
Experiments for Predictable Execution of GPU
Kernels

Flavio Kreiliger∗, Joel Matějka∗†, Michal Sojka† and Zdeněk Hanzálek†
Faculty of Electrical Engineering∗/Czech Institute of Informatics, Robotics and Cybernetics†

Czech Technical University in Prague
Prague, Czech Republic

{kreilfla,matejjoe}@fel.cvut.cz, {michal.sojka,zdenek.hanzalek}@cvut.cz

Abstract—Multi-Processor Systems-on-Chip (MPSoC) plat-
forms will definitely power various future autonomous machines.
Due to the high complexity of such platforms, it is difficult to
achieve timing predictability, reliability and efficient resource
utilization at the same time. We believe that time-triggered
scheduling in combination with PRedictable Execution Model
(PREM) can provide strong safety guarantees, and our longer-
term goal is to schedule execution on the whole MPSoC (CPUs
and GPU) in time triggered manner.

To extend PREM to GPUs, we compare two synchronization
mechanisms available on the NVIDIA Tegra X2 platform: one
based on pinned memory and another that uses a GPU timer (so-
called globaltimer). We found that running the NVIDIA profiler
(nvprof) reconfigures the resolution of the globaltimer from 1
µs to 160 ns. By using time-triggered scheduling with such a
resolution, it was possible to reduce execution time jitter of a tiled
2D convolution kernel from 6.47% to 0.15% while maintaining
the same average execution time.

Index Terms—predictable execution, gpu, nvidia, tx2, prem

I. INTRODUCTION

Autonomous machines such as self-driving cars will cer-
tainly be a part of our future. Nowadays, both industry and
researchers work heavily on various aspects of those machines.
One aspect that is still not satisfactorily addressed is how
to ensure their safe operation. Those machines require vast
computational power to process all the sensor data, and reason
about them in real-time, however, safety systems are tradition-
ally implemented with slow, simple, but reliable computing el-
ements. In contrast to that, autonomous machines are powered
with heterogeneous computing architectures, where a multi-
core CPU is accompanied by one or more accelerators such
as GPUs or FPGAs, often on the same chip. These are called
Multi-Processor Systems-on-Chip (MPSoC). In this work, we
use a popular representative of these systems: NVIDIA Tegra
X2 (TX2), which features a GPU.

While FPGAs can offer precise timing, GPUs seem to be
more popular in these applications, perhaps due to their easier
programmability. However, GPUs originate from industrial
domains, where average-case performance was traditionally
more important than real-time and safety guarantees.

This work was supported by the grant no. SGS19/175/OHK3/3T/13 and
by the THERMAC project, which has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant
agreement No 832011.

To reason about safety properties, the functional safety
standard for road vehicles ISO 26262 [1] defines the term
“freedom from interference”, as the absence of certain faults,
one of them being “incorrect allocation of execution time”.
This means that predictable timing is a prerequisite for achiev-
ing safety according to this standard.

We believe (and many safety standards agree) that time trig-
gered scheduling gives stronger safety guarantees than online
event triggered scheduling. In the case of MPSoC platforms,
time-triggered scheduling makes it easier to control contention
on shared hardware resources (caches, buses, memories) and
thus to control the inter-task interference. Our longer-term
goal is to schedule execution on the whole MPSoC (CPUs
and GPU) in time triggered manner. In our past work [2], we
reduced interference between tasks on a multi-core CPU by
time triggered scheduling. This paper is our starting step to
doing the same for GPU tasks.

In this paper, we first evaluate synchronization mechanisms
for GPU workload, with the conclusion that time-triggered
synchronization has the potential of having much lower over-
head than lock-based synchronization via so-called pinned
memory. However, the overhead of time-triggered execution
can be low only when estimates of worst-case execution
time are tight. For this reason, we analyze the interference
between tasks running on the GPU and try to reduce it by
using two main techniques: 1) prefetching data from global
memory to local shared memory [3] and 2) scheduling the
GPU execution in time triggered manner. Our experimental
evaluation shows that these techniques are able to reduce
the interference and execution time jitter without significantly
increasing total execution time.

