]> rtime.felk.cvut.cz Git - can-eth-gw-linux.git/blob - drivers/md/md.c
Merge tag 'md-3.3' of git://neil.brown.name/md
[can-eth-gw-linux.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100         return mddev->sync_speed_min ?
101                 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106         return mddev->sync_speed_max ?
107                 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static ctl_table raid_table[] = {
113         {
114                 .procname       = "speed_limit_min",
115                 .data           = &sysctl_speed_limit_min,
116                 .maxlen         = sizeof(int),
117                 .mode           = S_IRUGO|S_IWUSR,
118                 .proc_handler   = proc_dointvec,
119         },
120         {
121                 .procname       = "speed_limit_max",
122                 .data           = &sysctl_speed_limit_max,
123                 .maxlen         = sizeof(int),
124                 .mode           = S_IRUGO|S_IWUSR,
125                 .proc_handler   = proc_dointvec,
126         },
127         { }
128 };
129
130 static ctl_table raid_dir_table[] = {
131         {
132                 .procname       = "raid",
133                 .maxlen         = 0,
134                 .mode           = S_IRUGO|S_IXUGO,
135                 .child          = raid_table,
136         },
137         { }
138 };
139
140 static ctl_table raid_root_table[] = {
141         {
142                 .procname       = "dev",
143                 .maxlen         = 0,
144                 .mode           = 0555,
145                 .child          = raid_dir_table,
146         },
147         {  }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157
158 static void mddev_bio_destructor(struct bio *bio)
159 {
160         struct mddev *mddev, **mddevp;
161
162         mddevp = (void*)bio;
163         mddev = mddevp[-1];
164
165         bio_free(bio, mddev->bio_set);
166 }
167
168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169                             struct mddev *mddev)
170 {
171         struct bio *b;
172         struct mddev **mddevp;
173
174         if (!mddev || !mddev->bio_set)
175                 return bio_alloc(gfp_mask, nr_iovecs);
176
177         b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178                              mddev->bio_set);
179         if (!b)
180                 return NULL;
181         mddevp = (void*)b;
182         mddevp[-1] = mddev;
183         b->bi_destructor = mddev_bio_destructor;
184         return b;
185 }
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
187
188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189                             struct mddev *mddev)
190 {
191         struct bio *b;
192         struct mddev **mddevp;
193
194         if (!mddev || !mddev->bio_set)
195                 return bio_clone(bio, gfp_mask);
196
197         b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198                              mddev->bio_set);
199         if (!b)
200                 return NULL;
201         mddevp = (void*)b;
202         mddevp[-1] = mddev;
203         b->bi_destructor = mddev_bio_destructor;
204         __bio_clone(b, bio);
205         if (bio_integrity(bio)) {
206                 int ret;
207
208                 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
209
210                 if (ret < 0) {
211                         bio_put(b);
212                         return NULL;
213                 }
214         }
215
216         return b;
217 }
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
219
220 void md_trim_bio(struct bio *bio, int offset, int size)
221 {
222         /* 'bio' is a cloned bio which we need to trim to match
223          * the given offset and size.
224          * This requires adjusting bi_sector, bi_size, and bi_io_vec
225          */
226         int i;
227         struct bio_vec *bvec;
228         int sofar = 0;
229
230         size <<= 9;
231         if (offset == 0 && size == bio->bi_size)
232                 return;
233
234         bio->bi_sector += offset;
235         bio->bi_size = size;
236         offset <<= 9;
237         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
238
239         while (bio->bi_idx < bio->bi_vcnt &&
240                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241                 /* remove this whole bio_vec */
242                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243                 bio->bi_idx++;
244         }
245         if (bio->bi_idx < bio->bi_vcnt) {
246                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
248         }
249         /* avoid any complications with bi_idx being non-zero*/
250         if (bio->bi_idx) {
251                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253                 bio->bi_vcnt -= bio->bi_idx;
254                 bio->bi_idx = 0;
255         }
256         /* Make sure vcnt and last bv are not too big */
257         bio_for_each_segment(bvec, bio, i) {
258                 if (sofar + bvec->bv_len > size)
259                         bvec->bv_len = size - sofar;
260                 if (bvec->bv_len == 0) {
261                         bio->bi_vcnt = i;
262                         break;
263                 }
264                 sofar += bvec->bv_len;
265         }
266 }
267 EXPORT_SYMBOL_GPL(md_trim_bio);
268
269 /*
270  * We have a system wide 'event count' that is incremented
271  * on any 'interesting' event, and readers of /proc/mdstat
272  * can use 'poll' or 'select' to find out when the event
273  * count increases.
274  *
275  * Events are:
276  *  start array, stop array, error, add device, remove device,
277  *  start build, activate spare
278  */
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
281 void md_new_event(struct mddev *mddev)
282 {
283         atomic_inc(&md_event_count);
284         wake_up(&md_event_waiters);
285 }
286 EXPORT_SYMBOL_GPL(md_new_event);
287
288 /* Alternate version that can be called from interrupts
289  * when calling sysfs_notify isn't needed.
290  */
291 static void md_new_event_inintr(struct mddev *mddev)
292 {
293         atomic_inc(&md_event_count);
294         wake_up(&md_event_waiters);
295 }
296
297 /*
298  * Enables to iterate over all existing md arrays
299  * all_mddevs_lock protects this list.
300  */
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
303
304
305 /*
306  * iterates through all used mddevs in the system.
307  * We take care to grab the all_mddevs_lock whenever navigating
308  * the list, and to always hold a refcount when unlocked.
309  * Any code which breaks out of this loop while own
310  * a reference to the current mddev and must mddev_put it.
311  */
312 #define for_each_mddev(_mddev,_tmp)                                     \
313                                                                         \
314         for (({ spin_lock(&all_mddevs_lock);                            \
315                 _tmp = all_mddevs.next;                                 \
316                 _mddev = NULL;});                                       \
317              ({ if (_tmp != &all_mddevs)                                \
318                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319                 spin_unlock(&all_mddevs_lock);                          \
320                 if (_mddev) mddev_put(_mddev);                          \
321                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
322                 _tmp != &all_mddevs;});                                 \
323              ({ spin_lock(&all_mddevs_lock);                            \
324                 _tmp = _tmp->next;})                                    \
325                 )
326
327
328 /* Rather than calling directly into the personality make_request function,
329  * IO requests come here first so that we can check if the device is
330  * being suspended pending a reconfiguration.
331  * We hold a refcount over the call to ->make_request.  By the time that
332  * call has finished, the bio has been linked into some internal structure
333  * and so is visible to ->quiesce(), so we don't need the refcount any more.
334  */
335 static void md_make_request(struct request_queue *q, struct bio *bio)
336 {
337         const int rw = bio_data_dir(bio);
338         struct mddev *mddev = q->queuedata;
339         int cpu;
340         unsigned int sectors;
341
342         if (mddev == NULL || mddev->pers == NULL
343             || !mddev->ready) {
344                 bio_io_error(bio);
345                 return;
346         }
347         smp_rmb(); /* Ensure implications of  'active' are visible */
348         rcu_read_lock();
349         if (mddev->suspended) {
350                 DEFINE_WAIT(__wait);
351                 for (;;) {
352                         prepare_to_wait(&mddev->sb_wait, &__wait,
353                                         TASK_UNINTERRUPTIBLE);
354                         if (!mddev->suspended)
355                                 break;
356                         rcu_read_unlock();
357                         schedule();
358                         rcu_read_lock();
359                 }
360                 finish_wait(&mddev->sb_wait, &__wait);
361         }
362         atomic_inc(&mddev->active_io);
363         rcu_read_unlock();
364
365         /*
366          * save the sectors now since our bio can
367          * go away inside make_request
368          */
369         sectors = bio_sectors(bio);
370         mddev->pers->make_request(mddev, bio);
371
372         cpu = part_stat_lock();
373         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
374         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
375         part_stat_unlock();
376
377         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
378                 wake_up(&mddev->sb_wait);
379 }
380
381 /* mddev_suspend makes sure no new requests are submitted
382  * to the device, and that any requests that have been submitted
383  * are completely handled.
384  * Once ->stop is called and completes, the module will be completely
385  * unused.
386  */
387 void mddev_suspend(struct mddev *mddev)
388 {
389         BUG_ON(mddev->suspended);
390         mddev->suspended = 1;
391         synchronize_rcu();
392         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
393         mddev->pers->quiesce(mddev, 1);
394 }
395 EXPORT_SYMBOL_GPL(mddev_suspend);
396
397 void mddev_resume(struct mddev *mddev)
398 {
399         mddev->suspended = 0;
400         wake_up(&mddev->sb_wait);
401         mddev->pers->quiesce(mddev, 0);
402
403         md_wakeup_thread(mddev->thread);
404         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
405 }
406 EXPORT_SYMBOL_GPL(mddev_resume);
407
408 int mddev_congested(struct mddev *mddev, int bits)
409 {
410         return mddev->suspended;
411 }
412 EXPORT_SYMBOL(mddev_congested);
413
414 /*
415  * Generic flush handling for md
416  */
417
418 static void md_end_flush(struct bio *bio, int err)
419 {
420         struct md_rdev *rdev = bio->bi_private;
421         struct mddev *mddev = rdev->mddev;
422
423         rdev_dec_pending(rdev, mddev);
424
425         if (atomic_dec_and_test(&mddev->flush_pending)) {
426                 /* The pre-request flush has finished */
427                 queue_work(md_wq, &mddev->flush_work);
428         }
429         bio_put(bio);
430 }
431
432 static void md_submit_flush_data(struct work_struct *ws);
433
434 static void submit_flushes(struct work_struct *ws)
435 {
436         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
437         struct md_rdev *rdev;
438
439         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
440         atomic_set(&mddev->flush_pending, 1);
441         rcu_read_lock();
442         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
443                 if (rdev->raid_disk >= 0 &&
444                     !test_bit(Faulty, &rdev->flags)) {
445                         /* Take two references, one is dropped
446                          * when request finishes, one after
447                          * we reclaim rcu_read_lock
448                          */
449                         struct bio *bi;
450                         atomic_inc(&rdev->nr_pending);
451                         atomic_inc(&rdev->nr_pending);
452                         rcu_read_unlock();
453                         bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
454                         bi->bi_end_io = md_end_flush;
455                         bi->bi_private = rdev;
456                         bi->bi_bdev = rdev->bdev;
457                         atomic_inc(&mddev->flush_pending);
458                         submit_bio(WRITE_FLUSH, bi);
459                         rcu_read_lock();
460                         rdev_dec_pending(rdev, mddev);
461                 }
462         rcu_read_unlock();
463         if (atomic_dec_and_test(&mddev->flush_pending))
464                 queue_work(md_wq, &mddev->flush_work);
465 }
466
467 static void md_submit_flush_data(struct work_struct *ws)
468 {
469         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
470         struct bio *bio = mddev->flush_bio;
471
472         if (bio->bi_size == 0)
473                 /* an empty barrier - all done */
474                 bio_endio(bio, 0);
475         else {
476                 bio->bi_rw &= ~REQ_FLUSH;
477                 mddev->pers->make_request(mddev, bio);
478         }
479
480         mddev->flush_bio = NULL;
481         wake_up(&mddev->sb_wait);
482 }
483
484 void md_flush_request(struct mddev *mddev, struct bio *bio)
485 {
486         spin_lock_irq(&mddev->write_lock);
487         wait_event_lock_irq(mddev->sb_wait,
488                             !mddev->flush_bio,
489                             mddev->write_lock, /*nothing*/);
490         mddev->flush_bio = bio;
491         spin_unlock_irq(&mddev->write_lock);
492
493         INIT_WORK(&mddev->flush_work, submit_flushes);
494         queue_work(md_wq, &mddev->flush_work);
495 }
496 EXPORT_SYMBOL(md_flush_request);
497
498 /* Support for plugging.
499  * This mirrors the plugging support in request_queue, but does not
500  * require having a whole queue or request structures.
501  * We allocate an md_plug_cb for each md device and each thread it gets
502  * plugged on.  This links tot the private plug_handle structure in the
503  * personality data where we keep a count of the number of outstanding
504  * plugs so other code can see if a plug is active.
505  */
506 struct md_plug_cb {
507         struct blk_plug_cb cb;
508         struct mddev *mddev;
509 };
510
511 static void plugger_unplug(struct blk_plug_cb *cb)
512 {
513         struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
514         if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
515                 md_wakeup_thread(mdcb->mddev->thread);
516         kfree(mdcb);
517 }
518
519 /* Check that an unplug wakeup will come shortly.
520  * If not, wakeup the md thread immediately
521  */
522 int mddev_check_plugged(struct mddev *mddev)
523 {
524         struct blk_plug *plug = current->plug;
525         struct md_plug_cb *mdcb;
526
527         if (!plug)
528                 return 0;
529
530         list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
531                 if (mdcb->cb.callback == plugger_unplug &&
532                     mdcb->mddev == mddev) {
533                         /* Already on the list, move to top */
534                         if (mdcb != list_first_entry(&plug->cb_list,
535                                                     struct md_plug_cb,
536                                                     cb.list))
537                                 list_move(&mdcb->cb.list, &plug->cb_list);
538                         return 1;
539                 }
540         }
541         /* Not currently on the callback list */
542         mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
543         if (!mdcb)
544                 return 0;
545
546         mdcb->mddev = mddev;
547         mdcb->cb.callback = plugger_unplug;
548         atomic_inc(&mddev->plug_cnt);
549         list_add(&mdcb->cb.list, &plug->cb_list);
550         return 1;
551 }
552 EXPORT_SYMBOL_GPL(mddev_check_plugged);
553
554 static inline struct mddev *mddev_get(struct mddev *mddev)
555 {
556         atomic_inc(&mddev->active);
557         return mddev;
558 }
559
560 static void mddev_delayed_delete(struct work_struct *ws);
561
562 static void mddev_put(struct mddev *mddev)
563 {
564         struct bio_set *bs = NULL;
565
566         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
567                 return;
568         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
569             mddev->ctime == 0 && !mddev->hold_active) {
570                 /* Array is not configured at all, and not held active,
571                  * so destroy it */
572                 list_del_init(&mddev->all_mddevs);
573                 bs = mddev->bio_set;
574                 mddev->bio_set = NULL;
575                 if (mddev->gendisk) {
576                         /* We did a probe so need to clean up.  Call
577                          * queue_work inside the spinlock so that
578                          * flush_workqueue() after mddev_find will
579                          * succeed in waiting for the work to be done.
580                          */
581                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
582                         queue_work(md_misc_wq, &mddev->del_work);
583                 } else
584                         kfree(mddev);
585         }
586         spin_unlock(&all_mddevs_lock);
587         if (bs)
588                 bioset_free(bs);
589 }
590
591 void mddev_init(struct mddev *mddev)
592 {
593         mutex_init(&mddev->open_mutex);
594         mutex_init(&mddev->reconfig_mutex);
595         mutex_init(&mddev->bitmap_info.mutex);
596         INIT_LIST_HEAD(&mddev->disks);
597         INIT_LIST_HEAD(&mddev->all_mddevs);
598         init_timer(&mddev->safemode_timer);
599         atomic_set(&mddev->active, 1);
600         atomic_set(&mddev->openers, 0);
601         atomic_set(&mddev->active_io, 0);
602         atomic_set(&mddev->plug_cnt, 0);
603         spin_lock_init(&mddev->write_lock);
604         atomic_set(&mddev->flush_pending, 0);
605         init_waitqueue_head(&mddev->sb_wait);
606         init_waitqueue_head(&mddev->recovery_wait);
607         mddev->reshape_position = MaxSector;
608         mddev->resync_min = 0;
609         mddev->resync_max = MaxSector;
610         mddev->level = LEVEL_NONE;
611 }
612 EXPORT_SYMBOL_GPL(mddev_init);
613
614 static struct mddev * mddev_find(dev_t unit)
615 {
616         struct mddev *mddev, *new = NULL;
617
618         if (unit && MAJOR(unit) != MD_MAJOR)
619                 unit &= ~((1<<MdpMinorShift)-1);
620
621  retry:
622         spin_lock(&all_mddevs_lock);
623
624         if (unit) {
625                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
626                         if (mddev->unit == unit) {
627                                 mddev_get(mddev);
628                                 spin_unlock(&all_mddevs_lock);
629                                 kfree(new);
630                                 return mddev;
631                         }
632
633                 if (new) {
634                         list_add(&new->all_mddevs, &all_mddevs);
635                         spin_unlock(&all_mddevs_lock);
636                         new->hold_active = UNTIL_IOCTL;
637                         return new;
638                 }
639         } else if (new) {
640                 /* find an unused unit number */
641                 static int next_minor = 512;
642                 int start = next_minor;
643                 int is_free = 0;
644                 int dev = 0;
645                 while (!is_free) {
646                         dev = MKDEV(MD_MAJOR, next_minor);
647                         next_minor++;
648                         if (next_minor > MINORMASK)
649                                 next_minor = 0;
650                         if (next_minor == start) {
651                                 /* Oh dear, all in use. */
652                                 spin_unlock(&all_mddevs_lock);
653                                 kfree(new);
654                                 return NULL;
655                         }
656                                 
657                         is_free = 1;
658                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
659                                 if (mddev->unit == dev) {
660                                         is_free = 0;
661                                         break;
662                                 }
663                 }
664                 new->unit = dev;
665                 new->md_minor = MINOR(dev);
666                 new->hold_active = UNTIL_STOP;
667                 list_add(&new->all_mddevs, &all_mddevs);
668                 spin_unlock(&all_mddevs_lock);
669                 return new;
670         }
671         spin_unlock(&all_mddevs_lock);
672
673         new = kzalloc(sizeof(*new), GFP_KERNEL);
674         if (!new)
675                 return NULL;
676
677         new->unit = unit;
678         if (MAJOR(unit) == MD_MAJOR)
679                 new->md_minor = MINOR(unit);
680         else
681                 new->md_minor = MINOR(unit) >> MdpMinorShift;
682
683         mddev_init(new);
684
685         goto retry;
686 }
687
688 static inline int mddev_lock(struct mddev * mddev)
689 {
690         return mutex_lock_interruptible(&mddev->reconfig_mutex);
691 }
692
693 static inline int mddev_is_locked(struct mddev *mddev)
694 {
695         return mutex_is_locked(&mddev->reconfig_mutex);
696 }
697
698 static inline int mddev_trylock(struct mddev * mddev)
699 {
700         return mutex_trylock(&mddev->reconfig_mutex);
701 }
702
703 static struct attribute_group md_redundancy_group;
704
705 static void mddev_unlock(struct mddev * mddev)
706 {
707         if (mddev->to_remove) {
708                 /* These cannot be removed under reconfig_mutex as
709                  * an access to the files will try to take reconfig_mutex
710                  * while holding the file unremovable, which leads to
711                  * a deadlock.
712                  * So hold set sysfs_active while the remove in happeing,
713                  * and anything else which might set ->to_remove or my
714                  * otherwise change the sysfs namespace will fail with
715                  * -EBUSY if sysfs_active is still set.
716                  * We set sysfs_active under reconfig_mutex and elsewhere
717                  * test it under the same mutex to ensure its correct value
718                  * is seen.
719                  */
720                 struct attribute_group *to_remove = mddev->to_remove;
721                 mddev->to_remove = NULL;
722                 mddev->sysfs_active = 1;
723                 mutex_unlock(&mddev->reconfig_mutex);
724
725                 if (mddev->kobj.sd) {
726                         if (to_remove != &md_redundancy_group)
727                                 sysfs_remove_group(&mddev->kobj, to_remove);
728                         if (mddev->pers == NULL ||
729                             mddev->pers->sync_request == NULL) {
730                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
731                                 if (mddev->sysfs_action)
732                                         sysfs_put(mddev->sysfs_action);
733                                 mddev->sysfs_action = NULL;
734                         }
735                 }
736                 mddev->sysfs_active = 0;
737         } else
738                 mutex_unlock(&mddev->reconfig_mutex);
739
740         /* As we've dropped the mutex we need a spinlock to
741          * make sure the thread doesn't disappear
742          */
743         spin_lock(&pers_lock);
744         md_wakeup_thread(mddev->thread);
745         spin_unlock(&pers_lock);
746 }
747
748 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
749 {
750         struct md_rdev *rdev;
751
752         list_for_each_entry(rdev, &mddev->disks, same_set)
753                 if (rdev->desc_nr == nr)
754                         return rdev;
755
756         return NULL;
757 }
758
759 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
760 {
761         struct md_rdev *rdev;
762
763         list_for_each_entry(rdev, &mddev->disks, same_set)
764                 if (rdev->bdev->bd_dev == dev)
765                         return rdev;
766
767         return NULL;
768 }
769
770 static struct md_personality *find_pers(int level, char *clevel)
771 {
772         struct md_personality *pers;
773         list_for_each_entry(pers, &pers_list, list) {
774                 if (level != LEVEL_NONE && pers->level == level)
775                         return pers;
776                 if (strcmp(pers->name, clevel)==0)
777                         return pers;
778         }
779         return NULL;
780 }
781
782 /* return the offset of the super block in 512byte sectors */
783 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
784 {
785         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
786         return MD_NEW_SIZE_SECTORS(num_sectors);
787 }
788
789 static int alloc_disk_sb(struct md_rdev * rdev)
790 {
791         if (rdev->sb_page)
792                 MD_BUG();
793
794         rdev->sb_page = alloc_page(GFP_KERNEL);
795         if (!rdev->sb_page) {
796                 printk(KERN_ALERT "md: out of memory.\n");
797                 return -ENOMEM;
798         }
799
800         return 0;
801 }
802
803 static void free_disk_sb(struct md_rdev * rdev)
804 {
805         if (rdev->sb_page) {
806                 put_page(rdev->sb_page);
807                 rdev->sb_loaded = 0;
808                 rdev->sb_page = NULL;
809                 rdev->sb_start = 0;
810                 rdev->sectors = 0;
811         }
812         if (rdev->bb_page) {
813                 put_page(rdev->bb_page);
814                 rdev->bb_page = NULL;
815         }
816 }
817
818
819 static void super_written(struct bio *bio, int error)
820 {
821         struct md_rdev *rdev = bio->bi_private;
822         struct mddev *mddev = rdev->mddev;
823
824         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
825                 printk("md: super_written gets error=%d, uptodate=%d\n",
826                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
827                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
828                 md_error(mddev, rdev);
829         }
830
831         if (atomic_dec_and_test(&mddev->pending_writes))
832                 wake_up(&mddev->sb_wait);
833         bio_put(bio);
834 }
835
836 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
837                    sector_t sector, int size, struct page *page)
838 {
839         /* write first size bytes of page to sector of rdev
840          * Increment mddev->pending_writes before returning
841          * and decrement it on completion, waking up sb_wait
842          * if zero is reached.
843          * If an error occurred, call md_error
844          */
845         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
846
847         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
848         bio->bi_sector = sector;
849         bio_add_page(bio, page, size, 0);
850         bio->bi_private = rdev;
851         bio->bi_end_io = super_written;
852
853         atomic_inc(&mddev->pending_writes);
854         submit_bio(WRITE_FLUSH_FUA, bio);
855 }
856
857 void md_super_wait(struct mddev *mddev)
858 {
859         /* wait for all superblock writes that were scheduled to complete */
860         DEFINE_WAIT(wq);
861         for(;;) {
862                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
863                 if (atomic_read(&mddev->pending_writes)==0)
864                         break;
865                 schedule();
866         }
867         finish_wait(&mddev->sb_wait, &wq);
868 }
869
870 static void bi_complete(struct bio *bio, int error)
871 {
872         complete((struct completion*)bio->bi_private);
873 }
874
875 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
876                  struct page *page, int rw, bool metadata_op)
877 {
878         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
879         struct completion event;
880         int ret;
881
882         rw |= REQ_SYNC;
883
884         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
885                 rdev->meta_bdev : rdev->bdev;
886         if (metadata_op)
887                 bio->bi_sector = sector + rdev->sb_start;
888         else
889                 bio->bi_sector = sector + rdev->data_offset;
890         bio_add_page(bio, page, size, 0);
891         init_completion(&event);
892         bio->bi_private = &event;
893         bio->bi_end_io = bi_complete;
894         submit_bio(rw, bio);
895         wait_for_completion(&event);
896
897         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
898         bio_put(bio);
899         return ret;
900 }
901 EXPORT_SYMBOL_GPL(sync_page_io);
902
903 static int read_disk_sb(struct md_rdev * rdev, int size)
904 {
905         char b[BDEVNAME_SIZE];
906         if (!rdev->sb_page) {
907                 MD_BUG();
908                 return -EINVAL;
909         }
910         if (rdev->sb_loaded)
911                 return 0;
912
913
914         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
915                 goto fail;
916         rdev->sb_loaded = 1;
917         return 0;
918
919 fail:
920         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
921                 bdevname(rdev->bdev,b));
922         return -EINVAL;
923 }
924
925 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
926 {
927         return  sb1->set_uuid0 == sb2->set_uuid0 &&
928                 sb1->set_uuid1 == sb2->set_uuid1 &&
929                 sb1->set_uuid2 == sb2->set_uuid2 &&
930                 sb1->set_uuid3 == sb2->set_uuid3;
931 }
932
933 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
934 {
935         int ret;
936         mdp_super_t *tmp1, *tmp2;
937
938         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
939         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
940
941         if (!tmp1 || !tmp2) {
942                 ret = 0;
943                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
944                 goto abort;
945         }
946
947         *tmp1 = *sb1;
948         *tmp2 = *sb2;
949
950         /*
951          * nr_disks is not constant
952          */
953         tmp1->nr_disks = 0;
954         tmp2->nr_disks = 0;
955
956         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
957 abort:
958         kfree(tmp1);
959         kfree(tmp2);
960         return ret;
961 }
962
963
964 static u32 md_csum_fold(u32 csum)
965 {
966         csum = (csum & 0xffff) + (csum >> 16);
967         return (csum & 0xffff) + (csum >> 16);
968 }
969
970 static unsigned int calc_sb_csum(mdp_super_t * sb)
971 {
972         u64 newcsum = 0;
973         u32 *sb32 = (u32*)sb;
974         int i;
975         unsigned int disk_csum, csum;
976
977         disk_csum = sb->sb_csum;
978         sb->sb_csum = 0;
979
980         for (i = 0; i < MD_SB_BYTES/4 ; i++)
981                 newcsum += sb32[i];
982         csum = (newcsum & 0xffffffff) + (newcsum>>32);
983
984
985 #ifdef CONFIG_ALPHA
986         /* This used to use csum_partial, which was wrong for several
987          * reasons including that different results are returned on
988          * different architectures.  It isn't critical that we get exactly
989          * the same return value as before (we always csum_fold before
990          * testing, and that removes any differences).  However as we
991          * know that csum_partial always returned a 16bit value on
992          * alphas, do a fold to maximise conformity to previous behaviour.
993          */
994         sb->sb_csum = md_csum_fold(disk_csum);
995 #else
996         sb->sb_csum = disk_csum;
997 #endif
998         return csum;
999 }
1000
1001
1002 /*
1003  * Handle superblock details.
1004  * We want to be able to handle multiple superblock formats
1005  * so we have a common interface to them all, and an array of
1006  * different handlers.
1007  * We rely on user-space to write the initial superblock, and support
1008  * reading and updating of superblocks.
1009  * Interface methods are:
1010  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1011  *      loads and validates a superblock on dev.
1012  *      if refdev != NULL, compare superblocks on both devices
1013  *    Return:
1014  *      0 - dev has a superblock that is compatible with refdev
1015  *      1 - dev has a superblock that is compatible and newer than refdev
1016  *          so dev should be used as the refdev in future
1017  *     -EINVAL superblock incompatible or invalid
1018  *     -othererror e.g. -EIO
1019  *
1020  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1021  *      Verify that dev is acceptable into mddev.
1022  *       The first time, mddev->raid_disks will be 0, and data from
1023  *       dev should be merged in.  Subsequent calls check that dev
1024  *       is new enough.  Return 0 or -EINVAL
1025  *
1026  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1027  *     Update the superblock for rdev with data in mddev
1028  *     This does not write to disc.
1029  *
1030  */
1031
1032 struct super_type  {
1033         char                *name;
1034         struct module       *owner;
1035         int                 (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1036                                           int minor_version);
1037         int                 (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1038         void                (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1039         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1040                                                 sector_t num_sectors);
1041 };
1042
1043 /*
1044  * Check that the given mddev has no bitmap.
1045  *
1046  * This function is called from the run method of all personalities that do not
1047  * support bitmaps. It prints an error message and returns non-zero if mddev
1048  * has a bitmap. Otherwise, it returns 0.
1049  *
1050  */
1051 int md_check_no_bitmap(struct mddev *mddev)
1052 {
1053         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1054                 return 0;
1055         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1056                 mdname(mddev), mddev->pers->name);
1057         return 1;
1058 }
1059 EXPORT_SYMBOL(md_check_no_bitmap);
1060
1061 /*
1062  * load_super for 0.90.0 
1063  */
1064 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1065 {
1066         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1067         mdp_super_t *sb;
1068         int ret;
1069
1070         /*
1071          * Calculate the position of the superblock (512byte sectors),
1072          * it's at the end of the disk.
1073          *
1074          * It also happens to be a multiple of 4Kb.
1075          */
1076         rdev->sb_start = calc_dev_sboffset(rdev);
1077
1078         ret = read_disk_sb(rdev, MD_SB_BYTES);
1079         if (ret) return ret;
1080
1081         ret = -EINVAL;
1082
1083         bdevname(rdev->bdev, b);
1084         sb = page_address(rdev->sb_page);
1085
1086         if (sb->md_magic != MD_SB_MAGIC) {
1087                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1088                        b);
1089                 goto abort;
1090         }
1091
1092         if (sb->major_version != 0 ||
1093             sb->minor_version < 90 ||
1094             sb->minor_version > 91) {
1095                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1096                         sb->major_version, sb->minor_version,
1097                         b);
1098                 goto abort;
1099         }
1100
1101         if (sb->raid_disks <= 0)
1102                 goto abort;
1103
1104         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1105                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1106                         b);
1107                 goto abort;
1108         }
1109
1110         rdev->preferred_minor = sb->md_minor;
1111         rdev->data_offset = 0;
1112         rdev->sb_size = MD_SB_BYTES;
1113         rdev->badblocks.shift = -1;
1114
1115         if (sb->level == LEVEL_MULTIPATH)
1116                 rdev->desc_nr = -1;
1117         else
1118                 rdev->desc_nr = sb->this_disk.number;
1119
1120         if (!refdev) {
1121                 ret = 1;
1122         } else {
1123                 __u64 ev1, ev2;
1124                 mdp_super_t *refsb = page_address(refdev->sb_page);
1125                 if (!uuid_equal(refsb, sb)) {
1126                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1127                                 b, bdevname(refdev->bdev,b2));
1128                         goto abort;
1129                 }
1130                 if (!sb_equal(refsb, sb)) {
1131                         printk(KERN_WARNING "md: %s has same UUID"
1132                                " but different superblock to %s\n",
1133                                b, bdevname(refdev->bdev, b2));
1134                         goto abort;
1135                 }
1136                 ev1 = md_event(sb);
1137                 ev2 = md_event(refsb);
1138                 if (ev1 > ev2)
1139                         ret = 1;
1140                 else 
1141                         ret = 0;
1142         }
1143         rdev->sectors = rdev->sb_start;
1144         /* Limit to 4TB as metadata cannot record more than that */
1145         if (rdev->sectors >= (2ULL << 32))
1146                 rdev->sectors = (2ULL << 32) - 2;
1147
1148         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1149                 /* "this cannot possibly happen" ... */
1150                 ret = -EINVAL;
1151
1152  abort:
1153         return ret;
1154 }
1155
1156 /*
1157  * validate_super for 0.90.0
1158  */
1159 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1160 {
1161         mdp_disk_t *desc;
1162         mdp_super_t *sb = page_address(rdev->sb_page);
1163         __u64 ev1 = md_event(sb);
1164
1165         rdev->raid_disk = -1;
1166         clear_bit(Faulty, &rdev->flags);
1167         clear_bit(In_sync, &rdev->flags);
1168         clear_bit(WriteMostly, &rdev->flags);
1169
1170         if (mddev->raid_disks == 0) {
1171                 mddev->major_version = 0;
1172                 mddev->minor_version = sb->minor_version;
1173                 mddev->patch_version = sb->patch_version;
1174                 mddev->external = 0;
1175                 mddev->chunk_sectors = sb->chunk_size >> 9;
1176                 mddev->ctime = sb->ctime;
1177                 mddev->utime = sb->utime;
1178                 mddev->level = sb->level;
1179                 mddev->clevel[0] = 0;
1180                 mddev->layout = sb->layout;
1181                 mddev->raid_disks = sb->raid_disks;
1182                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1183                 mddev->events = ev1;
1184                 mddev->bitmap_info.offset = 0;
1185                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1186
1187                 if (mddev->minor_version >= 91) {
1188                         mddev->reshape_position = sb->reshape_position;
1189                         mddev->delta_disks = sb->delta_disks;
1190                         mddev->new_level = sb->new_level;
1191                         mddev->new_layout = sb->new_layout;
1192                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1193                 } else {
1194                         mddev->reshape_position = MaxSector;
1195                         mddev->delta_disks = 0;
1196                         mddev->new_level = mddev->level;
1197                         mddev->new_layout = mddev->layout;
1198                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1199                 }
1200
1201                 if (sb->state & (1<<MD_SB_CLEAN))
1202                         mddev->recovery_cp = MaxSector;
1203                 else {
1204                         if (sb->events_hi == sb->cp_events_hi && 
1205                                 sb->events_lo == sb->cp_events_lo) {
1206                                 mddev->recovery_cp = sb->recovery_cp;
1207                         } else
1208                                 mddev->recovery_cp = 0;
1209                 }
1210
1211                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1212                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1213                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1214                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1215
1216                 mddev->max_disks = MD_SB_DISKS;
1217
1218                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1219                     mddev->bitmap_info.file == NULL)
1220                         mddev->bitmap_info.offset =
1221                                 mddev->bitmap_info.default_offset;
1222
1223         } else if (mddev->pers == NULL) {
1224                 /* Insist on good event counter while assembling, except
1225                  * for spares (which don't need an event count) */
1226                 ++ev1;
1227                 if (sb->disks[rdev->desc_nr].state & (
1228                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1229                         if (ev1 < mddev->events) 
1230                                 return -EINVAL;
1231         } else if (mddev->bitmap) {
1232                 /* if adding to array with a bitmap, then we can accept an
1233                  * older device ... but not too old.
