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Abstract
The aim of this thesis is to create a simu-
lator of a set of smart wireless valves for
tire pressure monitoring systems (TPMS).
The simulator is planned for use in the
testing department of ŠKODA AUTO.

The thesis describes the methods of
analysis of ŠKODA AUTO vehicles’
TPMS protocol, and also the design and
the process of realizing the TPMS Simula-
tor based on the CC1101 radiofrequency
integrated circuit and STM32F446 mi-
crocontroller. The TPMS protocol spec-
ification is generally undisclosed by the
manufacturers, and due to the intellec-
tual property protection, we describe it
only partly. We have also developed a
Qt-based Graphical User Interface to ac-
company the physical simulator device
(further referred to as the Transmitter
unit) with the possibility of configuration
over a computer.

The implementation comprises both
a prototype device as well as a version
suitable for production in smaller series.
The device was successfully tested in the
ŠKODA AUTO laboratories on a proto-
type of a new ŠKODA KODIAQ car, and
has been handed over for further use.

Keywords: TPMS, Tire Pressure
Monitoring System, RDK, STM, CAN

Supervisor: Ing. Michal Sojka, Ph.D.

Abstrakt
Cílem této práce bylo vytvořit simulátor
sady chytrých bezdrátových ventilků sys-
tému pro měření tlaku v pneumatikách
auta (TPMS). Tento simulátor se plánuje
použít pro potřeby testovacího oddělení
ŠKODA AUTO.

Tato práce popisuje způsoby analýzy
TPMS protokolu ve vozech ŠKODA
AUTO a také návrh a průběh reali-
zace TPMS simulátoru založeného na
radiofrekvenčním integrovaném obvodu
CC1101 a mikrokontroléru STM32F446.
Specifikace TPMS protokolu nejsou vše-
obecně zveřejňovány výrobci a kvůli
ochraně duševního vlastnictví je popisu-
jeme pouze částečně. Také jsme vyvinuli
se základem v knihovnách Qt vlastní gra-
fické uživatelské prostředí, které doplňuje
fyzické zařízení simulátoru o možnost kon-
figurace z počítače.

Implementace se skládá jak z prototypu,
tak finální verze vhodné pro menší séri-
ovou výrobu. Naše zařízení bylo úspěšně
otestováno v laboratořích ŠKODA AUTO
na prototypu nového vozu ŠKODA KO-
DIAQ a bylo předáno k dalšímu užívání.

Klíčová slova: TPMS, Systém měření
tlaku v pneumatikách, RDK, STM, CAN

Překlad názvu: Simulátor bezdrátových
senzorů pro měření tlaku v pneumatikách
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Chapter 1
Introduction and motivation

In order to increase road safety, comfort and decrease the gas consumption,
the car tires pressure should be periodically monitored to see, if they have
the correct prescribed values. Tire pressure monitoring system (TPMS)
primarily allows the on-line measuring of the pressure inside the car’s tires
and ultimately passes this information to the car’s Electronic Control Unit
(ECU). However, it may also measure the temperature or other physical
quantities.

The main benefits consist of increased safety, comfort, and ecological
savings. However, apart from these arguments, there are also some downsides.
In general, these include increased costs [6] both for the production and
the after-sale services (ultimately burdening the customer) [7, p. 2-8][6, p.
214][8], the possibility of the malicious misuse and increased difficulty of the
production testing. The last two topics are also the reasons why this thesis
was written.

Nowadays, the TPMS has to be compulsorily implemented in newly pro-
duced vehicles in many significant countries (such as the USA and the states
of the EU) [9] or such legislation is in preparation or will most likely be in
the following years [6, p. 214][10, p. 5][11, 12, 13]. For these reasons, the
boom of TPMS market is expected [14, 15].

Figure 1.1: TPMS smart valve

Our task was to create a simulator capable of forcing the user-selected
values of wheels’ pressure and temperature to the car. The device has to
masquerade as the TPMS sensors (as seen in Figure 1.1), hence providing the
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1. Introduction and motivation ..............................
TPMS ECU (displayed in Figure 1.2) with fake measurements. Ultimately,
this inserts the bogus data as real to the car, which takes further action.

Figure 1.2: TPMS ECU

The primary motivation was the ŠKODA AUTO’s wish to abstract the
tests that include tires onto a higher level because until now, a physical
change of tire pressure had to be done. With our device, however, the user
may simply input any desired values, and the TPMS Simulator will effectively
transfer this information to the car’s ECU.

The sensors principle of operation and communication parameters were
unknown and had to be analyzed first. This fact leads us to the essential sec-
ondary motivation – the reliability of the TPMS against hackers, susceptibility
to misuse, and severity of possible end-effect of these attacks.

This thesis is structured as follows. Chapter 2 describes the theoretical
background behind the TPMS and the necessary principles of digital commu-
nication. In Chapter 3, the process of TPMS protocol analysis is described –
only partially due to the Intellectual Property (IP) protection. In Chapter
4, the TPMS Simulator design concept is introduced and in Chapter 5 its
implementation is described. We provide our conclusions in Chapter 6.
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Chapter 2
Theoretical background

Let us now introduce the theory behind the TPMS, its use, functionality,
and components. Firstly, we will describe the system itself from the practical
point of view, secondly we shall analyze and bring up the theory behind its
elements.

2.1 TPMS

TPMS (also often abbreviated as RDK from German Reifendruckkontrolle)
is a system that can measure and evaluate physical quantities inside a car’s
wheel tire, mainly pressure but one may also often see the temperature,
wheel’s angular velocity, battery status measurements and more.

TPMS Valve

TPMS ECU

Screen + 
Main ECU

CAN

RF

Figure 2.1: Scheme of a possible TPMS configuration

As illustrated in Figure 2.1, the values measured by the smart valves (end-
sensors partially fitted inside the tire) are sent to the TPMS ECU, which
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2. Theoretical background ................................
further processes them and finally provides them (or some of them) to the
car. In our case, the values from the valves are transferred over radio link
and from the TPMS ECU to the rest of the car using the Controller Area
Network (CAN) bus [16] with its specific protocol [17].

The history of the TPMS dates back to 1986 when it was first fitted to a
Porsche 959 [18, p. 124] which also interestingly used Bridgestone’s first run-
flat tires where the user may not easily tell the tires are flat [19]. During the
decade of 1990, more car manufacturers have implemented this system. Upon
a great recall of Firestone tires, a Tire Recall Enhancement, Accountability,
and Documentation (TREAD) Act has been passed by the USA Congress
effectively mandating the use of the TPMS in the new series of cars in the
USA [20]. A similar law has been legislated in the European Union, taking
effect in 2014. Many other major countries are taking similar actions [6, p.
214][10, p. 5][11, 12, 13]. The TPMS is often signalized by the symbol in
Figure 2.2.

Figure 2.2: TPMS warning icon based on Docket No. NHTSA 2004-19054 [1]

The main benefits of the TPMS are the following [7, p. 2-8][6, p. 214][8]:. increased road safety by warning the driver of incorrect pressure,. greater user comfort of both checking the pressure and the drive itself,. improved ecological and economical effect by using less fuel, producing
less emission, and prolonging the life of tires.

However, there also come some downsides:. greater costs for production, after-sale services [7, p. 2-8], and ultimately
the customer,. increased difficulty of production tests by adding another degree of
freedom in terms of failures and their concurrence,. susceptibility to malicious misuse.

TPMS is implemented with one of the two technologies. One is called the
direct TPMS (dTPMS) since it directly measures the pressure inside the
tire. The second is the indirect one (iTPMS), the sensor is not placed inside
the wheel and it detects the magnitude of pressure by other means (wheels’
different angular velocity taken from the Anti-lock Brake System (ABS)
sensors [21], using the spectrum analysis [22, 23], and also other solutions
are being proposed [24]). The selection of either one is a trade-off between
purchase costs and sensor accuracy or precision with the latter being less
expensive and less accurate and precise and vice versa. Also, the dTPMS

4



................................ 2.2. Digital communication

requires an internal power supply (such as a battery) and provides greater
modularity – one may buy a system not connected directly to the car but
rather an aftermarket portable device with a display that shows the measured
values. At the same time, the pressure measurements with a non-moving car
may not be possible with conventional iTPMS. Also, relative measurements
may pose another inaccuracy dangers.

The device developed in this thesis acts as dTPMS smart valves simulator.

2.1.1 Susceptibility to misuse

Another question that is raised is that of the general susceptibility of the
TPMS to malicious attackers. If the wireless communication between the
smart valves and the TPMS ECU is ease to eavesdrop on, e.g., when not
encrypted, it implies potential danger. After decoding the communication
protocol, the potential attacker may understand it to such an extent that the
replication of the original messages sent from the smart valves is possible by
masquerading the custom messages as the legit messages.

This fact implies that it would be possible to find out the identification
numbers (IDs) of smart valves of a selected car and send messages that
pretend to come from these valves with any (!) legal values of measured
physical entities. This means that the car under test may interpret that,
e.g., the pressure of a tire is of any value, that the hacker desires, and takes
appropriate action – warns the car user. It is, e.g., possible for the hacker to
make the driver think that his wheel or wheels are defective or with decreasing
pressure at an arbitrary rate. This fact may result in forcing him to stop his
ride or not initiate it at all.

It may also be possible to follow a movement of a specific person or car by
creating a receiver network and tracking the TPMS signals with unique ID.

The essential solution to this problem however exists. It is possible to
implement the encryption of the radio frequency (RF) communication between
the smart valves and the TPMS ECU. Without the knowledge of the private
encryption keys, the hacker’s options to decode the protocol would become
substantially thinner and much more complex if not impossible (methods such
as brute-force cracking the keys, smart valve’s processor memory readout or
code injections). Even if all the communication is unidirectional and would
be based on a single encryption key, it would still be better than none.

2.2 Digital communication

Analyzing our TPMS protocol requires some background knowledge of meth-
ods used for transmitting information in our case over the RF link.

2.2.1 Shannon model of digital communication

We may conveniently utilize the Shannon model of the digital communication
system to segment our single analysis tasks [25], illustrated in Figure 2.3.

5



2. Theoretical background ................................

Information
source

Source 
coder

Channel 
coder Modulator

Destination Source 
decoder

Channel 
decoder Demodulator

Discrete communication channel

Continuous physical channel

Figure 2.3: Shannon model of the digital communication system [2]

The information source generates the messages and it may be characterized
by its alphabet, the symbol rate, and the bit rate.

The source coding is transforming the message to be sent into a represen-
tation consisting of symbols suitable for further processing or beneficial for
transferring. In digital communications, the alphabet is often binary. We
may differentiate between no encoding and the compression, which may be
either lossless or lossy. The compression removes the redundant data, and
lossy one also removes the irrelevant data.

The channel coding is a means for detecting or correcting erroneous mes-
sages. The process consists of inserting extra information into the message
that ultimately serves for this purpose. Often used methods for detection are
checksums, specifically Cyclic Redundancy Checks (CRCs).

