]> rtime.felk.cvut.cz Git - can-eth-gw-linux.git/blob - virt/kvm/kvm_main.c
ARM: davinci: da850: generate dtbs for da850 boards
[can-eth-gw-linux.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68  * Ordering of locks:
69  *
70  *              kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88                            unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91                                   unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 bool kvm_is_mmio_pfn(pfn_t pfn)
104 {
105         if (pfn_valid(pfn)) {
106                 int reserved;
107                 struct page *tail = pfn_to_page(pfn);
108                 struct page *head = compound_trans_head(tail);
109                 reserved = PageReserved(head);
110                 if (head != tail) {
111                         /*
112                          * "head" is not a dangling pointer
113                          * (compound_trans_head takes care of that)
114                          * but the hugepage may have been splitted
115                          * from under us (and we may not hold a
116                          * reference count on the head page so it can
117                          * be reused before we run PageReferenced), so
118                          * we've to check PageTail before returning
119                          * what we just read.
120                          */
121                         smp_rmb();
122                         if (PageTail(tail))
123                                 return reserved;
124                 }
125                 return PageReserved(tail);
126         }
127
128         return true;
129 }
130
131 /*
132  * Switches to specified vcpu, until a matching vcpu_put()
133  */
134 int vcpu_load(struct kvm_vcpu *vcpu)
135 {
136         int cpu;
137
138         if (mutex_lock_killable(&vcpu->mutex))
139                 return -EINTR;
140         if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
141                 /* The thread running this VCPU changed. */
142                 struct pid *oldpid = vcpu->pid;
143                 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
144                 rcu_assign_pointer(vcpu->pid, newpid);
145                 synchronize_rcu();
146                 put_pid(oldpid);
147         }
148         cpu = get_cpu();
149         preempt_notifier_register(&vcpu->preempt_notifier);
150         kvm_arch_vcpu_load(vcpu, cpu);
151         put_cpu();
152         return 0;
153 }
154
155 void vcpu_put(struct kvm_vcpu *vcpu)
156 {
157         preempt_disable();
158         kvm_arch_vcpu_put(vcpu);
159         preempt_notifier_unregister(&vcpu->preempt_notifier);
160         preempt_enable();
161         mutex_unlock(&vcpu->mutex);
162 }
163
164 static void ack_flush(void *_completed)
165 {
166 }
167
168 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
169 {
170         int i, cpu, me;
171         cpumask_var_t cpus;
172         bool called = true;
173         struct kvm_vcpu *vcpu;
174
175         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
176
177         me = get_cpu();
178         kvm_for_each_vcpu(i, vcpu, kvm) {
179                 kvm_make_request(req, vcpu);
180                 cpu = vcpu->cpu;
181
182                 /* Set ->requests bit before we read ->mode */
183                 smp_mb();
184
185                 if (cpus != NULL && cpu != -1 && cpu != me &&
186                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
187                         cpumask_set_cpu(cpu, cpus);
188         }
189         if (unlikely(cpus == NULL))
190                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
191         else if (!cpumask_empty(cpus))
192                 smp_call_function_many(cpus, ack_flush, NULL, 1);
193         else
194                 called = false;
195         put_cpu();
196         free_cpumask_var(cpus);
197         return called;
198 }
199
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202         long dirty_count = kvm->tlbs_dirty;
203
204         smp_mb();
205         if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
206                 ++kvm->stat.remote_tlb_flush;
207         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
208 }
209
210 void kvm_reload_remote_mmus(struct kvm *kvm)
211 {
212         make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
213 }
214
215 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
216 {
217         struct page *page;
218         int r;
219
220         mutex_init(&vcpu->mutex);
221         vcpu->cpu = -1;
222         vcpu->kvm = kvm;
223         vcpu->vcpu_id = id;
224         vcpu->pid = NULL;
225         init_waitqueue_head(&vcpu->wq);
226         kvm_async_pf_vcpu_init(vcpu);
227
228         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
229         if (!page) {
230                 r = -ENOMEM;
231                 goto fail;
232         }
233         vcpu->run = page_address(page);
234
235         kvm_vcpu_set_in_spin_loop(vcpu, false);
236         kvm_vcpu_set_dy_eligible(vcpu, false);
237
238         r = kvm_arch_vcpu_init(vcpu);
239         if (r < 0)
240                 goto fail_free_run;
241         return 0;
242
243 fail_free_run:
244         free_page((unsigned long)vcpu->run);
245 fail:
246         return r;
247 }
248 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
249
250 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
251 {
252         put_pid(vcpu->pid);
253         kvm_arch_vcpu_uninit(vcpu);
254         free_page((unsigned long)vcpu->run);
255 }
256 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
257
258 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
259 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
260 {
261         return container_of(mn, struct kvm, mmu_notifier);
262 }
263
264 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
265                                              struct mm_struct *mm,
266                                              unsigned long address)
267 {
268         struct kvm *kvm = mmu_notifier_to_kvm(mn);
269         int need_tlb_flush, idx;
270
271         /*
272          * When ->invalidate_page runs, the linux pte has been zapped
273          * already but the page is still allocated until
274          * ->invalidate_page returns. So if we increase the sequence
275          * here the kvm page fault will notice if the spte can't be
276          * established because the page is going to be freed. If
277          * instead the kvm page fault establishes the spte before
278          * ->invalidate_page runs, kvm_unmap_hva will release it
279          * before returning.
280          *
281          * The sequence increase only need to be seen at spin_unlock
282          * time, and not at spin_lock time.
283          *
284          * Increasing the sequence after the spin_unlock would be
285          * unsafe because the kvm page fault could then establish the
286          * pte after kvm_unmap_hva returned, without noticing the page
287          * is going to be freed.
288          */
289         idx = srcu_read_lock(&kvm->srcu);
290         spin_lock(&kvm->mmu_lock);
291
292         kvm->mmu_notifier_seq++;
293         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
294         /* we've to flush the tlb before the pages can be freed */
295         if (need_tlb_flush)
296                 kvm_flush_remote_tlbs(kvm);
297
298         spin_unlock(&kvm->mmu_lock);
299         srcu_read_unlock(&kvm->srcu, idx);
300 }
301
302 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
303                                         struct mm_struct *mm,
304                                         unsigned long address,
305                                         pte_t pte)
306 {
307         struct kvm *kvm = mmu_notifier_to_kvm(mn);
308         int idx;
309
310         idx = srcu_read_lock(&kvm->srcu);
311         spin_lock(&kvm->mmu_lock);
312         kvm->mmu_notifier_seq++;
313         kvm_set_spte_hva(kvm, address, pte);
314         spin_unlock(&kvm->mmu_lock);
315         srcu_read_unlock(&kvm->srcu, idx);
316 }
317
318 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
319                                                     struct mm_struct *mm,
320                                                     unsigned long start,
321                                                     unsigned long end)
322 {
323         struct kvm *kvm = mmu_notifier_to_kvm(mn);
324         int need_tlb_flush = 0, idx;
325
326         idx = srcu_read_lock(&kvm->srcu);
327         spin_lock(&kvm->mmu_lock);
328         /*
329          * The count increase must become visible at unlock time as no
330          * spte can be established without taking the mmu_lock and
331          * count is also read inside the mmu_lock critical section.
332          */
333         kvm->mmu_notifier_count++;
334         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
335         need_tlb_flush |= kvm->tlbs_dirty;
336         /* we've to flush the tlb before the pages can be freed */
337         if (need_tlb_flush)
338                 kvm_flush_remote_tlbs(kvm);
339
340         spin_unlock(&kvm->mmu_lock);
341         srcu_read_unlock(&kvm->srcu, idx);
342 }
343
344 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
345                                                   struct mm_struct *mm,
346                                                   unsigned long start,
347                                                   unsigned long end)
348 {
349         struct kvm *kvm = mmu_notifier_to_kvm(mn);
350
351         spin_lock(&kvm->mmu_lock);
352         /*
353          * This sequence increase will notify the kvm page fault that
354          * the page that is going to be mapped in the spte could have
355          * been freed.
356          */
357         kvm->mmu_notifier_seq++;
358         smp_wmb();
359         /*
360          * The above sequence increase must be visible before the
361          * below count decrease, which is ensured by the smp_wmb above
362          * in conjunction with the smp_rmb in mmu_notifier_retry().
