# Introduction to Computational Complexity 

Antonin Novak<br>antonin.novak@cvut.cz<br>Czech Technical University in Prague

2024

## Table of contents

(1) Basic terms: problems, algorithms, and instances
(2) Complexity classes

- Efficiently solvable: P
- Efficiently checkable: NP
- Complete and hard problems: NP-complete, NP-hard
(3) Polynomial reductions
- Using problems to solve our problems
- Examples

4 Conclusion

## Computability

Central questions of theoretical computer science are connected to topics such as which problems are computable and how efficiently.


## Computability

Central questions of theoretical computer science are connected to topics such as which problems are computable and how efficiently.


- A fascinating thing about computational complexity is that we basically all agree on what can be computed.
- How efficiently? Much less clear.


## What does it mean to compute

By computing, we mean to evaluate a specific function
$f:\{0,1\}^{*} \mapsto\{0,1\}^{*}\left(S^{*}=\bigcup_{n \geq 0} S^{n}\right.$ is the set of all finite strings over $\left.S\right)$.
This can be done by a procedure called an algorithm:

## Algorithm (informal)

An algorithm $A$ computes a function $f$ if:
(1) It provides the output of $f$ by following a finite procedure described by unambiguous elementary steps.
(2) Runs in a finite number of steps with no particular bound on the storage space used (it can always ask for more if needed).

- An algorithm is essentially what we understand as a computable function.
- Notice that we do not speak about how efficient the computation of the function should be.


## Power of different computational models

Power of a computational model:

- The sequence of steps that define the algorithm is executed by a computational model (e.g., mechanical machine, computer).
- But the computational model that manipulates with symbols should have a certain complexity (i.e., sufficiently powerful instruction set) to calculate (at least some) computable functions, right?
- What operations are allowed? Random-access memory? Stack only? Conditional branching?
- What makes a computer a "universal" one?


## Turing machine is the universal model of computation

- Turing machine (TM): the universal model of computation.
- Abstract machine described by Alan Turing that reads symbols, changes its state, rewrites symbols on the tape, moves the tape.
- Our computers $\approx$ implementation of TM.


## Church-Turing conjecture (1936)

All computable functions are exactly Turing-computable (although not necessarily very efficiently).

- Not so obvious: we have examples that are known to be strictly less powerful: finite state machines, push-down automata, ...
- On the other hand, different computational models (e.g., $\lambda$-calculus, TM with access to random bits) do not seem to be more powerful.
- We equate the intuitive concept of computable function with Turing-computable, which can be precisely defined.
- We can restrict our study of computational problems under the TM.


## Computational problems

- Computational problems can be seen as relations between the inputs (instances) and outputs (solutions).
- $x$ encoding of the instance, $y$ encoding of the solution over some alphabet, $S=\{0,1\}, S^{*}=\{\epsilon, 0,1,00,01,10,11,000, \ldots\}$.
- Let $R(x, y) \subseteq S^{*} \times S^{*}$ be a relation. Each $R$ defines a computational problem:


## Types of computational problems

- Decision problems
- Given $x$, determine if there is $y$ satisfying $R(x, y)$ ?
- Search problems
- Given $x$, find $y$ such that $R(x, y)$ or state it does not exist.
- Optimization problems
- Given $x$, find $y$ such that $R(x, y)$ minimizing function $c(x, y)$ or say no such $y$ exists.
- Function problems
- Compute value of $f(x)$.


## Complexity of problems

- Not all $R$ (computational problems) are equally difficult.
- We can measure the difficulty of the problem by the number of steps $T(n)$ the best-known algorithm $A$ on a TM needs to solve the problem $R$ for a given input length $n=|x|$ in the worst-case.

$-\mathcal{O}\left(1.3^{n}\right)$
$-\mathcal{O}\left(n^{2}\right)$
$-\mathcal{O}(n \log n)$
$-\mathcal{O}(n)$


## Complexity of problems

- Not all $R$ (computational problems) are equally difficult.
- We can measure the difficulty of the problem by the number of steps $T(n)$ the best-known algorithm $A$ on a TM needs to solve the problem $R$ for a given input length $n=|x|$ in the worst-case.



## Problems, instances and algorithms: summary

- A computational problem is a relation over instances and solutions.
- To solve problems, we develop algorithms with certain time complexity.
- Measured in terms of the worst-case number of steps $T(n)$ over all instances of length $n$.
- The existence of an algorithm with given time complexity $\mathcal{O}(T(n))$ is a witness of the problem being in certain complexity class.
- People started to categorize problems into a taxonomy.
- It turned out that there is a fundamental barrier between the polynomially solvable problems and the others.
- In practice, we usually get low-degree polynomial algorithms or exponential ones (or even worse).

It motivates us to study which problems fall into the "good" category and which fall into "naughty".

## Efficiently solvable: P

- We will use decision problems (yes/no) to demonstrate the most prominent complexity classes.
- Similar can also be done for optimization problems, with a few definition adjustments.


## Definition: Class P

The set of problems that are solvable in a polynomial time.

- For every $x \in\{0,1\}^{*}$ they state if $\exists y \in\{0,1\}^{*}: R(x, y)$ or no.
- Admit $\mathcal{O}(\operatorname{poly}(n))$ algorithm, e.g. $\mathcal{O}\left(n^{2}\right), \mathcal{O}(n \log n)$.