The modulator further transforms the signal for it to be transferable over
the continuous physical channel. While in a solid medium over a short
distance, no modulation may be necessary, communicating over RF requires a
form of modulation. Amongst some widespread modulations for digital data,
one may find Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK)
or Phase Shift Keying (PSK).

The continuous physical channel is a medium for data transfer. It may be
typically over a solid wire, over the RF but also, e.g., acoustic [26] or over
the light, e.g., LiFi or Infrared (IrDA).

Frequency Shift Keying

A very frequently used method of modulation is FSK. Symbols are encoded
by the change of signal frequency. We may consider a central frequency
with a positive and negative deviation. This may be easily presented using
a constellation diagram – a binary FSK (BSFK) is the simplest example,
illustrated in Figure 2.4. In short terms, a bit 0 of a signal is modulated by
the lower frequency of the signal and the bit 1 by the higher frequency (in the
special case of BFSK, symbols may be equated to bits). FSK is naturally not

6



................................ 2.2. Digital communication

limited to binary modulation but may use an arbitrary number of frequencies
(limited by transmitter and receiver capabilities).

I

Q

10

Figure 2.4: BFSK constellation diagram

An example of a typical BFSK signal in time may be seen in Figure 2.5.

0 0 0 01 1 1 1

Figure 2.5: BFSK modulated signal example

Its main benefits comprise a relative simplicity and a constant envelope
which allows for the use of efficient non-linear power amplifiers (such as class
C or E [27, p. 1]).

Nonetheless, the power spectrum efficiency of such modulation is always
considered lower than that of the non-constant envelope [28, p. 304].
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2. Theoretical background ................................
2.2.2 Software-Defined Radio

For our signal recording needs, we utilize a Software-Defined Radio (SDR).
It is a device capable of receiving or transmitting the RF data based on the
settings done by software. The SDR, in our case, allows for an easy and
fast receiver configuration (such as the centre frequency, the filter width, the
sampling rate), low purchase costs, and a direct digital output in the in-phase,
quadrature (IQ) data form that is convenient for us for further processing.

BPF
LNA    

BPF

LO

ADC

MIXER

RSP,
DSP

RF
Receiver

Figure 2.6: Simplified SDR schematic based on [3, p. 7]

The SDR schematic is illustrated in Figure 2.6. The received signal is
filtered through a band-pass filter to only include signals from a specific
desired bandwidth, amplified through a low-noise amplifier, mixed with the
output of the local oscillator, filtered from intermodulation products and
ultimately converted to the digital signal. Further operations are done by
a receive-signal processor and digital signal processor. The desired output
bandwidth is digitized (not only channels) and therefore, the most signal
processing can be done digitally, avoiding the need for the complex analogue
circuitry [3, p. 7][29].

2.2.3 IQ modulation and demodulation

A very important technique used in SDRs and radio-technologies in general
is the IQ modulation and demodulation. The I stands for in-phase and the
Q for quadrature.

In general, a sine wave can be represented by a summation of two compo-
nents – I and Q. These two components are harmonic waves with a difference
in phase of 90°. Interestingly, one may modulate both the amplitude or the
phase of the composed signal by changing the amplitude of the I and Q
signals. Since these signals are orthogonal, their summation or separation
may be performed with relative ease. Using the IQ data is heavily implied
by practical hardware designs where a direct phase manipulation may prove
difficult [30].

The IQ modulator (also called quadrature modulator), illustrated in Figure
2.7, is a device that performs the described task. It is often utilized for
Quadrature Amplitude Modulation (QAM), PSK, or other modulations [31,
p. 693]. Both analogue and digital implementations are possible. The input
signal is firstly converted using a modulator (in a way depending on the type
of modulation) into two signals – the I and Q. These are then mixed with

8



................................ 2.2. Digital communication

the output of the Local Oscillator (LO). Precisely, the Q component with the
LO output delayed in phase by 90°. The resulting signals are summed and
the result is the final output.

Modulator
LO

90° shift

Input signal sout(t)

Q(t)

I(t) sI(t)

sQ(t)

Figure 2.7: IQ modulator

The IQ demodulation is a very similar process described in Figure 2.8. In
our simple SDR diagram in Figure 2.6, the quadrature demodulator may be
implemented in the Digital Signal Processor (DSP). A necessary feature for
the demodulator is the low pass filter that eliminates the intermodulation
components produced by non-linearities, i.e., the combinations of the LO’s
higher harmonics and their differences or sums with the input signal and its
harmonics.

LO

90° shift

Input signal

I(t)

Demodulator
Output signal

Q(t)

Figure 2.8: IQ demodulator

A mathematical interpretation of the modulation is the following. The
LO oscillates at the carrier frequency fc. Let us consider the desired output
signal sout:

sout = A · sin(2πfct+ φ(t)) (2.1)
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2. Theoretical background ................................
Using the trigonometric identities we may write:

sout = A · sin(2πfct)cos(φ(t)) +A · cos(2πfct)sin(φ(t)) (2.2)

Accordingly to the Figure 2.7 let us denote the I-component as I(t) and the
Q-component as Q(t):

I(t) = A · sin(φ(t)) (2.3)
Q(t) = A · cos(φ(t)) (2.4)

We can finally conclude:

sI(t) = A · sin(φ(t))cos(2πfct) (2.5)
sQ(t) = A · cos(φ(t))sin(2πfct) (2.6)

sout = sI(t) + sQ(t) (2.7)

It can be seen that the output signal may be fully modulated based on the
I(t) and Q(t) amplitudes, frequency, and phase.
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Chapter 3
TPMS protocol analysis

The critical and the first part of this thesis was the analysis of the ŠKODA
AUTO’s TPMS protocol. We had absolutely no prior information on its
functionality since the TPMS design is the intellectual property of a company
that manufactures these systems.

All we knew at first was that the communication is wireless. Luckily, not
all the information had to be extracted by ourselves because it was expected
that many aftermarket manufacturers and amateur hobbyists might have
tackled a similar issue already. Therefore research had to be conducted first.

The procedure of the analysis consisted of the following steps:. recording the IQ radio data using the SDR capture,. identifying the parameters of TPMS valves transmission,. interpretation of the data,. assigning the correct units, offset and gain of encoded transmitted
physical entities,. determining the metadata (such as checksum etc.),. CAN communication analysis.

3.1 SDR data recording

We made records using a relatively cheap, available, and community-supported
SDR RTL2832U. The captured data were in the form of IQ components, as
explained earlier in Subsection 2.2.3.

An often-used software tool to cooperate (not only) with this SDR is the
Gqrx1. It allows the user to record the IQ data and set many parameters such
as a sampling rate, Automatic Gain Control (AGC) settings, a DC component
removal, filter types and widths, Fast Fourier Transform (FFT) settings, and
many more. It is also able to demodulate Amplitude Modulation (AM) and
Frequency Modulation (FM) radio stations transmissions and directly play

1https://gqrx.dk/
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3. TPMS protocol analysis ................................
the result as a sound but this is not viable for our case of encoded and
modulated digital data. The screenshot of this application is in Figure 3.1.

The first step was to determine the carrier frequency at which the data are
transmitted over radio waves. Luckily, this frequency is publicly known as it is
also written on the smart valves themselves. This frequency is located inside
the Industrial, Scientific and Medical (ISM) band with the centre frequency
of 433.92 MHz.

Figure 3.1: Gqrx interface

3.1.1 TPMS smart valves’ transmission activation

It has to be noted that the TPMS smart valves’ transmission seemed to be
motion-activated. This triggering is either by a swift movement after a period
of motionlessness or during a periodic, constant movement. However, it is
possible that the smart valves also transmit sporadically without an external
incentive in more significant periods (such as tens of minutes or hours) in
order to save battery.

This activation is an easy task when the smart valve itself is located outside
the tire and can be achieved by plainly shaking it with one’s hands. It is,
however, more challenging when the valve is correctly mounted on a wheel
which one, therefore, has to accelerate. Although we had both a wheel with an
embedded valve and extracted valves, the expected credibility of the received
data was higher with the tire, because the valve is located in its desired
environment with expected pressure and motion type. That was because
of the natural rotational movement and high pressure. The first tries of
activation of the valve embedded in the tire consisted of various rotating of
the wheel using very rough manual methods such as accelerating by kicking,
as seen in Figure 3.2, and spinning on a chair.

12



......................... 3.2. Transmission parameters identification

Figure 3.2: Attempt at activating the TPMS transmission with an embedded
valve

However, a more sophisticated apparatus with a rotatable plate, made by
welding, had to be developed, as it would enable much easier manipulation.
It can be seen in Figure 3.3.

Figure 3.3: Welded wheel holder with a rotatable plate

3.2 Transmission parameters identification

Initially, we had to obtain some radio wave transmission parameters to be
able to capture and decode the data.

13



3. TPMS protocol analysis ................................
3.2.1 Carrier frequency

The carrier frequency is inside the ISM band with a centre frequency of
433.92 MHz. Once we knew the rough carrier frequency, we could record the
IQ data using the SDR and use it for further investigations. The IQ data
sometimes had to undergo digital filtering first depending on the amount of
noise present in captured data, which was very dependent on the location of
recording, SDR’s Universal Serial Bus (USB) connection quality and other
relevant conditions.

3.2.2 Modulation

We determined the type of modulation the following way – we first recorded
the IQ data when the TPMS valve was transmitting and then viewed them in
Audacity2, as seen in Figure 3.4. Carefully analyzing the phase, the amplitude,
and the frequency of the captured waveforms in time easily yields the used
modulation which, as expected, is a rather primitive one given by this simple
system (primitive in comparison to the television signals for example).

Figure 3.4: IQ data of a located TPMS messages surrounded by noise visualised
in Audacity

3.2.3 Baud rate

Determining the baud rate (BR) has been done straightforwardly. We simply
measured the time duration of a single message (tm) and the baud count of
the message (Bm), then the calculation was trivial:

BR = Bm

tm
(3.1)

Although the final calculation was taken as an average of more measure-
ments, the exact knowledge of the baud rate was expected not to be necessary.

2https://www.audacityteam.org
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......................... 3.2. Transmission parameters identification

This is because, in various types of communication, where an externally
provided clock is unavailable, synchronization bytes consisting of alternating
bits are put at the beginning of the transmitted message [32, p. 732][33, p.
207][34, p. 1-3], thus initially specifying the baud rate. The receiver may
adapt its baud rate accordingly to this synchronization, therefore eliminating
a possible clocking instability.

3.2.4 Frame encoding

Identifying of the frame encoding (e.g., checksum) was not directly feasible.
Therefore, finding the right encoding consisted of three main parts – research,
hints given by the communication structure, and trial and error. In general,
we started from the most likely options and continued to less likely ones.

However, the only way to indeed verify the correctness of the selected
encoding was by a valid data interpretation (in the sense of Section 3.3),
which we have ultimately successfully carried out. Furthermore, this created
the first degree of freedom in our decoding task. One way would also be to
dissect the TPMS hardware which, after studying its internals, also reveals a
limited set of possible encodings.