363          */
364         kvm->mmu_notifier_count--;
365         spin_unlock(&kvm->mmu_lock);
366
367         BUG_ON(kvm->mmu_notifier_count < 0);
368 }
369
370 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
371                                               struct mm_struct *mm,
372                                               unsigned long address)
373 {
374         struct kvm *kvm = mmu_notifier_to_kvm(mn);
375         int young, idx;
376
377         idx = srcu_read_lock(&kvm->srcu);
378         spin_lock(&kvm->mmu_lock);
379
380         young = kvm_age_hva(kvm, address);
381         if (young)
382                 kvm_flush_remote_tlbs(kvm);
383
384         spin_unlock(&kvm->mmu_lock);
385         srcu_read_unlock(&kvm->srcu, idx);
386
387         return young;
388 }
389
390 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
391                                        struct mm_struct *mm,
392                                        unsigned long address)
393 {
394         struct kvm *kvm = mmu_notifier_to_kvm(mn);
395         int young, idx;
396
397         idx = srcu_read_lock(&kvm->srcu);
398         spin_lock(&kvm->mmu_lock);
399         young = kvm_test_age_hva(kvm, address);
400         spin_unlock(&kvm->mmu_lock);
401         srcu_read_unlock(&kvm->srcu, idx);
402
403         return young;
404 }
405
406 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
407                                      struct mm_struct *mm)
408 {
409         struct kvm *kvm = mmu_notifier_to_kvm(mn);
410         int idx;
411
412         idx = srcu_read_lock(&kvm->srcu);
413         kvm_arch_flush_shadow_all(kvm);
414         srcu_read_unlock(&kvm->srcu, idx);
415 }
416
417 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
418         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
419         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
420         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
421         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
422         .test_young             = kvm_mmu_notifier_test_young,
423         .change_pte             = kvm_mmu_notifier_change_pte,
424         .release                = kvm_mmu_notifier_release,
425 };
426
427 static int kvm_init_mmu_notifier(struct kvm *kvm)
428 {
429         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
430         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
431 }
432
433 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
434
435 static int kvm_init_mmu_notifier(struct kvm *kvm)
436 {
437         return 0;
438 }
439
440 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
441
442 static void kvm_init_memslots_id(struct kvm *kvm)
443 {
444         int i;
445         struct kvm_memslots *slots = kvm->memslots;
446
447         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
448                 slots->id_to_index[i] = slots->memslots[i].id = i;
449 }
450
451 static struct kvm *kvm_create_vm(unsigned long type)
452 {
453         int r, i;
454         struct kvm *kvm = kvm_arch_alloc_vm();
455
456         if (!kvm)
457                 return ERR_PTR(-ENOMEM);
458
459         r = kvm_arch_init_vm(kvm, type);
460         if (r)
461                 goto out_err_nodisable;
462
463         r = hardware_enable_all();
464         if (r)
465                 goto out_err_nodisable;
466
467 #ifdef CONFIG_HAVE_KVM_IRQCHIP
468         INIT_HLIST_HEAD(&kvm->mask_notifier_list);
469         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
470 #endif
471
472         r = -ENOMEM;
473         kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
474         if (!kvm->memslots)
475                 goto out_err_nosrcu;
476         kvm_init_memslots_id(kvm);
477         if (init_srcu_struct(&kvm->srcu))
478                 goto out_err_nosrcu;
479         for (i = 0; i < KVM_NR_BUSES; i++) {
480                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
481                                         GFP_KERNEL);
482                 if (!kvm->buses[i])
483                         goto out_err;
484         }
485
486         spin_lock_init(&kvm->mmu_lock);
487         kvm->mm = current->mm;
488         atomic_inc(&kvm->mm->mm_count);
489         kvm_eventfd_init(kvm);
490         mutex_init(&kvm->lock);
491         mutex_init(&kvm->irq_lock);
492         mutex_init(&kvm->slots_lock);
493         atomic_set(&kvm->users_count, 1);
494
495         r = kvm_init_mmu_notifier(kvm);
496         if (r)
497                 goto out_err;
498
499         raw_spin_lock(&kvm_lock);
500         list_add(&kvm->vm_list, &vm_list);
501         raw_spin_unlock(&kvm_lock);
502
503         return kvm;
504
505 out_err:
506         cleanup_srcu_struct(&kvm->srcu);
507 out_err_nosrcu:
508         hardware_disable_all();
509 out_err_nodisable:
510         for (i = 0; i < KVM_NR_BUSES; i++)
511                 kfree(kvm->buses[i]);
512         kfree(kvm->memslots);
513         kvm_arch_free_vm(kvm);
514         return ERR_PTR(r);
515 }
516
517 /*
518  * Avoid using vmalloc for a small buffer.
519  * Should not be used when the size is statically known.
520  */
521 void *kvm_kvzalloc(unsigned long size)
522 {
523         if (size > PAGE_SIZE)
524                 return vzalloc(size);
525         else
526                 return kzalloc(size, GFP_KERNEL);
527 }
528
529 void kvm_kvfree(const void *addr)
530 {
531         if (is_vmalloc_addr(addr))
532                 vfree(addr);
533         else
534                 kfree(addr);
535 }
536
537 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
538 {
539         if (!memslot->dirty_bitmap)
540                 return;
541
542         kvm_kvfree(memslot->dirty_bitmap);
543         memslot->dirty_bitmap = NULL;
544 }
545
546 /*
547  * Free any memory in @free but not in @dont.
548  */
549 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
550                                   struct kvm_memory_slot *dont)
551 {
552         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
553                 kvm_destroy_dirty_bitmap(free);
554
555         kvm_arch_free_memslot(free, dont);
556
557         free->npages = 0;
558 }
559
560 void kvm_free_physmem(struct kvm *kvm)
561 {
562         struct kvm_memslots *slots = kvm->memslots;
563         struct kvm_memory_slot *memslot;
564
565         kvm_for_each_memslot(memslot, slots)
566                 kvm_free_physmem_slot(memslot, NULL);
567
568         kfree(kvm->memslots);
569 }
570
571 static void kvm_destroy_vm(struct kvm *kvm)
572 {
573         int i;
574         struct mm_struct *mm = kvm->mm;
575
576         kvm_arch_sync_events(kvm);
577         raw_spin_lock(&kvm_lock);
578         list_del(&kvm->vm_list);
579         raw_spin_unlock(&kvm_lock);
580         kvm_free_irq_routing(kvm);
581         for (i = 0; i < KVM_NR_BUSES; i++)
582                 kvm_io_bus_destroy(kvm->buses[i]);
583         kvm_coalesced_mmio_free(kvm);
584 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
585         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
586 #else
587         kvm_arch_flush_shadow_all(kvm);
588 #endif
589         kvm_arch_destroy_vm(kvm);
590         kvm_free_physmem(kvm);
591         cleanup_srcu_struct(&kvm->srcu);
592         kvm_arch_free_vm(kvm);
593         hardware_disable_all();
594         mmdrop(mm);
595 }
596
597 void kvm_get_kvm(struct kvm *kvm)
598 {
599         atomic_inc(&kvm->users_count);
600 }
601 EXPORT_SYMBOL_GPL(kvm_get_kvm);
602
603 void kvm_put_kvm(struct kvm *kvm)
604 {
605         if (atomic_dec_and_test(&kvm->users_count))
606                 kvm_destroy_vm(kvm);
607 }
608 EXPORT_SYMBOL_GPL(kvm_put_kvm);
609
610
611 static int kvm_vm_release(struct inode *inode, struct file *filp)
612 {
613         struct kvm *kvm = filp->private_data;
614
615         kvm_irqfd_release(kvm);
616
617         kvm_put_kvm(kvm);
618         return 0;
619 }
620
621 /*
622  * Allocation size is twice as large as the actual dirty bitmap size.
623  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
624  */
625 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
626 {
627 #ifndef CONFIG_S390
628         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
629
630         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
631         if (!memslot->dirty_bitmap)
632                 return -ENOMEM;
633
634 #endif /* !CONFIG_S390 */
635         return 0;
636 }
637
638 static int cmp_memslot(const void *slot1, const void *slot2)
639 {
640         struct kvm_memory_slot *s1, *s2;
641
642         s1 = (struct kvm_memory_slot *)slot1;
643         s2 = (struct kvm_memory_slot *)slot2;
644
645         if (s1->npages < s2->npages)
646                 return 1;
647         if (s1->npages > s2->npages)
648                 return -1;
649
650         return 0;
651 }
652
653 /*
654  * Sort the memslots base on its size, so the larger slots
655  * will get better fit.
656  */
657 static void sort_memslots(struct kvm_memslots *slots)
658 {
659         int i;
660
661         sort(slots->memslots, KVM_MEM_SLOTS_NUM,
662               sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
663
664         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
665                 slots->id_to_index[slots->memslots[i].id] = i;
666 }
667
668 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
669 {
670         if (new) {
671                 int id = new->id;
672                 struct kvm_memory_slot *old = id_to_memslot(slots, id);
673                 unsigned long npages = old->npages;
674
675                 *old = *new;
676                 if (new->npages != npages)
677                         sort_memslots(slots);
678         }
679
680         slots->generation++;
681 }
682
683 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
684 {
685         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
686
687 #ifdef KVM_CAP_READONLY_MEM
688         valid_flags |= KVM_MEM_READONLY;
689 #endif
690
691         if (mem->flags & ~valid_flags)
692                 return -EINVAL;
693
694         return 0;
695 }
696
697 /*
698  * Allocate some memory and give it an address in the guest physical address
699  * space.
700  *
701  * Discontiguous memory is allowed, mostly for framebuffers.
702  *
703  * Must be called holding mmap_sem for write.
704  */
705 int __kvm_set_memory_region(struct kvm *kvm,
706                             struct kvm_userspace_memory_region *mem,
707                             int user_alloc)
708 {
709         int r;
710         gfn_t base_gfn;
711         unsigned long npages;
712         unsigned long i;
713         struct kvm_memory_slot *memslot;
714         struct kvm_memory_slot old, new;
715         struct kvm_memslots *slots, *old_memslots;
716
717         r = check_memory_region_flags(mem);
718         if (r)
719                 goto out;
720
721         r = -EINVAL;
722         /* General sanity checks */
723         if (mem->memory_size & (PAGE_SIZE - 1))
724                 goto out;
725         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
726                 goto out;
727         /* We can read the guest memory with __xxx_user() later on. */
728         if (user_alloc &&
729             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
730              !access_ok(VERIFY_WRITE,
731                         (void __user *)(unsigned long)mem->userspace_addr,
732                         mem->memory_size)))
733                 goto out;
734         if (mem->slot >= KVM_MEM_SLOTS_NUM)
735                 goto out;
736         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
737                 goto out;
738
739         memslot = id_to_memslot(kvm->memslots, mem->slot);
740         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
741         npages = mem->memory_size >> PAGE_SHIFT;
742
743         r = -EINVAL;
744         if (npages > KVM_MEM_MAX_NR_PAGES)
745                 goto out;
746
747         if (!npages)
748                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
749
750         new = old = *memslot;
751
752         new.id = mem->slot;
753         new.base_gfn = base_gfn;
754         new.npages = npages;
755         new.flags = mem->flags;
756
757         /* Disallow changing a memory slot's size. */
758         r = -EINVAL;
759         if (npages && old.npages && npages != old.npages)
760                 goto out_free;
761
762         /* Check for overlaps */
763         r = -EEXIST;
764         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
765                 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
766
767                 if (s == memslot || !s->npages)
768                         continue;
769                 if (!((base_gfn + npages <= s->base_gfn) ||
770                       (base_gfn >= s->base_gfn + s->npages)))
771                         goto out_free;
772         }
773
774         /* Free page dirty bitmap if unneeded */
775         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
776                 new.dirty_bitmap = NULL;
777
778         r = -ENOMEM;
779
780         /* Allocate if a slot is being created */
781         if (npages && !old.npages) {
782                 new.user_alloc = user_alloc;
783                 new.userspace_addr = mem->userspace_addr;
784
785                 if (kvm_arch_create_memslot(&new, npages))
786                         goto out_free;
787         }
788
789         /* Allocate page dirty bitmap if needed */
790         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
791                 if (kvm_create_dirty_bitmap(&new) < 0)
792                         goto out_free;
793                 /* destroy any largepage mappings for dirty tracking */
794         }
795
796         if (!npages || base_gfn != old.base_gfn) {
797                 struct kvm_memory_slot *slot;
798
799                 r = -ENOMEM;
800                 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
801                                 GFP_KERNEL);
802                 if (!slots)
803                         goto out_free;
804                 slot = id_to_memslot(slots, mem->slot);
805                 slot->flags |= KVM_MEMSLOT_INVALID;
806
807                 update_memslots(slots, NULL);
808
809                 old_memslots = kvm->memslots;
810                 rcu_assign_pointer(kvm->memslots, slots);
811                 synchronize_srcu_expedited(&kvm->srcu);
812                 /* From this point no new shadow pages pointing to a deleted,
813                  * or moved, memslot will be created.