More specifically, we adopt the concept of Predictable
Execution Model (PREM) proposed by Pellizzoni et al. [4],
where computation is split into memory and compute phases,
and these phases are scheduled to not interfere with each
other – for example, by not running two memory phases
in parallel. For GPU workloads, this would result in severe
underutilization of memory bandwidth. Therefore, we aim to
allow multiple kernels to access memory simultaneously while
preserving predictable execution time.

Our overall approach has two main assumptions: a) Exe-
cuted workload is time-deterministic, meaning that the amount
of computation can be determined ahead of time and does not



depend on processed data. This holds for many algorithms
used for autonomous machines such as neural network in-
ference [5] or visual object tracking [6]. b) Time-triggered
scheduling is used for the whole MPSoC platform to ensure
that interference between all on-chip processors can be con-
trolled. On the other hand, it is known that time-triggered
scheduling often lacks the required flexibility. For this rea-
son, we envision the use of both time- and event-triggered
approaches together. Time-triggered execution will be used
for shorter, non-preemptive intervals (e.g., for processing of
one camera frame), and multiple of those intervals will be
executed in a more dynamic way based on online scheduling
and synchronization mechanisms.

II. RELATED WORK

Similarly to our work, recent research by Cavicchioli et
al. characterized interference on main memory and commu-
nication bus level between the CPU and GPU [7]. Other
researchers [8], [9] developed various microbenchmarks to
understand GPUs and their memory system. Our work differs
from those by using time triggered scheduling.

The scheduling behavior of many GPUs is unknown in
most cases due to a lack of publicly available and open
documentation. Therefore, GPUs are mostly treated as black
boxes, and different approaches for predictable execution
of different workloads have been developed to bypass this
uncertainty. An often used method is to ensure that only one
process can access the GPU resources at a time by use of a
locking mechanism [10]. The cost of this approach may be
an underutilization of powerful GPUs. Dividing the workload
into smaller preemptable chunks could reduce this problem
[11], [12]. Others evaluated techniques to manage accesses to
memory [13] to reduce contention between GPU and CPU
applications.

Further Otternes et al. assessed the NVIDIA TX1 plat-
form regarding real-time behavior concerning co-scheduling
of multiple kernels [11] [12], and additionally, Amert et al.
derived a set of the GPU scheduling rules used in the Jetson
TX1 and TX2 platforms to brighten up the black box nature
of those platforms [14]. They ran different experiments to
understand how the GPU schedules the work if submitted
from the same or different processes. They found that the
GPU workload launched from different processes shares the
GPU by the use of multiprogramming, where each kernel runs
exclusively on the GPU during its assigned time slice and
does not overlap other GPU computation. For GPU workload
submitted from the same process, the computation can overlap
and is scheduled according to the derived rules. Bakita et
al. proposed a validation framework to validate those derived
rules for future GPU generations [15].

Capodieci et al. [16] changed how the GPU workload
is scheduled by using an EDF scheduler combined with a
Constant Bandwidth Server. Their scheduler is implemented
in a hypervisor and works by replacing the run list inside the
GPU-host.

