

25 -28 Aug 2015 | Prague, Czech Republic
ISSN: 2305-249X

25-28 AUG 2015 MISTA 2015 PROCEEDINGS

MISTA 2015

Proceedings of the

7th Multidisciplinary International Conference on
Scheduling: Theory and Applications

25th – 28th August 2015
Prague, Czech Republic

Edited by
Zdenek Hanzálek, Czech Technical University in Prague
Graham Kendall, University of Nottingham, UK/Malaysia
Barry McCollum, Queens University Belfast, UK
Premysl Šůcha, Czech Technical University in Prague

MISTA 2015 Conference Program Committee

Salwani Abdullah
Ramon Alvarez-Valdes
Christian Artigues
Masri Ayob
Ruibin Bai
Ana Barros
Roman Bartak
Jacek Blazewicz
Cyril Briand
Edmund Burke
Xiaoqiang Cai
Jacques Carlier
Zhi-Long Chen
Liliana Cucu-Grosjean
Patrick De Causmaecker
Mauro Dell'Amico
Moshe Dror
Maciej Drozdowski
Gerd Finke
Dalibor Froncek
Celia Glass
Dries Goossens
Jeet Gupta
Zdenek Hanzalek (Conference Chair)
Jin-Kao Hao
Martin Henz
Jeffrey Herrmann
Han Hoogeveen
Adam Janiak
Florian Jehn
Antoine Jouglet
Graham Kendall (Conference Chair)
Jeffrey Kingston
Sigrid Knust
Wieslaw Kubiak
Mary Kurz
Raymond Kwan
Joseph Leung
Eugene Levner

Jaiwei Li
Dirk Mattfield
Barry McCollum (Conference Chair)
Paul McMullan
Lars Moench
Alix Munier
Tomas Nordlander
Bryan Norman
Gabriela Ochoa
Ibrahiim Osman
Ender Ozcan
Costas Pappis
Erwin Pesch
Sanja Petrovic
Nelishia Pillay
Christian Prins
Rong Qu
Celso Ribeiro
Andre Rossi
Hana Rudova
Mujgan Sagir
Andrea Schaerf
Christoph Schwindt
Roman Slowinski
Premysl Šucha (Conference Chair)
Vincent T'Kindt
Jonathan Thompson
Norbert Trautmann
Michael Trick
Denis Trystram
Sebastián Urrutia
Greet Vanden Berghe
Tony Wauters
Fong Cheng Weng
Siang Yew Chong
Claude Yugma
Jürgen Zimmermann
Yakov Zinder

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 1 -

MISTA 2015 International Advisory Committee

• Graham Kendall (chair)
• Abdelhakim Artiba, Facultes Universitares Catholiques de Mons (CREGI - FUCAM),

Belguim
• James Bean, University of Michigan, USA
• Jacek Blazewicz, Institute of Computing Science, Poznan University of Technology,

Poland
• Edmund Burke, The University of Nottingham, UK
• Xiaoqiang Cai, The Chinese University of Hong Kong, Hong Kong
• Ed Coffman, Columbia University, USA
• Moshe Dror, The University of Arizona, USA
• David Fogel, Natural Selection Inc., USA
• Michel Gendreau, University of Montreal, Canada
• Fred Glover, Leeds School of Business, University of Colorado, USA
• Bernard Grabot, Laboratoire Génie de Production - ENIT, Tarbes, France
• Toshihide Ibaraki, Kyoto University, Japan
• Claude Le Pape, ILOG, France
• Ibrahim Osman, American University of Beirut, Lebanon
• Michael Pinedo, New York University, USA
• Jean-Yves Potvin, Université de Montréal, Canada
• Michael Trick, Graduate School of Industrial Administration, Carnegie Mellon

University, USA
• Stephen Smith, Carnegie Mellon University, USA
• Steef van de Velde, Erasmus University, Netherlands
• George White, University of Ottawa, Canada
• Gerhard Woeginger, University of Twente, Netherlands

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 2 -

Acknowledgements

This conference would not have been possible without the assistance of a great many people.

Any scientific conference is underpinned by the quality of the papers that it publishes. In
turn, this is a function of the quality of the Program Committee. MISTA is fortunate enough
to have many of the world’s scheduling experts as members of the Program Committee. We
are extremely grateful for the time and effort that they devote to making MISTA the success
it is.

The editors would also like to thank the international advisory committee for their helpful
advice and comments as we plan each conference and seek to develop the MISTA series
year-on-year. Their advice is always insightful and made in the best interests of the
conference.

We are grateful to the chairs of the special session on Educational Timetabling (Barry
McCollum and Hana Rudová), Hyperheuristics in Scheduling (Nelishia Pillay and Rong
Qu), Cloud Based Resource Scheduling (Per-Olov Östberg and Barry McCollum) and
Operations Research Models for Scheduling Problems with Preventive Maintenance
(Rachid Benmansour and Hamid Allaoui) for taking the time to collect together an excellent
set of papers. We really appreciate the time and effort you gave to the conference.

We greatly appreciate the support that we have received from EventMap Ltd., which have
supported the conference once again. We are also very grateful to the Mercia s.r.o,
specifically in sponsoring the program booklet.

We would also like to thank the Journal of Scheduling which supports the MISTA conference
series by allowing us to guest edit a special issue of the journal which is associated with the
conference. This certainly adds to the conference and the post-conference opportunities.

We are also grateful for the continued support we have received from the University of
Nottingham (both UK and Malaysia campuses).

Thanks must also go to a dedicated team from the Czech Technical University in Prague.
Without the support from a local team, MISTA would not happen, and certainly not as
efficiently as it does with the hard work that is vital to the success of MISTA.

MISTA 2015 is the venue where the results of the Nurse Rostering Competition will be
announced. We’d like to acknowledge the hard work of the team that organised this
competition; Patrick De Causmaecker, Andrea Schaerf, Stefaan Haspeslagh, Nguyen Thi
Thanh Dang and Sara Ceschia.

As in previous years, the conference owes a great deal to Debbie Pitchfork. She has worked
tirelessly since performing similar tasks for MISTA 2009, 2011 and 2013. If it were not for
Debbie this conference would not have taken place. Thank you, from all who are involved in
MISTA 2015, whether are part of the organisational team, or delegates.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 3 -

Table of Contents

Plenary Presentations

Rudová H. University course timetabling: From theory to practice .. 12

Skutella M. LP-based algorithms for scheduling unrelated parallel machines 13

Hurink J. Scheduling for Decentralized Energy Management ... 14

Papers

Adasme P., Leung J. and Lisser A. A Probabilistic Constrained Approach for Unrelated
Parallel Machine Scheduling ... 16

Mountakis S., Klos T., Witteveen C. and Huisman B. Exact and heuristic methods for
trading-off makespan and stability in stochastic project scheduling 25

Glizer V.Y. and Turetsky V. Optimal schedule of a statistical process control with a
nonlinear expected loss .. 42

Ishii R. and Nakagawa K. Scheduling competition in the airline industry and the issue of
duplicate bookings ... 55

Bhattacharya S. and Bose S.K. Continuous Time Model for Scheduling Operations in
Cascaded Continuous Processing Units with Multiple Due Dates 63

Thörnblad K., Strömberg A-B., Patriksson M. and Almgren T. Scheduling optimization of a
real flexible job shop including side constraints regarding maintenance, fixtures, and
night shifts .. 78

Harbering J., Ranade A. and Schmidt M. Single Track Train Scheduling 102

Kemmoé-Tchomté S., Lamy D. and Tchernev N. An Optimization Framework for Job-shop
with Energy Threshold Issue with Consideration of Machining Operations with
Consumption Peaks .. 118

Mauergauz Y. Production Scheduling Based on Order Utility Functions 134

Marszałkowski J. and Drozdowski M. Energy Consumption in Single- and Multi-installment
Divisible Loads Processing in Systems with Hierarchical Memory 146

Nourmohmmadzadeh A. and Hartmann S. An Efficient Simulated Annealing for the
Integrated Problem of Berth Allocation and Quay Crane Assignment in Seaside Container
Terminals .. 154

Tavares-Neto R.F. and Ogawa M.A. A construtive heuristic to reduce costs on an integrated
production-distribution environment ... 165

Fu L-L., Aloulou M.A. and Triki C. Integrated production and outbound distribution
scheduling problem with setup times and delivery time windows 174

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 4 -

Bouyahia Z. Stability of probabilistic scheduling problems with precedence constraints and
weighted completion time objective ... 189

Akrotirianakis I. and Chakraborty A. An optimization-based approach for delivering radio-
pharmaceuticals to medical imaging centers ... 203

Pimenta V., Quilliot A., Toussaint H. and Vigo D. Reliability Oriented DARP Models
Involving Autonomous Vehicles ... 218

Muguerza M., Briand C., Jozefowiez N., Ngueveu S.U., Rodríguez V. and Moris M.U. A
mass-flow MILP formulation for energy-efficient supplying in assembly lines 236

Tran T.T., Zhang P.Y., Li H., Down D.G. and Beck J.C. Resource-Aware Scheduling for
Data Centers with Heterogenous Servers .. 240

Lach M., Lach G. and Zorn E. Examination timetabling at Technische Universität Berlin .. 260

Fonseca G.H.G., Santos H.G. and Carrano E.G. Improving Upper Bounds in High School
Timetabling by Matheuristics ... 267

Gunawan A., Lau H.C. and Lu K. SAILS: Hybrid Algorithm for the Team Orienteering
Problem with Time Windows ... 276

Akhavizadegan F., Tavakkoli-Moghaddam R., Jolai F.and Ansarifar J. Cross-training
performance of nurse scheduling with the learning effect ... 296

Ilani H., Shufan E. and Grinshpoun T. A Fixed Route Dial-a-Ride Problem 313

Benmansour R., Braun O. and Allaoui H. Modeling the single-processor scheduling problem
with time restrictions as a parallel machine scheduling problem 325

Höner J., Lach G. and Zorn E. An IP-based Model for the Post-Enrollment-based Course
Timetabling Problem at TU Berlin .. 331

Singh R. and Mathirajan M. Simulation Based Cause and Effect analysis of Input Variables
in Wafer Fabrication .. 345

Klöcker C., Ostler J. and Wilke P. Optimisation of Staff Absences .. 360

Lach G., Lach M. and Zorn E. Solving Huge Real-World Timetabling Instances 370

Quesnelle J. and Steffy D. Scheduling a conference to minimize attendee preference conflicts
 .. 379

Hidri L. and Gazdar A. Bounding schemes for the parallel processors scheduling problem
with release date, delivery time and with no-idle time constraint 393

Hidri L., Ben Youssef B. and Gazdar A. Lower bounds for the parallel processing scheduling
problem with multiprocessor tasks, release date and delivery time 403

Althaus E. and Muttray U. University Course Timetabling with Conflict Minimization and
Elective Courses: A Decomposition-Based Approach to a Real-Life Case 412

Rahimian E., Akartunali K. and Levine J. A Hybrid Constraint Integer Programming
Approach to Solve Nurse Scheduling Problems ... 429

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 5 -

García-León A., Dauzère-Pérès S. and Mati Y. Minimizing regular criteria in the flexible job-
shop scheduling problem .. 443

Wilmer D. and Klos T. Robustness of Partial Order Schedules: Understanding the Chaining
algorithm .. 457

Perez-Gonzalez P., Dios M., Fernandez-Viagas V. and Framinan J.M. Heuristic Methods for
Single Machine Scheduling with Periodic Maintenance ... 473

Kozik A. and Rudek R. A novel Approximate/Exact objective based search technique for
precedence constrained scheduling problems ... 484

Krivulin N. Tropical optimization problems in project scheduling .. 492

Battistutta M., Ceschia S., De Cesco F. and Schaerf A. Thesis Defense Timetabling 507

Shaker K., Abdullah S. and Alqudsi A. Bacteria Swarm Optimisation Approach for
Enrolment-Based Course Timetabling Problems ... 515

Rihm T. and Baumann P. A lexicographic goal programming approach for staff assignment
with acceptance levels .. 526

Zimmermann A. and Trautmann N. A list-scheduling approach for the planning of
assessment centers ... 541

Yuan Z. and Fügenschuh A. Home Health Care Scheduling: A Case Study 555

Brandão J.S., Noronha T.F., Resende M.G.C. and Ribeiro C.C. A biased random-key genetic
algorithm for scheduling divisible loads .. 570

Weedon R, Ahmadi S. and Critchley M. Optimisation of a Stagger Chart for Aviation Fleet
Planning ... 579

Abstracts

Prajapat N., Hutabarat W., Tiwari A. and Pattacini M. Investigating Scheduling models for
Power Plant Preventive Maintenance using Genetic Algorithm 591

Shikata Y. and Hanayama N. Routing Strategy for Prioritized Limited Multi-server
Processor-Sharing System that includes Servers with Various Capacities 596

Choi J.Y. An efficient simulated annealing for two-agent scheduling with exponential job-
dependent position-based learning consideration ... 601

Baron O., Berman O., Krass D. and Wang J. Strategic Idling and Dynamic Scheduling in
Open-Shop Service Network: Case Study and Analysis ... 604

Lindahl M., Sørensen M. and Stidsen T. A Matheuristic for Curriculum-Based Course
Timetabling .. 606

Fernandes P. and Barbosa A. Solving the staff scheduling problem in a retail company 611

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 6 -

Struijker Boudier I., Glazebrook K., Wright M. and Jennings P. Ant Colony Optimisation for
a Job Shop with Flexible Maintenance .. 614

Drwal M. Complexity of minimizing the total flow time on parallel machines with interval
data and minmax regret criterion .. 617

Van Marcke K. and Ali O. Scheduling the operation of a phosphate pipeline for OCP: A
Case Study .. 622

Karhi S. and Shabtay D. Online and semi-online scheduling of two job types on a set of
multipurpose machines ... 626

Shabtay D., Yedidsion L. and Lisovoy A. The resource dependent assignment problem with a
convex assignment cost function and its relation to scheduling with controllable
processing times ... 629

Detienne B., Sadykov R. and Tanaka S. The two-machine flowshop total completion time
problem: A branch-and-bound based on Network-flow formulation 635

Volk R., Hübner F. and Schultmann F. Robust multi-mode resource constrained project
scheduling of building deconstruction under uncertainty .. 638

Lange J. Approaches to modeling job-shop problems with blocking constraints 645

Gorczyca M., Janiak A. and Lichtenstein M. A dynamic model of task processing for
scheduling problems without additional resources .. 649

Desrosiers J., Gauthier J.B. and Lübbecke M.E. Vector space decomposition for linear
programming .. 652

Baykasoglu A. and Ozsoydan F.B. A GRASP based approach to dynamic scheduling of
parallel heat treatment furnaces in a manufacturing company ... 656

Heßler C. and Deghdak K. The Discrete Parallel Machine Makespan Scheduling-Location
Problem .. 659

Bukata L., Šůcha P. and Hanzálek Z. A new lower bound for optimisation of energy
consumption of robotic cells .. 662

Maenhout B., Burgelman J. and Vanhoucke M. A heuristic procedure for the personnel task
re-scheduling problem ... 666

Ingels J. and Maenhout B. A heuristic procedure to proactively increase employee
substitutability and personnel roster robustness .. 669

Chen B., Coffman E., Dereniowski D. and Kubiak W. Structural properties of an open
problem in preemptive scheduling ... 673

Horváth M. and Kis T. Solving resource constrained shortest path problems with branch-
and-cut .. 677

Sahli A., Carlier J. and Moukrim A. Lower bounds for Scheduling Problems with production
and consumption of resources .. 680

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 7 -

Wachtel G. and Elalouf A. "Floating Patients" method based on Scheduling algorithm for
emergency department's service improvement ... 683

Stockwell-Alpert E. and Chung C. Fairness in employee scheduling 687

Makatun D., Lauret J., Rudová H. and Šumbera M. Model for planning of distributed data
production .. 699

Deghdak K. and T'Kindt V. A Decomposition Heuristic for a Bicriteria Evacuation
Scheduling Problem ... 704

Almakhlafi A. and Knowles J. Iterated Local Search for the Generator Maintenance
Scheduling Problem ... 708

Levner E. and Elalouf A. A general technique for improving the complexity of FPTAS for
scheduling problems ... 743

Shen L. and Gupta J.N.D. Family Scheduling in Flow Shop Manufacturing Systems with
Batch Availability ... 746

Bronnikov S., Gushchina V., Lazarev A., Morozov N., Sologub A. and Yadrentsev D. Three
approaches to solving the problem of cosmonauts’ training planning 750

Shang L., Lenté C., Liedloff M. and T'Kindt V. An exponential dynamic programming
algorithm for the 3-machine flowshop scheduling problem to minimize the makespan 755

Novák A., Václavík R., Šůcha P. and Hanzálek Z. Nurse Rostering Problem: Tighter Upper
Bound for Pricing Problem in Branch and Price Approach .. 759

Fernandez-Viagas V., Dios M., Perez-Gonzalez P. and Framinan J.M. A framework of
constructive heuristics for permutation-type scheduling problems 764

Dios M., Fernandez-Viagas V., Perez-Gonzalez P. and Framinan J.M. Manufacturing
Scheduling Systems: What are they made of? .. 768

Ackermann H., Küfer K-H., Leithäuser N., Meyer A. and Velten S. How to Unload Bulk
Carriers Quickly? Mathematical Models to Identify Efficient Loading Patterns 772

Menezes G.C., Mateus G.R. and Ravetti M.G. Scheduling with incompatible jobs: model and
algorithms .. 776

Macedo R., Benmansour R., Urošević D., Artiba A. and Mladenović N. Scheduling
preventive railway maintenance activities with resource constraints 782

Ionescu L. and Kliewer N. Stability and Flexibility of Crew and Aircraft Schedules 785

Knopp S., Dauzerè-Pérès S. and Yugma C. Scheduling Complex Job-Shops using Batch
Oblivious Disjunctive Graphs: A Scheduling Approach for the Diffusion and Cleaning
Area in Semiconductor Manufacturing .. 788

Pham S. and De Causmaecker P. The Intermittent Traveling Salesman Problem 794

Lazarev A., Arkhipov D. and Werner F. Single machine scheduling: Finding the Pareto Set
for jobs with equal processing times with respect to criteria Lmax and Cmax 797

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 8 -

Tan Y., Mönch L. and Fowler J. Scheduling Jobs in a Two-Stage Flexible Flow Shop with
Batch Processing Machines ... 801

Sucu S., Leggate A., Akartunah K. and Van Der Meer R. Modeling Uncertainty in Vessel
Crew Scheduling .. 805

Borreguero Sanchidrián T., Artigues C., Sánchez A.G., Mier M.O. and Lopez P. Multimode
Time-Constrained Scheduling Problems with Generalized Temporal Constraints and
Labor Skills .. 809

Grigoreva N.S. Multiprocessor Scheduling with Inserted Idle Time to Minimize the Maximum
Lateness .. 814

Herding R. and Mönch L. Using Adaptive Large Neighborhood Search to Solve Parallel
Machine Scheduling Problems with Dedications and Unequal Ready Times of the Jobs
 .. 817

Adriaensen S., Fathy Y. and Nowé A. On Task Scheduling Policies for Work-Stealing
Schedulers .. 821

Bagger N-C. F., Kristiansen S., Sørensen M. and Stidsen T. R. Flow Formulation-based
Model for the Curriculum-based Course Timetabling Problem .. 825

Kirchner S. and Lübbecke M. Appointment scheduling in hospitals: Sequencing and
scheduling using timeaggregation ... 849

Barták R. and Vlk M. Resource Failure Recovery in Production Scheduling 852

Afifi S. and Moukrim A. Primal Heuristics for the Vehicle Routing Problem with
Synchronized Visits .. 859

Müller M., Ostler J. and Wilke P. Comparison of EATTS and XHSTT - Towards a Unified
Description Language for Timetabling Problems .. 862

Seddik Y. and Hanzalek Z. Mixed-criticality scheduling with known probabilities 867

Arbaoui T., Azouni A., Boufflet J-P. and Moukrim A. Student Scheduling Problem At
Université de Technologie de Compiègne .. 871

Akhlaghi V.E., Gultekin H. and Coban B. Shortest k-unit Cycle in a Multiple Part-Type
Robotic Cell .. 876

Della Croce F., Garraffa M., Shang L. and T'Kindt V. A branch-and-reduce exact algorithm
for the single machine total tardiness problem .. 879

van den Akker M., Hoogeveen H. and Lukkien J. Maintenance planning in a stochastic job
shop .. 882

Marszałkowski J. Budgeted Internet Shopping Optimization Problem (B-ISOP) 885

Braune R. Packing-based approaches for a discrete malleable task scheduling problem 888

Riise A., Lamorgese L. and Mannino C. Multi-level Benders Decomposition for Multi-modal
Outpatient Scheduling in Hospitals ... 892

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 9 -

Schilde M., Schneeberger K. and Doerner K. Variable Neighborhood Search for a Rich
Production Planning Problem ... 896

Herr O. and Goel A. Scheduling of jobs in the continuous casting stage of steel production
 .. 899

Balasubramanian H., Fowler J. and Keha A. The polynomial solvability of a bicriteria linear
combination on parallel identical machines with release dates .. 902

Soares J.A., Santos H.G., Baltar D.D. and Toffolo T.A.M. LAHC applied to The Multi-Mode
Resource-Constrained Multi-Project Scheduling Problem.. 905

Pillay N. Automated Design of the Developmental Approach for Solving the Examination
Timetabling Problem .. 909

Horn G. Scheduling Time Variant Jobs on a Time Variant Resource 914

Toffolo T.A.M., Wauters T. and Vanden Berghe G. Time-based Decomposition Strategies for
the Traveling Umpire Problem .. 918

Östberg P-O. and McCollum B. Heuristics and Algorithms for Data Center Optimization
 .. 921

Smet P. and Vanden Berghe G. Variable neighbourhood search for rich personnel rostering
problems ... 928

Fong C-W., Asmuni H., Lam W-S., McCollum B., McMullan P. and Kendall G. A Hybrid
Swarm Algorithm for Post Enrollment Course Timetabling .. 931

Kasirzadeh A. and Soumis F. An integrated simultaneous approach for pilots and copilots
re-scheduling problem ... 943

Van Den Dooren D., Sys T., Wauters T. and Vanden Berghe G. Multi-objective energy-
aware scheduling ... 946

Hojati M. A Greedy-based Heuristic for Shift Minimization Personnel Task Scheduling
Problem .. 949

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 10 -

Plenary Presentations

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 11 -

Hana Rudová
University course timetabling: From theory to practice

Abstract

University course timetabling introduces diverse complex problems which may be very
different in correspondence with country, institution, or even a school. Complexity of the
problems is related with the size represented by the number of courses and students and with
the characteristics such as curricula structure, course structure, or involved optimization
criteria. In practice, standard benchmark problems represented by enrollment-based and
curriculum-based timetabling must be extended by elective courses, course sections and
issues related with fairness of generated timetables. Compactness of timetables common in
high school timetabling becomes very complex issue given the diversity of student
timetables.

Theoretical advances with respect to above mentioned issues will be discussed. Practical
application and experience with timetabling at two different institutions in Europe and United
States will be summarized.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 12 -

Martin Skutella
LP-based algorithms for scheduling unrelated parallel machines

Abstract

Since the early days of scheduling, algorithms and techniques from the closely related area of
mathematical programming have played a pivotal role. In this talk, we focus on the use of
linear programming (LP) relaxations in the design of approximation algorithms for NP-hard
scheduling problems. The classical problem of scheduling jobs on unrelated parallel
machines subject to release dates and with total weighted completion time objective and
special cases of this problem serve as an example for which we discuss the strengths and
weaknesses of different types of linear and convex programming relaxations. We also discuss
recent LP-based approximation results for a stochastic variant of unrelated parallel machine
scheduling (joint work with Maxim Sviridenko and Marc Uetz).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 13 -

Johann Hurink
Scheduling for Decentralized Energy Management

Abstract

Our energy systems undergo a fundamental change. Where in the past the energy mainly was
generated in large power plants using fossil fuels, in the future a large part of the generation
will result from small plants in decentralized locations using uncontrollable renewable
sources. This leads to a loss of control over a larger fraction of the generation. To be able to
compensate for this loss in flexibility on the generation side, we have to create and use
flexibility on the consumption side. This has led to the concept of ‘Smart Grids’ and
decentralized energy management is seen as a key element for these Smart Grids.

In this talk we first give a sketch of possible concepts and methods for decentralized energy
management. Furthermore, we argue that devices with inherent storage offer large portions of
flexibility and discus a range of scheduling problems that come up for these devices. Finally,
for a few of these problems we sketch possible solution approaches.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 14 -

Papers

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 15 -

MISTA 2015

A Probabilistic Constrained Approach for Unrelated
Parallel Machine Scheduling

Pablo Adasme · Janny Leung · Abdel Lisser

Abstract In this paper, we investigate a probabilistic constrained variant of the well

known unrelated parallel machine scheduling problem. For this purpose, we assume

that each vector of job processing times is an independent and multivariate normally

distributed vector with known mean and covariance matrix. This assumption allows

transforming the probabilistic constraints into deterministic equivalent second order

conic constraints [9]. In particular, we consider the problem of makespan minimization

when completing a subset of jobs subject to machine energy consumption and job

assignment constraints. We compute feasible solutions by solving directly the equivalent

deterministic mixed integer second order conic (MISOC) programming problem and

also by means of piecewise mixed integer linear programming (MILP) formulations

we obtain from the MISOC problem. Our numerical results indicate that one of the

piecewise linear formulations allows finding better feasible solutions for instances with

up to ten machines and fifty jobs in less average computational cost.

1 Introduction

The unrelated parallel machine scheduling problem has been studied since several

decades ago [11,13]. In general, the problem consists of assigning a set of jobs to a

set of different parallel machines such that each job is processed in an unique machine

and the worst maximum completion time (makespan) of all machines is minimized. In

this paper, we investigate a new probabilistic constrained variant of this well known

Pablo Adasme
Departamento de Ingenieŕıa Eléctrica, Universidad de Santiago de Chile, Avenida Ecuador
3519 Santiago, Chile.
E-mail: pablo.adasme@usach.cl

Janny Leung
Department of Systems Engineering & Engineering Management, Chinese University of Hong
Kong, Shatin, Hong Kong.
E-mail: janny@se.cuhk.edu.hk

Abdel Lisser
Laboratoire de Recherche en Informatique, Université Paris-Sud XI, Bâtiment 650, 91405 Orsay
Cedex France.
E-mail: abdel.lisser@lri.fr

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 16 -

machine scheduling problem. For this purpose, we assume that each vector of job

processing times is an independent and multivariate normally distributed vector with

known mean and covariance matrix. This assumption allows transforming the prob-

abilistic constraints into deterministic equivalent second order conic constraints [9].

In particular, we consider the problem of makespan minimization when completing a

subset of jobs subject to machine energy consumption and job assignment constraints.

We consider range machine energy constraints that help balancing the amount of work

to be processed by the different machines in a given period of time (a day, a week,

etc.). So far, we assume that the energy consumptions required by the machines to

process the different jobs are deterministic input data for the problem. We compute

feasible solutions by solving directly the equivalent deterministic mixed integer second

order conic (MISOC) programming problem and also by means of piecewise mixed

integer linear programming (MILP) formulations we derive from the MISOC problem.

Piecewise linear approximations allows transforming nonlinear programming problems

into pure MILP problems that can be efficiently handled by specialized solvers [1]. We

refer the reader to [3,5,8,10,12] for a deeper comprehension on this subject. Stochastic

programming (SP), on the other side, is an optimization technique which helps dealing

with the uncertainty of the input parameters of a mathematical program [14,16]. In

SP, the input parameters are modeled as random variables and thus, the theory of

probabilities can be applied. The probability distributions governing the data are com-

monly known or can be estimated. Probabilistic or chance constrained programs are

stochastic optimization problems where a subset of the whole constraints is satisfied

for at least a prescribed threshold. For a deeper understanding on probabilistic con-

strained approaches, we refer the reader to [9,14,16] and references therein. As far as

we know, joint probabilistic constrained approaches and piecewise linear formulations

have not yet been investigated so far for parallel machine scheduling problems.

This paper is organized as follows. In section 2, we present the new probabilistic

constrained parallel machine scheduling problem. Then, in section 3 we obtain a deter-

ministic equivalent MISOC formulation and present two piecewise MILP formulations

that we derive from the MISOC problem. Subsequently, in section 4 we present nu-

merical results in order to compare the performance of the proposed models. Finally,

in section 5 we conclude the paper.

2 Problem formulation

In order to state our stochastic version of the parallel machine scheduling problem,

we consider a set of jobs J = {1, .., n} to be processed by a set of parallel machines

M = {1, ..,m}. The processing time required by machine i ∈M to process job j ∈ J is

denoted by pij(ξ) where ξ is a random variable normally and independently distributed.

We denote the energy cost for processing job j ∈ J on machine i ∈M by cij . Finally,

we denote by Ci and Ci, the minimum and maximum energy values that machine

i ∈ M is allowed to use for processing jobs. We consider the following probabilistic

constrained optimization problem

P0 : min
{x,cmax}

cmax (1)

s.t.: P

n∑
j=1

pij(ξ)xij ≤ cmax

 ≥ (1− α), ∀i ∈M (2)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 17 -

Ci ≤
n∑
j=1

cijxij ≤ Ci, ∀i ∈M (3)

m∑
i=1

xij ≤ 1, ∀j ∈ J (4)

xij ∈ {0, 1}, ∀i, j (5)

where xij = 1 if job j ∈ J is assigned machine i ∈ M and xij = 0 otherwise.

The nonnegative continuous variable cmax denotes the makespan, i.e. the maximum

completion time of all machines. In P0, the objective function represents the makespan

whereas constraint (2) is a generic probabilistic constraint imposed on the total time

required for machine i ∈ M to process all the jobs assigned to it. The parameter

α ∈ [0, 0.5) represents the risk of not satisfying the probabilistic constraint for some

occurrences of pij(ξ). Constraint (3) is a fairness range energy capacity constraint that

each machine must respect. The underlying idea of this constraint is to balance the

amount of work to be processed by each machine. Constraint (4) ensures that each

job must be assigned to at most one machine. Notice that when constraint (4) is less

than one for a particular j̄ ∈ J , it means that job j̄ is postponed for a next processing

period. Finally, constraint (5) is a domain constraint for the decision variables.

3 MISOC and piecewise MILP formulations

In this section, first we present a deterministic equivalent formulation for P0. Then,

we present two piecewise MILP formulations that we derive from the deterministic

equivalent model.

3.1 Deterministic equivalent MISOC formulation

In order to obtain a deterministic equivalent formulation for P0, we assume that each in-

put vector pi,•(ξ) is an independent multivariate random variable normally distributed

with known mean (p̄i,•). Also, let Σi = (Σilj) ∀l, j ∈ J , i ∈ M be the correspond-

ing covariance matrix for vector (p̄i,•). This allows writing the following deterministic

equivalent model [9]

P1 : min
{x,cmax}

cmax

s.t.:

n∑
j=1

p̄ijxij + F−1(1− α)

√√√√√ n∑
l=1

 n∑
j=1

Σiljxij

2

≤ cmax, ∀i ∈M (6)

Ci ≤
n∑
j=1

cijxij ≤ Ci, ∀i ∈M

m∑
i=1

xij ≤ 1, ∀j ∈ J

xij ∈ {0, 1}, ∀i, j

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 18 -

where F−1(1−α) denotes the inverse of F (1−α) which is the standard normal cumu-

lative distribution function. Notice that P1 is formulated as a MISOC programming

problem. Hereafter, we denote its convex nonlinear programming relaxation by RP1.

3.2 Piecewise MILP formulations

In order to obtain a first piecewise MILP formulation for P1, we linearize constraint

(6) as follows. We replace the argument in the root square term by the nonnegative

continuous variable yi ≥ 0,∀i ∈M. This allows writing constraint (6) by means of the

following set of constraints

n∑
j=1

p̄ijxij + F−1(1− α)
√
yi ≤ cmax, ∀i ∈M (7)

yi =

n∑
l=1

 n∑
j=1

Σiljxij

2

≥ 0,∀i ∈M (8)

yi ≥ 0,∀i ∈M

Next, we approximate each root square term
√
yi,∀i ∈ M with a set of line seg-

ments S = {1, .., S}. Subsequently, we replace the term
√
yi in (7) by the expression∑S

s=1 (a(s)yiϕsi + b(s)ϕsi) such that
∑S
s=1 ϕsi = 1, ∀i ∈M. The parameters a(s) and

b(s) are the slopes and constant terms of each line segment s ∈ S. Next, we introduce

the following bounding constraints for each yi, i ∈M.

−(1− ϕsi)T + Lo(s) ≤ yi ≤ Up(s) + (1− ϕsi)T , ∀i ∈M, s ∈ S

where T represents a large positive value. The parameters Lo(s) and Up(s) correspond

to lower and upper bounds for each line segment s ∈ S. This allows to control the

value of variable yi by using the binary variables ϕsi. Hence, if ϕs̃i = 1, it means that

yi lies in the line segment s̃ ∈ S. Each yi can only lie in an unique line segment which

is controlled by the constraint
∑S
s=1 ϕsi = 1,∀i ∈ M. Finally, by the use of standard

linearization techniques [4,6], we can write the following equivalent piecewise MILP

formulation

P2 : min
{x,θ,φ,ϕ,y,cmax}

cmax

s.t.:

n∑
j=1

p̄ijxij + F−1(1− α)

S∑
s=1

(a(s)φis + b(s)ϕsi) ≤ cmax, ∀i ∈M

S∑
s=1

ϕsi = 1, ∀i ∈M

−(1− ϕsi)T + Lo(s) ≤ yi ≤ Up(s) + (1− ϕsi)T , ∀i ∈M, s ∈ S
φis ≤ yi, ∀i, s (9)

φis ≤ ϕsiT , ∀i, s (10)

φis ≥ yi + ϕsiT − T , ∀i, s (11)

φis ≥ 0, ∀i, s (12)

Ci ≤
n∑
j=1

cijxij ≤ Ci, ∀i ∈M

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 19 -

m∑
i=1

xij ≤ 1, ∀j ∈ J

yi −
n∑
l=1

n∑
j=1

(
Σilj

)2
xij +

n∑
l=1

 n∑
j=1

n∑
k=1
(j 6=k)

ΣiljΣ
i
lkθ

i
jk

 = 0, ∀i ∈M (13)

θijk ≤ xij , ∀i, j, k (14)

θijk ≤ xik, ∀i, j, k (15)

θijk ≥ xij + xik − 1, ∀i, j, k (16)

θijk ∈ {0, 1}, ∀i, j, k (17)

xij ∈ {0, 1}, ∀i, j, yi ≥ 0, ∀i

where the constraints (9)-(12) linearize the quadratic terms yiϕsi, ∀i ∈ M, s ∈ S and

the constraints (14)-(17) linearize xijxik, ∀i ∈ M, j, k ∈ J , respectively. In particular,

the quadratic terms xijxik arise when linearizing equation (8) that we transform into

constraint (13). Hereafter, we denote by LP2 the LP relaxation of P2.

An alternative convex piecewise MILP based formulation for P1 can be constructed

as follows. Consider the tabular data for each root square term zi =
√
yi, ∀i ∈M in (7)

for a given interval yi ∈ [0, U]. In our case, we may use for instance the upper bound U =

max{i∈M}

{∑n
l=1

(∑n
j=1Σ

i
lj

)2}
. Now, let us denote this data by the points (ȳk; z̄k),

k ∈ K = {1, . . . ,K}. By introducing continuous nonnegative variables λik, ∀i ∈M, k ∈
K, accordingly we can write the following equivalent MILP formulation

P3 : min
{x,y,z,λ,θ,cmax}

cmax

s.t.:

n∑
j=1

p̄ijxij + F−1(1− α)zi ≤ cmax, ∀i ∈M

yi =

K∑
k=1

λikȳk, ∀i ∈M (18)

zi =

K∑
k=1

λik z̄k, ∀i ∈M (19)

K∑
k=1

λik = 1, ∀i ∈M (20)

λik ≥ 0 and SOS-2, ∀i ∈M, k ∈ K
0 ≤ yi ≤ U, ∀i ∈M

Ci ≤
n∑
j=1

cijxij ≤ Ci, ∀i ∈M

m∑
i=1

xij ≤ 1, ∀j ∈ J

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 20 -

yi −
n∑
l=1

n∑
j=1

(
Σilj

)2
xij +

n∑
l=1

 n∑
j=1

n∑
k=1
(j 6=k)

ΣiljΣ
i
lkθ

i
jk

 = 0, ∀i ∈M

θijk ≤ xij , ∀i, j, k

θijk ≤ xik, ∀i, j, k

θijk ≥ xij + xik − 1, ∀i, j, k

θijk ∈ {0, 1}, ∀i, j, k
xij ∈ {0, 1}, ∀i, j

where the constraints (18) and (19) are the domain and function evaluation constraints

for the root square terms in (7), respectively. Constraints in (20) are convexity con-

straints. Finally, we impose that λi,k ≥ 0, ∀i, k be of type SOS-2 which means that

only two consecutive variables λi,k−1, λi,k, ∀k = {2, . . . ,K} may be non-zero [7]. We

denote by LP3 the LP relaxation of P3. Finally, we also consider the case where Σilj = 0

∀i ∈M, l, j ∈ J . In this case, P1 reduces to the following MILP problem

P4 : min
{x,cmax}

cmax

s.t.:

n∑
j=1

p̄ijxij ≤ cmax, ∀i ∈M

Ci ≤
n∑
j=1

cijxij ≤ Ci, ∀i ∈M

m∑
i=1

xij ≤ 1, ∀j ∈ J

xij ∈ {0, 1}, ∀i, j

We use P4 only as an alternative way to compute feasible solutions for P1. Thus, in our

numerical results, we evaluate the feasible solutions obtained with P4 in the objective

function of P1 in order to give some insight with respect to the distance between these

two objective functions.

4 Numerical results

In this section, we present numerical results for all the proposed models: P1, RP1,

P2, LP2, P3, LP3 and P4. We implement a Matlab program using SBB and CONOPT

solvers [2,15] for solving P1 and RP1 respectively and CPLEX 12 [7] to solve the MILP

and LP models. All these solvers are used with default options. So far, we generate the

input data randomly and arbitrarily. In a larger version of this work, we will consider

input data of more realistic applications as well. The processing times p̄i,j and the

energy costs ci,j are drawn from the intervals [0, 20] and [0, 50], respectively. Each

entry in matrix (Σilk), ∀i ∈ M, l, j ∈ J is drawn from the interval [0, 2]. The risk

parameter α = 0.1. The input parameters Ci, Ci, ∀i ∈M are computed as

Ci = 0.4

∑n
j=1 cij

m

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 21 -

#
Inst. Dim. MISOC model Linear programs
m n P1 RP1 T ime P1 T ime RP1 P2 LP2 T ime P2 T ime LP2 P1(x2)

Small size instances
1 2 6 13.32 8.78 0.67 0.09 13.32 5.97 0.22 0.11 13.32
2 2 10 21.82 19.19 0.76 0.09 21.82 11.36 2.34 0.17 21.82
3 2 20 32.80 25.28 0.95 0.09 32.80 10.40 39.69 0.94 32.80
4 4 10 11.20 8.43 0.97 0.09 11.20 3.91 2.40 0.25 11.20
5 4 20 22.72 14.68 83.37 0.09 22.72 6.58 384.73 1.81 22.72
6 4 30 29.94 26.08 2196.61 1.54 29.94 6.34 1894.14 8.31 29.94

Medium and large size instances
7 2 30 51.05 49.33 1.64 0.09 51.05 16.02 31.37 0.48 51.05
8 2 40 72.35 70.40 20.14 0.09 72.35 21.91 547.92 1.55 72.35
9 2 50 79.06 75.17 41.11 0.09 79.06 14.49 573.91 2.20 79.06

10 4 40 ∗ 35.73 ∗ 7.33 40.15 10.51 2421.86 1.96 40.15
11 4 50 39.99 39.26 98.02 0.16 39.99 9.46 2473.60 7.60 39.99
12 8 20 11.92 5.56 26.65 0.11 11.96 2.92 3.56 0.51 11.92
13 8 30 14.64 10.52 214.11 0.23 14.69 4.59 98.89 1.54 14.64
14 8 40 ∗ 14.36 ∗ 6.15 21.69 2.58 696.09 3.88 21.68
15 8 50 ∗ 17.03 ∗ 3.63 23.27 3.42 3600 14.02 23.27
16 10 30 ∗ 10.10 ∗ 2.06 14.56 2.30 1546.51 9.44 14.55
17 10 40 ∗ 10.92 ∗ 2.87 14.69 3.12 1741.43 9.47 14.67
18 10 50 ∗ 14.43 ∗ 5.32 21.77 1.31 3296.85 13.37 21.77
min. 11.20 5.56 0.67 0.09 11.20 1.31 0.22 0.11 11.20
max. 79.06 75.17 2196.61 7.33 79.06 21.91 3600 14.02 79.06
ave. ∗ 25.29 ∗ 1.67 29.84 7.62 1075.30 4.31 29.83
∗: No solution found due to a SBB shortage of memory in at most 1 hour.

Table 1 Feasible solutions obtained for the MISOC and linear programs.

and

Ci = 0.7

∑n
j=1 cij

m

respectively. For the root square term in (7) that we use in our piecewise linear formu-

lations, we consider the interval [0, U] divided in subintervals of length one, on small

size instances, for each line segment where U is computed as mentioned in subsection

3.2. While for medium and large size instances of the problem, we use the interval

[0, U] divided in subintervals of length 10 for each line segment. Finally, we set the

parameter T = 1e10 in P2. The numerical experiments have been carried out on an

Intel(R) 64 bits core(TM) with 3.4 Ghz and 8 GoBytes of RAM. In each row of Tables

1 and 2, we present numerical results for the same instances. In particular, rows 1-6

present numerical results for small size instances of the problem while in rows 7-18,

we present numerical results for medium and large size instances of the problem. In

Table 1, column 1 shows the instance number. Columns 2-3 show the instances dimen-

sions. In columns 4-7, we present the optimal solution values of P1 and RP1, and their

CPU time in seconds, respectively. Similarly, in columns 8-11, we present the optimal

solution values of P2 and LP2, and their CPU time in seconds, respectively.

Finally, in column 12 we present the objective function value of P1 obtained with

the optimal solution of P2 or with the best solution found with P2 in one hour. As

for the medium and large size instances, we set the maximum time available to solve

P1, P2, P3 and P4 be at most one hour. In Table 2, column 1 shows the instance

number which is the same as for Table 1. Columns 2-5 show the optimal solutions of

P3 and LP3, and their CPU time in seconds, respectively. Next, in column 6 we show

the objective function value of P1 obtained with the optimal solution of P3 or with

the best solution found with P3 in one hour. Finally, columns 7-9 present the optimal

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 22 -

#
Linear programs

P3 LP3 T ime P3 T ime LP3 P1(x3) P4 T ime P4 P1(x4)
Small size instances

1 13.32 6.66 0.11 0.09 13.32 9.06 0.09 13.32
2 21.82 12.98 0.25 0.14 21.82 13.08 0.09 21.82
3 32.80 13.01 6.18 1.04 32.80 14.01 0.09 32.80
4 11.20 4.29 0.44 0.14 11.20 5.53 0.09 11.20
5 22.72 7.28 678.37 1.45 22.72 10.79 0.09 23.39
6 29.94 8.90 918.37 19.95 29.94 8.75 0.09 30.92

Medium and large size instances
7 51.05 21.47 8.30 0.31 51.05 16.56 0.11 54.22
8 72.35 31.16 161.97 0.79 72.35 23.56 0.13 89.57
9 79.06 24.26 301.44 3.21 79.06 14.69 0.13 88.95

10 † 12.68 3600 2.18 † 12.51 0.14 44.72
11 † 12.83 3600 4.73 † 10.11 0.11 56.32
12 11.90 3.04 1.01 0.27 11.92 5.28 0.11 11.92
13 14.62 4.90 13.99 0.81 14.64 6.23 0.09 18.79
14 † 3.57 3600 2.81 † 3.84 0.09 30.03
15 † 4.06 3600 8.42 † 4.28 0.09 24.50
16 14.50 2.69 37.36 0.97 14.52 4.63 0.09 20.86
17 14.66 3.33 77.44 3.46 14.67 4.27 0.09 22.35
18 † 1.69 3600 11.34 † 1.83 0.13 31.88

min. 11.20 1.69 0.11 0.09 11.20 1.83 0.09 11.20
max. 79.06 31.16 3600 19.95 79.06 23.56 0.14 89.57
ave. † 9.93 1122.51 3.45 † 9.39 0.10 34.87
†: No solution found with CPLEX in 1 hour.

Table 2 Feasible solutions obtained for the linear models.

solution of P4, its CPU time in seconds and the objective function value of P1 obtained

with the optimal solution of P4.

From Tables 1 and 2, first we see that the objective values of P1, P1(x2) and P1(x3)

are exactly the same for the small size instances of the problem. This means that P1, P2

and P3 allow finding the optimal solution of the problem. Notice that solving directly

P1 allows finding the optimal solution of the problem whereas the piecewise linear

formulations can only guaranty a feasible solution of the problem, possibly the optimal

solution when the line segments considered grows to infinity.

Regarding the medium and large size instances of the problem, we observe that

not all the instances can be solved to optimality with P1 and P3 in one hour of CPU

time. Also, we see that the average CPU time is lower for P2 than for P3 and that

P2 can find optimal solutions in less than one hour for most of the instances which

is not possible to achieve with P1 and P3. In general, we observe that P4 can solve

all the instances to optimality in both Tables 1 and 2 and in significantly less CPU

time when compared to P1, P2 and P3 respectively. However, the feasible solutions

obtained with P4 are not near optimal for P1. This can be verified by computing

the average Gap =
P1(x

4)−P1(x
2)

P1(x2)
∗ 100 which is 16.88%. Finally, we observe that the

average CPU time for LP2 is higher than for RP1 and LP3. In general, from our

preliminary numerical results presented in Tables 1 and 2, we mainly observe that P2

is more effective than P1 and P3 as it allows solving more instances (e.g., instances

1-14, 16-18) to optimality in less average computational cost.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 23 -

5 Conclusions

In this paper, we proposed a probabilistic constrained variant of the well known un-

related parallel machine scheduling problem. For this purpose, we assumed that each

vector of job processing times is an independent and multivariate normally distributed

vector with known mean and covariance matrix. This assumption allows transforming

the probabilistic constraints into deterministic second order conic constraints [9]. In

particular, we considered the problem of makespan minimization when completing a

subset of jobs subject to machine energy consumption and job assignment constraints.

We computed feasible solutions by solving directly the equivalent deterministic mixed

integer second order conic programming problem and also by means of piecewise mixed

integer linear programming formulations. Our numerical results showed that one of the

piecewise linear formulations allows finding better feasible solutions for instances with

up to ten machines and fifty jobs in less average computational cost.

References

1. R. Bixby, Solving Real-World Linear Programs: A Decade and More of Progress, Operations
Research, 50(1), 1-13, (2002)

2. CONOPT is a solver for large-scale nonlinear optimization (NLP) developed and maintained
by ARKI Consulting & Development A/S in Bagsvaerd, Denmark. http://www.conopt.com/
Algorithm.htm

3. G. Dantzig, Linear programming and extensions, Princeton University Press, (1963)
4. R. Fortet, Applications de l’algebre de boole en recherche operationelle, Revue Francaise

de Recherche Operationelle, 4, 17-26, (1960)
5. B. Geiler, A. Martin, A. Morsi, and L. Schewe, IMA Volume on MINLP, chapter Using

piecewise linear functions for solving MINLPs, Springer, (2010)
6. A. Gupte, S. Ahmed, M. Cheon, and S. Dey, Solving mixed integer bilinear problems using

MILP formulations, Siam Journal on Optimization, 23(2), 721-744, (2013)
7. IBM ILOG CPLEX Optimization Studio Information Center. Webpage: http://pic.dhe.
ibm.com/infocenter/cosinfoc/v12r4/index.jsp

8. A. Keha, I. de Farias, and G. Nemhauser, Models for representing piecewise linear cost
functions, Operations Research Letters, 32(1), 44-48, (2004)

9. M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, Linear Algebra and its Applications,
284, pages: 193-228, (1998)

10. H. Markowitz and A. Manne, On the solution of discrete programming-problems, Ecomet-
rica, 25, 84-110, (1957)

11. R. McNaughton, Scheduling with deadlines and loss functions, Management science, 6,
pages: 112, (1959)

12. G. Nemhauser and J. Vielma, Modeling disjunctive constraints with a logarithmic number
of binary variables and constraints, Lecture Notes in Computer Science, 5035, 199-213, (2008)

13. C. Potts and V. Strusevich, Fifty years of scheduling: a survey of milestones, Journal of
the Operational Research Society 60, 41-68, (2009)

14. A. Prékopa, On probabilistic constrained programming, Proceedings of the Princeton Sym-
posium on Mathematical Programming, Princeton University Press, Princeton, 1970.

15. SBB is a new GAMS solver for Mixed Integer Nonlinear Programming (MINLP) models.
http://www.gams.com/presentations/present_sbb.pdf

16. A. Shapiro, D. Dentcheva, and A. Ruszczynski, Lectures on stochastic programming: Mod-
eling and theory, 436. SIAM Philadelphia, Series on Optimization, Vol. 9 of MPS/SIAM,
Philadelphia (2009)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 24 -

MISTA 2015

Exact and heuristic methods for trading-off makespan and
stability in stochastic project scheduling

Simon Mountakis · Tomas Klos ·
Cees Witteveen · Bob Huisman

Abstract This paper addresses a problem of practical value in project scheduling:

trading expected makespan for stability, under stochastic activity duration uncertainty.

We present the formal statement of a problem that we name Proactive Stochastic RCPSP

(PS-RCPSP). Assuming activity durations follow known probability distributions, PS-

RCPSP asks to find a so-called earliest-start (es) policy and a proactive schedule

that together minimize the weighted sum of expected project makespan and expected

instability (deviation of the realized from the proactive schedule). Extending an existing

MILP model for the well-known deterministic Resource-Constrained Project Scheduling

Problem (RCPSP), we present a MILP model for PS-RCPSP, which allows us to find

optimal (es-policy, proactive schedule) pairs. To deal with instances of practical size,

we propose a Linear Programming (LP)-based and a Mixed-Integer LP (MILP)-based

heuristic. Our LP-based heuristic optimizes the proactive schedule while keeping the

es-policy part of the solution fixed. Our MILP-based heuristic aims to optimize the

structure of the policy together with the proactive schedule. In contrast to existing

state-of-art approaches such as CCP [21] and STC [31], our heuristics rely on optimizing

the proactive schedule together with the scheduling policy. Experiments show that the

LP-based heuristic is efficient and compares favorably with the state-of-art (i.e. achieves

smaller expected makespan for a certain level of expected instability) when the aim

is to achieve near-zero instability at the cost of higher makespan. The MILP-based

heuristic seems more effective (albeit not as efficient) when the aim is to achieve low

expected makespan at the cost of moderate or high instability.

Simon Mountakis
Delft University of Technology
E-mail: k.s.mountakis@tudelft.nl

Tomas Klos
Delft University of Technology
E-mail: t.b.klos@tudelft.nl

Cees Witteveen
Delft University of Technology
E-mail: c.witteveen@tudelft.nl

Bob Huisman
NedTrain
E-mail: b.huisman@nedtrain.nl

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 25 -

1 Introduction

Project scheduling literature mostly concentrates on scheduling subject to temporal

and resource constraints. The schedule sought for is an assignment of start-times to

activities, facilitating the efficient use of limited resources in order to minimize a lateness

measure such as the project makespan. Finding a schedule usually invovles solving the

Resource-Constrained Project Scheduling Problem (RCPSP) (see [1,14] for compre-

hensive surveys). This problem has been shown to be NP-Hard [7] and finds several

industrial applications (e.g. [8,6]). Associated literature includes numerous exact and

(meta-)heuristic algorithms, able to find good schedules for large instances and diverse

lateness measures (e.g. [28,20,18,10]). Solving an RCPSP serves the purpose of prepar-

ing a feasible schedule, assuming a static deterministic project execution environment. In

practice, however, this assumption is rarely valid. Activity durations used for preparing

the schedule are mostly rough estimates, since most projects are subject to delays

during execution and the final realized schedule is the result of subjecting the original

schedule to modifications which make it consistent with the project constraints in the

face of delays. Ad-hoc modifications lead to realized activity start-times that might

differ from planned start-times, compromising project predictability and timeliness.

This paper addresses the issue of hedging against project uncertainty by preparing

a schedule in combination with an execution strategy for coping with delays. In line

with other works in stochastic project scheduling (see [17] for a comprehensive review)

we assume activity durations are given as stochastic variables with known distributions

and propose a new proactive-reactive scheduling method. First, we define the Proactive

Stochastic (PS) RCPSP as an extension of RCPSP. The solution to PS-RCPSP is a

proactive schedule and an earliest-start (es-) policy that together minimize the weighted

sum of the realized schedule’s expected makespan and its expected deviation from the

proactive schedule. PS-RCPSP is, in fact, a generalization of the Stochastic RCPSP

(S-RCPSP), which asks to find a stochastic scheduling policy instead of a schedule and

various classes of policies have been proposed in the literature [25,26,17]. In general, a

policy defines a mapping between activity duration realizations to realized schedules.

S-RCPSP asks to find a policy that minimizes the expected project makespan, with

only few exact and heuristic approaches (mainly meta-heuristics) proposed over the

last decade [29,4,5,3].

Not preparing the project execution based on a schedule that can more or less

be trusted (but rather, letting the realized schedule unfold during execution) has

been recognized as a shortcoming of S-RCPSP [16]. This shortcoming motivates us

and a number of other authors to propose a proactive-reactive approach, with [31,11,

21] yielding the most promising computational results in existing literature. Different

approaches pursue different optimization objectives; however, the common aim is to

optimize some tradeoff between expected makespan and expected deviation from the

proactive schedule. In line with other authors we represent activity duration distributions

with a sample and propose a Linear Programming (LP)-based heuristic for PS-RCPSP,

a Mixed-Integer LP (MILP) model enabling us to obtain exact solutions, and a MILP-

based heuristic which asimilates iterative flattening [27]. The (MI)LP models for PS-

RCPSP proposed in this paper are the result of adjusting the models proposed by

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 26 -

Artigues et al. in [2] and [23]. We refer to exact solutions assuming stochastic duration

distributions can be represented exactly by a sufficiently large sample.1

The contributions of this paper extend from section 3 and onwards. In order to

base the paper on a consistent and self-contained framework of notation, section 2

summarizes existing concepts from deterministic, reactive, and proactive-reactive project

scheduling. Section 3 introduces in a formal manner the problem studied here, that

we name Proactive Stochastic RCPSP. Section 4 presents one main contribution of

this paper: a LP-based heuristic for solving this problem. Section 5 presents another

main contribution: a MILP model for this problem which enables us to obtain exact

PS-RCPSP solutions. To our knowledge, no other exact solution methods have been

proposed for poblems of similar type. Section 6 presents yet another contribution, a

MILP-based heuristic for PS-RCPSP. Section 7 presents an experimental study in which

we find that the LP-based heuristic performs favorably in comparison to the state-of-art,

especially when the aim is to achieve near-zero instability. We also find the MILP-based

heuristic to be more effective (albeit less efficient) when one is willing to accept medium

levels of instability in order to minimize expected makespan. Section 8 concludes the

paper.

2 Preliminaries

The purpose of this section is to introduce the research area of proactive-reactive

(stochastic) project scheduling, which is where the contributions of this paper belong

to. To establish autonomy and to facilitate discussion in further sections, we use

convenient notation (which sometimes departs from standard notation) and begin

with summarizing existing concepts from deterministic and (purely) reactive project

scheduling. For a comprehensive survey of deterministic, reactive and proactive-reactive

project scheduling, the reader may refer to [17].

2.1 Deterministic project scheduling

A project is usually represented as a directed acyclic graph G(N,E), with nodes

N = {1, . . . , n} corresponding to the set of n project activities. Each directed arc (i, j)

in E ⊆ {(i, j) ∈ N2} defines a direct temporal constraint between activities i and

j, meaning that j may not start unless activity i has finished. In effect, E defines a

binary, irreflexive and transitive relation: if there is a path from activity i to activity

j in G(N,E) then j cannot start unless i has finished. Let us T (E) ⊇ E denote the

transitive closure of E, defined as

T (E) := {(i, j) ∈ N2 : ∃ a path from i to j in G(N,E)}

We shall name a temporally independent set each subset of activities X ⊆ N which are

mutually independent with respect to temporal constraints. That is, if X is a temporally

independent set, then X2 ∩ T (E) = ∅. Obviously, if only temporal constraints are taken

into account, the activities of a temporally independent set may overlap in time in a

schedule.

1 This notion of exactness is in line with Stork [29] who represent stochastic duration
distributions with a sample when proposing exact search methods for the S-RCPSP.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 27 -

We assume as input a set R := {1, . . . ,m} of m resources which must be shared

among activities. Each resource r ∈ R is associated with known capacity br ∈ N0.

Furthermore, each activity i ∈ N requires a known amount qir ≤ br of resource r

while it executes. Vector b ∈ Nm0 and matrix q ∈ Nn×m0 define the problem’s resource

constraints. Every independent set X for which
∑
i∈X qir > br for some r ∈ R is called

a forbidden set. Even though it is allowed by the temporal constraints E, all activities

in X may not overlap at some timepoint t because resource r will be used beyond its

capacity, which is not possible.

Let H ⊆ N2 denote a set of temporal constraints. Below we give the definition of a

function Φ which returns the set of all forbidden sets w.r.t. temporal constraints H and

the problem’s resource constraints (q, b).

Φ(H) := {X ⊆ N : X2 ∩ T (H) = ∅,
∑
i∈X

qir > br for some r ∈ R} (1)

In addition to the parameters mentioned so far, we assume as input a vector d ∈ Nn0
such that di defines the duration of activity i. Overall, a tuple (N,R,E,d, q, b) specifies

an instance of the RCPSP. A schedule s ∈ Nn0 such that si defines the start time of

activity i, is a feasible solution when it satisfies the temporal and resource constraints,

meaning that

sj ≥ si + di ∀(i, j) ∈ E (2)

a(s, t) /∈ Φ(E) ∀t ≥ 0 (3)

Here, a(s, t) := {i ∈ N : t ∈ [si, si + di)} is the set of activities executing at

timepoint t according to s and Φ as defined earlier. Thus, (3) ensures there is no

timepoint t at which the activities of a forbidden set overlap concurrently.

Project source-sink convention. RCPSP asks to find a feasible schedule of minimum

makespan Cmax(s) := max{si + di : i ∈ N}. Most RCPSP-related works assume that

the last activity, n, is a dummy activity with zero duration (i.e. dn = 0) and that

it must wait for the completion of every other activity (i.e. (i, n) ∈ T (E) for every

i ∈ N − {n}). This dummy activity is often known as the project ”sink” and it holds

that Cmax(s) = sn. Another convention of most RCPSP-related works is that the first

activity, 1, often known as the project ”source” must be waited on by every other

activity (i.e. (1, j) ∈ T (E) for every j ∈ N − {1}).
We shall hereafter assume activities 1 and n correspond to the project source and

sink, respectively. The RCPSP can now be formally stated as:

s∗ := arg min{sn : (2), (3), s ≥ 0} (4)

2.2 Reactive project scheduling

In the research area of stochastic project scheduling, the activity durations vector d is

replaced with a stochastic vector D such that Di is the stochastic variable representing

the uncertain duration of activity i, with a known probability distribution P[Di = t].

In line with recent works on S-RCPSP, we shall denote (elements of) stochastic vectors

with a capital symbol.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 28 -

S-RCPSP is a purely reactive extension of RCPSP. The solution sought for is no

longer a schedule, but a reactive scheduling policy. A policy is a combinatorial object π

which parameterizes the mapping from stochatic vector D to a corresponding realized

schedule S(π,D). Note that S denotes a function which returns a vector of activity

start times (of length n). Furthermore, if a realization d of D is passed as an argument,

then S(π,d) denotes a deterministic vector. if D is passed as an argument, S(π,D)

denotes a stochatic vector.

Different classes of policies have been proposed in the literature [25,26,29,3]. One

condition that all policy classes are expected to satisfy is that function S complies

with the non-anticipativity constraint : the decision to start activity i at time [S(π,D)]i
cannot rely on information from the feature: the value of [S(π,D)]i must be determined

by time t ≤ [S(π,D)]i. Other features such as the structure of π and the definition of

function S depend on the class under study.

List-based policies. Two classes of policies which are prominent in the literature are

resource-based (rb) policies and activity-based (ab) policies, also known collectively as

list-based policies. A list-based policy is a priority vector l ∈ Rn assigning priority li to

activity i. Realized schedule S(l,D) is computed by a variant of the well-known parallel

schedule-generation-scheme (SGS) complying with the non-anticipativity constraint

[5]; with the SGS definition being slightly different between rb-policies and ab-policies.

As far as list-based policies are concerned, S-RCPSP asks to find a vector l ∈ Rn
that minimizes E[[S(l,D)]n]. Stork [29] proposes exact branch-and-bound algorithms

for both rb and ab-policies. Ballest́ın [4] proposes an efficient genetic algorithm for

ab-policies, providing the first computational experience on larger S-RCPSP instances.

Ballest́ın and Leus [5] manage to obtain better results with a Greedy Randomized

Adaptive Search Procedure (GRASP), again for the class of ab-policies. The best

performance (w.r.t. expected makespan minimization) has so far been obtained with the

more recent work of Ashtiani et al. [3] who propose a GRASP for a new class, namely

pre-processing (pp) policies–a hybrid between rb-policies and es-policies.

Earliest-start policies. An es-policy is a set of temporal constraints E ⊆ N2 chosen

such that

T (E) ⊇ E, (5)

Φ(E) = ∅, (6)

G(N, E) is acyclic (7)

Condition (5) ensures that a schedule s satisfying sj ≥ si + di for each (i, j) ∈ E (here

d can be any arbitrary choice of activity durations) is feasible with respect to the

problem’s precedence constraints E. Condition (6) ensures that s satisfying E implies

that it also satisfies resource constraints prescribed by availabilities b and requirements

q (as described earlier). Condition (7) ensures that the set of schedules satisfying E (for

any arbitrary choice of activity durations d) is non-empty.

When a project is executed according to an es-policy E , the schedule that is realized,

S(E ,D), is what is often known as the earliest-start schedule specified by E . The

earliest-start schedule of E can be defined as:

[S(E ,D)]j := max{[S(E ,D)]i +Di : (i, j) ∈ E} (8)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 29 -

To put it simply, an activity j starts immediatelly when all its predecessors in G(N, E)

have finished. This time quantity (the latest finish time of j’s predecessors) is often

known as the length of the critical path from project source 1 to activity j. As far as es-

policies are concerned, the S-RCPSP asks to find some E∗ which minimizes [S(E ,D)]n
(the length of the critical path to the project sink) by expectation:

E∗ := arg min{E[[S(E ,D)]n] : (5− 7), E ∈ N2} (9)

Constraints (5 − 7) enforce the feasibility of any realized schedule with both the

precedence and the resource constraints of the problem.

Stork [29] proposed an exact branch-and-bound search for problem (9). His algorithm

considers each minimal forbidden set X (subset-minimal forbidden set) in some order

and branches on each of |{(i, j) ∈ X2}| arcs which can be included in E in order to

eliminate X from Φ(E). Without obtaining new computational results, in [22] Leus

gives a formal treatment of es-policies as resource-flow networks (flow networks which

can represent feasible RCPSP schedules) and proposes a refined version of the branch &

bound algorithm of Stork. Exploiting the relation between resource-flows and es-policies,

Artigues et al. [23] propose a robust optimization model for es-policies, for when a

stochastic characterization of uncertainty is not available.

2.3 Proactive-reactive project scheduling

Reactive project scheduling allows one to pick activity start times dynamically during

the project, under conditions of uncertainty. A main drawback of this approach (e.g. [16,

17,9]) is that prior to (and during) project execution there is no schedule prescribing

activity start times that can more or less be trusted. Such a ”proactive” schedule can

serve important organizational purposes; in fact, the deviation of the realized schedule

from this proactive schedule is expected to induce organizational costs.

Attempts to overcome this drawback gave rise to the research area of proactive-

reactive project scheduling, which is the research area that this paper belongs to. The

main idea behind the proactive-reactive approach is to execute the project by using a

proactive schedule together with a scheduling policy. Under uncertainty, some activities

may not start at their proactive start times, because activities they have to wait for are

not yet finished and/or resources they require are not yet released. In such cases, the

scheduling policy determines which activities to start at their prescribed start times and

which to postpone. It should be noted that most works assume railway-mode scheduling,

meaning that an activity may not start earlier than its proactive start time, which

strengthens the ”stability” of the project execution. Clearly, the realized schedule is a

function of the policy and the proactive schedule. Achieving low instability (deviation

of the realized from the proactive schedule) requires ”spreading” proactive activity start

times far appart, in effect increasing the expected makespan. The general aim is to

optimize some tradeoff between expected makespan and expected instability.

Van de Vonder et al. [32,31,30] propose and evaluate experimentally various

proactive-reactive heuristics. The proposed heuristics assume as input an instance

of S-RCPSP along with an initial schedule. The best performing heuristic is the so-

called Starting Time Criticality (STC) heuristic. An es-policy is extracted from the

structure of this initial schedule and used to iteratively transform the initial schedule

into a proactive schedule by inserting time-buffers betwen activities. Deblaere et al. [11]

propose an approach which integrates the proactive step (forming a proactive schedule)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 30 -

and the reactive step (forming the adjoining policy). Their approach is only possible

to compare with ours and others that assume railway-mode scheduling, by choosing

sufficiently high penalties for earliness (w.r.t. the proactive schedule).2 More recently,

Vilches and Demeulemeester [21] propose a Chance-Constrained Programming model

(CCP) for the RCPSP which asks to find a minimum makespan schedule subject to

probabilistic temporal and resource constraints. They propose a Mixed Integer LP

model, the solution to which is a proactive schedule that will most likely remain feasible

under stochastic duration variability, without presumption on the policy that will be

used during project execution.

3 Proactive Stochastic RCPSP

In deterministic and reactive project scheduling, the main problem under study (RCPSP

and S-RCPSP, respectively) is stated clearly. A clearly stated problem model cannot

be found in proactive-reactive project scheduling literature, perhaps because this

research area is still in a burn-in phase.3Existing literature seems to pursue the general

aim of optimizing some tradeoff between expected makespan and expected instability

(deviation from the proactive schedule). This section presents the formal statement of a

proactive-reactive scheduling problem for which (heuristic and exact) solution methods

are proposed in subsequent sections.

