                 return -ENOENT;
103
104         return ret;
105 }
106
107 static int
108 armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
109 {
110         int mapping = (*event_map)[config];
111         return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
112 }
113
114 static int
115 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
116 {
117         return (int)(config & raw_event_mask);
118 }
119
120 static int map_cpu_event(struct perf_event *event,
121                          const unsigned (*event_map)[PERF_COUNT_HW_MAX],
122                          const unsigned (*cache_map)
123                                         [PERF_COUNT_HW_CACHE_MAX]
124                                         [PERF_COUNT_HW_CACHE_OP_MAX]
125                                         [PERF_COUNT_HW_CACHE_RESULT_MAX],
126                          u32 raw_event_mask)
127 {
128         u64 config = event->attr.config;
129
130         switch (event->attr.type) {
131         case PERF_TYPE_HARDWARE:
132                 return armpmu_map_event(event_map, config);
133         case PERF_TYPE_HW_CACHE:
134                 return armpmu_map_cache_event(cache_map, config);
135         case PERF_TYPE_RAW:
136                 return armpmu_map_raw_event(raw_event_mask, config);
137         }
138
139         return -ENOENT;
140 }
141
142 int
143 armpmu_event_set_period(struct perf_event *event,
144                         struct hw_perf_event *hwc,
145                         int idx)
146 {
147         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
148         s64 left = local64_read(&hwc->period_left);
149         s64 period = hwc->sample_period;
150         int ret = 0;
151
152         if (unlikely(left <= -period)) {
153                 left = period;
154                 local64_set(&hwc->period_left, left);
155                 hwc->last_period = period;
156                 ret = 1;
157         }
158
159         if (unlikely(left <= 0)) {
160                 left += period;
161                 local64_set(&hwc->period_left, left);
162                 hwc->last_period = period;
163                 ret = 1;
164         }
165
166         if (left > (s64)armpmu->max_period)
167                 left = armpmu->max_period;
168
169         local64_set(&hwc->prev_count, (u64)-left);
170
171         armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
172
173         perf_event_update_userpage(event);
174
175         return ret;
176 }
177
178 u64
179 armpmu_event_update(struct perf_event *event,
180                     struct hw_perf_event *hwc,
181                     int idx)
182 {
183         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
184         u64 delta, prev_raw_count, new_raw_count;
185
186 again:
187         prev_raw_count = local64_read(&hwc->prev_count);
188         new_raw_count = armpmu->read_counter(idx);
189
190         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
191                              new_raw_count) != prev_raw_count)
192                 goto again;
193
194         delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
195
196         local64_add(delta, &event->count);
197         local64_sub(delta, &hwc->period_left);
198
199         return new_raw_count;
200 }
201
202 static void
203 armpmu_read(struct perf_event *event)
204 {
205         struct hw_perf_event *hwc = &event->hw;
206
207         /* Don't read disabled counters! */
208         if (hwc->idx < 0)
209                 return;
210
211         armpmu_event_update(event, hwc, hwc->idx);
212 }
213
214 static void
215 armpmu_stop(struct perf_event *event, int flags)
216 {
217         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
218         struct hw_perf_event *hwc = &event->hw;
219
220         /*
221          * ARM pmu always has to update the counter, so ignore
222          * PERF_EF_UPDATE, see comments in armpmu_start().
223          */
224         if (!(hwc->state & PERF_HES_STOPPED)) {
225                 armpmu->disable(hwc, hwc->idx);
226                 barrier(); /* why? */
227                 armpmu_event_update(event, hwc, hwc->idx);
228                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
229         }
230 }
231
232 static void
233 armpmu_start(struct perf_event *event, int flags)
234 {
235         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
236         struct hw_perf_event *hwc = &event->hw;
237
238         /*
239          * ARM pmu always has to reprogram the period, so ignore
240          * PERF_EF_RELOAD, see the comment below.
241          */
242         if (flags & PERF_EF_RELOAD)
243                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
244
245         hwc->state = 0;
246         /*
247          * Set the period again. Some counters can't be stopped, so when we
248          * were stopped we simply disabled the IRQ source and the counter
249          * may have been left counting. If we don't do this step then we may
250          * get an interrupt too soon or *way* too late if the overflow has
251          * happened since disabling.
252          */
253         armpmu_event_set_period(event, hwc, hwc->idx);
254         armpmu->enable(hwc, hwc->idx);
255 }
256
257 static void
258 armpmu_del(struct perf_event *event, int flags)
259 {
260         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
261         struct pmu_hw_events *hw_events = armpmu->get_hw_events();
262         struct hw_perf_event *hwc = &event->hw;
263         int idx = hwc->idx;
264
265         WARN_ON(idx < 0);
266
267         armpmu_stop(event, PERF_EF_UPDATE);
268         hw_events->events[idx] = NULL;
269         clear_bit(idx, hw_events->used_mask);
270
271         perf_event_update_userpage(event);
272 }
273
274 static int
275 armpmu_add(struct perf_event *event, int flags)
276 {
277         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
278         struct pmu_hw_events *hw_events = armpmu->get_hw_events();
279         struct hw_perf_event *hwc = &event->hw;
280         int idx;
281         int err = 0;
282
283         perf_pmu_disable(event->pmu);
284
285         /* If we don't have a space for the counter then finish early. */
286         idx = armpmu->get_event_idx(hw_events, hwc);
287         if (idx < 0) {
288                 err = idx;
289                 goto out;
290         }
291
292         /*
293          * If there is an event in the counter we are going to use then make
294          * sure it is disabled.
