]> rtime.felk.cvut.cz Git - can-eth-gw-linux.git/blob - fs/btrfs/volumes.c
ARM: davinci: da850: generate dtbs for da850 boards
[can-eth-gw-linux.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <asm/div64.h>
29 #include "compat.h"
30 #include "ctree.h"
31 #include "extent_map.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "print-tree.h"
35 #include "volumes.h"
36 #include "async-thread.h"
37 #include "check-integrity.h"
38 #include "rcu-string.h"
39
40 static int init_first_rw_device(struct btrfs_trans_handle *trans,
41                                 struct btrfs_root *root,
42                                 struct btrfs_device *device);
43 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
44 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
45 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
46
47 static DEFINE_MUTEX(uuid_mutex);
48 static LIST_HEAD(fs_uuids);
49
50 static void lock_chunks(struct btrfs_root *root)
51 {
52         mutex_lock(&root->fs_info->chunk_mutex);
53 }
54
55 static void unlock_chunks(struct btrfs_root *root)
56 {
57         mutex_unlock(&root->fs_info->chunk_mutex);
58 }
59
60 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
61 {
62         struct btrfs_device *device;
63         WARN_ON(fs_devices->opened);
64         while (!list_empty(&fs_devices->devices)) {
65                 device = list_entry(fs_devices->devices.next,
66                                     struct btrfs_device, dev_list);
67                 list_del(&device->dev_list);
68                 rcu_string_free(device->name);
69                 kfree(device);
70         }
71         kfree(fs_devices);
72 }
73
74 void btrfs_cleanup_fs_uuids(void)
75 {
76         struct btrfs_fs_devices *fs_devices;
77
78         while (!list_empty(&fs_uuids)) {
79                 fs_devices = list_entry(fs_uuids.next,
80                                         struct btrfs_fs_devices, list);
81                 list_del(&fs_devices->list);
82                 free_fs_devices(fs_devices);
83         }
84 }
85
86 static noinline struct btrfs_device *__find_device(struct list_head *head,
87                                                    u64 devid, u8 *uuid)
88 {
89         struct btrfs_device *dev;
90
91         list_for_each_entry(dev, head, dev_list) {
92                 if (dev->devid == devid &&
93                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
94                         return dev;
95                 }
96         }
97         return NULL;
98 }
99
100 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
101 {
102         struct btrfs_fs_devices *fs_devices;
103
104         list_for_each_entry(fs_devices, &fs_uuids, list) {
105                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
106                         return fs_devices;
107         }
108         return NULL;
109 }
110
111 static void requeue_list(struct btrfs_pending_bios *pending_bios,
112                         struct bio *head, struct bio *tail)
113 {
114
115         struct bio *old_head;
116
117         old_head = pending_bios->head;
118         pending_bios->head = head;
119         if (pending_bios->tail)
120                 tail->bi_next = old_head;
121         else
122                 pending_bios->tail = tail;
123 }
124
125 /*
126  * we try to collect pending bios for a device so we don't get a large
127  * number of procs sending bios down to the same device.  This greatly
128  * improves the schedulers ability to collect and merge the bios.
129  *
130  * But, it also turns into a long list of bios to process and that is sure
131  * to eventually make the worker thread block.  The solution here is to
132  * make some progress and then put this work struct back at the end of
133  * the list if the block device is congested.  This way, multiple devices
134  * can make progress from a single worker thread.
135  */
136 static noinline void run_scheduled_bios(struct btrfs_device *device)
137 {
138         struct bio *pending;
139         struct backing_dev_info *bdi;
140         struct btrfs_fs_info *fs_info;
141         struct btrfs_pending_bios *pending_bios;
142         struct bio *tail;
143         struct bio *cur;
144         int again = 0;
145         unsigned long num_run;
146         unsigned long batch_run = 0;
147         unsigned long limit;
148         unsigned long last_waited = 0;
149         int force_reg = 0;
150         int sync_pending = 0;
151         struct blk_plug plug;
152
153         /*
154          * this function runs all the bios we've collected for
155          * a particular device.  We don't want to wander off to
156          * another device without first sending all of these down.
157          * So, setup a plug here and finish it off before we return
158          */
159         blk_start_plug(&plug);
160
161         bdi = blk_get_backing_dev_info(device->bdev);
162         fs_info = device->dev_root->fs_info;
163         limit = btrfs_async_submit_limit(fs_info);
164         limit = limit * 2 / 3;
165
166 loop:
167         spin_lock(&device->io_lock);
168
169 loop_lock:
170         num_run = 0;
171
172         /* take all the bios off the list at once and process them
173          * later on (without the lock held).  But, remember the
174          * tail and other pointers so the bios can be properly reinserted
175          * into the list if we hit congestion
176          */
177         if (!force_reg && device->pending_sync_bios.head) {
178                 pending_bios = &device->pending_sync_bios;
179                 force_reg = 1;
180         } else {
181                 pending_bios = &device->pending_bios;
182                 force_reg = 0;
183         }
184
185         pending = pending_bios->head;
186         tail = pending_bios->tail;
187         WARN_ON(pending && !tail);
188
189         /*
190          * if pending was null this time around, no bios need processing
191          * at all and we can stop.  Otherwise it'll loop back up again
192          * and do an additional check so no bios are missed.
193          *
194          * device->running_pending is used to synchronize with the
195          * schedule_bio code.
196          */
197         if (device->pending_sync_bios.head == NULL &&
198             device->pending_bios.head == NULL) {
199                 again = 0;
200                 device->running_pending = 0;
201         } else {
202                 again = 1;
203                 device->running_pending = 1;
204         }
205
206         pending_bios->head = NULL;
207         pending_bios->tail = NULL;
208
209         spin_unlock(&device->io_lock);
210
211         while (pending) {
212
213                 rmb();
214                 /* we want to work on both lists, but do more bios on the
215                  * sync list than the regular list
216                  */
217                 if ((num_run > 32 &&
218                     pending_bios != &device->pending_sync_bios &&
219                     device->pending_sync_bios.head) ||
220                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
221                     device->pending_bios.head)) {
222                         spin_lock(&device->io_lock);
223                         requeue_list(pending_bios, pending, tail);
224                         goto loop_lock;
225                 }
226
227                 cur = pending;
228                 pending = pending->bi_next;
229                 cur->bi_next = NULL;
230
231                 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
232                     waitqueue_active(&fs_info->async_submit_wait))
233                         wake_up(&fs_info->async_submit_wait);
234
235                 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
236
237                 /*
238                  * if we're doing the sync list, record that our
239                  * plug has some sync requests on it
240                  *
241                  * If we're doing the regular list and there are
242                  * sync requests sitting around, unplug before
243                  * we add more
244                  */
245                 if (pending_bios == &device->pending_sync_bios) {
246                         sync_pending = 1;
247                 } else if (sync_pending) {
248                         blk_finish_plug(&plug);
249                         blk_start_plug(&plug);
250                         sync_pending = 0;
251                 }
252
253                 btrfsic_submit_bio(cur->bi_rw, cur);
254                 num_run++;
255                 batch_run++;
256                 if (need_resched())
257                         cond_resched();
258
259                 /*
260                  * we made progress, there is more work to do and the bdi
261                  * is now congested.  Back off and let other work structs
262                  * run instead
263                  */
264                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
265                     fs_info->fs_devices->open_devices > 1) {
266                         struct io_context *ioc;
267
268                         ioc = current->io_context;
269
270                         /*
271                          * the main goal here is that we don't want to
272                          * block if we're going to be able to submit
273                          * more requests without blocking.
274                          *
275                          * This code does two great things, it pokes into
276                          * the elevator code from a filesystem _and_
277                          * it makes assumptions about how batching works.
278                          */
279                         if (ioc && ioc->nr_batch_requests > 0 &&
280                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
281                             (last_waited == 0 ||
282                              ioc->last_waited == last_waited)) {
283                                 /*
284                                  * we want to go through our batch of
285                                  * requests and stop.  So, we copy out
286                                  * the ioc->last_waited time and test
287                                  * against it before looping
288                                  */
289                                 last_waited = ioc->last_waited;
290                                 if (need_resched())
291                                         cond_resched();
292                                 continue;
293                         }
294                         spin_lock(&device->io_lock);
295                         requeue_list(pending_bios, pending, tail);
296                         device->running_pending = 1;
297
298                         spin_unlock(&device->io_lock);
299                         btrfs_requeue_work(&device->work);
300                         goto done;
301                 }
302                 /* unplug every 64 requests just for good measure */
303                 if (batch_run % 64 == 0) {
304                         blk_finish_plug(&plug);
305                         blk_start_plug(&plug);
306                         sync_pending = 0;
307                 }
308         }
309
310         cond_resched();
311         if (again)
312                 goto loop;
313
314         spin_lock(&device->io_lock);
315         if (device->pending_bios.head || device->pending_sync_bios.head)
316                 goto loop_lock;
317         spin_unlock(&device->io_lock);
318
319 done:
320         blk_finish_plug(&plug);
321 }
322
323 static void pending_bios_fn(struct btrfs_work *work)
324 {
325         struct btrfs_device *device;
326
327         device = container_of(work, struct btrfs_device, work);
328         run_scheduled_bios(device);
329 }
330
331 static noinline int device_list_add(const char *path,
332                            struct btrfs_super_block *disk_super,
333                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
334 {
335         struct btrfs_device *device;
336         struct btrfs_fs_devices *fs_devices;
337         struct rcu_string *name;
338         u64 found_transid = btrfs_super_generation(disk_super);
339
340         fs_devices = find_fsid(disk_super->fsid);
341         if (!fs_devices) {
342                 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
343                 if (!fs_devices)
344                         return -ENOMEM;
345                 INIT_LIST_HEAD(&fs_devices->devices);
346                 INIT_LIST_HEAD(&fs_devices->alloc_list);
347                 list_add(&fs_devices->list, &fs_uuids);
348                 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
349                 fs_devices->latest_devid = devid;
350                 fs_devices->latest_trans = found_transid;
351                 mutex_init(&fs_devices->device_list_mutex);
352                 device = NULL;
353         } else {
354                 device = __find_device(&fs_devices->devices, devid,
355                                        disk_super->dev_item.uuid);
356         }
357         if (!device) {
358                 if (fs_devices->opened)
359                         return -EBUSY;
360
361                 device = kzalloc(sizeof(*device), GFP_NOFS);
362                 if (!device) {
363                         /* we can safely leave the fs_devices entry around */
364                         return -ENOMEM;
365                 }
366                 device->devid = devid;
367                 device->dev_stats_valid = 0;
368                 device->work.func = pending_bios_fn;
369                 memcpy(device->uuid, disk_super->dev_item.uuid,
370                        BTRFS_UUID_SIZE);
371                 spin_lock_init(&device->io_lock);
372
373                 name = rcu_string_strdup(path, GFP_NOFS);
374                 if (!name) {
375                         kfree(device);
376                         return -ENOMEM;
377                 }
378                 rcu_assign_pointer(device->name, name);
379                 INIT_LIST_HEAD(&device->dev_alloc_list);
380
381                 /* init readahead state */
382                 spin_lock_init(&device->reada_lock);
383                 device->reada_curr_zone = NULL;
384                 atomic_set(&device->reada_in_flight, 0);
385                 device->reada_next = 0;
386                 INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
387                 INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
388
389                 mutex_lock(&fs_devices->device_list_mutex);
390                 list_add_rcu(&device->dev_list, &fs_devices->devices);
391                 mutex_unlock(&fs_devices->device_list_mutex);
392
393                 device->fs_devices = fs_devices;
394                 fs_devices->num_devices++;
395         } else if (!device->name || strcmp(device->name->str, path)) {
396                 name = rcu_string_strdup(path, GFP_NOFS);
397                 if (!name)
398                         return -ENOMEM;
399                 rcu_string_free(device->name);
400                 rcu_assign_pointer(device->name, name);
401                 if (device->missing) {
402                         fs_devices->missing_devices--;
403                         device->missing = 0;
404                 }
405         }
406
407         if (found_transid > fs_devices->latest_trans) {
408                 fs_devices->latest_devid = devid;
409                 fs_devices->latest_trans = found_transid;
410         }
411         *fs_devices_ret = fs_devices;
412         return 0;
413 }
414
415 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
416 {
417         struct btrfs_fs_devices *fs_devices;
418         struct btrfs_device *device;
419         struct btrfs_device *orig_dev;
420
421         fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
422         if (!fs_devices)
423                 return ERR_PTR(-ENOMEM);
424
425         INIT_LIST_HEAD(&fs_devices->devices);
426         INIT_LIST_HEAD(&fs_devices->alloc_list);
427         INIT_LIST_HEAD(&fs_devices->list);
428         mutex_init(&fs_devices->device_list_mutex);
429         fs_devices->latest_devid = orig->latest_devid;
430         fs_devices->latest_trans = orig->latest_trans;
431         fs_devices->total_devices = orig->total_devices;
432         memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
433
434         /* We have held the volume lock, it is safe to get the devices. */
435         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
436                 struct rcu_string *name;
437
438                 device = kzalloc(sizeof(*device), GFP_NOFS);
439                 if (!device)
440                         goto error;
441
442                 /*
443                  * This is ok to do without rcu read locked because we hold the
444                  * uuid mutex so nothing we touch in here is going to disappear.
445                  */
446                 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
447                 if (!name) {
448                         kfree(device);
449                         goto error;
450                 }
451                 rcu_assign_pointer(device->name, name);
452
453                 device->devid = orig_dev->devid;
454                 device->work.func = pending_bios_fn;
455                 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
456                 spin_lock_init(&device->io_lock);
457                 INIT_LIST_HEAD(&device->dev_list);
458                 INIT_LIST_HEAD(&device->dev_alloc_list);
459
460                 list_add(&device->dev_list, &fs_devices->devices);
461                 device->fs_devices = fs_devices;
462                 fs_devices->num_devices++;
463         }
464         return fs_devices;
465 error:
466         free_fs_devices(fs_devices);
467         return ERR_PTR(-ENOMEM);
468 }
469
470 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
471 {
472         struct btrfs_device *device, *next;
473
474         struct block_device *latest_bdev = NULL;
475         u64 latest_devid = 0;
476         u64 latest_transid = 0;
477
478         mutex_lock(&uuid_mutex);
479 again:
480         /* This is the initialized path, it is safe to release the devices. */
481         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
482                 if (device->in_fs_metadata) {
483                         if (!latest_transid ||
484                             device->generation > latest_transid) {
485                                 latest_devid = device->devid;
486                                 latest_transid = device->generation;
487                                 latest_bdev = device->bdev;
488                         }
489                         continue;
490                 }
491
492                 if (device->bdev) {
493                         blkdev_put(device->bdev, device->mode);
494                         device->bdev = NULL;
495                         fs_devices->open_devices--;
496                 }
497                 if (device->writeable) {
498                         list_del_init(&device->dev_alloc_list);
499                         device->writeable = 0;
500                         fs_devices->rw_devices--;
501                 }
502                 list_del_init(&device->dev_list);
503                 fs_devices->num_devices--;
504                 rcu_string_free(device->name);
505                 kfree(device);
506         }
507
508         if (fs_devices->seed) {
509                 fs_devices = fs_devices->seed;
510                 goto again;
511         }
512
513         fs_devices->latest_bdev = latest_bdev;
514         fs_devices->latest_devid = latest_devid;
515         fs_devices->latest_trans = latest_transid;
516
517         mutex_unlock(&uuid_mutex);
518 }
519
520 static void __free_device(struct work_struct *work)
521 {
522         struct btrfs_device *device;
523
524         device = container_of(work, struct btrfs_device, rcu_work);
525
526         if (device->bdev)
527                 blkdev_put(device->bdev, device->mode);
528
529         rcu_string_free(device->name);
530         kfree(device);
531 }
532
533 static void free_device(struct rcu_head *head)
534 {
535         struct btrfs_device *device;
536
537         device = container_of(head, struct btrfs_device, rcu);
538
539         INIT_WORK(&device->rcu_work, __free_device);
540         schedule_work(&device->rcu_work);
541 }
542
543 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
544 {
545         struct btrfs_device *device;
546
547         if (--fs_devices->opened > 0)
548                 return 0;
549
550         mutex_lock(&fs_devices->device_list_mutex);
551         list_for_each_entry(device, &fs_devices->devices, dev_list) {
552                 struct btrfs_device *new_device;
553                 struct rcu_string *name;
554
555                 if (device->bdev)
556                         fs_devices->open_devices--;
557
558                 if (device->writeable) {
559                         list_del_init(&device->dev_alloc_list);
560                         fs_devices->rw_devices--;
561                 }
562
563                 if (device->can_discard)
564                         fs_devices->num_can_discard--;
565
566                 new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
567                 BUG_ON(!new_device); /* -ENOMEM */
568                 memcpy(new_device, device, sizeof(*new_device));
569
570                 /* Safe because we are under uuid_mutex */
571                 if (device->name) {
572                         name = rcu_string_strdup(device->name->str, GFP_NOFS);
573                         BUG_ON(device->name && !name); /* -ENOMEM */
574                         rcu_assign_pointer(new_device->name, name);
575                 }
576                 new_device->bdev = NULL;
577                 new_device->writeable = 0;
578                 new_device->in_fs_metadata = 0;
579                 new_device->can_discard = 0;
580                 list_replace_rcu(&device->dev_list, &new_device->dev_list);
581
582                 call_rcu(&device->rcu, free_device);
583         }
584         mutex_unlock(&fs_devices->device_list_mutex);
585
586         WARN_ON(fs_devices->open_devices);
587         WARN_ON(fs_devices->rw_devices);
588         fs_devices->opened = 0;
589         fs_devices->seeding = 0;
590
591         return 0;
592 }
593
594 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
595 {
596         struct btrfs_fs_devices *seed_devices = NULL;
597         int ret;
598
599         mutex_lock(&uuid_mutex);
600         ret = __btrfs_close_devices(fs_devices);
601         if (!fs_devices->opened) {
602                 seed_devices = fs_devices->seed;
603                 fs_devices->seed = NULL;
604         }
605         mutex_unlock(&uuid_mutex);
606
607         while (seed_devices) {
608                 fs_devices = seed_devices;
609                 seed_devices = fs_devices->seed;
610                 __btrfs_close_devices(fs_devices);
611                 free_fs_devices(fs_devices);
612         }
613         return ret;
614 }
615
616 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
617                                 fmode_t flags, void *holder)
618 {
619         struct request_queue *q;
620         struct block_device *bdev;
621         struct list_head *head = &fs_devices->devices;
622         struct btrfs_device *device;
623         struct block_device *latest_bdev = NULL;
624         struct buffer_head *bh;
625         struct btrfs_super_block *disk_super;
626         u64 latest_devid = 0;
627         u64 latest_transid = 0;
628         u64 devid;
629         int seeding = 1;
630         int ret = 0;
631
632         flags |= FMODE_EXCL;
633
634         list_for_each_entry(device, head, dev_list) {
635                 if (device->bdev)
636                         continue;
637                 if (!device->name)
638                         continue;
639
640                 bdev = blkdev_get_by_path(device->name->str, flags, holder);
641                 if (IS_ERR(bdev)) {
642                         printk(KERN_INFO "btrfs: open %s failed\n", device->name->str);
643                         goto error;
644                 }
645                 filemap_write_and_wait(bdev->bd_inode->i_mapping);
646                 invalidate_bdev(bdev);
647                 set_blocksize(bdev, 4096);
648
649                 bh = btrfs_read_dev_super(bdev);
650                 if (!bh)
651                         goto error_close;
652
653                 disk_super = (struct btrfs_super_block *)bh->b_data;
654                 devid = btrfs_stack_device_id(&disk_super->dev_item);
655                 if (devid != device->devid)
656                         goto error_brelse;
657
658                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
659                            BTRFS_UUID_SIZE))
660                         goto error_brelse;
661
662                 device->generation = btrfs_super_generation(disk_super);
663                 if (!latest_transid || device->generation > latest_transid) {
664                         latest_devid = devid;
665                         latest_transid = device->generation;
666                         latest_bdev = bdev;
667                 }
668
669                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
670                         device->writeable = 0;