814                  *
815                  * validation of sp->gfn happens in:
816                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
817                  *      - kvm_is_visible_gfn (mmu_check_roots)
818                  */
819                 kvm_arch_flush_shadow_memslot(kvm, slot);
820                 kfree(old_memslots);
821         }
822
823         r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
824         if (r)
825                 goto out_free;
826
827         /* map/unmap the pages in iommu page table */
828         if (npages) {
829                 r = kvm_iommu_map_pages(kvm, &new);
830                 if (r)
831                         goto out_free;
832         } else
833                 kvm_iommu_unmap_pages(kvm, &old);
834
835         r = -ENOMEM;
836         slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
837                         GFP_KERNEL);
838         if (!slots)
839                 goto out_free;
840
841         /* actual memory is freed via old in kvm_free_physmem_slot below */
842         if (!npages) {
843                 new.dirty_bitmap = NULL;
844                 memset(&new.arch, 0, sizeof(new.arch));
845         }
846
847         update_memslots(slots, &new);
848         old_memslots = kvm->memslots;
849         rcu_assign_pointer(kvm->memslots, slots);
850         synchronize_srcu_expedited(&kvm->srcu);
851
852         kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
853
854         kvm_free_physmem_slot(&old, &new);
855         kfree(old_memslots);
856
857         return 0;
858
859 out_free:
860         kvm_free_physmem_slot(&new, &old);
861 out:
862         return r;
863
864 }
865 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
866
867 int kvm_set_memory_region(struct kvm *kvm,
868                           struct kvm_userspace_memory_region *mem,
869                           int user_alloc)
870 {
871         int r;
872
873         mutex_lock(&kvm->slots_lock);
874         r = __kvm_set_memory_region(kvm, mem, user_alloc);
875         mutex_unlock(&kvm->slots_lock);
876         return r;
877 }
878 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
879
880 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
881                                    struct
882                                    kvm_userspace_memory_region *mem,
883                                    int user_alloc)
884 {
885         if (mem->slot >= KVM_MEMORY_SLOTS)
886                 return -EINVAL;
887         return kvm_set_memory_region(kvm, mem, user_alloc);
888 }
889
890 int kvm_get_dirty_log(struct kvm *kvm,
891                         struct kvm_dirty_log *log, int *is_dirty)
892 {
893         struct kvm_memory_slot *memslot;
894         int r, i;
895         unsigned long n;
896         unsigned long any = 0;
897
898         r = -EINVAL;
899         if (log->slot >= KVM_MEMORY_SLOTS)
900                 goto out;
901
902         memslot = id_to_memslot(kvm->memslots, log->slot);
903         r = -ENOENT;
904         if (!memslot->dirty_bitmap)
905                 goto out;
906
907         n = kvm_dirty_bitmap_bytes(memslot);
908
909         for (i = 0; !any && i < n/sizeof(long); ++i)
910                 any = memslot->dirty_bitmap[i];
911
912         r = -EFAULT;
913         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
914                 goto out;
915
916         if (any)
917                 *is_dirty = 1;
918
919         r = 0;
920 out:
921         return r;
922 }
923
924 bool kvm_largepages_enabled(void)
925 {
926         return largepages_enabled;
927 }
928
929 void kvm_disable_largepages(void)
930 {
931         largepages_enabled = false;
932 }
933 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
934
935 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
936 {
937         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
938 }
939 EXPORT_SYMBOL_GPL(gfn_to_memslot);
940
941 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
942 {
943         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
944
945         if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
946               memslot->flags & KVM_MEMSLOT_INVALID)
947                 return 0;
948
949         return 1;
950 }
951 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
952
953 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
954 {
955         struct vm_area_struct *vma;
956         unsigned long addr, size;
957
958         size = PAGE_SIZE;
959
960         addr = gfn_to_hva(kvm, gfn);
961         if (kvm_is_error_hva(addr))
962                 return PAGE_SIZE;
963
964         down_read(&current->mm->mmap_sem);
965         vma = find_vma(current->mm, addr);
966         if (!vma)
967                 goto out;
968
969         size = vma_kernel_pagesize(vma);
970
971 out:
972         up_read(&current->mm->mmap_sem);
973
974         return size;
975 }
976
977 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
978 {
979         return slot->flags & KVM_MEM_READONLY;
980 }
981
982 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
983                                        gfn_t *nr_pages, bool write)
984 {
985         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
986                 return KVM_HVA_ERR_BAD;
987
988         if (memslot_is_readonly(slot) && write)
989                 return KVM_HVA_ERR_RO_BAD;
990
991         if (nr_pages)
992                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
993
994         return __gfn_to_hva_memslot(slot, gfn);
995 }
996
997 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
998                                      gfn_t *nr_pages)
999 {
1000         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1001 }
1002
1003 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1004                                  gfn_t gfn)
1005 {
1006         return gfn_to_hva_many(slot, gfn, NULL);
1007 }
1008 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1009
1010 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1011 {
1012         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1013 }
1014 EXPORT_SYMBOL_GPL(gfn_to_hva);
1015
1016 /*
1017  * The hva returned by this function is only allowed to be read.
1018  * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1019  */
1020 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1021 {
1022         return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1023 }
1024
1025 static int kvm_read_hva(void *data, void __user *hva, int len)
1026 {
1027         return __copy_from_user(data, hva, len);
1028 }
1029
1030 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1031 {
1032         return __copy_from_user_inatomic(data, hva, len);
1033 }
1034
1035 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1036         unsigned long start, int write, struct page **page)
1037 {
1038         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1039
1040         if (write)
1041                 flags |= FOLL_WRITE;
1042
1043         return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1044 }
1045
1046 static inline int check_user_page_hwpoison(unsigned long addr)
1047 {
1048         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1049
1050         rc = __get_user_pages(current, current->mm, addr, 1,
1051                               flags, NULL, NULL, NULL);
1052         return rc == -EHWPOISON;
1053 }
1054
1055 /*
1056  * The atomic path to get the writable pfn which will be stored in @pfn,
1057  * true indicates success, otherwise false is returned.
1058  */
1059 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1060                             bool write_fault, bool *writable, pfn_t *pfn)
1061 {
1062         struct page *page[1];
1063         int npages;
1064
1065         if (!(async || atomic))
1066                 return false;
1067
1068         /*
1069          * Fast pin a writable pfn only if it is a write fault request
1070          * or the caller allows to map a writable pfn for a read fault
1071          * request.
1072          */
1073         if (!(write_fault || writable))
1074                 return false;
1075
1076         npages = __get_user_pages_fast(addr, 1, 1, page);
1077         if (npages == 1) {
1078                 *pfn = page_to_pfn(page[0]);
1079
1080                 if (writable)
1081                         *writable = true;
1082                 return true;
1083         }
1084
1085         return false;
1086 }
1087
1088 /*
1089  * The slow path to get the pfn of the specified host virtual address,
1090  * 1 indicates success, -errno is returned if error is detected.
1091  */
1092 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1093                            bool *writable, pfn_t *pfn)
1094 {
1095         struct page *page[1];
1096         int npages = 0;
1097
1098         might_sleep();
1099
1100         if (writable)
1101                 *writable = write_fault;
1102
1103         if (async) {
1104                 down_read(&current->mm->mmap_sem);
1105                 npages = get_user_page_nowait(current, current->mm,
1106                                               addr, write_fault, page);
1107                 up_read(&current->mm->mmap_sem);
1108         } else
1109                 npages = get_user_pages_fast(addr, 1, write_fault,
1110                                              page);
1111         if (npages != 1)
1112                 return npages;
1113
1114         /* map read fault as writable if possible */
1115         if (unlikely(!write_fault) && writable) {
1116                 struct page *wpage[1];
1117
1118                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1119                 if (npages == 1) {
1120                         *writable = true;
1121                         put_page(page[0]);
1122                         page[0] = wpage[0];
1123                 }
1124
1125                 npages = 1;
1126         }
1127         *pfn = page_to_pfn(page[0]);
1128         return npages;
1129 }
1130
1131 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1132 {
1133         if (unlikely(!(vma->vm_flags & VM_READ)))
1134                 return false;
1135
1136         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1137                 return false;
1138
1139         return true;
1140 }
1141
1142 /*
1143  * Pin guest page in memory and return its pfn.
1144  * @addr: host virtual address which maps memory to the guest
1145  * @atomic: whether this function can sleep
1146  * @async: whether this function need to wait IO complete if the
1147  *         host page is not in the memory
1148  * @write_fault: whether we should get a writable host page
1149  * @writable: whether it allows to map a writable host page for !@write_fault
1150  *
1151  * The function will map a writable host page for these two cases:
1152  * 1): @write_fault = true
1153  * 2): @write_fault = false && @writable, @writable will tell the caller
1154  *     whether the mapping is writable.
