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Abstract

The goal of this thesis is to develop a solution for F1/10 autonomous driving competition.
First part of the work deals with mapping and vehicle localization on the racing track with
a down-scaled model car. Introduced localization use the Monte Carlo methods to process
the data from LiDAR and estimate the position of the vehicle. The implemented system
is able to precisely estimate the vehicle position with the rate of 25 Hz. The second part of
the thesis deals with the design of the trajectory tracking control system. The presented
solution uses the LQR and Model predictive control to achieve good performance with
knowledge of vehicle kinematics.

Keywords: F1/10 competition, Autonomous racing, Monte Carlo Localization, Hector
SLAM, trajectory tracking, Model Predictive Control

Abstrakt

Tato práce se zabývá mapováńım a lokalizaćı na závodńı dráze F1/10 autonomous driving
competition pomoćı zmenšeného modelu vozidla. Lokalizace využ́ıvá Monte Carlo metod
pro zpracováńı dat LiDARu a odhad pozice vozidla. Implementovaný systém dokáže
kvalitně odhadovat pozici s frekvenćı 25 Hz. Druhou část́ı práce je návrh ř́ıdićıho systému
sledováńı trajektorie. Navržený systém využ́ıvá pokročilých metod ř́ızeńı LQR, Model
Predictive Control a uvažuje kinematický model ř́ızeného vozidla.

Kĺıčová slova: F1/10 competition, Autonomńı ř́ızeńı, Monte Carlo lokalizace, Hector
SLAM, Sledováńı trajektorie, Model Predictive Control
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Chapter 1

Introduction

The goal of this thesis is to develop a control system able to race with a vehicle model

scaled by 1/10 on the racing track with the utilization of high-level planning on the created

map. The task is divided into three major parts. The objective of the first part is to

develop a mapping system, which use the sensor data to explore the unknown environment

and create a map of the track. The second part deals with the vehicle localization on the

track without an absolute position sensor such as GPS or any indoor localization. The

third part then aims to a lateral control system which drives the vehicle over the racing

track. The goal is to use advanced control methods considering the vehicle kinematics to

drive the vehicle with the best performance.

The thesis follows the previous work of Martin Vajnar [1] which focus on building of

the racing platform and processing of the sensor data. The design of control system is

then following the work of Jan Filip [2] which deals with the task of trajectory tracking

formalized as a servomechanism problem and come up with solution tested on simulations.

1.1 Motivation

The motivation of this work is to create a solution for F1/10 autonomous driving com-

petition, which will be used in upcoming race round. In previous rounds, most of the

solutions were reactive algorithms, which did not consider the track layout or vehicle

kinematics structure. Even though the presented solutions were functional and shown

a good performance, it turned out, that reactive control approach is not able to handle

all situations efficiently. Because of that, the map-based approach is introduced, which

is able to localize the vehicle on the track and gives new options for vehicle control by

high-level planning.

The second motivation of this work is, that developed localization of car models creates

good testing conditions for the development of applications related to autonomous driving.

1



CHAPTER 1. INTRODUCTION 2

Such applications have to be tested on various scenarios to prove robustness and reliability.

Testing those scenarios on car models instead of real cars is then much easier and cheaper.

1.2 Work Outline

In Chapter 2, the thesis describes the motivation and rules of F1/10 autonomous driving

competition, introduce the racing platform, and review the solutions presented in previous

rounds of the race. In Chapter 3 the scan-matching problem is outlined as a way how to

perform Simultaneous Localization and mapping (SLAM) and the Hector SLAM method

will be described. In Chapter 4, the Monte Carlo Localization (MCL) will be used to

achieve a vehicle localization on a 2D map with the data from LiDAR. This Chapter

also compares several methods of ray-casting and introduce two extensions, which use the

data from wheel odometry to improve MCL position estimation. Chapter 5 analyze the

process of simple automatic trajectory planning on the racing track for testing purposes

and discuss the problem of trajectory utilization for time optimal racing. Finally, the last

Chapter 6 focus on advanced control of the vehicle introduced as trajectory tracking.



Chapter 2

Background

Several competitions in the field of autonomous driving have been announced in the

recent past to challenge different types of tasks. The DARPA grand challenge in 2004

[3] and DARPA urban challenge in 2007 [4] were one of the first large-scale competitions

which aimed to develop a driver-less vehicle able to move in different terrains and handle

basic traffic rules. The Audi autonomous driving cup challenge participants to build fully

automatic driving functions and the necessary software architectures on 1/8 scaled car

models. Roborace deals with the task of autonomous driving car able to race manually

driven vehicles on a racing track. This thesis focus on solution of F1/10 autonomous

driving competition, which challenge to race with scaled vehicles by 1/10.

This Chapter gives the reader background to the competition rules and motivation in

Section 2.1 and provides the reader basic overview of the racing task. Then, in Section

2.2, describes the structure and equipment of the racing platform used in this thesis with

preview of abilities of its components. Section 2.3 summarizes the reactive with map-

based control strategy and highlights their main advantages and disadvantages regards

to already utilized solutions in previous rounds of F1/10 competition. Section 2.4 follows

with review of control methods possibly used to perform vehicle steering task along the

racing track.

2.1 F1/10 competition

The F1/10 is a worldwide competition of scaled autonomous cars announced by the Uni-

versity of Pennsylvania which deals with the task of developing a software able to race

with a down-scaled vehicle model on the racing track. Racing with the scaled platforms in

contrast to real cars makes development affordable, easy to test and gives an opportunity

to small student teams to bring their ideas

Since the key phrase of the competition is “The battle of algorithms”, the task does

3



CHAPTER 2. BACKGROUND 4

not rely on building a vehicle itself but limits the teams with hardware requirements to

provide similar racing conditions. The idea of having a platform with same abilities pushes

participant to focus on the control structures with different kinds of approaches. Orga-

nizers also rely on providing all the functional solutions open-source to the community,

thus the abilities of vehicles are getting better every round of the race. The task of racing

and handling vehicle in high speeds constantly discovers new bottlenecks of algorithms

and force participant to come up with more complex solutions.

2.2 Vehicle platform description

The F1/10 racing platform is originally build on a Traxxas RC rally car and customized

with several components. The competition organizers provides detailed instructions of

building procedure [5], same as the [1], which also focuses on processing the data from

sensors.

Figure 2.1: Racing platform

2.2.1 Sensors and perception

The racing car perceives the environment with several sensors. The most significant com-

ponent is the LiDAR or optionally the stereo camera, which is able to measure distances

from objects around the vehicle. Rules of the competition do not define the specific place

where the LiDAR has to be mounted and even utilization of multiple LiDARs is allowed.

However, for performing the task of localization and mapping the current configuration

shown in 2.1 is sufficient.
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(a) (b) )

Figure 2.2: Utilized lidar Hokuyo UST-10LX and vizualized LiDAR scan

LiDAR measure the distance by illuminating the object with laser light pulse and

calculating the time until the reflected beam is received again. This measurement is

performed sequentially around the range of 270◦ with resolution of 0.25◦. The resulting

scan is the planar scene as shown in figure 2.2b. The LiDAR is mostly used for navigation.

Except for the LiDAR, the vehicle can use the inertial measurement unit (IMU), and

the data from VESC control used to control brush-less DC motor. IMU provides the data

of linear vehicle acceleration in three axes and angular velocity of a roll, pitch, and yaw

motion which can be used to determine vehicle odometry. The IMU is commonly used

only for measuring the actual angular velocity of yaw motion. The VESC, on the other

hand, provide quite precise data about linear velocity of the vehicle and it is used for

computation of vehicle odometry together with data from steering commands.

2.2.2 Computer unit

All the processes and calculations are performed on embedded system Nvidia Jetson TX2,

mounted to the car on the Orbitty carrier board. The code servicing the peripherals and

actuators is implemented in the Robotic Operating System (ROS) running in the Linux

environment. The main advantage of Jetson Tx2 is GPU with 256 cores which allows some

of time-consuming tasks, such as localization described in chapter 4, to be parallelized.

2.2.3 Platform kinematics

The used racing platform is a 4-wheel ackermann-type steering vehicle described in [6] or

[7] . The geometry of this steering mechanism is outlined in Fig. 2.3
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Figure 2.3: Ackermann geometry

the L denote the wheelbase of the vehicle, D is the wheel spacing, δ is the steering

angle and R radius of turn. For a vehicle movement over the planar space we introduce

the notation pictured in Fig. 2.4

Figure 2.4: Vehicle kinematic model notation

x,y,θ denotes vehicle position and orientation on the planar world coordinates, vl and

vs is vehicle longitudinal and lateral velocity, δ is the vehicle steering angle and β denotes

vehicle slip angle.