671                 } else {
672                         device->writeable = !bdev_read_only(bdev);
673                         seeding = 0;
674                 }
675
676                 q = bdev_get_queue(bdev);
677                 if (blk_queue_discard(q)) {
678                         device->can_discard = 1;
679                         fs_devices->num_can_discard++;
680                 }
681
682                 device->bdev = bdev;
683                 device->in_fs_metadata = 0;
684                 device->mode = flags;
685
686                 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
687                         fs_devices->rotating = 1;
688
689                 fs_devices->open_devices++;
690                 if (device->writeable) {
691                         fs_devices->rw_devices++;
692                         list_add(&device->dev_alloc_list,
693                                  &fs_devices->alloc_list);
694                 }
695                 brelse(bh);
696                 continue;
697
698 error_brelse:
699                 brelse(bh);
700 error_close:
701                 blkdev_put(bdev, flags);
702 error:
703                 continue;
704         }
705         if (fs_devices->open_devices == 0) {
706                 ret = -EINVAL;
707                 goto out;
708         }
709         fs_devices->seeding = seeding;
710         fs_devices->opened = 1;
711         fs_devices->latest_bdev = latest_bdev;
712         fs_devices->latest_devid = latest_devid;
713         fs_devices->latest_trans = latest_transid;
714         fs_devices->total_rw_bytes = 0;
715 out:
716         return ret;
717 }
718
719 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
720                        fmode_t flags, void *holder)
721 {
722         int ret;
723
724         mutex_lock(&uuid_mutex);
725         if (fs_devices->opened) {
726                 fs_devices->opened++;
727                 ret = 0;
728         } else {
729                 ret = __btrfs_open_devices(fs_devices, flags, holder);
730         }
731         mutex_unlock(&uuid_mutex);
732         return ret;
733 }
734
735 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
736                           struct btrfs_fs_devices **fs_devices_ret)
737 {
738         struct btrfs_super_block *disk_super;
739         struct block_device *bdev;
740         struct buffer_head *bh;
741         int ret;
742         u64 devid;
743         u64 transid;
744         u64 total_devices;
745
746         flags |= FMODE_EXCL;
747         bdev = blkdev_get_by_path(path, flags, holder);
748
749         if (IS_ERR(bdev)) {
750                 ret = PTR_ERR(bdev);
751                 goto error;
752         }
753
754         mutex_lock(&uuid_mutex);
755         ret = set_blocksize(bdev, 4096);
756         if (ret)
757                 goto error_close;
758         bh = btrfs_read_dev_super(bdev);
759         if (!bh) {
760                 ret = -EINVAL;
761                 goto error_close;
762         }
763         disk_super = (struct btrfs_super_block *)bh->b_data;
764         devid = btrfs_stack_device_id(&disk_super->dev_item);
765         transid = btrfs_super_generation(disk_super);
766         total_devices = btrfs_super_num_devices(disk_super);
767         if (disk_super->label[0])
768                 printk(KERN_INFO "device label %s ", disk_super->label);
769         else
770                 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
771         printk(KERN_CONT "devid %llu transid %llu %s\n",
772                (unsigned long long)devid, (unsigned long long)transid, path);
773         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
774         if (!ret && fs_devices_ret)
775                 (*fs_devices_ret)->total_devices = total_devices;
776         brelse(bh);
777 error_close:
778         mutex_unlock(&uuid_mutex);
779         blkdev_put(bdev, flags);
780 error:
781         return ret;
782 }
783
784 /* helper to account the used device space in the range */
785 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
786                                    u64 end, u64 *length)
787 {
788         struct btrfs_key key;
789         struct btrfs_root *root = device->dev_root;
790         struct btrfs_dev_extent *dev_extent;
791         struct btrfs_path *path;
792         u64 extent_end;
793         int ret;
794         int slot;
795         struct extent_buffer *l;
796
797         *length = 0;
798
799         if (start >= device->total_bytes)
800                 return 0;
801
802         path = btrfs_alloc_path();
803         if (!path)
804                 return -ENOMEM;
805         path->reada = 2;
806
807         key.objectid = device->devid;
808         key.offset = start;
809         key.type = BTRFS_DEV_EXTENT_KEY;
810
811         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
812         if (ret < 0)
813                 goto out;
814         if (ret > 0) {
815                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
816                 if (ret < 0)
817                         goto out;
818         }
819
820         while (1) {
821                 l = path->nodes[0];
822                 slot = path->slots[0];
823                 if (slot >= btrfs_header_nritems(l)) {
824                         ret = btrfs_next_leaf(root, path);
825                         if (ret == 0)
826                                 continue;
827                         if (ret < 0)
828                                 goto out;
829
830                         break;
831                 }
832                 btrfs_item_key_to_cpu(l, &key, slot);
833
834                 if (key.objectid < device->devid)
835                         goto next;
836
837                 if (key.objectid > device->devid)
838                         break;
839
840                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
841                         goto next;
842
843                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
844                 extent_end = key.offset + btrfs_dev_extent_length(l,
845                                                                   dev_extent);
846                 if (key.offset <= start && extent_end > end) {
847                         *length = end - start + 1;
848                         break;
849                 } else if (key.offset <= start && extent_end > start)
850                         *length += extent_end - start;
851                 else if (key.offset > start && extent_end <= end)
852                         *length += extent_end - key.offset;
853                 else if (key.offset > start && key.offset <= end) {
854                         *length += end - key.offset + 1;
855                         break;
856                 } else if (key.offset > end)
857                         break;
858
859 next:
860                 path->slots[0]++;
861         }
862         ret = 0;
863 out:
864         btrfs_free_path(path);
865         return ret;
866 }
867
868 /*
869  * find_free_dev_extent - find free space in the specified device
870  * @device:     the device which we search the free space in
871  * @num_bytes:  the size of the free space that we need
872  * @start:      store the start of the free space.
873  * @len:        the size of the free space. that we find, or the size of the max
874  *              free space if we don't find suitable free space
875  *
876  * this uses a pretty simple search, the expectation is that it is
877  * called very infrequently and that a given device has a small number
878  * of extents
879  *
880  * @start is used to store the start of the free space if we find. But if we
881  * don't find suitable free space, it will be used to store the start position
882  * of the max free space.
883  *
884  * @len is used to store the size of the free space that we find.
885  * But if we don't find suitable free space, it is used to store the size of
886  * the max free space.
887  */
888 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
889                          u64 *start, u64 *len)
890 {
891         struct btrfs_key key;
892         struct btrfs_root *root = device->dev_root;
893         struct btrfs_dev_extent *dev_extent;
894         struct btrfs_path *path;
895         u64 hole_size;
896         u64 max_hole_start;
897         u64 max_hole_size;
898         u64 extent_end;
899         u64 search_start;
900         u64 search_end = device->total_bytes;
901         int ret;
902         int slot;
903         struct extent_buffer *l;
904
905         /* FIXME use last free of some kind */
906
907         /* we don't want to overwrite the superblock on the drive,
908          * so we make sure to start at an offset of at least 1MB
909          */
910         search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
911
912         max_hole_start = search_start;
913         max_hole_size = 0;
914         hole_size = 0;
915
916         if (search_start >= search_end) {
917                 ret = -ENOSPC;
918                 goto error;
919         }
920
921         path = btrfs_alloc_path();
922         if (!path) {
923                 ret = -ENOMEM;
924                 goto error;
925         }
926         path->reada = 2;
927
928         key.objectid = device->devid;
929         key.offset = search_start;
930         key.type = BTRFS_DEV_EXTENT_KEY;
931
932         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
933         if (ret < 0)
934                 goto out;
935         if (ret > 0) {
936                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
937                 if (ret < 0)
938                         goto out;
939         }
940
941         while (1) {
942                 l = path->nodes[0];
943                 slot = path->slots[0];
944                 if (slot >= btrfs_header_nritems(l)) {
945                         ret = btrfs_next_leaf(root, path);
946                         if (ret == 0)
947                                 continue;
948                         if (ret < 0)
949                                 goto out;
950
951                         break;
952                 }
953                 btrfs_item_key_to_cpu(l, &key, slot);
954
955                 if (key.objectid < device->devid)
956                         goto next;
957
958                 if (key.objectid > device->devid)
959                         break;
960
961                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
962                         goto next;
963
964                 if (key.offset > search_start) {
965                         hole_size = key.offset - search_start;
966
967                         if (hole_size > max_hole_size) {
968                                 max_hole_start = search_start;
969                                 max_hole_size = hole_size;
970                         }
971
972                         /*
973                          * If this free space is greater than which we need,
974                          * it must be the max free space that we have found
975                          * until now, so max_hole_start must point to the start
976                          * of this free space and the length of this free space
977                          * is stored in max_hole_size. Thus, we return
978                          * max_hole_start and max_hole_size and go back to the
979                          * caller.
980                          */
981                         if (hole_size >= num_bytes) {
982                                 ret = 0;
983                                 goto out;
984                         }
985                 }
986
987                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
988                 extent_end = key.offset + btrfs_dev_extent_length(l,
989                                                                   dev_extent);
990                 if (extent_end > search_start)
991                         search_start = extent_end;
992 next:
993                 path->slots[0]++;
994                 cond_resched();
995         }
996
997         /*
998          * At this point, search_start should be the end of
999          * allocated dev extents, and when shrinking the device,
1000          * search_end may be smaller than search_start.
1001          */
1002         if (search_end > search_start)
1003                 hole_size = search_end - search_start;
1004
1005         if (hole_size > max_hole_size) {
1006                 max_hole_start = search_start;
1007                 max_hole_size = hole_size;
1008         }
1009
1010         /* See above. */
1011         if (hole_size < num_bytes)
1012                 ret = -ENOSPC;
1013         else
1014                 ret = 0;
1015
1016 out:
1017         btrfs_free_path(path);
1018 error:
1019         *start = max_hole_start;
1020         if (len)
1021                 *len = max_hole_size;
1022         return ret;
1023 }
1024
1025 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1026                           struct btrfs_device *device,
1027                           u64 start)
1028 {
1029         int ret;
1030         struct btrfs_path *path;
1031         struct btrfs_root *root = device->dev_root;
1032         struct btrfs_key key;
1033         struct btrfs_key found_key;
1034         struct extent_buffer *leaf = NULL;
1035         struct btrfs_dev_extent *extent = NULL;
1036
1037         path = btrfs_alloc_path();
1038         if (!path)
1039                 return -ENOMEM;
1040
1041         key.objectid = device->devid;
1042         key.offset = start;
1043         key.type = BTRFS_DEV_EXTENT_KEY;
1044 again:
1045         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1046         if (ret > 0) {
1047                 ret = btrfs_previous_item(root, path, key.objectid,
1048                                           BTRFS_DEV_EXTENT_KEY);
1049                 if (ret)
1050                         goto out;
1051                 leaf = path->nodes[0];
1052                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1053                 extent = btrfs_item_ptr(leaf, path->slots[0],
1054                                         struct btrfs_dev_extent);
1055                 BUG_ON(found_key.offset > start || found_key.offset +
1056                        btrfs_dev_extent_length(leaf, extent) < start);
1057                 key = found_key;
1058                 btrfs_release_path(path);
1059                 goto again;
1060         } else if (ret == 0) {
1061                 leaf = path->nodes[0];
1062                 extent = btrfs_item_ptr(leaf, path->slots[0],
1063                                         struct btrfs_dev_extent);
1064         } else {
1065                 btrfs_error(root->fs_info, ret, "Slot search failed");
1066                 goto out;
1067         }
1068
1069         if (device->bytes_used > 0) {
1070                 u64 len = btrfs_dev_extent_length(leaf, extent);
1071                 device->bytes_used -= len;
1072                 spin_lock(&root->fs_info->free_chunk_lock);
1073                 root->fs_info->free_chunk_space += len;
1074                 spin_unlock(&root->fs_info->free_chunk_lock);
1075         }
1076         ret = btrfs_del_item(trans, root, path);
1077         if (ret) {
1078                 btrfs_error(root->fs_info, ret,
1079                             "Failed to remove dev extent item");
1080         }
1081 out:
1082         btrfs_free_path(path);
1083         return ret;
1084 }
1085
1086 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1087                            struct btrfs_device *device,
1088                            u64 chunk_tree, u64 chunk_objectid,
1089                            u64 chunk_offset, u64 start, u64 num_bytes)
1090 {
1091         int ret;
1092         struct btrfs_path *path;
1093         struct btrfs_root *root = device->dev_root;
1094         struct btrfs_dev_extent *extent;
1095         struct extent_buffer *leaf;
1096         struct btrfs_key key;
1097
1098         WARN_ON(!device->in_fs_metadata);
1099         path = btrfs_alloc_path();
1100         if (!path)
1101                 return -ENOMEM;
1102
1103         key.objectid = device->devid;
1104         key.offset = start;
1105         key.type = BTRFS_DEV_EXTENT_KEY;
1106         ret = btrfs_insert_empty_item(trans, root, path, &key,
1107                                       sizeof(*extent));
1108         if (ret)
1109                 goto out;
1110
1111         leaf = path->nodes[0];
1112         extent = btrfs_item_ptr(leaf, path->slots[0],
1113                                 struct btrfs_dev_extent);
1114         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1115         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1116         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1117
1118         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1119                     (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1120                     BTRFS_UUID_SIZE);
1121
1122         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1123         btrfs_mark_buffer_dirty(leaf);
1124 out:
1125         btrfs_free_path(path);
1126         return ret;
1127 }
1128
1129 static noinline int find_next_chunk(struct btrfs_root *root,
1130                                     u64 objectid, u64 *offset)
1131 {
1132         struct btrfs_path *path;
1133         int ret;
1134         struct btrfs_key key;
1135         struct btrfs_chunk *chunk;
1136         struct btrfs_key found_key;
1137
1138         path = btrfs_alloc_path();
1139         if (!path)
1140                 return -ENOMEM;
1141
1142         key.objectid = objectid;
1143         key.offset = (u64)-1;
1144         key.type = BTRFS_CHUNK_ITEM_KEY;
1145
1146         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1147         if (ret < 0)
1148                 goto error;
1149
1150         BUG_ON(ret == 0); /* Corruption */
1151
1152         ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1153         if (ret) {
1154                 *offset = 0;
1155         } else {
1156                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1157                                       path->slots[0]);
1158                 if (found_key.objectid != objectid)
1159                         *offset = 0;
1160                 else {
1161                         chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1162                                                struct btrfs_chunk);
1163                         *offset = found_key.offset +
1164                                 btrfs_chunk_length(path->nodes[0], chunk);
1165                 }
1166         }
1167         ret = 0;
1168 error:
1169         btrfs_free_path(path);
1170         return ret;
1171 }
1172
1173 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1174 {
1175         int ret;
1176         struct btrfs_key key;
1177         struct btrfs_key found_key;
1178         struct btrfs_path *path;
1179
1180         root = root->fs_info->chunk_root;
1181
1182         path = btrfs_alloc_path();
1183         if (!path)
1184                 return -ENOMEM;
1185
1186         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1187         key.type = BTRFS_DEV_ITEM_KEY;
1188         key.offset = (u64)-1;
1189
1190         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1191         if (ret < 0)
1192                 goto error;
1193
1194         BUG_ON(ret == 0); /* Corruption */
1195
1196         ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1197                                   BTRFS_DEV_ITEM_KEY);
1198         if (ret) {
1199                 *objectid = 1;
1200         } else {
1201                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1202                                       path->slots[0]);
1203                 *objectid = found_key.offset + 1;
1204         }
1205         ret = 0;
1206 error:
1207         btrfs_free_path(path);
1208         return ret;
1209 }
1210
1211 /*
1212  * the device information is stored in the chunk root
1213  * the btrfs_device struct should be fully filled in
1214  */
1215 int btrfs_add_device(struct btrfs_trans_handle *trans,
1216                      struct btrfs_root *root,
1217                      struct btrfs_device *device)
1218 {
1219         int ret;
1220         struct btrfs_path *path;
1221         struct btrfs_dev_item *dev_item;
1222         struct extent_buffer *leaf;
1223         struct btrfs_key key;
1224         unsigned long ptr;
1225
1226         root = root->fs_info->chunk_root;
1227
1228         path = btrfs_alloc_path();
1229         if (!path)
1230                 return -ENOMEM;
1231
1232         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1233         key.type = BTRFS_DEV_ITEM_KEY;
1234         key.offset = device->devid;
1235
1236         ret = btrfs_insert_empty_item(trans, root, path, &key,
1237                                       sizeof(*dev_item));
1238         if (ret)
1239                 goto out;
1240
1241         leaf = path->nodes[0];
1242         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1243
1244         btrfs_set_device_id(leaf, dev_item, device->devid);
1245         btrfs_set_device_generation(leaf, dev_item, 0);
1246         btrfs_set_device_type(leaf, dev_item, device->type);
1247         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1248         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1249         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1250         btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1251         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1252         btrfs_set_device_group(leaf, dev_item, 0);
1253         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1254         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1255         btrfs_set_device_start_offset(leaf, dev_item, 0);
1256
1257         ptr = (unsigned long)btrfs_device_uuid(dev_item);
1258         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1259         ptr = (unsigned long)btrfs_device_fsid(dev_item);
1260         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1261         btrfs_mark_buffer_dirty(leaf);
1262
1263         ret = 0;
1264 out:
1265         btrfs_free_path(path);
1266         return ret;
1267 }
1268
1269 static int btrfs_rm_dev_item(struct btrfs_root *root,
1270                              struct btrfs_device *device)
1271 {
1272         int ret;
1273         struct btrfs_path *path;
1274         struct btrfs_key key;
1275         struct btrfs_trans_handle *trans;
1276
1277         root = root->fs_info->chunk_root;
1278
1279         path = btrfs_alloc_path();
1280         if (!path)
1281                 return -ENOMEM;
1282
1283         trans = btrfs_start_transaction(root, 0);
1284         if (IS_ERR(trans)) {
1285                 btrfs_free_path(path);
1286                 return PTR_ERR(trans);
1287         }
1288         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1289         key.type = BTRFS_DEV_ITEM_KEY;
1290         key.offset = device->devid;
1291         lock_chunks(root);
1292
1293         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1294         if (ret < 0)
1295                 goto out;
1296
1297         if (ret > 0) {
1298                 ret = -ENOENT;
1299                 goto out;
1300         }
1301
1302         ret = btrfs_del_item(trans, root, path);
1303         if (ret)
1304                 goto out;
1305 out:
1306         btrfs_free_path(path);
1307         unlock_chunks(root);
1308         btrfs_commit_transaction(trans, root);
1309         return ret;
1310 }
1311
1312 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1313 {
1314         struct btrfs_device *device;
1315         struct btrfs_device *next_device;
1316         struct block_device *bdev;
1317         struct buffer_head *bh = NULL;
1318         struct btrfs_super_block *disk_super;
1319         struct btrfs_fs_devices *cur_devices;
1320         u64 all_avail;
1321         u64 devid;
1322         u64 num_devices;
1323         u8 *dev_uuid;
1324         int ret = 0;
1325         bool clear_super = false;
1326
1327         mutex_lock(&uuid_mutex);
1328
1329         all_avail = root->fs_info->avail_data_alloc_bits |
1330                 root->fs_info->avail_system_alloc_bits |
1331                 root->fs_info->avail_metadata_alloc_bits;
1332
1333         if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1334             root->fs_info->fs_devices->num_devices <= 4) {
1335                 printk(KERN_ERR "btrfs: unable to go below four devices "
1336                        "on raid10\n");
1337                 ret = -EINVAL;
1338                 goto out;
1339         }
1340
1341         if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1342             root->fs_info->fs_devices->num_devices <= 2) {
1343                 printk(KERN_ERR "btrfs: unable to go below two "
1344                        "devices on raid1\n");
1345                 ret = -EINVAL;
1346                 goto out;
1347         }
1348
1349         if (strcmp(device_path, "missing") == 0) {
1350                 struct list_head *devices;
1351                 struct btrfs_device *tmp;
1352
1353                 device = NULL;
1354                 devices = &root->fs_info->fs_devices->devices;
1355                 /*
1356                  * It is safe to read the devices since the volume_mutex
1357                  * is held.