The problem presented here, the Proactive Stochastic RCPSP (PS-RCPSP), asks

to find a tuple (E , t) where E is an es-policy and t is a proactive schedule, minimizing

the weighted sum of two performance criteria:

1. expected value of project makespan,

2. expected value of tardiness with respect to proactive release-times.

The first criterion measures lack of robustness and is relevant for obvious reasons. The

second criterion measures instability and captures the expected deviation of the realized

schedule from the proactive schedule. Note that t prescribes activity release-times (an

activity i may not start earlier than ti). Intuitively, instability represents the extent to

which the proactive start-times can be trusted, when used for organizational purposes

before and during project execution.

An instance of this problem is encoded by a tuple (n,m, q, b, E,D, α). For clarity,

we summarize the meaning of problem parameters. Positive integer n is the number

of activities and m is the number of resources. Parameters q ∈ Nm×n0 and b ∈
Nm0 define resource requirements and availabilities respectively. Set E ⊆ {1, . . . , n}2
defines pairwise precedence constraints. Stochastic vector D is of length n with each

element Di a stochatic variable (with given distribution P[Di = t]) which describes the

uncertain duration of activity i. Finally, parameter α ∈ [0, 1] determines the desired

tradeoff between robustness (i.e. minimization of expected makespan) and stability (i.e.

minimization of expected instability). More emphasis can be put on either minimizining

makespan (by choosing α closer to one) or minimizing instability (by choosing α closer

to zero).

2 We are grateful to one of our anonymous reviewers for this remark.
3 Some works refer to [16] but this is a formal treatment of a proactive-reactive machine

scheduling problem.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 31 -

Formally, the problem can be stated as follows:

min f(E , t) := α · E [[S((E , t),D)]n] + (1− α) · E

[
n∑
i=1

([S((E , t),D)]i − ti)

]
(10)

s.t. Φ(G(N, E)) = ∅ (11)

T (E) ⊇ E (12)

G(N, E) is acyclic (13)

E ∈ {1, . . . , n}2, t ≥ 0 (14)

Conditions (12,13) ensure there is a non-empty set of schedules satisfying the problem’s

precedence constraints as prescribed in E. Condition (11) ensures that each such

schedule also satisfies the problem’s resource constraints prescribed by q and b.

4 Heuristic LP-based approach

This section presents a polynomial-time heuristic for PS-RCPSP which consists of two

steps:

1. using mean activity durations, the deterministic RCPSP (n,m, q, b, E,E[D]) is

solved to obtain a good schedule s and a feasible es-policy E (i.e. satisfying (11),(12)

and (13)) is derived from the structure of s in polynomial time (this procedure is

described in [2]),

2. by solving a linear program presented below, we find a proactive schedule t that is

optimally combined with E (which is kept fixed) so as to minimize an approximation

of (10).

After E has been obtained in the first step, finding t which minimizes (an approx-

imation of) the PS-RCPSP objective is achieved by solving the LP model presented

below.

min

α
 1

|Γ |
∑
γ∈Γ

sγn

 + (1− α)

 1

|Γ |

n∑
i=1

∑
γ∈Γ

(sγi − ti)

 (15)

s.t. sγj ≥ s
γ
i + dγi ∀(i, j) ∈ E , γ ∈ Γ (16)

sγi ≥ ti ∀i = 1, . . . , n (17)

t ≥ 0 (18)

Here, (15) approximates the objective (10) based on Γ ⊆ Rn: an adequately-sized

sample of stochastic vector D. The realization of activity durations under sample

scenario γ ∈ Γ is represented by vector dγ = (dγ1 , . . . , d
γ
n). The corresponding re-

alized schedule is earliest-start((E , t),dγ) = (sγ1 , . . . , s
γ
n), as computed by the model

constraints. The solution is a proactive schedule t = (t1, . . . , tn) that optimizes the

tradeoff between expected makespan and instability for the given es-policy E . This LP

model has n(|Γ |+ 1) linear variables (n variables ti and n|Γ | variables sγi).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 32 -

4.1 Related work

Van de Vonder et al. [31] propose several heuristics, of which the most competitive

is the Starting Time Criticality (STC) heuristic and we shall therefore restrict our

attention to it. Our LP-based heuristic bears similarities with STC. In fact, the first

step of our heuristic is identical to that of STC: an es-policy E is extracted by the

structure of an initial schedule s. The second step of STC involves transforming the

”unstable” schedule s into a ”stable” schedule t with an iterative procedure, while

keeping E fixed. In each iteration a one-unit time buffer is added at the start of that

activity that ”needs it the most” (as determined by a proposed ”starting time criticality”

measure) until adding more buffer time would not further reduce the instability of t,

which is measured by

E

[
n∑
i=1

wi([S((E , t),D)]i − ti)

]
(19)

Here, wi is a cost associated with the instability of activity i. Furthermore, tn is kept

fixed to a project deadline and therefore wn represents the marginal cost of deviating

from this project deadline. Note that by replacing α in (10) with individual weights wi
and choosing a fixed project deadline, it is straightforward to adapt our approach to the

instability objective considered by van de Vonder et al. However, we felt that the choice

of (10) as an objective is advantageous, as it underlines the tradeoff between expected

makespan and instability more clearly and simplifies discussion by not involving a

weight per individual activity and not requiring the choice of a project deadline.

Note that t is not guaranteed to be (precedence and resource) feasible with respect

to mean activity durations (as required in the work of van de Vonder [31]). Enforcing t

to hold this property in our approach can be accomplished by including the following

constraint in the LP model:

tj ≥ ti + E[Di] ∀(i, j) ∈ E

However, this property only adds to the organizational value of t when mean values are

reasonable estimates of activity durations.

Let us note that both our heuristic and STC have polynomial worst-case complexity

(in the number of activities). However, in contrast with STC, our approach guarantees

that t is chosen optimally when E is kept fixed and assuming the distribution of D is

approximated with a sample. Therefore, if efficiency considerations enable us to choose

a large-enough sample Γ (which is mostly the case due to the efficiency of existing LP

solvers), our heuristic is expected to perform at least as well as STC. Finally, note that

our heuristic is simpler to implement, requiring only the description of the presented

LP model.

Leus et al. [24] assume as input a proactive schedule t (e.g. one that has been produced

by STC). They propose a branch-and-bound search which returns the es-policy E which

fits t optimally in minimizing an expression of expected instability similar to (19).

5 Exact MILP-based approach

PS-RCPSP (section 3) asks to find an es-policy and a proactive schedule (E , t) that

together minimize the weighted sum of expected makespan and instability. Section 4

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 33 -

presented a heuristic approach according to which E is kept fixed while t is optimally

paired with the policy by solving a LP. This section presents a Mixed Integer LP

(MILP) model with which PS-RCPSP can be solved to optimality. However, it should

be pointed-out that a solution is trully exact only if we assume stochastic duration

distributions can be accurately described by the chosen sample Γ ; for general probability

distributions we obtain a lower bound. In fact, the problem of computing the exact

expected makespan of a given es-policy (and assuming duration distributions with

discrete support) has been shown by Hagstrom in [13] to be intractable. However, our

notion of exactness is in line with the computational study of Stork [29] where ”optimal”

scheduling policies are computed by using a fixed sample of duration distributions.

This model includes binary variables representing the structure of E and linear

variables representing t. To our knowledge, no other exact approaches have been

proposed in the literature for problems of similar type (i.e. asking for a scheduling

policy and proactive schedule that together optimize some tradeoff between expected

makespan and instability). To arrive at this PS-RCPSP model, we merge the LP model

presented in the previous section with a MILP model that has been proposed by

Artigues et al. [2] and which allows to solve the deterministic RCPSP by treating it as

a flow-network problem. The model presented here is not entirely new, since a similar

technique (repeating precedence constraints for each scenario of the chosen sample) has

been proposed in [23] for minimizing the maximum regret of an es-policy.

5.1 The RCPSP model of Artigues et al.

Artigues et al. [2] represent a solution to the RCPSP as a so-called resource-flow

f ∈ Rn×n×m0 ; an assignment to variables fijr associated with each pair of activities

(i, j) ∈ N2 and each resource r ∈ R. A resource-flow describes the ”passing” of resource

units inbetween activities. More precisely, f is an indirect representation of every

schedule s in which fijr units of resource r are released by activity i at its completion

si + di and then ”picked up” by activity j at its start sj , without another activity using

these units between si + di and sj .

A resource-flow is feasible when it satisfies∑
j∈N−{i}

fjir = qir ∀i ∈ N − {1} (20)

∑
j∈N−{i}

fijr = qir ∀i ∈ N − {n} (21)

Eq. (20) asks that each activity i (except for the sink) receives as many resource units

as it requires the moment it starts. Eq. (21) asks that each activity i (except for the

source) releases as many resource units as it has used the moment it finishes.

The flow network G(N,φ(f)) associated with f is defined as φ(f) := {(i, j) ∈ N2 :

fijr > 0 for some r ∈ R}; i.e. there is an arc from each activity to every other activity

it passes at least one resource unit to. As shown by Leus [22,23], feasible resource-flows

and es-policies are interrelated: E = E ∪ φ(f) is a feasible es-policy if f is a feasible

resource-flow (and G(N, E) is acyclic). Therefore, every schedule which satisfies G(N, E)

is feasible. The following MILP model proposed by Artigues et al. enables one to find a

feasible resource-flow f which minimizes the cost (described by function g) of a schedule

s which satisfies the temporal constraints of G(N,E ∪ φ(f)).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 34 -

min sn (22)

s.t. sj ≥ si + di −M(1− zij) ∀(i, j) ∈ N (23)

zij = 1 ∀(i, j) ∈ E (24)

fijr ≤Mzij ∀(i, j) ∈ N2, r ∈ R (25)

(20), (21) (26)

fijr ≥ 0, zij ∈ {0, 1} ∀(i, j) ∈ N2, r ∈ R (27)

Here M is a large constant. Due to (26) f is a feasible resource-flow. Due to (25),

if fijr > 0 for one or more r ∈ R then zij = 1, meaning that variables zij describe

the flow-network φ(f) of the resource-flow (i.e. φ(f) = {(i, j) ∈ N2 : zij = 1}). Due

to (23) and (24), s describes a schedule which satisfies the temporal constraints in

G(N,E ∪ φ(f)). Since f is a feasible resource-flow, s is a feasible schedule.

5.2 Extension for S-RCPSP

This section presents a trivial extension to the RCPSP model of Artigues et al. which

enables us to find optimal es-policies for the S-RCPSP. Considering a sample Γ ⊂ Rn of

stochastic activity durations vector D allows us to present the following MILP model.

min
1

|Γ |
∑
γ∈Γ

sγn (28)

s.t. sγj ≥ s
γ
i + dγi −M(1− zij) ∀(i, j) ∈ N2, γ ∈ Γ (29)

(24− 27) (30)

Our extension is rather straightfoward. Each variable si is included here as variable

sγi for each sample scenario γ ∈ Γ . Precedence constraints (23) from before are now

replicated for each scenario γ ∈ Γ in condition (29). Objective (22) is now replaced

with objective (28), which estimates the makespan expectation E[S(E ∪ φ(f))] based

on sample Γ .

5.3 Extension for PS-RCPSP

Here we extend the previous model by including a variable ti for each i ∈ N , which

determines the activity’s proactive starting time. The resulting PS-RCPSP MILP model

is presented below.

min

α
 1

|Γ |
∑
γ∈Γ

sγn

 + (1− α)

 1

|Γ |

n∑
i=1

∑
γ∈Γ

(sγi − ti)

 (31)

s.t. sγj ≥ s
γ
i + dγi −M(1− zij) ∀(i, j) ∈ N2, γ ∈ Γ (32)

(24− 27) (33)

sγi ≥ ti i ∈ N, γ ∈ Γ (34)

t ≥ 0 (35)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 35 -

The objective now becomes identical to that of the LP-based heuristic, measuring

the weighted sum of expected makespan and expected instability. Condition (34) ensures

that an activity may not start earlier than its proactive start time.

To summarize, by solving this model we obtain a PS-RCPSP solution (E , t) where

E = {(i, j) ∈ N2 : zij = 1} is a feasible es-policy and t defines a proactive schedule.

Proposition 1 Define E := {(i, j) : zij = 1} the arcs of the flow-network G(N,E ∪
φ(f)) associated with resource-flow f . Let f ,z, s, t be an optimal solution. For each

scenario γ ∈ Γ , sγ defines a schedule where each activity i starts as soon as allowed

by its proactive release-time ti and es-policy E.

Proof For each scenario γ ∈ Γ , let x̄γ denote the earliest allowed start time for activity

i, allowed by the combination of E and proactive schedule t. We want to prove that in

an optimal solution, sγ = x̄γ for all γ ∈ Γ .

Assume that sγi = x̄γi + δ for some γ ∈ Γ, i ∈ N , with δ > 0. Since (31) increases

monotonically with sγi , the objective can be improved by setting sγi = x̄γi , without

violating any constraints. Therefore, in every optimal solution we have sγi = x̄γi for all

γ ∈ Γ and i ∈ N , meaning that each sγ defines the earliest start times schedule allowed

by the combination of by es-policy E and proactive schedule t under scenario γ. 2

By proposition 1 it follows that an optimal solution to the MILP model presented

above is, in fact, an optimal solution for the PS-RCPSP.

6 Heuristic MILP-based approach

Even for small instances (e.g. with 30 activities and 4 resources), solving the proposed

model might take an inordinate amount of time. We propose an algorithm (Algorithm 1),

the main idea of which was inspired by the iterative flattening heuristic of Oddi et

al. [27]. The heuristic of Oddi et al. was developed for the deterministic RCPSP with

minimum/maximum time-lag precedence constraints [15]. Every feasible schedule for

the problem they study is compactly represented as a network of temporal constraints

(known as a Simple Temporal Network [12]). It is the similarity with an es-policy (which

is a network of zero-lag temporal constraints) that has inspired the development of the

heuristic presented here.

The proposed heuristic involves solving a sequence of sufficiently small subproblems

with non-increasing optimal objective values. Each iteration involves solving a partially

solved instance to optimality. Thus, worst-case complexity is exponential in the number

of activities. In practice, however, ”good” solutions can be obtained with relative

efficiency.

Algorithm 1 assumes as input an instance of the PS-RCPSP. According to aforemen-

tioned notation, the instance is represented as (N,R,E,D, q, b, α). An initial solution

is obtained by solving a deterministic RCPSP (lines 1-3) which can be done efficiently

with one of the various existing heuristics. This solution will serve as a starting point

for the first iteration, which is described as follows. A partial solution is formed by

removing a random subset of highly critical arcs from the current solution (line 6).

The resulting subproblem is solved to optimality (by use of the proposed model) and

a complete solution is obtained (line 7). If this new solution is better, it becomes the

starting point of the next iteration. The algorithm may terminate when, e.g., a chosen

number of iterations have been performed, or the objective has failed to improve a

certain number of times.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 36 -

Algorithm 1 Iterative flattening for PS-RCPSP

1: s← schedule for RCPSP (N,R,E,E[D], q, b)
2: E∗ ← E ∪ φ(fs) with fs extracted from s
3: t∗ ← (0, . . . , 0)
4: while termination criteria not met do
5: H ← random subset of E∗ − T (E) chosen by criticality probability
6: (E, t)← optimal solution for PS-RCPSP (N,R, E∗ −H,D, q, b, α)
7: if (E, t) has a lower objective than (E∗, t∗) then
8: (E∗, t∗)← (E, t)
9: end if

10: end while
11: return (E∗, t∗)

Further efficiency improvements. Note that the optimal solution (E , t) of the subprob-

lem solved in each iteration cannot be worse than the best solution seen so far, (E∗, t∗).
To improve performance one may use (E∗, t∗) as an initial solution when solving the

model (line 6). Efficiency can be further improved by reducing the number of binary

variables zij in the model. This can be accomplished by observing that zij for each

(i, j) ∈ T (E∗ −H) can be fixed to one and zij for each (j, i) ∈ T (E∗ −H) can be fixed

to zero.

7 Experiments

In [21], Vilches and Demeulemeester compare their method (CCP) with that by Van de

Vonder et al. (STC) [31]. To the best of our knowledge, STC and CCP constitute the

state-of-art as far as trading expected makespan for instability in stochastic project

scheduling is concerned. In this section we extend this comparison by using the same

experimental set-up and including results for our LP-based heuristic (Section 4) and

the MILP-based heuristic (Section 6). As the results show, our approaches compare

favorably with STC and CCP.

The set-up used in [21] was based on the J30 deterministic RCPSP bench-set of the

well-known PSPLIB [19], which comprises 480 deterministic RCPSP instances, each

with n = 30 activities. Based on this bench-set, three stochastic RCPSP bench-sets were

derived, namely J30-low, J30-med, and J30-high, corresponding to conditions of low,

medium, and high project uncertainty, with activity durations following a discretized

beta distribution. Specifically, each activity i with duration di in the deterministic

RCPCP instance now has stochastic duration Di = [Xidi0.5(l + h)] with E[Di] ' di
where

– Xi follows a beta distribution with shape parameters α = 2, β = 5;

– l = 0.75 and h = 1.625 in the low variability bench-set;

– l = 0.5 and h = 2.25 in the medium variability bench-set;

– l = 0.25 and h = 2.875 in the high variability bench-set;

– operator [·] represents rounding to the closest integer.

Each of the evaluated methods (including STC and CCP) has a certain ”tradeoff

parameter” which determines whether more emphasis is put on minimizing expected

makespan or minimizing expected instability. For our LP-based and MILP-based

heuristic this tradeoff parameter is the weight α in expression (10). CCP and STC

have corresponding parameters with a similar effect. By varying the choice of the

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 37 -

60 70 80 90 100 110 120 130
0

2

4

6

8

10

Average expected makespan

A
v
e
ra

g
e
 e

x
p
e
c
te

d
 i
n
s
ta

b
ili

ty

MILP−based
LP−based
CCP
STC

J30−med J30−highJ30−low

Fig. 1: Trading expected makespan for stability.

60 65 70 75 80 85 90 95 100
0

10

20

30

40

Average expected makespan

A
v
e
ra

g
e
 e

x
p
e
c
te

d
 i
n
s
ta

b
ili

ty

MILP−based

LP−based

J30−med

Fig. 2: Trading expected makespan for stability for higher α.

corresponding tradeoff parameter(s), a set of tradeoff data-points is obtained for each

method, on each of the three bench-sets.

In Figure 1, the data-points for each method are displayed as a tradeoff curve, on

each of the three bench-sets, resulting in three ”clusters” of tradeoff curves. A tradeoff

curve captures the average performance of the method on that bench-set. Specifically,

each data-point is two-dimensional and records the average expected makespan and

average expected instability for a certain choice of the tradeoff parameter(s), where

the average is taken over all 480 instances of the bench-set. Data-points for CCP and

STC are borrowed from the work of Vilches and Demeulemeester [21]. Data-points for

our heuristics are obtained by setting α = 0.05, 0.1, 0.2, and 0.4. Higher alpha values

correspond to data-points closer to the upper left corner, with higher instability and

lower makespan.

Figure 2 focuses on the medium variability case for higher α values, including

additional data-points for α = 0.6 and α = 0.9. This allows us to compare the MILP-

based and LP-based heuristics when more emphasis is put on minimizing expected

makespan.

The expected makespan and expected instability of the solution provided by each

of the methods on a particular instance is computed with a sample Γ large ⊂ Rn
comprising |Γ large| = 103 realization of durations vector D. Note that the data-points

of Vilches and Demeulemeester were computed with a different sample of size 103. We

assume that 103 is a sufficiently large sample size to facilitate comparability with our

results.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 38 -

Configuration of heuristics. The sample Γmilp used by our MILP-based heuristic during

optimization (see line 6 of Algorithm 1) is of size |Γmilp| = 30. Our MILP-based heuristic

is configured to perform three (3) iterations and the number of highly critical arcs

removed in each iteration (see line 5 of Algorithm 1) is |H| = 20. Note that the criticality

of the arcs is computed based on sample Γ large (this is done efficiently, in time quadratic

in n and linear in |Γ large|). The solver we use is CPLEX version 12.6. Furthermore,

we set a time-limit for the solver to 50 seconds (since each iteration starts from a

feasible solution, the solver will always return with a solution within the time-limit).

The polynomial-time complexity of our LP-based heuristic (no binary variables in the

model) allows us to use a large sample during optimization. In fact, we use sample

Γ large. To find a deterministic schedule (as required in step 1 of this LP-based heuristic)

we used a priority rule procedure recently proposed in [10]. Vilches and Demeulemeester

use a sample of size 102 during optimization, for both STC and CCP. Furthermore,

they limit the time spent in solving their CCP model on an instance to a maximum of

10 seconds.

Observations. Figure 1 suggests that regardless of the mode of variability (low, medium,

or high), when the purpose is to achieve near-zero instability, the LP-based heuristic

yields the best results. This can be attributed to the efficiency of solving a LP model,

which enables us to use a large sample (of size 103 in this case) during optimization.

Figure 2 suggests that even though the sample used during optimization is much

smaller for the MILP-based heuristic (of size 30), it is more effective than the LP-based

heuristic for higher α values (i.e. when minimizing instability is more important than

minimizing makespan). Both the LP-based and the MILP-based heuristics start from

the same es-policy (see step 1 in section 4 and line 2 of Algorithm 1, respectively).

However, the MILP-based heuristic restructures the policy and this enables it to perform

better at minimizing expected makespan.

Restructuring the policy comes at the cost of efficiency. With three iterations allowed

per instance, this yields an average of 50 seconds per instance for the MILP-based

heuristic. The LP-based heuristic is considerably more efficient, with an average of 1.5

seconds per instance. Vilches and Demeulemeester report that STC spends on average

0.2 seconds per instance, while their CCP approach spends on average 10 seconds per

instance.

8 Conclusions and future work

This paper proposes the PS-RCPSP problem model which, assuming stochastic activity

durations, asks to find a so-called earliest-start (es) policy and a proactive schedule

that together minimize the weighted sum of expected project makespan and expected

instability. Extending an existing MILP model for the RCPSP, a MILP model for

PS-RCPSP is presented, which allows us to find optimal (es-policy, proactive schedule)

pairs. Solving this problem to optimality might require an impractical amount of time,

even for instances with few activities (e.g. 30). Therefore, we propose a LP-based

and a MILP-based heuristic for the PS-RCPSP. Our LP-based heuristic optimizes the

proactive schedule by keeping the es-policy part of the solution fixed. Our MILP-based

heuristic optimizes the structure of the policy together with the proactive schedule. The

LP-based heuristic, which is rather efficient, seems to be more effective compared to

the state-of-art (i.e. achieves smaller expected makespan for a certain level of expected

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 39 -

instability) especially when the aim is to achieve close to zero instability. The MILP-

based heuristic is rather effective when the aim is to achieve low expected makespan at

the cost of moderate or high instability. In contrast to existing state-of-art approaches

such as CCP [21] and STC [31], our heuristics rely on the idea of optimizing the

proactive schedule together with the scheduling policy. This difference might in part

explain observed performance differences.

Future work involves a thorough experimental analysis of the proposed heuristics,

not for the purpose of comparing them to the state-of-art, but for a deeper understanding

of their behavior and its dependence on problem characteristics. Furthermore, most

existing stochastic project scheduling works are evaluated on instances where the

deterministic RCPSP counterpart instance (formed by mean activity durations) serves

as a good approximation of the stochastic instance. This is exploited by our heuristics and

other heuristics such as STC. However, in certain practical domains (e.g. maintenance

scheduling), the duration of some activities is known a-priori with accuracy, while

the duration of other activities follows a distribution with very high variance. In

maintenance scheduling, for example, ”inspection” activities have known durations but

”repair” activities might be (un)necessary with certain probabilities. We would like to

investigate performance on such instances which cannot be approximated well by their

determinitic counterpart.

Acknowledgements We would like to thank our anonymous reviewers for their constructive
remarks. This research belongs to the Job Scheduling Problem part of the Rolling Stock Life
Cycle Logistics applied research and development programme, funded by NS/NedTrain.

References

1. Christian Artigues, Sophie Demassey, and Emmanuel Neron. Resource-constrained project
scheduling: models, algorithms, extensions and applications. John Wiley & Sons, 2013.

2. Christian Artigues, Philippe Michelon, and Stéphane Reusser. Insertion techniques for static
and dynamic resource-constrained project scheduling. European Journal of Operational
Research, 149(2):249–267, 2003.

3. Behzad Ashtiani, Roel Leus, and Mir-Bahador Aryanezhad. New competitive results for
the stochastic resource-constrained project scheduling problem: exploring the benefits of
pre-processing. Journal of Scheduling, 14(2):157–171, 2011.

4. Francisco Ballest́ın. When it is worthwhile to work with the stochastic rcpsp? Journal of
Scheduling, 10(3):153–166, 2007.

5. Francisco Ballestin and Roel Leus. Resource-constrained project scheduling for timely
project completion with stochastic activity durations. Production and Operations Manage-
ment, 18(4):459–474, 2009.

6. J-H Bartels and Jürgen Zimmermann. Scheduling tests in automotive r&d projects.
European Journal of Operational Research, 193(3):805–819, 2009.

7. Jacek Blazewicz, Jan Karel Lenstra, and AHG Rinnooy Kan. Scheduling subject to resource
constraints: classification and complexity. Discrete Applied Mathematics, 5(1):11–24, 1983.

8. Felix Bomsdorf and Ulrich Derigs. A model, heuristic procedure and decision support
system for solving the movie shoot scheduling problem. Or Spectrum, 30(4):751–772, 2008.

9. Kristof Braeckmans, Erik Demeulemeester, Willy Herroelen, and Roel Leus. Proactive
resource allocation heuristics for robust project scheduling. DTEW Research Report 0567,
pages 1–22, 2005.

10. Frits de Nijs and Tomas Klos. A novel priority rule heuristic: Learning from justification.
In Twenty-Fourth International Conference on Automated Planning and Scheduling, 2014.

11. Filip Deblaere, Erik Demeulemeester, and Willy Herroelen. Proactive policies for the
stochastic resource-constrained project scheduling problem. European Journal of Opera-
tional Research, 214(2):308–316, 2011.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 40 -

12. Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artificial
intelligence, 49(1):61–95, 1991.

13. Jane N Hagstrom. Computational complexity of pert problems. Networks, 18(2):139–147,
1988.

14. Sönke Hartmann and Dirk Briskorn. A survey of variants and extensions of the resource-
constrained project scheduling problem. European Journal of Operational Research,
207(1):1–14, 2010.

15. Willy Herroelen, Erik Demeulemeester, and Bert De Reyck. A note on the paper resource-
constrained project scheduling: Notation, classification, models and methods by brucker et
al. European Journal of Operational Research, 128(3):679–688, 2001.

16. Willy Herroelen and Roel Leus. The construction of stable project baseline schedules.
European Journal of Operational Research, 156(3):550–565, 2004.

17. Willy Herroelen and Roel Leus. Robust and reactive project scheduling: a review and
classification of procedures. International Journal of Production Research, 42(8):1599–1620,
2004.

18. Rainer Kolisch and Sönke Hartmann. Experimental investigation of heuristics for resource-
constrained project scheduling: An update. European journal of operational research,
174(1):23–37, 2006.

19. Rainer Kolisch and Arno Sprecher. Psplib-a project scheduling problem library: Or software-
orsep operations research software exchange program. European Journal of Operational
Research, 96(1):205–216, 1997.

20. Oumar Koné, Christian Artigues, Pierre Lopez, and Marcel Mongeau. Event-based milp
models for resource-constrained project scheduling problems. Computers & Operations
Research, 38(1):3–13, 2011.

21. Patricio Lamas Vilches and Erik Demeulemeester. A purely proactive scheduling procedure
for the resource-constrained project scheduling problem with stochastic activity durations.
Available at SSRN 2464056, 2014.

22. Roel Leus. Resource allocation by means of project networks: dominance results. Networks,
58(1):50–58, 2011.

23. Roel Leus, Christian Artigues, and Fabrice Talla Nobibon. Robust optimization for resource-
constrained project scheduling with uncertain activity durations. In Industrial Engineering
and Engineering Management (IEEM), 2011 IEEE International Conference on, pages
101–105. IEEE, 2011.

24. Roel Leus and Willy Herroelen. Stability and resource allocation in project planning. IIE
transactions, 36(7):667–682, 2004.

25. Rolf H Möhring, Franz Josef Radermacher, and Gideon Weiss. Stochastic scheduling
problems i – general strategies. Zeitschrift für Operations Research, 28(7):193–260, 1984.

26. Rolf H Möhring, Franz Josef Radermacher, and Gideon Weiss. Stochastic scheduling
problems ii – set strategies. Zeitschrift für Operations Research, 29(3):65–104, 1985.

27. Angelo Oddi and Riccardo Rasconi. Iterative flattening search on rcpsp/max problems:
Recent developments. In Recent Advances in Constraints, pages 99–115. Springer, 2009.

28. Andreas Schutt, Thibaut Feydy, Peter J Stuckey, and Mark G Wallace. Solving rcpsp/max
by lazy clause generation. Journal of Scheduling, 16(3):273–289, 2013.

29. Frederik Stork. Branch-and-bound algorithms for stochastic resource-constrained project
scheduling. Technical rep, pages 702–2000, 2000.

30. Stijn Van de Vonder, Francisco Ballestin, Erik Demeulemeester, and Willy Herroelen.
Heuristic procedures for reactive project scheduling. Computers & Industrial Engineering,
52(1):11–28, 2007.

31. Stijn Van de Vonder, Erik Demeulemeester, and Willy Herroelen. Proactive heuristic
procedures for robust project scheduling: An experimental analysis. European Journal of
Operational Research, 189(3):723–733, 2008.

32. Stijn Van de Vonder, Erik Demeulemeester, Willy Herroelen*, and Roel Leus. The trade-off
between stability and makespan in resource-constrained project scheduling. International
Journal of Production Research, 44(2):215–236, 2006.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 41 -

MISTA 2015

Optimal schedule of a statistical process control with a
nonlinear expected loss

Valery Y. Glizer · Vladimir Turetsky

Abstract A problem of constructing an optimal state-feedback schedule for a statis-

tical process control with a variable sampling time-interval is considered. The aim of

the schedule is to minimize the expected loss, caused by delay in detecting a process

change. The case where this loss depends nonlinearly on the sampling time-interval

is treated. Two approaches to the design of the optimal schedule are proposed. The

first approach based on converting the original optimization problem to an equivalent

optimal control problem and applying to the latter the Pontryagin’s Maximum Prin-

ciple, which leads to an exact analytical solution. The second approach is based on

a discretization of the original problem and using proper mathematical programming

tools to the discrete problem, which provides an approximate numerical solution. The

schedules, obtained by these two approaches, are compared to each other in numeri-

cal examples. Moreover, in such examples, the analytical schedule is compared to the

suboptimal composite schedule of a statistical process control, known in the literature.

1 Introduction

The Statistical Process Control (SPC) (see e.g. [1]) means monitoring a process state

by using samples of its key characteristic index in some time-intervals. It is widely used

in industry, medicine, environment etc, and its objective is to minimize losses caused

by delay in the detection of undesirable accidents, subject to acceptable inspection

expenses. For many years, the traditional SPC practice in monitoring a process was to

take samples of the process characteristic index with a Fixed Sampling Time-Interval

(FSTI). The idea of using variable/adaptive SPC sampling time-intervals to achieve

process stability is known in literature for about 25 recent years. For the first time it

Valery Y. Glizer
Department of Applied Mathematics, Ort Braude College of Engineering, 51 Snunit Str.,
P.O.B. 78, Karmiel 2161002, Israel
E-mail: valery48@braude.ac.il

Vladimir Turetsky
Department of Applied Mathematics, Ort Braude College of Engineering, 51 Snunit Str.,
P.O.B. 78, Karmiel 2161002, Israel
E-mail: turetsky1@braude.ac.il

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 42 -

was presented in the work [2]. Then, this idea was developed in a number of works (see

e.g. [3–13]). A detailed review on the topic can be found in [12].

Due to [2], the reaction time of SPC to process change is considered as a main crite-

rion of optimality. The alternative criterion, proposed in [14], and further developed in

[12,13], is the expected loss caused by delay in detecting process change. This criterion

is more general and at the same time more usable, from the engineering viewpoint.

The relation between the expected loss and the reaction time (the delay in detection

of a process change) is not necessarily linear. There are various processes where such a

relation is non-linear. For instance, the following processes can be mentioned: (1) fires

propagation [15], (2) oil spills spreading [16], (3) cholesterol plaque growth [17], (4)

epidemics propagation [18], (5) fatigue crack growth in ship hull structures [19], and

some others.

Genichi Taguchi proposed the quadratic dependence of the expected loss on some

critical performance parameter whose desired value should be as low as possible within

the existing constraints [14], yielding the so called ”the smaller – the best” loss function.

In modern industry, medicine, natural environment defence, etc, the process control

becomes an indispensable part of the process itself. Therefore, the detection delay, being

a critical performance parameter of the process control, becomes a critical performance

parameter of the process itself. Thus, the Taguchi model yields a quadratic dependence

of the expected loss on the detection delay. It should be noted that the delay time in

SPC is a random variable, which distribution depends on the process change extent.

Therefore, expected (in the statistical sense) loss becomes the actual optimization

criterion.

In this paper, the SPC schedule design problem is formulated as a calculus of vari-

ations problem, in which the expected loss should be minimized by a proper choice of

a sampling time-interval. In this problem, two types of constraints are imposed. The

first type of constraints is an isoperimetric (weak) constraint, meaning that the aver-

age variable sampling time-interval is equal to a properly prechosen constant nominal

sampling time-interval. The second type of constraints is two geometric (hard) con-

straints, which determine the lower and upper bounds of the sampling time-interval.

The latter is not addressed by the classical calculus of variations theory. This makes the

considered extremal problem to be non-standard. In the previous work of the authors

(see [13]), this problem was solved by its approximate decomposition into two simpler

subproblems. Based on this decomposition, two approximate solutions, analytical and

numerical, were derived. In the present paper, we solve the entire (without a decompo-

sition) extremal problem. Two methods of its solution are proposed. The first method

transforms equivalently the original extremal problem to an optimal control problem.

Further, this optimal control problem is solved by using the Pontryagin’s Maximum

Principle yielding an exact analytical solution of the original problem. This solution

constitutes the optimal (subject to the minimum of the expected loss) schedule of the

SPC. In the second method, the original (continuous) extremal problem is replaced

approximately by a discrete finite-dimensional extremal problem. The latter is solved

by using corresponding mathematical programming tools, yielding an approximate nu-

merical solution of the original extremal problem. This solution constitute a suboptimal

schedule of the SPC.

It is important to note, that the SPC schedule, proposed in this paper, differs

considerably from the well known train schedule, bus schedule, flight schedule, etc.

Namely, the latter schedules are created in advance for some period, and they do not

depend as a rule on a current state. In contrast with these schedules, the SPC schedule

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 43 -

does depend on a current state, and it is not designed in advance for a period of the

process control. By using the terminology of control engineering, the classical train,

bus, flight, etc schedules can be called open-loop schedules, while the SPC schedule,

proposed in this paper, can be called a state-feedback schedule.

2 Problem statement

2.1 Process monitoring

Similarly to [12,13], we deal with the case, where the monitoring a performance parame-

ter x of a controlled process is carried out according to a sample mean x̄ ∼ N(µ, σ/
√
n).

The sample size n is assumed fixed. Thus, the standard score in an in-control state is

z =
x̄− µ

σ/
√
n

∼ N(0, 1). (1)

The upper and lower limits of a standard Shewhart control chart for z are zmin = −3

and zmax = 3, respectively [1]. Therefore, the false alarm probability α (type I error),

i.e. the probability of the event z /∈ [−3, 3], is

α = 1− 1√
2π

∫ 3

−3

exp(−z2/2)dz = 1− [Φ(3)− Φ(−3)] = 0.0027, (2)

where Φ(z) =
(
1/

√
2π
) ∫ z

−∞ exp(−ζ2/2)dζ.
If the performance parameter mean value shifts by ∆, i.e. a new mean value is

µ′ = µ+∆, and the value of σ remains unchanged, then the distribution of z becomes

z ∼ N(δ, 1), δ =
∆

σ/
√
n

(3)

where δ is the so-called signal-to-noise ratio. The probability of discovering the shift

(receiving the signal) by a single sample is the probability of the event z /∈ [−3, 3]

subject to (3):

1− β = 1− 1√
2π

∫ 3

−3

exp(−(z − δ)2/2)dz = 1− [Φ(3− δ)− Φ(−3− δ)], (4)

where β is the probability of a type II error (not discovering the shift), depending on

a normalized shift δ.

2.2 Constraints on variable sampling time-interval

Consider the adaptive statistical process control with a variable sampling time-interval

u(z), where z is a current value of the standard score, given by (1). Since the value of the

sampling time-interval should depend only on the absolute value of the standard score

z, the function u(z) is even (u(−z) = u(z)). Therefore, in what follows, we consider

the function u(z) on the interval [0, 3]. Also, for the sake of simplicity, we assume that

δ ≥ 0. The case δ ≤ 0 is treated similarly.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 44 -

Further, it is assumed that the expected sampling time-interval in the case of

unshifted z, (δ = 0), is equal to a prescribed nominal value T which, due to [12,13],

yields the isoperimetric (integral) constraint on u(z)∫ 3

0

exp(−z2/2)[u(z)− T]dz = 0. (5)

Also, it is assumed that the function u(z) is bounded as:

0 < umin ≤ u(z) ≤ umax, z ∈ [0, 3], (6)

where umin < T and umax > T .

In what follows, for the sake of convenience, we set T = 1, yielding

umin < 1, umax > 1, (7)

and ∫ 3

0

exp(−z2/2)u(z)dz = a, a
△
=

∫ 3

0

exp(−z2/2)dz. (8)

2.3 Quadratic expected loss model

If the process shift remains constant, the time td, required for discovering the shift (so-

called time to signal), is the sum of a random amount Nd of random independent and

identically distributed sampling time-intervals ui, conditionally independent of Nd:

td =

Nd∑
i=1

ui. (9)

The cost functional, minimized by a properly chosen sampling time-interval u(z),

is the mathematical expectation E(L) of the loss L, caused by the shift detection delay

(expected loss). The assumption that the loss L is proportional to t2d, (L = kt2d, k > 0

is a constant), yields

E(L) = kE(t2d). (10)

The problem of constructing an optimal SPC schedule consists in a searching the

sampling time-interval u(z), which minimizes the cost functional E(t2d), subject to the

constraints (6)-(8).

By virtue of [12,13], we have

E(t2d) = A

[∫ 3

0

ψ(z, δ)u2(z)dz +B

(∫ 3

0

ψ(z, δ)u(z)dz

)2
]
, (11)

where

A
△
=

exp(−δ2/2)
(1− β)β

√
2π

> 0, B
△
=

2 exp(−δ2/2)
(1− β)

√
2π

> 0, (12)

ψ(z, δ)
△
= 2 exp

(
− z2/2

)
cosh(δz) > 0, z ∈ [0, 3]. (13)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 45 -

Thus, due to (11)-(12), the mentioned above problem of constructing an optimal

SPC schedule becomes as follows:

J
(
u(z)

) △
=
∫ 3

0
ψ(z, δ)u2(z)dz +B

(∫ 3

0
ψ(z, δ)u(z)dz

)2
→ min

u(z)
,

s.t. (6)− (8).

(14)

The objective of the paper is to solve the problem (14), thus constructing the

optimal SPC schedule.

3 Analytical solution of (14)

The problem (14) is a nonstandard variational calculus problem with two types of con-

straints, an isoperimetric constraint (see (8)) and a geometric constraint (see (6)), im-

posed on the minimizing function. Note that the classical calculus of variations theory

does not study the extremal problems with geometric constraints (see, e.g., [20]). If we

omit the geometric constraints in (14), then the Euler–Lagrange equation, associated

with the resulting (reduced) problem, becomes algebraic, because the integrands in the

functional J
(
u(z)

)
and in the isoperimetric constraint (8) of the reduced problem are

independent of the derivative of the minimizing function u(z). This equation admits a

solution, not necessarily satisfying the geometric constraints (6) which is unacceptable.

Here, we propose another approach to solving this problem. This approach consists

in an equivalent transformation of the original problem into an optimal control problem.

The latter is analyzed by application of the Pontryagin’s Maximum Principle (PMP)

[21].

3.1 Transformation of (14)

Let us introduce the following auxiliary functions of z ∈ [0, 3]:

w1(z) =

∫ z

0

ψ(ζ, δ)u2(ζ)dζ, (15)

w2(z) =

∫ z

0

ψ(ζ, δ)u(ζ)dζ, (16)

w3(z) =

∫ z

0

exp
(
− ζ2/2

)
u(ζ)dζ. (17)

These functions satisfy the differential equations

dw1

dz
= ψ(z, δ)u2(z), (18)

dw2

dz
= ψ(z, δ)u(z), (19)

dw3

dz
= exp

(
− z2/2

)
u(z), (20)

and the initial conditions

w1(0) = 0, w2(0) = 0, w3(0) = 0. (21)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 46 -

Moreover, due to the integral constraint (8), w3(z) satisfies the terminal condition

w3(3) = a. (22)

By using (15)-(16), the cost functional J
(
u(z)

)
becomes

J
(
u(z)

)
= w1(3) +B

(
w2(3)

)2
. (23)

Thus, we have transformed the problem (14) into the following equivalent optimal

control problem: to find the control function u(z), transferring the system (18) – (20)

from the initial position (21) to the terminal position (22) and minimizing the cost

functional (23), subject to the geometric constraint (6)-(7). This optimal control prob-

lem is non-linear with respect to u(z), and in what follows, it is called the Non-linear

Optimal Control Problem (NOCP).

Remark 1 Due to [22] (see, Section 9.2, Theorem 3), the NOCP has a solution (optimal

control).

3.2 Solution of the NOCP by using the PMP

The Variational Hamiltonian of the NOCP has the form

H = H(w1, w2, w3, u, λ1, λ2, λ3, z) = λ1ψ(δ, z)u
2 + λ2ψ(δ, z)u+ λ3 exp

(
− z2/2

)
u,

(24)

where λi = λi(z), (i = 1, 2, 3) are the costate variables.

These costate variables satisfy the differential equations

dλ1
dz

= − ∂H

∂w1
= 0, z ∈ [0, 3], (25)

dλ2
dz

= − ∂H

∂w2
= 0, z ∈ [0, 3], (26)

dλ3
dz

= − ∂H

∂w3
= 0, z ∈ [0, 3], (27)

and the transversality conditions for λ1 and λ2

λ1(3) = − ∂J

∂w1(3)
= −1, (28)

λ2(3) = − ∂J

∂w2(3)
= −2Bγ, γ

△
= w2(3). (29)

Due to the PMP, an optimal control u∗(z) of the NOCP necessarily satisfies the

following condition

u∗(z) = arg max
umin≤u(z)≤umax

H
(
w1(z), w2(z), w2(z), u(z), λ1(z), λ2(z), λ3(z), z

)
. (30)

Thus, any control u(z), satisfying the equations (24), (30), (18) –(22) and (25) – (29) is

an optimal control candidate in the NOCP. We start with the obtaining such a control

by solving the equations (25) – (29). These equations yield the solution

λ1(z) = −1, λ2(z) = −2Bγ, λ3(z) = C = const, z ∈ [0, 3]. (31)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 47 -

By substituting (31) into (24) and using (13), the Variational Hamiltonian becomes

H = exp
(
− z2/2

)
G(u, z, γ, C), (32)

where the function G(u, z, γ, C) has the form

G(u, z, γ, C) =
(
C − 4Bγ cosh(δz)

)
u− 2 cosh(δz)u2. (33)

Due to (30), (32) – (33) and Remark 1, the optimal control of the NOCP has the

form

u∗(z, γ, C) =

umin, ū(z, γ, C) ≤ umin,

ū(z, γ, C), umin < ū(z, γ, C) ≤ umax,

umax, ū(z, γ, C) > umax,

(34)

where

ū(z, γ, C) =
C

4 cosh(δz)
−Bγ (35)

is the unique solution of the following equation with respect to u:

∂G(u, z, γ, C)

∂u
= 0. (36)

Remark 2 The derivative of ū(z, γ, C) with respect to z has the form

dū(z, γ, C)

dz
= −Cδ sinh(δz)

4 cosh2(δz)
. (37)

Hence, for any γ and any C > 0, δ > 0, the function ū(z, γ, C) is monotonically

decreasing on the interval z ∈ [0, 3]. Therefore, for such γ, C, δ, the control u∗(z, γ, C)

is a non-increasing function of z ∈ [0, 3].

In order to use the equation (34), one has to know the constants γ and C. These

constants should be chosen in such a way that the resulting control (34) will transfer

the system (18) – (20) from the initial position (21) to the terminal position (22) and

w2(3) = γ. Due to (18) – (22), this means that the values γ and C should satisfy the

set of two algebraic equations

Λ1(γ,C)
△
=

∫ 3

0

exp(−z2/2)u∗(z, γ, C)dz − a = 0, (38)

Λ2(γ, C)
△
=

∫ 3

0

ψ(z, δ)u∗(z, γ, C)dz − γ = 0. (39)

Remark 3 By virtue of Remark 1, the set (38)-(39) has a solution. If this set has

more than one solution, we choose the solution
(
γ = γ∗, C = C∗), which provides the

minimal value of the cost functional (23) in comparison with the other solutions.

Lemma 1 There are no solutions of the set (38)-(39) in the half-planes

C ≤ 4Bγ + 4umin
△
= Cmin(γ), C ≥ 4Bγ cosh(3δ) + 4umax cosh(3δ)

△
= Cmax(γ), (40)

γ ≤ umin

∫ 3

0

ψ(z, δ)dz
△
= γmin, γ ≥ umax

∫ 3

0

ψ(z, δ)dz
△
= γmax (41)

of the plane (γ, C).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 48 -

Lemma 2 Let δ > 0. Let (γ,C) be a solution of the set (38)-(39). Then, the component

γ of this solution satisfies the inequality

2a < γ < 2a cosh(3δ). (42)

Let us define

Γmin
△
= max

{
umin

∫ 3

0

ψ(z, δ)dz, 2a

}
, (43)

Γmax
△
= min

{
umax

∫ 3

0

ψ(z, δ)dz, 2a cosh(3δ)

}
. (44)

Due to (7),(8),(13),(43)-(44), as well as the integral mean value theorem and the in-

equality 1 ≤ cosh(δz) ≤ cosh(3δ), 0 ≤ z ≤ 3, we have the following inequality

for δ > 0: 0 < Γmin < Γmax. Similarly, for any γ ≥ 0, we obtain the inequality

0 < Cmin(γ) < Cmax(γ).

Consider the domain

Ω
△
=
{
(γ,C) : γ ∈

(
Γmin, Γmax

)
, C ∈

(
Cmin(γ), Cmax(γ)

)}
. (45)

Based on Lemmas 1,2, and the equations (43)-(44),(45), one directly has the fol-

lowing two theorems.

Theorem 1 Let δ > 0. Let (γ,C) be a solution of the set (38)-(39). Then, (γ,C) ∈ Ω.

Theorem 2 Let δ = 0. Then, the set (38)-(39) has the unique solution
(
γ = 2a,C =

8Ba+ 4
)
.

The following two lemmas can be used in constructing methods of solution of the

set (38)-(39).

Lemma 3 For any δ > 0 and γ ∈
(
Γmin, Γmax

)
, the equation (38) has the unique

solution C = C̃(γ), and

C̃(γ) ∈
(
Cmin(γ), Cmax(γ)

)
. (46)

Lemma 4 For any δ > 0 and γ ∈
(
Γmin, Γmax

)
, the equation (39) has the unique

solution C = C̄(γ), and

C̄(γ) ∈
(
Cmin(γ), Cmax(γ)

)
. (47)

Remark 4 Based on Lemmas 3 and 4, the γ-component of solution of the set (38)-(39)

can be obtained by solving with respect to γ either the equation Λ2

(
γ, C̃(γ)

)
= 0, or

the equation Λ1

(
γ, C̄(γ)

)
= 0, or the equation C̃(γ) = C̄(γ).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 49 -

4 Approximate numerical solution of (14)

Let us divide the interval [0, 3] into N equal subintervals by the collocation points

zi = i∆z, i = 0, 1, . . . , N, ∆z = 3/N. (48)

Then, based on (48), let us approximate the integrals in the cost functional J
(
u(z)

)
and in the isoperimetric constraint (8) by using the left rectangles formula [23].

Thus, the cost functional is approximated as

J
(
u(z)

)
≈ J̃N (U)

△
= ∆z

N−1∑
i=0

ψ(zi, δ)U
2
i +B

(
∆z

N−1∑
i=0

ψ(zi, δ)Ui

)2

, (49)

where the vector U ∈ EN is

U = (U0, U1, . . . , UN−1)
T = (u(z0), u(z1), . . . , u(zN−1))

T . (50)

The constraint (8) is approximated as

∆z

N−1∑
i=0

exp(−z2i /2)Ui = ∆z

N−1∑
i=0

exp(−z2i /2), (51)

where the right-hand side expression approximates the value a.

Thus, dividing (49) and (51) by∆z and taking into account the geometric constraint

(6) yield the following finite-dimensional Quadratic Programming Problem (QPP):

JN (U)
△
=

N−1∑
i=0

ψ(zi, δ)U
2
i +B∆z

(
N−1∑
i=0

ψ(zi, δ)Ui

)2

→ min
U

(52)

subject to

N−1∑
i=0

exp(−z2i /2)Ui = aN , aN
△
=

N−1∑
i=0

exp(−z2i /2), (53)

umin ≤ Ui ≤ umax, i = 0, 1, . . . , N − 1. (54)

The QPP (52)-(54) can be solved by using standard optimization tools, for example,

the MATLAB function “quadprog”. It is reasonable to expect that for large enough N ,

the components Ui = U∗
i , (i = 0, 1, ..., N − 1) of solution of QPP will be close to the

corresponding values u∗(zi, γ
∗, C∗), (i = 0, 1, ..., N − 1) of the optimal control in the

NOCP solved in Section 3.2. In such a case, the optimal value of the cost functional

(52) multiplied by ∆z will be close to the optimal value of the cost functional (23).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 50 -

5 Numerical evaluation of optimal and suboptimal schedules

For the numerical evaluation, the following two sets of parameters are chosen:

(A) umin = 0.5, umax = 3.5;

(B) umin = 0.1, umax = 2.5.

Based on these sets of parameters, the suboptimal composite SPC schedule was evalu-

ated numerically in the work [13]. Here, we use the same sets of parameters to evaluate

the SPC schedules (optimal and approximate), designed in the previous sections, as

well as to compare the optimal schedule to the composite suboptimal one.

The construction of the composite suboptimal schedule is based on the behavior

of the value B as a function of δ ∈ [0, 3]. This function monotonically decreases from

the large enough value (about 300) for δ = 0 to the small enough value (close to 0) for

δ = 3. Due to this behavior of B, in the work [13] it was shown the existence of the

value δ = δ∗ such that, for δ ∈ [0, δ∗), the second addend of the cost functional in (14)

dominates, while for δ ∈ (δ∗, 3], the first addend dominates. Using this observation, in

[13] the composite suboptimal SPC schedule was designed in the form

uc(z) =

 u∗l (z), δ ∈ [0, δ∗),

u∗nl(z), δ ∈ [δ∗, 3],
z ∈ [0, 3], (55)

where u∗l (z) and u
∗
nl(z) are the solutions of the problems

J1(u)
△
=

∫ 3

0

ψ(z, δ)u(z)dz → min
u

s.t. (6)− (8) (56)

and

J2(u)
△
=

∫ 3

0

ψ(z, δ)u2(z)dz → min
u

s.t. (6)− (8), (57)

respectively. In order to determine δ∗, in [13] the following condition was proposed:

J(u∗l)|δ=δ∗ = J(u∗nl)δ=δ∗ . In such a case, J(u∗l) < J(u∗nl) for all δ ∈ [0, δ∗), and

J(u∗l) > J(u∗nl) for all δ ∈ (δ∗, 3].
In Fig. 1, the optimal schedule u∗(z, γ, C), given by the analytical expression (34),

is compared with the solution of the approximating problem (52) – (54) for the set (A)

with δ = 2.9 (Fig. 1a) and for the set (B) with δ = 2.5 (Fig. 1b). It is seen that the

approximation, obtained for N = 100, and the optimal schedule match well.

For obtaining the schedule u∗(z, γ, C), the set (38) – (39) was solved numerically.

The value of γ was calculated by applying the bisection algorithm to the equation

Λ1(γ, C̄(γ)) = 0 for γ ∈ (Γmin, Γmax), where C̄(γ) is the solution with respect to C

of the equation (39) mentioned in Lemma 4. The function C̄(γ) also was derived by

the bisection method for (γ,C) ∈ Ω. The numerical solution (γ,C = C̄(γ)) of the set

(38) – (39) and the absolute values of the functions Λ1(γ,C), Λ2(γ,C) are presented

in Table 1. It is seen that the solution is obtained with the accuracy better than 10−4.

In Fig. 2, the optimal schedule u∗(z, γ, C) is compared to the composite schedule

uc(z) for the set (A) and two values of δ: δ = 1 < δ∗ = 2.47 where uc(z) = u∗l (z) (see
Fig. 2a), and δ = 2.6 > δ∗ = 2.47 where uc(z) = u∗nl(z) (see Fig. 2b). In Fig. 3, such

a comparison with the same values of δ is presented for the set (B) where δ∗ = 2.58.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 51 -

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

z

u
∗

Analytical
Numerical

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

z

u
∗

Analytical
Numerical

a) b)

Fig. 1 Optimal (analytical) vs. approximate (numerical) schedule

Table 1 Numerical solution of the set (38) – (39)

umin umax δ γ C |Λ1(γ, C)| |Λ2(γ, C)|
0.5 3.5 2.5 21.13 20.58 7.05 · 10−5 7.59 · 10−5

0.1 2.5 2.9 12.62 13.39 2.90 · 10−5 6.97 · 10−5

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5
δ = 1

z

u(z)

Optimal schedule
Composite solution

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5
δ = 2.6

z

u(z)

Optimal schedule
Composite solution

a) δ < δ∗ b) δ > δ∗

Fig. 2 Optimal schedule vs. composite schedule: set (A)

It is seen that in all cases the optimal and composite schedules, presented as functions

of z, differ considerably. In Fig. 4, the ratio J(u∗)/J(uc) is depicted as a function of

δ for two parameter sets. It is seen that the optimal schedule produces smaller values

of the cost functional than the composite schedule. The advantage is not dramatic,

but the calculating u∗(z, γ, C) needs an essentially less computational effort than the

calculating uc(z).

6 Conclusions

In this paper, the problem of constructing an optimal state-feedback schedule for the

statistical process control was considered. The expected loss, quadratically dependent

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 52 -

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5
δ = 1

z

u(z)

Optimal schedule
Composite solution

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5
δ = 2.6

z

u(z)

Optimal schedule
Composite solution

a) δ < δ∗ b) δ > δ∗

Fig. 3 Optimal schedule vs. composite schedule: set (B)

0 0.5 1 1.5 2 2.5 3
90

92

94

96

98

100

δ

J (u∗)
J (uc)

,%

umin = 0.5, umax = 3.5

umin = 0.1, umax = 2.5

Fig. 4 Optimal schedule vs. composite schedule: cost functional value

on the sampling time-interval, was chosen as the criterion of the optimization. Two

methods of solution of this problem were proposed. The first method transforms the

original optimization problem to an equivalent optimal control problem. Then, the

latter was solved analytically by using the Pontryagin’s Maximium Principle, which

yields the optimal schedule for the considered statistical process control. The second

method uses a discretization of the original optimization problem. This leads to a finite-

dimensional quadratic optimization problem, approximating the original one. This new

optimization problem is solved by using the MATLAB function “quadprog”, providing

the suboptimal schedule for the statistical process control.

The optimal and suboptimal schedules were evaluated by numerical examples. This

evaluation has shown a good match of the optimal analytical schedule and the subop-

timal numerical schedule. The optimal schedule also was compared to the suboptimal

composite schedule, designed in a previous work of the authors. This comparison has

shown that the optimal schedule produces a smaller expected loss than the subopti-

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 53 -

mal composite schedule does, and the former requires for its design less computational

effort than the latter needs.

References

1. D. C. Montgomery Introduction to statistical quality control, 734 pp. John Wiley and
Sons Inc., New York, NY (2005)

2. M. R. Reynolds, R. W. Amin, J. C. Arnold and J. Nachlas, X charts with variable sampling
intervals, Technometrics, Vol. 30, pp. 181–192 (1988)

3. R. W. Amin and R. Hemasinha, The switching behavior of X charts with variable sampling
intervals, Communication in Statistics - Theory and Methods, Vol. 22, pp. 2081–2102 (1993)

4. R. W. Amin and R. W. Miller, A robustness study of X charts with variable sampling
intervals, Journal of Quality Technology, Vol. 25, pp. 36–44 (1993)

5. A. F. B. Costa, X control chart with variable sample size, Journal of Quality Technology,
Vol. 26, pp. 155–163 (1994)

6. S. S. Prabhu, D. C. Montgomery and G. C. Runger, A combined adaptive sample size and
sampling interval X control scheme, Journal of Quality Technology, Vol. 26, pp. 164–176
(1994)

7. M. R. Reynolds, Evaluating properties of variable sampling interval control charts, Se-
quentional Analysis, Vol. 14, pp. 59–97 (1995)

8. A. F. B. Costa, X charts with variable sample sizes and sampling intervals, Journal of
Quality Technology, Vol. 29, pp. 197–204 (1997)

9. A. F. B. Costa, Joint X and R control charts with variable parameters, IIE Transactions,
Vol. 30, pp. 505–514 (1998)

10. A. F. B. Costa, X charts with variable parameters, Journal of Quality Technology, Vol.
31, pp. 408–416 (1999)

11. A. F. B. Costa and M. S. De Magalhães, An adaptive chart for monitoring the process
mean and variance, Quality and Reliability Engineering International, Vol. 23, pp. 821–831
(2007)

12. E. Bashkansky and V. Y. Glizer, Novel approach to adaptive statistical process control
optimization with variable sampling interval and minimum expected loss, International
Journal of Quality Engineering and Technology, Vol. 3, pp. 91–107 (2012)

13. V. Y. Glizer, V. Turetsky and E. Bashkansky, Statistical process control optimization with
variable sampling interval and nonlinear expected loss, Journal of Industrial and Management
Optimization, Vol. 11, pp. 105–133 (2015)

14. G. Taguchi, S. Chowdhury and Y. Wu, Taguchi’s Quality engineering handbook, 1662 pp.
John Wiley and Sons Inc., Hoboken, NJ (2007)

15. V. Babrauskas, Heat release rates, in SFPE Handbook of Fire Protection Engineering,
(Ed. P.J. DiNenno), National Fire Protection Association, pp. 1–59 (2008)

16. P. Sebastião and C. G. Soares, Modeling the fate of oil spills at sea, Spill Science and
Technology Bulletin, Vol. 2, pp. 121–131 (1995)

17. M. A. K. Bulelzai and J. L. A. Dubbeldam, Long time evolution of atherosclerotic plaques,
Journal of Theoretical Biology, Vol. 297, pp. 1–10 (2012)

18. T. E. Carpenter, J. M. O’Brien, A. Hagerman and B. McCarl, Epidemic and economic
impacts of delayed detection of foot-and-mouth disease: A case study of a simulated outbreak
in California, Journal of Veterinary Diagnostic Investigation, Vol. 23, pp. 26–33 (2011)

19. S. Kim and D. M. Frangopol, Optimum inspection planning for minimizing fatigue damage
detection delay of ship hull structures, International Journal of Fatigue, Vol. 33, pp. 448–459
(2011)

20. I. M. Gelfand and S. V. Fomin, Calculus of variations, 240 pp. Prentice-Hall, Englewood
Cliffs, NJ (1963)

21. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The
mathematical theory of optimal processes, 360 pp. Interscience, New York, NY (1962)

22. A. D. Ioffe and V. M. Tihomirov, Theory of extremal problems, 460 pp. North-Holland
Pub. Co., Amsterdam, Netherlands (1979)

23. P. J. Davis and P. Rabinowitz, Methods of numerical integration, 624 pp. Dover Publi-
cations, Inc., Mineola, NY (2007)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 54 -

MISTA 2015

Scheduling competition in the airline industry and the
issue of duplicate bookings

Ryosuke Ishii · Kuninori Nakagawa

Abstract In this study, we consider the relationship between a passenger’s behaviour

and competition over flight schedules and prices between two airlines. In particular, by

focusing on how an early option to purchase tickets affects duopoly competition in this

industry, we consider duplicate bookings when passengers’ travel plans are uncertain.

In our model, airlines can set their ticket prices twice: before and after passengers know

their exact travel plans. We find that in a subgame perfect equilibrium, flights operate

on an efficient schedule from a passenger perspective (i.e. a passenger’s expected loss

of utility is minimized).

1 Introduction

In this study, we analyse the competition over flight schedules and prices between two

airlines, with a focus on airfare discounts for very early reservations. Ishii and Nakagawa

(2015)[12] analyse how discounts for early booking affect the scheduling competition

between two airlines.

The discounting of fares in the airline industry for both international and domes-

tic flights fosters active price competition. Although passengers can receive attractive

discounts, they must book such tickets at least some weeks prior to departure. In this

article, we extend our model, focusing especially on duplicate bookings. We examine

how passengers decide whether to purchase a discounted ticket in advance; in particu-

lar, we discuss the problem of duplicate bookings (i.e. two or more flights are booked

for the same traveller).

Duplicate bookings are prohibited by airlines, simply because they want to stop

the wasteful occupation of seats. However, airlines usually sell their discounted tickets

when passengers still have no idea of their travel plans. Furthermore, the number of

seats to which this type of discounted fare is applied is limited. Thus, passengers who

Ryosuke Ishii
Teikyo University, Otsuka 359, Hachioji, Tokyo 192-0395, Japan.
E-mail: ryosuke.ishii@main.teikyo-u.ac.jp

Kuninori Nakagawa
Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8529, Japan.
E-mail: nakagawa.kuninori@shizuoka.ac.jp

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 55 -

want to take advantage of discounted airfares must reserve a seat a month before

their flights or even earlier, providing them with an incentive to make several duplicate

bookings. We analyse this duplicate booking problem. We find that flight scheduling by

two airlines in a subgame perfect equilibrium is socially optimal if a duplicate booking

is not prohibited.

In particular, we analyse the advance selling of airline tickets by duopolists, focusing

on the relationship between scheduling competition and a passenger’s uncertainty about

his or her own travel plans. We examine a model in which two airlines ‘locate’ their flight

schedules on a timeline and set their ticket prices twice: before and after a passenger

knows precisely his or her travel plans (i.e. ex ante and ex post, respectively). We thus

consider the extent to which the tradeoff between low prices and a schedule better suited

for the final itinerary is affected by passengers’ decision making under uncertainty.

This competition over the scheduling of flight departure times and prices fits the

model of spatial competition à la Hotelling (1929)[11]. Hotelling’s spatial approach is

useful for analysing this type of competition because in an airline market, the cost to

a passenger of taking a certain flight is the ticket price and the cost to a passenger

of adapting his or her travel plans is the flight departure time. However, a spatial

approach is too complicated to provide clear implications for practitioners. Hence,

Brueckner and Flores-Fillol (2007) [3] instead suggest that passengers are concerned

about overall flight frequency rather than the departure times of individual flights (see

also Brueckner, 2010, [4]).

Spatial models of product differentiation imply that firms face two opposing in-

centives: (1) counter differentiate in order to take customers from competitors and

(2) differentiate in order to reduce price competition. For example, Greenhut et al.

(1987) [9] discuss airline scheduling in this context and suggest that more competition

leads to less differentiation. Theoretical studies of Hotelling’s spatial competition find

that the dominance of these opposing incentives depends on the assumptions made

(d’Aspremont et al., 1979, [1]). According to empirical studies, both results are sup-

ported. Borenstein and Netz (1999)[2], for instance, find that after the deregulation of

the airline industry in the United States in 1986, reductions in exogenous scheduling

constraints increased differentiation, while Salvanes et al. (2005)[16] show that after

deregulation in Norway, the clustering of flights increased on duopoly routes compared

with monopoly routes.

In addition to examining the scheduling of flight departure times, we analyse the

discounts offered for early reservation. In the literature on advance selling, advance

purchase discounts are discussed in terms of price discrimination by a monopoly firm.

Gale and Holmes (1993)[8], Dana (1998)[7], Nocke and Peitz (2007)[14], Möller and

Watanabe (2010)[13], and Nocke et al. (2011)[15], among others, focus on the role of

demand uncertainty and capacity constraints in the price discrimination policies of a

monopolist in order to understand the allocation of resources in a ticket market.

This situation is related to Coase’s (1972)[6] conjecture. According to the literature

on this conjecture, both ex-ante and ex-post markets will open only if the time incon-

sistency problem is solved such that 1) airlines commit to not having sales ex post or

2) passengers are so irrational that they do not consider ex post (see Bulow, 1982, [5],

Stokey, 1981, [17], Gul et al., 1986, [10]). However, it is difficult to examine explicitly

how these problems affect competition over the scheduling of flight departure times and

prices. In the present study, we put forth the model that, without assumptions 1) and

2) above, both markets open in a subgame perfect equilibrium. Moreover, in a subgame

perfect equilibrium, we show that every flight operates on the most efficient interval

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 56 -

(i.e. where a passenger’s expected loss of utility is minimized). Finally, we discuss the

issue of duplicate bookings.

2 Model

We present our model based on that of Ishii and Nakagawa (2015)[12]. There are two

airlines i ∈ 1, 2 and a passenger who plans to travel. The passenger does not know his

or her most preferred boarding time t (here, we refer to this as the ideal point), but

knows that t follows a uniform distribution over the interval [0, 1]. This closed interval

also represents the airport’s hours of operation. In Japan, for example, airport runways

are usually closed at night to prevent aircraft noise from disturbing local residents (e.g.

Osaka International Airport operates from 7:00 to 21:00).

This game proceeds as follows. First, the airlines simultaneously decide their flight

schedules: airline i(i = 1, 2)’s departure time is zi(0 ≤ z1 < z2 ≤ 1). Second, they

set the ex-ante prices pbi of their early discounted tickets. Third, the passenger has

an opportunity to purchase the tickets. Fourth, the passenger learns his or her ideal

points. Fifth, the airlines set the ex-post prices pai of their normal tickets. Sixth, the

passenger has a second opportunity to purchase tickets. Lastly, the passenger chooses

a ticket to use.