The kinematic platform moves along the curves defined by curvature κ(t), which could

be expressed as radius inverse of circle tangent to curve as shown in Fig. 2.5.

k(t) =
1

R(t)
=

tan δ(t)

L
=
dθ

ds
(2.1)
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Figure 2.5: Curvature outline

The vehicle motion on the world coordinates then could be expressed as

ẋ =
dx

dt
= v(t) cos θ(t) (2.2)

ẏ =
dy

dt
= v(t) sin θ(t) (2.3)

θ̇ =
θ

dt
= v(t)k(t) = v(t)

tan δ(t)

L
(2.4)

2.3 Control strategies

In previous rounds of the competition, many different control strategies have been in-

troduced. These strategies can be generally divided into two categories – reactive and

map-based strategies. Even though the map-based algorithms are assumed to have great

potential, and their performance increases rapidly with every round of the competition,

demonstrated solutions were not as efficient as reactive ones. The reason for this may be

the fact, that map-based approach requires a much more complex solution compared to

reactive approach as described further.

2.3.1 Reactive strategy

The reactive control algorithms select the outputs of the system as a response on the

short-term sensor data without high level cognition aspects. In the case of racing, the

vehicle navigation is performed based on current or last few LiDAR scans. From these

scans the various types of errors are determined and penalized or the object avoidance

task is carried out to accomplish the non-colliding driving trough the race track.
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Straightforward principle of the reactive algorithms usually makes them easy to imple-

ment and tune. Nevertheless some implementations turned out very effective and robust

in avoidance of different kind of static and also moving obstacles in higher speeds. The

state of the art of the racing reactive algorithm is the Follow The Gap (FTG), which

utilize the heuristics from the obstacle avoidance algorithm presented in [8].

Figure 2.6: FTG Neighborhood gaps distance calculation

The FTG algorithm processes the current LiDAR scan and separates points which

are out of the predefined range called Region Of Interest (ROI). Every point inside the

ROI is considered as obstacle. FTG computes sequentially distances between neighbor

obstacles from left to right as shown in Figure 2.6 and pick the two points with the largest

distance. The center of the line connecting those points is considered as a goal point, and

the steering angle of the car is set in the direction of this point. The essential function of

the FTG is outlined in Fig.2.7.

FTG is usually adjusted in several ways, to gain a better performance on the racing

track. For instance, the velocity of the car could be tuned by the value of steering angle,

to go faster if the steering angle is close to heading angle, or the range of ROI could be

adjusted to set aggressiveness of vehicle steering. The choice of tuning parameters always

depends on the track layout and have to be precisely tuned before every race in trial laps.

Even tough the reactive algorithms could be very effective and fast on simple tracks,

on the more complex tracks the sharp turns or dead ends could cause problems. Also the

lack of information about track layout limits the vehicles to handle the most difficult part

of the track. That could lead to non-efficient driving in long corridors or slow cornering

in a simple turns. Because of that, the map-based approach is being introduced, thus the

trajectory planning and higher level control could be performed.
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(a) (b)

Figure 2.7: Example of FTG decision in corridor

(a) (b)

Figure 2.8: Example of problematic situations for reactive algorithms

2.3.2 Map-based strategy

Knowledge of the map of the track could bring a huge advantage to vehicle control as it

could be used for higher level trajectory planing. Such planing can easily avoid situations

where reactive algorithms fail (Examples shown in Fig. 2.8) and efficiently plan vehicle

behaving in every part of the track. On the other hand the Map-based strategies are

much more complex and need to carry out the task of mapping, localization, planing and

trajectory tracking. Those task are the main focus of this thesis and will be described

further.
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2.4 Advanced control methods

All the previous racing solutions used in F1/10 competition were more or less functional

but even the map-based solutions, when high-level trajectory planning task was involved,

did not consider the kinematics or dynamics of the vehicle yet. The advanced control

methods consider those aspects and try to utilize the vehicle abilities as much as possible

to finish the lap in the fastest time.

To utilize the vehicle optimally the kinematic or dynamic model has to be introduced

and the controller has to consider properties such as maximal acceleration and decelera-

tion, speed limit, maximal steering angle or friction of the track. Finding those properties,

which differ for every vehicle platform, is not a simple task and have to be established by

several identification experiments. When the identified vehicle model is available, several

control design methods could be used. In this thesis, we focus on designing the Linear-

Quadratic Regulator (LQR) and Model Predictive Control (MPC) briefly introduced in

next sections and explained in Chapter 6.

2.4.1 Linear-Quadratic Regulator (LQR)

LQR is a control strategy based on minimization of the defined quadratic cost function,

which penalizes a final state of the system in the predicted horizon, the actual state of

the system in every step and the controller input. The result of the design is the state

feedback, which recalculates its penalizing constants every time step to ensure the optimal

control action for preferred cost function and the system dynamics.

The adjustable cost function gives us an option to emphasize essential states of the

systems and stress the control input to set the aggressivity of the system correctly. Nev-

ertheless, the controller itself is not able to consider the discrete constraints of the system

such as maximum vehicle steering angle. Hence we will investigate design of the Model

Predictive Control.

2.4.2 Model Predictive Control (MPC)

The MPC is a control strategy, which solves the finite horizon open-loop optimal control

problem. The main advantage of the MPC is that the design could consider the set of

discrete constraints and include them into the optimization. Practically that means, that

the controller is able to optimize the action on the predicted horizon with the knowledge

of the vehicle limits.

The output of the MPC is the open-loop sequence of control inputs that minimizes the

reference error of the system. The feedback is introduced by applying only the first input

from the sequence and repeating the calculation in every step. Even though the MPC is
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the powerful state of the art control structure, the analytical solution of constrained MPC

does not exist. Hence the optimization method called Quadratic-Programming have to

be used which could be demanding for the vehicle computer unit. The detailed design of

the MPC is explained further in this thesis in Chapter 6.



Chapter 3

Mapping

This chapter describes the method of mapping a track with the racing car using the data

from the LiDAR scan and known scan-matching techniques of 2D-SLAM. Creating a map

and cognition of the track environment is necessary for further higher-level planning task

and map-based approach control.

The process of mapping is being developed to comply with the F1/10 competition

rules. Those rules allow participants to make a manual or semiautomatic mapping lap,

where the car is able to map the track. This mapping stage is performed directly before the

race since the track could slightly change a layout due to crashes of other cars in previous

rounds. Task of mapping the unknown environment with any other reference localization

method is called Simultaneous Localization and Mapping (SLAM). For the racing task,

only the planar layout is needed. This exploration of the environment represented by the

planar map is often referred to as 2D-SLAM.

In the first part of this Chapter, the work focuses on 2D-SLAM problem formulation

and scan-matching methods. Then Section 3.3 introduces the Hector slam method and

describes its properties and features. The third part of this chapter focuses on mapping

process tuning, and in the last section, the autonomous mapping process and its benefits

are discussed.

3.1 2D-SLAM problem formulation

The Simultaneous localization and mapping (SLAM) is the difficult task in the area of

mobile robotics which tries to handle environment exploration with the robot without

any prior information about examined area or position. To be able to create a map, the

robot has to be equipped with a proper sensor such as a LiDAR or stereo camera. Such

sensors are able to approximate the layout or shapes of the surrounding environment in

sufficient range as is reviewed in [9]. Those scans are processed sequentially and based

12
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on the changes in the scans robot tries to determine his relative movement (translation

and rotation). This could be approached in two different ways. The first approach is to

find special features in the scans such as sharp corners or specially shaped objects and

determined the robot movement by position changes of these features. This approach is

called feature-based SLAM. The second approach tries to find a transformation between

following scans, which successfully fit them on each other, this method is called scan-

matching, and since the track has no specific features and only planar scans from LiDAR

are used, it’s much more suitable for the task of this thesis.

3.2 Scan-matching problem

The task of the 2D scan-matching is to find a proper rigid transformation between fol-

lowing sensors scans to determine the robot relative motion, as shown in Fig. 3.1.

Figure 3.1: Scan matching transformation

The rigid transformation T consists from rotational matrix R and translation vector

t, which map the same object from the scan in time k+ 1 to scan in time k with relation

of the rigid transformation

xk = Rxk+1 + t. (3.1)

which in 2D representation can be rewritten to[
xk

yk

]
=

[
cos Φ − sin Φ

sin Φ cos Φ

][
xk+1

yk+1

]
+

[
tx

ty

]
(3.2)
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3.2.1 Methods review

The several methods were introduced to perform scan-matching task with different heuris-

tics. The basic method of Iterative Closest Point (ICP) introduced in [10] tries to fit scans

with the usage of the nearest neighbor point heuristics. That results in an expensive search

and possibility to stuck in a local minimum. The Polar Scan Matcher (PSM) [11] tries to

utilize the natural polar coordinate system of LiDAR scanner, and even tough is faster

than ICP, still is not efficient enough for real-time map construction. The method of a

Flexible and scalable SLAM introduced by [12] formalize the scan-matching as the oc-

cupancy grid interpolation with the approximation of map gradients. This approach is

suitable for sensors with high scan rates such as the Hokuyo LiDAR used by vehicle plat-

form and its suitable for application of racing since it’s usable without any other sensor

data from IMU or good odometry.