## Examples

- Integer number problems: Addition, Multiplication, Primality test,...
- Graph problems: Topological Sorting, Minimum Spanning Tree, ...
- Miscellaneous problems: Discrete Fourier Transform, Linear Programming, ...


## Efficiently checkable: NP

## Definition: Class NP (non-deterministic polynomial)

The set of decision problems whose solutions are checkable in a polynomial time.

- What do we mean by checkable?


## Efficiently checkable: NP

## Definition: Class NP (non-deterministic polynomial)

The set of decision problems whose solutions are checkable in a polynomial time.

- What do we mean by checkable?
- YES-instances have so-called polynomial certificates (or witnesses, proofs): e.g., $|y| \leq \operatorname{poly}(|x|)$.
- Given certificate $y$, one can in polynomial time verify that indeed $(x, y) \in R$.
- We do not know whether they admit a $\mathcal{O}(\operatorname{poly}(n))$ algorithm, but we know that their solution is verifiable by $\mathcal{O}(\operatorname{poly}(n))$ algorithm. $\approx$ there is an algorithm that solves the problem in polytime given the certificate $y$.


## Examples

- Integer number problems: Sudoku, Knapsack, 2-Partition, ...
- Graph problems: Travelling Salesman, $k$-coloring, ...
- Miscellaneous problems: Linear equations with absolute values, Control theory: constrained state-space feedback


## SubsetSum is in NP

## Definition: SubsetSum problem

- Instance: A (multi)-set of $n$ non-negative integers $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and a non-negative integer $W$.
- Decision: Is there a subset $S \subseteq A$ such that $\sum_{a_{i} \in S} a_{i}=W$ ?


## Example 1: YES-instance

$A=\{1,1,2,3,7,9\}, W=6$. The answer is YES: $S=\{1,2,3\}$.

- I claim $(A, W)$ is YES-instance. This is a poly-sized proof: $S$.


## SubsetSum is in NP

## Definition: SubsetSum problem

- Instance: A (multi)-set of $n$ non-negative integers $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and a non-negative integer $W$.
- Decision: Is there a subset $S \subseteq A$ such that $\sum_{a_{i} \in S} a_{i}=W$ ?


## Example 1: YES-instance

$A=\{1,1,2,3,7,9\}, W=6$. The answer is YES: $S=\{1,2,3\}$.

- I claim $(A, W)$ is YES-instance. This is a poly-sized proof: $S$.


## Example 2: NO instance

$A=\{3,5,5,6,8,10\}, W=25$. The answer is NO.

- I claim $(A, W)$ is NO-instance. I do not have a short proof.

Generally, short certificates (proofs) of NO-instances may not exist.

## Graph Isomorphism is in NP

## Example: Graph Isomorphism problem

- Given two graphs $G$ and $H$, decide if $G$ is the same as $H$ up to the vertex labelling.
- A $\mathcal{O}(\operatorname{poly}(n))$ algorithm is not known.
- We have an algorithm by Babai (2015) that runs in $\mathcal{O}\left(\exp \left(\log (n)^{c}\right)\right)$ for some constant $c>1$, i.e., a quasipolynomial, grows smaller than an exponential.
- But its solution is checkable in a poly-time.


Out[17] $=\{\langle | 1 \rightarrow 1,2 \rightarrow 3,3 \rightarrow 2,4 \rightarrow 4| \rangle\}$

- Remark: in contrast to NP, problems in P have polynomial certificates even for NO-instances.


## What is non-deterministic about NP?

Why NP means " non-deterministic polynomial"?

- Connected with an alternative computational model, the so-called non-deterministic Turing Machine (TM).
- This abstract computational model explores all branches in your algorithm in parallel.
- This is an alternative description of class NP: the set of decision problems for which there is an algorithm that solves it in a polynomial time on a non-deterministic TM computational model.
- Useful for theoretical analysis, nobody knows how to build it physically (in contrast to the deterministic TM).
- Quantum computers are not believed to be equivalent to non-deterministic TMs.


## P vs NP question

## How important is P vs NP question?

- At least $\$ 1.000 .000$ important.
- Clay Math Institute's Millennium problems:
- Solution smoothness of Navier-Stokes Equation
- Poincaré Conjecture (solved)
- Riemann Hypothesis
- P vs NP problem
- ...
- P vs NP question has wide implications to the world outside
 of CS: class P exactly corresponds to dynamical systems described by ODEs with polynomial RHS under a poly-length simulation (connection to control theory).


## P vs NP question

## Common belief is:

## Conjecture

$$
P \neq N P
$$

- Likely we are not in a position to resolve this question within the next 20 years.

[^0]
## P vs NP question

## Common belief is:

## Conjecture

$$
P \neq N P
$$

- Likely we are not in a position to resolve this question within the next 20 years.
- But, we can run a survey:

| Year | 2002 | 2012 | 2019 |
| :---: | :---: | :---: | :---: |
| Thinks $P \neq N P$ | $61 \%$ | $82 \%$ | $88 \%$ |

Table: William Gasarch's survey on P vs $\mathrm{NP}^{1}$.

- See nice explanatory video on P vs $\mathrm{NP}^{2}$.
${ }^{1}$ https://www.cs.umd.edu/users/gasarch/BLOGPAPERS/pollpaper3.pdf
${ }^{2}$ https://youtu.be/pQsdygaYcE4?si=N_22dOeZyHLeUngt


## P vs NP question

## Common belief is:

## Conjecture

- Likely we are not in 20 years.
- But, we can run a s



## The Art of <br> Computer Programming

Fundamental Algorithms
Third Edition

Table: William Gasarch's survey on P vs $\mathrm{NP}^{1}$.