Extracting binary data from messages

A necessary part of our work was to utilize the methods of demodulating the
received IQ data and extract the sequences of bits from them, which we could
use for further interpretation. The first method we used was a MATLAB
script that would load the IQ data and output a sequence of bits based on
our algorithm. This approach, however, had some issues. Notably, it was
slow and often required manual checks for correct logic level ranges. It was
nevertheless sufficient for the first necessary tries.

Figure 3.5: Example of rtl_433 tool decoding raw IQ data into bits (respectively
hexadecimal) sequences
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3. TPMS protocol analysis ................................
In the long run, a search for a more efficient method has been conducted.

This revealed a tool called rtl_433 3, its usage may be seen in Figure 3.5.
Although it required non-trivial tampering of its code, inputting some param-
eters that may vary with each IQ record (that had to be sometimes digitally
filtered first), it provided us with a much faster response. This fact eased
further interpretation significantly for us. We also used it in the next phases
of the project, specifically when verifying the design of our simulator (Section
5.3).

3.2.5 Other parameters

There are, of course, more parameters to consider – such as transmitting power
and in dependence on other properties also channel spacing and frequency
deviation. These were roughly measured when analyzing the IQ records and
were then adjusted during the progress described in Section 5.3.

3.3 Data interpretation

After establishing at least some parameters of the communication channel
and converting the IQ data to the sequences of bits, we were free to try to
interpret the received data. However, this problem was very complicated,
because it introduced many new problems and degrees of freedom, specifically:. Is the communication encrypted?. Is the communication bidirectional?. Is the frame encoding using an error detection algorithm?.What data from the transmitted frame is this encoding based on?.What method is used? What are its parameters?.Where in the message is the result located?.Where does the data frame start? Is there a start bit?.Where does the data frame end? Is there an end bit?. Are the data separated into bytes?

The methodology was to start with what we consider to be most likely. If
this approach kept failing, then a more systematic stance would have to be
taken. Practically, we started with the following assumptions:. Communication is not encrypted.. Communication is not bidirectional.

3https://github.com/merbanan/rtl_433
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.................................. 3.3. Data interpretation

. A CRC algorithm is implemented.. The synchronization bytes will not take part in the calculation, the
rest of the preamble however may.. The CRC will most likely be a widely used 8-bit or 16-bit polynomial
with no initial seed (resp. the value would be 0).. The CRC will be naturally appended at the end of the message.. The data will be segmented into bytes. Bits that do not fit are either

start or end bits.

The rationale is the following – the encrypted communication would be
extremely challenging to crack. There may be methods, ranging from the
brute-force, reading out program assembly code out of the TPMS hardware
to various hacking solutions such as injecting custom code. However, without
a known algorithm, private encryption key, with locked Microcontroller Unit
(MCU), this would be a challenging problem. Therefore, counting on the fact
that the encryption and the security had been considered an unnecessary
extra step during the TPMS development (costing more effort – i.e., time
and money), we supposed that the encryption is simply not used.

The communication is unidirectional because otherwise a more complex
circuitry would be required, and seemingly, there is no need for the smart
valve also to receive the RF data.

The CRC is a very often utilized and effective algorithm for error detection
in communication media [35]. We also suppose it will be a multiple of 8 bits
and it will not be too big (not over 16 bits) – out of simplicity and the fact
that a transmission of every extra byte is a substantial payload from the
view of battery life. In the ultra-low-power systems, the radio transmission
may be critical from the energy consumption view considering the electronics
are very likely to be in sleep modes most of the time with minimal current
consumption.

The segmentation of data into bytes is a natural supposition since it eases
the interpretation of data in a digital system and also the developer’s work.
Appending the checksum at the end of the message is a very usual practice,
easing the message processing.

3.3.1 Checksum cracking

As mentioned, the supposed method of the checksum was the CRC. It has
to be noted that once the CRC and its parameters had been successfully
verified to be used in the message, it meant a significant breakthrough for
our progress because it confirms many assumptions we had (relevant start of
data; end, start and stop bits; CRC location and calculation method).

The first method of cracking the used CRC was a very naive one, half-
automated computation of CRC based on various parts of demodulated
messages. This method was carried out using a custom MATLAB script with
some predefined CRC polynomials that we considered likely to be used. After
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3. TPMS protocol analysis ................................
trying out many combinations of strings of input data (with varying start
and end bits for the CRC calculation) and CRC polynomials with no success,
it became apparent that a more systematic approach was necessary.

Figure 3.6: CRC RevEng tool example – input messages with appended checksum
yield the used CRC polynomial along with its properties

At this point, more thorough research on the Internet has been carried
out and it revealed some interesting points. Concretely, we have decided to
try out a tool called CRC RevEng4, a command-line application that can
reverse-engineer numerous CRC algorithms based on input byte sequences.
The more sequences one inputs, the less ambiguity is achieved. The main
benefit in contrast to our naive algorithm is the ability to try more CRC
polynomials with any initial seeds. Its use may be seen in Figure 3.6.

With various splicing of input byte sequences and more trial and error, we
were able to confirm that a specific CRC polynomial is indeed used, however
with a non-zero initial seed. This discovery was critical, as it confirmed
the correct selection of the channel decoding, message’s start and end, byte
segmentation, and importantly – the absence of any encryption seemed very
likely at that point.

3.3.2 Identification of a TPMS valve

Since we expected a unidirectional communication, the next natural guess
what to look for in the received messages was the smart valve’s ID. We
supposed that the TPMS ECU would know the relation of the smart valve
to the respective position of the wheel by a unique ID. We had some initial
clues – the ID would always be the same number located in any message sent
by the same valve. We also expected that the valve’s ID might be printed
somewhere on the valve itself.

Both of these suppositions were correct, and the analysis of numerous
messages of one valve allowed us to find the ID in the message. This dis-
covery also practically confirmed that indeed the communication is not
encrypted (!). This fact may be critical from the safety and the security
point of view, where susceptibility to malicious misuse by hackers may arise
as mentioned in Section 2.1.1.

3.3.3 Pressure measurements

Naturally, we were confident the messages would include information about
the pressure. The methodology was quite simple – obtain the messages from

4http://reveng.sourceforge.net/
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the smart valve with no physical entities changing but the pressure. The
first idea was to take the wheel with an embedded valve, change the pressure
inside using a compressor, and then force it to send messages. The last step,
unfortunately, proved very impractical because of the problematic movement
of tire and demanding activation of transmission (as described in 3.1.1). We
were, however, able to extract a few messages for further analysis.

Figure 3.7: Pressure measurements in an enclosed container

The second and more efficient idea was to put the pressure sensor of the
smart valve into an enclosed container (a glass can) where we could control
the pressure using a compressor and activate the transmission in a much
easier way, as Figure 3.7 shows. This approach allowed us to reliably find the
pressure data inside the messages and calibrate based on the values. Once
again, however, a precise unit system was found later, thanks to the CAN
analysis (Section 3.4).

3.3.4 Rotational velocity measurements

Figure 3.8: Rotational velocity measurements on a valve attached to a drill
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3. TPMS protocol analysis ................................
Based on the TPMS hardware (HW) analysis, we believed that the data of

rotational velocity might also be measured and transmitted. We expected the
possibility of a 2-axis accelerometer or gyroscope. Initial attempts consisted
of using a simple cordless drill that would rotate the smart valve, as seen in
Figure 3.8. Based on direction and magnitude, the messages would differ.
This assumption proved correct.

The second methodology we used was externally attaching the valve to
a powered wheel on a car (Figure 3.9). Rotational velocity was indirectly
measured using the car’s speedometer. This method made the previous results
more accurate and credible.

Figure 3.9: Rotational velocity measurements on a valve externally attached to
a wheel of a car

The last method we used was directly with a test car in ŠKODA AUTO
when we captured data sent by the valve inside a moving tire on a car along
with supplemental car velocity data from CAN communication.

3.3.5 Temperature measurements

The next value we were expecting to find inside the messages was the tempera-
ture. The methodology was the same as in previous steps, change temperature
only. We were able to perform calibration in three points with the valve
located in a bowl of water of room temperature, warm temperature, and a
refrigerator temperature (around 8 °C). The measurement process can be
seen in Figure 3.10.

The exact calibration was not necessary at that moment since we in the
first place wanted to confirm in the home environment our idea, that the
messages contain the temperature data. The precise measurements were
planned for later, but thanks to the CAN analysis (Section 3.4), we were able
to extract the unit system precisely with minimal effort.
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Figure 3.10: Temperature measurements in warm water in home environment

3.3.6 Miscellaneous data

Although the previously analyzed data was already somewhat sufficient for
designing and constructing a simulator, a long-run analysis of the messages
also revealed more information transmitted from the valves. Often the frame
had some pieces of data missing. Those were given by a number at the
beginning designating the type of message.

Data from the same valve over time revealed a slowly decreasing byte we
were somewhat anticipating – the internal battery status.

A small fraction of the data has remained undisclosed and mostly the same
with any actions we took. This data is interpreted perhaps as various flags,
version numbers, or reserved bits for future use.

3.4 CAN analysis

The analysis of CAN communication between the car’s ECU and the TPMS
ECU has been tackled as a parallel task to the previously mentioned decoding
and also to the prototype development described in Section 5.1. This part of
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3. TPMS protocol analysis ................................
the project made us understand a little bit more about the internal evaluation
of the TPMS and allowed us to adjust many transmission parameters of our
TPMS Simulator later on.

The idea of the inquiry was the following – take the TPMS ECU, connect
to it over a CAN interface device (both shown in Figure 3.11) and try to find
out what are its options – such as whether it has diagnostics or what kind of
information from the TPMS valves it passes on. We have also had the option
to use the commercial CANoe software, which was able to interpret many
messages when correctly configured.

Figure 3.11: TPMS ECU with an adapter attachable to a CAN interface device

As it turned out, a lot of data exchange from the TPMS ECU required some
sort of authentication that was unavailable for us. We were, however, able to
interpret some data received from the TPMS valves. This was vital knowledge
because it served as a verification mechanism for our TPMS Simulator as we
could see if our device is successfully transferring the data messages to the
TPMS ECU. Furthermore, it allowed us to precisely calibrate some physical
entities measured by valves and processed by TMPS ECU as described later
on in Section 5.3.

In the end, the CAN analysis served more of a supplemental role in this
project from the point of communication decoding but its contributions in
debugging the simulator itself were critically helpful.
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Chapter 4
Simulator design concept

This chapter describes the concept of the TPMS Simulator design. Generaly
the term TPMS Simulator used in this thesis refers to both the physical
device, called Transmitter unit, and the graphical user interface (GUI). The
requirements for the final version were:. physical portability,. USB connectivity,. CAN connectivity,. USB and 12 V power input.

Configuration GUI

USB

CAN

Power jack

Power supply

Transmitter
unit

CAN

or

Power

Serial line

At least one power source must be connected to the transmitter unit

Figure 4.1: Interactive mode - connection of the Transmitter unit to a computer
with the configuration software over the USB or CAN

Initially, a prototype has been developed (which did not include CAN or
12 V power input) and after that, the first version of the final product – a
device suitable for small series production. The simulator in itself consists of
the following:. Transmitter unit,. hardware and printed circuit board (PCB) layout,
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4. Simulator design concept ...............................
.mechanical realization,. firmware,. configuration GUI.