1155  */
1156 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1157                         bool write_fault, bool *writable)
1158 {
1159         struct vm_area_struct *vma;
1160         pfn_t pfn = 0;
1161         int npages;
1162
1163         /* we can do it either atomically or asynchronously, not both */
1164         BUG_ON(atomic && async);
1165
1166         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1167                 return pfn;
1168
1169         if (atomic)
1170                 return KVM_PFN_ERR_FAULT;
1171
1172         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1173         if (npages == 1)
1174                 return pfn;
1175
1176         down_read(&current->mm->mmap_sem);
1177         if (npages == -EHWPOISON ||
1178               (!async && check_user_page_hwpoison(addr))) {
1179                 pfn = KVM_PFN_ERR_HWPOISON;
1180                 goto exit;
1181         }
1182
1183         vma = find_vma_intersection(current->mm, addr, addr + 1);
1184
1185         if (vma == NULL)
1186                 pfn = KVM_PFN_ERR_FAULT;
1187         else if ((vma->vm_flags & VM_PFNMAP)) {
1188                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1189                         vma->vm_pgoff;
1190                 BUG_ON(!kvm_is_mmio_pfn(pfn));
1191         } else {
1192                 if (async && vma_is_valid(vma, write_fault))
1193                         *async = true;
1194                 pfn = KVM_PFN_ERR_FAULT;
1195         }
1196 exit:
1197         up_read(&current->mm->mmap_sem);
1198         return pfn;
1199 }
1200
1201 static pfn_t
1202 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1203                      bool *async, bool write_fault, bool *writable)
1204 {
1205         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1206
1207         if (addr == KVM_HVA_ERR_RO_BAD)
1208                 return KVM_PFN_ERR_RO_FAULT;
1209
1210         if (kvm_is_error_hva(addr))
1211                 return KVM_PFN_ERR_BAD;
1212
1213         /* Do not map writable pfn in the readonly memslot. */
1214         if (writable && memslot_is_readonly(slot)) {
1215                 *writable = false;
1216                 writable = NULL;
1217         }
1218
1219         return hva_to_pfn(addr, atomic, async, write_fault,
1220                           writable);
1221 }
1222
1223 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1224                           bool write_fault, bool *writable)
1225 {
1226         struct kvm_memory_slot *slot;
1227
1228         if (async)
1229                 *async = false;
1230
1231         slot = gfn_to_memslot(kvm, gfn);
1232
1233         return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1234                                     writable);
1235 }
1236
1237 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1238 {
1239         return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1240 }
1241 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1242
1243 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1244                        bool write_fault, bool *writable)
1245 {
1246         return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1247 }
1248 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1249
1250 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1251 {
1252         return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1253 }
1254 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1255
1256 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1257                       bool *writable)
1258 {
1259         return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1260 }
1261 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1262
1263 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1264 {
1265         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1266 }
1267
1268 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1269 {
1270         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1271 }
1272 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1273
1274 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1275                                                                   int nr_pages)
1276 {
1277         unsigned long addr;
1278         gfn_t entry;
1279
1280         addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1281         if (kvm_is_error_hva(addr))
1282                 return -1;
1283
1284         if (entry < nr_pages)
1285                 return 0;
1286
1287         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1288 }
1289 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1290
1291 static struct page *kvm_pfn_to_page(pfn_t pfn)
1292 {
1293         if (is_error_pfn(pfn))
1294                 return KVM_ERR_PTR_BAD_PAGE;
1295
1296         if (kvm_is_mmio_pfn(pfn)) {
1297                 WARN_ON(1);
1298                 return KVM_ERR_PTR_BAD_PAGE;
1299         }
1300
1301         return pfn_to_page(pfn);
1302 }
1303
1304 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1305 {
1306         pfn_t pfn;
1307
1308         pfn = gfn_to_pfn(kvm, gfn);
1309
1310         return kvm_pfn_to_page(pfn);
1311 }
1312
1313 EXPORT_SYMBOL_GPL(gfn_to_page);
1314
1315 void kvm_release_page_clean(struct page *page)
1316 {
1317         WARN_ON(is_error_page(page));
1318
1319         kvm_release_pfn_clean(page_to_pfn(page));
1320 }
1321 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1322
1323 void kvm_release_pfn_clean(pfn_t pfn)
1324 {
1325         WARN_ON(is_error_pfn(pfn));
1326
1327         if (!kvm_is_mmio_pfn(pfn))
1328                 put_page(pfn_to_page(pfn));
1329 }
1330 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1331
1332 void kvm_release_page_dirty(struct page *page)
1333 {
1334         WARN_ON(is_error_page(page));
1335
1336         kvm_release_pfn_dirty(page_to_pfn(page));
1337 }
1338 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1339
1340 void kvm_release_pfn_dirty(pfn_t pfn)
1341 {
1342         kvm_set_pfn_dirty(pfn);
1343         kvm_release_pfn_clean(pfn);
1344 }
1345 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1346
1347 void kvm_set_page_dirty(struct page *page)
1348 {
1349         kvm_set_pfn_dirty(page_to_pfn(page));
1350 }
1351 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1352
1353 void kvm_set_pfn_dirty(pfn_t pfn)
1354 {
1355         if (!kvm_is_mmio_pfn(pfn)) {
1356                 struct page *page = pfn_to_page(pfn);
1357                 if (!PageReserved(page))
1358                         SetPageDirty(page);
1359         }
1360 }
1361 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1362
1363 void kvm_set_pfn_accessed(pfn_t pfn)
1364 {
1365         if (!kvm_is_mmio_pfn(pfn))
1366                 mark_page_accessed(pfn_to_page(pfn));
1367 }
1368 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1369
1370 void kvm_get_pfn(pfn_t pfn)
1371 {
1372         if (!kvm_is_mmio_pfn(pfn))
1373                 get_page(pfn_to_page(pfn));
1374 }
1375 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1376
1377 static int next_segment(unsigned long len, int offset)
1378 {
1379         if (len > PAGE_SIZE - offset)
1380                 return PAGE_SIZE - offset;
1381         else
1382                 return len;
1383 }
1384
1385 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1386                         int len)
1387 {
1388         int r;
1389         unsigned long addr;
1390
1391         addr = gfn_to_hva_read(kvm, gfn);
1392         if (kvm_is_error_hva(addr))
1393                 return -EFAULT;
1394         r = kvm_read_hva(data, (void __user *)addr + offset, len);
1395         if (r)
1396                 return -EFAULT;
1397         return 0;
1398 }
1399 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1400
1401 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1402 {
1403         gfn_t gfn = gpa >> PAGE_SHIFT;
1404         int seg;
1405         int offset = offset_in_page(gpa);
1406         int ret;
1407
1408         while ((seg = next_segment(len, offset)) != 0) {
1409                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1410                 if (ret < 0)
1411                         return ret;
1412                 offset = 0;
1413                 len -= seg;
1414                 data += seg;
1415                 ++gfn;
1416         }
1417         return 0;
1418 }
1419 EXPORT_SYMBOL_GPL(kvm_read_guest);
1420
1421 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1422                           unsigned long len)
1423 {
1424         int r;
1425         unsigned long addr;
1426         gfn_t gfn = gpa >> PAGE_SHIFT;
1427         int offset = offset_in_page(gpa);
1428
1429         addr = gfn_to_hva_read(kvm, gfn);
1430         if (kvm_is_error_hva(addr))
1431                 return -EFAULT;
1432         pagefault_disable();
1433         r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1434         pagefault_enable();
1435         if (r)
1436                 return -EFAULT;
1437         return 0;
1438 }
1439 EXPORT_SYMBOL(kvm_read_guest_atomic);
1440
1441 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1442                          int offset, int len)
1443 {
1444         int r;
1445         unsigned long addr;
1446
1447         addr = gfn_to_hva(kvm, gfn);
1448         if (kvm_is_error_hva(addr))
1449                 return -EFAULT;
1450         r = __copy_to_user((void __user *)addr + offset, data, len);
1451         if (r)
1452                 return -EFAULT;
1453         mark_page_dirty(kvm, gfn);
1454         return 0;
1455 }
1456 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1457
1458 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1459                     unsigned long len)
1460 {
1461         gfn_t gfn = gpa >> PAGE_SHIFT;
1462         int seg;
1463         int offset = offset_in_page(gpa);
1464         int ret;
1465
1466         while ((seg = next_segment(len, offset)) != 0) {
1467                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1468                 if (ret < 0)
1469                         return ret;
1470                 offset = 0;
1471                 len -= seg;
1472                 data += seg;
1473                 ++gfn;
1474         }
1475         return 0;
1476 }
1477
1478 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1479                               gpa_t gpa)
1480 {
1481         struct kvm_memslots *slots = kvm_memslots(kvm);
1482         int offset = offset_in_page(gpa);
1483         gfn_t gfn = gpa >> PAGE_SHIFT;
1484
1485         ghc->gpa = gpa;
1486         ghc->generation = slots->generation;
1487         ghc->memslot = gfn_to_memslot(kvm, gfn);
1488         ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1489         if (!kvm_is_error_hva(ghc->hva))
1490                 ghc->hva += offset;
1491         else
1492                 return -EFAULT;
1493
1494         return 0;
1495 }
1496 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1497
1498 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1499                            void *data, unsigned long len)
1500 {
1501         struct kvm_memslots *slots = kvm_memslots(kvm);
1502         int r;
1503
1504         if (slots->generation != ghc->generation)
1505                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1506
1507         if (kvm_is_error_hva(ghc->hva))
1508                 return -EFAULT;
1509
1510         r = __copy_to_user((void __user *)ghc->hva, data, len);
1511         if (r)
1512                 return -EFAULT;
1513         mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1514
1515         return 0;
1516 }
1517 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1518
1519 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1520                            void *data, unsigned long len)
1521 {
1522         struct kvm_memslots *slots = kvm_memslots(kvm);
1523         int r;
1524
1525         if (slots->generation != ghc->generation)
1526                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1527
1528         if (kvm_is_error_hva(ghc->hva))
1529                 return -EFAULT;
1530
1531         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1532         if (r)
1533                 return -EFAULT;
1534
1535         return 0;
1536 }
1537 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1538
1539 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1540 {
1541         return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1542                                     offset, len);
1543 }
1544 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1545
1546 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1547 {
1548         gfn_t gfn = gpa >> PAGE_SHIFT;
1549         int seg;
1550         int offset = offset_in_page(gpa);
1551         int ret;
1552
1553         while ((seg = next_segment(len, offset)) != 0) {
1554                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1555                 if (ret < 0)
1556                         return ret;
1557                 offset = 0;
1558                 len -= seg;
1559                 ++gfn;
1560         }
1561         return 0;
1562 }
1563 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1564
1565 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1566                              gfn_t gfn)
1567 {
1568         if (memslot && memslot->dirty_bitmap) {
1569                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1570
1571                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1572         }
1573 }
1574
1575 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1576 {
1577         struct kvm_memory_slot *memslot;
1578
1579         memslot = gfn_to_memslot(kvm, gfn);
1580         mark_page_dirty_in_slot(kvm, memslot, gfn);
1581 }
1582
1583 /*
1584  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1585  */
1586 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1587 {
1588         DEFINE_WAIT(wait);
1589
1590         for (;;) {
1591                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1592
1593                 if (kvm_arch_vcpu_runnable(vcpu)) {
1594                         kvm_make_request(KVM_REQ_UNHALT, vcpu);
1595                         break;
1596                 }
1597                 if (kvm_cpu_has_pending_timer(vcpu))
1598                         break;
1599                 if (signal_pending(current))
1600                         break;
1601
1602                 schedule();
1603         }
1604
1605         finish_wait(&vcpu->wq, &wait);
1606 }
1607
1608 #ifndef CONFIG_S390
1609 /*
1610  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1611  */
1612 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1613 {
1614         int me;
1615         int cpu = vcpu->cpu;
1616         wait_queue_head_t *wqp;
1617
1618         wqp = kvm_arch_vcpu_wq(vcpu);
1619         if (waitqueue_active(wqp)) {
1620                 wake_up_interruptible(wqp);
1621                 ++vcpu->stat.halt_wakeup;
1622         }
1623
1624         me = get_cpu();
1625         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1626                 if (kvm_arch_vcpu_should_kick(vcpu))
1627                         smp_send_reschedule(cpu);
1628         put_cpu();
1629 }
1630 #endif /* !CONFIG_S390 */
1631
1632 void kvm_resched(struct kvm_vcpu *vcpu)
1633 {
1634         if (!need_resched())
1635                 return;
1636         cond_resched();
1637 }
1638 EXPORT_SYMBOL_GPL(kvm_resched);
1639
1640 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1641 {
1642         struct pid *pid;
1643         struct task_struct *task = NULL;
1644
1645         rcu_read_lock();
1646         pid = rcu_dereference(target->pid);
1647         if (pid)
1648                 task = get_pid_task(target->pid, PIDTYPE_PID);
1649         rcu_read_unlock();
1650         if (!task)
1651                 return false;
1652         if (task->flags & PF_VCPU) {
1653                 put_task_struct(task);
1654                 return false;
1655         }
1656         if (yield_to(task, 1)) {
1657                 put_task_struct(task);
1658                 return true;
1659         }
1660         put_task_struct(task);
1661         return false;
1662 }
1663 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1664
1665 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1666 /*
1667  * Helper that checks whether a VCPU is eligible for directed yield.