1358                  */
1359                 list_for_each_entry(tmp, devices, dev_list) {
1360                         if (tmp->in_fs_metadata && !tmp->bdev) {
1361                                 device = tmp;
1362                                 break;
1363                         }
1364                 }
1365                 bdev = NULL;
1366                 bh = NULL;
1367                 disk_super = NULL;
1368                 if (!device) {
1369                         printk(KERN_ERR "btrfs: no missing devices found to "
1370                                "remove\n");
1371                         goto out;
1372                 }
1373         } else {
1374                 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1375                                           root->fs_info->bdev_holder);
1376                 if (IS_ERR(bdev)) {
1377                         ret = PTR_ERR(bdev);
1378                         goto out;
1379                 }
1380
1381                 set_blocksize(bdev, 4096);
1382                 invalidate_bdev(bdev);
1383                 bh = btrfs_read_dev_super(bdev);
1384                 if (!bh) {
1385                         ret = -EINVAL;
1386                         goto error_close;
1387                 }
1388                 disk_super = (struct btrfs_super_block *)bh->b_data;
1389                 devid = btrfs_stack_device_id(&disk_super->dev_item);
1390                 dev_uuid = disk_super->dev_item.uuid;
1391                 device = btrfs_find_device(root, devid, dev_uuid,
1392                                            disk_super->fsid);
1393                 if (!device) {
1394                         ret = -ENOENT;
1395                         goto error_brelse;
1396                 }
1397         }
1398
1399         if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1400                 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1401                        "device\n");
1402                 ret = -EINVAL;
1403                 goto error_brelse;
1404         }
1405
1406         if (device->writeable) {
1407                 lock_chunks(root);
1408                 list_del_init(&device->dev_alloc_list);
1409                 unlock_chunks(root);
1410                 root->fs_info->fs_devices->rw_devices--;
1411                 clear_super = true;
1412         }
1413
1414         ret = btrfs_shrink_device(device, 0);
1415         if (ret)
1416                 goto error_undo;
1417
1418         ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1419         if (ret)
1420                 goto error_undo;
1421
1422         spin_lock(&root->fs_info->free_chunk_lock);
1423         root->fs_info->free_chunk_space = device->total_bytes -
1424                 device->bytes_used;
1425         spin_unlock(&root->fs_info->free_chunk_lock);
1426
1427         device->in_fs_metadata = 0;
1428         btrfs_scrub_cancel_dev(root, device);
1429
1430         /*
1431          * the device list mutex makes sure that we don't change
1432          * the device list while someone else is writing out all
1433          * the device supers.
1434          */
1435
1436         cur_devices = device->fs_devices;
1437         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1438         list_del_rcu(&device->dev_list);
1439
1440         device->fs_devices->num_devices--;
1441         device->fs_devices->total_devices--;
1442
1443         if (device->missing)
1444                 root->fs_info->fs_devices->missing_devices--;
1445
1446         next_device = list_entry(root->fs_info->fs_devices->devices.next,
1447                                  struct btrfs_device, dev_list);
1448         if (device->bdev == root->fs_info->sb->s_bdev)
1449                 root->fs_info->sb->s_bdev = next_device->bdev;
1450         if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1451                 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1452
1453         if (device->bdev)
1454                 device->fs_devices->open_devices--;
1455
1456         call_rcu(&device->rcu, free_device);
1457         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1458
1459         num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1460         btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1461
1462         if (cur_devices->open_devices == 0) {
1463                 struct btrfs_fs_devices *fs_devices;
1464                 fs_devices = root->fs_info->fs_devices;
1465                 while (fs_devices) {
1466                         if (fs_devices->seed == cur_devices)
1467                                 break;
1468                         fs_devices = fs_devices->seed;
1469                 }
1470                 fs_devices->seed = cur_devices->seed;
1471                 cur_devices->seed = NULL;
1472                 lock_chunks(root);
1473                 __btrfs_close_devices(cur_devices);
1474                 unlock_chunks(root);
1475                 free_fs_devices(cur_devices);
1476         }
1477
1478         root->fs_info->num_tolerated_disk_barrier_failures =
1479                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1480
1481         /*
1482          * at this point, the device is zero sized.  We want to
1483          * remove it from the devices list and zero out the old super
1484          */
1485         if (clear_super) {
1486                 /* make sure this device isn't detected as part of
1487                  * the FS anymore
1488                  */
1489                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1490                 set_buffer_dirty(bh);
1491                 sync_dirty_buffer(bh);
1492         }
1493
1494         ret = 0;
1495
1496 error_brelse:
1497         brelse(bh);
1498 error_close:
1499         if (bdev)
1500                 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1501 out:
1502         mutex_unlock(&uuid_mutex);
1503         return ret;
1504 error_undo:
1505         if (device->writeable) {
1506                 lock_chunks(root);
1507                 list_add(&device->dev_alloc_list,
1508                          &root->fs_info->fs_devices->alloc_list);
1509                 unlock_chunks(root);
1510                 root->fs_info->fs_devices->rw_devices++;
1511         }
1512         goto error_brelse;
1513 }
1514
1515 /*
1516  * does all the dirty work required for changing file system's UUID.
1517  */
1518 static int btrfs_prepare_sprout(struct btrfs_root *root)
1519 {
1520         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1521         struct btrfs_fs_devices *old_devices;
1522         struct btrfs_fs_devices *seed_devices;
1523         struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1524         struct btrfs_device *device;
1525         u64 super_flags;
1526
1527         BUG_ON(!mutex_is_locked(&uuid_mutex));
1528         if (!fs_devices->seeding)
1529                 return -EINVAL;
1530
1531         seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1532         if (!seed_devices)
1533                 return -ENOMEM;
1534
1535         old_devices = clone_fs_devices(fs_devices);
1536         if (IS_ERR(old_devices)) {
1537                 kfree(seed_devices);
1538                 return PTR_ERR(old_devices);
1539         }
1540
1541         list_add(&old_devices->list, &fs_uuids);
1542
1543         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1544         seed_devices->opened = 1;
1545         INIT_LIST_HEAD(&seed_devices->devices);
1546         INIT_LIST_HEAD(&seed_devices->alloc_list);
1547         mutex_init(&seed_devices->device_list_mutex);
1548
1549         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1550         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1551                               synchronize_rcu);
1552         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1553
1554         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1555         list_for_each_entry(device, &seed_devices->devices, dev_list) {
1556                 device->fs_devices = seed_devices;
1557         }
1558
1559         fs_devices->seeding = 0;
1560         fs_devices->num_devices = 0;
1561         fs_devices->open_devices = 0;
1562         fs_devices->total_devices = 0;
1563         fs_devices->seed = seed_devices;
1564
1565         generate_random_uuid(fs_devices->fsid);
1566         memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1567         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1568         super_flags = btrfs_super_flags(disk_super) &
1569                       ~BTRFS_SUPER_FLAG_SEEDING;
1570         btrfs_set_super_flags(disk_super, super_flags);
1571
1572         return 0;
1573 }
1574
1575 /*
1576  * strore the expected generation for seed devices in device items.
1577  */
1578 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1579                                struct btrfs_root *root)
1580 {
1581         struct btrfs_path *path;
1582         struct extent_buffer *leaf;
1583         struct btrfs_dev_item *dev_item;
1584         struct btrfs_device *device;
1585         struct btrfs_key key;
1586         u8 fs_uuid[BTRFS_UUID_SIZE];
1587         u8 dev_uuid[BTRFS_UUID_SIZE];
1588         u64 devid;
1589         int ret;
1590
1591         path = btrfs_alloc_path();
1592         if (!path)
1593                 return -ENOMEM;
1594
1595         root = root->fs_info->chunk_root;
1596         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1597         key.offset = 0;
1598         key.type = BTRFS_DEV_ITEM_KEY;
1599
1600         while (1) {
1601                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1602                 if (ret < 0)
1603                         goto error;
1604
1605                 leaf = path->nodes[0];
1606 next_slot:
1607                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1608                         ret = btrfs_next_leaf(root, path);
1609                         if (ret > 0)
1610                                 break;
1611                         if (ret < 0)
1612                                 goto error;
1613                         leaf = path->nodes[0];
1614                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1615                         btrfs_release_path(path);
1616                         continue;
1617                 }
1618
1619                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1620                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1621                     key.type != BTRFS_DEV_ITEM_KEY)
1622                         break;
1623
1624                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1625                                           struct btrfs_dev_item);
1626                 devid = btrfs_device_id(leaf, dev_item);
1627                 read_extent_buffer(leaf, dev_uuid,
1628                                    (unsigned long)btrfs_device_uuid(dev_item),
1629                                    BTRFS_UUID_SIZE);
1630                 read_extent_buffer(leaf, fs_uuid,
1631                                    (unsigned long)btrfs_device_fsid(dev_item),
1632                                    BTRFS_UUID_SIZE);
1633                 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1634                 BUG_ON(!device); /* Logic error */
1635
1636                 if (device->fs_devices->seeding) {
1637                         btrfs_set_device_generation(leaf, dev_item,
1638                                                     device->generation);
1639                         btrfs_mark_buffer_dirty(leaf);
1640                 }
1641
1642                 path->slots[0]++;
1643                 goto next_slot;
1644         }
1645         ret = 0;
1646 error:
1647         btrfs_free_path(path);
1648         return ret;
1649 }
1650
1651 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1652 {
1653         struct request_queue *q;
1654         struct btrfs_trans_handle *trans;
1655         struct btrfs_device *device;
1656         struct block_device *bdev;
1657         struct list_head *devices;
1658         struct super_block *sb = root->fs_info->sb;
1659         struct rcu_string *name;
1660         u64 total_bytes;
1661         int seeding_dev = 0;
1662         int ret = 0;
1663
1664         if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1665                 return -EROFS;
1666
1667         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
1668                                   root->fs_info->bdev_holder);
1669         if (IS_ERR(bdev))
1670                 return PTR_ERR(bdev);
1671
1672         if (root->fs_info->fs_devices->seeding) {
1673                 seeding_dev = 1;
1674                 down_write(&sb->s_umount);
1675                 mutex_lock(&uuid_mutex);
1676         }
1677
1678         filemap_write_and_wait(bdev->bd_inode->i_mapping);
1679
1680         devices = &root->fs_info->fs_devices->devices;
1681         /*
1682          * we have the volume lock, so we don't need the extra
1683          * device list mutex while reading the list here.
1684          */
1685         list_for_each_entry(device, devices, dev_list) {
1686                 if (device->bdev == bdev) {
1687                         ret = -EEXIST;
1688                         goto error;
1689                 }
1690         }
1691
1692         device = kzalloc(sizeof(*device), GFP_NOFS);
1693         if (!device) {
1694                 /* we can safely leave the fs_devices entry around */
1695                 ret = -ENOMEM;
1696                 goto error;
1697         }
1698
1699         name = rcu_string_strdup(device_path, GFP_NOFS);
1700         if (!name) {
1701                 kfree(device);
1702                 ret = -ENOMEM;
1703                 goto error;
1704         }
1705         rcu_assign_pointer(device->name, name);
1706
1707         ret = find_next_devid(root, &device->devid);
1708         if (ret) {
1709                 rcu_string_free(device->name);
1710                 kfree(device);
1711                 goto error;
1712         }
1713
1714         trans = btrfs_start_transaction(root, 0);
1715         if (IS_ERR(trans)) {
1716                 rcu_string_free(device->name);
1717                 kfree(device);
1718                 ret = PTR_ERR(trans);
1719                 goto error;
1720         }
1721
1722         lock_chunks(root);
1723
1724         q = bdev_get_queue(bdev);
1725         if (blk_queue_discard(q))
1726                 device->can_discard = 1;
1727         device->writeable = 1;
1728         device->work.func = pending_bios_fn;
1729         generate_random_uuid(device->uuid);
1730         spin_lock_init(&device->io_lock);
1731         device->generation = trans->transid;
1732         device->io_width = root->sectorsize;
1733         device->io_align = root->sectorsize;
1734         device->sector_size = root->sectorsize;
1735         device->total_bytes = i_size_read(bdev->bd_inode);
1736         device->disk_total_bytes = device->total_bytes;
1737         device->dev_root = root->fs_info->dev_root;
1738         device->bdev = bdev;
1739         device->in_fs_metadata = 1;
1740         device->mode = FMODE_EXCL;
1741         set_blocksize(device->bdev, 4096);
1742
1743         if (seeding_dev) {
1744                 sb->s_flags &= ~MS_RDONLY;
1745                 ret = btrfs_prepare_sprout(root);
1746                 BUG_ON(ret); /* -ENOMEM */
1747         }
1748
1749         device->fs_devices = root->fs_info->fs_devices;
1750
1751         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1752         list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
1753         list_add(&device->dev_alloc_list,
1754                  &root->fs_info->fs_devices->alloc_list);
1755         root->fs_info->fs_devices->num_devices++;
1756         root->fs_info->fs_devices->open_devices++;
1757         root->fs_info->fs_devices->rw_devices++;
1758         root->fs_info->fs_devices->total_devices++;
1759         if (device->can_discard)
1760                 root->fs_info->fs_devices->num_can_discard++;
1761         root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1762
1763         spin_lock(&root->fs_info->free_chunk_lock);
1764         root->fs_info->free_chunk_space += device->total_bytes;
1765         spin_unlock(&root->fs_info->free_chunk_lock);
1766
1767         if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1768                 root->fs_info->fs_devices->rotating = 1;
1769
1770         total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
1771         btrfs_set_super_total_bytes(root->fs_info->super_copy,
1772                                     total_bytes + device->total_bytes);
1773
1774         total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
1775         btrfs_set_super_num_devices(root->fs_info->super_copy,
1776                                     total_bytes + 1);
1777         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1778
1779         if (seeding_dev) {
1780                 ret = init_first_rw_device(trans, root, device);
1781                 if (ret) {
1782                         btrfs_abort_transaction(trans, root, ret);
1783                         goto error_trans;
1784                 }
1785                 ret = btrfs_finish_sprout(trans, root);
1786                 if (ret) {
1787                         btrfs_abort_transaction(trans, root, ret);
1788                         goto error_trans;
1789                 }
1790         } else {
1791                 ret = btrfs_add_device(trans, root, device);
1792                 if (ret) {
1793                         btrfs_abort_transaction(trans, root, ret);
1794                         goto error_trans;
1795                 }
1796         }
1797
1798         /*
1799          * we've got more storage, clear any full flags on the space
1800          * infos
1801          */
1802         btrfs_clear_space_info_full(root->fs_info);
1803
1804         unlock_chunks(root);
1805         root->fs_info->num_tolerated_disk_barrier_failures =
1806                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1807         ret = btrfs_commit_transaction(trans, root);
1808
1809         if (seeding_dev) {
1810                 mutex_unlock(&uuid_mutex);
1811                 up_write(&sb->s_umount);
1812
1813                 if (ret) /* transaction commit */
1814                         return ret;
1815
1816                 ret = btrfs_relocate_sys_chunks(root);
1817                 if (ret < 0)
1818                         btrfs_error(root->fs_info, ret,
1819                                     "Failed to relocate sys chunks after "
1820                                     "device initialization. This can be fixed "
1821                                     "using the \"btrfs balance\" command.");
1822         }
1823
1824         return ret;
1825
1826 error_trans:
1827         unlock_chunks(root);
1828         btrfs_end_transaction(trans, root);
1829         rcu_string_free(device->name);
1830         kfree(device);
1831 error:
1832         blkdev_put(bdev, FMODE_EXCL);
1833         if (seeding_dev) {
1834                 mutex_unlock(&uuid_mutex);
1835                 up_write(&sb->s_umount);
1836         }
1837         return ret;
1838 }
1839
1840 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1841                                         struct btrfs_device *device)
1842 {
1843         int ret;
1844         struct btrfs_path *path;
1845         struct btrfs_root *root;
1846         struct btrfs_dev_item *dev_item;
1847         struct extent_buffer *leaf;
1848         struct btrfs_key key;
1849
1850         root = device->dev_root->fs_info->chunk_root;
1851
1852         path = btrfs_alloc_path();
1853         if (!path)
1854                 return -ENOMEM;
1855
1856         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1857         key.type = BTRFS_DEV_ITEM_KEY;
1858         key.offset = device->devid;
1859
1860         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1861         if (ret < 0)
1862                 goto out;
1863
1864         if (ret > 0) {
1865                 ret = -ENOENT;
1866                 goto out;
1867         }
1868
1869         leaf = path->nodes[0];
1870         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1871
1872         btrfs_set_device_id(leaf, dev_item, device->devid);
1873         btrfs_set_device_type(leaf, dev_item, device->type);
1874         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1875         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1876         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1877         btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1878         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1879         btrfs_mark_buffer_dirty(leaf);
1880
1881 out:
1882         btrfs_free_path(path);
1883         return ret;
1884 }
1885
1886 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1887                       struct btrfs_device *device, u64 new_size)
1888 {
1889         struct btrfs_super_block *super_copy =
1890                 device->dev_root->fs_info->super_copy;
1891         u64 old_total = btrfs_super_total_bytes(super_copy);
1892         u64 diff = new_size - device->total_bytes;
1893
1894         if (!device->writeable)
1895                 return -EACCES;
1896         if (new_size <= device->total_bytes)
1897                 return -EINVAL;
1898
1899         btrfs_set_super_total_bytes(super_copy, old_total + diff);
1900         device->fs_devices->total_rw_bytes += diff;
1901
1902         device->total_bytes = new_size;
1903         device->disk_total_bytes = new_size;
1904         btrfs_clear_space_info_full(device->dev_root->fs_info);
1905
1906         return btrfs_update_device(trans, device);
1907 }
1908
1909 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1910                       struct btrfs_device *device, u64 new_size)
1911 {
1912         int ret;
1913         lock_chunks(device->dev_root);
1914         ret = __btrfs_grow_device(trans, device, new_size);
1915         unlock_chunks(device->dev_root);
1916         return ret;
1917 }
1918
1919 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1920                             struct btrfs_root *root,
1921                             u64 chunk_tree, u64 chunk_objectid,
1922                             u64 chunk_offset)
1923 {
1924         int ret;
1925         struct btrfs_path *path;
1926         struct btrfs_key key;
1927
1928         root = root->fs_info->chunk_root;
1929         path = btrfs_alloc_path();
1930         if (!path)
1931                 return -ENOMEM;
1932
1933         key.objectid = chunk_objectid;
1934         key.offset = chunk_offset;
1935         key.type = BTRFS_CHUNK_ITEM_KEY;
1936
1937         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1938         if (ret < 0)
1939                 goto out;
1940         else if (ret > 0) { /* Logic error or corruption */
1941                 btrfs_error(root->fs_info, -ENOENT,
1942                             "Failed lookup while freeing chunk.");
1943                 ret = -ENOENT;
1944                 goto out;
1945         }
1946
1947         ret = btrfs_del_item(trans, root, path);
1948         if (ret < 0)
1949                 btrfs_error(root->fs_info, ret,
1950                             "Failed to delete chunk item.");
1951 out:
1952         btrfs_free_path(path);
1953         return ret;
1954 }
1955
1956 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1957                         chunk_offset)
1958 {
1959         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
1960         struct btrfs_disk_key *disk_key;
1961         struct btrfs_chunk *chunk;
1962         u8 *ptr;
1963         int ret = 0;
1964         u32 num_stripes;
1965         u32 array_size;
1966         u32 len = 0;
1967         u32 cur;
1968         struct btrfs_key key;
1969
1970         array_size = btrfs_super_sys_array_size(super_copy);
1971
1972         ptr = super_copy->sys_chunk_array;
1973         cur = 0;
1974
1975         while (cur < array_size) {
1976                 disk_key = (struct btrfs_disk_key *)ptr;
1977                 btrfs_disk_key_to_cpu(&key, disk_key);
1978
1979                 len = sizeof(*disk_key);
1980
1981                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1982                         chunk = (struct btrfs_chunk *)(ptr + len);
1983                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1984                         len += btrfs_chunk_item_size(num_stripes);
1985                 } else {
1986                         ret = -EIO;
1987                         break;
1988                 }
1989                 if (key.objectid == chunk_objectid &&
1990                     key.offset == chunk_offset) {
1991                         memmove(ptr, ptr + len, array_size - (cur + len));
1992                         array_size -= len;
1993                         btrfs_set_super_sys_array_size(super_copy, array_size);
1994                 } else {
1995                         ptr += len;
1996                         cur += len;
1997                 }
1998         }
1999         return ret;
2000 }
2001
2002 static int btrfs_relocate_chunk(struct btrfs_root *root,
2003                          u64 chunk_tree, u64 chunk_objectid,
2004                          u64 chunk_offset)
2005 {
2006         struct extent_map_tree *em_tree;
2007         struct btrfs_root *extent_root;
2008         struct btrfs_trans_handle *trans;
2009         struct extent_map *em;
2010         struct map_lookup *map;
2011         int ret;
2012         int i;
2013
2014         root = root->fs_info->chunk_root;
2015         extent_root = root->fs_info->extent_root;
2016         em_tree = &root->fs_info->mapping_tree.map_tree;
2017
2018         ret = btrfs_can_relocate(extent_root, chunk_offset);
2019         if (ret)
2020                 return -ENOSPC;
2021
2022         /* step one, relocate all the extents inside this chunk */
2023         ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2024         if (ret)
2025                 return ret;