TX2 streaming multiprocessor – 128 CUDA cores

32 cores 32 cores 32 cores 32 cores

RF WS

warp lane

warp context warp context warp context warp context

warp context warp context warp context warp context

warp context warp context warp context warp context

0
1

15

RF WS RF WS RF WS

warp
architectural states

EE queue

stream queues

64k shared memory
L1 cache

SF, LD/ST, DP SF, LD/ST, DP SF, LD/ST, DP SF, LD/ST, DP

Figure 1. Estimated architecture of one SM of TX2

III. BACKGROUND

A. GPU/TX2 architecture

NVIDIA Tegra X2 (TX2) is a high-performance embedded
MPSoC consisting of two CPU clusters and one Pascal GPU
with 256 CUDA cores. The memory bus is shared across
the entire chip. However, each CPU cluster and GPU have
a separate L2 cache. These caches are not coherent. The
GPU is composed of two independent computing blocks called
Streaming Multiprocessors (SM), each having its L1 cache,
shared memory, and four warp lanes. Each warp lane executes
a warp, i.e., a group of up to 32 threads performing the same
instruction on different data. Since NVIDIA does not publish
all details about their GPU architectures, it is difficult to
estimate architecture details, and how GPU workload is sched-
uled on the available warp lanes. Based on publicly available
documentation, previous work by Amert [14] and Capodieci
[16], and our experiments, we assume the architecture of one
streaming multiprocessor to be as depicted in Figure 1. The
workload is inserted by CPUs into stream queues, then by rules
revealed by Amert [14], put into the execution engine queue
and assigned to an SM if enough resources are available. We
assume that up to 16 warps can be assigned to a single warp
lane. The warps from CUDA blocks (see III-B) are placed in
the available warp context slots, which store their architectural
state, and are run by the hardware warp scheduler (WS) as
soon all their dependencies are satisfied. The warp scheduler
issues and interleaves instructions from the associated warps,
hiding latencies caused by waiting for shared resources. After
all warps in a block have finished, the occupied warp context
slots are freed and can be reused by warps from the next
queued block. Warp scheduling is similar to hyperthreading
used in CPUs. Multiple running warps share CUDA cores
and other resources such as multiple load/store units, special
function units (SF) and double precision units (DP) in one
warp lane.

The GPU also features a clock source, called globaltimer,
which provides synchronous time to all SMs.

In this paper, we do not consider graphics jobs and how the
hardware is shared between them and compute jobs.



B. CUDA programming model

To offload computation to the GPU, NVIDIA offers the
C/C++ API called CUDA. Programmers write so called ker-
nels, i.e., functions that execute in parallel on the GPU.
When a kernel is launched, the programmer specifies, with a
special syntax, the kernel execution configuration: the number
of threads and how those threads are organized into groups
(CUDA-blocks or thread-blocks). Each block is executed in-
dependently without a built-in possibility to synchronize with
other blocks or kernels. Only threads within a single block
can be synchronized. Launched CUDA kernels are placed
into queues called streams from where they are executed in
FIFO order. By default, there is one stream per process. More
streams can be created to execute kernels in parallel if enough
resources are available. All kernel launches are asynchronous,
meaning that if a CPU needs to wait for kernel completion, it
has to invoke explicit synchronization operation.

IV. EVALUATION GOALS

In this section, we explain the goals of this paper in more
detail.

A. Synchronization mechanism

A precondition for applying PREM to GPU workloads is the
availability of fast synchronization between all blocks running
at the same time.

In our previous work, we used locks in shared memory to
synchronize PREM phases on the CPU [2]. Shared memory
offered a fast communication channel since multiple CPU
cores share the same cache and the synchronization bypasses
the main memory. On the TX2 GPU, an equivalent approach
would be to use pinned memory, which is accessed in non-
cached manner, to arbitrate accesses to the main memory.

An alternative approach would be to use time based syn-
chronization using the globaltimer. We are interested in finding
the overhead of the mechanisms and assessing their suitability
for whole-GPU synchronization.

B. Benchmark selection

Polybench-ACC [17] is a collection of computational ker-
nels such as matrix multiplication, 2D or 3D convolution, or
linear equation solver, used to evaluate the performance of
compilers and similar software. Mentioned algorithms are the
core of many high-performance applications such as neural
networks or image processing. To see the potential benefit of
our interference reduction approach, we want to evaluate it on
a benchmark highly sensitive to memory interference. There-
fore, we evaluated the sensitivity of all polybench kernels to
memory interference from CPU and selected 2D convolution
as a good candidate.

C. Reduction of intra-GPU interference

As the Polybench 2D convolution kernel is accessing the
global memory, it is hard to reduce the interference directly.
Therefore, we first apply tiling – a technique commonly used
to coalescence memory accesses in global memory to speed up

the GPU execution [3], [18]. The tiling is done by splitting the
input data into multiple tiles which fit into the shared memory
segment within a CUDA block. The computation is then
performed on the tile previously prefetched from the global
memory into the shared memory. At the end, the processed
tile is written back. This tiled implementation naturally maps
to the three PREM-phases: prefetch, compute and writeback.

Further, we want to assess the interference between the
individual phases of tile processing if scheduled synchronously
in parallel.

