Scheduling

Zdenek Hanzalek
zdenek.hanzalek@cvut.cz

CTU in Prague

May 15, 2018
Table of Contents

1 Basics notions

2 Scheduling on One Resource
 - Minimizing C_{max}
 - Bratley’s Algorithm for $1\mid r_j, \tilde{d}_j \mid C_{max}$
 - Minimizing $\sum w_j C_j$
 - Branch&Bound with LP for $1\mid prec\mid \sum w_j C_j$
 - Minimizing L_{max}
 - Horn’s Algorithm for $1\mid pmtn, r_j, d_j = \tilde{d}_j \mid L_{max}$

3 Scheduling on Parallel Identical Resources
 - Minimizing C_{max}

4 Project Scheduling
 - Temporal constraints
 - Minimizing C_{max}
 - ILP Model for $PS1\mid temp\mid C_{max}$ - One Resource
 - ILP Model for $PSm, 1\mid temp\mid C_{max}$ - m Dedicated Resources of Unit Capacity
 - Modeling with Temporal Constraints
 - ILP Model for $PSm, R\mid temp\mid C_{max}$ - m Dedicated Resources of Capacities R_k
Motivation Example: Lacquer Production Scheduling

Made-to-order lacquer production, where jobs are determined by type of lacquer, quantity and delivery date.

Goal:
- minimize tardiness (delivery date overrun)
- minimize storage costs

Constraints:
- batch production of various kinds of lacquer
- varying production process/time for different kinds
- time constraints between start times and/or completion times of operations
- working hours (processing times of some operations exceed working hours)
- preparation (set-up time)
Motivation Example: Lacquer Production Scheduling - Formalization

Can be formalized as $PSm, 1 \mid \text{temp}, o_{ij}, t_g \sum w_j \cdot T_j$

There are temporal constraints on operations. We must consider:
(1) minimal delay between the end of one operation and the start of the next one (e.g. minimal delay needed to dissolve an ingredient)
(2) maximal delay between the end of one operation and the start of the next one (e.g. the lacquer can solidify).

Moreover, the processing time on some resource (e.g. reservoir) is given by the start and completion of different operations.
Example

- production of 29 jobs
- 3 types of lacquer
- 9 weeks time horizon
Scheduling - Basic Terminology

- **set of n tasks** \(\mathcal{T} = \{ T_1, T_2, \ldots, T_n \} \)
- **set of m types of resources** (processors, machines, employees,...) with capacities \(R_k \), \(\mathcal{P} = \{ P^1_{R_1}, P^2_{R_2}, \ldots, P^m_{R_m} \} \)

Scheduling is an assignment of a task to a resources in time

- Each task must be **completed**
 - this differs from planning which decides which task will be scheduled and processed

- Set of tasks is known when executing the scheduling algorithm (this is called **off-line scheduling**)
 - this differs from on-line scheduling - OS scheduler, for example, schedules new tasks using some policy (e.g. priority levels)

- A result is a schedule which determines which task is run on which resource and when. Often depicted as a **Gantt chart**.
General and Specific Constraints

General constraints:

- Each task is to be processed **by at most one resource** at a time (task is sequential)
- Each resource is capable of processing **at most one task** at a time

Specific constraints:

- Task T_i has to be processed during time interval $\langle r_i, d_i \rangle$
- When the precedence constraint is defined between T_i and T_j, i.e. $T_i \prec T_j$, then the processing of task T_j can’t start before task T_i was completed
- If scheduling is non-preemptive, a task cannot be stopped and completed later
- If scheduling is preemptive, the number of preemptions must be finite
Task Parameters and Variables

Parameters

- release time r_j
- processing time p_j
- due date d_j, time in which task T_j should be completed
- deadline \tilde{d}_j, time in which task T_j has to be completed

Variables

- start time s_j
- completion time C_j
- waiting time $w_j = s_j - r_j$
- flow (lead) time $F_j = C_j - r_j$
- lateness $L_j = C_j - d_j$
- tardiness $D_j = \max\{C_j - d_j, 0\}$
Classify scheduling problems by resources | tasks | criterion

Example: $P2 | \text{pmtn} | C_{\text{max}}$ represents scheduling on two parallel identical resources, and preemption is allowed. The optimization criterion is the completion time of the last task.

α - resources

- **Parallel resources** - a task can run on any resource (only one type of resource exists with capacity R, i.e. $\mathcal{P} = \{P^1, \ldots, P^R\}$).
- **Dedicated resources** - a task can run only on one resource (m resource types with unit capacity, i.e. $\mathcal{P} = \{P^1, P^2 \ldots, P^m\}$).
- **Project Scheduling** - m resource types, each with capacity R_k, i.e. $\mathcal{P} = \{P^1_1, \ldots, P^1_{R_1}, P^2_1, \ldots, P^2_{R_2}, \ldots \ldots, P^m_1, \ldots, P^m_{R_m}\}$.
Resources Characteristics α_1, α_2

<table>
<thead>
<tr>
<th>α_1</th>
<th>1</th>
<th>single resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>parallel identical resources</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>parallel uniform resources, computation time is inversely related to resource speed</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>parallel unrelated resources, computation times are given as a matrix (resources x tasks)</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>dedicated resources - open-shop - tasks are independent</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>dedicated resources - flow-shop - tasks are grouped in the sequences (jobs) in the same order, each job visits each machine once</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>dedicated resources - job-shop - order of tasks in jobs is arbitrary, resource can be used several times in a job</td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td>Project Scheduling - most general (several resource types with capacities, general precedence constraints)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>α_2</th>
<th>\emptyset</th>
<th>arbitrary number of resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2 resources (or other specified number)</td>
<td></td>
</tr>
<tr>
<td>m, R</td>
<td>m resource types with capacities R (Project Scheduling)</td>
<td></td>
</tr>
<tr>
<td>Task Characteristics $\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6, \beta_7, \beta_8$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| β_1 | \pmtn | preemption is allowed
\emptyset | preemption is not allowed |
| β_2 | prec | precedence constraints
in-tree, out-tree | tree constraints
chain | chain constraints
tmpn | temporal constraints (for Project Sched.)
\emptyset | independent tasks |
| β_3 | r_j | release time |
| β_4 | $p_j = k$ | uniform processing time
$p_L \leq p_j \leq p_U$ | restricted processing time
\emptyset | arbitrary processing time |
| β_5 | \tilde{d}_j, d_j | deadline, due-date |
| β_6 | $n_j \leq k$ | maximal number of tasks in a job |
| β_7 | no-wait | buffers of zero capacity |
| β_8 | set-up | time for resource reconfiguration |
Optimality Criterion γ

$\gamma = C_{max}$

- minimize schedule length $C_{max} = \max \{ C_j \}$

 (makespan, i.e. completion time of the last task)

- $\sum C_j$

 minimize the sum of completion times

- $\sum w_j C_j$

 minimize weighted completion time

- L_{max}

 minimize max. lateness $L_{max} = \max \{ C_j - d_j \}$

- \emptyset

 decision problem

\[
\begin{align*}
\gamma &= C_{max} \\
\sum C_j &= \text{minimize schedule length} \quad C_{max} = \max \{ C_j \} \\
\sum w_j C_j &= \text{(makespan, i.e. completion time of the last task)} \\
\sum w_j C_j &= \text{minimize weighted completion time} \\
L_{max} &= \text{minimize max. lateness} \quad L_{max} = \max \{ C_j - d_j \} \\
\emptyset &= \text{decision problem}
\end{align*}
\]

An Example: $P || C_{max}$ means:

Scheduling on an arbitrary number of parallel identical resources, no preemption, independent tasks (no precedence), tasks arrive to the system at time 0, processing times are arbitrary, objective is to minimize the schedule length.
Scheduling on One Resource

Minimizing Makespan (i.e. schedule length C_{max})

- $1|prec| C_{max}$ - easy
 - the tasks are processed in an arbitrary order that satisfies the precedence relation (i.e. topological order), $C_{max} = \sum_{j=1}^{n} p_j$

- $1|| C_{max}$ - easy

- $1|r_j| C_{max}$ - easy
 - the tasks are processed in a non-descending order of r_j (T_j with the lowest r_j first)

- $1|\tilde{d}_j| C_{max}$ - easy
 - the tasks are processed in a non-descending order of \tilde{d}_j
 - can be solved by EDF - Earliest Deadline First
 - the feasible schedule doesn’t have to exist

- $1|r_j, \tilde{d}_j| C_{max}$ - NP-hard
 - NP-hardness proved by the pol. reduction from 3-Partition problem
 - for $p_j = 1$ there exists a polynomial algorithm
Theorem

The $1\mid r_j, \tilde{d}_j \mid C_{\text{max}}$ problem is NP-hard in the strong sense.