2026
2027         trans = btrfs_start_transaction(root, 0);
2028         BUG_ON(IS_ERR(trans));
2029
2030         lock_chunks(root);
2031
2032         /*
2033          * step two, delete the device extents and the
2034          * chunk tree entries
2035          */
2036         read_lock(&em_tree->lock);
2037         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2038         read_unlock(&em_tree->lock);
2039
2040         BUG_ON(!em || em->start > chunk_offset ||
2041                em->start + em->len < chunk_offset);
2042         map = (struct map_lookup *)em->bdev;
2043
2044         for (i = 0; i < map->num_stripes; i++) {
2045                 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2046                                             map->stripes[i].physical);
2047                 BUG_ON(ret);
2048
2049                 if (map->stripes[i].dev) {
2050                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2051                         BUG_ON(ret);
2052                 }
2053         }
2054         ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2055                                chunk_offset);
2056
2057         BUG_ON(ret);
2058
2059         trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2060
2061         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2062                 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2063                 BUG_ON(ret);
2064         }
2065
2066         ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2067         BUG_ON(ret);
2068
2069         write_lock(&em_tree->lock);
2070         remove_extent_mapping(em_tree, em);
2071         write_unlock(&em_tree->lock);
2072
2073         kfree(map);
2074         em->bdev = NULL;
2075
2076         /* once for the tree */
2077         free_extent_map(em);
2078         /* once for us */
2079         free_extent_map(em);
2080
2081         unlock_chunks(root);
2082         btrfs_end_transaction(trans, root);
2083         return 0;
2084 }
2085
2086 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2087 {
2088         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2089         struct btrfs_path *path;
2090         struct extent_buffer *leaf;
2091         struct btrfs_chunk *chunk;
2092         struct btrfs_key key;
2093         struct btrfs_key found_key;
2094         u64 chunk_tree = chunk_root->root_key.objectid;
2095         u64 chunk_type;
2096         bool retried = false;
2097         int failed = 0;
2098         int ret;
2099
2100         path = btrfs_alloc_path();
2101         if (!path)
2102                 return -ENOMEM;
2103
2104 again:
2105         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2106         key.offset = (u64)-1;
2107         key.type = BTRFS_CHUNK_ITEM_KEY;
2108
2109         while (1) {
2110                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2111                 if (ret < 0)
2112                         goto error;
2113                 BUG_ON(ret == 0); /* Corruption */
2114
2115                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2116                                           key.type);
2117                 if (ret < 0)
2118                         goto error;
2119                 if (ret > 0)
2120                         break;
2121
2122                 leaf = path->nodes[0];
2123                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2124
2125                 chunk = btrfs_item_ptr(leaf, path->slots[0],
2126                                        struct btrfs_chunk);
2127                 chunk_type = btrfs_chunk_type(leaf, chunk);
2128                 btrfs_release_path(path);
2129
2130                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2131                         ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2132                                                    found_key.objectid,
2133                                                    found_key.offset);
2134                         if (ret == -ENOSPC)
2135                                 failed++;
2136                         else if (ret)
2137                                 BUG();
2138                 }
2139
2140                 if (found_key.offset == 0)
2141                         break;
2142                 key.offset = found_key.offset - 1;
2143         }
2144         ret = 0;
2145         if (failed && !retried) {
2146                 failed = 0;
2147                 retried = true;
2148                 goto again;
2149         } else if (failed && retried) {
2150                 WARN_ON(1);
2151                 ret = -ENOSPC;
2152         }
2153 error:
2154         btrfs_free_path(path);
2155         return ret;
2156 }
2157
2158 static int insert_balance_item(struct btrfs_root *root,
2159                                struct btrfs_balance_control *bctl)
2160 {
2161         struct btrfs_trans_handle *trans;
2162         struct btrfs_balance_item *item;
2163         struct btrfs_disk_balance_args disk_bargs;
2164         struct btrfs_path *path;
2165         struct extent_buffer *leaf;
2166         struct btrfs_key key;
2167         int ret, err;
2168
2169         path = btrfs_alloc_path();
2170         if (!path)
2171                 return -ENOMEM;
2172
2173         trans = btrfs_start_transaction(root, 0);
2174         if (IS_ERR(trans)) {
2175                 btrfs_free_path(path);
2176                 return PTR_ERR(trans);
2177         }
2178
2179         key.objectid = BTRFS_BALANCE_OBJECTID;
2180         key.type = BTRFS_BALANCE_ITEM_KEY;
2181         key.offset = 0;
2182
2183         ret = btrfs_insert_empty_item(trans, root, path, &key,
2184                                       sizeof(*item));
2185         if (ret)
2186                 goto out;
2187
2188         leaf = path->nodes[0];
2189         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2190
2191         memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2192
2193         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2194         btrfs_set_balance_data(leaf, item, &disk_bargs);
2195         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2196         btrfs_set_balance_meta(leaf, item, &disk_bargs);
2197         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2198         btrfs_set_balance_sys(leaf, item, &disk_bargs);
2199
2200         btrfs_set_balance_flags(leaf, item, bctl->flags);
2201
2202         btrfs_mark_buffer_dirty(leaf);
2203 out:
2204         btrfs_free_path(path);
2205         err = btrfs_commit_transaction(trans, root);
2206         if (err && !ret)
2207                 ret = err;
2208         return ret;
2209 }
2210
2211 static int del_balance_item(struct btrfs_root *root)
2212 {
2213         struct btrfs_trans_handle *trans;
2214         struct btrfs_path *path;
2215         struct btrfs_key key;
2216         int ret, err;
2217
2218         path = btrfs_alloc_path();
2219         if (!path)
2220                 return -ENOMEM;
2221
2222         trans = btrfs_start_transaction(root, 0);
2223         if (IS_ERR(trans)) {
2224                 btrfs_free_path(path);
2225                 return PTR_ERR(trans);
2226         }
2227
2228         key.objectid = BTRFS_BALANCE_OBJECTID;
2229         key.type = BTRFS_BALANCE_ITEM_KEY;
2230         key.offset = 0;
2231
2232         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2233         if (ret < 0)
2234                 goto out;
2235         if (ret > 0) {
2236                 ret = -ENOENT;
2237                 goto out;
2238         }
2239
2240         ret = btrfs_del_item(trans, root, path);
2241 out:
2242         btrfs_free_path(path);
2243         err = btrfs_commit_transaction(trans, root);
2244         if (err && !ret)
2245                 ret = err;
2246         return ret;
2247 }
2248
2249 /*
2250  * This is a heuristic used to reduce the number of chunks balanced on
2251  * resume after balance was interrupted.
2252  */
2253 static void update_balance_args(struct btrfs_balance_control *bctl)
2254 {
2255         /*
2256          * Turn on soft mode for chunk types that were being converted.
2257          */
2258         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2259                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2260         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2261                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2262         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2263                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2264
2265         /*
2266          * Turn on usage filter if is not already used.  The idea is
2267          * that chunks that we have already balanced should be
2268          * reasonably full.  Don't do it for chunks that are being
2269          * converted - that will keep us from relocating unconverted
2270          * (albeit full) chunks.
2271          */
2272         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2273             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2274                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2275                 bctl->data.usage = 90;
2276         }
2277         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2278             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2279                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2280                 bctl->sys.usage = 90;
2281         }
2282         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2283             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2284                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2285                 bctl->meta.usage = 90;
2286         }
2287 }
2288
2289 /*
2290  * Should be called with both balance and volume mutexes held to
2291  * serialize other volume operations (add_dev/rm_dev/resize) with
2292  * restriper.  Same goes for unset_balance_control.
2293  */
2294 static void set_balance_control(struct btrfs_balance_control *bctl)
2295 {
2296         struct btrfs_fs_info *fs_info = bctl->fs_info;
2297
2298         BUG_ON(fs_info->balance_ctl);
2299
2300         spin_lock(&fs_info->balance_lock);
2301         fs_info->balance_ctl = bctl;
2302         spin_unlock(&fs_info->balance_lock);
2303 }
2304
2305 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2306 {
2307         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2308
2309         BUG_ON(!fs_info->balance_ctl);
2310
2311         spin_lock(&fs_info->balance_lock);
2312         fs_info->balance_ctl = NULL;
2313         spin_unlock(&fs_info->balance_lock);
2314
2315         kfree(bctl);
2316 }
2317
2318 /*
2319  * Balance filters.  Return 1 if chunk should be filtered out
2320  * (should not be balanced).
2321  */
2322 static int chunk_profiles_filter(u64 chunk_type,
2323                                  struct btrfs_balance_args *bargs)
2324 {
2325         chunk_type = chunk_to_extended(chunk_type) &
2326                                 BTRFS_EXTENDED_PROFILE_MASK;
2327
2328         if (bargs->profiles & chunk_type)
2329                 return 0;
2330
2331         return 1;
2332 }
2333
2334 static u64 div_factor_fine(u64 num, int factor)
2335 {
2336         if (factor <= 0)
2337                 return 0;
2338         if (factor >= 100)
2339                 return num;
2340
2341         num *= factor;
2342         do_div(num, 100);
2343         return num;
2344 }
2345
2346 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2347                               struct btrfs_balance_args *bargs)
2348 {
2349         struct btrfs_block_group_cache *cache;
2350         u64 chunk_used, user_thresh;
2351         int ret = 1;
2352
2353         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2354         chunk_used = btrfs_block_group_used(&cache->item);
2355
2356         user_thresh = div_factor_fine(cache->key.offset, bargs->usage);
2357         if (chunk_used < user_thresh)
2358                 ret = 0;
2359
2360         btrfs_put_block_group(cache);
2361         return ret;
2362 }
2363
2364 static int chunk_devid_filter(struct extent_buffer *leaf,
2365                               struct btrfs_chunk *chunk,
2366                               struct btrfs_balance_args *bargs)
2367 {
2368         struct btrfs_stripe *stripe;
2369         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2370         int i;
2371
2372         for (i = 0; i < num_stripes; i++) {
2373                 stripe = btrfs_stripe_nr(chunk, i);
2374                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2375                         return 0;
2376         }
2377
2378         return 1;
2379 }
2380
2381 /* [pstart, pend) */
2382 static int chunk_drange_filter(struct extent_buffer *leaf,
2383                                struct btrfs_chunk *chunk,
2384                                u64 chunk_offset,
2385                                struct btrfs_balance_args *bargs)
2386 {
2387         struct btrfs_stripe *stripe;
2388         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2389         u64 stripe_offset;
2390         u64 stripe_length;
2391         int factor;
2392         int i;
2393
2394         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2395                 return 0;
2396
2397         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2398              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))
2399                 factor = 2;
2400         else
2401                 factor = 1;
2402         factor = num_stripes / factor;
2403
2404         for (i = 0; i < num_stripes; i++) {
2405                 stripe = btrfs_stripe_nr(chunk, i);
2406                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2407                         continue;
2408
2409                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2410                 stripe_length = btrfs_chunk_length(leaf, chunk);
2411                 do_div(stripe_length, factor);
2412
2413                 if (stripe_offset < bargs->pend &&
2414                     stripe_offset + stripe_length > bargs->pstart)
2415                         return 0;
2416         }
2417
2418         return 1;
2419 }
2420
2421 /* [vstart, vend) */
2422 static int chunk_vrange_filter(struct extent_buffer *leaf,
2423                                struct btrfs_chunk *chunk,
2424                                u64 chunk_offset,
2425                                struct btrfs_balance_args *bargs)
2426 {
2427         if (chunk_offset < bargs->vend &&
2428             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2429                 /* at least part of the chunk is inside this vrange */
2430                 return 0;
2431
2432         return 1;
2433 }
2434
2435 static int chunk_soft_convert_filter(u64 chunk_type,
2436                                      struct btrfs_balance_args *bargs)
2437 {
2438         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2439                 return 0;
2440
2441         chunk_type = chunk_to_extended(chunk_type) &
2442                                 BTRFS_EXTENDED_PROFILE_MASK;
2443
2444         if (bargs->target == chunk_type)
2445                 return 1;
2446
2447         return 0;
2448 }
2449
2450 static int should_balance_chunk(struct btrfs_root *root,
2451                                 struct extent_buffer *leaf,
2452                                 struct btrfs_chunk *chunk, u64 chunk_offset)
2453 {
2454         struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2455         struct btrfs_balance_args *bargs = NULL;
2456         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2457
2458         /* type filter */
2459         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2460               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2461                 return 0;
2462         }
2463
2464         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2465                 bargs = &bctl->data;
2466         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2467                 bargs = &bctl->sys;
2468         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2469                 bargs = &bctl->meta;
2470
2471         /* profiles filter */
2472         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2473             chunk_profiles_filter(chunk_type, bargs)) {
2474                 return 0;
2475         }
2476
2477         /* usage filter */
2478         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2479             chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2480                 return 0;
2481         }
2482
2483         /* devid filter */
2484         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2485             chunk_devid_filter(leaf, chunk, bargs)) {
2486                 return 0;
2487         }
2488
2489         /* drange filter, makes sense only with devid filter */
2490         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2491             chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2492                 return 0;
2493         }
2494
2495         /* vrange filter */
2496         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2497             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2498                 return 0;
2499         }
2500
2501         /* soft profile changing mode */
2502         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2503             chunk_soft_convert_filter(chunk_type, bargs)) {
2504                 return 0;
2505         }
2506
2507         return 1;
2508 }
2509
2510 static u64 div_factor(u64 num, int factor)
2511 {
2512         if (factor == 10)
2513                 return num;
2514         num *= factor;
2515         do_div(num, 10);
2516         return num;
2517 }
2518
2519 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2520 {
2521         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2522         struct btrfs_root *chunk_root = fs_info->chunk_root;
2523         struct btrfs_root *dev_root = fs_info->dev_root;
2524         struct list_head *devices;
2525         struct btrfs_device *device;
2526         u64 old_size;
2527         u64 size_to_free;
2528         struct btrfs_chunk *chunk;
2529         struct btrfs_path *path;
2530         struct btrfs_key key;
2531         struct btrfs_key found_key;
2532         struct btrfs_trans_handle *trans;
2533         struct extent_buffer *leaf;
2534         int slot;
2535         int ret;
2536         int enospc_errors = 0;
2537         bool counting = true;
2538
2539         /* step one make some room on all the devices */
2540         devices = &fs_info->fs_devices->devices;
2541         list_for_each_entry(device, devices, dev_list) {
2542                 old_size = device->total_bytes;
2543                 size_to_free = div_factor(old_size, 1);
2544                 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2545                 if (!device->writeable ||
2546                     device->total_bytes - device->bytes_used > size_to_free)
2547                         continue;
2548
2549                 ret = btrfs_shrink_device(device, old_size - size_to_free);
2550                 if (ret == -ENOSPC)
2551                         break;
2552                 BUG_ON(ret);
2553
2554                 trans = btrfs_start_transaction(dev_root, 0);
2555                 BUG_ON(IS_ERR(trans));
2556
2557                 ret = btrfs_grow_device(trans, device, old_size);
2558                 BUG_ON(ret);
2559
2560                 btrfs_end_transaction(trans, dev_root);
2561         }
2562
2563         /* step two, relocate all the chunks */
2564         path = btrfs_alloc_path();
2565         if (!path) {
2566                 ret = -ENOMEM;
2567                 goto error;
2568         }
2569
2570         /* zero out stat counters */
2571         spin_lock(&fs_info->balance_lock);
2572         memset(&bctl->stat, 0, sizeof(bctl->stat));
2573         spin_unlock(&fs_info->balance_lock);
2574 again:
2575         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2576         key.offset = (u64)-1;
2577         key.type = BTRFS_CHUNK_ITEM_KEY;
2578
2579         while (1) {
2580                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
2581                     atomic_read(&fs_info->balance_cancel_req)) {
2582                         ret = -ECANCELED;
2583                         goto error;
2584                 }
2585
2586                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2587                 if (ret < 0)
2588                         goto error;
2589
2590                 /*
2591                  * this shouldn't happen, it means the last relocate
2592                  * failed
2593                  */
2594                 if (ret == 0)
2595                         BUG(); /* FIXME break ? */
2596
2597                 ret = btrfs_previous_item(chunk_root, path, 0,
2598                                           BTRFS_CHUNK_ITEM_KEY);
2599                 if (ret) {
2600                         ret = 0;
2601                         break;
2602                 }
2603
2604                 leaf = path->nodes[0];
2605                 slot = path->slots[0];
2606                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2607
2608                 if (found_key.objectid != key.objectid)
2609                         break;
2610
2611                 /* chunk zero is special */
2612                 if (found_key.offset == 0)
2613                         break;
2614
2615                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2616
2617                 if (!counting) {
2618                         spin_lock(&fs_info->balance_lock);
2619                         bctl->stat.considered++;
2620                         spin_unlock(&fs_info->balance_lock);
2621                 }
2622
2623                 ret = should_balance_chunk(chunk_root, leaf, chunk,
2624                                            found_key.offset);
2625                 btrfs_release_path(path);
2626                 if (!ret)
2627                         goto loop;
2628
2629                 if (counting) {
2630                         spin_lock(&fs_info->balance_lock);
2631                         bctl->stat.expected++;
2632                         spin_unlock(&fs_info->balance_lock);
2633                         goto loop;
2634                 }
2635
2636                 ret = btrfs_relocate_chunk(chunk_root,
2637                                            chunk_root->root_key.objectid,
2638                                            found_key.objectid,
2639                                            found_key.offset);
2640                 if (ret && ret != -ENOSPC)
2641                         goto error;
2642                 if (ret == -ENOSPC) {
2643                         enospc_errors++;
2644                 } else {
2645                         spin_lock(&fs_info->balance_lock);
2646                         bctl->stat.completed++;
2647                         spin_unlock(&fs_info->balance_lock);
2648                 }
2649 loop:
2650                 key.offset = found_key.offset - 1;
2651         }
2652
2653         if (counting) {
2654                 btrfs_release_path(path);
2655                 counting = false;
2656                 goto again;
2657         }
2658 error:
2659         btrfs_free_path(path);
2660         if (enospc_errors) {
2661                 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
2662                        enospc_errors);
2663                 if (!ret)
2664                         ret = -ENOSPC;
2665         }
2666
2667         return ret;
2668 }
2669
2670 /**
2671  * alloc_profile_is_valid - see if a given profile is valid and reduced
2672  * @flags: profile to validate
2673  * @extended: if true @flags is treated as an extended profile
2674  */
2675 static int alloc_profile_is_valid(u64 flags, int extended)
2676 {
2677         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
2678                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
2679
2680         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
2681
2682         /* 1) check that all other bits are zeroed */
2683         if (flags & ~mask)
2684                 return 0;
2685
2686         /* 2) see if profile is reduced */
2687         if (flags == 0)
2688                 return !extended; /* "0" is valid for usual profiles */
2689
2690         /* true if exactly one bit set */
2691         return (flags & (flags - 1)) == 0;
2692 }
2693
2694 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
2695 {
2696         /* cancel requested || normal exit path */
2697         return atomic_read(&fs_info->balance_cancel_req) ||
2698                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
2699                  atomic_read(&fs_info->balance_cancel_req) == 0);
2700 }
2701
2702 static void __cancel_balance(struct btrfs_fs_info *fs_info)
2703 {
2704         int ret;
2705
2706         unset_balance_control(fs_info);
2707         ret = del_balance_item(fs_info->tree_root);
2708         BUG_ON(ret);
2709 }
2710
2711 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
2712                                struct btrfs_ioctl_balance_args *bargs);
2713
2714 /*
2715  * Should be called with both balance and volume mutexes held
2716  */
2717 int btrfs_balance(struct btrfs_balance_control *bctl,
2718                   struct btrfs_ioctl_balance_args *bargs)
2719 {
2720         struct btrfs_fs_info *fs_info = bctl->fs_info;
2721         u64 allowed;
2722         int mixed = 0;
2723         int ret;
2724
2725         if (btrfs_fs_closing(fs_info) ||
2726             atomic_read(&fs_info->balance_pause_req) ||
2727             atomic_read(&fs_info->balance_cancel_req)) {
2728                 ret = -EINVAL;
2729                 goto out;
2730         }
2731
2732         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
2733         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
2734                 mixed = 1;
2735
2736         /*
2737          * In case of mixed groups both data and meta should be picked,
2738          * and identical options should be given for both of them.