1234                  */
1235                 if (ev1 < mddev->bitmap->events_cleared)
1236                         return 0;
1237         } else {
1238                 if (ev1 < mddev->events)
1239                         /* just a hot-add of a new device, leave raid_disk at -1 */
1240                         return 0;
1241         }
1242
1243         if (mddev->level != LEVEL_MULTIPATH) {
1244                 desc = sb->disks + rdev->desc_nr;
1245
1246                 if (desc->state & (1<<MD_DISK_FAULTY))
1247                         set_bit(Faulty, &rdev->flags);
1248                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1249                             desc->raid_disk < mddev->raid_disks */) {
1250                         set_bit(In_sync, &rdev->flags);
1251                         rdev->raid_disk = desc->raid_disk;
1252                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1253                         /* active but not in sync implies recovery up to
1254                          * reshape position.  We don't know exactly where
1255                          * that is, so set to zero for now */
1256                         if (mddev->minor_version >= 91) {
1257                                 rdev->recovery_offset = 0;
1258                                 rdev->raid_disk = desc->raid_disk;
1259                         }
1260                 }
1261                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1262                         set_bit(WriteMostly, &rdev->flags);
1263         } else /* MULTIPATH are always insync */
1264                 set_bit(In_sync, &rdev->flags);
1265         return 0;
1266 }
1267
1268 /*
1269  * sync_super for 0.90.0
1270  */
1271 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1272 {
1273         mdp_super_t *sb;
1274         struct md_rdev *rdev2;
1275         int next_spare = mddev->raid_disks;
1276
1277
1278         /* make rdev->sb match mddev data..
1279          *
1280          * 1/ zero out disks
1281          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1282          * 3/ any empty disks < next_spare become removed
1283          *
1284          * disks[0] gets initialised to REMOVED because
1285          * we cannot be sure from other fields if it has
1286          * been initialised or not.
1287          */
1288         int i;
1289         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1290
1291         rdev->sb_size = MD_SB_BYTES;
1292
1293         sb = page_address(rdev->sb_page);
1294
1295         memset(sb, 0, sizeof(*sb));
1296
1297         sb->md_magic = MD_SB_MAGIC;
1298         sb->major_version = mddev->major_version;
1299         sb->patch_version = mddev->patch_version;
1300         sb->gvalid_words  = 0; /* ignored */
1301         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1302         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1303         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1304         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1305
1306         sb->ctime = mddev->ctime;
1307         sb->level = mddev->level;
1308         sb->size = mddev->dev_sectors / 2;
1309         sb->raid_disks = mddev->raid_disks;
1310         sb->md_minor = mddev->md_minor;
1311         sb->not_persistent = 0;
1312         sb->utime = mddev->utime;
1313         sb->state = 0;
1314         sb->events_hi = (mddev->events>>32);
1315         sb->events_lo = (u32)mddev->events;
1316
1317         if (mddev->reshape_position == MaxSector)
1318                 sb->minor_version = 90;
1319         else {
1320                 sb->minor_version = 91;
1321                 sb->reshape_position = mddev->reshape_position;
1322                 sb->new_level = mddev->new_level;
1323                 sb->delta_disks = mddev->delta_disks;
1324                 sb->new_layout = mddev->new_layout;
1325                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1326         }
1327         mddev->minor_version = sb->minor_version;
1328         if (mddev->in_sync)
1329         {
1330                 sb->recovery_cp = mddev->recovery_cp;
1331                 sb->cp_events_hi = (mddev->events>>32);
1332                 sb->cp_events_lo = (u32)mddev->events;
1333                 if (mddev->recovery_cp == MaxSector)
1334                         sb->state = (1<< MD_SB_CLEAN);
1335         } else
1336                 sb->recovery_cp = 0;
1337
1338         sb->layout = mddev->layout;
1339         sb->chunk_size = mddev->chunk_sectors << 9;
1340
1341         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1342                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1343
1344         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1345         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1346                 mdp_disk_t *d;
1347                 int desc_nr;
1348                 int is_active = test_bit(In_sync, &rdev2->flags);
1349
1350                 if (rdev2->raid_disk >= 0 &&
1351                     sb->minor_version >= 91)
1352                         /* we have nowhere to store the recovery_offset,
1353                          * but if it is not below the reshape_position,
1354                          * we can piggy-back on that.
1355                          */
1356                         is_active = 1;
1357                 if (rdev2->raid_disk < 0 ||
1358                     test_bit(Faulty, &rdev2->flags))
1359                         is_active = 0;
1360                 if (is_active)
1361                         desc_nr = rdev2->raid_disk;
1362                 else
1363                         desc_nr = next_spare++;
1364                 rdev2->desc_nr = desc_nr;
1365                 d = &sb->disks[rdev2->desc_nr];
1366                 nr_disks++;
1367                 d->number = rdev2->desc_nr;
1368                 d->major = MAJOR(rdev2->bdev->bd_dev);
1369                 d->minor = MINOR(rdev2->bdev->bd_dev);
1370                 if (is_active)
1371                         d->raid_disk = rdev2->raid_disk;
1372                 else
1373                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1374                 if (test_bit(Faulty, &rdev2->flags))
1375                         d->state = (1<<MD_DISK_FAULTY);
1376                 else if (is_active) {
1377                         d->state = (1<<MD_DISK_ACTIVE);
1378                         if (test_bit(In_sync, &rdev2->flags))
1379                                 d->state |= (1<<MD_DISK_SYNC);
1380                         active++;
1381                         working++;
1382                 } else {
1383                         d->state = 0;
1384                         spare++;
1385                         working++;
1386                 }
1387                 if (test_bit(WriteMostly, &rdev2->flags))
1388                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1389         }
1390         /* now set the "removed" and "faulty" bits on any missing devices */
1391         for (i=0 ; i < mddev->raid_disks ; i++) {
1392                 mdp_disk_t *d = &sb->disks[i];
1393                 if (d->state == 0 && d->number == 0) {
1394                         d->number = i;
1395                         d->raid_disk = i;
1396                         d->state = (1<<MD_DISK_REMOVED);
1397                         d->state |= (1<<MD_DISK_FAULTY);
1398                         failed++;
1399                 }
1400         }
1401         sb->nr_disks = nr_disks;
1402         sb->active_disks = active;
1403         sb->working_disks = working;
1404         sb->failed_disks = failed;
1405         sb->spare_disks = spare;
1406
1407         sb->this_disk = sb->disks[rdev->desc_nr];
1408         sb->sb_csum = calc_sb_csum(sb);
1409 }
1410
1411 /*
1412  * rdev_size_change for 0.90.0
1413  */
1414 static unsigned long long
1415 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1416 {
1417         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1418                 return 0; /* component must fit device */
1419         if (rdev->mddev->bitmap_info.offset)
1420                 return 0; /* can't move bitmap */
1421         rdev->sb_start = calc_dev_sboffset(rdev);
1422         if (!num_sectors || num_sectors > rdev->sb_start)
1423                 num_sectors = rdev->sb_start;
1424         /* Limit to 4TB as metadata cannot record more than that.
1425          * 4TB == 2^32 KB, or 2*2^32 sectors.
1426          */
1427         if (num_sectors >= (2ULL << 32))
1428                 num_sectors = (2ULL << 32) - 2;
1429         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1430                        rdev->sb_page);
1431         md_super_wait(rdev->mddev);
1432         return num_sectors;
1433 }
1434
1435
1436 /*
1437  * version 1 superblock
1438  */
1439
1440 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1441 {
1442         __le32 disk_csum;
1443         u32 csum;
1444         unsigned long long newcsum;
1445         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1446         __le32 *isuper = (__le32*)sb;
1447         int i;
1448
1449         disk_csum = sb->sb_csum;
1450         sb->sb_csum = 0;
1451         newcsum = 0;
1452         for (i=0; size>=4; size -= 4 )
1453                 newcsum += le32_to_cpu(*isuper++);
1454
1455         if (size == 2)
1456                 newcsum += le16_to_cpu(*(__le16*) isuper);
1457
1458         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1459         sb->sb_csum = disk_csum;
1460         return cpu_to_le32(csum);
1461 }
1462
1463 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1464                             int acknowledged);
1465 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1466 {
1467         struct mdp_superblock_1 *sb;
1468         int ret;
1469         sector_t sb_start;
1470         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1471         int bmask;
1472
1473         /*
1474          * Calculate the position of the superblock in 512byte sectors.
1475          * It is always aligned to a 4K boundary and
1476          * depeding on minor_version, it can be:
1477          * 0: At least 8K, but less than 12K, from end of device
1478          * 1: At start of device
1479          * 2: 4K from start of device.
1480          */
1481         switch(minor_version) {
1482         case 0:
1483                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1484                 sb_start -= 8*2;
1485                 sb_start &= ~(sector_t)(4*2-1);
1486                 break;
1487         case 1:
1488                 sb_start = 0;
1489                 break;
1490         case 2:
1491                 sb_start = 8;
1492                 break;
1493         default:
1494                 return -EINVAL;
1495         }
1496         rdev->sb_start = sb_start;
1497
1498         /* superblock is rarely larger than 1K, but it can be larger,
1499          * and it is safe to read 4k, so we do that
1500          */
1501         ret = read_disk_sb(rdev, 4096);
1502         if (ret) return ret;
1503
1504
1505         sb = page_address(rdev->sb_page);
1506
1507         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1508             sb->major_version != cpu_to_le32(1) ||
1509             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1510             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1511             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1512                 return -EINVAL;
1513
1514         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1515                 printk("md: invalid superblock checksum on %s\n",
1516                         bdevname(rdev->bdev,b));
1517                 return -EINVAL;
1518         }
1519         if (le64_to_cpu(sb->data_size) < 10) {
1520                 printk("md: data_size too small on %s\n",
1521                        bdevname(rdev->bdev,b));
1522                 return -EINVAL;
1523         }
1524
1525         rdev->preferred_minor = 0xffff;
1526         rdev->data_offset = le64_to_cpu(sb->data_offset);
1527         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1528
1529         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1530         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1531         if (rdev->sb_size & bmask)
1532                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1533
1534         if (minor_version
1535             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1536                 return -EINVAL;
1537
1538         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1539                 rdev->desc_nr = -1;
1540         else
1541                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1542
1543         if (!rdev->bb_page) {
1544                 rdev->bb_page = alloc_page(GFP_KERNEL);
1545                 if (!rdev->bb_page)
1546                         return -ENOMEM;
1547         }
1548         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1549             rdev->badblocks.count == 0) {
1550                 /* need to load the bad block list.
1551                  * Currently we limit it to one page.
1552                  */
1553                 s32 offset;
1554                 sector_t bb_sector;
1555                 u64 *bbp;
1556                 int i;
1557                 int sectors = le16_to_cpu(sb->bblog_size);
1558                 if (sectors > (PAGE_SIZE / 512))
1559                         return -EINVAL;
1560                 offset = le32_to_cpu(sb->bblog_offset);
1561                 if (offset == 0)
1562                         return -EINVAL;
1563                 bb_sector = (long long)offset;
1564                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1565                                   rdev->bb_page, READ, true))
1566                         return -EIO;
1567                 bbp = (u64 *)page_address(rdev->bb_page);
1568                 rdev->badblocks.shift = sb->bblog_shift;
1569                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1570                         u64 bb = le64_to_cpu(*bbp);
1571                         int count = bb & (0x3ff);
1572                         u64 sector = bb >> 10;
1573                         sector <<= sb->bblog_shift;
1574                         count <<= sb->bblog_shift;
1575                         if (bb + 1 == 0)
1576                                 break;
1577                         if (md_set_badblocks(&rdev->badblocks,
1578                                              sector, count, 1) == 0)
1579                                 return -EINVAL;
1580                 }
1581         } else if (sb->bblog_offset == 0)
1582                 rdev->badblocks.shift = -1;
1583
1584         if (!refdev) {
1585                 ret = 1;
1586         } else {
1587                 __u64 ev1, ev2;
1588                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1589
1590                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1591                     sb->level != refsb->level ||
1592                     sb->layout != refsb->layout ||
1593                     sb->chunksize != refsb->chunksize) {
1594                         printk(KERN_WARNING "md: %s has strangely different"
1595                                 " superblock to %s\n",
1596                                 bdevname(rdev->bdev,b),
1597                                 bdevname(refdev->bdev,b2));
1598                         return -EINVAL;
1599                 }
1600                 ev1 = le64_to_cpu(sb->events);
1601                 ev2 = le64_to_cpu(refsb->events);
1602
1603                 if (ev1 > ev2)
1604                         ret = 1;
1605                 else
1606                         ret = 0;
1607         }
1608         if (minor_version)
1609                 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1610                         le64_to_cpu(sb->data_offset);
1611         else
1612                 rdev->sectors = rdev->sb_start;
1613         if (rdev->sectors < le64_to_cpu(sb->data_size))
1614                 return -EINVAL;
1615         rdev->sectors = le64_to_cpu(sb->data_size);
1616         if (le64_to_cpu(sb->size) > rdev->sectors)
1617                 return -EINVAL;
1618         return ret;
1619 }
1620
1621 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1622 {
1623         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1624         __u64 ev1 = le64_to_cpu(sb->events);
1625
1626         rdev->raid_disk = -1;
1627         clear_bit(Faulty, &rdev->flags);
1628         clear_bit(In_sync, &rdev->flags);
1629         clear_bit(WriteMostly, &rdev->flags);
1630
1631         if (mddev->raid_disks == 0) {
1632                 mddev->major_version = 1;
1633                 mddev->patch_version = 0;
1634                 mddev->external = 0;
1635                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1636                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1637                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1638                 mddev->level = le32_to_cpu(sb->level);
1639                 mddev->clevel[0] = 0;
1640                 mddev->layout = le32_to_cpu(sb->layout);
1641                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1642                 mddev->dev_sectors = le64_to_cpu(sb->size);
1643                 mddev->events = ev1;
1644                 mddev->bitmap_info.offset = 0;
1645                 mddev->bitmap_info.default_offset = 1024 >> 9;
1646                 
1647                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1648                 memcpy(mddev->uuid, sb->set_uuid, 16);
1649
1650                 mddev->max_disks =  (4096-256)/2;
1651
1652                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1653                     mddev->bitmap_info.file == NULL )
1654                         mddev->bitmap_info.offset =
1655                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1656
1657                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1658                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1659                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1660                         mddev->new_level = le32_to_cpu(sb->new_level);
1661                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1662                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1663                 } else {
1664                         mddev->reshape_position = MaxSector;
1665                         mddev->delta_disks = 0;
1666                         mddev->new_level = mddev->level;
1667                         mddev->new_layout = mddev->layout;
1668                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1669                 }
1670
1671         } else if (mddev->pers == NULL) {
1672                 /* Insist of good event counter while assembling, except for
1673                  * spares (which don't need an event count) */
1674                 ++ev1;
1675                 if (rdev->desc_nr >= 0 &&
1676                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1677                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1678                         if (ev1 < mddev->events)
1679                                 return -EINVAL;
1680         } else if (mddev->bitmap) {
1681                 /* If adding to array with a bitmap, then we can accept an
1682                  * older device, but not too old.
1683                  */
1684                 if (ev1 < mddev->bitmap->events_cleared)
1685                         return 0;
1686         } else {
1687                 if (ev1 < mddev->events)
1688                         /* just a hot-add of a new device, leave raid_disk at -1 */
1689                         return 0;
1690         }
1691         if (mddev->level != LEVEL_MULTIPATH) {
1692                 int role;
1693                 if (rdev->desc_nr < 0 ||
1694                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1695                         role = 0xffff;
1696                         rdev->desc_nr = -1;
1697                 } else
1698                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1699                 switch(role) {
1700                 case 0xffff: /* spare */
1701                         break;
1702                 case 0xfffe: /* faulty */
1703                         set_bit(Faulty, &rdev->flags);
1704                         break;
1705                 default:
1706                         if ((le32_to_cpu(sb->feature_map) &
1707                              MD_FEATURE_RECOVERY_OFFSET))
1708                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1709                         else
1710                                 set_bit(In_sync, &rdev->flags);
1711                         rdev->raid_disk = role;
1712                         break;
1713                 }
1714                 if (sb->devflags & WriteMostly1)
1715                         set_bit(WriteMostly, &rdev->flags);
1716                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1717                         set_bit(Replacement, &rdev->flags);
1718         } else /* MULTIPATH are always insync */
1719                 set_bit(In_sync, &rdev->flags);
1720
1721         return 0;
1722 }
1723
1724 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1725 {
1726         struct mdp_superblock_1 *sb;
1727         struct md_rdev *rdev2;
1728         int max_dev, i;
1729         /* make rdev->sb match mddev and rdev data. */
1730
1731         sb = page_address(rdev->sb_page);
1732
1733         sb->feature_map = 0;
1734         sb->pad0 = 0;
1735         sb->recovery_offset = cpu_to_le64(0);
1736         memset(sb->pad1, 0, sizeof(sb->pad1));
1737         memset(sb->pad3, 0, sizeof(sb->pad3));
1738
1739         sb->utime = cpu_to_le64((__u64)mddev->utime);
1740         sb->events = cpu_to_le64(mddev->events);
1741         if (mddev->in_sync)
1742                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1743         else
1744                 sb->resync_offset = cpu_to_le64(0);
1745
1746         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1747
1748         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1749         sb->size = cpu_to_le64(mddev->dev_sectors);
1750         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1751         sb->level = cpu_to_le32(mddev->level);
1752         sb->layout = cpu_to_le32(mddev->layout);
1753
1754         if (test_bit(WriteMostly, &rdev->flags))
1755                 sb->devflags |= WriteMostly1;
1756         else
1757                 sb->devflags &= ~WriteMostly1;
1758
1759         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1760                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1761                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1762         }
1763
1764         if (rdev->raid_disk >= 0 &&
1765             !test_bit(In_sync, &rdev->flags)) {
1766                 sb->feature_map |=
1767                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1768                 sb->recovery_offset =
1769                         cpu_to_le64(rdev->recovery_offset);
1770         }
1771         if (test_bit(Replacement, &rdev->flags))
1772                 sb->feature_map |=
1773                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1774
1775         if (mddev->reshape_position != MaxSector) {
1776                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1777                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1778                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1779                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1780                 sb->new_level = cpu_to_le32(mddev->new_level);
1781                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1782         }
1783
1784         if (rdev->badblocks.count == 0)
1785                 /* Nothing to do for bad blocks*/ ;
1786         else if (sb->bblog_offset == 0)
1787                 /* Cannot record bad blocks on this device */
1788                 md_error(mddev, rdev);
1789         else {
1790                 struct badblocks *bb = &rdev->badblocks;
1791                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1792                 u64 *p = bb->page;
1793                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1794                 if (bb->changed) {
1795                         unsigned seq;
1796
1797 retry:
1798                         seq = read_seqbegin(&bb->lock);
1799
1800                         memset(bbp, 0xff, PAGE_SIZE);
1801
1802                         for (i = 0 ; i < bb->count ; i++) {
1803                                 u64 internal_bb = *p++;
1804                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1805                                                 | BB_LEN(internal_bb));
1806                                 *bbp++ = cpu_to_le64(store_bb);
1807                         }
1808                         if (read_seqretry(&bb->lock, seq))
1809                                 goto retry;
1810
1811                         bb->sector = (rdev->sb_start +
1812                                       (int)le32_to_cpu(sb->bblog_offset));
1813                         bb->size = le16_to_cpu(sb->bblog_size);
1814                         bb->changed = 0;
1815                 }
1816         }
1817
1818         max_dev = 0;
1819         list_for_each_entry(rdev2, &mddev->disks, same_set)
1820                 if (rdev2->desc_nr+1 > max_dev)
1821                         max_dev = rdev2->desc_nr+1;
1822
1823         if (max_dev > le32_to_cpu(sb->max_dev)) {
1824                 int bmask;
1825                 sb->max_dev = cpu_to_le32(max_dev);
1826                 rdev->sb_size = max_dev * 2 + 256;
1827                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1828                 if (rdev->sb_size & bmask)
1829                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1830         } else
1831                 max_dev = le32_to_cpu(sb->max_dev);
1832
1833         for (i=0; i<max_dev;i++)
1834                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1835         
1836         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1837                 i = rdev2->desc_nr;
1838                 if (test_bit(Faulty, &rdev2->flags))
1839                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1840                 else if (test_bit(In_sync, &rdev2->flags))
1841                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1842                 else if (rdev2->raid_disk >= 0)
1843                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1844                 else
1845                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1846         }
1847
1848         sb->sb_csum = calc_sb_1_csum(sb);
1849 }
1850
1851 static unsigned long long
1852 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1853 {
1854         struct mdp_superblock_1 *sb;
1855         sector_t max_sectors;
1856         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1857                 return 0; /* component must fit device */
1858         if (rdev->sb_start < rdev->data_offset) {
1859                 /* minor versions 1 and 2; superblock before data */
1860                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1861                 max_sectors -= rdev->data_offset;
1862                 if (!num_sectors || num_sectors > max_sectors)
1863                         num_sectors = max_sectors;
1864         } else if (rdev->mddev->bitmap_info.offset) {
1865                 /* minor version 0 with bitmap we can't move */
1866                 return 0;
1867         } else {
1868                 /* minor version 0; superblock after data */
1869                 sector_t sb_start;
1870                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1871                 sb_start &= ~(sector_t)(4*2 - 1);
1872                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1873                 if (!num_sectors || num_sectors > max_sectors)
1874                         num_sectors = max_sectors;
1875                 rdev->sb_start = sb_start;
1876         }
1877         sb = page_address(rdev->sb_page);
1878         sb->data_size = cpu_to_le64(num_sectors);
1879         sb->super_offset = rdev->sb_start;
1880         sb->sb_csum = calc_sb_1_csum(sb);
1881         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1882                        rdev->sb_page);
1883         md_super_wait(rdev->mddev);
1884         return num_sectors;
1885 }
1886
1887 static struct super_type super_types[] = {
1888         [0] = {
1889                 .name   = "0.90.0",
1890                 .owner  = THIS_MODULE,
1891                 .load_super         = super_90_load,
1892                 .validate_super     = super_90_validate,
1893                 .sync_super         = super_90_sync,
1894                 .rdev_size_change   = super_90_rdev_size_change,
1895         },
1896         [1] = {
1897                 .name   = "md-1",
1898                 .owner  = THIS_MODULE,
1899                 .load_super         = super_1_load,
1900                 .validate_super     = super_1_validate,
1901                 .sync_super         = super_1_sync,
1902                 .rdev_size_change   = super_1_rdev_size_change,
1903         },
1904 };
1905
1906 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1907 {
1908         if (mddev->sync_super) {
1909                 mddev->sync_super(mddev, rdev);
1910                 return;
1911         }
1912
1913         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1914
1915         super_types[mddev->major_version].sync_super(mddev, rdev);
1916 }
1917
1918 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1919 {
1920         struct md_rdev *rdev, *rdev2;
1921
1922         rcu_read_lock();
1923         rdev_for_each_rcu(rdev, mddev1)
1924                 rdev_for_each_rcu(rdev2, mddev2)
1925                         if (rdev->bdev->bd_contains ==
1926                             rdev2->bdev->bd_contains) {
1927                                 rcu_read_unlock();
1928                                 return 1;
1929                         }
1930         rcu_read_unlock();
1931         return 0;
1932 }
1933
1934 static LIST_HEAD(pending_raid_disks);
1935
1936 /*
1937  * Try to register data integrity profile for an mddev
1938  *
1939  * This is called when an array is started and after a disk has been kicked
1940  * from the array. It only succeeds if all working and active component devices
1941  * are integrity capable with matching profiles.
1942  */
1943 int md_integrity_register(struct mddev *mddev)
1944 {
1945         struct md_rdev *rdev, *reference = NULL;
1946
1947         if (list_empty(&mddev->disks))
1948                 return 0; /* nothing to do */
1949         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1950                 return 0; /* shouldn't register, or already is */
1951         list_for_each_entry(rdev, &mddev->disks, same_set) {
1952                 /* skip spares and non-functional disks */
1953                 if (test_bit(Faulty, &rdev->flags))
1954                         continue;
1955                 if (rdev->raid_disk < 0)
1956                         continue;
1957                 if (!reference) {
1958                         /* Use the first rdev as the reference */
1959                         reference = rdev;
1960                         continue;
1961                 }
1962                 /* does this rdev's profile match the reference profile? */
1963                 if (blk_integrity_compare(reference->bdev->bd_disk,
1964                                 rdev->bdev->bd_disk) < 0)
1965                         return -EINVAL;
1966         }
1967         if (!reference || !bdev_get_integrity(reference->bdev))
1968                 return 0;
1969         /*
1970          * All component devices are integrity capable and have matching
1971          * profiles, register the common profile for the md device.
1972          */
1973         if (blk_integrity_register(mddev->gendisk,
1974                         bdev_get_integrity(reference->bdev)) != 0) {
1975                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1976                         mdname(mddev));
1977                 return -EINVAL;
1978         }
1979         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1980         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1981                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1982                        mdname(mddev));
1983                 return -EINVAL;
1984         }
1985         return 0;
1986 }
1987 EXPORT_SYMBOL(md_integrity_register);
1988
1989 /* Disable data integrity if non-capable/non-matching disk is being added */
1990 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1991 {
1992         struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1993         struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1994
1995         if (!bi_mddev) /* nothing to do */
1996                 return;
1997         if (rdev->raid_disk < 0) /* skip spares */
1998                 return;
1999         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2000                                              rdev->bdev->bd_disk) >= 0)
2001                 return;
2002         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2003         blk_integrity_unregister(mddev->gendisk);
2004 }
2005 EXPORT_SYMBOL(md_integrity_add_rdev);
2006
2007 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2008 {
2009         char b[BDEVNAME_SIZE];
2010         struct kobject *ko;
2011         char *s;
2012         int err;
2013
2014         if (rdev->mddev) {
2015                 MD_BUG();
2016                 return -EINVAL;
2017         }
2018
2019         /* prevent duplicates */
2020         if (find_rdev(mddev, rdev->bdev->bd_dev))
2021                 return -EEXIST;
2022
2023         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2024         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2025                         rdev->sectors < mddev->dev_sectors)) {
2026                 if (mddev->pers) {
2027                         /* Cannot change size, so fail
2028                          * If mddev->level <= 0, then we don't care
2029                          * about aligning sizes (e.g. linear)
2030                          */
2031                         if (mddev->level > 0)
2032                                 return -ENOSPC;
2033                 } else
2034                         mddev->dev_sectors = rdev->sectors;
2035         }
2036
2037         /* Verify rdev->desc_nr is unique.
2038          * If it is -1, assign a free number, else
2039          * check number is not in use
2040          */
2041         if (rdev->desc_nr < 0) {
2042                 int choice = 0;
2043                 if (mddev->pers) choice = mddev->raid_disks;
2044                 while (find_rdev_nr(mddev, choice))
2045                         choice++;
2046                 rdev->desc_nr = choice;
2047         } else {
2048                 if (find_rdev_nr(mddev, rdev->desc_nr))
2049                         return -EBUSY;
2050         }
2051         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2052                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2053                        mdname(mddev), mddev->max_disks);
2054                 return -EBUSY;
2055         }
2056         bdevname(rdev->bdev,b);
2057         while ( (s=strchr(b, '/')) != NULL)
2058                 *s = '!';
2059
2060         rdev->mddev = mddev;
2061         printk(KERN_INFO "md: bind<%s>\n", b);
2062
2063         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2064                 goto fail;
2065
2066         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2067         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2068                 /* failure here is OK */;
2069         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2070
2071         list_add_rcu(&rdev->same_set, &mddev->disks);
2072         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2073
2074         /* May as well allow recovery to be retried once */
2075         mddev->recovery_disabled++;
2076
2077         return 0;
2078
2079  fail:
2080         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2081                b, mdname(mddev));
2082         return err;
2083 }
2084
2085 static void md_delayed_delete(struct work_struct *ws)
2086 {
2087         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2088         kobject_del(&rdev->kobj);
2089         kobject_put(&rdev->kobj);
2090 }
2091
2092 static void unbind_rdev_from_array(struct md_rdev * rdev)
2093 {
2094         char b[BDEVNAME_SIZE];
2095         if (!rdev->mddev) {
2096                 MD_BUG();
2097                 return;
2098         }
2099         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2100         list_del_rcu(&rdev->same_set);
2101         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2102         rdev->mddev = NULL;
2103         sysfs_remove_link(&rdev->kobj, "block");
2104         sysfs_put(rdev->sysfs_state);
2105         rdev->sysfs_state = NULL;
2106         kfree(rdev->badblocks.page);
2107         rdev->badblocks.count = 0;
2108         rdev->badblocks.page = NULL;
2109         /* We need to delay this, otherwise we can deadlock when
2110          * writing to 'remove' to "dev/state".  We also need
2111          * to delay it due to rcu usage.
2112          */
2113         synchronize_rcu();
2114         INIT_WORK(&rdev->del_work, md_delayed_delete);
2115         kobject_get(&rdev->kobj);
2116         queue_work(md_misc_wq, &rdev->del_work);
2117 }
2118
2119 /*
2120  * prevent the device from being mounted, repartitioned or
2121  * otherwise reused by a RAID array (or any other kernel
2122  * subsystem), by bd_claiming the device.