Let (Db, Da) denote demand for the tickets that the passenger purchases before

and after his or her ideal points are known. For example, (Db, Da) = (0, 1) means

that the passenger purchases no ticket ex ante and one ticket ex post. We assume

that the passenger lexicographically prefers (Db, Da) = (1, ·) to (Db, Da) = (2, ·) when
they are indifferent in terms of utility among these purchasing behaviours. We call this

assumption ‘inhibited duplicate bookings’. Because, in our model, the passenger finally

consumes at most either one of these tickets, (Db, Da) = (2, ·) means the presence

of a duplicate booking when an advance purchase is made. Usually, when a duplicate

booking exists, the passenger will be forced to cancel all the reservations made with the

airline. This lexicographic preference means that the passenger avoids this cancelation.

Here (Db, Da) = (1, 1) is not a duplicate booking since the passenger will reserve a

new ticket after he or she cancels the old one.

Let ū(= const) be the passenger’s utility when he or she uses his or her ideal tickets

z = t. We define the passenger’s utility u as ū− (t− zi)
2 − (money paid), if airline i’s

ticket is used. E[(t− zi)
2] is the passenger’s expected utility loss. We assume that ū is

large enough that the passenger purchases at least one ticket. Now, we can rewrite the

passenger’s utility maximization problem as a cost minimization problem. Here, his or

her cost is the total cost of the tickets and the expected utility loss. Let πi denote the

profit of airline i. πi = pi if purchased and 0 otherwise.

We solve this game by backward induction. We will show that with respect to all

the passenger’s behaviours in subgame perfect equilibrium outcomes, the airlines’ flight

schedules are symmetric and they set identical ex-ante prices. Both the passenger and

the airlines are indifferent with respect to the passenger’s choice between ‘purchase’

and ‘not purchase’ in the ex-ante period. Furthermore, the airlines’ flight schedules in

all equilibria are socially optimal in the sense that the passenger’s expected utility loss

E[min(t− zi)
2] is minimized.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 57 -

3 Price Game

3.1 Competition Ex Post

If the passenger does not purchase a ticket in advance, both airlines purely can compete

on prices and Bertrand competition in ex-post markets results. If the passenger buys

one ticket in advance whose departure time better fits his or her ideal travel plan,

he or she will not purchase any more tickets. On the contrary, if the passenger has a

ticket that is further from the realized ideal point, he or she will purchase the ticket

whose departure time better matches his or her ideal. Therefore, the airline whose

flight schedule matches the passenger’s ideal departure time more closely will win the

passenger’s business. Furthermore, we find that the passenger purchases at most one

ticket ex post.

Hereinafter, we analyse the case in which the passenger decides whether to purchase

one or zero tickets after knowing his or her ideal departure time. First, we consider

that the passenger does not purchase a ticket in advance. In this case, the passenger

purchases one ticket after knowing his or her ideal points. Both airlines can purely

compete on prices and Bertrand competition results. Airline i, whose departure time

is closer to the passenger’s ideal point than its opponent j(j ̸= i), sets its price as

pi = pj + (t − zj)
2 − (t − zi)

2, while the other airline j sets pj = 0. The passenger

purchases airline i’s ticket.

Second, we consider that the passenger has already purchased airline j’s ex-ante

ticket and examine whether he or she purchases an additional ticket from airline i after

knowing his or her ideal departure time. If the realized ideal point t is close to airline

j’s flight schedule compared with airline i’s schedule, there is no room for airline i to

sell its ticket to the passenger. If this is not the case, then the passenger prefers airline

i’s departure time to that of airline j and purchases airline i’s ticket at a competitive

price. The passenger is willing to purchase airline i’s ticket when the amount of utility

loss and repayment is less than or equal to the utility loss when he or she uses airline

j’s ticket, i.e. ū−pbj −p
a
i − (t−zi)2 ≥ ū−pbj − (t−zj)2. The optimal pricing for airline

i is pai = (t− zj)
2 − (t− zi)

2. The passenger purchases airline i’s ticket.

Suppose that the realized t is closer to airline 2’s flight schedule than airline 1. In any

case ofDb = 0, 1, the passenger purchases and uses airline 2’s ticket, whose ex-post price

is pa2 = (t−z1)2−(t−z2)2. By solving t in this equation, we obtain t = z1+z2
2 +

pa
2

2(z2−z1)
.

We find from this that t = z1+z2
2 if and only if pa2 = 0, which is the net price of airline

2’s ticket without considering the transportation cost (t − z1)
2 − (t − z2)

2, which is

determined according to the realized t. If t = z1+z2
2 is realized, then the effect of

location is perfectly offset. Without location competition, this ex-post competition is

the simple Bertrand type, which results in pa1 = 0, pa2 = 0. If Db = 0, and airline

1 chooses pa1 > 0, the passenger will purchase an airline 2’s ticket for whatever pa1 .

Thus, airline 1’s profit would be zero. Airline 1 has an incentive to undercut its ex-post

price in order to make the passenger purchase airline 1’s ticket, and thus improves its

profit from zero to nonzero. Thus, airline 1 must choose pa1 = 0 in the equilibrium. By

contrast, given pa1 = 0 and the realized t, airline 2 still has the margin of transportation

cost (t−z1)2−(t−z2)2 by which to secure a positive profit. By using a similar argument,

the same result can be obtained for airline 2’s problem.

Therefore, we obtain the equilibrium price pair of the two airlines, as follows: pa∗i =

(t− zj)
2 − (t− zi)

2, pa∗j = 0. Here, i and j denote airlines with schedules near to and

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 58 -

far from the realized ideal point of the passenger, respectively. In this equilibrium, the

passenger purchases airline i’s ticket.

3.2 Competition Ex Ante

In this section, we consider the ex-ante equilibrium prices pb1 and pb2, and the passenger’s

behaviour Db. Here, we obtain two kinds of equilibrium demand outcomes, Db = 0, 1,

while the equilibrium profits of both airlines are uniquely determined regardless of the

passenger’s behaviour.

First, we work with the condition that the passenger is indifferent between Db = 2

and Db = 1. Now, the passenger’s expected utilities if Db = 0, 1, 2 are

ū−

(∫ z1+z2
2

0

(t− z2)
2dt+

∫ 1

z1+z2
2

(t− z1)
2dt

)
, (1)

ū−
(∫ 1

0

(t− zi)
2dt+ pbi

)
, (2)

ū−

(∫ z1+z2
2

0

(t− z1)
2dt+

∫ 1

z1+z2
2

(t− z2)
2dt+ pb1 + pb2

)
, (3)

respectively. Suppose that both airlines charge prices pb1, p
b
2, which is the price pair

such that (2) = (3) holds for any i:

∫ 1

0

(t− zi)
2dt+ pbi =

∫ z1+z2
2

0

(t− z1)
2dt+

∫ 1

z1+z2
2

(t− z2)
2dt+ pb1 + pb2,

where the passenger is only indifferent between Db = 2 and Db = 1. We rearrange

these expressions with pb1, p
b
2 to obtain

(p∗1, p
∗
2) =

(
(z2 − z1)(

z1 + z2
2

)2, (z2 − z1)(1−
z1 + z2

2
)2
)
. (4)

The airline’s profits are π∗1 = (z2 − z1)(
z1+z2

2)2 and π∗2 = (z2 − z1)(1 − z1+z2
2)2,

respectively if the passenger purchases either/both tickets at this price.

Next, we consider Db = 0. Here, suppose that both airlines charge the ex-ante

price pair shown in (4), and that the passenger does not purchase a ticket. From the

discussion on the ex-post period in the previous section, the airlines’ expected profits

are

π∗1 =

∫ z1+z2
2

0

(
(t− z2)

2 − (t− z1)
2
)
dt = (z2 − z1)(

z1 + z2
2

)2,

π∗2 =

∫ 1

z1+z2
2

(
(t− z1)

2 − (t− z2)
2
)
dt = (z2 − z1)(1−

z1 + z2
2

)2.

Thus, we find that neither airline has an incentive to deviate from the price pair in (4)

in any cases of Db = 0, 1, 2.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 59 -

Next, we find that if these ex-ante prices are sufficiently high such that (1) ≥ (2)

and (1) ≥ (3) hold:∫ z1+z2
2

0

(t− z2)
2dt+

∫ 1

z1+z2
2

(t− z1)
2dt ≤

∫ 1

0

(t− zi)
2dt+ pbi , (5)

∫ z1+z2
2

0

(t−z2)2dt+
∫ 1

z1+z2
2

(t−z1)2dt ≤
∫ z1+z2

2

0

(t−z1)2dt+
∫ 1

z1+z2
2

(t−z2)2dt+pb1+pb2,

(6)

then the passenger has no incentive to deviate to purchase one or two tickets. Note

that if (5) holds for each i = 1, 2, (6) also holds. Thus, we find that ex-ante ticket prices

with Db = 0 are p∗1 ≥ (z2 − z1)(
z1+z2

2)2 and p∗2 ≥ (z2 − z1)(1 − z1+z2
2)2. Hence, the

price pair shown in (4) is the airlines’ best response to the passenger’s behaviour.

Finally, we also find that Db = 0, 1, 2 are the passenger’s best responses to the

price pair shown in (4). Thus, we conclude that this price pair is the best response of

the airlines and that Db = 0, 1, 2 are the passenger’s best responses to this price pair.

We obtain the equilibrium price pair of the two airlines as follows: (p∗1, p
∗
2) =(

(z2 − z1)(
z1+z2

2)2, (z2 − z1)(1− z1+z2
2)2

)
. However, owing to the issue of inhibited

duplicate bookings, the passenger does not purchase two tickets at the same time

in advance. Thus the equilibrium purchasing behaviours of the passenger at the ex-

ante price subgame are purchasing one ticket, Db∗ = 1, or not purchasing any ticket,

Db∗ = 0.

4 Location Game

In this section, we solve the first stage of the game, which we call the ‘location game’.

Proposition 1 In a subgame perfect equilibrium, the following holds:

z∗1 =
1

4
, z∗2 =

3

4
, and π∗1 = π∗2 =

1

8
.

Proof In a subgame perfect equilibrium, the airlines’ profits are π∗1 = (z2−z1)(z1+z2
2)2

and π∗2 = (z2−z1)(1− z1+z2
2)2, respectively. The first-order conditions with respect to

z1 and z2 provide the desired result. These values satisfy the second-order condition.

5 Concluding Remarks

In this study, we considered the relationship between a passenger’s behaviour and

competition over flight schedules and prices between two airlines operating in a duopoly.

The analysis presented herein confirms that a socially optimal flight schedule results

from the passenger’s behaviour in response to these competitive conditions. Proposition

1 shows that in a subgame perfect equilibrium, the flight schedule is the socially optimal

location, where the flights are at the first and third quartiles of the [0, 1] interval.

The presented model could be extended by focusing on the number of airlines and

flights operated by each airline. In terms of the former, researchers might consider an

extension to the n ≥ 3 airlines case. In terms of the latter, we attempted to calculate

the case in which each airline operates two flights in our two-airline model; however,

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 60 -

the problem is complicated and cannot be solved analytically. Therefore, these two

extensions remain as future work.

Lastly, we discuss ‘inhibited duplicate bookings’ in our model. Our analysis herein

deals with the passenger’s lexicographic preference in order to capture the idea that

he or she decides against a duplicate booking. We find that this assumption is mild

enough to keep the equilibrium in which the passenger purchases an early and thus

discounted ticket. Supposing that the passenger can buy at most one ticket, for example,

destabilizes such early purchasing behaviour. Intuitively, if the passenger purchases an

early ticket, the airline that sells no tickets has an incentive to undercut its early

price in order to make the passenger purchase, meaning that the earlier competition is

intensified compared with the case in our model. At this point, the other airline that

sells an advance ticket becomes worse off when offering discounts and thereby has an

incentive not to sell in advance, which intensifies the price competition ex ante. As

a result, an airline locates at the centre and sells its early ticket at a low price in a

subgame perfect equilibrium. For more details, see Ishii and Nakagawa (2015)[12]. By

contrast, our model has an equilibrium outcome with advance purchasing. In the first

place, purchasing more than one ticket is not forbidden by law. In a sense, the advance

purchasing outcome that assumes the lexicographic preference corresponds to real-life

cases where people sometimes cancel and repurchase tickets at the last minute.

Acknowledgements We are deeply grateful to Haruo Imai for his insightful comments and
suggestions. We also acknowledge the valuable comments and suggestions of the anonymous
referees. All errors are the authors’ own.

References

1. d’Aspremont, C., Gabszewicz, J.J. and Thisse, J.F., On Hotelling’s “stability in competi-
tion” Econometrica, Vol. 47(5), pp. 1145-1151, (1979).

2. Borenstein, S. and Netz, J., Why do all the flights leave at 8 am?: Competition and
departure-time differentiation in airline markets, International Journal of Industrial Or-
ganization, Vol. 17(5), pp. 611-640, (1999).

3. Brueckner, J.K. and Flores-Fillol, R., Airline schedule competition, Review of Industrial
Organization, Vol. 30(3), pp. 161-177, (2007).

4. Brueckner, J.K., Schedule competition revisited, Journal of Transport Economics and Pol-
icy, Vol. 44(3), pp. 261-285, (2010).

5. Bulow, J.I., Durable-Goods Monopolists, Journal of Political Economy, Vol. 90, pp. 314-
332, (1982).

6. Coase, R., Durability and Monopoly, Journal of Law and Economics, Vol. 15(1), pp. 143-49,
(1972).

7. Dana Jr., J.D., Advance-purchase discounts and price discrimination in competitive mar-
kets, Journal of Political Economy, Vol. 106(2), pp. 395-422, (1998).

8. Gale, I.L. and Holmes, T.J., Advance-purchase discounts and monopoly allocation of ca-
pacity, American Economic Review, Vol. 83(1), pp. 135-146, (1993).

9. Greenhut, M.L., Norman, G., Hung, C.-S., The economics of imperfect competition: A
spatial approach, Cambridge University Press, Cambridge, (1987).

10. Gul, F., Sonnenschein, H. and R. Wilson, Foundations of dynamic monopoly and the Coase
conjecture, Journal of Economic Theory, Vol. 39(1), pp. 155-190, (1986).

11. Hotelling, H., Stability in competition, Economic Journal, Vol. 39, pp. 41-57, (1929).
12. Ishii, R. and Nakagawa, K., Early competition on Discount Tickets, Journal of Transport

Economics and Policy, Vol. 49(2), pp. 219-235, (2015).
13. Möller, M. and Watanabe, M., Advance purchase discounts versus clearance sales, Eco-

nomic Journal, Vol. 120, pp. 1125-1148, (2010).
14. Nocke, V. and Peitz, M., A theory of clearance sales, Economic Journal, Vol. 117, pp.

964-990, (2007).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 61 -

15. Nocke, V., Peitz, M. and Rosar, F., Advance-purchase discounts as a price discrimination
device, Journal of Economic Theory, Vol. 146(1), pp. 141-162, (2011).

16. Salvanes, K.G., Steen, F. and Sørgard, L., Hotelling in the air?: Flight departures in
Norway, Regional Science and Urban Economics, Vol. 35(2), pp. 193-213, (2005).

17. Stokey, N.L., Rational expectations and durable goods pricing, Bell Journal of Economics,
Vol. 12, pp. 112-128, (1981).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 62 -

Subir Bhattacharya

Indian Institute of Management Calcutta

E-mail: subir@iimcal.ac.in

Sumit Kumar Bose

Indian Institute of Management Calcutta

E-mail: bose_sumit@rediffmail.com

MISTA 2015

Continuous Time Model for Scheduling Operations in

Cascaded Continuous Processing Units with Multiple Due Dates

Subir Bhattacharya • Sumit Kumar Bose

Abstract Continuous processing units, where input streams flow in at one end and the output

streams flow out simultaneously at the other end, are quite common in petroleum and

pharmaceutical industries. In a typical scenario each product needs to be processed by a

specific sequence of units, and there can be several products requiring the same sequence of

units. Each product may need to be shipped multiple times, in specified quantities, during the

planning horizon. However, each unit can process only one product line at a time. Since the

input streams for all the product lines flow into the block of units simultaneously, scheduling

operations in these units calls for a balance among spillage penalties, changeover costs and

shipment failure penalties. This paper uses the concepts of State Task Network and event

points to develop a continuous time model with a goal to minimize the total cost. The model

has been tested in a scenario having three units and three product lines as encountered in a

refinery situation.

1 Introduction

In chemical processing industries the input materials, often in the form of fluid streams,

need to be processed through a sequence of processing units before being converted to

marketable finished products. If it is a continuous processing industry, input streams for a

product line are fed in continuously at one end of a continuous processing unit, a fractionating

column for example, and the output streams flow out simultaneously from the other end. Some

of these processing units may be shared by more than one product line. These shared units

work in ‘blocked-out’ fashion where, at any point in time, a unit can process only one product

line, and the intermediate streams coming from upstream units along the other product lines

have to wait on the input side of the unit in dedicated fixed capacity storage tanks. If the

available free space in the storage tank of a waiting input stream is not enough, the incoming

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 63 -

stream has to be ‘spilled’, i.e., converted to lower valued products, thus incurring an

opportunity cost. Spillage can be reduced by quick changeovers, but that has its own associated

cost and time. The problem of scheduling operations in these blocked-out units is accentuated

by the presence of pre-specified shipment schedule for finished products. A product may be

shipped several times by specified quantities during the scheduling horizon. A shipment failure

penalty is incurred if the specified amount of a product is not made available on the due date.

Thus, an optimal schedule for the units calls for a trade-off among spillage penalties, shipment

failure penalties, and changeover costs. Such a balance would require each unit to process each

product line in a number of stretches of possibly different durations, interleaved with stretches

of other product lines. This is a typical short term scheduling problem in continuous processing

units, and is different from the short term scheduling problem typically encountered in batch

processing plants.

The short-term discrete time scheduling problem for batch processing plants and its

variations has been widely studied in literature. Comprehensive reviews of the work done in

this area can be found in [7], [11], [18], and [24]. A number of continuous time formulations

for batch process scheduling have also been suggested using the concept of event points. The

locations of the event points on the time axis are not known a priori and are variables to be

determined during the optimization process. Use of both unit specific event points ([13], [14]),

and global event points ([29]) have been reported for the batch process scheduling problem.

Mendez et al. ([25]) discusses the MILP continuous-time models for the batching and

scheduling problem for multiproduct batch plants with multiple product orders and different

due-dates. Schilling and Pantelides ([27]) propose a branch and bound algorithm for the

problem formulated as MILP based on a continuous representation of time. Liu and Karimi

([21]) propose several novel continuous time models for multi-stage batch plants with identical

units. Unit specific continuous time representations for short term scheduling of batch

processes have been considered in [15] and [28]. Marchetti and Cerdá ([23]) provide a

mathematical model for multi-stage batch plants with multiple intermediate due dates. A

formulation for short term scheduling of batch processes based on a novel continuous time

representation wherein the start times and the end times for any of the tasks do not necessarily

have to align with the event points has been proposed by Giménez et al ([8], [9]). Hazaras et.

al., [12], presents a mathematical model for the combined maintenance and production

scheduling problem using a continuous-time representation and process network based on STN

representation. Recently, a novel continuous time model for resource constrained project

scheduling problem has been suggested by Kopanos et al. [20].

In contrast, interest in scheduling of operations in continuous processing units is rather

recent. These units introduce an additional complexity compared to the batch processing units.

While in batch processing units the time needed to process a particular batch is known a priori,

in continuous processing units the time for which a product line should be processed in a unit

in the current stretch is a decision variable. Jain and Grossmann ([16]) build a mathematical

model for cyclic scheduling of continuous processing plants with parallel units and decaying

performance. Alle et al. ([1]) has developed a continuous time mathematical model for cyclic

scheduling of multi product multistage continuous processing plants. The short term

scheduling of refinery operations and mixed integer models based on continuous time

formulations have been discussed in [17]. Bose and Bhattacharya ([2]) discuss a discrete time

mathematical model for scheduling in cascaded continuous processing units using state task

network. When the planning horizon is longer than what the mathematical models can handle

in reasonable time, the branch and bound heuristic algorithm discussed in [3] might be useful.

Luo and Rong ([22]) propose decomposition approaches for solving the short term scheduling

problem in refineries. Pochet and Warichet ([26]) consider the cyclic scheduling problem of

mixed plants and propose a tighter continuous time formulation for maximizing productivity.

Chen et. al. ([4]) provides a comparative study of continuous time models for the crude oil

scheduling problem in refineries.

Evidently, a continuous time model for continuous processing units would be more

desirable since the quality of solutions obtained from discrete time models depend on the size

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 64 -

of the time grain. This paper proposes a continuous time mathematical model for short term

scheduling of operations in a set of cascaded continuous processing units, collectively

responsible for a set of products. Each of the products may be scheduled to be shipped several

times by specified amounts during the planning horizon. We use an extension of the concept of

State Task Network (STN) as proposed by Kondili et al. ([19]), and the concept of event points

to arrive at the formulation. The rest of the paper is organized as follows. Section 2 provides a

generic description of the problem. Section 3 develops the continuous time mathematical

model for the problem. Section 4 discusses our experiences with the model when applied to a

refinery situation. Limitations of the proposed model and future directions of work are

discussed in the concluding remarks in section 5.

2 The Problem

 The scheduling problem discussed here is similar to the problem discussed in Bose and

Bhattacharya, [2]. A generic description of the problem would be as follows. The problem, or

variations of it, is quite common in continuous processing industries like refineries and

pharmaceuticals.

A set of n continuous processing units are responsible for producing m final products.

The input stream for each final product needs to be processed by a sequence of units, fixed for

that product. Each of the inputs and intermediate streams has dedicated fixed capacity storage

tanks before and after every processing unit. The presence of intermediate storage tanks

obviates the need for the units to process the same product line in tandem. Figure 1 is an

example of a setup with 3 units and 4 products.

Figure 1: An example set up with 3 units and 4 products

Each of these n units can process only one product line at a time. However, the inputs

corresponding to all the product lines to be processed by this set of units are arriving

simultaneously and continuously at fixed rates from some upstream units that are responsible

for many other products as well. Thus, at any particular point in time, the input for a product

line that is not being processed by the first unit in the sequence at that point in time has to

accumulate in the designated tank, and would spill if the corresponding tank does not have

sufficient room. It may be noted that inputs to the subsequent units in the sequence need not be

spilled since the immediately preceding unit processes only one product line at a time. The

processing of a unit involves splitting the feed with the help of reagents into intermediate

streams according to a yield percentage fixed for a product line for the unit. The intermediate

streams that are relevant for the final products under consideration get deposited in the

respective tanks on the output side. What happens to the other output fractions is beyond the

purview of this discussion. The processing capacity (known as the feedrate measured in MtPD,

Metric tons Per Day) of a unit for a product line is fixed, but varies from product to product.

To do justice to the amount of costly reagents added to a unit during a changeover, a

stream taken up for processing in a unit must run for a minimum period of time, called

minimum run-length. A processing unit switches processing from one product line to another

for one or more of the following reasons: (a) there is not enough material in the input tank for

Input

streams

from

upstream

units

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 65 -

the current stream; (b) there is not enough room in the output tank for the current stream; (c) to

avoid spillage of inputs; (d) to produce intermediate or final products for meeting the shipment

target. Thus one product line can be processed in a unit in a number of stretches interleaved

with the processing of other streams. The length of each such stretch, called a run-length, of a

product line is a decision variable. Every changeover in a unit from one product line to another

has its associated cost.

The finished products coming out of the last unit of a sequence also get stored in fixed

capacity tanks to be shipped according to some pre-specified shipment schedule. There can be

several planned shipments for a product during the scheduling horizon. Penalty is incurred if

the required amount of a finished product is not ready by the specified due date. Shortfall in

one shipment of a product cannot be compensated by providing more during the next shipment

of the same product.

Thus, we have three factors to balance – the per unit spillage penalty for the input stream

of each product line, the cost of changeovers, and the per unit penalty for failing to meet the

shipment schedule. Schedules of the units collectively try to balance these factors by

processing each product line in several run-lengths. Longer run-lengths are preferred to reduce

changeover cost while shorter stretches may bring down the spillage penalty and/or the

shipment failure penalty. Given the scenario and a scheduling horizon of H days, the aim is to

determine the start times and end times of different stretches of different streams (product

lines) in different units so that the total cost is minimized.

3 Model Formulation

The complexity of arriving at a continuous time model for the continuous processing

units is contributed to by the difficulty in tracking resource violations, like an input tank

getting empty or an output tank getting full. Tracking the duration of spillages or the shortfalls

in shipment quantities add to this complexity. To develop the mathematical model we use the

constructs of State Task Network ([19]) and introduce the concept of virtual tasks. State Task

Network (STN) uses two constructs – ‘state’ for denoting input (or output) feed to (or from) a

processing activity, and ‘task’ for denoting the processing activity. Thus, in essence, tasks

consume and/or produce states. In the given scenario, states map to the materials stored in the

tanks and the tasks correspond to the processing activities of the processing units. One

processing unit is responsible for multiple tasks representing processing of different product

lines in the unit. The advantage of using STN is that when the setup of the units and/or the

product-flows change, it can be subsumed in the model in a straightforward manner by

corresponding adjustments of the state and task sets.

We augment the STN by introducing two virtual tasks – virtual shipment task and virtual

spillage task. These virtual tasks take place in virtual units that are fed by states in the STN but

do not have output states. For each product line we define a virtual task that takes care of the

possible spillage of the corresponding input state. Each of the virtual spillage tasks has a

processing cost associated with it for processing in virtual units. This acts as a surrogate for the

spillage cost. In a similar manner, we define a virtual shipment task for every scheduled

shipment of every product. For the scheduling horizon under consideration, the number of

virtual shipment tasks is known beforehand since the shipment schedule is available. These

shipment tasks undergo processing in virtual units and have zero processing time. Each

shipment task is scheduled when the corresponding shipment is due, and is supposed to

process the respective input state by the amount specified in the schedule. The task incurs a

cost only when it cannot process the amount specified. This acts as a surrogate for the

shipment failure penalty. The difference between the two types of tasks, regular and virtual, is

worth noting – the ‘regular’ tasks do not incur any processing cost, and take part in

changeovers, whereas the virtual tasks are not involved in changeovers, and may incur

processing cost.

To track resource violations we use the concept of event points. An ‘event’ happens when

something changes in the system – be it switching to a new task in a unit and/or taking up a

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 66 -

virtual shipment task. An ‘event point’ is the point in time when an event happens. It is

important to note that more than one event can happen at the same event point, for example

two units can changeover to new product lines at the same point in time. Virtual spillage tasks

are not considered as events in this formulation, since these tasks – and the corresponding costs

– can be tracked from the mass balance equations of the corresponding input states between

consecutive event points. In order to solve an instance of the scheduling problem, we specify

the number of event points to be used, and allow the model to distribute these event points on

the continuous time line so that the cost of the resultant schedule is optimal with that number

of event points. Every schedule must utilize all the event points given as input. We solve the

model repeatedly, each time allowing one more event point than the previous iteration. We

continue the iterations till the objective value does not improve any further or till it satisfies a

certain stopping criteria.

Table 1 lists the sets, parameters and variables used in our formulation.
i

Y
η
 are binary

decision variables.
i

Y
η
takes the value of 1 if task i is processed between event points η and η

+1, otherwise it is 0. The variables
j

V
η

 represent changeover events. The value of
j

V
η

is 1 if a

task that gets processed in unit Uj at event point η is different from the task that is processed

at event point η +1.
spill

i
B

η
 is the amount of raw material spilled between event points η and η

+1 by task i,
spill

i I∈ .
ship

i
B , for

o
i I∈ , is the amount on which shipment penalty will be charged.

To keep our formulation simple, without loss of generality, we consider the changeover cost to

be sequence independent, and we ignore the changeover time. We also consider all units up

and running for the entire planning period.

Table 1: Notations for the mathematical formulation

Sets

1

:

:

:

: ()

: , [,,]

: , ,

last

g g

j

G Set of streams

I Set of tasks

E Set of states

J Set of real units excludes the virtual units that process shipment and spillage tasks

N Set of event points

I Set of tasks associated with the stream g I I g G

I

η η η∈

⊂ ∈

: , ,
j

Set of tasks that can be performed in unit j I I j J⊂ ∈

: , ,

: , ,

: ,

: ,

: , .

:

p p

e e

c c

e e

spill spill

o o

g

inp

I Set of tasks that produce state e I I e E

I Set of tasks that consume state e I I e E

I Set of spillage tasks I

I Set of virtual shipment tasks I I

E Set of states associated with stream g g G

E Set of inp

⊂ ∈

⊂ ∈

⊂

∈

,

: ,

: ,

inp

int int

fin fin

ut states E E

E Set of intermediate states E E

E Set of final states E E

∈

∈

∈

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 67 -

Parameters

: ,

: ,

: ,

: ,

: ,

i spill

e inp

e

j

i

r Per unit processing cost of task i i I

a Rate of arrival of state e e E

C Capacity of tank corresponding to state e e E

q Cost of changeover from one stream to another in unit j j J

duedt Date at which shipment task i i I

∈

∈

∈

∈

∈

: ,

: , ,

: ,

: ,

o

i o i

i o i

i spill o

i sp

is due

d Amount required to be processed by the shipment task i i I at duedt

u Per unit penalty of the amount by which task i i I fails to meet the target d

p Percentage yield of task i i I and i I

f Feed rate of task i i I

∈

∈

∉ ∉

∉

:

ill o
and i I

b Minimum runlength

∉

Variables

1 ,

0

:

:

1 1,

o

i

e

i

if shipment task i i I takes place at event point
Z

otherwise

S Material available in state e at the beginning of event point

T Time at which event point occurs

if task i is processed between event points and
Y

η

η

η

η

η

η

η

η η

∈
=

+
=

, 1

,

0

1 1 0,

0

, , 1

, ,

spill o

i i j

j

spill

i spill

ship

i o i

i I I

otherwise

if Y and Y i I
V

otherwise

B Amount processed by task i i I between event point and

B Amount by which task i i I fails to complete its target d

η η

η

η
η η

+

∉

= = ∈
=

= ∈ +

= ∈

Diη = The duration for which task i,

spilli I∉ and
o

i I∉ , is processed between η and η +1

3.1 Constraints

3.1.1 Constraints for Einp states

 Input streams for all the product lines flow in simultaneously, and wait in the designated

fixed capacity tanks for the corresponding states. If a tank for an input state fills up, the excess

amount spills. The stock in the tank corresponding to the states
inp

e E∈ at the start of the event

point η +1 is equal to the stock at the start of event point η adjusted by the amount arriving

between event points η and η +1 minus the withdrawal that takes place in case the state is

consumed by a task or is spilled during the period between event points η and η +1. The

expression for updating stock of input states is given by:

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 68 -

, 1 1

, , ()

() D ,
c c

e o spill e

spill

spill

e e e i i i inp

i I i I i I I

i I

S S a T T f B e E
η η η η η η

η
+ +

∈ ∉ ∈

∉

= + − − − ∀ ∈∑ ∑
I

 (1)

 For feasibility reasons, federate
i

f is always much higher than arrival
e

a for all tasks i,

c

e
i I∈ and

inp
e E∈ . Thus, spillage and processing of a state

inp
e E∈ cannot take place

simultaneously. Hence, D 0
iη

> and 0
spill

i
B

η
> cannot be simultaneously true. If state

inp
e E∈

is processed in the first unit of the relevant product line between event point η and η +1 (
i

Y
η

= 1 i.e. D
iη

is positive; see equation (11)), then the equation reduces to

, 1 1
() D

e e e i i
S S a T T f

η η η η η+ +
= + − − , where

spill
i I∉ and

c

e
i I∈ . If state e spills during the period

between event points η and η +1, then the equation reduces to

, 1 1
()

spill

e e e i
S S a T T B

η η η η η+ +
= + − − , where

spill
i I∈ and

c

e
i I∈ . Since

e
S

η
 has to be less than or

equal to the corresponding capacity
e

C (see equation (4)), the variable
spill

i
B

η
will assume a

positive value, and since task
spill

i I∈ has a positive processing cost,
, 1e

S
η +

 will be forced to

assume the value of
e

C . If there is no spillage from the tank corresponding to state e between

event points η and η +1, and if state e is also not processed by the unit between event point η

and η +1 (
i

Y
η

= 0 i.e. D
iη

= 0), then equation (1) reduces to
, 1 1

()
e e e

S S a T T
η η η η+ +

= + −

indicating an increase in the stock position of e in the tank by an amount
1

()
e

a T T
η η+

− .

3.1.2 Constraints for Eint states

The stocks in the intermediate states can be updated using the following constraint:

, 1
D D ,

p c

e e

e e i i i i i int

i I i I

S S p f f e E
η η η η

η
+

∈ ∈

= + − ∀ ∈∑ ∑ (2)

The stock at the start of event point η +1,
, 1e

S
η +

, depends on the opening stock at the

start of event point η , buildup of stock by outflow D
i i i

p f
η

 (where
p

e
i I∈) from the

preceding unit if any, and withdrawal of stock D
i i

f
η

 (where
c

e
i I∈) by the next unit if any.

3.1.3 Constraints for Efin states

Stocks at the finished product states need to be updated by a separate expression to

account for the shipments and the possible shortfalls.

, 1 , 1

()

D () ,
P c

e o e

ship

e e i i i i i i fin

i I i I I

S S p f d B Z e E
η η η η

η
+ +

∈ ∈

= + − − ∀ ∈∑ ∑
I

 (3)

Stock for state e,
fin

e E∈ , at event point η +1 is the stock that was available for that state

at event point η plus the production, if any, of the state between η and η +1 minus any

shipment that takes place at η +1. In the last term at most one
, 1i

Z
η +

can be 1 (see equation

(12)).
ship

i
B is the shortfall, if any, of the targeted amount di of state e.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 69 -

 In this context, it would be worthwhile to note that shipments scheduled on a day are

assumed to take place at the start of the day, i.e., the production in the last unit of a product

line on the day of shipment is not available for shipment.

3.1.4 Capacity Constraints

 The stock in any tank at any point of time cannot exceed its capacity and hence

0 ,
e e

S C e
η

η≤ ≤ ∀ (4)

3.1.5 Changeover Constraints

At any point of time, a unit can changeover to a maximum of one other stream. Thus,

1 ,
j

V j
η

η≤ ∀ (5)

The value of
j

V
η

 should be 1 when there is a changeover in Uj. This requires a constraint

of the following form:

, 1 , 1
1 ,

j

j i i

i I

V Y Y j
η η η

η
+ +

∈

= − ∀∑ (6)

These constraints force
, 1j

V
η +

 to 1, when
i

Y
η

 is 1 and
, 1i

Y
η +

 is 0 for
j

i I∈ .

3.1.6 Event Point Constraints

1

o

i j

i I j

Z V
η η

η
∈

+ ≥ ∀∑ ∑ (7)

Constraint (7) mathematically represents the definition of event point. Accordingly, the

above constraint forces either a changeover in at least one unit at event point η or forces the

date of a shipment to coincide with the time of an event point.

3.1.7 Minimum Run-length Constraints

The minimum run-length is given by the following equation:

1 1 1 1
1

(1) , ,
j j j j j j

T V T V bV V M V V j
η η η η η η η η

η η η− ≥ − − ∀ > (8)

Through this constraint we ensure that any two changeovers in unit Uj will have a gap of

at least b periods. For every combination of 1
j

V
η

= and
1

1
j

V
η

= ,
1

η η> the constraint

reduces to
1

T T b
η η

− ≥ . The term
1

(1)
j j

M V V
η η

− is needed to account for the situation when

1
j

V
η

= and
1

0
j

V
η

= .

It must be noted that the event points are non-overlapping. To ensure that, we add the

following constraint:

1
T T

η η
δ η

+
− ≥ ∀ (9)

Where δ is any small positive quantity.

3.1.8 Unit Allocation Constraints

Exactly one task can be assigned to unit j for processing during event point η . So

1

j

i

i I

Y
η

η
∈

= ∀∑ (10)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 70 -

It may be noted that had we allowed shutdown of the units, then the equality constraint

would have to be replaced by the inequality (≤) constraint.

3.1.9 Duration Constraints

1
() = D ,

i i
T T Y i

η η η η
η

+
− ∀ (11)

If
i

Y
η

= 1, then the duration for which task i,
o

i I∉ and
spill

i I∉ is processed between event

points η and η +1, D
iη

 is equal to
1

T T
η η+

− ; otherwise D
iη

is equal to 0.

3.1.10 Shipment Date Constraints

i
Z

η
 is 1 if the time T

η
 of event point η coincides with the due date of shipment task i,

o
i I∈ , otherwise it is 0. Further the time of no more than one event point should coincide with

the due date of task
o

i I∈ . We achieve this by specifying the following set of constraints:

() 0 ,

1

i i o

i o

T duedt Z i I

Z i I

η η

η

η

η− = ∀ ∈

= ∀ ∈∑ (12)

Please recall that the shipment tasks belonging to the set Io do not require any processing

time. They are assumed to be instantaneous.

3.1.11 Horizon Constraints

In our formulation we stipulate the first event point to occur at the beginning of the

scheduling horizon i.e.
1

1T = and the last event point to be at the end of scheduling horizon.

To ensure that the last event point actually marks the end of the scheduling horizon,
last

T H= ,

the value of H fed into the model is one more than the length of the scheduling horizon. Thus,
1

1

1

() 1
last

T T H

η

η η

η

−

+

=

− = −∑ (13)

Remaining event points get distributed within the scheduling horizon. Further, we add the

following constraints:

T H
η

η≤ ∀ (14)

1T
η

η≥ ∀ (15)

D 1

j

i

i I

H j
η

η ∈

≤ − ∀∑∑ (16)

 To avoid possible resource violations in the next scheduling horizon, we stipulate that

at the end of the scheduling period under consideration, the streams running in the units must

have completed the minimum run-length.

3.2 Objective Function

The objective is to develop a schedule that would lead to least overall cost. The objective

function to be minimized is given by:

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 71 -

min
c

spill o e

spill ship

i i j j i i

i I j i I I

rB q V u B
η η

η η∈ ∈

+ +∑∑ ∑∑ ∑
I

 (17)

The first term gives the cost of spillage, the second term represents the cost of

changeovers and the third term denotes the penalties for shipment failures.

The above formulation has nonlinear terms in some of the constraints. In most of the

cases non linearity involve bilinear products of continuous and binary variables. Equation (6),

however, involves bilinear product of two binary variables. Employing standard linearization

techniques ([6], [10]) it is possible to remove all the non-linearity from the proposed

formulation.

4 Computational Experience

The model was tried out in the Lube Block of a refinery in India. The Block has three

processing units, and is responsible for three products. Each product needs to be processed by

all the three units in the same sequence. Table 2 shows the fixed data collected from the

refinery. The cost parameters have been masked, maintaining the relative importance of these

parameters. The tank capacities are assumed to be 10000 Mt for all tanks for easy comparison

of the input data for the cases considered.

Table 2: Fixed Data

Number of Units: 3 {U1: FEU; U2: SDU; U3: HFU}

Number of Input states: 3 {1:IO; 2:HO; 3:DAO}

Number of Final states: 3 {1:IN; 2:HN; 3:BN}

Minimum Run Length (b): 3 days

Capacity (Mt): 10000 (For all streams for all levels)

Changeover cost (qj): 20 (Same for all j)

Stream

(g)

1

2

3

Input Rate

(ae,e∈Einp&

e∈Eg
) (MtPD)

620

255

310

Feed rate of stream g

in unit j (MtPD)

FEU SDU HFU

1250 780 546.0

1030 576 403.2

1050 521 364.7

Yield Percentage of

stream g in unit j

FEU SDU HFU

60 70 99

50 70 99

65 70 99

Spillage

Penalty

(ri)

10

12

14

Shipment

Penalty

(ui)

14

12

10

The values of
1j

V and
,

last
j

V
η

 were predefined to 1 for all j. The model, therefore,

constrains the last run of the planning period in a unit to complete the minimum run-length.

The model was solved using GAMS/XPRESS on NEOS ([5]).

To schedule operations in the units for a given scheduling horizon, we need to input (a)

the number of event points to be used, (b) the schedule of shipments during the period under

consideration, and (c) the stock positions in all the tanks at the start of day 1. The tanks before

the first unit of the sequence are designated as level 0 tanks, and tanks after unit Uj are level j

tanks. Thus, spillage is possible only from level 0 tanks and shipments take place from level 3

tanks.

To generate the test cases, we first chose a base case with a scheduling horizon of two

weeks (H = 15) as given in Table 3. A close look at the input data would reveal that more than

one stream would start spilling within first b (minimum run length) days of the scheduling

horizon, if not processed. The Input Rate column (Table 2) along with the Level 0 stocks

(Table 3) considered together, show that stream 1, steam 2, and stream 3, if not processed in

U1, would start spilling on day 6, day 3 and day 1 respectively. Since any stream picked up

first for processing must run for at least 3 (b) days, some spillage is unavoidable. Again, given

the stock positions at level 3 at the start of day 1, Unit 3 would require a total of 13.82 days of

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 72 -

processing to fully satisfy both the shipments. As discussed in section 3.1.3, shipments due on

14th must be ready by the end of day 13. Further, to meet the requirement of stream 1, Unit 3

has to process it only for one and half days ((required – available)/(U3 feederate * yield

percentage for stream 1)). But, if scheduled, stream 1 has to be run for 3 days to satisfy the

minimum run length. Thus, there is bound to be some shipment failure penalties as well.

Table 3: Base case results with two weeks scheduling horizon

Case

No.

Input Data

Solution details for

different event points
Stock Position

At start of day 1

(Mt)

Scheduled Shipments

(Mt)

Levels
Day

Streams
η

Solution

Cost

Time

(Sec) 0 1 2 3 1 2 3

Base

_H15

6370

9255

9810

3750

4424

5000

2000

5403

4635

1000

1000

2361

8

14

-

1800

2000

3000

2200

1000

5

6

7

8

9

10

19089.31

15929.50

9749.47

9729.50

9749.50

9769.47

0.006

1.217

4.010

7.318

26.007

46.622

An appropriate choice for the number of event points in a continuous time model is an

unresolved issue. However, like in most other continuous time models, we also follow the

approach of starting with a small number of event points, and then keep on solving the

problem iteratively with one additional event point at each iteration. As can be seen from the

results of the base case (Table 3), the solution kept on improving till 8 event points, and then

started deteriorating with each additional event points. The time required to solve the MILP

goes up with event points. Figures 3 and 4 are the Gantt Charts for the base case schedules

with event points 8 and 9 respectively.

Every schedule must utilize all the event points given as input. With η = 8, two event

points were at the beginning and at the end of the scheduling horizon, the last one being at the

start of day 15. Changeovers in units took place at event points 2, 3, 5 and 6. Event points 4

n=5 n=6

 Time

n=1 n=8 n=7 n=4

 Figure 3: Gantt chart for the base case with η = 8

n=3 n=2

Unit 3

Unit 2

Unit 1

Stream 3

Stream 2

Spillage Costs
Stream 1 to be spilled by 90 units; cost=900

Stream 2 to be spilled by 20 units; cost=240

Shipment failure Costs

Stream 3 shipment failure by 838.95 units; cost= 8389.5

Changeover Costs

Number of changeovers in unit 1 =5 (=1, 2, 3, 6, 8)

Number of changeovers in unit 2 = 2 (=1, 8)

Number of changeovers in unit 3 = 3 (=1, 5, 8)

Stream 1

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 73 -

and 7 flushed with the start of day 8 and day 14 respectively to enable the shipments due on

those days. When we specify nine event points (Figure 4) no rearrangements could be found to

improve the spillage and shipment penalties. The additional event point was accommodated in

the schedule by processing stream 2 followed by stream 1 in U2 instead of a continuous stretch

of stream 3 when there were 8 event points.

We generated six additional test cases by altering the initial stock positions and/or the

shipment schedule of the base case. The first three cases have identical initial stock positions

as the base case, and hence, some amount of spillage is unavoidable. These three cases differ

in the shipment schedules both in number of shipments and the quantities to be shipped. In the

last three cases initial stock positions are altered in a manner so that spillage is not inevitable.

The only difference between case 5 and case 6 is that some additional 1000 units of stream 2

finished product is available in level 3 tank in case 5.

Table 4 shows the input data and the results of the cases with two weeks planning

horizon.

A quick look at the Solution Costs (objective function value) would reveal that, in each

case, as we increase the number of available event points, the objective function value

improves till a particular number of event points, η*, and then it either worsens or remains

unaltered. Are we hitting the optimal solution for the case at the corresponding η*? In cases 4

and 5,we can conclude to have reached the optimal solutions with six event points since, in

both cases, all spillage and shipment penalties could be avoided, and the final cost is due to

changeovers only. As we introduce more event points, since all the event points must be

utilized, the solution gets be forced to introduce additional changeovers. In cases 1 and 2, just

like the base case, both spillage and shipment shortfall are unavoidable. However, in case 3,

since the shipment targets are less compared to cases 1 and 2, the model could avoid shipment

shortfall. But, the Level 0 stock positions being the same, the spillage penalty incurred was the

same. Similarly, in case 6, the spillage could be avoided as in case 5, but with lesser amount of

stream 2 product at level 3 compared to case 5, some amount of shipment shortfall was

inevitable. Thus, one is tempted to believe that we do hit the optimal solution at η*, though a

formal proof of the same would be in order.

n=3 n=6 n=7

 Time

n=1
n=9 n=8 n=5

 Figure 4: Gantt chart for the base case with η = 9

n=4 n=2

Unit 3

Unit 2

Unit 1

Stream 3

Stream 2

Stream 1

Spillage Costs
Stream 1 to be spilled by 90 units; cost=900

Stream 2 to be spilled by 20 units; cost=240

Shipment failure Costs
Stream 3 shipment failure by 838.95 units; cost= 8389.5

Changover Costs

Number of changeovers in unit 1 =5 (=1, 2, 4, 6, 9)

Number of changeovers in unit 2 = 3 (=1, 3, 9)

Number of changeovers in unit 3 = 3 (=1, 7, 9)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 74 -

Table 4: Test case results with scheduling horizon of two weeks (H = 15)

Case

No.

Stock Position

At start of day 1 (Mt)

Scheduled Shipments

(Mt)

Solution details for

different event points

Levels
Day

Streams
η

Solution

Cost

Time

(Sec) 0 1 2 3 1 2 3

1

6370

9255

9810

3750

4424

5000

2000

5403

4635

1000

1000

2361

14 1500 5000 3140

5

6

7

8

9

17278.9

8360.0

8340.0

8360.0

8380.0

0.854

2.131

4.558

5.302

15.074

2

6370

9255

9810

3750

4424

5000

2000

5403

4635

1000

1000

2361

8

14

-

1500

3000

2000

2200

1000

5

6

7

8

9

22439.9

14540.0

8340.0

8340.0

8360.0

0.587

1.220

3.120

6.906

9.239

3

6370

9255

9810

3750

4424

5000

2000

5403

4635

1000

1000

2361

14 5000 3140 1500

5

6

7

8

9

12934.3

1400.0

1380.0

1380.0

1380.0

0.861

1.514

3.243

7.042

18.130

4

6370

8255

7810

8750

7424

8000

2000

2403

1635

1000

1000

2361

14 5900 - 2700

5

6

7

8

9

738.1

200.0

220.0

240.0

240.0

1.039

1.588

1.716

1.787

2.404

5

6370

6255

6810

3750

4424

5000

2000

5403

4635

1000

2000

2361

8

14

-

1500

3000

2000

2200

1000

5

6

7

8

9

2669.9

180.0

200.0

220.0

240.0

0.478

1.225

1.719

2.184

0.276

6

6370

6255

6810

3750

4424

5000

2000

5403

4635

1000

1000

2361

8

14

-

1500

3000

2000

2200

1000

5

6

7

8

9

7160.0

7160.0

7180.0

7200.0

7220.0

0.414

1.231

3.290

5.133

13.651

We tried out our model for longer planning horizons as well. With extended planning

horizons, we need to provide more event points, and the model becomes sluggish with increase

in event points. Table 5 gives the results of the base case for planning horizons of 21 and 30

days with one and two additional shipments, respectively. The model spends about seven hours

with 14 event points in case of H = 22, and five hours with 13 event points in case of H = 31,

and the solutions are still improving.

5 Concluding Remarks

The paper has developed a continuous time model based on global event points for a

class of scheduling problems frequently encountered in continuous process plants. The model

provides reasonably good solution within reasonable time for scheduling horizons of up to two

weeks. Surely the model would help the short term planners with a tool to conduct what-if

analyses for various possible shipment schedules.

The model needs to be further worked upon in two different counts. Firstly, it is only our

conjecture that once the solution stabilizes (or worsens) with increase of event points, it cannot

be improved further by allowing more event points. But it needs to be mathematically shown

that allowing further event points would not improve the solution. Secondly, the model

assumes sequence independent setup cost which is not a reality. The consequent complexity

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 75 -

can complicate the model further and make it run slower. The assumption of instant

changeovers can be relaxed easily so long it is sequence independent.

Table 5: Scheduling with H= 22 and H = 31

Case

No.

Stock Position

At start of day 1 (Mt)

Scheduled Shipments

(Mt)

Solution details for different

event points

Levels
Day

Streams
η

Solution

Cost

Time

(Sec) 0 1 2 3 1 2 3

H22

6370

9255

9810

3750

4424

5000

2000

5403

4635

1000

1000

2361

8

14

21

-

1800

1900

2000

3000

1200

2200

1000

-

9

10

11

12

13

14

12281.8

10981.6

10309.3

8999.0

8969.1

8949.1

74.370

54.094

245.972

1547.440

3641.455

25680.458

H31

6370

9255

9810

3750

4424

5000

2000

5403

4635

1000

1000

2361

8

14

21

30

-

1800

1900

1650

2000

3000

-

1200

2200

1000

1500

1100

9

10

11

12

13

34798.4

25467.2

19279.6

17510.8

14394.3

52.030

921.651

1225.760

4181.931

17898.417

References

1. Alle, A., Papageorgiou, L. G., and Pinto, J. M., A mathematical programming approach

for cyclic production and cleaning scheduling of multistage continuous plants, Computers

and Chemical Engineering, 28, 3–15 (2004).

2. Bose, S. K., and Bhattacharya, S., A state task network model for scheduling operations in

cascaded continuous processing units, Computers and Chemical Engineering, 33, 287–95

(2009).

3. Bose, S. K., and Bhattacharya, S., A two pass heuristic algorithm for scheduling ‘Blocked

Out’ units in continuous processing industry, Annals of Operations Research, 159(1),

293–313 (2008).

4. Chen, X., Grossmann, I., and Zheng, Li, A comparative study of continuous-time models

for scheduling of crude oil operations in inland refineries, Computers and Chemical

Engineering, 44, 141-167 (2012).

5. Czyzyk, J., Mesnier, M., and Moré, J., The NEOS Server, IEEE Journal on

Computational Science and Engineering, 5, 68–75 (1998).

6. Floudas, C. A., Nonlinear and mixed-integer optimization, Oxford University Press

(1995).

7. Floudas, C. A., and Lin, X., Continuous-time versus discrete-time approaches for

scheduling of chemical processes: A review, Computers and Chemical Engineering, 28,

2109–29 (2004).

8. Giménez, D. M., Henning, G. P., and Maravelias, C. T., A novel network-based

continuous-time representation for process scheduling: Part I. Main concepts and

mathematical formulation, Computers and Chemical Engineering, 33(9), 1511-1528

(2009).

9. Giménez, D. M., Henning, G. P., and Maravelias, C. T., A novel network-based

continuous-time representation for process scheduling: Part II. General framework,

Computers and Chemical Engineering, 33(10), 1644-1660, (2009).

10. Glover, F., Improved linear integer programming formulations of nonlinear integer

problems, Management Science, 22, 455–60 (1975).

11. Grossmann, I. E., Quesada, J., Raman, R., and Voudouris, V., Mixed integer optimization

techniques for the design and scheduling of batch processes, Batch Processing Systems

Engineering. Springer, Berlin, 451–94 (1996).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 76 -

12. Hazaras, M. J., Swartz, C. L. E., and Marlin, T. E., Flexible maintenance within a

continuous-time state-task network framework, Computers and Chemical Engineering, 46,

167-177 (2012).

13. Ierapetritou, M. G., and Floudas, C. A., Effective continuous-time formulation for short-

term scheduling. 2. Continuous and semicontinuous processes, Ind. Eng. Chem. Res., 37,

4360–74 (1998).

14. Ierapetritou, M. G., Hene, T. S., and Floudas, C. A., Effective continuous-time

formulation for short-term scheduling. 3. Multiple intermediate due dates, Ind. Eng. Chem.

Res., 38, 3446–61 (1999).

15. Janak, S.L. and Floudas, C.A., Improving unit-specific event based continuous-time

approaches for batch processes: Integrality gap and task splitting, Computers and

Chemical Engineering, 32(4–5), 913-955 (2008).

16. Jain, V., and Grossmann, I. E., Cyclic scheduling of continuous parallel-process units with

decaying performance, AIChE Journal, 44, 1623–36 (1998).

17. Jia, Z., and Ierapetritou, M. G., Efficient short term scheduling of refinery operations

based on continuous time formulation, Computers and Chemical Engineering, 28, 1001–

19 (2004).

18. Kallrath, J., Planning and scheduling in the process industry, OR Spectrum, 24, 219–50

(2002).

19. Kondili, E., Pantelides, C. C., and Sargent, R. W. H., A general algorithm for short-term

scheduling of batch operations - 1. Mixed integer linear programming formulation,

Computers and Chemical Engineering, 17, 211–27 (1993).

20. Kopanos, G. M., Kyriakidis, T. S., and Georgiadis, M. C., New continuous-time and

discrete-time mathematical formulations for resource-constrained project scheduling

problems, Computers and Chemical Engineering, 68, 96-106 (2014).

21. Liu, Y. and Karimi, I.A., Novel continuous-time formulations for scheduling multi-stage

batch plants with identical parallel units, Computers and Chemical Engineering, 31(12),

1671-1693 (2007).

22. Luo, C. P., and Rong, G., Hierarchical approach for short-term scheduling in refineries,

Ind. Eng. Chem. Res. 46, 3656–68 (2007).

23. Marchetti, P. A., and Cerdá, J., A general resource-constrained scheduling framework for

multistage batch facilities with sequence-dependent changeovers, Computers and

Chemical Engineering, 33, 871–86 (2009).

24. Mendez, C. A., Cerdá, J., Grossmann, I.E., Harjunkoski, I., and Fahl, M., State-of-the-art

review of optimization methods for short-term scheduling of batch processes, Computers

and Chemical Engineering, 30, 913–46 (2006).

25. Mendez, C., Henning, G. P., and Cerda, J., Optimal scheduling of batch plants satisfying

multiple product orders with different due dates, Computers and Chemical Engineering,

24, 2223–45 (2000).

26. Pochet, Y., and Warichet, F., A tighter continuous time formulation for the cyclic

scheduling of a mixed plant, Computers and Chemical Engineering, 32(11), 2723-2744

(2008).

27. Schilling, G., and Pantelides, C. C., A simple continuous time process scheduling

formulation and a novel solution algorithm, Computers and Chemical Engineering,

20(suppl.), S1221–S1226 (1996).

28. Shaik, M.A., and Floudas, C.A., Unit-specific event-based continuous-time approach for

short-term scheduling of batch plants using RTN framework, Computers and Chemical

Engineering, 32(1–2), 260–274 (2008).

29. Wang, S., and Guignard, M., Redefining Event Variables for Efficient Modeling of

Continuous-Time Batch Processing, Annals of Operations Research, 116, 113–26 (2002).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 77 -

MISTA 2015

Scheduling optimization of a real flexible job shop
including side constraints regarding maintenance, fixtures,
and night shifts

Karin Thörnblad · Ann-Brith Strömberg ·
Michael Patriksson · Torgny Almgren

Abstract We present a generic iterative procedure for the scheduling of a real flexible

job shop, the so-called multitask cell at GKN Aerospace Engine Systems in Sweden.

A time-indexed formulation of the scheduling problem is presented—including side

constraints regarding preventive maintenance, fixture availability, and unmanned night

shifts. This paper continues the work in ”Scheduling optimisation of a real flexible

job shop including fixture availability and preventive maintenance” [Thörnblad et al.,

European Journal of Industrial Engineering, to appear, 2015], with an improvement

of the iterative solution procedure, and the inclusion of constraints regarding night

shifts during which only unmanned processing is allowed to be scheduled. Schedules

resulting from our procedure and from the use of two priority dispatching rules are

compared. The gain of including the night shifts constraints is significant. Despite the

added complexity, our methodology produces near-optimal schedules for industrial data

instances for the coming shift within an acceptable practical time frame.

1 Introduction

The multitask production cell at GKN Aerospace Engine Systems, Sweden contains ten

resources, five of which being multi-purpose machines capable of performing three types

of processing tasks: turning, milling, and drilling. The problem of optimally scheduling

this production cell is recognized as a flexible job shop scheduling problem (FJSP) [33].

Karin Thörnblad
GKN Aerospace Engine Systems
E-mail: karin.thornblad@gknaerospace.com

Ann-Brith Strömberg
Chalmers University of Technology and University of Gothenburg
E-mail: anstr@chalmers.se

Michael Patriksson
Chalmers University of Technology and University of Gothenburg
E-mail: mipat@chalmers.se

Torgny Almgren
GKN Aerospace Engine Systems
E-mail: torgny.almgren@gknaerospace.com

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 78 -

In [35] we propose an iterative solution procedure which produces near-optimal

schedules for real instances of the FJSP modelling the multitask cell, including side

constraints describing a limited fixture availability and required preventive mainte-

nance (PM). This article improves the modelling as well as the iterative procedure

developed in [35]. We introduce constraints regarding night shifts—during which only

unmanned procesing is allowed to be scheduled—and further improve the iterative

solution procedure. The resulting schedules are compared with schedules constructed

using two priority dispatching rules, one of which is often utilized in practice, and the

other is a built-in scheduling method in the control system of the multitask cell.

2 Literature review

In a job shop each job follows a predetermined sequence of operations [26, Chapter

2]. Each operation must be scheduled for processing in a designated machine during a

predefined amount of processing time. A flexible job shop is a generalization of a job

shop such that each operation may be scheduled in any of the machines in a given

subset of the resources [7, Chapter 4].

Since the job shop scheduling problem (JSP), and hence also the FJSP, are NP-

hard [6], these problems have gained interest from researchers ever since the late 1950’s

when [36], [4], and [21] proposed the first mathematical models for similar scheduling

problems. Since the computation times required for solving JSPs and FJSPs by exact

methods previously have been considered too long for practical purposes, a lot of

research has focused on finding approximate solutions to these problems using heuristic

methods [5].

Nowadays, due to the development of mathematical optimization theory and prac-

tice,—and of computer hard- and software—it is possible to find near-optimal schedules

for real industrial instances using exact methods. In [35], we solve, within an acceptable

time frame, a real FJSP for the coming work shift in the GKN multitask cell.

The objective that is most often utilized for scheduling problems is the minimiza-

tion of the makespan, i.e., the time between the start of the first operation and the

completion of the last operation of the schedule [17]. In [34], we noted a large difference

in the performance of scheduling models depending on which objective was considered.

Hence, it is of great importance that the evaluation of scheduling models are made with

respect to objective functions that are well suited for the real applications modelled.

In ibid. we argue that the minimization of the makespan is badly suited for a dynamic

environment, in which the job shop needs to be repeatedly rescheduled; this is also the

case in most real applications. Instead, we propose to minimize the weighted sum of the

completion times and the total weighted tardiness, which—when the tardiness weight

for each given job is a non-increasing function of its due date—has proven to work well

in a dynamic environment. The rescheduling policy proposed is a hybrid event-driven

policy, including a periodic rescheduling with respect to a rolling time horizon, and an

immediate rescheduling at any urgent event (as, e.g., a machine break-down). In the

survey of dynamic scheduling [23] several dynamic scheduling policies are described.

In the operations research literature, there are many mathematical optimization

models of the JSP and the FJSP employing variables similar to those utilized by

Manne [21] in 1960. In the evaluations made by Pan [25] and Demir and İşleyen [9]

for the JSP and the FJSP, respectively, the Manne models were found to be the best.

Both of these studies were conducted with the objective of minimizing the makespan

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 79 -

and the comparisons were made with several alternative models employing variables

similar to those utilized by Wagner [36] and Bowman [4]. The Bowman models are

called time-indexed models since they are based on a time discretization of the planning

horizon. The decision variables used in [4] equal 1 if the corresponding job is processed

by a specific resource during a specific time period, and 0 otherwise. An alternative

definition of time-indexed decision variables is utilized by Sousa and Wolsey [30]: a

variable equals 1 if the corresponding job starts in a specific discrete time step, and 0

otherwise.

According to [9] the best Manne model available is found in [24]. [34] compare

this model with an iterative scheduling procedure employing a time-indexed model

with decision variables according to [30]. The iterative scheduling procedure solves the

time-indexed model for iteratively smaller time steps, i.e., with an increasing accuracy.

The value of the makespan for the best schedule found in one iteration is used to

determine the length of the time horizon for the next iteration in order to keep the

total number of time steps required for the model in each iteration of the procedure as

small as possible. When the objective to minimize the weighted sum of the completion

times and the tardiness was employed, our iterative scheduling procedure outperformed

the Manne model. However, [1] compared a Manne model (therein referred to as a

”disjunctive model”) with a time-indexed model for a JSP with non-fixed resource

availability constraints (i.e., including PM activities), and in their case the Manne

model performed the best. The latter comparison was, however, made for the objective

of minimizing the makespan, and the time-indexed model was solved as is, i.e., without

an iterative procedure for determining a suitable value of the time horizon.

To the best of our knowledge, there is no published mathematical optimization

model of an FJSP extended to take fixture availability, PM, and/or unmanned night

shifts into account. The only published work found concerning an FJSP including fix-

ture availability constraints are [27] and [32]; both describe simulation-based scheduling

approaches; the latter studies the multitask cell at GKN and includes fixture availabil-

ity constraints and unmanned night shifts.

The constraints describing the scheduling of necessary PM activities are often called

availability constraints in the literature. [13] categorize availability constraints into two

types: fixed and non-fixed. When employing fixed availability constraints, the PM ac-

tivities are already scheduled at fixed time slots, during which the resources are un-

available for processing. We consider non-fixed availability constraints, i.e., the starting

time of the period of unavailability is flexible within a time window and is determined

simultaneously with the production scheduling. [13], [37], and [28] consider the FJSP

with non-fixed availability constraints and three objectives: makespan, total workload,

and critical machine workload ; a hybrid genetic algorithm, a filtered beam search al-

gorithm, and a GRASP algorithm, respectively, is proposed.

Besides [32] we have found no published work considering the opportunity to sched-

ule unmanned processing during night shifts, although the problem is not unique for

the multitask cell at GKN: for example, [29] find it desirable to utilize the unmanned

night shifts as much as possible. A similar problem arises when scheduling personnel

having varying skills and working in shifts; see [2] for a recent survey of this field of

research.

In Section 3, the scheduling problem is described in detail and the notation of the

mathematical model is presented. Section 4 describes a number of priority dispatching

rules. In Section 5, the time-indexed model for the FJSP, including the limited fixture

availability, the required PM activities, and the unmanned night shifts, is presented.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 80 -

The iterative solution procedure is described in Section 6, and in Section 7 the com-

putational results based on real data are presented. Finally, in Section 8, conclusions

are drawn.

3 Problem description

The multitask cell presently executes about 30 types of jobs on eight products. Each

job consists of a set of operations that must be processed according to a predefined

sequence. The first and the last operation of each job consist of the mounting into and

demounting out of fixtures in one of the three set-up stations. Hence each job occupies

a fixture throughout the whole job, and since the availability of each fixture type is

limited, this constraint must be included in the scheduling problem. For most opera-

tions there is a flexibility in the choice of processing resource, that is, most operations

are allowed to be processed in a subset of the resources.

The products typically visit the multitask cell multiple times on their way to com-

pletion, which implies the need for precedence relations between jobs. Unmanned pro-

cessing is allowed at the start and/or at the end of some operations. Therefore these

operations may be scheduled with the unmanned part during night shifts when no op-

erators are present in the multitask cell. The jobs considered in the scheduling problem

consist both of the jobs present in the multitask cell at the time of scheduling and of

some jobs on their way to the cell. The release date of the first operation of each job

equals the corresponding product’s expected arrival time at the multitask cell. How

many jobs to include is determined by the time T new when the scheduling problem is

planned to be solved afresh with new data; all jobs with release dates less than T new

should be considered in the scheduling problem. Note that since the optimal scheduling

of the jobs considered may result in a makespan that is substantially longer than the

planned time of rescheduling, but after time T new this schedule is of poor quality since

the jobs with release dates longer than T new should be considered for the scheduling

of this part of the planning horizon. All resources, except for the set-up stations, must

be maintained periodically within a time window. A resource is occupied by the PM

task while it is maintained.

The multitask cell is described more in detail in [33, 35]. The notation of sets,

parameters, and indices used in this paper is summarized in Table 1. The assumptions

regarding the flexible job shop of the multitask cell are given by the following list of

items:

1. Job j has nj operations that must be processed in a predefined order.

2. The operations i ∈ Nj := {1, . . . , nj} of the jobs j ∈ J are non-preemptive, i.e.,

once started, an operation must be completed.

3. The execution of operation i of job j requires a machine selected from a subset

Mij ⊆ K of the set of available machines (i.e., resources) K.

4. Time is discretized into the set T of time steps. We will use the terms ”time” and

”time step” to denote points in time.

5. Resource k ∈ K is available for processing from time ak and onwards.

6. The transportation times between the machines inside the multitask cell are ne-

glected.

7. All the machines can be maintained simultaneously.

8. At the time when a maintenance task j ∈ Jmaint is performed on a machine, no

operation can be processed on that machine.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 81 -

9. Each maintenance task must start within a predefined time window.

10. Each job j ∈ Sf ⊂ J occupies a fixture of type f ∈ F during all of its operations.

11. The number of available fixtures of each type f is limited.

12. During the unmanned (night) shifts, solely unmanned processing is allowed to be

scheduled.

13. Some jobs (j, q) ∈ Q ⊂ J × J are subject to precedence constraints with a time

lag vjq, i.e., job j has to be completed at least vjq time steps before job q starts.

