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Abstract— Estimation instead of feedback loops is recom-
mended to obtain a composite clock. Wiener filtering approach to
clock ensembling is introduced and demonstrated on the simplest
case of two clocks. Design procedure dealing with clock system
non-stationarity, non-observability and numerical issues, is given.
Impact of causality to unexpected performance degradationis
discussed.

I. I NTRODUCTION

Composite clock, or clock ensembling, i. e. calculation of
best time estimate given readings from multiple clocks, is
a must for state-of-art timekeeping. There are two distinct
tools for clock ensembling: (i) feedback; (ii) estimation.Using
(i), a phase- or frequency-locked loop or loops (PLL, FLL)
are formed, containing clock and a controller. The controller
corrects clock’s time (by tuning, modulation, phase stepping,
etc.), and the corrected signal is fed back into the controller.
On the other hand, in case of (ii) an estimator senses clocks’
reading without any modification, and produces estimate of
clocks’ state, applicable as a correction to time reading. The
corrected signal is not fed back into the estimator.

Realizations of (i) are e. g. Network Time Protocol (NTP),
and Atomic Clock Ensemble in Space (ACES [1]). Suppose
the controller (i) is constrained to be linear (what is the
common case). Then, following separation principle [2], even
the optimal controller (minimum variance controller) willgive
worse or same performance, as an optimal linear estimator (ii);
the limit case of the same performance requires zero control
noise. Therefore, we claim that use of (i) is justified only
when implementation of estimator is not feasible (e. g. in case
of specific analogue circuitry). Otherwise, including ACES
and NTP in our opinion, the estimator (ii) is the right way
to choose.

II. CLOCK MODELLING

The essential prerequisite for design of ensembling is a
clock model, describing statistical properties of phase evolu-
tion over timex(t). A clock is described as a linear stochastic
system, defined by phase spectrumSxx(f). The system is
marginally stable: it contains one or more integrators in
cascade, corresponding tof−n, n = 2, 4, . . . terms inSxx(f).
In addition, it may contain stable modes as well. Within
estimation approach to ensembling, clocks are not disciplined,
the system is purely stochastic, no deterministic input (tuning).

A discrete-time processing is assumed further. Estimates
are calculated digitally from sequence of measurements. For
convenience, these shall be acquired at equidistant time in-
stantstk, tk − tk−1 = Ts = const.. This can be fulfilled only
approximately, becauseTs is perturbed by clock noise as well.
Although considered by [3], we follow the conclusion of [4],
that the effect is negligible for the purpose of ensembling.

Confinement to a class of linear discrete-time systems,
containing stable and marginally stable modes, is sufficient
for estimator design procedure (Sec. III). Assumption of
clock process linearity implies that properly designed linear
estimator is optimal in sense of mean squared error (MSE).
It also implies, that spectrumSxx(f) is sufficient description
of the process – possibly different clocks with equalSxx(f)
are indistinguishable, regardless of their internal structure
(Spectral factorization theorem [2], [5]).

Assumption of linearity works well forf−2, f−4, f−6 spec-
trum terms, which indeed origin from cascaded integration of
error. A more peculiar component of the spectrum is1/f -
noise (flicker), constitutingf−3, f−5 terms [6]. Works on
deterministic chaos suggest an inherently non-linear behavior
as a cause of1/f -noise [7]. The 1/f -noise can not be
generated by linear system of finite order. However, for a given
frequency band of interest and required fidelity, the spectrum
may be approximated by a linear system of some finite order.
The interesting question follows, whether a linear estimator
designed for such an approximate system may approach the
optimal estimator even for a process, containing non-linear
(chaotic)1/f -noise. The answer is not known to us, so we
follow [3], approximating 1/f -noise terms by finite-order,
linear, discrete-time model.

A single-input, single-output (SISO) discrete-time linear
system can be described by its transfer functionG(z): x(t) =
G(z)u(t) (input signal u transformed to outputy; z is a
forward shift operator). In our case of purely stochastic system
(no control input)u(t) is a unit variance white noise. For
finite-order systemsG(z) = B(z)/A(z) where B, A are
polynomials. A spectrum ofx (Sxx(z) or Sxx(f)) is given
by:

Sxx(z) = G∗(z)G(z)Suu =
B∗(z)B(z)

A∗(z)A(z)
Suu, (1)

Sxx(f) = Sxx(ejθ), θ = 2πfTs,



whereG∗(z) = G(1/z). If x is real-valued,Sxx = S∗

xx.
Given Sxx can be always factored as product ofG, G∗ (1)
so that roots ofB, A lie inside the unit disc. The step is
called spectral factorization, denotedG(z) = spf(Sxx(z)),
producing stable, minimum-phase modelG [2], [5]. spf(·)
allows to create clock model out of a given phase spectrum. A
state-space clock modelx(t+1) = Φx(t)+u(t) [4], [8], [3],
[9], [10] can be converted to SISOG(z) by standard means
[2].