2123  */
2124 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2125 {
2126         int err = 0;
2127         struct block_device *bdev;
2128         char b[BDEVNAME_SIZE];
2129
2130         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2131                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2132         if (IS_ERR(bdev)) {
2133                 printk(KERN_ERR "md: could not open %s.\n",
2134                         __bdevname(dev, b));
2135                 return PTR_ERR(bdev);
2136         }
2137         rdev->bdev = bdev;
2138         return err;
2139 }
2140
2141 static void unlock_rdev(struct md_rdev *rdev)
2142 {
2143         struct block_device *bdev = rdev->bdev;
2144         rdev->bdev = NULL;
2145         if (!bdev)
2146                 MD_BUG();
2147         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2148 }
2149
2150 void md_autodetect_dev(dev_t dev);
2151
2152 static void export_rdev(struct md_rdev * rdev)
2153 {
2154         char b[BDEVNAME_SIZE];
2155         printk(KERN_INFO "md: export_rdev(%s)\n",
2156                 bdevname(rdev->bdev,b));
2157         if (rdev->mddev)
2158                 MD_BUG();
2159         free_disk_sb(rdev);
2160 #ifndef MODULE
2161         if (test_bit(AutoDetected, &rdev->flags))
2162                 md_autodetect_dev(rdev->bdev->bd_dev);
2163 #endif
2164         unlock_rdev(rdev);
2165         kobject_put(&rdev->kobj);
2166 }
2167
2168 static void kick_rdev_from_array(struct md_rdev * rdev)
2169 {
2170         unbind_rdev_from_array(rdev);
2171         export_rdev(rdev);
2172 }
2173
2174 static void export_array(struct mddev *mddev)
2175 {
2176         struct md_rdev *rdev, *tmp;
2177
2178         rdev_for_each(rdev, tmp, mddev) {
2179                 if (!rdev->mddev) {
2180                         MD_BUG();
2181                         continue;
2182                 }
2183                 kick_rdev_from_array(rdev);
2184         }
2185         if (!list_empty(&mddev->disks))
2186                 MD_BUG();
2187         mddev->raid_disks = 0;
2188         mddev->major_version = 0;
2189 }
2190
2191 static void print_desc(mdp_disk_t *desc)
2192 {
2193         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2194                 desc->major,desc->minor,desc->raid_disk,desc->state);
2195 }
2196
2197 static void print_sb_90(mdp_super_t *sb)
2198 {
2199         int i;
2200
2201         printk(KERN_INFO 
2202                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2203                 sb->major_version, sb->minor_version, sb->patch_version,
2204                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2205                 sb->ctime);
2206         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2207                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2208                 sb->md_minor, sb->layout, sb->chunk_size);
2209         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2210                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2211                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2212                 sb->failed_disks, sb->spare_disks,
2213                 sb->sb_csum, (unsigned long)sb->events_lo);
2214
2215         printk(KERN_INFO);
2216         for (i = 0; i < MD_SB_DISKS; i++) {
2217                 mdp_disk_t *desc;
2218
2219                 desc = sb->disks + i;
2220                 if (desc->number || desc->major || desc->minor ||
2221                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2222                         printk("     D %2d: ", i);
2223                         print_desc(desc);
2224                 }
2225         }
2226         printk(KERN_INFO "md:     THIS: ");
2227         print_desc(&sb->this_disk);
2228 }
2229
2230 static void print_sb_1(struct mdp_superblock_1 *sb)
2231 {
2232         __u8 *uuid;
2233
2234         uuid = sb->set_uuid;
2235         printk(KERN_INFO
2236                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2237                "md:    Name: \"%s\" CT:%llu\n",
2238                 le32_to_cpu(sb->major_version),
2239                 le32_to_cpu(sb->feature_map),
2240                 uuid,
2241                 sb->set_name,
2242                 (unsigned long long)le64_to_cpu(sb->ctime)
2243                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2244
2245         uuid = sb->device_uuid;
2246         printk(KERN_INFO
2247                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2248                         " RO:%llu\n"
2249                "md:     Dev:%08x UUID: %pU\n"
2250                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2251                "md:         (MaxDev:%u) \n",
2252                 le32_to_cpu(sb->level),
2253                 (unsigned long long)le64_to_cpu(sb->size),
2254                 le32_to_cpu(sb->raid_disks),
2255                 le32_to_cpu(sb->layout),
2256                 le32_to_cpu(sb->chunksize),
2257                 (unsigned long long)le64_to_cpu(sb->data_offset),
2258                 (unsigned long long)le64_to_cpu(sb->data_size),
2259                 (unsigned long long)le64_to_cpu(sb->super_offset),
2260                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2261                 le32_to_cpu(sb->dev_number),
2262                 uuid,
2263                 sb->devflags,
2264                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2265                 (unsigned long long)le64_to_cpu(sb->events),
2266                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2267                 le32_to_cpu(sb->sb_csum),
2268                 le32_to_cpu(sb->max_dev)
2269                 );
2270 }
2271
2272 static void print_rdev(struct md_rdev *rdev, int major_version)
2273 {
2274         char b[BDEVNAME_SIZE];
2275         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2276                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2277                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2278                 rdev->desc_nr);
2279         if (rdev->sb_loaded) {
2280                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2281                 switch (major_version) {
2282                 case 0:
2283                         print_sb_90(page_address(rdev->sb_page));
2284                         break;
2285                 case 1:
2286                         print_sb_1(page_address(rdev->sb_page));
2287                         break;
2288                 }
2289         } else
2290                 printk(KERN_INFO "md: no rdev superblock!\n");
2291 }
2292
2293 static void md_print_devices(void)
2294 {
2295         struct list_head *tmp;
2296         struct md_rdev *rdev;
2297         struct mddev *mddev;
2298         char b[BDEVNAME_SIZE];
2299
2300         printk("\n");
2301         printk("md:     **********************************\n");
2302         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2303         printk("md:     **********************************\n");
2304         for_each_mddev(mddev, tmp) {
2305
2306                 if (mddev->bitmap)
2307                         bitmap_print_sb(mddev->bitmap);
2308                 else
2309                         printk("%s: ", mdname(mddev));
2310                 list_for_each_entry(rdev, &mddev->disks, same_set)
2311                         printk("<%s>", bdevname(rdev->bdev,b));
2312                 printk("\n");
2313
2314                 list_for_each_entry(rdev, &mddev->disks, same_set)
2315                         print_rdev(rdev, mddev->major_version);
2316         }
2317         printk("md:     **********************************\n");
2318         printk("\n");
2319 }
2320
2321
2322 static void sync_sbs(struct mddev * mddev, int nospares)
2323 {
2324         /* Update each superblock (in-memory image), but
2325          * if we are allowed to, skip spares which already
2326          * have the right event counter, or have one earlier
2327          * (which would mean they aren't being marked as dirty
2328          * with the rest of the array)
2329          */
2330         struct md_rdev *rdev;
2331         list_for_each_entry(rdev, &mddev->disks, same_set) {
2332                 if (rdev->sb_events == mddev->events ||
2333                     (nospares &&
2334                      rdev->raid_disk < 0 &&
2335                      rdev->sb_events+1 == mddev->events)) {
2336                         /* Don't update this superblock */
2337                         rdev->sb_loaded = 2;
2338                 } else {
2339                         sync_super(mddev, rdev);
2340                         rdev->sb_loaded = 1;
2341                 }
2342         }
2343 }
2344
2345 static void md_update_sb(struct mddev * mddev, int force_change)
2346 {
2347         struct md_rdev *rdev;
2348         int sync_req;
2349         int nospares = 0;
2350         int any_badblocks_changed = 0;
2351
2352 repeat:
2353         /* First make sure individual recovery_offsets are correct */
2354         list_for_each_entry(rdev, &mddev->disks, same_set) {
2355                 if (rdev->raid_disk >= 0 &&
2356                     mddev->delta_disks >= 0 &&
2357                     !test_bit(In_sync, &rdev->flags) &&
2358                     mddev->curr_resync_completed > rdev->recovery_offset)
2359                                 rdev->recovery_offset = mddev->curr_resync_completed;
2360
2361         }       
2362         if (!mddev->persistent) {
2363                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2364                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2365                 if (!mddev->external) {
2366                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2367                         list_for_each_entry(rdev, &mddev->disks, same_set) {
2368                                 if (rdev->badblocks.changed) {
2369                                         md_ack_all_badblocks(&rdev->badblocks);
2370                                         md_error(mddev, rdev);
2371                                 }
2372                                 clear_bit(Blocked, &rdev->flags);
2373                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2374                                 wake_up(&rdev->blocked_wait);
2375                         }
2376                 }
2377                 wake_up(&mddev->sb_wait);
2378                 return;
2379         }
2380
2381         spin_lock_irq(&mddev->write_lock);
2382
2383         mddev->utime = get_seconds();
2384
2385         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2386                 force_change = 1;
2387         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2388                 /* just a clean<-> dirty transition, possibly leave spares alone,
2389                  * though if events isn't the right even/odd, we will have to do
2390                  * spares after all
2391                  */
2392                 nospares = 1;
2393         if (force_change)
2394                 nospares = 0;
2395         if (mddev->degraded)
2396                 /* If the array is degraded, then skipping spares is both
2397                  * dangerous and fairly pointless.
2398                  * Dangerous because a device that was removed from the array
2399                  * might have a event_count that still looks up-to-date,
2400                  * so it can be re-added without a resync.
2401                  * Pointless because if there are any spares to skip,
2402                  * then a recovery will happen and soon that array won't
2403                  * be degraded any more and the spare can go back to sleep then.
2404                  */
2405                 nospares = 0;
2406
2407         sync_req = mddev->in_sync;
2408
2409         /* If this is just a dirty<->clean transition, and the array is clean
2410          * and 'events' is odd, we can roll back to the previous clean state */
2411         if (nospares
2412             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2413             && mddev->can_decrease_events
2414             && mddev->events != 1) {
2415                 mddev->events--;
2416                 mddev->can_decrease_events = 0;
2417         } else {
2418                 /* otherwise we have to go forward and ... */
2419                 mddev->events ++;
2420                 mddev->can_decrease_events = nospares;
2421         }
2422
2423         if (!mddev->events) {
2424                 /*
2425                  * oops, this 64-bit counter should never wrap.
2426                  * Either we are in around ~1 trillion A.C., assuming
2427                  * 1 reboot per second, or we have a bug:
2428                  */
2429                 MD_BUG();
2430                 mddev->events --;
2431         }
2432
2433         list_for_each_entry(rdev, &mddev->disks, same_set) {
2434                 if (rdev->badblocks.changed)
2435                         any_badblocks_changed++;
2436                 if (test_bit(Faulty, &rdev->flags))
2437                         set_bit(FaultRecorded, &rdev->flags);
2438         }
2439
2440         sync_sbs(mddev, nospares);
2441         spin_unlock_irq(&mddev->write_lock);
2442
2443         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2444                  mdname(mddev), mddev->in_sync);
2445
2446         bitmap_update_sb(mddev->bitmap);
2447         list_for_each_entry(rdev, &mddev->disks, same_set) {
2448                 char b[BDEVNAME_SIZE];
2449
2450                 if (rdev->sb_loaded != 1)
2451                         continue; /* no noise on spare devices */
2452
2453                 if (!test_bit(Faulty, &rdev->flags) &&
2454                     rdev->saved_raid_disk == -1) {
2455                         md_super_write(mddev,rdev,
2456                                        rdev->sb_start, rdev->sb_size,
2457                                        rdev->sb_page);
2458                         pr_debug("md: (write) %s's sb offset: %llu\n",
2459                                  bdevname(rdev->bdev, b),
2460                                  (unsigned long long)rdev->sb_start);
2461                         rdev->sb_events = mddev->events;
2462                         if (rdev->badblocks.size) {
2463                                 md_super_write(mddev, rdev,
2464                                                rdev->badblocks.sector,
2465                                                rdev->badblocks.size << 9,
2466                                                rdev->bb_page);
2467                                 rdev->badblocks.size = 0;
2468                         }
2469
2470                 } else if (test_bit(Faulty, &rdev->flags))
2471                         pr_debug("md: %s (skipping faulty)\n",
2472                                  bdevname(rdev->bdev, b));
2473                 else
2474                         pr_debug("(skipping incremental s/r ");
2475
2476                 if (mddev->level == LEVEL_MULTIPATH)
2477                         /* only need to write one superblock... */
2478                         break;
2479         }
2480         md_super_wait(mddev);
2481         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2482
2483         spin_lock_irq(&mddev->write_lock);
2484         if (mddev->in_sync != sync_req ||
2485             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2486                 /* have to write it out again */
2487                 spin_unlock_irq(&mddev->write_lock);
2488                 goto repeat;
2489         }
2490         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2491         spin_unlock_irq(&mddev->write_lock);
2492         wake_up(&mddev->sb_wait);
2493         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2494                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2495
2496         list_for_each_entry(rdev, &mddev->disks, same_set) {
2497                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2498                         clear_bit(Blocked, &rdev->flags);
2499
2500                 if (any_badblocks_changed)
2501                         md_ack_all_badblocks(&rdev->badblocks);
2502                 clear_bit(BlockedBadBlocks, &rdev->flags);
2503                 wake_up(&rdev->blocked_wait);
2504         }
2505 }
2506
2507 /* words written to sysfs files may, or may not, be \n terminated.
2508  * We want to accept with case. For this we use cmd_match.
2509  */
2510 static int cmd_match(const char *cmd, const char *str)
2511 {
2512         /* See if cmd, written into a sysfs file, matches
2513          * str.  They must either be the same, or cmd can
2514          * have a trailing newline
2515          */
2516         while (*cmd && *str && *cmd == *str) {
2517                 cmd++;
2518                 str++;
2519         }
2520         if (*cmd == '\n')
2521                 cmd++;
2522         if (*str || *cmd)
2523                 return 0;
2524         return 1;
2525 }
2526
2527 struct rdev_sysfs_entry {
2528         struct attribute attr;
2529         ssize_t (*show)(struct md_rdev *, char *);
2530         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2531 };
2532
2533 static ssize_t
2534 state_show(struct md_rdev *rdev, char *page)
2535 {
2536         char *sep = "";
2537         size_t len = 0;
2538
2539         if (test_bit(Faulty, &rdev->flags) ||
2540             rdev->badblocks.unacked_exist) {
2541                 len+= sprintf(page+len, "%sfaulty",sep);
2542                 sep = ",";
2543         }
2544         if (test_bit(In_sync, &rdev->flags)) {
2545                 len += sprintf(page+len, "%sin_sync",sep);
2546                 sep = ",";
2547         }
2548         if (test_bit(WriteMostly, &rdev->flags)) {
2549                 len += sprintf(page+len, "%swrite_mostly",sep);
2550                 sep = ",";
2551         }
2552         if (test_bit(Blocked, &rdev->flags) ||
2553             (rdev->badblocks.unacked_exist
2554              && !test_bit(Faulty, &rdev->flags))) {
2555                 len += sprintf(page+len, "%sblocked", sep);
2556                 sep = ",";
2557         }
2558         if (!test_bit(Faulty, &rdev->flags) &&
2559             !test_bit(In_sync, &rdev->flags)) {
2560                 len += sprintf(page+len, "%sspare", sep);
2561                 sep = ",";
2562         }
2563         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2564                 len += sprintf(page+len, "%swrite_error", sep);
2565                 sep = ",";
2566         }
2567         if (test_bit(WantReplacement, &rdev->flags)) {
2568                 len += sprintf(page+len, "%swant_replacement", sep);
2569                 sep = ",";
2570         }
2571         if (test_bit(Replacement, &rdev->flags)) {
2572                 len += sprintf(page+len, "%sreplacement", sep);
2573                 sep = ",";
2574         }
2575
2576         return len+sprintf(page+len, "\n");
2577 }
2578
2579 static ssize_t
2580 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2581 {
2582         /* can write
2583          *  faulty  - simulates an error
2584          *  remove  - disconnects the device
2585          *  writemostly - sets write_mostly
2586          *  -writemostly - clears write_mostly
2587          *  blocked - sets the Blocked flags
2588          *  -blocked - clears the Blocked and possibly simulates an error
2589          *  insync - sets Insync providing device isn't active
2590          *  write_error - sets WriteErrorSeen
2591          *  -write_error - clears WriteErrorSeen
2592          */
2593         int err = -EINVAL;
2594         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2595                 md_error(rdev->mddev, rdev);
2596                 if (test_bit(Faulty, &rdev->flags))
2597                         err = 0;
2598                 else
2599                         err = -EBUSY;
2600         } else if (cmd_match(buf, "remove")) {
2601                 if (rdev->raid_disk >= 0)
2602                         err = -EBUSY;
2603                 else {
2604                         struct mddev *mddev = rdev->mddev;
2605                         kick_rdev_from_array(rdev);
2606                         if (mddev->pers)
2607                                 md_update_sb(mddev, 1);
2608                         md_new_event(mddev);
2609                         err = 0;
2610                 }
2611         } else if (cmd_match(buf, "writemostly")) {
2612                 set_bit(WriteMostly, &rdev->flags);
2613                 err = 0;
2614         } else if (cmd_match(buf, "-writemostly")) {
2615                 clear_bit(WriteMostly, &rdev->flags);
2616                 err = 0;
2617         } else if (cmd_match(buf, "blocked")) {
2618                 set_bit(Blocked, &rdev->flags);
2619                 err = 0;
2620         } else if (cmd_match(buf, "-blocked")) {
2621                 if (!test_bit(Faulty, &rdev->flags) &&
2622                     rdev->badblocks.unacked_exist) {
2623                         /* metadata handler doesn't understand badblocks,
2624                          * so we need to fail the device
2625                          */
2626                         md_error(rdev->mddev, rdev);
2627                 }
2628                 clear_bit(Blocked, &rdev->flags);
2629                 clear_bit(BlockedBadBlocks, &rdev->flags);
2630                 wake_up(&rdev->blocked_wait);
2631                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2632                 md_wakeup_thread(rdev->mddev->thread);
2633
2634                 err = 0;
2635         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2636                 set_bit(In_sync, &rdev->flags);
2637                 err = 0;
2638         } else if (cmd_match(buf, "write_error")) {
2639                 set_bit(WriteErrorSeen, &rdev->flags);
2640                 err = 0;
2641         } else if (cmd_match(buf, "-write_error")) {
2642                 clear_bit(WriteErrorSeen, &rdev->flags);
2643                 err = 0;
2644         } else if (cmd_match(buf, "want_replacement")) {
2645                 /* Any non-spare device that is not a replacement can
2646                  * become want_replacement at any time, but we then need to
2647                  * check if recovery is needed.
2648                  */
2649                 if (rdev->raid_disk >= 0 &&
2650                     !test_bit(Replacement, &rdev->flags))
2651                         set_bit(WantReplacement, &rdev->flags);
2652                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2653                 md_wakeup_thread(rdev->mddev->thread);
2654                 err = 0;
2655         } else if (cmd_match(buf, "-want_replacement")) {
2656                 /* Clearing 'want_replacement' is always allowed.
2657                  * Once replacements starts it is too late though.
2658                  */
2659                 err = 0;
2660                 clear_bit(WantReplacement, &rdev->flags);
2661         } else if (cmd_match(buf, "replacement")) {
2662                 /* Can only set a device as a replacement when array has not
2663                  * yet been started.  Once running, replacement is automatic
2664                  * from spares, or by assigning 'slot'.
2665                  */
2666                 if (rdev->mddev->pers)
2667                         err = -EBUSY;
2668                 else {
2669                         set_bit(Replacement, &rdev->flags);
2670                         err = 0;
2671                 }
2672         } else if (cmd_match(buf, "-replacement")) {
2673                 /* Similarly, can only clear Replacement before start */
2674                 if (rdev->mddev->pers)
2675                         err = -EBUSY;
2676                 else {
2677                         clear_bit(Replacement, &rdev->flags);
2678                         err = 0;
2679                 }
2680         }
2681         if (!err)
2682                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2683         return err ? err : len;
2684 }
2685 static struct rdev_sysfs_entry rdev_state =
2686 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2687
2688 static ssize_t
2689 errors_show(struct md_rdev *rdev, char *page)
2690 {
2691         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2692 }
2693
2694 static ssize_t
2695 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2696 {
2697         char *e;
2698         unsigned long n = simple_strtoul(buf, &e, 10);
2699         if (*buf && (*e == 0 || *e == '\n')) {
2700                 atomic_set(&rdev->corrected_errors, n);
2701                 return len;
2702         }
2703         return -EINVAL;
2704 }
2705 static struct rdev_sysfs_entry rdev_errors =
2706 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2707
2708 static ssize_t
2709 slot_show(struct md_rdev *rdev, char *page)
2710 {
2711         if (rdev->raid_disk < 0)
2712                 return sprintf(page, "none\n");
2713         else
2714                 return sprintf(page, "%d\n", rdev->raid_disk);
2715 }
2716
2717 static ssize_t
2718 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2719 {
2720         char *e;
2721         int err;
2722         int slot = simple_strtoul(buf, &e, 10);
2723         if (strncmp(buf, "none", 4)==0)
2724                 slot = -1;
2725         else if (e==buf || (*e && *e!= '\n'))
2726                 return -EINVAL;
2727         if (rdev->mddev->pers && slot == -1) {
2728                 /* Setting 'slot' on an active array requires also
2729                  * updating the 'rd%d' link, and communicating
2730                  * with the personality with ->hot_*_disk.
2731                  * For now we only support removing
2732                  * failed/spare devices.  This normally happens automatically,
2733                  * but not when the metadata is externally managed.
2734                  */
2735                 if (rdev->raid_disk == -1)
2736                         return -EEXIST;
2737                 /* personality does all needed checks */
2738                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2739                         return -EINVAL;
2740                 err = rdev->mddev->pers->
2741                         hot_remove_disk(rdev->mddev, rdev);
2742                 if (err)
2743                         return err;
2744                 sysfs_unlink_rdev(rdev->mddev, rdev);
2745                 rdev->raid_disk = -1;
2746                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2747                 md_wakeup_thread(rdev->mddev->thread);
2748         } else if (rdev->mddev->pers) {
2749                 /* Activating a spare .. or possibly reactivating
2750                  * if we ever get bitmaps working here.
2751                  */
2752
2753                 if (rdev->raid_disk != -1)
2754                         return -EBUSY;
2755
2756                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2757                         return -EBUSY;
2758
2759                 if (rdev->mddev->pers->hot_add_disk == NULL)
2760                         return -EINVAL;
2761
2762                 if (slot >= rdev->mddev->raid_disks &&
2763                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2764                         return -ENOSPC;
2765
2766                 rdev->raid_disk = slot;
2767                 if (test_bit(In_sync, &rdev->flags))
2768                         rdev->saved_raid_disk = slot;
2769                 else
2770                         rdev->saved_raid_disk = -1;
2771                 clear_bit(In_sync, &rdev->flags);
2772                 err = rdev->mddev->pers->
2773                         hot_add_disk(rdev->mddev, rdev);
2774                 if (err) {
2775                         rdev->raid_disk = -1;
2776                         return err;
2777                 } else
2778                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2779                 if (sysfs_link_rdev(rdev->mddev, rdev))
2780                         /* failure here is OK */;
2781                 /* don't wakeup anyone, leave that to userspace. */
2782         } else {
2783                 if (slot >= rdev->mddev->raid_disks &&
2784                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2785                         return -ENOSPC;
2786                 rdev->raid_disk = slot;
2787                 /* assume it is working */
2788                 clear_bit(Faulty, &rdev->flags);
2789                 clear_bit(WriteMostly, &rdev->flags);
2790                 set_bit(In_sync, &rdev->flags);
2791                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2792         }
2793         return len;
2794 }
2795
2796
2797 static struct rdev_sysfs_entry rdev_slot =
2798 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2799
2800 static ssize_t
2801 offset_show(struct md_rdev *rdev, char *page)
2802 {
2803         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2804 }
2805
2806 static ssize_t
2807 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2808 {
2809         char *e;
2810         unsigned long long offset = simple_strtoull(buf, &e, 10);
2811         if (e==buf || (*e && *e != '\n'))
2812                 return -EINVAL;
2813         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2814                 return -EBUSY;
2815         if (rdev->sectors && rdev->mddev->external)
2816                 /* Must set offset before size, so overlap checks
2817                  * can be sane */
2818                 return -EBUSY;
2819         rdev->data_offset = offset;
2820         return len;
2821 }
2822
2823 static struct rdev_sysfs_entry rdev_offset =
2824 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2825
2826 static ssize_t
2827 rdev_size_show(struct md_rdev *rdev, char *page)
2828 {
2829         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2830 }
2831
2832 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2833 {
2834         /* check if two start/length pairs overlap */
2835         if (s1+l1 <= s2)
2836                 return 0;
2837         if (s2+l2 <= s1)
2838                 return 0;
2839         return 1;
2840 }
2841
2842 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2843 {
2844         unsigned long long blocks;
2845         sector_t new;
2846
2847         if (strict_strtoull(buf, 10, &blocks) < 0)
2848                 return -EINVAL;
2849
2850         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2851                 return -EINVAL; /* sector conversion overflow */
2852
2853         new = blocks * 2;
2854         if (new != blocks * 2)
2855                 return -EINVAL; /* unsigned long long to sector_t overflow */
2856
2857         *sectors = new;
2858         return 0;
2859 }
2860
2861 static ssize_t
2862 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2863 {
2864         struct mddev *my_mddev = rdev->mddev;
2865         sector_t oldsectors = rdev->sectors;
2866         sector_t sectors;
2867
2868         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2869                 return -EINVAL;
2870         if (my_mddev->pers && rdev->raid_disk >= 0) {
2871                 if (my_mddev->persistent) {
2872                         sectors = super_types[my_mddev->major_version].
2873                                 rdev_size_change(rdev, sectors);
2874                         if (!sectors)
2875                                 return -EBUSY;
2876                 } else if (!sectors)
2877                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2878                                 rdev->data_offset;
2879         }
2880         if (sectors < my_mddev->dev_sectors)
2881                 return -EINVAL; /* component must fit device */
2882
2883         rdev->sectors = sectors;
2884         if (sectors > oldsectors && my_mddev->external) {
2885                 /* need to check that all other rdevs with the same ->bdev
2886                  * do not overlap.  We need to unlock the mddev to avoid
2887                  * a deadlock.  We have already changed rdev->sectors, and if
2888                  * we have to change it back, we will have the lock again.
2889                  */
2890                 struct mddev *mddev;
2891                 int overlap = 0;
2892                 struct list_head *tmp;
2893
2894                 mddev_unlock(my_mddev);
2895                 for_each_mddev(mddev, tmp) {
2896                         struct md_rdev *rdev2;
2897
2898                         mddev_lock(mddev);
2899                         list_for_each_entry(rdev2, &mddev->disks, same_set)
2900                                 if (rdev->bdev == rdev2->bdev &&
2901                                     rdev != rdev2 &&
2902                                     overlaps(rdev->data_offset, rdev->sectors,
2903                                              rdev2->data_offset,
2904                                              rdev2->sectors)) {
2905                                         overlap = 1;
2906                                         break;
2907                                 }
2908                         mddev_unlock(mddev);
2909                         if (overlap) {
2910                                 mddev_put(mddev);
2911                                 break;
2912                         }
2913                 }
2914                 mddev_lock(my_mddev);
2915                 if (overlap) {
2916                         /* Someone else could have slipped in a size
2917                          * change here, but doing so is just silly.
2918                          * We put oldsectors back because we *know* it is
2919                          * safe, and trust userspace not to race with
2920                          * itself
2921                          */
2922                         rdev->sectors = oldsectors;
2923                         return -EBUSY;
2924                 }
2925         }
2926         return len;
2927 }
2928
2929 static struct rdev_sysfs_entry rdev_size =
2930 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2931
2932
2933 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2934 {
2935         unsigned long long recovery_start = rdev->recovery_offset;
2936
2937         if (test_bit(In_sync, &rdev->flags) ||
2938             recovery_start == MaxSector)
2939                 return sprintf(page, "none\n");
2940
2941         return sprintf(page, "%llu\n", recovery_start);
2942 }
2943
2944 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2945 {
2946         unsigned long long recovery_start;
2947
2948         if (cmd_match(buf, "none"))
2949                 recovery_start = MaxSector;
2950         else if (strict_strtoull(buf, 10, &recovery_start))
2951                 return -EINVAL;
2952
2953         if (rdev->mddev->pers &&
2954             rdev->raid_disk >= 0)
2955                 return -EBUSY;
2956
2957         rdev->recovery_offset = recovery_start;
2958         if (recovery_start == MaxSector)
2959                 set_bit(In_sync, &rdev->flags);
2960         else
2961                 clear_bit(In_sync, &rdev->flags);
2962         return len;
2963 }
2964
2965 static struct rdev_sysfs_entry rdev_recovery_start =
2966 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2967
2968
2969 static ssize_t
2970 badblocks_show(struct badblocks *bb, char *page, int unack);
2971 static ssize_t
2972 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2973
2974 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2975 {
2976         return badblocks_show(&rdev->badblocks, page, 0);
2977 }
2978 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2979 {
2980         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2981         /* Maybe that ack was all we needed */
2982         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2983                 wake_up(&rdev->blocked_wait);
2984         return rv;
2985 }
2986 static struct rdev_sysfs_entry rdev_bad_blocks =
2987 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2988
2989
2990 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2991 {
2992         return badblocks_show(&rdev->badblocks, page, 1);
2993 }
2994 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2995 {
2996         return badblocks_store(&rdev->badblocks, page, len, 1);
2997 }
2998 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2999 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3000
3001 static struct attribute *rdev_default_attrs[] = {
3002         &rdev_state.attr,
3003         &rdev_errors.attr,
3004         &rdev_slot.attr,
3005         &rdev_offset.attr,
3006         &rdev_size.attr,
3007         &rdev_recovery_start.attr,
3008         &rdev_bad_blocks.attr,
3009         &rdev_unack_bad_blocks.attr,
3010         NULL,
3011 };
3012 static ssize_t
3013 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3014 {
3015         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3016         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3017         struct mddev *mddev = rdev->mddev;
3018         ssize_t rv;
3019
3020         if (!entry->show)
3021                 return -EIO;
3022
3023         rv = mddev ? mddev_lock(mddev) : -EBUSY;
3024         if (!rv) {
3025                 if (rdev->mddev == NULL)
3026                         rv = -EBUSY;
3027                 else
3028                         rv = entry->show(rdev, page);
3029                 mddev_unlock(mddev);
3030         }
3031         return rv;
3032 }
3033
3034 static ssize_t
3035 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3036               const char *page, size_t length)
3037 {
3038         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3039         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3040         ssize_t rv;
3041         struct mddev *mddev = rdev->mddev;
3042
3043         if (!entry->store)
3044                 return -EIO;
3045         if (!capable(CAP_SYS_ADMIN))
3046                 return -EACCES;
3047         rv = mddev ? mddev_lock(mddev): -EBUSY;
3048         if (!rv) {
3049                 if (rdev->mddev == NULL)
3050                         rv = -EBUSY;
3051                 else
3052                         rv = entry->store(rdev, page, length);
3053                 mddev_unlock(mddev);
3054         }
3055         return rv;
3056 }
3057
3058 static void rdev_free(struct kobject *ko)
3059 {
3060         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3061         kfree(rdev);
3062 }
3063 static const struct sysfs_ops rdev_sysfs_ops = {
3064         .show           = rdev_attr_show,
3065         .store          = rdev_attr_store,
3066 };
3067 static struct kobj_type rdev_ktype = {
3068         .release        = rdev_free,
3069         .sysfs_ops      = &rdev_sysfs_ops,
3070         .default_attrs  = rdev_default_attrs,
3071 };
3072
3073 int md_rdev_init(struct md_rdev *rdev)
3074 {
3075         rdev->desc_nr = -1;
3076         rdev->saved_raid_disk = -1;
3077         rdev->raid_disk = -1;
3078         rdev->flags = 0;
3079         rdev->data_offset = 0;
3080         rdev->sb_events = 0;
3081         rdev->last_read_error.tv_sec  = 0;
3082         rdev->last_read_error.tv_nsec = 0;
3083         rdev->sb_loaded = 0;
3084         rdev->bb_page = NULL;
3085         atomic_set(&rdev->nr_pending, 0);
3086         atomic_set(&rdev->read_errors, 0);
3087         atomic_set(&rdev->corrected_errors, 0);
3088
3089         INIT_LIST_HEAD(&rdev->same_set);
3090         init_waitqueue_head(&rdev->blocked_wait);
3091
3092         /* Add space to store bad block list.
3093          * This reserves the space even on arrays where it cannot
3094          * be used - I wonder if that matters
3095          */
3096         rdev->badblocks.count = 0;
3097         rdev->badblocks.shift = 0;
3098         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3099         seqlock_init(&rdev->badblocks.lock);
3100         if (rdev->badblocks.page == NULL)
3101                 return -ENOMEM;
3102
3103         return 0;
3104 }
3105 EXPORT_SYMBOL_GPL(md_rdev_init);
3106 /*
3107  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3108  *
3109  * mark the device faulty if:
3110  *
3111  *   - the device is nonexistent (zero size)
3112  *   - the device has no valid superblock
3113  *
3114  * a faulty rdev _never_ has rdev->sb set.
3115  */
3116 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3117 {
3118         char b[BDEVNAME_SIZE];
3119         int err;
3120         struct md_rdev *rdev;
3121         sector_t size;
3122
3123         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3124         if (!rdev) {
3125                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3126                 return ERR_PTR(-ENOMEM);
3127         }
3128
3129         err = md_rdev_init(rdev);
3130         if (err)
3131                 goto abort_free;
3132         err = alloc_disk_sb(rdev);
3133         if (err)
3134                 goto abort_free;
3135
3136         err = lock_rdev(rdev, newdev, super_format == -2);
3137         if (err)
3138                 goto abort_free;
3139
3140         kobject_init(&rdev->kobj, &rdev_ktype);
3141
3142         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3143         if (!size) {
3144                 printk(KERN_WARNING 
3145                         "md: %s has zero or unknown size, marking faulty!\n",
3146                         bdevname(rdev->bdev,b));
3147                 err = -EINVAL;
3148                 goto abort_free;
3149         }
3150
3151         if (super_format >= 0) {
3152                 err = super_types[super_format].
3153                         load_super(rdev, NULL, super_minor);
3154                 if (err == -EINVAL) {
3155                         printk(KERN_WARNING
3156                                 "md: %s does not have a valid v%d.%d "
3157                                "superblock, not importing!\n",
3158                                 bdevname(rdev->bdev,b),
3159                                super_format, super_minor);
3160                         goto abort_free;
3161                 }
3162                 if (err < 0) {
3163                         printk(KERN_WARNING 
3164                                 "md: could not read %s's sb, not importing!\n",
3165                                 bdevname(rdev->bdev,b));
3166                         goto abort_free;
3167                 }
3168         }
3169         if (super_format == -1)
3170                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3171                 rdev->badblocks.shift = -1;
3172
3173         return rdev;
3174
3175 abort_free:
3176         if (rdev->bdev)
3177                 unlock_rdev(rdev);
3178         free_disk_sb(rdev);
3179         kfree(rdev->badblocks.page);
3180         kfree(rdev);
3181         return ERR_PTR(err);
3182 }
3183
3184 /*
3185  * Check a full RAID array for plausibility
3186  */
3187
3188
3189 static void analyze_sbs(struct mddev * mddev)
3190 {
3191         int i;
3192         struct md_rdev *rdev, *freshest, *tmp;
3193         char b[BDEVNAME_SIZE];
3194
3195         freshest = NULL;
3196         rdev_for_each(rdev, tmp, mddev)
3197                 switch (super_types[mddev->major_version].