295          */
296         event->hw.idx = idx;
297         armpmu->disable(hwc, idx);
298         hw_events->events[idx] = event;
299
300         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
301         if (flags & PERF_EF_START)
302                 armpmu_start(event, PERF_EF_RELOAD);
303
304         /* Propagate our changes to the userspace mapping. */
305         perf_event_update_userpage(event);
306
307 out:
308         perf_pmu_enable(event->pmu);
309         return err;
310 }
311
312 static int
313 validate_event(struct pmu_hw_events *hw_events,
314                struct perf_event *event)
315 {
316         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
317         struct hw_perf_event fake_event = event->hw;
318         struct pmu *leader_pmu = event->group_leader->pmu;
319
320         if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
321                 return 1;
322
323         return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
324 }
325
326 static int
327 validate_group(struct perf_event *event)
328 {
329         struct perf_event *sibling, *leader = event->group_leader;
330         struct pmu_hw_events fake_pmu;
331         DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
332
333         /*
334          * Initialise the fake PMU. We only need to populate the
335          * used_mask for the purposes of validation.
336          */
337         memset(fake_used_mask, 0, sizeof(fake_used_mask));
338         fake_pmu.used_mask = fake_used_mask;
339
340         if (!validate_event(&fake_pmu, leader))
341                 return -EINVAL;
342
343         list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
344                 if (!validate_event(&fake_pmu, sibling))
345                         return -EINVAL;
346         }
347
348         if (!validate_event(&fake_pmu, event))
349                 return -EINVAL;
350
351         return 0;
352 }
353
354 static void
355 armpmu_release_hardware(struct arm_pmu *armpmu)
356 {
357         int i, irq, irqs;
358         struct platform_device *pmu_device = armpmu->plat_device;
359
360         irqs = min(pmu_device->num_resources, num_possible_cpus());
361
362         for (i = 0; i < irqs; ++i) {
363                 if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
364                         continue;
365                 irq = platform_get_irq(pmu_device, i);
366                 if (irq >= 0)
367                         free_irq(irq, armpmu);
368         }
369 }
370
371 static int
372 armpmu_reserve_hardware(struct arm_pmu *armpmu)
373 {
374         int i, err, irq, irqs;
375         struct platform_device *pmu_device = armpmu->plat_device;
376
377         if (!pmu_device) {
378                 pr_err("no PMU device registered\n");
379                 return -ENODEV;
380         }
381
382         irqs = min(pmu_device->num_resources, num_possible_cpus());
383         if (irqs < 1) {
384                 pr_err("no irqs for PMUs defined\n");
385                 return -ENODEV;
386         }
387
388         for (i = 0; i < irqs; ++i) {
389                 err = 0;
390                 irq = platform_get_irq(pmu_device, i);
391                 if (irq < 0)
392                         continue;
393
394                 /*
395                  * If we have a single PMU interrupt that we can't shift,
396                  * assume that we're running on a uniprocessor machine and
397                  * continue. Otherwise, continue without this interrupt.
398                  */
399                 if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
400                         pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
401                                     irq, i);
402                         continue;
403                 }
404
405                 err = request_irq(irq, armpmu->handle_irq,
406                                   IRQF_NOBALANCING,
407                                   "arm-pmu", armpmu);
408                 if (err) {
409                         pr_err("unable to request IRQ%d for ARM PMU counters\n",
410                                 irq);
411                         armpmu_release_hardware(armpmu);
412                         return err;
413                 }
414
415                 cpumask_set_cpu(i, &armpmu->active_irqs);
416         }
417
418         return 0;
419 }
420
421 static void
422 hw_perf_event_destroy(struct perf_event *event)
423 {
424         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
425         atomic_t *active_events  = &armpmu->active_events;
426         struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
427
428         if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
429                 armpmu_release_hardware(armpmu);
430                 mutex_unlock(pmu_reserve_mutex);
431         }
432 }
433
434 static int
435 event_requires_mode_exclusion(struct perf_event_attr *attr)
436 {
437         return attr->exclude_idle || attr->exclude_user ||
438                attr->exclude_kernel || attr->exclude_hv;
439 }
440
441 static int
442 __hw_perf_event_init(struct perf_event *event)
443 {
444         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
445         struct hw_perf_event *hwc = &event->hw;
446         int mapping, err;
447
448         mapping = armpmu->map_event(event);
449
450         if (mapping < 0) {
451                 pr_debug("event %x:%llx not supported\n", event->attr.type,
452                          event->attr.config);
453                 return mapping;
454         }
455
456         /*
457          * We don't assign an index until we actually place the event onto
458          * hardware. Use -1 to signify that we haven't decided where to put it
459          * yet. For SMP systems, each core has it's own PMU so we can't do any
460          * clever allocation or constraints checking at this point.
461          */
462         hwc->idx                = -1;
463         hwc->config_base        = 0;
464         hwc->config             = 0;
465         hwc->event_base         = 0;
466
467         /*
468          * Check whether we need to exclude the counter from certain modes.