The model of single clock has been given. Ensemble is
a set ofN clocks (Fig. 1a). Using any meaningful physical
means of time signal processing (counters, phase comparators,
mixers, etc.), only time differences between the clocks maybe
measured. There is no clue about an “absolute” time offset.
With any number of mutual measurements, we end up with
only N − 1 degrees of freedom in data: measurement matrix
is singular.
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Fig. 1. (a) Clock ensemble (b) Composition of two clocks

Two important consequences follow, whose conjunction
makes the estimation task non-trivial one: (i) time offset (error)
of each individual clock grows without bounds; (ii) clock
ensemble system is not completely observable. Therefore, any
possible time estimator produces time estimate whose error
grows without bounds as well. The goal is to achieve the
lowest possible error within finite horizon. It is probably this
specialty, why the topic of clock ensembling is still in active
research [9], [10].

III. E STIMATOR DESIGN

The most general form of MSE optimal linear estimator is
Kalman filter (KF [2]). The mentioned clock ensemble’s non-
stationarity and non-observability cause difficulties to practical
KF computation due to unbounded covariance growth. This
problem gave rise to KF variants with specific covariance
treatment [4], [8], [3], [10]. We have chosen another way,
leading to a simple, closed-form estimator: Wiener filter (WF
[5], [2]). The only limitation of WF for clock applications is
that time-invariant processes are assumed, i. e. clock spectra
supposed to be constant during estimation. In the simplest
case of only two clocks [1], the WF becomes SISO, and the
expressions are very simple.

The ensemble ofN = 2 clocks G1,2(z) thus produces
only one (N − 1) measurementy, Fig. 1b.G1,2 are assumed
SISO, i. e.spf(·) performed if necessary. The time difference
y is fed into estimatorF (z), which is designed to estimate
output of one of the two clocks,̂x1. Thex̂1 samples constitute
corrections ofx1 signal, reducing effectively an uncertainty
of composite time to that of residual signale. The task
is symmetrical, after exchangingG1 ↔ G2, the estimator

becomesF ′(z) = 1−F (z). Optional measurement noise may
be incorporated intoG2 model.

The design of linear, MSE optimal estimator following
Wiener formalism is based on two spectra: spectrumSyy of the
measured signaly, and cross-spectrum betweeny and signal
to be estimatedx, designatedSxy. In our casey = x1+x2 and
x1,2 are uncorrelated (x1 ⊥ x2) therefore simplySxy = Sxx.

There are three different variants of resulting estimators:
non-causalFnc(z), causalF (z) and finite-lag FT (z) WF.
Fnc(z) is best (lowest MSE), but requires to process future
samplesy(t + 1) . . . y(+∞). It can not be used in real-time,
only offline in batch processing (smoothing).F (z) is designed
to deliver estimates without any lag, within the measurement
cycle, possibly in real-time. Because of the lack of futurey
development information, its MSE is worse. A gap between
Fnc(z) and F (z) is filled with FT (z), allowing to trade
performance vs. filter lagT (number of future samples to
wait for). The non-causal solution is simple [5], [2]:Fnc =
Sxy/Syy; in our specific case:

Fnc =
Sxx

Syy

=
S11

S11 + S22

,

whereSkk = G∗

kGk are clock spectra; the residual error is:

e = x1 − x̂1 =
1

w1 + w2

(w1x1 + w2x2), wk =
1

Skk

.

Residual spectrum is easily plotted, or even sketched:

See =
S11S22

S11 + S22

.
ConsideringSxx(f) = σ2

x(f)df , we see that estimator
averages input signalsx1,2 weighted by inverse of their
respective variances at given frequency. If both clocks have
a spectrum of the same shapeS11 ∝ S22, estimator reduces to
mere static weighted averageFnc(z) = const., and it is also
the only case whenFnc(z) = F (z) is causal.

If both processesx1,2 (or the outputy), are filtered by
common transfer functionG′

1(z) = Gc(z)G1(z), G′

2(z) =
Gc(z)G2(z), thenFnc(z) remains unchanged. Thanks to this
property, Fnc(z) is equally optimal for estimation of time
(phase), as for estimation of frequency.

F (z) is not allowed to weight future data so its impulse re-
sponse must be zero in negative time,h(t < 0) = 0. Operation
to truncateH(z) to its causal part is denoted[H(z)]+. A naı̈ve
approach toF (z) might be to take[Fnc(z)]+. This resembles a
common practice of block data processing: samples outside of
a dataset are expected to be zero. Despite of that,[Fnc(z)]+ is
not the MSE optimalF (z). The right solution is derived with
help of a notion of whitening filterW (z) [5]:

W (z) = spf(1/Syy), F (z) = [SxyW ∗]+W.