- See nice explanatory video on P vs $\mathrm{NP}^{2}$.
- Donald Knuth is one of the great proponents of $P=N P$.

[^1]
## Polynomial reductions

Problem reductions are one of the greatest inventions in computer science.

Motto: My problems are your problems.

- Solving a new problem $R(x, y)$ via existing problem $\bar{R}(\bar{x}, \bar{y})$ :

| $x$ | reduction $f(x)$ |  | $\bar{y} \cdot \bar{R}(\bar{x}, \bar{y}) ?$ | $\bar{y}$ |  | $f^{-1}(\bar{y})=\mathrm{y}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\exists y: R(x, y)$ ? |  |  |  |  |  |

## Polynomial reductions

Problem reductions are one of the greatest inventions in computer science.

## Motto: My problems are your problems.

- Solving a new problem $R(x, y)$ via existing problem $\bar{R}(\bar{x}, \bar{y})$ :


Namely, we will be interested in polynomial-time reductions.

- $f$ and $f^{-1}$ runs in a polynomial time
- Preserve membership in classes P and NP: poly $(p o l y(n)) \in \mathcal{O}(p o l y(n))$.
- Useful from the practical standpoint.


## You have used polynomial reductions before

- Path with the minimum number of edges, but you only have Dijkstra.
\{m, HighlightGraph[m, PathGraph@FindShortestPath[m, First@VertexList[m], Last@VertexList[m]]]\}

- This is a polynomial reduction.


## Some the reductions connect different worlds

- More examples: 3CNF-SAT $\triangleleft_{p}$ SubsetSum $(R(x, y) \triangleleft p \bar{R}(\bar{x}, \bar{y}))$


## Definition: 3CNF-SAT Problem

- Instance: A propositional formula in conjunction normal form with clauses with 3 literals, e.g., $\phi=(x \vee \neg y \vee z) \wedge \ldots \wedge(\neg x \vee u \vee \neg v)$.
- Decision: Is the formula $\phi$ satisfiable?


## Example

$$
\begin{aligned}
\phi= & (x \vee y \vee z) \wedge(x \vee y \vee \neg z) \wedge(x \vee \neg y \vee z) \wedge(x \vee \neg y \vee \neg z) \wedge \\
& (\neg x \vee y \vee z) \wedge(\neg x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee \neg y \vee \neg z)
\end{aligned}
$$

The answer is NO.

## 3CNF-SAT to SubsetSum

- More examples: 3CNF-SAT $\triangleleft_{p} \underline{\text { SubsetSum }(R(x, y) \triangleleft p \bar{R}(\bar{x}, \bar{y}))}$


## Definition: SubsetSum problem

- Instance: A (multi)-set of $n$ non-negative integers $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and a non-negative integer $W$.
- Decision: Is there a subset $S \subseteq A$ such that $\sum_{a_{i} \in S} a_{i}=W$ ?


## Example

$A=\{1,1,2,3,7,9\}, W=6$. Answer is YES: $S=\{1,2,3\}$.

- How can we use a number counting problem to solve a logic problem? These are different beasts.


## Example: 3CNF-SAT to SubsetSum

$$
\begin{array}{rl}
\phi=\underbrace{(\neg x \vee y \vee z)}_{C_{1}} & \wedge \underbrace{(x \vee \neg y \vee z)}_{C_{2}} \wedge
\end{array} \underbrace{(\neg x \vee \neg y \vee \neg z)}_{C_{3}})
$$

- Notice that no carry-overs are happening.
- Homework: does this work for kCNF-SAT ( $k$ literals in each clause)?


## Complete problems: NP-complete

The idea of reductions can be used to identify so-called complete problems for the class.

## Definition: NP-complete class

Problem $R$ is NP-complete if $R \in$ NP (i.e., efficiently checkable) and for every problem $A$ :

$$
\forall A \in N P: A \triangleleft_{P} R \text { (i.e., acts as a solver). }
$$



- The meaning of an NP-complete problem is that it represents a "universal" problem for NP class (can be used to solve all problems in NP).
- The first NP-complete problem was discovered by Cook (1971):
- Proof: non-deterministic TM $\triangleleft_{p}$ CNF-SAT.
- Hence, CNF-SAT acts as a solver for class NP.
- Nowadays, we know thousands of NP-complete problems.


## Example: CNF-SAT

Problem reductions are not particularly useful if they do not run in a polynomial time.

## kCNF-SAT Problem

- Instance: A propositional formula in conjunction normal form, e.g., $\phi=(x \vee \neg y \vee z) \wedge \ldots \wedge(\neg x \vee u \vee \neg v)$.
- Decision: Is the formula $\phi$ satisfiable?


## kDNF-SAT Problem

- Instance: A propositional formula in disjunctive normal form, e.g., $\phi=(x \wedge \neg y \wedge z) \vee \ldots \vee(\neg x \wedge u \wedge \neg v)$.
- Decision: Is the formula $\phi$ satisfiable?