1668  * Most eligible candidate to yield is decided by following heuristics:
1669  *
1670  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1671  *  (preempted lock holder), indicated by @in_spin_loop.
1672  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1673  *
1674  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1675  *  chance last time (mostly it has become eligible now since we have probably
1676  *  yielded to lockholder in last iteration. This is done by toggling
1677  *  @dy_eligible each time a VCPU checked for eligibility.)
1678  *
1679  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1680  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1681  *  burning. Giving priority for a potential lock-holder increases lock
1682  *  progress.
1683  *
1684  *  Since algorithm is based on heuristics, accessing another VCPU data without
1685  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1686  *  and continue with next VCPU and so on.
1687  */
1688 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1689 {
1690         bool eligible;
1691
1692         eligible = !vcpu->spin_loop.in_spin_loop ||
1693                         (vcpu->spin_loop.in_spin_loop &&
1694                          vcpu->spin_loop.dy_eligible);
1695
1696         if (vcpu->spin_loop.in_spin_loop)
1697                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1698
1699         return eligible;
1700 }
1701 #endif
1702 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1703 {
1704         struct kvm *kvm = me->kvm;
1705         struct kvm_vcpu *vcpu;
1706         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1707         int yielded = 0;
1708         int pass;
1709         int i;
1710
1711         kvm_vcpu_set_in_spin_loop(me, true);
1712         /*
1713          * We boost the priority of a VCPU that is runnable but not
1714          * currently running, because it got preempted by something
1715          * else and called schedule in __vcpu_run.  Hopefully that
1716          * VCPU is holding the lock that we need and will release it.
1717          * We approximate round-robin by starting at the last boosted VCPU.
1718          */
1719         for (pass = 0; pass < 2 && !yielded; pass++) {
1720                 kvm_for_each_vcpu(i, vcpu, kvm) {
1721                         if (!pass && i <= last_boosted_vcpu) {
1722                                 i = last_boosted_vcpu;
1723                                 continue;
1724                         } else if (pass && i > last_boosted_vcpu)
1725                                 break;
1726                         if (vcpu == me)
1727                                 continue;
1728                         if (waitqueue_active(&vcpu->wq))
1729                                 continue;
1730                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1731                                 continue;
1732                         if (kvm_vcpu_yield_to(vcpu)) {
1733                                 kvm->last_boosted_vcpu = i;
1734                                 yielded = 1;
1735                                 break;
1736                         }
1737                 }
1738         }
1739         kvm_vcpu_set_in_spin_loop(me, false);
1740
1741         /* Ensure vcpu is not eligible during next spinloop */
1742         kvm_vcpu_set_dy_eligible(me, false);
1743 }
1744 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1745
1746 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1747 {
1748         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1749         struct page *page;
1750
1751         if (vmf->pgoff == 0)
1752                 page = virt_to_page(vcpu->run);
1753 #ifdef CONFIG_X86
1754         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1755                 page = virt_to_page(vcpu->arch.pio_data);
1756 #endif
1757 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1758         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1759                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1760 #endif
1761         else
1762                 return kvm_arch_vcpu_fault(vcpu, vmf);
1763         get_page(page);
1764         vmf->page = page;
1765         return 0;
1766 }
1767
1768 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1769         .fault = kvm_vcpu_fault,
1770 };
1771
1772 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1773 {
1774         vma->vm_ops = &kvm_vcpu_vm_ops;
1775         return 0;
1776 }
1777
1778 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1779 {
1780         struct kvm_vcpu *vcpu = filp->private_data;
1781
1782         kvm_put_kvm(vcpu->kvm);
1783         return 0;
1784 }
1785
1786 static struct file_operations kvm_vcpu_fops = {
1787         .release        = kvm_vcpu_release,
1788         .unlocked_ioctl = kvm_vcpu_ioctl,
1789 #ifdef CONFIG_COMPAT
1790         .compat_ioctl   = kvm_vcpu_compat_ioctl,
1791 #endif
1792         .mmap           = kvm_vcpu_mmap,
1793         .llseek         = noop_llseek,
1794 };
1795
1796 /*
1797  * Allocates an inode for the vcpu.
1798  */
1799 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1800 {
1801         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1802 }
1803
1804 /*
1805  * Creates some virtual cpus.  Good luck creating more than one.
1806  */
1807 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1808 {
1809         int r;
1810         struct kvm_vcpu *vcpu, *v;
1811
1812         vcpu = kvm_arch_vcpu_create(kvm, id);
1813         if (IS_ERR(vcpu))
1814                 return PTR_ERR(vcpu);
1815
1816         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1817
1818         r = kvm_arch_vcpu_setup(vcpu);
1819         if (r)
1820                 goto vcpu_destroy;
1821
1822         mutex_lock(&kvm->lock);
1823         if (!kvm_vcpu_compatible(vcpu)) {
1824                 r = -EINVAL;
1825                 goto unlock_vcpu_destroy;
1826         }
1827         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1828                 r = -EINVAL;
1829                 goto unlock_vcpu_destroy;
1830         }
1831
1832         kvm_for_each_vcpu(r, v, kvm)
1833                 if (v->vcpu_id == id) {
1834                         r = -EEXIST;
1835                         goto unlock_vcpu_destroy;
1836                 }
1837
1838         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1839
1840         /* Now it's all set up, let userspace reach it */
1841         kvm_get_kvm(kvm);
1842         r = create_vcpu_fd(vcpu);
1843         if (r < 0) {
1844                 kvm_put_kvm(kvm);
1845                 goto unlock_vcpu_destroy;
1846         }
1847
1848         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1849         smp_wmb();
1850         atomic_inc(&kvm->online_vcpus);
1851
1852         mutex_unlock(&kvm->lock);
1853         return r;
1854
1855 unlock_vcpu_destroy:
1856         mutex_unlock(&kvm->lock);
1857 vcpu_destroy:
1858         kvm_arch_vcpu_destroy(vcpu);
1859         return r;
1860 }
1861
1862 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1863 {
1864         if (sigset) {
1865                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1866                 vcpu->sigset_active = 1;
1867                 vcpu->sigset = *sigset;
1868         } else
1869                 vcpu->sigset_active = 0;
1870         return 0;
1871 }
1872
1873 static long kvm_vcpu_ioctl(struct file *filp,
1874                            unsigned int ioctl, unsigned long arg)
1875 {
1876         struct kvm_vcpu *vcpu = filp->private_data;
1877         void __user *argp = (void __user *)arg;
1878         int r;
1879         struct kvm_fpu *fpu = NULL;
1880         struct kvm_sregs *kvm_sregs = NULL;
1881
1882         if (vcpu->kvm->mm != current->mm)
1883                 return -EIO;
1884
1885 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1886         /*
1887          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1888          * so vcpu_load() would break it.