3198                         load_super(rdev, freshest, mddev->minor_version)) {
3199                 case 1:
3200                         freshest = rdev;
3201                         break;
3202                 case 0:
3203                         break;
3204                 default:
3205                         printk( KERN_ERR \
3206                                 "md: fatal superblock inconsistency in %s"
3207                                 " -- removing from array\n", 
3208                                 bdevname(rdev->bdev,b));
3209                         kick_rdev_from_array(rdev);
3210                 }
3211
3212
3213         super_types[mddev->major_version].
3214                 validate_super(mddev, freshest);
3215
3216         i = 0;
3217         rdev_for_each(rdev, tmp, mddev) {
3218                 if (mddev->max_disks &&
3219                     (rdev->desc_nr >= mddev->max_disks ||
3220                      i > mddev->max_disks)) {
3221                         printk(KERN_WARNING
3222                                "md: %s: %s: only %d devices permitted\n",
3223                                mdname(mddev), bdevname(rdev->bdev, b),
3224                                mddev->max_disks);
3225                         kick_rdev_from_array(rdev);
3226                         continue;
3227                 }
3228                 if (rdev != freshest)
3229                         if (super_types[mddev->major_version].
3230                             validate_super(mddev, rdev)) {
3231                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3232                                         " from array!\n",
3233                                         bdevname(rdev->bdev,b));
3234                                 kick_rdev_from_array(rdev);
3235                                 continue;
3236                         }
3237                 if (mddev->level == LEVEL_MULTIPATH) {
3238                         rdev->desc_nr = i++;
3239                         rdev->raid_disk = rdev->desc_nr;
3240                         set_bit(In_sync, &rdev->flags);
3241                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3242                         rdev->raid_disk = -1;
3243                         clear_bit(In_sync, &rdev->flags);
3244                 }
3245         }
3246 }
3247
3248 /* Read a fixed-point number.
3249  * Numbers in sysfs attributes should be in "standard" units where
3250  * possible, so time should be in seconds.
3251  * However we internally use a a much smaller unit such as 
3252  * milliseconds or jiffies.
3253  * This function takes a decimal number with a possible fractional
3254  * component, and produces an integer which is the result of
3255  * multiplying that number by 10^'scale'.
3256  * all without any floating-point arithmetic.
3257  */
3258 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3259 {
3260         unsigned long result = 0;
3261         long decimals = -1;
3262         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3263                 if (*cp == '.')
3264                         decimals = 0;
3265                 else if (decimals < scale) {
3266                         unsigned int value;
3267                         value = *cp - '0';
3268                         result = result * 10 + value;
3269                         if (decimals >= 0)
3270                                 decimals++;
3271                 }
3272                 cp++;
3273         }
3274         if (*cp == '\n')
3275                 cp++;
3276         if (*cp)
3277                 return -EINVAL;
3278         if (decimals < 0)
3279                 decimals = 0;
3280         while (decimals < scale) {
3281                 result *= 10;
3282                 decimals ++;
3283         }
3284         *res = result;
3285         return 0;
3286 }
3287
3288
3289 static void md_safemode_timeout(unsigned long data);
3290
3291 static ssize_t
3292 safe_delay_show(struct mddev *mddev, char *page)
3293 {
3294         int msec = (mddev->safemode_delay*1000)/HZ;
3295         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3296 }
3297 static ssize_t
3298 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3299 {
3300         unsigned long msec;
3301
3302         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3303                 return -EINVAL;
3304         if (msec == 0)
3305                 mddev->safemode_delay = 0;
3306         else {
3307                 unsigned long old_delay = mddev->safemode_delay;
3308                 mddev->safemode_delay = (msec*HZ)/1000;
3309                 if (mddev->safemode_delay == 0)
3310                         mddev->safemode_delay = 1;
3311                 if (mddev->safemode_delay < old_delay)
3312                         md_safemode_timeout((unsigned long)mddev);
3313         }
3314         return len;
3315 }
3316 static struct md_sysfs_entry md_safe_delay =
3317 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3318
3319 static ssize_t
3320 level_show(struct mddev *mddev, char *page)
3321 {
3322         struct md_personality *p = mddev->pers;
3323         if (p)
3324                 return sprintf(page, "%s\n", p->name);
3325         else if (mddev->clevel[0])
3326                 return sprintf(page, "%s\n", mddev->clevel);
3327         else if (mddev->level != LEVEL_NONE)
3328                 return sprintf(page, "%d\n", mddev->level);
3329         else
3330                 return 0;
3331 }
3332
3333 static ssize_t
3334 level_store(struct mddev *mddev, const char *buf, size_t len)
3335 {
3336         char clevel[16];
3337         ssize_t rv = len;
3338         struct md_personality *pers;
3339         long level;
3340         void *priv;
3341         struct md_rdev *rdev;
3342
3343         if (mddev->pers == NULL) {
3344                 if (len == 0)
3345                         return 0;
3346                 if (len >= sizeof(mddev->clevel))
3347                         return -ENOSPC;
3348                 strncpy(mddev->clevel, buf, len);
3349                 if (mddev->clevel[len-1] == '\n')
3350                         len--;
3351                 mddev->clevel[len] = 0;
3352                 mddev->level = LEVEL_NONE;
3353                 return rv;
3354         }
3355
3356         /* request to change the personality.  Need to ensure:
3357          *  - array is not engaged in resync/recovery/reshape
3358          *  - old personality can be suspended
3359          *  - new personality will access other array.
3360          */
3361
3362         if (mddev->sync_thread ||
3363             mddev->reshape_position != MaxSector ||
3364             mddev->sysfs_active)
3365                 return -EBUSY;
3366
3367         if (!mddev->pers->quiesce) {
3368                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3369                        mdname(mddev), mddev->pers->name);
3370                 return -EINVAL;
3371         }
3372
3373         /* Now find the new personality */
3374         if (len == 0 || len >= sizeof(clevel))
3375                 return -EINVAL;
3376         strncpy(clevel, buf, len);
3377         if (clevel[len-1] == '\n')
3378                 len--;
3379         clevel[len] = 0;
3380         if (strict_strtol(clevel, 10, &level))
3381                 level = LEVEL_NONE;
3382
3383         if (request_module("md-%s", clevel) != 0)
3384                 request_module("md-level-%s", clevel);
3385         spin_lock(&pers_lock);
3386         pers = find_pers(level, clevel);
3387         if (!pers || !try_module_get(pers->owner)) {
3388                 spin_unlock(&pers_lock);
3389                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3390                 return -EINVAL;
3391         }
3392         spin_unlock(&pers_lock);
3393
3394         if (pers == mddev->pers) {
3395                 /* Nothing to do! */
3396                 module_put(pers->owner);
3397                 return rv;
3398         }
3399         if (!pers->takeover) {
3400                 module_put(pers->owner);
3401                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3402                        mdname(mddev), clevel);
3403                 return -EINVAL;
3404         }
3405
3406         list_for_each_entry(rdev, &mddev->disks, same_set)
3407                 rdev->new_raid_disk = rdev->raid_disk;
3408
3409         /* ->takeover must set new_* and/or delta_disks
3410          * if it succeeds, and may set them when it fails.
3411          */
3412         priv = pers->takeover(mddev);
3413         if (IS_ERR(priv)) {
3414                 mddev->new_level = mddev->level;
3415                 mddev->new_layout = mddev->layout;
3416                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3417                 mddev->raid_disks -= mddev->delta_disks;
3418                 mddev->delta_disks = 0;
3419                 module_put(pers->owner);
3420                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3421                        mdname(mddev), clevel);
3422                 return PTR_ERR(priv);
3423         }
3424
3425         /* Looks like we have a winner */
3426         mddev_suspend(mddev);
3427         mddev->pers->stop(mddev);
3428         
3429         if (mddev->pers->sync_request == NULL &&
3430             pers->sync_request != NULL) {
3431                 /* need to add the md_redundancy_group */
3432                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3433                         printk(KERN_WARNING
3434                                "md: cannot register extra attributes for %s\n",
3435                                mdname(mddev));
3436                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3437         }               
3438         if (mddev->pers->sync_request != NULL &&
3439             pers->sync_request == NULL) {
3440                 /* need to remove the md_redundancy_group */
3441                 if (mddev->to_remove == NULL)
3442                         mddev->to_remove = &md_redundancy_group;
3443         }
3444
3445         if (mddev->pers->sync_request == NULL &&
3446             mddev->external) {
3447                 /* We are converting from a no-redundancy array
3448                  * to a redundancy array and metadata is managed
3449                  * externally so we need to be sure that writes
3450                  * won't block due to a need to transition
3451                  *      clean->dirty
3452                  * until external management is started.
3453                  */
3454                 mddev->in_sync = 0;
3455                 mddev->safemode_delay = 0;
3456                 mddev->safemode = 0;
3457         }
3458
3459         list_for_each_entry(rdev, &mddev->disks, same_set) {
3460                 if (rdev->raid_disk < 0)
3461                         continue;
3462                 if (rdev->new_raid_disk >= mddev->raid_disks)
3463                         rdev->new_raid_disk = -1;
3464                 if (rdev->new_raid_disk == rdev->raid_disk)
3465                         continue;
3466                 sysfs_unlink_rdev(mddev, rdev);
3467         }
3468         list_for_each_entry(rdev, &mddev->disks, same_set) {
3469                 if (rdev->raid_disk < 0)
3470                         continue;
3471                 if (rdev->new_raid_disk == rdev->raid_disk)
3472                         continue;
3473                 rdev->raid_disk = rdev->new_raid_disk;
3474                 if (rdev->raid_disk < 0)
3475                         clear_bit(In_sync, &rdev->flags);
3476                 else {
3477                         if (sysfs_link_rdev(mddev, rdev))
3478                                 printk(KERN_WARNING "md: cannot register rd%d"
3479                                        " for %s after level change\n",
3480                                        rdev->raid_disk, mdname(mddev));
3481                 }
3482         }
3483
3484         module_put(mddev->pers->owner);
3485         mddev->pers = pers;
3486         mddev->private = priv;
3487         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3488         mddev->level = mddev->new_level;
3489         mddev->layout = mddev->new_layout;
3490         mddev->chunk_sectors = mddev->new_chunk_sectors;
3491         mddev->delta_disks = 0;
3492         mddev->degraded = 0;
3493         if (mddev->pers->sync_request == NULL) {
3494                 /* this is now an array without redundancy, so
3495                  * it must always be in_sync
3496                  */
3497                 mddev->in_sync = 1;
3498                 del_timer_sync(&mddev->safemode_timer);
3499         }
3500         pers->run(mddev);
3501         mddev_resume(mddev);
3502         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3503         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3504         md_wakeup_thread(mddev->thread);
3505         sysfs_notify(&mddev->kobj, NULL, "level");
3506         md_new_event(mddev);
3507         return rv;
3508 }
3509
3510 static struct md_sysfs_entry md_level =
3511 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3512
3513
3514 static ssize_t
3515 layout_show(struct mddev *mddev, char *page)
3516 {
3517         /* just a number, not meaningful for all levels */
3518         if (mddev->reshape_position != MaxSector &&
3519             mddev->layout != mddev->new_layout)
3520                 return sprintf(page, "%d (%d)\n",
3521                                mddev->new_layout, mddev->layout);
3522         return sprintf(page, "%d\n", mddev->layout);
3523 }
3524
3525 static ssize_t
3526 layout_store(struct mddev *mddev, const char *buf, size_t len)
3527 {
3528         char *e;
3529         unsigned long n = simple_strtoul(buf, &e, 10);
3530
3531         if (!*buf || (*e && *e != '\n'))
3532                 return -EINVAL;
3533
3534         if (mddev->pers) {
3535                 int err;
3536                 if (mddev->pers->check_reshape == NULL)
3537                         return -EBUSY;
3538                 mddev->new_layout = n;
3539                 err = mddev->pers->check_reshape(mddev);
3540                 if (err) {
3541                         mddev->new_layout = mddev->layout;
3542                         return err;
3543                 }
3544         } else {
3545                 mddev->new_layout = n;
3546                 if (mddev->reshape_position == MaxSector)
3547                         mddev->layout = n;
3548         }
3549         return len;
3550 }
3551 static struct md_sysfs_entry md_layout =
3552 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3553
3554
3555 static ssize_t
3556 raid_disks_show(struct mddev *mddev, char *page)
3557 {
3558         if (mddev->raid_disks == 0)
3559                 return 0;
3560         if (mddev->reshape_position != MaxSector &&
3561             mddev->delta_disks != 0)
3562                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3563                                mddev->raid_disks - mddev->delta_disks);
3564         return sprintf(page, "%d\n", mddev->raid_disks);
3565 }
3566
3567 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3568
3569 static ssize_t
3570 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3571 {
3572         char *e;
3573         int rv = 0;
3574         unsigned long n = simple_strtoul(buf, &e, 10);
3575
3576         if (!*buf || (*e && *e != '\n'))
3577                 return -EINVAL;
3578
3579         if (mddev->pers)
3580                 rv = update_raid_disks(mddev, n);
3581         else if (mddev->reshape_position != MaxSector) {
3582                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3583                 mddev->delta_disks = n - olddisks;
3584                 mddev->raid_disks = n;
3585         } else
3586                 mddev->raid_disks = n;
3587         return rv ? rv : len;
3588 }
3589 static struct md_sysfs_entry md_raid_disks =
3590 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3591
3592 static ssize_t
3593 chunk_size_show(struct mddev *mddev, char *page)
3594 {
3595         if (mddev->reshape_position != MaxSector &&
3596             mddev->chunk_sectors != mddev->new_chunk_sectors)
3597                 return sprintf(page, "%d (%d)\n",
3598                                mddev->new_chunk_sectors << 9,
3599                                mddev->chunk_sectors << 9);
3600         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3601 }
3602
3603 static ssize_t
3604 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3605 {
3606         char *e;
3607         unsigned long n = simple_strtoul(buf, &e, 10);
3608
3609         if (!*buf || (*e && *e != '\n'))
3610                 return -EINVAL;
3611
3612         if (mddev->pers) {
3613                 int err;
3614                 if (mddev->pers->check_reshape == NULL)
3615                         return -EBUSY;
3616                 mddev->new_chunk_sectors = n >> 9;
3617                 err = mddev->pers->check_reshape(mddev);
3618                 if (err) {
3619                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3620                         return err;
3621                 }
3622         } else {
3623                 mddev->new_chunk_sectors = n >> 9;
3624                 if (mddev->reshape_position == MaxSector)
3625                         mddev->chunk_sectors = n >> 9;
3626         }
3627         return len;
3628 }
3629 static struct md_sysfs_entry md_chunk_size =
3630 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3631
3632 static ssize_t
3633 resync_start_show(struct mddev *mddev, char *page)
3634 {
3635         if (mddev->recovery_cp == MaxSector)
3636                 return sprintf(page, "none\n");
3637         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3638 }
3639
3640 static ssize_t
3641 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3642 {
3643         char *e;
3644         unsigned long long n = simple_strtoull(buf, &e, 10);
3645
3646         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3647                 return -EBUSY;
3648         if (cmd_match(buf, "none"))
3649                 n = MaxSector;
3650         else if (!*buf || (*e && *e != '\n'))
3651                 return -EINVAL;
3652
3653         mddev->recovery_cp = n;
3654         return len;
3655 }
3656 static struct md_sysfs_entry md_resync_start =
3657 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3658
3659 /*
3660  * The array state can be:
3661  *
3662  * clear
3663  *     No devices, no size, no level
3664  *     Equivalent to STOP_ARRAY ioctl
3665  * inactive
3666  *     May have some settings, but array is not active
3667  *        all IO results in error
3668  *     When written, doesn't tear down array, but just stops it
3669  * suspended (not supported yet)
3670  *     All IO requests will block. The array can be reconfigured.
3671  *     Writing this, if accepted, will block until array is quiescent
3672  * readonly
3673  *     no resync can happen.  no superblocks get written.
3674  *     write requests fail
3675  * read-auto
3676  *     like readonly, but behaves like 'clean' on a write request.
3677  *
3678  * clean - no pending writes, but otherwise active.
3679  *     When written to inactive array, starts without resync
3680  *     If a write request arrives then
3681  *       if metadata is known, mark 'dirty' and switch to 'active'.
3682  *       if not known, block and switch to write-pending
3683  *     If written to an active array that has pending writes, then fails.
3684  * active
3685  *     fully active: IO and resync can be happening.
3686  *     When written to inactive array, starts with resync
3687  *
3688  * write-pending
3689  *     clean, but writes are blocked waiting for 'active' to be written.
3690  *
3691  * active-idle
3692  *     like active, but no writes have been seen for a while (100msec).
3693  *
3694  */
3695 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3696                    write_pending, active_idle, bad_word};
3697 static char *array_states[] = {
3698         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3699         "write-pending", "active-idle", NULL };
3700
3701 static int match_word(const char *word, char **list)
3702 {
3703         int n;
3704         for (n=0; list[n]; n++)
3705                 if (cmd_match(word, list[n]))
3706                         break;
3707         return n;
3708 }
3709
3710 static ssize_t
3711 array_state_show(struct mddev *mddev, char *page)
3712 {
3713         enum array_state st = inactive;
3714
3715         if (mddev->pers)
3716                 switch(mddev->ro) {
3717                 case 1:
3718                         st = readonly;
3719                         break;
3720                 case 2:
3721                         st = read_auto;
3722                         break;
3723                 case 0:
3724                         if (mddev->in_sync)
3725                                 st = clean;
3726                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3727                                 st = write_pending;
3728                         else if (mddev->safemode)
3729                                 st = active_idle;
3730                         else
3731                                 st = active;
3732                 }
3733         else {
3734                 if (list_empty(&mddev->disks) &&
3735                     mddev->raid_disks == 0 &&
3736                     mddev->dev_sectors == 0)
3737                         st = clear;
3738                 else
3739                         st = inactive;
3740         }
3741         return sprintf(page, "%s\n", array_states[st]);
3742 }
3743
3744 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3745 static int md_set_readonly(struct mddev * mddev, int is_open);
3746 static int do_md_run(struct mddev * mddev);
3747 static int restart_array(struct mddev *mddev);
3748
3749 static ssize_t
3750 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3751 {
3752         int err = -EINVAL;
3753         enum array_state st = match_word(buf, array_states);
3754         switch(st) {
3755         case bad_word:
3756                 break;
3757         case clear:
3758                 /* stopping an active array */
3759                 if (atomic_read(&mddev->openers) > 0)
3760                         return -EBUSY;
3761                 err = do_md_stop(mddev, 0, 0);
3762                 break;
3763         case inactive:
3764                 /* stopping an active array */
3765                 if (mddev->pers) {
3766                         if (atomic_read(&mddev->openers) > 0)
3767                                 return -EBUSY;
3768                         err = do_md_stop(mddev, 2, 0);
3769                 } else
3770                         err = 0; /* already inactive */
3771                 break;
3772         case suspended:
3773                 break; /* not supported yet */
3774         case readonly:
3775                 if (mddev->pers)
3776                         err = md_set_readonly(mddev, 0);
3777                 else {
3778                         mddev->ro = 1;
3779                         set_disk_ro(mddev->gendisk, 1);
3780                         err = do_md_run(mddev);
3781                 }
3782                 break;
3783         case read_auto:
3784                 if (mddev->pers) {
3785                         if (mddev->ro == 0)
3786                                 err = md_set_readonly(mddev, 0);
3787                         else if (mddev->ro == 1)
3788                                 err = restart_array(mddev);
3789                         if (err == 0) {
3790                                 mddev->ro = 2;
3791                                 set_disk_ro(mddev->gendisk, 0);
3792                         }
3793                 } else {
3794                         mddev->ro = 2;
3795                         err = do_md_run(mddev);
3796                 }
3797                 break;
3798         case clean:
3799                 if (mddev->pers) {
3800                         restart_array(mddev);
3801                         spin_lock_irq(&mddev->write_lock);
3802                         if (atomic_read(&mddev->writes_pending) == 0) {
3803                                 if (mddev->in_sync == 0) {
3804                                         mddev->in_sync = 1;
3805                                         if (mddev->safemode == 1)
3806                                                 mddev->safemode = 0;
3807                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3808                                 }
3809                                 err = 0;
3810                         } else
3811                                 err = -EBUSY;
3812                         spin_unlock_irq(&mddev->write_lock);
3813                 } else
3814                         err = -EINVAL;
3815                 break;
3816         case active:
3817                 if (mddev->pers) {
3818                         restart_array(mddev);
3819                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3820                         wake_up(&mddev->sb_wait);
3821                         err = 0;
3822                 } else {
3823                         mddev->ro = 0;
3824                         set_disk_ro(mddev->gendisk, 0);
3825                         err = do_md_run(mddev);
3826                 }
3827                 break;
3828         case write_pending:
3829         case active_idle:
3830                 /* these cannot be set */
3831                 break;
3832         }
3833         if (err)
3834                 return err;
3835         else {
3836                 if (mddev->hold_active == UNTIL_IOCTL)
3837                         mddev->hold_active = 0;
3838                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3839                 return len;
3840         }
3841 }
3842 static struct md_sysfs_entry md_array_state =
3843 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3844
3845 static ssize_t
3846 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3847         return sprintf(page, "%d\n",
3848                        atomic_read(&mddev->max_corr_read_errors));
3849 }
3850
3851 static ssize_t
3852 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3853 {
3854         char *e;
3855         unsigned long n = simple_strtoul(buf, &e, 10);
3856
3857         if (*buf && (*e == 0 || *e == '\n')) {
3858                 atomic_set(&mddev->max_corr_read_errors, n);
3859                 return len;
3860         }
3861         return -EINVAL;
3862 }
3863
3864 static struct md_sysfs_entry max_corr_read_errors =
3865 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3866         max_corrected_read_errors_store);
3867
3868 static ssize_t
3869 null_show(struct mddev *mddev, char *page)
3870 {
3871         return -EINVAL;
3872 }
3873
3874 static ssize_t
3875 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3876 {
3877         /* buf must be %d:%d\n? giving major and minor numbers */
3878         /* The new device is added to the array.
3879          * If the array has a persistent superblock, we read the
3880          * superblock to initialise info and check validity.
3881          * Otherwise, only checking done is that in bind_rdev_to_array,
3882          * which mainly checks size.
3883          */
3884         char *e;
3885         int major = simple_strtoul(buf, &e, 10);
3886         int minor;
3887         dev_t dev;
3888         struct md_rdev *rdev;
3889         int err;
3890
3891         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3892                 return -EINVAL;
3893         minor = simple_strtoul(e+1, &e, 10);
3894         if (*e && *e != '\n')
3895                 return -EINVAL;
3896         dev = MKDEV(major, minor);
3897         if (major != MAJOR(dev) ||
3898             minor != MINOR(dev))
3899                 return -EOVERFLOW;
3900
3901
3902         if (mddev->persistent) {
3903                 rdev = md_import_device(dev, mddev->major_version,
3904                                         mddev->minor_version);
3905                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3906                         struct md_rdev *rdev0
3907                                 = list_entry(mddev->disks.next,
3908                                              struct md_rdev, same_set);
3909                         err = super_types[mddev->major_version]
3910                                 .load_super(rdev, rdev0, mddev->minor_version);
3911                         if (err < 0)
3912                                 goto out;
3913                 }
3914         } else if (mddev->external)
3915                 rdev = md_import_device(dev, -2, -1);
3916         else
3917                 rdev = md_import_device(dev, -1, -1);
3918
3919         if (IS_ERR(rdev))
3920                 return PTR_ERR(rdev);
3921         err = bind_rdev_to_array(rdev, mddev);
3922  out:
3923         if (err)
3924                 export_rdev(rdev);
3925         return err ? err : len;
3926 }
3927
3928 static struct md_sysfs_entry md_new_device =
3929 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3930
3931 static ssize_t
3932 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3933 {
3934         char *end;
3935         unsigned long chunk, end_chunk;
3936
3937         if (!mddev->bitmap)
3938                 goto out;
3939         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3940         while (*buf) {
3941                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3942                 if (buf == end) break;
3943                 if (*end == '-') { /* range */
3944                         buf = end + 1;
3945                         end_chunk = simple_strtoul(buf, &end, 0);
3946                         if (buf == end) break;
3947                 }
3948                 if (*end && !isspace(*end)) break;
3949                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3950                 buf = skip_spaces(end);
3951         }
3952         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3953 out:
3954         return len;
3955 }
3956
3957 static struct md_sysfs_entry md_bitmap =
3958 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3959
3960 static ssize_t
3961 size_show(struct mddev *mddev, char *page)
3962 {
3963         return sprintf(page, "%llu\n",
3964                 (unsigned long long)mddev->dev_sectors / 2);
3965 }
3966
3967 static int update_size(struct mddev *mddev, sector_t num_sectors);
3968
3969 static ssize_t
3970 size_store(struct mddev *mddev, const char *buf, size_t len)
3971 {
3972         /* If array is inactive, we can reduce the component size, but
3973          * not increase it (except from 0).
3974          * If array is active, we can try an on-line resize
3975          */
3976         sector_t sectors;
3977         int err = strict_blocks_to_sectors(buf, &sectors);
3978
3979         if (err < 0)
3980                 return err;
3981         if (mddev->pers) {
3982                 err = update_size(mddev, sectors);
3983                 md_update_sb(mddev, 1);
3984         } else {
3985                 if (mddev->dev_sectors == 0 ||
3986                     mddev->dev_sectors > sectors)
3987                         mddev->dev_sectors = sectors;
3988                 else
3989                         err = -ENOSPC;
3990         }
3991         return err ? err : len;
3992 }
3993
3994 static struct md_sysfs_entry md_size =
3995 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3996
3997
3998 /* Metdata version.
3999  * This is one of
4000  *   'none' for arrays with no metadata (good luck...)
4001  *   'external' for arrays with externally managed metadata,
4002  * or N.M for internally known formats
4003  */
4004 static ssize_t
4005 metadata_show(struct mddev *mddev, char *page)
4006 {
4007         if (mddev->persistent)
4008                 return sprintf(page, "%d.%d\n",
4009                                mddev->major_version, mddev->minor_version);
4010         else if (mddev->external)
4011                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4012         else
4013                 return sprintf(page, "none\n");
4014 }
4015
4016 static ssize_t
4017 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4018 {
4019         int major, minor;
4020         char *e;
4021         /* Changing the details of 'external' metadata is
4022          * always permitted.  Otherwise there must be
4023          * no devices attached to the array.
4024          */
4025         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4026                 ;
4027         else if (!list_empty(&mddev->disks))
4028                 return -EBUSY;
4029
4030         if (cmd_match(buf, "none")) {
4031                 mddev->persistent = 0;
4032                 mddev->external = 0;
4033                 mddev->major_version = 0;
4034                 mddev->minor_version = 90;
4035                 return len;
4036         }
4037         if (strncmp(buf, "external:", 9) == 0) {
4038                 size_t namelen = len-9;
4039                 if (namelen >= sizeof(mddev->metadata_type))
4040                         namelen = sizeof(mddev->metadata_type)-1;
4041                 strncpy(mddev->metadata_type, buf+9, namelen);
4042                 mddev->metadata_type[namelen] = 0;
4043                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4044                         mddev->metadata_type[--namelen] = 0;
4045                 mddev->persistent = 0;
4046                 mddev->external = 1;
4047                 mddev->major_version = 0;
4048                 mddev->minor_version = 90;
4049                 return len;
4050         }
4051         major = simple_strtoul(buf, &e, 10);
4052         if (e==buf || *e != '.')
