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Computability

Central questions of theoretical computer science are connected to topics
such as which problems are computable and how efficiently.

A fascinating thing about computational complexity is that we
basically all agree on what can be computed.

How efficiently? Much less clear.
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What does it mean to compute

By computing, we mean to evaluate a specific function
f : {0, 1}∗ 7→ {0, 1}∗ (S∗ =

⋃
n≥0 S

n is the set of all finite strings over S).
This can be done by a procedure called an algorithm:

Algorithm (informal)

An algorithm A computes a function f if:

1 It provides the output of f by following a finite procedure described
by unambiguous elementary steps.

2 Runs in a finite number of steps with no particular bound on the
storage space used (it can always ask for more if needed).

An algorithm is essentially what we understand as a computable function.

Notice that we do not speak about how efficient the computation of the function
should be.
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Power of different computational models

Power of a computational model:

The sequence of steps that define the algorithm is executed by a
computational model (e.g., mechanical machine, computer).

But the computational model that manipulates with symbols should
have a certain complexity (i.e., sufficiently powerful instruction set) to
calculate (at least some) computable functions, right?

What operations are allowed? Random-access memory? Stack only?
Conditional branching?

What makes a computer a ”universal” one?
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Turing machine is the universal model of computation

Turing machine (TM): the universal model of computation.

Abstract machine described by Alan Turing that reads symbols,
changes its state, rewrites symbols on the tape, moves the tape.
Our computers ≈ implementation of TM.

Church-Turing conjecture (1936)

All computable functions are exactly Turing-computable (although not necessarily very
efficiently).

Not so obvious: we have examples that are known to be strictly less powerful:
finite state machines, push-down automata, ...

On the other hand, different computational models (e.g., λ-calculus, TM with
access to random bits) do not seem to be more powerful.

We equate the intuitive concept of computable function with Turing-computable,
which can be precisely defined.

We can restrict our study of computational problems under the TM.
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Computational problems

Computational problems can be seen as relations between the inputs (instances)
and outputs (solutions).

x encoding of the instance, y encoding of the solution over some alphabet,
S = {0, 1}, S∗ = {ϵ, 0, 1, 00, 01, 10, 11, 000, . . .}.
Let R(x , y) ⊆ S∗ × S∗ be a relation. Each R defines a computational problem:

Types of computational problems

Decision problems
Given x , determine if there is y satisfying R(x , y)?

Search problems
Given x , find y such that R(x , y) or state it does not exist.

Optimization problems
Given x , find y such that R(x , y) minimizing function c(x , y) or say no such y
exists.

Function problems
Compute value of f (x).
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Complexity of problems

Not all R (computational problems) are equally difficult.

We can measure the difficulty of the problem by the number of steps T (n) the
best-known algorithm A on a TM needs to solve the problem R for a given input
length n = |x | in the worst-case.
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Computers are not to rescue: electron-sized transistor, clock

time ≈ time of light between atoms, Earth-sized computer

needs billions of years to brute force 300-bit solution.
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Problems, instances and algorithms: summary

A computational problem is a relation over instances and solutions.

To solve problems, we develop algorithms with certain time
complexity.

Measured in terms of the worst-case number of steps T (n) over all
instances of length n.

The existence of an algorithm with given time complexity O(T (n)) is
a witness of the problem being in certain complexity class.

People started to categorize problems into a taxonomy.

It turned out that there is a fundamental barrier between the
polynomially solvable problems and the others.

In practice, we usually get low-degree polynomial algorithms or
exponential ones (or even worse).

It motivates us to study which problems fall into the ”good” category and
which fall into ”naughty”.
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Efficiently solvable: P

We will use decision problems (yes/no) to demonstrate the most
prominent complexity classes.

Similar can also be done for optimization problems, with a few definition
adjustments.

Definition: Class P

The set of problems that are solvable in a polynomial time.

For every x ∈ {0, 1}∗ they state if ∃y ∈ {0, 1}∗ : R(x , y) or no.

Admit O(poly(n)) algorithm, e.g. O(n2), O(n log n).

Examples
Integer number problems: Addition, Multiplication, Primality test,...

Graph problems: Topological Sorting, Minimum Spanning Tree, ...

Miscellaneous problems: Discrete Fourier Transform, Linear Programming, ...
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Efficiently checkable: NP

Definition: Class NP (non-deterministic polynomial)

The set of decision problems whose solutions are checkable in a
polynomial time.

What do we mean by checkable?

YES-instances have so-called polynomial certificates (or witnesses, proofs): e.g.,
|y | ≤ poly(|x |).
Given certificate y , one can in polynomial time verify that indeed (x , y) ∈ R.

We do not know whether they admit a O(poly(n)) algorithm, but we know that
their solution is verifiable by O(poly(n)) algorithm. ≈ there is an algorithm that
solves the problem in polytime given the certificate y .

Examples
Integer number problems: Sudoku, Knapsack, 2-Partition, ...

Graph problems: Travelling Salesman, k-coloring, ...