3.2.2 Drawbacks of Scan-matching

Scan-matching methods are generally able to perform the SLAM but occasionally suffer

in difficult situations. We can recognize those situations in two general cases. The first

case shown in Fig. 3.2 captures the situation when in the following scan a substantial

part of the new obstacle appears.

Figure 3.2: Problematic situation for scan-matching

This might lead methods with simple heuristics such as ICP to stuck in local minimum

and wrong map construction. The second case is difficult even for more complex scan-

matching methods and captures a moment when two following scans of moving robot are

unrecognizable from each other. This situation is shown in Fig. 3.3.

In this situation, scan-matching results in zero transformation same as the robot would
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Figure 3.3: Straight corridor as a problematic situation for scan-matching

be stopped. To avoid this, the scan-matching have to be able to consider data from

odometry or ensure, that sensors range is larger than the length of the longest possible

corridor of explored environment.

3.3 Hector slam

Since the used LiDAR has sufficient range of 30m, the used SLAM method should not

suffer from the second problematic scenario of straight corridors. That also means, that

no special integration of odometry to SLAM is needed.

Because of that, we decided to choose the Hector SLAM algorithm based on Flexible

and Scalable SLAM [12], which is leveraged with a high scan rate of Hokuyo LiDAR

and shown excellent results in hand-held mapping scenario. The Hector SLAM is also

provided as an open-source ROS package. Thus it is documented and easy to integrate

[13].

Hector slam perform mapping on the occupancy grid represented by resolution. LiDAR

scans are firstly interpolated into this grid as shown in Figure 3.4 and then scan-matched

to already created map. Since the Hector SLAM works with probabilities, every point

of the occupancy grid represents the probability of present obstacle in the area which

changes with every following scan. The final map is the result of probability thresholds

which allows mapping to correctly reconstruct the map in the case when some slight layout

changes or noise measurement occurs.

The final map is constructed from cells of occupancy grid, where each cell represents

one of three mapping state.
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Figure 3.4: Occupancy grid interpolation (r - resolution of the occupancy grid)

3.3.1 Map resolution

Hector SLAM is adjustable with several parameters. The most important parameter is the

resolution of the map, which affects either the mapping process and localization. Having

a map with low resolution can lead to a bad approximation of the track environment. On

the other hand, using a map with high resolution, could be computationally demanding.

Figure 3.5: Maps of the track with different resolution (0.1m, 0.05m, 0.025m)

The resolution of the occupancy grid should always be selected based on the mapped

environment. For racing track mapping, the resolution 0, 05m is a good compromise.

3.3.2 Influence of the scan rate

As was mentioned at the beginning of this Section, the Hector SLAM method is utilizing

the high scan rate of the sensors. The algorithm is minimizing the criterion function

[12](Eq. 7), which is aligning the scan on the known map, considering slight movement
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between last known and current position. Result of this optimization is the rigid trans-

formation described by Eq. 3.2. Making those moves finer between each scan is helping

the algorithm to find an optimal solution. Hence with the higher rate of the scan sensor,

we are able to create a map with a robot going at a higher speed.

To verify this, the experiment was conducted. The robot was set to move with slow

constant speed around the track, and the data from sensors were recorded. After that,

the mapping was performed several times on the data record, where the data from the

scan were continuously down-sampled. Examples of results are shown in Fig. 3.6

Figure 3.6: Mapping with scan different rate of LiDAR sensor (40Hz, 20Hz, 13Hz)

The result showed, that scanner at the frequency of 13Hz was not able to construct

the map correctly, even if the speed of the car was very slow. Because of that, the choice

of used LiDAR could be essential regarding fact, that some equally expensive LiDARs

offers only 15Hz scan rate.

3.4 Mapping experiments

With the integrated Hector SLAM, several different environments were mapped to verify

the function. Firstly, the map of the small track shown in Fig. 3.6 was made. The

track is characterized with narrow rounded corridors, which could be problematic for the

scan-matching. However, the mapping was successful. The second examined case was

the large track with either narrow and spacious corridors. Since the mapping algorithm

does not perform any backward corrections, mapping suffers to additive error. That could

be crucial at the moment when the vehicle is about to finish the mapping lap, and the

algorithm should connect the walls of the large loop. The result of the experiment is

shown in Fig. 3.7(a).

The last experiment tries to map a more complex environment, and it was conducted

in the office area. The result is shown in Fig. 3.7(b). It turned out, that office area with
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(a) (b)

Figure 3.7: Constructed maps of different environment

a lot of straight walls and features was easy to map and even if the car moved with large

accelerations the mapping algorithm was able to handle it.

3.5 Autonomous mapping

As was stated at the beginning of this Chapter, the rules of the competition allow map-

ping the track manually. However, the automatic mapping has important benefits. The

mapping procedure could suffer when the car accelerates and tilt. The usage of a reactive

algorithm in this stage with slow and constant velocity provides optimal conditions for

mapping algorithm. If the map is during the mapping stage corrupted, the slower speed

could be set, and mapping could be repeated until the map is constructed successfully.



Chapter 4

Localization

In this Chapter, the localization task in the known environment will be introduced. The

sensor-based mobile robot localization or pose estimation is a challenging task, and it is

recognized as a key problem in mobile robotics. Even though the plenty of approaches has

been introduced either in 2D and 3D space, finding a robust solution for specific mobile

robot or vehicle is never a simple task.

The localization of the vehicle is necessary for decision making and trajectory tracking.

In this stage is assumed, that the racing track map is known and its layout has not

changed significantly since the mapping stage. As the vehicle is not able to use GPS,

Indoor localization or any other absolute position localization method, the localization

has to be done primarily by LiDAR.

In this Chapter, the localization methods overview will be provided regarding to vehicle

platform sensor equipment. Then in Section 4.2, the Monte Carlo Localization is described

together with ray casting methods. Section 4.3 provide the wheel odometry calculation

concerning vehicle Ackermann steering kinematics and in the last Section 4.4 approaches

to pose filtering and estimation rate increasing are introduced.

4.1 Method overview

The several methods for indoor localization in a known environment have been intro-

duced so far. Those methods are usually divided into groups of Filtering techniques

and Probabilistic techniques as reviewed in [14]. The Filtering techniques such as [15]

or [16] often assume usage of absolute position sensors or knowledge of information from

which the absolute robot position could be estimated. In that case, the filtering is per-

formed to process the measurement noise or to provide optimal position estimation from

multiple data sources. In the second case, when the robot sensors are used to perform rel-

ative motion localization (sometimes stated as track keeping), the filtering tries to process

19
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the sensor data to minimize the uncertainty of robot relative motion. This localization is

then provided by estimation with knowledge of those relative motion steps and the initial

position of the robot. Since the racing car is not equipped with any absolute position

sensor, the filtering methods could be used only to determine the relative movements of

the vehicle. However, estimation of those movements always suffers from additive error

and uncertainty of the estimated position grows with every next measurement. Hence,

this type of localization could not be utilized for longer times and its not suitable for the

racing task.

Figure 4.1: Growing covariance of global position estimation base on relative movements
with additive error

The Probabilistic techniques are using sensors data to estimate the position on the

map, by computation of the likelihood for measured data and randomly posed hypothesis

(or particles) on the map. This technique refers to particle filter, which is together with

the Markov localization the background of Monte Carlo Localization (MCL) methods

generally introduced in [17]. The MCL method is able to localize the robot without

prior knowledge of the initial position using the LiDAR. Hence, its suitable solution for

localization of racing platform.

4.2 Monte Carlo Localization

Let us introduce the known map (the occupancy grid with a given resolution) as a set of

states M , on which the robot position could be represented by

l = 〈x, y, θ〉, l ∈M (4.1)
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where x, y denotes the robot coordinates in map Cartesian reference frame and θ is the

robots heading angle. Then let us consider the motion of robot formulated as a conditional

probability function given by

P (l′|l, a) (4.2)

which denotes the robot movement from position l to position l′ with performed action

a. Note that action a could represent the velocity command, steering command, or any

other variable inducing the robot change of position. Eq. 4.2 is called motion model.

Finally, let us assume the sensor model as a conditional probability function

P (s|l) (4.3)

which represents the likelihood, that measured data s are the result of a robot being at

the position l.

4.2.1 Markov Localization

The Markov Localization (ML) is the probabilistic approach of robot pose estimation

based on the measured data s and performed motions caused by action a. The Markov

localization is introducing the belief distribution

B(l) ∈ (0, 1), (4.4)

which is giving the probability of robot being in position l for any l ∈ M . Initially,

when the robot has no prior knowledge of robot position, B(l) is represented by uniform

distribution, giving the same probability for every state l. This Belief is then updated in

two stages – Robot motion stage and Sensor readings stage.