V. EXPERIMENTAL EVALUATION

We ran all experiments on the Jetson TX2 board in NV
Power Mode MAXN and with all frequencies configured to the
maximum values by running jetsonclock.sh (a script provided
by NVIDIA to configure board clocks). All source code we
used for the experiments can be found in the git repository:
https://github.com/CTU-IIG/ tt-gpu

A. Pinned memory synchronization evaluation

We evaluated synchronization based on locks in pinned
memory with two experiments. First, we measured the ping-
pong round-trip time between two GPU kernels and later
the experiment was repeated to collect the round-trip times
between CPU and GPU since the synchronization mechanism
should offer a possibility to be used for CPU to GPU syn-
chronization. Both experiments have been repeated for 1000
times. We had to add the membar instruction to ensure that
one GPU kernel sees the updates from the other GPU kernels.

Between GPU kernels the average round-trip time was 2.065
µs (min: 1.92 µs, max: 2.24 µs) and the CPU to GPU round
trip time was in average 1.94 µs (min: 1.47 µs max: 2.56 µs).
These times are not sufficient for synchronizing PREM phases
on the GPU, because, as discussed later in Section V-E, the
length of the phases is in the range of 1 to 4 µs and compared
to this, the overhead of this synchronization mechanism would
be too high.

B. GPU timer granularity

We evaluated the globaltimer as a synchronization mech-
anism between GPU tasks. According to the documentation
[19], the globaltimer should have a resolution in the nanosec-
ond level. The main criteria for the globaltimer to be used
as a synchronization mechanism are its resolution and that
it is running synchronously on both SMs. To evaluate these
properties, we ran a kernel from Listing 1 with four blocks
of one thread each. Each block retrieves the globaltimer
timestamps in a for loop, storing them into its shared memory
segment. The shared memory was selected for two reasons:
1) its access time is short enough to not influence timestamp
precision much and 2) allocating shared memory segments to
occupy half of the available shared memory on an SM ensures
that two blocks execute on one SM and two on the other.

Figure 2 shows a zoom into the first few iterations of
collected timestamps. Running the experiment in the default
settings gives disappointing results. The measured resolution

https://github.com/CTU-IIG/tt-gpu


Listing 1. Simplified kernel to retrieve global timer jitter
__shared__ uint64_t times[NOF_STAMPS];
for (int i = 0; i < NOF_STAMPS; i++)
asm volatile("mov.u64 %0, %%globaltimer;" \

: "=l"(times[i]));

0 10 20 30 40 50

Iterations

0

1000

2000

3000

T
im

e
[n

s]

Default

After Nvprof

0 250 500 750 1000

Stepsize [ns]

102

103

C
ou

n
t

Default

After Nvprof

Figure 2. Timestamps and step sizes of the globaltimer after reboot and after
one run of nvprof. The retrieved timestamps of the other blocks exhibited the
same resolution.

was only 1 µs. The “Default” points on the left side show
the timestamps collected by the first block. The right side
of the figure shows the histogram of the differences between
two subsequent timestamps. By coincidence, we found that
running nvprof1 once on an arbitrary kernel reduces the mea-
sured resolution of the globaltimer to 160 ns, as shown with
“After Nvprof” points in Fig. 2. The use of nvprof seems to
reconfigure the globaltimer on the GPU without reconfiguring
it back at the end. Although this behavior is not documented
and not really intuitive, it helped us to increase the resolution
of the globaltimer.

It is important to highlight, that nvprof needs to run only
once on an arbitrary kernel. After this run, the further kernels
can run without the instrumentation with nvprof to still profit
from the higher resolution.

C. Time triggered execution of tiled 2D Convolution

To see how the execution jitter occurs and if it can be
reduced if multiple kernels (4 in our experiments) run in
parallel, we compare the original 2D Convolution polybench
benchmark (later denoted as legacy implementation) and our
tiled version of it. Each kernel was run 1000 times then the
average, minimum and maximum execution times have been
calculated. Both implementations apply a 3x3 convolution
mask on a dataset consisting of 1026x1022 float elements.
The kernels were launched with a configuration of two blocks
with 512 threads. The tiled implementation tiles the input
data into 512 tiles of 4x512 elements. Each tile is processed
in the following phases: first, the tile is prefetched from
global memory into the CUDA shared memory segment, then
the computation takes place, and in the end, the resulting
data is written back to global memory. Since the streaming
multiprocessor on the TX2 offers 64 kB of shared memory,
we dimensioned our kernel blocks to use 16 kB of shared
memory to allow the execution of 4 kernels in parallel. To
investigate the possibility of interference reduction, we use the
globaltimer to synchronize the running blocks and to control
the start times of the tile processing. Figure 3 shows how

