Výzkumný a zkušební letecký ústav, a.s. Aeronautical Research and Test Institute

Ceské vysoké učení technické v Praze Czech Technical University in Prague

Time-to-Digit Converter Based on Radiation-Tolerant FPGA

Marek Peca <peca@vzlu.cz>, Michael Vacek, Vojtěch Michálek

Time-to-Digit Converter (TDC)

is a coarse counter & **interpolator** (vernier)

 $t = n_c T_0 + t_v, n_c \in N, t_v \in \langle 0, T_0 \rangle$

Objectives

- $< 50 \, \mathrm{ps_{RMS}}$, $> 10 \, \mathrm{ksps}$ for single-photon applications (laser ranging, time transfer)
- radiation-tolerant, space-qualified components solution

Our design

• passive tapped delay line

Stochastic calibration

Random pulse source & histogram \rightarrow non-linearity estimation (mentioned briefly in [2])

Non-linearity compensation uncertainty after *N* random events (negligible jitter assumed):

$$\sigma_t = \frac{T_0}{2\sqrt{N}}$$

Note Large jitter would cause biased estimates; investigation of jitter observability from the bit vector is in progress...

Random sources

RC oscillator (NE555); high phase-noise $t \sim \mathcal{U}(0, T_0)$

Results

Signal chain with noise

Measurement chain: $49 ps_{RMS}$ jitter, caused by onchip PLL and pulse delay generator. Jitter fitted with normal pdf, fit accuracy up to $3 ps_{max}$.

- all-digital, 1-bit sampling by flip-flops
- whole bit-vector recorded for detailed analy
 - sis
- stochastic (re-)calibration

Pros/Cons

- \oplus pure digital (standard FPGA/CMOS)
- \oplus scalable
- more ICs/larger IC . . . between 1/N to $1/\sqrt{N}$
- \oplus single principal component
- radiation-tolerant FPGA for space appliactions
- \ominus better performing circuits exist (< 1 ps_{RMS})

Similar solutions

• [3]

Single-photon avalanche diode (SPAD)

- non-gated: $t \sim \mathcal{U}(0, T_0)$
- gated coherently with $clock \rightarrow exponential-like$ pdf

Benefits

- alternative to deterministic calibration
- *in-situ* (on-board) stability check
- long-term recalibration (drift, aging)

Performance

Two main uncertainty factors:

Stable signal

- GPS-DO clock & pulse source
- $10 \rightarrow 100 \text{ MHz}$ clock from coherent multiplier
- one-point (cable delay) measurement

active delay line

• BOUNCE [4]

does not preserve whole bit vector (information loss

use of manual, deterministic calibration slightly worse results in faster FPGA

Other remarkable solutions

• N-PET [1]

requires SAW filter & ADC

- "Riga" event timer $(3 \text{ ps}_{\text{RMS}}?)$ probably integrator & ADC
- ACAM company's integrated circuit probably ASIC, similar performance

References

- [1] P. Panek, I. Prochazka. Time interval measurement device based on SAW filter excitation ... IEEE Review of Scientific Instruments, 2004
- [2] W. Becker. Advanced Time-Correlated Single Photon Counting Techniques: Springer-Verlag, 2005
- [3] Y. Zhang, P. Huang, R. Zhu. Upgrading of integration of time to digit converter on a single FPGA. Proc. 15th Int. Laser Ranging Workshop
- [4] R. Salomon, R. Joost. BOUNCE: A New High-Resolution Time-Interval Measurement Architecture. IEEE Embedded Systems Letters, 2009

- maximum inter-tap delay (granularity) reduces with 1/N
- flip-flop jitter (incl. metastability) reduces with $1/\sqrt{N}$

Current limit: inter-tap delay

- \rightarrow worst-case deterministic error $\Delta t_{max} = \frac{1}{2} \min_k \Delta t_k$
- \rightarrow RMS of deterministic error $(t \sim \mathcal{U}(0, T_0)$ assumed): $\Delta t_{RMS}^2 = \frac{1}{12T_0} \sum_{k=1}^N \Delta t_k^3$

Topology (FPGA floor-plan) impact on intertap delay

Design #1, 320 taps, $\Delta t_{max} = 87.6 \text{ ps}, \Delta t_{RMS} =$ $24.8\,\mathrm{ps}$

Design #2, 2700 taps, $\Delta t_{max} = 20.7 \text{ ps}, \Delta t_{RMS} =$ $3.03\,\mathrm{ps}$

- worst-case deterministic error (Δt_{max}) 20.7 ps • RMS deterministic error (Δt_{RMS}) : 3.03 ps
- random jitter (RMS σ): 4.93 ps

Future work

- measure temperature & **long-term** stability
- evaluate impact of flip-flops **metastability**
- try to self-estimate jitter from whole bit vector data to improve histogram calibration (underdetermined task?)