The robot motion stage is performed when the robot is being commanded with action

a and changes the position. The Belief B(l) is updated as

B(l)←
∫
P (l|l′, a)B(l′)dl′. (4.5)

The sensor reading stage use the Bayesian rule to update the belief B(l) with motion

model 4.3 when sensor data s are received as

B(l)← αP (s|l)B, (4.6)
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where α is normalizing factor which ensure that

∑
l∈M

B(l) = 1 (4.7)

This update process is applicable only if the environment is Markovian. Thus the past

sensor readings are conditionally independent of future readings. Belief update is repeated

with every following sensor readings s and robot action a. The state with the largest

probability B(l) is then picked as a position estimate.

Working with the belief B(l), which has to keep information about the probability

of every state l in the large discrete domains M such as occupancy grids, would be very

demanding. Hence the solution of ML has to be extended.

4.2.2 Monte Carlo method

The MCL key idea is to approximate the ML belief B(l) by a set of N weighted, random

samples distributed over the domain M . Those samples are called particles and are

represented by

〈l, p〉 =
〈
〈x, y, θ〉, p

〉
, (4.8)

where l denotes some position on the map and p is a numerical weighting factor. For all

samples have to apply
N∑
n=1

pn = 1, (4.9)

thus the weighting factors are analogous to discrete probability.

Initially, when we do not have any prior information about real robot position, all

N particles are distributed uniformly over the occupancy grid. The goal of MCL is to

optimally update the prior belief (Position of particles and their weights) based on robot

movement caused by action a and the received sensor data s. The procedure is the same

as for the ML, and it’s structured into Robot motion stage and sensor readings.

The Robot motion is performed when the robot perform movement with action com-

mand a. Each particle is shifted from position l to different position l′, which is randomly

picked from the condition probability 4.2. Weighting factors p of all shifted particles are

set to value N−1 and the Sensor readings is then incorporated. Sensor readings uses

the current measurement data s to recompute each particle weighting factor p with sensor

model 4.3

p = αP (s|l′), (4.10)

where α is the normalization factor that ensures the condition 4.9. The N particles with

their weighting factors then create the new approximation of belief for the next generation,
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and a new sample of N particles is randomly picked from this belief.

It can be shown, that estimation of the robot position is getting better with every next

sample and particles converge to the real vehicle position with some covariance. From

all particles, the one with the highest likelihood is being picked and considered as an

estimated position. The size of the particles sample N could influence the efficiency of

the MCL, but since the MCL is a demanding process, increasing the number of particles

could lead to slow pose estimation.

4.2.3 Ray casting

In the Sensor reading step, the MCL has to be able to generate virtual range sensor data

for every particle position in the map, to be able to perform likelihood calculation 4.3.

This process is called ray casting, and its essential principle is shown in Fig. 4.2.

Figure 4.2: Particle virtual range sensor approximation by ray casting

Ray casting algorithm works on the provided occupancy grid of the environment and

a sample of N particles. Given the algorithm, the so-called casting query (x, y, θ)query, the

algorithm finds the closest obstacle (x, y)colide in the desired direction θquery and returns

the Euclidian distance d

d =
√

(xcolide − xquery)2 + (ycolide − yquery)2). (4.11)

The algorithm is determining the particle distances from the obstacles by casting multiple

rays in the given range of directions and angle increment φ. Since the dozens of rays have

to be cast for each particle and thousands of particles has to be maintained every Sensor

readings. The choice of the ray casting method is crucial for MCL performance.
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Bresenham’s Line (BL) casting method

Bresenham’s Line is the basic method of line approximation in grid environment [18].

BL ray casting use this line approximation to iteratively search along given direction for

obstacles. The BL main advantage is that the initialization time of the algorithm is almost

none compared to other algorithms since the BL method uses the pure map with no other

adjustments.

Ray marching (RM) casting method

Ray marching method introduced in [19] is also using the BL algorithm for line approxi-

mation, but before the algorithm is initialized, RM method generates the look-up table,

where the every occupancy grid cell is assigned the distance to the closest obstacle. When

the RM is then performing the ray casting, the line is not searched one by one cell, but

algorithm iteratively jumps for the number of cells of closest obstacle given by look-up

table. This principle is shown in Figure 4.3.

Figure 4.3: Comparison of BL and RM function

The RM method is generally faster than BL method and in the worst case (Ray is

heading close and along the wall) is as good as BL method. The initialization of the

algorithm is slower because of the look-up table computation, but that is not an issue

since the map is not changing during the localization task.

Compressed Directional Distance Transform (CDDT) casting method

The CDDT casting method introduced in [20] utilizes the three-dimensional look-up table.

This look-up table stores the closest distance for given particle coordinates and direction,
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hence in 2D grid map no more searching is needed, and the casting query return the

distance of obstacle in given direction immediately.

4.2.4 Ray casting comparison

The three discussed ray casting methods were tested in several conditions. The few test

drives were made on different types of tracks, and the data from sensors were recorded.

On the recorded data samples, the MCL was performed with the usage of different ray

casting methods and the varied number of particles. The result of the measurement is

seen in Fig. 4.4
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Figure 4.4: The estimation rate of MCL with different ray casting method

From the result could be seen, that CDDT ray casting method has the best perfor-

mance, especially in the area of 3500-4000 particles, where the localization provides the

best performance in the sense of losing the position. The 6000 particles is the MCL limit,

for which any of ray-casting method was not able to localize the vehicle robustly for higher

speeds

4.3 Odometry

The odometry of the robot use the data about vehicle velocity and steering to estimate

robot relative motion. As was already mentioned, the odometry suffer to additive error

and its not possible to use it for pure localization. However, the knowledge of odometry

could be used as an action a in MCL Robot motion stage for robot realtive motion

estimate. To determine the odometry, the data from vehicle ESC (VESC) unit will be

used in the combination with the data about the steering command.
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4.3.1 Velocity identification

The forward rolling motion of the racing platform is provided by DC-brushless motor

controlled by low-level velocity controller VESC. The VESC is controlled by PWM signal

from the computer unit, thus the duty cycle of the PWM signal is the velocity action

command al.

From experiments was found out, that the maximum forward velocity was reached with

duty cycle 11.96%, minimum forward speed needs duty cycle 9, 56%, minimum backward

speed is set with duty cycle 8.54%, and maximum backward speed require duty cycle

5.98%. Between minimum forward and backward speed is the deadzone, where car is

being stopped.

Figure 4.5: Forward and backward velocity duty cycle limits

To identify the vehicle velocity characteristics, the simple experiment was conducted.

The Constant duty cycle has been set for a given interval and the average speed of the

car was derived from travelled distance. From this experiments we get the results shown

in Figure 4.6
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Figure 4.6: Forward velocity identification
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Regarding to data pattern, the relation between duty cycle and vehicle velocity was

determined as linear. The data were interpolated with function

al = vgainvl + voff = 0.33vl + 9.56 (4.12)

4.3.2 Steering identification

Similarly as the velocity, the steering identification has to be done for correct odometry

evaluation. The Vehicle is steered by servomotor also controlled with duty cycle of PWM

signal. The servomotor is setting the steering angle δ with action command as.

Values of duty cycles for maximum and minimum values of left and right steering are

shown in Figure 4.7

Figure 4.7: Steering duty cycle limits

The goal of the identification is to find a function describing the relation between the

action command as and the steering angle δ. Because of that, the following experiment

was conducted. The constant duty cycle as was set to the vehicle together with low

velocity command av. The vehicle starts to drive along the fixed sized circle with radius

R. The radius is measured and the steering angle could be then derived from equation

2.1 as

δ = arctan
L

R
(4.13)

The data from the measurement shown in the Figure 4.8 could be then interpolated with

linear equation

as = sgainδ + stoff = 5.91δ + 9.02 (4.14)
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Figure 4.8: Steering duty cycle limits

4.3.3 Odometry calculation

With the derived relations 4.12 and 4.14 the odometry could be evaluated. The goal of

this calculation is to determine the most accurate estimate of the current longitudinal

velocity vl and the angular velocity θ̇. The VESC unit is able to provide a feedback

about the output of brushless motor velocity low-level control in the form of duty cycle.

Unfortunately, the servomotor is not able to provide any feedback, hence the current

steering command provided to the servomotor has to be used. Taking steering command

as the input information means, that we are neglecting the servomechanism dynamics,

however, since we consider only small relative changes of steering angle during the control

process, we will deal with that.

The velocity of the car vl is directly computed from the action command al and

equation 4.12. The angular velocity θ̇ is determined from equation 4.14, vehicle steering

command as and vehicle kinematic equation 2.4 as

θ̇ = vl
tan δ

L
= vl

tan(stgainas + stoff )

L
(4.15)

4.3.4 Odometry testing

Regarding to the fact, that odometry identification was performed with simple techniques,

which could contain lot of uncertainty. The testing experiment was conducted. The car

is driven along the taped cross on the floor and command to make several maneuvers

essentially outlined in the Figure 4.9

The goal of the test is to tune odometry constants in equations 4.12 and 4.14, thus the

additive error is decreased to minimum and in final position the odometry pose estimation

will be as close as possible to initial position.
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Figure 4.9: Odometry testing maneuver

The best result was obtained, when the steering interpolation gain was changed to

as = sgainδ + stoff = 5.5δ + 9.02. (4.16)

Then the odometry provided pose estimetion shown in Fig. 4.10.