469          */
470         if ((!armpmu->set_event_filter ||
471              armpmu->set_event_filter(hwc, &event->attr)) &&
472              event_requires_mode_exclusion(&event->attr)) {
473                 pr_debug("ARM performance counters do not support mode exclusion\n");
474                 return -EPERM;
475         }
476
477         /*
478          * Store the event encoding into the config_base field.
479          */
480         hwc->config_base            |= (unsigned long)mapping;
481
482         if (!hwc->sample_period) {
483                 /*
484                  * For non-sampling runs, limit the sample_period to half
485                  * of the counter width. That way, the new counter value
486                  * is far less likely to overtake the previous one unless
487                  * you have some serious IRQ latency issues.
488                  */
489                 hwc->sample_period  = armpmu->max_period >> 1;
490                 hwc->last_period    = hwc->sample_period;
491                 local64_set(&hwc->period_left, hwc->sample_period);
492         }
493
494         err = 0;
495         if (event->group_leader != event) {
496                 err = validate_group(event);
497                 if (err)
498                         return -EINVAL;
499         }
500
501         return err;
502 }
503
504 static int armpmu_event_init(struct perf_event *event)
505 {
506         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
507         int err = 0;
508         atomic_t *active_events = &armpmu->active_events;
509
510         if (armpmu->map_event(event) == -ENOENT)
511                 return -ENOENT;
512
513         event->destroy = hw_perf_event_destroy;
514
515         if (!atomic_inc_not_zero(active_events)) {
516                 mutex_lock(&armpmu->reserve_mutex);
517                 if (atomic_read(active_events) == 0)
518                         err = armpmu_reserve_hardware(armpmu);
519
520                 if (!err)
521                         atomic_inc(active_events);
522                 mutex_unlock(&armpmu->reserve_mutex);
523         }
524
525         if (err)
526                 return err;
527
528         err = __hw_perf_event_init(event);
529         if (err)
530                 hw_perf_event_destroy(event);
531
532         return err;
533 }
534
535 static void armpmu_enable(struct pmu *pmu)
536 {
537         struct arm_pmu *armpmu = to_arm_pmu(pmu);
538         struct pmu_hw_events *hw_events = armpmu->get_hw_events();
539         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
540
541         if (enabled)
542                 armpmu->start();
543 }
544
545 static void armpmu_disable(struct pmu *pmu)
546 {
547         struct arm_pmu *armpmu = to_arm_pmu(pmu);
548         armpmu->stop();
549 }
550
551 static void __init armpmu_init(struct arm_pmu *armpmu)
552 {
553         atomic_set(&armpmu->active_events, 0);
554         mutex_init(&armpmu->reserve_mutex);
555
556         armpmu->pmu = (struct pmu) {
557                 .pmu_enable     = armpmu_enable,
558                 .pmu_disable    = armpmu_disable,
559                 .event_init     = armpmu_event_init,
560                 .add            = armpmu_add,
561                 .del            = armpmu_del,
562                 .start          = armpmu_start,
563                 .stop           = armpmu_stop,
564                 .read           = armpmu_read,
565         };
566 }
567
568 int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
569 {
570         armpmu_init(armpmu);
571         return perf_pmu_register(&armpmu->pmu, name, type);
572 }
573
574 /*
575  * ARMv8 PMUv3 Performance Events handling code.
576  * Common event types.
577  */
578 enum armv8_pmuv3_perf_types {
579         /* Required events. */
580         ARMV8_PMUV3_PERFCTR_PMNC_SW_INCR                        = 0x00,
581         ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL                    = 0x03,
582         ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS                    = 0x04,
583         ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED                  = 0x10,
584         ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES                        = 0x11,
585         ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED                      = 0x12,
586
587         /* At least one of the following is required. */
588         ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED                      = 0x08,
589         ARMV8_PMUV3_PERFCTR_OP_SPEC                             = 0x1B,
590
591         /* Common architectural events. */
592         ARMV8_PMUV3_PERFCTR_MEM_READ                            = 0x06,
593         ARMV8_PMUV3_PERFCTR_MEM_WRITE                           = 0x07,
594         ARMV8_PMUV3_PERFCTR_EXC_TAKEN                           = 0x09,
595         ARMV8_PMUV3_PERFCTR_EXC_EXECUTED                        = 0x0A,
596         ARMV8_PMUV3_PERFCTR_CID_WRITE                           = 0x0B,
597         ARMV8_PMUV3_PERFCTR_PC_WRITE                            = 0x0C,
598         ARMV8_PMUV3_PERFCTR_PC_IMM_BRANCH                       = 0x0D,
599         ARMV8_PMUV3_PERFCTR_PC_PROC_RETURN                      = 0x0E,
600         ARMV8_PMUV3_PERFCTR_MEM_UNALIGNED_ACCESS                = 0x0F,
601         ARMV8_PMUV3_PERFCTR_TTBR_WRITE                          = 0x1C,
602
603         /* Common microarchitectural events. */
604         ARMV8_PMUV3_PERFCTR_L1_ICACHE_REFILL                    = 0x01,
605         ARMV8_PMUV3_PERFCTR_ITLB_REFILL                         = 0x02,
606         ARMV8_PMUV3_PERFCTR_DTLB_REFILL                         = 0x05,
607         ARMV8_PMUV3_PERFCTR_MEM_ACCESS                          = 0x13,
608         ARMV8_PMUV3_PERFCTR_L1_ICACHE_ACCESS                    = 0x14,
609         ARMV8_PMUV3_PERFCTR_L1_DCACHE_WB                        = 0x15,
610         ARMV8_PMUV3_PERFCTR_L2_CACHE_ACCESS                     = 0x16,
611         ARMV8_PMUV3_PERFCTR_L2_CACHE_REFILL                     = 0x17,
612         ARMV8_PMUV3_PERFCTR_L2_CACHE_WB                         = 0x18,
613         ARMV8_PMUV3_PERFCTR_BUS_ACCESS                          = 0x19,
614         ARMV8_PMUV3_PERFCTR_MEM_ERROR                           = 0x1A,
615         ARMV8_PMUV3_PERFCTR_BUS_CYCLES                          = 0x1D,
616
617         /*
618          * This isn't an architected event.