The physical device can send the TPMS messages to the TPMS ECU and
force it into interpreting them as messages sent by the actual TPMS smart
valves located in the car’s wheels.

The Transmitter unit may work in two modes – interactive and standalone.
In interactive mode, illustrated in Figure 4.1, the Transmitter unit is connected
to the computer over USB or CAN, where it can also be configured with the
respective software. In this mode, the device is both transmitting and open
for any commands coming from the software on PC.

Alternatively in standalone mode, illustrated in Figure 4.2, it may be
connected directly to a source of electrical power (such as a power supply or
external power bank), thus running with the last saved configuration.

USB

CAN

Power jack

Power supply
or power bank

Transmitter
unit

Or

Figure 4.2: Standalone mode - connection of the Transmitter unit to a source
of electrical power

The prototype version has been based on an STM32F401RE NUCLEO
development kit with limited connectivity and power options (USB only).

The final version, while principally fulfilling the same purpose, is a custom
PCB driven by a standalone STM32F446RC MCU with more options for
both the connectivity and the power input (USB, CAN, and a power jack
input).

4.1 Hardware

Initially, research of available SDRs with the capability of transmission has
been conducted, leading to several results. It was deduced that they are
usually rather complex structures with a relatively high price but a great
extent of capabilities. We have therefore concluded to try a more light-weight
solution first – a radiofrequency integrated ciruit (RF IC) driven by an MCU.

A block diagram of the final version of the Transmitter unit can be seen in
Figure 4.3, with power lines represented by red colour. Both the schematics
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MCU

RF IC

CAN LEDs

USB

Power 
supply

Power 
jack

EEPROM

UART

Figure 4.3: Block diagram of the Transmitter unit

and PCB layout were drawn using the KiCAD Electronic Design Automation
(EDA)1.

4.1.1 Power supply

While the prototype of the Transmitter unit utilized a development kit that
included linear regulators and a USB power input only, the final device
had broader requirements as mentioned at the start of this chapter. It was
necessary to build a custom power supply circuitry that would allow the
power input both from the USB and a power jack with the nominal voltage
of 12 V.

Power input

As mentioned, the Transmitter unit may be powered either from the power
jack or directly from the USB, which enables it to be a portable device in
combination with a standard USB power bank.

Figure 4.4: Power jack circuitry

1https://kicad-pcb.org/
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4. Simulator design concept ...............................
As seen in Figure 4.4, the power jack input is expected to come from a

standard 12 V DC supply connected to the 230 V power line. A simple LC
along with a common-mode Electromagnetic Interference (EMI) filtration is
therefore added. There is also reverse-voltage input protection using a power
MOSFET that switches into a fully closed state when the voltage of a correct
polarity is applied and stays open in the reverse case. This solution is greatly
more power-saving than compared to using a single diode in series. While
the nominal voltage is 12 V, our device is also capable of being powered by a
voltage from the interval of 4 V to 15 V.

For development purposes, it is also possible to connect the voltage directly
to the pins of the J2 jumper.

The USB power input voltage is usually rather stable and is therefore
filtered using a simple LC element (L2, C2) as seen in Figure 4.5. The
filtered input voltage from either USB or power-jack is then mixed in a
straightforward way using the low-voltage drop Schottky diodes where the
power loss is not critical due to the used low voltages. There exist more smart
ways to choose between the primary and the secondary power source, but the
respective circuitry is relatively complex, and the available ICs were evaluated
as way too expensive to weigh out the downsides. A discrete solution is also
demanding because back powering caused by imperfect timing of opening
and closing of the MOSFET switches is very dangerous and in USB standard
strictly prohibited [36, p. 113][37, p. 171].

Figure 4.5: Power supply mixing and the overvoltage/overcurrent protection

A combination of fuses, together with elements that short on specified
voltage, forms a protective circuit both against overcurrent and overvoltage.
Transient Voltage Suppression (TVS) diodes tend to have a fast response
but are less capable in terms of heat absorption in contrast to the used
varistor. Zener diode is an added safety element that should respond to a
smaller overvoltage caused mainly by the user supplying the device with the
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wrong voltage as it slowly starts to conduct above 15 V and draw current.
The output is then directed to the DC/DC converter, covered in the next
subsection.

DC/DC converter

To avoid more power losses, we have decided to use a DC/DC converter
instead of a linear regulator, this is shown in the schematic in Figure 4.6.
While this generally means more components, more occupied space on PCB,
and higher costs, it also means greater efficiency with correctly selected
components and designed PCB layout.

The circuitry is connected mostly according to the respective datasheet
[38] with some extra filtration on the input using a ferrite bead with an added
electrolytic capacitor for stability purposes.

The output voltage of this exact series of the DC/DC converter is 3.3 V, a
level necessary for all the used IC, also used as a high logic level. The output
voltage is not adjustable. This is on purpose since there is no need for it
and also the number of components would have to increase. The converter’s
current capabilities are sufficient for our low-power application (up to 500 mA
[38]), the Transmitter unit’s power consumption measurements are described
in Subsection 5.2.1.

Figure 4.6: DC/DC converter circuitry

4.1.2 Microcontroller unit

The MCU, specifically an STM32F446RC, is a central element that drives the
RF IC and the other parts of the hardware. For the prototype, we utilized a
NUCLEO development kit (with a similar but different STM32F401RE). The
NUCLEO incorporates amongst other features, an embedded programmer,
linear regulators, and pin headers connected to MCU’s output pins.

27



4. Simulator design concept ...............................
The manufacturer, STMicroelectronics (often abbreviated as ST ), describes

it the following way: “The STM32F446xC/E devices are based on the high-
performance Arm® Cortex®-M4 32-bit RISC core operating at a frequency of
up to 180 MHz. The Cortex-M4 core features a floating point unit (FPU) single
precision supporting all Arm® single-precision data-processing instructions
and data types. It also implements a full set of DSP instructions and a
memory protection unit (MPU) that enhances application security.” [39, p.
10]. RISC stands for Reduced Instruction Set Computer.

Figure 4.7: MCU circuitry

For our use, some of its peripherals are absolutely vital, namely:. Serial Peripheral Interface (SPI),. Inter-Integrated Circuit (I2C),
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. Universal Asynchronous Receiver and Transmitter (UART),. USB interface,. CAN controller.

The MCU runs the firmware described in Section 4.4 and its circuitry is in
Figure 4.7. It lights up the informative Light Emitting Diodes (LEDs), drives
the RF IC, controls the external volatile memory (EEPROM), manages the
USB connection with the computer, communication with a CAN transceiver
and with the debugging FTDI UART-Communication (COM) Port module.

There is a possibility of resetting the MCU using an external button and
also a circuitry that enables it to self-enter a Device Firmware Upgrade (DFU)
mode on boot. The principle is trivial, the capacitor C16 is firstly charged
using the General Purpose Input Output (GPIO) pin PC12 in output mode,
then the MCU resets itself. Upon booting, it senses a high logic level on the
BOOT pin and therefore enters the DFU mode, where one may update its
firmware over the USB. There is also an external jumper prepared for DFU
testing purposes.

In the end, however, a better solution was found, and that is to perform the
jump to the system memory using the firmware (FW) only. This actions con-
sists of internal de-initialization of clock-related modules, memory remapping,
setting the stack pointer and jumping to memory. This approach implies
that the R28, R32 and C16 components do not need to be assembled. Since
there is enough space on the PCB, however, the footprints for the mentioned
elements are left in the layout for possible future use (if the former approach
would, e.g., prove to be problematic or troublesome for debugging).

The use of external crystal is necessary due to the precision required by
USB standards. Resistors used in series on data lines prevent possible signal
reflections. Standard blocking capacitors of value 100 nF are used near the
MCU’s power supply pins, and analogue voltage is connected to 3.3 V through
inductor and ferrite bead filters. Their exact value is not critical, inductor L4
(of nH to µH order) may even be omitted (shorted).

Figure 4.8: Pin header connector for Serial Wire Debug (SWD) programming

Programming of ST ’s MCUs is possible via the SWD, as seen in Figure
4.8. It allows both for programming and debugging. A simple pin header
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connector may be utilized by a respective programmer such as ST-LINK.

4.1.3 Radiofrequency integrated circuit

The primary rationale for choosing an RF IC over a transmission-capable
SDR is significantly reducing costs, development time and the final device
size, since the RF IC can be easily integrated into an embedded solution with
a low-cost MCU. The cost-cutting is naturally even more prominent with the
small series production.

The criteria were straightforward. The IC would have to transmit around
the ISM band with the centre frequency of 433.92 MHz and be as config-
urable as possible – i.e., modulation, power, baud rate, centre frequency
and deviation, channel spacing, ideally also channel encoding and adjustable
preamble.

The first pick was a small module with a chip called CC1101, manufactured
by Texas Instruments Inc., that seemed to fulfil our needs of replicating the
TPMS smart valves transmission. Quoting its datasheet, “CC1101 is a low-
cost sub-1 GHz transceiver designed for very low-power wireless applications.
The circuit is mainly intended for the ISM (Industrial, Scientific and Medical)
and SRD (Short Range Device) frequency bands at 315, 433, 868, and 915
MHz ...” [40, p. 1].

Figure 4.9: CC1101 RF IC pluggable module

The particular module we have selected was out-of-box ready for connection
to an MCU over the SPI bus and with the connected circuitry optimized for
the 433 MHz operation. Its photo is in Figure 4.9. Apart from the power
supply, it also includes some GPIO pins that may serve various functions,
such as a notification of a sent packet.

The main advantage of using a female pin socket connector to plug in the
CC1101 module, seen in Figure 4.10, is the fact that any other module may
be used in the future regardless of the RF IC chip choice. Thus, no change in
the PCB layout is necessary. As long as the connected module uses SPI and
possibly some GPIO pins, this connector serves universally. Only firmware
changes would have to be done.
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Figure 4.10: Connector used for CC1101 module

4.1.4 EEPROM

An external memory is used in our design. This is because the MCU has no
internal Electrically Erasable Programmable Read-Only Memory (EEPROM),
only Flash. While the Flash may be sufficient for an extensive period, e.g.,
when using the EEPROM emulation techniques [41], such as in the prototype,
it is still worse than the lifespan of an EEPROM. Given its low cost, we have
decided to implement it into our design.

Figure 4.11: EEPROM circuitry

As seen in Figure 4.11, the EEPROM uses a connection over I2C. Part of
its address is set using the E0, E1, and E2 pins. There are also the pull-up
resistors for I2C lines and a blocking capacitor for the power supply pin.