(a) (b)

Figure 4.10: The odomerty position estimation of testing maneuver before correction (a)
and after correction (b)

4.4 Increasing pose estimation rate and filtering

The MCL performs position estimation with the different frame rate based on number

of used particles and ray casting method. Hence the data from odometry are usually

available more often, the idea of data fusion is to make the other estimation of position

regarding to position estimate from MCL and data from odometry, The goal of the data
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fusion is to enlarge rate of the position estimation, which could be used for better control.

or provide the best pose estimation in case when the data from particle filter are not

available.

4.4.1 Relative pose estimator

In this section the Relative pose estimator algorithm will be introduced as a simple method

how to increase the rate of vehicle pose estimations using the data from odometry and

knowledge of vehicle kinematics. The essential function of the algorithm is shown in the

Figure 4.11

Figure 4.11: Relative pose estimation from odometry

Let the pest to be a position estimation of the Relative pose estimator algorithm

denoted as

pest = 〈xe, ye, θe〉, (4.17)

where the xe, ye and θe are the estimated coordinates of the vehicle in world frame. The

algorithm is initiated with the incoming odometry data ok in the form

o = 〈vk, θ̇k〉 (4.18)

and the incoming data from MCL as a pose estimation pMCL. The algorithm set the

estimated position regarding to MCL estimation

pest = pMCL (4.19)

and wait for next odometry data available in time k + 1. When the data from odometry

ok+1 are available the dt is introduced as time difference between time of last estimation
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update and time k + 1. The estimation of vehicle pose is then updated with kinematic

model as

pest =〈xe + vk cos(θe + θ̇kdt)dt,

ye + vk sin(θe + θ̇kdt)dt,

θe + θ̇kdt〉

(4.20)

This procedure repeats when the next odometry data are available until the MCL perform

next estimation and the pest is corrected again

pest = pMCL (4.21)

The result of this estimation could be seen in Figure
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Figure 4.12: Result of relative pose estimation on real data

4.4.2 EKF for ackermann platform kinematics

In this section, method of position filtering will be introduced to provide an option for

noisy data case of MCL estimation. The MCL could provide a noisy data in several cases.

In the first case, the small number of MCL particles could result in noise caused by worse

probabilistic properties. The second case could be caused by difficult structure of the

surrounding environment with similar patterns. The filter use the knowledge of odometry,

vehicle kinematics and given statistic properties to perform the optimal estimate.

For the filtration the extended kalman filter will be used, which could handle the

nonlinear kinematics of ackermann platform. The discrete dynamic system of vehicle
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could be defined as

xk = f(xk−1, uk−1) + wk−1 (4.22)

yk = h(xk) + vk, (4.23)

where xk is the inner state of the system in discrete time k, uk is input to the system,

f(xk, uk) is the nonlinear state equation of the system and wk is the process noise. yk

then denote the output of of the system, h(xk) is the nonlinear output equation and vk

is the measurement noise. The process and measurement noise are modeled as a white

noise with the covariances

E[wkwk
T ] = Q (4.24)

E[vkvk
T ] = R (4.25)

(4.26)

and random vectors wk and vk are assumed to be uncorrelated, thus apply

E[wkvj
T ] = 0 for all k and j (4.27)

The Extended Kalman Filter is divided into two steps – Model Forecast step and Data

assimilation step. Hence the probability properties are in most cases unknown, matrixes

Qk and Rk are usually considered as an adjustable part of the filtering and are set manually

to gain the best filtering performance. The state vector xk is the state of the vehicle

considered as vehicle position coordinates and heading angle

xk =


xck

yck

θk.

 (4.28)

Since the equation f(xk) is nonlinear, Extended Kalman Filter use the Tyler expansion

of first order to approximate the forecast and next estimation of xk+1.

The filtering is intiated with state x0 and initial covariance P0 such as x0 equals to

last known position from MCL and P0 = Q. Then the Model Forecast Step is performed
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Model Forecast Step (Predictor)

The Model Forecast step propagates the current estimated state and covariance throw

state equation. The nonlinear state equation of the vehicle kinematics is

xk = f(xk−1) =


xck−1 + vl cos(θk−1 + θ̇dt)dt

yck−1 + vl sin(θk−1 + θ̇dt)dt

θk−1 + θ̇dt

 , (4.29)

where vl, θ̇ is the longitudinal velocity and angular velocity of the vehicle, considered as

last known data from the odometry. The sampling time of the filter is denoted as dt and

its set to match the rate of MCL estimations. The state forecast xk
f is than performed

as

xfk = f(xak−1) (4.30)

P f
k = Jf (x

a
k−1)Pk−1J

T
f (xak−1) +Q, (4.31)

where xak−1 and Pk−1 denotes the optimal estimation and covariance from last step (Ini-

tially considered as x0 and P0) and Jf states the Jacobian of nonlinear state equation

f(xk)

Jf =


∂f1(xk)
∂xc

∂f1(xk)
∂yc

∂f1(xk)
∂θ

∂f2(xk)
∂xc

∂f2(xk)
∂yc

∂f2(xk)
∂θ

∂f3(xk)
∂xc

∂f3(xk)
∂yc

∂f3(xk)
∂θ

 =


1 0 −vl sin(θ + θ̇dt)dt

0 1 vl cos(θ + θ̇dt)dt

0 0 1

 . (4.32)

Data Assimilation Step (Corrector)

The Data Assimilation Step uses the Linear Mean Square estimate to perform the estima-

tion between the new measured data yk and the forecast prediction xfk with the following

equations

Kk = P f
k J

T
h (xfk)

(
Jh(x

f
k)P

f
k J

T
h (xfk) +R

)−1

(4.33)

xak = xfk +Kk(yk − h(xfk)) (4.34)

Pk = (I −KkJh(x
f
k))P

f
k . (4.35)

The Jh is generally the Jacobian of output nonlinear equations h(xk), however, since

measured data are equal to the inner state of the system, the Jacobian Jh is the identity
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matrix

Jh =


1 0 0

0 1 0

0 0 1

 (4.36)

The computed state xak is the final estimation used as the output from the filter and as a

the initial state for the next round of the filtering process. The whole process is repeated

with the next measurement. Result of filtration by EKF is seen in Fig.
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Figure 4.13: Pose filtering by EKF

4.4.3 Result discussion

From the experiments of MCL localization could be seen, that wheel odometry has the

huge impact on the precision of pose estimation, thus it is important to perform the wheel

odometry tuning. In some cases the user could be pushed to lower the number of MCL

particles due to lack of computational power or have to localize the robot in difficult

environment. In both cases, the MCL could provide noisy estimations or provide the data

with insufficient rate. Therefore, the Relative pose estimator or EKF could be utilized to

improve the localization process.

On the tested scenarios the MCL localization worked well in configuration of 4000

MCL particles and CDDT ray casting method. The result of vehicle localization on the

race track is shown in Fig. 4.14
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Figure 4.14: Recorded trajectory of localized vehicle



Chapter 5

Trajectory generation

When we are able to localize the car on the known map, the high-level trajectory planning

could be established. The benefits of this approach are, that planned trajectory could be

optimized in the way of vehicle dynamics limits and lap time. This optimization task is

usually called Optimal Racing Line planning.

The trajectory is in all calculations considered as a curve, however in the discrete

world is being approximated as a sequence of points, where every point gives the vehicle

reference for the desired position, heading angle and speed or acceleration. To be able to

construct the trajectory leading the car inside the racing circuit, the several features have

to be recognized from the map such as left and right track boundary, track starting line

or racing direction. The planning algorithm also have to consider the size properties of

the vehicle, to avoid collisions caused by planing the trajectory near the track boundaries.

This thesis focuses on the recognition of basic track features from the map and planing

of simple trajectory leading the car through the lap. The optimal racing line problem is

briefly reviewed, however, due to the complexity of the task is not further examined or

implemented.

5.1 Optimal Racing line problem

The Optimal Racing line is the trajectory allowing vehicle to travel through a given track

in minimum time. This trajectory is not necessarily the shortest one, but have to allow

the vehicle to utilize its abilities as much as possible in turns and long corridors. Task

of racing line optimization dates in early 1960s, when first gradient descent and shooting

methods, were used for optimizing minimum time manoeuvring. Since then, lot of other

approaches has been introduced. In the control systems point of view, the task could

be stated as a two-point boundary problem as described in [21]. However, most of the

algorithms generally split the track into short segments (or Bezier curves) and try to use

36
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techniques of evolutionary algorithms [22],[23],[24] to find a most suitable solution. The

interesting approach is also introduced in [25], where the optimizing algorithm parameters

are directly adjusted to handle limits of single track dynamic model.

5.2 Central Trajectory algorithm

The following algorithm is the method how to automatically plan a simple trajectory

through the track. The method was introduced to discover problems related to recognition

of basic track features and to create a simple trajectory on which the tracking control

algorithms could be tested.