## Theorem

kCNF-SAT is in NP-complete (NTM reduces to poly-sized CNF formula).
$k$ DNF-SAT is in P (easy algorithm).
Reduction idea: We have learned in TGR and LPS courses how to convert CNFs to DNFs (disjunctive normal form), and we know that DNF-SAT is solvable in a polynomial time (how?).
So lets try

$$
\text { kCNF-SAT } \triangleleft_{p} \text { kDNF-SAT. }
$$

## Example: CNF-SAT



```
    BooleanConvert[cnf] // TraditionalForm
```


## Example: CNF-SAT

$\ln [12]:=\mathbf{c n f}=\left(x_{1} \vee y_{1}\right) \wedge\left(x_{2} \vee y_{2}\right) \wedge\left(x_{3} \vee y_{3}\right) \wedge\left(x_{4} \vee y_{4}\right) \wedge\left(x_{5} \vee y_{5}\right) \wedge\left(x_{6} \vee y_{6}\right) \wedge\left(x_{7} \vee y_{7}\right) ;$ BooleanConvert[cnf] // TraditionalForm

## Out[13]//TraditionalForm=

$\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge y_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge y_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge y_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge y_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge y_{4} \wedge x_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge y_{4} \wedge x_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge y_{4} \wedge x_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge y_{4} \wedge y_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge y_{4} \wedge y_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge y_{4} \wedge y_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge y_{4} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge x_{2} \wedge y_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge y_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge y_{3} \wedge x_{4} \wedge x_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge y_{3} \wedge x_{4} \wedge x_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge x_{2} \wedge y_{3} \wedge x_{4} \wedge y_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge y_{3} \wedge x_{4} \wedge y_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge y_{3} \wedge x_{4} \wedge y_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge y_{3} \wedge x_{4} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge x_{2} \wedge y_{3} \wedge y_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge y_{3} \wedge y_{4} \wedge x_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge y_{3} \wedge y_{4} \wedge x_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge y_{3} \wedge y_{4} \wedge x_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge x_{2} \wedge y_{3} \wedge y_{4} \wedge y_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge y_{3} \wedge y_{4} \wedge y_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge y_{3} \wedge y_{4} \wedge y_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge y_{3} \wedge y_{4} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge y_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge y_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(x_{1} \wedge y_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge y_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge y_{2} \wedge x_{3} \wedge x_{4} \wedge y_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge y_{2} \wedge x_{3} \wedge x_{4} \wedge y_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(x_{1} \wedge y_{2} \wedge x_{3} \wedge x_{4} \wedge y_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge y_{2} \wedge x_{3} \wedge x_{4} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge y_{2} \wedge x_{3} \wedge y_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge y_{2} \wedge x_{3} \wedge y_{4} \wedge x_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(x_{1} \wedge y_{2} \wedge x_{3} \wedge y_{4} \wedge x_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge y_{2} \wedge x_{3} \wedge y_{4} \wedge x_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge y_{2} \wedge x_{3} \wedge y_{4} \wedge y_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge y_{2} \wedge x_{3} \wedge y_{4} \wedge y_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(x_{1} \wedge y_{2} \wedge x_{3} \wedge y_{4} \wedge y_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge y_{2} \wedge x_{3} \wedge y_{4} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge y_{2} \wedge y_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge y_{2} \wedge y_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(x_{1} \wedge y_{2} \wedge y_{3} \wedge x_{4} \wedge x_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge y_{2} \wedge y_{3} \wedge x_{4} \wedge x_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge y_{2} \wedge y_{3} \wedge x_{4} \wedge y_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge y_{2} \wedge y_{3} \wedge x_{4} \wedge y_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(x_{1} \wedge y_{2} \wedge y_{3} \wedge x_{4} \wedge y_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge y_{2} \wedge y_{3} \wedge x_{4} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge x_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(x_{1} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge x_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge x_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge y_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge y_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(x_{1} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge y_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(y_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(y_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(y_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge y_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge y_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(y_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge y_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(y_{1} \wedge x_{2} \wedge x_{3} \wedge y_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge x_{2} \wedge x_{3} \wedge y_{4} \wedge x_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(y_{1} \wedge x_{2} \wedge x_{3} \wedge y_{4} \wedge x_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge x_{2} \wedge x_{3} \wedge y_{4} \wedge x_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(y_{1} \wedge x_{2} \wedge x_{3} \wedge y_{4} \wedge y_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge x_{2} \wedge x_{3} \wedge y_{4} \wedge y_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(y_{1} \wedge x_{2} \wedge x_{3} \wedge y_{4} \wedge y_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge x_{2} \wedge x_{3} \wedge y_{4} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(y_{1} \wedge x_{2} \wedge y_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge x_{2} \wedge y_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(y_{1} \wedge x_{2} \wedge y_{3} \wedge x_{4} \wedge x_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge x_{2} \wedge y_{3} \wedge x_{4} \wedge x_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(y_{1} \wedge x_{2} \wedge y_{3} \wedge x_{4} \wedge y_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge x_{2} \wedge y_{3} \wedge x_{4} \wedge y_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(y_{1} \wedge x_{2} \wedge y_{3} \wedge x_{4} \wedge y_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge x_{2} \wedge y_{3} \wedge x_{4} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(y_{1} \wedge x_{2} \wedge y_{3} \wedge y_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge x_{2} \wedge y_{3} \wedge y_{4} \wedge x_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(y_{1} \wedge x_{2} \wedge y_{3} \wedge y_{4} \wedge x_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge x_{2} \wedge y_{3} \wedge y_{4} \wedge x_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(y_{1} \wedge x_{2} \wedge y_{3} \wedge y_{4} \wedge y_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge x_{2} \wedge y_{3} \wedge y_{4} \wedge y_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(y_{1} \wedge x_{2} \wedge y_{3} \wedge y_{4} \wedge y_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge x_{2} \wedge y_{3} \wedge y_{4} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(y_{1} \wedge y_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge y_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(y_{1} \wedge y_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge y_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(y_{1} \wedge y_{2} \wedge x_{3} \wedge x_{4} \wedge y_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge y_{2} \wedge x_{3} \wedge x_{4} \wedge y_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(y_{1} \wedge y_{2} \wedge x_{3} \wedge x_{4} \wedge y_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge y_{2} \wedge x_{3} \wedge x_{4} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(y_{1} \wedge y_{2} \wedge x_{3} \wedge y_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge y_{2} \wedge x_{3} \wedge y_{4} \wedge x_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(y_{1} \wedge y_{2} \wedge x_{3} \wedge y_{4} \wedge x_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge y_{2} \wedge x_{3} \wedge y_{4} \wedge x_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(y_{1} \wedge y_{2} \wedge x_{3} \wedge y_{4} \wedge y_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge y_{2} \wedge x_{3} \wedge y_{4} \wedge y_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(y_{1} \wedge y_{2} \wedge x_{3} \wedge y_{4} \wedge y_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge y_{2} \wedge x_{3} \wedge y_{4} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(y_{1} \wedge y_{2} \wedge y_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge y_{2} \wedge y_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(y_{1} \wedge y_{2} \wedge y_{3} \wedge x_{4} \wedge x_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge y_{2} \wedge y_{3} \wedge x_{4} \wedge x_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(y_{1} \wedge y_{2} \wedge y_{3} \wedge x_{4} \wedge y_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge y_{2} \wedge y_{3} \wedge x_{4} \wedge y_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(y_{1} \wedge y_{2} \wedge y_{3} \wedge x_{4} \wedge y_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge y_{2} \wedge y_{3} \wedge x_{4} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(y_{1} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge x_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(y_{1} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge x_{5} \wedge y_{6} \wedge x_{7}\right) \vee\left(y_{1} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge x_{5} \wedge y_{6} \wedge y_{7}\right) \vee$