By reduction from the 3-Partition problem, which is strongly NP-complete.

3-Partition decision problem instance, $I_{3P} = (A, B)$, is given as:

- a multiset A of $3m$ integers a_1, a_2, \ldots, a_{3m} (sizes of items), and
- a positive integer B (size of bins) such that
 \[\forall i \in \{1, 2, \ldots, 3m\} : \frac{B}{4} < a_i < \frac{B}{2} \quad \text{and} \quad \sum_{i=1}^{3m} a_i = mB. \]

The problem is to determine whether A can be partitioned into m disjoint subsets A_1, A_2, \ldots, A_m such that, $\forall j \in \{1, 2, \ldots, m\} : \sum_{a_i \in A_j} a_i = B$.

Note: if we show that there is a subset A_j which contains integers summing to B, then it must contain three integers. This follows from the assumption $\frac{B}{4} < a_i < \frac{B}{2}$ (try to sum-up 4 integers or 2 integers).
Reduction from 3-Partition to 1 \(r_j, \tilde{d}_j \mid C_{\text{max}} \)

From the given instance of the 3-Partition problem \(I_{3P} = (A, B) \), we build 1 \(r_j, \tilde{d}_j \mid C_{\text{max}} \) scheduling problem instance \(I_{\text{SCH}} \) comprised of 4\(m \) tasks \(T_j = (p_j, r_j, \tilde{d}_j) \) as follows:

- \(\forall j \in \{1, \ldots, m\} : T_j = (1, (B+1) \cdot (j-1), (B+1) \cdot (j-1)+1) \). These are “additional/artificial” tasks used to separate the subsets.

- \(\forall j \in \{m+1, \ldots, 4m\} : T_j = (a_i, 0, \infty), i = j - m \).

Each of these tasks \(T_j \) corresponds to the element \(a_i \) of \(I_{3P} \).

It is easy to prove that the \(I_{3P} = (A, B) \) has a solution if and only if the optimal solution of the related \(I_{\text{SCH}} \) has value of \(C_{\text{max}} = m \cdot (B+1) \).
Position based ILP formulation for $1 \mid r_j, \tilde{d}_j \mid C_{\text{max}}$

$x_{iq} = 1$ iff task i is at the q-th position in the sequence of tasks

$$
\begin{align*}
\min \quad & C_{\text{max}} \\
\text{subject to:} & \\
\quad & \sum_{q=1}^{n} x_{iq} = 1 \\
\quad & \sum_{i=1}^{n} x_{iq} = 1 \\
\quad & t_q \geq \sum_{i=1}^{n} r_i \cdot x_{iq} \\
\quad & t_q \geq t_{q-1} + \sum_{i=1}^{n} p_i \cdot x_{i,q-1} \\
\quad & t_q \leq \sum_{i=1}^{n} \tilde{d}_i \cdot x_{i,q} - \sum_{i=1}^{n} p_i \cdot x_{i,q} \\
\quad & C_{\text{max}} \geq t_n + \sum_{i=1}^{n} p_i \cdot x_{in}
\end{align*}
$$

variables: $x_{i \in 1..n, q \in 1..n} \in \{0, 1\}$, $C_{\text{max}} \in \langle 0, UB \rangle$, $t_{q \in 1..n} \in \langle 0, UB \rangle$
Bratley’s Algorithm for $1 \mid r_j, \tilde{d}_j \mid C_{\text{max}}$

A branch and bound (B&B) algorithm. Branching - without bounding it is an enumerative method that creates a solution tree (some of the nodes are infeasible). Every node is labeled by: (the order of tasks)/(completion time of the last task).

<table>
<thead>
<tr>
<th>level</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>n</td>
</tr>
<tr>
<td>2</td>
<td>$n(n-1)$</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>n-1</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>$n!$</td>
</tr>
</tbody>
</table>

all permutations
(i) **eliminate the node** exceeding the deadline (and all its “brothers”)

- If there is a node which exceeds any deadline, all its descendants should be eliminated.
- Critical task (here T_3) will have to be scheduled anyway - therefore, all of its “brothers” should be eliminated as well.

![Diagram](image-url)
(ii) problem decomposition due to idle waiting - e.g. when the employee waits for the material, his work was optimal

Consider node \(v \) on level \(k \). If \(C_i \) of the last scheduled task is less than or equal to \(r_i \) of all unscheduled tasks, there is no need for backtrack above \(v \)

\(v \) becomes a new root and there are \(n - k \) levels (\(n - k \) unscheduled tasks) to be scheduled
Definition: BRTP - Block with Release Time Property

BRTP is a set of k tasks that satisfy:
- first task T_1 starts at its release time
- all k tasks till the end of the schedule run without "idle waiting"
- $r_1 \leq r_i$ for all $i = 2 \ldots k$

Note: “till the end of the schedule” implies there is at most one BRTP

Lemma: sufficient condition of optimality

If BRTP exists, the schedule is optimal (the search is finished).

Proof:
- this schedule is optimal since the last task T_k can not be completed earlier
- order of prec. tasks is not important - see (ii)
- no task from BRTP can be done before r_1
- there is no task after C_{max}
BRTP is not Necessary Condition of Optimality

Example:

\[
\begin{array}{c|c|c}
\hline
r[2] & r[1] & \bar{d}[1] & C_{\text{max}} = \bar{d}[2] \\
\end{array}
\]

In this particular case, the schedule is optimal, but it does not have BRTP.

Tightening the bounds:

In general, C_{max} found without BRTP could be used for bounding further solutions while **setting all deadlines** to be at most $C_{\text{max}} - \epsilon$.

This ensures that if other feasible schedules exist, only those that are **better by ϵ** than the solution at hand, are generated.
Bratley’s Algorithm - Example

\[r = (4,1,1,0), \quad p = (2,1,2,2), \quad \tilde{d} = (8,5,6,4) \]
Scheduling on One Resource

Minimizing \(\sum w_j C_j \)

- 1|| \(\sum C_j \) - easy
 - SPT rule (Shortest Processing Time first) - schedule the tasks in a non-decreasing order of \(p_j \)

- 1|| \(\sum w_j C_j \) - easy
 - Weighted SPT - schedule the tasks in a non-decreasing order of \(\frac{p_j}{w_j} \)

- 1\(r_j \) \(\sum C_j \) - NP-hard

- 1\(r_j \) \(\sum C_j \) - can be solved by modified SPT

- 1\(r_j \) \(\sum w_j C_j \) - NP-hard

- 1\(\tilde{d}_j \) \(\sum C_j \) - can be solved by modified SPT

- 1\(\tilde{d}_j \) \(\sum w_j C_j \) - NP-hard

- 1|prec| \(\sum C_j \) - NP-hard
First, we formulate the problem as an ILP:

- we use **variable** $x_{ij} \in \{0, 1\}$ such that $x_{ij} = 1$ iff T_i precedes T_j or $i = j$