619          * We detect this event number and use the cycle counter instead.
620          */
621         ARMV8_PMUV3_PERFCTR_CPU_CYCLES                          = 0xFF,
622 };
623
624 /* PMUv3 HW events mapping. */
625 static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
626         [PERF_COUNT_HW_CPU_CYCLES]              = ARMV8_PMUV3_PERFCTR_CPU_CYCLES,
627         [PERF_COUNT_HW_INSTRUCTIONS]            = ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED,
628         [PERF_COUNT_HW_CACHE_REFERENCES]        = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
629         [PERF_COUNT_HW_CACHE_MISSES]            = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
630         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = HW_OP_UNSUPPORTED,
631         [PERF_COUNT_HW_BRANCH_MISSES]           = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
632         [PERF_COUNT_HW_BUS_CYCLES]              = HW_OP_UNSUPPORTED,
633         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = HW_OP_UNSUPPORTED,
634         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]  = HW_OP_UNSUPPORTED,
635 };
636
637 static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
638                                                 [PERF_COUNT_HW_CACHE_OP_MAX]
639                                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
640         [C(L1D)] = {
641                 [C(OP_READ)] = {
642                         [C(RESULT_ACCESS)]      = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
643                         [C(RESULT_MISS)]        = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
644                 },
645                 [C(OP_WRITE)] = {
646                         [C(RESULT_ACCESS)]      = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
647                         [C(RESULT_MISS)]        = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
648                 },
649                 [C(OP_PREFETCH)] = {
650                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
651                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
652                 },
653         },
654         [C(L1I)] = {
655                 [C(OP_READ)] = {
656                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
657                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
658                 },
659                 [C(OP_WRITE)] = {
660                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
661                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
662                 },
663                 [C(OP_PREFETCH)] = {
664                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
665                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
666                 },
667         },
668         [C(LL)] = {
669                 [C(OP_READ)] = {
670                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
671                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
672                 },
673                 [C(OP_WRITE)] = {
674                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
675                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
676                 },
677                 [C(OP_PREFETCH)] = {
678                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
679                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
680                 },
681         },
682         [C(DTLB)] = {
683                 [C(OP_READ)] = {
684                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
685                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
686                 },
687                 [C(OP_WRITE)] = {
688                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
689                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
690                 },
691                 [C(OP_PREFETCH)] = {
692                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
693                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
694                 },
695         },
696         [C(ITLB)] = {
697                 [C(OP_READ)] = {
698                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
699                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
700                 },
701                 [C(OP_WRITE)] = {
702                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
703                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
704                 },
705                 [C(OP_PREFETCH)] = {
706                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
707                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
708                 },
709         },
710         [C(BPU)] = {
711                 [C(OP_READ)] = {
712                         [C(RESULT_ACCESS)]      = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
713                         [C(RESULT_MISS)]        = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
714                 },
715                 [C(OP_WRITE)] = {
716                         [C(RESULT_ACCESS)]      = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
717                         [C(RESULT_MISS)]        = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
718                 },
719                 [C(OP_PREFETCH)] = {
720                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
721                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
722                 },
723         },
724         [C(NODE)] = {