Table 1 Nomenclature

Sets Descriptions

Nj set of operations of job j; Nj = {1, . . . , nj}
J set of jobs

Jmaint set of preventive maintenance (PM) tasks
Q set of pairs of jobs with precedence constraints; Q ⊂ J × J
K set of machines (i.e., resources)
Ksetup set of set-up stations
Mij set of machines allowed to process operation i of job j, i ∈ Nj , j ∈ J
T set of time steps; T = {0, . . . , T − 1}
F set of fixture types
Sf set of jobs that use fixtures of type f ∈ F ; Sf ⊂ J
P set of night shifts

Parameters Descriptions

nj total number of operations of job j, j ∈ J
pij processing time of operation i of job j, i ∈ Nj , j ∈ J
rij release date (time) of operation i of job j, i ∈ Nj , j ∈ J
r̂n(r̄n) start (end) time of night shift n, n ∈ P
r̂ijn(r̄ijn) intermediate deadline (release date) of operation i of job j before (after)

night shift n, i ∈ Nj , j ∈ J , n ∈ P
δij remaining processing time of job j at the start of operation i, i ∈ Nj , j ∈ J
dj due date (time) of job j, j ∈ J
ak time when resource k ∈ K becomes available
T number of time steps in the time horizon
` length [hours] of each time step
λijk = 1 if operation i of job j can be processed on resource k, i.e., if k ∈ Mij ,

= 0 otherwise, i ∈ Nj , j ∈ J , k ∈ K
γf total number of fixtures of type f , f ∈ F
κjk = 1 if PM task j should be performed in resource k,

= 0 otherwise, j ∈ Jmaint, k ∈ K \ Ksetup

τjk start time of the time window for PM task j in resource k, j ∈ Jmaint, k ∈ K \ Ksetup

∆ length (in time steps) of the PM time window
αj(βj) objective weight for the completion time (tardiness) of job j, j ∈ J
ε objective weight for the first operation of each job j, 0 < ε� αj , j ∈ J
εmaint objective weight for the PM tasks

During a (possibly empty) time interval at the start and/or end of each operation a

certain amount of unmanned processing is allowed. Hence, also parts of unmanned jobs

may be scheduled during night shifts (see item 12 above). In fact, for some operations

unmanned processing is allowed throughout the whole operation. Should this property

hold for all operations, the night shifts could be scheduled analogously with the day

shifts. However, the first (i = 1) and last (i = nj) operations of each job j, i.e., the

mounting into and demounting out of fixtures, are always entirely manual. Currently,

for about half of the operations that are performed in any of the five multipurpose

machines, an operator must be present during part of the processing time. Two partly

unmanned scheduled operations are illustrated in Figure 1.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 82 -

Fig. 1 Night shift 1 starts (ends) at time r̂1 (r̄1). Operation i (i′) of job j (q) with processing
time pij (pi′q) is scheduled such that its allowed unmanned period (striped) is maximally
utilized.

We denote by r̂n (r̄n) the start (end) time of night shift n. Further, we denote by

pend
ij (pstart

ij) the amount of unmanned processing time allowed towards the end (at the

beginning) of operation i of job j. An intermediate deadline for night shift n is then

defined as

r̂ijn := r̂n − (pij − pend
ij), (1a)

and an intermediate release date for night shift n is defined as

r̄ijn := r̄n − pstart
ij . (1b)

In Figure 1, operations i and i′ are scheduled such that the night shift is maximally

utilized, i.e., operation i of job j is scheduled at its intermediate deadline, r̂ij1, and

operation i′ of job q at its intermediate release date r̄i′q1.

The precedence relations between jobs (Item 13 above) exist due to the fact that the

products typically visit the multitask cell multiple times on their way to completion.

After job j is completed, the corresponding product is transported to and processed in

other workshops in the factory during vjq time steps before returning to the multitask

cell for processing of job q, (j, q) ∈ Q ⊂ J × J .

The release date r1j of the first operation of job j equals the expected arrival time

of the corresponding part at the multitask cell. The release date of operation i is then

calculated as rij := ri−1,j + pi−1,j , i = 2, . . . , nj .

4 Priority dispatching rules

The most well-known and widely used dispatching rule is probably the first–in, first–

out (FIFO) priority rule; it is also currently used as a decision support in the detailed

production planning of a majority of the workshops at GKN Aerospace Engine Sys-

tems. Research on dispatching rules has been active for several decades and over 100

dispatching rules are proposed in the literature; see [15]. For an extensive summary and

discussion on priority dispatching rules, see [3] and [14]. The research on dispatching

rules is still a relevant topic: these rules are widely used in practice (e.g., at GKN),

researchers still propose new dispatching rules [20], and priority dispatching rules are

often included in meta-heuristics developed for production planning problems [8].

Dispatching rules can be classified in various ways; a distinction can, e.g., be made

between static and dynamic rules [26]. Dynamic rules are time dependent, i.e., the

priorities change over time, whereas static rules (as, e.g., the FIFO priority rule) are

not.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 83 -

The built-in scheduling algorithm in the control system of the multitask cell is

based on a critical ratio (CR) (see [18]) defined as

CRj(t) :=

min
i∈Nj

{(
1 + (dj − t) |Mij |

) (
1 +

∑nj

i′=i pi′j
)−1

}
, dj > t,

min
i∈Nj

{[
1 + (t− dj) |Mij |

(
1 +

∑nj

i′=i pi′j
)]−1

}
, dj ≤ t,

(2)

for all j ∈ J , where the sums of processing times over operations equal the total

remaining processing time for the corresponding job. The job is assigned the minimum

critical ratio among its operations. At time t the job j possessing the lowest value of

CRj(t) is given the highest priority. When a job is late, i.e., dj ≤ t, the job is given

a higher priority, since then CRj(t) is decreased. If a machine is available at time t,

then the operation corresponding to the job with the highest job priority is scheduled

in this machine, provided that all precedence constraints and other side constraints are

fulfilled.

In this article, we will compare the schedules found by our iterative scheduling

procedure with those constructed by the static FIFO rule and the dynamic CR rule

based on (2).

5 The time-indexed formulation

Time-indexed models are based on a discretization of the planning horizon, which is

divided into a set T := {0, . . . , T−1} of intervals, each of length ` hours. The number

T of time intervals must be large enough such that the time horizon [0, T `] can contain

an optimal schedule. We define the decision variables as

xijku =

{
1, if operation i of job j starts at time u in resource k,

0, otherwise,
(3)

where i ∈ Nj , j ∈ J , k ∈ K, and u ∈ T . Similar variable definitions have been

employed by Dyer and Wolsey [10] and Kedad-Sidhoum et al. [19] for single and parallel

machine scheduling problems, respectively. The set of feasible solutions to a general

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 84 -

FJSP is defined by the following constraints:∑
j∈J

∑
i∈Nj

u∑
µ=(u−pij+1)+

xijkµ ≤ 1, k ∈ K, u ∈ T , (4a)

∑
k∈Mij

u∑
µ=0

xijkµ −
∑

l∈Mi+1,j

u+pij∑
ν=0

xi+1,jlν ≥ 0, u ∈ {0, . . . , T−pij}, (4b)

i ∈ Nj \ {nj}, j ∈ J ,∑
k∈Mij

∑
u∈T

xijku = 1, i ∈ Nj , j ∈ J , (4c)

∑
k∈K\Mij

∑
u∈T

xijku = 0, i ∈ Nj , j ∈ J , (4d)

xijku = 0, u∈{0, . . . ,max{rij , ak}−1}, (4e)

k ∈Mij , i ∈ Nj , j ∈ J ,

xijku = 0, u ∈ {T−δij+1, . . . , T−1}, (4f)

k ∈Mij , i ∈ Nj , j ∈ J ,

xijku ∈ {0,1}, i ∈ Nj , j ∈ J , k ∈ K, u ∈ T , (4g)

where (b)+ := max{0, b}, b ∈ R. In the model (4), all parameters are assumed to be

integer-valued; this sometimes necessary approximation of the real data is discussed in

Section 6. The constraints (4a) ensure that at most one operation at a time is scheduled

in each resource. The constraints (4b) define the precedence relations between the

operations of a job. The constraints (4c) ensure that each operation is scheduled to be

processed exactly once in an allowed resource. The constraints (4d) assign the value

0 to all variables corresponding to an operation and the set of resources in which it

may not be processed. These constraints are redundant; we discovered, however, in [34]

that an optimal solution was found earlier (w.r.t. clocktime) when they were included.

The constraints (4e) ensure that no operation is scheduled before its release date or

before an allowed resource is available, and the constraints (4f) eliminate the possibility

to schedule an operation too late such that it or its succeeding operations cannot be

completed before the end of the planning horizon. The inclusion of the constraints (4g)

ensures that the variables only take on binary values.

The time-indexed model formulated in [35] employs a parameter λijk, which equals

1 if operation i of job j is allowed to be processed in resource k, and 0 otherwise. In

this alternative formulation, the set Mij utilized in the current model is replaced by

the set K in the constraints (4b)–(4c), (4e)–(4f) (the constraints (4d) are removed),

and the constraints ∑
u∈T

xijku ≤ λijk, i ∈ Nj , j ∈ J , k ∈ K, (5)

are added to the model. Before the preprocessing is performed in the optimization

solver AMPL-CPLEX12 [12, 16], the model employing the inequalities (5) comprises

more constraints than the model (4). However, after the preprocessing is made by the

solver, we have observed that these two models contain the same numbers of variables

and constraints. The retaining of the constraints (4d) however enables a higher degree of

parallelization of the computations; as a result, the computation time required to solve

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 85 -

the model (4) hence is shorter (w.r.t. clocktime) than when employing the parameters

λijk and replacing the constraints (4d) by (5).

5.1 Constraints unique for the multitask cell

The precedence relations with a time lag between two jobs that are to be performed

on the same physical component, are modelled similarly to the precedence constraints

(4b) between the operations of the same job:∑
k∈Mnjj

u∑
µ=0

xnjjkµ −
∑

k∈M1q

u+vjq∑
ν=0

x1qkν ≥ 0, u = 0, . . . , T−vjq, (j, q) ∈ Q. (6)

In the multitask cell, the three set-up stations, denoted by Ksetup and in which

the physical parts are mounted into and demounted out of fixtures, are identical. All

such operations can thus be performed in any set-up station. In order to eliminate

the corresponding mathematical symmetry, these resources are treated as one, with

a common capacity of three units. The constraints (4a), for k ∈ Ksetup, are hence

reformulated as∑
k∈Ksetup

∑
j∈J

∑
i∈Nj

u∑
µ=(u−pij+1)+

xijkµ ≤ |Ksetup|, u ∈ T , (7a)

and the range for the index k in the constraints (4a) is hence altered to K \ Ksetup,

according to

∑
j∈J

∑
i∈Nj

u∑
µ=(u−pij+1)+

xijkµ ≤ 1, k ∈ K \ Ksetup, u ∈ T . (7b)

5.2 Side constraints regarding fixtures, preventive maintenance, and night shifts

In the multitask cell the number of fixtures of type f simultaneously in use is limited

to γf . Since a part is mounted into the fixture during all the operations of a job, the

limited fixture availability is formulated as

∑
j∈Sf

∑
k∈K

 u∑
µ=0

x1jkµ −
(u−pnjj

)+∑
ν=0

xnjjkν

 ≤ γf , f ∈ F , u ∈ T . (8)

A PM task occupies the corresponding machine during the whole maintenance

operation. Hence, it can be regarded as a job consisting of one operation. Let Jmaint

denote the set of PM tasks. Therefore, for each PM task j ∈ Jmaint, nj = 1 with a

duration p1j . Further, at least κjk occurrences of PM task j on resource k must start

during a predefined time window of length ∆, i.e.,

min{τjk+∆−1,T−p1j}∑
µ=max{τjk,ak}

x1jkµ ≥ κjk, j ∈ Jmaint, k ∈ K \ Ksetup, (9a)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 86 -

where the decision variables x1jku correspond to PM task j ∈ Jmaint. Due to the

objective function (see Section 5.3), in an optimal solution the constraints (9a) will be

fulfilled with equality whenever possible. No PM tasks need to be performed in the

set-up stations. Since no operation can be processed in a resource while maintained,

the capacity constraints (7b) are altered as∑
j∈J∪Jmaint

∑
i∈Nj

u∑
µ=(u−pij+1)+

xijkµ ≤ 1, k ∈ K \ Ksetup, u ∈ T . (9b)

For some alternative formulations of PM scheduling, see [35].

To take the unmanned night shifts n ∈ P into account the constraints

xijku = 0, k ∈Mij , u ∈ {r̂ijn+1, . . . , r̄ijn−1}, i ∈ Nj , j ∈ J , n ∈ P, (10a)

are introduced, where the parameters r̂ijn and r̄ijn are defined in (1). The constraints

(10a) ensure that operation i of job j is not scheduled to start during the interval

between its operation-specific intermediate deadline, r̂ijn, and release date, r̄ijn. Note

that this interval may intersect with daytime, due to the allowed time of unmanned

processing at the start and/or end of the operation. Each PM task requires an oper-

ator present in the multitask cell throughout its duration, which is modelled by the

constraints

x1jku = 0, k ∈ K, u ∈
{
r̂n−p1j+1, . . . , r̄n−1

}
, j ∈ Jmaint, n ∈ P, (10b)

where r̂n (r̄n) denotes the starting (ending) time of night shift n.

5.3 The objective function

As stated in [34] the minimization of the makespan is not suitable as an objective if the

flexible job shop is operating in a dynamic environment. In fact, some jobs then risk

never being processed since nothing prevents a certain job from being scheduled close

to the end of each subsequent schedule—if the rescheduling is performed before the last

job of the previous schedule has started. This risk is reduced if the objective function

includes the tardiness Tj ≥ 0 of job j, multiplied by a weight βj ≥ 0 being proportional

to the job’s delay. Further, at the start of the planning horizon, typically not all jobs

are yet released, but are expected to arrive at the workshop at given release dates. For

an instance with at least one job possessing a very late release date—such that all the

other jobs can be finished before the earliest possible completion time of this job—the

minimization of the makespan would yield an abundance of optimal solutions, some of

which would result in very poor throughput times for the remaining jobs.

We propose an objective function focusing on minimizing the total weighted tardi-

ness. Since instances with no tardy jobs may very well occur in real industrial cases,

we also include a sum of weighted completion times Cj ≥ 0 in the objective, such that

the resulting objective function becomes that to

minimize
∑
j∈J

(
αjCj + βjTj

)
, (11)

where Tj := (Cj − dj)+, and αj > 0, j ∈ J , are objective weights for the completion

times of the jobs. We define the tardiness objective weights as βj := B(1− dj/|dD|)+,

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 87 -

where D denotes the job having the largest absolute due date while not being an

outlier, and the parameter B satisfies B � αj , since tardiness is meant to be the main

objective (see [35]). The completion time can be expressed as

Cj :=
∑

k∈Mnjj

∑
u∈T

(u+ pnjj)xnjjku (12)

and the objective function for the model (4) is formulated as to minimize

z′(x) :=
∑
j∈J

∑
k∈Mnjj

∑
u∈T

([
αj(u+pnjj)+βj(u+pnjj−dj)+

]
xnjjku−εux1jku

)
. (13)

The term −εux1jku is included in (13) in order to schedule the first operation of each

job as late as possible, but since the completion times of the jobs should not be affected

by this term the relations 0 < ε� αj , j ∈ J , must hold. This inclusion also facilitates

the rescheduling and is hence suitable in a dynamic environment: fewer fixtures are

then tied up for jobs whose succeeding operations have not yet started at the time of

rescheduling; see [35]. If the scheduling problem includes PM tasks, yet another term

needs to be included in the objective function, according to

z(x) := z′(x) + εmaint
∑

j∈Jmaint

∑
k∈K\Ksetup

∑
u∈T

x1jku, (14)

where 0 < εmaint � αj , j ∈ J . The problem of scheduling the multitask cell including

side constraints regarding PM, fixtures, and night shifts can now be formulated as that

to minimize (14), subject to the constraints (4b)–(4g), and the side constraints (6)–

(10). We have computationally tested this time-indexed model of the FJSP including

different subsets of the side constraints; see Table 2.

Table 2 Definitions and notation for the models implemented and tested: TI – time-indexed
model; F – fixture availability; M – PM activities; N – unmanned night shifts.

Notation Description Model
TI-FMN FJSP including all side minimize (14) subject to

constraints (4b)–(4g), (6)–(10)

TI-FM FJSP including fixture minimize (14) subject to
and PM constraints (4b)–(4g), (6)–(9)

6 The iterative solution procedure

As stated in [31], the time-indexed formulations are flexible and capable of accounting

for many scheduling features, such as all the side constraints proposed in Section 5.2.

There are, however, two major drawbacks in utilizing a discrete time representation,

namely

i. the approximation of time, and
ii. the large numbers of binary variables and constraints required.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 88 -

In order to decrease the gap between the optimal objective value of the approximate

solution to the time-indexed model and the real optimal objective value, we have de-

veloped a squeezing procedure [34]. This procedure retains the sequence of operations

scheduled in each of the machines, while the starting times of the operations are reset

such that each operation starts as early as possible (i.e., without violating any con-

straints). In the last stage of the squeezing procedure, the first operation of each job

is then scheduled as late as possible in order to reflect the last term of the objective

function (13).

The numbers of binary variables and constraints depend on the choice of the time

horizon T and the length ` of the time steps. Our iterative procedure is designed to

keep the number of variables and constraints at a minimum, by iteratively decreasing

the value of ` and by utilizing the solution from the previous iteration to feed the next

iteration with a feasible solution and an appropriate value of T . The iterative procedure

described in [34, Algoritm 1] is generic in the sense that it can be used to solve any

time-indexed model.

At iteration s of the iterative procedure, let `s and T s denote the length and the

number of time steps in the planning horizon, respectively, and let the parameter values

be scaled and rounded up or truncated, respectively, according to

pij :=

⌈
p̃ij
`s

⌉
; rij :=

⌈
r̃ij
`s

⌉
; r̂ijn :=

⌊ ˜̂rijn
`s

⌋
; r̄ijn :=

⌈ ˜̄rijn
`s

⌉
; (15a)

r̂n :=

⌊˜̂rn
`s

⌋
; r̄n :=

⌈˜̄rn
`s

⌉
; dj :=

⌊
d̃j
`s

⌋
; i ∈ Nj , j ∈ J , n ∈ P ; (15b)

vjq :=

⌈
ṽjq
`s

⌉
, (j, q) ∈ Q ; ak :=

⌈
ãk
`s

⌉
, k ∈ K ; (15c)

τjk :=

⌈
τ̃jk
`s

⌉
, j ∈ Jmaint, k ∈ K ; ∆ :=

⌊
∆̃

`s

⌋
, (15d)

where the superscript ”∼” indicates the respective original (non-discretized) pa-
rameter values.

The process of the iterative procedure is defined in Figure 2. In step 1, the
input data, denoted data1, is generated, employing the assignments in (15) for
s = 1. In the computational tests, we used `1 := dp̃max/2e, where p̃max :=
maxj∈J , i∈Nj

{p̃ij}. The value of `1 is chosen sufficiently large such that most of
the processing times pij are valued 1. Most instances can then be solved by the
time-indexed model in a few seconds, even for large values of T . Consequently, we
let T 1 :=

∑
j∈J

∑
i∈Nj

pij , which theoretically can be too short (if, e.g., the time

lags vjq are very long as compared to the processing times), but in most cases
this time horizon is more than sufficiently long and hence considerably longer
than the makespan of an optimal schedule. If this value of T 1 is too small, the
problem is infeasible in the first iteration, and T 1 then has to be assigned a
larger value.

In Step 2 in Figure 2, for s = 1, the model TI-FM is solved. The reason
why we solve the problem without considering unmanned night shifts in the first
iteration is that it may be impossible to find feasible solutions when the data,
generated according to (15) employing a large value of `1, is very coarse. In our
previous work [33, p. 35] the value of T 1 was determined by a problem-specific
heuristic, which is here replaced by the first iteration.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 89 -

Fig. 2 The process of the iterative procedure.

In step 3, the solution obtained by having solved the time-indexed model in
step 2 is squeezed with respect to the original data and the resulting objective
value, zs, is stored. In step 4, it is checked whether the value of zs is the best one
found so far. If this is the case, then the new solution is stored, and zbest := zs

in step 5. Step 6 checks if the time limit is exceeded. If this is the case, the
procedure is terminated. If not, s+1 replaces s in step 7 and the new value of `s

is determined (see also Table 4). In step 8, datas is generated according to (15).
In step 9, the best solution found so far is squeezed with respect to datas. The
resulting solution is stored and used as a starting solution for the model TI-FMN
at iteration s. Finally, in step 10 the value of T s is determined according to

T s := max

{⌈
1

`s

(
C̃max + p̃max

)⌉
, Cmax

}
, (16)

where Cmax denotes the makespan of the starting solution expressed in time

steps of length `s, and C̃max denotes the makespan (expressed in hours) of the
solution found in iteration s and squeezed with respect to the original data. The
reason for not letting T s equal Cmax is that the makespan of the optimal solution
in iteration s may exceed Cmax; see [33, pp. 34–36] for a discussion. This is more
likely to happen when the difference `s−1− `s is small, since then the likelihood
is large that Cmax is close to the makespan of the optimal solution in iteration
s. For our computations a time limit was used as a termination criterion, since
the main focus of this work is to investigate the practical usefulness of this
procedure. [34, 35] used the degree of accuracy as termination criterion, i.e., the
computations were stopped at a desired length of the time step.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 90 -

The squeezing procedure resets all starting times of the operations such that
each operation starts as early as possible and without violating any constraints.
As mentioned above, the model TI-FM is solved in step 2 of the first iteration.
Provided there are no deadlines for PM tasks that can’t be met due to the
coarse rounding of data, the squeezing procedure is always able to find a feasible
schedule of the model TI-FMN for the second iteration (where the night shift
constraints (10) have been included). This is due to the fact that the squeezing
procedure may schedule some operations after the last night shift if these opera-
tions cannot be scheduled between two night shifts (due to the coarse rounding of
data). If there are PM deadlines that can’t be met, either the model TI-FM must
be used also in the second iteration, or a smaller value of `s must be employed
such that the PM deadlines can be met.

In [34], the general FJSP without side constraints was investigated; the cod-
ing of the squeezing procedure was then fairly simple. Here, the side constraints
(6)–(10) make the coding (in [22]) of the squeezing procedure much more com-
plicated. We hence concluded that using the iterative procedure without the
squeezing—as done in [35]—could be worth considering. To investigate the ben-
efits of the squeezing procedure, we have tested the iterative procedure with,
and without, the squeezing. This investigation is discussed below.

7 Computational tests and results

Through the manufacturing site’s Enterprise Resource Planning (ERP) system,
real data was collected from the multitask cell during 2012 and 2013. Nine out
of in total twelve real scenarios are identical to the scenarios employed in [35],
except for the data describing the unmanned night shifts. At the time, some
personnel was working during the night, and in [35] we assumed that the work
force then was sufficient for the schedules produced. Since the beginning of 2013,
the night shifts are, however, unmanned. In this paper, we use the scenarios from
2012 as if they included the work force of today, i.e., with no personnel during
the night shifts. In the multitask cell, there are about 30 types of jobs consisting
of 3–7 operations to be performed on eight products.

The computations were carried out using AMPL-CPLEX12 [12, 16] on a
computer with two 2.66GHz Intel Xeon X5650 processors, each with six cores
(24 threads), and a total memory of 48 Gbytes of RAM.

Section 7.1 describes the test setting, and in Section 7.2 we report on the
results from our computational tests and compare the schedules obtained by our
iterative procedure with those constructed by the FIFO and the CR priority
rule, respectively.

7.1 The experimental setup

The objective weights (see Section 5.3) used in the computations are equivalent
to those used in [35], i.e., αj := 1, B := 10 (implying that βj ∈ [0, 20], j ∈ J ,
except for very much delayed outliers, for which βj > 20 may hold), ε := 0.001,
and εmaint := 0.0001.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 91 -

For the rescheduling, we propose the hybrid event-driven policy described in
Section 2. The scheduling procedure needs to produce near-optimal schedules for
the period chosen within an acceptable time frame. For the case of the multitask
cell, the manager of the cell has agreed that a reasonable clock time to spend
on the computing of a near-optimal schedule for the coming shift is around 15
minutes. From each of the twelve real scenarios, an instance for the coming shift
including all jobs and PM tasks with release dates r̃1j ≤ 8h was created; the
sizes of the twelve resulting instances vary between 20 and 33 jobs.

As discussed in [35], the makespan of an optimal schedule for a specific in-
stance may cover a period that is substantially longer than the coming shift.
In order to guarantee that a high quality schedule for the subsequent shift is
produced, a rescheduling must, however, be performed at the start of this shift;
the new instance considered for this rescheduling also includes the jobs that are
expected to arrive at the cell during this subsequent shift. The details in the later
part of the schedule are hence not of practical interest, since the corresponding
jobs are likely to be moved when rescheduled at a later point in time. Therefore,
we consider the first two night shifts only in each instance, i.e., P = {1, 2}.

In Table 3 the variants of the scheduling procedures tested are defined. The

Table 3 Test settings. For all test settings denoted TI-FMN x, the model TI-FM was employed
in iteration 1, and the model TI-FMN in iterations 2, 3,

Test setting Time limit Implementation of the
(s clock time) iterative procedure

TI-FMN 2h 7200 including squeezing
TI-FMN 15min 900 including squeezing
TI-FMN no squeeze 2h 7200 without squeezing
TI-FMN no squeeze 15min 900 without squeezing
TI-FM 2h 7200 including squeezing

lengths `s of the time intervals chosen for each of these scheduling procedures
are indicated in Table 4. TI-FMN 15min was computed with all three choices of
values for `s, i.e., such that ζ ∈ {1.8, 2.0, 2.2}; see Table 4. The value ζ = 1.8

Table 4 Values of the step lengths (`s) and mipgap limits (gs) employed in the computations.
The value of ζ is used as a suffix for the test settings listed in Table 3.

`s (h)
s gs (%) ζ = 1.8 ζ = 2.0 ζ = 2.2
1 5 12 12 12
2 2 3 4 4
3 1 1.66667 2 1.81818
4 0.5 1 1 0.82645
r ≥ 5 gr−1/2 `r−1/ζ `r−1/ζ `r−1/ζ

was chosen since good results were achieved using this value in [34]. However,
for the case of TI-FMN no squeeze, only ζ = 2.0 was chosen since the itera-
tive procedure without the squeezing procedure works best for integer values of
`s−1/`s: the starting solution, which is computed by multiplying the time in-

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 92 -

dex u by `s−1/`s in the solution from the previous iteration expressed in the
variables xijku, may otherwise be infeasible, which will result in an increased
computation time. For TI-FMN 2h, ζ ∈ {1.8, 2.0} was employed, and TI-FM 2h
was computed using ζ = 1.8.

The iterative procedure was terminated at a time limit. The termination
criterion employed in each iteration was either the total time remaining until
the time limit or that mipgap ≤ gs.1 Since the approximation of the data is less
coarse for smaller values of `s, the value of gs was also decreased in each iteration;
see Table 4.

7.2 Test results

In order to demonstrate the effect of the squeezing procedure we solved the
instances for the coming shift using the setting TI-FMN 15min 2.0. Since this
setting yielded slightly better results than TI-FMN 15min 1.8 for most of the
instances, we also tested TI-FMN 15min 2.2. These results are reported in Table
5, along with those for the setting TI-FMN no squeeze 15min, for the twelve
coming shift scenarios; see also Figure 3.

Table 5 Computational results for the settings TI-FMN 15min ζ, ζ ∈ {1.8, 2.0, 2.2}, and
TI-FMN no squeeze 15min x, x ∈ {hybrid, 2.0}. The relative differences, diff, to zbest2h,
according to (17) are listed for the twelve coming shift scenarios. ”hybrid” refers to squeezing
the solution from the setting TI-FMN no squeeze 15min; ”0” means that optimality is verified;
bold numbers indicate the best result for each scenario.

TI-FMN 15min TI-FMN no squeeze 15min
Scenario |J | ζ=1.8 ζ=2.0 ζ=2.2 hybrid ζ=2.0

(%) (%) (%) (%) (%)
1 25 0.32 0.00 4.08 0.00 4.49
2 21 0.00 0.05 0.05 0.05 0.88
3 26 1.51 0 0.90 1.26 3.04
4 26 2.19 0.01 2.26 0.01 1.31
5 30 1.97 1.95 2.97 2.04 6.44
6 25 0.74 0 2.31 –0.09 3.06
7 33 1.23 0.47 0.79 0.47 3.69
8 27 0.38 0.52 0.39 0.50 3.07
9 30 2.56 2.56 4.57 1.95 8.26

10 24 7.19 1.27 9.87 0.64 9.29
11 27 11.59 10.56 11.23 10.63 25.24
12 20 8.61 1.56 8.03 0.12 0.65

Average 26.2 3.19 1.58 3.95 1.46 5.78

Since the results in the last iteration are computed for different values of
`s—and some of the solutions are also squeezed—the values of mipgap are not
compared. Instead, the numbers are compared with the best feasible objective
value out of all test settings employing the time limit of two hours, denoted

1 The mipgap is defined as the relative difference between the best lower bound (LB) and
the best objective value, z, found. The definition used by CPLEX version 12 is mipgap :=
|z−LB|

10−10+|z| · 100%.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 93 -

zbest2h. The values listed in Table 5 are calculated as

diff :=
zŝ − zbest2h

zbest2h
· 100%, (17)

where ŝ denotes the iteration at which the time limit was reached. In this com-
parison of the test settings of two hours duration, nine out of the twelve best
results were found when employing the setting TI-FMN 2h 2.0. For a few of
the instances, CPLEX ran out of memory before reaching the time limit of two
hours, whence the last solution obtained was used.

Fig. 3 The relative differences, diff, to zbest2h, according to (17) and listed in Table 5,
plotted for all coming shift scenarios. The vertical axis is truncated at 12%, such that the
value 25.24% (scenario #11, setting TI-FMN no squeeze 15min) is not visible.

We conclude from the results reported in Table 5 that the choice ζ = 2.0
results in a slightly better performance than ζ = 1.8 and ζ = 2.2. During the
computational tests made in [34], the setting ζ = 1.8 performed the best for
the benchmark test instances employed. However, the best choice of `s for each
iteration depends on the instance data, and the data from the multitask cell
differs a lot from the benchmark data used in [34]. The lowest average values
of `ŝ over the twelve scenarios, i.e., the average of the time steps employed at
the time limit, are attained when employing the setting ζ = 2.0; see Table 6. A
low value of `s, means that the solutions obtained by the time-indexed model
typically are closer to the corresponding real optimal solutions; this is due to the
approximation of the data being less coarse. The setting ζ = 2.0 yielded the best
results despite the risk that an unfavourable data pattern might be reproduced in
each iteration when employing this setting: for example, with `1 = 4h, `2 = 2h,
and `3 = 1h a processing time of 4.1h is rounded up—with big errors—to 2, 3,
and 5 time steps, respectively, while 4.0h is rounded up—with zero errors—to
1, 2, and 4 time steps, respectively.

Table 5 also reveals the effect of the squeezing procedure: the column enti-
tled ”hybrid” contains the results obtained by squeezing the solution obtained
in the last iteration of TI-FMN no squeeze 15min. This hybrid setting yields

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 94 -

Table 6 The average of `ŝ over the twelve coming shift scenarios, where ŝ denotes the iteration
for which the time limit was reached. “—” indicates that the corresponding setting was not
tested; bold numbers indicate the best result for each setting.

ζ 1.8 2.0 2.2
TI-FMN 15min ζ 0.79h 0.49h 0.65h
TI-FMN no squeeze 15min ζ — 0.59h —
TI-FMN 2h ζ 0.52h 0.34h —
TI-FMN no squeeze 2h ζ — 0.34h —

equally good results as the setting TI-FMN 15min 2.0, while the value of diff

is on average 4% higher when no squeezing is employed. In our implementa-
tion of the setting TI-FMN 15min new data is generated in each iteration, but
for the setting TI-FMN no squeeze 15min, no data needs to be generated and
exported during the computations other than the final result. The latter is of
course more convenient and therefore, for instances resembling the multitask cell
data instances, we recommend the hybrid setting of TI-FMN no squeeze 15min.
While preparing the results presented in [34], the iterative solution procedure
utilizing squeezing in each iteration was, however, observed to be a clear winner.
This is partly explained by the fact that the gain of the squeezing procedure
is typically larger for larger values of `s. For example, for the twelve scenarios
reported in Table 5, the average relative difference between the objective values
of the squeezed and the non-squeezed solutions obtained in the second iteration,
with `2=4h, is 45%. The benchmark data instances generated by Fattahi et al.
[11] and tested in [34] contain operations with very long processing times, which
in turn require long planning horizons and therefore also relatively large values
of `s for the first iterations.

7.2.1 The gain from the night shift constraints

The iterative scheduling procedure was run with the TI-FM 2h 1.8 setting, i.e.,
without taking the unmanned night shifts into account. In these tests, the so-
lution obtained in each iteration but the last was squeezed—disregarding the
night shifts, i.e., assuming that all operations requiring manual work could be
performed also during the night. After the last iteration, which was terminated
at the pre-specified time limit, the solution was squeezed taking the night shift
constraints (10) into consideration such that a feasible schedule was obtained.
Hence, this last solution is not squeezed—but rather expanded (in the time
dimension)—by the squeezing procedure. The value of the resulting schedule was
then compared with zbest2h, i.e., the best schedule obtained within two hours
of computing, by calculating the relative difference diff, according to (17). The
value of diff ranges between 1.87% and 27.63% over the twelve coming shift
scenarios, with an average of 9.90%. Hence, for the case of the multitask cell,
the gain—in terms of objective value—of including the night shift constraints in
the scheduling procedure is around 10% (this figure of course being dependent
on the instance data). For the operations in the multitask cell, the share of al-
lowed unmanned processing ranges from 0% to 100%. When 100% unmanned
processing is allowed for all operations, the night shift constraints are obviously
not needed.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 95 -

In Figure 4, the gain of including the night shift constraints is illustrated for
scenario #12 comprising 20 jobs. In (a)—the solution obtained by TI-FM 2h 1.8
and then squeezed—the third last operation in machine MC3 cannot be sched-
uled before the second night shift due to the required manned processing in
the later part of this operation. The resulting makespan is 100.5 hours. In the
schedule corresponding to zbest2h, illustrated in (b), the same operation (here,
the second last operation in MC3) is scheduled to start during the first night
shift and being completed before the second night shift starts. The resulting
makespan is 79.3 hours. The three last operations in MC3 in (a) are of the same
kind and occupy the same type of fixture. Since there is only one such fixture,
these operations cannot be scheduled in parallel. The dark grey bars at the be-
ginning of the planning period represent the parameters ak, i.e., the time steps
when resource k is occupied.

Fig. 4 The gain of the night shift constraints illustrated for scenario #12. The night shifts
are marked by vertical light grey, transparent bars. (a) The feasible schedule obtained from
the setting TI-FM 2h 1.8. The objective value from the last squeezing is 9386. (b) The best
schedule obtained [the setting TI-FMN no squeeze 2h (hybrid) in this case]. The objective
value from the last squeezing, zbest2h = 7354.

7.2.2 Comparison with the FIFO and the CR priority dispatching rules

The construction of schedules by the priority dispatching rules was coded such
that each possible scheduling occasion from time zero to the planning horizon
was considered. At any scheduling occasion in a resource k, (e.g., when an opera-
tion is completed in this resource) the operation currently possessing the highest
priority among the operations available for scheduling (w.r.t., e.g., precedence
and fixture constraints) is scheduled in this resource. As the FIFO rule is static,
the priorities remain unchanged throughout the scheduling procedure—in con-
trast to the CR rule [defined in (2)].

The value of the objective function was computed for each of the schedules
constructed by the dispatching rules and the relative difference to zbest2h was
computed according to (17). The relative differences between the objective values
from the FIFO (CR) schedules and the best solution found (zbest2h) were on
average 37.4% (41.1%). Remarkably, the CR rule performs worse than the FIFO

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 96 -

rule; hence the use of the built-in scheduling method in the control system of
the multitask cell is not recommended.

Figure 5 shows four schedules for scenario #8 constructed by (a) FIFO,
(b) CR, (c) TI-FMN 15min 2.0, and (d) the best solution found [the squeezed
solution of TI-FMN no squeeze 2h (hybrid)], with makespans of 91h, 107.1h,
76.1h, and 73.3h, respectively. For this scenario the solution with the shortest
makespan was also the best solution found (w.r.t. objective value); note that
this is not a general property. For scenario #8, the iterative procedure termi-

Fig. 5 The schedules of scenario #8 constructed by (a) FIFO, (b) CR, (c) TI-FMN 15min 2.0,
and (d) the best solution found [the squeezed solution of TI-FMN no squeeze 2h (hybrid)].
The night shifts are marked by vertical light grey, transparent bars. The dark grey bars at the
beginning of the schedules represent unavailable resources. The grey bars close to the end of
the schedules represent PM activities.

nated at the pre-specified time limit at iteration s = 6, with `6 = 0.25h for
both settings TI-FMN 15min 2.0 and TI-FMN no squeeze 2h. Note that in the
squeezed schedule produced using the setting TI-FMN no squeeze 2h [Figure
5(d)] there is no idle time in the machine MC2 during any of the night shifts,
while none of the other scheduling procedures manage to completely fill the night
shifts in MC2. The relative difference between zbest2h and the objective values
of the TI-FMN 15min 2.0, the FIFO, and the CR schedule, according to (17),
was 0.52%, 58%, and 65%, respectively. The idle times between operations in
the four schedules in Figure 5 are due to either the precedence constraints (4b)
and (6), the limited fixture availability (8), the night shift constraints (10), or
the jobs’ release dates (4e).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 97 -

Figure 6 shows the relative difference, according to (17), between the objec-
tive value obtained by each of the scheduling procedures tested and zbest2h. The

Fig. 6 The average over the twelve coming shift scenarios of the relative differences, diff,
according to (17), between the objective values obtained by the different scheduling procedures
and zbest2h.

night shift constraints (10) are disregarded during the first construction phase
of the schedules corresponding to the three right-most bars. In order to obtain
feasible schedules, the schedules were then run through the squeezing proce-
dure taking the night shifts into account. From these results, it is clear that our
proposed scheduling procedure—considering the night shift constraints—finds
significantly better schedules within the acceptable time frame (15 minutes). If
the proposed hybrid event-driven policy discussed in Section 7.1 is applied—with
a rescheduling at the start of each shift—then this difference will become even
larger, since the machines will then be available for processing (via the parame-
ter ak) at times such that the coming unmanned shift can be better utilized (by
the jobs that were scheduled but not processed during the previous shift).

In contrast to the computations performed in [35], where the iterative pro-
cedure was terminated at a pre-specified value of `s, here we let the iterative
procedure run until a pre-specified time limit. In previous work employing this
procedure [34, 35] we considered no night shift constraints, which may have a
big impact on a job’s completion time, depending on whether the required man-
ual processing of an operation can be scheduled before or after a night shift. In
[34] we noted that a near-optimal solution often was found early in the itera-
tive procedure. Due to the addition of the night shift constraints, this property
has not been observed while preparing the results presented here; however, in
most iterations an improved feasible solution has been achieved. Based on the
results presented in Table 5, in which in half of the cases the final objective
values from the settings TI-FMN 15min 2.0 and TI-FMN no squeeze 2h differ
less than 0.5% from zbest2h, we conclude that our proposed scheduling method
is able to produce near-optimal schedules for the coming shift in the multitask
cell.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 98 -

8 Conclusions

We present a generic iterative procedure for the solution of time-indexed for-
mulations of discrete optimization problems. This procedure is applied to a real
flexible job shop scheduling problem originating from a production cell at GKN
Aerospace Engine Systems, Sweden. A time-indexed formulation of the problem
is presented including side constraints regarding preventive maintenance, fixture
availability, and unmanned night shifts. We propose an objective function that
minimizes a weighted sum of the jobs’ completion times and tardiness. We have
developed a (non-generic) squeezing procedure, which can be used in either each
or just the last iteration of the iterative procedure. The squeezing procedure
reduces the difference between the objective value of the approximate solution
obtained from the time-indexed model and the optimal objective value sought.

Computational results show that the gain—in terms of objective values—of
including the night shift constraints is around 10%. This gain would be even
greater if the proposed scheduling principle with a hybrid event-driven policy is
applied: the operations previously scheduled will be rescheduled such that the
possibility to fully utilize the first unmanned night shift at the time of reschedul-
ing is increased.

The proposed scheduling procedure has been compared with two priority dis-
patching rules: the static first–in, first–out (FIFO) rule and a dynamic critical
ratio (CR) rule. The choice of these two rules for comparison is based on the
facts that FIFO is currently in use in most workshops at GKN and that the
CR rule is an existing built-in scheduling method in the control system of the
production cell specifically studied in this article. The objective values obtained
after running our iterative procedure for 15 minutes were on average 0.71 times
the corresponding values computed by the FIFO or CR rules. Hence, there is
a large potential in replacing these simple priority dispatching rules by a more
sophisticated scheduling principle, such as our time-indexed mathematical opti-
mization model implemented in our iterative procedure. We conclude that our
iterative procedure is able to produce near-optimal schedules for industrial data
instances for the coming shift within an acceptable time frame.

Acknowledgements This research was financially supported by GKN Aerospace Engine
Systems, The Swedish Research Council (grant no. 621-2007-4716), NFFP (National Aviation
Engineering Research Programme, grant no. 2009-01281), and VINNOVA (through Chalmers
Transport Area of Advance).

References

1. Azem, S., Aggoune, R., Dauzere-Peres, S.: Disjunctive and time-indexed for-
mulations for non-preemptive job shop scheduling with resource availability
constraints. In: M. Helander, M. Xie, R. Jiao, K.C. Tan (eds.) Proceed-
ings of 2007 IEEE International Conference on Industrial Engineering and
Engineering Management, pp. 787–791 (2007)

2. Van den Bergh, J., Belin, J., De Bruecker, P., Demeulemeester, E., De Boeck,
L.: Personnel scheduling: A literature review. European Journal of Opera-
tional Research 226(3), 367–385 (2013)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 99 -

3. Blackstone Jr., J.H., Phillips, D.T., Hogg, G.L.: A state-of-the-art survey
of dispatching rules for manufacturing job shop operations. International
Journal of Production Research 20, 27–45 (1982)

4. Bowman, E.H.: The schedule-sequencing problem. Operations Research
7(5), 621–624 (1959)

5. Brucker, P.: The job-shop problem: Old and new challenges. In: P. Bap-
tiste, G. Kendall, A. Munier-Kordon, F. Sourd (eds.) Proceedings of the
3rd Multidisciplinary International Conference on Scheduling: Theory and
Applications (MISTA 2007), Paris, France, pp. 15–22 (2007)

6. Brucker, P., Jurisch, B., Krämer, A.: Complexity of scheduling problems with
multi-purpose machines. Annals of Operations Research 70, 57–73 (1997)

7. Brucker, P., Knust, S.: Complex Scheduling, 2nd edn. Springer-Verlag,
Berlin, Germany (2012)

8. Cheng, R., Gen, M., Tsujimura, Y.: A tutorial survey of job-shop scheduling
problems using genetic algorithms–I. Representation. Computers & Indus-
trial Engineering 30(4), 983–997 (1996)

9. Demir, Y., İşleyen, S.K.: Evaluation of mathematical models for flexible job-
shop scheduling problems. Applied Mathematical Modelling 37, 977–988
(2013)

10. Dyer, M.E., Wolsey, L.A.: Formulating the single machine sequencing prob-
lem with release dates as a mixed integer program. Discrete Applied Math-
ematics 26(2–3), 255–270 (1990)

11. Fattahi, P., Saidi Mehrabad, M., Jolai, F.: Mathematical modeling and
heuristic approaches to flexible job shop scheduling problems. Journal of
Intelligent Manufacturing 18(3), 331–342 (2007)

12. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language
for Mathematical Programming, 2nd edn. Brooks/Cole Publishing Com-
pany/Cengage Learning, Belmont, CA, USA (2002)

13. Gao, J., Gen, M., Sun, L.: Scheduling jobs and maintenances in flexible job
shop with a hybrid genetic algorithm. Journal of Intelligent Manufacturing
17(4), 493–507 (2006)

14. Haupt, R.: A survey of priority rule-based scheduling. OR Spektrum 11(1),
3–16 (1989)

15. Hopp, W.J., Spearman, M.L.: Factory Physics, 3d edn. McGraw-Hill/Irwin,
New York, NY, USA (2008)

16. IBM Corp.: IBM ILOG CPLEX V12.1 User’s Manual for CPLEX. Armonk,
NY, USA (2009)

17. Jain, A.S., Meeran, S.: Deterministic job-shop scheduling: Past, present and
future. European Journal of Operational Research 113(2), 390–434 (1999)

18. Jansson, T.: Resource utilization in a multitask cell. Master’s Thesis, De-
partment of Mathematical Sciences, Chalmers University of Technology,
Göteborg, Sweden (2006)

19. Kedad-Sidhoum, S., Rios-Solis, Y., Sourd, F.: Lower bounds for the
earliness–tardiness scheduling problem on single and parallel machines. Eu-
ropean Journal of Operational Research 189(3), 1305–1316 (2008)

20. Mainieri, G.B., Ronconi, D.P.: New heuristics for total tardiness minimiza-
tion in a flexible flowshop. Optimization Letters 7(4), 665–684 (2013)

21. Manne, A.S.: On the job-shop scheduling problem. Operations Research
8(2), 219–223 (1960)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 100 -

22. MATLAB: Release 2011b. The MathWorks Inc., Natick, MA, USA (2011)
23. Ouelhadj, D., Petrovic, S.: A survey of dynamic scheduling in manufacturing

systems. Journal of Scheduling 12(4), 417–431 (2009)

24. Özgüven, C., Özbakir, L., Yavuz, Y.: Mathematical models for job-shop
scheduling problems with routing and process plan flexibility. Applied Math-
ematical Modelling 34(2), 1539–1548 (2010)

25. Pan, C.-H.: A study of integer programming formulations for scheduling
problems. International Journal of Systems Science 28(1), 33–41 (1997)

26. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems, 4th edn.
Springer, New York, NY, USA (2010)

27. Rahimifard, S., Newman, S.T.: Simultaneous scheduling of workpieces, fix-
tures and cutting tools within flexible machining cells. International Journal
of Production Research 35(9), 2379–2396 (1997)

28. Rajkumar, M., Asokan, P., Vamsikrishna, V.: A GRASP algorithm for flexi-
ble job-shop scheduling with maintenance constraints. International Journal
of Production Research 48(22), 6821–6836 (2010)

29. Slomp, J., Zijm, W.H.M.: A manufacturing planning and control system
for a flexible manufacturing system. Robotics and Computer-Integrated
Manufacturing 10(1–2), 109–114 (1993)

30. Sousa, J.P., Wolsey, L.A.: A time indexed formulation of non-preemptive
single machine scheduling problems. Mathematical Programming 54, 353–
367 (1992)

31. Stefansson, H., Sigmarsdottir, S., Jensson, P., Shah, N.: Discrete and con-
tinuous time representations and mathematical models for large production
scheduling problems: A case study from the pharmaceutical industry. Euro-
pean Journal of Operational Research pp. 383–392 (2011)

32. Syberfeldt, A., Karlsson, I., Ng, A., Svantesson, J., Almgren, T.: A web-based
platform for the simulation-optimization of industrial problems. Computers
& Industrial Engineering 64(4), 987–998 (2013)

33. Thörnblad, K.: On the optimization of schedules of a multitask production
cell. Licentiate Thesis, Chalmers University of Technology and University
of Gothenburg, Göteborg, Sweden (2011)

34. Thörnblad, K., Strömberg, A.-B., Patriksson, M., Almgren, T.: A com-
petitive iterative procedure using a time-indexed model for solving flex-
ible job shop scheduling problems. Available at www.optimization-
online.org/DB HTML/2013/08/3991.html (2013)

35. Thörnblad, K., Strömberg, A.-B., Patriksson, M., Almgren, T.: Scheduling
optimisation of a real flexible job shop including fixture availability and
preventive maintenance. European Journal of Industrial Engineering, to
appear (2015)

36. Wagner, H.M.: An integer linear-programming model for machine schedul-
ing. Naval Research Logistics Quarterly 6, 131–140 (1959)

37. Wang, S., Yu, J.: An effective heuristic for flexible job-shop scheduling prob-
lem with maintenance activities. Computers & Industrial Engineering 59(3),
436–447 (2010)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 101 -

MISTA 2015

Single Track Train Scheduling

Jonas Harbering · Abhiram Ranade · Marie
Schmidt

Abstract In this work we consider the Single Track Train Scheduling Problem. The prob-
lem consists in scheduling a set of trains from opposite sides along a single track. The track
passes intermediate stations and the trains are only allowed to pass each other at those sta-
tions. This problem has a close relation to minimizing the makespan in a job shop schedul-
ing problem with two counter routes and no preemption. We develop a lower bound on
the objective value of the train scheduling problem which provides us with an easy solution
method in some special cases. The contrast in complexity to the analogous job shop schedul-
ing problem is highlighted. Additionally, we prove the pseudo-polynomial solvability for a
more general setting of the train scheduling problem.

1 Introduction

In this paper we consider a scheduling problem which is motivated by a railway application:
the scheduling of trains on a single bi-directional track. This problem occurs in passenger
transportation in rural areas or when scheduling freight trains, as outlined in [19] and refer-
ences therein.

In its basic version, the Single-Track-Train-Scheduling Problem (STTS) reads as follows:
we are given a single track, running from left to right, which has to be passed by Pl trains
from the left and Pr trains from the right in the least time possible. The track is divided
into several block sections, each block can be occupied by only one train at the same time.
However, between the blocks we have stations which have unlimited capacity. Here trains
can wait in order to let trains from the opposite direction pass.

Jonas Harbering
Georg-August-University of Göttingen
E-mail: jo.harbering@math.uni-goettingen.de

Abhiram Ranade
Indian Institute of Technology
E-mail: ranade@cse.iitb.ac.in

Marie Schmidt
Erasmus University Rotterdam
E-mail: schmidt2@rsm.nl

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 102 -

The translation to common machine scheduling terminology is quite straightforward:
trains correspond to jobs, blocks correspond to machines, the block traversal time corre-
sponds to processing time on a machine, and our objective is to minimize the makespan.

When translating the (STTS) to a machine scheduling problem, we obtain a special case
of job-shop scheduling, since we have two subsets of jobs corresponding to trains coming
from the left and trains coming from the right, which pass the blocks/machines in reverse
order. This is called job shop scheduling with counter-routes in the machine scheduling
context. Furthermore, we have the requirement that a train ride on a block cannot be inter-
rupted, this is referred to as no preemption in machine scheduling. The (STTS) can hence
be interpreted as a job shop scheduling problem with two counter routes and no preemption
(abbreviated as F±||Cmax following common scheduling notation, see [9]), under the addi-
tional assumption that the processing time of a job on a machine is the same for all jobs.
This relation is detailed in Section 2.2.

While F±||Cmax is strongly NP-hard for three machines already [9], the assumption that
processing times depend only on the machines (or, to say it in the words of the train schedul-
ing example: that block traversing times are the same for all trains) makes the problem
considerably easier. In fact, we are going to show that for any fixed number of blocks, the
problem can be solved polynomially in the number of trains and the maximal block length
by dynamic programming.

For the case of three blocks and equal train numbers from both sides, as well as for some
other special cases, we are even able to prove a closed-form expression for the minimal
makespan.

The remainder of the paper is structured as follows. In Section 2 we give a short lit-
erature overview on relevant contributions in machine scheduling including some related
complexity results and in single-track train scheduling. In Section 3 we formally introduce
the problem. In Section 4 we derive a lower bound on the solution value. Using this bound,
in Section 5 we discuss special cases where the lower bound can be reached. For the remain-
ing cases we develop a dynamic programming approach in Section 6 and briefly discuss how
constraints like limited station capacities and waiting times at stations can be included.

2 Related Problems

2.1 Train Scheduling

The general problem of scheduling or timetabling has many different facets. Since problems
arising in train scheduling on networks are often of quite different nature, we concentrate on
single-track train scheduling in this overview.

The problem of scheduling trains on a single track has attracted attention very early
already. One of the first to lay a ground for such research is [13]. There, two way traffic
systems, similar to the ones considered here, are analyzed. The main difference to our work
is that they aim at determining the minimal number of trains that serve a certain train system
ensuring periodic schedules. Subsequently, a model allowing for different train speeds and
including delays is considered in [22]. There, train systems are analyzed in order to com-
pute the average traveling time per train, depending on the number of trains with different
priorities using the same track sequence. Also in [15], delays in train scheduling are consid-
ered. The authors aim at a tool which is suitable both for realtime decision support and for
timetable evaluation. They also develop a non-linear mixed integer model to minimize the

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 103 -

average weighted travel time which takes into account several different timetabling aspects.
Finally, they solve the developed model with a branch-and-bound approach. Similarily, [18]
develop a detailed model for scheduling trains on a single track. In their model, the computa-
tion of the line capacity is reduced to computing the capacity only on a bottleneck segment.
For this bottleneck segment they are able to determine the main relations between input
parameters and the capacity of the line. In [25] a mixed integer linear programming model
is stated in which trains may start at trains may only pass each other at stations. Different
headways are considered for consecutive trains on tracks and at stations. In order to mini-
mize the total travelling time, a branch-and-bound procedure is proposed. Using a similar
model to [25], [8] propose a mixed integer linear model with varying departure and traveling
times. Additionally, this model takes into account that headways between trains in the same
direction are possibly shorter than headways for trains in different directions. They aim at
minimizing the total arrival times of all trains at all stations. The model is then solved by a
heuristic. Finally, [23] considers a very similar model (to [8,25]) with the objective of mini-
mizing the arrival time of the last train at its destination, i.e. the makespan. Most constraints
are adapted from [25] while some problem specific constrains are added in order to decrease
computation time. The proposed model is then solved by a heuristic approach. A slightly
different problem is discussed in [4]. Here, two trains in opposing directions are scheduled
on a two-track segment. Now a part of one of the tracks fails. The question to be answered
is how can trains be scheduled on the same track segment in opposing direction without
deviating too much from the previous schedule.

See [23] for a broad overview on scheduling on a single bidirectional line and [7,10] for
more general train scheduling surveys.

The models in all of the discussed works model real-world train scheduling constraints
in varying degree of detail. Our simplified train scheduling problem could, e.g., be consid-
ered to be a special case of the models described in [7,8,23,25] and the solution methods
described there for more general problems could also be applied to solve our special case.
However, to the best of our knowledge, there is so far no complexity analysis for such prob-
lems. Hence, the possibility of solving these problems exactly in polynomial time, based,
e.g., on combinatorial algorithms or linear programming, has not been ruled out yet. With
this work, we aim to lay a ground for filling this gap.

Train scheduling is closely related to machine scheduling. In fact, even more general
timetabling problems can be modeled using disjunctive graphs, which are also frequently
used to model machine scheduling problems. See [3] for an introduction to this modeling
approach and [5] for an application of it to timetabling.

In the next section, we detail how the (STTS) can be interpreted in a machine scheduling
context and how complexity results from machine scheduling transfer to our problem.

2.2 Relation to Machine Scheduling

The problem (STTS) can be interpreted as a machine scheduling problem as follows: Let a
set of machines M1, . . . ,Mn and a set of jobs Jl

1, . . . , J
l
Pl , Jr

1, . . . , J
r
Pr be given. Then the aim

is to feasibly schedule the jobs Jl
1, . . . , J

l
Pl on the sequence of machines M1 − · · · − Mn and

the jobs Jr
1, . . . , J

r
Pr on the sequence Mn − · · · − M1 while minimizing the makespan. Note

that such a sequence of machines is called a route in machine scheduling.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 104 -

The following conditions must hold for a schedule to be feasible: Jobs can only be
processed by one machine at a time, machines can only process one job at a time and once
the processing of a job on a machine has started, the job can not be interrupted. This problem
is called the job shop problem with two counter routes and no preemption (F±//Cmax). This
abbreviation corresponds to the usual three field representation which is used for classifying
machine scheduling problems. It means that the problem is a flow shop problem (F) with
two counter routes (±) and the objective is to minimize the makespan (Cmax). See [9] for an
extensive analysis of flow and job shop problems, including this problem.

In our problem, the trains are represented by the jobs and the blocks are represented by
the machines. An important difference between (STTS) and F±//Cmax is that in F±//Cmax

the processing times of different jobs on a machine can differ, while in (STTS) we as-
sume all trains i to have the same traversal time pi on each block. Hence, in the above-
mentioned classification scheme for scheduling problems, (STTS) corresponds to the prob-
lem F±/pi j = pi/Cmax. Hereby, pi j = pi means that the processing time pi j of job j ∈
{Jl

1, . . . , J
l
Pl , Jr

1, . . . , J
r
Pr } on machine i ∈ {M1, . . . ,Mn} is independent of the job. This re-

striction is well-studied in job-shop scheduling ([14,16,20]) but has to the extent of our
knowledge not been considered in conjunction with counter routes.

The complexity of F±//Cmax is well researched in the literature: For n = 2 the job shop
problem with two counter routes and no preemption can be solved in polynomial time. E.g.,
[17] give an O

(
(Pl + Pr)log(Pl + Pr)

)
algorithm for a problem equivalent to F±n//Cmax. We

conclude that the problem (STTS) can be solved in polynomial time for n = 2 and that this
result would even hold if every train block combination had a different traversal time.

Still, already for n = 3 machines, job shop scheduling with two counter routes is NP-
hard if processing times on the machines may differ for different jobs. This result immedi-
ately follows from the NP-hardness of flow shop scheduling on three machines with only
one route [21]. The result even holds for the case that the number of jobs from boths sides are
equal, i.e. if Pl = Pr, since the special case where all jobs from the right have 0 processing
times is again equivalent to flow shop scheduling.

However, this complexity result does not carry over to the (STTS) where the block
traversal times are equal for all jobs. Hence, the question of whether (STTS) can be solved
in polynomial time or not is still open for the case of three or more blocks.

In [12] an upper bound on the objective value for job shop scheduling with two routes
(not necessarily counter routes) on n machines is proven. Also [2] develop an upper bound
for the counter routes problem on n machines. In [12] an earlier publication ([1]) on this
topic is mentioned, however, we were not able to find this paper. See also the scheduling
overview given by [9,24] for a collection of results on the F±//Cmax problem.

3 Model

In this work we investigate the complexity of and approaches for solving the single track
train scheduling problem. This problem is described as follows.

Let a linear graph G = (V, B) with stations V = {s1, . . . , sn+1} and undirected edges,
(called blocks in the remainder of this paper) B = {b1 = (s1, s2), . . . , bn = (sn, sn+1)} be given.
In order to facilitate the problem description, we imagine that the tracks are going from left
to right.

We define station s1 to be the leftmost station and station sn+1 to be the rightmost re-
spectively.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 105 -

Station s1 Station s2 Station s3 Station s4t1,2 t2,3 t3,4

Fig. 1: Example for a space time diagram with Pl = Pr = 4 and n = 4

The traversal times of the blocks are given as ti,i+1 for block bi = (si, si+1) for all i =

1, . . . , n. Waiting times at stations are neglected, i.e., in our model a train can pass a station
without stopping. The number of trains traversing the graph from s1 to sn+1 (or from left
to right respectively) is specified by Pl and the number of trains traversing G in opposite
direction is given as Pr. At any point in time there can at most be one train on each block.
The capacity of the stations is not restricted. It means that any number of trains may be stored
at any station. The described setting of course oversimplifies reality. However, the intent of
this paper is to investigate to which extent the (STTS) is solvable in this very simple setting.
Possible extensions and ways to make the model more realistic are discussed in Section 7.

With the above notation we can now formally state the problem of Single Track Train
Scheduling (STTS).

(STTS)
Let the graph G = (V, B) with traveling times, station and block capacities be
given as above. Then the aim is to minimize the makespan for the traversal of G
for Pl trains from left to right and Pr trains from right to left.

In order to illustrate scheduling strategies, we make use of space time diagrams. In such
diagrams, the stops of the linear network are denoted on the horizontal axis, the time is given
by the vertical axis. Lines in the diagram represent the traversal of trains. Figure 1 depicts
such a diagram.

For explanatory purpose we introduce two terms. Suppose a train is at a certain point
of the linear network, then we call the remainder of the network, which the train still has
to traverse, its remaining part of the network. The time-wise distance between two trains
(usually on a specific block) is called headway.

In the following we discuss how this problem is related to machine scheduling and to
what extent complexity results from scheduling theory carry over to (STTS).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 106 -

4 Lower Bound

In this section we discuss a lower bound on the objective value of the optimal solution for
an instance I of (STTS). This value will help us to prove optimality of scheduling strategies
for subsequent instances of (STTS).

The lower bound is given by

T lo(I) = max
i=1,...,n

(Pl + Pr
)

ti,i+1 + 2 min

i−1∑
j=1

t j, j+1,

n∑
j=i+1

t j, j+1

 (1)

Let the block for which the maximum is attained in (1) be called the bottleneck block.
Later on we will see that in many cases, a good scheduling strategy on the bottleneck block
guarantees that the lower bound can be obtained as the makespan.

Lemma 1 T lo(I) is a lower bound on the objective value of an instance I of (STTS).

Proof Let us first consider one arbitrary block bi,i+1. All trains must pass this block which
makes up (Pl + Pr)ti,i+1 of time. Additionally, the first train that passes the block needs some
time to arrive at the block.

The minimum time for a train to arrive at bi,i+1 is given by the minimum of the distances
of the parts left and right of the block, i.e.

min

i−1∑
j=1

t j, j+1,

n∑
j=i+1

t j, j+1

Subsequently, all trains pass that block. Still the last train has to reach its destination. The
time to reach the destination is again bounded below by the minimum of the distances of the
parts left and right of the block, i.e.

min

i−1∑
j=1

t j, j+1,

n∑
j=i+1

t j, j+1

Summing up all parts we obtain for each block a value which gives a lower bound on the
makespan. In particular, the maximal value of those is also a lower bound.

This lower bound will be of help to show that particular cases can be solved in polyno-
mial time.

5 Special Cases

We will now direct to special cases for which we can specify scheduling strategies which
allow to reach the lower bound on the makespan.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 107 -

s1 s2 s n
2 −1 s n

2
s n

2 +1 s n
2 +2 s n

2 +3 sn sn+1.

T lo = Pl + Pr + 2
(

ns
2 − 1

)

Fig. 2: Strategy for unit processing time and even number of blocks

5.1 Unit processing times and capacity restrictions at stations

Assume that all traversal times on all blocks are equal, i.e. ti,i+1 = 1 for all i = 1, . . . , n.
Under this condition we can find optimal schedules which do not need high station capacity
at intermediate stations.

Theorem 1 For instances of (STTS) with unit processing times, the makespan of an optimal
schedule is given by T lo(I). This even holds if the capacity at all stations is bounded by three.

Proof First, assume that no capacity restrictions are enforced. Two different cases will be
considered. This is n is even and n is odd.

Consider the case where n is even. The following strategy provides an optimal schedule.
See Figure 2 for a sketch of the schedule.

Let all trains from both sides start traversing the linear network at time 0 with a headway
of one. If there is a conflict, i.e., if two trains would cross the same block at the same time,
always let trains from the left precede those from the right, except for the case that the train
from the left is the Plth - in this case give the trains from the right precedence. After all trains
from the left, except the Plth, have traversed all blocks, all trains from the right traverse the
remaining part of the network. After all trains from the right have passed, the Plth train
continues to station sn+1.

The last train from the left traverses the block left of the central station s n
2 +1 between the

first and the second train from the right. Then the train waits at the central station until all
trains from the right have passed and finally heads for its destination sn+1. We now have to
show that indeed the lower bound T lo(I) is obtained with this strategy.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 108 -

The first train from the left and from the right reach the central station s n
2 +1 at the same

time n
2 . After that all trains from the left traverse the central part heading for station sn +1, in

particular the block right of the central station. Between time n
2 and time n

2 +Pl−1, the trains
1, 2, 3, . . . , Pl − 1 from the left cross the block right of the central station one after another
and proceed to the right. In the meantime trains from the right have started from station sn+1

and traversed as many blocks as possible.
At station s n

2 +1 there is only one train waiting. At stations s n
2 +2, s n

2 +3, . . . , sn there are
two trains waiting as long as there are trains, the remaining trains wait at station sn+1.

At time n
2 + Pl − 2 the first train from the right starts traversing its remaining part of

the linear network. Since then there are no more trains from the right waiting at station s n
2 +1

and the block b n
2 +1, n2 +2 is used by the penultimate train from the left for one more time unit,

the next train heading for the left has a headway of two to the first train. Hence, in this gap,
the last train from the left traverses the block b n

2 ,
n
2 +1 and thus waits at station s n

2 +1. Finally,
all trains from the right traverse their remaining part of the network with a headway of one,
including those which were waiting at the station sn+1. Once the last train from the right has
arrived at the central station s n

2 +1 (at time n
2 + Pl + Pr − 1) both this train and the last train

from the left finish their ride to their final station. This ride takes each train n
2 time units.

If we now consider block b n
2 +1, n2 +2 we find the following sequence of trains. Until time

n
2 − 1 there is no train. Then the first train from the right passes this block. After that all
trains from the left but the last one traverse this block. Subsequently, all trains from the right
but the first pass this block. Finally, the last train passing this block is the last train from the
left. Then the block is empty until the last train from the left reaches its destination.

It is easy to see that no conflicts appear on the other blocks.
In order to determine the makespan of this schedule, we consider the block b n

2 +1, n2 +2.
This block is empty until time n

2 − 1. Afterwards, it is occupied during Pl + Pr time units:
Between time n

2 − 1 and time n
2 , the first train from the right passes the block. After that all

trains from the left but the last one traverse the block until time n
2 +(Pl−1). Subsequently, all

trains from the right but the first pass the block until time n
2 + (Pl − 1) + (Pr − 1). Finally, the

last train passing this block is the last train from the left which arrives at station n
2 +2 at time

n
2 + Pl + Pr −1. Consequently, the last train from the right arrives at the leftmost station s1 at
time n

2 + (Pl − 1) + (Pr − 1) + n
2 = Pl + Pr + 2

(
n
2 − 1

)
= T lo(I) and the last train from the left

arrives at the rightmost station sn+1 at time n
2 +Pl +Pr +(n

2 −1) = Pl +Pr +2
(

n
2 − 1

)
= T lo(I).

To see the second part of the lemma, note that at each station at each point in time there
are at most two trains from the right and one from the left. Hence this schedule can be
operated with a maximal station capacity of three.

Now assume that n is odd. The strategy in this case is the following. Let all trains from
both side traverse the linear network with a headway of one. If there is any conflict between
two trains from different directions always let trains from the left precede.

Here we find that the central block b n+1
2 ,

n+1
2 +1 is reached by a train from each side at

time n−1
2 . Subsequently, all trains from the left side traverse the central block followed by

all trains from the right side with headway one. Note that this is only possible since at
any station from s n+1

2 +1 to the right there are two trains waiting. Finally, the last train has
traversed the central block at time n−1

2 + Pl + Pr and it takes another n−1
2 time units until it

reaches the final station s1. Hence the makespan equals Pl + Pr + 2
(

n−1
2

)
which equals the

lower bound T lo(I).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 109 -

To see the second part of the theorem, note that at no point in time there are more
than two trains waiting at a station and a third one passing in opposing direction. Hence a
maximal needed capacity of three is obtained.