2739          */
2740         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
2741         if (mixed && (bctl->flags & allowed)) {
2742                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
2743                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
2744                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
2745                         printk(KERN_ERR "btrfs: with mixed groups data and "
2746                                "metadata balance options must be the same\n");
2747                         ret = -EINVAL;
2748                         goto out;
2749                 }
2750         }
2751
2752         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2753         if (fs_info->fs_devices->num_devices == 1)
2754                 allowed |= BTRFS_BLOCK_GROUP_DUP;
2755         else if (fs_info->fs_devices->num_devices < 4)
2756                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
2757         else
2758                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2759                                 BTRFS_BLOCK_GROUP_RAID10);
2760
2761         if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2762             (!alloc_profile_is_valid(bctl->data.target, 1) ||
2763              (bctl->data.target & ~allowed))) {
2764                 printk(KERN_ERR "btrfs: unable to start balance with target "
2765                        "data profile %llu\n",
2766                        (unsigned long long)bctl->data.target);
2767                 ret = -EINVAL;
2768                 goto out;
2769         }
2770         if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2771             (!alloc_profile_is_valid(bctl->meta.target, 1) ||
2772              (bctl->meta.target & ~allowed))) {
2773                 printk(KERN_ERR "btrfs: unable to start balance with target "
2774                        "metadata profile %llu\n",
2775                        (unsigned long long)bctl->meta.target);
2776                 ret = -EINVAL;
2777                 goto out;
2778         }
2779         if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2780             (!alloc_profile_is_valid(bctl->sys.target, 1) ||
2781              (bctl->sys.target & ~allowed))) {
2782                 printk(KERN_ERR "btrfs: unable to start balance with target "
2783                        "system profile %llu\n",
2784                        (unsigned long long)bctl->sys.target);
2785                 ret = -EINVAL;
2786                 goto out;
2787         }
2788
2789         /* allow dup'ed data chunks only in mixed mode */
2790         if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2791             (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
2792                 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
2793                 ret = -EINVAL;
2794                 goto out;
2795         }
2796
2797         /* allow to reduce meta or sys integrity only if force set */
2798         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2799                         BTRFS_BLOCK_GROUP_RAID10;
2800         if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2801              (fs_info->avail_system_alloc_bits & allowed) &&
2802              !(bctl->sys.target & allowed)) ||
2803             ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2804              (fs_info->avail_metadata_alloc_bits & allowed) &&
2805              !(bctl->meta.target & allowed))) {
2806                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
2807                         printk(KERN_INFO "btrfs: force reducing metadata "
2808                                "integrity\n");
2809                 } else {
2810                         printk(KERN_ERR "btrfs: balance will reduce metadata "
2811                                "integrity, use force if you want this\n");
2812                         ret = -EINVAL;
2813                         goto out;
2814                 }
2815         }
2816
2817         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
2818                 int num_tolerated_disk_barrier_failures;
2819                 u64 target = bctl->sys.target;
2820
2821                 num_tolerated_disk_barrier_failures =
2822                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2823                 if (num_tolerated_disk_barrier_failures > 0 &&
2824                     (target &
2825                      (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
2826                       BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
2827                         num_tolerated_disk_barrier_failures = 0;
2828                 else if (num_tolerated_disk_barrier_failures > 1 &&
2829                          (target &
2830                           (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
2831                         num_tolerated_disk_barrier_failures = 1;
2832
2833                 fs_info->num_tolerated_disk_barrier_failures =
2834                         num_tolerated_disk_barrier_failures;
2835         }
2836
2837         ret = insert_balance_item(fs_info->tree_root, bctl);
2838         if (ret && ret != -EEXIST)
2839                 goto out;
2840
2841         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
2842                 BUG_ON(ret == -EEXIST);
2843                 set_balance_control(bctl);
2844         } else {
2845                 BUG_ON(ret != -EEXIST);
2846                 spin_lock(&fs_info->balance_lock);
2847                 update_balance_args(bctl);
2848                 spin_unlock(&fs_info->balance_lock);
2849         }
2850
2851         atomic_inc(&fs_info->balance_running);
2852         mutex_unlock(&fs_info->balance_mutex);
2853
2854         ret = __btrfs_balance(fs_info);
2855
2856         mutex_lock(&fs_info->balance_mutex);
2857         atomic_dec(&fs_info->balance_running);
2858
2859         if (bargs) {
2860                 memset(bargs, 0, sizeof(*bargs));
2861                 update_ioctl_balance_args(fs_info, 0, bargs);
2862         }
2863
2864         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
2865             balance_need_close(fs_info)) {
2866                 __cancel_balance(fs_info);
2867         }
2868
2869         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
2870                 fs_info->num_tolerated_disk_barrier_failures =
2871                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2872         }
2873
2874         wake_up(&fs_info->balance_wait_q);
2875
2876         return ret;
2877 out:
2878         if (bctl->flags & BTRFS_BALANCE_RESUME)
2879                 __cancel_balance(fs_info);
2880         else
2881                 kfree(bctl);
2882         return ret;
2883 }
2884
2885 static int balance_kthread(void *data)
2886 {
2887         struct btrfs_fs_info *fs_info = data;
2888         int ret = 0;
2889
2890         mutex_lock(&fs_info->volume_mutex);
2891         mutex_lock(&fs_info->balance_mutex);
2892
2893         if (fs_info->balance_ctl) {
2894                 printk(KERN_INFO "btrfs: continuing balance\n");
2895                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
2896         }
2897
2898         mutex_unlock(&fs_info->balance_mutex);
2899         mutex_unlock(&fs_info->volume_mutex);
2900
2901         return ret;
2902 }
2903
2904 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
2905 {
2906         struct task_struct *tsk;
2907
2908         spin_lock(&fs_info->balance_lock);
2909         if (!fs_info->balance_ctl) {
2910                 spin_unlock(&fs_info->balance_lock);
2911                 return 0;
2912         }
2913         spin_unlock(&fs_info->balance_lock);
2914
2915         if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
2916                 printk(KERN_INFO "btrfs: force skipping balance\n");
2917                 return 0;
2918         }
2919
2920         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
2921         if (IS_ERR(tsk))
2922                 return PTR_ERR(tsk);
2923
2924         return 0;
2925 }
2926
2927 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
2928 {
2929         struct btrfs_balance_control *bctl;
2930         struct btrfs_balance_item *item;
2931         struct btrfs_disk_balance_args disk_bargs;
2932         struct btrfs_path *path;
2933         struct extent_buffer *leaf;
2934         struct btrfs_key key;
2935         int ret;
2936
2937         path = btrfs_alloc_path();
2938         if (!path)
2939                 return -ENOMEM;
2940
2941         key.objectid = BTRFS_BALANCE_OBJECTID;
2942         key.type = BTRFS_BALANCE_ITEM_KEY;
2943         key.offset = 0;
2944
2945         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2946         if (ret < 0)
2947                 goto out;
2948         if (ret > 0) { /* ret = -ENOENT; */
2949                 ret = 0;
2950                 goto out;
2951         }
2952
2953         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
2954         if (!bctl) {
2955                 ret = -ENOMEM;
2956                 goto out;
2957         }
2958
2959         leaf = path->nodes[0];
2960         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2961
2962         bctl->fs_info = fs_info;
2963         bctl->flags = btrfs_balance_flags(leaf, item);
2964         bctl->flags |= BTRFS_BALANCE_RESUME;
2965
2966         btrfs_balance_data(leaf, item, &disk_bargs);
2967         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
2968         btrfs_balance_meta(leaf, item, &disk_bargs);
2969         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
2970         btrfs_balance_sys(leaf, item, &disk_bargs);
2971         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
2972
2973         mutex_lock(&fs_info->volume_mutex);
2974         mutex_lock(&fs_info->balance_mutex);
2975
2976         set_balance_control(bctl);
2977
2978         mutex_unlock(&fs_info->balance_mutex);
2979         mutex_unlock(&fs_info->volume_mutex);
2980 out:
2981         btrfs_free_path(path);
2982         return ret;
2983 }
2984
2985 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
2986 {
2987         int ret = 0;
2988
2989         mutex_lock(&fs_info->balance_mutex);
2990         if (!fs_info->balance_ctl) {
2991                 mutex_unlock(&fs_info->balance_mutex);
2992                 return -ENOTCONN;
2993         }
2994
2995         if (atomic_read(&fs_info->balance_running)) {
2996                 atomic_inc(&fs_info->balance_pause_req);
2997                 mutex_unlock(&fs_info->balance_mutex);
2998
2999                 wait_event(fs_info->balance_wait_q,
3000                            atomic_read(&fs_info->balance_running) == 0);
3001
3002                 mutex_lock(&fs_info->balance_mutex);
3003                 /* we are good with balance_ctl ripped off from under us */
3004                 BUG_ON(atomic_read(&fs_info->balance_running));
3005                 atomic_dec(&fs_info->balance_pause_req);
3006         } else {
3007                 ret = -ENOTCONN;
3008         }
3009
3010         mutex_unlock(&fs_info->balance_mutex);
3011         return ret;
3012 }
3013
3014 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3015 {
3016         mutex_lock(&fs_info->balance_mutex);
3017         if (!fs_info->balance_ctl) {
3018                 mutex_unlock(&fs_info->balance_mutex);
3019                 return -ENOTCONN;
3020         }
3021
3022         atomic_inc(&fs_info->balance_cancel_req);
3023         /*
3024          * if we are running just wait and return, balance item is
3025          * deleted in btrfs_balance in this case
3026          */
3027         if (atomic_read(&fs_info->balance_running)) {
3028                 mutex_unlock(&fs_info->balance_mutex);
3029                 wait_event(fs_info->balance_wait_q,
3030                            atomic_read(&fs_info->balance_running) == 0);
3031                 mutex_lock(&fs_info->balance_mutex);
3032         } else {
3033                 /* __cancel_balance needs volume_mutex */
3034                 mutex_unlock(&fs_info->balance_mutex);
3035                 mutex_lock(&fs_info->volume_mutex);
3036                 mutex_lock(&fs_info->balance_mutex);
3037
3038                 if (fs_info->balance_ctl)
3039                         __cancel_balance(fs_info);
3040
3041                 mutex_unlock(&fs_info->volume_mutex);
3042         }
3043
3044         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3045         atomic_dec(&fs_info->balance_cancel_req);
3046         mutex_unlock(&fs_info->balance_mutex);
3047         return 0;
3048 }
3049
3050 /*
3051  * shrinking a device means finding all of the device extents past
3052  * the new size, and then following the back refs to the chunks.
3053  * The chunk relocation code actually frees the device extent
3054  */
3055 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3056 {
3057         struct btrfs_trans_handle *trans;
3058         struct btrfs_root *root = device->dev_root;
3059         struct btrfs_dev_extent *dev_extent = NULL;
3060         struct btrfs_path *path;
3061         u64 length;
3062         u64 chunk_tree;
3063         u64 chunk_objectid;
3064         u64 chunk_offset;
3065         int ret;
3066         int slot;
3067         int failed = 0;
3068         bool retried = false;
3069         struct extent_buffer *l;
3070         struct btrfs_key key;
3071         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3072         u64 old_total = btrfs_super_total_bytes(super_copy);
3073         u64 old_size = device->total_bytes;
3074         u64 diff = device->total_bytes - new_size;
3075
3076         if (new_size >= device->total_bytes)
3077                 return -EINVAL;
3078
3079         path = btrfs_alloc_path();
3080         if (!path)
3081                 return -ENOMEM;
3082
3083         path->reada = 2;
3084
3085         lock_chunks(root);
3086
3087         device->total_bytes = new_size;
3088         if (device->writeable) {
3089                 device->fs_devices->total_rw_bytes -= diff;
3090                 spin_lock(&root->fs_info->free_chunk_lock);
3091                 root->fs_info->free_chunk_space -= diff;
3092                 spin_unlock(&root->fs_info->free_chunk_lock);
3093         }
3094         unlock_chunks(root);
3095
3096 again:
3097         key.objectid = device->devid;
3098         key.offset = (u64)-1;
3099         key.type = BTRFS_DEV_EXTENT_KEY;
3100
3101         do {
3102                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3103                 if (ret < 0)
3104                         goto done;
3105
3106                 ret = btrfs_previous_item(root, path, 0, key.type);
3107                 if (ret < 0)
3108                         goto done;
3109                 if (ret) {
3110                         ret = 0;
3111                         btrfs_release_path(path);
3112                         break;
3113                 }
3114
3115                 l = path->nodes[0];
3116                 slot = path->slots[0];
3117                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3118
3119                 if (key.objectid != device->devid) {
3120                         btrfs_release_path(path);
3121                         break;
3122                 }
3123
3124                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3125                 length = btrfs_dev_extent_length(l, dev_extent);
3126
3127                 if (key.offset + length <= new_size) {
3128                         btrfs_release_path(path);
3129                         break;
3130                 }
3131
3132                 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3133                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3134                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3135                 btrfs_release_path(path);
3136
3137                 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3138                                            chunk_offset);
3139                 if (ret && ret != -ENOSPC)
3140                         goto done;
3141                 if (ret == -ENOSPC)
3142                         failed++;
3143         } while (key.offset-- > 0);
3144
3145         if (failed && !retried) {
3146                 failed = 0;
3147                 retried = true;
3148                 goto again;
3149         } else if (failed && retried) {
3150                 ret = -ENOSPC;
3151                 lock_chunks(root);
3152
3153                 device->total_bytes = old_size;
3154                 if (device->writeable)
3155                         device->fs_devices->total_rw_bytes += diff;
3156                 spin_lock(&root->fs_info->free_chunk_lock);
3157                 root->fs_info->free_chunk_space += diff;
3158                 spin_unlock(&root->fs_info->free_chunk_lock);
3159                 unlock_chunks(root);
3160                 goto done;
3161         }
3162
3163         /* Shrinking succeeded, else we would be at "done". */
3164         trans = btrfs_start_transaction(root, 0);
3165         if (IS_ERR(trans)) {
3166                 ret = PTR_ERR(trans);
3167                 goto done;
3168         }
3169
3170         lock_chunks(root);
3171
3172         device->disk_total_bytes = new_size;
3173         /* Now btrfs_update_device() will change the on-disk size. */
3174         ret = btrfs_update_device(trans, device);
3175         if (ret) {
3176                 unlock_chunks(root);
3177                 btrfs_end_transaction(trans, root);
3178                 goto done;
3179         }
3180         WARN_ON(diff > old_total);
3181         btrfs_set_super_total_bytes(super_copy, old_total - diff);
3182         unlock_chunks(root);
3183         btrfs_end_transaction(trans, root);
3184 done:
3185         btrfs_free_path(path);
3186         return ret;
3187 }
3188
3189 static int btrfs_add_system_chunk(struct btrfs_root *root,
3190                            struct btrfs_key *key,
3191                            struct btrfs_chunk *chunk, int item_size)
3192 {
3193         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3194         struct btrfs_disk_key disk_key;
3195         u32 array_size;
3196         u8 *ptr;
3197
3198         array_size = btrfs_super_sys_array_size(super_copy);
3199         if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3200                 return -EFBIG;
3201
3202         ptr = super_copy->sys_chunk_array + array_size;
3203         btrfs_cpu_key_to_disk(&disk_key, key);
3204         memcpy(ptr, &disk_key, sizeof(disk_key));
3205         ptr += sizeof(disk_key);
3206         memcpy(ptr, chunk, item_size);
3207         item_size += sizeof(disk_key);
3208         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3209         return 0;
3210 }
3211
3212 /*
3213  * sort the devices in descending order by max_avail, total_avail
3214  */
3215 static int btrfs_cmp_device_info(const void *a, const void *b)
3216 {
3217         const struct btrfs_device_info *di_a = a;
3218         const struct btrfs_device_info *di_b = b;
3219
3220         if (di_a->max_avail > di_b->max_avail)
3221                 return -1;
3222         if (di_a->max_avail < di_b->max_avail)
3223                 return 1;
3224         if (di_a->total_avail > di_b->total_avail)
3225                 return -1;
3226         if (di_a->total_avail < di_b->total_avail)
3227                 return 1;
3228         return 0;
3229 }
3230
3231 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3232                                struct btrfs_root *extent_root,
3233                                struct map_lookup **map_ret,
3234                                u64 *num_bytes_out, u64 *stripe_size_out,
3235                                u64 start, u64 type)
3236 {
3237         struct btrfs_fs_info *info = extent_root->fs_info;
3238         struct btrfs_fs_devices *fs_devices = info->fs_devices;
3239         struct list_head *cur;
3240         struct map_lookup *map = NULL;
3241         struct extent_map_tree *em_tree;
3242         struct extent_map *em;
3243         struct btrfs_device_info *devices_info = NULL;
3244         u64 total_avail;
3245         int num_stripes;        /* total number of stripes to allocate */
3246         int sub_stripes;        /* sub_stripes info for map */
3247         int dev_stripes;        /* stripes per dev */
3248         int devs_max;           /* max devs to use */
3249         int devs_min;           /* min devs needed */
3250         int devs_increment;     /* ndevs has to be a multiple of this */
3251         int ncopies;            /* how many copies to data has */
3252         int ret;
3253         u64 max_stripe_size;
3254         u64 max_chunk_size;
3255         u64 stripe_size;
3256         u64 num_bytes;
3257         int ndevs;
3258         int i;
3259         int j;
3260
3261         BUG_ON(!alloc_profile_is_valid(type, 0));
3262
3263         if (list_empty(&fs_devices->alloc_list))
3264                 return -ENOSPC;
3265
3266         sub_stripes = 1;
3267         dev_stripes = 1;
3268         devs_increment = 1;
3269         ncopies = 1;
3270         devs_max = 0;   /* 0 == as many as possible */
3271         devs_min = 1;
3272
3273         /*
3274          * define the properties of each RAID type.