1 nvprof is the profiling tool offered by nvidia to analyze traces and timings
of called CUDA API and launched kernels

0

512

1024

1536

2048

N
of

T
h

re
ad

s

K:0:0

K:1:0

K:2:0

K:3:0

SM 0

K0:B0

K1:B0

K2:B0

K3:B0

32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0

Time [us]

0

512

1024

1536

2048

N
o
fT

h
re

ad
s

K:0:1

K:1:1

K:2:1

K:3:1

SM 1

K0:B1

K1:B1

K2:B1

K3:B1

Figure 3. Zoom into the execution of 4 tiled 2D convolution kernels (K0–
K3). The total execution time was 2.87 ms. The tiles are scheduled on both
streaming multiprocessors with an offset of 1.4 µs against each other. Both
blocks of the same kernel (B0–B1) are scheduled at the same time instance
and are processing multiple tiles in sequence. Blue, orange and green colors
represent prefetch, compute and writeback phases and blocks with the same
hatch correspond to the same kernel. During the white phases the blocks are
spinning on the globaltimer until they are allowed to process the next tile.

the tile processing start times are shifted with an offset of
1.4 µs against each other. The two blocks inside a kernel start
processing their current tiles always at the same time, the white
spaces between the tile processing phases represent the time
a block is spinning on the globaltimer until it is allowed to
start with the next prefetch phase.

To have a more elaborate overview of the influence of
the tile scheduling offset to the observed execution jitter, we
run four kernels of the tiled 2D convolution in parallel with
different tile offsets. All kernels recorded their block start/end
times using the globaltimer. The difference between the latest
block end time and the earliest start time is called scenario
execution time.

We can see in Figure 4 the average scenario execution time
with the min-max execution jitter (blue) and the corresponding
execution jitter compared to the scenario execution time in
percentage (red). The dotted black line represents the average
scenario execution time of the baseline (4 legacy kernels in
parallel). As we can see, the scenario execution time and
execution jitter remain relatively stable at 2.5 ms respectively
1.4% until the tile offset exceeds 1.2 µs. After this point,
the scenario execution time increases and the execution jitter
decreases. Based on these results, we classify the tile offsets
of 1.3 µs and 1.4 µs as able to reduce the execution jitter while
still having a acceptably low scenario execution time.

Further, the 2D convolution kernels were launched in the
next scenarios: i) The original (legacy) implementation with
1 kernel running on the GPU, ii) the legacy implementation
with 4 kernels running in parallel, iii) the tiled version with
4 kernels running in parallel but without synchronization and
iv) the tiled version with the tile processing shifted by 1.3
µs and v) by 1.4 µs offset. Figure 5 shows the average
execution time and execution jitter of the scenarios. The blue
bars show the average scenario execution time. The minimum
and maximum scenario execution times are represented by
the small error bars on top of the blue bars. The red bars
represent the min-max jitter in percentage relative to the
average scenario execution time. It can be seen, that the
legacy implementation suffers from high contention in the four
kernel configuration. The worst-case observed execution time
(WOET) is still slightly shorter than the WOET of the single



0 500
1000

1100
1200

1300
1400

1500
1600

1700

Tile offset [ns]

2.50

2.75

3.00

3.25

3.50

A
v
g.

sc
en

ar
io

ex
ec

u
ti

on
ti

m
e

[m
s]

Tiles offset evaluation

0.0

0.5

1.0

1.5

J
it

te
r

[%
]

Baseline [ms]

Avg. time

Jitter

Figure 4. Influence of tile scheduling offset to the scenario execution time
and the execution jitter.

