Clock Composition by Wiener filtering Illustrated on Two Atomic Clocks

Marek Peca

Serenum, a.s.

24 July 2013, European Frequency and Time Forum, Praha

Clock ensembling Introduction

▶ What is composite clock (ensembling)?

compute "best" time given N noisy & drifting clock readings

Clock ensembling

Feedback vs. estimation

Two distinct approaches to clock ensembling:

- feedback control
 - corrected time is fed back into controller
 - ▶ e.g.: PLLs, FLLs,...
- estimation only
 - corrected time does not go back into the estimator

- due to separation principle:
 - $ightharpoonup \sigma_{control} \geq \sigma_{estimation}$
 - → estimation is better than control
 - (where applicable; e.g.: NTP, ACES)

Clock model

- linear clock model assumed
 - ▶ 1/f-noise is not linear (chaos or ∞ order) \Rightarrow approximation
- equivalent descriptions
 - ▶ phase spectrum $S_{xx}(f)$
 - ▶ state-space model $\mathbf{x}(t+1) = \Phi \mathbf{x}(t) + \mathbf{u}(t)$
 - ▶ transfer function G(z)
- ► MISO → SISO conversion by spectral factorization (spf(·))

Ensemble measurement

... and implied difficulty

- only time differences can be measured
 - ► *N* clocks means *N* 1 readings
 - measurement matrix is singular
 - system not completely observable

▶ non-observable system & all clocks drift ⇒ unbounded output error (ensemble drifts, too)

Linear estimator

Kalman & Wiener filters

- MSE optimal for linear system
- ► Kalman filter (KF) can handle time-varying process
- Wiener filter (WF) ≡ to KF for time-invariant
 - especially simple & insightful in SISO case (N = 2 clocks)

- $\blacktriangleright \ G_1 \leftrightarrow G_2 \Rightarrow F'(z) = 1 F(z)$
- ▶ measurement noise may be incorporated into G₂

Wiener filter

- 3 variants
 - ► non-causal $F_{nc}(z) = \frac{S_{xy}}{S_{wv}} = \frac{B_1^* B_1}{C^* C}$
 - rightarrow causal $F(z) = [S_{xy}W^*]_+W = \left[\frac{B_1^*B_1}{AC^*}\right]_+\frac{A}{C}$
 - finite-lag $F_T(z) = z^T [z^{-T} S_{xy} W^*]_+ W$
- ▶ design = 2 operations
 - $C = \text{spf}(B_1^*B_1 + B_2^*B_2)$ (root finding)
 - ► [·]₊ (system of linear equations)

Design procedure

Clock-specific problems

- ► marginally stable factors $A(z) = (z 1)^m \tilde{A}(z)$
 - treat as $A(z) = (z (1 \epsilon))^m \tilde{A}(z)$
 - lacktriangleright ϵ is only a notion to help splitting causal/non-causal
- huge frequency range
 - ▶ hard to perform spf(·)
 - solution: root-finding in arbitrary precision math

Non-causal WF

- best MSE of all
- ▶ needs to know future $y(t+1)...y(\infty)$
- ightharpoonup = average weighted by $1/S_{11}$, $1/S_{22}$
- ▶ $G_1 \propto G_2 \Rightarrow$ static weighted average

Causal WF

Example #1 – causal vs. non-causal

Causal WF

Example #2 - causal vs. non-causal

▶ F(z) almost completely discards $x_2(t)$ ⇒ ensemble almost reduced to $clock_1$

Example #2 – finite-lag WF, $T = 1 T_s$

Example #2 – finite-lag WF, $T = 30 T_s$

Example #2 – finite-lag WF, $T = 70 T_s$

Example #2 – finite-lag WF, $T = 150 T_s$

Example #2 – finite-lag WF, $T = 300 T_s$

WF performance on real example

Atomic Clock Ensemble in Space

Example #3 – Atomic Clock Ensemble in Space (ACES) model

- current solution based on PLL & FLL
- finite-lag WF is better & substantially simpler

Conclusion

- given optimal linear estimator for stationary ensemble
- $ightharpoonup F_T(z)$ may be significant improvement over F(z)
- do not feedback, estimate wherever possible
- ▶ save raw data allow multiple different $F_T(z)$
- outlook
 - ▶ unify with KF approach, generalize for N > 2