- we encode **precedence relations** into $e_{ij} \in \{0, 1\}$ such that $e_{ij} = 1$ iff there is a directed edge from T_i to T_j in the precedence graph G or $i = j$

criterion - completion time of task T_j consists of p_j and the processing time of its predecessors:

$$C_j = \sum_{i=1}^{n} p_i \cdot x_{ij}$$

$$w_j \cdot C_j = \sum_{i=1}^{n} p_i \cdot x_{ij} \cdot w_j$$

$$J = \sum_{j=1}^{n} w_j \cdot C_j = \sum_{i=1}^{n} \sum_{i=1}^{n} p_i \cdot x_{ij} \cdot w_j$$

from all feasible schedules x we look for the one that minimizes $J(x)$, i.e. $\min_x J(x)$
ILP formulation for $1|\text{prec}|\sum w_j C_j$

\begin{align*}
\text{min} & \quad \sum_{j=1}^n \sum_{i=1}^n p_i \cdot x_{ij} \cdot w_j \\
\text{subject to:} & \quad x_{i,j} \geq e_{i,j} \quad i, j \in 1..n \\
& \quad x_{i,j} + x_{j,i} = 1 \quad i, j \in 1..n, i \neq j \\
& \quad 1 \leq x_{i,j} + x_{j,k} + x_{k,i} \leq 2 \quad i, j, k \in 1..n, i \neq j \neq k \\
& \quad x_{i,i} = 1 \quad i \in 1..n
\end{align*}

parameters: $w_i \in 1..n, p_i \in 1..n \in \mathbb{R}_0^+, e_{i,j} \in 1..n, j \in 1..n \in \{0, 1\}$

variables: $x_{i,j} \in 1..n, j \in 1..n \in \{0, 1\}$
Branch and Bound with LP Bounding

We relax on the integrality of variable x:

- $0 \leq x_{ij} \leq 1$ and $x_i \in \{1, \ldots, n\}, j \in \{1, \ldots, n\} \in \mathbb{R}$
- This does not give us the right solution, however we can use the J^{LP} (remaining tasks) value of this LP formulation as a lower bound on the “amount of remaining work”

The Branch and Bound algorithm creates a similar tree as Bradley’s algorithm.

- Let J_1 be the value of the best solution known up to now.
- We discard the partial solution of value J_2 not only when $J_2 \geq J_1$, but also when $J_2 + J^{LP}$ (remaining tasks) $\geq J_1$.

Since the solution space of ILP is a subspace of LP we know:

J(remaining tasks) $\geq J^{LP}$ (remaining tasks).
Scheduling on One Resource
Minimizing L_{max}

- $1\|L_{max}$ - solved by EDD (Earliest Due Date first) rule in polynomial time
- $1\|r_j L_{max}$ - NP-hard
- $1\|r_j, p_j = 1 L_{max}$ - polynomial - iterating EDD
- $1\|pmtn, r_j L_{max}$ - polynomial - iterating EDD by Horn
- $1\|pmtn, r_j, d_j = \tilde{d}_j L_{max}$ - polynomial - the same Horn’s algorithm often called EDF
- $1\|pmtn, prec, r_j, d_j = \tilde{d}_j L_{max}$ - polynomial - transformation to independent task set and then EDF

Important notes:

- minimization of L_{max} implies existence of due-date d_j (even if it is not in β notation)
- L_{max} may have negative value. In such case, minimization of lateness L_{max} may be interpreted as maximization of earliness.
Can be solved by EDD (Earliest Due Date first), i.e. tasks are scheduled in order of nondecreasing due dates.

Time complexity is $O(n \cdot \log n)$.

Optimality can be proven by simple swaps:

- Let S^A be an optimal schedule produced by an algorithm A.
- Let S^{EDD} be a schedule produced by EDD.
- If $S^A \neq S^{EDD}$, then there exist two tasks T_a and T_b with $d_a \leq d_b$, such that T_b immediately precedes T_a in S^A.
- Swap of T_a and T_b cannot increase the maximum lateness of the task set L_{max}.
- By finite number of swaps, S^A is changed to S^{EDD}, $S^A \xrightarrow{\text{swap}} S' \xrightarrow{\text{swap}} \ldots \xrightarrow{\text{swap}} S^{EDD}$.
Problem 1 \textbf{||} \textit{L_{max} - Optimality of EDD - Illustration}

Two cases must be considered when $p_a > 0$ and $p_b > 0$:

1) If $L'_a \geq L'_b$ then $L'_{max}({\{T_a, T_b\}}) = C'_a - d_a < C_a^A - d_a$

2) If $L'_a \leq L'_b$ then $L'_{max}({\{T_a, T_b\}}) = C'_b - d_b = C_a^A - d_b < C_a^A - d_a$

Since, in both cases, $L'_{max}({\{T_a, T_b\}}) < L^A_{max}({\{T_a, T_b\}})$ we can conclude that the swap of T_a and T_b decreases $L_{max}({\{T_a, T_b\}})$ and thus it cannot increase $L_{max}(T)$, the maximum lateness of all tasks.
Problem 1 $|r_j, p_j = 1| L_{max}$

Optimal schedule can be found by **iterative calls of EDD**:

- at every moment we schedule the task which is ready and has the lowest d_j among all ready tasks.

Input: \mathcal{T}, set of n non-preemptive tasks with unit processing time.

Release dates $(r_1, r_2, ..., r_n)$ and due-dates $(d_1, d_2, ..., d_n)$.

Output: Start times $(s_1, s_2, ..., s_n)$.

$t := 0;$

while $\mathcal{T} \neq \emptyset$ **do**

- $t := \max \{t, \min_{T_j \in \mathcal{T}} r_j\}$; // shift time if no task is ready

- $\mathcal{T}' = \{T_j | T_j \in \mathcal{T}, r_j \leq t\}$; // set of ready tasks

- choose $T_j \in \mathcal{T}'$ with minimal d_j; // EDD in \mathcal{T}'

- $\mathcal{T} := \mathcal{T} \setminus \{T_j\}$;

- $s_j = t$;

- $t := t + 1$;

end

Example: $r = (2, 0, 2, 3, 3), d = (3, 5, 4, 4, 6)$ results in $L_{max} = 1$.
Problem 1 \mid \text{pmtn, } r_j \mid \text{ } L_{max} - \text{ Horn’s Algorithm}

Input: \mathcal{T}, set of n preemptive tasks. Processing times (p_1, p_2, \ldots, p_n), release dates (r_1, r_2, \ldots, r_n) and due-dates (d_1, d_2, \ldots, d_n).

Output: Start times of preempted parts of tasks.

\begin{verbatim}
while $\mathcal{T} \neq \emptyset$ do
 $t_1 := \min_{T_j \in \mathcal{T}} \{r_j\}$;
 if all tasks are ready at time t_1 then $t_2 = \infty$;
 else $t_2 = \min_{T_j \in \mathcal{T}} \{r_j \mid r_j > t_1\}$;
 $\mathcal{T}' = \{ T_j \mid T_j \in \mathcal{T}, r_j = t_1 \}$; \hspace{1cm} // set of ready tasks
 choose $T_k \in \mathcal{T}'$ with minimal d_j; \hspace{1cm} // EDD in \mathcal{T}'
 $\delta := \min \{p_k, t_2 - t_1\}$;
 schedule T_k or its part in interval $\langle t_1, t_1 + \delta \rangle$;
 if $\delta = p_k$ then $\mathcal{T} := \mathcal{T} \setminus \{T_k\}$;
 else $p_k := p_k - \delta$; \hspace{1cm} // preemption
 for $T_j \in \mathcal{T}'$ do $r_j := t_1 + \delta$;
end
\end{verbatim}
Example:

\[T = \{ T_1, T_2, T_3, T_4 \} \]
\[p = (3, 2, 3, 4) \]
\[r = (0, 4, 2, 0) \]
\[d = (13, 8, 11, 16) \]
Theorem - Optimality of Horn’s Algorithm

Given a set of n independent preemptive tasks with arbitrary release times, any algorithm that at any instant executes the task with earliest due date among all the ready tasks is optimal with respect to L_{max} minimization.