Legacy: 1 kernel

Legacy: 4 kernels

Tiled: 4 kernels, no scheduler

Tiled: 4 kernels, 1300 ns offset

Tiled: 4 kernels, 1400 ns offset
0

1

2

3

A
v
g.

sc
en

ar
io

ex
ec

u
ti

on
ti

m
e

[m
s]

0

2

4

6

J
it

te
r

[%
]

1.84%

6.47%

1.47%

0.15% 0.04%

Avg. time

Jitter in %

Figure 5. Comparison of scenario execution time. Tiles are scheduled against
each other.

kernel version executed 4 times in a row, but the execution
jitter is around 6.47% of the average execution time. The
tiled implementation with 4 kernels already performed faster
than the legacy implementation and its execution jitter is
only 1.47%.

The tiling concentrates the accesses to the main memory
of the kernels. Therefore, the kernels do not have to access
the main memory in all phases, which leads to less contention
and lower jitter. The scheduled tiled versions have a bit higher
average scenario execution times than the legacy four-kernel
version, but with the advantage of execution jitter reduced to
0.15% and 0.04% for the scheduling offset of 1.3 µs and 1.4 µs
respectively. Still, one could argue that the WOET of the tiled
version (2.42 ms) without scheduling is still shorter than the
minimum execution time of the scheduled version (2.87 ms).
However, the version without the scheduler offers no future
possibilities to synchronize the GPU with the CPU, and the
whole execution on the GPU would need to be treated as a
single memory phase for CPU PREM scheduling.

D. Phase evaluation

In the tiled implementation, each block processes sequen-
tially multiple tiles, each consisting of three PREM phases.
To analyze in more detail how the phases interfere, we added
another synchronization point, as shown in Figure 6, between
compute and writeback phases to allow independent evaluation
of phase interference. By shifting the phase start times, we
measured the interference of: i) the prefetch and compute
phases (WB is scheduled later not to run concurrently), and of
ii) the writeback phases (PF and C are scheduled earlier not
to run concurrently).

In Figure 7, we can see how the prefetch and compute
phases interfere with each other. The average compute time
bars are stacked on top of the average prefetch time bars. The

CPF WB

CPF WB

CPF

CPFPFOf

WBOf

Kernel 0 - Block 0

Kernel 0 - Block 1

Kernel 1 - Block 0

Kernel 1 - Block 1

PFSync
WBSync

CPF WB CPF
PFOf

CPF WB CPF

PFSync

WBOf

Figure 6. Synchronization points to schedule the PREM phases independently.

0
ns

50
0

ns

10
00

ns

15
00

ns

20
00

ns

30
00

ns
0

2000

4000

A
ve

ra
g
e

p
h

a
se

ex
ec

u
ti

o
n

ti
m

e
[n

s]

Prefetch time Prefetch jitter Compute time Compute jitter

0

50

100

150

J
it

te
r

re
la

ti
ve

to
av

er
a
g
e

p
h

a
se

ex
ec

u
ti

o
n

ti
m

e
[%

]

8
1
.5

5
%

7
7
.8

7
%

7
8
.6

2
%

6
8
.2

0
%

6
0
.7

4
%

3
9
.8

7
%

2
5
.4

9
%

2
6
.2

7
%

1
8
.8

7
%

1
1
.7

6
%

1
3
.3

6
%

1
2
.8

6
%

Figure 7. Only prefetch and compute phases are scheduled against each other
(X-axis shows shift offset PFOff). Writeback phases are moved away by the
schedule and do not influence the previous two phases. In this experiment the
two blocks running in a kernel are scheduled at the same time instance.

bars on the right represent the phase execution jitter of the two
phases compared to the total average phase execution time (PF
+ C). One can see that the average phase execution time and
the jitter are reduced the less the phases overlap. This effect
is dominant in the prefetch phases. An interesting fact is that
the compute phases have the biggest jitter when they overlap
with other compute phases (no shift). This indicates some
contention on the shared memory or other resources in the
streaming multiprocessor. It also prevents the straightforward
application of the PREM model, which assumes that compute
phases do not interfere.

Figure 8 shows the interference of the writeback phases.
Similarly to the prefetch phases, the less the writeback phases
overlap, the more the phase execution time is reduced.

Even though the phase execution jitter appears to be high
(e.g. 81% in Fig. 7 on the left), the kernel scenario execution
jitter percentage is much smaller (1.2% in Fig. 5) since it is
relative to longer scenario execution time.