3275          * FIXME: move this to a global table and use it in all RAID
3276          * calculation code
3277          */
3278         if (type & (BTRFS_BLOCK_GROUP_DUP)) {
3279                 dev_stripes = 2;
3280                 ncopies = 2;
3281                 devs_max = 1;
3282         } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
3283                 devs_min = 2;
3284         } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
3285                 devs_increment = 2;
3286                 ncopies = 2;
3287                 devs_max = 2;
3288                 devs_min = 2;
3289         } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
3290                 sub_stripes = 2;
3291                 devs_increment = 2;
3292                 ncopies = 2;
3293                 devs_min = 4;
3294         } else {
3295                 devs_max = 1;
3296         }
3297
3298         if (type & BTRFS_BLOCK_GROUP_DATA) {
3299                 max_stripe_size = 1024 * 1024 * 1024;
3300                 max_chunk_size = 10 * max_stripe_size;
3301         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
3302                 /* for larger filesystems, use larger metadata chunks */
3303                 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
3304                         max_stripe_size = 1024 * 1024 * 1024;
3305                 else
3306                         max_stripe_size = 256 * 1024 * 1024;
3307                 max_chunk_size = max_stripe_size;
3308         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
3309                 max_stripe_size = 32 * 1024 * 1024;
3310                 max_chunk_size = 2 * max_stripe_size;
3311         } else {
3312                 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
3313                        type);
3314                 BUG_ON(1);
3315         }
3316
3317         /* we don't want a chunk larger than 10% of writeable space */
3318         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
3319                              max_chunk_size);
3320
3321         devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
3322                                GFP_NOFS);
3323         if (!devices_info)
3324                 return -ENOMEM;
3325
3326         cur = fs_devices->alloc_list.next;
3327
3328         /*
3329          * in the first pass through the devices list, we gather information
3330          * about the available holes on each device.
3331          */
3332         ndevs = 0;
3333         while (cur != &fs_devices->alloc_list) {
3334                 struct btrfs_device *device;
3335                 u64 max_avail;
3336                 u64 dev_offset;
3337
3338                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
3339
3340                 cur = cur->next;
3341
3342                 if (!device->writeable) {
3343                         printk(KERN_ERR
3344                                "btrfs: read-only device in alloc_list\n");
3345                         WARN_ON(1);
3346                         continue;
3347                 }
3348
3349                 if (!device->in_fs_metadata)
3350                         continue;
3351
3352                 if (device->total_bytes > device->bytes_used)
3353                         total_avail = device->total_bytes - device->bytes_used;
3354                 else
3355                         total_avail = 0;
3356
3357                 /* If there is no space on this device, skip it. */
3358                 if (total_avail == 0)
3359                         continue;
3360
3361                 ret = find_free_dev_extent(device,
3362                                            max_stripe_size * dev_stripes,
3363                                            &dev_offset, &max_avail);
3364                 if (ret && ret != -ENOSPC)
3365                         goto error;
3366
3367                 if (ret == 0)
3368                         max_avail = max_stripe_size * dev_stripes;
3369
3370                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
3371                         continue;
3372
3373                 devices_info[ndevs].dev_offset = dev_offset;
3374                 devices_info[ndevs].max_avail = max_avail;
3375                 devices_info[ndevs].total_avail = total_avail;
3376                 devices_info[ndevs].dev = device;
3377                 ++ndevs;
3378         }
3379
3380         /*
3381          * now sort the devices by hole size / available space
3382          */
3383         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
3384              btrfs_cmp_device_info, NULL);
3385
3386         /* round down to number of usable stripes */
3387         ndevs -= ndevs % devs_increment;
3388
3389         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
3390                 ret = -ENOSPC;
3391                 goto error;
3392         }
3393
3394         if (devs_max && ndevs > devs_max)
3395                 ndevs = devs_max;
3396         /*
3397          * the primary goal is to maximize the number of stripes, so use as many
3398          * devices as possible, even if the stripes are not maximum sized.
3399          */
3400         stripe_size = devices_info[ndevs-1].max_avail;
3401         num_stripes = ndevs * dev_stripes;
3402
3403         if (stripe_size * ndevs > max_chunk_size * ncopies) {
3404                 stripe_size = max_chunk_size * ncopies;
3405                 do_div(stripe_size, ndevs);
3406         }
3407
3408         do_div(stripe_size, dev_stripes);
3409
3410         /* align to BTRFS_STRIPE_LEN */
3411         do_div(stripe_size, BTRFS_STRIPE_LEN);
3412         stripe_size *= BTRFS_STRIPE_LEN;
3413
3414         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3415         if (!map) {
3416                 ret = -ENOMEM;
3417                 goto error;
3418         }
3419         map->num_stripes = num_stripes;
3420
3421         for (i = 0; i < ndevs; ++i) {
3422                 for (j = 0; j < dev_stripes; ++j) {
3423                         int s = i * dev_stripes + j;
3424                         map->stripes[s].dev = devices_info[i].dev;
3425                         map->stripes[s].physical = devices_info[i].dev_offset +
3426                                                    j * stripe_size;
3427                 }
3428         }
3429         map->sector_size = extent_root->sectorsize;
3430         map->stripe_len = BTRFS_STRIPE_LEN;
3431         map->io_align = BTRFS_STRIPE_LEN;
3432         map->io_width = BTRFS_STRIPE_LEN;
3433         map->type = type;
3434         map->sub_stripes = sub_stripes;
3435
3436         *map_ret = map;
3437         num_bytes = stripe_size * (num_stripes / ncopies);
3438
3439         *stripe_size_out = stripe_size;
3440         *num_bytes_out = num_bytes;
3441
3442         trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
3443
3444         em = alloc_extent_map();
3445         if (!em) {
3446                 ret = -ENOMEM;
3447                 goto error;
3448         }
3449         em->bdev = (struct block_device *)map;
3450         em->start = start;
3451         em->len = num_bytes;
3452         em->block_start = 0;
3453         em->block_len = em->len;
3454
3455         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
3456         write_lock(&em_tree->lock);
3457         ret = add_extent_mapping(em_tree, em);
3458         write_unlock(&em_tree->lock);
3459         free_extent_map(em);
3460         if (ret)
3461                 goto error;
3462
3463         ret = btrfs_make_block_group(trans, extent_root, 0, type,
3464                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3465                                      start, num_bytes);
3466         if (ret)
3467                 goto error;
3468
3469         for (i = 0; i < map->num_stripes; ++i) {
3470                 struct btrfs_device *device;
3471                 u64 dev_offset;
3472
3473                 device = map->stripes[i].dev;
3474                 dev_offset = map->stripes[i].physical;
3475
3476                 ret = btrfs_alloc_dev_extent(trans, device,
3477                                 info->chunk_root->root_key.objectid,
3478                                 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3479                                 start, dev_offset, stripe_size);
3480                 if (ret) {
3481                         btrfs_abort_transaction(trans, extent_root, ret);
3482                         goto error;
3483                 }
3484         }
3485
3486         kfree(devices_info);
3487         return 0;
3488
3489 error:
3490         kfree(map);
3491         kfree(devices_info);
3492         return ret;
3493 }
3494
3495 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
3496                                 struct btrfs_root *extent_root,
3497                                 struct map_lookup *map, u64 chunk_offset,
3498                                 u64 chunk_size, u64 stripe_size)
3499 {
3500         u64 dev_offset;
3501         struct btrfs_key key;
3502         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3503         struct btrfs_device *device;
3504         struct btrfs_chunk *chunk;
3505         struct btrfs_stripe *stripe;
3506         size_t item_size = btrfs_chunk_item_size(map->num_stripes);
3507         int index = 0;
3508         int ret;
3509
3510         chunk = kzalloc(item_size, GFP_NOFS);
3511         if (!chunk)
3512                 return -ENOMEM;
3513
3514         index = 0;
3515         while (index < map->num_stripes) {
3516                 device = map->stripes[index].dev;
3517                 device->bytes_used += stripe_size;
3518                 ret = btrfs_update_device(trans, device);
3519                 if (ret)
3520                         goto out_free;
3521                 index++;
3522         }
3523
3524         spin_lock(&extent_root->fs_info->free_chunk_lock);
3525         extent_root->fs_info->free_chunk_space -= (stripe_size *
3526                                                    map->num_stripes);
3527         spin_unlock(&extent_root->fs_info->free_chunk_lock);
3528
3529         index = 0;
3530         stripe = &chunk->stripe;
3531         while (index < map->num_stripes) {
3532                 device = map->stripes[index].dev;
3533                 dev_offset = map->stripes[index].physical;
3534
3535                 btrfs_set_stack_stripe_devid(stripe, device->devid);
3536                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
3537                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
3538                 stripe++;
3539                 index++;
3540         }
3541
3542         btrfs_set_stack_chunk_length(chunk, chunk_size);
3543         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
3544         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
3545         btrfs_set_stack_chunk_type(chunk, map->type);
3546         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
3547         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
3548         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
3549         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
3550         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
3551
3552         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3553         key.type = BTRFS_CHUNK_ITEM_KEY;
3554         key.offset = chunk_offset;
3555
3556         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
3557
3558         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3559                 /*
3560                  * TODO: Cleanup of inserted chunk root in case of
3561                  * failure.
3562                  */
3563                 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
3564                                              item_size);
3565         }
3566
3567 out_free:
3568         kfree(chunk);
3569         return ret;
3570 }
3571
3572 /*
3573  * Chunk allocation falls into two parts. The first part does works
3574  * that make the new allocated chunk useable, but not do any operation
3575  * that modifies the chunk tree. The second part does the works that
3576  * require modifying the chunk tree. This division is important for the
3577  * bootstrap process of adding storage to a seed btrfs.
3578  */
3579 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3580                       struct btrfs_root *extent_root, u64 type)
3581 {
3582         u64 chunk_offset;
3583         u64 chunk_size;
3584         u64 stripe_size;
3585         struct map_lookup *map;
3586         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3587         int ret;
3588
3589         ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3590                               &chunk_offset);
3591         if (ret)
3592                 return ret;
3593
3594         ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3595                                   &stripe_size, chunk_offset, type);
3596         if (ret)
3597                 return ret;
3598
3599         ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3600                                    chunk_size, stripe_size);
3601         if (ret)
3602                 return ret;
3603         return 0;
3604 }
3605
3606 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
3607                                          struct btrfs_root *root,
3608                                          struct btrfs_device *device)
3609 {
3610         u64 chunk_offset;
3611         u64 sys_chunk_offset;
3612         u64 chunk_size;
3613         u64 sys_chunk_size;
3614         u64 stripe_size;
3615         u64 sys_stripe_size;
3616         u64 alloc_profile;
3617         struct map_lookup *map;
3618         struct map_lookup *sys_map;
3619         struct btrfs_fs_info *fs_info = root->fs_info;
3620         struct btrfs_root *extent_root = fs_info->extent_root;
3621         int ret;
3622
3623         ret = find_next_chunk(fs_info->chunk_root,
3624                               BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
3625         if (ret)
3626                 return ret;
3627
3628         alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
3629                                 fs_info->avail_metadata_alloc_bits;
3630         alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3631
3632         ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3633                                   &stripe_size, chunk_offset, alloc_profile);
3634         if (ret)
3635                 return ret;
3636
3637         sys_chunk_offset = chunk_offset + chunk_size;
3638
3639         alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
3640                                 fs_info->avail_system_alloc_bits;
3641         alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3642
3643         ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
3644                                   &sys_chunk_size, &sys_stripe_size,
3645                                   sys_chunk_offset, alloc_profile);
3646         if (ret) {
3647                 btrfs_abort_transaction(trans, root, ret);
3648                 goto out;
3649         }
3650
3651         ret = btrfs_add_device(trans, fs_info->chunk_root, device);
3652         if (ret) {
3653                 btrfs_abort_transaction(trans, root, ret);
3654                 goto out;
3655         }
3656
3657         /*
3658          * Modifying chunk tree needs allocating new blocks from both
3659          * system block group and metadata block group. So we only can
3660          * do operations require modifying the chunk tree after both
3661          * block groups were created.