When we assume $1 | \text{pmtn}, r_j, d_j = \tilde{d}_j | L_{max}$ then the algorithm is often called **EDF (Earliest Deadline First)**. Such algorithm:

- **minimizes** L_{max}
- **decides schedulability** – if there exists a feasible schedule ($L_{max} \leq 0$) for the given instance, then the EDF is able to find it
Assuming the input parameters to be nonnegative integers, the proof of the theorem is based on the following reasoning:

- Let S^A be an **optimal schedule** produced by algorithm A
- Let S^{EDF} be a schedule produced by EDF
- Let schedule S^A starts at time $t = 0$ and D is the latest due date.
- Without loss of generality S^A can be **divided into unit-time slices**.
- Let i_t is the id of the task executing slice t.
- Let j_t is the id of the ready task with earliest due date at time t.
- If $S^A \neq S^{EDF}$ then there is slice t such that $i_t \neq j_t$.
- Swap of slices of T_{i_t} and T_{j_t} cannot increase the maximum lateness of the task set L_{max}.
- S^{EDF} is obtained from S^A by at most D swaps.

$$S^A \xrightarrow{\text{swap}} S' \xrightarrow{\text{swap}} \ldots \xrightarrow{\text{swap}} S^{EDF}$$
Using the same argument adopted in the proof of EDD optimality for $1 \parallel L_{max}$, it is easy to show that each swap cannot increase the maximum lateness of the task set L_{max}.
Chetto, Silly, Bouchentouf algorithm transforms set T of dependent tasks into T' of independent tasks by modification of timing parameters:

- **Modification of the release dates**
 1. For any task without predecessors set $r'_j = r_j$.
 2. Select task T_j such that its release date has not been modified but the release dates of all immediate predecessors T_h have been modified. If no such task exists, exit.
 3. Set $r'_j = max\{r_j, max\{r'_h + p_h | T_h \text{ is immediate predecessor of } T_j\}\}$ and jump to step 2.

- **Modification of deadlines**
 1. For any task without successors set $\tilde{d}'_j = \tilde{d}_j$.
 2. Select a task T_j such that its deadline has not been modified but the deadlines of all immediate successors T_k have been modified. If no such task exists, exit.
 3. Set $\tilde{d}'_j = min\{\tilde{d}_j, min\{\tilde{d}'_k - p_k | T_k \text{ is immediate successor of } T_j\}\}$ and jump to step 2.

- EDF is executed on independent tasks in T'.
Idea of the proof in one direction:

- $r'_j \geq r_j$ and $\tilde{d}'_j \leq \tilde{d}_j$, therefore, the schedulability of \mathcal{T}' with respect to the timing constraints (release dates and deadlines) implies also schedulability of \mathcal{T} with respect to the timing constraints.

- due to the logics of the Horn’s alg. and modification of the timing constraints the scheduled tasks of \mathcal{T}' are ordered in the same way as given by the precedence constraints, therefore, precedence constraints of \mathcal{T} are not violated.
Scheduling on Parallel Identical Resources

Minimizing C_{max}

- $P2 \parallel C_{max}$ - NP-hard
 - schedule n non-preemptive tasks on two parallel identical resources minimizing makespan, i.e. the completion time of the last task
 - the problem is NP-hard because the 2 partition problem (see ILP lecture) can be reduced to $P2 \parallel C_{max}$ while comparing the optimal C_{max} with the threshold of $0.5 \ast \sum_{i=1\ldots n} p_i$.

- $P |\text{pmtn}| C_{max}$ - easy
 - can be solved by the McNaughton algorithm in $O(n)$

- $P |\text{pmtn}, r_j, d_j| \mid -$ - easy
 - decision version of maximum flow problem (see the lecture on Flows)

- $P |\text{prec}| C_{max}$ - NP-hard
 - LS - approximation algorithm with factor $r_{LS} = 2 - \frac{1}{R}$, where R is the number of parallel identical resources

- $P \parallel C_{max}$ - NP-hard
 - LPT - approximation algorithm with factor $r_{LPT} = \frac{4}{3} - \frac{1}{3R}$
 - dynamic programming - Rothkopf’s pseudopolynomial algorithm

- $P |\text{pmtn}, \text{prec}| C_{max}$ - NP-hard
 - Muntz&Coffman’s level algorithm with factor $r_{MC} = 2 - \frac{2}{R}$
McNaughton’s Algorithm for $P|\text{pmtn}|C_{\text{max}}$

Input: R, number of parallel identical resources, n, number of preemptive tasks and computation times $(p_1, p_2, ..., p_n)$.

Output: n-element vectors s^1, s^2, z^1, z^2 where s^1_i (resp. s^2_i) is start time of the first (resp. second) part of task T_i and z^1_i (resp. z^2_i) is the resource ID on which the first (resp. second) part of task T_i will be executed.

$$s^1_i = s^2_i = z^1_i = z^2_i := 0 \text{ for all } i \in 1 \ldots n;$$

$$t := 0; \nu := 1; i := 1;$$

$$C^*_{\text{max}} = \max \{ \max_{i=1}^n \{ p_i \}, \frac{1}{R} \sum_{1}^{n} p_i \};$$

while $i \leq n$ **do**

| if $t + p_i \leq C^*_{\text{max}}$ then |
| | $s^1_i := t; z^1_i := \nu; t := t + p_i; i := i + 1;$ |
| else |
| | $s^2_i := t; z^2_i := \nu; p_i := p_i - (C^*_{\text{max}} - t); t := 0; \nu := \nu + 1;$ |
| end |

end

Time complexity is $O(n)$.

Z. Hanzalek (CTU)
McNaughtnon’s Algorithm for $P|\text{pmtn}|C_{\text{max}}$

The term $C^*_\text{max} = \max\{\max_{i=1...n}\{p_i\}, \frac{1}{R}\sum_{1}^{n} p_i\}$ should be interpreted as follows:

- component $\max_{i=1...n}\{p_i\}$ represents the sequential nature of each task - its parts can be assigned to different resources, but these parts can not be run simultaneously. Note that each task can be divided into two parts at most.
- component $\frac{1}{R}\sum_{1}^{n} p_i$ represents a situation when all resources work without idle waiting.

Example 1:
$p = (2, 3, 2, 3, 2)$, $R = 3$
compute $C^*_\text{max} = \max\{3, \frac{12}{3}\} = 4$

Example 2:
$p = (10, 8, 4, 14, 1)$, $R = 3$
compute $C^*_\text{max} = \max\{14, \frac{37}{3}\} = 14$
Input: R, number of parallel identical resources, n, number of non-preemptive tasks and computation times (p_1, p_2, \ldots, p_n). DAG of precedence constraints.

Output: n-element vectors s and z where s_i is the start time of T_i and z_i is the resource ID.

$t_v := 0$ for all $v \in 1 \ldots R$; // availability of resource

$s_i = z_i := 0$ for all $i \in 1 \ldots n$;

Sort tasks in list L;

for $i := 1$ to n do // for all tasks

\[k = \arg \min_{v=1}^{R} \{ t_v \}; \] // choose res. with the lowest t_v

In the set of free tasks, choose T_i which is first in the list L

Remove T_i from the list L;

$s_i = \max \{ t_k, \max_{j \in \text{Pred}(T_i)} \{ s_j + p_j \} \}; z_i = k; \] // assign T_i to P_k

$t_k = s_i + p_i; \] // update availability time of P_k

end

Task T_i is **free** if its predecessors have been completed. $\text{Pred}(T_i)$ is a set of the task IDs that are **predecessors** of T_i. Complexity is $O(n)$.
List Scheduling (LS) is a general heuristic useful in many problems.
- We have a list \((n\text{-tuple})\) of tasks and when some resource is free, we assign the first free task from the list to this resource.
- The accuracy of LS depends on the criterion and sorting procedure.

Approximation factor of LS algorithm [Graham 1966]

For \(P|\text{prec}|C_{\text{max}}\) (and also for \(P||C_{\text{max}}\)) and arbitrary (unsorted) list \(L\), List Scheduling is an approximation algorithm with factor \(r_{LS} = 2 - \frac{1}{R}\)

An example illustrating the case when the factor is attained:

\[n = (R - 1) \cdot R + 1,\]
\[p = (1, 1, \ldots, 1, R),\]
\(\prec\) empty.