Miscellaneous problems: Linear equations with absolute values, Control theory:
constrained state-space feedback
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SubsetSum is in NP

Definition: SubsetSum problem

Instance: A (multi)-set of n non-negative integers A = {a1, . . . , an}
and a non-negative integer W .

Decision: Is there a subset S ⊆ A such that
∑

ai∈S ai = W ?

Example 1: YES-instance

A = {1, 1, 2, 3, 7, 9}, W = 6. The answer is YES: S = {1, 2, 3}.
I claim (A,W ) is YES-instance. This is a poly-sized proof: S .

Example 2: NO instance

A = {3, 5, 5, 6, 8, 10}, W = 25. The answer is NO.

I claim (A,W ) is NO-instance. I do not have a short proof.

Generally, short certificates (proofs) of NO-instances may not exist.
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Graph Isomorphism is in NP

Example: Graph Isomorphism problem

Given two graphs G and H, decide if G is the same as H up to the
vertex labelling.

A O(poly(n)) algorithm is not known.

We have an algorithm by Babai (2015) that runs in O(exp(log(n)c))
for some constant c > 1, i.e., a quasipolynomial, grows smaller than
an exponential.

But its solution is checkable in a poly-time.

Remark: in contrast to NP, problems in P have polynomial
certificates even for NO-instances.
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What is non-deterministic about NP?

Why NP means ”non-deterministic polynomial”?

Connected with an alternative computational model, the so-called
non-deterministic Turing Machine (TM).

This abstract computational model explores all branches in your
algorithm in parallel.

This is an alternative description of class NP: the set of decision
problems for which there is an algorithm that solves it in a polynomial
time on a non-deterministic TM computational model.

Useful for theoretical analysis, nobody knows how to build it
physically (in contrast to the deterministic TM).

Quantum computers are not believed to be equivalent to
non-deterministic TMs.
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P vs NP question

How important is P vs NP question?

At least $1.000.000 important.

Clay Math Institute’s Millennium problems:

Solution smoothness of Navier–Stokes
Equation
Poincaré Conjecture (solved)
Riemann Hypothesis
P vs NP problem
...

P vs NP question has wide implications to the world outside
of CS: class P exactly corresponds to dynamical systems
described by ODEs with polynomial RHS under a poly-length
simulation (connection to control theory).

P

NP
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P vs NP question

Common belief is:

Conjecture

P ̸= NP.

Likely we are not in a position to resolve this question within the next
20 years.

But, we can run a survey:

Year 2002 2012 2019

Thinks P ̸= NP 61% 82% 88%

Table: William Gasarch’s survey on P vs NP1.

See nice explanatory video on P vs NP2.

1https://www.cs.umd.edu/users/gasarch/BLOGPAPERS/pollpaper3.pdf
2https://youtu.be/pQsdygaYcE4?si=N_22dOeZyHLeUngt
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Polynomial reductions

Problem reductions are one of the greatest inventions in computer
science.

Motto: My problems are your problems.

Solving a new problem R(x , y) via existing problem R(x , y):

∃y : R(x , y)?

reduction f (x) ∃y : R(x , y)? reconstruction f −1
x x y f −1(y)=y

Namely, we will be interested in polynomial-time reductions.

f and f −1 runs in a polynomial time

Preserve membership in classes P and NP: poly(poly(n)) ∈ O(poly(n)).

Useful from the practical standpoint.
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You have used polynomial reductions before

Path with the minimum number of edges, but you only have Dijkstra.

This is a polynomial reduction.
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Some the reductions connect different worlds

More examples: 3CNF-SAT ◁P SubsetSum (R(x , y) ◁P R(x , y))

Definition: 3CNF-SAT Problem

Instance: A propositional formula in conjunction normal form with
clauses with 3 literals, e.g., ϕ = (x ∨ ¬y ∨ z) ∧ ... ∧ (¬x ∨ u ∨ ¬v).
Decision: Is the formula ϕ satisfiable?

Example

ϕ =(x ∨ y ∨ z) ∧ (x ∨ y ∨ ¬z) ∧ (x ∨ ¬y ∨ z) ∧ (x ∨ ¬y ∨ ¬z)∧
(¬x ∨ y ∨ z) ∧ (¬x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z)

The answer is NO.
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3CNF-SAT to SubsetSum

More examples: 3CNF-SAT ◁P SubsetSum (R(x , y) ◁P R(x , y))

Definition: SubsetSum problem

Instance: A (multi)-set of n non-negative integers A = {a1, . . . , an}
and a non-negative integer W .

Decision: Is there a subset S ⊆ A such that
∑

ai∈S ai = W ?

Example

A = {1, 1, 2, 3, 7, 9}, W = 6. Answer is YES: S = {1, 2, 3}.