## A. Novak (CTU) <br> Combinatorial Algorithms

## Example: CNF-SAT

Perhaps, if the DNF reduction would be done in a more sophisticated way:
$\ln [16] \mathrm{y}=$ BooleanMinimize[BooleanConvert[cnf]] // TraditionalForm

## Example: CNF-SAT

## Perhaps, if the DNF reduction would be done in a more sophisticated way:

$\ln [16]:=$ BooleanMinimize[BooleanConvert[cnf]] // TraditionalForm

## Out $16 / / /$ TraditionalForm $=$

$\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge y_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{7} \wedge y_{6}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{6} \wedge x_{7} \wedge y_{5}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{6} \wedge y_{5} \wedge y_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{7} \wedge y_{5} \wedge y_{6}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge y_{4}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{5} \wedge x_{6} \wedge y_{4} \wedge y_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{5} \wedge x_{7} \wedge y_{4} \wedge y_{6}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{5} \wedge y_{4} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{6} \wedge x_{7} \wedge y_{4} \wedge y_{5}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{6} \wedge y_{4} \wedge y_{5} \wedge y_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{7} \wedge y_{4} \wedge y_{5} \wedge y_{6}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge y_{4} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge x_{2} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge y_{3}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge y_{3} \wedge y_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{4} \wedge x_{5} \wedge x_{7} \wedge y_{3} \wedge y_{6}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{4} \wedge x_{5} \wedge y_{3} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge x_{2} \wedge x_{4} \wedge x_{6} \wedge x_{7} \wedge y_{3} \wedge y_{5}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{4} \wedge x_{6} \wedge y_{3} \wedge y_{5} \wedge y_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{4} \wedge x_{7} \wedge y_{3} \wedge y_{5} \wedge y_{6}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{4} \wedge y_{3} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge x_{2} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge y_{3} \wedge y_{4}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{5} \wedge x_{6} \wedge y_{3} \wedge y_{4} \wedge y_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{5} \wedge x_{7} \wedge y_{3} \wedge y_{4} \wedge y_{6}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{5} \wedge y_{3} \wedge y_{4} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge x_{2} \wedge x_{6} \wedge x_{7} \wedge y_{3} \wedge y_{4} \wedge y_{5}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{6} \wedge y_{3} \wedge y_{4} \wedge y_{5} \wedge y_{7}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{7} \wedge y_{3} \wedge y_{4} \wedge y_{5} \wedge y_{6}\right) \vee\left(x_{1} \wedge x_{2} \wedge y_{3} \wedge y_{4} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge y_{2}\right) \vee\left(x_{1} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge y_{2} \wedge y_{7}\right) \vee\left(x_{1} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{7} \wedge y_{2} \wedge y_{6}\right) \vee\left(x_{1} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge y_{2} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge x_{3} \wedge x_{4} \wedge x_{6} \wedge x_{7} \wedge y_{2} \wedge y_{5}\right) \vee\left(x_{1} \wedge x_{3} \wedge x_{4} \wedge x_{6} \wedge y_{2} \wedge y_{5} \wedge y_{7}\right) \vee\left(x_{1} \wedge x_{3} \wedge x_{4} \wedge x_{7} \wedge y_{2} \wedge y_{5} \wedge y_{6}\right) \vee\left(x_{1} \wedge x_{3} \wedge x_{4} \wedge y_{2} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge x_{3} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge y_{2} \wedge y_{4}\right) \vee\left(x_{1} \wedge x_{3} \wedge x_{5} \wedge x_{6} \wedge y_{2} \wedge y_{4} \wedge y_{7}\right) \vee\left(x_{1} \wedge x_{3} \wedge x_{5} \wedge x_{7} \wedge y_{2} \wedge y_{4} \wedge y_{6}\right) \vee\left(x_{1} \wedge