4053                 return -EINVAL;
4054         buf = e+1;
4055         minor = simple_strtoul(buf, &e, 10);
4056         if (e==buf || (*e && *e != '\n') )
4057                 return -EINVAL;
4058         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4059                 return -ENOENT;
4060         mddev->major_version = major;
4061         mddev->minor_version = minor;
4062         mddev->persistent = 1;
4063         mddev->external = 0;
4064         return len;
4065 }
4066
4067 static struct md_sysfs_entry md_metadata =
4068 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4069
4070 static ssize_t
4071 action_show(struct mddev *mddev, char *page)
4072 {
4073         char *type = "idle";
4074         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4075                 type = "frozen";
4076         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4077             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4078                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4079                         type = "reshape";
4080                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4081                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4082                                 type = "resync";
4083                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4084                                 type = "check";
4085                         else
4086                                 type = "repair";
4087                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4088                         type = "recover";
4089         }
4090         return sprintf(page, "%s\n", type);
4091 }
4092
4093 static void reap_sync_thread(struct mddev *mddev);
4094
4095 static ssize_t
4096 action_store(struct mddev *mddev, const char *page, size_t len)
4097 {
4098         if (!mddev->pers || !mddev->pers->sync_request)
4099                 return -EINVAL;
4100
4101         if (cmd_match(page, "frozen"))
4102                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4103         else
4104                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4105
4106         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4107                 if (mddev->sync_thread) {
4108                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4109                         reap_sync_thread(mddev);
4110                 }
4111         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4112                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4113                 return -EBUSY;
4114         else if (cmd_match(page, "resync"))
4115                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4116         else if (cmd_match(page, "recover")) {
4117                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4118                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4119         } else if (cmd_match(page, "reshape")) {
4120                 int err;
4121                 if (mddev->pers->start_reshape == NULL)
4122                         return -EINVAL;
4123                 err = mddev->pers->start_reshape(mddev);
4124                 if (err)
4125                         return err;
4126                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4127         } else {
4128                 if (cmd_match(page, "check"))
4129                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4130                 else if (!cmd_match(page, "repair"))
4131                         return -EINVAL;
4132                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4133                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4134         }
4135         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4136         md_wakeup_thread(mddev->thread);
4137         sysfs_notify_dirent_safe(mddev->sysfs_action);
4138         return len;
4139 }
4140
4141 static ssize_t
4142 mismatch_cnt_show(struct mddev *mddev, char *page)
4143 {
4144         return sprintf(page, "%llu\n",
4145                        (unsigned long long) mddev->resync_mismatches);
4146 }
4147
4148 static struct md_sysfs_entry md_scan_mode =
4149 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4150
4151
4152 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4153
4154 static ssize_t
4155 sync_min_show(struct mddev *mddev, char *page)
4156 {
4157         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4158                        mddev->sync_speed_min ? "local": "system");
4159 }
4160
4161 static ssize_t
4162 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4163 {
4164         int min;
4165         char *e;
4166         if (strncmp(buf, "system", 6)==0) {
4167                 mddev->sync_speed_min = 0;
4168                 return len;
4169         }
4170         min = simple_strtoul(buf, &e, 10);
4171         if (buf == e || (*e && *e != '\n') || min <= 0)
4172                 return -EINVAL;
4173         mddev->sync_speed_min = min;
4174         return len;
4175 }
4176
4177 static struct md_sysfs_entry md_sync_min =
4178 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4179
4180 static ssize_t
4181 sync_max_show(struct mddev *mddev, char *page)
4182 {
4183         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4184                        mddev->sync_speed_max ? "local": "system");
4185 }
4186
4187 static ssize_t
4188 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4189 {
4190         int max;
4191         char *e;
4192         if (strncmp(buf, "system", 6)==0) {
4193                 mddev->sync_speed_max = 0;
4194                 return len;
4195         }
4196         max = simple_strtoul(buf, &e, 10);
4197         if (buf == e || (*e && *e != '\n') || max <= 0)
4198                 return -EINVAL;
4199         mddev->sync_speed_max = max;
4200         return len;
4201 }
4202
4203 static struct md_sysfs_entry md_sync_max =
4204 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4205
4206 static ssize_t
4207 degraded_show(struct mddev *mddev, char *page)
4208 {
4209         return sprintf(page, "%d\n", mddev->degraded);
4210 }
4211 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4212
4213 static ssize_t
4214 sync_force_parallel_show(struct mddev *mddev, char *page)
4215 {
4216         return sprintf(page, "%d\n", mddev->parallel_resync);
4217 }
4218
4219 static ssize_t
4220 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4221 {
4222         long n;
4223
4224         if (strict_strtol(buf, 10, &n))
4225                 return -EINVAL;
4226
4227         if (n != 0 && n != 1)
4228                 return -EINVAL;
4229
4230         mddev->parallel_resync = n;
4231
4232         if (mddev->sync_thread)
4233                 wake_up(&resync_wait);
4234
4235         return len;
4236 }
4237
4238 /* force parallel resync, even with shared block devices */
4239 static struct md_sysfs_entry md_sync_force_parallel =
4240 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4241        sync_force_parallel_show, sync_force_parallel_store);
4242
4243 static ssize_t
4244 sync_speed_show(struct mddev *mddev, char *page)
4245 {
4246         unsigned long resync, dt, db;
4247         if (mddev->curr_resync == 0)
4248                 return sprintf(page, "none\n");
4249         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4250         dt = (jiffies - mddev->resync_mark) / HZ;
4251         if (!dt) dt++;
4252         db = resync - mddev->resync_mark_cnt;
4253         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4254 }
4255
4256 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4257
4258 static ssize_t
4259 sync_completed_show(struct mddev *mddev, char *page)
4260 {
4261         unsigned long long max_sectors, resync;
4262
4263         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4264                 return sprintf(page, "none\n");
4265
4266         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4267                 max_sectors = mddev->resync_max_sectors;
4268         else
4269                 max_sectors = mddev->dev_sectors;
4270
4271         resync = mddev->curr_resync_completed;
4272         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4273 }
4274
4275 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4276
4277 static ssize_t
4278 min_sync_show(struct mddev *mddev, char *page)
4279 {
4280         return sprintf(page, "%llu\n",
4281                        (unsigned long long)mddev->resync_min);
4282 }
4283 static ssize_t
4284 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4285 {
4286         unsigned long long min;
4287         if (strict_strtoull(buf, 10, &min))
4288                 return -EINVAL;
4289         if (min > mddev->resync_max)
4290                 return -EINVAL;
4291         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4292                 return -EBUSY;
4293
4294         /* Must be a multiple of chunk_size */
4295         if (mddev->chunk_sectors) {
4296                 sector_t temp = min;
4297                 if (sector_div(temp, mddev->chunk_sectors))
4298                         return -EINVAL;
4299         }
4300         mddev->resync_min = min;
4301
4302         return len;
4303 }
4304
4305 static struct md_sysfs_entry md_min_sync =
4306 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4307
4308 static ssize_t
4309 max_sync_show(struct mddev *mddev, char *page)
4310 {
4311         if (mddev->resync_max == MaxSector)
4312                 return sprintf(page, "max\n");
4313         else
4314                 return sprintf(page, "%llu\n",
4315                                (unsigned long long)mddev->resync_max);
4316 }
4317 static ssize_t
4318 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4319 {
4320         if (strncmp(buf, "max", 3) == 0)
4321                 mddev->resync_max = MaxSector;
4322         else {
4323                 unsigned long long max;
4324                 if (strict_strtoull(buf, 10, &max))
4325                         return -EINVAL;
4326                 if (max < mddev->resync_min)
4327                         return -EINVAL;
4328                 if (max < mddev->resync_max &&
4329                     mddev->ro == 0 &&
4330                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4331                         return -EBUSY;
4332
4333                 /* Must be a multiple of chunk_size */
4334                 if (mddev->chunk_sectors) {
4335                         sector_t temp = max;
4336                         if (sector_div(temp, mddev->chunk_sectors))
4337                                 return -EINVAL;
4338                 }
4339                 mddev->resync_max = max;
4340         }
4341         wake_up(&mddev->recovery_wait);
4342         return len;
4343 }
4344
4345 static struct md_sysfs_entry md_max_sync =
4346 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4347
4348 static ssize_t
4349 suspend_lo_show(struct mddev *mddev, char *page)
4350 {
4351         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4352 }
4353
4354 static ssize_t
4355 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4356 {
4357         char *e;
4358         unsigned long long new = simple_strtoull(buf, &e, 10);
4359         unsigned long long old = mddev->suspend_lo;
4360
4361         if (mddev->pers == NULL || 
4362             mddev->pers->quiesce == NULL)
4363                 return -EINVAL;
4364         if (buf == e || (*e && *e != '\n'))
4365                 return -EINVAL;
4366
4367         mddev->suspend_lo = new;
4368         if (new >= old)
4369                 /* Shrinking suspended region */
4370                 mddev->pers->quiesce(mddev, 2);
4371         else {
4372                 /* Expanding suspended region - need to wait */
4373                 mddev->pers->quiesce(mddev, 1);
4374                 mddev->pers->quiesce(mddev, 0);
4375         }
4376         return len;
4377 }
4378 static struct md_sysfs_entry md_suspend_lo =
4379 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4380
4381
4382 static ssize_t
4383 suspend_hi_show(struct mddev *mddev, char *page)
4384 {
4385         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4386 }
4387
4388 static ssize_t
4389 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4390 {
4391         char *e;
4392         unsigned long long new = simple_strtoull(buf, &e, 10);
4393         unsigned long long old = mddev->suspend_hi;
4394
4395         if (mddev->pers == NULL ||
4396             mddev->pers->quiesce == NULL)
4397                 return -EINVAL;
4398         if (buf == e || (*e && *e != '\n'))
4399                 return -EINVAL;
4400
4401         mddev->suspend_hi = new;
4402         if (new <= old)
4403                 /* Shrinking suspended region */
4404                 mddev->pers->quiesce(mddev, 2);
4405         else {
4406                 /* Expanding suspended region - need to wait */
4407                 mddev->pers->quiesce(mddev, 1);
4408                 mddev->pers->quiesce(mddev, 0);
4409         }
4410         return len;
4411 }
4412 static struct md_sysfs_entry md_suspend_hi =
4413 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4414
4415 static ssize_t
4416 reshape_position_show(struct mddev *mddev, char *page)
4417 {
4418         if (mddev->reshape_position != MaxSector)
4419                 return sprintf(page, "%llu\n",
4420                                (unsigned long long)mddev->reshape_position);
4421         strcpy(page, "none\n");
4422         return 5;
4423 }
4424
4425 static ssize_t
4426 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4427 {
4428         char *e;
4429         unsigned long long new = simple_strtoull(buf, &e, 10);
4430         if (mddev->pers)
4431                 return -EBUSY;
4432         if (buf == e || (*e && *e != '\n'))
4433                 return -EINVAL;
4434         mddev->reshape_position = new;
4435         mddev->delta_disks = 0;
4436         mddev->new_level = mddev->level;
4437         mddev->new_layout = mddev->layout;
4438         mddev->new_chunk_sectors = mddev->chunk_sectors;
4439         return len;
4440 }
4441
4442 static struct md_sysfs_entry md_reshape_position =
4443 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4444        reshape_position_store);
4445
4446 static ssize_t
4447 array_size_show(struct mddev *mddev, char *page)
4448 {
4449         if (mddev->external_size)
4450                 return sprintf(page, "%llu\n",
4451                                (unsigned long long)mddev->array_sectors/2);
4452         else
4453                 return sprintf(page, "default\n");
4454 }
4455
4456 static ssize_t
4457 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4458 {
4459         sector_t sectors;
4460
4461         if (strncmp(buf, "default", 7) == 0) {
4462                 if (mddev->pers)
4463                         sectors = mddev->pers->size(mddev, 0, 0);
4464                 else
4465                         sectors = mddev->array_sectors;
4466
4467                 mddev->external_size = 0;
4468         } else {
4469                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4470                         return -EINVAL;
4471                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4472                         return -E2BIG;
4473
4474                 mddev->external_size = 1;
4475         }
4476
4477         mddev->array_sectors = sectors;
4478         if (mddev->pers) {
4479                 set_capacity(mddev->gendisk, mddev->array_sectors);
4480                 revalidate_disk(mddev->gendisk);
4481         }
4482         return len;
4483 }
4484
4485 static struct md_sysfs_entry md_array_size =
4486 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4487        array_size_store);
4488
4489 static struct attribute *md_default_attrs[] = {
4490         &md_level.attr,
4491         &md_layout.attr,
4492         &md_raid_disks.attr,
4493         &md_chunk_size.attr,
4494         &md_size.attr,
4495         &md_resync_start.attr,
4496         &md_metadata.attr,
4497         &md_new_device.attr,
4498         &md_safe_delay.attr,
4499         &md_array_state.attr,
4500         &md_reshape_position.attr,
4501         &md_array_size.attr,
4502         &max_corr_read_errors.attr,
4503         NULL,
4504 };
4505
4506 static struct attribute *md_redundancy_attrs[] = {
4507         &md_scan_mode.attr,
4508         &md_mismatches.attr,
4509         &md_sync_min.attr,
4510         &md_sync_max.attr,
4511         &md_sync_speed.attr,
4512         &md_sync_force_parallel.attr,
4513         &md_sync_completed.attr,
4514         &md_min_sync.attr,
4515         &md_max_sync.attr,
4516         &md_suspend_lo.attr,
4517         &md_suspend_hi.attr,
4518         &md_bitmap.attr,
4519         &md_degraded.attr,
4520         NULL,
4521 };
4522 static struct attribute_group md_redundancy_group = {
4523         .name = NULL,
4524         .attrs = md_redundancy_attrs,
4525 };
4526
4527
4528 static ssize_t
4529 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4530 {
4531         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4532         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4533         ssize_t rv;
4534
4535         if (!entry->show)
4536                 return -EIO;
4537         spin_lock(&all_mddevs_lock);
4538         if (list_empty(&mddev->all_mddevs)) {
4539                 spin_unlock(&all_mddevs_lock);
4540                 return -EBUSY;
4541         }
4542         mddev_get(mddev);
4543         spin_unlock(&all_mddevs_lock);
4544
4545         rv = mddev_lock(mddev);
4546         if (!rv) {
4547                 rv = entry->show(mddev, page);
4548                 mddev_unlock(mddev);
4549         }
4550         mddev_put(mddev);
4551         return rv;
4552 }
4553
4554 static ssize_t
4555 md_attr_store(struct kobject *kobj, struct attribute *attr,
4556               const char *page, size_t length)
4557 {
4558         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4559         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4560         ssize_t rv;
4561
4562         if (!entry->store)
4563                 return -EIO;
4564         if (!capable(CAP_SYS_ADMIN))
4565                 return -EACCES;
4566         spin_lock(&all_mddevs_lock);
4567         if (list_empty(&mddev->all_mddevs)) {
4568                 spin_unlock(&all_mddevs_lock);
4569                 return -EBUSY;
4570         }
4571         mddev_get(mddev);
4572         spin_unlock(&all_mddevs_lock);
4573         rv = mddev_lock(mddev);
4574         if (!rv) {
4575                 rv = entry->store(mddev, page, length);
4576                 mddev_unlock(mddev);
4577         }
4578         mddev_put(mddev);
4579         return rv;
4580 }
4581
4582 static void md_free(struct kobject *ko)
4583 {
4584         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4585
4586         if (mddev->sysfs_state)
4587                 sysfs_put(mddev->sysfs_state);
4588
4589         if (mddev->gendisk) {
4590                 del_gendisk(mddev->gendisk);
4591                 put_disk(mddev->gendisk);
4592         }
4593         if (mddev->queue)
4594                 blk_cleanup_queue(mddev->queue);
4595
4596         kfree(mddev);
4597 }
4598
4599 static const struct sysfs_ops md_sysfs_ops = {
4600         .show   = md_attr_show,
4601         .store  = md_attr_store,
4602 };
4603 static struct kobj_type md_ktype = {
4604         .release        = md_free,
4605         .sysfs_ops      = &md_sysfs_ops,
4606         .default_attrs  = md_default_attrs,
4607 };
4608
4609 int mdp_major = 0;
4610
4611 static void mddev_delayed_delete(struct work_struct *ws)
4612 {
4613         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4614
4615         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4616         kobject_del(&mddev->kobj);
4617         kobject_put(&mddev->kobj);
4618 }
4619
4620 static int md_alloc(dev_t dev, char *name)
4621 {
4622         static DEFINE_MUTEX(disks_mutex);
4623         struct mddev *mddev = mddev_find(dev);
4624         struct gendisk *disk;
4625         int partitioned;
4626         int shift;
4627         int unit;
4628         int error;
4629
4630         if (!mddev)
4631                 return -ENODEV;
4632
4633         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4634         shift = partitioned ? MdpMinorShift : 0;
4635         unit = MINOR(mddev->unit) >> shift;
4636
4637         /* wait for any previous instance of this device to be
4638          * completely removed (mddev_delayed_delete).
4639          */
4640         flush_workqueue(md_misc_wq);
4641
4642         mutex_lock(&disks_mutex);
4643         error = -EEXIST;
4644         if (mddev->gendisk)
4645                 goto abort;
4646
4647         if (name) {
4648                 /* Need to ensure that 'name' is not a duplicate.
4649                  */
4650                 struct mddev *mddev2;
4651                 spin_lock(&all_mddevs_lock);
4652
4653                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4654                         if (mddev2->gendisk &&
4655                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4656                                 spin_unlock(&all_mddevs_lock);
4657                                 goto abort;
4658                         }
4659                 spin_unlock(&all_mddevs_lock);
4660         }
4661
4662         error = -ENOMEM;
4663         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4664         if (!mddev->queue)
4665                 goto abort;
4666         mddev->queue->queuedata = mddev;
4667
4668         blk_queue_make_request(mddev->queue, md_make_request);
4669
4670         disk = alloc_disk(1 << shift);
4671         if (!disk) {
4672                 blk_cleanup_queue(mddev->queue);
4673                 mddev->queue = NULL;
4674                 goto abort;
4675         }
4676         disk->major = MAJOR(mddev->unit);
4677         disk->first_minor = unit << shift;
4678         if (name)
4679                 strcpy(disk->disk_name, name);
4680         else if (partitioned)
4681                 sprintf(disk->disk_name, "md_d%d", unit);
4682         else
4683                 sprintf(disk->disk_name, "md%d", unit);
4684         disk->fops = &md_fops;
4685         disk->private_data = mddev;
4686         disk->queue = mddev->queue;
4687         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4688         /* Allow extended partitions.  This makes the
4689          * 'mdp' device redundant, but we can't really
4690          * remove it now.
4691          */
4692         disk->flags |= GENHD_FL_EXT_DEVT;
4693         mddev->gendisk = disk;
4694         /* As soon as we call add_disk(), another thread could get
4695          * through to md_open, so make sure it doesn't get too far
4696          */
4697         mutex_lock(&mddev->open_mutex);
4698         add_disk(disk);
4699
4700         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4701                                      &disk_to_dev(disk)->kobj, "%s", "md");
4702         if (error) {
4703                 /* This isn't possible, but as kobject_init_and_add is marked
4704                  * __must_check, we must do something with the result
4705                  */
4706                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4707                        disk->disk_name);
4708                 error = 0;
4709         }
4710         if (mddev->kobj.sd &&
4711             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4712                 printk(KERN_DEBUG "pointless warning\n");
4713         mutex_unlock(&mddev->open_mutex);
4714  abort:
4715         mutex_unlock(&disks_mutex);
4716         if (!error && mddev->kobj.sd) {
4717                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4718                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4719         }
4720         mddev_put(mddev);
4721         return error;
4722 }
4723
4724 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4725 {
4726         md_alloc(dev, NULL);
4727         return NULL;
4728 }
4729
4730 static int add_named_array(const char *val, struct kernel_param *kp)
4731 {
4732         /* val must be "md_*" where * is not all digits.
4733          * We allocate an array with a large free minor number, and
4734          * set the name to val.  val must not already be an active name.
4735          */
4736         int len = strlen(val);
4737         char buf[DISK_NAME_LEN];
4738
4739         while (len && val[len-1] == '\n')
4740                 len--;
4741         if (len >= DISK_NAME_LEN)
4742                 return -E2BIG;
4743         strlcpy(buf, val, len+1);
4744         if (strncmp(buf, "md_", 3) != 0)
4745                 return -EINVAL;
4746         return md_alloc(0, buf);
4747 }
4748
4749 static void md_safemode_timeout(unsigned long data)
4750 {
4751         struct mddev *mddev = (struct mddev *) data;
4752
4753         if (!atomic_read(&mddev->writes_pending)) {
4754                 mddev->safemode = 1;
4755                 if (mddev->external)
4756                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4757         }
4758         md_wakeup_thread(mddev->thread);
4759 }
4760
4761 static int start_dirty_degraded;
4762
4763 int md_run(struct mddev *mddev)
4764 {
4765         int err;
4766         struct md_rdev *rdev;
4767         struct md_personality *pers;
4768
4769         if (list_empty(&mddev->disks))
4770                 /* cannot run an array with no devices.. */
4771                 return -EINVAL;
4772
4773         if (mddev->pers)
4774                 return -EBUSY;
4775         /* Cannot run until previous stop completes properly */
4776         if (mddev->sysfs_active)
4777                 return -EBUSY;
4778
4779         /*
4780          * Analyze all RAID superblock(s)
4781          */
4782         if (!mddev->raid_disks) {
4783                 if (!mddev->persistent)
4784                         return -EINVAL;
4785                 analyze_sbs(mddev);
4786         }
4787
4788         if (mddev->level != LEVEL_NONE)
4789                 request_module("md-level-%d", mddev->level);
4790         else if (mddev->clevel[0])
4791                 request_module("md-%s", mddev->clevel);
4792
4793         /*
4794          * Drop all container device buffers, from now on
4795          * the only valid external interface is through the md
4796          * device.
4797          */
4798         list_for_each_entry(rdev, &mddev->disks, same_set) {
4799                 if (test_bit(Faulty, &rdev->flags))
4800                         continue;
4801                 sync_blockdev(rdev->bdev);
4802                 invalidate_bdev(rdev->bdev);
4803
4804                 /* perform some consistency tests on the device.
4805                  * We don't want the data to overlap the metadata,
4806                  * Internal Bitmap issues have been handled elsewhere.
4807                  */
4808                 if (rdev->meta_bdev) {
4809                         /* Nothing to check */;
4810                 } else if (rdev->data_offset < rdev->sb_start) {
4811                         if (mddev->dev_sectors &&
4812                             rdev->data_offset + mddev->dev_sectors
4813                             > rdev->sb_start) {
4814                                 printk("md: %s: data overlaps metadata\n",
4815                                        mdname(mddev));
4816                                 return -EINVAL;
4817                         }
4818                 } else {
4819                         if (rdev->sb_start + rdev->sb_size/512
4820                             > rdev->data_offset) {
4821                                 printk("md: %s: metadata overlaps data\n",
4822                                        mdname(mddev));
4823                                 return -EINVAL;
4824                         }
4825                 }
4826                 sysfs_notify_dirent_safe(rdev->sysfs_state);
4827         }
4828
4829         if (mddev->bio_set == NULL)
4830                 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4831                                                sizeof(struct mddev *));
4832
4833         spin_lock(&pers_lock);
4834         pers = find_pers(mddev->level, mddev->clevel);
4835         if (!pers || !try_module_get(pers->owner)) {
4836                 spin_unlock(&pers_lock);
4837                 if (mddev->level != LEVEL_NONE)
4838                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4839                                mddev->level);
4840                 else
4841                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4842                                mddev->clevel);
4843                 return -EINVAL;
4844         }
4845         mddev->pers = pers;
4846         spin_unlock(&pers_lock);
4847         if (mddev->level != pers->level) {
4848                 mddev->level = pers->level;
4849                 mddev->new_level = pers->level;
4850         }
4851         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4852
4853         if (mddev->reshape_position != MaxSector &&
4854             pers->start_reshape == NULL) {
4855                 /* This personality cannot handle reshaping... */
4856                 mddev->pers = NULL;
4857                 module_put(pers->owner);
4858                 return -EINVAL;
4859         }
4860
4861         if (pers->sync_request) {
4862                 /* Warn if this is a potentially silly
4863                  * configuration.
4864                  */
4865                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4866                 struct md_rdev *rdev2;
4867                 int warned = 0;
4868
4869                 list_for_each_entry(rdev, &mddev->disks, same_set)
4870                         list_for_each_entry(rdev2, &mddev->disks, same_set) {
4871                                 if (rdev < rdev2 &&
4872                                     rdev->bdev->bd_contains ==
4873                                     rdev2->bdev->bd_contains) {
4874                                         printk(KERN_WARNING
4875                                                "%s: WARNING: %s appears to be"
4876                                                " on the same physical disk as"
4877                                                " %s.\n",
4878                                                mdname(mddev),
4879                                                bdevname(rdev->bdev,b),
4880                                                bdevname(rdev2->bdev,b2));
4881                                         warned = 1;
4882                                 }
4883                         }
4884
4885                 if (warned)
4886                         printk(KERN_WARNING
4887                                "True protection against single-disk"
4888                                " failure might be compromised.\n");
4889         }
4890
4891         mddev->recovery = 0;
4892         /* may be over-ridden by personality */
4893         mddev->resync_max_sectors = mddev->dev_sectors;
4894
4895         mddev->ok_start_degraded = start_dirty_degraded;
4896
4897         if (start_readonly && mddev->ro == 0)
4898                 mddev->ro = 2; /* read-only, but switch on first write */
4899
4900         err = mddev->pers->run(mddev);
4901         if (err)
4902                 printk(KERN_ERR "md: pers->run() failed ...\n");
4903         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4904                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4905                           " but 'external_size' not in effect?\n", __func__);
4906                 printk(KERN_ERR
4907                        "md: invalid array_size %llu > default size %llu\n",
4908                        (unsigned long long)mddev->array_sectors / 2,
4909                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4910                 err = -EINVAL;
4911                 mddev->pers->stop(mddev);
4912         }
4913         if (err == 0 && mddev->pers->sync_request) {
4914                 err = bitmap_create(mddev);
4915                 if (err) {
4916                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4917                                mdname(mddev), err);
4918                         mddev->pers->stop(mddev);
4919                 }
4920         }
4921         if (err) {
4922                 module_put(mddev->pers->owner);
4923                 mddev->pers = NULL;
4924                 bitmap_destroy(mddev);
4925                 return err;
4926         }
4927         if (mddev->pers->sync_request) {
4928                 if (mddev->kobj.sd &&
4929                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4930                         printk(KERN_WARNING
4931                                "md: cannot register extra attributes for %s\n",
4932                                mdname(mddev));
4933                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4934         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4935                 mddev->ro = 0;
4936
4937         atomic_set(&mddev->writes_pending,0);
4938         atomic_set(&mddev->max_corr_read_errors,
4939                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4940         mddev->safemode = 0;
4941         mddev->safemode_timer.function = md_safemode_timeout;
4942         mddev->safemode_timer.data = (unsigned long) mddev;
4943         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4944         mddev->in_sync = 1;
4945         smp_wmb();
4946         mddev->ready = 1;
4947         list_for_each_entry(rdev, &mddev->disks, same_set)
4948                 if (rdev->raid_disk >= 0)
4949                         if (sysfs_link_rdev(mddev, rdev))
4950                                 /* failure here is OK */;
4951         
4952         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4953         
4954         if (mddev->flags)
4955                 md_update_sb(mddev, 0);
4956
4957         md_new_event(mddev);
4958         sysfs_notify_dirent_safe(mddev->sysfs_state);
4959         sysfs_notify_dirent_safe(mddev->sysfs_action);
4960         sysfs_notify(&mddev->kobj, NULL, "degraded");
4961         return 0;
4962 }
4963 EXPORT_SYMBOL_GPL(md_run);
4964
4965 static int do_md_run(struct mddev *mddev)
4966 {
4967         int err;
4968
4969         err = md_run(mddev);
4970         if (err)
4971                 goto out;
4972         err = bitmap_load(mddev);
4973         if (err) {
4974                 bitmap_destroy(mddev);
4975                 goto out;
4976         }
4977
4978         md_wakeup_thread(mddev->thread);
4979         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4980
4981         set_capacity(mddev->gendisk, mddev->array_sectors);
4982         revalidate_disk(mddev->gendisk);
4983         mddev->changed = 1;
4984         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4985 out:
4986         return err;
4987 }
4988
4989 static int restart_array(struct mddev *mddev)
4990 {
4991         struct gendisk *disk = mddev->gendisk;
4992
4993         /* Complain if it has no devices */
4994         if (list_empty(&mddev->disks))
4995                 return -ENXIO;
4996         if (!mddev->pers)
4997                 return -EINVAL;
4998         if (!mddev->ro)
4999                 return -EBUSY;
5000         mddev->safemode = 0;
5001         mddev->ro = 0;
5002         set_disk_ro(disk, 0);
5003         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5004                 mdname(mddev));
5005         /* Kick recovery or resync if necessary */
5006         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5007         md_wakeup_thread(mddev->thread);
5008         md_wakeup_thread(mddev->sync_thread);
5009         sysfs_notify_dirent_safe(mddev->sysfs_state);
5010         return 0;
5011 }
5012
5013 /* similar to deny_write_access, but accounts for our holding a reference
5014  * to the file ourselves */
5015 static int deny_bitmap_write_access(struct file * file)
5016 {
5017         struct inode *inode = file->f_mapping->host;
5018
5019         spin_lock(&inode->i_lock);
5020         if (atomic_read(&inode->i_writecount) > 1) {
5021                 spin_unlock(&inode->i_lock);
5022                 return -ETXTBSY;
5023         }
5024         atomic_set(&inode->i_writecount, -1);
5025         spin_unlock(&inode->i_lock);
5026
5027         return 0;
5028 }
5029
5030 void restore_bitmap_write_access(struct file *file)
5031 {
5032         struct inode *inode = file->f_mapping->host;
5033
5034         spin_lock(&inode->i_lock);
5035         atomic_set(&inode->i_writecount, 1);
5036         spin_unlock(&inode->i_lock);
5037 }
5038
5039 static void md_clean(struct mddev *mddev)
5040 {
5041         mddev->array_sectors = 0;
5042         mddev->external_size = 0;
5043         mddev->dev_sectors = 0;
5044         mddev->raid_disks = 0;
5045         mddev->recovery_cp = 0;
5046         mddev->resync_min = 0;
5047         mddev->resync_max = MaxSector;
5048         mddev->reshape_position = MaxSector;
5049         mddev->external = 0;
5050         mddev->persistent = 0;
5051         mddev->level = LEVEL_NONE;
5052         mddev->clevel[0] = 0;
5053         mddev->flags = 0;
5054         mddev->ro = 0;
5055         mddev->metadata_type[0] = 0;
5056         mddev->chunk_sectors = 0;
5057         mddev->ctime = mddev->utime = 0;
5058         mddev->layout = 0;
5059         mddev->max_disks = 0;
5060         mddev->events = 0;
5061         mddev->can_decrease_events = 0;
5062         mddev->delta_disks = 0;
5063         mddev->new_level = LEVEL_NONE;
5064         mddev->new_layout = 0;
5065         mddev->new_chunk_sectors = 0;
5066         mddev->curr_resync = 0;
5067         mddev->resync_mismatches = 0;
5068         mddev->suspend_lo = mddev->suspend_hi = 0;
5069         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5070         mddev->recovery = 0;
5071         mddev->in_sync = 0;
5072         mddev->changed = 0;
5073         mddev->degraded = 0;
5074         mddev->safemode = 0;
5075         mddev->bitmap_info.offset = 0;
5076         mddev->bitmap_info.default_offset = 0;
5077         mddev->bitmap_info.chunksize = 0;
5078         mddev->bitmap_info.daemon_sleep = 0;
5079         mddev->bitmap_info.max_write_behind = 0;
5080 }
5081
5082 static void __md_stop_writes(struct mddev *mddev)
5083 {
5084         if (mddev->sync_thread) {
5085                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5086                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5087                 reap_sync_thread(mddev);
5088         }
5089
5090         del_timer_sync(&mddev->safemode_timer);
5091
5092         bitmap_flush(mddev);
5093         md_super_wait(mddev);
5094
5095         if (!mddev->in_sync || mddev->flags) {
5096                 /* mark array as shutdown cleanly */
5097                 mddev->in_sync = 1;
5098                 md_update_sb(mddev, 1);
5099         }
5100 }
5101
5102 void md_stop_writes(struct mddev *mddev)
5103 {
5104         mddev_lock(mddev);
5105         __md_stop_writes(mddev);
5106         mddev_unlock(mddev);
5107 }
5108 EXPORT_SYMBOL_GPL(md_stop_writes);
5109
5110 void md_stop(struct mddev *mddev)
5111 {
5112         mddev->ready = 0;
5113         mddev->pers->stop(mddev);
5114         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5115                 mddev->to_remove = &md_redundancy_group;
5116         module_put(mddev->pers->owner);
5117         mddev->pers = NULL;
5118         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5119 }
5120 EXPORT_SYMBOL_GPL(md_stop);
5121
5122 static int md_set_readonly(struct mddev *mddev, int is_open)
5123 {
5124         int err = 0;
5125         mutex_lock(&mddev->open_mutex);
5126         if (atomic_read(&mddev->openers) > is_open) {
5127                 printk("md: %s still in use.\n",mdname(mddev));
5128                 err = -EBUSY;
5129                 goto out;
5130         }
5131         if (mddev->pers) {
5132                 __md_stop_writes(mddev);
5133
5134                 err  = -ENXIO;
5135                 if (mddev->ro==1)
5136                         goto out;
5137                 mddev->ro = 1;
5138                 set_disk_ro(mddev->gendisk, 1);
5139                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5140                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5141                 err = 0;        
5142         }
5143 out:
5144         mutex_unlock(&mddev->open_mutex);
5145         return err;
5146 }
5147
5148 /* mode:
5149  *   0 - completely stop and dis-assemble array
5150  *   2 - stop but do not disassemble array
5151  */
5152 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5153 {
5154         struct gendisk *disk = mddev->gendisk;
5155         struct md_rdev *rdev;
5156
5157         mutex_lock(&mddev->open_mutex);
5158         if (atomic_read(&mddev->openers) > is_open ||
5159             mddev->sysfs_active) {
5160                 printk("md: %s still in use.\n",mdname(mddev));
5161                 mutex_unlock(&mddev->open_mutex);
5162                 return -EBUSY;
5163         }
5164
5165         if (mddev->pers) {
5166                 if (mddev->ro)
5167                         set_disk_ro(disk, 0);
5168
5169                 __md_stop_writes(mddev);
5170                 md_stop(mddev);
5171                 mddev->queue->merge_bvec_fn = NULL;
5172                 mddev->queue->backing_dev_info.congested_fn = NULL;
5173
5174                 /* tell userspace to handle 'inactive' */
5175                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5176
5177                 list_for_each_entry(rdev, &mddev->disks, same_set)
5178                         if (rdev->raid_disk >= 0)
5179                                 sysfs_unlink_rdev(mddev, rdev);
5180
5181                 set_capacity(disk, 0);
5182                 mutex_unlock(&mddev->open_mutex);
5183                 mddev->changed = 1;
5184                 revalidate_disk(disk);
5185
5186                 if (mddev->ro)
5187                         mddev->ro = 0;
5188         } else
5189                 mutex_unlock(&mddev->open_mutex);
5190         /*
5191          * Free resources if final stop
5192          */
5193         if (mode == 0) {
5194                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5195
5196                 bitmap_destroy(mddev);
5197                 if (mddev->bitmap_info.file) {
5198                         restore_bitmap_write_access(mddev->bitmap_info.file);
5199                         fput(mddev->bitmap_info.file);
5200                         mddev->bitmap_info.file = NULL;
5201                 }
5202                 mddev->bitmap_info.offset = 0;
5203
5204                 export_array(mddev);
5205
5206                 md_clean(mddev);
5207                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5208                 if (mddev->hold_active == UNTIL_STOP)
5209                         mddev->hold_active = 0;
5210         }
5211         blk_integrity_unregister(disk);
5212         md_new_event(mddev);
5213         sysfs_notify_dirent_safe(mddev->sysfs_state);
5214         return 0;
5215 }
5216
5217 #ifndef MODULE
5218 static void autorun_array(struct mddev *mddev)
5219 {
5220         struct md_rdev *rdev;
5221         int err;
5222
5223         if (list_empty(&mddev->disks))
5224                 return;
5225
5226         printk(KERN_INFO "md: running: ");
5227
5228         list_for_each_entry(rdev, &mddev->disks, same_set) {
5229                 char b[BDEVNAME_SIZE];
5230                 printk("<%s>", bdevname(rdev->bdev,b));
5231         }
5232         printk("\n");
5233
5234         err = do_md_run(mddev);
5235         if (err) {
5236                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5237                 do_md_stop(mddev, 0, 0);
5238         }
5239 }
5240
5241 /*
5242  * lets try to run arrays based on all disks that have arrived
5243  * until now. (those are in pending_raid_disks)
5244  *
5245  * the method: pick the first pending disk, collect all disks with
5246  * the same UUID, remove all from the pending list and put them into
5247  * the 'same_array' list. Then order this list based on superblock
5248  * update time (freshest comes first), kick out 'old' disks and
5249  * compare superblocks. If everything's fine then run it.
5250  *
5251  * If "unit" is allocated, then bump its reference count
5252  */
5253 static void autorun_devices(int part)
5254 {
5255         struct md_rdev *rdev0, *rdev, *tmp;
5256         struct mddev *mddev;
5257         char b[BDEVNAME_SIZE];
5258
5259         printk(KERN_INFO "md: autorun ...\n");
5260         while (!list_empty(&pending_raid_disks)) {
5261                 int unit;
5262                 dev_t dev;
5263                 LIST_HEAD(candidates);
5264                 rdev0 = list_entry(pending_raid_disks.next,
5265                                          struct md_rdev, same_set);
5266
5267                 printk(KERN_INFO "md: considering %s ...\n",
5268                         bdevname(rdev0->bdev,b));
5269                 INIT_LIST_HEAD(&candidates);
5270                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5271                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5272                                 printk(KERN_INFO "md:  adding %s ...\n",
5273                                         bdevname(rdev->bdev,b));
5274                                 list_move(&rdev->same_set, &candidates);
5275                         }
5276                 /*
5277                  * now we have a set of devices, with all of them having
5278                  * mostly sane superblocks. It's time to allocate the
5279                  * mddev.