725                 [C(OP_READ)] = {
726                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
727                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
728                 },
729                 [C(OP_WRITE)] = {
730                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
731                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
732                 },
733                 [C(OP_PREFETCH)] = {
734                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
735                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
736                 },
737         },
738 };
739
740 /*
741  * Perf Events' indices
742  */
743 #define ARMV8_IDX_CYCLE_COUNTER 0
744 #define ARMV8_IDX_COUNTER0      1
745 #define ARMV8_IDX_COUNTER_LAST  (ARMV8_IDX_CYCLE_COUNTER + cpu_pmu->num_events - 1)
746
747 #define ARMV8_MAX_COUNTERS      32
748 #define ARMV8_COUNTER_MASK      (ARMV8_MAX_COUNTERS - 1)
749
750 /*
751  * ARMv8 low level PMU access
752  */
753
754 /*
755  * Perf Event to low level counters mapping
756  */
757 #define ARMV8_IDX_TO_COUNTER(x) \
758         (((x) - ARMV8_IDX_COUNTER0) & ARMV8_COUNTER_MASK)
759
760 /*
761  * Per-CPU PMCR: config reg
762  */
763 #define ARMV8_PMCR_E            (1 << 0) /* Enable all counters */
764 #define ARMV8_PMCR_P            (1 << 1) /* Reset all counters */
765 #define ARMV8_PMCR_C            (1 << 2) /* Cycle counter reset */
766 #define ARMV8_PMCR_D            (1 << 3) /* CCNT counts every 64th cpu cycle */
767 #define ARMV8_PMCR_X            (1 << 4) /* Export to ETM */
768 #define ARMV8_PMCR_DP           (1 << 5) /* Disable CCNT if non-invasive debug*/
769 #define ARMV8_PMCR_N_SHIFT      11       /* Number of counters supported */
770 #define ARMV8_PMCR_N_MASK       0x1f
771 #define ARMV8_PMCR_MASK         0x3f     /* Mask for writable bits */
772
773 /*
774  * PMOVSR: counters overflow flag status reg
775  */
776 #define ARMV8_OVSR_MASK         0xffffffff      /* Mask for writable bits */
777 #define ARMV8_OVERFLOWED_MASK   ARMV8_OVSR_MASK
778
779 /*
780  * PMXEVTYPER: Event selection reg
781  */
782 #define ARMV8_EVTYPE_MASK       0xc00000ff      /* Mask for writable bits */
783 #define ARMV8_EVTYPE_EVENT      0xff            /* Mask for EVENT bits */
784
785 /*
786  * Event filters for PMUv3
787  */
788 #define ARMV8_EXCLUDE_EL1       (1 << 31)
789 #define ARMV8_EXCLUDE_EL0       (1 << 30)
790 #define ARMV8_INCLUDE_EL2       (1 << 27)
791
792 static inline u32 armv8pmu_pmcr_read(void)
793 {
794         u32 val;
795         asm volatile("mrs %0, pmcr_el0" : "=r" (val));
796         return val;
797 }
798
799 static inline void armv8pmu_pmcr_write(u32 val)
800 {
801         val &= ARMV8_PMCR_MASK;
802         isb();
803         asm volatile("msr pmcr_el0, %0" :: "r" (val));
804 }
805
806 static inline int armv8pmu_has_overflowed(u32 pmovsr)
807 {
808         return pmovsr & ARMV8_OVERFLOWED_MASK;
809 }
810
811 static inline int armv8pmu_counter_valid(int idx)
812 {
813         return idx >= ARMV8_IDX_CYCLE_COUNTER && idx <= ARMV8_IDX_COUNTER_LAST;
814 }
815
816 static inline int armv8pmu_counter_has_overflowed(u32 pmnc, int idx)
817 {
818         int ret = 0;
819         u32 counter;
820
821         if (!armv8pmu_counter_valid(idx)) {
822                 pr_err("CPU%u checking wrong counter %d overflow status\n",
823                         smp_processor_id(), idx);
824         } else {
825                 counter = ARMV8_IDX_TO_COUNTER(idx);
826                 ret = pmnc & BIT(counter);
827         }
828
829         return ret;
830 }
831
832 static inline int armv8pmu_select_counter(int idx)
833 {
834         u32 counter;
835
836         if (!armv8pmu_counter_valid(idx)) {
837                 pr_err("CPU%u selecting wrong PMNC counter %d\n",
838                         smp_processor_id(), idx);
839                 return -EINVAL;
840         }
841
842         counter = ARMV8_IDX_TO_COUNTER(idx);
843         asm volatile("msr pmselr_el0, %0" :: "r" (counter));
844         isb();
845
846         return idx;
847 }
848
849 static inline u32 armv8pmu_read_counter(int idx)
850 {
851         u32 value = 0;
852
853         if (!armv8pmu_counter_valid(idx))
854                 pr_err("CPU%u reading wrong counter %d\n",
855                         smp_processor_id(), idx);
856         else if (idx == ARMV8_IDX_CYCLE_COUNTER)
857                 asm volatile("mrs %0, pmccntr_el0" : "=r" (value));
858         else if (armv8pmu_select_counter(idx) == idx)
859                 asm volatile("mrs %0, pmxevcntr_el0" : "=r" (value));
860
861         return value;
862 }
863
864 static inline void armv8pmu_write_counter(int idx, u32 value)
865 {
866         if (!armv8pmu_counter_valid(idx))
867                 pr_err("CPU%u writing wrong counter %d\n",
868                         smp_processor_id(), idx);
869         else if (idx == ARMV8_IDX_CYCLE_COUNTER)
870                 asm volatile("msr pmccntr_el0, %0" :: "r" (value));
871         else if (armv8pmu_select_counter(idx) == idx)
872                 asm volatile("msr pmxevcntr_el0, %0" :: "r" (value));
873 }
874
875 static inline void armv8pmu_write_evtype(int idx, u32 val)
876 {
877         if (armv8pmu_select_counter(idx) == idx) {
878                 val &= ARMV8_EVTYPE_MASK;
879                 asm volatile("msr pmxevtyper_el0, %0" :: "r" (val));
880         }
881 }
882
883 static inline int armv8pmu_enable_counter(int idx)
884 {
885         u32 counter;
886
887         if (!armv8pmu_counter_valid(idx)) {
888                 pr_err("CPU%u enabling wrong PMNC counter %d\n",
889                         smp_processor_id(), idx);
890                 return -EINVAL;