CompareFnc(z) = (SxyW ∗)W – only a part ofFnc(z)
underwent the causal truncation.F (z) is no longer invariant
to multiplication by common factorGc. Therefore, MSE



optimum for time generally differs from MSE optimum for
frequency in case of causal estimator.FT (z) is similar to
F (z), only the (SxyW ∗) is allowed to lookT samples into
the future:FT (z) = zT [z−T SxyW ∗]+W . The properties are
similar to that of F (z), performance compares as follows:
var ecausal ≥ var eT ≥ var enc.

Design procedure begins with clock models in form of poly-
nomial fractionsG1(z) = B1(z)/A(z), G2(z) = B2(z)/A(z),
common denominatorA(z) is assumed. Models may be safely
expanded to commonA(z) if required. Spectrum of measured
signal is:

Syy = (U∗

1 G∗

1 + U∗

2 G∗

2)(G1U1 + G2U2)

Sinceu1 ⊥ u2, var u1 = var u2 = 1, U∗

1 U2 = 0, U∗

1 U1 =
U∗

2 U2 = 1:

Syy = G∗

1G1 + G∗

2G2 =
B∗

1B1 + B∗

2B2

A∗A
=

C∗C

A∗A

where C = spf(B∗

1B1 + B∗

2B2). (2)

NoteC(z) is obtained byspf(·) (2). Cross-spectrum ofx =
x1 → y is:

Sxy = (U∗

1 G∗

1)(G1U1 + G2U2) = G∗

1G1 =
B∗

1B1

A∗A
.

Giving the non-causal WF:

Fnc =
Sxy

Syy

=
B∗

1B1

C∗C
.

Causal WF follows:

W = A/C, so that Syy = 1/(W ∗W )

F = [SxyW ∗]+W =

[

B∗

1B1

AC∗

]

+

A

C
=

[

D+

A
+

D−

C∗

]

+

A

C

B∗

1B1 = D+C∗ + D−A (3)

F (z) =
D+(z)

C(z)
. (4)

The polynomialsD+,− result from (3). Their orders should
be constrained so thatD+/A is causal (and possibly containing
absolute termz0 ≡ h(0)), while D−/C∗ is strictly anti-causal,
non-containing the absolute term. Such a constraint assures
unique solution to (3) [11].

IV. SPECIFIC PROBLEMS

The central problem of clock ensembling is the non-
stationarity and non-observability of the system (Sec. II). The
non-stationarity manifests itself as a marginally-stable(z−1)m

factor: A(z) = (z − 1)mÃ(z), whereÃ(z) are stable factors
(possibly Ã(z) = 1 for pure integrator models). Some of
the WF formulations disallow marginally stable factors at all;
others [11] do allow them, but they require at least the residual
error e variance to be bounded. In our case, this condition

is not satisfied. To overcome problems caused by(z − 1)m

(S...(f → 0) → ∞), we employ following notional alteration
A(z) = (z − (1 − ε))mÃ(z).

Integrators were substituted by1st-order low-pass filters
with cutoff fc → 0 smaller than any interesting frequency in
the system. An important feature of this workaround is that the
infinitesimally displaced factor(z−(1−ε)) is interchangeable
with pure(z − 1) in actual computation:A(z) does not enter
(2) at all, and there are no roots close to(z − 1) in (3) except
A(z) itself. The only purpose of said alteration is to determine
that A(z) is a stable, or causal (4) polynomial, andA∗(z) is
an unstable, anti-causal one. Observe also thatA(z) cancels
out of bothFnc(z) as well asF (z) result.

Another design difficulty is due to a huge range of interest-
ing frequencies to be modelled in clock ensembles. E.g., in [1]
two-clock ensemble, a key area of interest lies around band
from 5×10−6 Hz to 1 Hz. Suppose system sampling frequency
is fs = 10 Hz. A filter requested to emphasize or suppress sig-
nal in given band needs to contain poles located nearz = 0.54,
z = 0.999997. This makes (2) hard or impossible to solve
by means of root-finding in ordinary double-precision floating
point arithmetics (64b FP). Therefore, we have switched to
arbitrary-precision arithmetic software (Maple 9.5). Thespf(·)
(2) has been solved by addition, multiplication, root-finding,
and discarding all|z| > 1 roots.

The second step consists in solving (3), leading to a system
of linear algebraic equations. We have not noticed numerical
difficulties here using 64b FP, but anyway we continued to
solve the linear system in arbitrary-precision domain as well.
For the examples described below, a precision of hundred(s)
of decimal digits always yielded plausible results.

The design procedure yields an estimator as a polynomial
fraction such asF (z) = D+(z)/C(z) in the causal variant.
It is an infinite impulse response (IIR) filter, whose modes
correspond to roots ofC(z). The C(z) should be stable
by definition of spf(·), unless (2) fails to compute due to
insufficient arithmetic precision.