Illustration for \(R = 4\)
\[r_{LS} = 2 - \frac{1}{4} = \frac{7}{4}\]

\[L = (T_n, T_1, \ldots, T_{n-1})\]
\[L' = (T_1, T_2, \ldots, T_n)\]
Anomalies of List Scheduling Algorithm

The LS algorithm depends not only on the order of tasks in L, but it exhibits anomalies (C_{max} surprisingly increases when relaxing some constraints/parameters) caused by:

- (1) the decrease of processing time p_i
- (2) the removal of some precedence constraints
- (3) the increase of the number of resources R

Example illustrating different anomalies for $R = 2, n = 8, p = (3, 4, 2, 4, 4, 2, 13, 2)$

Using list $L = (T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8)$, LS finds solution with $C^*_{max} = 17$.
List Scheduling Anomalies - Prolongation of C_{max}

Exchange position of T_7 and T_8

$L = (T_1, T_2, T_3, T_4, T_5, T_6, T_8, T_7)$.

(2) Remove prec. constr. $T_3 \prec T_4$.

(1) Decrease p_i of all tasks by one.

(3) Add resource ($R = 3$).
The approximation factor of the LS algorithm can be decreased using the Longest Processing Time first (LPT) strategy.

- During initialization of LS, we sort list L in a non-increasing order of p_i.

Approximation factor of LPT algorithm [Graham 1966]

LPT algorithm for $P||C_{max}$ is an approximation algorithm with factor

$$r_{LPT} = \frac{4}{3} - \frac{1}{3R}$$

Time complexity of LPT algorithm is $O(n \cdot \log(n))$ due to the sorting.
LPT (Longest Processing Time First)
- Approximation Algorithm for $P \mid \parallel C_{max}$

An example illustrating the case when the factor is attained:

$p = (2R - 1, 2R - 1, 2R - 2, 2R - 2, \ldots, R + 1, R + 1, R, R, R)$

$n = 2 \cdot R + 1, \prec \text{ empty,}$

Illustration for $R = 3$

<table>
<thead>
<tr>
<th></th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
<th>T_4</th>
<th>T_5</th>
<th>T_6</th>
<th>T_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_3</td>
<td>T_5</td>
<td>T_6</td>
<td>T_7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$r_{LPT} = \frac{4}{3} - \frac{1}{9} = \frac{11}{9}$

Factor of LPT algorithm

If the number of tasks is big, the factor can get better depending on $k -$ the number of tasks assigned to the resource which finishes last:

$r_{LPT} = 1 + \frac{1}{k} - \frac{1}{kR}$
For fixed R, the number of processors, there is a pseudopolynomial algorithm - input instance is restricted to bounded nonnegative integers: number of tasks and their processing times.

- we add a binary variable $x_i(t_1, t_2, \ldots, t_R)$ where
 - $i = 1, 2 \ldots n$ is the task index
 - $\nu = 1, 2, \ldots R$ is the index of the resource
 - $t_\nu = 0, 1, 2, \ldots UB$ is the time variable associated to the resource ν
 - UB is upper bound on C_{max}

- $x_i(t_1, t_2, \ldots, t_R) = 1$ iff tasks T_1, T_2, \ldots, T_i can be assigned to the resource such that P_ν is occupied during the time interval $\langle 0, t_\nu \rangle$; $\nu = 1, 2, \ldots R$
Dynamic Programming for $P \| C_{\text{max}}$ [Rothkopf]

Input: R, the number of parallel identical resources, n, the number of nonpreemptive tasks and their processing time (p_1, p_2, \ldots, p_n).