5280                  */
5281                 if (part) {
5282                         dev = MKDEV(mdp_major,
5283                                     rdev0->preferred_minor << MdpMinorShift);
5284                         unit = MINOR(dev) >> MdpMinorShift;
5285                 } else {
5286                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5287                         unit = MINOR(dev);
5288                 }
5289                 if (rdev0->preferred_minor != unit) {
5290                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5291                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5292                         break;
5293                 }
5294
5295                 md_probe(dev, NULL, NULL);
5296                 mddev = mddev_find(dev);
5297                 if (!mddev || !mddev->gendisk) {
5298                         if (mddev)
5299                                 mddev_put(mddev);
5300                         printk(KERN_ERR
5301                                 "md: cannot allocate memory for md drive.\n");
5302                         break;
5303                 }
5304                 if (mddev_lock(mddev)) 
5305                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5306                                mdname(mddev));
5307                 else if (mddev->raid_disks || mddev->major_version
5308                          || !list_empty(&mddev->disks)) {
5309                         printk(KERN_WARNING 
5310                                 "md: %s already running, cannot run %s\n",
5311                                 mdname(mddev), bdevname(rdev0->bdev,b));
5312                         mddev_unlock(mddev);
5313                 } else {
5314                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5315                         mddev->persistent = 1;
5316                         rdev_for_each_list(rdev, tmp, &candidates) {
5317                                 list_del_init(&rdev->same_set);
5318                                 if (bind_rdev_to_array(rdev, mddev))
5319                                         export_rdev(rdev);
5320                         }
5321                         autorun_array(mddev);
5322                         mddev_unlock(mddev);
5323                 }
5324                 /* on success, candidates will be empty, on error
5325                  * it won't...
5326                  */
5327                 rdev_for_each_list(rdev, tmp, &candidates) {
5328                         list_del_init(&rdev->same_set);
5329                         export_rdev(rdev);
5330                 }
5331                 mddev_put(mddev);
5332         }
5333         printk(KERN_INFO "md: ... autorun DONE.\n");
5334 }
5335 #endif /* !MODULE */
5336
5337 static int get_version(void __user * arg)
5338 {
5339         mdu_version_t ver;
5340
5341         ver.major = MD_MAJOR_VERSION;
5342         ver.minor = MD_MINOR_VERSION;
5343         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5344
5345         if (copy_to_user(arg, &ver, sizeof(ver)))
5346                 return -EFAULT;
5347
5348         return 0;
5349 }
5350
5351 static int get_array_info(struct mddev * mddev, void __user * arg)
5352 {
5353         mdu_array_info_t info;
5354         int nr,working,insync,failed,spare;
5355         struct md_rdev *rdev;
5356
5357         nr=working=insync=failed=spare=0;
5358         list_for_each_entry(rdev, &mddev->disks, same_set) {
5359                 nr++;
5360                 if (test_bit(Faulty, &rdev->flags))
5361                         failed++;
5362                 else {
5363                         working++;
5364                         if (test_bit(In_sync, &rdev->flags))
5365                                 insync++;       
5366                         else
5367                                 spare++;
5368                 }
5369         }
5370
5371         info.major_version = mddev->major_version;
5372         info.minor_version = mddev->minor_version;
5373         info.patch_version = MD_PATCHLEVEL_VERSION;
5374         info.ctime         = mddev->ctime;
5375         info.level         = mddev->level;
5376         info.size          = mddev->dev_sectors / 2;
5377         if (info.size != mddev->dev_sectors / 2) /* overflow */
5378                 info.size = -1;
5379         info.nr_disks      = nr;
5380         info.raid_disks    = mddev->raid_disks;
5381         info.md_minor      = mddev->md_minor;
5382         info.not_persistent= !mddev->persistent;
5383
5384         info.utime         = mddev->utime;
5385         info.state         = 0;
5386         if (mddev->in_sync)
5387                 info.state = (1<<MD_SB_CLEAN);
5388         if (mddev->bitmap && mddev->bitmap_info.offset)
5389                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5390         info.active_disks  = insync;
5391         info.working_disks = working;
5392         info.failed_disks  = failed;
5393         info.spare_disks   = spare;
5394
5395         info.layout        = mddev->layout;
5396         info.chunk_size    = mddev->chunk_sectors << 9;
5397
5398         if (copy_to_user(arg, &info, sizeof(info)))
5399                 return -EFAULT;
5400
5401         return 0;
5402 }
5403
5404 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5405 {
5406         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5407         char *ptr, *buf = NULL;
5408         int err = -ENOMEM;
5409
5410         if (md_allow_write(mddev))
5411                 file = kmalloc(sizeof(*file), GFP_NOIO);
5412         else
5413                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5414
5415         if (!file)
5416                 goto out;
5417
5418         /* bitmap disabled, zero the first byte and copy out */
5419         if (!mddev->bitmap || !mddev->bitmap->file) {
5420                 file->pathname[0] = '\0';
5421                 goto copy_out;
5422         }
5423
5424         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5425         if (!buf)
5426                 goto out;
5427
5428         ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5429         if (IS_ERR(ptr))
5430                 goto out;
5431
5432         strcpy(file->pathname, ptr);
5433
5434 copy_out:
5435         err = 0;
5436         if (copy_to_user(arg, file, sizeof(*file)))
5437                 err = -EFAULT;
5438 out:
5439         kfree(buf);
5440         kfree(file);
5441         return err;
5442 }
5443
5444 static int get_disk_info(struct mddev * mddev, void __user * arg)
5445 {
5446         mdu_disk_info_t info;
5447         struct md_rdev *rdev;
5448
5449         if (copy_from_user(&info, arg, sizeof(info)))
5450                 return -EFAULT;
5451
5452         rdev = find_rdev_nr(mddev, info.number);
5453         if (rdev) {
5454                 info.major = MAJOR(rdev->bdev->bd_dev);
5455                 info.minor = MINOR(rdev->bdev->bd_dev);
5456                 info.raid_disk = rdev->raid_disk;
5457                 info.state = 0;
5458                 if (test_bit(Faulty, &rdev->flags))
5459                         info.state |= (1<<MD_DISK_FAULTY);
5460                 else if (test_bit(In_sync, &rdev->flags)) {
5461                         info.state |= (1<<MD_DISK_ACTIVE);
5462                         info.state |= (1<<MD_DISK_SYNC);
5463                 }
5464                 if (test_bit(WriteMostly, &rdev->flags))
5465                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5466         } else {
5467                 info.major = info.minor = 0;
5468                 info.raid_disk = -1;
5469                 info.state = (1<<MD_DISK_REMOVED);
5470         }
5471
5472         if (copy_to_user(arg, &info, sizeof(info)))
5473                 return -EFAULT;
5474
5475         return 0;
5476 }
5477
5478 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5479 {
5480         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5481         struct md_rdev *rdev;
5482         dev_t dev = MKDEV(info->major,info->minor);
5483
5484         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5485                 return -EOVERFLOW;
5486
5487         if (!mddev->raid_disks) {
5488                 int err;
5489                 /* expecting a device which has a superblock */
5490                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5491                 if (IS_ERR(rdev)) {
5492                         printk(KERN_WARNING 
5493                                 "md: md_import_device returned %ld\n",
5494                                 PTR_ERR(rdev));
5495                         return PTR_ERR(rdev);
5496                 }
5497                 if (!list_empty(&mddev->disks)) {
5498                         struct md_rdev *rdev0
5499                                 = list_entry(mddev->disks.next,
5500                                              struct md_rdev, same_set);
5501                         err = super_types[mddev->major_version]
5502                                 .load_super(rdev, rdev0, mddev->minor_version);
5503                         if (err < 0) {
5504                                 printk(KERN_WARNING 
5505                                         "md: %s has different UUID to %s\n",
5506                                         bdevname(rdev->bdev,b), 
5507                                         bdevname(rdev0->bdev,b2));
5508                                 export_rdev(rdev);
5509                                 return -EINVAL;
5510                         }
5511                 }
5512                 err = bind_rdev_to_array(rdev, mddev);
5513                 if (err)
5514                         export_rdev(rdev);
5515                 return err;
5516         }
5517
5518         /*
5519          * add_new_disk can be used once the array is assembled
5520          * to add "hot spares".  They must already have a superblock
5521          * written
5522          */
5523         if (mddev->pers) {
5524                 int err;
5525                 if (!mddev->pers->hot_add_disk) {
5526                         printk(KERN_WARNING 
5527                                 "%s: personality does not support diskops!\n",
5528                                mdname(mddev));
5529                         return -EINVAL;
5530                 }
5531                 if (mddev->persistent)
5532                         rdev = md_import_device(dev, mddev->major_version,
5533                                                 mddev->minor_version);
5534                 else
5535                         rdev = md_import_device(dev, -1, -1);
5536                 if (IS_ERR(rdev)) {
5537                         printk(KERN_WARNING 
5538                                 "md: md_import_device returned %ld\n",
5539                                 PTR_ERR(rdev));
5540                         return PTR_ERR(rdev);
5541                 }
5542                 /* set saved_raid_disk if appropriate */
5543                 if (!mddev->persistent) {
5544                         if (info->state & (1<<MD_DISK_SYNC)  &&
5545                             info->raid_disk < mddev->raid_disks) {
5546                                 rdev->raid_disk = info->raid_disk;
5547                                 set_bit(In_sync, &rdev->flags);
5548                         } else
5549                                 rdev->raid_disk = -1;
5550                 } else
5551                         super_types[mddev->major_version].
5552                                 validate_super(mddev, rdev);
5553                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5554                     (!test_bit(In_sync, &rdev->flags) ||
5555                      rdev->raid_disk != info->raid_disk)) {
5556                         /* This was a hot-add request, but events doesn't
5557                          * match, so reject it.
5558                          */
5559                         export_rdev(rdev);
5560                         return -EINVAL;
5561                 }
5562
5563                 if (test_bit(In_sync, &rdev->flags))
5564                         rdev->saved_raid_disk = rdev->raid_disk;
5565                 else
5566                         rdev->saved_raid_disk = -1;
5567
5568                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5569                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5570                         set_bit(WriteMostly, &rdev->flags);
5571                 else
5572                         clear_bit(WriteMostly, &rdev->flags);
5573
5574                 rdev->raid_disk = -1;
5575                 err = bind_rdev_to_array(rdev, mddev);
5576                 if (!err && !mddev->pers->hot_remove_disk) {
5577                         /* If there is hot_add_disk but no hot_remove_disk
5578                          * then added disks for geometry changes,
5579                          * and should be added immediately.
5580                          */
5581                         super_types[mddev->major_version].
5582                                 validate_super(mddev, rdev);
5583                         err = mddev->pers->hot_add_disk(mddev, rdev);
5584                         if (err)
5585                                 unbind_rdev_from_array(rdev);
5586                 }
5587                 if (err)
5588                         export_rdev(rdev);
5589                 else
5590                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5591
5592                 md_update_sb(mddev, 1);
5593                 if (mddev->degraded)
5594                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5595                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5596                 if (!err)
5597                         md_new_event(mddev);
5598                 md_wakeup_thread(mddev->thread);
5599                 return err;
5600         }
5601
5602         /* otherwise, add_new_disk is only allowed
5603          * for major_version==0 superblocks
5604          */
5605         if (mddev->major_version != 0) {
5606                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5607                        mdname(mddev));
5608                 return -EINVAL;
5609         }
5610
5611         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5612                 int err;
5613                 rdev = md_import_device(dev, -1, 0);
5614                 if (IS_ERR(rdev)) {
5615                         printk(KERN_WARNING 
5616                                 "md: error, md_import_device() returned %ld\n",
5617                                 PTR_ERR(rdev));
5618                         return PTR_ERR(rdev);
5619                 }
5620                 rdev->desc_nr = info->number;
5621                 if (info->raid_disk < mddev->raid_disks)
5622                         rdev->raid_disk = info->raid_disk;
5623                 else
5624                         rdev->raid_disk = -1;
5625
5626                 if (rdev->raid_disk < mddev->raid_disks)
5627                         if (info->state & (1<<MD_DISK_SYNC))
5628                                 set_bit(In_sync, &rdev->flags);
5629
5630                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5631                         set_bit(WriteMostly, &rdev->flags);
5632
5633                 if (!mddev->persistent) {
5634                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5635                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5636                 } else
5637                         rdev->sb_start = calc_dev_sboffset(rdev);
5638                 rdev->sectors = rdev->sb_start;
5639
5640                 err = bind_rdev_to_array(rdev, mddev);
5641                 if (err) {
5642                         export_rdev(rdev);
5643                         return err;
5644                 }
5645         }
5646
5647         return 0;
5648 }
5649
5650 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5651 {
5652         char b[BDEVNAME_SIZE];
5653         struct md_rdev *rdev;
5654
5655         rdev = find_rdev(mddev, dev);
5656         if (!rdev)
5657                 return -ENXIO;
5658
5659         if (rdev->raid_disk >= 0)
5660                 goto busy;
5661
5662         kick_rdev_from_array(rdev);
5663         md_update_sb(mddev, 1);
5664         md_new_event(mddev);
5665
5666         return 0;
5667 busy:
5668         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5669                 bdevname(rdev->bdev,b), mdname(mddev));
5670         return -EBUSY;
5671 }
5672
5673 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5674 {
5675         char b[BDEVNAME_SIZE];
5676         int err;
5677         struct md_rdev *rdev;
5678
5679         if (!mddev->pers)
5680                 return -ENODEV;
5681
5682         if (mddev->major_version != 0) {
5683                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5684                         " version-0 superblocks.\n",
5685                         mdname(mddev));
5686                 return -EINVAL;
5687         }
5688         if (!mddev->pers->hot_add_disk) {
5689                 printk(KERN_WARNING 
5690                         "%s: personality does not support diskops!\n",
5691                         mdname(mddev));
5692                 return -EINVAL;
5693         }
5694
5695         rdev = md_import_device(dev, -1, 0);
5696         if (IS_ERR(rdev)) {
5697                 printk(KERN_WARNING 
5698                         "md: error, md_import_device() returned %ld\n",
5699                         PTR_ERR(rdev));
5700                 return -EINVAL;
5701         }
5702
5703         if (mddev->persistent)
5704                 rdev->sb_start = calc_dev_sboffset(rdev);
5705         else
5706                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5707
5708         rdev->sectors = rdev->sb_start;
5709
5710         if (test_bit(Faulty, &rdev->flags)) {
5711                 printk(KERN_WARNING 
5712                         "md: can not hot-add faulty %s disk to %s!\n",
5713                         bdevname(rdev->bdev,b), mdname(mddev));
5714                 err = -EINVAL;
5715                 goto abort_export;
5716         }
5717         clear_bit(In_sync, &rdev->flags);
5718         rdev->desc_nr = -1;
5719         rdev->saved_raid_disk = -1;
5720         err = bind_rdev_to_array(rdev, mddev);
5721         if (err)
5722                 goto abort_export;
5723
5724         /*
5725          * The rest should better be atomic, we can have disk failures
5726          * noticed in interrupt contexts ...
5727          */
5728
5729         rdev->raid_disk = -1;
5730
5731         md_update_sb(mddev, 1);
5732
5733         /*
5734          * Kick recovery, maybe this spare has to be added to the
5735          * array immediately.
5736          */
5737         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5738         md_wakeup_thread(mddev->thread);
5739         md_new_event(mddev);
5740         return 0;
5741
5742 abort_export:
5743         export_rdev(rdev);
5744         return err;
5745 }
5746
5747 static int set_bitmap_file(struct mddev *mddev, int fd)
5748 {
5749         int err;
5750
5751         if (mddev->pers) {
5752                 if (!mddev->pers->quiesce)
5753                         return -EBUSY;
5754                 if (mddev->recovery || mddev->sync_thread)
5755                         return -EBUSY;
5756                 /* we should be able to change the bitmap.. */
5757         }
5758
5759
5760         if (fd >= 0) {
5761                 if (mddev->bitmap)
5762                         return -EEXIST; /* cannot add when bitmap is present */
5763                 mddev->bitmap_info.file = fget(fd);
5764
5765                 if (mddev->bitmap_info.file == NULL) {
5766                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5767                                mdname(mddev));
5768                         return -EBADF;
5769                 }
5770
5771                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5772                 if (err) {
5773                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5774                                mdname(mddev));
5775                         fput(mddev->bitmap_info.file);
5776                         mddev->bitmap_info.file = NULL;
5777                         return err;
5778                 }
5779                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5780         } else if (mddev->bitmap == NULL)
5781                 return -ENOENT; /* cannot remove what isn't there */
5782         err = 0;
5783         if (mddev->pers) {
5784                 mddev->pers->quiesce(mddev, 1);
5785                 if (fd >= 0) {
5786                         err = bitmap_create(mddev);
5787                         if (!err)
5788                                 err = bitmap_load(mddev);
5789                 }
5790                 if (fd < 0 || err) {
5791                         bitmap_destroy(mddev);
5792                         fd = -1; /* make sure to put the file */
5793                 }
5794                 mddev->pers->quiesce(mddev, 0);
5795         }
5796         if (fd < 0) {
5797                 if (mddev->bitmap_info.file) {
5798                         restore_bitmap_write_access(mddev->bitmap_info.file);
5799                         fput(mddev->bitmap_info.file);
5800                 }
5801                 mddev->bitmap_info.file = NULL;
5802         }
5803
5804         return err;
5805 }
5806
5807 /*
5808  * set_array_info is used two different ways
5809  * The original usage is when creating a new array.
5810  * In this usage, raid_disks is > 0 and it together with
5811  *  level, size, not_persistent,layout,chunksize determine the
5812  *  shape of the array.
5813  *  This will always create an array with a type-0.90.0 superblock.
5814  * The newer usage is when assembling an array.
5815  *  In this case raid_disks will be 0, and the major_version field is
5816  *  use to determine which style super-blocks are to be found on the devices.
5817  *  The minor and patch _version numbers are also kept incase the
5818  *  super_block handler wishes to interpret them.
5819  */
5820 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5821 {
5822
5823         if (info->raid_disks == 0) {
5824                 /* just setting version number for superblock loading */
5825                 if (info->major_version < 0 ||
5826                     info->major_version >= ARRAY_SIZE(super_types) ||
5827                     super_types[info->major_version].name == NULL) {
5828                         /* maybe try to auto-load a module? */
5829                         printk(KERN_INFO 
5830                                 "md: superblock version %d not known\n",
5831                                 info->major_version);
5832                         return -EINVAL;
5833                 }
5834                 mddev->major_version = info->major_version;
5835                 mddev->minor_version = info->minor_version;
5836                 mddev->patch_version = info->patch_version;
5837                 mddev->persistent = !info->not_persistent;
5838                 /* ensure mddev_put doesn't delete this now that there
5839                  * is some minimal configuration.
5840                  */
5841                 mddev->ctime         = get_seconds();
5842                 return 0;
5843         }
5844         mddev->major_version = MD_MAJOR_VERSION;
5845         mddev->minor_version = MD_MINOR_VERSION;
5846         mddev->patch_version = MD_PATCHLEVEL_VERSION;
5847         mddev->ctime         = get_seconds();
5848
5849         mddev->level         = info->level;
5850         mddev->clevel[0]     = 0;
5851         mddev->dev_sectors   = 2 * (sector_t)info->size;
5852         mddev->raid_disks    = info->raid_disks;
5853         /* don't set md_minor, it is determined by which /dev/md* was
5854          * openned
5855          */
5856         if (info->state & (1<<MD_SB_CLEAN))
5857                 mddev->recovery_cp = MaxSector;
5858         else
5859                 mddev->recovery_cp = 0;
5860         mddev->persistent    = ! info->not_persistent;
5861         mddev->external      = 0;
5862
5863         mddev->layout        = info->layout;
5864         mddev->chunk_sectors = info->chunk_size >> 9;
5865
5866         mddev->max_disks     = MD_SB_DISKS;
5867
5868         if (mddev->persistent)
5869                 mddev->flags         = 0;
5870         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5871
5872         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5873         mddev->bitmap_info.offset = 0;
5874
5875         mddev->reshape_position = MaxSector;
5876
5877         /*
5878          * Generate a 128 bit UUID
5879          */
5880         get_random_bytes(mddev->uuid, 16);
5881
5882         mddev->new_level = mddev->level;
5883         mddev->new_chunk_sectors = mddev->chunk_sectors;
5884         mddev->new_layout = mddev->layout;
5885         mddev->delta_disks = 0;
5886
5887         return 0;
5888 }
5889
5890 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5891 {
5892         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5893
5894         if (mddev->external_size)
5895                 return;
5896
5897         mddev->array_sectors = array_sectors;
5898 }
5899 EXPORT_SYMBOL(md_set_array_sectors);
5900
5901 static int update_size(struct mddev *mddev, sector_t num_sectors)
5902 {
5903         struct md_rdev *rdev;
5904         int rv;
5905         int fit = (num_sectors == 0);
5906
5907         if (mddev->pers->resize == NULL)
5908                 return -EINVAL;
5909         /* The "num_sectors" is the number of sectors of each device that
5910          * is used.  This can only make sense for arrays with redundancy.
5911          * linear and raid0 always use whatever space is available. We can only
5912          * consider changing this number if no resync or reconstruction is
5913          * happening, and if the new size is acceptable. It must fit before the
5914          * sb_start or, if that is <data_offset, it must fit before the size
5915          * of each device.  If num_sectors is zero, we find the largest size
5916          * that fits.
5917          */
5918         if (mddev->sync_thread)
5919                 return -EBUSY;
5920         if (mddev->bitmap)
5921                 /* Sorry, cannot grow a bitmap yet, just remove it,
5922                  * grow, and re-add.
5923                  */
5924                 return -EBUSY;
5925         list_for_each_entry(rdev, &mddev->disks, same_set) {
5926                 sector_t avail = rdev->sectors;
5927
5928                 if (fit && (num_sectors == 0 || num_sectors > avail))
5929                         num_sectors = avail;
5930                 if (avail < num_sectors)
5931                         return -ENOSPC;
5932         }
5933         rv = mddev->pers->resize(mddev, num_sectors);
5934         if (!rv)
5935                 revalidate_disk(mddev->gendisk);
5936         return rv;
5937 }
5938
5939 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5940 {
5941         int rv;
5942         /* change the number of raid disks */
5943         if (mddev->pers->check_reshape == NULL)
5944                 return -EINVAL;
5945         if (raid_disks <= 0 ||
5946             (mddev->max_disks && raid_disks >= mddev->max_disks))
5947                 return -EINVAL;
5948         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5949                 return -EBUSY;
5950         mddev->delta_disks = raid_disks - mddev->raid_disks;
5951
5952         rv = mddev->pers->check_reshape(mddev);
5953         if (rv < 0)
5954                 mddev->delta_disks = 0;
5955         return rv;
5956 }
5957
5958
5959 /*
5960  * update_array_info is used to change the configuration of an
5961  * on-line array.
5962  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5963  * fields in the info are checked against the array.
5964  * Any differences that cannot be handled will cause an error.
5965  * Normally, only one change can be managed at a time.
5966  */
5967 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5968 {
5969         int rv = 0;
5970         int cnt = 0;
5971         int state = 0;
5972
5973         /* calculate expected state,ignoring low bits */
5974         if (mddev->bitmap && mddev->bitmap_info.offset)
5975                 state |= (1 << MD_SB_BITMAP_PRESENT);
5976
5977         if (mddev->major_version != info->major_version ||
5978             mddev->minor_version != info->minor_version ||
5979 /*          mddev->patch_version != info->patch_version || */
5980             mddev->ctime         != info->ctime         ||
5981             mddev->level         != info->level         ||
5982 /*          mddev->layout        != info->layout        || */
5983             !mddev->persistent   != info->not_persistent||
5984             mddev->chunk_sectors != info->chunk_size >> 9 ||
5985             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5986             ((state^info->state) & 0xfffffe00)
5987                 )
5988                 return -EINVAL;
5989         /* Check there is only one change */
5990         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5991                 cnt++;
5992         if (mddev->raid_disks != info->raid_disks)
5993                 cnt++;
5994         if (mddev->layout != info->layout)
5995                 cnt++;
5996         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5997                 cnt++;
5998         if (cnt == 0)
5999                 return 0;
6000         if (cnt > 1)
6001                 return -EINVAL;
6002
6003         if (mddev->layout != info->layout) {
6004                 /* Change layout
6005                  * we don't need to do anything at the md level, the
6006                  * personality will take care of it all.
6007                  */
6008                 if (mddev->pers->check_reshape == NULL)
6009                         return -EINVAL;
6010                 else {
6011                         mddev->new_layout = info->layout;
6012                         rv = mddev->pers->check_reshape(mddev);
6013                         if (rv)
6014                                 mddev->new_layout = mddev->layout;
6015                         return rv;
6016                 }
6017         }
6018         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6019                 rv = update_size(mddev, (sector_t)info->size * 2);
6020
6021         if (mddev->raid_disks    != info->raid_disks)
6022                 rv = update_raid_disks(mddev, info->raid_disks);
6023
6024         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6025                 if (mddev->pers->quiesce == NULL)
6026                         return -EINVAL;
6027                 if (mddev->recovery || mddev->sync_thread)
6028                         return -EBUSY;
6029                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6030                         /* add the bitmap */
6031                         if (mddev->bitmap)
6032                                 return -EEXIST;
6033                         if (mddev->bitmap_info.default_offset == 0)
6034                                 return -EINVAL;
6035                         mddev->bitmap_info.offset =
6036                                 mddev->bitmap_info.default_offset;
6037                         mddev->pers->quiesce(mddev, 1);
6038                         rv = bitmap_create(mddev);
6039                         if (!rv)
6040                                 rv = bitmap_load(mddev);
6041                         if (rv)
6042                                 bitmap_destroy(mddev);
6043                         mddev->pers->quiesce(mddev, 0);
6044                 } else {
6045                         /* remove the bitmap */
6046                         if (!mddev->bitmap)
6047                                 return -ENOENT;
6048                         if (mddev->bitmap->file)
6049                                 return -EINVAL;
6050                         mddev->pers->quiesce(mddev, 1);
6051                         bitmap_destroy(mddev);
6052                         mddev->pers->quiesce(mddev, 0);
6053                         mddev->bitmap_info.offset = 0;
6054                 }
6055         }
6056         md_update_sb(mddev, 1);
6057         return rv;
6058 }
6059
6060 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6061 {
6062         struct md_rdev *rdev;
6063
6064         if (mddev->pers == NULL)
6065                 return -ENODEV;
6066
6067         rdev = find_rdev(mddev, dev);
6068         if (!rdev)
6069                 return -ENODEV;
6070
6071         md_error(mddev, rdev);
6072         if (!test_bit(Faulty, &rdev->flags))
6073                 return -EBUSY;
6074         return 0;
6075 }
6076
6077 /*
6078  * We have a problem here : there is no easy way to give a CHS
6079  * virtual geometry. We currently pretend that we have a 2 heads
6080  * 4 sectors (with a BIG number of cylinders...). This drives
6081  * dosfs just mad... ;-)
6082  */
6083 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6084 {
6085         struct mddev *mddev = bdev->bd_disk->private_data;
6086
6087         geo->heads = 2;
6088         geo->sectors = 4;
6089         geo->cylinders = mddev->array_sectors / 8;
6090         return 0;
6091 }
6092
6093 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6094                         unsigned int cmd, unsigned long arg)
6095 {
6096         int err = 0;
6097         void __user *argp = (void __user *)arg;
6098         struct mddev *mddev = NULL;
6099         int ro;
6100
6101         switch (cmd) {
6102         case RAID_VERSION:
6103         case GET_ARRAY_INFO:
6104         case GET_DISK_INFO:
6105                 break;
6106         default:
6107                 if (!capable(CAP_SYS_ADMIN))
6108                         return -EACCES;
6109         }
6110
6111         /*
6112          * Commands dealing with the RAID driver but not any
6113          * particular array:
6114          */
6115         switch (cmd)
6116         {
6117                 case RAID_VERSION:
6118                         err = get_version(argp);
6119                         goto done;
6120
6121                 case PRINT_RAID_DEBUG:
6122                         err = 0;
6123                         md_print_devices();
6124                         goto done;
6125
6126 #ifndef MODULE
6127                 case RAID_AUTORUN:
6128                         err = 0;
6129                         autostart_arrays(arg);
6130                         goto done;
6131 #endif
6132                 default:;
6133         }
6134
6135         /*
6136          * Commands creating/starting a new array:
6137          */
6138
6139         mddev = bdev->bd_disk->private_data;
6140
6141         if (!mddev) {
6142                 BUG();
6143                 goto abort;
6144         }
6145
6146         err = mddev_lock(mddev);
6147         if (err) {
6148                 printk(KERN_INFO 
6149                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6150                         err, cmd);
6151                 goto abort;
6152         }
6153
6154         switch (cmd)
6155         {
6156                 case SET_ARRAY_INFO:
6157                         {
6158                                 mdu_array_info_t info;
6159                                 if (!arg)
6160                                         memset(&info, 0, sizeof(info));
6161                                 else if (copy_from_user(&info, argp, sizeof(info))) {
6162                                         err = -EFAULT;
6163                                         goto abort_unlock;
6164                                 }
6165                                 if (mddev->pers) {
6166                                         err = update_array_info(mddev, &info);
6167                                         if (err) {
6168                                                 printk(KERN_WARNING "md: couldn't update"
6169                                                        " array info. %d\n", err);
6170                                                 goto abort_unlock;
6171                                         }
6172                                         goto done_unlock;
6173                                 }
6174                                 if (!list_empty(&mddev->disks)) {
6175                                         printk(KERN_WARNING
6176                                                "md: array %s already has disks!\n",
6177                                                mdname(mddev));
6178                                         err = -EBUSY;
6179                                         goto abort_unlock;
6180                                 }
6181                                 if (mddev->raid_disks) {
6182                                         printk(KERN_WARNING
6183                                                "md: array %s already initialised!\n",
6184                                                mdname(mddev));
6185                                         err = -EBUSY;
6186                                         goto abort_unlock;
6187                                 }
6188                                 err = set_array_info(mddev, &info);
6189                                 if (err) {
6190                                         printk(KERN_WARNING "md: couldn't set"
6191                                                " array info. %d\n", err);
6192                                         goto abort_unlock;
6193                                 }
6194                         }
6195                         goto done_unlock;
6196
6197                 default:;
6198         }
6199
6200         /*
6201          * Commands querying/configuring an existing array:
6202          */
6203         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6204          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6205         if ((!mddev->raid_disks && !mddev->external)
6206             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6207             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6208             && cmd != GET_BITMAP_FILE) {
6209                 err = -ENODEV;
6210                 goto abort_unlock;
6211         }
6212
6213         /*
6214          * Commands even a read-only array can execute:
6215          */
6216         switch (cmd)
6217         {
6218                 case GET_ARRAY_INFO:
6219                         err = get_array_info(mddev, argp);
6220                         goto done_unlock;
6221
6222                 case GET_BITMAP_FILE:
6223                         err = get_bitmap_file(mddev, argp);
6224                         goto done_unlock;
6225
6226                 case GET_DISK_INFO:
6227                         err = get_disk_info(mddev, argp);
6228                         goto done_unlock;
6229
6230                 case RESTART_ARRAY_RW:
6231                         err = restart_array(mddev);
6232                         goto done_unlock;
6233
6234                 case STOP_ARRAY:
6235                         err = do_md_stop(mddev, 0, 1);
6236                         goto done_unlock;
6237
6238                 case STOP_ARRAY_RO:
6239                         err = md_set_readonly(mddev, 1);
6240                         goto done_unlock;
6241
6242                 case BLKROSET:
6243                         if (get_user(ro, (int __user *)(arg))) {
6244                                 err = -EFAULT;
6245                                 goto done_unlock;
6246                         }
6247                         err = -EINVAL;
6248
6249                         /* if the bdev is going readonly the value of mddev->ro
6250                          * does not matter, no writes are coming
6251                          */
6252                         if (ro)
6253                                 goto done_unlock;
6254
6255                         /* are we are already prepared for writes? */
6256                         if (mddev->ro != 1)
6257                                 goto done_unlock;
6258
6259                         /* transitioning to readauto need only happen for
6260                          * arrays that call md_write_start
6261                          */
6262                         if (mddev->pers) {
6263                                 err = restart_array(mddev);
6264                                 if (err == 0) {
6265                                         mddev->ro = 2;
6266                                         set_disk_ro(mddev->gendisk, 0);
6267                                 }
6268                         }
6269                         goto done_unlock;
6270         }
6271
6272         /*
6273          * The remaining ioctls are changing the state of the
6274          * superblock, so we do not allow them on read-only arrays.