If, additionally, the number of trains from left to right and from right to left are equal,
even lower station capacity is sufficient to obtain an optimal solution.

Lemma 2 For instances of (STTS) with unit processing times and Pl = Pr, the makespan
of an optimal schedule is given by T lo(I). This even holds if the capacity at all stations is
bounded by two.

Proof Denote P := Pl = Pr. Again we separate the analysis into the cases where n is even
and n is odd. First assume n is even.

The strategy consists in scheduling all trains from the left and the right at the same time
with a headway of two. Then, since n is even two passing trains always meet at a station
and never face a conflict on the tracks, hence, no train has to wait at intermediate stations.
Consequently, the makespan is n + 2(P − 1) = 2P + 2

(
n
2 − 1

)
= T lo(I).

In case n is odd, let the first train from the left start at time 0 and again let subsequent
trains from the left keep a headway of two to the preceding train. Furthermore, let the first
train from the right start at time 1 and let subsequent trains from the right keep a headway
of two to the preceding train as well. Then, two passing trains always meet at a station
and never face a conflict on the tracks, hence, no train has to wait at intermediate stations.
Consequently, the last train from the right arrives at time 1+n+2(P−1) = 2P+2

(
n−1

2

)
= T lo,

the last train from the left arrives at time n + 2(P − 1) = 2P + 2
(

n−1
2

)
− 1 < T lo.

Note that in both cases, no trains have to wait and that at most two trains are passing
each other in stations. Hence, the capacity needed equals two.

We conclude this section with a remark on the situation with unit capacity which also
holds if block lengths are not equal. In this section, the lower bound T lo cannot be reached.
Since trains cannot pass each other, the optimal strategy simply consists of letting the trains
from one side pass first, and then the trains from the other side. This leads to the following
lemma.

Lemma 3 If the station capacity is restricted to one, the makespan of an optimal schedule
is given by 2

∑n
i=1 ti,i+1 + (Pl + Pr − 2) maxn

i=1 ti,i+1.

5.2 Restricting the Number of Blocks

In the following we consider arbitrary track lengths, but restrict the number of blocks on the
track. From the machine scheduling analysis we know that the case n = 2 is easily solvable.
Hence, we direct to the case where n = 3. Take Figure 3 as an illustration of the considered
case.

Here, we can find a polynomially solvable case which is given by the following theorem.

Theorem 2 For instances I of (STTS) with three blocks and P = Pl = Pr, the makespan of
an optimal schedule is given by T lo(I).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 110 -

Station s1 Station s2 Station s3 Station s4
t1,2 t2,3 t3,4

Fig. 3: Example setting for n = 3

Proof T lo(I) equals the largest of the three bounds

(1)︷︸︸︷
2Pt12 ,

(2)︷ ︸︸ ︷
2Pt23 + 2 min {t12, t34},

(3)︷︸︸︷
2Pt34 .

Suppose bound (2) is largest. Then, assume wlog. that t12 ≥ t34. We first construct
a schedule with makespan T lo blockwise, then we show its validity. The first half of the
schedule is composed as follows. On block b12, we have P trains leaving consecutively (i.e.,
with headway t12) to the right. Block b23 is initially unused until time t34. After that P trains
go alternately and consecutively: first to left and then to right until all trains have passed this
block at time t12 + 2Pt23. On block b34, starting at time zero, trains go left consecutively.

The second half of the schedule is described backwards from the time T lo(I). On block
b12 we have left-going trains arriving consecutively at station s1 (i.e., they arrive at times
T lo, T lo − t12, T lo − 2t12,. . .). Block b23 is unused for the last duration of t34. Before that
we have alternately moving trains, the last rightward, the second last leftward and so on,
as described above. On block b34 we have right-going trains arriving consecutively at times
T lo, T lo − t34, T lo − 2t34,. . . at station s4. Note that on blocks b12 and b34 there might be
unused times around the middle of the schedule.

We now argue that this is a valid schedule, i.e.,

– no two trains are in the same block at any time and
– no train is scheduled to depart from a station before it has arrived there.

We only discuss this for the first half of the schedule; the second half is analogous.
The first half is Pt23 + t34 long. Clearly the P movements scheduled for block b23 fit in this
duration, after the initial inactive period of length t34. Because bound (2) is largest we know
that Pt12, Pt34 ≤ Pt23 + t34. Thus the P rightward (leftward) movements on block b12 (b34)
can also be accommodated, and there are no two trains at the same block at any time.

Next, as described in the schedule above, the ith rightward train must leave block b12 at
time it12 and enter block b23 at t34 + (2i − 1)t23. But since t12 ≤ t23 +

t34
P , we have that

it12 ≤ it23 + i
t34

P
≤ (2i − 1)t23 + t34.

Thus, the train is scheduled to enter block b23 only after leaving block b12.
Likewise, the ith leftward train is scheduled to leave block b34 at it34 and to enter block

b23 at (2i − 2)t23 + t34. This is possible since it holds that

it34 = t34 + (i − 1)t34 ≤ t34 + (i − 1)t12 ≤ t34 + (i − 1)(t23 +
t34

P
) ≤ t34 + (2i − 2)t23.

The last inequality in this is derived as follows. Note first that if P = 1 then i = 1 and
the proof is direct. Hence consider P > 1. We know that Pt34 ≤ Pt23 + t34 and thus t23 ≥

t34(P − 1)/P. This results t23 ≥
t34
P for P > 1.

Next suppose bound (1) is the largest. For ease of argument, we increase t23 until bound
(2) equals bound (1). Then, we construct the same schedule as given above. This schedule
can easily be transferred to a schedule for lower values of t23. In the schedule, certain time

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 111 -

intervals are reserved for movements on block b23. Of each such interval we only use a
subinterval of length equal to the original value of t23. This clearly does not change the
makespan and maintains validity, i.e. trains use distinct time intervals on each block and are
still in order in which they appear in each block.

The case of bound (3) being the largest is equivalent to the case of bound (1) being
largest.

5.3 Can the lower bound T lo(I) always be achieved?

The following example shows a case for n = 5 in which the lower bound T lo(I) can not be
achieved.

Example 1 Assume Pl = Pr = 2 and t1,2 = t5,6 = 10, t2,3 = t4,5 = 3 and t3,4 = 4. Then
T lo(I) = (Pl + Pr)t3,4 + 2(t1,2 + t2,3) = 42 and the bottleneck is block b3,4. Figure 4 shows an
optimal scheduling strategy. In this strategy there is an unavoidable gap of 2 time units on
the bottleneck block between the first and the second train from the right. Due to this gap,
the makespan of this solution is 44 = T lo + 2.

s1 s2 s3 s4 s5 s6t1,2 = 10 t2,3 = 3 t3,4 = 4 t4,5 = 3 t5,6 = 10

44

34

10 10

20

24

34

13

21

27

13

17

23

31

10

20

34

44

30

10

Fig. 4: Sketch for scheduling strategy for Example 1

As a general observation, we conclude that in order to reach the lower bound T lo, we
must be able to schedule the trains on the bottleneck block(s) without leaving a gap.

Observation 3 If there exists a k = 1, 2, . . . , 2P such that at time min
{∑i−1

j=1 t j, j+1,
∑n

j=i+1 t j, j+1

}
+

(k−1)t j j+1 less than k trains have reached the bottleneck block, there does not exist a sched-
ule which achieves makespan T lo.

Note that this can occur, even if the longest block is the bottleneck block, as can be seen
in the following example.

Example 2

Let Pl = Pr = 2 and (t1,2, t2,3, . . . , t8,9) = (5, 2, 1, 1, 1, 1, 1, 4). Then the bottleneck block
is obtained as b1,2 with T lo = 20. When scheduling, we see that once the second train from
left has passed the bottleneck, the first train from the right has not yet reached the bottle-
neck. Hence the lower bound is not reached. See Figure 5 where the scheduling strategy is
depicted.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 112 -

1

s1 s2 s3 s4 s5 s6 s7 s8 s9
t1,2 = 5 2 1 1 1 1 1 4

5

16

21

5

10
11

16

4

16

22

Fig. 5: Lower bound T lo not reached even though longest block is bottleneck

6 Dynamic Programming

In this section we develop a dynamic programming formulation for the problem (STTS)
with pseudo-polynomial running time.

Lemma 4 If block lengths are integer, (STTS) can be solved as a shortest-path problem in
an acyclic graph.

Proof Denote by L :=
∑n

i=1 ti,i+1 the total length of the track considered. We divide the
tracks into L subblocks ck of lengths 1 with substations s′k at every end of a subblock. We
denote by I the index set of the substations which are stations and by I(b j) the index set of
the substations corresponding to block b j, including the stations at both ends of the block.
Note that each substation index i belonging to a station s j (except for j = 1 and j = n + 1)
is contained in two sets I(b j−1) and I(b j).
States: The nodes of the graph in which we are going to formulate the shortest path problem
denote the states of the problem. Each state is represented by a tuple X with entries

X := (xl
0/x

r
0, x

l
1/x

r
1, . . . , x

l
L/x

r
L),

also written as

X :=
xl

0 xl
1 xl

2 . . . xl
L−1 xl

L
xr

0 xr
1 xr

2 . . . xr
L−1 xr

L
. (2)

Herein, xl
i represents the number of trains from the left which have passed or reached sub-

station s′i already, and xr
i represents the number of trains from the right which have passed

or reached substation s′i already.
For n ∈ N we denote [n] := {0, 1, 2, . . . , n}.

Feasible states: Since we have Pl trains from the left and Pr trains from the right, Xl :=
(xl

0, x
l
1, . . . , x

l
L) ∈ [Pl]L+1 and Xr := (xr

0, x
r
1, . . . , x

r
L) ∈ [Pr]L+1. However, not all vectors

Y ∈ [Pl]L+1 × [Pr]L+1 define feasible states of the problem:

– At the beginning, all trains passing from left are on the left of the track, i.e., xl
0 = Pl for

all feasible states X, analogously xr
L = Pr for all feasible states X.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 113 -

– Since trains pass from left to right, we have xl
i ≥ xl

i+1 for all i = 0, . . . , L, analogously
xr

i ≤ xr
i+1.

– Only one train can be on a block at a time.

(max
i∈I(b j)

xl
i − min

i∈I(b j)
xl

i) + (max
i∈I(b j)

xr
i − min

i∈I(b j)
xr

i) ≤ 1 for all j = 1, . . . , n

Only nodes representing feasible states will be introduced.
Transitions/arcs Two nodes (X, X̂) are connected by a directed arc of length 1, if state X̂
can be reached from state X in time 1. This is the case, if

– xk
i ≤ x̂k

i for all i = 0, . . . , L, k ∈ {l, r}, i.e., over time, more and more trains pass every
substation of the network.

–
∑

i∈I(b j)(x̂l
i + x̂r

i) ≤
∑

i∈I(b j)(xl
i + xr

i) + 1 for all j = 1, . . . , n, i.e., on each block there is at
most one train running and it advances at most one substation.

– If for two substations s′i and s′i+1, belonging to the same block b j, xl
i = xl

i+1 + 1, then it
follows x̂l

i+1 = xl
i+1 + 1, unless s′i is a station. Analogously, xr

i = xr
i−1 + 1, then x̂r

i−1 =

xr
i−1 + 1, unless s′i+1 is a station. This models that trains cannot stop between the stations.

These conditions ensure that the graph is acyclic.
Correspondence of solutions to paths There is a one-to-one correspondence between fea-
sible schedules for the (STTS) and paths from node

Pl 0 0 . . . 0 0
0 0 0 . . . 0 Pr

to node

Pl Pl Pl . . . Pl Pl

Pr Pr Pr . . . Pr Pr

where the length of the path represents the time duration to execute the solution.
Hence, an optimal solution to (STTS) corresponds to a shortest path is the graph.

Lemma 5 If block lengths are integer, the graph described in Lemma 4 has O
((

Pl+n
n

)(
Pr+n

n

)
max{ti,i+1}

)
nodes and O

(
3n

(
Pl+n

n

)(
Pr+n

n

)
max{ti,i+1}

)
arcs.

Proof As stated in the proof of Lemma 4, the nodes of the graph correspond to feasible
states X (as described in (2)). We now make an attempt on bounding the number of feasible
states from above.

We denote by yl
j the number of trains which have passed the full block b j from left to

right. yr
j analogously denotes the number of trains which have passed the full block b j from

right to left. I.e, yl
j = xl

ilast j
and yr

j = xl
ifirst j

, where ifirst j and ilast j denote the first and the last
index in the set I(b j), respectively.

For every pair (yl
j/y

r
j) there are 2t j, j+1 − 1 feasible combinations of subindices:

yl
j = xl

ifirst j
xl

ifirst j +1 xl
ifirst j +2 . . . xl

ilast j−1 yl
j+1 = xl

ilast j

yr
j = xr

ifirst j
xr

ifirst j +1 xr
ifirst j +2 . . . xr

ilast j−1 yr
j+1 = xr

ilast j

,

namely

yl
j yl

j − 1 yl
j − 1 . . . yl

j − 1 yl
j − 1

yr
j yr

j yr
j . . . yr

j yr
j
,

yl
j yl

j yl
j − 1 . . . yl

j − 1 yl
j − 1

yr
j yr

j yr
j . . . yr

j yr
j
, . . . ,

yl
j yl

j yl
j . . . yl

j yl
j

yr
j yr

j yr
j . . . yr

j yr
j,
,

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 114 -

and

yl
j yl

j yl
j . . . yl

j yl
j

yr
j − 1 yr

j − 1 yr
j − 1 . . . yr

j − 1 yr
j
, . . . ,

yl
j yl

j yl
j . . . yl

j yl
j

yr
j − 1 yr

j yr
j . . . yr

j yr
j
,

yl
j yl

j yl
j . . . yl

j yl
j

yr
j yr

j yr
j . . . yr

j yr
j,
,

(one case is listed twice here), if yl
j, y

r
j > 0. If one or both values are 0, there are less.

Furthermore, there are

Pl∑
in=0

in∑
in−1=0

in−1∑
in−2=0

. . .

i2∑
i1=0

1 ·
Pr∑

in=0

in∑
in−1=0

in−1∑
in−2=0

. . .

i2∑
i1=0

1

feasible combinations of the y-values. Each nested sum

Pl∑
in=0

in∑
in−1=0

in−1∑
in−2=0

. . .

i2∑
i1=0

1 =

(
Pl + n

n

)

then gives a binomial coefficient, see [6] for an explanation. This leads to O
((

Pl+n
n

)(
Pr+n

n

)
max{ti,i+1}

)
nodes.

To count the number of arcs, let us consider possible successors X̂ of node X in the
graph. For each block, there are at most three different possibilities: either a train is moving
from left to right, a train is moving from right to left, or no train is moving at all on that
block (as formalized when defining the arcs above). Since we have n blocks, each node X
has hence at most 3n successors (and most will have much less). Thus, there are at most
O

(
3n

(
Pl+n

n

)(
Pr+n

n

)
max{ti,i+1}

)
arcs in the graph.

Lemma 6 The (STTS) can be solved in O
(
3n

(
Pl+n

n

)(
Pr+n

n

)
max{ti,i+1}

)
.

Proof Since the described graph is a directed and acyclic graph, we can find a shortest path
in linear time in the number of edges, see, e.g., [11].

Of course, for large numbers of blocks n this is impractical and we would probably be
better off using an integer programming approach as described, e.g., in [7]. However, from
a theoretical point of view, the following conclusion is interesting:

Corollary 1 For a fixed number of blocks, the (STTS) can be solved in pseudo-polynomial
time, i.e., it is polynomial in Pl, Pr and max j t j, j+1.

Possible Extensions In the basic version of the (STTS) we assumed that stations have an
unlimited number of tracks. However, limited station capacity could easily be taken into
account in the dynamic programming approach. Note that for each state X of the dynamic
program, the number of trains currently halting at station s j is

H j(X) := xl
i j

f irst
− xl

i j
f irst+1︸ ︷︷ ︸

trains from the left

+ xr
i j

f irst
− xr

i j
f irst−1︸ ︷︷ ︸

trains from the right

.

Hence, track capacity restrictions at stations can be included by creating only the nodes
which satisfy H j(X) ≤ capacity of station s j and the corresponding arcs.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 115 -

We can also include simple vehicle scheduling constraints in the model. I.e., consider
the situation that the trains go back and forth and traverse the track several times during a
day. In this case, we would denote by Pl the number of departures from left and by Pr the
number of departures from right. Introducing only nodes X which fulfill

xl
2 − xr

1 ≤ initial number of trains on left

we would make sure that the number of trains which have left the left station never exceeds
the number of trains which have arrived there by more than the initial number of trains on the
left. It makes sure that there is always a train to leave when there is a scheduled departure.
An analogous constraint can be added for the station on the right.

A similar approach could be taken when introducing simple ’balance’ constraints. Par-
ticularly when transporting passengers, it could be considered unbalanced and unfair, if a
large number of trains from the left could pass the full track unhindered while all trains
from the right had to wait. To avoid this problem, we could, similarly to the approach de-
scribed above, exclude all nodes modeling states where, e.g., xl

L and xr
0 are too different,

w.r.t. to the above stated balancedness, or where the difference between xl
i and xr

i at some
intermediate substation s′i is too big.

Note that all extensions described so far lead to a smaller network and hence would
speed-up the dynamic programming approach.

Other extensions, like minimal waiting times at stations or different train types with
different speed profiles could also be included, but more states (that is: more nodes) would
be needed. However, the general theoretic result of pseudopolynomial solvability for a fixed
number of blocks would remain valid also in these cases.

More sophisticated extensions like, e.g., periodicity or routing in stations seem to be out
of the scope of this approach.

7 Conclusion

In this paper we studied a basic version of the Single Track Train Scheduling Problem,
which can be considered a special case of job shop scheduling with two counter routes and
no preemption. Our special case, furthermore, restricts the processing time of a job on a
machine to be the same for all jobs.

We were able to prove a lower bound on the minimum makespan of the (STTS) and
identify several special cases where this lower bound is tight.

In particular, we found that, although the job shop scheduling problem with two counter
routes, no preemption, three machines and equal number of jobs from both sides is strongly
NP-hard, that, if we have the additional requirement that the processing times of all jobs on
each machine are equal (as it is the case in the (STTS)), we can specify scheduling strategies
which reach a makespan equal to the lower bound.

Furthermore, we showed that for any fixed number of blocks (STTS) can be solved in
pseudo-polynomial time.

This result can also be generalized for some less basic versions of single track train
scheduling which even have the potential to speed-up the algorithm considerably. However,
the computation time of our approach increases exponentially in the number of blocks, hence
the result is more of a theoretical value and most likely not applicable in real-world train
scheduling where the number of blocks is typically large.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 116 -

In the general cases the lower bound may help to prove optimality or give a good esti-
mate of distance to optimality when applying heuristic solution methods.

To what extent the results in this work can be generalized and the lower bound can be
improved is currently under research.

References

1. Babushkin, A., Bashta, A., Belov, I.: Scheduling for the problem with oppositely directed routes. Kiber-
netika 7, 130–135 (1974)

2. Babushkin, A., Bashta, A., Belov, I.: Scheduling for problems of counterroutes. Cybernetics and Systems
Analysis 13(4), 611–617 (1977)

3. Balas, E.: Machine sequencing via disjunctive graphs: an implicit enumeration algorithm. Operations
research 17(6), 941–957 (1969)

4. Brucker, P., Heitmann, S., Knust, S.: Scheduling railway traffic at a construction site. Springer (2005)
5. Burdett, R.L., Kozan, E.: A disjunctive graph model and framework for constructing new train schedules.

European Journal of Operational Research 200(1), 85–98 (2010)
6. Butler, S., Karasik, P.: A note on nested sums. Journal of Integer Sequences 13(2), 3 (2010)
7. Cacchiani, V., Toth, P.: Nominal and robust train timetabling problems. European Journal of Operational

Research 219(3), 727–737 (2012)
8. Castillo, E., Gallego, I., Ureña, J.M., Coronado, J.M.: Timetabling optimization of a single railway track

line with sensitivity analysis. TOP 17(2), 256–287 (2009)
9. Chen, B., Potts, C., Woeginger, G.: A Review of Machine Scheduling: Complexity, Algorithms and

Approximability. Handbook of Combinatorial Optimization (1998)
10. Cordeau, J.F., Toth, P., Vigo, D.: A survey of optimization models for train routing and scheduling.

Transportation Science 32(4), 380–404 (1998)
11. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., et al.: Introduction to algorithms, vol. 2. MIT

press Cambridge (2001)
12. Dushin, B.: An algorithm for the solution of the two-route johnson problem. Cybernetics and Systems

Analysis 24(3), 336–343 (1988)
13. Frank, O.: Two-way traffic on a single line of railway. Operations Research 14(5), 801–811 (1966)
14. Gonzalez, T.: Unit execution time shop problems. Mathematics of Operations Research 7(1), 57–66

(1982)
15. Higgins, A., Kozan, E., Ferreira, L.: Optimal scheduling of trains on a single line track. Transportation

Research Part B: Methodological 30(2), 147–161 (1996)
16. Hromkovič, J., Mömke, T., Steinhöfel, K., Widmayer, P.: Job shop scheduling with unit length tasks:

bounds and algorithms. Algorithmic Operations Research 2(1) (2007)
17. Jackson, J.: An extension of johnson’s result on job lot scheduling. Naval Research Logistics Quarterly

(1956)
18. Janić, M.: Single track line capacity model. Transportation Planning and Technology 9(2), 135–151

(1984)
19. Kraay, D., Harker, P.T., Chen, B.: Optimal pacing of trains in freight railroads: Model formulation and

solution. Operations Research 39(1), pp. 82–99 (1991)
20. Lenstra, J.K., Kan, A.R.: Computational complexity of discrete optimization problems. Annals of Dis-

crete Mathematics 4, 121–140 (1979)
21. M. R. Garey, D.S.J., Sethi, R.: The Complexity of Flowshop and Jobshop Scheduling. Mathematics of

Operations Research (1976)
22. Petersen, E.: Over-the-road transit time for a single track railway. Transportation Science 8(1), 65–74

(1974)
23. Rahman, S.A.A.: Freight train scheduling on a single line network. Ph.D. thesis, The University of New

South Wales (2013)
24. Sevast’janov, S.: On some geometric methods in scheduling theory: a survey. Discrete Applied Mathe-

matics 55(1), 59 – 82 (1994)
25. Zhou, X., Zhong, M.: Single-track train timetabling with guaranteed optimality: Branch-and-bound al-

gorithms with enhanced lower bounds. Transportation Research Part B: Methodological 41(3), 320–341
(2007)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 117 -

Sylverin Kemmoe-Tchomte

CRCGM EA 3849, Université d’Auvergne, Clermont-Ferrand, France

E-mail: sylverin.kemmoe_tchomte@udamail.fr

Damien Lamy

LIMOS UMR CNRS 6158, Aubière, France

E-mail: lamy@isima.fr

Nikolay Tchernev

LIMOS UMR CNRS 6158, Aubière, France

E-mail: tchernev@isima.fr

MISTA 2015

An Optimization Framework for Job-shop with Energy Threshold Issue

With consideration of machining operations with consumption peaks

S. Kemmoe-Tchomte • D. Lamy • N. Tchernev

Abstract In this paper the problem of the Job-shop is extended to support energy constraints.

The objective is to propose scheduling tools for manufacturing systems considering

consumption threshold that must not be exceeded. The operations are supposed to consume more

energy at beginning and thus representing a consumption peak that is often present in machine

tools. This assumption results in considering that an operation is divided into two sub-operations.

The goal is then to propose the best schedule considering the energy threshold, the consumptions

of operations and duration of consumption peaks as given data. A Mixed Integer Linear Model

(MILP) for the problem solving is proposed; it is based on flow approach to take into account

the energy threshold. Since it is difficult to find exact solutions for medium and large size

problems, a metaheuristic based on a GRASPxELS is proposed. Small scale instances for the

problem have been generated, and results expose the relevance of the metaheuristic approach.

1 Introduction

For several years, environmental and energy constraints have become essential criteria in

decision making inside enterprises or laboratories [11]. This is also one of the major issues for

governments, who care of the ecological impact of the industrial sector on the planet and on

society. Thus, constraints such as footprint carbon and energy (fossil or not) consumption are

now seriously taken into account. According to the International Energy Outlook proposed by

the U.S. Energy Information Administration, companies consumed more than 50% of the global

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 118 -

delivered energy in 2010 [8]. However they tend to apply their good practices to their different

sites and to their suppliers by banishment of some materials for example, which could lead to

the ISO14000 certification [11]. More than 64% of the allocated energy to the industrial sector

was used by non-OECD industry. However, companies’ answers to this problem are still limited.

Without a doubt, according to Rager et al. [23] to provide solutions to this problem, two types

of measures could be taken: technological and/or organizational. Technological measures are

quite expensive since they emphasis on new machines or production process, whereas

organizational measures focus on improvements for the existing system, thus leading to energy

efficiency. A lot of enhancements can be made on this last point in order to obtain better results,

meeting industrial expectations and without investing in new machines. According to [7] three

decisions could be made to build an energetically responsible production system. At first, the

energy used by inactive machines could be minimized (by switching them off/on or by reducing

lazy times). Another solution consists in moving activities from On-peak hours to Off-peak

hours. Finally, it is possible to avoid consumptions peak which could lead to an overbilling. In

this paper, this last point is treated in a Job-shop like manufacturing environment where a near

optimal schedule should be proposed while an energy consumption threshold should not be

exceeded. From the best of our knowledge, it is one of the first researches focusing on this

problem.

In the next section, a literature review of articles concerning scheduling problems with

energy constraints is proposed. In the third section, assumptions used in this study are presented.

In the fourth section, the mathematical model of the problem is given. In the fifth section, a

GRASPxELS metaheuristic is introduced in order to obtain near optimal solutions of the

problem. Results for small scale instances are presented in section six. Finally, the last section

consists in a conclusion and research perspectives

2 Related work

The literature is full of industrial problems consisting of minimizing the total treatment time,

also called makespan, and other objective functions. Until recently, only a few works dealt with

energy optimization as an important constraint in scheduling. However, the “Green

Manufacturing” field of research is increasingly studied and hence a non-exhaustive review is

proposed in this section.

[19] proposed methods and operational tools to minimize the energy consumption of a

single machine. A mathematical formulation to minimize simultaneously the total completion

time of a set of operations and the total energy consumption is proposed. Their model handles

the different states a machine can be in: idle, running, switch ON or OFF. Later the same authors

[20] extend their previous work and proposed a Greedy Randomized Adaptive Search Procedure

(GRASP) which objective is to find a solution minimizing both the total energy used and the

total tardiness.

[6] used a Genetic Algorithm associated to a Simulated Annealing in order to provide

approach solutions to a Flow-shop problem with consideration of total energy consumption. The

power used by the machines according to their state is taken into account. They suggest to turn

on/off machines according to the need of the production system and respecting conditions. Thus,

a machine will not be turned off if the next operation to be scheduled starts earlier than the

duration of the turn off/on process. Their results are given in a Pareto graphic. However, they

did not use industrial data and underlined that their model does not handle the possible

breakdowns. Considering this last point, [25] noticed that an energy efficient system provides

robustness and is less sensitive to breakdowns and thus they worked on the correlation between

makespan, energy and robustness. In their model a machine may have variable speeds for

processing operations. A machine which is processing a task quickly will consume more energy

and the treatment time will be reduced, however if the machine is processing the operation more

slowly, the consumption will be reduced. In this context if a breakdown occurs, the lost time

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 119 -

could be caught up by increasing processing speed of the machine. Their work is one of the first

including robustness in the optimization of production systems under energy constraints. The

model proposed by [9] consists in minimizing the carbon footprint, the makespan and the

consumption peaks in a Flow-shop context with variable speeds allowed on machines. The

market tool they used did not permit to obtain a single point on the Pareto frontier in a calculation

day even in the case of a two stage Flow-shop with two possible speeds per machine and 36 jobs.

[7] proposed a state of the art of different practices concerning the manufacturing systems

with energy constraints. They also stated that is very difficult to obtain data concerning energy

consumption. As stressed in their study it is not easy to optimize recently constructed

manufacture industries because they are energetically well designed; however, even a smooth

optimization in less recent manufactures could lead to a strong improvement. In their work [4]

proposed a solution which consists in avoiding consumption peaks on a Flexible Flow-shop.

They used an Energy Aware Scheduling (EAS) module on the existing schedule obtained with

an APS (Advanced Planning and Scheduling) system. The EAS does not modify the given

schedule, but optimizes it from the viewpoint of energy consumption by defining a new timetable

for the operations. Two approaches are used: a mix-integer linear program (MILP) and a

Randomized Neighborhood Search (RANS). They noticed that the MILP can be used when a

large consumption peak is allowed and quickly overtaken when the energy threshold is lowered.

The possibility to link the given EAS to an existing APS without changing the system in place

for a solution handling both applications at the same time is a strong advantage of their approach.

They finally noted the fact that their model could be strengthened, by integration of other

objectives such as variability of costs and energy need of machines which is constant in their

study (unitary).

[18] took into account the variability of electricity pricing during a day, by inclusion of

Time-of-Use (TOU) rates in a Flexible Flow-shop. They noticed that it is better in a flexible

production system to have parallelized a fast machine with high energy consumption with a slow

but economic one, and high energy machine with a slow and economic one, rather than two

medium machines from the viewpoint of speediness and energy consumption. [26] used a similar

approach by taking into account TOU and transitions between machine states in a single machine

process. The genetic algorithm they implemented could be used in extension of an MRPII

(Manufacturing Resource Planning System). However their model does not modify the sequence

given in input in order to find a better makespan, and consideration of machines with variable

speeds is mentioned as a future study. [17] Studied a Job-shop where both the total tardiness and

the total energy consumption are minimized by reducing the idle times of machines. [32]

Proposed a time indexed linear program which objective is to minimize the energy spending and

the carbon footprint under a TOU pricing in a height level Flow-shop.

Finally, [21] pointed out that the industrial mind-set is still focused on the fact that

optimizing energy consumption is time-consuming and too expensive which is a barrier to

improvements in energy efficiency that could be made in enterprises. In addition, the recent state

of the art proposed by [27] underlines the lack of decisional tools relative to energy efficiency

of production systems. Their review shows that most of the studies are input-oriented and quite

recent and they stress the necessity to develop more output-oriented or mixed methods.

In order to clarify the approaches proposed in the literature review, the different systems

under study, the way energy is optimized and the objective functions are centralized in Table 1.

While reviewing the literature a lack of study concerning the Job-shop problem with

consumption peaks consideration appeared, since all studies conducted so far mainly concern

the total energy minimization as seen in [17], [12] or [25]. In the next section are presented the

assumptions used in this paper concerning the Job-shop with an Energy Consumption Threshold

(JSECT) where the operations to be scheduled present an electricity consumption peak at their

start.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 120 -

Table 1: Different studies concerning energy in production systems

References

S
in

g
le

 M
ac

h
in

e

F
lo

w
-s

h
o

p

F
le

x
ib

le
 F

lo
w

-s
h
o
p

Jo
b

-s
h
o
p

F
le

x
ib

le
 J

o
b

-s
h
o
p

C
ar

b
o
n
 f

o
o
tp

ri
n
t

C
o
n
su

m
m

at
io

n
 P

ic
s

T
o
ta

l
E

n
er

g
y

E
n
er

g
y
 P

ri
ce

 (
T

O
U

)

M
ak

es
p
an

T
o
ta

l
T

a
rd

in
es

s

R
o
b
u
st

n
es

s

Balogun and Mativenga, 2013 [2] x

Bruzzone et al., 2012 [4] x x x x

Dai et al., 2013 [6] x x x

Fang et al., 2011 [9] x x x x

He et al., 2005 [12] x x x

He et al., 2015 [13] x x x

Liu et al., 2014 [17] x x x

Luo et al., 2013 [18] x x x

Mouzon et al., 2007 [19] x x x

Salido et al., 2013 [25] x x x x

Shrouf et al., 2014 [26] x x

Xu et al., 2014 [31] x x x x

Zhang et al., 2014 [32] x x x

3 Assumptions

3.1 Job-shop assumptions

This study is based on the well-known Job-shop theoretical model (A review of the Job-shop

problem is given in [14]) representing workshops with multiple paths. The Job-shop problem

consists in scheduling a set of n jobs that have to be sequenced on m machines. Each job Ji (i.e.:

i ∈ [1,n]) is composed of m operations Oij (i.e.: j ∈ [1,m]) which are sequenced in a predefined

order noted Gi={Oi1, Oi2, ….Oim}. Each operation has to be processed on a given machine μij

during a processing time pi and no preemption is allowed (a started operation must not be stopped

before its end). The Job-shop problem consists in finding a feasible schedule by managing

machine disjunctions as the machines are mutualized between jobs. One of the commonly used

objectives is then to find such a schedule with a minimal global duration, also called makespan.

The Job-shop problem has received a huge attention over the years, with several extensions such

as transportation constraints, time-lags constraints, or financial constraints. Using the disjunctive

graph introduced by [24] the operations can be modeled by vertices. Precedence constraints

between operations of the same job are represented by an arc. Disjunctive constraints between

two operations which require the same machine are modeled by an edge. The cost of an outgoing

arc is equal to the duration of the operation. An example of a non-oriented disjunctive graph for

a Job-shop scheduling problem where three jobs must be scheduled on three machines is

presented on Fig. 1 where dashed edges represent disjunction constraints and each operation is

performed by a given machine Mi.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 121 -

O1 O2 O419 12

O5 O6 O817 12

O9 O10 O1214 9

M1

M4

M2 M4

M1M2

M3M1 M2

*O 14

O1 O3 10

O7 7

O11 11

M3

M3

M4

Fig. 1 : A non-oriented disjunctive graph

In the study, the graph representation proposed by [24] is extended with new arcs

modelling precedence between operations when a task is delayed because of the energy used by

previous and non-finished operations.

3.2 Energy assumptions

In the literature concerning energy optimization on production systems, the operations are

generally represented as a simple energy block [29] which representation does not fit the reality.

An energy block consists in considering an operation from the energy viewpoint, leading to a

rectangle where two contiguous sides respectively represent the duration of the operation and its

maximum energy consumption as shown on Fig. 2.

Time Time

Power Power

Fig. 2 : Energy Block Representation proposed by Weinert et al., 2011 [29]

Furthermore, in the literature most of the operations are considered from three points of

view: basic, cutting, and idle/ready as stressed in [1]. These assumptions are used in the work of

[17] when minimizing the total energy consumption. [4] considered that every operation had a

unitary consumption because of the lack of industrial data, and thus represented them as a simple

energy block, not taking into account the different states of the machine. The time indexed linear

model they proposed showed that the lower the energy threshold is the harder it is to find an

exact solution for such a problem with a linear solver. Still, their model permitted to lay the

foundation of the work presented in this study. However several differences between our

approaches must be enlightened. First, the basis of our problem is the Job-shop problem which

is more general than a Flow-shop. But the main difference to be noticed concerns the energy

assumptions. Indeed, it can be seen in the literature that machine operations have a complex

energy behaviour and thus should not be only represented as a single block, especially while

considering energy threshold. As stressed in [4] it is quite difficult to obtain real and precise data

from the industrial sector. However, some useful information can be found concerning power

profiles of machines on works related to green manufacturing, both from the viewpoint of

machine or process. Thus, it can be stressed that most of the time an extra energy consumption

peak is occurring at the start of the operation as shown in [7; 15] or [16].

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 122 -

Since the objective of this study is to minimize the makespan while considering an energy

threshold constraint, it appears that a simple block representation would imply to loose time

during the schedule. Indeed, based on the power profile of a 2kW fibre laser proposed in [16], it

can be stressed that the laser cutting process consumes almost 37kW whereas it needs less than

20kW after the peak. Thus, if a threshold is fixed at 40kW and another operation that consumes

less than 15kW must be scheduled, it means that such an operation should start at the end of the

laser cutting process since both operations would consume more than 40kW if treated

simultaneously (15+37=52kW > 40kW). If the laser cutting process has a long duration

(approximately 400s in the given example), a huge amount of time is lost whereas the operation

could have been scheduled just after the 37kW peak. Hence, in this paper are considered

operations that are divided into two sub-operations in order to represent the consumption peak

at the beginning, and a lower consumption during the remaining processing time. However, since

operations cannot be stopped in the Job-shop, two sub operations relative to the same global

operation must be linked in order to keep the integrity of the given operation. This constraint is

modelled using no-wait arcs between such sub-operations, or maximal time-lags between two

consecutive operations which values are equal to the opposite duration of the peak’s length (i.e.:

if peak duration is equal to a, then the time-lag max is equal to –a ; A study on time-lags can be

found in [5]). A graphical representation of such a problem is presented in the Fig. 3.

O1 O3 O714

*O

O2 O4 O85 3 9 4

-3 -4

O9 O11 O1515 13O10 O12 O162 7 5 1

-7 -1-2

O17 O19 O2311O18 O20 O243 1 8 6

-1 -6-3

44 23

29 17

25 12

23 17 13 7

41 20 17 9

112128 13

M1 M2
M4

M2 M4
M1

M1 M3
M2

O5 O62 8

-2

O13 O143 4

-3

O21 O224 7

-4

12 8

15 15

17 6

M3

M3

M4

-5

26

E

70

5

44

3

Fig. 3 : Graphical representation of a JSECT

On the Fig. 3 some extra rectangles have been added to delimitate the global operations

presented on Fig.1 and to provide the energy needed for each operation. Furthermore, it can be

stressed that only two disjunctive edges relative to disjunctive constraints on machines between

two operations are presented on the graph, in order to ease its reading (the former operations O6

and O11 in the Fig. 1 which have been transformed into operations O11-O12 and O21-O22). Indeed,

since operations cannot be stopped once started, these edges represent the fact that the first sub-

operation (i.e.: representing the consumption peak) must be scheduled after the end of a previous

operation treated by the same machine, and hence must be scheduled after the second sub-

operation of such an operation. In this example, it means that the operation O11 should be

scheduled after the end of the operation O22 or the operation O21 should come after completion

of the operation O12. To complete this graph representation, the energy threshold is modelled as

an extra vertex with a value corresponding to the available energy that must not be exceeded.

Thus, one of the objective is to efficiently allocate the energy to the machines in order to obtain

the smallest possible makespan. When there is not enough energy allocable to an operation,

because of running operations extra conjunctive arcs are added to model the new precedence

between operations due to the energy threshold. These extra conjunctive arcs represent the

duration that an operation must wait before enough energy could flow from a finished operation

to the one that must be scheduled (arc in bold on Fig. 3). Thus, a conjunctive arc may be present

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 123 -

between operations that are not directly related to the same machine. In Fig. 3, it can be easily

understood that the available energy will not be enough to schedule all possible operations as

the threshold is set to 70. Thus O1 on machine M1 and O9 on machine M2 cannot be

simultaneously scheduled as the sum of their energy is equal to 73, which is greater than 70.

Hence, if a sequence of operations is given, where the first operation (O1) of job J1 appears

before the first operation (O9) of job J2 then it will not be possible to start operation O9 at 0.

Indeed, if O1 starts at 0, since the operation O2 is linked to the operation O1 with a maximal time

lag equal to -5, the operation O2 must start directly after the end of the operation O1. To start

operation O2, 23 energy units are transferred at the end of the operation O1 to the vertex

modelling operation O2. Because of the energy threshold, the operation O9 will start at 5 since

operation O1 (consumption peak of the operation on Machine M1) has a duration equal to 5. In

this configuration, the operation O9 would start at 5. Thus a conjunctive arc (represented in bold)

links the operation O1 and O9. When the operation O1 is finished, a flow of 3 energy unit (dashed

edge) comes in addition to the 26 units left in the Energy Vertex in order to start the operation

O9 (the values could be different depending on the other operations to be scheduled as mentioned

before). By doing this repartition, the energy threshold cannot be exceeded during the schedule

and thus the constraint is respected.

In the next section a mathematical formalization of the Job-shop with Energy Consumption

Threshold is given. This model includes operations with a consumption peak at their beginning.

4 Linear programming

The model representing the problem has been built to obtain exact solutions not exceeding a

given Energy Threshold by repartition of energy resources among the different machines. It

relies on a flow added to the incumbent Job-shop problem.

4.1 Parameters

M : set of machines;

V : set of all the sub-operations (|V|=2.|V|);

i,j,k,l : indexes representing the different sub-operations to schedule, i,j,k,l ∈ ⟦1;|V|⟧ ;

Oi : global operation of the sub-operation i;

Ji : job of the operation i;

pi : duration of sub-operation i;

μi : machine required to process sub-operation i, μi∈M;

H : a large positive number.

Emax : energy threshold that must not be exceeded;

Ei : energy required for processing the sub-operation i;

4.2 Variables

Cmax : completion date of all operations also referred as the makespan of the schedule;

si : starting time of sub-operation i;

xi,j : binary variable equal to 1 if sub-operation i is realized before sub-operation j and equal

to 0 otherwise;

yi,j : binary variable equal to 1 if there is a non-null energy flow from sub-operation i to

power the sub-operation j and equal to 0 otherwise;

φi,j : denotes the number of energy units directly transferred from sub-operation i to sub-

operation j ;

4.3 Linear Formulation

The first line (1) of the linear program refers to the objective of the problem which is the

minimization of the completion time of all operations (makespan):

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 124 -

 maxCMin (1)

The second set of constraints (2) gives the expression of the makespan, which must be greater

or equal to the end date of all the operations:

 maxCps ii , Vi (2)

The third set of constraints (3) represents the disjunctions constraints for operations occurring

on the same machines. In these constraints, if two operations i and j of different jobs must be

treated by the same machine, then i is treated before j, or j is treated before i:

kilkjiik

i,lk,j

,OO,OO,ji,lk,JJ/V)l,k,j,i(

,xx

 1
 (3)

The fourth set of constraints (4) defines the starting dates of operations of a job according to its

sequence of operations.

 iij pss , ji JJijVji ,/),((4)

The fifth set of constraints (5) ensures that, if i and j are two sub-operations referring to the same

global operations, then j is processed directly after the end of the sub-operation i (i.e. no-wait

constraints).

 iij pss , ji OOjiVji ,/),((5)

The next constraints (6) adjust the starting dates of operations that belong to different Jobs but

need the same machine, as they can’t be processed simultaneously.

10

mod(j,2),mod(i,2)

,,OO/V)j,i(

,HpHxss

jiji

ij,iij

 (6)

The constraint (7) avoids to exceed the Energy Threshold when processing the operations as it

can’t be allocated more energy to the operations than Emax.

 max,0 E
Vj j

 (7)

Constraints (8) ensure that the sum of energy flows from sub-operations and initial energy

threshold is equal to the energy needed for the sub-operation j.

 jVi ji E
 , , jiVj / (8)

Constraints (9) ensure that the sum of energy flows from the considered sub-operation i to the

other ones never exceeds the energy that was used for its processing.

 iVj ji E
 , , jiVi / (9)

Constraints (10) ensure that if there is an energy flow from i to j yi,j =1 (this variable is then used

in Constraints (12)). If yi,j=0 then no flow is possible from i to j.

 j,ij,i Hy , ji/V)j,i((10)

Constraints (11) stipulate that if there is no need of a flow from i to j (φi,j=0), then necessarily

yi,j = 0, if yi,j = 1, then φi,j ≥ 1:

 jijiy ,, , ji/V)j,i((11)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 125 -

Constraints (12) fix the energy flow between sub-operations of a same global operation

according to the energy available:

 jijiji OOjiVjiEE ,/),(),,min(, (12)

Constraints (13) adjust the starting dates of sub-operations which need to wait before the end of

previous operations in order to not exceed the energy threshold and receive an energy flow from

a previously scheduled operation:

 jiijiij JJVjiHpHyss /),(,, (13)

Constraints (14) stipulate that no flow is possible between two sub-operations i and j, if i and j

belong to the same job and if i is processed before j.

 0, ij , ji JJ,ji/V)j,i((14)

Constraints (15) imply that if there is a flow from i to j then there must not be flows from j to

the predecessors of i in the corresponding product line.

 1,, jikj yy , jiki JJJJikVkji ,,/),,((15)

Constraints (16) imply that if operation i and j need the same machine, but i is scheduled before

operation j then no flows are allowed from j to any predecessors of i in its product line.

 1,, kjji yx , jiki jiJJikVkji ,,,/),,((16)

Finally, the set of constraints (17) avoids cycles between operations occurring on the same

machine.

 2,,, ikkjji xxx , kjikji JJJVkji ,/),,((17)

As stressed by the results presented in Table 3, the resolution of such a problem as the

JSECT is difficult for a solver even for small scale instances, thus an approach using a

metaheuristic is proposed in the next section.

5 GRASPxELS

5.1 Principles of the GRASPxELS

The GRASPxELS is a multi-start metaheuristic proposed by [22] and is relying on a Greedy

Randomized Adaptive Search Procedure (GRASP) proposed by [10] and an Evolutionary Local

Search (ELS) proposed by [30]. This metaheuristic helped to quickly bring very good results to

several problems. Furthermore, the combination of the GRASP and the ELS, aims to propose a

better suited metaheuristic which will explore a wider range of solutions. A template algorithm

of the GRASPxELS is proposed below. As stressed in the Algorithm 1, a GRASPxELS is

divided into three phases: the construction phase, the local search phase and the ELS phase.

During the ELS phase, neighborhood of the previous local optimum solution is explored through

mutations and then ameliorated thanks to the local search. The mutation consists in permuting

elements in the repetition vector used by [3] if they belong to different jobs. Finally, the different

specificities corresponding to the construction and local search phase are exposed in the next

sub-section as they are important part of the metaheuristic.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 126 -

Algorithm 1: GRASPxELS

Procedure name GRASPELS

Begin

1. S* Ø

2. for p := 1 to np do

3. S Construction_Phase

4. S Local_Search_Phase

5. if (f(S) < f(S*)) then

6. S* S

7. endif

8. for i := 1 to nb_ELS do

9. f(nS*) ≔ INFINITY;

10. for j := 1 to nb_N do

11. nS ≔ neighbor of S obtained by permutation in sequence;

12. nS ≔ Local_Seach_Phase;

13. if (f(nS) < f(nS*)) then

14. nS* ≔ nS;

15. endif

16. endfor

17. S≔nS;

18. if (f(S) < f(S*)) then

19. S* ≔ S

20. endif

21. endfor

22. if (f(S) < f(S*)) then

23. S* S

24. endif

25. endfor

26. return S*

end

5.2 Specificities

Construction phase:

As the main objective is to propose a solution with minimal makespan, a construction rule based

on the duration of the activities is chosen. At each construction step, an activity is randomly

chosen from a list of activities with small durations. The constructed sequence is then evaluated.

Local search phase:

The construction phase rarely produces local optimum thus it is useful to explore neighborhood

of the constructed solution to obtain a better one. The chosen local search is relying on the

neighborhood of [28] which is really fast evidenced by the results obtained in term of

computation time (Table 2 and 3).

Finally, as one of the most important algorithm of this study is the evaluation of a sequence

of operation for the JSECT, this procedure is presented on the next sub-section.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 127 -

5.3 Evaluation of a sequence of operations

As mentioned before, a sequence of the operations relies on a repetition vector. The evaluation

of such a sequence is handling both physical and energy constraints. The starting date of an

operation is modified inside the evaluation function in order to respect the energy threshold. A

principle algorithm of such an evaluation function is given in Algorithm 3. This algorithm

returns the makespan, the starting date and the father of each operation.

Algorithm 3: Evaluation

Procedure name Evaluation

Input/output

 : sequence to evaluate

Input

 n: number of operations

Variables

 i: loop index

 op_M[]: last operation on machine

 t_Job[]: time job has been treated

 t_S[]: table for energy change dates

 t_E[]: table for energy available according to dates

 job: job treated

 op: operation to schedule

 machine: machine for the operation

 father, fatherD: predecessor and disjunctive predecessor

 d, dPD: end date of predecessor and disjunctive predecessor

Begin
1. Init op_M, t_Job, t_S; Init t_E with energy threshold allowed;

2. FOR i :=0 to n DO

3. job := .sequence[i] ;

4. op := operation corresponding to job’s occurence;

5. machine := machine for op;

6. d := 0; dPD := 0;

7. father := -1; fatherD := -1;

8. IF t_Job[job] <> 0 THEN

9. //Conjunctive father

10. father := vertex – 1 ;

11. d:= End[father];

12. END IF

13. IF (op_M[machine] <> -1) THEN

14. //Disjunctive father

15. fatherD := op_M[machine] ;

16. dPD:= End[fatherD] ;

17. END IF

18. IF (dPD > d) THEN update father and d; END IF

19. Call Adjust_Energy_Date(d, op, father, t_S, t_E);

20. Save d and father into ;

21. Increment t_Job[job];

22. op_M[machine] ≔ op;

23. END

24. Compute final makespan and store it into ;

End

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 128 -

Algorithm 3 is focused on evaluating a sequence of operations according to machine

disjunctions. The energy aspect of the schedule is handled during the Adjust_Energy_Date

algorithm, where the starting date of an operation is updated in order to respect the given energy

threshold. The principles of adjusting dates according to available energy is given in algorithm

4.

Algorithm 4: Adjust_Energy_Date

Procedure name Adjust_Energy_Date

Input/output
 d: theoretical starting date of the operation

 father : theoretical father of the operation

 t_S[]: table for energy change dates

 t_E[]: table for energy available according to dates

Input

 op: operation to schedule

Variables

 s1, s2, s3: indexes for placing operation according to energy

 op_placed: boolean

Begin

1. s1≔0, s2≔0, s3≔ 0;

2. op_placed ≔ false;

3. WHILE not op_placed DO

4. s1≔ index in t_E with enough energy available for first part of op starting from s1;

5. Check if there is enough energy during first part of op;

6. s2≔ index for end of first part of op if possible;

7. IF the first part of op is schedulable THEN

8. Check if there is enough energy during second part of op;

9. s3≔ index for end of second part of op if possible;

10. IF the second part is schedulable THEN

11. op_placed ≔ true;

12. ELSE

13. s1≔ s3

14. END

15. ELSE

16. s1≔ s2;

17. END

18. END

19. IF t_S[s1] <> d THEN update father according to energy disjunction; END

20. d≔ t_S[s1];

21. insert d, end date of first and second part of op in t_S;

22. deduce energy used between s1and s3 in t_E;

End

6 Computational evaluation

At first, the linear program has been tested using the CPLEX 12.4 solver on a machine

embedding a Xeon E7-8870 processor. The previous algorithms have been implemented in C++

and have been executed on a computer with an i7-4800MQ processor, running Windows 7

(Linpack Benchmark: 2277.01 MFLOPS). Parameters used in the GRASPxELS for the number

of restart, the number of ELS and the number of neighbors are respectively 60, 30, 15. The

instances used for the JSECT are composed by four to six jobs and four machines. These

instances have been randomly generated by considering that the basic energy consumption and

the consumption peak of an operation is between 1 and half of the duration of the operation, and

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 129 -

the duration of the consumption peak is taken between 0 and a third of the duration of the

operation. An example of an instance is given on Fig. 4. All instances tested in Tables 2 and 3

are available online (see : http://damienlamy.com).

4 4
1 21 0 53 3 55 2 34
0 21 3 52 2 26 1 71
3 39 1 42 2 31 0 12
1 77 0 55 2 66 3 77
// part 1 : Basic energy for operations
1 2 0 7 3 3 2 9
0 2 3 18 2 7 1 27
3 14 1 6 2 10 0 3
1 29 0 12 2 7 3 14
// part 2 : Peak energy for operations
1 5 0 21 3 12 2 17
0 3 3 22 2 2 1 16
3 9 1 5 2 7 0 4
1 36 0 6 2 12 3 19
// part 3 : Peak duration
1 1 0 10 3 17 2 8
0 6 3 13 2 6 1 7
3 3 1 7 2 3 0 1
1 16 0 10 2 11 3 4

Number of jobs
Number of machines

Machine 2 for
Operation 4

Duration of operation

Operation needs 9 Energy
unit during the process

Operation needs 17 more Energy
unit at the start of process

Duration of consumption peak
for operation

Fig. 4: An example of an instance for JSECT

For each instance, five replications have been made. The results are presented on Table 2

and Table 3. In these tables the column Jobs x Machines represents the number of jobs and

machines of the instance. Concerning the CPLEX part of the tables, the Energy Threshold

column represents the energy allowed for the schedule. The BKS column refers to the best

solution found by the solver. When these solutions are proven optima, an asterisk has been added

to the result. The UB-LB columns represent the upper bound and lower bound provided by the

solver – a dash in UB column means that optimal solution has been found. The Gap column

represents the percentage distance between UP and LB. The TT column corresponds to the time

needed for the solver to found the BKS – When the computation time reaches 10800s the

execution is stopped. In the GRASPxELS part of the tables, the AVG_S column represents the

average solution over 5 runs. TT_S refers to the total execution of the metaheuristic while TTB_S

refers to the average computation time requested to obtain the best solution found, both in

seconds. Finally, the DEV_LB column corresponds to the deviation to the LB and the DEV_UB,

in the Table 3, corresponds to the deviation to the best solution found by the solver.

Table 2: Results obtained with CPLEX and GRASPxELS on 45 instances – Part I

 CPLEX GRASPxELS

Jobs x Machines Instances
Energy

Threshold
BKS UB - LB Gap TT AVG_S TT_S TTB_S DEV_LB

4 x 4

Inst_1 85 296* - 296 0 3,26 296 0,15 0,000 0

75 301* - 301 0 3,58 301 0,17 0,004 0

65 317* - 317 0 13,48 317 0,21 0,000 0

Inst_2 83 404* - 404 0 4,95 404 0,18 0,000 0

73 448* - 448 0 5,45 448 0,23 0,002 0

63 492* - 492 0 62,13 492 0,28 0,004 0

Inst_3 62 300* - 300 0 5,41 300 0,23 0,002 0

52 307* - 307 0 11,17 307 0,38 0,004 0

42 345* - 345 0 90,16 345 0,64 0,012 0

Inst_4 85 309* - 309 0 4,49 309 0,13 0,000 0

75 336* - 336 0 27,22 336 0,15 0,006 0

65 343* - 343 0 15,72 343 0,19 0,026 0

Inst_5 77 318* - 318 0 2,56 318 0,14 0,000 0

67 329* - 329 0 7,47 329 0,19 0,000 0

57 350* - 350 0 26,02 350 0,32 0,002 0

Average: 18,87 0,24 0,004

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 130 -

Table 3 : Results obtained with CPLEX and GRASPxELS on 45 instances – Part II

 CPLEX GRASPxELS
Jobs x

Machines Instances
Energy

Threshold
BKS UB - LB Gap TT AVG_S TT_S TTB_S DEV_LB DEV_UB

5 x 4

Inst_1 85 344* - 344 0 7,42 344 0,44 0,010 0 0

75 344* - 344 0 13,02 344 0,53 0,004 0 0

65 370* - 370 0 40,4 370 0,73 0,004 0 0

Inst_2 83 425* - 425 0 13,75 425 0,55 0,002 0 0

73 448* - 448 0 1755,19 448 0,69 0,002 0 0

63 510* - 510 0 8606,19 510 0,89 0,014 0 0

Inst_3 66 366* - 366 0 70,74 366 0,64 0,028 0 0

56 375* - 375 0 274 375 0,99 0,004 0 0

46 468 468 395 15,6 10800 442 1,70 0,052 11,9 -5,56

Inst_4 85 309* - 309 0 32,94 309 0,39 0,008 0 0

75 336* - 336 0 389,07 336 0,47 0,016 0 0

65 343* - 343 0 227,76 343 0,60 0,230 0 0

Inst_5 77 320* - 320 0 6,53 320 0,43 0,022 0 0

67 331* - 331 0 83,29 331 0,60 0,008 0 0

57 367* - 367 0 591,34 367 0,92 0,042 0 0

Average: 1527,44 0,71 0,03 0,79 -0,37

6 x 4

Inst_1 100 406 406 405 0,25 10800 406 0,85 0,076 0,25 0

90 406* - 406 0 112,07 406 1,08 0,088 0 0

80 426* - 426 0 6022,18 426 1,48 0,054 0 0

Inst_2 83 477 477 476 0,25 10800 477 0,95 0,010 0,21 0

73 519 519 499 3,85 10800 519 1,24 0,168 4,01 0

63 582 582 474 18,56 10800 572 1,71 0,234 20,68 -1,72

Inst_3 95 433* - 433 0 44,2 433 0,93 0,018 0 0

85 463 463 435 6,05 10800 454 1,21 0,082 4,37 -1,94

75 465* - 465 0 855,29 465 1,66 0,204 0 0

Inst_4 85 362* - 362 0 2140,83 362 0,79 0,006 0 0

75 411 411 340 17,27 10800 385 0,90 0,098 13,24 -6,33

65 429 429 363 15,38 10800 429 1,34 0,016 18,18 0

Inst_5 82 403 403 388 3,72 10800 395 0,88 0,076 1,80 -1,99

72 408* - 408 0 2455,89 408 1,24 0,072 0 0

62 471 471 403 14,44 10800 441 1,92 0,104 9,43 -6,37

Average: 7255,36 1,21 0,09 4,81

-1,22

The results show that the GRASPxELS provides sound solutions. For the first instances (Table

2) the metaheuristic always found the solution provided by the solver, in less than half of a

second, whereas it took more than 18 seconds in average for the solver to prove the convergence.

Concerning the instances with 5 jobs and 4 machines, the solver always found the optimal

solution, unless for the Inst_3 when considering the lowest energy threshold possible. On this

set of instances the metaheuristic always provides a solution which quality is better or equal to

the solution proposed by the solver. Concerning computation time, the metaheuristic is quite

competitive since it stops in less than a second in average, when the solver needs more than

1500s in average to prove the convergence. When increasing the number of jobs to 6, the solver

starts to be overtaken with only 6 proven optima. With these instances, the metaheuristic finds

solutions which are always better or equal to the ones provided by the solver (more than 1% of

improvement in average) in less than 2 seconds for each replication, which is approximately

6000 times faster than the time needed by the solver in average The results show that the

metaheuristic is really helpful when searching for good solutions rapidly. Even if the results are

not proven to be optima, their quality are always better or equal to these provided by the CPLEX

solver which validates this work.

7 Conclusion

Nowadays, commonly used objective functions in scheduling problems, such as makespan or

total tardiness cannot be considered as the only objectives. Environmental issues and economic

reasons lead to also take into account other objectives such as minimisation of greenhouse gas

emission or electricity consumption. There exists different ways of increasing energy efficiency

of a production system by minimizing the total energy needed, or the consumption peaks. This

study focuses on the last point, leading to the formulation of the Job-shop with an energy

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 131 -

threshold constraint. In this problem each operation presents two type of energy consumption,

thus a model considering sub-operations that correspond to the different energy consumption is

proposed. The energy threshold is handled by respecting a maximum energy capacity over the

machine-network. The instances generated representing small production systems, with few jobs

and machines, are not easily solved exactly. Hence a metaheuristic based on a GRASPxELS has

been implemented in order to obtain faster solutions to these small scale instances. The results

show that the approach is effective since the GRASPxELS returns really good results which are

always equal or better to the ones provided by CPLEX, in a competitive duration. However,

exact methods should be further studied, with the use of Lagrangian relaxation for example. In

a future work, medium and large scale instances will be addressed in a bi-objective context thus

leading to a Pareto graphical representation. It could also be interesting to add other objectives

such as decreasing the total energy consumption or include TOU pricing in order to reduce the

cost of the production. The possibility to have different energy behaviour for the machines

should also be studied as the accuracy of the energy discretization [21]. Finally, combining the

different approaches seen in the literature concerning the energy-efficient production systems

could lead to an interesting and complete problem.

8 Acknowledgements

This work was financially supported by the French Public Investment Bank (BPI) and granted

by the ECOTHER project.

References

1. Aramcharoen A. and Mativenga P.T., Critical factors in energy demand modelling for CNC

milling and impact of toolpath strategy, Journal of Cleaner Production, 78, 63-74 (2014).

2. Balogun V.A. and Mativenga P.T., Modelling of direct energy requirements in mechanical

machining processes, Journal of Cleaner Production, 41, 179-186 (2013).

3. Bierwirth C., A generalized permutation approach to Job-shop scheduling with genetic

algorithms. OR spektrum, 17, 87-92 (1995).

4. Bruzzone A.A.G., Anghinolfi D., Paolucci M. and Tonelli F, Energy-aware scheduling for

improving manufacturing process sustainability: A mathematical model for flexible flow

shops, CIRP Annals – Manufacturing Technology, 61, 459-462 (2012).

5. Caumond A., Lacomme P., Tchernev N., A memetic algorithm for the job-shop with time-

lags, Computers and Operations Research, 35, 2331-2356 (2008).

6. Dai M., Tang D., Giret A., Salido M.A., Li W.D., Energy-efficient scheduling for a flexible

flow shop using an improved genetic-simulated annealing algorithm, Robotics and

Computer-Integrated Manufacturing, 29, 418-429 (2013).

7. Duflou J.R., Sutherland J.W., Dornfeld D., Hermann C., Jeswiet J., Kara S., Hauschild M.

and Kellens K., Towards energy and resource efficient manufacturing: A processes and

systems approach, CIRP Annals – Manufacturing Technology, 61, 587-609 (2012).

8. Energy Administration Information (EIA), International Energy Outlook,

http://www.eia.gov/., (2013).

9. Fang K., Uhan N., Zaho F., Sutherland J.W., A new approach to scheduling in

manufacturing for power consumption and carbon footprint reduction, Journal of

Manufacturing Systems, 30, 234-240 (2011).

10. Feo T.A., Resende M.G.C. and Smith S.H. A, greedy randomized adaptive search

procedure for maximum independent set, Operations Research;42: 860–878 (1994).

11. Gutowski T., Murphy C., Allen D., Bauer D., Bras B., Piwonka T., Sheng P., Sutherland

J.W., Thurston D., and Wolff E., Environmentally benign manufacturing: Observations

from Japan, Europe and the United States, Journal of Cleaner Production, 13, 1-17 (2005).

12. He Y., Liu F., Cao H. and Li C., A bi-objective model for job-shop scheduling problem to

minimize both energy consumption and makespan, Journal CSUT, 12(2), 167-171 (2005).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 132 -

13. He Y., Li Y., Wu T. and Sutherland J.W., An energy-responsive optimization method for

machine tool selection and operation sequence in flexible machining job shops, Journal of

Cleaner Production, 87, 245-254 (2015).

14. Jain A.S. and Meeran S., Deterministic Job-shop scheduling: Past, present and future,

European Journal of operations research, 113(2), 390-434 (1999).

15. Kara S. and Li W., Unit Process energy consumption models for material removal

processes, CIRP Annals – Manufacturing Technology, 60, 37-40 (2011).

16. Kellens K., Costa-Rodrigues G., Dewulf W., Duflou J.R., Energy and Resource Efficiency

of Laser Cutting Processes, 8th International Conference on Photonic Technologies,

Physics Procedia, 56, 854-864 (2014).

17. Liu Y., Dong H., Lohse N., Petrovic S., Gindy N. An investigation into minimising total

energy consumption and total weighted tardiness in job shops. Journal of Cleaner

Production, 65, 87-96 (2014).

18. Luo H., Du B., Huang G.Q., Chen H. and Li X., Hybrid flow shop scheduling considering

machine electricity consumption cost, International Journal of Production Economics, 146,

423-439 (2013).

19. Mouzon G.C., Yildirim M.B. and Twomey J., Operational methods for minimization of

energy consumption of manufacturing equipment, Wichita State University Libraries

(2007).

20. Mouzon G.C. and Yildirim M.B., A Framework to Minimize Total Energy Consumption

and Total Tardiness on a single Machine, 4th Annual GRASP Symposium, Wichita State

University, (2008).

21. O’Rielly K. and Jeswiet J. (2014). Strategies to improve industrial energy efficiency. 21st

CIRP Conference on Life Cycle Engineering, Procedia CIRP, 15, 325-330.

22. Prins C., A GRASP x evolutionary local search hybrid for the vehicle routing problem. In:

Pereira FB, Tavares J, editors. Bio-inspired algorithms for the vehicle routing problem,

Studies in computational intelligence, 161, 35–53 (2009).

23. Rager M., Gahm C. and Denz F., Energy-oriented scheduling based on Evolutionary

Algorithms, Computers & Operations Research, 54, 218-231 (2015).

24. Roy B. and Sussman B., Les problèmes d'ordonnancement avec contraintes disjonctives,

Note DS No. 9 bis, SEMA Paris (1964).

25. Salido M.A., Escamilla J., Barber F., Giret A., Tang D. and Dai M., Energy-aware

Parameters in Job-Shop Scheduling Problems, GREEN-COPLAS 2013; IJCAI 2013

Workshop on Constraint Reasoning, Planning and Scheduling Problems for a Sustainable

Future (2013).

26. Shrouf F., Ordieres-Meré J., García-Sánchez A. and Ortega-Mier M., Optimizing the

production scheduling of a single machine to minimize total energy consumption costs,

Journal of Cleaner Production, 67, 197-207, (2014).

27. Trentesaux D. and Prabhu V., Sustainability in Manufacturing Operations Scheduling:

Stakes, Approaches and Trends, International Federation for Information Processing, 106-

113 (2014).

28. Van Laarhoven P.J.M., Aarts E.H.L. and Lenstra J.K., Job-shop scheduling by simulated

annealing; Operations Research; 40(1), 113-125 (1992).

29. Weinert N., Chiotellis S. and Seliger G., Methodology for planning and operating energy-

efficient production systems, CIRP Annals – Manufacturing Technology, 60, 41-44,

(2011).

30. Wolf S. and Merz P., Evolutionary local search for the super-peer selection problem and

the p-hub median problem, Lecture notes in computer science, Berlin, Springer, 4771, 1–

15 (2007).

31. Xu F., Weng W. and Fujimura S., Energy-Efficient Scheduling for Flexible Flow Shops by

Using MIP, Proceedings of the 2014 Industrial and Systems Engineering Research

Conference.

32. Zhang H., Zhao F., Fang K. and Sutherland J.W., Energy-conscious flow shop scheduling

under time-of-use electricity tariffs, CIRP Annals – Manufacturing Technology (2014).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 133 -

MISTA 2015

Production Scheduling Based on Order Utility Functions

Yuri Mauergauz

Abstract This paper presents various aspects of scheduling based on the average orders utility
criterion on the planning horizon. In this method the concept of production intensity as a
dynamic production process parameter is used. The example is made for Pareto-optimal
flexible job shop scheduling problem, when two criteria were simultaneously used: relative
setup expenditure criterion and average orders utility criterion. The nature of average orders
utility function variation is considered, and the concept of critical horizon is introduced. The
software used allows scheduling for medium quantity of jobs. The result of software
application is the set of non-dominant versions proposed to a user for making a final choice.