x_{3} \wedge x_{5} \wedge y_{2} \wedge y_{4} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge x_{3} \wedge x_{6} \wedge x_{7} \wedge y_{2} \wedge y_{4} \wedge y_{5}\right) \vee\left(x_{1} \wedge x_{3} \wedge x_{6} \wedge y_{2} \wedge y_{4} \wedge y_{5} \wedge y_{7}\right) \vee\left(x_{1} \wedge x_{3} \wedge x_{7} \wedge y_{2} \wedge y_{4} \wedge y_{5} \wedge y_{6}\right) \vee\left(x_{1} \wedge x_{3} \wedge y_{2} \wedge y_{4} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge y_{2} \wedge y_{3}\right) \vee\left(x_{1} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge y_{2} \wedge y_{3} \wedge y_{7}\right) \vee\left(x_{1} \wedge x_{4} \wedge x_{5} \wedge x_{7} \wedge y_{2} \wedge y_{3} \wedge y_{6}\right) \vee\left(x_{1} \wedge x_{4} \wedge x_{5} \wedge y_{2} \wedge y_{3} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge x_{4} \wedge x_{6} \wedge x_{7} \wedge y_{2} \wedge y_{3} \wedge y_{5}\right) \vee\left(x_{1} \wedge x_{4} \wedge x_{6} \wedge y_{2} \wedge y_{3} \wedge y_{5} \wedge y_{7}\right) \vee\left(x_{1} \wedge x_{4} \wedge x_{7} \wedge y_{2} \wedge y_{3} \wedge y_{5} \wedge y_{6}\right) \vee\left(x_{1} \wedge x_{4} \wedge y_{2} \wedge y_{3} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge y_{2} \wedge y_{3} \wedge y_{4}\right) \vee\left(x_{1} \wedge x_{5} \wedge x_{6} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge y_{7}\right) \vee\left(x_{1} \wedge x_{5} \wedge x_{7} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge y_{6}\right) \vee\left(x_{1} \wedge x_{5} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{1} \wedge x_{6} \wedge x_{7} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge y_{5}\right) \vee\left(x_{1} \wedge x_{6} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge y_{5} \wedge y_{7}\right) \vee\left(x_{1} \wedge x_{7} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge y_{5} \wedge y_{6}\right) \vee\left(x_{1} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge y_{1}\right) \vee\left(x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge y_{1} \wedge y_{7}\right) \vee\left(x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{7} \wedge y_{1} \wedge y_{6}\right) \vee\left(x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5} \wedge y_{1} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{6} \wedge x_{7} \wedge y_{1} \wedge y_{5}\right) \vee\left(x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{6} \wedge y_{1} \wedge y_{5} \wedge y_{7}\right) \vee\left(x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{7} \wedge y_{1} \wedge y_{5} \wedge y_{6}\right) \vee\left(x_{2} \wedge x_{3} \wedge x_{4} \wedge y_{1} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{2} \wedge x_{3} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge y_{1} \wedge y_{4}\right) \vee\left(x_{2} \wedge x_{3} \wedge x_{5} \wedge x_{6} \wedge y_{1} \wedge y_{4} \wedge y_{7}\right) \vee\left(x_{2} \wedge x_{3} \wedge x_{5} \wedge x_{7} \wedge y_{1} \wedge y_{4} \wedge y_{6}\right) \vee\left(x_{2} \wedge x_{3} \wedge x_{5} \wedge y_{1} \wedge y_{4} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{2} \wedge x_{3} \wedge x_{6} \wedge x_{7} \wedge y_{1} \wedge y_{4} \wedge y_{5}\right) \vee\left(x_{2} \wedge x_{3} \wedge x_{6} \wedge y_{1} \wedge y_{4} \wedge y_{5} \wedge y_{7}\right) \vee\left(x_{2} \wedge x_{3} \wedge x_{7} \wedge y_{1} \wedge y_{4} \wedge y_{5} \wedge y_{6}\right) \vee\left(x_{2} \wedge x_{3} \wedge y_{1} \wedge y_{4} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{2} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge y_{1} \wedge y_{3}\right) \vee\left(x_{2} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge y_{1} \wedge y_{3} \wedge y_{7}\right) \vee\left(x_{2} \wedge x_{4} \wedge x_{5} \wedge x_{7} \wedge y_{1} \wedge y_{3} \wedge y_{6}\right) \vee\left(x_{2} \wedge x_{4} \wedge x_{5} \wedge y_{1} \wedge y_{3} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{2} \wedge x_{4} \wedge x_{6} \wedge x_{7} \wedge y_{1} \wedge y_{3} \wedge y_{5}\right) \vee\left(x_{2} \wedge x_{4} \wedge x_{6} \wedge y_{1} \wedge y_{3} \wedge y_{5} \wedge y_{7}\right) \vee\left(x_{2} \wedge x_{4} \wedge x_{7} \wedge y_{1} \wedge y_{3} \wedge