891         }
892
893         counter = ARMV8_IDX_TO_COUNTER(idx);
894         asm volatile("msr pmcntenset_el0, %0" :: "r" (BIT(counter)));
895         return idx;
896 }
897
898 static inline int armv8pmu_disable_counter(int idx)
899 {
900         u32 counter;
901
902         if (!armv8pmu_counter_valid(idx)) {
903                 pr_err("CPU%u disabling wrong PMNC counter %d\n",
904                         smp_processor_id(), idx);
905                 return -EINVAL;
906         }
907
908         counter = ARMV8_IDX_TO_COUNTER(idx);
909         asm volatile("msr pmcntenclr_el0, %0" :: "r" (BIT(counter)));
910         return idx;
911 }
912
913 static inline int armv8pmu_enable_intens(int idx)
914 {
915         u32 counter;
916
917         if (!armv8pmu_counter_valid(idx)) {
918                 pr_err("CPU%u enabling wrong PMNC counter IRQ enable %d\n",
919                         smp_processor_id(), idx);
920                 return -EINVAL;
921         }
922
923         counter = ARMV8_IDX_TO_COUNTER(idx);
924         asm volatile("msr pmintenset_el1, %0" :: "r" (BIT(counter)));
925         return idx;
926 }
927
928 static inline int armv8pmu_disable_intens(int idx)
929 {
930         u32 counter;
931
932         if (!armv8pmu_counter_valid(idx)) {
933                 pr_err("CPU%u disabling wrong PMNC counter IRQ enable %d\n",
934                         smp_processor_id(), idx);
935                 return -EINVAL;
936         }
937
938         counter = ARMV8_IDX_TO_COUNTER(idx);
939         asm volatile("msr pmintenclr_el1, %0" :: "r" (BIT(counter)));
940         isb();
941         /* Clear the overflow flag in case an interrupt is pending. */
942         asm volatile("msr pmovsclr_el0, %0" :: "r" (BIT(counter)));
943         isb();
944         return idx;
945 }
946
947 static inline u32 armv8pmu_getreset_flags(void)
948 {
949         u32 value;
950
951         /* Read */
952         asm volatile("mrs %0, pmovsclr_el0" : "=r" (value));
953
954         /* Write to clear flags */
955         value &= ARMV8_OVSR_MASK;
956         asm volatile("msr pmovsclr_el0, %0" :: "r" (value));
957
958         return value;
959 }
960
961 static void armv8pmu_enable_event(struct hw_perf_event *hwc, int idx)
962 {
963         unsigned long flags;
964         struct pmu_hw_events *events = cpu_pmu->get_hw_events();
965
966         /*
967          * Enable counter and interrupt, and set the counter to count
968          * the event that we're interested in.
969          */
970         raw_spin_lock_irqsave(&events->pmu_lock, flags);
971
972         /*
973          * Disable counter
974          */
975         armv8pmu_disable_counter(idx);
976
977         /*
978          * Set event (if destined for PMNx counters).
979          */
980         armv8pmu_write_evtype(idx, hwc->config_base);
981
982         /*
983          * Enable interrupt for this counter
984          */
985         armv8pmu_enable_intens(idx);
986
987         /*
988          * Enable counter
989          */
990         armv8pmu_enable_counter(idx);
991
992         raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
993 }
994
995 static void armv8pmu_disable_event(struct hw_perf_event *hwc, int idx)
996 {
997         unsigned long flags;
998         struct pmu_hw_events *events = cpu_pmu->get_hw_events();
999
1000         /*
1001          * Disable counter and interrupt
1002          */
1003         raw_spin_lock_irqsave(&events->pmu_lock, flags);
1004
1005         /*
1006          * Disable counter
1007          */
1008         armv8pmu_disable_counter(idx);
1009
1010         /*
1011          * Disable interrupt for this counter
1012          */
1013         armv8pmu_disable_intens(idx);
1014
1015         raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1016 }
1017
1018 static irqreturn_t armv8pmu_handle_irq(int irq_num, void *dev)
1019 {
1020         u32 pmovsr;
1021         struct perf_sample_data data;
1022         struct pmu_hw_events *cpuc;
1023         struct pt_regs *regs;
1024         int idx;
1025
1026         /*
1027          * Get and reset the IRQ flags
1028          */
1029         pmovsr = armv8pmu_getreset_flags();
1030
1031         /*
1032          * Did an overflow occur?
1033          */
1034         if (!armv8pmu_has_overflowed(pmovsr))
1035                 return IRQ_NONE;
1036
1037         /*
1038          * Handle the counter(s) overflow(s)
1039          */
1040         regs = get_irq_regs();
1041
1042         cpuc = &__get_cpu_var(cpu_hw_events);
1043         for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
1044                 struct perf_event *event = cpuc->events[idx];
1045                 struct hw_perf_event *hwc;
1046
1047                 /* Ignore if we don't have an event. */
1048                 if (!event)
1049                         continue;
1050
1051                 /*
1052                  * We have a single interrupt for all counters. Check that
1053                  * each counter has overflowed before we process it.
1054                  */
1055                 if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
1056                         continue;
1057
1058                 hwc = &event->hw;
1059                 armpmu_event_update(event, hwc, idx);
1060                 perf_sample_data_init(&data, 0, hwc->last_period);
1061                 if (!armpmu_event_set_period(event, hwc, idx))
1062                         continue;
1063
1064                 if (perf_event_overflow(event, &data, regs))
1065                         cpu_pmu->disable(hwc, idx);
1066         }
1067
1068         /*
1069          * Handle the pending perf events.