4.1.5 LEDs

The connection of LEDs is trivial, although they are not connected to the
GPIO pins but rather timers’ Pulse Width Modulation (PWM) outputs,
practically meaning that the MCU can directly drive the amount of the
emitted light by setting a variable duty cycle of PWM. There are six LEDs
in total as shown in Figure 4.12.. One lights up when the DC/DC converter provides the voltage of 3.3 V

on its output.
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. The second LED signalizes active communication between the Transmit-

ter unit and other devices connected over USB or CAN.. The remaining four LEDs signify by blinking a currently sent message
from the respective virtual wheel of the Transmitter unit.

Figure 4.12: LEDs circuitry

4.1.6 USB

USB may be used to connect to the Transmitter unit and configure it. Its
respective schematics are in Figure 4.13. The used USB connector is type B.
The shield is connected to the ground using a parallel RC element (R12 and
C6), as suggested by Cypress [42].

Figure 4.13: USB circuitry

While the datasheet of the used MCU does not mention the pull-up resistor
on D+ line and explicitly says that the impedance matching is embedded
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and not necessary to solve externally [39, p. 137], the decision was to prepare
footprints for elements that would provide this functionality externally – R35,
R36 may be assembled as impedance-matching resistors and R34 may be a
pull-up on D+ line. This feature might be needed if another MCU with a
similar pinout is chosen in the future or if the written USB specifications are
not satisfyingly met. However, for the current configuration the R34 resistor
should not be assembled and R35, R36 should be shorted (assembled with
shorting chips).

U2, a protective IC against various transients, overvoltage, or undervoltage
effects is also used. The IC consists of fast-acting TVS diodes.

4.1.7 CAN

The CAN is an alternative to connecting over the USB for configuration since
it may be more frequent for usage in ŠKODA AUTO or similar automotive
environment.

As seen in Figure 4.14, a CAN transceiver is used in combination with a
standard DB9 connector. The transceiver communicates with the MCU using
the MCU’s internal CAN controller. As seen in Figure 4.14, the resistor R30
on Rs pin selects the mode of CAN between a high-speed mode and a slope
control mode. A blocking capacitor C15 for the power supply is used.

Figure 4.14: CAN circuitry

Termination of the CAN bus is manually selectable with the use of a
switch. Specifically, a method of split termination is used that although
requiring more components than a standard single resistor of 120 Ω value,

33



4. Simulator design concept ...............................
also beneficially serves as a low-pass filter [43] decreasing the common-mode
noise.

4.1.8 FTDI converter

For debugging purposes, a pin header (in Figure 4.15) for the UART-USB
COM Port converter is used, specifically the FTDI converter TTL-232R-3V3.
The MCU may, for instance, easily transmit various information about the
current state of the program or receive commands.

Figure 4.15: FTDI converter connector

The reason for this is that the hardware debugging influences the internal
timing of the MCU and we may want to avoid issues caused by this phe-
nomenon and instead execute the code without any debugging interrupts
(perhaps even in a release build with optimizations taking effect). E.g., in
real-time systems the debugging may cause a disruptive behaviour.

4.2 PCB design

The final version of the Transmitter unit was realized on a custom PCB. As
there is no noise-sensitive analogue circuitry, it was sufficient to choose a
two-layer board. As Záhlava and Montrose suggest [44, p. 56][45, p. 41],
the top layer is filled with the ground plane and the bottom layer with the
voltage plane. Also, both layers are used for conducting the signals with the
top layer being the primary. The overall design can be seen in Figure 4.16.

The selected dimensions of the PCB are 100 x 120 mm, in order to fit
the selected PCB enclosure as mentioned further in Section 4.3. While the
size of the PCB is excessive to the number of used components, there were
pragmatic reasons for selecting such size. One side of the PCB is joined to
the “connectivity panel”, where all the connectors are located. The other
side is the “functional panel”, where the antenna and informative LEDs are.
More rationale can be found in Section 4.3.

The PCB was designed with the intention of a small series of manual
production, meaning that while there was a motivation for cost-cutting, it
was sidelined due to the primary goal being an easy assembly by hand. Thus
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Figure 4.16: PCB block scheme

at the cost of the PCB dimensions, no internal cables are necessary which
should make the assembly both more effective and less error-prone. The vastly
preferred choice of technology was the Surface Mount Technology (SMT) –
usual chip types of passive components were 0805 and 0603. While these are
somewhat outdated due to downsizing [46, 47], they are still vastly supported
and chosen thanks to the much easier hand assembly.

Some general suggestions are followed, such as minimizing the lengths of
traces, keeping the blocking capacitors as close to the power pins as possible,
reduction of current loops. Power paths are realized as wide as possible,
ideally, in planes to reach a low impedance [44, p. 12], signal traces may be
thinner, ground via stichting is performed to reduce EMI [44, p. 56].

The DC/DC converter circuitry is designed as per the datasheet, minimizing
loop tracks and partially separating analogue ground that is ultimately
connected to the power ground at a specific place [38, p. 25]. Tracks with
differential signals are also matched in their length by forming various trace
meanders.

The overall design is relatively compact also for possible future extensions.
The connectors naturally take the most space. The LEDs are Surface Mount
Devices (SMDs), but they are mechanically prepared for the placement of
light guide pipes, making the design more robust. The only used Through
Hole Technology (THT) components are some connectors and pin headers or
sockets due to the reason of the better mechanical endurance (when plugging
and unplugging cables, pushing or pulling).

The visualisation of the PCB can be seen in Figure 4.17 and the complete
PCB layouts may be found in appendix C.
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Figure 4.17: PCB visualisation

4.3 Mechanics

A PCB enclosure was required for the Transmitter unit and we have decided
to choose Hammond’s aluminium ones. For the prototype, the 1455K1201
(43 x 78 x 120 mm) was selected and for the final version a similar but a
slightly bigger 1455N1201 (53 x 103 x 120 mm), illustrated in Figure 4.18.

Figure 4.18: Hammond 1455N1201 enclosure [4]

To fit the connectors through the plates, milling was required. We have
also created a printable graphics design for the front (functional) and the
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back (connectivity) panels. On the front panel (Figure 4.19), there are six
LEDs, one for the device being powered up, one for active CAN or USB
communication, and four blinking ones – symbolizing a message sent from the
respective wheel of the virtual car illustrated between the four LEDs. Holes
for antenna and screws are included, along with the Czech version of the logo
of CTU. The back panel (Figure 4.20) provides USB, CAN, and power supply
connection along with a switch for toggling the CAN termination.

Figure 4.19: Front panel graphics and milling marks

Figure 4.20: Back panel graphics and milling marks

4.4 Firmware

The Transmitter unit is driven by an MCU that naturally requires a firmware
containing the machine instructions to be executed. Typical programming
language to use for such application is C, but we have decided to implement
some convenient object-oriented features as well. Thus we have also used
C++.
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The firmware has to take care of controlling the RF IC, lighting up the

LEDs, saving to and loading data from the EEPROM over I2C, and providing
communication interfaces for USB, CAN and UART. The firmware also
enables the utilization of the DFU feature over USB.

The entire code is thoroughly described using Doxygen, and therefore the
extensive documentation may be found in the same location as the source
code.

4.4.1 Structure

The basic idea for this firmware was not complicated. Only a relatively few
peripherals needs to be controlled, no high-speed circuitry is necessary, and
the system is not safety-critical nor hard real-time. Also, there are not many
events that disrupt the usual flow of the program. Only a few interrupts
may be triggered, pertaining mainly to the data transmission and the Direct
Memory Access (DMA). Therefore, we have decided not to implement any
operating system (OS) as a simple main loop calling sub-tasks would suffice.

The code includes Hardware Abstraction Layer (HAL) libraries2 provided
by STMicroelectronics. Although they occupy more memory than Low Level
(LL) libraries (accessible through the same URL as HAL libraries), which
are of course still more expensive than accessing the registers directly, they
provide a very comprehensive and friendly interface for developers.

While the prototype worked with the Mbed libraries3 and was compiled
using the IAR EWARM 4 compiler, the final version was ported to the HAL
libraries and is fully compilable with the GNU Arm Toolchain5. The reasons
for this were mainly the more advanced hardware control using the HAL and
the freely licensed compilation. The complete rationale may be found in the
appendix D.

4.4.2 Initialization

At the power-up, the MCU first checks to see the voltage level on the BOOT0
pin. Then it decides from what memory to execute the code. If the voltage
level is low, the instructions from the Flash memory are executed, otherwise
the bootloader code from the System memory provided by STMicroelectronics.
Thanks to this, it is possible to use the DFU feature over such peripherals as
USB, UART or CAN using special software.

The code from the Flash memory is the firmware created by us. At first
the startup assembly code routines are executed, such as setting vector tables,
configuring interrupts and setting the start of the program. Then the main()
function is called and it starts by the initialization of MCU’s internals, i.e.,
as in Figure 4.21, HAL libraries, clocks, peripherals and control objects,
structures and variables initialization.

2https://github.com/STMicroelectronics/STM32CubeF4/
3https://os.mbed.com/
4https://www.iar.com/iar-embedded-workbench
5https://developer.arm.com/tools-and-software/open-source-software/
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Figure 4.21: FW start-up diagram

4.4.3 Main loop

The main loop may be divided into a few, further decomposable, routines, as
seen in Figure 4.22.

The communication routine checks for any available messages inside the
buffers of various sources (USB, CAN, UART) and if any data is available,
it further processes them, such as parsing the line of data or checking for
its validity (by checking the CRC result and the syntax correctness). If
all received data are valid, then the appropriate actions are taken, such as
configuring the virtual wheels or responding to queries. If any changes to the
configuration had to be made, they are saved into the EEPROM.

The LEDs routine simply checks and enables or disables the timeout-based
LEDs. This means that whenever a flag is set for a LED to turn on, a
countdown is started. It is then checked and acted upon with every run of
this routine.

The RF transmission routine directly manages the communication with the
RF IC and the transmission of the appropriate messages with the respective
timing.
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At the end of the main loop, various internal receive buffers are checked to

avoid overflows and respective reset routines are carried out if needed and if
the respective communication channel is enabled.

Initialization
finished

Communication
routine

LEDs
routine

RF transmission
routine

Data buffers
check

Main loop

Figure 4.22: FW main loop diagram

The main loop is also accompanied by a few interrupts and a DMA execution.
The DMA is employed for the FTDI (UART) transmission, and in other
cases, it was deduced that the resulting overhead would be worse because the
DMA reception of the data of an unknown length is not a trivial problem
and also because often the execution is blocked or skipped nevertheless until
confirmation of completion is obtained.

Apart from the system ones, the communication interrupts are utilized
(USART, USB, and DMA global interrupts) to help process the communication
data (such as putting the received data into buffers and setting execution
flags for further actions).

4.4.4 Modules

The module with the main loop function connects all the other modules, as
described in Figure 4.23.

The main module serves as the highest layer that defines and runs the
functions that often utilize lower-layer modules, as previously described in
Figure 4.22.

The modules then access the peripherals utilizing the commonly used
module cmn_utils that provides several utilities (such as typedefs, enums)
that are shared across all of the components.

The RDK TX Service is an exception as it is an abstraction of the CC1101
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module, which directly communicates with the selected RF IC. The RDK
TX Service generalizes many functionalities of interlinking between the RF
IC and the main module, further easing the possible module reusability and
portability.