Output: n-elements vectors s and z where s_i is the start time and z_i is the resource ID.

```plaintext
for $(t_1, t_2, \ldots, t_R) \in \{1, 2, \ldots UB\}^R$ do $x_0(t_1, t_2, \ldots, t_R) := 0;$
$x_0(0, 0, \ldots, 0) := 1;$
for $i := 1$ to $n$ do // for all tasks
    for $(t_1, t_2, \ldots, t_R) \in \{0, 1, 2, \ldots UB\}^R$ do // in the whole space
        $x_i(t_1, t_2, \ldots, t_R) := \text{OR}_{v=1}^R x_{i-1}(t_1, t_2, \ldots, t_v - p_i, \ldots t_R);$ // $x_i() = 1$ iff there existed
        // $x_{i-1}() = 1$ ‘‘smaller’’ by $p_i$ in any direction
end
end
$C^*_{\text{max}} = \min_{x_n(t_1, t_2, \ldots, t_R)=1} \{ \max_{v=1,2,\ldots R} \{ t_v \} \}$;
Assign tasks $T_n, T_{n-1}, \ldots, T_1$ in the reverse direction;

Time complexity is $O(n \cdot UB^R)$.
Example for $P \parallel C_{max}$ [Rothkopf]

Example $n=3$, $R=2$, $p=(2,1,2)$, $UB=5$.
For polynomially bounded $R$, (i.e., $R = \text{poly}(n)$) the problem is strongly NP-hard.

- Can be shown by reduction from 3-partition problem with $C_{\text{max}} = B$, $R = m$, $n = 3m$, $p_i = a_i$ (take care, in 3-partition the number 3 means number of items in the bin).
- Here, the Rothkopf algorithm is not pseudopolynomial, since its complexity is $O(n \cdot UB^R) = O(n \cdot UB^{\text{poly}(n)})$, which is equal to $O(n \cdot UB^{n/3})$ for the instances reduced from 3-partition.

For any constant $R$, (e.g., $R = 2$) the problem is weakly NP-hard

- Here, the Rothkopf algorithm is pseudopolynomial, since its complexity is $O(n \cdot UB^2)$.
- It can not be used to solve the instance reduced from 3-partition, but it can be used to solve the instances reduced from 2-partition problem, which is weakly NP-hard (take care, in 2-partition the number 2 means number of bins).
Muntz&Coffman’s Level Algorithm for $P|\text{pmtn, prec}|C_{\text{max}}$

Principle:
- tasks are picked from the list ordered by the level of tasks
- the level of task $T_j$ - sum of $p_i$ (including $p_j$) along the longest path from $T_j$ to a terminal task (a task with no successor)
- when more tasks of the same level are assigned to less resources, each task gets part of the resource capacity $\beta$
- the algorithm moves forward to time $\tau$ when one of the tasks ends or the task with a lower level would be processed by a bigger capacity $\beta$ than the tasks with a higher level

For $P2|\text{pmtn, prec}|C_{\text{max}}$ and $P|\text{pmtn, forest}|C_{\text{max}}$, the algorithm is exact. For $P|\text{pmtn, prec}|C_{\text{max}}$ approximation alg. with factor $r_{MC} = 2 - \frac{2}{R}$.

Time complexity is $O(n^2)$.

| Input: | $R$, the number of parallel identical resources, $n$, the number of preemptive tasks and proc. times ($p_1, p_2, ..., p_n$). Prec. in DAG. |
| Output: | $n$-elements vectors $s^1, ..., s^K, ... s^K$ and $z^1, ..., z^K, ... z^K$ where $s^k_i$ is the start time of the $k$-th part of task $T_i$ and $z^k_i$ is corresponding resource ID. |
compute the level of all tasks; \( t := 0; h := R; \)  \quad // h free res.

while unfinished tasks exists do
  construct \( \mathcal{Z}; \)  \quad // subset \( \mathcal{T} \) of free tasks in time \( t \)
  while \( h > 0 \) and \( |\mathcal{Z}| > 0 \) do  // free resources and free tasks
    construct \( \mathcal{S}; \)  \quad // subset \( \mathcal{Z} \) of tasks of the highest level
    if \( |\mathcal{S}| > h \) then  // more tasks than resources
      assign part of capacity \( \beta := \frac{h}{|\mathcal{S}|} \) to tasks in \( \mathcal{S}; \) \( h := 0; \)
    else
      assign one resource to each task in \( \mathcal{S}; \beta := 1; \) \( h := h − |\mathcal{S}|; \)
    end
    \( \mathcal{Z} := \mathcal{Z} \setminus \mathcal{S}; \)
  end
  compute \( \delta; \)  \quad // see explanation below
  decrease proc.times and levels by \((\delta) \cdot \beta;\)  // finished part of task
  \( t := t + \delta; h := R; \)
end

Use McNaughton's alg. to re-schedule parts with more tasks on less res.;

\( t + \delta \) is time when (1) EITHER one task is finished (2) OR a current level of an assigned task becomes lower than a level of an unassigned ready task (3) OR a task executed at faster rate \( \beta \) starts to have current level below the current level of a task executed at slower rate \( \beta \)
\begin{itemize}
  \item \( t = 0, p = (3, 4, 3, 5, 3, 1, 2, 0) \)
  \( \text{level} = (8, 9, 8, 5, 5, 1, 2, 0), \mathcal{Z} = \{ T_1, T_2, T_3 \} \)
  \item \( h = 2, S = \{ T_2 \}, \beta = 1 \)
  \item \( h = 1, S = \{ T_1, T_3 \}, \beta = 0.5 \)
  \item \( \delta = 2 \) due to the case (3)
  \item \( t = 2, p = (2, 2, 2, 5, 3, 1, 2, 0) \)
  \( \text{level} = (7, 7, 7, 5, 5, 1, 2, 0), \mathcal{Z} = \{ T_1, T_2, T_3 \} \)
  \item \( h = 2, S = \{ T_1, T_2, T_3 \}, \beta = 0.67 \)
  \item \( \delta = 3 \) due to the case (1)
\end{itemize}
Project Scheduling - Minimizing $C_{max}$

- **$PS1 \mid \text{temp} \mid C_{max}$ - NP-hard**
  - $PS1$ stands for single resource, temp stands for temporal constraints
  - Input: The number of non-preemptive tasks $n$ and processing times $(p_1, p_2, \ldots, p_n)$. The temporal constraints defined by digraph $G$.
  - Output: $n$-element vector $s$, where $s_i$ is the start time of $T_i$

- **$PSm, 1 \mid \text{temp} \mid C_{max}$ - NP-hard**
  - $PSm, 1$ stands for $m$ resource types, each of capacity 1
  - Input: The number of non-preemptive tasks $n$ and processing times $(p_1, p_2, \ldots, p_n)$. The temporal constraints defined by digraph $G$. The number of dedicated resources $m$ and the assignment of the tasks to the resources $(a_1, a_2, \ldots, a_n)$.
  - Output: $n$-element vector $s$, where $s_i$ is the start time of $T_i$

- **$PSm, R \mid \text{temp} \mid C_{max}$ - NP-hard**
  - In addition to previous, the input contains: Each resource $k \in \{1, 2, \ldots, m\}$ has a capacity of $R_k \in \mathbb{Z}^+ \cup \{\infty\}$ units.
  - Task $i$ requires $r_{ik} \in \mathbb{Z}_0^+$ units of resource $k$, with $0 \leq r_{ik} \leq R_k$.
  - In addition to previous, the output contains: The assignment $z_{ivk} \in \{0, 1\}$ is equal to 1 if task $i$ is assigned to unit $v$ of resource $k$, and 0 otherwise.
Motivation Example: Message Scheduler for Profinet IO

IRT - Specification

Profinet IO IRT is an Ethernet-based hard-real time communication protocol, which uses static schedules for time-critical data. Each node contains a special hardware switch that intentionally breaks the standard forwarding rules for a specified part of the period to ensure that no queuing delays occur for time-critical data.

Goal: Minimize the makespan (the schedule length) for time critical messages.

<table>
<thead>
<tr>
<th>Node</th>
<th>Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>N1 -&gt; N3, N1 -&gt; N2, N2 -&gt; N1, N3 -&gt; N1, N4 -&gt; N1</td>
</tr>
<tr>
<td>N2</td>
<td>N1 -&gt; N4, N2 -&gt; N1, N3 -&gt; N1, N4 -&gt; N1</td>
</tr>
<tr>
<td>N3</td>
<td>N1 -&gt; N3, N3 -&gt; N5</td>
</tr>
<tr>
<td>N4</td>
<td>N1 -&gt; N4, N2 -&gt; N1, N3 -&gt; N5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line</th>
<th>Delay [ns]</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1 -&gt; N3</td>
<td>4875</td>
</tr>
<tr>
<td>N1 -&gt; N4</td>
<td>5130</td>
</tr>
<tr>
<td>N1 -&gt; N2</td>
<td>5862</td>
</tr>
<tr>
<td>N2 -&gt; N1</td>
<td>3841</td>
</tr>
<tr>
<td>N3 -&gt; N1</td>
<td>4875</td>
</tr>
<tr>
<td>N4 -&gt; N1</td>
<td>4895</td>
</tr>
<tr>
<td>N3 -&gt; N5</td>
<td>4875</td>
</tr>
<tr>
<td>N5 -&gt; N3</td>
<td>4875</td>
</tr>
</tbody>
</table>
Constraints:

- tree topology ⇒ fixed routing
- release date $r$ - earliest time the message can be sent
- deadline $\tilde{d}$ - latest time the message can be delivered
- maximal allowed end-to-end time delay

<table>
<thead>
<tr>
<th>ID</th>
<th>source → target</th>
<th>length [ns]</th>
<th>$r$ [ns]</th>
<th>$\tilde{d}$ [ns]</th>
<th>end2end delay [ns]</th>
</tr>
</thead>
<tbody>
<tr>