6275          * However non-MD ioctls (e.g. get-size) will still come through
6276          * here and hit the 'default' below, so only disallow
6277          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6278          */
6279         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6280                 if (mddev->ro == 2) {
6281                         mddev->ro = 0;
6282                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6283                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6284                         md_wakeup_thread(mddev->thread);
6285                 } else {
6286                         err = -EROFS;
6287                         goto abort_unlock;
6288                 }
6289         }
6290
6291         switch (cmd)
6292         {
6293                 case ADD_NEW_DISK:
6294                 {
6295                         mdu_disk_info_t info;
6296                         if (copy_from_user(&info, argp, sizeof(info)))
6297                                 err = -EFAULT;
6298                         else
6299                                 err = add_new_disk(mddev, &info);
6300                         goto done_unlock;
6301                 }
6302
6303                 case HOT_REMOVE_DISK:
6304                         err = hot_remove_disk(mddev, new_decode_dev(arg));
6305                         goto done_unlock;
6306
6307                 case HOT_ADD_DISK:
6308                         err = hot_add_disk(mddev, new_decode_dev(arg));
6309                         goto done_unlock;
6310
6311                 case SET_DISK_FAULTY:
6312                         err = set_disk_faulty(mddev, new_decode_dev(arg));
6313                         goto done_unlock;
6314
6315                 case RUN_ARRAY:
6316                         err = do_md_run(mddev);
6317                         goto done_unlock;
6318
6319                 case SET_BITMAP_FILE:
6320                         err = set_bitmap_file(mddev, (int)arg);
6321                         goto done_unlock;
6322
6323                 default:
6324                         err = -EINVAL;
6325                         goto abort_unlock;
6326         }
6327
6328 done_unlock:
6329 abort_unlock:
6330         if (mddev->hold_active == UNTIL_IOCTL &&
6331             err != -EINVAL)
6332                 mddev->hold_active = 0;
6333         mddev_unlock(mddev);
6334
6335         return err;
6336 done:
6337         if (err)
6338                 MD_BUG();
6339 abort:
6340         return err;
6341 }
6342 #ifdef CONFIG_COMPAT
6343 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6344                     unsigned int cmd, unsigned long arg)
6345 {
6346         switch (cmd) {
6347         case HOT_REMOVE_DISK:
6348         case HOT_ADD_DISK:
6349         case SET_DISK_FAULTY:
6350         case SET_BITMAP_FILE:
6351                 /* These take in integer arg, do not convert */
6352                 break;
6353         default:
6354                 arg = (unsigned long)compat_ptr(arg);
6355                 break;
6356         }
6357
6358         return md_ioctl(bdev, mode, cmd, arg);
6359 }
6360 #endif /* CONFIG_COMPAT */
6361
6362 static int md_open(struct block_device *bdev, fmode_t mode)
6363 {
6364         /*
6365          * Succeed if we can lock the mddev, which confirms that
6366          * it isn't being stopped right now.
6367          */
6368         struct mddev *mddev = mddev_find(bdev->bd_dev);
6369         int err;
6370
6371         if (mddev->gendisk != bdev->bd_disk) {
6372                 /* we are racing with mddev_put which is discarding this
6373                  * bd_disk.
6374                  */
6375                 mddev_put(mddev);
6376                 /* Wait until bdev->bd_disk is definitely gone */
6377                 flush_workqueue(md_misc_wq);
6378                 /* Then retry the open from the top */
6379                 return -ERESTARTSYS;
6380         }
6381         BUG_ON(mddev != bdev->bd_disk->private_data);
6382
6383         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6384                 goto out;
6385
6386         err = 0;
6387         atomic_inc(&mddev->openers);
6388         mutex_unlock(&mddev->open_mutex);
6389
6390         check_disk_change(bdev);
6391  out:
6392         return err;
6393 }
6394
6395 static int md_release(struct gendisk *disk, fmode_t mode)
6396 {
6397         struct mddev *mddev = disk->private_data;
6398
6399         BUG_ON(!mddev);
6400         atomic_dec(&mddev->openers);
6401         mddev_put(mddev);
6402
6403         return 0;
6404 }
6405
6406 static int md_media_changed(struct gendisk *disk)
6407 {
6408         struct mddev *mddev = disk->private_data;
6409
6410         return mddev->changed;
6411 }
6412
6413 static int md_revalidate(struct gendisk *disk)
6414 {
6415         struct mddev *mddev = disk->private_data;
6416
6417         mddev->changed = 0;
6418         return 0;
6419 }
6420 static const struct block_device_operations md_fops =
6421 {
6422         .owner          = THIS_MODULE,
6423         .open           = md_open,
6424         .release        = md_release,
6425         .ioctl          = md_ioctl,
6426 #ifdef CONFIG_COMPAT
6427         .compat_ioctl   = md_compat_ioctl,
6428 #endif
6429         .getgeo         = md_getgeo,
6430         .media_changed  = md_media_changed,
6431         .revalidate_disk= md_revalidate,
6432 };
6433
6434 static int md_thread(void * arg)
6435 {
6436         struct md_thread *thread = arg;
6437
6438         /*
6439          * md_thread is a 'system-thread', it's priority should be very
6440          * high. We avoid resource deadlocks individually in each
6441          * raid personality. (RAID5 does preallocation) We also use RR and
6442          * the very same RT priority as kswapd, thus we will never get
6443          * into a priority inversion deadlock.
6444          *
6445          * we definitely have to have equal or higher priority than
6446          * bdflush, otherwise bdflush will deadlock if there are too
6447          * many dirty RAID5 blocks.
6448          */
6449
6450         allow_signal(SIGKILL);
6451         while (!kthread_should_stop()) {
6452
6453                 /* We need to wait INTERRUPTIBLE so that
6454                  * we don't add to the load-average.
6455                  * That means we need to be sure no signals are
6456                  * pending
6457                  */
6458                 if (signal_pending(current))
6459                         flush_signals(current);
6460
6461                 wait_event_interruptible_timeout
6462                         (thread->wqueue,
6463                          test_bit(THREAD_WAKEUP, &thread->flags)
6464                          || kthread_should_stop(),
6465                          thread->timeout);
6466
6467                 clear_bit(THREAD_WAKEUP, &thread->flags);
6468                 if (!kthread_should_stop())
6469                         thread->run(thread->mddev);
6470         }
6471
6472         return 0;
6473 }
6474
6475 void md_wakeup_thread(struct md_thread *thread)
6476 {
6477         if (thread) {
6478                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6479                 set_bit(THREAD_WAKEUP, &thread->flags);
6480                 wake_up(&thread->wqueue);
6481         }
6482 }
6483
6484 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6485                                  const char *name)
6486 {
6487         struct md_thread *thread;
6488
6489         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6490         if (!thread)
6491                 return NULL;
6492
6493         init_waitqueue_head(&thread->wqueue);
6494
6495         thread->run = run;
6496         thread->mddev = mddev;
6497         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6498         thread->tsk = kthread_run(md_thread, thread,
6499                                   "%s_%s",
6500                                   mdname(thread->mddev),
6501                                   name ?: mddev->pers->name);
6502         if (IS_ERR(thread->tsk)) {
6503                 kfree(thread);
6504                 return NULL;
6505         }
6506         return thread;
6507 }
6508
6509 void md_unregister_thread(struct md_thread **threadp)
6510 {
6511         struct md_thread *thread = *threadp;
6512         if (!thread)
6513                 return;
6514         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6515         /* Locking ensures that mddev_unlock does not wake_up a
6516          * non-existent thread
6517          */
6518         spin_lock(&pers_lock);
6519         *threadp = NULL;
6520         spin_unlock(&pers_lock);
6521
6522         kthread_stop(thread->tsk);
6523         kfree(thread);
6524 }
6525
6526 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6527 {
6528         if (!mddev) {
6529                 MD_BUG();
6530                 return;
6531         }
6532
6533         if (!rdev || test_bit(Faulty, &rdev->flags))
6534                 return;
6535
6536         if (!mddev->pers || !mddev->pers->error_handler)
6537                 return;
6538         mddev->pers->error_handler(mddev,rdev);
6539         if (mddev->degraded)
6540                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6541         sysfs_notify_dirent_safe(rdev->sysfs_state);
6542         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6543         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6544         md_wakeup_thread(mddev->thread);
6545         if (mddev->event_work.func)
6546                 queue_work(md_misc_wq, &mddev->event_work);
6547         md_new_event_inintr(mddev);
6548 }
6549
6550 /* seq_file implementation /proc/mdstat */
6551
6552 static void status_unused(struct seq_file *seq)
6553 {
6554         int i = 0;
6555         struct md_rdev *rdev;
6556
6557         seq_printf(seq, "unused devices: ");
6558
6559         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6560                 char b[BDEVNAME_SIZE];
6561                 i++;
6562                 seq_printf(seq, "%s ",
6563                               bdevname(rdev->bdev,b));
6564         }
6565         if (!i)
6566                 seq_printf(seq, "<none>");
6567
6568         seq_printf(seq, "\n");
6569 }
6570
6571
6572 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6573 {
6574         sector_t max_sectors, resync, res;
6575         unsigned long dt, db;
6576         sector_t rt;
6577         int scale;
6578         unsigned int per_milli;
6579
6580         resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6581
6582         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6583                 max_sectors = mddev->resync_max_sectors;
6584         else
6585                 max_sectors = mddev->dev_sectors;
6586
6587         /*
6588          * Should not happen.
6589          */
6590         if (!max_sectors) {
6591                 MD_BUG();
6592                 return;
6593         }
6594         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6595          * in a sector_t, and (max_sectors>>scale) will fit in a
6596          * u32, as those are the requirements for sector_div.
6597          * Thus 'scale' must be at least 10
6598          */
6599         scale = 10;
6600         if (sizeof(sector_t) > sizeof(unsigned long)) {
6601                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6602                         scale++;
6603         }
6604         res = (resync>>scale)*1000;
6605         sector_div(res, (u32)((max_sectors>>scale)+1));
6606
6607         per_milli = res;
6608         {
6609                 int i, x = per_milli/50, y = 20-x;
6610                 seq_printf(seq, "[");
6611                 for (i = 0; i < x; i++)
6612                         seq_printf(seq, "=");
6613                 seq_printf(seq, ">");
6614                 for (i = 0; i < y; i++)
6615                         seq_printf(seq, ".");
6616                 seq_printf(seq, "] ");
6617         }
6618         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6619                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6620                     "reshape" :
6621                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6622                      "check" :
6623                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6624                       "resync" : "recovery"))),
6625                    per_milli/10, per_milli % 10,
6626                    (unsigned long long) resync/2,
6627                    (unsigned long long) max_sectors/2);
6628
6629         /*
6630          * dt: time from mark until now
6631          * db: blocks written from mark until now
6632          * rt: remaining time
6633          *
6634          * rt is a sector_t, so could be 32bit or 64bit.
6635          * So we divide before multiply in case it is 32bit and close
6636          * to the limit.
6637          * We scale the divisor (db) by 32 to avoid losing precision
6638          * near the end of resync when the number of remaining sectors
6639          * is close to 'db'.
6640          * We then divide rt by 32 after multiplying by db to compensate.
6641          * The '+1' avoids division by zero if db is very small.
6642          */
6643         dt = ((jiffies - mddev->resync_mark) / HZ);
6644         if (!dt) dt++;
6645         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6646                 - mddev->resync_mark_cnt;
6647
6648         rt = max_sectors - resync;    /* number of remaining sectors */
6649         sector_div(rt, db/32+1);
6650         rt *= dt;
6651         rt >>= 5;
6652
6653         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6654                    ((unsigned long)rt % 60)/6);
6655
6656         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6657 }
6658
6659 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6660 {
6661         struct list_head *tmp;
6662         loff_t l = *pos;
6663         struct mddev *mddev;
6664
6665         if (l >= 0x10000)
6666                 return NULL;
6667         if (!l--)
6668                 /* header */
6669                 return (void*)1;
6670
6671         spin_lock(&all_mddevs_lock);
6672         list_for_each(tmp,&all_mddevs)
6673                 if (!l--) {
6674                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6675                         mddev_get(mddev);
6676                         spin_unlock(&all_mddevs_lock);
6677                         return mddev;
6678                 }
6679         spin_unlock(&all_mddevs_lock);
6680         if (!l--)
6681                 return (void*)2;/* tail */
6682         return NULL;
6683 }
6684
6685 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6686 {
6687         struct list_head *tmp;
6688         struct mddev *next_mddev, *mddev = v;
6689         
6690         ++*pos;
6691         if (v == (void*)2)
6692                 return NULL;
6693
6694         spin_lock(&all_mddevs_lock);
6695         if (v == (void*)1)
6696                 tmp = all_mddevs.next;
6697         else
6698                 tmp = mddev->all_mddevs.next;
6699         if (tmp != &all_mddevs)
6700                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6701         else {
6702                 next_mddev = (void*)2;
6703                 *pos = 0x10000;
6704         }               
6705         spin_unlock(&all_mddevs_lock);
6706
6707         if (v != (void*)1)
6708                 mddev_put(mddev);
6709         return next_mddev;
6710
6711 }
6712
6713 static void md_seq_stop(struct seq_file *seq, void *v)
6714 {
6715         struct mddev *mddev = v;
6716
6717         if (mddev && v != (void*)1 && v != (void*)2)
6718                 mddev_put(mddev);
6719 }
6720
6721 static int md_seq_show(struct seq_file *seq, void *v)
6722 {
6723         struct mddev *mddev = v;
6724         sector_t sectors;
6725         struct md_rdev *rdev;
6726         struct bitmap *bitmap;
6727
6728         if (v == (void*)1) {
6729                 struct md_personality *pers;
6730                 seq_printf(seq, "Personalities : ");
6731                 spin_lock(&pers_lock);
6732                 list_for_each_entry(pers, &pers_list, list)
6733                         seq_printf(seq, "[%s] ", pers->name);
6734
6735                 spin_unlock(&pers_lock);
6736                 seq_printf(seq, "\n");
6737                 seq->poll_event = atomic_read(&md_event_count);
6738                 return 0;
6739         }
6740         if (v == (void*)2) {
6741                 status_unused(seq);
6742                 return 0;
6743         }
6744
6745         if (mddev_lock(mddev) < 0)
6746                 return -EINTR;
6747
6748         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6749                 seq_printf(seq, "%s : %sactive", mdname(mddev),
6750                                                 mddev->pers ? "" : "in");
6751                 if (mddev->pers) {
6752                         if (mddev->ro==1)
6753                                 seq_printf(seq, " (read-only)");
6754                         if (mddev->ro==2)
6755                                 seq_printf(seq, " (auto-read-only)");
6756                         seq_printf(seq, " %s", mddev->pers->name);
6757                 }
6758
6759                 sectors = 0;
6760                 list_for_each_entry(rdev, &mddev->disks, same_set) {
6761                         char b[BDEVNAME_SIZE];
6762                         seq_printf(seq, " %s[%d]",
6763                                 bdevname(rdev->bdev,b), rdev->desc_nr);
6764                         if (test_bit(WriteMostly, &rdev->flags))
6765                                 seq_printf(seq, "(W)");
6766                         if (test_bit(Faulty, &rdev->flags)) {
6767                                 seq_printf(seq, "(F)");
6768                                 continue;
6769                         }
6770                         if (rdev->raid_disk < 0)
6771                                 seq_printf(seq, "(S)"); /* spare */
6772                         if (test_bit(Replacement, &rdev->flags))
6773                                 seq_printf(seq, "(R)");
6774                         sectors += rdev->sectors;
6775                 }
6776
6777                 if (!list_empty(&mddev->disks)) {
6778                         if (mddev->pers)
6779                                 seq_printf(seq, "\n      %llu blocks",
6780                                            (unsigned long long)
6781                                            mddev->array_sectors / 2);
6782                         else
6783                                 seq_printf(seq, "\n      %llu blocks",
6784                                            (unsigned long long)sectors / 2);
6785                 }
6786                 if (mddev->persistent) {
6787                         if (mddev->major_version != 0 ||
6788                             mddev->minor_version != 90) {
6789                                 seq_printf(seq," super %d.%d",
6790                                            mddev->major_version,
6791                                            mddev->minor_version);
6792                         }
6793                 } else if (mddev->external)
6794                         seq_printf(seq, " super external:%s",
6795                                    mddev->metadata_type);
6796                 else
6797                         seq_printf(seq, " super non-persistent");
6798
6799                 if (mddev->pers) {
6800                         mddev->pers->status(seq, mddev);
6801                         seq_printf(seq, "\n      ");
6802                         if (mddev->pers->sync_request) {
6803                                 if (mddev->curr_resync > 2) {
6804                                         status_resync(seq, mddev);
6805                                         seq_printf(seq, "\n      ");
6806                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6807                                         seq_printf(seq, "\tresync=DELAYED\n      ");
6808                                 else if (mddev->recovery_cp < MaxSector)
6809                                         seq_printf(seq, "\tresync=PENDING\n      ");
6810                         }
6811                 } else
6812                         seq_printf(seq, "\n       ");
6813
6814                 if ((bitmap = mddev->bitmap)) {
6815                         unsigned long chunk_kb;
6816                         unsigned long flags;
6817                         spin_lock_irqsave(&bitmap->lock, flags);
6818                         chunk_kb = mddev->bitmap_info.chunksize >> 10;
6819                         seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6820                                 "%lu%s chunk",
6821                                 bitmap->pages - bitmap->missing_pages,
6822                                 bitmap->pages,
6823                                 (bitmap->pages - bitmap->missing_pages)
6824                                         << (PAGE_SHIFT - 10),
6825                                 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6826                                 chunk_kb ? "KB" : "B");
6827                         if (bitmap->file) {
6828                                 seq_printf(seq, ", file: ");
6829                                 seq_path(seq, &bitmap->file->f_path, " \t\n");
6830                         }
6831
6832                         seq_printf(seq, "\n");
6833                         spin_unlock_irqrestore(&bitmap->lock, flags);
6834                 }
6835
6836                 seq_printf(seq, "\n");
6837         }
6838         mddev_unlock(mddev);
6839         
6840         return 0;
6841 }
6842
6843 static const struct seq_operations md_seq_ops = {
6844         .start  = md_seq_start,
6845         .next   = md_seq_next,
6846         .stop   = md_seq_stop,
6847         .show   = md_seq_show,
6848 };
6849
6850 static int md_seq_open(struct inode *inode, struct file *file)
6851 {
6852         struct seq_file *seq;
6853         int error;
6854
6855         error = seq_open(file, &md_seq_ops);
6856         if (error)
6857                 return error;
6858
6859         seq = file->private_data;
6860         seq->poll_event = atomic_read(&md_event_count);
6861         return error;
6862 }
6863
6864 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6865 {
6866         struct seq_file *seq = filp->private_data;
6867         int mask;
6868
6869         poll_wait(filp, &md_event_waiters, wait);
6870
6871         /* always allow read */
6872         mask = POLLIN | POLLRDNORM;
6873
6874         if (seq->poll_event != atomic_read(&md_event_count))
6875                 mask |= POLLERR | POLLPRI;
6876         return mask;
6877 }
6878
6879 static const struct file_operations md_seq_fops = {
6880         .owner          = THIS_MODULE,
6881         .open           = md_seq_open,
6882         .read           = seq_read,
6883         .llseek         = seq_lseek,
6884         .release        = seq_release_private,
6885         .poll           = mdstat_poll,
6886 };
6887
6888 int register_md_personality(struct md_personality *p)
6889 {
6890         spin_lock(&pers_lock);
6891         list_add_tail(&p->list, &pers_list);
6892         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6893         spin_unlock(&pers_lock);
6894         return 0;
6895 }
6896
6897 int unregister_md_personality(struct md_personality *p)
6898 {
6899         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6900         spin_lock(&pers_lock);
6901         list_del_init(&p->list);
6902         spin_unlock(&pers_lock);
6903         return 0;
6904 }
6905
6906 static int is_mddev_idle(struct mddev *mddev, int init)
6907 {
6908         struct md_rdev * rdev;
6909         int idle;
6910         int curr_events;
6911
6912         idle = 1;
6913         rcu_read_lock();
6914         rdev_for_each_rcu(rdev, mddev) {
6915                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6916                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6917                               (int)part_stat_read(&disk->part0, sectors[1]) -
6918                               atomic_read(&disk->sync_io);
6919                 /* sync IO will cause sync_io to increase before the disk_stats
6920                  * as sync_io is counted when a request starts, and
6921                  * disk_stats is counted when it completes.
6922                  * So resync activity will cause curr_events to be smaller than
6923                  * when there was no such activity.
6924                  * non-sync IO will cause disk_stat to increase without
6925                  * increasing sync_io so curr_events will (eventually)
6926                  * be larger than it was before.  Once it becomes
6927                  * substantially larger, the test below will cause
6928                  * the array to appear non-idle, and resync will slow
6929                  * down.
6930                  * If there is a lot of outstanding resync activity when
6931                  * we set last_event to curr_events, then all that activity
6932                  * completing might cause the array to appear non-idle
6933                  * and resync will be slowed down even though there might
6934                  * not have been non-resync activity.  This will only
6935                  * happen once though.  'last_events' will soon reflect
6936                  * the state where there is little or no outstanding
6937                  * resync requests, and further resync activity will
6938                  * always make curr_events less than last_events.
6939                  *
6940                  */
6941                 if (init || curr_events - rdev->last_events > 64) {
6942                         rdev->last_events = curr_events;
6943                         idle = 0;
6944                 }
6945         }
6946         rcu_read_unlock();
6947         return idle;
6948 }
6949
6950 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6951 {
6952         /* another "blocks" (512byte) blocks have been synced */
6953         atomic_sub(blocks, &mddev->recovery_active);
6954         wake_up(&mddev->recovery_wait);
6955         if (!ok) {
6956                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6957                 md_wakeup_thread(mddev->thread);
6958                 // stop recovery, signal do_sync ....
6959         }
6960 }
6961
6962
6963 /* md_write_start(mddev, bi)
6964  * If we need to update some array metadata (e.g. 'active' flag
6965  * in superblock) before writing, schedule a superblock update
6966  * and wait for it to complete.
6967  */
6968 void md_write_start(struct mddev *mddev, struct bio *bi)
6969 {
6970         int did_change = 0;
6971         if (bio_data_dir(bi) != WRITE)
6972                 return;
6973
6974         BUG_ON(mddev->ro == 1);
6975         if (mddev->ro == 2) {
6976                 /* need to switch to read/write */
6977                 mddev->ro = 0;
6978                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6979                 md_wakeup_thread(mddev->thread);
6980                 md_wakeup_thread(mddev->sync_thread);
6981                 did_change = 1;
6982         }
6983         atomic_inc(&mddev->writes_pending);
6984         if (mddev->safemode == 1)
6985                 mddev->safemode = 0;
6986         if (mddev->in_sync) {
6987                 spin_lock_irq(&mddev->write_lock);
6988                 if (mddev->in_sync) {
6989                         mddev->in_sync = 0;
6990                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6991                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
6992                         md_wakeup_thread(mddev->thread);
6993                         did_change = 1;
6994                 }
6995                 spin_unlock_irq(&mddev->write_lock);
6996         }
6997         if (did_change)
6998                 sysfs_notify_dirent_safe(mddev->sysfs_state);
6999         wait_event(mddev->sb_wait,
7000                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7001 }
7002
7003 void md_write_end(struct mddev *mddev)
7004 {
7005         if (atomic_dec_and_test(&mddev->writes_pending)) {
7006                 if (mddev->safemode == 2)
7007                         md_wakeup_thread(mddev->thread);
7008                 else if (mddev->safemode_delay)
7009                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7010         }
7011 }
7012
7013 /* md_allow_write(mddev)
7014  * Calling this ensures that the array is marked 'active' so that writes
7015  * may proceed without blocking.  It is important to call this before
7016  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7017  * Must be called with mddev_lock held.
7018  *
7019  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7020  * is dropped, so return -EAGAIN after notifying userspace.
7021  */
7022 int md_allow_write(struct mddev *mddev)
7023 {
7024         if (!mddev->pers)
7025                 return 0;
7026         if (mddev->ro)
7027                 return 0;
7028         if (!mddev->pers->sync_request)
7029                 return 0;
7030
7031         spin_lock_irq(&mddev->write_lock);
7032         if (mddev->in_sync) {
7033                 mddev->in_sync = 0;
7034                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7035                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7036                 if (mddev->safemode_delay &&
7037                     mddev->safemode == 0)
7038                         mddev->safemode = 1;
7039                 spin_unlock_irq(&mddev->write_lock);
7040                 md_update_sb(mddev, 0);
7041                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7042         } else
7043                 spin_unlock_irq(&mddev->write_lock);
7044
7045         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7046                 return -EAGAIN;
7047         else
7048                 return 0;
7049 }
7050 EXPORT_SYMBOL_GPL(md_allow_write);
7051
7052 #define SYNC_MARKS      10
7053 #define SYNC_MARK_STEP  (3*HZ)
7054 void md_do_sync(struct mddev *mddev)
7055 {
7056         struct mddev *mddev2;
7057         unsigned int currspeed = 0,
7058                  window;
7059         sector_t max_sectors,j, io_sectors;
7060         unsigned long mark[SYNC_MARKS];
7061         sector_t mark_cnt[SYNC_MARKS];
7062         int last_mark,m;
7063         struct list_head *tmp;
7064         sector_t last_check;
7065         int skipped = 0;
7066         struct md_rdev *rdev;
7067         char *desc;
7068
7069         /* just incase thread restarts... */
7070         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7071                 return;
7072         if (mddev->ro) /* never try to sync a read-only array */
7073                 return;
7074
7075         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7076                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7077                         desc = "data-check";
7078                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7079                         desc = "requested-resync";
7080                 else
7081                         desc = "resync";
7082         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7083                 desc = "reshape";
7084         else
7085                 desc = "recovery";
7086
7087         /* we overload curr_resync somewhat here.
7088          * 0 == not engaged in resync at all
7089          * 2 == checking that there is no conflict with another sync
7090          * 1 == like 2, but have yielded to allow conflicting resync to
7091          *              commense
7092          * other == active in resync - this many blocks
7093          *
7094          * Before starting a resync we must have set curr_resync to
7095          * 2, and then checked that every "conflicting" array has curr_resync
7096          * less than ours.  When we find one that is the same or higher
7097          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7098          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7099          * This will mean we have to start checking from the beginning again.
7100          *
7101          */
7102
7103         do {
7104                 mddev->curr_resync = 2;
7105
7106         try_again:
7107                 if (kthread_should_stop())
7108                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7109
7110                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7111                         goto skip;
7112                 for_each_mddev(mddev2, tmp) {
7113                         if (mddev2 == mddev)
7114                                 continue;
7115                         if (!mddev->parallel_resync
7116                         &&  mddev2->curr_resync
7117                         &&  match_mddev_units(mddev, mddev2)) {
7118                                 DEFINE_WAIT(wq);
7119                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7120                                         /* arbitrarily yield */
7121                                         mddev->curr_resync = 1;
7122                                         wake_up(&resync_wait);
7123                                 }
7124                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7125                                         /* no need to wait here, we can wait the next
7126                                          * time 'round when curr_resync == 2
7127                                          */
7128                                         continue;
7129                                 /* We need to wait 'interruptible' so as not to
7130                                  * contribute to the load average, and not to
7131                                  * be caught by 'softlockup'
7132                                  */
7133                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7134                                 if (!kthread_should_stop() &&
7135                                     mddev2->curr_resync >= mddev->curr_resync) {
7136                                         printk(KERN_INFO "md: delaying %s of %s"
7137                                                " until %s has finished (they"
7138                                                " share one or more physical units)\n",
7139                                                desc, mdname(mddev), mdname(mddev2));
7140                                         mddev_put(mddev2);
7141                                         if (signal_pending(current))
7142                                                 flush_signals(current);
7143                                         schedule();
7144                                         finish_wait(&resync_wait, &wq);
7145                                         goto try_again;
7146                                 }
7147                                 finish_wait(&resync_wait, &wq);
7148                         }
7149                 }
7150         } while (mddev->curr_resync < 2);
7151
7152         j = 0;
7153         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7154                 /* resync follows the size requested by the personality,
7155                  * which defaults to physical size, but can be virtual size
7156                  */
7157                 max_sectors = mddev->resync_max_sectors;
7158                 mddev->resync_mismatches = 0;
7159                 /* we don't use the checkpoint if there's a bitmap */
7160                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7161                         j = mddev->resync_min;
7162                 else if (!mddev->bitmap)
7163                         j = mddev->recovery_cp;
7164
7165         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7166                 max_sectors = mddev->dev_sectors;
7167         else {
7168                 /* recovery follows the physical size of devices */
7169                 max_sectors = mddev->dev_sectors;
7170                 j = MaxSector;
7171                 rcu_read_lock();
7172                 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7173                         if (rdev->raid_disk >= 0 &&
7174                             !test_bit(Faulty, &rdev->flags) &&
7175                             !test_bit(In_sync, &rdev->flags) &&
7176                             rdev->recovery_offset < j)
7177                                 j = rdev->recovery_offset;
7178                 rcu_read_unlock();
7179         }
7180
7181         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7182         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7183                 " %d KB/sec/disk.\n", speed_min(mddev));
7184         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7185                "(but not more than %d KB/sec) for %s.\n",
7186                speed_max(mddev), desc);
7187
7188         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7189
7190         io_sectors = 0;
7191         for (m = 0; m < SYNC_MARKS; m++) {
7192                 mark[m] = jiffies;
7193                 mark_cnt[m] = io_sectors;
7194         }
7195         last_mark = 0;
7196         mddev->resync_mark = mark[last_mark];
7197         mddev->resync_mark_cnt = mark_cnt[last_mark];
7198
7199         /*
7200          * Tune reconstruction:
7201          */
7202         window = 32*(PAGE_SIZE/512);
7203         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7204                 window/2, (unsigned long long)max_sectors/2);
7205
7206         atomic_set(&mddev->recovery_active, 0);
7207         last_check = 0;
7208
7209         if (j>2) {
7210                 printk(KERN_INFO 
7211                        "md: resuming %s of %s from checkpoint.\n",
7212                        desc, mdname(mddev));
7213                 mddev->curr_resync = j;
7214         }
7215         mddev->curr_resync_completed = j;
7216
7217         while (j < max_sectors) {
7218                 sector_t sectors;
7219
7220                 skipped = 0;
7221
7222                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7223                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7224                       (mddev->curr_resync - mddev->curr_resync_completed)
7225                       > (max_sectors >> 4)) ||
7226                      (j - mddev->curr_resync_completed)*2
7227                      >= mddev->resync_max - mddev->curr_resync_completed
7228                             )) {
7229                         /* time to update curr_resync_completed */
7230                         wait_event(mddev->recovery_wait,
7231                                    atomic_read(&mddev->recovery_active) == 0);
7232                         mddev->curr_resync_completed = j;
7233                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7234                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7235                 }
7236
7237                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7238                         /* As this condition is controlled by user-space,
7239                          * we can block indefinitely, so use '_interruptible'
7240                          * to avoid triggering warnings.
7241                          */
7242                         flush_signals(current); /* just in case */
7243                         wait_event_interruptible(mddev->recovery_wait,
7244                                                  mddev->resync_max > j
7245                                                  || kthread_should_stop());
7246                 }
7247
7248                 if (kthread_should_stop())
7249                         goto interrupted;
7250
7251                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7252                                                   currspeed < speed_min(mddev));
7253                 if (sectors == 0) {
7254                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7255                         goto out;
7256                 }
7257
7258                 if (!skipped) { /* actual IO requested */
7259                         io_sectors += sectors;
7260                         atomic_add(sectors, &mddev->recovery_active);
7261                 }
7262
7263                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7264                         break;
7265
7266                 j += sectors;
7267                 if (j>1) mddev->curr_resync = j;
7268                 mddev->curr_mark_cnt = io_sectors;
7269                 if (last_check == 0)
7270                         /* this is the earliest that rebuild will be
7271                          * visible in /proc/mdstat
7272                          */
7273                         md_new_event(mddev);
7274
7275                 if (last_check + window > io_sectors || j == max_sectors)
7276                         continue;
7277
7278                 last_check = io_sectors;
7279         repeat:
7280                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7281                         /* step marks */
7282                         int next = (last_mark+1) % SYNC_MARKS;
7283
7284                         mddev->resync_mark = mark[next];
7285                         mddev->resync_mark_cnt = mark_cnt[next];
7286                         mark[next] = jiffies;
7287                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7288                         last_mark = next;
7289                 }
7290
7291
7292                 if (kthread_should_stop())
7293                         goto interrupted;
7294
7295
7296                 /*
7297                  * this loop exits only if either when we are slower than
7298                  * the 'hard' speed limit, or the system was IO-idle for
7299                  * a jiffy.