Src/main.cpp

main.husb_device.h usbd_cdc_if.heeprom.h leds.h comm.hrdk_tx_service.h

cmn_utils.h

stm32f4xx_hal.h

stm32f4xx.h usbd_def.h usbd_cdc.h

Figure 4.23: FW Main module dependency graph

Also, the Comm module defines a class suitable as a unifying abstraction
of the communication (USB, UART, CAN), adding a layer above the HAL.
It serves as an interface for derived concrete classes (Usb, Can, Uart) that
provide methods for other modules, e.g. buffers processing or transmission.
The actual low-level data reception is interrupt-based.

4.5 GUI

Apart from the Transmitter unit itself, an application called the Configurator
was necessary for editing its settings. We have therefore decided to create a
GUI that serves as a higher layer for the Transmitter unit configuration over
the USB serial line (or FTDI). This GUI is based on Qt libraries6, which has
ensured multi-platform portability.

4.5.1 Front-end

Excluding various dialogue windows such as file saving or opening, the front-
end comprises effectively of the Main window and the Settings window.

Main window

The Main window serves for the configuration of the Transmitter unit itself
once connected. It is also a starting point for the user as all the software’s
features and windows are accessible from it. Apart from the About informative
window in the Help section are all rest accessible both from the top bar with
text aids or from the informative panel with icons. The design of the Main
window may be seen in Figure 4.24.

6https://www.qt.io/

41

https://www.qt.io/


4. Simulator design concept ...............................
It is possible to save the TPMS configuration into and load from the

files with a custom rsc extension with the effective internal structure of an
Extensible Markup Language (XML) file.

The Main window further provides the possibility to connect to or discon-
nect from the Transmitter unit and either set up its internal configuration
with the one created in this software or retrieve the one currently used in the
physical device.

Figure 4.24: GUI Main window

Functionally, the user may change the following properties of the configu-
ration:. TPMS smart valve ID (decimal format),. pressure [bar],. temperature [°C].

However, before successfully changing the parameters, the user must at
least once correctly set up the USB connection to the Transmitter unit in the
Settings window as described in the next subsection 4.5.1.

The user is also notified of the parameters he has changed differently from
the Transmitter unit’s current settings by a red border around the respective
graphical field.
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Settings window

For the user to connect to the Transmitter unit, the connection must be
configured first in the Settings window. The design of it is displayed in Figure
4.25. Next time when starting the software, setting this up is no longer
necessary unless there has been a change of port for some reason.

Figure 4.25: GUI Settings window

The user must select the Serial port that is occupied by the Transmitter
unit, and if the “RDK IDs match” item reports OK, the USB Vendor and
Product identifiers are valid then the port selection may be confirmed and
applied. There is also the default possibility to load the configuration from
the Transmitter unit to the Configurator after a successful connection, which
must be initiated in the main window after applying the settings in this
Settings window.

4.5.2 Back-end

The software is written using the C++ language with the Qt libraries which
effectively enable a build both on the Windows and Linux-based systems.
The code is object-oriented and we will, therefore, provide a description of
classes.

Description of classes

The program is run from the Main module. Its dependencies are shown in the
Figure 4.26. The Main window core logic is then located in the MainWindow
class and the Settings window’s logic in the SettingsDialog class.

The core classes are described by a method of a class diagram in Figure
4.28. This description does not include the automatically generated files
by the Qt Creator Integrated Development Environment (IDE), the visual
look of the software was developed using the UI Design tool that provides a
graphical interface for programmers to create the GUI elements layout. Let
us now describe the classes in more detail.
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main.cpp

mainwindow.h QApplication QDebug

QMainWindow QSerialPort QMutex QSettings configuration.h

wheel.h

unistd.h stdio.h stdint.h

Figure 4.26: GUI Main module dependency graph

The Wheel class is a simple class abstracting a real wheel from the view of
the TPMS. This means such a virtual wheel is fully described by parameters
such as position on the car, smart valve’s ID, pressure.

Multiple (four in our case) Wheel objects are then included in the Config-
uration class that provides complete information of all the wheels from the
point of view of the TPMS.

The MainWindow class includes the core logic of the entire program as well
as the graphical backbone for the main window. This practically means that
the MainWindow owns a Configuration object and that the communication
with the Transmitter unit device is driven from this class, i.e., various messages
over the serial port (USB or UART for debugging) are sent, received and
evaluated. The sent messages may include variable data that are generated
based on the user-selected values of the physical entities, as described in
Subsection 4.5.1. The reception is done via a signal triggered when data
are ready to be read in the serial port. Evaluation of the messages is done
via a pointer to a callback function of the CommExchange object. The
MainWindow also manages the possible repetitions of sending messages on
no or invalid responses and takes care of locking and unlocking mutexes to
avoid possible problems such as deadlocks or conflicts in the received data
expectancy.

CommExchange

CommGetConf

CommID

CommSetConf

Figure 4.27: CommExchange class inheritance diagram

The CommExchange abstracts a simple communication between the GUI
and the Transmitter unit. This process can be sufficiently described by a few
parameters based on the communication type – what should be sent, what
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should be received, and what should be done on successful execution or failure.
It is functionally connected to the MainWindows by keeping a reference to
it. CommExchange itself provides an interface of virtual functions that have
to be implemented by the inheriting classes CommID, CommGetConf and
CommSetConf as illustrated in Figure 4.27.

CommExchange

+ commType
# m_ui

+ CommExchange()
+ ~CommExchange()
+ comm_routine()
+ fail_routine()
+ success_routine()

SettingsDialog

+ SettingsDialog()
+ ~SettingsDialog()
+ fillPortsSettings()
+ setPortName()
+ setAutoUpload()
+ getPortName()
+ getAutoUpload()

QDialog

IDSpinBox

+ IDSpinBox()

QSpinBox

MainWindow

+ afterCommCallback

+ MainWindow()
+ ~MainWindow()
+ add_start_file()
+ get_ui()
+ showStatusMessage()
+ readData()
+ writeData()
+ get_crc()
+ get_crc()
+ triggerUploadCallback()
+ isAutoUploadEnabled()
+ savePortSettings()
+ closeSerialPort()

#mainWindow

QMainWindow Configuration

+ Configuration()

+config

Wheel

+ position
+ id
+ pressure10
...

+ Wheel()

+wheels

Figure 4.28: GUI class diagram

These classes are concrete implementations for some communication pro-
cesses – CommID is when the identification of the connected Transmitter unit
over the serial port needs to be obtained, CommGetConf is for the Configura-
tion to be constructed based on the real settings of the Transmitter unit and
CommSetConf for the opposite case, i.e., transferring the user configuration
to the device.

The concrete CommExchange classes always implement the communication
process based on the respective commands sent over the serial line as described
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in appendix B, table B.1.

The IDSpinBox is an own re-implementation of the QSpinBox, necessary
for a custom behaviour in the GUI. It is used by the UI Design tool.

The SettingDialog class is very analogical to the MainWindow but for the
case of the Settings window. It allows the user to set up the parameters of the
connection to the Transmitter unit. The correct Serial port must be selected
from the enumeration of all the available ones.
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Chapter 5
Implementation process

The first device we made was a prototype based on a development kit by
ST, NUCLEO-F401RE. The final version includes a custom PCB, a slightly
different MCU (STM32F446RC), many improvements and is ready for small
series production. We have been developing the simulator since September
2019.

5.1 Prototype

The prototype was being developed back-to-back along with the GUI (Section
4.5) and CAN analysis (Section 3.4). The used library for firmware was
the Mbed that while providing a great layer of abstraction over low-level
programming, is insufficient as, e.g., remapping various peripherals may
require non-trivial tampering the library’s internals.

Figure 5.1: Prototype internals – NUCLEO-F401RE and the CC1101 module

The core of the prototype can be seen in Figure 5.1. It served mostly as a
sandbox for testing the possibilities of the RF IC. Once we had reached the
state where the communication with the TPMS ECU was successful (more in
Section 5.3), we have developed the GUI, done some debugging, performed
design improvements and then released the prototype for testing in ŠKODA
AUTO. Then the development of the final product has begun based on various
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feedback.

Figure 5.2: Finished prototype – front view

Figure 5.3: Finished prototype – back view

The prototype hardware was fastened inside the enclosure using a supportive
prototype PCB. The LEDs were held in place using the special through-hole
connectors, and the antenna is mounted from the outside. The final product
can be seen in Figure 5.2 and Figure 5.3.

5.2 Small series device

The prototype served as a good base for functional and user testing. It also
validated the choice of the modules such as the MCU, the RF IC, the LEDs,
or the USB. However, in principle, almost no components remained the same.

Newly added features include the input jack for power supply, CAN con-
nectivity, and EEPROM for longer memory life. A new fully custom design
has been developed as described in Chapter 4. The final product can be seen
in Figure 5.4 and Figure 5.5.
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Figure 5.4: Finished small series device – front view

Figure 5.5: Finished small series device – back view

5.2.1 Hardware

Two PCBs were ordered from the Czech manufacturer Pragoboard. Further
manual soldering and assembly was required.

The initial assembly was without greater problems and mostly confirmed
the correctness of the design concept. The most significant realization issues
included some traces destroyed due to the heat caused by multiple soldering
and desoldering due to testing. Also a minimal MCU pinout change was
performed. These issues were fixed using the microwires. The assembled
PCB can be seen in Figure 5.6.
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Figure 5.6: Assembled and working PCB

Power consumption measurements

A crucial parameter of a mobile device is its power consumption. Special care
during design has been taken when addressing this by utilizing a DC/DC
step down converter instead of a simple linear regulator. We were thus able
to easily comply with USB power specifications (less than 100 mA at 5 V
without further configuration [37, p. 178]). Measurements of Transitter unit
power consumption were done for two cases – a peak and average power
consumption. All of the measured values are shown in Table 5.1 with the
most significant values marked bold.

Vin [V] Imax [mA] I [mA] Pmax [mW] P [mW]
4 43.7 37.15 174.80 148.60
5 35.01 29.46 175.05 147.28
6 29.42 24.79 176.52 148.74
7 25.36 21.39 177.52 149.70
8 22.39 18.91 179.12 151.28
9 20.02 16.92 180.18 152.28
10 18.17 15.37 181.70 153.65
11 16.64 14.09 183.04 154.94
12 15.4 13.01 184.80 156.12
13 14.33 12.14 186.29 157.76
14 13.48 11.43 188.72 159.95
15 12.66 10.74 189.90 161.03

Table 5.1: Power consumption measurements

The large portion of power (about 30 %) drawn is used only to light up
the LEDs, which shows that the rest of the electronics is low-power suitable
for mobile devices. The measurements were carried out at room temperature.
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5.2.2 Firmware

The firmware was completely ported due to many issues with the previously
used Mbed libraries in combination with the used commercial IAR EW
compiler. Comprehensive analysis on this matter can be found in the appendix
D but in short terms, it was necessary to gain more low-level control over
the MCU and port the code to a compiler that is easily usable with a
less restrictive non-commercial license. The natural choice was GNU Arm
Toolchain, the used components of which have licenses that are open-source
and free [48].