E. Comparison of PREM scheduling on CPU and GPU

When we compare the above-described results with our
previous application of PREM on the ARM CPUs of the Jetson

0
ns

20
0

ns

40
0

ns

60
0

ns

80
0

ns

10
00

ns
0

500

1000

1500

A
ve

ra
ge

p
h

as
e

ex
ec

u
ti

on
ti

m
e

[n
s]

Writeback execution time Writeback jitter

0

100

200

J
it

te
r

re
la

ti
ve

to
av

er
ag

e
p

h
as

e
ex

ec
u

ti
on

ti
m

e
[%

]

1
5
7
.3

1
%

1
9
0
.2

7
%

8
2
.4

8
%

7
0
.0

3
%

7
5
.8

7
%

5
4
.2

8
%

Figure 8. Execution time and jitter of writeback phases scheduled against
each other (X-axis shows shift offset WBOff). prefetch and compute phases
are scheduled away to isolate the writeback phases



TX1 [2], the prefetch and writeback phases took around 100
and 400 µs respectively and compute phases up to 3 ms. This
allowed to schedule a sequence of memory phases in parallel
with one or more longer compute phases and the CPUs were
efficiently utilized. On the GPU side, the phases execution
times are much shorter and differently distributed. Namely,
the writeback phase has the shortest phase execution time
followed by the compute and the prefetch phases. Therefore,
the approach used for CPU PREM scheduling, is not generally
applicable to the GPU. When combined with the fact, that the
execution time of compute phases is influenced by overlapping
with other compute and prefetch phases, it is clear that the
PREM scheduling rules need to be changed to be properly
applicable to the GPU execution.

The experiment, where the whole tiles were scheduled
against each other (Fig. 5), showed that the jitter could already
be significantly reduced without introducing big increase of
average execution time of all participating kernels. Therefore,
a solution to predictable execution times on the GPU requires
a different (less strict) set of co-scheduling rules than on the
CPU. It remains to be seen whether/how such rules can be
used as a proof for freedom from interference.

VI. CONCLUSION AND FUTURE WORK

In this paper, we evaluated mechanisms for the low-
overhead application of predictable execution model (PREM)
to GPU kernels. We compared two synchronization mecha-
nisms for synchronization of PREM phases. The memory-
based synchronization achieves round-trip time of around
2 µs, which would result in too high overhead for short
PREM phases on the GPU. Synchronization based on the
globaltimer allows reaching lower overhead, but only after
running nvprof, which magically increases the globaltimer
resolution to 160 ns. Furthermore, we have shown that by
using a tiled implementation of the 2D convolution kernel
and tightly synchronizing execution all blocks across multiple
kernels by using the globaltimer, we can reduce the execution
time jitter from 6.47% to 0.15% while maintaining almost the
same average execution time. We have also shown that the
duration and interference of the PREM phases are different
on the GPU compared to CPU. Namely, the phases are 100
to 1000 times shorter on the GPU and the execution time
of compute phases can be influenced by other overlapping
PREM phases. This and the short compute phase times make it
impossible to execute a sequence of memory phases in parallel
with a compute phase. On the other hand, simple scheduling
the whole tiles with fixed offsets, investigated in this paper,
resulted in sufficiently predictable execution with low jitter.
Therefore, we believe that applying more advanced scheduling
can lead to even more predictable execution, especially when
combined with time-triggered CPU scheduling.

Since we performed the first experiments only on the 2D
Convolution kernel, we plan to analyze in more detail how
various execution phases influence each other in other kernels.
Especially we would like to evaluate the behavior of the PREM
phases of more compute intensive kernels. Based on such an

evaluation, we want to come up with scheduling rules whose
application will lead to low execution time jitter and acceptable
performance at the same time. Later we plan to evaluate our
scheduling concept on a real application commonly used in
autonomous driving. Combining predictable GPU execution
with PREM-based CPU execution is also planned.

REFERENCES

[1] ISO, “ISO 26262 Road vehicles – Functional safety,” 2011.
[2] J. Matějka, B. Forsberg, M. Sojka, P. Šůcha, L. Benini, A. Marongiu,

and Z. Hanzálek, “Combining PREM compilation and static scheduling
for high-performance and predictable MPSoC execution,” Parallel
Computing, 2018. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/S0167819118301789

[3] M. Harris, “Using shared memory in CUDA C/C++,” NVIDIA, ac-
cessed: 2019-04-09.