5.2.1 Walls recognition

The track is assumed as a corridor with left and right wall connected as two loops. To

lead the trajectory inside the track, walls has to be recognized. The occupancy grid is

represented by three numbers, -1 denotes unexplored cell, 0 is the explored unoccupied

cell and 1 is explored and occupied cell. The algorithm consider wall as a continuous

set of points (occupied cells). The first occupied cell on the map is found randomly and

added to the set. The neighborhood around this point is searched and from the searched

area all the occupied points are added into the continuous set until no more neighbors are

found. All found continuous sets are sorted by size and two larges sets are considered as

walls.

Figure 5.1: Iteratively growing continuous set

5.2.2 Center of the track

To find the center of the track, the analogy to flood-fill algorithm is used. Two continuous

sets recognized as a walls are marked with different numbers, thus the cell number does not
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have a meaning of grid occupancy anymore, but recognize to which set of the two walls the

particular cell belong. In the every iteration, the algorithm searches around neighborhood

of walls and expand the set to the unoccupied cells. This process is repeated until all cells

in the map are occupied.

Figure 5.2: Map flooding

Flooded map creates the interface between two sets. The points lying on this interface

are taken out and considered as an approximation of the center between walls of the track.

Since the trajectory has to be a sequence of following points, the sorting has to be done to

put points in order and create a loop. Hence the algorithm worked on the occupancy grid

the created trajectory is non-smooth. The non-smooth trajectory like that would generate

a non-smooth reference for the vehicle controller, hence the smoothing is performed, by

taking every N-th point of the created sequence, which makes the final trajectory much

easier to track.

5.2.3 Resulting trajectory

The final cut-off trajectory is then interpolated with spline of the third order, to get a

smooth trajectory leading approximately in the center of the track. The examples of

trajectories automatically generated by Central Trajectory algorithm are shown in Figure

5.3

5.3 Velocity profiling

The trajectory generated by Central Trajectory algorithm is the sequence of points giving

the vehicle a position reference. To perform a vehicle utilization in turns and straight

corridors, the trajectory speed reference has to be introduced. This reference has to

consider the vehicle kinematics and dynamics to prevent slipping in sharp turns and

handle vehicle to maximum speed in long corridors.
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(a) (b)

Figure 5.3: Trajectories generated by Central Trajectory algorithm

The vehicle utilization could be understood as driving with maximum possible speed

without slipping and was introduced in [2] and [26]. That is usually affected by several

aspects like, mass of the vehicle, friction of the track or curvature of the followed trajectory.

For the purpose of the given racing task the following dynamic model will be used

Fx = max − bv (5.1)

Fy = mv2κ (5.2)

Fz = mg, (5.3)

wherem is the vehicle mass, ax denotes vehicle longitudinal acceleration, b is the coefficient

of linear rolling resistance and κ is the curvature of followed path. Eq. 5.3 denotes the

same dynamic model formulated in [2], however the affect of aerodynamic forces was

neglected.

To model a tire adhesion limits the friction circle model will be used, which assumes

that slipping is prevented when

F 2
x + F 2

y ≤ (µFz)
2 (5.4)

The task of Velocity profiling is to maximize the transferable force, but meet the criteria

of the condition given by Eq. 5.4.
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5.3.1 Curvature approximation

In the vehicle dynamics Eq. 5.3 is the lateral force Fy denoted as a product of longitudinal

velocity and the trajectory curvature. Since the Central Trajectory algorithm provides the

trajectory in form of sequence of positions, the curvature of trajectory has to be carried

out.

Menger curvature

The Menger curvature is an approximation given by three point lying on the circle tangent

to an approximated curve. Those points are creating a triangle shown in Figure 5.4.

Figure 5.4: Menger curvature approximation by three points

the Menger curvature in point b is then formalized as

κ =
4A

|a− b||b− c||c− a|
, (5.5)

where A is the inner area of the given triangle and could be calculated with Heron’s

formula as

A =
√
s(s− |a− b|)(s− |b− c|)(s− |c− a|) (5.6)

with semi-parameter of the triangle

s =
(|a− b|+ |b− c|+ |c− a|)

2
(5.7)

The curvature is computed for every point on the trajectory. The result for large and

small track is shown in Figure 5.5.
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(a) (b)

Figure 5.5: curvature of predefined trajectories [m−1]

5.3.2 Velocity profiling algorithm

The velocity profiling algorithm used by [2] is the two-pass iterative algorithm, which is

precomputing the trajectory velocity reference in order to meet the criteria defined by

Eq. 5.4. The algorithm is divided into backward and forward pass. In backward pass

algorithm solves the necessary deceleration for optimal breaking before sharp turns and

in forward pass the necessary accelerations are determined.

The velocity profiling algorithm is well described in [2](Chapter 3). However, in this

thesis will be rewritten to keep the structure and clarify the principle.

Backward pass

The trajectory is defined as sequence of N points with given curvatures κ. The algorithm

is initiated with the trajectory data, vlim as a maximum velocity limit of the vehicle and

∆s, which denotes the distance between trajectory points.

The backward pass computes the maximum velocity at each step for previous sample

based on the solution of Eq. 5.4 for κ(k − 1) and ax = 0. The result is saturated with

user-defined parameter vlim and the deceleration required to achieve velocity vmax(k − 1)

with utilization of maximum available breaking function

h(κ, v, d) =


1
m

(
√
µ2F 2

z (v)− F 2
y (κ, v)), if d = 1

1
m

(−
√
µ2F 2

z (v)− F 2
y (κ, v)), if d = −1

. (5.8)

The result of the algorithm is shown in Figure 5.6(a)
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Algorithm 1: Backward pass

Data: κ(k), vlim,∆s
Result: vbwd(k), vmax(k)
k ← length(N);
vbwd(k)← vlim;
while k > 1 do

vmax(k − 1)← solution of Eq. 5.4 for κ(k − 1);
vmax(k − 1)← min(vmax(k − 1), vlim);
alim ← [v2

max(k − 1)− v2
bwd(k)]/(2∆s);

a(k − 1)← −h(κ(k), vbwd(k),−1);
a(k − 1)← min(a(k − 1), alim);

vbwd(k − 1)←
√
v2
bwd(k) + 2a(k − 1)∆s;

k ← (k − 1);

(a) (b)

Figure 5.6: Generated speed profile of backward (a) and forward (b) pass

Forward Pass

The forward pass utilize the computed sequence from backward pass algorithm and calcu-

lates the vehicle maximal accelerations to achieve the optimal speed profile, the algorithm

is described in 2. The final speed profile is shown in Fig. 5.6(b)
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Algorithm 2: Forward pass

Data: κ(k), vbwd(k),∆s, v0

Result: vfwd(k), a(k), t(k)
k ← 1;
t(k)← 0 vfwd(k)← v0;
while k < N do

alim ← [v2
bwd(k + 1)− v2

bwd(k)]/(2∆) a(k)← h(κ(k), vfwd(k), 1);
a(k)← min(a(k), alim);

vfwd(k + 1)←
√
v2
fwd(k) + 2a(k)∆;

t(k + 1)← t(k) + 2∆s[v2
fwd(k + 1) + vfwd(k)]−1;

k ← (k + 1);



Chapter 6

Control

In the following Chapter, several vehicle control strategies of trajectory tracking will be

introduced. The problem of designing such control system does not rely in the design

of controller itself, but also on correct method of trajectory preview and mathematical

modelling of the given system.

6.1 Tracking error definition

The error is the value given by the reference signal and feedback of the dynamic sys-

tem provided to input of controller. The shape of this error signal directly affects the

controller behavior and its formalization has to be approached carefully. The tracking

error as a value giving the controller feedback depends on the trajectory preview method.

Therefore in following section several trajectory preview methods will be introduced as

an approaches of tracking error computation.

6.1.1 Closest point ahead error

The Closest point ahead method briefly introduced in [27] assumes the trajectory of

discrete points and do not provide any interpolation of the curve between them. The

vehicle reference is taken as a closest point ahead (with non-negative error xe) on the

defined trajectory, as shown in Figure 6.1.