<td>256</td>
<td>N$_2$ → N$_3$</td>
<td>5760</td>
<td>5000</td>
<td>20000</td>
<td>11000</td>
</tr>
<tr>
<td>257</td>
<td>N$_3$ → N$_2$</td>
<td>5760</td>
<td>15000</td>
<td>40000</td>
<td>15000</td>
</tr>
<tr>
<td>258</td>
<td>N$_1$ → N$_3$</td>
<td>5760</td>
<td>15000</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>259</td>
<td>N$_3$ → N$_1$</td>
<td>5760</td>
<td>20000</td>
<td>35000</td>
<td>–</td>
</tr>
<tr>
<td>128</td>
<td>N$_3$ → {N$_1$,N$_2$,N$_4$,N$_5$}</td>
<td>11680</td>
<td>5000</td>
<td>{−,−,−,18000}</td>
<td>{−,17675,17675,15000}</td>
</tr>
</tbody>
</table>
Can be formulated as \( PSm, 1 | temp | C_{max} \) problem.

- task = message on a given line
- positive cost edge = \( r \), precedence relations
- negative cost edge = \( \tilde{d} \), end-to-end delay
- unicast message = chain of tasks (assuming positive edges)
- multicast message = out-tree of tasks (assuming positive edges)
Motivation Ex.: Message Sch. for Profinet IO IRT - Result

Z. Hanzalek (CTU)  Scheduling  May 15, 2018  58 / 83
Temporal Constraints

- Set of non-preemptive tasks $\mathcal{T} = \{T_1, T_2, \ldots, T_n\}$ is represented by the nodes of the directed graph $G$ (may include negative cycles).
- Processing time $p_i$ is assigned to each task.

- The edges represent temporal constraints. Each edge from $T_i$ to $T_j$ has the length $l_{ij}$.
- Each temporal constraint is characterized by one inequality $s_i + l_{ij} \leq s_j$.

![Diagram of directed graph with temporal constraints](image)
Temporal Constraints $s_i + l_{ij} \leq s_j$ with Positive $l_{ij}$

Temporal Constraints (also called a **generalized precedence constraint** or a **positive-negative time lag**) - the start time of one task depends on the start time of another task

a) $l_{ij} = p_i$
   - “normal” precedence relation
   - the second task can start when the previous task is finished

b) $l_{ij} > p_i$
   - the second task can start some time after the completion of previous task
   - b.1) example of a dry operation performed in sufficiently large space
Temporal Constraints $s_i + l_{ij} \leq s_j$ with Positive $l_{ij}$

b.2) another example with $l_{ij} > p_i$ - pipe-lined ALU

- We assume the processing time to be equal in all stages
- Result is available $l_{1f}$ tics after stage 1 reads operands
- Stage 1 reads new operands each $p_1$ tics
- Stages 2 and 3 are not modeled since we have enough of these resources and they are synchronized with stage 1
Temporal Constraints $s_i + l_{ij} \leq s_j$ with Positive $l_{ij}$

c) $0 < l_{ij} < p_i$

Partial results of the previous task may be used to start the execution of the following task.
E.g. the cut-through mechanism, where the switch starts transmission on the output port earlier than it receives the complete message on the input port.

- time-triggered protocol
- resources are communication links
- $l_{ab}$ represents the delay in the switch
- different parts of the same message are transmitted by several communication links at the same time
Temporal Constraints $s_i + l_{ij} \leq s_j$ with Zero or Negative $l_{ij}$

d) $l_{ij} = 0$
- Task $T_i$ has to start earlier or at the same time as $T_j$

e) $l_{ij} < 0$
- Task $T_i$ has to start earlier or at most $|l_{ij}|$ later than $T_j$
- It loses the sense of “normal” precedence relation, since $T_i$ does not have to precede $T_j$
- It represents the relative deadline of $T_i$ related to the start-time of $T_j$
Cycles and Relative Time Windows

Absence of a positive cycle in graph $G$
- is a **necessary condition** for schedulability of $PS1 |\text{temp} | C_{\text{max}}$
- is a **necessary and sufficient condition** for schedulability of the instance with **unlimited capacity of resources**. The schedule, which is restricted only by the temp. constraints, can be found in pol. time
  - by LP or
  - by the longest paths. For $G$ we can create $G'$, a **complete digraph of longest paths**, where weight $l_{ij}$ is the length of the longest directed path from $T_i$ to $T_j$ in $G$ (if no directed path in $G$ exists, the weight is $l_{ij} = -\infty$). A start time of $T_j$ is lower bounded by the longest path from arbitrary node, i.e. $s_j \geq \max \forall i \in 1...n \ l_{ij}$.

**Example - relative time window**, e.g. when applying a catalyst to the chemical process
If finite $l_{ij} \geq 0$ and $l_{ji} < 0$ do exist, tasks $T_i$ and $T_j$ are constrained by the relative time window.
- the length of the negative cycle determines the “clearance” of the time window
ILP formulation of $PS1 | \text{temp} | C_{max}$

Task can be represented in two ways:

- **Time-indexed** - ILP model is based on variable $x_{it}$, which is equal to 1 iff $s_i = t$. Otherwise, it is equal to zero. Processing times are assumed to be positive integers.

- **Relative-order** - ILP model is based on the relative order of tasks given by variable $x_{ij}$, which is equal to 1 iff task $T_i$ precedes task $T_j$. Otherwise, it is equal to zero. The processing times are nonnegative real numbers (tasks with zero processing time may be used to represent events).

Both models contain two types of constraints:

- temporal constraints
- resource constraints - prevent overlapping of tasks
Time-indexed Model for $\text{PS1}\mid \text{temp} \mid C_{\text{max}}$

\[
\begin{align*}
\text{min } C_{\text{max}} \\
\sum_{t=0}^{UB-1} (t \cdot x_{it}) + l_{ij} & \leq \sum_{t=0}^{UB-1} (t \cdot x_{jt}) & \forall l_{ij} \neq -\infty \text{ a } i \neq j \text{ (temp. const.)} \\
\sum_{i=1}^{n} \left( \sum_{k=\max(0,t-p_i+1)}^{t} x_{ik} \right) & \leq 1 & \forall t \in \{0, \ldots, UB-1\} \text{ (resource)} \\
\sum_{t=0}^{UB-1} x_{it} & = 1 & \forall i \in \{1, \ldots, n\} \text{ (} T_i \text{ is scheduled)} \\
\sum_{t=0}^{UB-1} (t \cdot x_{it}) + p_i & \leq C_{\text{max}} & \forall i \in \{1, \ldots, n\}
\end{align*}
\]

variables: $x_{it} \in \{0, 1\}$, $C_{\text{max}} \in \{0, \ldots, UB\}$

$UB$ - upper bound of $C_{\text{max}}$ (e.g. $UB = \sum_{i=1}^{n} \max \{p_i, \max_{i,j \in \{1,\ldots,n\}} l_{ij} \}$).

Start time of $T_i$ is $s_i = \sum_{t=0}^{UB-1} (t \cdot x_{it})$.

Model contains $n \cdot UB + 1$ variables and $|E| + UB + 2n$ constraints.

Constant $|E|$ represents the number of temporal constraints (edges in $G$).
Time-indexed Model for $PS1 | \text{temp} | C_{\text{max}}$

$\mathcal{T} = \{T_1, T_2, T_3\}$, $p = (1, 2, 1)$, $UB = 5$

$T_1$ is scheduled:

Resource constr. at time 2:
Relative-order Model for $PS1| temp| C_{max}$

**Resource constraint** for couple of tasks:

$$p_j \leq s_i - s_j + UB \cdot x_{ij} \leq UB - p_i$$

The constraint uses “big M” (here $UB$ - upper bound on $C_{max}$).

If $x_{ij} = 1$, $T_i$ **precedes** task $T_j$ and the constraint is formulated as $s_i + p_i \leq s_j$.

If $x_{ij} = 0$, $T_i$ **follows** task $T_j$ and the constraint is formulated as $s_j + p_j \leq s_i$. 

![Diagram](image-url)
### Relative-order Model for $PS1 | \text{temp} | C_{max}$

**Objective Function:**

\[
\min C_{max}
\]

**Temporal Constraint:**

\[
s_i + l_{ij} \leq s_j \quad \forall l_{ij} \neq -\infty \text{ and } i \neq j
\]  
(temporal constraint)

**Resource Constraint:**

\[
\begin{align*}
violet p_j &= s_i - s_j + UB \cdot x_{ij} \leq UB - p_i & \forall i, j \in \{1, \ldots, n\} \text{ and } i < j \quad \text{(resource constraint)} \\
green s_i + p_i &\leq C_{max} \quad \forall i \in \{1, \ldots, n\}
\end{align*}
\]

**Variables:**

- $x_{ij} \in \{0, 1\}$
- $C_{max} \in \langle 0, UB \rangle$
- $s_i \in \langle 0, UB - p_i \rangle$

The model contains $n + \left( n^2 - n \right) / 2 + 1$ variables and $|E| + \left( n^2 - n \right) + n$ constraints. $|E|$ is a number of temporal constraints (edges in $G$).
Example: no temporal constraints, two tasks $T_i, T_j$ with $p_i = 2$ and $p_j = 3$. We set $UB = 11$ and we study $s_i \in \langle 0, 8 \rangle$.  