1 Introduction

Wide spread occurrence of Just-in-Time Production methodology in scheduling requires to
apply the criteria, which explicitly consider possible deviations of contractually agreed due
dates. When such approach is used, completing a job earlier or later than its due date
deteriorates quality of scheduling. In scheduling theory, an optimality criterion is called
regular, if completion time diminution of any job leads to criterion improvement. If a criterion
may be improved by increasing planned time of certain job completion, such a criterion is
called non-regular. Usually this criterion involves the sum of absolute deviations of job
completion timing from due dates; however, as indicated by [1], other criteria are possible.

At the same time, various obstacles, which may exist inside or outside an enterprise,
impede exact completion on delivery dates. Internal causes include machine breakdowns,
operator’s absence, design changes, lack of control and so on; the external cause is usually
untimely arrival of necessary materials. Besides, changes in customer requirements to
composition and quantity of commodities may be possible.

Therefore in practice shop floor scheduling is a dynamic process, and its nature essentially
impacts production parameters. There are three types of shop control: completely reactive
control (dispatching); predictive-reacting scheduling and robust predictive-reacting scheduling.

When dispatching is applied, production schedules are not made. Released jobs are being
assigned to machines as they become available, according to the rules used at the enterprise. In
this case both job timeliness and job economy are determined by dispatcher’s experience.

A more up-to-date method of shop floor control involves predictive-reacting scheduling of
production, which is usually implemented in two stages. At the first stage, the calculation of
schedule using certain optimization criteria has to be made. At the second stage, usually
already in process of completion, the schedule may be corrected, if important events emerge
[14]. In such a case the corrected schedule may differ from the primary one in many respects,
Yuri Mauergauz
Sophus Group, Moscow, Russia
E-mail: prizasu@yandex.ru

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 134 -

and its quality may substantially worsen. In some papers, for example [4], attempts were made
to estimate possible production delays and to ensure robust production process in this case.

When predictive-reacting scheduling is used, two issues arise: when to reschedule, and
how to react to real-time events. Three versions of rescheduling policy are possible [14]:
periodic, event driven and hybrid. In periodic and hybrid methods the concept of rolling time
horizon is used [3]. A planning horizon is a time interval, which contains moments of
completion of a job set, for which scheduling is made.

Duration of rescheduling period is called a planning cycle. Usually it is essentially shorter
than a planning horizon. When a planning cycle decreases, the scheduling robustness increases
[12], but it becomes difficult to manoeuvre resources, and more reporting is required.
Therefore usually the minimal duration of planning cycle is determined by requirements to job
organization in the shop. If an event arises within the cycle, which breaks the planning
production process, usually the schedule is not fully revised, but the schedule is corrected as
needed. After each cycle the planning horizon is shifted by the value of this planning cycle,
but its value will not necessarily remain the same.

Increase of the planning horizon often makes it possible to apply so called group
technology, which unites jobs of the same type, and to enlarge size of technological batches. In
this case production expenses related to machine setups drop considerably. However, when the
jobs of one type are united, the jobs of other types are delayed. This fact is known as “dilemma
of operation planning” [13]. Solution of such problems may be only attained in multicriteria
tasks. The most promising here is the research aimed at building Pareto-optimal diagrams for
problem criteria.

It is evident that from the point of view of the best solution for dilemma of operation
planning it is necessary to calculate Pareto-front curves on the criteria that depend of job cost
and process efficiency. The criterion of relative setup expenses U and the criterion of average
orders utility V may b considered for dynamic group scheduling [8]. Average utility for the
whole set of orders is calculated as the sum of utility functions for all planning jobs. The
average utility is a non-regular criterion of the above meaning. This paper below demonstrates
that application of average utility function makes it possible to determine the rational planning
horizon for each scheduling task.

e

The remainder of this paper is organized as follows. In Section 2 the function of current
orders utility and the function of direct expenses are determined. Section 3 is dedicated to
group flexible job shop scheduling. In Section 4 the choice of rational planning horizon is
considered. Section 5 contains some concluding remarks.

2 Utility functions in scheduling

The customer service level may be assessed by the current order utility function V. From the
manufacturer’s point of view, the order value increases proportionately to work amount, since
staff engagement increases. Besides, the more is the time reserve for completing an order, the
more attractive is the order, since there is an opportunity to prepare for order execution.
Eventually the order time reserve is decreasing, and the order value is diminishing. Moreover,
if due date has expired, the order value becomes negative. The manufacturer’s attitude to the
order changes with time, and the appropriate function is named production intensity [7]:

.
1

() /
i i

i
i

w pH
G d t Gα

=
− +

1

t at d 0i ≥ and −

 [() / 1]i i
i i

w p
H t d G

G
α= − + at 0id t− ≤ , (1)

where: i = processing time of job i; G = plan bucket duration; = weight coefficient of
job i;

p iw
α = “psychological coefficient”; d due date; t = current time. i =

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 135 -

 Figure 1 Production intensity diagrams

On abscissa axis in Figure 1 the time reserve is measured. The reserve is equal to
subtraction between due date and current time. In the positive part of the diagram (i) the
values of intensity decrease in hyperbolic mode with growth of available time reserve. When
the time reserve is negative (i) and there is delay of order completion, the production
intensity linearly increases. Since production intensity is dimensionless, it has no physical
sense, but it has psychological sense. Indeed, when this order parameter is rising, the concern
about order execution is increasing. Two curves in Figure 1 differ in the psychological
coefficient value. The higher is the

d > t

td <

α coefficient, the more placid is the attitude to delays, and
the lower is the intensity.

 Figure 2 Current order utility function

The production intensity concept may be used for determination of the current order utility

function V (Figure 2). Assume that the current utility for an order is i
 i i

i
w pV

G
= − .iH (2)

The curve in Figure 2 for the positive value 0id t− ≥ tends to the horizontal asymptote,
 V w . (3) /i i i

In the negative part the curve turns into the inclined straight line with
p G=

0id t− ≤

 itgγ = 2
i iw p
Gα

. (4)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 136 -

If the order due date reserve is positive, the manufacturer expects to gain some profit; if
reserve is negative and job execution delays the manufacturer, as a rule, it incurs losses.
There is a great number of papers dedicated to utility changes as a function of available gain
or loss. Results of such researches may be reduced to one of two versions depicted in Figure
3.

 Figure 3 Possible diagrams of gain and loss utility

 a) diagrams with risk averse and risk prone areas;
 b) diagrams only with risk averse area.
On the abscissa axis in Figure 3 the gain value (anticipated profit Π) is set, on the

ordinate axis the gain utility is set in the positive area of the abscissa axis, and the loss utility
- in the negative area. The diagram 3a was named an S-mode curve as a result of a well-
known research [5] awarded with the Nobel Prize on economics in 2002. Their research
proved inclination of ordinary people to risk, when loss is probable (the left part of the
diagram). The left part is concave, so a sign of corresponding second derivative is positive,
and there is risk proneness.

In contrast to the diagram 3a, the diagram 3b shows risk aversion both for gain or loss
perspectives. It is necessary to note that the diagram 3b or Grayson-Bard utility function [6]
was obtained in 1957, i.e. much earlier than the diagram 3a. Differences in results of the
diagrams 3a and 3b, most probably, were caused by scope people chosen for polling and by
direction of money application. In the research by Kahneman and Tversky, modest people
were interrogated, money amounts were negligible, and their purpose was consumption. On
the contrary, Grayson-Bard function was designed for investments by large companies.

If we compare the curve in Figure 3 and the curves in Figure 2, we can see that the order
time reserve is used as gain or loss. It seems to the manufacturer that the long-term order
availability represents a considerable gain, but the rate of this gain growth goes down in
proportion to the duration. In this positive field the order utility curve behaves entirely like
the diagrams in Figure 3. The negative field in Figure 2 is similar to the loss field in Figure
3, but in contrast to the diagrams in Figure 3 there is linear diminution of order utility
function in Figure 2. Accordingly, the function second derivative is equal to zero, and risk is
neutral.

Due to the additivity property of production intensity and order utility function, it is
possible to compute the average utility of the whole order set during a plan bucket. The
value of this parameter describes timeliness of order completion and may be used as a
criterion of scheduling.

Let us assume that a certain job that corresponds to the node of the scheduling versions
tree at the level is completed at the moment of time . Let us also assume that the job k
with processing time starts at the moment kt , which is more than or equal to . Then

l lC

kp lC

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 137 -

the average utility of the entire set of jobs J from start until completion of the job k in the
node at the level equals 1l +

 1,
0

1 1 ()
k k k k

l

t p t p

l k l l k
k k k k C

V Vdt V C
t p t p

+ +

+ = = × +
+ +∫ ∫ V dt

e
uent

. (5)

Possible versions of using the formula (5) for a single machine and rules to compute the
integrals it contains are described in [9]. For some parallel machines the recurrent formula (5)
may be used without changes, if completion of a job on the previous lev l l happens before
job completion on the subseq 1l + level. Otherwise, instead of the formula (5) the
following formula is used [10].

 .

1,

1,
1 l k k

m

t p

l k l
lz C

V V V
C

+ +

+ = + ∫ .dt (6)

The bottom limit in the integral (6) is the work completion moment for the last job on the
machine m . The function of negative expenses utility (loss function) may be used as the
second criterion in the dilemma of operation planning. If the sequence number of planning job
is n , then

0 0

1[(
n n

)]s l j kl l
l l

U c s c t C
c = =

= + −∑ ∑ , (7)

= hour setup cost; jcscwhere: c = shift cost; = hour idle cost; = moment of job k start klt
after job l completion; ls = setup time for th next job with the sequence number l in the
specific schedule version

e
.

 Group scheduling for job shop manufacturing

sed criteria, let us consider the task for

3

As an example of scheduling based on the propo
flexible job shop manufacturing. Assume there are certain jobs arriving in any sequence to
each available machine M in one of different pools O , for processing of according type.
Every job i refers to a of S various types, cons s of iny ist R operations and has to be
completed on due date id . Setting of due dates is specific for “ ke-to-order” manufacturing
strategy.

In acc

ma

ordance with the well-known three-part scheduling classification, the problem to be
con

sidered is:
 | , , , | ,i i fqFJ prec r d s U V , (8)

where: FJ = designation of flex ; id = due date of job i ; ir =ible job shop manufacturing
release ment for job i ; fqmo s = setup duration for job q on achine of pool m f ; prec =
requirement of strict sequ nc f operations for every job.

Let duration of each machine setup from one job to ano
thes

e e o
ther be independent on sequence of

e jobs, which is typical for machine building. There are two target functions in the
formula (8), and they may both be improved only within certain limits. The Pareto
compromise curve serves as such limit, because in its points the criterion U improvement
(diminution) always means the criterion V deterioration (diminution).

If job execution is multistage, the pro ss time of job i left before
process time on of certain

ce completion consists of
j operations iN

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 138 -

iN

i ij
ij a

p p= ∑ , N R a
=

ii i= − +1, (9)

 the first unfu lled operation
Necessary release date of operation

where ia = number of lfi for job i .
j for job is determined as

i

 ijg = d – p /E+1, i i

where E = duration of a working day
 (10)

.
 (8) it

app

the

For solving the problem makes sense to apply the method based on the MO-Greedy
roach [2]. In the greedy algorithm at each step a solution with the best corresponding

criterion is selected. In a single-criterion approach a version is selected with the best value of
appropriate criterion. For multi-object greedy approach the “beam search” with the

problem criteria is used. In the current case, there are two criteria: average orders utility V
and expenses U . For Pareto front determination by beam search the tree with nodes of
intermediate solutions is constructed. At the same time at each step some versions of possible
solutions that do not dominate each other are selected. The algorithm below is used.

Step 1 (Initial computation of utility functions)

Let us assume that the level number is l =0; the initial expense function value is =0; 0U
number of nodes 0Z =1.

Ext
Step

f structed tree on the leve all possible operations are

ernal cycle
 2 (Determination of possible operations at next levels)

For each node z o the con l l
 determined, and values ijzg are computed by formulas (9,10).

w nd is not yet completed,
 is determined.

 Intermediate cycle
 Step 3 (Determination of necessary machines at next levels)
 For each operation k hich is possible at the moment lzC a,
 the necessary machine pool
 Internal cycle

 Step 4 (Utility function computation at next levels)
 For each machine m referred to pool f values and 1, , ,l z k mU + 1, , ,l z k mV + are

moments of machine availability

 Ste
e level

 computed using the formulas (7) and (5, 6). The
 have to be taken into account for computation.

 End of internal cycle
End of intermediate cycle

p 5 (Determination of dominated tree nodes)
, then for domination on thIf the level 1l + is not last 1l + of the tree node

w
y

ith a job i over the tree node x it is sufficient to comply with the following inequations

y lU U+ ≤ , 1, 1,l x+ 1, 1,l y l xV V+ +≥ and 1, 1,l y l xg g+ +< , (11)
 first

U U+ +≤

besides, the or the second inequation is strong.
Otherwise: on the last level 1l + domination is possible, if
 x , 1, 1,l y l 1, 1,l y lV V+ +≥

last), then STOP.
cremen

End cycle.
 tree construction those decisions are thrown

teria. The last

x . (12)
Step 6 (Transition to the next level or stopping)

If the level is more than the (all operations are completed
Otherwise: level number in t 1l l= + and go to Step 2.
 of external
As it follows from (11, 12), on each level of

aside that are dominated by another decision according to the problem cri

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 139 -

con f possi decision tree, since it is
n that the necessary release moment

dition in (11) extends the number o ble branches of the
ijg necessary for dominatio of non-dominated branch is

 w
formation, at least for two months. Assume the

less than such a moment for dominated one.
Let us assume that according to a set of available orders the Master plan including several

monthly plans is generated for the enterprise. Assume that shop floor planning is based on
rolling horizon methodology, and the horizon is equal to some eeks. Then it is necessary for
shop floor planning to know Master plan in
planning cycle is equal to a week, and its result is a shop task for the next week. Since the task
for the previous week is not always completed, the shop plan for the next week consists of
both the new task and uncompleted jobs of the previous week. In such a case the time reserve
for such jobs becomes negative.

For example let us assume that 20 jobs of six various types have to be completed on a
planning horizon in a shop. Assume that each job includes from three to five different
operations, which have to be performed in any given sequence; assume also that in the shop
there are 9 machines of five various pools. Table 1 contains a fragment of this task consisting
5 jobs.

 Table 1 Task fragment
Job
No.

Due
date

Release
date

Job
type

Weight
coefficient

1 -1 0 1 2
2 1 0 2 1
3 2 0 4 1
4 2 0 3 1
5 2 0 1 1

As it follows from Tab 1, th b 1 ha o be c pleted o work day earlier than the

scheduled start, so there is ta ess. O er jobs ve to be completed in two days after
the start. In this case it is assumed t there ough terial for all jobs at the start moment.
For every job the weight ffici ay t in ich in ob importance. For
exa

le e jo d t om ne
initial rdin th ha

hat
ent m

is en
be pu

 ma
, whcoe creases j

mple, weight coefficient of the job 1 is equal to 2, other coefficients are equal to 1, as a
rule.

The calculation result for this example gives three non-dominated versions of schedule,
one of them is shown in Figure 4 as a record on MS Excel sheet. Numbers in the sequence for
the each machine show the job numbers and (through fraction symbol) – the numbers of the
operations, which are performed on the machine. Numbers in brackets form groups of lots with
jobs of identical type, which do not require any setup, i.e. technological batch.

 Figure 4: The planning result for one non-dominated versions

In Figure 5 the Gantt diagrams for the machines 1 and 3 are depicted. Rectangles in the

diagrams correspond to working operations, gaps stand for idle time. Thick lines correspond to
operations without setups as their job type is the same as the previous one.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 140 -

 Figure 5: Gantt diagrams for two machines

Let us consider some parameters of the schedule computed by the method above.

Calculated coe ffficient of average load for engaged machines of the pool :

max

()ijp f
i j
∑ ∑

f
f o

K
Ed M P

= . (13)

fThe numerator in (13) is equal to total processing time on the machines of pool . The
duct of the calculated f denominator is equal to pro time reserve in hours maxEd , number o

machines fM of the pool f and the normative load density 0P .
According to the scheduling results, the planning load density for every machine based on

calculated machine work time is computed:

max,

i j
m

m

()ijp m∑ ∑

min,m
P

C C
=

−
. (14)

b grouping on machin d Assume coefficient of jo e m is equal to ratio of job quantity an

number of setups
m m
m

W
o

= . (15)

Average value

n

s for machines of pool f :

(mP f∑)

P = and
()mW f

f
f

W
M

= ∑f
fM

. (16)

re 6 the diagra itial calculated e

scheduled average load density are compared, one can notice some similarity. In the diagram 3
of group coefficient there are trends similar to trends in the diagram 2, but far more

 When in Figu m 1 of in load and the diagram 2 of th

noticeable. The diagram 4 of group density, which is calculated as product of the diagram 2
and the diagram 3, is close to the diagram 1 on most sections. This fact proves that this
schedule automatically groups and condenses operations on the machines of the pool with
large load much more intensively than on the machines with small load. Therefore, the
algorithm above can automatically determine the bottlenecks of manufacturing and ensure
their optimal work.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 141 -

 Figure 6: Distribution of schedule parameters among machine pools
 1 – initial calculated coefficient of average load
 2 – planned load density
 3 – planned group coefficient
 4 – group load density

4 Choice of the rational planning horizon

Let us consider change of average orders utility function depending on planning horizon value.
Assume that the order kit for a single machine consists of 40 jobs, and each job may be
referred to one of 12 various types. Job numbers are sorted on due date increasing. The
criterion of relative setup expenses and the criterion of average orders utility U V may be
considered as the set of criteria optimization. Assume also that all jobs may start at any time
and have equal priority coefficient, and the job No. 1 is already tardy. Processing time of each
job is in the interval of 1 – 3 hours, norms for setup from one job type to another one are
within the limits of 0.2-0.6 hour.

 Figure 7: Economical schedules for various horizons

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 142 -

In Figure 7 the economical schedules (with small setup expenses) for different planning
horizons are shown. Here the planning horizon value is determined with maximum job number
for scheduling. Assume that at the start moment the machine was adjusted for jobs of type 4,
which include the jobs 6, 9, 17, 38. Scheduling calculated with theory above automatically
forms job groups of any type.

As it follows from Figure 7, at first, when the horizon is increasing, the economical
sequence of jobs remains, new jobs gradually join the existing groups. For instance, the group
including the jobs 6 and 9 of the type 4 exists until the horizon is less than 30 jobs. At the same
time, the system automatically plans to execute the job 17 of the same type separately and
essentially later. When the horizon becomes equal to 35, the economical sequence of jobs is
partially changed. The jobs 6, 9 and 17 are planned for execution in the joint group; the jobs 2,
11 are postponed, the jobs 7, 15, 24 are planned earlier.

Figure 8: Dependence between average orders utility function and horizon value for single
machine (overload)

In Figure 8 the dependence between the average orders utility function and the horizon
value is shown. In this case the machine is overloaded, so utility function is negative as
completion is often tardy. Until the horizon is equal to 30 jobs, there are utility function
oscillations, after 30 jobs utility function diminishes dramatically.

. Figure 9: Dependence between average orders utility function and horizon value for parallel
unrelated machines (low load)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 143 -

In the next example let us consider scheduling for a shop including 6 parallel unrelated
machines. Assume that one machine is of high productivity, three machines have middle
productivity, and two machines have low productivity. Assume also that the shop may
manufacture parts of 6 various types, and there are 75 orders for parts of these types at the
moment of scheduling.

Economical schedules for each of parallel machines computed by the method above are
similar to the schedule for a single machine. Such schedules include the groups of jobs for
various job types. The diagram in Figure 9 is depicted for the case, when parallel machines
have low load. In this case average orders utility function is positive, since job completion is
not tardy. The utility oscillations are observed until number of jobs is less than 65. If the
number is more, the orders utility function diminishes dramatically.

Figure 10: Dependence between average orders utility function and horizon value for flexible
job shop (overload)
 At last let us consider flexible job shop scheduling for the area of mechanical multistage
processing of parts with any sequence of technological operations. Assume that in the shop
there are 9 machines of five technological pools. Assume also that the shop gets the task for 40
jobs of six various types, and some of these jobs are in various stages of processing.

Economical schedules for each machine in the shop are similar to the schedules for the
cases above. In Figure 10 the dependence between the average orders utility function and the
horizon value for the shop is shown. In this Figure utility function is negative, since the shop is
overloaded, and completion is often tardy. The utility oscillations are observed until number
of jobs is less than 30. If the number is more, the orders utility function diminishes
dramatically.
 If diagrams in Figures 8-10 are compared, one can find that in any case the orders utility
function at some (critical) horizon begins to diminish dramatically. Apparently, scheduling for
the horizon more than the critical one, has no sense. To find the critical horizon, it is expedient
to use the decision support systems [11].

5 Conclusion

We have studied some aspects of scheduling based on the average orders utility V criterion
on the planning horizon. This criterion is non-regular as it takes into account both order
tardiness and order early completion. In comparison with other known methods, this method
provides automatic grouping of unique jobs on all active machines and at the same time takes
into account the due date of all jobs. The method reveals the most loaded working centers
automatically and provides for grouping of most jobs for these centers particularly.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 144 -

For scheduling a set of Pareto-optimal solutions on planning horizon is constructed, and a
user make the final decision based on this set. If a planning horizon changes, the calculated
versions of the schedule change accordingly. When the horizon increases, the system at first
automatically proposes schedule versions with increasing grouping of jobs to form
technological batches. After the critical horizon value has been attained, the average orders
utility function diminishes dramatically, and further increasing of the planning horizon is not
expedient.

In dynamic scheduling the critical horizon value may be different in each planning cycle,
and it is sensible to simulate production process for critical horizon determination. If
deviations of the planned production process appear, they may be corrected in the schedule and
have to be taken into account in the next planning cycle. Since the average orders utility
function is a criterion of schedule quality for all jobs on the planning horizon, changes of this
criterion by separate schedule corrections are usually not large and, accordingly, have small
impact at the schedule structure as a whole.

In reality various additional constraints may arise in process of scheduling. For example,
often it is needed to take into account the current device wear and tear, limited storage
possibilities, general shipping terms, etc. In the nearest future it is planned to elaborate some
solutions that correspond to listed problems.

References

[1] Baker K.R, Scudder G.D., Sequencing with earliness and tardiness penalties: A review,

Operations Research, 38, 22-36 (1990).
[2] Canon, L.-C. and Jeannot, E., MO-Greedy: an extended beam-search approach for

solving a multi-criteria scheduling problem on heterogeneous machines, IEEE Int.
Symposium on Parallel and Distributed Processing Forum, 57-69 (2011).

[3] Church, L. K. and Uzsoy, R., Analysis of periodic and event-driven rescheduling policies
in dynamic shops, Int. Journal of Computer Integrated Manufacturing, 5 (3), 153-163
(1992).

[4] Jorge, L.V., Wu, S. D. and Storer, R. H., “Robustness measures and robust scheduling for
job shops,” IIE Transactions, 26, 5, 32-43 (1994).

[5] Kahneman, D. and Tversky, A., ‘Choices, values and frames’, American Psychologist,
Vol. 39, 341–350 (1984).

[6] Keeney, R.L. and Raiffa, H., Decisions with Multiple Objectives: Preferences and Value
Tradeoffs, pp.559. John Wiley & Sons, NY, (1976).

[7] Mauergauz, Y., Objectives and constraints in advanced planning problems with regard to
scale of production output and plan hierarchical level, Int. Journal of Industrial and
Systems Engineering, 12, 369-393 (2012).

[8] Mauergauz, Y., Cost-efficiency method for production scheduling, Proceedings of the
World Congress on Engineering 2013, 1, London, 587-593 (2013).

[9] Mauergauz, Y., Dynamic Pareto-optimal group scheduling for single machine, Int.
Journal of Industrial and Systems Engineering, 16, 537-559 (2014a).

[10] Mauergauz, Y., Dynamic Pareto-optimal group scheduling in parallel machine shop, Int.
Journal of Industrial and Systems Engineering, 18, 199-221 (2014b).

[11] Mauergauz, Y., Decision support tool for group job-shop scheduling problems, Proc. of
the 4th Int. Conf. on Simulation and Modeling Methodologies, Technologies and
Applications, Vienna, 397-406 (2014c).

[12] Muhlemann, A. P., Lockett, G., and Farn, C. K., Job shop scheduling heuristics and
frequency of scheduling, Int. Journal of Production Research, 20 , 227-241 (1982).

[13] Nyhuis, P. and Wiendal, H.P., Fundamentals of Production Logistics, pp.312. Springer,
Berlin (2009).

[14] Vieira, G. E., Hermann, J. W. and Lin, E., Rescheduling manufacturing systems: a
framework of strategies, policies and methods, Journal of Scheduling, 6 , 36-92 (2003).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 145 -

MISTA 2015

Energy Consumption in Single- and Multi-installment
Divisible Loads Processing in Systems with Hierarchical
Memory

Jedrzej Marsza lkowski · Maciej Drozdowski

Abstract Energy and time performance in processing divisible loads on systems with

hierarchical memory is considered. Two modes of operation are compared: single-

installment and multi-installment processing. Time and energy performance trade-offs

are analyzed.

1 Introduction

Energy bill has become one of the key considerations when running a big datacenter

[1,3,7]. Hence, energy use optimization, or green computing, is an active research area.

One of possible ways of minimizing energy use is designing energy-efficient computer

applications. In this work the impact of memory hierarchy and alternative application

design styles on time and energy efficiency of distributed computations is considered.

Contemporary computer systems have hierarchical memory structure. At the top-

level processor registers offer the shortest access time but their total size is very limited.

CPU caches and RAM offer bigger sizes, but at longer access times. The next level of

memory hierarchy are SSDs, HDDs (also the networked). At the bottom of the structure

is long-term computer storage on tapes, optical media, etc. Access time grows and

the size of memory levels increase when progressing from the CPU registers to the

external storage systems. Since many applications use huge amounts of memory which

do not fit in RAM, a software developer often faces a dilemma of either employing

slow memory, such as virtual memory on SSDs, HDDs or changing the algorithms and

restructuring the application architecture to fit the processed data in memory and

to avoid using external storage as much as possible. In this work we distinguish two

approaches to managing application data structures: In the in-core mode the processed

data structures are held in RAM and higher memory levels. In the out-of-core mode

also external storage may be intensively used while processing the load. For example,

in the out-of-core mode it is possible to process big arrays of numbers and rely on

the operating system virtual memory management of the data. In the in-core mode

J. M. Marsza lkowski · M. Drozdowski
Institute of Computing Science, Poznań University of Technology, Piotrowo 2, 60-965 Poznań,
Poland, Tel.: +48-616553031, Fax: +48-618771525,
E-mail: {jedrzej.marszalkowski,maciej.drozdowski}@cs.put.poznan.pl

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 146 -

the designer would rather split the array in smaller pieces and process it on remote

computers at the cost of additional communication. In this paper we assume that

computation is already distributed. Each machine may receive its share of load once

which may lead to substantial use of the out-of-core memory. This way of processing

will be called single-installment processing. Alternatively, the load may be delivered

to a machine in many chunks which is referred to as multi-installment processing.

It has an advantage of starting computations earlier, and possibly using only in-core

computations. A disadvantage is high utilization of communication subsystem and

a need for redesigning the application. For the purposes of modeling both types of

processing divisible load theory will be applied.

Divisible load theory (DLT) is a scheduling and performance model of parallel

and distributed computations on big volumes of data, here referred to as load. The

key assumptions of DLT are that load can be divided into parts of arbitrary sizes

and these parts can be processed independently in a distributed system. It means

that discrete nature of the processed data structures may be ignored due their small

sizes compared to the big size of the entire processed load. Moreover, dependencies

between the processed data units, if any, can be ignored or eliminated. Surveys on

divisible load theory, its extensions and practical applications can be found, e.g., in

[2,4,8,9]. In the above books and reviews results of the extensive research on load

distribution algorithms minimizing idle times are presented. DLT also proved [4,6] to be

quite successful in representing real applications because difference between measured

application duration times and DLT expectations were on the level of 1% and better.

Further organization of the paper is the following. In the next section we formulate

mathematical models for time and energy performance of single- and multi-installment

distribution and load processing. Section 3 outlines results of performance studies. In

Section 4 we conclude and discuss possible directions of further research.

2 Mathematical Model

It is assumed that load of size V resides on a file server P0 which distributes the load

to m homogeneous processors P1, . . . , Pm. Network connections with speed 1/C are

employed for communication and sending α load units (e.g. bytes) requires time αC.

Time of processing load of size α in a system with hierarchical memory is represented

by a piecewise-linear function τ(α) = max{a1α, a2α+ b2}. Part a1α corresponds with

in-core computations, and part a2α+ b2 with the out-of core computations. Function

τ(α) has two properties: τ(0) = 0 and τ(RAM) = a1RAM = a2RAM + b2, where

RAM is the maximum size of load which can be held by the application and processed

entirely in core memory (it may be smaller than hardware size). Sizes greater than

RAM are partially stored in the SSDs, HDDs. A computer can be in one of the states:

1) idle – consuming power P I , 2) starting – consuming power PS , 3) networking

– consuming power PN , 4) running (i.e. computing). The initial state of processors

P1, . . . , Pm is idle, master P0 starts in networking state. In the starting state a machine

is progressing from idle to running or networking. Starting a machine takes time S. A

machine is networking when it sends, receives load, but also when it is busy-waiting.

After obtaining its share of load a machine immediately progresses to running state

and after completing the computations it switches back to the idle state. The energy

consumed by a computer when processing α load units in the running state is e(α) =

max{k1α, k2α+ l2}. Part k1α represents in-core, and k2α+ l2 out-of-core processing.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 147 -

It is required that e(0) = 0, e(RAM) = k1RAM = k2RAM + l2. For simplicity of

mathematical modeling it is assumed that the time of returning results is negligible.

This assumption is not restrictive and can be easily relaxed on the grounds of DLT [2,4].

The challenge is to design load distribution strategy which minimizes total consumed

energy E and schedule length T . Two approaches are proposed in the following sections:

with single- and with multi-installment load distribution.

2.1 Single-installment Processing

In the single-installment method processors P1, . . . , Pm receive load once. A master

machine activates processors one by one. Immediately after activating some processor

Pi, i = 1, . . . ,m, the master sends load αi to Pi. Only then the master activates Pi+1.

Let ti denote the time of computing on Pi. Time ti must be long enough to process

the whole load. Hence, ti = τ(αi) = max{a1αi, a2αi + b2}. In a schedule of length T

processor Pi is starting in time S, networking for time αiC, computing for time ti and

is idle for time T −S−αiC− ti. Let ei denote energy consumed on Pi while processing

load αi. We have that ei = max{k1αi, k2αi + l2} Hence, the energy consumed by

Pi, i = 1, . . . ,m, is

Ei = PSS + PNCαi + ei + P I(T − S − αiC − ti).

The master is networking for time
∑m

i=1(S + αiC). Thus, the energy consumed in

master machine is

E0 = PN
m∑
i=1

(S + αiC) + P I(T −
m∑
i=1

(S + αiC)) = P IT + (mS + V C)(PN − P I).

The problem of energy use minimization subject to schedule length limitation can be

formulated as the following linear program:

min

m∑
i=0

Ei (1)

iS +

i∑
j=1

αiC + ti ≤ T for i = 1, . . . ,m (2)

max{a1αi, a2αi + b2} = ti for i = 1, . . . ,m (3)

max{k1αi, k2αi + l2} = ei for i = 1, . . . ,m (4)
m∑
i=1

αi = V (5)

In the above linear program the piecewise-linear dependencies of the computation time

and energy in equations (3), (4) are given in a simplified form using max function

directly. This is acceptable in contemporary LP solvers (e.g. CPLEX), but max can

be implemented in any LP solver by using two inequalities and cost of the slack in the

objective function. An analogous linear program minimizing schedule length T subject

to energy limit E may be formulated. If some solution of the above formulations has

αi = 0, then it means that the number of processors is too big for the given problem

size V . Such solutions are considered infeasible in the above model.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 148 -

2.2 Multi-installment Processing

In the multi-installment load distribution it is assumed that load chunks of size RAM

are sent to processors P1, . . . , Pm. If load V is sufficiently big then each processor

receives load many times. For simplicity of exposition we assume in the following that V

is divisible by RAM . In the multi-installment distribution master starts the processors

first which takes time mS in total. When all m machines are up and busy-waiting

for the load, master computer starts sending them load in pieces of even size equal

α1 = . . . = αm = RAM . Processor Pi is idle until time S(i− 1), next it starts in time

S, and then it is busy-waiting for the first piece of load in time (m−i)S+C(i−1)RAM .

Thus, the energy consumed in the activation process by P1, . . . , Pm is

EA = P IS(m− 1)m/2 + PSSm+ PNC ·RAM(m− 1)m/2.

After activation each processor receives bV/(m ·RAM)c times load of size RAM . Each

chunk of size RAM is received and processed in time RAM(a1 + C) because it fits in

core memory. Energy consumed in this central phase of computations by processors

P1, . . . , Pm is

EC = bV/(m ·RAM)cm(k1 + CPN)RAM

In the final stage of computations the load is sent once more to mf = (V − bV/(m ·
RAM)cRAMm)/m processors. Processors P1, . . . , Pmf receive their chunks o load and

finish computations in time (mfC + a1)RAM . The total length of the schedule in the

multi-installment processing mode is:

T = mS + bV/(m ·RAM)c(a1 + C)RAM + (mfC + a1)RAM (6)

After the computations processor Pi, i = 1, . . . ,mf is idle for time C(mf − i)RAM .

Processors Pmf+1, . . . , Pm remain idle in the final stage of computation. In particular,

Pi, i = mf + 1, . . . ,m is idle for time (a1 − (i − mf − 1)C)RAM . The total energy

consumed in the final iteration of load distribution is

Ef = RAM
[
mf (k1 + PNC)+

P I
(
C(mf − 1)mf/2 + a1(m−mf)− C(m−mf − 1)(m−mf)/2

)]
The master is communicating or busy-waiting all the time with the exception of time

a1RAM in the final stage of communication when the last processor already received

its load and processes it. Hence, the energy consumed by the master is

E0 = PN (T − a1RAM) + P Ia1RAM.

The total energy consumption in multi-installment processing is

E = EA + EC + Ef + E0. (7)

Note that the current method has an analytical solution and needs no special solver.

Hence, it has lower computational complexity than in the previous method. The above

two modes of processing are compared in the following section.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 149 -

1.5E+05

2.0E+05

2.5E+05

3.0E+05

3.5E+05

180 200 220 240 260 280 300 320

E
n
e
rg
y

Time

multi

Min T Envelope

single, m=10

single, m=11

Single, m=12

Single, m=13

m=10

m=5

m=13

1.4E+05

1.4E+06

1.7E+02 1.7E+03 1.7E+04

E
n
e
rg
y

Time

Single, RAM=100MB

Multi, RAM=100MB

Single, RAM=1GB

Multi, RAM=1GB

Single, RAM=10GB

Multi, RAM=10GB

m=1

m=1

m=1

Fig. 1 Energy vs time a) for changing m, b) for changing RAM and m.

3 Performance Comparison

The goal of the simulation conducted in this section is to evaluate time and energy

performance of the scheduling methods introduced above. Intuitively, it can be expected

that a trade-off between energy and time exists and for shorter schedules more energy

is required. Therefore, the results of the simulations will be depicted in energy vs

time graphs (cf. Fig.1). The single-installment distribution may have a set of Pareto-

optimum solutions in the energy and time space for each instance of the parameters.

From the computations two points are derived in the single-installment model (1)-

(5): minimum energy schedule and the shortest schedule with their durations and

energy consumptions. The linear programs introduced in (1)-(5) were solved using

CPLEX 12.6 for minimum energy subject to time limitation. The limits of time T

were found by binary search. In the multi-installment model just one solution to (6)-

(7) arises as the result of problem size and system parameters. Still, schedule length

and energy can be controlled by changing processor number m. Unless stated to be

otherwise, the parameters of the system were C = 0.0078 s/MB, a1 = 0.082 s/MB,

a2 = 2.366 s/MB, b2 = −2284 s, k1 = 13 J/MB, k2 = 294 J/MB, l2 = −281 kJ, m =,

P I = 14 W, PN = 91 W, PS = 101 W, RAM = 1 GB, S = 10 s, V = 10 GB. The

time and energy functions parameters were measured on a PC computer executing

matrix transposition application. More results on benchmarking energy consumption

in divisible applications can be found in [5]. The parameters of the idle and starting

states correspond to ’suspend to RAM’ state and the following startup process. The

results of the simulations are collected in Fig.1, Fig.2. In all figures energy consumption

is shown along the vertical axis, and schedule length along the horizontal axis.

In Fig.1a dependence of consumed energy on schedule length is depicted for chang-

ing processor numbers m. The dependence of time and energy consumed in multi-

installment processing is marked as ”multi”. It can be observed that for m = 6, . . . , 9

and m = 11, . . . , 13 which do not divide (V/RAM) there are irregularities in schedule

length and energy because some machines remain idle in great parts of the schedule.

For the single-installment distribution three points may be observed: the point of min-

imum schedule length, the point of minimum energy schedule, and the rightmost point

of the longest schedule for which all processors receive non-zero load. It is possible to

extend the dependencies for the single-installment distribution to the longer schedules,

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 150 -

but it results in some machines remaining idle which we consider inconsistent with the

model is Section 2.1. Minimum schedule length points are connected in Fig.1a to guide

the eye (labeled as ”min T envelope”). As it can be seen there is a trade-off between

energy and schedule length. The range of changes between the shortest schedule and

the most energy-efficient schedule is 1%-8% in schedule lenght and 19%-25% in energy.

Thus, the exchange of the makespan for the energy is not equivalent (i.e. not one-

to-one proportional). Increasing schedule length beyond the minimum energy length

increases the energy cost because on the one hand using out-of-core memory cannot

be avoided, on the other hand keeping machines idle for longer time is not costless.

The results demonstrate that the multi-installment distribution may be outperformed.

This calls for further analysis of both methods performance on a wider range of system

parameters. Since similar patterns of the shortest and the best energy schedules in

single-installment processing were obtained also in other settings, also to avoid clutter-

ing the figures with excessive details, in the following figures we show only the shortest

schedule results.

In Fig.1b energy consumption vs. schedule length is shown for various processor

numbers m, and RAM sizes. Each line in Fig.1b represents time-energy trade-off for

a fixed RAM size. Each point on the line represents a certain processor number. For

each RAM size dependence is shown for single- and for multi-installment distribution.

It can be seen in Fig.1b that in multi-installment distribution processing time and

energy initially decrease and starting with some number of processors, e.g. m = 4 for

RAM = 100M or m = 5 for RAM = 1G, energy consumption grows while sched-

ule length decreases. Initially energy and schedule length decrease because by adding

processors schedule gets shorter, and the overheads related to schedule length are re-

duced. Note that in multi-installment distribution processors receive equal load only if

(V/RAM) mod m = 0. Consequently with growing processor numbers inequalities in

load distribution increase. The machines which received less load idle wasting energy.

Moreover, startup energy SPS is consumed with each started machine. Thus, after

exceeding certain processor number energy costs are growing. In the dependence for

RAM = 1G an irregularity of the dependence can be seen for m = 6, . . . , 9. Since

(V/RAM) mod m 6= 0 here, machines Pmf , . . . , Pm are idle in the last iteration con-

stituting big part of the schedule length and the consumed energy. In the case of

multi-installment processing with RAM = 10G both energy and schedule length grow

with each new processor. In this case V ≤ RAM and m = 1 processor is sufficient to

process the whole load. Hence, using each new machine only wastes energy and time.

It can be concluded that small sizes of load chunks in multi-installment distribution

are more effective (cf. the dependence for RAM = 100M vs RAM = 10G) because the

initial and the final idle waiting periods are shorter. In the single-installment distri-

bution schedule length and energy usage initially decrease because i) more machines

have more memory and using out-of-core memory may be avoided, ii) schedule length-

related overheads are decreasing. But with the further growth of m costs of startup

become dominating and energy use is growing without shortening the schedule. Com-

paring the multi-installment and the single-installment distribution it can be concluded

that multi-installment method is better when RAM is small in relation to V . Contrar-

ily, single-installment distribution is better when RAM is big in relation to V . This

is a result of different time and energy cost allocation: Multi-installment distribution

loses in time and energy to single-installment in communication and idle time costs.

Single-installment method loses in the costs of out-of-core computation. Thus, multi-

installment distribution method can be competitive if the costs of idle waiting can be

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 151 -

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

4.0E+01 4.0E+02 4.0E+03 4.0E+04 4.0E+05

E
n
e
rg
y

Time

single, V=1000

multi, V=1000

single, V=10000

multi, V=10000

single, V=100000

multi, V=100000

m=10

m=10

m=10

m=10

1.0E+05

1.0E+06

7.0E+01 7.0E+02 7.0E+03

E
n
e
rg
y

Time

Single, ts=10

Multi, ts=10

Single, ts=1

Multi, ts=1

Single, ts=0,1

Multi, ts=0,1

Fig. 2 Energy vs time a) for changing V and m, b) for changing S and m.

amortized in the central part of the schedule when all machines receive their loads

many times. Single-installment processing can be competitive if RAM size allows to

avoid out-of-core computation.

In Fig.2a the time-energy trade-off is shown for various problem sizes V . As could

be expected, schedule length and energy usage grow with problem size. For V = 100G,

multi-installment processing outperforms single-installment method in time and energy

criteria. With the decreasing problem size V the difference in performance of the two

method diminishes so that for V ≈ mRAM the single-installment method is better

balancing costs of communication and idleness than the multi-installment method.

In Fig.2b the time-energy trade-off is shown for various startup times S. It can be

observed that for the single-installment distribution startup duration has a two-fold

impact. Firstly, the number of processors which can be exploited (i.e. receive non-zero

load) increases with decreasing S. This allows for better parallelizing the computations

and shorter schedules. Secondly, the schedules on a certain number of machines are

less energy-demanding. In the multi-installment distribution the latter effect is similar.

However, the irregular parts of the time-energy trade-off are losing more in energy and

schedule length with growing startup time S.

4 Conclusions

In this study we compared single- and multi-installment distributed computation with

respect to their time and energy performance. The results demonstrate that both meth-

ods have their advantages which follow from different ways of trading certain costs of

processing the load. The single-installment approach effectively manages idle times but

fails when out-of-core computation contributes significant part of the schedule length

and energy. The multi-installment communication manages memory usage well but

suffers from simplistic and wasteful managing of communications, busy-waiting and

idle times.

Further studies may cover other communication strategies, heterogeneous systems

and systems managing streams of load, such as server requests.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 152 -

References

1. Benini, L., de Micheli, G.: System-level power optimization: techniques and tools. ACM
Transactions on Design Automation of Electronic Systems 5(2), 115–192 (2000)

2. Bharadwaj, V., Ghose, D., Mani, V., Robertazzi, T.: Scheduling divisible loads in parallel
and distributed systems. IEEE Computer Society Press, Los Alamitos, CA (1996)

3. Carter, J., Rajamani, K.: Designing energy-efficient servers and data centers. Computer
43(7), 76–78 (2010)

4. Drozdowski, M.: Scheduling for Parallel Processing. Springer-Verlag New York Inc (2009)
5. Drozdowski, M., Marsza lkowski, J.M., Marsza lkowski, J.: Energy trade-offs analysis using

equal-energy maps. Future Generation Computer Systems 36, 311–321 (2014)
6. Drozdowski, M., Wolniewicz, P.: Experiments with scheduling divisible tasks in clusters of

workstations. In: A. Bode, T. Ludwig, W. Karl, R. Wismuller (eds.) Proceedings of the
6th International Euro-Par Conference on Parallel Processing, LNCS 1900, pp. 311–319.
Springer-Verlag (2000)

7. Kogge, P.: The tops in the flops. IEEE Spectrum 48(2), 48–54 (2011)
8. Robertazzi, T.: Ten reasons to use divisible load theory. Computer 36(5), 63–68 (2003)
9. Robertazzi, T.: Divisible load scheduling. [on-line] http://www.ece.sunysb.edu/ tom/dlt.html

(2011)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 153 -

MISTA 2015

An Efficient Simulated Annealing for the Integrated
Problem of Berth Allocation and Quay Crane Assignment
in Seaside Container Terminals

Abtin Nourmohmmadzadeh · Sven Hartmann

Abstract An ever increasing demand for container transshipment have caused seaside

terminals to become busy more and more all over the world. Hence, efficient planning

and scheduling of operations in a container terminal has gained a great importance.

This paper considers two key problems arising in seaside container terminals, namely

Berth Allocation and Quay Crane (QC) Assignment simultaneously, and as an inte-

grated mixed integer mathematical formulation with the objective of minimising the

weighted sum of waiting time, deviation from desired location and departing delay,

for all vessels. A set of test instances of small to large size are generated according

to the real condition. To solve the instances, firstly, the GAMS/BARRON software is

used, which successfully solves small and medium instances to optimality. Due to the

computational complexity of larger instances, a suitable Simulated Annealing (SA) al-

gorithm with a novel solution encoding method is proposed. The comparison of the SA

outputs with optimal solutions indicates its good performance in reaching near-optimal

solutions in reasonable computational times.

1 Introduction

Container transshipment plays an important role in the worldwide freight transporta-

tion since its appearance in the 1950s. This is due to the fact that it provides reli-

able and standardised means of transportation, which leads to shorter transit times,

possibility of using multiple modalities and, finally, it reduces shipping and handling

costs [17]. The related statistic shows that the proportion of the global container port

throughput in the worlds total dry cargo has increased from 5.1% in 1980 to 25.4%

in 2008 (UNCTAD2009) [1] and it increased by an estimated 13.3% to 531 million

20-foot equivalent units (TEUs) in 2010 (UNCTAD2011) [2]. By this significant in-

crease, container terminals are facing with larger quantities of input containers and

being busy and congested more and more. This fact clearly shows that efficient plan-

ning and scheduling of operations in a seaside container terminal is very crucial and of

great importance.

Department of Informatics, Clausthal University of Technology, Germany
E-mail: an14@tu-clausthal.de | sven.hartmann@tu-clausthal.de

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 154 -

A variety of problems emerge in a seaside container terminal to be optimised. At

the beginning, arriving vessels have to be assigned to berths, then the quay cranes

(QCs) are scheduled to serve them. Afterwards, the vehicles and transportation equip-

ments are planned to execute the intra-terminal movements of containers, e.g. from

the quay to the storage area and vice versa. In the next step, an appropriate storage

plan of containers in special locations in the yard area is needed. Finally, transporta-

tion modes from outside such as trucks or trains are scheduled at gates of terminal to

the hinterland. A comprehensive review of Operations Research problems at container

terminals is presented by Stahlbock and Voss 2008 [13], Streenken et al 2004 [14] as well

as Rashidi and Tsang 2013 [11].

In this paper, we focus on two main significant problems arising along the wharf,

namely Berth Allocation Problem (BAP) and Quay Crane Assignment Problem (QCAP).

In BAP there are a set of arriving vessels to be allocated to available berthing locations

across the wharf. Each vessel has a desired berthing location at which the cost of total

container movements to/from the vessel is minimum. Therefore, deviation from the

desired or preferred berthing location increases the related costs. The main constraint

for this assignment is that no more than one vessel can berth in the same location

at the same time. This makes the satisfaction of all vessels difficult because we seek

to minimise their handling time, i.e the time they are at the berth. By solving this

assignment problem, other than berthing locations, the exact times for berthing and

departure of vessels are determined. As the arrival time of each vessel is its preferred

time to moor at the berth, berthing after arrival yields extra cost according to the

amount of deviation. On the other hand, leaving the terminal after a specified time

must be penalised because of the imposed delay to the vessel. In the QCAP problem

we make decision about the number of QCs to serve each vessel in each time period.

This problem can significantly affect BAP because the number of QCs that serve a ves-

sel influences its handling time, i.e. with more QCs the embarking and disembarking

operations can be done sooner.

Due to the strong interrelation between BAP and QCAP, they are considered and

formulated simultaneously as BAQCAP by an integrated mixed-integer mathematical

model in our paper. Since such integrated models increase the computational complex-

ity of the problem as its size grows, besides exact solving methods, a heuristic approach

is needed to get an acceptable solution in reasonable time. Although these solutions

are not necessarily optimal, their small deviation from optimality is not so important

in comparison with a much shorter computational time. We propose a Simulated An-

nealing (SA) algorithm which is well-suited to the characteristics of the problem. For

this sake, we devise a novel encoding system for solutions, so that the operators of the

SA can be implemented without any trouble.

The rest of this paper is organised as follows: In section 2 a survey of the previous

literature is presented. The mathematical formulation and related assumptions are cov-

ered in section 3. Section 4 proposes our SA approach. The computational experiments

are performed and comparison of the results are made in section 5. Finally, in section

6 we draw a conclusion and recommend directions for future research.

2 Related Work

A variety of researches have been conducted on BAP and QCAP problems so far. They

considered different version of the problem and variable assumptions. A few surveys

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 155 -

considered an integrated model (BAQCAP) for solving these two interrelated problems

simultaneously, while others worked on them separately and sometimes in more detail.

A specific review of the surveys on these two fields are presented by Bierwirth and

Meisel 2010 [3].

The BAP is classified based on some spatial and temporal distinctions by Bier-

wirth and Meisel 2010 [3]. These distinctions are: (1) If the berth space is discrete or

continuous, (2) If the arrival time of vessels are deterministic or stochastic, and (3) If

the handling time of vessels are deterministic or stochastic.

A Particle Swarm Optimisation (PSO) algorithms is presented in Ting et al. [16] to

solve the discrete and dynamic BAP of realistic size within reasonable time. Dongsheng

Xu et al. 2012 [18] consider the limitation by water depth and tidal condition in BAP.

They model the problem as a parallel-machine scheduling with processing set restric-

tions and divide the time horizon into two periods, in which the processing sets are

different. Both the static and dynamic cases of the problem have been taken into ac-

count and efficient heuristics are developed for them. Zhen and Chang 2012 [19] study

the development of a robust schedule for berth allocation with a degree of uncertainty

(e.g. vessel’s arrival time and operation time). They proposes a bi-objective optimi-

sation model that minimises cost and maximises robustness of schedules. A heuris-

tic is developed to solve the large-scale cases. Berth allocation with stochastic vessel

handling times is formulated as a bi-objective problem by karafa et al. 2012 [7] as

well. To solve the resulting problem, an evolutionary algorithm-based heuristic and a

simulation-based Pareto front pruning algorithm are proposed.

The work of Hu et al. 2014 [6] considers vessel’s fuel consumption and emis-

sions in the integrated problem of BAP and QCAP. They apply a novel non-linear

multi-objective mixed-integer programming which is, afterwards, converted to a second-

order mixed-integer cone programming model to solve the problem’s computational

intractability. Additionally, the impact of the number of allocated QCs on port opera-

tional cost, vessel’s fuel consumption and emission is analysed.

Legato et al. 2014 [10] followed a Simulation-Optimisation approach to make berth

allocation decisions. A mathematical programming model at the tactical level and a

simulation model at the operational level are considered. Their framework uses a beam

search heuristics to obtain a weekly plan at the tactical level, and then to adjust allo-

cation decisions at the operational level, a simulated annealing based search process is

proposed. At this level, randomness in discharge/loading operations is taken into ac-

count and modelled by an event-based Monte Carlo simulator. Buhrkal et al. 2011 [4]

review and describe three main models for the discrete BAP and enhanced the perfor-

mance of one of them. They do extensive numerical tests and compare all models from

a computational perspective. The results indicate the superiority of the set-partitioning

model over all others.

The QCAP is further extended to a version that determines which specific QCs are

serving each vessel during each time period. In other words, this version schedules the

QCs, and therefore, it is called Quay Crane Scheduling Problem (QCSP). Kim and Park

2004 [8] discuss the QCSP and present a mixed-integer programming model taking

various constraints related to operations of QCs into account. They used a branch and

bound (B&B) method to obtain the optimal solution and a greedy randomised adaptive

search procedure (GRASP) to overcome the computational difficulty. The satisfactory

performance of GRASP is verified by comparison of its results with that of the B&B .

Tavakkoli-Moghaddam et al. 2009 [15] model the quay crane scheduling and assignment

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 156 -

problem as mixed-integer programming and proposed a genetic algorithm to cope with

real-size instances.

Elwany et al. 2013 [5] propose an integrated heuristics-based solution methodology

that tackles continues BAQCAP. The proposed approach is claimed to produce high

quality solutions to such an NP-hard problem in a relatively short time suggesting its

suitability for practical use. Rodriguez-Molins et al. 2013 [12] apply a GRASP-based

metaheuristic for BAQCAP aiming at minimisation of the total waiting time elapsed

to serve all these vessels. They prove that this metaheuristic reduces the waiting time

and increases both the berth utilisation and the throughput of QCs.

B. Türkoğulları et al. [17] focus on the integrated planning of BAP and QCAP.

They formulate the problem as a binary integer linear program that is later extended

by incorporating the quay crane scheduling problem as well, which is then named

BACASP. Although the model for BAQCAP can be efficiently solved even for large

instances up to 60 vessels, this is not the case for BACASP. Therefore, a necessary

and sufficient condition for generating an optimal solution of BAQCSP from an opti-

mal solution of BAQCAP using a post-processing algorithm is presented. In case this

condition is not satisfied, they apply a cutting plane algorithm which solves BAQCAP

repeatedly until the aforementioned condition holds.

An overview on the previous literature of BAP and QCAP indicates while numerous

studies have been presented that consider one of the problems separately, the surveys

on the integrated problem or BAQCAP are not so many. Bearing in mind that the

result of each problem strongly affect the other, more integrated models taking more

realistic condition into account are needed.

3 Mathematical Formulation

To present our mathematical model in this section, firstly, we explain the main assump-

tions that the model is based on. Secondly, the notations of the model are introduced,

and finally, our mathematical formulation is presented and described.

Our model is based on the following assumptions: 1- The berth is considered to

be continuous with a determined length and vessels can berth at any point along it if

their length allows. 2- The input parameters of the model are given and deterministic

3- Each vessel has predetermined berthing time and a preferred (desired) berthing

location and deviation from them are penalised. 4- Vessels are of three different sizes

and the number of cranes which are assigned to each vessel is limited by a minimum

and a maximum according to its size. 6- The duration of handling time of each vessel

is proportional to the number of QCs assigned to it. 7- Serving vessels at the berth is

continuous and without any preemption from berthing up to leaving.

The notations used in our mathematical formulation are as described below:

Sets
V The set of arriving vessels i, j ∈ V
Ri The set of allowable numbers of QCs to be assigned to vessel i

q ∈ Ri = [qmini, qmaxi] , qmini and qmaxi are the minimum and

maximum allowable number of quay cranes for vessel i

T The set of time periods, t ∈ T = {1, 2, ..., H}, H is the duration of

our planning horizon

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 157 -

Parameters
Ti Target time for vessel i to berth or its arrival time

B0i The preferred location for vessel i to berth

LFi The latest time for vessel i to leave the berth

li The length of vessel i

mi The number of QCs that vessel i requires

Q The number of QCs available at berth

M A very large integer

c1i The unit waiting cost of vessel i for berthing (deviation cost from its

arrival time)

c2i The unit deviation cost of vessel i from its preferred location

c3i The unit delay cost of vessel i (deviation cost from its latest finish

time)

Decision Variables
BTi Berthing time of vessel i

FTi Finish time of vessel i

bi Berthing location of vessel i

∆Bi The absolute deviation of vessel i from its preferred berthing location

ritq Binary variables =1 if q QCs are assigned to vessel i in the time

period t ; otherwise =0

rit Binary variables =1 if any QC is assigned to vessel i in the time

period t ; otherwise =0

yij Binary variables =1 if vessel j berths physically after vessel i along

the wharf; otherwise=0

zij Binary variables =1 if vessel j berths chronologically after vessel i ;

otherwise=0

Based on the above notations our proposed mathematical model is as follows:

Objective function

Min Z =
∑
i∈V

[c1i(BTi − Ti) + c2i∆Bi + c3i(FTi − LFi)] (1)

Constraints ∑
t∈T

∑
q∈Ri

(qritq) ≥ mi ∀i ∈ V (2)

∑
i∈V

∑
q∈Ri

(qritq) ≤ Q ∀t ∈ T (3)

BTi ≥ Ti ∀i ∈ V (4)∑
q∈Ri

ritq = rit ∀i ∈ V, ∀t ∈ T (5)

∑
t∈T

rit = FTi −BTi ∀i ∈ V (6)

(t+ 1)rit ≤ FTi ∀i ∈ V, ∀t ∈ T (7)

trit +H(1− rit) ≥ BTi ∀i ∈ V, ∀t ∈ T (8)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 158 -

∆Bi ≥ bi −B0i ∀i ∈ V (9)

∆Bi ≥ B0i − bi ∀i ∈ V (10)

bj +M(1− yij) ≥ bi + li ∀i, j ∈ V (11)

BTj +M(1− zij) ≥ FTi ∀i, j ∈ V (12)

yij + yji + zij + zji ≥ 1 ∀i, j ∈ V (13)

Equation (1) is the objective function of our model to be minimised which is the

sum of three terms for all vessels, namely waiting cost for berthing, cost of deviation

from the preferred location and delay cost.

Constraint (2) ensures that the sum of QCs assigned to each vessel satisfies the

number required by it. Constraint (3) enforces the total number of assigned QCs in

each time period not to be more than the number of available QCs. The berthing times

must not be before the arrival times that is ensured by constraint (4). Adjustment of

rit is done by constraints (5)-(8). Constraints (9) and (10) calculate absolute deviation

from the preferred location or ∆Bi. Constraint (11)-(13) ensure that each pair of vessels

must not collide each other at the same time, i.e their berthing locations have to be

distant respecting their lengths or one have to berth after the other.

4 The Simulated Annealing Algorithm

Considering the computational complexity and NP-hardness experienced while solving

problems such as our BAQCAP, other than an exact solution method, a suitable heuris-

tic approach have to be applied to large-scale instances of the problem. This approach

should help us to find solutions of good quality in comparatively short computational

time.

Simulated Annealing (SA) optimization algorithm which is inspired from annealing

in metallurgy was, firstly, presented in Kirkpatrick et al 1984 [9]. The general framework

of this algorithm is as follows: It starts from an initial solution (S0) as the current

solution with an initial temperature (T0). Then a specific number of neighbourhood

searches are done. Each time fitness of the neighbouring solution is compared with

the fitness of the current solution. If fitness of the neighbouring solution is better, it is

considered as the current solution and otherwise this happen by a probability according

to the fitness difference and current temperature which is calculated by e−(Znew−Z)/T ,

where Znew and Z are objectives values of the new and current solution, T is the current

temperature. Higher the temperature is, bigger is the probability of the neighbouring

solution to be substituted for current solution. When the specific number of neighbours

have been investigated, the SA starts a new iteration by reducing the temperature

based on a plan. By going forward iteration by iteration the chance of moving to a new

solution becomes lower. Finally, after a determined number of iterations or meeting a

termination criterion, the algorithm stops.

We adapt the basic SA to be applicable to our BAQCAP. Firstly, to encode a

solution we define a matrix. The rows of the matrix represent physical locations along

the berth whereas the columns show time periods. If a QC is assigned to a vessel in a

time period at a berth’s point, the element of the related row and column is equal to the

index of the vessel. An example of an encoded solution with three vessels is depicted

by Fig. 1. The cells that are occupied by the length of vessels contain the value -1

which means that the assignment of another vessel to them is prohibited. The rest of

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 159 -

the cells where no assignment is done are 0. To penalise the assignment of more QCs

than the available number of them at berth in each period, we calculate the number of

elements which are not 0 or -1 in each column and the objective function is increased

propositional to the violation.

The solution matrix is an encoding approach for a final solution but not the one

used by the SA. We shape a vector based on another encoding scheme which determine

the order or priority of assignment. Fig. 2 shows this scheme for the priority of 5 vessels

to berth. In other words, the vessels are assigned to their preferred berthing time and

location in the presented order and if the preferred point is occupied by another vessel

which has been assigned before, they will be allocated to the nearest available point

which imposes the minimal deviation cost. A neighbouring assignment is defined as

a solution in which only two vessels have changed their positions in the order. A

neighbouring order is also depicted in Fig. 2 and the exchanged vessels are shown in

grey cells.

Fig. 1: An encoded assignment or solution

5 3 1 4 2

5 4 1 3 2

Fig. 2: Encoding of an assignment order and a neighbouring order

All of the SA operations are implemented on these assignment orders. Each time

the fitness of a new order is calculated and compared with the solutions that we have

had so far. We expect to reach better solutions after passing each iteration and a near-

optimal solution at the end of the algorithm. Fig. 3 illustrates the flow chart of our

proposed SA algorithm.

5 Computational Results

In this section we need some test instances of different sizes to implement our solution

methodologies. For this sake, we randomly generate the input data for 5 problems with

20, 30, 40, 50 and 60 vessels. The rules to generate the input data which simulate a

real situation in container terminals to some extent are as follows:

- Vessels are considered to be of three different classes, namely feeder, medium and

jumbo. We assume that 60%, 30% and 10% of vessels in each instance belong to the

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 160 -

Yes

No

Yes

No

Yes

No

No

Yes

No

No

Yes

Initial assignment order S0

Temperature T0

Constitute the solution with

minimum cost C based on the initial

order and consider that cost as the

best found C*=C

Go to a neighboring order Sn

Constitute the solution with

minimum cost Cn based on the

neighboring order

Cn<C?

Consider the neighbor as

the current solution

S=Sn

C=Cn

Cn<C*?

Consider the neighbor as

the best solution found

S*=Sn

C*=Cn

U[0,1]<𝑒− 𝐶𝑛−𝐶 /𝑇?

?

Have the specified
number of

neighborhood searches

done??

Maximum iteration

reached?

?

Terminate the algorithm with S*

and C*

Reduce T

No

No

Fig. 3: Flow Chart of the Proposed SA

first, second and third class, respectively. Each of these classes have their own size

and characteristics. Therefore, the data related to each vessel is generated based on its

class. The technical specifications and cost rates for vessel classes are shown in Table 1

Table 1: Technical specifications and cost rates for different vessel classes

Class li mi qmini qmaxi c1i c2i c3i
Feeder U [8, 21] U [5, 15] 1 2 1 2 3

Medium U [21, 30] U [15, 50] 2 4 2 4 6

Jumbo U [30, 40] U [50, 65] 4 6 3 6 9

- The planning horizon H is assumed to be 1 week or 168 hours.

- The arrival times of vessels Ti are uniformly distributed in the planning horizon.

- The latest finish time of vessels are calculated according to:

LFi = Ti + d mi

(qmini+qmaxi)/2
e

- The Berth’s length L is 100 units and the number of available QCs is 10 .

- The preferred berthing location of vessels are uniformly generated between 0 and

L− li , (U [0, L− li]).

The solution approaches are implemented in a computer with an Intel(R) Core(TM)

i7, 3.10GHz CPU and 16GB of RAM. The problems with 20, 30 and 40 vessels are

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 161 -

managed to be solved by the strong GAMS/BARROM program, whereas for 50 and

60 vessels the solver is unable to obtain the optimal solutions within a time limit and

stops due to a very long CPU time. Therefore, for the two largest problems we have

only the best solutions found until the stoppage time which is set to be 1 hour. Our

SA algorithm is implemented in MATLAB environment for all instances and five times

for each because the mean of objective function values for each instance can be a

good measure for the performance of the SA approach. Based on the initial and final

temperature also the cooling plan, 100 iterations are considered for the algorithm with

20 neighbourhood searches in each. The initial order is according to the size of vessels

in which larger vessels have higher priority and vessels with the same size are randomly

sorted. The computational results of both solution approaches are summarised in Table

2.

Table 2: Computational results of the two solution approaches

Problems GAMS/BARRON SA Gap (%)

|V | Optimal time (s) Z (mean) time (s)
(Z−optimal)

optimal × 100

20 504 10.30 535 52.93 6.1

30 882 488.56 926 91.60 4.9

40 1658 2832.81 1712 178.36 3.2

50 3582* - 3608 281.24 0.07

60 6203* - 6125 393.05 -1.2

* not optimal but best found after 1 hour

The first column contain the number of vessels or the size of problems. In the

second and third columns the optimal values of GAMS/BARRON solver (except for

the two large instances) and the CPU times to obtain them are tabulated. The next

two similar columns contain the results of our proposed SA algorithm. These are the

means of the best solutions and CPU times of 5 runs for each instance. Finally, in the

last column the percentage of gap between solutions of the two approaches are shown

that can be considered as a comparison criterion.

As the results in Table 2 indicate, our presented SA is able to reach near optimal

solutions in all cases. The maximum gap is observed in the first instance which is only

6.1% . As the size of instances increases, this gap becomes smaller such that even in the

last instance the SA solution is better than the best one reached by GAMS/BARRON

until the stoppage time. It is observed that the CPU time for GAMS/BARRON rises

exponentially which indicates that our BAQCAP is a NP-hard problem. The solver

even exceeds the long time limit of one hour without reaching the optimal solution

and the computational time for the large problems seems to be much longer than this

limit. Contrarily, while the computational time of our SA do not rise so rapidly by the

increase in the problem size and even for the largest instance it is only a few minutes,

its performance to obtain solutions near optimality improves. The great advantage of

the SA over the exact solver is a much shorter CPU time. The comparison between

the performance of GAMS/BARRON and our proposed SA in terms of objective value

and computational time are depicted by Fig. 4 and Fig. 5, respectively.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 162 -

20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

7000

Problem Size |V|

O
bj

ec
tiv

e
V

al
ue

GAMS/BARRON
SA

Fig. 4: Objective values of SA vs. GAMS/BARRON

20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Problem Size |V|

C
P

U
 T

im
e

GAMS/BARRON
SA

Fig. 5: CPU times of SA vs. GAMS/BARON

6 Conclusion

This paper focused on the integrated BAP and QCAP called BAQCAP by presentation

of a mixed-inter zero-one mathematical formulation containing the elements of both

problems. Due to the fact that the resulting problem is a NP-hard one and requires a

very long computational time and effort by classical and exact methods to be solved, we

proposed an efficient SA algorithm to cope with this problem in large scale. The defined

encoding scheme and operators of our heuristic approach are based on specifications

of the problem. We generated test instances of small to large sizes according to real

situation and all the instances are solved by GAMS/BARRON solver and our proposed

SA. The comparison of the results of two approaches verifies the fact that our proposed

SA algorithm is capable of obtaining solutions of excellent qualities in reasonable time.