1889          */
1890         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1891                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1892 #endif
1893
1894
1895         r = vcpu_load(vcpu);
1896         if (r)
1897                 return r;
1898         switch (ioctl) {
1899         case KVM_RUN:
1900                 r = -EINVAL;
1901                 if (arg)
1902                         goto out;
1903                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1904                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1905                 break;
1906         case KVM_GET_REGS: {
1907                 struct kvm_regs *kvm_regs;
1908
1909                 r = -ENOMEM;
1910                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1911                 if (!kvm_regs)
1912                         goto out;
1913                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1914                 if (r)
1915                         goto out_free1;
1916                 r = -EFAULT;
1917                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1918                         goto out_free1;
1919                 r = 0;
1920 out_free1:
1921                 kfree(kvm_regs);
1922                 break;
1923         }
1924         case KVM_SET_REGS: {
1925                 struct kvm_regs *kvm_regs;
1926
1927                 r = -ENOMEM;
1928                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1929                 if (IS_ERR(kvm_regs)) {
1930                         r = PTR_ERR(kvm_regs);
1931                         goto out;
1932                 }
1933                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1934                 if (r)
1935                         goto out_free2;
1936                 r = 0;
1937 out_free2:
1938                 kfree(kvm_regs);
1939                 break;
1940         }
1941         case KVM_GET_SREGS: {
1942                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1943                 r = -ENOMEM;
1944                 if (!kvm_sregs)
1945                         goto out;
1946                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1947                 if (r)
1948                         goto out;
1949                 r = -EFAULT;
1950                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1951                         goto out;
1952                 r = 0;
1953                 break;
1954         }
1955         case KVM_SET_SREGS: {
1956                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1957                 if (IS_ERR(kvm_sregs)) {
1958                         r = PTR_ERR(kvm_sregs);
1959                         goto out;
1960                 }
1961                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1962                 if (r)
1963                         goto out;
1964                 r = 0;
1965                 break;
1966         }
1967         case KVM_GET_MP_STATE: {
1968                 struct kvm_mp_state mp_state;
1969
1970                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1971                 if (r)
1972                         goto out;
1973                 r = -EFAULT;
1974                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1975                         goto out;
1976                 r = 0;
1977                 break;
1978         }
1979         case KVM_SET_MP_STATE: {
1980                 struct kvm_mp_state mp_state;
1981
1982                 r = -EFAULT;
1983                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1984                         goto out;
1985                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1986                 if (r)
1987                         goto out;
1988                 r = 0;
1989                 break;
1990         }
1991         case KVM_TRANSLATE: {
1992                 struct kvm_translation tr;
1993
1994                 r = -EFAULT;
1995                 if (copy_from_user(&tr, argp, sizeof tr))
1996                         goto out;
1997                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1998                 if (r)
1999                         goto out;
2000                 r = -EFAULT;
2001                 if (copy_to_user(argp, &tr, sizeof tr))
2002                         goto out;
2003                 r = 0;
2004                 break;
2005         }
2006         case KVM_SET_GUEST_DEBUG: {
2007                 struct kvm_guest_debug dbg;
2008
2009                 r = -EFAULT;
2010                 if (copy_from_user(&dbg, argp, sizeof dbg))
2011                         goto out;
2012                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2013                 if (r)
2014                         goto out;
2015                 r = 0;
2016                 break;
2017         }
2018         case KVM_SET_SIGNAL_MASK: {
2019                 struct kvm_signal_mask __user *sigmask_arg = argp;
2020                 struct kvm_signal_mask kvm_sigmask;
2021                 sigset_t sigset, *p;
2022
2023                 p = NULL;
2024                 if (argp) {
2025                         r = -EFAULT;
2026                         if (copy_from_user(&kvm_sigmask, argp,
2027                                            sizeof kvm_sigmask))
2028                                 goto out;
2029                         r = -EINVAL;
2030                         if (kvm_sigmask.len != sizeof sigset)
2031                                 goto out;
2032                         r = -EFAULT;
2033                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2034                                            sizeof sigset))
2035                                 goto out;
2036                         p = &sigset;
2037                 }
2038                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2039                 break;
2040         }
2041         case KVM_GET_FPU: {
2042                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2043                 r = -ENOMEM;
2044                 if (!fpu)
2045                         goto out;
2046                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2047                 if (r)
2048                         goto out;
2049                 r = -EFAULT;
2050                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2051                         goto out;
2052                 r = 0;
2053                 break;
2054         }
2055         case KVM_SET_FPU: {
2056                 fpu = memdup_user(argp, sizeof(*fpu));
2057                 if (IS_ERR(fpu)) {
2058                         r = PTR_ERR(fpu);
2059                         goto out;
2060                 }
2061                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2062                 if (r)
2063                         goto out;
2064                 r = 0;
2065                 break;
2066         }
2067         default:
2068                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2069         }
2070 out:
2071         vcpu_put(vcpu);
2072         kfree(fpu);
2073         kfree(kvm_sregs);
2074         return r;
2075 }
2076
2077 #ifdef CONFIG_COMPAT
2078 static long kvm_vcpu_compat_ioctl(struct file *filp,
2079                                   unsigned int ioctl, unsigned long arg)
2080 {
2081         struct kvm_vcpu *vcpu = filp->private_data;
2082         void __user *argp = compat_ptr(arg);
2083         int r;
2084
2085         if (vcpu->kvm->mm != current->mm)
2086                 return -EIO;
2087
2088         switch (ioctl) {
2089         case KVM_SET_SIGNAL_MASK: {
2090                 struct kvm_signal_mask __user *sigmask_arg = argp;
2091                 struct kvm_signal_mask kvm_sigmask;
2092                 compat_sigset_t csigset;
2093                 sigset_t sigset;
2094
2095                 if (argp) {
2096                         r = -EFAULT;
2097                         if (copy_from_user(&kvm_sigmask, argp,
2098                                            sizeof kvm_sigmask))
2099                                 goto out;
2100                         r = -EINVAL;
2101                         if (kvm_sigmask.len != sizeof csigset)
2102                                 goto out;
2103                         r = -EFAULT;
2104                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2105                                            sizeof csigset))
2106                                 goto out;
2107                         sigset_from_compat(&sigset, &csigset);
2108                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2109                 } else
2110                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2111                 break;
2112         }
2113         default:
2114                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2115         }
2116
2117 out:
2118         return r;
2119 }
2120 #endif
2121
2122 static long kvm_vm_ioctl(struct file *filp,
2123                            unsigned int ioctl, unsigned long arg)
2124 {
2125         struct kvm *kvm = filp->private_data;
2126         void __user *argp = (void __user *)arg;
2127         int r;
2128
2129         if (kvm->mm != current->mm)
2130                 return -EIO;
2131         switch (ioctl) {
2132         case KVM_CREATE_VCPU:
2133                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2134                 if (r < 0)
2135                         goto out;
2136                 break;
2137         case KVM_SET_USER_MEMORY_REGION: {
2138                 struct kvm_userspace_memory_region kvm_userspace_mem;
2139
2140                 r = -EFAULT;
2141                 if (copy_from_user(&kvm_userspace_mem, argp,
2142                                                 sizeof kvm_userspace_mem))
2143                         goto out;
2144
2145                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2146                 if (r)
2147                         goto out;
2148                 break;
2149         }
2150         case KVM_GET_DIRTY_LOG: {
2151                 struct kvm_dirty_log log;
2152
2153                 r = -EFAULT;
2154                 if (copy_from_user(&log, argp, sizeof log))
2155                         goto out;
2156                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2157                 if (r)
2158                         goto out;
2159                 break;
2160         }
2161 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2162         case KVM_REGISTER_COALESCED_MMIO: {
2163                 struct kvm_coalesced_mmio_zone zone;
2164                 r = -EFAULT;
2165                 if (copy_from_user(&zone, argp, sizeof zone))
2166                         goto out;
2167                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2168                 if (r)
2169                         goto out;
2170                 r = 0;
2171                 break;
2172         }
2173         case KVM_UNREGISTER_COALESCED_MMIO: {
2174                 struct kvm_coalesced_mmio_zone zone;
2175                 r = -EFAULT;
2176                 if (copy_from_user(&zone, argp, sizeof zone))
2177                         goto out;
2178                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2179                 if (r)
2180                         goto out;
2181                 r = 0;
2182                 break;
2183         }
2184 #endif
2185         case KVM_IRQFD: {
2186                 struct kvm_irqfd data;
2187
2188                 r = -EFAULT;
2189                 if (copy_from_user(&data, argp, sizeof data))
2190                         goto out;
2191                 r = kvm_irqfd(kvm, &data);
2192                 break;
2193         }
2194         case KVM_IOEVENTFD: {
2195                 struct kvm_ioeventfd data;