1070          *
1071          * Note: this call *must* be run with interrupts disabled. For
1072          * platforms that can have the PMU interrupts raised as an NMI, this
1073          * will not work.
1074          */
1075         irq_work_run();
1076
1077         return IRQ_HANDLED;
1078 }
1079
1080 static void armv8pmu_start(void)
1081 {
1082         unsigned long flags;
1083         struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1084
1085         raw_spin_lock_irqsave(&events->pmu_lock, flags);
1086         /* Enable all counters */
1087         armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMCR_E);
1088         raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1089 }
1090
1091 static void armv8pmu_stop(void)
1092 {
1093         unsigned long flags;
1094         struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1095
1096         raw_spin_lock_irqsave(&events->pmu_lock, flags);
1097         /* Disable all counters */
1098         armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMCR_E);
1099         raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1100 }
1101
1102 static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
1103                                   struct hw_perf_event *event)
1104 {
1105         int idx;
1106         unsigned long evtype = event->config_base & ARMV8_EVTYPE_EVENT;
1107
1108         /* Always place a cycle counter into the cycle counter. */
1109         if (evtype == ARMV8_PMUV3_PERFCTR_CPU_CYCLES) {
1110                 if (test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask))
1111                         return -EAGAIN;
1112
1113                 return ARMV8_IDX_CYCLE_COUNTER;
1114         }
1115
1116         /*
1117          * For anything other than a cycle counter, try and use
1118          * the events counters
1119          */
1120         for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; ++idx) {
1121                 if (!test_and_set_bit(idx, cpuc->used_mask))
1122                         return idx;
1123         }
1124
1125         /* The counters are all in use. */
1126         return -EAGAIN;
1127 }
1128
1129 /*
1130  * Add an event filter to a given event. This will only work for PMUv2 PMUs.
1131  */
1132 static int armv8pmu_set_event_filter(struct hw_perf_event *event,
1133                                      struct perf_event_attr *attr)
1134 {
1135         unsigned long config_base = 0;
1136
1137         if (attr->exclude_idle)
1138                 return -EPERM;
1139         if (attr->exclude_user)
1140                 config_base |= ARMV8_EXCLUDE_EL0;
1141         if (attr->exclude_kernel)
1142                 config_base |= ARMV8_EXCLUDE_EL1;
1143         if (!attr->exclude_hv)
1144                 config_base |= ARMV8_INCLUDE_EL2;
1145
1146         /*
1147          * Install the filter into config_base as this is used to
1148          * construct the event type.
1149          */
1150         event->config_base = config_base;
1151
1152         return 0;
1153 }
1154
1155 static void armv8pmu_reset(void *info)
1156 {
1157         u32 idx, nb_cnt = cpu_pmu->num_events;
1158
1159         /* The counter and interrupt enable registers are unknown at reset. */
1160         for (idx = ARMV8_IDX_CYCLE_COUNTER; idx < nb_cnt; ++idx)
1161                 armv8pmu_disable_event(NULL, idx);
1162
1163         /* Initialize & Reset PMNC: C and P bits. */
1164         armv8pmu_pmcr_write(ARMV8_PMCR_P | ARMV8_PMCR_C);
1165
1166         /* Disable access from userspace. */
1167         asm volatile("msr pmuserenr_el0, %0" :: "r" (0));
1168 }
1169
1170 static int armv8_pmuv3_map_event(struct perf_event *event)
1171 {
1172         return map_cpu_event(event, &armv8_pmuv3_perf_map,
1173                                 &armv8_pmuv3_perf_cache_map, 0xFF);
1174 }
1175
1176 static struct arm_pmu armv8pmu = {
1177         .handle_irq             = armv8pmu_handle_irq,
1178         .enable                 = armv8pmu_enable_event,
1179         .disable                = armv8pmu_disable_event,
1180         .read_counter           = armv8pmu_read_counter,
1181         .write_counter          = armv8pmu_write_counter,
1182         .get_event_idx          = armv8pmu_get_event_idx,
1183         .start                  = armv8pmu_start,
1184         .stop                   = armv8pmu_stop,
1185         .reset                  = armv8pmu_reset,
1186         .max_period             = (1LLU << 32) - 1,
1187 };
1188
1189 static u32 __init armv8pmu_read_num_pmnc_events(void)
1190 {
1191         u32 nb_cnt;
1192
1193         /* Read the nb of CNTx counters supported from PMNC */
1194         nb_cnt = (armv8pmu_pmcr_read() >> ARMV8_PMCR_N_SHIFT) & ARMV8_PMCR_N_MASK;
1195
1196         /* Add the CPU cycles counter and return */
1197         return nb_cnt + 1;
1198 }
1199
1200 static struct arm_pmu *__init armv8_pmuv3_pmu_init(void)
1201 {
1202         armv8pmu.name                   = "arm/armv8-pmuv3";
1203         armv8pmu.map_event              = armv8_pmuv3_map_event;
1204         armv8pmu.num_events             = armv8pmu_read_num_pmnc_events();
1205         armv8pmu.set_event_filter       = armv8pmu_set_event_filter;
1206         return &armv8pmu;
1207 }
1208
1209 /*
1210  * Ensure the PMU has sane values out of reset.