How can we use a number counting problem to solve a logic problem?
These are different beasts.
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Example: 3CNF-SAT to SubsetSum

ϕ = (¬x ∨ y ∨ z)︸ ︷︷ ︸
C1

∧ (x ∨ ¬y ∨ z)︸ ︷︷ ︸
C2

∧ (¬x ∨ ¬y ∨ ¬z)︸ ︷︷ ︸
C3

x y z C1 C2 C3

x 1 0 0 0 1 0 a1
¬x 1 0 0 1 0 1 a2
y 0 1 0 1 0 0 a3
¬y 0 1 0 0 1 1 a4
z 0 0 1 1 1 0 a5
¬z 0 0 1 0 0 1 a6

0 0 0 1 0 0 a7
0 0 0 2 0 0 a8
0 0 0 0 1 0 a9
0 0 0 0 2 0 a10
0 0 0 0 0 1 a11
0 0 0 0 0 2 a12

1 1 1 4 4 4 W

Notice that no carry-overs are happening.

Homework: does this work for kCNF-SAT (k literals in each clause)?
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Complete problems: NP-complete

The idea of reductions can be used to identify
so-called complete problems for the class.

Definition: NP-complete class

Problem R is NP-complete if R ∈ NP (i.e., efficiently
checkable) and for every problem A :

∀A ∈ NP : A ◁P R (i.e., acts as a solver).

P

NP

The meaning of an NP-complete problem is that it represents a ”universal”
problem for NP class (can be used to solve all problems in NP).

The first NP-complete problem was discovered by Cook (1971):

Proof: non-deterministic TM ◁P CNF-SAT.
Hence, CNF-SAT acts as a solver for class NP.

Nowadays, we know thousands of NP-complete problems.
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Example: CNF-SAT

Problem reductions are not particularly useful if they do not run in a polynomial time.

kCNF-SAT Problem
Instance: A propositional formula in conjunction normal form, e.g.,
ϕ = (x ∨ ¬y ∨ z) ∧ ... ∧ (¬x ∨ u ∨ ¬v).
Decision: Is the formula ϕ satisfiable?

kDNF-SAT Problem
Instance: A propositional formula in disjunctive normal form, e.g.,
ϕ = (x ∧ ¬y ∧ z) ∨ ... ∨ (¬x ∧ u ∧ ¬v).
Decision: Is the formula ϕ satisfiable?

Theorem
kCNF-SAT is in NP-complete (NTM reduces to poly-sized CNF formula).
kDNF-SAT is in P (easy algorithm).

Reduction idea: We have learned in TGR and LPS courses how to convert CNFs to DNFs
(disjunctive normal form), and we know that DNF-SAT is solvable in a polynomial time (how?).
So lets try

kCNF-SAT ◁P kDNF-SAT.
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Example: CNF-SAT
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Example: CNF-SAT

Perhaps, if the DNF reduction would be done in a more sophisticated way:
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Example: CNF-SAT

Takeaways:

The above example shows an exponential explosion of the resulting
DNF formula.

Unfortunately, we do not know how to convert, in general, every CNF
formula to DNF in a polynomial time.

But reductions in the opposite direction, i.e.,
something ◁P CNF-SAT, are in fact very useful:

formal verification: some states are not reachable within any k steps
proof checking: Keller’s conjecture3

graph coloring, ...

CNF-SAT is both theoretically (a universal NP problem) and
practically (existence of solvers) appealing.

3https://www.quantamagazine.org/

computer-search-settles-90-year-old-math-problem-20200819/
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NP-complete: summary

NP-complete class summary:

The set of universal (most difficult) problems for class NP.

All algorithms we know for NP-complete problems have complexity
above O(poly(n)).

e.g., CNF-SAT algorithm is O(1.308n) ≈ O(20.387n)

Solving efficiently one of the thousands known NP-complete problems
would mean P = NP.

Hence, if your problem is NP-complete do not hope for a poly-time algorithm.

Complexity sandwich: But can it be filled

with natural ingredients?

NP problems suspected not being NP-complete and not in P

Graph Isomorphism (GI)
We know a subexponential algorithm, but still above a polynomial complexity.

Integer Factoring

Computing VC (Vapnik-Chervonenkis) dimension
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Beyond NP-complete: NP-hard class

Definition: NP-hard class

Problem R is NP-hard if for every problem A

∀A ∈ NP : A ◁P R.

sets a lower bound on the complexity of the problem
(acts as a solver for class NP)

the difference from NP-complete is that R can be much
harder (does not have to be in NP)

NPC

P

NP

NP-hard

if P ̸= NP

Examples
every NP-complete decision problem

optimization variants of NP-complete decision problems

Quantified Boolean formula satisfiability: ∀x1∃x2∀x3, . . . : f (x1, x2, x3, . . .)
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Conclusion

The main takeaways:

Turing machine is the universal model of computation

Gives us a formal way studying and categorizing problems according to
their complexity.

Easy problems (P) vs. hard problems (NP-complete, NP-hard):

Easily solvable vs. easily checkable vs. just hard problems
More complexity classes live in Complexity ZOO:
https://complexityzoo.net/.

Polynomial reductions:

Using somebody else’s problem to solve your problems.
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