2196
2197                 r = -EFAULT;
2198                 if (copy_from_user(&data, argp, sizeof data))
2199                         goto out;
2200                 r = kvm_ioeventfd(kvm, &data);
2201                 break;
2202         }
2203 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2204         case KVM_SET_BOOT_CPU_ID:
2205                 r = 0;
2206                 mutex_lock(&kvm->lock);
2207                 if (atomic_read(&kvm->online_vcpus) != 0)
2208                         r = -EBUSY;
2209                 else
2210                         kvm->bsp_vcpu_id = arg;
2211                 mutex_unlock(&kvm->lock);
2212                 break;
2213 #endif
2214 #ifdef CONFIG_HAVE_KVM_MSI
2215         case KVM_SIGNAL_MSI: {
2216                 struct kvm_msi msi;
2217
2218                 r = -EFAULT;
2219                 if (copy_from_user(&msi, argp, sizeof msi))
2220                         goto out;
2221                 r = kvm_send_userspace_msi(kvm, &msi);
2222                 break;
2223         }
2224 #endif
2225 #ifdef __KVM_HAVE_IRQ_LINE
2226         case KVM_IRQ_LINE_STATUS:
2227         case KVM_IRQ_LINE: {
2228                 struct kvm_irq_level irq_event;
2229
2230                 r = -EFAULT;
2231                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2232                         goto out;
2233
2234                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event);
2235                 if (r)
2236                         goto out;
2237
2238                 r = -EFAULT;
2239                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2240                         if (copy_to_user(argp, &irq_event, sizeof irq_event))
2241                                 goto out;
2242                 }
2243
2244                 r = 0;
2245                 break;
2246         }
2247 #endif
2248         default:
2249                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2250                 if (r == -ENOTTY)
2251                         r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2252         }
2253 out:
2254         return r;
2255 }
2256
2257 #ifdef CONFIG_COMPAT
2258 struct compat_kvm_dirty_log {
2259         __u32 slot;
2260         __u32 padding1;
2261         union {
2262                 compat_uptr_t dirty_bitmap; /* one bit per page */
2263                 __u64 padding2;
2264         };
2265 };
2266
2267 static long kvm_vm_compat_ioctl(struct file *filp,
2268                            unsigned int ioctl, unsigned long arg)
2269 {
2270         struct kvm *kvm = filp->private_data;
2271         int r;
2272
2273         if (kvm->mm != current->mm)
2274                 return -EIO;
2275         switch (ioctl) {
2276         case KVM_GET_DIRTY_LOG: {
2277                 struct compat_kvm_dirty_log compat_log;
2278                 struct kvm_dirty_log log;
2279
2280                 r = -EFAULT;
2281                 if (copy_from_user(&compat_log, (void __user *)arg,
2282                                    sizeof(compat_log)))
2283                         goto out;
2284                 log.slot         = compat_log.slot;
2285                 log.padding1     = compat_log.padding1;
2286                 log.padding2     = compat_log.padding2;
2287                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2288
2289                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2290                 if (r)
2291                         goto out;
2292                 break;
2293         }
2294         default:
2295                 r = kvm_vm_ioctl(filp, ioctl, arg);
2296         }
2297
2298 out:
2299         return r;
2300 }
2301 #endif
2302
2303 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2304 {
2305         struct page *page[1];
2306         unsigned long addr;
2307         int npages;
2308         gfn_t gfn = vmf->pgoff;
2309         struct kvm *kvm = vma->vm_file->private_data;
2310
2311         addr = gfn_to_hva(kvm, gfn);
2312         if (kvm_is_error_hva(addr))
2313                 return VM_FAULT_SIGBUS;
2314
2315         npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2316                                 NULL);
2317         if (unlikely(npages != 1))
2318                 return VM_FAULT_SIGBUS;
2319
2320         vmf->page = page[0];
2321         return 0;
2322 }
2323
2324 static const struct vm_operations_struct kvm_vm_vm_ops = {
2325         .fault = kvm_vm_fault,
2326 };
2327
2328 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2329 {
2330         vma->vm_ops = &kvm_vm_vm_ops;
2331         return 0;
2332 }
2333
2334 static struct file_operations kvm_vm_fops = {
2335         .release        = kvm_vm_release,
2336         .unlocked_ioctl = kvm_vm_ioctl,
2337 #ifdef CONFIG_COMPAT
2338         .compat_ioctl   = kvm_vm_compat_ioctl,
2339 #endif
2340         .mmap           = kvm_vm_mmap,
2341         .llseek         = noop_llseek,
2342 };
2343
2344 static int kvm_dev_ioctl_create_vm(unsigned long type)
2345 {
2346         int r;
2347         struct kvm *kvm;
2348
2349         kvm = kvm_create_vm(type);
2350         if (IS_ERR(kvm))
2351                 return PTR_ERR(kvm);
2352 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2353         r = kvm_coalesced_mmio_init(kvm);
2354         if (r < 0) {
2355                 kvm_put_kvm(kvm);
2356                 return r;
2357         }
2358 #endif
2359         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2360         if (r < 0)
2361                 kvm_put_kvm(kvm);
2362
2363         return r;
2364 }
2365
2366 static long kvm_dev_ioctl_check_extension_generic(long arg)
2367 {
2368         switch (arg) {
2369         case KVM_CAP_USER_MEMORY:
2370         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2371         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2372 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2373         case KVM_CAP_SET_BOOT_CPU_ID:
2374 #endif
2375         case KVM_CAP_INTERNAL_ERROR_DATA:
2376 #ifdef CONFIG_HAVE_KVM_MSI
2377         case KVM_CAP_SIGNAL_MSI:
2378 #endif
2379                 return 1;
2380 #ifdef KVM_CAP_IRQ_ROUTING
2381         case KVM_CAP_IRQ_ROUTING:
2382                 return KVM_MAX_IRQ_ROUTES;
2383 #endif
2384         default:
2385                 break;
2386         }
2387         return kvm_dev_ioctl_check_extension(arg);
2388 }
2389
2390 static long kvm_dev_ioctl(struct file *filp,
2391                           unsigned int ioctl, unsigned long arg)
2392 {
2393         long r = -EINVAL;
2394
2395         switch (ioctl) {
2396         case KVM_GET_API_VERSION:
2397                 r = -EINVAL;
2398                 if (arg)
2399                         goto out;
2400                 r = KVM_API_VERSION;
2401                 break;
2402         case KVM_CREATE_VM:
2403                 r = kvm_dev_ioctl_create_vm(arg);
2404                 break;
2405         case KVM_CHECK_EXTENSION:
2406                 r = kvm_dev_ioctl_check_extension_generic(arg);
2407                 break;
2408         case KVM_GET_VCPU_MMAP_SIZE:
2409                 r = -EINVAL;
2410                 if (arg)
2411                         goto out;
2412                 r = PAGE_SIZE;     /* struct kvm_run */
2413 #ifdef CONFIG_X86
2414                 r += PAGE_SIZE;    /* pio data page */
2415 #endif
2416 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2417                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2418 #endif
2419                 break;
2420         case KVM_TRACE_ENABLE:
2421         case KVM_TRACE_PAUSE:
2422         case KVM_TRACE_DISABLE:
2423                 r = -EOPNOTSUPP;
2424                 break;
2425         default:
2426                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2427         }
2428 out:
2429         return r;
2430 }
2431
2432 static struct file_operations kvm_chardev_ops = {
2433         .unlocked_ioctl = kvm_dev_ioctl,
2434         .compat_ioctl   = kvm_dev_ioctl,
2435         .llseek         = noop_llseek,
2436 };
2437
2438 static struct miscdevice kvm_dev = {
2439         KVM_MINOR,
2440         "kvm",
2441         &kvm_chardev_ops,
2442 };
2443
2444 static void hardware_enable_nolock(void *junk)
2445 {
2446         int cpu = raw_smp_processor_id();
2447         int r;
2448
2449         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2450                 return;
2451
2452         cpumask_set_cpu(cpu, cpus_hardware_enabled);
2453
2454         r = kvm_arch_hardware_enable(NULL);
2455
2456         if (r) {
2457                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2458                 atomic_inc(&hardware_enable_failed);
2459                 printk(KERN_INFO "kvm: enabling virtualization on "
2460                                  "CPU%d failed\n", cpu);
2461         }
2462 }
2463
2464 static void hardware_enable(void *junk)
2465 {
2466         raw_spin_lock(&kvm_lock);
2467         hardware_enable_nolock(junk);
2468         raw_spin_unlock(&kvm_lock);
2469 }
2470
2471 static void hardware_disable_nolock(void *junk)
2472 {
2473         int cpu = raw_smp_processor_id();
2474
2475         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2476                 return;
2477         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2478         kvm_arch_hardware_disable(NULL);
2479 }
2480
2481 static void hardware_disable(void *junk)
2482 {
2483         raw_spin_lock(&kvm_lock);
2484         hardware_disable_nolock(junk);
2485         raw_spin_unlock(&kvm_lock);
2486 }
2487
2488 static void hardware_disable_all_nolock(void)
2489 {
2490         BUG_ON(!kvm_usage_count);
2491
2492         kvm_usage_count--;
2493         if (!kvm_usage_count)
2494                 on_each_cpu(hardware_disable_nolock, NULL, 1);
2495 }
2496
2497 static void hardware_disable_all(void)
2498 {
2499         raw_spin_lock(&kvm_lock);
2500         hardware_disable_all_nolock();
2501         raw_spin_unlock(&kvm_lock);
2502 }
2503
2504 static int hardware_enable_all(void)
2505 {
2506         int r = 0;
2507
2508         raw_spin_lock(&kvm_lock);
2509
2510         kvm_usage_count++;
2511         if (kvm_usage_count == 1) {
2512                 atomic_set(&hardware_enable_failed, 0);
2513                 on_each_cpu(hardware_enable_nolock, NULL, 1);
2514
2515                 if (atomic_read(&hardware_enable_failed)) {
2516                         hardware_disable_all_nolock();
2517                         r = -EBUSY;
2518                 }
2519         }
2520
2521         raw_spin_unlock(&kvm_lock);
2522
2523         return r;
2524 }
2525
2526 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2527                            void *v)
2528 {
2529         int cpu = (long)v;
2530
2531         if (!kvm_usage_count)
2532                 return NOTIFY_OK;
2533
2534         val &= ~CPU_TASKS_FROZEN;
2535         switch (val) {
2536         case CPU_DYING:
2537                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2538                        cpu);
2539                 hardware_disable(NULL);
2540                 break;
2541         case CPU_STARTING:
2542                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2543                        cpu);
2544                 hardware_enable(NULL);
2545                 break;
2546         }
2547         return NOTIFY_OK;
2548 }
2549
2550
2551 asmlinkage void kvm_spurious_fault(void)
2552 {
2553         /* Fault while not rebooting.  We want the trace. */
2554         BUG();
2555 }
2556 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2557
2558 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2559                       void *v)
2560 {
2561         /*
2562          * Some (well, at least mine) BIOSes hang on reboot if
2563          * in vmx root mode.
2564          *
2565          * And Intel TXT required VMX off for all cpu when system shutdown.