While porting from the combination of IAR EW /Mbed fortunately preserves
a lot of reusable C/C++ source code, some components had to be changed,
mainly the ones with a low-level character. Many Mbed modules were ported
to ST ’s HAL libraries that allow for a more advanced MCU hardware control.
From the point of changing the compiler, various precompiler directives, linker
scripts, and start-up assembly codes had to be modified. The core of the
firmware (the higher layer) has stayed mostly the same thanks to the general
code decomposition.

With useful debugging methods, including the oscilloscope observation and
logic analyzers utilization, we were able to port the code.

Figure 5.7: CAN analysis using the Little Embedded Oscilloscope

Due to the issues caused by the Covid-19 pandemic, access to professional
tools was limited. Fortunately, even in the home environment, we were able
to use the LEO – Little Embedded Oscilloscope1, a USB digital oscilloscope
with GUI, running on NUCLEO-F303RE with no extra attachments needed.

1https://leo.fel.cvut.cz/
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5. Implementation process ................................
This tool was developed by the CTU FEE, Department of measurement, and
is publicly available. The screenshot of its GUI can be seen in Figure 5.7.

The most significant setbacks during firmware development included prob-
lems related to the DFU functionality and late exchange of MCU (formerly
STM32F401RE) for another one from the same series (STM32F446RC). The
MCU exchange was necessary due to an initial design flaw since the former
MCU does not incorporate an embedded CAN controller, unlike the latter
one. Fortunately, since they are both from the same F4 series, switching them
was not an excessively demanding task as it consisted of altering linker scripts,
start-up assembly code, CAN pinout and system clock configuration, which
is now actually capable of extended options thanks to the greater possibilities
of Phase-Locked Loop (PLL).

Figure 5.8: STM32CubeProgrammer – a possible software solution for managing
the DFU of the MCU

At the same time, this has resolved problems with the DFU functionality.
The issue was that the bootloader routine of the STM32F401 seemed to be
failing in the phase of the detection of the external crystal oscillator where
an error causes a system reset that makes the default code from the Flash
memory be run on the next start-up (i.e., our firmware) [49, p. 122]. It was
therefore impossible to connect to the DFU device on one’s computer because
it was never enumerated over the USB in the first place.

Although this issue was extensively discussed on the ST community forum2

2https://community.st.com/s/question/0D53W000004lc5NSAQ/
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with many interesting suggestions, none of them were effective. Changing of
external crystal oscillator for many different ones was tried, as well as resol-
dering or selecting different impedance-matching resistors, cables, connectors,
computers with different operating systems with various drivers. The only
resolution to this problem was ultimately a choice of a different MCU that
did not display such behaviour.

The DFU functionality was not a necessary feature, but a very convenient
one, since the programmer or even the user may update the Transmitter unit
with, e.g., a provided binary file using only the USB cable and respective
software. This feature naturally does not support debugging since it only loads
the new firmware into the memory. We used the STM32CubeProgrammer3

software to perform the necessary DFU operations as seen in Figure 5.8.

5.2.3 CAN Command-line configurator

Mainly for the internal and future use, a command-line tool for configuring
the Transmitter unit over the CAN bus has been developed. It is a simple
bash script with a supportive executable file that needs to be built using
the Make tool. It serves as a wrapper for the cansend command from the
can-utils4 package.

This tool serves the same purpose as the previously described GUI – to set
up the Transmitter unit with the user-configuration of virtual wheels but not
over the USB but rather over the CAN. In contrast to the GUI, it provides a
command-line interface instead of a graphical one, as seen in Figure 5.9.

Figure 5.9: CAN TPMS Simulator Configurator

This tool fully respects the communication protocol described in the ap-
pendix B.

3https://www.st.com/en/development-tools/stm32cubeprog.html
4https://github.com/linux-can/can-utils
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5. Implementation process ................................
5.3 Design verification

The verification of the prototype design correctness was carried out in multiple
phases.

Initially we only used the Gqrx mentioned in Section 3.1 to see if the RF
IC transmits with the similar parameters as the TPMS smart valves. When
it did, we tried decoding the messages sent by the Transmitter unit using
the rtl_433 in the same manner as we decoded the real TPMS smart valves
messages.

Then we moved on to using the TPMS ECU. Small tampering of the
transmission parameters of the Transmitter unit had to be done first. Once
we knew that the TPMS ECU reported the data sent by our simulator, it was
clear that the transmission parameters are correct (at least to a functional
extent).

The subsequent process of the precise calibration was simple. Since we
already had a rough estimate of the gain and offset constants of some measured
physical entities as mentioned in Chapter 3, we sent some roughly-known data
from the Transmitter unit to the TPMS ECU. Then we read the interpreted
received messages and then we were able to modify the constants based on
differences between the supposed values and the values interpreted by the
TPMS ECU.

A Tyre pressure

B Recommended tyre pressure

C Tyre pressure not available

D Tyre pressure too low

E Adjust the vehicle’s loading condition

Figure 5.10: Infotainment TPMS screen [5]

Afterwards, we have performed tests in laboratories of ŠKODA AUTO. We
were provided with a car suspended in the air with its wheels moving freely.
Firstly we used the SDR to capture the data coming out of the actual TPMS
valves in real tires.

This way, we found out the IDs of real valves and were able to configure the
Transmitter unit with these IDs and custom values. We were changing the
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pressure of the Transmitter unit’s virtual tires and observed the infotainment
display, illustrated in Figure 5.10. The infotainment reported changes in
wheels’ pressure.

It was clear that our simulator has worked and has been able to replicate
the actual TPMS valves as the vehicle’s infotainment reported the pressure
inside tires such that we had set up in the Transmitter unit.

Once the ID of the valves is discovered (by reading the physically written
number on the valve itself, by decoding the RF transmission or by obtaining
it over the CAN communication), it is sufficient to convince the TPMS ECU
and masquerade as the real smart valves.

After the design verification, the release candidate of the GUI was created
and given along with the prototype Transmitter unit to the responsible people
of ŠKODA AUTO for user testing and feedback. After the handover, we have
started to work on the more advanced device suitable as a small series device
that would incorporate a custom PCB design and more features.
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Chapter 6
Conclusion

The goal of this thesis was to create a TPMS Simulator for the needs of
ŠKODA AUTO. That means a device capable of simulating the TPMS smart
valves that measure pressure and temperature inside the car tires. The
developed simulator can transmit the custom data to the TPMS ECU which
are indistinguishable from the real valve messages. This ultimately means
that the car receives this custom data and acts based on it – displays it in
the infotainment and issues a warning.

We have fully succeeded in creating the TPMS Simulator consisting of
a graphical user interface and a physical device – Transmitter unit, the
settings of which are configurable either over USB using the GUI or over
CAN. We proved it to be working in ŠKODA AUTO’s laboratories. The
Transmitter unit was designed with a focus on low power consumption and a
low production price. We were able to do that by designing a schematic that
incorporated a custom PCB with minimalistic solutions such as an MCU or
an RF IC (unlike, e.g., a complex SDR with the ability to transmit).

The main benefit of the TPMS Simulator is the eased internal testing in
ŠKODA AUTO by removing the need to manipulate the real physical entities
concerning every single wheel. The user is informed of the runtime status by
the use of LEDs with descriptions, and since the device may be powered by
voltage in the range of 4 V to 15 V from a power jack or 5 V from the USB,
it is fully portable by connecting, e.g., a USB power bank.
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Appendix A
List of used acronyms

ABS Anti-lock Brake System

AGC Automatic Gain Control

AM Amplitude modulation

ASK Amplitude-Shift Keying

BPF Band-Pass Filter

CAN Controller Area Network

CRC Cyclic redundancy check

DC Direct current

DFU Device Firmware Upgrade

DMA Direct Memory Access

DSP Digital Signal Processor

ECU Electronic Control Unit

EDA Electronic Design Automation

EEPROM Electrically Erasable Programmable Read-Only Memory

EMI Electromagnetic interference

FFT Fast Fourier transform

FM Frequency Modulation

FSK Frequency-Shift Keying

FW Firmware

GPIO General Purpose Input Output

GUI Graphical User Interface
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HAL Hardware Abstraction Layer

HW Hardware

I2C Inter-Integrated Circuit

ID Identification

IDE Integrated Development Environment

IEC International Electrotechnical Commission

IP Intellectual Property

IQ In-Phase, Quadrature

IrDA Infrared Data Association

ISM Industrial, Scientific and Medical

LED Light Emitting Diode

LL Low Level

LNA Low-Noise Amplifier

LO Local Oscillator

OS Operating System

PCB Printed Circuit Board

PLL Phase-Locked Loop

PSK Phase-Shift keying

PWM Pulse Width Modulation

QAM Quadrature Amplitude Modulation

RDK Reifendruckkontrolle

RF Radio frequency

RISC Reduced Instruction Set Computer

RSP Receive-Signal Processor

SCPI Standard Commands for Programmable Instruments

SDR Software Defined Radio

SMD Surface Mount Device

SMT Surface Mount Technology
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SPI Serial Peripheral Interface

SWD Serial Wire Debug

THT Through Hole Technology

TPMS Tire Pressure Monitoring System

TVS Transient-Voltage Suppression

U(S)ART Universal (Synchronous) Asynchronous Receiver Transmit

USB Universal Serial Bus

XML Extensible Markup Language
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Appendix B
TPMS Simulator communication protocol
description

The communication protocol between the Transmitter unit and its control is
partially based on the philosophy, syntax, and semantics of Standard Com-
mands for Programmable Instruments (SCPI), the extension of IEEE 488.2
[50]. However, it also introduces some different features. The communication
protocol is carried out over the USB’s serial line port, CAN, or for debugging
purposes a simple UART. The physical layer parameters are the following for
UART and USB serial lines:. 8 data bits,. no parity,. 1 stop bit,. 9600 bauds,. no flow control.

And for the CAN:. standard ID by default set to 0x123 – may be redefined in FW,. no extended ID,. data frame,. bitrate of 500 kbps.

The basic description of the protocol itself is the following.. Communication is executed by the transmission of queries to the Trans-
mitter unit and receiving responses.. The valid queries comprise one or more commands..Multiple commands inside a query are separated by a semi-colon symbol
“;”. The semi-colon is not necessary after the last command in the query.
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. Responses are for each respective commands, also separated by a semi-

colon “;”.. Received query is parsed as soon as a newline (“\r\n”) is received.

Variables and arguments in general described in this Appendix are signified
by an enclosing left-pointing bracket “<” and right-pointing bracket “>”
symbols. These brackets are not sent over the communication channel.

B.1 Query structure

The structure of a query is following:
<COMMAND 1>; ... ;<COMMAND N>\r\n

And the response:
<RESPONSE 1>; ... ;<RESPONSE N>\r\n

B.1.1 Commands definition

All possible commands that may be transmitted in a query are described
in the following table. Some commands may include an additional argu-
ment/variable.