7300                  * the system might be non-idle CPU-wise, but we only care
7301                  * about not overloading the IO subsystem. (things like an
7302                  * e2fsck being done on the RAID array should execute fast)
7303                  */
7304                 cond_resched();
7305
7306                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7307                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7308
7309                 if (currspeed > speed_min(mddev)) {
7310                         if ((currspeed > speed_max(mddev)) ||
7311                                         !is_mddev_idle(mddev, 0)) {
7312                                 msleep(500);
7313                                 goto repeat;
7314                         }
7315                 }
7316         }
7317         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7318         /*
7319          * this also signals 'finished resyncing' to md_stop
7320          */
7321  out:
7322         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7323
7324         /* tell personality that we are finished */
7325         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7326
7327         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7328             mddev->curr_resync > 2) {
7329                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7330                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7331                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7332                                         printk(KERN_INFO
7333                                                "md: checkpointing %s of %s.\n",
7334                                                desc, mdname(mddev));
7335                                         mddev->recovery_cp = mddev->curr_resync;
7336                                 }
7337                         } else
7338                                 mddev->recovery_cp = MaxSector;
7339                 } else {
7340                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7341                                 mddev->curr_resync = MaxSector;
7342                         rcu_read_lock();
7343                         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7344                                 if (rdev->raid_disk >= 0 &&
7345                                     mddev->delta_disks >= 0 &&
7346                                     !test_bit(Faulty, &rdev->flags) &&
7347                                     !test_bit(In_sync, &rdev->flags) &&
7348                                     rdev->recovery_offset < mddev->curr_resync)
7349                                         rdev->recovery_offset = mddev->curr_resync;
7350                         rcu_read_unlock();
7351                 }
7352         }
7353         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7354
7355  skip:
7356         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7357                 /* We completed so min/max setting can be forgotten if used. */
7358                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7359                         mddev->resync_min = 0;
7360                 mddev->resync_max = MaxSector;
7361         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7362                 mddev->resync_min = mddev->curr_resync_completed;
7363         mddev->curr_resync = 0;
7364         wake_up(&resync_wait);
7365         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7366         md_wakeup_thread(mddev->thread);
7367         return;
7368
7369  interrupted:
7370         /*
7371          * got a signal, exit.
7372          */
7373         printk(KERN_INFO
7374                "md: md_do_sync() got signal ... exiting\n");
7375         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7376         goto out;
7377
7378 }
7379 EXPORT_SYMBOL_GPL(md_do_sync);
7380
7381 static int remove_and_add_spares(struct mddev *mddev)
7382 {
7383         struct md_rdev *rdev;
7384         int spares = 0;
7385
7386         mddev->curr_resync_completed = 0;
7387
7388         list_for_each_entry(rdev, &mddev->disks, same_set)
7389                 if (rdev->raid_disk >= 0 &&
7390                     !test_bit(Blocked, &rdev->flags) &&
7391                     (test_bit(Faulty, &rdev->flags) ||
7392                      ! test_bit(In_sync, &rdev->flags)) &&
7393                     atomic_read(&rdev->nr_pending)==0) {
7394                         if (mddev->pers->hot_remove_disk(
7395                                     mddev, rdev) == 0) {
7396                                 sysfs_unlink_rdev(mddev, rdev);
7397                                 rdev->raid_disk = -1;
7398                         }
7399                 }
7400
7401         list_for_each_entry(rdev, &mddev->disks, same_set) {
7402                 if (rdev->raid_disk >= 0 &&
7403                     !test_bit(In_sync, &rdev->flags) &&
7404                     !test_bit(Faulty, &rdev->flags))
7405                         spares++;
7406                 if (rdev->raid_disk < 0
7407                     && !test_bit(Faulty, &rdev->flags)) {
7408                         rdev->recovery_offset = 0;
7409                         if (mddev->pers->
7410                             hot_add_disk(mddev, rdev) == 0) {
7411                                 if (sysfs_link_rdev(mddev, rdev))
7412                                         /* failure here is OK */;
7413                                 spares++;
7414                                 md_new_event(mddev);
7415                                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7416                         }
7417                 }
7418         }
7419         return spares;
7420 }
7421
7422 static void reap_sync_thread(struct mddev *mddev)
7423 {
7424         struct md_rdev *rdev;
7425
7426         /* resync has finished, collect result */
7427         md_unregister_thread(&mddev->sync_thread);
7428         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7429             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7430                 /* success...*/
7431                 /* activate any spares */
7432                 if (mddev->pers->spare_active(mddev))
7433                         sysfs_notify(&mddev->kobj, NULL,
7434                                      "degraded");
7435         }
7436         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7437             mddev->pers->finish_reshape)
7438                 mddev->pers->finish_reshape(mddev);
7439
7440         /* If array is no-longer degraded, then any saved_raid_disk
7441          * information must be scrapped.  Also if any device is now
7442          * In_sync we must scrape the saved_raid_disk for that device
7443          * do the superblock for an incrementally recovered device
7444          * written out.
7445          */
7446         list_for_each_entry(rdev, &mddev->disks, same_set)
7447                 if (!mddev->degraded ||
7448                     test_bit(In_sync, &rdev->flags))
7449                         rdev->saved_raid_disk = -1;
7450
7451         md_update_sb(mddev, 1);
7452         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7453         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7454         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7455         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7456         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7457         /* flag recovery needed just to double check */
7458         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7459         sysfs_notify_dirent_safe(mddev->sysfs_action);
7460         md_new_event(mddev);
7461         if (mddev->event_work.func)
7462                 queue_work(md_misc_wq, &mddev->event_work);
7463 }
7464
7465 /*
7466  * This routine is regularly called by all per-raid-array threads to
7467  * deal with generic issues like resync and super-block update.
7468  * Raid personalities that don't have a thread (linear/raid0) do not
7469  * need this as they never do any recovery or update the superblock.
7470  *
7471  * It does not do any resync itself, but rather "forks" off other threads
7472  * to do that as needed.
7473  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7474  * "->recovery" and create a thread at ->sync_thread.
7475  * When the thread finishes it sets MD_RECOVERY_DONE
7476  * and wakeups up this thread which will reap the thread and finish up.
7477  * This thread also removes any faulty devices (with nr_pending == 0).
7478  *
7479  * The overall approach is:
7480  *  1/ if the superblock needs updating, update it.
7481  *  2/ If a recovery thread is running, don't do anything else.
7482  *  3/ If recovery has finished, clean up, possibly marking spares active.
7483  *  4/ If there are any faulty devices, remove them.
7484  *  5/ If array is degraded, try to add spares devices
7485  *  6/ If array has spares or is not in-sync, start a resync thread.
7486  */
7487 void md_check_recovery(struct mddev *mddev)
7488 {
7489         if (mddev->suspended)
7490                 return;
7491
7492         if (mddev->bitmap)
7493                 bitmap_daemon_work(mddev);
7494
7495         if (signal_pending(current)) {
7496                 if (mddev->pers->sync_request && !mddev->external) {
7497                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7498                                mdname(mddev));
7499                         mddev->safemode = 2;
7500                 }
7501                 flush_signals(current);
7502         }
7503
7504         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7505                 return;
7506         if ( ! (
7507                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7508                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7509                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7510                 (mddev->external == 0 && mddev->safemode == 1) ||
7511                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7512                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7513                 ))
7514                 return;
7515
7516         if (mddev_trylock(mddev)) {
7517                 int spares = 0;
7518
7519                 if (mddev->ro) {
7520                         /* Only thing we do on a ro array is remove
7521                          * failed devices.
7522                          */
7523                         struct md_rdev *rdev;
7524                         list_for_each_entry(rdev, &mddev->disks, same_set)
7525                                 if (rdev->raid_disk >= 0 &&
7526                                     !test_bit(Blocked, &rdev->flags) &&
7527                                     test_bit(Faulty, &rdev->flags) &&
7528                                     atomic_read(&rdev->nr_pending)==0) {
7529                                         if (mddev->pers->hot_remove_disk(
7530                                                     mddev, rdev) == 0) {
7531                                                 sysfs_unlink_rdev(mddev, rdev);
7532                                                 rdev->raid_disk = -1;
7533                                         }
7534                                 }
7535                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7536                         goto unlock;
7537                 }
7538
7539                 if (!mddev->external) {
7540                         int did_change = 0;
7541                         spin_lock_irq(&mddev->write_lock);
7542                         if (mddev->safemode &&
7543                             !atomic_read(&mddev->writes_pending) &&
7544                             !mddev->in_sync &&
7545                             mddev->recovery_cp == MaxSector) {
7546                                 mddev->in_sync = 1;
7547                                 did_change = 1;
7548                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7549                         }
7550                         if (mddev->safemode == 1)
7551                                 mddev->safemode = 0;
7552                         spin_unlock_irq(&mddev->write_lock);
7553                         if (did_change)
7554                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7555                 }
7556
7557                 if (mddev->flags)
7558                         md_update_sb(mddev, 0);
7559
7560                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7561                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7562                         /* resync/recovery still happening */
7563                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7564                         goto unlock;
7565                 }
7566                 if (mddev->sync_thread) {
7567                         reap_sync_thread(mddev);
7568                         goto unlock;
7569                 }
7570                 /* Set RUNNING before clearing NEEDED to avoid
7571                  * any transients in the value of "sync_action".
7572                  */
7573                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7574                 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7575                 /* Clear some bits that don't mean anything, but
7576                  * might be left set
7577                  */
7578                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7579                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7580
7581                 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7582                         goto unlock;
7583                 /* no recovery is running.
7584                  * remove any failed drives, then
7585                  * add spares if possible.
7586                  * Spare are also removed and re-added, to allow
7587                  * the personality to fail the re-add.
7588                  */
7589
7590                 if (mddev->reshape_position != MaxSector) {
7591                         if (mddev->pers->check_reshape == NULL ||
7592                             mddev->pers->check_reshape(mddev) != 0)
7593                                 /* Cannot proceed */
7594                                 goto unlock;
7595                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7596                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7597                 } else if ((spares = remove_and_add_spares(mddev))) {
7598                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7599                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7600                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7601                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7602                 } else if (mddev->recovery_cp < MaxSector) {
7603                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7604                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7605                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7606                         /* nothing to be done ... */
7607                         goto unlock;
7608
7609                 if (mddev->pers->sync_request) {
7610                         if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7611                                 /* We are adding a device or devices to an array
7612                                  * which has the bitmap stored on all devices.
7613                                  * So make sure all bitmap pages get written
7614                                  */
7615                                 bitmap_write_all(mddev->bitmap);
7616                         }
7617                         mddev->sync_thread = md_register_thread(md_do_sync,
7618                                                                 mddev,
7619                                                                 "resync");
7620                         if (!mddev->sync_thread) {
7621                                 printk(KERN_ERR "%s: could not start resync"
7622                                         " thread...\n", 
7623                                         mdname(mddev));
7624                                 /* leave the spares where they are, it shouldn't hurt */
7625                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7626                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7627                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7628                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7629                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7630                         } else
7631                                 md_wakeup_thread(mddev->sync_thread);
7632                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7633                         md_new_event(mddev);
7634                 }
7635         unlock:
7636                 if (!mddev->sync_thread) {
7637                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7638                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7639                                                &mddev->recovery))
7640                                 if (mddev->sysfs_action)
7641                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7642                 }
7643                 mddev_unlock(mddev);
7644         }
7645 }
7646
7647 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7648 {
7649         sysfs_notify_dirent_safe(rdev->sysfs_state);
7650         wait_event_timeout(rdev->blocked_wait,
7651                            !test_bit(Blocked, &rdev->flags) &&
7652                            !test_bit(BlockedBadBlocks, &rdev->flags),
7653                            msecs_to_jiffies(5000));
7654         rdev_dec_pending(rdev, mddev);
7655 }
7656 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7657
7658
7659 /* Bad block management.
7660  * We can record which blocks on each device are 'bad' and so just
7661  * fail those blocks, or that stripe, rather than the whole device.
7662  * Entries in the bad-block table are 64bits wide.  This comprises:
7663  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7664  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7665  *  A 'shift' can be set so that larger blocks are tracked and
7666  *  consequently larger devices can be covered.
7667  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7668  *
7669  * Locking of the bad-block table uses a seqlock so md_is_badblock
7670  * might need to retry if it is very unlucky.
7671  * We will sometimes want to check for bad blocks in a bi_end_io function,
7672  * so we use the write_seqlock_irq variant.
7673  *
7674  * When looking for a bad block we specify a range and want to
7675  * know if any block in the range is bad.  So we binary-search
7676  * to the last range that starts at-or-before the given endpoint,
7677  * (or "before the sector after the target range")
7678  * then see if it ends after the given start.
7679  * We return
7680  *  0 if there are no known bad blocks in the range
7681  *  1 if there are known bad block which are all acknowledged
7682  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7683  * plus the start/length of the first bad section we overlap.
7684  */
7685 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7686                    sector_t *first_bad, int *bad_sectors)
7687 {
7688         int hi;
7689         int lo = 0;
7690         u64 *p = bb->page;
7691         int rv = 0;
7692         sector_t target = s + sectors;
7693         unsigned seq;
7694
7695         if (bb->shift > 0) {
7696                 /* round the start down, and the end up */
7697                 s >>= bb->shift;
7698                 target += (1<<bb->shift) - 1;
7699                 target >>= bb->shift;
7700                 sectors = target - s;
7701         }
7702         /* 'target' is now the first block after the bad range */
7703
7704 retry:
7705         seq = read_seqbegin(&bb->lock);
7706
7707         hi = bb->count;
7708
7709         /* Binary search between lo and hi for 'target'
7710          * i.e. for the last range that starts before 'target'
7711          */
7712         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7713          * are known not to be the last range before target.
7714          * VARIANT: hi-lo is the number of possible
7715          * ranges, and decreases until it reaches 1
7716          */
7717         while (hi - lo > 1) {
7718                 int mid = (lo + hi) / 2;
7719                 sector_t a = BB_OFFSET(p[mid]);
7720                 if (a < target)
7721                         /* This could still be the one, earlier ranges
7722                          * could not. */
7723                         lo = mid;
7724                 else
7725                         /* This and later ranges are definitely out. */
7726                         hi = mid;
7727         }
7728         /* 'lo' might be the last that started before target, but 'hi' isn't */
7729         if (hi > lo) {
7730                 /* need to check all range that end after 's' to see if
7731                  * any are unacknowledged.
7732                  */
7733                 while (lo >= 0 &&
7734                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7735                         if (BB_OFFSET(p[lo]) < target) {
7736                                 /* starts before the end, and finishes after
7737                                  * the start, so they must overlap
7738                                  */
7739                                 if (rv != -1 && BB_ACK(p[lo]))
7740                                         rv = 1;
7741                                 else
7742                                         rv = -1;
7743                                 *first_bad = BB_OFFSET(p[lo]);
7744                                 *bad_sectors = BB_LEN(p[lo]);
7745                         }
7746                         lo--;
7747                 }
7748         }
7749
7750         if (read_seqretry(&bb->lock, seq))
7751                 goto retry;
7752
7753         return rv;
7754 }
7755 EXPORT_SYMBOL_GPL(md_is_badblock);
7756
7757 /*
7758  * Add a range of bad blocks to the table.
7759  * This might extend the table, or might contract it
7760  * if two adjacent ranges can be merged.
7761  * We binary-search to find the 'insertion' point, then
7762  * decide how best to handle it.
7763  */
7764 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7765                             int acknowledged)
7766 {
7767         u64 *p;
7768         int lo, hi;
7769         int rv = 1;
7770
7771         if (bb->shift < 0)
7772                 /* badblocks are disabled */
7773                 return 0;
7774
7775         if (bb->shift) {
7776                 /* round the start down, and the end up */
7777                 sector_t next = s + sectors;
7778                 s >>= bb->shift;
7779                 next += (1<<bb->shift) - 1;
7780                 next >>= bb->shift;
7781                 sectors = next - s;
7782         }
7783
7784         write_seqlock_irq(&bb->lock);
7785
7786         p = bb->page;
7787         lo = 0;
7788         hi = bb->count;
7789         /* Find the last range that starts at-or-before 's' */
7790         while (hi - lo > 1) {
7791                 int mid = (lo + hi) / 2;
7792                 sector_t a = BB_OFFSET(p[mid]);
7793                 if (a <= s)
7794                         lo = mid;
7795                 else
7796                         hi = mid;
7797         }
7798         if (hi > lo && BB_OFFSET(p[lo]) > s)
7799                 hi = lo;
7800
7801         if (hi > lo) {
7802                 /* we found a range that might merge with the start
7803                  * of our new range
7804                  */
7805                 sector_t a = BB_OFFSET(p[lo]);
7806                 sector_t e = a + BB_LEN(p[lo]);
7807                 int ack = BB_ACK(p[lo]);
7808                 if (e >= s) {
7809                         /* Yes, we can merge with a previous range */
7810                         if (s == a && s + sectors >= e)
7811                                 /* new range covers old */
7812                                 ack = acknowledged;
7813                         else
7814                                 ack = ack && acknowledged;
7815
7816                         if (e < s + sectors)
7817                                 e = s + sectors;
7818                         if (e - a <= BB_MAX_LEN) {
7819                                 p[lo] = BB_MAKE(a, e-a, ack);
7820                                 s = e;
7821                         } else {
7822                                 /* does not all fit in one range,
7823                                  * make p[lo] maximal
7824                                  */
7825                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7826                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7827                                 s = a + BB_MAX_LEN;
7828                         }
7829                         sectors = e - s;
7830                 }
7831         }
7832         if (sectors && hi < bb->count) {
7833                 /* 'hi' points to the first range that starts after 's'.
7834                  * Maybe we can merge with the start of that range */
7835                 sector_t a = BB_OFFSET(p[hi]);
7836                 sector_t e = a + BB_LEN(p[hi]);
7837                 int ack = BB_ACK(p[hi]);
7838                 if (a <= s + sectors) {
7839                         /* merging is possible */
7840                         if (e <= s + sectors) {
7841                                 /* full overlap */
7842                                 e = s + sectors;
7843                                 ack = acknowledged;
7844                         } else
7845                                 ack = ack && acknowledged;
7846
7847                         a = s;
7848                         if (e - a <= BB_MAX_LEN) {
7849                                 p[hi] = BB_MAKE(a, e-a, ack);
7850                                 s = e;
7851                         } else {
7852                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7853                                 s = a + BB_MAX_LEN;
7854                         }
7855                         sectors = e - s;
7856                         lo = hi;
7857                         hi++;
7858                 }
7859         }
7860         if (sectors == 0 && hi < bb->count) {
7861                 /* we might be able to combine lo and hi */
7862                 /* Note: 's' is at the end of 'lo' */
7863                 sector_t a = BB_OFFSET(p[hi]);
7864                 int lolen = BB_LEN(p[lo]);
7865                 int hilen = BB_LEN(p[hi]);
7866                 int newlen = lolen + hilen - (s - a);
7867                 if (s >= a && newlen < BB_MAX_LEN) {
7868                         /* yes, we can combine them */
7869                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7870                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7871                         memmove(p + hi, p + hi + 1,
7872                                 (bb->count - hi - 1) * 8);
7873                         bb->count--;
7874                 }
7875         }
7876         while (sectors) {
7877                 /* didn't merge (it all).
7878                  * Need to add a range just before 'hi' */
7879                 if (bb->count >= MD_MAX_BADBLOCKS) {
7880                         /* No room for more */
7881                         rv = 0;
7882                         break;
7883                 } else {
7884                         int this_sectors = sectors;
7885                         memmove(p + hi + 1, p + hi,
7886                                 (bb->count - hi) * 8);
7887                         bb->count++;
7888
7889                         if (this_sectors > BB_MAX_LEN)
7890                                 this_sectors = BB_MAX_LEN;
7891                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7892                         sectors -= this_sectors;
7893                         s += this_sectors;
7894                 }
7895         }
7896
7897         bb->changed = 1;
7898         if (!acknowledged)
7899                 bb->unacked_exist = 1;
7900         write_sequnlock_irq(&bb->lock);
7901
7902         return rv;
7903 }
7904
7905 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7906                        int acknowledged)
7907 {
7908         int rv = md_set_badblocks(&rdev->badblocks,
7909                                   s + rdev->data_offset, sectors, acknowledged);
7910         if (rv) {
7911                 /* Make sure they get written out promptly */
7912                 sysfs_notify_dirent_safe(rdev->sysfs_state);
7913                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7914                 md_wakeup_thread(rdev->mddev->thread);
7915         }
7916         return rv;
7917 }
7918 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7919
7920 /*
7921  * Remove a range of bad blocks from the table.
7922  * This may involve extending the table if we spilt a region,
7923  * but it must not fail.  So if the table becomes full, we just
7924  * drop the remove request.
7925  */
7926 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7927 {
7928         u64 *p;
7929         int lo, hi;
7930         sector_t target = s + sectors;
7931         int rv = 0;
7932
7933         if (bb->shift > 0) {
7934                 /* When clearing we round the start up and the end down.
7935                  * This should not matter as the shift should align with
7936                  * the block size and no rounding should ever be needed.
7937                  * However it is better the think a block is bad when it
7938                  * isn't than to think a block is not bad when it is.
7939                  */
7940                 s += (1<<bb->shift) - 1;
7941                 s >>= bb->shift;
7942                 target >>= bb->shift;
7943                 sectors = target - s;
7944         }
7945
7946         write_seqlock_irq(&bb->lock);
7947
7948         p = bb->page;
7949         lo = 0;
7950         hi = bb->count;
7951         /* Find the last range that starts before 'target' */
7952         while (hi - lo > 1) {
7953                 int mid = (lo + hi) / 2;
7954                 sector_t a = BB_OFFSET(p[mid]);
7955                 if (a < target)
7956                         lo = mid;
7957                 else
7958                         hi = mid;
7959         }
7960         if (hi > lo) {
7961                 /* p[lo] is the last range that could overlap the
7962                  * current range.  Earlier ranges could also overlap,
7963                  * but only this one can overlap the end of the range.
7964                  */
7965                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7966                         /* Partial overlap, leave the tail of this range */
7967                         int ack = BB_ACK(p[lo]);
7968                         sector_t a = BB_OFFSET(p[lo]);
7969                         sector_t end = a + BB_LEN(p[lo]);
7970
7971                         if (a < s) {
7972                                 /* we need to split this range */
7973                                 if (bb->count >= MD_MAX_BADBLOCKS) {
7974                                         rv = 0;
7975                                         goto out;
7976                                 }
7977                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7978                                 bb->count++;
7979                                 p[lo] = BB_MAKE(a, s-a, ack);
7980                                 lo++;
7981                         }
7982                         p[lo] = BB_MAKE(target, end - target, ack);
7983                         /* there is no longer an overlap */
7984                         hi = lo;
7985                         lo--;
7986                 }
7987                 while (lo >= 0 &&
7988                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7989                         /* This range does overlap */
7990                         if (BB_OFFSET(p[lo]) < s) {
7991                                 /* Keep the early parts of this range. */
7992                                 int ack = BB_ACK(p[lo]);
7993                                 sector_t start = BB_OFFSET(p[lo]);
7994                                 p[lo] = BB_MAKE(start, s - start, ack);
7995                                 /* now low doesn't overlap, so.. */
7996                                 break;
7997                         }
7998                         lo--;
7999                 }
8000                 /* 'lo' is strictly before, 'hi' is strictly after,
8001                  * anything between needs to be discarded
8002                  */
8003                 if (hi - lo > 1) {
8004                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8005                         bb->count -= (hi - lo - 1);
8006                 }
8007         }
8008
8009         bb->changed = 1;
8010 out:
8011         write_sequnlock_irq(&bb->lock);
8012         return rv;
8013 }
8014
8015 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
8016 {
8017         return md_clear_badblocks(&rdev->badblocks,
8018                                   s + rdev->data_offset,
8019                                   sectors);
8020 }
8021 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8022
8023 /*
8024  * Acknowledge all bad blocks in a list.
8025  * This only succeeds if ->changed is clear.  It is used by
8026  * in-kernel metadata updates
8027  */
8028 void md_ack_all_badblocks(struct badblocks *bb)
8029 {
8030         if (bb->page == NULL || bb->changed)
8031                 /* no point even trying */
8032                 return;
8033         write_seqlock_irq(&bb->lock);
8034
8035         if (bb->changed == 0) {
8036                 u64 *p = bb->page;
8037                 int i;
8038                 for (i = 0; i < bb->count ; i++) {
8039                         if (!BB_ACK(p[i])) {
8040                                 sector_t start = BB_OFFSET(p[i]);
8041                                 int len = BB_LEN(p[i]);
8042                                 p[i] = BB_MAKE(start, len, 1);
8043                         }
8044                 }
8045                 bb->unacked_exist = 0;
8046         }
8047         write_sequnlock_irq(&bb->lock);
8048 }
8049 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8050
8051 /* sysfs access to bad-blocks list.
8052  * We present two files.
8053  * 'bad-blocks' lists sector numbers and lengths of ranges that
8054  *    are recorded as bad.  The list is truncated to fit within
8055  *    the one-page limit of sysfs.
8056  *    Writing "sector length" to this file adds an acknowledged
8057  *    bad block list.
8058  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8059  *    been acknowledged.  Writing to this file adds bad blocks
8060  *    without acknowledging them.  This is largely for testing.
8061  */
8062
8063 static ssize_t
8064 badblocks_show(struct badblocks *bb, char *page, int unack)
8065 {
8066         size_t len;
8067         int i;
8068         u64 *p = bb->page;
8069         unsigned seq;
8070
8071         if (bb->shift < 0)
8072                 return 0;
8073
8074 retry:
8075         seq = read_seqbegin(&bb->lock);
8076
8077         len = 0;
8078         i = 0;
8079
8080         while (len < PAGE_SIZE && i < bb->count) {
8081                 sector_t s = BB_OFFSET(p[i]);
8082                 unsigned int length = BB_LEN(p[i]);
8083                 int ack = BB_ACK(p[i]);
8084                 i++;
8085
8086                 if (unack && ack)
8087                         continue;
8088
8089                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8090                                 (unsigned long long)s << bb->shift,
8091                                 length << bb->shift);
8092         }
8093         if (unack && len == 0)
8094                 bb->unacked_exist = 0;
8095
8096         if (read_seqretry(&bb->lock, seq))
8097                 goto retry;
8098
8099         return len;
8100 }
8101
8102 #define DO_DEBUG 1
8103
8104 static ssize_t
8105 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8106 {
8107         unsigned long long sector;
8108         int length;
8109         char newline;
8110 #ifdef DO_DEBUG
8111         /* Allow clearing via sysfs *only* for testing/debugging.
8112          * Normally only a successful write may clear a badblock
8113          */
8114         int clear = 0;
8115         if (page[0] == '-') {
8116                 clear = 1;
8117                 page++;
8118         }
8119 #endif /* DO_DEBUG */
8120
8121         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8122         case 3:
8123                 if (newline != '\n')
8124                         return -EINVAL;
8125         case 2:
8126                 if (length <= 0)
8127                         return -EINVAL;
8128                 break;
8129         default:
8130                 return -EINVAL;
8131         }
8132
8133 #ifdef DO_DEBUG
8134         if (clear) {
8135                 md_clear_badblocks(bb, sector, length);
8136                 return len;
8137         }
8138 #endif /* DO_DEBUG */
8139         if (md_set_badblocks(bb, sector, length, !unack))
8140                 return len;
8141         else
8142                 return -ENOSPC;
8143 }
8144
8145 static int md_notify_reboot(struct notifier_block *this,
8146                             unsigned long code, void *x)
8147 {
8148         struct list_head *tmp;
8149         struct mddev *mddev;
8150         int need_delay = 0;
8151
8152         if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
8153
8154                 printk(KERN_INFO "md: stopping all md devices.\n");
8155
8156                 for_each_mddev(mddev, tmp) {
8157                         if (mddev_trylock(mddev)) {
8158                                 /* Force a switch to readonly even array
8159                                  * appears to still be in use.  Hence
8160                                  * the '100'.
8161                                  */
8162                                 md_set_readonly(mddev, 100);
8163                                 mddev_unlock(mddev);
8164                         }
8165                         need_delay = 1;
8166                 }
8167                 /*
8168                  * certain more exotic SCSI devices are known to be
8169                  * volatile wrt too early system reboots. While the
8170                  * right place to handle this issue is the given
8171                  * driver, we do want to have a safe RAID driver ...
8172                  */
8173                 if (need_delay)
8174                         mdelay(1000*1);
8175         }
8176         return NOTIFY_DONE;
8177 }
8178
8179 static struct notifier_block md_notifier = {
8180         .notifier_call  = md_notify_reboot,
8181         .next           = NULL,
8182         .priority       = INT_MAX, /* before any real devices */
8183 };
8184
8185 static void md_geninit(void)
8186 {
8187         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8188
8189         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8190 }
8191
8192 static int __init md_init(void)
8193 {
8194         int ret = -ENOMEM;
8195
8196         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8197         if (!md_wq)
8198                 goto err_wq;
8199
8200         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8201         if (!md_misc_wq)
8202                 goto err_misc_wq;
8203
8204         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8205                 goto err_md;
8206
8207         if ((ret = register_blkdev(0, "mdp")) < 0)
8208                 goto err_mdp;
8209         mdp_major = ret;
8210
8211         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8212                             md_probe, NULL, NULL);
8213         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8214                             md_probe, NULL, NULL);
8215
8216         register_reboot_notifier(&md_notifier);
8217         raid_table_header = register_sysctl_table(raid_root_table);
8218
8219         md_geninit();
8220         return 0;
8221
8222 err_mdp:
8223         unregister_blkdev(MD_MAJOR, "md");
8224 err_md:
8225         destroy_workqueue(md_misc_wq);
8226 err_misc_wq:
8227         destroy_workqueue(md_wq);
8228 err_wq:
8229         return ret;
8230 }
8231
8232 #ifndef MODULE
8233
8234 /*
8235  * Searches all registered partitions for autorun RAID arrays
8236  * at boot time.
8237  */
8238
8239 static LIST_HEAD(all_detected_devices);
8240 struct detected_devices_node {
8241         struct list_head list;
8242         dev_t dev;
8243 };
8244
8245 void md_autodetect_dev(dev_t dev)
8246 {
8247         struct detected_devices_node *node_detected_dev;
8248
8249         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8250         if (node_detected_dev) {
8251                 node_detected_dev->dev = dev;
8252                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8253         } else {
8254                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8255                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8256         }
8257 }
8258
8259
8260 static void autostart_arrays(int part)
8261 {
8262         struct md_rdev *rdev;
8263         struct detected_devices_node *node_detected_dev;
8264         dev_t dev;
8265         int i_scanned, i_passed;
8266
8267         i_scanned = 0;
8268         i_passed = 0;
8269
8270         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8271
8272         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8273                 i_scanned++;
8274                 node_detected_dev = list_entry(all_detected_devices.next,
8275                                         struct detected_devices_node, list);
8276                 list_del(&node_detected_dev->list);
8277                 dev = node_detected_dev->dev;
8278                 kfree(node_detected_dev);
8279                 rdev = md_import_device(dev,0, 90);
8280                 if (IS_ERR(rdev))
8281                         continue;
8282
8283                 if (test_bit(Faulty, &rdev->flags)) {
8284                         MD_BUG();
8285                         continue;
8286                 }
8287                 set_bit(AutoDetected, &rdev->flags);
8288                 list_add(&rdev->same_set, &pending_raid_disks);
8289                 i_passed++;
8290         }
8291
8292         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8293                                                 i_scanned, i_passed);
8294
8295         autorun_devices(part);
8296 }
8297
8298 #endif /* !MODULE */
8299
8300 static __exit void md_exit(void)
8301 {
8302         struct mddev *mddev;
8303         struct list_head *tmp;
8304
8305         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8306         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8307
8308         unregister_blkdev(MD_MAJOR,"md");
8309         unregister_blkdev(mdp_major, "mdp");
8310         unregister_reboot_notifier(&md_notifier);
8311         unregister_sysctl_table(raid_table_header);
8312         remove_proc_entry("mdstat", NULL);
8313         for_each_mddev(mddev, tmp) {
8314                 export_array(mddev);
8315                 mddev->hold_active = 0;
8316         }
8317         destroy_workqueue(md_misc_wq);
8318         destroy_workqueue(md_wq);
8319 }
8320
8321 subsys_initcall(md_init);
8322 module_exit(md_exit)
8323
8324 static int get_ro(char *buffer, struct kernel_param *kp)
8325 {
8326         return sprintf(buffer, "%d", start_readonly);
8327 }
8328 static int set_ro(const char *val, struct kernel_param *kp)
8329 {
8330         char *e;
8331         int num = simple_strtoul(val, &e, 10);
8332         if (*val && (*e == '\0' || *e == '\n')) {
8333                 start_readonly = num;
8334                 return 0;
8335         }
8336         return -EINVAL;
8337 }
8338
8339 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8340 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8341
8342 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8343
8344 EXPORT_SYMBOL(register_md_personality);
8345 EXPORT_SYMBOL(unregister_md_personality);
8346 EXPORT_SYMBOL(md_error);
8347 EXPORT_SYMBOL(md_done_sync);
8348 EXPORT_SYMBOL(md_write_start);
8349 EXPORT_SYMBOL(md_write_end);
8350 EXPORT_SYMBOL(md_register_thread);
8351 EXPORT_SYMBOL(md_unregister_thread);
8352 EXPORT_SYMBOL(md_wakeup_thread);
8353 EXPORT_SYMBOL(md_check_recovery);
8354 MODULE_LICENSE("GPL");
8355 MODULE_DESCRIPTION("MD RAID framework");
8356 MODULE_ALIAS("md");
8357 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);