3662          */
3663         ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3664                                    chunk_size, stripe_size);
3665         if (ret) {
3666                 btrfs_abort_transaction(trans, root, ret);
3667                 goto out;
3668         }
3669
3670         ret = __finish_chunk_alloc(trans, extent_root, sys_map,
3671                                    sys_chunk_offset, sys_chunk_size,
3672                                    sys_stripe_size);
3673         if (ret)
3674                 btrfs_abort_transaction(trans, root, ret);
3675
3676 out:
3677
3678         return ret;
3679 }
3680
3681 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
3682 {
3683         struct extent_map *em;
3684         struct map_lookup *map;
3685         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3686         int readonly = 0;
3687         int i;
3688
3689         read_lock(&map_tree->map_tree.lock);
3690         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3691         read_unlock(&map_tree->map_tree.lock);
3692         if (!em)
3693                 return 1;
3694
3695         if (btrfs_test_opt(root, DEGRADED)) {
3696                 free_extent_map(em);
3697                 return 0;
3698         }
3699
3700         map = (struct map_lookup *)em->bdev;
3701         for (i = 0; i < map->num_stripes; i++) {
3702                 if (!map->stripes[i].dev->writeable) {
3703                         readonly = 1;
3704                         break;
3705                 }
3706         }
3707         free_extent_map(em);
3708         return readonly;
3709 }
3710
3711 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
3712 {
3713         extent_map_tree_init(&tree->map_tree);
3714 }
3715
3716 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
3717 {
3718         struct extent_map *em;
3719
3720         while (1) {
3721                 write_lock(&tree->map_tree.lock);
3722                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
3723                 if (em)
3724                         remove_extent_mapping(&tree->map_tree, em);
3725                 write_unlock(&tree->map_tree.lock);
3726                 if (!em)
3727                         break;
3728                 kfree(em->bdev);
3729                 /* once for us */
3730                 free_extent_map(em);
3731                 /* once for the tree */
3732                 free_extent_map(em);
3733         }
3734 }
3735
3736 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
3737 {
3738         struct extent_map *em;
3739         struct map_lookup *map;
3740         struct extent_map_tree *em_tree = &map_tree->map_tree;
3741         int ret;
3742
3743         read_lock(&em_tree->lock);
3744         em = lookup_extent_mapping(em_tree, logical, len);
3745         read_unlock(&em_tree->lock);
3746         BUG_ON(!em);
3747
3748         BUG_ON(em->start > logical || em->start + em->len < logical);
3749         map = (struct map_lookup *)em->bdev;
3750         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
3751                 ret = map->num_stripes;
3752         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3753                 ret = map->sub_stripes;
3754         else
3755                 ret = 1;
3756         free_extent_map(em);
3757         return ret;
3758 }
3759
3760 static int find_live_mirror(struct map_lookup *map, int first, int num,
3761                             int optimal)
3762 {
3763         int i;
3764         if (map->stripes[optimal].dev->bdev)
3765                 return optimal;
3766         for (i = first; i < first + num; i++) {
3767                 if (map->stripes[i].dev->bdev)
3768                         return i;
3769         }
3770         /* we couldn't find one that doesn't fail.  Just return something
3771          * and the io error handling code will clean up eventually
3772          */
3773         return optimal;
3774 }
3775
3776 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3777                              u64 logical, u64 *length,
3778                              struct btrfs_bio **bbio_ret,
3779                              int mirror_num)
3780 {
3781         struct extent_map *em;
3782         struct map_lookup *map;
3783         struct extent_map_tree *em_tree = &map_tree->map_tree;
3784         u64 offset;
3785         u64 stripe_offset;
3786         u64 stripe_end_offset;
3787         u64 stripe_nr;
3788         u64 stripe_nr_orig;
3789         u64 stripe_nr_end;
3790         int stripe_index;
3791         int i;
3792         int ret = 0;
3793         int num_stripes;
3794         int max_errors = 0;
3795         struct btrfs_bio *bbio = NULL;
3796
3797         read_lock(&em_tree->lock);
3798         em = lookup_extent_mapping(em_tree, logical, *length);
3799         read_unlock(&em_tree->lock);
3800
3801         if (!em) {
3802                 printk(KERN_CRIT "btrfs: unable to find logical %llu len %llu\n",
3803                        (unsigned long long)logical,
3804                        (unsigned long long)*length);
3805                 BUG();
3806         }
3807
3808         BUG_ON(em->start > logical || em->start + em->len < logical);
3809         map = (struct map_lookup *)em->bdev;
3810         offset = logical - em->start;
3811
3812         if (mirror_num > map->num_stripes)
3813                 mirror_num = 0;
3814
3815         stripe_nr = offset;
3816         /*
3817          * stripe_nr counts the total number of stripes we have to stride
3818          * to get to this block
3819          */
3820         do_div(stripe_nr, map->stripe_len);
3821
3822         stripe_offset = stripe_nr * map->stripe_len;
3823         BUG_ON(offset < stripe_offset);
3824
3825         /* stripe_offset is the offset of this block in its stripe*/
3826         stripe_offset = offset - stripe_offset;
3827
3828         if (rw & REQ_DISCARD)
3829                 *length = min_t(u64, em->len - offset, *length);
3830         else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
3831                 /* we limit the length of each bio to what fits in a stripe */
3832                 *length = min_t(u64, em->len - offset,
3833                                 map->stripe_len - stripe_offset);
3834         } else {
3835                 *length = em->len - offset;
3836         }
3837
3838         if (!bbio_ret)
3839                 goto out;
3840
3841         num_stripes = 1;
3842         stripe_index = 0;
3843         stripe_nr_orig = stripe_nr;
3844         stripe_nr_end = (offset + *length + map->stripe_len - 1) &
3845                         (~(map->stripe_len - 1));
3846         do_div(stripe_nr_end, map->stripe_len);
3847         stripe_end_offset = stripe_nr_end * map->stripe_len -
3848                             (offset + *length);
3849         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3850                 if (rw & REQ_DISCARD)
3851                         num_stripes = min_t(u64, map->num_stripes,
3852                                             stripe_nr_end - stripe_nr_orig);
3853                 stripe_index = do_div(stripe_nr, map->num_stripes);
3854         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3855                 if (rw & (REQ_WRITE | REQ_DISCARD))
3856                         num_stripes = map->num_stripes;
3857                 else if (mirror_num)
3858                         stripe_index = mirror_num - 1;
3859                 else {
3860                         stripe_index = find_live_mirror(map, 0,
3861                                             map->num_stripes,
3862                                             current->pid % map->num_stripes);
3863                         mirror_num = stripe_index + 1;
3864                 }
3865
3866         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3867                 if (rw & (REQ_WRITE | REQ_DISCARD)) {
3868                         num_stripes = map->num_stripes;
3869                 } else if (mirror_num) {
3870                         stripe_index = mirror_num - 1;
3871                 } else {
3872                         mirror_num = 1;
3873                 }
3874
3875         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3876                 int factor = map->num_stripes / map->sub_stripes;
3877
3878                 stripe_index = do_div(stripe_nr, factor);
3879                 stripe_index *= map->sub_stripes;
3880
3881                 if (rw & REQ_WRITE)
3882                         num_stripes = map->sub_stripes;
3883                 else if (rw & REQ_DISCARD)
3884                         num_stripes = min_t(u64, map->sub_stripes *
3885                                             (stripe_nr_end - stripe_nr_orig),
3886                                             map->num_stripes);
3887                 else if (mirror_num)
3888                         stripe_index += mirror_num - 1;
3889                 else {
3890                         int old_stripe_index = stripe_index;
3891                         stripe_index = find_live_mirror(map, stripe_index,
3892                                               map->sub_stripes, stripe_index +
3893                                               current->pid % map->sub_stripes);
3894                         mirror_num = stripe_index - old_stripe_index + 1;
3895                 }
3896         } else {
3897                 /*
3898                  * after this do_div call, stripe_nr is the number of stripes
3899                  * on this device we have to walk to find the data, and
3900                  * stripe_index is the number of our device in the stripe array
3901                  */
3902                 stripe_index = do_div(stripe_nr, map->num_stripes);
3903                 mirror_num = stripe_index + 1;
3904         }
3905         BUG_ON(stripe_index >= map->num_stripes);
3906
3907         bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS);
3908         if (!bbio) {
3909                 ret = -ENOMEM;
3910                 goto out;
3911         }
3912         atomic_set(&bbio->error, 0);
3913
3914         if (rw & REQ_DISCARD) {
3915                 int factor = 0;
3916                 int sub_stripes = 0;
3917                 u64 stripes_per_dev = 0;
3918                 u32 remaining_stripes = 0;
3919                 u32 last_stripe = 0;
3920
3921                 if (map->type &
3922                     (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3923                         if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3924                                 sub_stripes = 1;
3925                         else
3926                                 sub_stripes = map->sub_stripes;
3927
3928                         factor = map->num_stripes / sub_stripes;
3929                         stripes_per_dev = div_u64_rem(stripe_nr_end -
3930                                                       stripe_nr_orig,
3931                                                       factor,
3932                                                       &remaining_stripes);
3933                         div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
3934                         last_stripe *= sub_stripes;
3935                 }
3936
3937                 for (i = 0; i < num_stripes; i++) {
3938                         bbio->stripes[i].physical =
3939                                 map->stripes[stripe_index].physical +
3940                                 stripe_offset + stripe_nr * map->stripe_len;
3941                         bbio->stripes[i].dev = map->stripes[stripe_index].dev;
3942
3943                         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3944                                          BTRFS_BLOCK_GROUP_RAID10)) {
3945                                 bbio->stripes[i].length = stripes_per_dev *
3946                                                           map->stripe_len;
3947
3948                                 if (i / sub_stripes < remaining_stripes)
3949                                         bbio->stripes[i].length +=
3950                                                 map->stripe_len;
3951
3952                                 /*
3953                                  * Special for the first stripe and
3954                                  * the last stripe:
3955                                  *
3956                                  * |-------|...|-------|
3957                                  *     |----------|
3958                                  *    off     end_off
3959                                  */
3960                                 if (i < sub_stripes)
3961                                         bbio->stripes[i].length -=
3962                                                 stripe_offset;
3963
3964                                 if (stripe_index >= last_stripe &&
3965                                     stripe_index <= (last_stripe +
3966                                                      sub_stripes - 1))
3967                                         bbio->stripes[i].length -=
3968                                                 stripe_end_offset;
3969
3970                                 if (i == sub_stripes - 1)
3971                                         stripe_offset = 0;
3972                         } else
3973                                 bbio->stripes[i].length = *length;
3974
3975                         stripe_index++;
3976                         if (stripe_index == map->num_stripes) {
3977                                 /* This could only happen for RAID0/10 */
3978                                 stripe_index = 0;
3979                                 stripe_nr++;
3980                         }
3981                 }
3982         } else {
3983                 for (i = 0; i < num_stripes; i++) {
3984                         bbio->stripes[i].physical =
3985                                 map->stripes[stripe_index].physical +
3986                                 stripe_offset +
3987                                 stripe_nr * map->stripe_len;
3988                         bbio->stripes[i].dev =
3989                                 map->stripes[stripe_index].dev;
3990                         stripe_index++;
3991                 }
3992         }
3993
3994         if (rw & REQ_WRITE) {
3995                 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3996                                  BTRFS_BLOCK_GROUP_RAID10 |
3997                                  BTRFS_BLOCK_GROUP_DUP)) {
3998                         max_errors = 1;
3999                 }
4000         }
4001
4002         *bbio_ret = bbio;
4003         bbio->num_stripes = num_stripes;
4004         bbio->max_errors = max_errors;
4005         bbio->mirror_num = mirror_num;
4006 out:
4007         free_extent_map(em);
4008         return ret;
4009 }
4010
4011 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
4012                       u64 logical, u64 *length,
4013                       struct btrfs_bio **bbio_ret, int mirror_num)
4014 {
4015         return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret,
4016                                  mirror_num);
4017 }
4018
4019 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
4020                      u64 chunk_start, u64 physical, u64 devid,
4021                      u64 **logical, int *naddrs, int *stripe_len)
4022 {
4023         struct extent_map_tree *em_tree = &map_tree->map_tree;
4024         struct extent_map *em;
4025         struct map_lookup *map;
4026         u64 *buf;
4027         u64 bytenr;
4028         u64 length;
4029         u64 stripe_nr;
4030         int i, j, nr = 0;
4031
4032         read_lock(&em_tree->lock);
4033         em = lookup_extent_mapping(em_tree, chunk_start, 1);
4034         read_unlock(&em_tree->lock);
4035
4036         BUG_ON(!em || em->start != chunk_start);
4037         map = (struct map_lookup *)em->bdev;
4038
4039         length = em->len;
4040         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4041                 do_div(length, map->num_stripes / map->sub_stripes);
4042         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4043                 do_div(length, map->num_stripes);
4044
4045         buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
4046         BUG_ON(!buf); /* -ENOMEM */
4047
4048         for (i = 0; i < map->num_stripes; i++) {
4049                 if (devid && map->stripes[i].dev->devid != devid)
4050                         continue;
4051                 if (map->stripes[i].physical > physical ||
4052                     map->stripes[i].physical + length <= physical)
4053                         continue;
4054
4055                 stripe_nr = physical - map->stripes[i].physical;
4056                 do_div(stripe_nr, map->stripe_len);
4057
4058                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4059                         stripe_nr = stripe_nr * map->num_stripes + i;
4060                         do_div(stripe_nr, map->sub_stripes);
4061                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4062                         stripe_nr = stripe_nr * map->num_stripes + i;
4063                 }
4064                 bytenr = chunk_start + stripe_nr * map->stripe_len;
4065                 WARN_ON(nr >= map->num_stripes);
4066                 for (j = 0; j < nr; j++) {
4067                         if (buf[j] == bytenr)
4068                                 break;
4069                 }
4070                 if (j == nr) {
4071                         WARN_ON(nr >= map->num_stripes);
4072                         buf[nr++] = bytenr;
4073                 }
4074         }
4075
4076         *logical = buf;
4077         *naddrs = nr;
4078         *stripe_len = map->stripe_len;
4079
4080         free_extent_map(em);
4081         return 0;
4082 }
4083
4084 static void *merge_stripe_index_into_bio_private(void *bi_private,
4085                                                  unsigned int stripe_index)
4086 {
4087         /*
4088          * with single, dup, RAID0, RAID1 and RAID10, stripe_index is
4089          * at most 1.
4090          * The alternative solution (instead of stealing bits from the
4091          * pointer) would be to allocate an intermediate structure
4092          * that contains the old private pointer plus the stripe_index.
4093          */
4094         BUG_ON((((uintptr_t)bi_private) & 3) != 0);
4095         BUG_ON(stripe_index > 3);
4096         return (void *)(((uintptr_t)bi_private) | stripe_index);
4097 }
4098
4099 static struct btrfs_bio *extract_bbio_from_bio_private(void *bi_private)
4100 {
4101         return (struct btrfs_bio *)(((uintptr_t)bi_private) & ~((uintptr_t)3));
4102 }
4103
4104 static unsigned int extract_stripe_index_from_bio_private(void *bi_private)
4105 {
4106         return (unsigned int)((uintptr_t)bi_private) & 3;
4107 }
4108
4109 static void btrfs_end_bio(struct bio *bio, int err)
4110 {
4111         struct btrfs_bio *bbio = extract_bbio_from_bio_private(bio->bi_private);
4112         int is_orig_bio = 0;
4113
4114         if (err) {
4115                 atomic_inc(&bbio->error);
4116                 if (err == -EIO || err == -EREMOTEIO) {
4117                         unsigned int stripe_index =
4118                                 extract_stripe_index_from_bio_private(
4119                                         bio->bi_private);
4120                         struct btrfs_device *dev;
4121
4122                         BUG_ON(stripe_index >= bbio->num_stripes);
4123                         dev = bbio->stripes[stripe_index].dev;
4124                         if (dev->bdev) {
4125                                 if (bio->bi_rw & WRITE)
4126                                         btrfs_dev_stat_inc(dev,
4127                                                 BTRFS_DEV_STAT_WRITE_ERRS);
4128                                 else
4129                                         btrfs_dev_stat_inc(dev,
4130                                                 BTRFS_DEV_STAT_READ_ERRS);
4131                                 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
4132                                         btrfs_dev_stat_inc(dev,
4133                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
4134                                 btrfs_dev_stat_print_on_error(dev);
4135                         }
4136                 }
4137         }
4138
4139         if (bio == bbio->orig_bio)
4140                 is_orig_bio = 1;
4141
4142         if (atomic_dec_and_test(&bbio->stripes_pending)) {
4143                 if (!is_orig_bio) {
4144                         bio_put(bio);
4145                         bio = bbio->orig_bio;
4146                 }
4147                 bio->bi_private = bbio->private;
4148                 bio->bi_end_io = bbio->end_io;
4149                 bio->bi_bdev = (struct block_device *)
4150                                         (unsigned long)bbio->mirror_num;
4151                 /* only send an error to the higher layers if it is
4152                  * beyond the tolerance of the multi-bio
4153                  */
4154                 if (atomic_read(&bbio->error) > bbio->max_errors) {
4155                         err = -EIO;
4156                 } else {
4157                         /*
4158                          * this bio is actually up to date, we didn't
4159                          * go over the max number of errors
4160                          */
4161                         set_bit(BIO_UPTODATE, &bio->bi_flags);
4162                         err = 0;
4163                 }
4164                 kfree(bbio);
4165
4166                 bio_endio(bio, err);
4167         } else if (!is_orig_bio) {
4168                 bio_put(bio);
4169         }
4170 }
4171
4172 struct async_sched {
4173         struct bio *bio;
4174         int rw;
4175         struct btrfs_fs_info *info;
4176         struct btrfs_work work;
4177 };
4178
4179 /*
4180  * see run_scheduled_bios for a description of why bios are collected for
4181  * async submit.
4182  *
4183  * This will add one bio to the pending list for a device and make sure
4184  * the work struct is scheduled.