1211  * This requires SMP to be available, so exists as a separate initcall.
1212  */
1213 static int __init
1214 cpu_pmu_reset(void)
1215 {
1216         if (cpu_pmu && cpu_pmu->reset)
1217                 return on_each_cpu(cpu_pmu->reset, NULL, 1);
1218         return 0;
1219 }
1220 arch_initcall(cpu_pmu_reset);
1221
1222 /*
1223  * PMU platform driver and devicetree bindings.
1224  */
1225 static struct of_device_id armpmu_of_device_ids[] = {
1226         {.compatible = "arm,armv8-pmuv3"},
1227         {},
1228 };
1229
1230 static int __devinit armpmu_device_probe(struct platform_device *pdev)
1231 {
1232         if (!cpu_pmu)
1233                 return -ENODEV;
1234
1235         cpu_pmu->plat_device = pdev;
1236         return 0;
1237 }
1238
1239 static struct platform_driver armpmu_driver = {
1240         .driver         = {
1241                 .name   = "arm-pmu",
1242                 .of_match_table = armpmu_of_device_ids,
1243         },
1244         .probe          = armpmu_device_probe,
1245 };
1246
1247 static int __init register_pmu_driver(void)
1248 {
1249         return platform_driver_register(&armpmu_driver);
1250 }
1251 device_initcall(register_pmu_driver);
1252
1253 static struct pmu_hw_events *armpmu_get_cpu_events(void)
1254 {
1255         return &__get_cpu_var(cpu_hw_events);
1256 }
1257
1258 static void __init cpu_pmu_init(struct arm_pmu *armpmu)
1259 {
1260         int cpu;
1261         for_each_possible_cpu(cpu) {
1262                 struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
1263                 events->events = per_cpu(hw_events, cpu);
1264                 events->used_mask = per_cpu(used_mask, cpu);
1265                 raw_spin_lock_init(&events->pmu_lock);
1266         }
1267         armpmu->get_hw_events = armpmu_get_cpu_events;
1268 }
1269
1270 static int __init init_hw_perf_events(void)
1271 {
1272         u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
1273
1274         switch ((dfr >> 8) & 0xf) {
1275         case 0x1:       /* PMUv3 */
1276                 cpu_pmu = armv8_pmuv3_pmu_init();
1277                 break;
1278         }
1279
1280         if (cpu_pmu) {
1281                 pr_info("enabled with %s PMU driver, %d counters available\n",
1282                         cpu_pmu->name, cpu_pmu->num_events);
1283                 cpu_pmu_init(cpu_pmu);
1284                 armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
1285         } else {
1286                 pr_info("no hardware support available\n");
1287         }
1288
1289         return 0;
1290 }
1291 early_initcall(init_hw_perf_events);
1292
1293 /*
1294  * Callchain handling code.
1295  */
1296 struct frame_tail {
1297         struct frame_tail   __user *fp;
1298         unsigned long       lr;
1299 } __attribute__((packed));
1300
1301 /*
1302  * Get the return address for a single stackframe and return a pointer to the
1303  * next frame tail.
1304  */
1305 static struct frame_tail __user *
1306 user_backtrace(struct frame_tail __user *tail,
1307                struct perf_callchain_entry *entry)
1308 {
1309         struct frame_tail buftail;
1310         unsigned long err;
1311
1312         /* Also check accessibility of one struct frame_tail beyond */
1313         if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
1314                 return NULL;
1315
1316         pagefault_disable();
1317         err = __copy_from_user_inatomic(&buftail, tail, sizeof(buftail));
1318         pagefault_enable();
1319
1320         if (err)
1321                 return NULL;
1322
1323         perf_callchain_store(entry, buftail.lr);
1324
1325         /*
1326          * Frame pointers should strictly progress back up the stack
1327          * (towards higher addresses).
1328          */
1329         if (tail >= buftail.fp)
1330                 return NULL;
1331
1332         return buftail.fp;
1333 }
1334
1335 void perf_callchain_user(struct perf_callchain_entry *entry,
1336                          struct pt_regs *regs)
1337 {
1338         struct frame_tail __user *tail;
1339
1340         tail = (struct frame_tail __user *)regs->regs[29];
1341
1342         while (entry->nr < PERF_MAX_STACK_DEPTH &&
1343                tail && !((unsigned long)tail & 0xf))
1344                 tail = user_backtrace(tail, entry);
1345 }
1346
1347 /*
1348  * Gets called by walk_stackframe() for every stackframe. This will be called
1349  * whist unwinding the stackframe and is like a subroutine return so we use
1350  * the PC.
1351  */
1352 static int callchain_trace(struct stackframe *frame, void *data)
1353 {
1354         struct perf_callchain_entry *entry = data;
1355         perf_callchain_store(entry, frame->pc);
1356         return 0;
1357 }
1358
1359 void perf_callchain_kernel(struct perf_callchain_entry *entry,
1360                            struct pt_regs *regs)
1361 {
1362         struct stackframe frame;
1363
1364         frame.fp = regs->regs[29];
1365         frame.sp = regs->sp;
1366         frame.pc = regs->pc;
1367         walk_stackframe(&frame, callchain_trace, entry);
1368 }