The error is computed from coordinates of the vehicle (x, y, θ) and coordinates of the

reference point (xr, yr, θr) as follows

44
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Figure 6.1: Closest point ahead error

xe = cos(θ)(xr − x) + sin(θ)(yr − y) (6.1)

ye = − sin(θ)(xr − x) + cos(θ)(yr − y) (6.2)

θe = θr − θ. (6.3)

The error ye and θe is then usually used for a lateral control of the vehicle. For the

longitudinal controller the speed given by velocity profile in point k is taken as a reference

vref and velocity error ve is computed by

ve = vref − vl, (6.4)

where vl is current longitudinal velocity of the vehicle

6.1.2 Crosstrack error

The Crosstrack error well described in [28], is the method which use the interpolation to

a line connecting the two closest trajectory points. The interpolation is outlined in figure

6.2

To preview the trajectory, the two closest point (O1, O2) are found by Euclidean

distance. The line connecting these points could be expressed in vector form as

ax+ by + c = 0, (6.5)
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Figure 6.2: Crosstrack error

where

a =
O2y −O1y

O2x −O1x

(6.6)

b = −1 (6.7)

c = (O1y −O1x)a. (6.8)

The interpolation point Oi is the closest point to vehicle current position (x, y, θ) lying

on the line described by Eq. 6.5. The coordinates of Oi are given by

Oix =
b(bx− ay)− ac

a2 + b2
(6.9)

Oiy =
a(−bx+ ay)− bc

a2 + b2
. (6.10)

From the interpolation point the error of distance from the trajectory is given by norm

ed =
√

((Oix − x)2 + (Oiy − y)2), (6.11)

Other variables defined in the trajectory points O1, O2, such as reference velocity or

reference heading angle, are interpolated with ratio of distances l1 and l2

l1 =
√

(Oix −O1x)2 + (Oiy −O1y)2 (6.12)

l2 =
√

(Oix −O2x)2 + (Oiy −O2y)2. (6.13)

The interpolation of the reference heading θr is then given in direction of movement from
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point O2 to O1 as

θref = θr2 + (θr1 − θr2)
l2

(l1 + l2)
(6.14)

6.1.3 Lookahead

Since the controlled vehicle has holonomic constrains due to ackerman steering, its not

able to make sharp turns on relatively small area. Referring the vehicle error to closest

points on the trajectory as is done by the Closest point ahead (CPA) error or crosstrack

error may lead for large overshoots in sharp turns. Regarding to that, the lookahead

approach was introduced. The lookahead discussed in [29] and used in [30] is not relating

the reference to the vehicles position, but to the lookahaed point Lh which is considered

at certain distance in front of the vehicle. This approach could bring the information

about turn earlier and avoid the overshoots in sharp cornering.

Figure 6.3: Crostrack error with lookahead

Static lookahead

The static lookahead assumes the lookahead distance Lh as a constant user-defined pa-

rameter. The lookahead point position xL, yL is then computed as simple transformation

from vehicle coordinates

xl = x+ Lh cos(θ) (6.15)

yl = y + Lh sin(θ). (6.16)
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The choice of the distance is then crucial to track layout and vehicle velocity range

Adaptive lookahead

The Adaptive lookahead considers the variable lookahead distance Lh as a function of

vehicle longitudinal velocity vl. Note the task is then not formalized as a constant distance

preview anymore, but could be considered as constant time preview, hence the lookahead

distance Lh is computed as

Lh = tlvl, (6.17)

where tl denotes the constant user-adjusted time parameter. The position of the lookahead

point is then computed by Eq. 6.16.

6.1.4 Experiment

To compare the tracking error method the experiment was conducted. The vehicle was

manually driven around the track and trajectory errors from all methods were recorded.

the result is shown in the Fig. 6.4.
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Figure 6.4: Comparison of tracking error methods

From the result could be seen, that on the fine sampled trajectory used in the ex-

periment the CPA error and crosstrack error provides the same result. However, the

crosstrack error is always the better option, hence it gives the smooth reference to the

controller in every occasion. The lookahead error provides the controller with trajectory

preview in advance as it could be seen in Fig. 6.4(b). However, the reference
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6.2 Lateral control

The main task of trajectory tracking problem is the vehicle lateral control, which goal is

to continuously set vehicle steering δ to follow the predefined trajectory by penalizing the

tracking error. The basic approach of trajectory tracking is to use a error penalization,

which directly provides the vehicle steering action. Such control could be developed

without prior knowledge of vehicle dynamics or kinematics and fine tuned to work properly

on a simple tracks. However, this simple control method is usually efficient under static

conditions such a constant longitudinal velocity or trajectory with homogeneous curvature.

The other approach is the model-based control, which utilize the platform mathematical

model to determine the optimal steering action.

6.2.1 Lateral control without mathematical model

The following approach of lateral control without mathematical model was introduced in

[27] to perform a task of trajectory tracking of two-wheel robot. Such robot has different

holonomic constrains and kinematics then the ackermann platform. However, when the

non-zero longitudinal velocity is considered, behavior of both platforms is similar.

Let us assume that the trajectory is previewed with crosstrack error defined in 6.1.2.

The preview in time k gives vehicle reference position on the trajectory defined by co-

ordinates xr(k), yr(k), θr(k) from which the lateral error ye and heading error θe are

determined. From last two samples of trajectory preview we are able to determine the

angular velocity of reference heading by

ωr =
θr(k)− θr(k − 1)

Ts
, (6.18)

where Ts denotes the sampling period. The control law then could be introduced as

ωa = k1ωr + k2θe + k3
sin(θe)

θe
ye, (6.19)

where k1,k2 and k3 are the adjustable tuning constants. The output of control law is the

vehicle reference angular velocity, which determines the steering angle δ as relative change

by integration

δ = δ +
ωa
Ts

(6.20)

6.2.2 Model-based controller structure

The model-based control is considering the task of trajectory tracking as a linear control

system design. In this thesis the trajectory tracking task will be designed as a servomech-
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anism problem as introduced in [2](Chapter 4). Servomechanism problem its suitable for

reference tracking and provides a unique structure for further LQR and MPC design.

Structure of servomechanism problem

Let us consider the controled system as a Linear Time Invariant (LTI) discrete system

given by state equations

x1(t+ 1) = A1x1(t) +B1u(t)

y(t) = C1x1(t) +D1u(t),
(6.21)

where x1 ∈ Rnx is the control system state vector, u ∈ Rnu is the system input and

y ∈ Rny is the output. Note, that (A1,B1) are considered stabilizable. Then let us

consider a second LTI discrete system as a reference generator

x2(t+ 1) = A2x2(t)

r(t) = C2x2(t),
(6.22)

where x2 ∈ Rnx is the state of reference generator with observable (A2,C2) and r ∈ Rny

is the generated reference. With the controlled system ’6.21 and the reference generator

6.22 the tracking error could be introduced as

e(t) = r(t)− y(t). (6.23)

Since we do not consider any feedthrough, the zero matrix D does not affect the error

which could be the formalized as

e(t) = C2x2 − C1x1. (6.24)

The extended servomechanism system could be then introduced as

x(t+ 1) =

[
A1 0

0 A2

]
x(t) +

[
B1

0

]
u(t)

e(t) =
[
−C1 C2

]
x(t)

(6.25)

where,

x(t) =

[
x1(t)

x2(t)

]
. (6.26)

The system 6.25 is the servomechanism structure, where independent parts of matrix

A are split into controlled system and reference generator. Therefore the output of this



CHAPTER 6. CONTROL 51

Figure 6.5: Servomechanism structure

system could be organized as a tracking error e(t). Optimal minimization of this error

lead to optimal trajectory tracking.

Structure with known disturbance

The previously introduced structure of servomechanism problem 6.25 could be extended

of known disturbance d of reference signal. This disturbance change the structure of the

sevomechanism problem to

x(t+ 1) =

[
A1 0

0 A2

]
︸ ︷︷ ︸

Â

x(t) +

[
B1

0

]
︸ ︷︷ ︸

B̂

u(t) +

[
0

E1

]
︸ ︷︷ ︸
Ê

d(k)

e(t) =
[
−C1 C2

]
︸ ︷︷ ︸

Ĉ

x(t)

(6.27)

where,

x(t) =

[
x1(t)

x2(t)

]
, (6.28)

where matrix E2 feed the disturbance into the reference generator system. This structure

is giving an option to utilize future information about trajectory shape in MPC control

design

Vehicle lateral model

The servomechanism structure considers that either controlled system and reference gener-

ator consist of states from which the output error e(t) could be determined by substraction
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Figure 6.6: Servomechanism structure with known disturbance

of their outputs as outlined in Eq. 6.24. In this thesis the control system configuration

use the error ed as a distance of vehicle from the trajectory and error of the vehicle head-

ing angle θe. Therefore the projection of those errors rates has to be included into the

controlled system. The rate of crosstrack error with assumption of small heading error eθ

could be linearized as

ėd = vl(θ − θref ) = vleθ, (6.29)

where vl is the vehicle longitudinal velocity. As the non-zero error rate is caused by the

vehicle motion at certain direction and change of trajectory reference, the error rate could

be split into two parts

ėd = −ḋ1 + ḋ2 = − (vlθ + vl
lf
L
δ)︸ ︷︷ ︸

d1

+ vlθref︸ ︷︷ ︸
d2

. (6.30)

The heading error of the vehicle eθ evolves based on the steering angle δ, and reference

heading angle is changing according the trajectory curvature. The result error rate could

be then determined as

ėθ = −vl
L
θ + vlθref . (6.31)
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With this assumption the controlled system is formulated as
ḋ1