Since parameters of BAQCAP are changeable as time passes, more investigation

should be done in stochastic version of this problem. Furthermore, considering the

interrelation between different scheduling problems in container terminals, integrations

of other problems in the model could be followed as a future direction. By the way, the

performance of other heuristic optimisation methods can be evaluated.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 163 -

References

1. UNCTAD, 2009. review of maritime transport, united nations conference on trade and
development. http://www.unctad.org.

2. UNCTAD, 2011. review of maritime transport, united nations conference on trade and
development. http://www.unctad.org.

3. Christian Bierwirth and Frank Meisel. A survey of berth allocation and quay crane
scheduling problems in container terminals. European Journal of Operational Research,
202(3):615–627, May 2010.

4. Katja Buhrkal, Sara Zuglian, Stefan Ropke, Jesper Larsen, and Richard Lusby. Models
for the discrete berth allocation problem: A computational comparison. Transportation
Research Part E: Logistics and Transportation Review, 47(4):461–473, July 2011.

5. Mohammad Hamdy Elwany, Islam Ali, and Yasmine Abouelseoud. A heuristics-based
solution to the continuous berth allocation and crane assignment problem. Alexandria
Engineering Journal, 52(4):671–677, December 2013.

6. Qing-Mi Hu, Zhi-Hua Hu, and Yuquan Du. Berth and quay-crane allocation problem
considering fuel consumption and emissions from vessels. Computers & Industrial Engi-
neering, 70:1–10, April 2014.

7. Jeffery Karafa, Mihalis M. Golias, Stephanie Ivey, Georgios K. D. Saharidis, and Nikolaos
Leonardos. The berth allocation problem with stochastic vessel handling times. The
International Journal of Advanced Manufacturing Technology, 65(1-4):473–484, May 2012.

8. Kap Hwan Kim and Young-Man Park. A crane scheduling method for port container
terminals. European Journal of Operational Research, 156(3):752–768, August 2004.

9. S Kirkpatrick. Optimization by simulated annealing: Quantitative studies. Journal of
statistical physics, 34:975–986, 1984.

10. Pasquale Legato, Rina Mary Mazza, and Daniel Gull̀ı. Integrating tactical and opera-
tional berth allocation decisions via SimulationOptimization. Computers & Industrial
Engineering, 78:84–94, December 2014.

11. Hassan Rashidi and Edward P.K. Tsang. Novel constraints satisfaction models for opti-
mization problems in container terminals. Applied Mathematical Modelling, 37(6):3601–
3634, March 2013.

12. Mario Rodriguez-Molins, Miguel a. Salido, and Federico Barber. A GRASP-based meta-
heuristic for the Berth Allocation Problem and the Quay Crane Assignment Problem by
managing vessel cargo holds. Applied Intelligence, 40(2):273–290, August 2013.

13. Robert Stahlbock and Stefan Voß. Operations research at container terminals : a literature
update. OR Spectrum, pages 1–52, 2008.

14. Dirk Steenken, Stefan Voß, and Robert Stahlbock. Container terminal operation and
operations research a classification and literature review. OR Spectrum, pages 3–49,
2004.

15. R. Tavakkoli-Moghaddam, a. Makui, S. Salahi, M. Bazzazi, and F. Taheri. An efficient
algorithm for solving a new mathematical model for a quay crane scheduling problem in
container ports. Computers & Industrial Engineering, 56(1):241–248, February 2009.

16. Ching-Jung Ting, Kun-Chih Wu, and Hao Chou. Particle swarm optimization algorithm
for the berth allocation problem. Expert Systems with Applications, 41(4):1543–1550,
March 2014.

17. Yavuz B. Türkoullar, Z. Caner Takn, Necati Aras, and . Kuban Altnel. Optimal berth
allocation and time-invariant quay crane assignment in container terminals. European
Journal of Operational Research, 235(1):88–101, May 2014.

18. Dongsheng Xu, Chung-Lun Li, and Joseph Y.-T. Leung. Berth allocation with time-
dependent physical limitations on vessels. European Journal of Operational Research,
216(1):47–56, January 2012.

19. Lu Zhen and Dao-Fang Chang. A bi-objective model for robust berth allocation scheduling.
Computers & Industrial Engineering, 63(1):262–273, August 2012.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 164 -

MISTA 2015

A construtive heuristic to reduce costs on an integrated
production-distribution environment

Roberto Fernandes Tavares-Neto · Marina

Andreotti Ogawa

Abstract The integration between production and distribution functions is a impor-

tant topic for both academics and practitioners. Relevant practical results have been

achieved in a wide-range of industries, such as newspapers, food catering and chemical

industries. This paper approaches a production system composed by a single machine

that produces setup-dependent jobs that are delivered by a single vehicle with multiple

routes. This problem setting combines the most simple element of a classical scheduling

problem - a single machine - and the most simple description of a multi-tour vehicle

routing problem - with a single capacitated vehicle. The goal is to minimize the sum

of total traveling time and the total time that the orders wait to be shipped. This

objective is a very relevant one, specially when one deals with perishable goods. A new

constructive algorithm, named NEH-TO is proposed, and the results are compared

with a non-integrated algorithm. Our experiments shown that the NEH-TO algorithm

could achieve better results than the decoupled algorithm.

1 Introduction

The trade-off between setup times, inventory sizes and responsiveness of a production

system is a widely accepted concept by both the academy and the industry. E.g., Pyke

and Cohen (1990) and Pyke and Cohen (1994) relate the conflict between marketing

and production personnel: the first requires a high-variety inventory of finished goods.

The second, aims to minimize the production setup costs (to run, as stated by the

authors, a ”smooth production”) - that could be optimality achieve by just producing

one type of product. A middle term solution relies on increase the inventory size and

diversity and thus solve both problems by increasing the holding costs. Actually, the

study presented by Pyke and Cohen (1994) indicates that, in their view, the integration

between production and distribution can be an ally to minimize the costs associated to

Roberto Tavares-Neto
Federal University of Sao Carlos
E-mail: tavares@dep.ufscar.br

Marina Andreotti Ogawa
Federal University of Sao Carlos
E-mail: marina.a.ogawa@gmail.com

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 165 -

this trade-off when the problem can be modeled as an extension of the lot-size problem.

More extensions of the lot-size problems considering distribution issues can be found

in the literatures (e.g., Seyedhosseini and Ghoreyshi (2014) and Bard and Nananukul

(2009)).

When dealing with integration issues involving scheduling and distribution, some

research can be found in the recent literature. E.g., Chen et al (2009) uses a nonlinear

model to maximize the expected profit of the supplier of perishable food products; Chen

and Vairaktarakis (2005), also motivated by the food industry, approaches 8 different

problems aiming to improve both customer service level and distribution cost. Beyond

the food industry, one can find relevance in integrate production and distribution of

different products, such as newspaper (e.g. Hurter and Buer (1996)), chemical products

(e.g. Chen and Vairaktarakis (2005)) among others. All those industries has something

in common: the lifespan of the produced goals is very limited (e.g. the time between the

beginning of the newspaper production and the last delivery is measured in few hours).

Considering that, one can infer that is interesting to a wide group of organizations that

the quality of the delivered products are related to both the delivery time and the time

that the production orders waits to be shipped.

However, there’s a lack of resources on the literature that deal explicitly with the

scheduling issues on integrated planning of production-distribution (Amorim et al,

2013). Some similarities between the present research could be found: e.g. Armstrong

et al (2008) deal with a delivery system composed by a single vehicle, but without

enabling multiple tours; Amorim et al (2013) consider a set of M parallel lines that

produce multiple products to multiple customers, and deliveries it by a limited fleet

without considering multiple routes. In our literature review, there is no reference

of an approach to an integrated production-distribution problem considering a single

machine scheduling problem integrated with a multi-tour vehicle routing problem.

On this paper, a scheduling-distribution integrated problem is approached. The

distribution problem is represented by a capacitated single vehicle that deliveries orders

to clients. A single order belongs to a single client. Multiple routes are allowed, but

only one delivery is possible for each client. The production stage is composed by a

single machine, and the setup times are sequence-dependent. All the goals produced

are stored into an temporary inventory of finished goods waiting to transport. The

goal is to minimize two costs, well-known by the lot-sizing literature: the holding costs

and the distribution costs. Extending the α/β/γ notation proposed by Graham et al

(1979), we indicate this problem as 1 + 1/sij , ψ/I + D: 1 + 1 states for one machine

and one vehicle; sij represents the sequence-dependent setup times; ψ represents the

vehicle capacity; I + D represents the inventory and distribution costs. To solve this

problem, this paper proposes 7 different variations of 2 heuristics: the first one (named

Decoupled heuristic) initially solves the distribution section of the problem, and then

schedule the production order; the second one (the NEH-TO heuristic) deals with both

the scheduling and the distribution decisions together.

This paper is presented as follows: section 2 formally defines the problem; section

4 presents the algorithm; results are presented in section 5; final remarks are presented

in section 6.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 166 -

2 Problem Definition

As mentioned before, this paper deals with two correlated decisions: the first one is

regarding a single machine that processes a set of N orders. Each order identified by

indexes i or j is defined by a process time ρi, a setup time κij and a size σi. The second

decision is related to the distribution part of the problem, performed by a single vehicle

of capacity ψ. The number of the routes executed by the vehicle is given by K, and

each route is referenced by k. Each order is delivered to a single client, represented by

a node in a graph where the arc lengths are given by an array δij . The completion time

of a job i is represented by Ci. Route k departs at a moment given by Rk. The costs

are given by WTi = max{0, Ci − Rk} (waiting cost of order i) and by the sum of the

lengths of the arcs used by the routes. The solution is given by two sets: a set Sπ that

represents the production sequence and a set Vπ that represents the delivery sequence.

An example of a production-distribution programming is presented in Figure 1.

In this adapted version of a Gantt chart, 7 orders are produce in a sequence J1 →
J2 → J3 → J4 → ...→ J7, as presented in the P line. The D line shows three routes:

J1 → J2 → J3, J4 → J5 and J6 → J7. In this chart, Wn indicates the waiting time of

order n and Dk indicates the duration of route k.

Fig. 1: An adapted Gantt chart presenting both scheduling distribution sequences

A closer examination of the scenario presented in Figure 1 allows on to draw some

directives to solve this problem:

1. Let’s say a route k leaves the depot at time t. There should be an order

j delivered by k whose production finished at t: if the order finishes before

t, a waiting time related to order j will be included in the fitness function.

2. If exists, any idle time of the production facility will occur after the

vehicle starts the previous route: since our fitness function requires to minimize

the waiting cost, one must backward schedule all the jobs starting by the last job

delivered by the next route.

3. If the setup-times are negligible, the procedure of the production can

be obtained solving problems well-known by the literature: if there is no

dependent setup-times, there will be no advantage to produce an order from route

k+ 1 before route k leaves (since it will increase the waiting time). Moreover, since

part of the goal is to minimize waiting times, the jobs must be ordered by the well-

known Longest Processing Time (LPT) dispatch rule. So, to solve this special case of

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 167 -

the problem, one must to: (i) solve the related capacitaded vehicle routing problem;

(ii) divide the orders into groups according the route that each one is allocated;

(iii) to order the contents of each group according the LPT rule; (iv) backward

schedule each component of each group in the production site, granting the last job

to complete the processing time on the departure time of the corresponding route.

The following sections present two constructive heuristics to solve this problem:

Section 3 shows a 2-phase algorithm that first route and then schedule the orders;

Section 4 presents an integrated insertion algorithm.

3 A decoupled approach to the 1 + 1/sij , ψ/I +D problem

One possible approach to a production-distribution problem is to solve it in stages.

Thus, the algorithm proposed in this section first generate the routes and then the op-

timal schedule of the jobs within. The pseudo-code of this algorithm, named Decoupled,

is presented in Algorithm 1. This algorithm first generates the routes using a classical

insertion procedure. On a second stage, each set of orders delivered by each route are

sequenced by an insertion algorithm to maximize
∑
Ci.

Algorithm 1: The pseudo-code for the proposed algorithm

Using a standard insertion algorithm, group the orders into k routes;

foreach Set of jobs Skπ of each route k do
Generate a partial scheduling that maximize

∑
i∈Skπ

Ci. Disconsider the first setup

cost of the subsequence.;

Schedule backwards each subsequence taking by reference the start time of the
respective route;
return The routes and the scheduling subsequences

Although this algorithm is very simple, the benefits of the integration between

production and distribution are unexplored. A different approach, that investigates

the benefits of the integration between those two decisions, is presented in Section 4.

4 A construtive heuristic for the integrated problem 1 + 1/sij , ψ/I +D

As expected, preliminary tests of the previous heuristic indicated that this class of

problem claims for an integrated approach. Thus, this section presents a constructive

heuristic that uses an integrated approach to the problem.

This approach, named NEH-TO, is presented in Algorithm 2. As the NEH algo-

rithm, the NEH-TO is composed by an ordering phase and a insert-based construction

phase. Extending the flowshop insertion performed by NEH, NEH-TO inserts a job in

all possible positions of the schedule sequence and applies a similar insertion algorithm

into all possible positions of the set of routes.

The next section presents the analysis of both algorithms.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 168 -

Algorithm 2: The pseudo-code for the proposed NEH-TO algorithm

J ← set of jobs ordered by some criteria;
Sπ = S∗π = Vπ = V ∗π = {0};
nRoutes = 0 foreach j ∈ J do

for ps = 0...|Sπ | do
S′π = Sπ ;
Insert j at S′π in position ps, shifting the jobs on the set if necessary;
Fitness∗ =∞;
foreach existing route r do

foreach pv ←all positions of r do
Insert j at position pv of route r, shifting the jobs on the set if
necessary;
Update the values of the best fitness Fitness∗ and the best sequences
S∗π , V ∗π .

Create a new route with only the job j and insert it as last route, between each
existing routes and as first route. If required, update the best values found so
far. Sπ = S∗π Vπ = V ∗π

return S∗π , V
∗
π

5 Results and analysis

5.1 Generation of instances

Since there is no publicly available benchmarks available to this problem, on this paper

a set of random-generated instances were created. The process of generate an instance

file is described as follows: the values of ρi, σi and ψ were generated according uniform

distributions given in table 1. The number of jobs is given by n. The orders are then

displaced into a θs×θs space, and the euclidean distances between them are used to find

the values of κij . A similar procedure using a space θd×θd is used to calculate δij . The

distances between the point of origin and the remain nodes are multiplied by θg. Each

combination of the values of n = {5, 10, 20, 40, 80}, θs = {10, 20, 30}, θd = {10, 20, 30}
and thetag = {1, 10, 20, 30} is used to create an instance. This generates a total of

180 problem categories. Each category contains 50 files, summarizing 9,000 different

problem instances.

Table 1: Values used to generate the problem instances

Parameter Range
ρi [1; 100]
σi [1; 10]
ψ [max(σi); 5 ·max(σi)]

5.2 Results

Both algorithms proposed in sections 3 and 4 were implemented in C++, compiled

on a GCC 4.8.1 and run on a Linux Mint 16 on a i7 PC with 16GB of RAM. For

each one of the problem instances, the 7 ordering procedures were applied on each

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 169 -

one of the 2 algorithms. This leads to 14 different runs. Each instance i received a

value of gap = (fitness(i) − minj{fitness(j)}/minj{fitness(j)}). Figures 2 and 3

presents the values of gap found according each ordering procedure. When analyzing

both graphs, one can easily note that the results of NEH-TO are significantly better

than the ones from the Decoupled approach. Tables 2 and 3 presents the average values

of the gaps of each algorithm.
F

IF
O

L
P

T

N
N

D
IS

T

N
N

S
E

T
U

P

S
IZ

E

S
IZ

E
D

E
C

S
P

T

0

10

20

30

40

Analysis of Decoupled Algorithm

G
a
p
 f
o
u
n
d

Fig. 2

F
IF

O

L
P

T

N
N

D
IS

T

N
N

S
E

T
U

P

S
IZ

E

S
IZ

E
D

E
C

S
P

T

0

10

20

30

40

Analysis of Algorithm NEH−TO

G
a
p
 f
o
u
n
d

Fig. 3

By focusing the analysis on the NEH-TO algorithm, one can realize that two or-

dering sequences were be able to obtain better results: FIFO1 and NNSETUP. Those

1 since the instances are generated randomly, this is essentially a random rule

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 170 -

Table 2: Average gap found by Decoupled algorithm

Size FIFO SPT LPT Size SizeDec NNSETUP NNDIST
N=5 0.57 0.55 0.59 0.51 0.65 0.55 0.52
N=10 1.02 1.00 1.10 1.02 1.06 0.93 0.92
N=20 1.63 1.59 1.67 1.74 1.67 1.39 1.46
N=40 2.58 2.55 2.63 2.73 2.69 2.16 2.36
N=80 4.18 4.16 4.21 4.24 4.34 3.47 3.89

Table 3: Average gap found by NEH-TO algorithm

Size FIFO SPT LPT Size SizeDec NNSETUP NNDIST
N=5 0.09 0.16 0.16 0.14 0.20 0.14 0.19
N=10 0.28 0.30 0.33 0.32 0.36 0.24 0.37
N=20 0.45 0.38 0.42 0.45 0.55 0.28 0.53
N=40 0.46 0.56 0.58 0.47 0.93 0.35 0.72
N=80 0.26 0.86 0.90 0.61 1.57 0.57 1.03

results are shown in more detail on figures 4 and 5. Those figures show that the NEH-

TO/FIFO algorithm shows worst results on the 20 and 40 instance sets. On the other

hand, NEH-TO/NNSETUP shows a linear tendency on the increase of the value of the

gap. This tendency is a expected behavior of a constructive heuristic.

5

1
0

2
0

4
0

8
0

0

1

2

3

4

Analysis of gap of NEH−TO / FIFO algorithm

G
a
p
 f
o
u
n
d

Fig. 4

Finally, the computational times required by each algorithm must be presented to

verify the applicability of them. As presented in 4, although the Decoupled algorithm

outperform the NEH-TO algorithm, the worst results found of NEH-TO is 2.51 seconds

for 80 job instances. On our point of view, it does not disencourage the application of

NEH-TO, specially observing the benefits of the integrated approach.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 171 -

5

1
0

2
0

4
0

8
0

0

1

2

3

4

Analysis of gap of NEH−TO / NNSETUP algorithm
G

a
p
 f
o
u
n
d

Fig. 5

Table 4: Maximum computational times required to run a single instance of each size

(s)

Size Decoupled Algorithm NEH-TO
N=5 < 0.01 < 0.01
N=10 < 0.01 < 0.01
N=20 < 0.01 < 0.01
N=40 < 0.01 0.14
N=80 < 0.01 2.51

6 Final remarks

This paper presented an algorithm named NEH-TO that, given a production facility

and a distribution system composed by a single machine and a single vehicle with

multiple routes, aims to minimize the both inventory and distribution costs. To validate

the integrated algorithm, a 2-stage algorithm was developed. The 2-stage algorithm first

generate the routes and then the production sequence. The NEH-TO algorithm shows

significantly better results, indicating the importance of development of methods that

deal with those issues in a integrated manner.

When analyzing the NEH-TO algorithm, it was shown that two ordering methods

could achieve better values than the remaining ones: the FIFO - that, due the procedure

used to generate the instances, basically states to get the jobs using a random order -

and NNSETUP - indicating that the setup times may be an important component of

future algorithms that approach this problem.

Since this problem is new on the literature, one can easily enumerate some fu-

ture topics for research. At first, one can analyze the ordering function, evolving the

NNSETUP into a more suitable procedure. Another possibility is to aim research ef-

forts into optimization of the insertion phase, avoiding some moves that could be

proven uninteresting. Moreover, since the computational times of the NEH-TO are

not prohibitive, we believe that this constructive algorithm may be used as future

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 172 -

basis for the development of improved methods, including local search strategies and

meta-heuristics.

Acknowledgements The authors are grateful to FAPESP (process number 2013/21300-2)
and CNPq (process number 475214/2013-7) for the financial support to this work.

References

Amorim P, Belo-Filho M, Toledo F, Almeder C, Almada-Lobo B (2013) Lot sizing

versus batching in the production and distribution planning of perishable goods.

International Journal of Production Economics 146(1):208 – 218

Armstrong R, Gao S, Lei L (2008) A zero-inventory production and distribution prob-

lem with a fixed customer sequence. Annals of Operations Research 159(1):395–414

Bard JF, Nananukul N (2009) The integrated productioninventorydistributionrouting

problem. Journal of Scheduling

Chen HK, Hsueh CF, Chang MS (2009) Production scheduling and vehicle routing

with time windows for perishable food products. Computers & Operations Research

36(7):2311 – 2319

Chen ZL, Vairaktarakis GL (2005) Integrated scheduling of production and distribution

operations. Management Science 51(4):pp. 614–628

Graham R, Lawler E, Lenstra J, AHG RK (1979) Optimization and approximation in

deterministic machine scheduling: a survey. Annals of Discrete Mathematics 5:287326

Hurter AP, Buer MGV (1996) The newspaper productiondistribution problem. Journal

of Business Logistics 17(1):85–107

Pyke DF, Cohen MA (1990) Effects of flexibility through set-up time reduction and

expediting on integrated production and distribution systems. IEEE Transactions

on Robotics and Automation

Pyke DF, Cohen MA (1994) Multiproduct integrated production-distribution systems.

European Journal of Operational Research

Seyedhosseini SM, Ghoreyshi SM (2014) An integrated model for production and dis-

tribution planning of perishable products with inventory and routing considerations.

Mathematical Problems in Engineering

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 173 -

MISTA 2015

Integrated production and outbound distribution
scheduling problem with setup times and delivery time
windows

Liang-Liang Fu · Mohamed Ali Aloulou ·
Chefi Triki

Abstract In this paper, we study a production and outbound distribution schedul-

ing problem in a company working in the metal packaging industry. In this problem,

a set of jobs has to be processed on unrelated parallel machines with job splitting

and sequence-dependent setup time (cost). Then the finished products are delivered

in batches to several customers with heterogeneous vehicles subject to delivery time

windows. The objective of production is to minimize the total setup cost and the objec-

tive of distribution is to minimize the transportation cost. We propose mathematical

models for decentralized scheduling problems and integrated scheduling problem. We

develop a two-phase iterative heuristic to solve the integrated scheduling problem. We

evaluate the benefit of coordination through numerical experiments.

Keywords IPODS, setup times, delivery time windows, two-phase iterative heuristic.

1 Introduction

In recent decades, globalization expands supply chain over national boundaries and

brings a fierce competition market. In order to satisfy customers’ heightened expecta-

tions, the enterprises increasingly find that they must rely on effective supply chains.

A non-efficient supply chain may carry a high cost. For example, according to Euro-

stat data 2012 (Palmer et al. 2012), about 24% of all road freight kilometers driven in

Europe are empty vehicles and the average vehicle is loaded to 56% of its capacity in

terms of weight.

Liang-Liang Fu
PSL, Université Paris-Dauphine, 75775 Paris Cedex 16, France
CNRS, LAMSADE UMR 7243
E-mail: fuliangliang1984@hotmail.com

Mohamed Ali Aloulou
PSL, Université Paris-Dauphine, 75775 Paris Cedex 16, France
CNRS, LAMSADE UMR 7243
E-mail: aloulou@lamsade.dauphine.fr

Chefi Triki
Dept. of Mechanical and Industrial Engineering, Sultan Qaboos University, Muscat, Oman
Dept. of Engineering for Innovation, University of Salento, Lecce, Italy
E-mail: chefi.triki@unisalento.it

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 174 -

As production and distribution are the main business processes in supply chain,

the coordination of production and distribution issue is crucial in supply chain man-

agement. The integrated production and outbound distribution scheduling (IPODS)

issue has been investigated from 1980. This issue investigates the integration of pro-

duction scheduling decision-making and outbound distribution decision-making at the

operational level. Chen (2010) provided an extensive review of the literature on IPODS

problems. In this paper, we study an IPODS problem in a company working in the

metal packaging industry. In this problem, we consider the unrelated parallel machines

production context with job splitting and job sequence-dependent setup time (cost)

and the vehicle routing transportation context with time windows and heterogeneous

vehicles. The manufacturer decides the production and distribution schedules and out-

sources the transportation to transporters.

While the vehicle routing problem (VRP) has been well studied in the literature,

a handful of articles investigated the IPODS problem with routing delivery. In prac-

tice, the majority of deliveries involve multiple customers and adopt the groupage

transport to save transportation costs. Hence the IPODS problem involving vehicle

routing deserves a further research. In the literature, Chen (2010) reviewed the papers

which have studied IPODS problems involving vehicle routing. These problems are

intractable in many cases because they contain the strongly NP-hard traveling sales-

man problem (TSP). Most of these papers (Chen and Vairaktarakis 2005, Li et al.

2005, Chen 2010)considered single machine and equal size jobs. Few papers considered

identical parallel machines (Chen and Vairaktarakis 2005, Ullrich 2013).

In practice, the jobs are required by the customers to be delivered in fixed deliv-

ery time windows. The IPODS problems involving vehicle routing with time windows

have been studied in the last five years. Chen (2009) investigated an IPODS problem

with routing delivery and time windows for perishable food products. In this problem,

the products of each delivery batch are produced continuously on a single machine

and are delivered to customers within soft time windows. The demands are assumed

stochastic and the deterioration of products throughout their lifetime is considered.

The objective is to maximize the expected total profit of the supplier. He proposed an

algorithm composed of the constrained Nelder-Mead method (Nelder and Mead 1965)

and a heuristic for the vehicle routing problem with time windows. Ullrich (2013) inves-

tigated the problem where a set of jobs of general size is processed on identical parallel

machines subject to the machine release time, and delivered to customers within the

time windows by a fleet of heterogeneous vehicles. The objective is to minimize the

sum of tardiness. They provided a genetic algorithm for the integrated problem and

evaluated its performance by comparing with two classical decomposition approaches.

Low et al. (2013) provided an integer nonlinear programming model and two adaptive

genetic algorithms for the problem where retailers’ jobs are processed in a distribution

center and delivered to customers by a fleet of homogeneous vehicles within the time

windows. The objective is to minimize the time required to complete producing the

product, delivering it to retailers and returning to the distribution center. Low et al.

(2014) provided an integer nonlinear programming model and two adaptive genetic

algorithms for the same problem with the consideration of heterogeneous vehicles and

soft time windows. The objective is to minimize the total cost including the trans-

portation cost, the penalty cost of earliness and the penalty cost of tardiness.

This paper deals with a new IPODS problem in a real industrial context. The

most related paper is that of Ullrich (2013). Different from his paper, we consider the

unrelated parallel machines with job splitting and job sequence-dependent setup time

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 175 -

(cost) and the different objective functions (total setup cost and transportation cost). In

our paper, we first investigate the decentralized scheduling problems, i.e. the production

scheduling problem and the distribution scheduling problem, and propose two mixed

integer linear programming (MILP) models for these two NP-hard problems. Then we

develop a non-linear programming model and a two-phase iterative heuristic to solve

the integrated scheduling problem. Finally, we evaluate the benefit of coordination

through numerical experiments.

This paper is organized as follows. In section 2, we formally describe the problems

and introduce notations and terminology. Section 3 is devoted to the decentralized

scheduling problems, and section 4 to the integrated scheduling problem. In section

5, we evaluate the benefit of coordination through numerical experiments. Section 6

contains some conclusions and propositions for future research.

2 Problems and Notations

A set of jobs N = {1, . . . , n} has to be processed on a set of unrelated parallel machines

M = {1, . . . ,m}. Job j ∈ N requires the processing of qj identical items on machines.

Each job can be processed on any machine. We consider job splitting in production, in

that each job can be split into parts and processed independently on several machines

at a same time. There is no preemption of jobs on each machine. Let pej denote the

processing time of unit item of job j ∈ N on machine e ∈ M . Let Cj denote the

completion time of job j ∈ N . Let %j denote the delivery destination of job j ∈ N .

Two different jobs may have the same delivery destination. Moreover machine e ∈ M
has a release time γe.

On one machine, a sequence-dependent setup time and a setup cost occur when

production changes from one job to another. Let s0j denote the setup time of job j ∈ N
which is processed as the first job on one machine. Let sj1j2 denote the setup time when

production changes from job j1 to job j2 and sj1j2 = 0 if j1 = j2, j1, j2 ∈ N . The setup

times respect the triangle rule, i.e. sj1j2 + sj2j3 ≥ sj1j3 , j1, j2, j3 ∈ N . The setup cost

is proportional to the setup time. Let ρ be the cost for unit setup-time. Hence ρsj1j2
is the setup cost when production changes from job j1 ∈ N to job j2 ∈ N .

After completion of job j ∈ N , job j is delivered to its destination %j at its delivery

time window [aj , bj]. If one delivery vehicle arrives before the delivery time window,

it should wait until time aj to unload. Hence the delivery time is also the beginning

time of unloading. We consider batch delivery, i.e. several jobs can be delivered in one

shipment. There is a set of vehicles denoted by K, consisting of several types of vehicles.

For each type of vehicles there are a sufficient number of vehicles which is equal to n.

Any job can be delivered by any type of vehicle. Vehicle k ∈ K has a capacity Qk,

which is measured by the number of pallets. Let φj be the number of pallets to deliver

job j ∈ N . One pallet cannot contain more than one job.

Let τ0j denote the transportation time from the plant to the destination of job

j. τ0j includes the loading time. Let τj1j2 denote the transportation time from the

destination of job j1 ∈ N to the destination of job j2 ∈ N . Let T denote the constant

unloading time of a job at its destination. τj1j2 = 0 if %j1 = %j2 . The transportation

times respect the triangle rule, i.e. τj1j2 + τj2j3 ≥ τj1j3 , j1, j2, j3 ∈ N .

There are two types of transportation: direct delivery from the plant to one desti-

nation; routing delivery from the plant to several destinations in one shipment. There is

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 176 -

a limit of duration of any shipment, denoted by L. This value represents the maximum

duration of utilization of the resources (vehicle and driver) for any shipment.

In a direct delivery, the transportation cost from the plant to the destination of job

j ∈ N with vehicle k ∈ K, is denoted by hk0j .

In a routing delivery, the transportation cost is equal to the most expensive direct

delivery cost of one job among the jobs of this shipment plus the total drop costs. A

drop cost occurs when we deliver more than one destination in one shipment. This is

the current transportation costing system adopted by our considered company and the

collaborating transporters. Let ϕk denote the drop cost per destination with vehicle k ∈
K. For example, vehicle k delivers three jobs j1, j2, j3 to three different destinations,

such that hk0j1 < hk0j2 < hk0j3 . The transportation cost of this delivery is equal to the

direct delivery cost of job j3 plus two drop costs for jobs j1 and j2, i.e. hk0j3 + 2ϕk.

Clearly, the direct delivery is a special case of the routing delivery.

Let σ denote a production schedule that specifies how to assign each job on machines

and when each job is processed on its assigned machine(s). Let θ denote a delivery

schedule that specifies which vehicles are used, which jobs are in each batch, when

each batch departs, and what is the traveling route for each batch. Let (σ, θ) denote

an integrated schedule that specifies a production schedule and a delivery schedule.

The objective of production is to minimize the total setup cost, denoted by SC.

The objective of distribution is to minimize the transportation cost, denoted by TC,

which is the sum of transportation costs of all batches.

We consider two scenarios: (1) the production schedule and delivery schedule are

determined in a consecutive order (i.e. first production, then delivery); (2) the produc-

tion schedule and delivery schedule are decided concurrently. The scheduling problems

are formally defined as follows.

1. Decentralized scheduling problems.

(a) Production scheduling problem. The problem is to determine a production

schedule minimizing SC subject to the production deadlines dj = bj−τ0j which

guarantee that the jobs can be delivered in their delivery time window. We

follow the three-field classification α|β|γ introduced by Graham et al. (1979).

This is a production scheduling problem minimizing the total setup cost (SC)

with unrelated parallel machines (R), machine release times (γe), job splitting

(split), production deadlines (dj) and sequence-dependent setup times (sij),

denoted by R, γe|split, dj , sij |SC.

(b) Distribution scheduling problem. The problem is to determine a delivery

schedule minimizing TC subject to the job release dates imposed by production

schedule and delivery time windows. The production completion time of each

job imposes a job release date for delivery. The problem is a heterogeneous

vehicle routing problem with time windows and release dates (HVRPTWRD).

2. Integrated scheduling problem. The problem is to determine an inte-

grated schedule minimizing SC + TC subject to machine availability con-

straints and delivery time windows. Using the five-field notation proposed

by Chen (2010), the integrated scheduling problem can be denoted by

R, γe, split|[aj , bj]|V (∞, Qk), routing|u|SC + TC, where R means the unrelated

parallel machines, split means the job splitting in production, [aj , bj] means the

delivery time windows, V (∞, Qk) and routing mean the routing delivery with suf-

ficient heterogeneous vehicles, and u ≤ n represents the number of customers.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 177 -

Example: To illustrate the decentralized and integrated scheduling problems, we con-

sider the following example.

– Number of jobs n = 2, number of machines m = 2.

– Quantity of items of job j ∈ N : qj = 25.

– Processing time of unit item of job j ∈ N on machines: p1j = 1 and p2j = 2.

– Setup times: s01 = 5, s02 = 4, s12 = s21 = 3.

– Cost of unit setup time: ρ = 100.

– Machines release times are zero.

– There are 2 identical vehicles with capacity of 20 pallets.

– Number of pallets to deliver job j ∈ N : φj = 10.

– Unloading time T = 1, and limit of duration of shipment L = 30.

– Transportation times: τ01 = 10, τ02 = 15, τ12 = τ21 = 12.

– Delivery time windows: [a1, b1] = [50, 60] and [a2, b2] = [60, 70].

– Direct transportation costs with vehicle k ∈ K: hk01 = 750 and hk02 = 1000.

– Drop costs of vehicle k ∈ K: ψk = 100.

1. Decentralized scheduling problems. Figure 1 illustrates an optimal production

schedule for the production scheduling problem in the decentralized model. With

C1 = 30 and C2 = 54, two jobs cannot be delivered in one shipment because of the

deadline of job 1. Hence we have SC = 100∗(5+4) = 900, TC = 750+1000 = 1750,

and the total cost is equal to SC + TC = 2650.

Fig. 1 Optimal production schedule in the decentralized model

2. Integrated scheduling problem. Figure 2 illustrates a production schedule for

the integrated scheduling problem. In this schedule, job 2 is split: 10 items are

processed on machine 1 and 15 items are processed on machine 2. The setup cost

increases to SC = 100 ∗ (5 + 4 + 3) = 1200. With C1 = 30 and C2 = 43, the

two jobs can be delivered in one shipment: the shipment departs at time 43, drops

job 1 at time 53 and reaches the destination of job 2 at time 66. Hence we have

TC = 1000 + 100 = 1100, and the total cost is equal to SC + TC = 2300. The

benefit of coordination is 13.2% with respect to the total cost.

3 Decentralized Scheduling Problems

In the decentralized scenario, the production schedule and delivery schedule are deter-

mined consecutively. We provide a mixed integer linear programming (MILP) model

for each decentralized scheduling problem.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 178 -

Fig. 2 Optimal production schedule in the integrated model

3.1 Production Scheduling Problem

We recall that the single machine scheduling problem 1|sij |Cmax is NP-hard (Bruno

and Downey 1978). Since this single machine scheduling problem is a special case of

our production scheduling problem, the production scheduling problem is also NP-hard.

Recall that the deadline dj of job j ∈ N is equal to bj − τ0j .

We provide a MILP model, which is similar to the model of Zhu and Heady (2000)

proposed for a similar problem without job splitting, without machine release times

and with a different objective function (job earliness and tardiness). We introduce two

fictive jobs 0 and n+ 1. The decision variables are defined as follows.

Xe
ij =

1, if job i is the direct predecessor of job j on machine e, i = 0, . . . , n,

j = 1, . . . , n+ 1, i 6= j, e ∈M
0, otherwise

Y ej = number of items of job j processed on machine e, j ∈ N , e ∈M .

Cj = completion time of job j, j ∈ N .

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 179 -

MILP1:

min ρ

m∑
e=1

n∑
i=0

∑
j∈N,j 6=i

sijX
e
ij (1)

s.t.
∑

i=0,...,n,i6=j
Xe
ij ≤ 1, j = 1, . . . , n+ 1, e ∈M (2)

∑
i=0,...,n,i6=j

Xe
ij −

∑
g=1,...,n+1,g 6=j

Xe
jg = 0, j ∈ N, e ∈M (3)

∑
i=0,...,n,i6=j

Xe
ijqj ≥ Y

e
j , j ∈ N, e ∈M (4)

∑
i=0,...,n,i6=j

Xe
ij ≤ Y

e
j , j ∈ N, e ∈M (5)

m∑
e=1

Y ej = qj , j ∈ N (6)

Cj ≤ dj , j ∈ N (7)

Cj − Ci ≥ pejY
e
j +Xe

ijsij+

(Xe
ij − 1)(pejqj + max{bi, bj}), i, j ∈ N, i 6= j, e ∈M (8)

Cj ≥ Xe
0j(γ

e + s0j) + pejY
e
j , j ∈ N, e ∈M (9)

Xe
ij ∈ {0, 1}, i = 0, . . . , n, j = 1, . . . , n+ 1,

i 6= j, e ∈M (10)

Y ej ∈ N, j ∈ N, e ∈M (11)

The objective function (1) minimizes the total setup cost. Constraints (2) ensure

that one job is processed on each machine once at most. Constraints (3) impose that for

each job j ∈ N , the number of its direct predecessors is equal to the number of its direct

successors on each machine. Constraints (4)-(5) impose the relation between variables

Xe
ij and Y ej : if Y ej > 0, then

∑
i=0,...,n,i6=j X

e
ij > 0, otherwise

∑
i=0,...,n,i6=j X

e
ij = 0.

Constraints (6) ensure that all jobs are processed. Constraints (7) enforce the job

deadline restriction. In constraints (8), if job i precedes job j on machine e, i.e., Xe
ij = 1,

we ensure that the completion time of job j is far enough after that of job i to include

the processing time of processed parts of job j and setup time for job j on machine e.

Otherwise, i.e., Xe
ij = 0, we have Cj−Ci ≥ −max{bi, bj} ≥ pejY

e
j −p

e
jqj−max{bi, bj},

hence constraints (8) are always valid in this case. Constraints (9) enforce the machine

release time restriction. Constraints (10)-(11) give the domain of definition of each

variable.

With the MILP1, we find an optimal production schedule minimizing SC. Because

of constraints (8), there may exist some unnecessary idle times between jobs. Hence,

we remove all idle times in this obtained production schedule and update Cj for j ∈ N .

3.2 Distribution Scheduling Problem

In the distribution scheduling problem, if the delivery destinations are given for one

shipment, the transportation cost of this shipment is fixed. Because of this difference

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 180 -

from the classical vehicle routing problem with time windows (VRPTW), we need to

prove the complexity of the distribution scheduling problem. We consider the following

special case of the distribution scheduling problem:

– each customer has one job only,

– the delivery time window [aj , bj] = [0,∞] for j ∈ N ,

– the production completion time Cj = 0 for j ∈ N ,

– the limit of length of a trip L =∞,

– the vehicles are identical,

– the transportation costs hk0j1 = hk0j2 = hk for j1, j2 ∈ N and k ∈ K.

Let B denote the number of delivery batches. In this case, we have the following

equation for the overall transportation cost TC of a delivery schedule with B batches.

TC = Bhk + (n−B)ϕk (12)

Hence the objective of minimizing TC is equivalent to the objective of minimizing the

number of delivery batches B. This special case is the bin packing problem which is

NP-hard in the strong sense (Garey and Johnson 1979). In the bin packing problem,

objects of different volumes must be packed into a finite number of bins of equal size

in a way that minimizes the number of bins used. With the similar argument, we

observe that several special cases of this problem are NP-hard in the strong sense. So

the distribution scheduling problem is NP-hard in the strong sense.

Then, we provide a multicommodity network flow MILP model similar to that of

Desrochers et al. (1988) proposed for a classical VRPTW.

This problem can be defined on a direct graph G = (V,A), where V = {0, 1, . . . , n+

1}. The vertex j ∈ {1, . . . , n} represents the destination %j of job j. The vertexes 0

and n+ 1 represent the manufacturing plant and one fictive ending point, denoted by

%0 and %n+1 respectively. The arcs represent the paths between two places. Feasible

vehicle routes correspond to paths starting at vertex 0 and ending at vertex n+ 1. We

set service time ψi = T for vertex i ∈ N and ψ0 = ψn+1 = 0 for vertexes 0 and n+ 1.

τij is the travel time from vertex i to vertex j. We set τi,n+1 = 0, for i ∈ {0, . . . , n}.
Each vertex i is associated to a time window [ai, bi]. Moreover we set a0 = mini∈N Ci,

b0 = maxi∈N{bi− τoi}, an+1 = mini∈N{ai +ψi} and bn+1 = maxi∈N{bi +ψi}. Here,

completion time Cj of job j ∈ N is given by the manufacturer. Arc (i, j), for i, j ∈ N
and i 6= j, exists only if

(a) job i can be delivered before job j on respecting their delivery time window, i.e.

ai + ψi + τij ≤ bj ,
(b) the shipment including jobs i and j respects the limit of length of a shipment, i.e.

τ0i + ψi + max{τij , aj − bi − ψi} ≤ L,

(c) the completion time of job j is no later than the latest possible departure date of

the shipment including jobs i and j, i.e. bi − τ0i ≥ Cj .

There exists an arc from vertex 0 to each other vertex, and from each other state to

vertex n + 1. Let δ+(i) = {j : (i, j) ∈ A} and δ−(j) = {i : (i, j) ∈ A}. We define the

decision variables as follows.

xkij =

{
1, if arc (i, j) is used by vehicle k, (i, j) ∈ A, k ∈ K
0, otherwise

wki = starting time of unloading of vehicle k at vertex i, i ∈ V ,k ∈ K.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 181 -

Hk = transportation cost of the trip accomplished by vehicle k, k ∈ K. Remark

that since the number of vehicles of each type is sufficient, we can suppose that each

vehicle is assigned at most to one trip.

MILP2:

min
∑
k∈K

Hk (13)

s.t.
∑
k∈K

∑
j∈δ+(i)

xkij = 1, i ∈ N (14)

∑
j∈δ+(0)

xk0j = 1, k ∈ K (15)

∑
i∈δ−(j)

xkij −
∑

i∈δ+(j)

xkji = 0, k ∈ K, j ∈ N (16)

wkj ≥ w
k
i + xkij(ψi + τij)− (1− xkij)bi, k ∈ K, (i, j) ∈ A (17)

ai ≤ wki ≤ bi, k ∈ K, i ∈ V (18)∑
i∈N

∑
j∈δ+(i)

xkijφi ≤ Q
k, k ∈ K (19)

wk0 ≥ Cj
∑

i∈δ−(j)

xkij , j ∈ N, k ∈ K (20)

wkj − w
k
0 ≤ L+ (1−

∑
i∈δ−(j)

xkij)bj , j ∈ N, k ∈ K (21)

Hk ≥ hk0j
∑

i∈δ−(j)

xkij + ϕk(
∑

(u,v)∈A,%u 6=%v

xkuv − 2) j ∈ N, k ∈ K (22)

xkij ∈ {0, 1}, k ∈ K, (i, j) ∈ A (23)

Hk ≥ 0, k ∈ K (24)

The objective function (13) minimizes the transportation cost. Constraints (14)

ensure that one job is delivered once. Constraints (15) ensure that one vehicle is used

once. Constraints (16) state that the solution satisfy the flow conservation at each ver-

tex. Constraints (17)-(18) ensures that each job is delivered at its destination in the

delivery time windows. Constraints (19)-(20) enforce the vehicle capacity restriction

and the job availability restriction. Constraints (21) enforce the delivery length restric-

tion. Constraints (22) calculate the transportation cost. Constraints (23)- (24) give the

domain of definition of each variable.

4 Integrated Scheduling Problem

The integrated scheduling problem is to minimize SC+TC subject to machine availabil-

ity constraints and delivery time windows. The objective is to optimize the performance

of the global supply chain.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 182 -

In what follows, we propose a nonlinear programming model and a two-phase itera-

tive heuristic to solve the integrated scheduling problem. Since the individual schedul-

ing problems are NP-hard, the integrated scheduling problem is also NP-hard.

4.1 Nonlinear programming model

We combine MILP1 and MILP2 to construct a nonlinear programming model for the

integrated scheduling problem. We ignore the rule (c) of existence of arc in MILP2,

which makes that the existence of arc in MILP2 is independent on solution of MILP1.

Since now Cj and xkij are both decision variables, this model is nonlinear.

NLP6.1:

min ρ

m∑
e=1

n∑
i=0

∑
j∈N,j 6=i

sijX
e
ij +

∑
k∈K

Hk (25)

s.t. (2)− (11)

(14)− (24)

4.2 Two-phase iterative heuristic

Absi et al. (2014) proposed a two-phase iterative heuristic to solve an integrated prob-

lem considering the integration of production planning and vehicle routing decisions.

They considered the production planning instead of the production scheduling, and

the vehicle routing problem such that there are no delivery time windows. We pro-

pose a similar two-phase iterative heuristic (see algorithm 1) to solve our integrated

scheduling problem.

Algorithm 1: Two-phase iterative heuristic

1 Initialize F j
v = 0 and ηj = 1, for j ∈ N and v ∈ Ij ;

2 while ending criterion do
3 Solve the production scheduling problem;
4 Remove all idles times and update Cj for j ∈ N ;
5 Solve the distribution scheduling problem with fixed Cj for j ∈ N ;
6 Update the best solution so far;

7 Update F j
v , for j ∈ N and v ∈ Ij ;

8 Update ηj for j ∈ N ;

In the first phase, we solve a production scheduling problem in which an approxi-

mate of the transportation cost is integrated. We first determine the discrete possible

delivery times in each delivery time windows, like {aj , aj + 1, . . . , bj} for the delivery

time window [aj , bj] and j ∈ N . Let Ij denote a set of indexes of possible delivery

times of job j ∈ N and tjv denote the vth possible delivery time for v ∈ Ij . In order

to evaluate the transportation cost, we introduce F jv to represent an estimation of the

transportation cost of job j if job j is delivered at time tjv, j ∈ N and v ∈ Ij . We intro-

duce a decision variable λjv which is equal to 1 if tjv is chosen, and 0 otherwise. Moreover

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 183 -

we introduce a parameter ηj for j ∈ N to modify the completion time constraints (see

constraints 27 of MILP3). In the obtained production schedule of the first phase, we

remove all idle times on each machine and update Cj for j ∈ N . The anticipation of

completion times offers a better input for the second phase.

In the second phase, we solve the distribution scheduling problem with fixed Cj .

According to the solution of the second phase, we update F jv and ηj for next iteration.

The procedure stops when a fixed number of iterations is reached or the solution is not

improved for a fixed number of iterations.

In the following, we give the detail of the production phase and the distribution

phase.

4.2.1 The production phase

In this phase, we propose a MILP to solve the production scheduling problem in which

an approximate of transportation cost is integrated. The decision variable λjv is equal

to 1 if tjv is chosen for j ∈ N and v ∈ Ij , and 0 otherwise. The other decision variables

are as introduced in MILP1.

MILP3:

min ρ

m∑
e=1

n∑
i=0

∑
j∈N,j 6=i

sijX
e
ij +

n∑
j=1

∑
v∈Ij

F jvλ
j
v (26)

s.t. Cj ≤ ηj(λjvtjv + (1− λjv)bj − τ0j), j ∈ N, v ∈ Ij (27)∑
v∈Ij

λjv = 1, j ∈ N (28)

λjv ∈ {0, 1}, j ∈ N, v ∈ Ij (29)

(2)− (6)

(8)− (11)

The objective function (26) minimizes the sum of the total setup cost and the

approximate transportation cost. Constraints (27) ensure that if λjv = 1, the completion

time Cj ≤ ηj(tjv − τ0j), otherwise Cj ≤ ηj(bj − τ0j). And ηj is a parameter to control

the degree to force the reduction of completion time. Initially, ηj is equal to 1 and is

reduced at the end of each iteration. Constraints (28) ensure that each job is delivered

exactly once.

At the end of the first phase, in the obtained production schedule, we remove all

idle times and update Cj for j ∈ N .

4.2.2 The distribution phase

In this phase, we use MILP2 to solve the HVRPTWRD with fixed Cj for j ∈ N .

According to the solution of the second phase, we update F jv and ηj (see algorithm 2).

In algorithm 2, we update F jv with the consideration of two cases:

1. If job j is visited by vehicle k at time tjv′ where v′ ∈ Ij , replacing delivery time tjv′

by tjv in the trip is allowed if (lines 5-8):

– The transportation times from its direct predecessor to job j, and from job j

to its direct successor are respected.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 184 -

Algorithm 2: Procedure of updating F jv and ηj

1 for j ∈ N do
2 for v ∈ Ij do

3 F j
v =∞;

4 for k ∈ K do

5 if job j is visited by vehicle k at time tj
v′ where v

′ ∈ Ij , and the delivery

time of job j in vehicle k can be replaced by tjv then
6 Bk = set of jobs delivered by vehicle k;

7 H1 = cheapest cost to deliver the jobs of Bk \ {j};
8 F j

v = min{F j
v , H

k −H1};
9 if job j is not visited by vehicle k and can be inserted in the trip of vehicle

k and visited at time tjv then
10 Bk = set of jobs delivered by vehicle k;

11 H2 = cheapest cost to deliver the jobs of Bk ∪ {j};
12 F j

v = min{F j
v , H2 −Hk};

13 for j ∈ N do
14 if 0.8ηj(bj − τ0j) ≥ mine∈M (γe + pejqj) + s0j and job j is delivered by a vehicle of

which the number of delivered pallets is less than or equal to
maxk∈K Qk −mini∈N φi then

15 ηj = 0.8ηj ;

– The new trip does not violate the limit of length of a trip.

If the conditions are satisfied, we update F jv by min{F jv , Hk−H1}, where Hk−H1

represents the transportation cost to deliver job j. Remark that if v = v′, the above

conditions are satisfied.

2. If job j is not visited by vehicle k, the insertion of job j in vehicle k at time tjv is

allowed if (lines 9-12):

– The largest capacity among all vehicles, i.e. maxg∈K Qg, allows.

– There exists two successively visited vertexes which allow the insertion of job

j with delivery time tjv, i.e., the transportations times are respected.

– The new trip does not violate the limit of length of a trip.

If the conditions are satisfied, we update F jv by min{F jv , H2−Hk}, where H2−Hk

represents the transportation cost to deliver job j.

Moreover, we explain how to find the cheapest cost to deliver a set of jobs B (lines

7 and 11). For given B and vehicle k ∈ K, the corresponding transportation cost is

fixed. Hence we choose the cheapest vehicle to deliver this set of jobs.

After the consideration of all vehicles, F jv represents the cheapest transportation

cost to deliver job j at time tjv for j ∈ N and v ∈ Ij with the consideration of the

obtained delivery schedule.

Concerning the parameter ηj for j ∈ N , if ηj is small enough or job j is delivered

by a vehicle in which the size of delivered jobs is close to the largest vehicle capacity,

we do not change ηj , otherwise we reduce ηj by 20%.

In the distribution schedule obtained in the second phase, F jv approximates the

transportation cost if job j is delivered at time tjv, j ∈ N and v ∈ Ij . In next iteration,

for each job j ∈ N , the algorithm may choose another delivery time with smaller

transportation cost. This modification of delivery time of each job can influence the

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 185 -

production completion time of each job in the first phase (see constraints 27 of MILP3).

The objective of the reduction of ηj is to force the algorithm to reduce the production

completion time of job j and increase the opportunity to find a better transportation

cost in the second phase. Finally, we note that there is no guarantee that the heuristic

produces an optimal solution.

5 Computational Results

In this section, we evaluate the feasibility of the two-phase iterative heuristic and the

potential benefit of coordination. We propose an approach of generation of instances

inspired by the company data. We analyze the results for small and medium instances.

The benefit of coordination is measured by comparing the integrated schedule

generated by the heuristic with the decentralized schedules generated by MILP1 and

MILP2. The algorithms are implemented in C++ and Cplex V12.5.1. The experiments

are carried out on a DELL 2.50GHz personal computer with 8GB RAM.

We consider n ∈ {5, 10, 15, 20} and m ∈ {2, 3, 5}. The integers qj and φj , for

j ∈ N , are generated from the uniform distributions [50,200] and [qj/10, qj/5] re-

spectively. The processing times of unit item pej , for j ∈ N and e ∈ M , are

generated from the uniform distribution [0.01, 0.1]. The machines release times

γe, for e ∈ M , are generated from the uniform distribution [0,4]. The inte-

gers sij , for i = 0, . . . , n, j ∈ N , are generated from the uniform distribution

[0.1 min{maxe∈M pei qi,maxe∈M pejqj}, 0.5 min{maxe∈M pei qi,maxe∈M pejqj}]. We set

sij = 0 for i = j. In order to guarantee the triangle property, after generation, if

sij ≤ S/2, where S is the maximum generated setup time, we regenerate another

sij ∈]S/2, S]. The cost per unit setup time ρ is equal to 100.

We suppose that each customer has only one job. The customers are divided into

two groups, N1 = {1, . . . , n/2} and N2 = {n/2+1, . . . , n}. The integers τ0j , for j ∈ N1

are generated from the uniform distribution [15, 19] and for j ∈ N2 from [25, 29]. If

i, j are in the same group, the integers τij are generated from the uniform distribution

[4, 6], otherwise from [15, 19]. We set τij = τji and set τij = 0 if %i = %j . The limit

length of a trip L ∈ {45, 60}. The unloading time T = 1. The integer lower bounds

of time windows aj , for j ∈ N , are generated from the uniform distribution [B/2, B],

where B = maxe∈M γe+maxe∈M
∑
j∈N pejqj/m+L+0.75nS represents an estimated

delivery time if all jobs begin their processing at the latest machine release time, each

job is split in m parts and processed on m machines, and the transportation time of the

trip reaches the limit L. The integer upper bounds of time windows bj , for j ∈ N , are

generated from the uniform distribution [aj + ε− 5, aj + ε], where ε2 = {10, 15}. There

are two types of vehicles and 2n vehicles totally, i.e., K = {1, . . . , 2n}. For k ≤ n and

j ∈ N , Qk = 30, ϕk = 50 and hk0j = 50τoj . For k > n and j ∈ N , Qk = 60, ϕk = 80

and hk0j = 80τoj . 10 instances are generated for each combination of parameters n, m,

L and ε. Totally 480 instances are generated.

We impose 3 minutes as a limit of execution time of a single MILP. We generate

the decentralized schedules in three steps: first apply MILP1 to create a production

schedule, then remove the idle times in the obtained production schedule, and finally

apply MILP2 to create a delivery schedule. We apply the two-phase iterative heuristic to

generate an integrated schedule. Concerning the ending criterion, we set that the total

number of iterations cannot exceed 6 and the number of iterations without improvement

cannot exceed 3.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 186 -

Table 1 Average execution times of heuristic

n 5 10 15 20
Time 3.34 238.28 952.30 929.29

Table 2 Benefit of coordination

Improved Average Benefit Max Benefit
n m = 2 m = 3 m = 5 m = 2 m = 3 m = 5 m = 2 m = 3 m = 5
5 25.00% 20.00% 30.00% 2.83% 2.40% 3.15% 21.43% 29.70% 24.28%
10 32.50% 20.00% 32.50% 1.16% 0.68% 1.00% 14.69% 6.47% 6.13%
15 57.50% 57.50% 67.50% 1.52% 1.41% 1.47% 6.61% 6.51% 5.29%
20 42.50% 77.50% 55.00% 1.09% 2.55% 1.63% 5.72% 7.90% 7.98%

Table 1 and Table 2 illustrate the execution times of our heuristic and the benefit

of coordination. The measures are described as follows.

Time: the average CPU time in seconds to execute the heuristic.

Improved: the percentage of instances which has a positive benefit.

Benefit: the benefit of coordination measured by

SC1 + TC1 − SC2 − TC2

SC1 + TC1
(30)

where SC1 and TC1 are the values of objective functions of the decentralized

schedules, and SC2 and TC2 are the values of objective functions of the integrated

schedule.

From Table 1, one can observe that the average execution time of heuristic grows

rapidly. When n = 5, all MILPs can be solved optimally in the given time. When

n ≥ 15, we observe a difficulty for MILP2 which cannot find an optimal solution in the

given time.

From Table 2, when n = 5 and 10, we find that there exists the instance with a

significant benefit which can reaches 29.7% when n = 5 and 14.69% when n = 10. At

the same time, we find more than 67.5% of instances which cannot be improved. Since

the MILPs can find an optimal solution for the instances with n = 5 and 10 in the given

time, that means the decentralized schedules are the same as the integrated schedule

for more than 67.5% of instances. That’s why the average benefit of coordination is

not significant. When n = 15 and 20, more than 42.5% of instances can be improved.

However the efficiency of MILP2 impedes the improvement of the transportation cost in

the two-phase iterative heuristic, which imposes a poor average benefit of coordination.

The significant maximum benefit of coordination verifies the feasibility of the heuristic

and the potential benefit of coordination. Moreover, in order to improve the efficiency

of MILP2 in the distribution phase of the heuristic, we tested another time-expanded

network flow-based model and found that the new MILP is less efficient than MILP2.

For future research, it is interesting to develop an efficient exact algorithm or an efficient

heuristic for the distribution phase of the two-phase iterative heuristic.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 187 -

6 Conclusions

In this paper, we investigated a production and outbound distribution scheduling prob-

lem in an enterprise working in the packaging industry. We first proposed two MILP

models for the decentralized scheduling problems. Then we provided a nonlinear pro-

gramming model and a two-phase iterative heuristic for the integrated scheduling prob-

lem.

We also proposed an approach of generation of instances and evaluated the benefit

of coordination through numerical experiments for small and medium instances. The

significant maximum benefit of coordination verified the feasibility of the heuristic and

the potential benefit of coordination.

We pointed out the need to improve the efficiency of the algorithm for the distri-

bution phase of the two-phase iterative heuristic. In order to evaluate the performance

of the two-phase iterative heuristic, one might develop a meta-heuristic and compare

their performance.

References

1. Absi, N., Archetti, C., Dauzère-Pérès, S., Feillet, D.: A two-phase iterative heuristic ap-
proach for the production routing problem. Transportation Science (Published online July
11, 2014)

2. Bruno, J., Downey, P.: Complexity of task sequencing with deadlines, set-up times and
changeover costs. SIAM Journal on Computing 7(4), 393–404 (1978)

3. Chen, H.K., Hsueh, C.F., Chang, M.S.: Production scheduling and vehicle routing with
time windows for perishable food products. Computers & Operations Research 36(7),
2311 – 2319 (2009)

4. Chen, Z.L.: Integrated production and outbound distribution scheduling: Review and ex-
tensions. Operations Research 58(1), 130–148 (2010)

5. Chen, Z.L., Vairaktarakis, G.L.: Integrated scheduling of production and distribution op-
erations. Management Science 51(4), 614–628 (2005)

6. Desrochers, M., Lenstra, J., Savelsbergh, M., Soumis, F.: Vehicle routing with time win-
dows: Optimization and approximation. In: B. Golden, A. Assad (eds.) Vehicle Routing:
Methods and Studies, Studies in Management Science and Systems, pp. 65–84. North-
Holland (1988)

7. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman (1979)

8. Li, K.P., Ganesan, V.K., Sivakumar, A.I.: Synchronized scheduling of assembly and multi-
destination air-transportation in a consumer electronics supply chain. International Jour-
nal of Production Research 43(13), 2671–2685 (2005)

9. Low, C., Chang, C.M., Li, R.K., Huang, C.L.: Coordination of production scheduling and
delivery problems with heterogeneous fleet. International Journal of Production Economics
153(0), 139 – 148 (2014)

10. Low, C., Li, R.K., Chang, C.M.: Integrated scheduling of production and delivery with
time windows. International Journal of Production Research 51(3), 897 – 909 (2013)

11. Nelder, J.A., Mead, R.: A simplex method for function minimization. Computer Journal
7, 308–313 (1965)

12. Palmer, A., Saenz, M.J., Woensel, T.V., Ballot, E.: Characteristics of collaborative business
models. CO3 position paper (2012)

13. Ullrich, C.A.: Integrated machine scheduling and vehicle routing with time windows. Eu-
ropean Journal of Operational Research 227(1), 152 – 165 (2013)

14. Zhu, Z., Heady, R.B.: Minimizing the sum of earliness/tardiness in multi-machine schedul-
ing: a mixed integer programming approach. Computers & Industrial Engineering 38(2),
297 – 305 (2000)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 188 -

MISTA 2015

Stability of probabilistic scheduling problems with

precedence constraints and weighted completion time

objective

Zied Bouyahia†

Abstract We address the probabilistic problem of scheduling n tasks on m parallel

identical machines under precedence constraints to minimize the probabilistic total

weighted �nishing time. Probabilities are associated explicitly with the data in the

formulation of the problem to provide a natural model. Two strategies are proposed to

solve the probabilistic problem Pm|qi, prec|
∑
wiCi : The �rst, called re-optimization,

consists in solving separately each potential instance, the second called a priori strategy

consists in updating a scheduling for the initial problem by means of a modi�cation

method. The aim of this paper is to de�ne and to study the behavior of the a priori

strategy relying on natural modi�cation method. Special care is devoted to evaluate

the performance of the reoptimization and the a priori strategies.

Keywords Probabilistic scheduling problem, precedence constraints, a priori strategy,

reoptimization strategy.

1 Introduction

In classical formulation of a scheduling problem, we assume that the number of tasks to

be scheduled is �xed. However, in several practical situations, this assumption does not

modelize the real-world problems since it does not take into consideration the random

aspect of data. Generally, classical deterministic combinatorial optimization problems

(COPes) formulation fails to provide a realistic modelization of several challenging

practical problems. Up to the 1990's, randomness used to be considered in COPes as a

feature of the datum itself or in the relationship between data. For instance, probabilis-

tic and stochastic studies dealing with scheduling problems has relied on deterministic

data assumption and randomness has been associated with tasks characteristics (pro-

cessing times, release time, etc...) or in the relationship between tasks (probability on

an edge in a precedence graph).

In the practice, after solving a COP, we have to solve an exponential number of COPes

which are simple variations of the initial problem due to the absence of a subset of data.

SOIE Laboratory - National School for Computer Studies , Tunis, Tunisia
E-mail: bouyahiazied@gmail.com
† Corresponding author

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 189 -

Then if the COP of size n is NP-Hard, we have to deal with 2n NP-Hard problems.

Attempting to overcome this di�culty, we use instead Probabilistic Combinatorial Op-

timization Problem (PCOP).

The approach of PCOP was initiated in [12] for the Traveling Salesman Problem (see

also [5,1,2]). Since then, several PCOPes have been studied providing a generalization

of classical COPes [4]. These studies have been essentially motivated, �rstly, by the

attempt to provide a model formulation more appropriate for several challenging real-

world problems where randomness is present and, secondly, the interest in studying the

impact of a perturbation of an initial problem which consists generally in the absence

of data. In scheduling problems, after solving a particular instance, some tasks may

not need to be processed because they are postponed or simply aborted. The initial

problem data is slightly perturbed and we have a new instance of a scheduling problem.

Intuitively, we think about �reusing� the previous solution trying to update it to solve

the new instance. This situation can be perfectly modeled by a probabilities system on

the data set.

In this work, we consider particularly the problem Pm|prec|
∑
wiCi in which we have

to schedule n tasks subject to precedence constraints on m identical parallel machines

minimizing the so-called �weighted mean �nishing time�. The relaxed counterpart of

the probabilistic problem Pm|qi |
∑
wiCi has been studied in [7] and [6]. The prob-

lem subject to precedence constraints is of a great interest in practice and, known as

NP-Hard, it has been studied attempting to provide e�cient and rapid solution by

polynomial-time heuristics [18].

In this work, we propose a generalization of the classical Pm|qi, prec|
∑
wiCi problem

by emphasizing the impact of randomness in problem formulation. The proposed model

consists in considering the number of tasks as a random variable varying between 0

and n instead of a deterministic value n.

Under this assumption, if some tasks are absent from the initial instance of n tasks,

two strategies are possible to solve such a problem : The �rst, called reoptimization

strategy, consists simply in treating separately each subset of the initial whole set of

tasks, the second called a priori strategy updates, by means of a modi�cation method,

an a priori solution found for the full list of tasks to get a schedule for the present tasks.

We de�ne, hereafter, the two strategies and we study experimentally their behaviors.

Special care is also devoted to the performance evaluation of the a priori strategy on

synthetic benchmarks.

2 Problem de�nition

We address the problem of scheduling a set of n jobs (or tasks), Ln = {T1, . . . , Tn}, on
a set of m identical parallel machines under precedence constraints. We assume that

a machine can work on only one job at a time and that each job can be processed by

at most one machine at a time. Each job Ti has a positive weight wi and requires a

processing time pi on any machine. The start time of a scheduled task Ti is denoted by

Si and the completion time is denoted by Ci. An acyclic graph G(Ln, U) can describe

the precedence constraints in which an edge from Ti to Tj implies that Ci ≤ Sj . A

feasible schedule in which the precedence constraints are satis�ed is denoted by ξ and

can be de�ned by a set of m �sequencing� mappings ξ ≡ {σ1, . . . , σm}, where σk(i) is
the ith job to be processed on kth machine. If Bk is the set of jobs assigned to kth

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 190 -

machine, the total weighted mean �nishing time wmft(ξ) of a schedule ξ is given by:

wmft(ξ) =

m∑
k=1

|Bk|∑
i=1

wσk(i)Cσk(i) (1)

In the standard classi�cation scheme of Graham et al. [10], the basic problem is denoted

by Pm|prec|
∑
wiCi.

In the probabilistic version of the problem, the number of tasks is a discrete random

variable N varying in [0, n]. On a given instance of the problem, only a subset I ⊆ Ln

is present with a probability P (I) of occurrence. A probabilistic modelization of the

problem consists in attributing a probability of presence qi for each task Ti ∈ Ln

independently from the others. In this paper, we focus on the particular case where

every task has the same probability of presence q independently from the others. Then

N is a binomial random variable with parameters (n, q). Under these assumptions, we

propose in this paper to study the re-optimization and the a priori strategies to solve

the probabilistic version of the problem Pm|prec|
∑
wiCi

2.1 Reoptimization strategy

Reoptimization strategy consists in �nding an optimum scheduling for every potential

instance of the probabilistic problem. We are considering, for each reduced instance, a

deterministic scheduling problem de�ned for the subset I of present tasks among the

initial set Ln. The optimum value of wmft for the subset I is denoted by wmft(I,Opt).