Filter coefficients come from (2,3) in overly large precision,
unjustified for practical implementation. Implementationof
the filter using chosen word length and calculation structure,
stability and performance might be degraded by means of: (i)
signal round-off error and its propagation; (ii) filter coefficient
displacement. Respective countermeasures belong to field of
DSP expertise [12]. Good tool to asses implementation per-
formance shift due to (ii) is residual spectrumSee. In our
examples, we have used 64b FP and direct form IIR structure.

It should be stressed that the stability of whole clock
composition system lies in the estimator. Therefore, if theIIR
filter implementation is stable on finite wordlength arithmetic
level, the whole system is guaranteed to be stable. This is a
remarkable difference from the ensembling systems relyingon
feedback loops (PLL, FLL, etc.), where an improper matching
of system model to physical clocks or tight stability margin
may cause instability.



V. EXAMPLES

First example is artificial; both clocks follow the same
model xk(t) = (rk,1/(z − 1)2)uk,1 + rk,2uk,2, but different
parameters.S11, S22, andSee for bothF (z), Fnc(z) is shown
in Fig. 2.F (z) is apparently worse thanFnc(z), interestingly,
in small region it is worse than any of the two input clocks.
Still, it remains optimal by means ofSee integral overf .
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Fig. 2. Comparison of non-causal vs. causal WF for artificialclocks

Second, WF has been applied to two-clock (Cs clock
“PHARAO”, H-maser “SHM”) ensemble model, as published
[1]. 1/f -noise of SHM has been approximated by3rd-order
model, Fig. 3. WhileFnc(z) acts as expected,F (z) is a
real surprise: the time (phase) MSE-optimal causal estimator
almost completely discards the SHM reading, weighting it up
to |F (z)|max = 0.063. See is nearly identical to spectrum of
PHARAO.

Is it correct? For MSE optimum in time (≡ phase), yes. By
intuition, this probably is not the desired solution. We suppose,
that the best way to get the most of the two clocks is to employ
FT (z), in the graph plotted for chosen lagT = 104 s.

Recall, that any (linear) feedback system, as the present
PLL&FLL solution [1], must be same or practically worse
than evenF (z) by means of MSE. Performance ofF (z)
andFT=104 s(z) is compared to PLL&FLL in Allan variance
graph, Fig. 4. It is worth mentioning that PLL&FLL imple-
mentation is much more complex than that of IIR WF in this
case.
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VI. CONCLUSION

Use of estimation approach to clock composition instead of
feedback loops is encouraged, wherever estimator implemen-
tation is possible. Design of WF for two-clock ensemble has
been provided, dealing with non-observability of the system.
Practical example of the ACES project model shows, how WF
outperforms current PLL&FLL-based solution in performance
as well as simplicity. Besides this, it shows how significant
may be an advantage of finite-lag over causal WF.
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[2] K. J. Åström and B. Wittenmark,Computer Control Systems: Theory
and Design, 2nd ed. Prentice Hall, 1990.

[3] J. A. Davis, C. A. Greenhall, and P. W. Stacey, “A Kalman filter clock
algorithm for use in the presence of flicker frequency modulation noise,”
Metrologia, vol. 42, no. 1, pp. 1–10, 2005.

[4] K. R. Brown, “The Theory of the GPS Composite Clock,” inProceed-
ings of ION GPS-91, Albuquerque, New Mexico, September 1991, pp.
223–241.

[5] E. W. Kamen and J. K. Su,Introduction to Optimal Estimation. Springer
London, 1999.

[6] J. A. Barnes, A. R. Chiet al., “Characterization of Frequency Stability,”
IEEE Transactions on Instrumentation and Measurement, vol. IM-20,
pp. 105–120, 1971.

[7] H. G. Schuster and W. Just,Deterministic Chaos: An Introduction,
4th ed. Wiley-VCH Verlag GmbH, 2005.

[8] C. A. Greenhall, “Forming stable timescales from the Jones-Tryon
Kalman filter,” Metrologia, vol. 40, no. 3, pp. 335–341, 2003.

[9] L. Galleani and P. Tavella, “Time and the Kalman Filter,”IEEE Control
Systems, vol. 30, no. 2, pp. 44–65, April 2010.

[10] C. A. Greenhall, “A Review of Reduced Kalman Filters forClock
Ensembles,”IEEE Transactions on Ultrasonics, Ferroelectrics and Fre-
quency Control, vol. 59, no. 3, pp. 491–496, March 2012.

[11] A. Ahlén and M. Sternad,Polynomial Methods in Optimal Control and
Filtering, K. Hunt, Ed. Institution of Engineering and Technology,
1993, Chapter 5: Optimal Filtering Problems.

[12] B. W. Bomar, The digital signal processing handbook. CRC Press,
1998, ch. Finite wordlength effects.