θ̇

δ̇

 =


0 vl vl

lf
L

0 0 vl
L

0 0 0


︸ ︷︷ ︸

A1


d1

θ

δ

+


0

0

1


︸︷︷︸
B1

u(t)

y(t) =

[
1 0 0

0 1 0

]
︸ ︷︷ ︸

C1

(6.32)

an the reference generator is defined as
ḋ2

θ̇ref

κ̇ref

 =


0 vl 0

0 0 vl

0 0 0


︸ ︷︷ ︸

A2


d1

θ

δ

+


0

0

1


︸︷︷︸
E2

u(t)

y(t) =

[
1 0 0

0 1 0

]
︸ ︷︷ ︸

C2

(6.33)

The servomechanism problem with known disturbance is then modeled as Eq. 6.27



ḋ1

θ̇

δ̇

ḋ2

˙θref

˙κref


=



0 vl vl
lf
L

0 0 0

0 0 vl
L

0 0 0

0 0 0 0 0 0

0 0 0 0 vl 0

0 0 0 0 0 vl

0 0 0 0 0 0


︸ ︷︷ ︸

Â



d1

θ

δ

d2

θref

κref


︸ ︷︷ ︸
x(t)

+



0

0

1

0

0

0


︸︷︷︸
B̂

u(t) +



0

0

0

0

0

1


︸︷︷︸
Ê

d(t)

[
ed

eθ

]
=

[
−1 0 0 1 0 0

0 −1 0 0 1 0

]
︸ ︷︷ ︸

Ĉ



d1

θ

δ

d2

θref

κref



(6.34)

the whole system is then discretized with corresponding sampling period Ts
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6.2.3 LQR

The first model-based control strategy used to perform trajectory tracking is Linear-

Quadratic Regulator (LQR), which minimize the quadratic criterion function J on given

horizon of length N

J =
1

2
xT (N)Q′N(N)x(N) +

1

2

N−1∑
t=0

eT (t)Q′e(t) + uT (t)R′(t). (6.35)

The QN and Qe denote the positive semi-definite weighting matrices of the terminal cost

and R is the positive definite weighting matrix of the control input. Since the controller

does not perform the regulation task, the criterion function does not depend on the

system state x. However, penalize the system output error e(t). This task is called

Linear-Quadratic optimal servomechanism.

Figure 6.7: LQ optimal servomechanism structure with state feedback

The solution of LQ servomechanism is a state feedback obtain by Joseph’s stabilized

Riccati equation. The control law given by the solution could be written as

u(t) = −K1(t)x1(t)−K2(t)x2(t) (6.36)

The matrices K1 and K2 are the result of iteration over N steps described in Algorithm

3. The tuning parameters of the controller are the weighting matrices R and Qe which

are used to compute initial matrices.

The action u is the resulting steering angle set to the vehicle servomotor.
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Algorithm 3: LQ servomechanism

Data: (A1, B1, C1, D1), (A2, B2, C2, D2), Qe, R,N
Result: u
Q1 ← CT

1 QeC1;
Q2 ← −CT

1 QeC2;
P1 ← Q1;
P2 ← Q2;
k ← N ;
while k > 0 do

K1(k − 1)← (R +BT
1 P1(k)B1)−1BT

1 P1(k)A1;
K2(k − 1)← (R +BT

1 P1(k)B1)−1BT
1 P2(k)A2;

G← A1 −B1K1(k − 1);
P1(k − 1)← GTP1(k)(G) +KT

1 (k − 1)RK1(k − 1)Q1;
P2(k − 1)← (GTP2(k)A2 − P1(k)B1K2(k − 1)) +KT

1 (k − 1)RK2(k − 1) +Q2;
k ← (k − 1);

u← −K1(t)x1(t)−K2(t)x2(t)

6.2.4 MPC

The Model Predictive Control approach is minimizing the same criterion function as the

LQ servomechanism. However, the result of the optimization is the open loop control

sequence ū minimizing the output error e on prediction horizon given by Np samples.

The feedback is obtained by applying only the first action input from the open loop

sequence and performing the optimization again in the next time step. The benefit of

MPC is, that optimization allows to extend the problem for nonlinear constrains such as

maximal steering angle. The solution of MPC is described in detail in [2](Chapter 5) and

the problem is stated as follows

min
ū,

1

2
x̄T Q̄x̄+ ūT R̄ū

s.t.Āx̄+ B̄ū = b̄,

biq < Aiq[x̄
T , ūT ]

. (6.37)

Let us write response predictions of dynamic system in following matrices

Ā =


−I
Ân+1 −I

Ân+2 −I
. . . . . .

 , B̂ =


B̂n

B̂n+1

B̂n+2

. . .

 (6.38)
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b̂ =


−Ânxn − Êndn
−Ên+1dn+1

−Ên+1dn+1

...

 . (6.39)

The criterion function given in 6.37 use the matrices Q and R

Q̄ =


Qn+1

Qn+2

. . .

Qn+Np

 , R̄ =


Rn

Rn+1

. . .

Rn+Np−1

 (6.40)

, where

Qn = ĈTQeĈ (6.41)

and R is a scalar, since the system has only one input u. The algorithm enter the current

state vector xn to a matrix b̄ together with the disturbance preview sequence d, which

serves as an optimization initial conditions. Optimization is also provided with vector

h =


δl+1

δl+2

...

δl+Np

 , (6.42)

which use the constant δl to limit the steering action u. Since the problem has the

nonlinear constrains, the problem has to be solved numerically. For that purpose the

solver cvxpy was used. The optimization was done by following code.

import cvxpy as cv

u = cv.Variable((Np,1))

x = cv.Variable((Np*5,1))

obj = cv.Minimize((1 / 2) *(cv.quad_form(x, Q_bar) + cv.quad_form(u,R_bar)))

prob = cv.Problem(obj,[A_bar*x + B_bar*u == b_bar, u <= h, -h <= u])

prob.solve()

The result of the optimization is the open loop sequence of control input δ as shown in

Fig. 6.8 From the sequence ū, the first input is taken and considered as control action.
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Figure 6.8: Result of optimization - open loop control sequence ū

6.2.5 Experiments

Several experiments have been made to compare the performance of LQR and MPC lateral

controller. Since both controllers use same criterion function, the weighting matrices Q

and R did not differ and were set as

Qe =

[
1 0

0 0.1

]
R =

[
10
]
. (6.43)

This configuration emphasize the error ed and adjustment of R then set the aggressivity

of control. The result of control is shown in Fig. 6.9

From the Figure could be seen, that both controllers have good performance on straight

sections, however in the sharp turn the MPC is reacting more quickly due to trajectory

preview, which brings the information about upcoming turn in advance. Therefore the

steering action is performed sooner and cornering is handled with smaller overshoot.

The main disadvantage of MPC is the necessity of a numerical solver, which performance

depends on the solver implementation together with the used length of prediction horizon.

In conducted experiments the solver was set to perform optimization over prediction

horizon of 20 steps (1 second), which limits the control loop to 20Hz.
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Figure 6.9: Experiments of trajectory tracking with LQR and MPC
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Conclusion

This thesis successfully deals with the design of a system able to localize the vehicle model

on the racing track and develop a control system performing the trajectory tracking. In

Chapter 3 thesis deals with the design of a mapping system able to create a planar map

of a track from sensor data collected during the manual drove trial lap. The task was

formulated as a 2D SLAM and the successful mapping was achieved with a Hector SLAM

algorithm. Hector SLAM utilizes the scan-matching methods to perform environment

exploration and map construction from LiDAR scans. With the knowledge of the map,

the task of vehicle localization was done in Chapter 4 by Monte Carlo Localization (MCL)

method. The MCL utilize the LiDAR scans, wheel odometry and probabilistic approach

of Markov Localization to perform the best position estimation. The integrated localiza-

tion was tested in several scenarios and further extended of Relative pose estimator and

Extended Kalman Filter (EKF). Relative pose estimator fuse the MCL estimation with

data from wheel odometry to increase the rate of vehicle pose estimation. The EKF, on

the other hand, use the nonlinear kinematic equations of vehicle, to predict the vehicle

motion and filter the position in case of noisy data from MCL. The last part of the work is

dealing with the design of the control system performing the trajectory tracking task with

LQ optimal servomechanism structure. The goal of this part was to integrate the already

examined methods introduced in [2] and verify their performance on real hardware. For

that purpose, the LQR and MPC controller were implemented and tested with the usage

of developed mapping and localization system.

59
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7.1 Future work

7.1.1 Optimal racing line planning

This thesis introduced only simple techniques of trajectory planning on the racing track

for testing purposes. However, the task of racing relies on planning a trajectory, which is

optimal in the sense of lap time. Such a trajectory has to consider the vehicle kinematics

together with vehicle limits and surface adhesion. The future work is to implement an

algorithm able to plan the optimal racing line on the created map of the track with the

use of nonlinear programming as is introduced in [25].

7.1.2 Reactive and map-based algorithm fusion

The map-based approach of vehicle control on the racing track has the advantage of

complex knowledge used for vehicle trajectory planning. However, struggles when the

track change the layout or localization provides misleading data. The future work is to

fuse the map-based approach with reactive algorithms to create a robust system able to

perform high-level planning together with agile obstacle avoidance.
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