Command Description Response

*IDN? Instrument identifica-
tion

“RDK-SIMULATOR-
<VERSION>” with the
version number as suffix, e.g.
“RDK-SIMULATOR-0.9”.

SET<CONF>

(Re)configures a single
wheel with the wheel
configuration subsys-
tem as an argument.

“SET-OK” on success,
“SET-ERR” on failure.

GET-CONFIG Gets the configuration
of all wheels

Four “STATUS<CONF>”
messages with each wheel’s
full description by the wheel
configuration subsystem as an
argument.

DBG Toggles debug (ver-
bose) mode

“DEBUG-ACTIVATED!” on
the activation of debug mode,
“DEBUG-DEACTIVATED!”
otherwise.

DFU-MODE Runs the DFU mode
“DFU mode will now initiate
and this communication will be
terminated!”.

Table B.1: Control commands set

The Transmitter unit debug (verbose) mode provides more internal in-
formation about the program runtime. This data is sent as an ASCII text
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separated by newline characters and is useful for various debugging purposes
and development.

If the DFU mode of the Transmitter unit is enabled, then the device is
available for enumeration over USB as an STM32 BOOTLOADER device.
The process must further be handled by a tool that can load the new FW
over the DFU protocol, such as STM32CubeProgrammer or dfu-util.

The wheel configuration subsystem

It is a set of parameters describing the state of a single wheel. They must
be enclosed in curly brackets “{” and “}”. This system may follow as an
argument for the SET command sent to the Transmitter unit or for the
STATUS command sent by the Transmitter unit.

Each parameter’s name inside this subsystem is defined by two upper-case
ASCII letters and the value followed after a colon “:” written after the
parameter’s name. The length of the value data is strictly given, as described
below. The value data that are in hexadecimal format do not have any
preceding characters as “0x”. Parameters are separated by commas “,”.

The WH (wheel index) and CR (CRC result) parameters with correct
values must compulsorily be included at the start and the end respectively,
otherwise the command shall be erroneous and not executed. The defini-
tion of parameters is described below. The subsystem itself may be written as:

{<PARAM 1>:<VALUE 1>, ... ,<PARAM N>:<VALUE N>}\r\n

Wheel index. The wheel index is a compulsory parameter that has to
be included. It describes to which wheel is the whole wheel configuration
subsystem related.

Parameter name: WH

Value size (bytes): 1

Value Meaning
0 Front left wheel
1 Front right wheel
2 Back left wheel
3 Back right wheel

Table B.2: Wheel index values

TPMS valve ID. This parameter defines the ID of the respective TPMS
valve. The value must be in a hexadecimal format!

Parameter name: ID

Value size (bytes): 4

Legal values: Any 4 byte number.
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Pressure. The pressure inside the virtual tire. The format is decimal in
[bar] multiplied by a gain of 10 (e.g., 20 , 2.0 bar).

Parameter name: PR

Value size (bytes): 1

Values: Any, in format 10·[bar].

Temperature. The temperature inside the virtual tire. The format is [°C]
with a positive offset of 52 (decimal) to avoid negative numbers. The number
to be sent must be converted to a hexadecimal format (e.g., 48 (hex) , 20
°C).

Parameter name: TM

Value size (bytes): 1

Values: Any, in format [°C] + 52.

CRC result. The second compulsory parameter that must be attached at the
end of the subsystem. It is the hexadecimal result of a CRC calculated from
the ASCII values of the whole subsystem string (preceding the CR parameter)
to be sent (excluding enclosing curly brackets and directly preceding comma).
The used CRC configuration is CRC-8-CCITT (0x07) with no initial seed.

Parameter name: CR

Value size (bytes): 1

Values: Any correctly calculated 1 byte CRC result.

Example: Let the wheel configuration subsystem string be:
{WH:00,ID:259EA02E,PR:22,TM:48}

The base for calculation is:
WH:00,ID:259EA02E,PR:22,TM:48

The CRC has to be therefore calculated from the following sequence of bytes
in hexadecimal format. CRC configuration is CRC-8-CCITT (0x07) with no
initial seed.

57, 48, 3a, 30, 30, 2c, 49, 44, 3a, 32, 35, 39, 45, 41, 30, 32, 45, 2c, 50, 52,
3a, 32, 32, 2c, 54, 4d, 3a, 34, 38
The calculated CRC is 0x02. The final string shall be:

{WH:00,ID:259EA02E,PR:22,TM:48,CR:02}

B.1.2 Query examples

Practical examples follow. The newline symbol (“\r\n”) terminating a query
is always explicitly written when present in communication (at the end of
query or response).
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Example 1

Retrieve identification.
Query:

*IDN?\r\n
Response:

RDK-SIMULATOR-0.9\r\n

Example 2

Retrieve identification, get the configuration of all the wheels, and activate
the debug mode.
Query:

*IDN?;GET-CONFIG;DBG\r\n
Response:

RDK-SIMULATOR-0.9;
STATUS{WH:00,ID:259EA02E,PR:22,TM:48,CR:02};
STATUS{WH:01,ID:21924AAB,PR:22,TM:48,CR:F6};
STATUS{WH:02,ID:2955D243,PR:22,TM:48,CR:7F};
STATUS{WH:03,ID:213FCDC1,PR:22,TM:48,CR:0D};
DEBUG-ACTIVATED!\r\n

Example 3

Set all the wheels with the respective IDs, the pressure of all of them to 2.2
bar and temperature of all of them to 20 °C with a faulty CRC in the case of
the last wheel.
Query:

SET{WH:00,ID:259EA02E,PR:22,TM:48,CR:02};
SET{WH:01,ID:21924AAB,PR:22,TM:48,CR:F6};
SET{WH:02,ID:2955D243,PR:22,TM:48,CR:7F};
SET{WH:03,ID:213FCDC1,PR:22,TM:48,CR:FF}\r\n

Response:
SET-OK;SET-OK;SET-OK;SET-ERR\r\n
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Appendix C
Complete schematics and PCB layout

Figure C.1: Power supply and USB schematics
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Appendix D
IAR EW & Mbed vs GNU Arm Toolchain
& HAL comparison

During the development of the prototype, the combination of IAR EW IDE
with its toolchain along with Mbed libraries were used. Later in the project
was the source code ported to the GNU Arm Toolchain with HAL libraries
utilized. This chapter concisely describes the differences between the used
methods.

D.1 IAR EW vs GNU Arm Toolchain

D.1.1 Licensing

The greatest difference between the two toolchains is their licensing. IAR EW
is a professional set of tools with a restrictive custom commercial license [51].
GNU Arm Toolchain provides the possibility to work only with open-source
components that are freely licensed by such as GNU GPL or BSD licenses
[48].

The licensing also implies that there is official customer support available
for the IAR EW unlike the GNU Arm Toolchain where the community
substantially and extensively provides the support.

D.1.2 Functional safety

IAR EW has an integrated support for functional safety (norms IEC 61508,
ISO 26262, EN 50128, EN 50657 and IEC 62304 [52]) as there are software
versions certified by TÜV and there is also a source code MISRA compliance
static analysis. GNU Arm Toolchain does not provide such functionality
which may be critical for many automotive, medical, or industrial systems.

D.1.3 IDE functionality

The IAR EW is a complex all-in-one software. It includes not only all tools
necessary for compiling, linking but also for debugging and code development.
It is a full-fledged IDE with many standard features such as a source code
indexer, formatter or an embedded debugger. While the installed binaries
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take up space in order of GiB, it also universally supports a great number of
any Arm-based processors.

The GNU Arm Toolchain is by default a command-line tool. However,
there is a great amount of support available for, e.g., the Eclipse-based IDEs.
This is the case of the IDE used by us, STM32CubeIDE1, that has the core
of the Eclipse and utilizes the GNU Arm Toolchain. Subjectively for our use,
the STM32CubeIDE provided a vastly more user-friendly environment and
more convenient features.

D.1.4 Miscellaneous

Apart from the points mentioned above, there is also one important difference
and that is the cross-platform support. IAR EW provides no native support
for any other OS than Windows, while the GNU Arm Toolchain may generally
be run on Windows, Linux and Mac OS X.

D.1.5 Conclusion

As usual, both have their upsides and downsides but in our case the GNU
Arm Toolchain is much more beneficial.

For various industrial, medical, or automotive applications, the IAR EW
license (or other similar commercial software) may be a necessary solution
due to the available safety certification, customer support, and an all-in-one
solution.

However, for non-safety development, applications where little to no certifi-
cation is necessary (e.g. when creating a device that is not sold to customers),
where buying a commercial license is a substantial burden or where the
cross-OS support is needed, GNU Arm Toolchain is a satisfactory choice, and
that is our case.

D.2 Mbed vs HAL libraries usage

During the prototype development were the Mbed tools used but during the
later phase we relied solely on HAL libraries. It should first be mentioned
that the direct comparison Mbed vs HAL is not appropriate. The reason
is that the Mbed is a large platform providing a great number of features.
The developer’s source code is run on top of the Mbed OS. This can also
practically be interpreted as the Mbed libraries being a layer above HAL. In
fact the Mbed actually incorporates the HAL. Both are freely-licensed and
open-source.

D.2.1 Abstraction

A great level of abstraction is available in Mbed thanks to its structure. That
naturally results in the following beneficial features:

1https://www.st.com/en/development-tools/stm32cubeide.html
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. code portability between various Mbed-enabled devices,. no custom assembly start-up scripts needed,. no extensive custom configuration of MCU’s internals necessary,. easy inclusion of various external libraries.

All of these features are granted by the fact that Mbed libraries are a
layer above HAL. Nevertheless, the abstraction naturally brings the expected
downsides:. worsened code performance,. increased code size,. problematic pinout remapping – need to modify the Mbed libraries source

code in an invasive way.

D.2.2 Miscellaneous

Mbed also introduces an online IDE. That is a handy feature as the user may
compile for his device at any point when an internet browser is available.
Expectedly debugging is not currently supported and the project has to be
exported in format for another desktop tool first.

Subjectively analyzing the user experience with the Mbed community
forums, the support appears to be somewhat insufficient at the time. That
seems to be also caused by the abstraction, when the problem may often be
that a Mbed module does not cooperate with specific hardware.

D.2.3 Conclusion

Mbed is a very ambitious project. At this time, we would suggest it for basic
projects, where one does not need to utilize every bit of performance potential
and where the memory size is not a critical issue.

The abstraction of Mbed is the key point that induces all the benefits and
downsides. If the developer has to make ends meet with the MCU he has,
Mbed is not an appropriate choice. Such cases may include, e.g., a need
for fast code performance or small size, using various alternative pinouts
or directly accessing registers of peripherals. While the Mbed includes the
HAL libraries, they should not be accessed directly in order not to lose the
portability. Of course, HAL itself is already an abstraction of the internals of
series of STM MCU series (such as F4 ) and itself may be for many developers
a too extensive or abstractive implementation. In some exceptional cases, the
developer might even need to write the assembly code.

The need for a more advanced low-level access to the MCU was the primary
motivation to ultimately keep using the HAL libraries.
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