[4] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley, “A predictable execution model for cots-based embedded
systems,” in 2011 17th IEEE Real-Time and Embedded Technology and
Applications Symposium, April 2011, pp. 269–279.

[5] M. Abadi et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: https://www.tensorflow.org/

[6] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed
tracking with kernelized correlation filters,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp. 583–596,
March 2015.

[7] R. Cavicchioli, N. Capodieci, and M. Bertogna, “Memory interference
characterization between CPU cores and integrated GPUs in mixed-
criticality platforms,” in 2017 22nd IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), Sep. 2017, pp.
1–10.

[8] X. Mei and X. Chu, “Dissecting GPU memory hierarchy through
microbenchmarking,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 1, pp. 72–86, Jan 2017.

[9] H. Wong, M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos,
“Demystifying GPU microarchitecture through microbenchmarking,”
in 2010 IEEE International Symposium on Performance Analysis of
Systems Software (ISPASS), March 2010, pp. 235–246.

[10] Y. Xu, R. Wang, T. Li, M. Song, L. Gao, Z. Luan, and D. Qian,
“Scheduling tasks with mixed timing constraints in GPU-powered real-
time systems,” 06 2016, pp. 1–13.

[11] C. Basaran and K. Kang, “Supporting preemptive task executions and
memory copies in GPGPUs,” in 2012 24th Euromicro Conference on
Real-Time Systems, July 2012, pp. 287–296.

[12] J. Zhong and B. He, “Kernelet: High-throughput GPU kernel executions
with dynamic slicing and scheduling,” IEEE Transactions on Parallel
and Distributed Systems, vol. 25, no. 6, pp. 1522–1532, June 2014.

[13] B. Forsberg, A. Marongiu, and L. Benini, “GPUguard: Towards support-
ing a predictable execution model for heterogeneous SoC,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2017, March
2017, pp. 318–321.

[14] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith, “GPU
scheduling on the NVIDIA TX2: Hidden details revealed,” in 2017 IEEE
Real-Time Systems Symposium (RTSS), Dec 2017, pp. 104–115.

[15] J. Bakita, N. Otterness, J. H.Anderson, and F. D. Smith, “Scaling up: The
validation of empirically derived scheduling rules on NVIDIA GPUs,”
2018.

[16] N. Capodieci, R. Cavicchioli, M. Bertogna, and A. Paramakuru,
“Deadline-based scheduling for GPU with preemption support,” in 2018
IEEE Real-Time Systems Symposium (RTSS), Dec 2018, pp. 119–130.

[17] University of Delaware, “Polybench-ACC,” https://github.com/
cavazos-lab/PolyBench-ACC, accessed: 2019-04-09.

[18] M. Bauer, H. Cook, and B. Khailany, “CudaDMA: Optimizing GPU
memory bandwidth via warp specialization,” in SC ’11: Proceedings
of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, Nov 2011, pp. 1–11.

[19] NVIDIA, “Parallel thread execution ISA version 6.4,”
https://docs.nvidia.com/cuda/parallel-thread-execution/
#special-registers-globaltimer, accessed: 2019-04-09.

https://linkinghub.elsevier.com/retrieve/pii/S0167819118301789
https://linkinghub.elsevier.com/retrieve/pii/S0167819118301789
https://www.tensorflow.org/
https://github.com/cavazos-lab/PolyBench-ACC
https://github.com/cavazos-lab/PolyBench-ACC
https://docs.nvidia.com/cuda/parallel-thread-execution/#special-registers-globaltimer
https://docs.nvidia.com/cuda/parallel-thread-execution/#special-registers-globaltimer

	Introduction
	Related work
	Background
	GPU/TX2 architecture
	CUDA programming model

	Evaluation goals
	Synchronization mechanism
	Benchmark selection
	Reduction of intra-GPU interference

	Experimental evaluation
	Pinned memory synchronization evaluation
	GPU timer granularity
	Time triggered execution of tiled 2D Convolution
	Phase evaluation
	Comparison of PREM scheduling on CPU and GPU

	Conclusion and future work
	References