y_{5} \wedge y_{6}\right) \vee\left(x_{2} \wedge x_{4} \wedge y_{1} \wedge y_{3} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{2} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge y_{1} \wedge y_{3} \wedge y_{4}\right) \vee\left(x_{2} \wedge x_{5} \wedge x_{6} \wedge y_{1} \wedge y_{3} \wedge y_{4} \wedge y_{7}\right) \vee\left(x_{2} \wedge x_{5} \wedge x_{7} \wedge y_{1} \wedge y_{3} \wedge y_{4} \wedge y_{6}\right) \vee\left(x_{2} \wedge x_{5} \wedge y_{1} \wedge y_{3} \wedge y_{4} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{2} \wedge x_{6} \wedge x_{7} \wedge y_{1} \wedge y_{3} \wedge y_{4} \wedge y_{5}\right) \vee\left(x_{2} \wedge x_{6} \wedge y_{1} \wedge y_{3} \wedge y_{4} \wedge y_{5} \wedge y_{7}\right) \vee\left(x_{2} \wedge x_{7} \wedge y_{1} \wedge y_{3} \wedge y_{4} \wedge y_{5} \wedge y_{6}\right) \vee\left(x_{2} \wedge y_{1} \wedge y_{3} \wedge y_{4} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge y_{1} \wedge y_{2}\right) \vee\left(x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{6} \wedge y_{1} \wedge y_{2} \wedge y_{7}\right) \vee\left(x_{3} \wedge x_{4} \wedge x_{5} \wedge x_{7} \wedge y_{1} \wedge y_{2} \wedge y_{6}\right) \vee\left(x_{3} \wedge x_{4} \wedge x_{5} \wedge y_{1} \wedge y_{2} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{3} \wedge x_{4} \wedge x_{6} \wedge x_{7} \wedge y_{1} \wedge y_{2} \wedge y_{5}\right) \vee\left(x_{3} \wedge x_{4} \wedge x_{6} \wedge y_{1} \wedge y_{2} \wedge y_{5} \wedge y_{7}\right) \vee\left(x_{3} \wedge x_{4} \wedge x_{7} \wedge y_{1} \wedge y_{2} \wedge y_{5} \wedge y_{6}\right) \vee\left(x_{3} \wedge x_{4} \wedge y_{1} \wedge y_{2} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{3} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge y_{1} \wedge y_{2} \wedge y_{4}\right) \vee\left(x_{3} \wedge x_{5} \wedge x_{6} \wedge y_{1} \wedge y_{2} \wedge y_{4} \wedge y_{7}\right) \vee\left(x_{3} \wedge x_{5} \wedge x_{7} \wedge y_{1} \wedge y_{2} \wedge y_{4} \wedge y_{6}\right) \vee\left(x_{3} \wedge x_{5} \wedge y_{1} \wedge y_{2} \wedge y_{4} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{3} \wedge x_{6} \wedge x_{7} \wedge y_{1} \wedge y_{2} \wedge y_{4} \wedge y_{5}\right) \vee\left(x_{3} \wedge x_{6} \wedge y_{1} \wedge y_{2} \wedge y_{4} \wedge y_{5} \wedge y_{7}\right) \vee\left(x_{3} \wedge x_{7} \wedge y_{1} \wedge y_{2} \wedge y_{4} \wedge y_{5} \wedge y_{6}\right) \vee\left(x_{3} \wedge y_{1} \wedge y_{2} \wedge y_{4} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{4} \wedge x_{5} \wedge x_{6} \wedge x_{7} \wedge y_{1} \wedge y_{2} \wedge y_{3}\right) \vee\left(x_{4} \wedge x_{5} \wedge x_{6} \wedge y_{1} \wedge y_{2} \wedge y_{3} \wedge y_{7}\right) \vee\left(x_{4} \wedge x_{5} \wedge x_{7} \wedge y_{1} \wedge y_{2} \wedge y_{3} \wedge y_{6}\right) \vee\left(x_{4} \wedge x_{5} \wedge y_{1} \wedge y_{2} \wedge y_{3} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{4} \wedge x_{6} \wedge x_{7} \wedge y_{1} \wedge y_{2} \wedge y_{3} \wedge y_{5}\right) \vee\left(x_{4} \wedge x_{6} \wedge y_{1} \wedge y_{2} \wedge y_{3} \wedge y_{5} \wedge y_{7}\right) \vee\left(x_{4} \wedge x_{7} \wedge y_{1} \wedge y_{2} \wedge y_{3} \wedge y_{5} \wedge y_{6}\right) \vee\left(x_{4} \wedge y_{1} \wedge y_{2} \wedge y_{3} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{5} \wedge x_{6} \wedge x_{7} \wedge y_{1} \wedge y_{2} \wedge y_{3} \wedge y_{4}\right) \vee\left(x_{5} \wedge x_{6} \wedge y_{1} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge y_{7}\right) \vee\left(x_{5} \wedge x_{7} \wedge y_{1} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge y_{6}\right) \vee\left(x_{5} \wedge y_{1} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge y_{6} \wedge y_{7}\right) \vee$ $\left(x_{6} \wedge x_{7} \wedge y_{1} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge y_{5}\right) \vee\left(x_{6} \wedge y_{1} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge y_{5} \wedge y_{7}\right) \vee\left(x_{7} \wedge y_{1} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge y_{5} \wedge y_{6}\right) \vee\left(y_{1} \wedge y_{2} \wedge y_{3} \wedge y_{4} \wedge y_{5} \wedge y_{6} \wedge y_{7}\right)$