4185  */
4186 static noinline void schedule_bio(struct btrfs_root *root,
4187                                  struct btrfs_device *device,
4188                                  int rw, struct bio *bio)
4189 {
4190         int should_queue = 1;
4191         struct btrfs_pending_bios *pending_bios;
4192
4193         /* don't bother with additional async steps for reads, right now */
4194         if (!(rw & REQ_WRITE)) {
4195                 bio_get(bio);
4196                 btrfsic_submit_bio(rw, bio);
4197                 bio_put(bio);
4198                 return;
4199         }
4200
4201         /*
4202          * nr_async_bios allows us to reliably return congestion to the
4203          * higher layers.  Otherwise, the async bio makes it appear we have
4204          * made progress against dirty pages when we've really just put it
4205          * on a queue for later
4206          */
4207         atomic_inc(&root->fs_info->nr_async_bios);
4208         WARN_ON(bio->bi_next);
4209         bio->bi_next = NULL;
4210         bio->bi_rw |= rw;
4211
4212         spin_lock(&device->io_lock);
4213         if (bio->bi_rw & REQ_SYNC)
4214                 pending_bios = &device->pending_sync_bios;
4215         else
4216                 pending_bios = &device->pending_bios;
4217
4218         if (pending_bios->tail)
4219                 pending_bios->tail->bi_next = bio;
4220
4221         pending_bios->tail = bio;
4222         if (!pending_bios->head)
4223                 pending_bios->head = bio;
4224         if (device->running_pending)
4225                 should_queue = 0;
4226
4227         spin_unlock(&device->io_lock);
4228
4229         if (should_queue)
4230                 btrfs_queue_worker(&root->fs_info->submit_workers,
4231                                    &device->work);
4232 }
4233
4234 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
4235                   int mirror_num, int async_submit)
4236 {
4237         struct btrfs_mapping_tree *map_tree;
4238         struct btrfs_device *dev;
4239         struct bio *first_bio = bio;
4240         u64 logical = (u64)bio->bi_sector << 9;
4241         u64 length = 0;
4242         u64 map_length;
4243         int ret;
4244         int dev_nr = 0;
4245         int total_devs = 1;
4246         struct btrfs_bio *bbio = NULL;
4247
4248         length = bio->bi_size;
4249         map_tree = &root->fs_info->mapping_tree;
4250         map_length = length;
4251
4252         ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio,
4253                               mirror_num);
4254         if (ret) /* -ENOMEM */
4255                 return ret;
4256
4257         total_devs = bbio->num_stripes;
4258         if (map_length < length) {
4259                 printk(KERN_CRIT "btrfs: mapping failed logical %llu bio len %llu "
4260                        "len %llu\n", (unsigned long long)logical,
4261                        (unsigned long long)length,
4262                        (unsigned long long)map_length);
4263                 BUG();
4264         }
4265
4266         bbio->orig_bio = first_bio;
4267         bbio->private = first_bio->bi_private;
4268         bbio->end_io = first_bio->bi_end_io;
4269         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
4270
4271         while (dev_nr < total_devs) {
4272                 if (dev_nr < total_devs - 1) {
4273                         bio = bio_clone(first_bio, GFP_NOFS);
4274                         BUG_ON(!bio); /* -ENOMEM */
4275                 } else {
4276                         bio = first_bio;
4277                 }
4278                 bio->bi_private = bbio;
4279                 bio->bi_private = merge_stripe_index_into_bio_private(
4280                                 bio->bi_private, (unsigned int)dev_nr);
4281                 bio->bi_end_io = btrfs_end_bio;
4282                 bio->bi_sector = bbio->stripes[dev_nr].physical >> 9;
4283                 dev = bbio->stripes[dev_nr].dev;
4284                 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
4285 #ifdef DEBUG
4286                         struct rcu_string *name;
4287
4288                         rcu_read_lock();
4289                         name = rcu_dereference(dev->name);
4290                         pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu "
4291                                  "(%s id %llu), size=%u\n", rw,
4292                                  (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
4293                                  name->str, dev->devid, bio->bi_size);
4294                         rcu_read_unlock();
4295 #endif
4296                         bio->bi_bdev = dev->bdev;
4297                         if (async_submit)
4298                                 schedule_bio(root, dev, rw, bio);
4299                         else
4300                                 btrfsic_submit_bio(rw, bio);
4301                 } else {
4302                         bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
4303                         bio->bi_sector = logical >> 9;
4304                         bio_endio(bio, -EIO);
4305                 }
4306                 dev_nr++;
4307         }
4308         return 0;
4309 }
4310
4311 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
4312                                        u8 *uuid, u8 *fsid)
4313 {
4314         struct btrfs_device *device;
4315         struct btrfs_fs_devices *cur_devices;
4316
4317         cur_devices = root->fs_info->fs_devices;
4318         while (cur_devices) {
4319                 if (!fsid ||
4320                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4321                         device = __find_device(&cur_devices->devices,
4322                                                devid, uuid);
4323                         if (device)
4324                                 return device;
4325                 }
4326                 cur_devices = cur_devices->seed;
4327         }
4328         return NULL;
4329 }
4330
4331 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
4332                                             u64 devid, u8 *dev_uuid)
4333 {
4334         struct btrfs_device *device;
4335         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4336
4337         device = kzalloc(sizeof(*device), GFP_NOFS);
4338         if (!device)
4339                 return NULL;
4340         list_add(&device->dev_list,
4341                  &fs_devices->devices);
4342         device->dev_root = root->fs_info->dev_root;
4343         device->devid = devid;
4344         device->work.func = pending_bios_fn;
4345         device->fs_devices = fs_devices;
4346         device->missing = 1;
4347         fs_devices->num_devices++;
4348         fs_devices->missing_devices++;
4349         spin_lock_init(&device->io_lock);
4350         INIT_LIST_HEAD(&device->dev_alloc_list);
4351         memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
4352         return device;
4353 }
4354
4355 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
4356                           struct extent_buffer *leaf,
4357                           struct btrfs_chunk *chunk)
4358 {
4359         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4360         struct map_lookup *map;
4361         struct extent_map *em;
4362         u64 logical;
4363         u64 length;
4364         u64 devid;
4365         u8 uuid[BTRFS_UUID_SIZE];
4366         int num_stripes;
4367         int ret;
4368         int i;
4369
4370         logical = key->offset;
4371         length = btrfs_chunk_length(leaf, chunk);
4372
4373         read_lock(&map_tree->map_tree.lock);
4374         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
4375         read_unlock(&map_tree->map_tree.lock);
4376
4377         /* already mapped? */
4378         if (em && em->start <= logical && em->start + em->len > logical) {
4379                 free_extent_map(em);
4380                 return 0;
4381         } else if (em) {
4382                 free_extent_map(em);
4383         }
4384
4385         em = alloc_extent_map();
4386         if (!em)
4387                 return -ENOMEM;
4388         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4389         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4390         if (!map) {
4391                 free_extent_map(em);
4392                 return -ENOMEM;
4393         }
4394
4395         em->bdev = (struct block_device *)map;
4396         em->start = logical;
4397         em->len = length;
4398         em->block_start = 0;
4399         em->block_len = em->len;
4400
4401         map->num_stripes = num_stripes;
4402         map->io_width = btrfs_chunk_io_width(leaf, chunk);
4403         map->io_align = btrfs_chunk_io_align(leaf, chunk);
4404         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
4405         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
4406         map->type = btrfs_chunk_type(leaf, chunk);
4407         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
4408         for (i = 0; i < num_stripes; i++) {
4409                 map->stripes[i].physical =
4410                         btrfs_stripe_offset_nr(leaf, chunk, i);
4411                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
4412                 read_extent_buffer(leaf, uuid, (unsigned long)
4413                                    btrfs_stripe_dev_uuid_nr(chunk, i),
4414                                    BTRFS_UUID_SIZE);
4415                 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
4416                                                         NULL);
4417                 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
4418                         kfree(map);
4419                         free_extent_map(em);
4420                         return -EIO;
4421                 }
4422                 if (!map->stripes[i].dev) {
4423                         map->stripes[i].dev =
4424                                 add_missing_dev(root, devid, uuid);
4425                         if (!map->stripes[i].dev) {
4426                                 kfree(map);
4427                                 free_extent_map(em);
4428                                 return -EIO;
4429                         }
4430                 }
4431                 map->stripes[i].dev->in_fs_metadata = 1;
4432         }
4433
4434         write_lock(&map_tree->map_tree.lock);
4435         ret = add_extent_mapping(&map_tree->map_tree, em);
4436         write_unlock(&map_tree->map_tree.lock);
4437         BUG_ON(ret); /* Tree corruption */
4438         free_extent_map(em);
4439
4440         return 0;
4441 }
4442
4443 static void fill_device_from_item(struct extent_buffer *leaf,
4444                                  struct btrfs_dev_item *dev_item,
4445                                  struct btrfs_device *device)
4446 {
4447         unsigned long ptr;
4448
4449         device->devid = btrfs_device_id(leaf, dev_item);
4450         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
4451         device->total_bytes = device->disk_total_bytes;
4452         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
4453         device->type = btrfs_device_type(leaf, dev_item);
4454         device->io_align = btrfs_device_io_align(leaf, dev_item);
4455         device->io_width = btrfs_device_io_width(leaf, dev_item);
4456         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
4457
4458         ptr = (unsigned long)btrfs_device_uuid(dev_item);
4459         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
4460 }
4461
4462 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
4463 {
4464         struct btrfs_fs_devices *fs_devices;
4465         int ret;
4466
4467         BUG_ON(!mutex_is_locked(&uuid_mutex));
4468
4469         fs_devices = root->fs_info->fs_devices->seed;
4470         while (fs_devices) {
4471                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4472                         ret = 0;
4473                         goto out;
4474                 }
4475                 fs_devices = fs_devices->seed;
4476         }
4477
4478         fs_devices = find_fsid(fsid);
4479         if (!fs_devices) {
4480                 ret = -ENOENT;
4481                 goto out;
4482         }
4483
4484         fs_devices = clone_fs_devices(fs_devices);
4485         if (IS_ERR(fs_devices)) {
4486                 ret = PTR_ERR(fs_devices);
4487                 goto out;
4488         }
4489
4490         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
4491                                    root->fs_info->bdev_holder);
4492         if (ret) {
4493                 free_fs_devices(fs_devices);
4494                 goto out;
4495         }
4496
4497         if (!fs_devices->seeding) {
4498                 __btrfs_close_devices(fs_devices);
4499                 free_fs_devices(fs_devices);
4500                 ret = -EINVAL;
4501                 goto out;
4502         }
4503
4504         fs_devices->seed = root->fs_info->fs_devices->seed;
4505         root->fs_info->fs_devices->seed = fs_devices;
4506 out:
4507         return ret;
4508 }
4509
4510 static int read_one_dev(struct btrfs_root *root,
4511                         struct extent_buffer *leaf,
4512                         struct btrfs_dev_item *dev_item)
4513 {
4514         struct btrfs_device *device;
4515         u64 devid;
4516         int ret;
4517         u8 fs_uuid[BTRFS_UUID_SIZE];
4518         u8 dev_uuid[BTRFS_UUID_SIZE];
4519
4520         devid = btrfs_device_id(leaf, dev_item);
4521         read_extent_buffer(leaf, dev_uuid,
4522                            (unsigned long)btrfs_device_uuid(dev_item),
4523                            BTRFS_UUID_SIZE);
4524         read_extent_buffer(leaf, fs_uuid,
4525                            (unsigned long)btrfs_device_fsid(dev_item),
4526                            BTRFS_UUID_SIZE);
4527
4528         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
4529                 ret = open_seed_devices(root, fs_uuid);
4530                 if (ret && !btrfs_test_opt(root, DEGRADED))
4531                         return ret;
4532         }
4533
4534         device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
4535         if (!device || !device->bdev) {
4536                 if (!btrfs_test_opt(root, DEGRADED))
4537                         return -EIO;
4538
4539                 if (!device) {
4540                         printk(KERN_WARNING "warning devid %llu missing\n",
4541                                (unsigned long long)devid);
4542                         device = add_missing_dev(root, devid, dev_uuid);
4543                         if (!device)
4544                                 return -ENOMEM;
4545                 } else if (!device->missing) {
4546                         /*
4547                          * this happens when a device that was properly setup
4548                          * in the device info lists suddenly goes bad.
4549                          * device->bdev is NULL, and so we have to set
4550                          * device->missing to one here
4551                          */
4552                         root->fs_info->fs_devices->missing_devices++;
4553                         device->missing = 1;
4554                 }
4555         }
4556
4557         if (device->fs_devices != root->fs_info->fs_devices) {
4558                 BUG_ON(device->writeable);
4559                 if (device->generation !=
4560                     btrfs_device_generation(leaf, dev_item))
4561                         return -EINVAL;
4562         }
4563
4564         fill_device_from_item(leaf, dev_item, device);
4565         device->dev_root = root->fs_info->dev_root;
4566         device->in_fs_metadata = 1;
4567         if (device->writeable) {
4568                 device->fs_devices->total_rw_bytes += device->total_bytes;
4569                 spin_lock(&root->fs_info->free_chunk_lock);
4570                 root->fs_info->free_chunk_space += device->total_bytes -
4571                         device->bytes_used;
4572                 spin_unlock(&root->fs_info->free_chunk_lock);
4573         }
4574         ret = 0;
4575         return ret;
4576 }
4577
4578 int btrfs_read_sys_array(struct btrfs_root *root)
4579 {
4580         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4581         struct extent_buffer *sb;
4582         struct btrfs_disk_key *disk_key;
4583         struct btrfs_chunk *chunk;
4584         u8 *ptr;
4585         unsigned long sb_ptr;
4586         int ret = 0;
4587         u32 num_stripes;
4588         u32 array_size;
4589         u32 len = 0;
4590         u32 cur;
4591         struct btrfs_key key;
4592
4593         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
4594                                           BTRFS_SUPER_INFO_SIZE);
4595         if (!sb)
4596                 return -ENOMEM;
4597         btrfs_set_buffer_uptodate(sb);
4598         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
4599         /*
4600          * The sb extent buffer is artifical and just used to read the system array.
4601          * btrfs_set_buffer_uptodate() call does not properly mark all it's
4602          * pages up-to-date when the page is larger: extent does not cover the
4603          * whole page and consequently check_page_uptodate does not find all
4604          * the page's extents up-to-date (the hole beyond sb),
4605          * write_extent_buffer then triggers a WARN_ON.
4606          *
4607          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
4608          * but sb spans only this function. Add an explicit SetPageUptodate call
4609          * to silence the warning eg. on PowerPC 64.
4610          */
4611         if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
4612                 SetPageUptodate(sb->pages[0]);
4613
4614         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
4615         array_size = btrfs_super_sys_array_size(super_copy);
4616
4617         ptr = super_copy->sys_chunk_array;
4618         sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
4619         cur = 0;
4620
4621         while (cur < array_size) {
4622                 disk_key = (struct btrfs_disk_key *)ptr;
4623                 btrfs_disk_key_to_cpu(&key, disk_key);
4624
4625                 len = sizeof(*disk_key); ptr += len;
4626                 sb_ptr += len;
4627                 cur += len;
4628
4629                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
4630                         chunk = (struct btrfs_chunk *)sb_ptr;
4631                         ret = read_one_chunk(root, &key, sb, chunk);
4632                         if (ret)
4633                                 break;
4634                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
4635                         len = btrfs_chunk_item_size(num_stripes);
4636                 } else {
4637                         ret = -EIO;
4638                         break;
4639                 }
4640                 ptr += len;
4641                 sb_ptr += len;
4642                 cur += len;
4643         }
4644         free_extent_buffer(sb);
4645         return ret;
4646 }
4647
4648 int btrfs_read_chunk_tree(struct btrfs_root *root)
4649 {
4650         struct btrfs_path *path;
4651         struct extent_buffer *leaf;
4652         struct btrfs_key key;
4653         struct btrfs_key found_key;
4654         int ret;
4655         int slot;
4656
4657         root = root->fs_info->chunk_root;
4658
4659         path = btrfs_alloc_path();
4660         if (!path)
4661                 return -ENOMEM;
4662
4663         mutex_lock(&uuid_mutex);
4664         lock_chunks(root);
4665
4666         /* first we search for all of the device items, and then we
4667          * read in all of the chunk items.  This way we can create chunk
4668          * mappings that reference all of the devices that are afound
4669          */
4670         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
4671         key.offset = 0;
4672         key.type = 0;
4673 again:
4674         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4675         if (ret < 0)
4676                 goto error;
4677         while (1) {
4678                 leaf = path->nodes[0];
4679                 slot = path->slots[0];
4680                 if (slot >= btrfs_header_nritems(leaf)) {
4681                         ret = btrfs_next_leaf(root, path);
4682                         if (ret == 0)
4683                                 continue;
4684                         if (ret < 0)
4685                                 goto error;
4686                         break;
4687                 }
4688                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4689                 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4690                         if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
4691                                 break;
4692                         if (found_key.type == BTRFS_DEV_ITEM_KEY) {
4693                                 struct btrfs_dev_item *dev_item;
4694                                 dev_item = btrfs_item_ptr(leaf, slot,
4695                                                   struct btrfs_dev_item);
4696                                 ret = read_one_dev(root, leaf, dev_item);
4697                                 if (ret)
4698                                         goto error;
4699                         }
4700                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
4701                         struct btrfs_chunk *chunk;
4702                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4703                         ret = read_one_chunk(root, &found_key, leaf, chunk);
4704                         if (ret)
4705                                 goto error;
4706                 }
4707                 path->slots[0]++;
4708         }
4709         if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4710                 key.objectid = 0;
4711                 btrfs_release_path(path);
4712                 goto again;
4713         }
4714         ret = 0;
4715 error:
4716         unlock_chunks(root);
4717         mutex_unlock(&uuid_mutex);
4718
4719         btrfs_free_path(path);
4720         return ret;
4721 }
4722
4723 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
4724 {
4725         int i;
4726
4727         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4728                 btrfs_dev_stat_reset(dev, i);
4729 }
4730
4731 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
4732 {
4733         struct btrfs_key key;
4734         struct btrfs_key found_key;
4735         struct btrfs_root *dev_root = fs_info->dev_root;
4736         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
4737         struct extent_buffer *eb;
4738         int slot;
4739         int ret = 0;
4740         struct btrfs_device *device;
4741         struct btrfs_path *path = NULL;
4742         int i;
4743
4744         path = btrfs_alloc_path();
4745         if (!path) {
4746                 ret = -ENOMEM;
4747                 goto out;
4748         }
4749
4750         mutex_lock(&fs_devices->device_list_mutex);
4751         list_for_each_entry(device, &fs_devices->devices, dev_list) {
4752                 int item_size;
4753                 struct btrfs_dev_stats_item *ptr;
4754
4755                 key.objectid = 0;
4756                 key.type = BTRFS_DEV_STATS_KEY;
4757                 key.offset = device->devid;
4758                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
4759                 if (ret) {
4760                         __btrfs_reset_dev_stats(device);
4761                         device->dev_stats_valid = 1;
4762                         btrfs_release_path(path);
4763                         continue;
4764                 }
4765                 slot = path->slots[0];
4766                 eb = path->nodes[0];
4767                 btrfs_item_key_to_cpu(eb, &found_key, slot);
4768                 item_size = btrfs_item_size_nr(eb, slot);
4769
4770                 ptr = btrfs_item_ptr(eb, slot,
4771                                      struct btrfs_dev_stats_item);
4772
4773                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
4774                         if (item_size >= (1 + i) * sizeof(__le64))
4775                                 btrfs_dev_stat_set(device, i,
4776                                         btrfs_dev_stats_value(eb, ptr, i));
4777                         else
4778                                 btrfs_dev_stat_reset(device, i);
4779                 }
4780
4781                 device->dev_stats_valid = 1;
4782                 btrfs_dev_stat_print_on_load(device);
4783                 btrfs_release_path(path);
4784         }
4785         mutex_unlock(&fs_devices->device_list_mutex);
4786
4787 out:
4788         btrfs_free_path(path);
4789         return ret < 0 ? ret : 0;
4790 }
4791
4792 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
4793                                 struct btrfs_root *dev_root,
4794                                 struct btrfs_device *device)
4795 {
4796         struct btrfs_path *path;
4797         struct btrfs_key key;
4798         struct extent_buffer *eb;
4799         struct btrfs_dev_stats_item *ptr;
4800         int ret;
4801         int i;
4802
4803         key.objectid = 0;
4804         key.type = BTRFS_DEV_STATS_KEY;
4805         key.offset = device->devid;
4806
4807         path = btrfs_alloc_path();
4808         BUG_ON(!path);
4809         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
4810         if (ret < 0) {
4811                 printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
4812                               ret, rcu_str_deref(device->name));
4813                 goto out;
4814         }
4815
4816         if (ret == 0 &&
4817             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
4818                 /* need to delete old one and insert a new one */
4819                 ret = btrfs_del_item(trans, dev_root, path);
4820                 if (ret != 0) {
4821                         printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
4822                                       rcu_str_deref(device->name), ret);
4823                         goto out;
4824                 }
4825                 ret = 1;
4826         }
4827
4828         if (ret == 1) {
4829                 /* need to insert a new item */
4830                 btrfs_release_path(path);
4831                 ret = btrfs_insert_empty_item(trans, dev_root, path,
4832                                               &key, sizeof(*ptr));
4833                 if (ret < 0) {
4834                         printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
4835                                       rcu_str_deref(device->name), ret);
4836                         goto out;
4837                 }
4838         }
4839
4840         eb = path->nodes[0];
4841         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
4842         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4843                 btrfs_set_dev_stats_value(eb, ptr, i,
4844                                           btrfs_dev_stat_read(device, i));
4845         btrfs_mark_buffer_dirty(eb);
4846
4847 out:
4848         btrfs_free_path(path);
4849         return ret;
4850 }
4851
4852 /*
4853  * called from commit_transaction. Writes all changed device stats to disk.
4854  */
4855 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
4856                         struct btrfs_fs_info *fs_info)
4857 {
4858         struct btrfs_root *dev_root = fs_info->dev_root;
4859         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
4860         struct btrfs_device *device;
4861         int ret = 0;
4862
4863         mutex_lock(&fs_devices->device_list_mutex);
4864         list_for_each_entry(device, &fs_devices->devices, dev_list) {
4865                 if (!device->dev_stats_valid || !device->dev_stats_dirty)
4866                         continue;
4867
4868                 ret = update_dev_stat_item(trans, dev_root, device);
4869                 if (!ret)
4870                         device->dev_stats_dirty = 0;
4871         }
4872         mutex_unlock(&fs_devices->device_list_mutex);
4873
4874         return ret;
4875 }
4876
4877 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
4878 {
4879         btrfs_dev_stat_inc(dev, index);
4880         btrfs_dev_stat_print_on_error(dev);
4881 }
4882
4883 void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
4884 {
4885         if (!dev->dev_stats_valid)
4886                 return;
4887         printk_ratelimited_in_rcu(KERN_ERR
4888                            "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
4889                            rcu_str_deref(dev->name),
4890                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
4891                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
4892                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
4893                            btrfs_dev_stat_read(dev,
4894                                                BTRFS_DEV_STAT_CORRUPTION_ERRS),
4895                            btrfs_dev_stat_read(dev,
4896                                                BTRFS_DEV_STAT_GENERATION_ERRS));
4897 }
4898
4899 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
4900 {
4901         int i;
4902
4903         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4904                 if (btrfs_dev_stat_read(dev, i) != 0)
4905                         break;
4906         if (i == BTRFS_DEV_STAT_VALUES_MAX)
4907                 return; /* all values == 0, suppress message */
4908
4909         printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
4910                rcu_str_deref(dev->name),
4911                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
4912                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
4913                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
4914                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
4915                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
4916 }
4917
4918 int btrfs_get_dev_stats(struct btrfs_root *root,
4919                         struct btrfs_ioctl_get_dev_stats *stats)
4920 {
4921         struct btrfs_device *dev;
4922         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4923         int i;
4924
4925         mutex_lock(&fs_devices->device_list_mutex);
4926         dev = btrfs_find_device(root, stats->devid, NULL, NULL);
4927         mutex_unlock(&fs_devices->device_list_mutex);
4928
4929         if (!dev) {
4930                 printk(KERN_WARNING
4931                        "btrfs: get dev_stats failed, device not found\n");
4932                 return -ENODEV;
4933         } else if (!dev->dev_stats_valid) {
4934                 printk(KERN_WARNING
4935                        "btrfs: get dev_stats failed, not yet valid\n");
4936                 return -ENODEV;
4937         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
4938                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
4939                         if (stats->nr_items > i)
4940                                 stats->values[i] =
4941                                         btrfs_dev_stat_read_and_reset(dev, i);
4942                         else
4943                                 btrfs_dev_stat_reset(dev, i);
4944                 }
4945         } else {
4946                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4947                         if (stats->nr_items > i)
4948                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
4949         }
4950         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
4951                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
4952         return 0;
4953 }