2566          */
2567         printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2568         kvm_rebooting = true;
2569         on_each_cpu(hardware_disable_nolock, NULL, 1);
2570         return NOTIFY_OK;
2571 }
2572
2573 static struct notifier_block kvm_reboot_notifier = {
2574         .notifier_call = kvm_reboot,
2575         .priority = 0,
2576 };
2577
2578 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2579 {
2580         int i;
2581
2582         for (i = 0; i < bus->dev_count; i++) {
2583                 struct kvm_io_device *pos = bus->range[i].dev;
2584
2585                 kvm_iodevice_destructor(pos);
2586         }
2587         kfree(bus);
2588 }
2589
2590 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2591 {
2592         const struct kvm_io_range *r1 = p1;
2593         const struct kvm_io_range *r2 = p2;
2594
2595         if (r1->addr < r2->addr)
2596                 return -1;
2597         if (r1->addr + r1->len > r2->addr + r2->len)
2598                 return 1;
2599         return 0;
2600 }
2601
2602 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2603                           gpa_t addr, int len)
2604 {
2605         bus->range[bus->dev_count++] = (struct kvm_io_range) {
2606                 .addr = addr,
2607                 .len = len,
2608                 .dev = dev,
2609         };
2610
2611         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2612                 kvm_io_bus_sort_cmp, NULL);
2613
2614         return 0;
2615 }
2616
2617 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2618                              gpa_t addr, int len)
2619 {
2620         struct kvm_io_range *range, key;
2621         int off;
2622
2623         key = (struct kvm_io_range) {
2624                 .addr = addr,
2625                 .len = len,
2626         };
2627
2628         range = bsearch(&key, bus->range, bus->dev_count,
2629                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2630         if (range == NULL)
2631                 return -ENOENT;
2632
2633         off = range - bus->range;
2634
2635         while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2636                 off--;
2637
2638         return off;
2639 }
2640
2641 /* kvm_io_bus_write - called under kvm->slots_lock */
2642 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2643                      int len, const void *val)
2644 {
2645         int idx;
2646         struct kvm_io_bus *bus;
2647         struct kvm_io_range range;
2648
2649         range = (struct kvm_io_range) {
2650                 .addr = addr,
2651                 .len = len,
2652         };
2653
2654         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2655         idx = kvm_io_bus_get_first_dev(bus, addr, len);
2656         if (idx < 0)
2657                 return -EOPNOTSUPP;
2658
2659         while (idx < bus->dev_count &&
2660                 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2661                 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2662                         return 0;
2663                 idx++;
2664         }
2665
2666         return -EOPNOTSUPP;
2667 }
2668
2669 /* kvm_io_bus_read - called under kvm->slots_lock */
2670 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2671                     int len, void *val)
2672 {
2673         int idx;
2674         struct kvm_io_bus *bus;
2675         struct kvm_io_range range;
2676
2677         range = (struct kvm_io_range) {
2678                 .addr = addr,
2679                 .len = len,
2680         };
2681
2682         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2683         idx = kvm_io_bus_get_first_dev(bus, addr, len);
2684         if (idx < 0)
2685                 return -EOPNOTSUPP;
2686
2687         while (idx < bus->dev_count &&
2688                 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2689                 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2690                         return 0;
2691                 idx++;
2692         }
2693
2694         return -EOPNOTSUPP;
2695 }
2696
2697 /* Caller must hold slots_lock. */
2698 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2699                             int len, struct kvm_io_device *dev)
2700 {
2701         struct kvm_io_bus *new_bus, *bus;
2702
2703         bus = kvm->buses[bus_idx];
2704         if (bus->dev_count > NR_IOBUS_DEVS - 1)
2705                 return -ENOSPC;
2706
2707         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2708                           sizeof(struct kvm_io_range)), GFP_KERNEL);
2709         if (!new_bus)
2710                 return -ENOMEM;
2711         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2712                sizeof(struct kvm_io_range)));
2713         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2714         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2715         synchronize_srcu_expedited(&kvm->srcu);
2716         kfree(bus);
2717
2718         return 0;
2719 }
2720
2721 /* Caller must hold slots_lock. */
2722 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2723                               struct kvm_io_device *dev)
2724 {
2725         int i, r;
2726         struct kvm_io_bus *new_bus, *bus;
2727
2728         bus = kvm->buses[bus_idx];
2729         r = -ENOENT;
2730         for (i = 0; i < bus->dev_count; i++)
2731                 if (bus->range[i].dev == dev) {
2732                         r = 0;
2733                         break;
2734                 }
2735
2736         if (r)
2737                 return r;
2738
2739         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2740                           sizeof(struct kvm_io_range)), GFP_KERNEL);
2741         if (!new_bus)
2742                 return -ENOMEM;
2743
2744         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2745         new_bus->dev_count--;
2746         memcpy(new_bus->range + i, bus->range + i + 1,
2747                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2748
2749         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2750         synchronize_srcu_expedited(&kvm->srcu);
2751         kfree(bus);
2752         return r;
2753 }
2754
2755 static struct notifier_block kvm_cpu_notifier = {
2756         .notifier_call = kvm_cpu_hotplug,
2757 };
2758
2759 static int vm_stat_get(void *_offset, u64 *val)
2760 {
2761         unsigned offset = (long)_offset;
2762         struct kvm *kvm;
2763
2764         *val = 0;
2765         raw_spin_lock(&kvm_lock);
2766         list_for_each_entry(kvm, &vm_list, vm_list)
2767                 *val += *(u32 *)((void *)kvm + offset);
2768         raw_spin_unlock(&kvm_lock);
2769         return 0;
2770 }
2771
2772 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2773
2774 static int vcpu_stat_get(void *_offset, u64 *val)
2775 {
2776         unsigned offset = (long)_offset;
2777         struct kvm *kvm;
2778         struct kvm_vcpu *vcpu;
2779         int i;
2780
2781         *val = 0;
2782         raw_spin_lock(&kvm_lock);
2783         list_for_each_entry(kvm, &vm_list, vm_list)
2784                 kvm_for_each_vcpu(i, vcpu, kvm)
2785                         *val += *(u32 *)((void *)vcpu + offset);
2786
2787         raw_spin_unlock(&kvm_lock);
2788         return 0;
2789 }
2790
2791 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2792
2793 static const struct file_operations *stat_fops[] = {
2794         [KVM_STAT_VCPU] = &vcpu_stat_fops,
2795         [KVM_STAT_VM]   = &vm_stat_fops,
2796 };
2797
2798 static int kvm_init_debug(void)
2799 {
2800         int r = -EFAULT;
2801         struct kvm_stats_debugfs_item *p;
2802
2803         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2804         if (kvm_debugfs_dir == NULL)
2805                 goto out;
2806
2807         for (p = debugfs_entries; p->name; ++p) {
2808                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2809                                                 (void *)(long)p->offset,
2810                                                 stat_fops[p->kind]);
2811                 if (p->dentry == NULL)
2812                         goto out_dir;
2813         }
2814
2815         return 0;
2816
2817 out_dir:
2818         debugfs_remove_recursive(kvm_debugfs_dir);
2819 out:
2820         return r;
2821 }
2822
2823 static void kvm_exit_debug(void)
2824 {
2825         struct kvm_stats_debugfs_item *p;
2826
2827         for (p = debugfs_entries; p->name; ++p)
2828                 debugfs_remove(p->dentry);
2829         debugfs_remove(kvm_debugfs_dir);
2830 }
2831
2832 static int kvm_suspend(void)
2833 {
2834         if (kvm_usage_count)
2835                 hardware_disable_nolock(NULL);
2836         return 0;
2837 }
2838
2839 static void kvm_resume(void)
2840 {
2841         if (kvm_usage_count) {
2842                 WARN_ON(raw_spin_is_locked(&kvm_lock));
2843                 hardware_enable_nolock(NULL);
2844         }
2845 }
2846
2847 static struct syscore_ops kvm_syscore_ops = {
2848         .suspend = kvm_suspend,
2849         .resume = kvm_resume,
2850 };
2851
2852 static inline
2853 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2854 {
2855         return container_of(pn, struct kvm_vcpu, preempt_notifier);
2856 }
2857
2858 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2859 {
2860         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2861
2862         kvm_arch_vcpu_load(vcpu, cpu);
2863 }
2864
2865 static void kvm_sched_out(struct preempt_notifier *pn,
2866                           struct task_struct *next)
2867 {
2868         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2869
2870         kvm_arch_vcpu_put(vcpu);
2871 }
2872
2873 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2874                   struct module *module)
2875 {
2876         int r;
2877         int cpu;
2878
2879         r = kvm_arch_init(opaque);
2880         if (r)
2881                 goto out_fail;
2882
2883         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2884                 r = -ENOMEM;
2885                 goto out_free_0;
2886         }
2887
2888         r = kvm_arch_hardware_setup();
2889         if (r < 0)
2890                 goto out_free_0a;
2891
2892         for_each_online_cpu(cpu) {
2893                 smp_call_function_single(cpu,
2894                                 kvm_arch_check_processor_compat,
2895                                 &r, 1);
2896                 if (r < 0)
2897                         goto out_free_1;
2898         }
2899
2900         r = register_cpu_notifier(&kvm_cpu_notifier);
2901         if (r)
2902                 goto out_free_2;
2903         register_reboot_notifier(&kvm_reboot_notifier);
2904
2905         /* A kmem cache lets us meet the alignment requirements of fx_save. */
2906         if (!vcpu_align)
2907                 vcpu_align = __alignof__(struct kvm_vcpu);
2908         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2909                                            0, NULL);
2910         if (!kvm_vcpu_cache) {
2911                 r = -ENOMEM;
2912                 goto out_free_3;
2913         }
2914
2915         r = kvm_async_pf_init();
2916         if (r)
2917                 goto out_free;
2918
2919         kvm_chardev_ops.owner = module;
2920         kvm_vm_fops.owner = module;
2921         kvm_vcpu_fops.owner = module;
2922
2923         r = misc_register(&kvm_dev);
2924         if (r) {
2925                 printk(KERN_ERR "kvm: misc device register failed\n");
2926                 goto out_unreg;
2927         }
2928
2929         register_syscore_ops(&kvm_syscore_ops);
2930
2931         kvm_preempt_ops.sched_in = kvm_sched_in;
2932         kvm_preempt_ops.sched_out = kvm_sched_out;
2933
2934         r = kvm_init_debug();
2935         if (r) {
2936                 printk(KERN_ERR "kvm: create debugfs files failed\n");
2937                 goto out_undebugfs;
2938         }
2939
2940         return 0;
2941
2942 out_undebugfs:
2943         unregister_syscore_ops(&kvm_syscore_ops);
2944 out_unreg:
2945         kvm_async_pf_deinit();
2946 out_free:
2947         kmem_cache_destroy(kvm_vcpu_cache);
2948 out_free_3:
2949         unregister_reboot_notifier(&kvm_reboot_notifier);
2950         unregister_cpu_notifier(&kvm_cpu_notifier);
2951 out_free_2:
2952 out_free_1:
2953         kvm_arch_hardware_unsetup();
2954 out_free_0a:
2955         free_cpumask_var(cpus_hardware_enabled);
2956 out_free_0:
2957         kvm_arch_exit();
2958 out_fail:
2959         return r;
2960 }
2961 EXPORT_SYMBOL_GPL(kvm_init);
2962
2963 void kvm_exit(void)
2964 {
2965         kvm_exit_debug();
2966         misc_deregister(&kvm_dev);
2967         kmem_cache_destroy(kvm_vcpu_cache);
2968         kvm_async_pf_deinit();
2969         unregister_syscore_ops(&kvm_syscore_ops);
2970         unregister_reboot_notifier(&kvm_reboot_notifier);
2971         unregister_cpu_notifier(&kvm_cpu_notifier);
2972         on_each_cpu(hardware_disable_nolock, NULL, 1);
2973         kvm_arch_hardware_unsetup();
2974         kvm_arch_exit();
2975         free_cpumask_var(cpus_hardware_enabled);
2976 }
2977 EXPORT_SYMBOL_GPL(kvm_exit);