## Example: CNF-SAT

## Takeaways:

- The above example shows an exponential explosion of the resulting DNF formula.
- Unfortunately, we do not know how to convert, in general, every CNF formula to DNF in a polynomial time.
- But reductions in the opposite direction, i.e., something $\triangleleft_{p}$ CNF-SAT, are in fact very useful:
- formal verification: some states are not reachable within any $k$ steps
- proof checking: Keller's conjecture ${ }^{3}$
- graph coloring, ...
- CNF-SAT is both theoretically (a universal NP problem) and practically (existence of solvers) appealing.

[^2]
## NP-complete: summary

NP-complete class summary:

- The set of universal (most difficult) problems for class NP.
- All algorithms we know for NP-complete problems have complexity above $\mathcal{O}(p o l y(n))$.
- e.g., CNF-SAT algorithm is $\mathcal{O}\left(1.308^{n}\right) \approx \mathcal{O}\left(2^{0.387 n}\right)$
- Solving efficiently one of the thousands known NP-complete problems would mean $P=N P$.
- Hence, if your problem is NP-complete do not hope for a poly-time algorithm.


## NP problems suspected not being NP-complete and not in P

- Graph Isomorphism (GI)
- We know a subexponential algorithm, but still above a polynomial complexity.
- Integer Factoring
- Computing VC (Vapnik-Chervonenkis) dimension


## NP-complete: summary

NP-complete class summary:

- The set of universal (mos
- All algorithms we know f above $\mathcal{O}($ poly $(n))$.
- e.g., CNF-SAT algorithm
- Solving efficiently one of would mean $\mathrm{P}=\mathrm{NP}$.
- Hence, if your problem is

Complexity sandwich: But can it be filled with natural ingredients?

## NP problems suspected not being NP-complete and not in P

- Graph Isomorphism (GI)
- We know a subexponential algorithm, but still above a polynomial complexity.
- Integer Factoring
- Computing VC (Vapnik-Chervonenkis) dimension


## Beyond NP-complete: NP-hard class

## Definition: NP-hard class

Problem $R$ is NP-hard if for every problem $A$

$$
\forall A \in \mathrm{NP}: A \triangleleft_{P} R .
$$

- sets a lower bound on the complexity of the problem (acts as a solver for class NP)
- the difference from NP-complete is that $R$ can be much harder (does not have to be in NP)



## Examples

- every NP-complete decision problem
- optimization variants of NP-complete decision problems
- Quantified Boolean formula satisfiability: $\forall x_{1} \exists x_{2} \forall x_{3}, \ldots: f\left(x_{1}, x_{2}, x_{3}, \ldots\right)$


## Conclusion

## The main takeaways:

- Turing machine is the universal model of computation
- Gives us a formal way studying and categorizing problems according to their complexity.
- Easy problems (P) vs. hard problems (NP-complete, NP-hard):
- Easily solvable vs. easily checkable vs. just hard problems
- More complexity classes live in Complexity ZOO: https://complexityzoo.net/.
- Polynomial reductions:
- Using somebody else's problem to solve your problems.


## References

- A. Borodin, Torronto Uni, CSC373 ${ }^{4}$
- W. Gasarch: P vs NP survey ${ }^{5}$
- S. Aaronson: P vs NP status ${ }^{6}$
- L. Babai: Quasipoly algorithm for $\mathrm{Gl}^{7}$
- Bournez et al.: Polynomial Time Corresponds to Solutions of Polynomial Ordinary Differential Equations of Polynomial Length ${ }^{8}$

[^3]
[^0]:    ${ }^{1}$ https://www.cs.umd.edu/users/gasarch/BLOGPAPERS/pollpaper3.pdf ${ }^{2}$ https://youtu.be/pQsdygaYcE4?si=N_22dOeZyHLeUngt

[^1]:    ${ }^{1}$ https://www.cs.umd.edu/users/gasarch/BLOGPAPERS/pollpaper3.pdf ${ }^{2}$ https://youtu.be/pQsdygaYcE4?si=N_22dOeZyHLeUngt

[^2]:    ${ }^{3}$ https : //www. quantamagazine. org/
    computer-search-settles-90-year-old-math-problem-20200819/

[^3]:    ${ }^{4}$ https://www.cs.toronto.edu/~bor/373s13/
    ${ }^{5}$ https://www.cs.umd.edu/users/gasarch/BLOGPAPERS/pollpaper3.pdf
    ${ }^{6}$ https://www.scottaaronson.com/papers/pnp.pdf
    ${ }^{7}$ https://arxiv.org/abs/1512.03547
    ${ }^{8}$ https://arxiv.org/abs/1601. 05360