3D polytope (left) is determined by the resource constr. given by violet and green hyperplanes (see colors on the previous slide). Its projection to 2D space (right) shows both sequences of tasks. When we change $UB$, the hyperplanes in 3D decline -each of the moves the vertex with acute angle.
Comparison of the Two Models

Each model is suitable for different types of tasks:

Time-indexed model:
- (+) Can be easily extended for parallel identical processors.
- (+) ILP formulation does not need many constraints.
- (-) The size of the model grows with the size of $UB$.

Relative-order model:
- (+) The size of ILP model does not depend on $UB$.
- (-) Requires a big number of constraints.
Feasibility Test for Heuristic Algorithms

If the partial schedule (found for example by a greedy algorithm which inserts tasks in a topological order of edges with positive weight, or the partial result during the Branch and Bound algorithm) violates some time constraints, the order of tasks does not need to be infeasible.

When the optimal order of the tasks in the schedule is known (variables $x_{ij}$ are constants), it is easy to find the start time of the tasks (for example by LP formulation involving time constraints only).
Relative-order Model for Project Scheduling with Dedicated Resources of Unit Capacity \( PSm, 1 \mid \text{temp} \mid C_{\text{max}} \)

Part of the input parameters are the number of resources \( m \) and assignment of the tasks to the resources \((a_1, \ldots, a_i, \ldots, a_n)\), where \( a_i \) is index of the resource type on which task \( T_i \) will be running.

\[
\begin{align*}
\min C_{\text{max}} \\
& s_i + l_{ij} \leq s_j & \forall l_{ij} \neq -\infty \text{ and } i \neq j \\
& p_j \leq s_i - s_j + UB \cdot x_{ij} \leq UB - p_i & \forall i, j \in \{1, \ldots, n\}, i < j \text{ and } a_i = a_j \\
& s_i + p_i \leq C_{\text{max}} & \forall i \in \{1, \ldots, n\}
\end{align*}
\]

variables: \( x_{ij} \in \{0, 1\} \), \( C_{\text{max}} \in \langle 0, UB \rangle \), \( s_i \in \langle 0, UB \rangle \)

Model consists of less than \( n + (n^2 - n) / 2 + 1 \) variables (exact number depends on the number of tasks scheduled on each resource type).
Using $PS1 |\text{temp}| C_{\text{max}}$ we will model:

- $1 | r_j, \tilde{d}_j | C_{\text{max}}$
- scheduling on **dedicated resources** $PSm, 1 |\text{temp}| C_{\text{max}}$

Using $PSm, 1 |\text{temp}| C_{\text{max}}$ we will model:

- scheduling of **multiprocessor task** - task needs more than one resource type at a given moment,
This polynomial reduction proves that \( PS1 | \text{temp} | C_{\text{max}} \) is NP-hard, since Bratley’s problem is NP-hard.

Instance 1 \( | r_j, \tilde{d}_j | C_{\text{max}} \)

\[
\begin{align*}
    r &= (r_1, r_2, \ldots, r_n) \\
    p &= (p_1, p_2, \ldots, p_n) \\
    \tilde{d} &= (\tilde{d}_1, \tilde{d}_2, \ldots, \tilde{d}_n)
\end{align*}
\]
Reduction from $PSm, 1|\text{temp}|C_{\text{max}}$ to $PS1|\text{temp}|C_{\text{max}}$ is based on the projection of each resource to the independent time window. In other words, the schedule of tasks on $P^j$ is projected into interval $\langle (j - 1) \cdot UB, j \cdot UB \rangle$

Transformation consists of two steps:

- **Add dummy tasks** $T_0$ and $T_{n+1}$ with $p_0 = p_{n+1} = 0$.
  - Task $T_0$, processed on $P^1$, precedes all tasks $T_i \in T$, ie. $s_0 \leq s_i$.
  - Task $T_{n+1}$, processed on $P^m$, follows all task $T_i \in T$, tj. $s_i + p_i \leq s_{n+1}$.

- **Transform the original temporal constraints** to
  \[ l'_{ij} = l_{ij} + (a_j - a_i) \cdot UB. \]
The new start time $s'_i$ of each task on processor $a_i$ is:

$$s'_i = s_i + (a_i - 1) \cdot UB.$$ 

Temporal constraints $s_i + l_{ij} \leq s_j$ are transformed to:

$$s'_i - (a_i - 1) \cdot UB + l_{ij} \leq s'_j - (a_j - 1) \cdot UB$$

$$s'_i + l_{ij} + (a_j - a_i) \cdot UB \leq s'_j$$

The transformed temporal constraint will look like $s'_i + l'_{ij} \leq s'_j$, where:

$$l'_{ij} = l_{ij} + (a_j - a_i) \cdot UB$$
Reduction from $PSm, 1|\text{temp} | C_{\text{max}}$ to $PS1|\text{temp} | C_{\text{max}}$

While minimizing the completion time of $T_{n+1}$, we push tasks $T_1$, $T_2$ and $T_3$ “to the left” due to the edges entering $T_{n+1}$

two dedicated resources $T_1$ on $P^1$ and $T_2, T_3$ on $P^2$

one resource
Transformation of multiprocessor task problem to $PSm, 1\mid \text{temp} \mid C_{\text{max}}$

- create as many virtual tasks as there are processors needed to execute the physical tasks
- ensure that the virtual tasks of the given physical task start at the same time - this is done by two edges with weight $l_{ij} = l_{ji} = 0$. Consequently $s_i \leq s_j$ and $s_j \leq s_i$.

Example: Task $T_i$ needs resources $(P^1, P^2, P^3)$.

![Diagram of virtual tasks]

1. Create as many virtual tasks as there are processors needed to execute the physical tasks.
2. Ensure that the virtual tasks of the given physical task start at the same time by creating two edges with weight $l_{ij} = l_{ji} = 0$. Consequently, $s_i \leq s_j$ and $s_j \leq s_i$.
Resource $k \in \{1, 2, \ldots, m\}$ has a capacity of $R_k \in \mathbb{Z}^+ \cup \{\infty\}$ units. Task $i$ requires $r_{ik} \in \mathbb{Z}^+_0$ units of resource $k$, with $0 \leq r_{ik} \leq R_k$.

Multiprocessor tasks - Multiple resources may be required by one task.

Example:

$m = 3$

capacities of resources:

$R = (2, 1, \infty)$
The assignment \( z_{ivk} \in \{0, 1\} \) is equal to 1 if task \( i \) is assigned to unit \( v \) of resource \( k \), and 0 otherwise.

We define \( \{i, j\} \in \mathcal{M} \) iff task \( i \) and task \( j \) are assigned to resource \( k \) of finite capacity (i.e., \( \exists k \in \mathcal{R} : r_{ik} \cdot r_{jk} \geq 1 \) and \( R_k < \infty \)) and therefore we have to avoid a collision of task \( i \) and task \( j \). We define \( \mathcal{V} = \{1, \ldots, n\} \).

\[
\begin{align*}
\min C_{\max} \\
\text{subject to:} \\
& s_j - s_i \geq l_{ij} \quad \forall (i, j) \in \mathcal{V}^2 : i \neq j \\
& s_i - s_j + UB \cdot x_{ij} + UB \cdot y_{ij} \geq p_j \quad \forall (i, j) \in \mathcal{V}^2 : i \neq j, \{i, j\} \in \mathcal{M} \\
& s_i - s_j + UB \cdot x_{ij} - UB \cdot y_{ij} \leq UB - p_i \quad \forall (i, j) \in \mathcal{V}^2 : i \neq j, \{i, j\} \in \mathcal{M} \\
& -x_{ij} + y_{ij} \leq 0 \\
& z_{ivk} + z_{jvk} - 1 \leq 1 - y_{ij} \quad \forall (i, j) \in \mathcal{V}^2, \forall k \in \{1\ldots M\}, \forall v \in \{1, \ldots, R_k\} : i \neq j, \{i, j\} \in \mathcal{M} \\
& \sum_{v=1}^{R_k} z_{ivk} = r_{ik} \quad \forall i \in \mathcal{V}, \forall k \in \mathcal{R} : r_{ik} \geq 1, R_k < \infty \\
& s_i + p_i \leq C_{\max} \quad \forall i \in \mathcal{V}
\end{align*}
\]
Constraints (3), (4), (5) and binary variables $x_{ij}$ and $y_{ij}$

1. When $x_{ij} = 0$ and $y_{ij} = 0$, constraints (3) and (4) reduce to $s_j + p_j \leq s_i$, i.e., $j$ is followed by $i$ on the same unit.
2. When $x_{ij} = 1$ and $y_{ij} = 0$, constraints (3) and (4) reduce to $s_i + p_i \leq s_j$, i.e., $i$ is followed by $j$ on the same unit.
3. When $x_{ij} = 1$ and $y_{ij} = 1$, constraints (3) and (4) are eliminated in effect and the activities $i$ and $j$ do not share the same unit.
   Combination $x_{ij} = 0$ and $y_{ij} = 1$ is not feasible due to constraint (5).

- Constraint (6) states that when $y_{ij} = 1$ then the activities do not share the same unit $v$ of resource $k$ since $z_{ivk} + z_{jvk} \leq 1$.

- Constraint (7) states that each task $i$ is assigned to the appropriate number of units $r_{ik}$ for each resource $k$. 

Z. Hanzalek (CTU)  
Scheduling  
May 15, 2018  
82 / 83
J. Blażewicz, K. Ecker, G. Schmidt, and J. Węglarz.  
*Scheduling Computer and Manufacturing Processes*.  

Klaus Neumann, Christoph Schwindt, and Jürgen Zimmermann.  
*Project Scheduling with Time Windows and Scarce Resources*.  

Sigrid Knust Peter Brucker.  
Complexity results for scheduling problems.  