The wmft for the probabilistic problem is a random variable which is denoted by

wmft(Opt) such that its expected value is:

E [wmft(Opt)] =
∑

I⊆Ln

P (I)wmft(I,Opt) (2)

As a matter of fact, reoptimization strategy provides an optimal solution. However,

even for easy particular cases of the problem, this strategy is impossible to carry out

since the number of potential instances is exponential.

2.2 A priori strategy

In the a priori strategy, we give an �a priori solution� denoted by ξ which is a scheduling

of the n tasks of the entire set Ln. For every potential subset I of tasks in Ln (i.e.

I ⊆ Ln) we attribute a probability P (I) of occurrence. The a priori strategy relies on a

modi�cation method denoted by U providing a solution for each subset I by updating

�quickly� the a priori solution ξ. Hence, the wmft is a random variable denoted by

wmft(ξ). Let wmft(I, ξU) be the wmft for a scheduling for a subset I ⊆ Ln, obtained

from ξ by the modi�cation method U , then we have :

EU
[
wmft(ξ)

]
=
∑

I⊆Ln

P (I)wmft(I, ξU). (3)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 191 -

Then, an optimal scheduling is ξ∗ such as :

ξ∗ = argmin
ξ

EU
[
wmft(ξ)

]
(4)

We de�ne the probabilistic weighted mean �nishing time subject to precedence con-

straints problem which we denote by Pm|prec, qi|EU
[∑

wiCi

]
, where EU

[∑
wiCi

]
is

the expected value of wmft. The choice of the modi�cation method U is very impor-

tant in the a priori strategy. Indeed, U must provide the solution in a reasonable time.

U might be inspired from real-world situations and ideally it provides e�ciently for

every subset I schedules whose values are close to or at least within a constant factor

ϵ > 1

3 Reoptimization strategy and approximation algorithms

The deterministic Pm|prec|
∑

i wiCi is NP-Hard form ≥ 2 and for an empty precedence

graph [18]. For m = 1 and empty precedence graph, the problem can be e�ciently

solved in polynomial time algorithm relying on the Smith's rule [17] which consists

in creating a priority list according to the non-increasing order of wi
pi
. Generalizations

of this algorithm, on single machine, to non-empty graph of precedence �nd optimal

schedules for chains, trees and series-parallel precedence graph in pseudo polynomial

time [3,14,11].

Even for the easy particular cases, the reoptimization strategy is impossible to carry

out: Consider a problem with n tasks (Ln), the number of potential reduced instances

(i.e. I ⊆ Ln) is 2n and we have to solve optimally an exponential number of di�erent

problems. Then, we should better adopt a near optimal strategy which consists in

approximating the reoptimization strategy by means of heuristics. Such approach is

called redistribution strategy relying on an approximation algorithm A. The expected

value of wmft is denoted by E [wmft(A)].

3.1 The Largest Ratio First algorithm (LRF)

The LRF algorithm relies on Smith's rule and �nds an optimum schedule when the

precedence graph is empty for a single machine problem. For m > 1 and/or non-empty

precedence, the LRF algorithm has a performance guarantee within 1+
√
2

2 (see [13]).

Algorithm 1 describes the generalized LRF algorithm for m ≥ 1 and an empty prece-

dence graph:

Algorithm 1 The LRF algorithm for empty precedence graph.

1: repeat
2: Assign the m tasks of longest processing times to the m di�erent machines.
3: Remove assigned tasks from Ln

4: until All tasks are assigned to di�erent machines
5: For each machine process the tasks assigned in the Shortest Weighted Processing Time

order.

However, for non-empty precedence graph, the LRF algorithm shows poor performance

[3] even for the single machine case. We present in the following algorithms for the case

of chains and tree classes of precedence.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 192 -

3.2 The ρ-max algorithm

We consider, in this work, that the precedence graph is a set of r chains which implies

that for every task there exists at most one immediate predecessor and at most one

immediate successor. In the following, we denote by {Hi, 1 ≤ i ≤ r} the set of chains

describing the precedence graph. We denote by i : j the task member of Hi and �guring

in position j in the chain. We denote also by Pred(i, j) the task (i, j) and all of its

predecessors in Hi. Furthermore, we generalize Smith's rule for a set of tasks I by the

ratio ρ(I) such that:

ρ(I) =

∑
Ti∈I

wi∑
Ti∈I

pi
(5)

Algorithm 2 presents the variant of ρ-max algorithm for chains precedence graph.

Algorithm 2 The ρ-max algorithm for chains precedence.

1: Initialize an empty priority list β.
2: repeat
3: for every nonempty chain Hi do

4: Let δi = max
j

ρ
(
Pred(i, j)

)
5: end for

6: Let δ = max
i

δi and let i∗ and j∗ be the largest values such that ρ
(
Pred(i∗, j∗)

)
= δ

7: Add the tasks in Pred(i∗, j∗) in order to the end of β, and remove these tasks from Hi∗

8: until the chains are all empty
9: Apply list scheduling, using β as the priority list.

In the case of single machine, the priority list β and the �nal schedule are equivalent

and the cost is optimum. Besides, form > 1 the algorithm does not guarantee optimum

solution [8].

4 The natural a priori strategy

The a priori strategy relies on a modi�cation method which updates an a priori solution

for the entire set of tasks to get a feasible schedule for every potential instance I. A

natural modi�cation method which we denote by UA consists �rst in deleting the absent

tasks from the a priori schedule then to get a feasible schedule for the reduced instance,

every task remaining in the schedule is shifted respecting the precedence constraints

such that for every task in I �guring in the a priori schedule ξ, σk(i):

Sσk(i) = max
(
Cσk(i−1), CPred(σk(i))

)
, (6)

where Pred(σk(i)) is the predecessor of the task σk(i) and σk(i− 1) is the task previ-

ously processed on the machine k.

An explicit formula of the objective function can be found by considering the problem

P, de�ned as:

� ∀i , the weight of the task Ti is Wi = qiwi

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 193 -

� ∀i , the processing time of the task Ti is Pi = qipi
� A task σk(i) in a feasible schedule ξ starts at Sσk(i) such that:

max
(
qσk(j−1)Cσk(j−1), qPred(σk(i))CPred(σk(i))

)
,

where Pred(σk(i)) is the predecessor of the task σk(i).

The objective function of the problem P is :

EUA

[
wmft(ξ)

]
=

m∑
k=1

|Bk|∑
i=1

wσk(i)qσk(i)

(
Sσk(i) + qσk(i)pσk(i)

)
(7)

For the particular case of empty precedence graph, the objective function has a simpler

expression :

EUA

[
wmft(ξ)

]
=

m∑
k=1

Bk∑
i=1

wσk(i)qσk(i)

[
qσk(i)pσk(i) +

∑
j<i

qσk(j)pσk(j)

]
(8)

In the following we study the stability of probabilistic �owtime problem on a single

machine subject to precedence constraints.

Lemma 1 Let σ = (σ(I), σ(I)) be a minimum cost schedule of n tasks on a single

machine where I ⊆ Ln. σ(I) (resp. σ(I)) is a minimum cost schedule for G(I) (resp.

G(I)).

Proof

From the expression of weighted �owtime eq. (7), we have:

EUs

[
Fw(σ)

]
=

n∑
i=1

wσ(i)qσ(i)
(
Sσ(i) + qσ(i)pσ(i)

)
=
∑
i∈I

wσ(i)qσ(i)
(
Sσ(i) + qσ(i)pσ(i)

)
+
∑
i/∈I

wσ(i)qσ(i)
(
Sσ(i) + qσ(i)pσ(i)

)

Then to minimize the total weighted �owtime, one should minimize the restricted

�owtime of the subsets I and I. �

Lemma 2 Let I1, I2, ..., Ir, r > 1 be a partition of Ln, then:

ρ(Ln) =

r∑
i=1

p(Ii)

p(Ln)
ρ(Ii) (9)

Proof

ρ(Ln) =
w(Ln)

p(Ln)
=

r∑
i=1

w(Ii)

p(Ln)
=

r∑
i=1

w(Ii)p(Ii)

p(Ln)p(Ii)
=

r∑
i=1

p(Ii)

p(Ln)
ρ(Ii)

�

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 194 -

Lemma 3 Let I1, I2, ..., Ir, r > 1 be a partition of Ln, then:

max{ρ(Ii), 1 ≤ i ≤ n} ≥ ρ(Ln)

Moreover max{ρ(Ii), 1 ≤ i ≤ n} = ρ(Ln) if and only if ρ(I1) = ρ(I2) = ... = ρ(Ir)

Proof

This lemma is a consequence of lemma 2. ρ(Ln) is a convex combination of ρ(Ii), 1 ≤
i ≤ r. Let i∗ = argi max ρ(Ii) then ∀1 ≤ i ≤ r, we have ρ(Ii) ≤ ρ(Ii∗). Hence:

r∑
i=1

p(Ii)

p(Ln)
ρ(Ii) ≤

r∑
i=1

p(Ii)

p(Ln)
ρ(Ii∗)

Besides:
r∑

i=1

p(Ii)

p(Ln)
ρ(Ii∗) = ρ(Ii∗)

and since
∑r

i=1
p(Ii)
p(Ln)

= 1, then:

r∑
i=1

p(Ii)

p(Ln)
ρ(Ii) = ρ(Ln).

Which concludes the proof. �

Lemma 4 Let r > 1 and I1, I2, ..., Ir be a partition of Ln and let σ = (σ(I1), ..., σ(Ij), σ(Ij+1), ..., σ(Ir))

and σ′ = (σ(I1), ..., σ(Ij+1), σ(Ij), ..., σ(Ir)) two feasible schedules, then we have:

EUS

[
Fw(σ)

]
≤ EUS

[
Fw(σ′)

]
if and only if ρ(Ij) ≥ ρ(Ij+1)

Proof

We compute EUS

[
Fw(σ)

]
−EUS

[
Fw(σ′)

]
. In both schedules σ and σ′, the tasks of the

subsets Ii, i ̸= j and i ̸= j + 1 appear in the same order and are not involved in the

di�erence between the two expectancies. Then:

EUS

[
Fw(σ)

]
− EUS

[
Fw(σ′)

]
= w(Ij+1)p(Ij)− w(Ij)p(Ij+1)

= ρ(Ij+1)p(Ij+1)p(Ij)− ρ(Ij)p(Ij)p(Ij+1)

=
[
ρ(Ij+1)− ρ(Ij)

]
p(Ij)p(Ij+1)

The sign of EUS

[
Fw(σ)

]
−EUS

[
Fw(σ′)

]
is the same of

[
ρ(Ij+1)− ρ(Ij)

]
p(Ij)p(Ij+1).

�

Theorem 5 If I is an initial ρ maximum set, then there exists a minimum cost sched-

ule σ such that σ = (σ(I), σ(I)) and I is a continuous sequence in σ

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 195 -

Proof

In the precedence graph G′ = (Ln, U
′), U ′ = U\{(i, j) such that i ∈ I, j ∈ I}. From a

given schedule de�ned on G, we build a feasible solution for G′ such that the jobs of

the subset I are scheduled �rst.

Assume that a minimum cost schedule de�ned over G′ is σ ≡ (σ(J1), σ(I1), σ(J2), ..., σ(Ir), σ(Jr)),

with r > 1, ∪r
i=1 Ii = I, ∪r

i=1 Ji = J = I and Jr ̸= ∅∀r.
Let k be the smallest integer such that ρ(Ik) ≥ ρ(Ii), ∀i ∈ [1, r]. From lemma 3, we

have k > 1. Indeed, if k = 1, I1 would be ρ-maximum. However, I is ρ-maximum and

I1 ⊂ I. Moreover, we have : ρ(Jk) ≥ ρ(Ik) since σ is optimal for G′. Hence:

ρ(Ik−1) ≤ ρ(Ik) ≤ ρ(Jk).

From lemma 4, if we swap Jk and Ik−1 in σ, the �owtime improves. Hence σ is not

optimal. Then, if σ is an optimal scheduling for G′ then σ = (σ(J1), σ(I), σ(J2)).

Now, let us build an optimal schedule for G from an optimal schedule over G′.
Let σ be a minimum-cost schedule de�ned over the precedence graph G′ such that:

σ = (σ(J1, σ(I), σ(J2)), with J1 ̸= ∅.

Let σ′ be a schedule obtained from σ by swapping J1 and I. σ′ is a feasible solution
for G and G′. Assume that σ′ is not optimal for G′. From lemma 4, we have: ρ(J1) ≥
ρ(I).

Besides: J1 ∪ I is an initial set in G and

ρ(J1 ∪ I) = p(J1)

p(J1 ∪ I)ρ(J1) +
p(I)

p(J1 ∪ I)ρ(I).

Furthermore, we have ρ(J1) > ρ(I). Then ρ(J1 ∪ I) > ρ(I). However I is ρ-maximum,

which contradicts the assumption.

Then, σ′ is optimal for G.
If I is an initial set and I is ρ-maximum in G, then there exists an optimal solution for

G such that σ = (σ(I), σ(I)).

�
Theorem 5 depicts a particular case of stability of the probabilistic weighted �owtime

problem. The restriction of an a priori solution for a given subset I of present tasks

yields a minimum cost solution when I is a collection of initial and ρ-maximum sets.

In this case, the overall sequencing remains unchanged if some tasks are deleted.

The following lemma states a general description of the stability of probabilistic

weighted �owtime problem subject to precedence constraints.

Lemma 6 Let σ be an optimal schedule for a set of n tasks Ln on a single machine

subject to precedence constraints. There exists an initial ρ-maximum set I such that

σ = (σ(I), σ(I)).

Proof

Assume that the �rst sequence of the tasks of a ρ-maximum set I is such that σ =

(σ(J1), σ(I), σ(J2)) and that J1 ̸= ∅.
σ is optimal, then, from lemma 3, we have:

ρ(J1) ≥ ρ(I)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 196 -

I is ρ-maximum, then:

ρ(J1) ≤ ρ(I)

Hence:

ρ(J1) = ρ(I)

Then, J1 is either ρ-maximum or J1 contains a ρ-maximum set. Hence, the contradic-

tion.

�
In the case of single machine problem, when the precedence graph is empty, the

a priori strategy �nds a schedule equivalent to the reoptimization strategy since an

optimal schedule consists in a list which is not perturbed by the absence of some tasks.

When the precedence graph is a set of r chains, the a priori strategy does not �nd

exactly the same solution as reoptimization unless the absent tasks constitute a set of

modules [16] which is a subset of sub-chains with maximum ρ factor.

An exact performance evaluation of the a priori strategy when the absence of tasks

is arbitrary is di�cult to perform. Then we propose in the following section to study

experimentally the redistribution strategy according to an approximation algorithm A
and the a priori strategy relying on the modi�cation method UA.

5 Experimental Study

In this section we evaluate and compare experimentally the two strategies. An exact

performance evaluation of these strategies appears to be di�cult, then we propose an

analysis through simulations. The experience consists in considering the values of m

in {1, 2, 3, 4} and generating for each value a set of n tasks where the processing times

pi are discrete samples from a uniform distribution between 1 and 50 and the weights

wi are discrete samples from a uniform distribution between 0 and 10 independent

from processing times. Furthermore, for every task is attributed the same probability

of presence q. Precedence constraints are randomly generated for each instance such

that for chains precedence, we select a partition of the set Ln of n tasks. The random

partition is detailed in [15].

To compute a mean value of the expectation of wmft we generate, for each initial

problem of size n, k = 10000 reduced problems where some tasks are absent and

removed from the initial problem. Runs were conducted for n ranging between 100 and

1400 with step of 100 and for q in {0.1, 0.5, 0.9}.

5.1 Asymptotic behavior of the reoptimization strategy

First, we attempt to show experimentally that the redistribution strategy by an ap-

proximation algorithm A is asymptotic to the reoptimization strategy. Given the lower

boundB [19,9], we evaluate the redistribution strategy deviation from optimum schedul-

ing. Let RRedist
A denote the following ratio:

RRedist
A =

E
[
wmft(A)

]
B

, (10)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 197 -

Fig. 1 Variations of the ratios RLRF
Redist and Rρ−max Chains

Redist .

where E
[
wmft(A)

]
is the expected wmft for the present tasks of the set Ln by the

approximation algorithm A. Figure 1 shows the variation of RRedist
A .

We notice that the ratios RLRF
Redist and R

ρ−max Chains

Redist converge toward 1 from an n0 ≈
800 for q = 0.1, n0 ≈ 600 for q = 0.5 and n0 ≈ 400 for q = 0.9.

The deviation is a decreasing function of q and of m and is at most 7% for q < 0.5 and

1% for q > 0.5.

This implies that the redistribution strategy by LRF heuristic for empty precedence

graph and ρ−max for chains precedence is asymptotically equivalent to reoptimization

strategy.

5.2 Asymptotic behavior of the a priori strategy

Now, we focus on the a priori strategy attempting to study its behavior. The problem

consists in �nding, under a priori strategy assumptions, a scheduling with optimum

value according to the expression (7). In this experiment, we compute the following

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 198 -

Fig. 2 Variations of the ratios R
UA
LRF and R

UA
ρ−max

.

ratio for m ∈ {1, 2, 3, 4}:

RUA

A (m) =
EUA

[
wmft(ξ)

]
B

, (11)

This ratio measures the deviation of a priori strategy from an optimal scheduling.

Figure 2 shows the variation of the ratio for di�erent problem sizes (n varying between

100 and 1400 with step of 100) and di�erent values of q in {0.1, 0.5, 0.9}.
In these experiments, we notice that the deviation for non empty precedence graph are

more important than the empty precedence graph case

� The plots show that the value of the ratio RU
LRF is a decreasing function of n and

that the deviation increases as the number of machines increases. We notice also

that the a priori strategy �nds an optimum scheduling form = 1 and that form ≥ 2,

RU
LRF (4) ≥ RU

LRF (3) ≥ RU
LRF (2). For q = 0.1 which implies a potential important

perturbation of the initial problem, we have : 0 ≤ RU
LRF (4) − 1 ≤ 25% and for

q = 0.9 which can be interpreted as a tiny perturbation we have 0 ≤ RU
LRF (4)−1 ≤

0.7%. As for an average case, (q = 0.5) we have 0 ≤ RU
LRF (4)− 1 ≤ 6%.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 199 -

� In the case of chains precedence graph, we notice that the ratio RU
ρ−max decreases

according to the size of the initial problem n and that it increases in function of

m: RU
ρ−max(4) ≥ RU

ρ−max(3) ≥ RU
ρ−max(2). The ratio RU

ρ−max rises from 0.5% to

30% for q < 0.5 and from 0.1% to 6.4% for q ≥ 0.5.

5.3 Pairwise comparison

(a) n = 100

(b) n = 1200

Fig. 3 Variation of the ratio R according to the probability q.

In this section we perform a pairwise comparison of the performances of reopti-

mization and a priori strategies. We compute the ratio:

Rm(q) =
EUA

[
wmft(ξ)

]
E
[
wmft(Opt)

] , (12)

where EUA

[
wmft(ξ)

]
(resp. E

[
wmft(Opt)

]
) denotes the minimum expectation of

wmft for present tasks of Ln by a priori (resp. reoptimization) strategy . We com-

pute this ratio for di�erent values of q ranging in {0.1, 0.3, 0.5, 0.7, 0.9, 0.9999} and for

n = 100 and n = 1200 and m ∈ {1, 2, 3, 4}.
The variation of the ratio Rm(q) according to q on Figure 3 shows that the ratio is

a decreasing function of m. For empty precedence graph, the deviation is bounded

by 0% and 20% for n = 100 and varies from 0% and 3.5% for n = 1200. For chains

precedence, the ratio Rm(q) rises from 0% to 7% for n = 1200 and ranges between

0% and 17% for n = 100. This leads to conclude that, asymptotically, the a priori and

reoptimization strategies are close. The deviation is a decreasing function of q and the

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 200 -

strategies are completely equivalent independently from q for single machine case on

empty precedence graph. This result is foreseeable since an optimal scheduling for the

single machine problem is not altered by the absence of some tasks. This can be seen

as a stability feature of the probabilistic problem. Besides, when the precedence graph

is a set of chains, the strategies are equivalent only if the set of absent tasks is an initial

ρ-max set.

6 Conclusion

In this paper, we have introduced the probabilistic problem Pm|qi, prec|E [
∑
wiCi] at-

tempting to provide a realistic model for several real-world problems where we have to

face the uncertainty of data. We have also de�ned two possible strategies to solve the

problem and we have introduced an a priori strategy based on a natural modi�cation

method attempting to give a fast and robust solution. The a priori strategy is com-

pletely equivalent to the reoptimization for the particular case of single machine and

empty precedence graph. In the case of non empty precedence graph and particularly

when the precedence consists in a set of chains, the absence of some tasks from the

initial set of data does not perturb the a priori schedule unless the absent tasks consist

in a set of modules.

Through experiments on randomly generated instances, the a priori strategy exhibits

encouraging results. However the deviation of the a priori strategy relying on UA from

reoptimization strategy shows that the divergence of the two strategies is due either

to the modi�cation method which is rigid and does not take into consideration the

speci�cities of the problem de�nition or to the probabilistic formulation itself. Indeed,

the probabilistic model proposed in this work is quite simple and the probabilities are

associated independently with di�erent tasks. As further works, we envisage to consider

a more appropriate model which combines random aspect of data to the precedence

constraints by associating probabilities to the modules instead of separated tasks.

References

1. Dimitris J. Bertsimas. Probabilistic combinatorial optimization problems. Technical
report, Operations Research Center, MIT , Cambridge Mass, 1988.

2. Dimitris J. Bertsimas and L Howell. Further results on probabilistic travelling sales-
man problem. In MIT Sloan School of Management Working, pages 2066�2088,
September 1988.

3. Ivan D. Baev, Waleed M. Meleis, and Alexandre Eichenberger. An experimental study
of algorithms for weighted completion time scheduling. Algorithmica, 33:34�51, 2002.

4. Monia Bellalouna, Cecile Murat, and Vangelis Th. Paschos. Probabilistic combi-
natorial optimization problems on graphs: A new domain in operational research.
European Journal of Operational Research, 87(3):693�706, December 1995.

5. Oded Berman and David Simchi-Levi. Finding the optimal a priori tour and location
of a traveling salesman with nonhomogeneous customers. Transportation Science,
22(2):148�154, 1988.

6. Z. Bouyahia, M. Bellalouna, and K. Ghédira. Load balancing a priori strategy for
the probabilistic weighted �owtime problem. Computers & Industrial Engineering,
64(1):1 � 10, 2013.

7. Z. Bouyahia, M. Bellalouna, P. Jaillet, and K. Ghedira. A priori parallel machines
scheduling. Comput. Ind. Eng., 58(3):488�500, 2010.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 201 -

8. J. Du, J.Y.-T. Leung, and G.H. Young. Scheduling chain-structured tasks to minimize
makespan and mean �ow time. Inform. and Comput., 92(2):219�236, 1991.

9. Eastman, Even, and Isaacs. Bounds for the optimal scheduling of n jobs on m pro-
cessors. Management Science, 1964.

10. R. Graham, E. Lawler, J. Lenstra, and A. Rinnooy Kan. Optimization and approxi-
mation in deterministic sequencing and scheduling: A survey. Ann. Discrete Math.,
5:287�326, 1979.

11. W. A. Horn. Single-machine job sequencing with treelike precedence ordering and
linear delay penalties. SIAM Journal on Applied Mathematics, 23(2):189�202, 1972.

12. Patrick Jaillet. Probabilistic traveling salesman problem. Technical report, Opera-
tions Research Center, MIT , Cambridge Mass, 1985.

13. Tsuyoshi Kawaguchi and Seiki Kyan. Worst case bound of an lrf schedule for the
mean weighted �ow-time problem. SIAM J. Comput., 15(4):1119�1129, 1986.

14. E.L. Lawler. Sequencing jobs to minimize total weighted completion time subject to
precedence constraints. Ann. Discrete Math., 2:75�90, 1978.

15. A. Nijenhuis and H. Wilf. Combinatorial algorithms. Academic Press, 1975.
16. J. B. Sidney. Decomposition algorithms for single-machine sequencing with prece-

dence rela- tions and deferral costs. Operations Research, 23:283�298, 1975.
17. W. E. Smith. Various optimizers for single-stage production. Naval Research Logistics

Quarterly, 3:59�66, 1956.
18. Martin Skutella and Gerhard J. Woeginger. A ptas for minimizing the total weighted

completion time on identical parallel machines. Mathematics of Operations Research,
25(1):63�75, 2000.

19. S. Webster. New bounds for the identical parallel processor weighted �ow time prob-
lem. Management Science, 38:124�136, 1992.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 202 -

MISTA 2015

An optimization-based approach for delivering
radio-pharmaceuticals to medical imaging centers

Ioannis Akrotirianakis · Amit Chakraborty

Abstract It is widely recognized that early diagnosis of most types of cancers can in-

crease the chances of full recovery or substantially prolong the life of patients. Positron

Emission Tomography (PET) has become the standard way to diagnose many types

of cancers by generating high quality images of the affected organs. In order to create

an accurate image a small amount of a radio-active agent needs to be injected in the

patient’s body. These agents are produced in specially equipped pharmacies and then

distributed to medical imaging centers which are located in metropolitan and rural

areas. Due to the relatively fast decay process of the radio-activity levels it is very

important that they arrive at the imaging centers well before the time that the patient

enters the room where PET scanner is located. In this paper we discuss the distribu-

tion process of radio-pharmaceuticals and develop a flexible and efficient mathematical

model. Our objective is to serve a number of customers within a pre-specified time

interval at minimum transportation cost. At the same time the model ensures that all

orders arrive at the imaging centers well before the patients enter the PET scanners. In

addition the model takes into consideration the availability and capacity of the trans-

portation vehicles. To demonstrate the effectiveness and efficiency of our optimization

model we present preliminary computational results in a variety of test cases which

show that it can achieve substantial savings in transportation costs.

1 Introduction

The transportation of products is a fundamental aspect in every efficient supply chain.

With the fast development of economic globalization a variety of products routinely

need to be transported to an ever increasing number of geographically dispersed cus-

tomers. In recent years the distance among customers and production sites have in-

creased dramatically, resulting in larger transportation costs. The most common trans-

portation means are vehicles for ground transportation (e.g., pick up tracks and vans)

which are mostly used for small quantities and/or light products. On the other hand,

cargo planes are used for feaster long-distance deliveries and boats for larger quantities

I. Akrotirianakis, A. Chakraborty
Business Analytics & Monitoring, Siemens Corporate Technology, Princeton, NJ 08540, USA
E-mail: (ioannis.akrotirianakis , amit.chakraborty)@siemens.com

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 203 -

and heavier products. Each transportation means has a specific capacity and travel-

ing speed. In most cases the products have to arrive at the customer locations within

a pre-specified time interval which may make their transportation time-critical and

complex.

A daily activity in today’s pharmaceutical, medical, chemical and food industries

involves the long-distance transportation of perishable products. The quality of such

products may decay at rapid rates immediately after their production and during

transportation. If a product does not meet certain quality criteria, the customer may

discard it and refuse payment, in which case the manufacturing company may incur

substantial loss of profit as well as customer dissatisfaction. In order to make sure

their products arrive on time, in good quality and at minimum cost, companies have

to carefully choose their transportation routes.

This paper develops an efficient and flexible optimization model that is able to

find the most cost effective transportation routes of products manufactured in the

radio-pharmaceutical industry. Nuclear medical imaging is routinely used for many

diagnostic tests by physicians. In order to create an image for diagnostic purposes a

small amount of a radio active agent is injected to the body of the patient and travels to

the organ of interest. The emitted radiation is then detected and high accuracy images

of the organ can be generated by Positron Emission Tomography (PET) scanners.

Fludeoxyglucose (FDG) is the most commonly used radio-pharmaceutical PET. After

FDG is injected into a patient’s body, a PET scanner can form two or three dimensional

images of the distribution of the FDG around the organ that needs to be examined.

FDG has been used extensively for diagnosis, staging and monitoring treatment of

cancers, particularly Hodgkin’s disease, non-Hodgkin’s lymphoma, colorectal cancer,

breast cancer, melanoma and lung cancer. It has also been approved for use in diagnosis

of Alzheimer’s disease. When searching for tumors in the human body a dose of FDG

is typically between 5 and 15 millicurie (denoted by mCi). The dose is injected rapidly

into a saline drip running into a vein. The patient then waits for one hour for the sugar

to distribute and be taken by organs that use glucose. To avoid consumption of the

radioactive sugar by muscles (which use sugar) the patient must be in minimal physical

activity. After one hour the patient is placed in a PET scanner for a series of scans, a

process that may last from 20 minutes to one hour.

Sales of FDG have been growing since 2010 and are expected to exceed $880 million

by 2017, while the market for PET radio-pharmaceuticals will increase to $3.5 billion

by 2017 [3]. The production of FDG takes place in manufacturing facilities that contain

special purpose equipments called cyclotrons [12]. Production is structured in batches

and delivery takes place in doses. A dose contains the radio-active agent that will be

injected to a patient before he/she enters the PET scanner. A fundamental activity in

every manufacturing facility is the creation of a daily plan for the production of batches

and distribution of doses to imaging centers and hospitals. An individual batch may

provide sufficient product for up to forty or more individual doses.

A delivery schedule is a collection of doses that are assigned to transportation

vehicles and routed to customer locations which are typically medical imaging centers

or hospitals. Delivery schedules are site specific based on geography and local customer

demand requirements. Typically, delivery schedules vary depending on the day of the

week and/or seasonal ordering patterns. It is crucial that an order arrives at an imaging

center at a certain time prior to the time that is going to be injected to the patient.

If it arrives later, it may be discarded and the customer is not obliged to pay the cost

of the doses. Other constraints associated with delivery schedules include the limited

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 204 -

number of delivery vehicles available at the manufacturing site and the capacity of each

vehicle.

Every day, it is necessary to create delivery schedules. Current practice is the

delivery schedules to be generated manually by experienced personnel in the radio-

pharmacies and as a result they are not optimized. This may result in two major issues:

(a) the delivery of some orders may arrive at a customer location later than the actual

injection time specified in the contract, resulting in extra cost for the pharmaceutical

company as it needs to replace the order free of charge in a later time or day, and (b)

since the delivery routes are not optimal they may cost more to the pharmaceutical

company simply because the vehicles travel longer distances. Apart from the increased

monetary cost, longer delivery routes result in the release of more greenhouse gas

emissions which negatively affect the climate and human health. The main contribution

of our work is to address the above limitations by defining an efficient mathematical

optimization model that determines the routes that are the most cost effective and

guarantee that all doses arrive at a customer location before their injection times. To

the best of our knowledge this is the first paper that deals with the distribution of

radiopharamceuticals.

The paper is structured as follows. In section 2 we present the work that has been

done in the area of transporting short-lived products that is relevant to our problem.

In section 3 we discuss the details of the problem and define the notation we will use in

the rest of the paper. In section 4 we present the mathematical optimization model and

we discuss its functionality and in particular the purpose that each constraint serves.

In section 5 we present a number of numerical results obtained by our model and the

savings in transportation costs achieved. Finally, in section 6 we conclude the paper

and give directions of future work.

2 Literature review

The problem we study in this paper falls in the general category of the vehicle routing

problem (VRP) which is well studied in the area of Operations Research [10]. There

are many papers dealing with several variations/extensions of the VRP, mainly be-

cause of its wide applicability in real-world applications. However, there is very limited

research in the distribution of radio-pharmaceuticals and for this reason we focus on

the application of VRP in the distribution of short-lived products which must arrive at

the customer site between a specified time window. Emphasis is given in applications

in the medical field. The original VRP formulation was introduced by Dantzig and

Ramser [4] back in 1959. A detailed review of the classical VRP has been written by

Toth and Vigo [20] and Parragh et al [17]. Laporte [13] provides an overview of major

VRP definitions as well as efficient exact and approximate algorithms for solving it.

Savelbergh [18] focused on the complexity of the VRP and proved that it is an NP-hard

problem.

In the classical VRP we are given a set of trucks with a limited capacity and a

set of customers each having a known demand of a product that is manufactured in a

specific location. The distance and traveling times from the manufacturing site to each

customer location are known. The aim is to determine the minimum cost or distance

routes such that (a) every customer is served by only one vehicle, (b) all routes start

and end at the depot and (c) the transportation vehicles do not carry weight more than

their capacity. A very popular extension of the VRP is the case where the customers

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 205 -

request the delivery of their orders to arrive during a pre-specified time interval. This

extension is known as the VRP with Time Windows (VRPTW) and it is often used

in the transportation of perishable products. Many transportation problems in the

radiopharmaceutical industry can be modeled as VRPTW.

In general, there two types of approaches used to solve VRPTWs: (i) exact (e.g.,

branch-and-cut, branch-and-price) and (ii) heuristics (e.g., tabu search, genetic algo-

rithms). The literature is very large and we will only present a few papers that study

the modeling and solution techniques for problems similar to ours. In [1] the authors

describe an exact algorithm for solving the VRPTW where a single vehicle can partic-

ipate in more than one routes. Their application area comes from the distribution of

perishable goods where the routes are small and can be combined. In [2] an branch-and-

cut algorithm is proposed in order to find the minimum number of vehicles required to

visit a set of customers subject to time window constraints and capacity limitations.

The authors introduce a wide variety of cuts and use then to tighten the relaxation

of the MILP problem. Tarantilis and Kiranoudis [19] developed an efficient and ro-

bust meta-heuristic algorithm for solving the problem of distributing fresh milk using

a heterogeneous fleet of vehicles. Hsu et al [11] proposed a model for the stochastic

VRP with time windows and obtained optimal delivery routes, loads, fleet dispatch-

ing and departure times for delivering perishable products. Zanoni and Zavanella [21]

developed an MILP model and a heuristic algorithm for solving the shipping of a set

of perishable products from a single vendor to a common buyer with the objective of

minimizing the sum of inventory and transportation costs. Osvald and Stirn [16] study

the problem of distributing fresh produce and emphasize in the perishability of the

transported products. They formulate the problem as VRP with time windows and

time-dependent travel times. Their aim is to find transportation routes that minimize

the distance and time traveled, the delay costs for servicing late a customer and the

costs related with perishability. Doerner et al [6] developed a model and several heuris-

tics for solving a novel type of a vehicle routing problem where time windows for the

pickup of perishable goods depend on the dispatching policy used in the solution pro-

cess. The application area is motivated by a project carried out with the Austrian Red

Cross blood program to assist their logistics department. Dessouky et al [5] study the

coordinated solution of the a facility location problem together with a VRP in order

to ensure quick distribution of medical supplies in response to an emergency situation.

Migahlaes and de Souza [15] present a model and an algorithm for solving VRP for the

classical pharmaceutical industry, where the customer orders may change dynamically.

More recently, Luo et al [14] propose a mathematical model for a VRP with stochastic

demands and real-time vehicle control for distributing medical supplies in large-scale

emergencies.

3 Problem description

It is common that pharmaceutical companies outsource the delivery of the doses to

logistics companies, which are responsible for providing the transportation vehicles

together with the drivers and the load and unload equipment. A driver may be allowed

to work up to a certain number of hours, denoted by T (e.g., 8 hours), or drive a distance

of a maximum number of miles per day (e.g., 250 miles). Also there is a maximum

number of vehicles (denoted by N) that the logistics company makes available to the

pharmaceutical company.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 206 -

Mathematically the transportation of the doses to the medical imaging centers can

be expressed as a general vehicle routing problem with time widows. Let G = (V,E)

be a complete undirected graph where V = {0, 1, 2, . . . , n} represents the nodes of the

graph and E = {(i, j) : i, j ∈ V } is the set of edges connecting the nodes. The set

of nodes consists of the radio-pharmacy, denoted by 0, and the imaging centers. For

convenience we will denote the set of the imaging centers as Vc = {1, 2, . . . , n}. Also,

throughout the paper we may refer to imaging centers as customers. Every imaging

center places an order which consists of a number of doses. Let Di represent the number

of doses ordered by the i-th imaging center. In addition, the j-th dose ordered by the

i-th imaging center has an injection time, T INJ
ij , associated with it. All doses ordered

by the a specific imaging center are delivered by the same vehicle. This means that the

delivery vehicle must arrive at the imaging center before the earliest injection time,

that is

T INJ
i = min{T INJ

ij : j = 1, . . . , Di}, ∀i ∈ Vc (1)

Furthermore, every imaging center may require the delivery to arrive during a

certain time window, [ei, `i], where ei represents the earliest and `i the latest arrival

times. The latest arrival time may be a certain number of minutes, pi, prior to T INJ
i

defined by (1). Therefore the vehicle must arrive at the i-th imaging center no later

than

`i = T INJ
i − pi. (2)

It is also possible that some imaging centers do not allow deliveries prior to a certain

time. For example, an imaging center may not accept doses to be dropped off before

the center opens for business. In this case ei will be set to the opening time of the

imaging center. In the case where doses can be dropped off any time in the day (even

when the imaging center is closed) we set ei = 0.

The distance and the time it takes to drive between node i and node j are denoted

by dij and tij , respectively. We obtain distances and drive times by using the geo-

coding services offered by Google [9]. The service can provide the distance and duration

matrices of a network of any number of nodes. The distance and duration measures

are not symmetric. This means that in general we have dij 6= dji and tij 6= tji. The

cost, cij , of driving from a location i to a location j is defined as

cij = (m + f)dij + g (3)

where the m is the cost of traveling one mile, f is the fuel surcharge that the logistics

company asks for every mile traveled, and g is a flat amount charged by the drivers

for every customer site they visit (typical value ranges of m, f and g are $1.1-$1.5,

$0.055-$0.065, and $10-$15). Also there is a fixed cost, F , associated with every vehicle

used.

The fleet of vehicles is homogeneous, meaning that all vehicles have the same weight

capacity, denoted by WV EH . During transportation to customer locations the doses

are placed and sealed in lead or tungsten containers in order to minimize the radiation

exposure. The weight of each container is denoted by WCON (usually a container may

weigh 32.5 lbs). Hence the total weight of the order of the i-th customer is defined

by Wi = DiWCON . We assume that one vehicle will deliver all doses ordered by a

customer, that is, we do not consider split orders. This means that all orders weigh less

than the vehicles’ capacity, i.e., Wi ≤WV EH . If the order of the i-th customer weighs

more than the vehicle’s capacity, then this customer can be split into the appropriate

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 207 -

number of dummy customers, (i1, . . . , id) so that each of them is assigned orders whose

total weight is less than the vehicle capacity.

Once a vehicle arrives at a customer location the drivers need to spend some time

unloading the containers, signing certain documents and picking up empty boxes. This

is called service time of customer i and is denoted by si. The service time may be

fixed for all customers (e.g., 30 minutes) or may be a function of the number of doses

ordered by the corresponding imaging center (e.g., si = Dis, where s is the nominal

time allocated for servicing one dose, typically 3 minutes).

Besides the parameters, described above, we need to introduce a number of variables

whose optimal values will be determined by the solution of the mathematical model,

described in the next section. More specifically, we use the binary variables yij to

represent the order by which the network nodes are visited by the transportation

vehicles, that is, yij = 1, if node i precedes node j, and yij = 0 otherwise.

Since every vehicle has a maximum weight capacity, we are also interested in the

total weight carried by it during the complete route. Hence we define the variable wi

representing the total weight a vehicle has delivered until it has reached customer i.

We also define the variable xi representing the arrival time of a vehicle to customer

site i (note that, in the implementation of the model, xi is measured in minutes after

midnight of the day of the delivery). Since the doses have to arrive at the customer

before the dose with the earliest injection time we always have xi ≤ `i, where `i is the

latest time that a vehicle must arrive at a customer site and is defined in (2).

The objective of the pharmaceutical company is to determine delivery routes which

will minimize the total transportation cost and guarantee that all orders reach the

imaging centers before the specified injection time of each dose. In the remaining of

this section we summarize the variables and parameters used in the mathematical

description of the optimization model presented in the following section.

Parameters and sets

n: number of medical imaging centers placing orders

V : the set of all nodes in the network, V = {0, 1, . . . , n}
Vc: the set of all customer nodes in the network, Vc = {1, . . . , n}
E: the set of arcs in the network, E = {(i, j) : ∀i, j ∈ V }
T : maximum time a driver is allowed to drive during a day

N : maximum number of available vehicles

Di: the total number of doses ordered by imaging center i

F : fixed cost for dispatching a vehicle

cij : the cost of traveling from node i to node j

dij : the distance of traveling from node i to node j

tij : the time of traveling from node i to node j

pi: the time a vehicle must arrive at a customer prior to the injection time

si: the service time needed by a driver to spend in an imaging center

WV EH : the vehicle weight capacity of each available vehicle

WCON : the weight of each container that seals a dose

Wi: the weight of the total number of doses ordered by customer i

[ei, `i]: the time window a dose must arrive in an imaging center

Variables

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 208 -

wi: measures the weight a vehicle has delivered until it reaches customer i

xi: the arrival time of a vehicle to customer site i

yij : 1, if node i is visited immediately before node j; 0 otherwise

4 Mathematical description of the optimization model

In this section we formally define the optimization model (equations (4) through (17))

and discuss in detail its major variables and constraints and the purpose they serve.

min
∑
i∈V

∑
j∈V

cijyij + F
∑
j∈Vc

y0j (4)

s.t.

n∑
j=0,i6=j

yji = 1, ∀i ∈ Vc (5)

n∑
j=0,i6=j

yij = 1, ∀i ∈ Vc (6)

∑
j∈Vc

y0j ≤ N (7)

Wi ≤ wi ≤WV EH , ∀i ∈ Vc (8)

wi ≤WV EH + y0i(Wi −WV EH), ∀i ∈ Vc (9)

wj ≥ wi + Wj −WV EH + yijWV EH+

yji(WV EH −Wj −Wi), ∀i, j ∈ Vc, i 6= j, (10)

ei ≤ xi ≤ `i, ∀i ∈ Vc (11)

xi ≥ ei + y0i(t0i − ei), ∀i ∈ Vc, (12)

xi ≤ yi0(T − ti0 − si − `i) + `i, ∀i ∈ Vc (13)

xj ≥ xi − `i + yij(`i + tij + si), ∀i, j ∈ Vc (14)

xi ≥ 0, ∀i ∈ Vc (15)

wi ≥ 0, ∀i ∈ {1, 2, . . . , N} (16)

yij ∈ {0, 1} , ∀i, j ∈ V (17)

The objective function is defined in (4). In terms of the transportation costs we

define it as the distance traveled by each vehicle multiplied by the cost per mile plus

the fuel surcharge (see (3)). We have also added the fixed cost for using a vehicle.

To ensure the meaningfulness of our routes and avoid cycling, each customer should

be visited once. After visiting that customer, we can only go for one customer next.

Each truck can only deliver customers one by one and each customer can be only deliv-

ered once. These requirements are enforced by constraints (5) and (6). The maximum

number of vehicles that are available every day in a radiopharmacy is enforced by

constraint (7).

As stated by constraint (8) the total weight, wi, delivered up to customer i should

always be less than or equal to the capacity of the vehicle and greater than or equal to

the weight of the order placed by customer i. Constraint (9) takes care of the case when

the i-th imaging center is the first one to be visited by a vehicle. Indeed, when y0i = 1

constraint (9) becomes wi ≤ Wi, which in conjunction with (8) gives us the stronger

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 209 -

constraint wi = Wi. When the i-th imaging center is not the first to be visited, then

y1i = 0 and constraint (9) becomes wi ≤ WV EH which is redundant. By combining

the two constraints (8) and (9) we are able to strengthen the feasible region of our

problem resulting in a faster location of the integer optimal solution.

The case where imaging center i is not the first one to be visited deserves special

attention. This case is taken care of by constraint (10). In this case the value of the

variable wi is equal to the weight of the orders of all the imaging centers that were

visited between the pharmacy and the i-the center itself. For example, if center j is

immediately after center i, then yij = 1 and yji = 0. As a result, constraint (10)

becomes wj ≥ wi + Wj which means that the weight delivered to center j is at least

equal to that delivered in center i plus the weight of the order of center i. If, on the

other hand, center j is visited immediately before center i then we have yij = 0 and

yji = 1, and constraint (10) becomes wj ≥ wi −Wi. This constraint states that the

weight delivered between the pharmacy and the j-th imaging center is not less than

the weight delivered between the pharmacy and the i-th imaging center. In addition

if center j is visited immediately before center i, we can deduce that wi ≥ wj + Wi.

Combining the last two inequalities we obtain the equation wi = wj + Wi. If centers i

and j are not visited successively, then constraint (10) becomes wj ≥ wi+Wj−WV EH .

By noting that the right hand side of the above constraint is always less than zero and

by using the fact that Wi ≥ 0 and the constraint (8), we can deduce that (10) becomes

redundant.

In addition, a very important requirement in the delivery of radio-pharmaceuticals

is the time window that a dose must arrive at an imaging center. We use the variable

xi in order to measure the time when a vehicle arrives at customer i. Constraint (11)

defines the time window that a vehicle is allowed to arrive at customer i. The lower

bound ei defines the time after which the vehicle must arrive at the customer. If the

driver of the vehicle can drop the orders any time at the customer or imaging center

then ei = 0, otherwise a value must be specified. The upper bound `i defines the latest

time that the vehicle must arrive at the customer. Usually the customers and imaging

centers request a dose to arrive a certain number of minutes before its injection time

to the patient. Therefore the upper bound `i is initialized according to equation 2.

Constraints (13) and (14) define tighter upper and lower bounds on the arrival

time at a customer location taking into consideration the customer sites that precede

or follow site i. We analyze first constraint (13), which sets an explicit upper bound on

the arrival time at the last customer site visited in a route. That is, if the i-th imaging

center is the last one visited in a route then yi0 = 1 and (13) becomes xi ≤ T − ti0−si.

On the other hand, constraint (14) connects the arrival time between two consecutive

locations. For example, if customer i precedes customer j, then yij = 1 and (14)

becomes xj ≥ xi + tij + si. Otherwise (i.e., when yij = 0), constraint (14) becomes

xj ≥ xi − `i which is redundant due to the constraint (11).

Finally, all the variables are continuous except yij which are binary. These require-

ments are described by constraints (15) to (17) in the optimization model.

5 Computational results

To illustrate the efficiency and practicality of the proposed mathematical model we

initially present a case study describing the distribution of orders during a typical day

in a radio-pharmacy. Due to confidentiality of company and patient data we do not

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 210 -

present the names or the locations of the medical imaging centers or hospitals that

placed orders. We solve the model by using the FICO-Xpress optimization package,

which includes a powerful modeling language (Mosel) [7] and efficient solvers [8] that

can solve problems with integer and continuous variables as well as linear and nonlinear

constraints.

The current practice in the radio-pharmacy of interest is to have employees (typi-

cally the pharmacists) to produce the distribution schedules and routes for the delivery

vehicles. Although the pharmacists have great domain knowledge and experience, of-

tentimes they come up with sub-optimal delivery schedules, resulting in routes that

cost more to the company and may not guarantee the on-time arrival at an imaging

center. In addition, having pharmacists determining the delivery routes takes valuable

time away from their main tasks and decreases their productive time by at least 30

minutes per day. We expect the optimization model we have developed to be a valuable

decision support tool for every radio-pharmacist, since it will save them a lot of time

and at the same time produce cost effective delivery routes saving a large amount of

money to the pharmaceutical company.

The data for the model’s parameters are obtained from two main sources. The first

source is the pharmacy’s Enterprise Resource Management (ERM) system, which stores

information related to the doses ordered by the customers (e.g., the number of doses

ordered by each imaging center, the injection times of the doses, the time windows

when the orders must arrive at the customer, the addresses of the customers, etc).

The second source is the Google Geocoding API [9] which can provide the distance

and duration matrices of a set of customer locations provided that their addresses

are available. Note that both matrices are not symmetric. We used the addresses of

the radio-pharmacy and all the customers that have placed orders and created the

corresponding distances, dij , and traveling times, tij .

For our case study, we selected a typical week day which consists of 16 imaging

centers, denoted by C1 to C16. Those centers were requesting 67 doses in total. Table

1 presents more details about the orders placed by each imaging center. The doses

were produced at the manufacturing site (radio-pharmacy) which is denoted by C0.

The orders were ready for pickup by the drivers at 04:00 in the morning. All doses in

an order have to arrive at the corresponding imaging center 30 minutes prior to the

dose with the earliest injection time, described in the third column of Table 1. Orders

can be delivered any time at all customer locations (even when they have not opened

yet). This means that the early time is set to zero (i.e., ei=00:00 or midnight). The

service time at each customer location was set to 10 minutes. In the fourth column

of Table 1 we have recorded the arrival time obtained by the optimal solution of our

mathematical model. As can be seen all orders arrived well before the earliest injection

time minus 30 minutes (the specified common early time).

The total transportation cost was $1,258.36 and the total distance traveled by all

drivers was 950.96 miles. The optimal routes are shown in Figure 1.A. On the left side

of every connecting arc there are two values. The values in parentheses denote the

drive time from one location to the next, whereas the other values denote the distance.

As can be seen a total of 6 vehicles (equivalently, six drivers) were used to deliver the

orders to all imaging centers.

In contrast, the routes determined by the pharmacist (actual routes) cost $1,493.83

and the total number of miles covered was 1,154.83. Figure 1.B shows the graph of the

actual routes and Table 2 compares the total cost and distance for the optimal and

actual routes. In addition, it summarizes the improvements we get when the optimal

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 211 -

Customer Doses Earliest dose Arrival

ID ordered injection time time

C1 5 07:15 04:05

C2 4 08:00 04:32

C3 5 07:15 04:23

C4 3 08:45 06:39

C5 2 09:00 06:23

C6 6 08:45 06:33

C7 6 07:30 06:37

C8 2 09:00 07:15

C9 3 09:15 05:50

C10 4 09:30 06:27

C11 1 10:30 09:36

C12 3 08:45 04:37

C13 4 08:30 07:28

C14 13 12:30 04:38

C15 3 09:45 05:38

C16 3 08:00 04:02

Table 1 Details for the orders placed by imaging centers.

routes are used. As can be seen, there was a total of 15.76% reduction in transportation

cost and 17.65% reduction in traveled distance. In addition the actual routes needed 8

vehicles, which represents an increase of two vehicles more than those needed by our

model. This is quite important since it demonstrates better utilization of the vehicle

capacity which is very useful when the logistics company does not have availability of

the extra drivers or may charge more for offering additional vehicles.

Delivery Travel Number of

cost distance vehicles

Optimal routes 1,258.36 950.96 6

Actual routes 1,493.83 1,154.83 8

Improvements 15.76% 17.65% 33.33%

Table 2 Summary of the improvements in total cost, distance traveled and vehicles used
between the optimal and actual routes.

Examining Figures 1.A and and 1.B closer we can see that our optimization model

determined a much better way of delivering the orders to customers C10 and C11. More

specifically, our model used one vehicle to travel to C10 and then to C11, whereas the

pharmacist decided to use two vehicles to travel separately to C10 and C11. The total

distance traveled by the vehicle of our model was 165+148=313 miles. On the other

hand, the two vehicles sent by the pharmacist, traveled a total of 293+165=458 miles.

It is these type of route consolidation that can provide substantial savings in travel-

ing distance (in this case 458-313=145 miles), monetary cost and number of vehicles

needed. An exactly similar situation arises with customers C9 and C13. Our model

used one vehicle and traveled a total of 114+96=210 miles, whereas the pharmacist

used two vehicles which traveled a total of 114+207=321 miles.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 212 -

C11 C10

C0
Pharmacy

C13

C4 C9

C1C1

C1

C7

C16

C2

C6

C5

C8

C3

C12

C14

C1

C15

293
(310)

165
(147)

207
(188)

95
(114)

114
(110)

133
(128)

15
(20)

0.6
(2.5)

1.6
(5.3)

0.8
(3.1)

29
(28)

2.19
(6.7)

8.9
(12)

1.8
(4)

1.5
(3.6)

82
(79)

C3

C12

C6

C15

C5

C7

C8

C1

C2

19

1.8

113

100

34

1

28

1.8

13

C10

C11

165

(179)

C16

C14

1.6

20

C4

(147)

148

(5)

(16)

90
(116)

(98)

(35)

(3.5)

(35)

(23)

(4)

(106)

(24)

(3.5)

C9

C13

114

96

(88)

(110)

C0
Pharmacy

(A) (B)

Fig. 1 The optimal routes are shown in graph (A) and the actual routes in graph (B). The
distances are measured in miles and the drive times (in parentheses) are measured in minutes.
The doses of all orders are available for pickup by drivers on 04:00. The actual routes are
determined by experienced pharmacists or other personnel working in the radio-pharmacy.

We also used our model to compute optimal routes and compare them with those

determined by pharmacists for a period of one week during the month of May 2014.

That week contains some customers that are located far from the radio-pharmacy and

some others that are located in close proximity. Also the total number of imaging

centers that place orders in each day may vary. In Table 3 we include the number

of customers (i.e., imaging centers) assigned to each batch for all the days. As can

be seen the first batches in each day contain more customers. This is because the

radiopharmacies try to satisfy as much demand as possible early in the day. The size

of the MILP problems corresponding to batches assigned early in the day is larger and

will therefore require more time to be solved than the later batches. Table 4 summarizes

the improvements we get when we use the routes computed by our optimization model.

It should be mentioned, however, that the size of all MILP problems is relatively small

and the Xpress solver finds the optimal solution in few seconds. For this reason we do

not report the CPU time needed to solve these problems. Our main focus is on the

savings we obtain in the delivery cost and transportation distance compared to those

obtained by pharmacists or other experiences personnel.

In all cases the optimization model produced routes that are more cost effective

and need fewer vehicles than the actual ones. The highest improvements are obtained

in batch 1 of day 1 where we have more than 20% improvements in both the cost and

miles traveled. This is because the imaging centers fulfilled by that batch are far away

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 213 -

Day].Batch] Number of Day].Batch] Number of

customers customers

Day1.Batch1 16 Day3.Batch1 14

Day1.Batch2 13 Day4.Batch1 16

Day1.Batch3 10 Day4.Batch2 14

Day2.Batch1 14 Day5.Batch1 17

Day2.Batch2 13 Day5.Batch2 16

Day2.Batch3 11 Day5.Batch3 12

Table 3 Summary of the total number of imaging centers in each batch and day.

from each other and from the radio-pharmacy. Therefore, determining a cost effective

set of routes for delivering the orders becomes difficult for human experts even when

they have extensive experience in the subject.

On the other hand there are batches where the routes determined by the optimiza-

tion model and the human expert do not differ much in terms of cost and distance

traveled (see for example batch 3 in day 2 and batches 2 and 3 in day 1). This is also

expected because most of the imaging centers in those batches are located close to each

other and to the radio-pharmacy. As a result there is not much loss if a sub-optimal

route is selected.

Table 5 summarizes the total improvements we obtain for all batches when we use

our optimization model. We obtain savings in both the total delivery cost and traveling

distance. The cost savings represent great news for the pharmaceutical company as they

can invest them in other activities such as research and development of new drugs. The

savings in the traveling distance has the important benefit of reducing the emissions

released to the environment by the delivery vehicles and the positive impact to the

quality of air and people’s lives.

Finally we tested our optimization model on few days that contain a larger number

of customers in order to see how computation time grows in terms of the size of the

MILP problem. We could only obtained data for three days, which contained more than

25 customers placing orders. These represent large cases in the radiopharmaceutical

industry. The details are shown in Table 6 and the results are summarized in Table 7.

We can see that the optimization model is solved in relatively short time. We believe

that the running time can be reduced further if valid inequalities and heuristics were

introduced during the solution process. We plan to investigate this in a follow up paper.

We should also mention that it was not possible to obtain the actual routes (i.e., the

routes determined by the experienced personnel) and for this reason we do not report

any improvements. We expect, however, the improvements to be larger than those

reported in Table 2 as it is impossible for any human expert to determine the optimal

routes as the number of customers becomes larger.

6 Conclusion

We have presented a new way of determining routes for delivering radio-pharmaceuticals

to medical imaging centers that are geographically dispersed. The mixed integer opti-

mization model we have developed can provide the most cost effective transportation

routes and guarantees that all doses will reach the imaging centers before the time they

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 214 -

Delivery Distance Vehicles

DAY 1 cost traveled used

Batch 1

Optimal routes 1058.22 846.94 4

Actual routes 1339.73 1090.67 6

Improvements 21.01% 22.35%

Batch 2

Optimal routes 517.19 343.89 5

Actual routes 535.42 359.67 7

Improvements 3.4% 4.39%

Batch 3

Optimal routes 367.22 222.7 4

Actual routes 380.03 233.79 5

Improvements 3.37% 4.74%

Total Total Vehicles

DAY 2 cost distance used

Batch 1

Optimal routes 1035.21 827.02 4

Actual routes 1125.25 904.98 5

Improvements 8.0% 8.61%

Batch 2

Optimal routes 635.23 446.09 6

Actual routes 693.93 496.92 7

Improvements 8.46% 10.23%

Batch 3

Optimal routes 238.41 154.47 3

Actual routes 240.88 156.61 3

Improvements 1.026% 1.366%

Total Total Vehicles

DAY 3 cost distance used

Batch 1

Optimal routes 313.86 202.48 3

Actual routes 337.84 223.26 4

Improvements 7.11% 9.31%

Total Total Vehicles

DAY 4 cost distance used

Batch 1

Optimal routes 1258.36 950.96 7

Actual routes 1493.83 1154.83 8

Improvements 15.76% 17.65%

Batch 2

Optimal routes 539.94 380.9 3

Actual routes 596.58 421.28 3

Improvements 9.5% 9.58%

Total Total Vehicles

DAY 5 cost distance used

Batch 1

Optimal routes 786.21 611.44 4

Actual routes 807.65 630.0 5

Improvements 2.65% 2.95%

Batch 2

Optimal routes 398.52 267.11 5

Actual routes 445.30 307.62 5

Improvements 10.50% 13.17%

Batch 3

Optimal routes 555.68 420.50 4

Actual routes 582.17 443.44 5

Improvements 4.55% 5.17%

Table 4 Comparisons of optimal and actual routes and the improvements we obtain. The
costs are in USD and the distances in miles.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 215 -

Total cost Total distance] of vehicles

Optimal routes 7,704.05 5674.50 52

Actual routes 8,578.61 6423.07 63

Actual − Optimal 874.56 748.57 11

Improvements 10.19% 11.65% 17.46%

Table 5 Summary of the total cost, distance and number of vehicles used for a week.

Day].Batch] Number of

customers

Day6.Batch1 27

Day7.Batch1 32

Day8.Batch1 35

Table 6 Number of customers in larger batches.

Delivery Distance Vehicles CPU

DAY 6 cost traveled used time (s)

Batch 1 Optimal routes 1876.32 1383.87 12 209

Total Total Vehicles CPU

DAY 7 cost distance used time

Batch 1 Optimal routes 2338.51 1748.93 14 241

Total Total Vehicles CPU

DAY 8 cost distance used time

Batch 1 Optimal routes 2524.89 1883.34 15 265

Table 7 Computational results for batches containing a larger number of customers. The
CPU time is measured in seconds.

need to be injected to the patients. The optimization model has been applied on an

illustrative example which demonstrates the monetary and mileage savings as well as

the better utilization of the transportation vehicles. We have also tested the model on

a typical week where each day has a different demand. From that computational study

we were able to deduce that higher savings in delivery costs and distance are obtained

when the number of the imaging centers increases and the distance between them and

the production facility is large.

We plan to extend the model to cover the cases where (i) the fleet of transportation

vehicles is not homogeneous, that is there are vehicles with different capacities and

diving speed, (ii) determine which customers to serve first when there are not enough

vehicles to fulfill all orders, and (iii) determine the best strategy by which a vehicle

would collect empty containers (used in previous days) from the imaging centers it

visits.

References

1. Azi N., Gendreau M. and Potvin J.-Y.: An exact algorithm for a vehicle routing problem
with time windows and multiple use vehicles, European Journal of Operational Research,
202(3), 756-763 (2010)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 216 -

2. Bard F. J., Kontoravdis G. and Yu G.: A branch-and-cut procedure for the vehicle routing
problem with time windows, Transportation Science, 36(2), 250-269 (2002)

3. Burns, M.: Market For PET Radiopharmaceuticals and PET Imaging, Report 320, Bio-Tech
Systems Inc., 4167 Pinecrest Circle West, Las Vegas, Nevada 89121 (2010)

4. Dantzig, G. B., Ramser, J. H.: The truck dispatching problem, Management Science, 6 (1),
80-91, (1959)

5. Dessouky, M. M., Ordez, F., Jia, H., and Shen, Z.: Rapid Distribution of Medical Supplies,
In: Patient Flow: Reducing Delay in Healthcare Delivery , R. Hall (ed), Springer, (2006)

6. Doernera, K. F., Gronaltb, M., Hartl, R. F., Kiechlec, G., and Reimannd, M.: Exact and
heuristic algorithms for the vehicle routing problem with multiple interdependent time win-
dows, Computers and Operations Research, 35, 3034-3048 (2008)

7. FICO-Mosel.: Xpress-Mosel Reference Manual, Release 3.6, www.fico.com (2014)
8. FICO-Xpress.: Xpress Optimization Suite: getting started with Xpress, Release 7.3,

www.fico.com (2012)
9. Google Geocoding API.: https://developers.google.com/maps/documentation/geocoding/
10. Hillier, F. S., and Liebernam, G. J.: Introduction to Operations Research, McGraw-Hill,

New York, NY, (2009)
11. Hsu, C. I., Hung, S. F., Li, H. C.: Vehicle routing problem with time-windows for perishable

food delivery, Journal of Food Engineering, 80 (2), 465-475 (2007)
12. Jacobson, M.S.: R. A. Steichen, and P. J. Peller, PET Radiochemistry and Radiophar-

macy, In: PET-CT and PET-MRI in Oncology, Peller et al. (Eds), Springer-Verlag Berlin
Heidelberg (2012)

13. Laporte, G.: The vehicle routing problem: An overview of exact and approximate algo-
rithms, European Journal of Operational Research, 59,pp.345-358, (1992).

14. Luo, J. Y., Wang, J. Y., and Yu, H.: A Dynamic Vehicle Routing Problem for Medical
Supplies in Large-scale Emergencies, In Proceedings of the 6th Joint International Informa-
tion Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, August
20-22, 2011

15. Migahlaes, J. M., and Souza, J. P.: Dynamic VRP in pharmaceutical distributiona case
study, Central European Journal of Operations Research, 14 (2), pp 177-192, (2006)

16. Osvald A., Stirn L.: A vehicle routing algorithm for the distribution of fresh vegetables
and similar perishable food. Journal of Food Engineering 85 (2), 285295, (2008)

17. Parragh, S. N., Doerner, K. F., Hartl, R. F.: A survey on pickup and delivery problems,
Journal fur Betriebswirtschaft, 58 (1), 21-51 (2008)

18. Savelsbergh, M.: Local search in routing problems with time windows. Annals of Opera-
tions Research 4(1):285305 (1985)

19. Tarantilis, C. D., Kiranoudis, C. T.: A meta-heuristic algorithm for the efficient distribu-
tion of perishable foods, Journal of Food Engineering, 50, 1-9, (2001)

20. Toth, P. and Vigo, D.: The vehicle routing problem, SIAM, Philadelphia (2002)
21. Zanoni, S., Zavanella, L.: Single-vendor single-buyer with integrated transport-inventory

system: models and heuristics in the case of perishable goods, Computers and Industrial
Engineering, 52 (1), 107-123 (2007)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 217 -

Victor Pimenta, Alain Quilliot, Hélène Toussaint

LIMOS CNRS 6158, Labex IMOBS3,Blaise Pascal University,

63000 CLERMONT-FERRAND, FRANCE

E-mail: {pimenta, toussain, quilliot}@isima.fr

Daniele Vigo

BOLOGNE University, ITALY

E-mail: daniele.vigo@unibo.it

MISTA 2015

Reliability Oriented DARP Models Involving Autonomous Vehicles

Victor PIMENTA • Alain QUILLIOT • Hélène TOUSSAINT • Daniele VIGO

Abstract We deal here with a static decisional model related to the monitoring of a

DARP (Dial and Ride) system which involves, on a closed industrial site, small electrical

autonomous vehicles. Because of technological issues, we focus on reliability, and propose a

model which aims at assigning requests to vehicles in a way which minimizes the number of

load/unload transactions. We first propose an ILP formulation of this Stop-Number model and

compare the respective behaviors of several of its variants. Next we study it from a theoretical

point of view and perform an experimental analysis of the behavior of a set covering oriented

reformulation of the model. Finally we choose to handle our Stop-Number problem in a

heuristic way, through a GRASP scheme which implements insertion mechanisms, well fitted

to realistic dynamic contexts. Those methods are implemented and tested.

1. Introduction

Current trends in mobility management involve the emergence of flexible reactive

systems, which meet mobility demands in a dynamic way while implementing some vehicle

sharing. Those emerging systems strive to find their room between full individual mobility and

traditional collective transportation systems. They also aim at bridging the gap between good

and people mobility, and involve advanced technologies [16]: Internet, web services, mobile

communications, remote tracking and monitoring… Depending on the context, they may work

as closed systems, which are systems whose access is restricted to users who accept rules

related to mobility tracking, pricing and responsibility, or open systems, which work on the

basis of a free access/free market principle. Among such systems, one may mention Dial and

Ride systems, Car-Sharing, Car-Pooling systems (AUTOLIB…), and Ride Sharing systems.

Recent advances in artificial perception and remote control make now arise new

generations of autonomous (without any driver) individual or collective electrical vehicles:

Cycab, VIPA (Individual Autonomous Vehicles of LIGIER S.A),…, which are involved into

the design of new mobility services [10]. In case of VIPA electrical cars, experiments are

currently undertaken on MICHELIN industrial site in CLERMONT-FERRAND, FRANCE, in

order to assist internal mobility of both people and objects (internal mail, small packages…)

inside the industrial site. Other applications are considered for the future, involving hospitals

and some pedestrian downtown areas.

Such an experimental service works like a specific Dial and Ride (DARP) system. Users

call from smart phones or from ad hoc communication devices and wait for the vehicles which

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 218 -

are going to service them. But, since related moves are performed inside a closed restricted

area (no more than a few square kilometers), user’s demands must be handled in a very reactive

way. Also, since autonomous vehicles are involved, there are very few routing options, and

vehicles most often move along predetermined routes with fixed lengths. Thus, routing, as well

as minimizing individual riding times and total riding times, are not anymore a key issue. What

matters is reliability, related to the steady flow of the traffic induced by the involved vehicle

fleet, and which can be improved through lean scheduling: scheduling has to smooth the

trajectories of the vehicles and minimize complex interactions between the vehicles.

The model which we handle here, and which may be viewed as an extension of interval

graph coloring models, is typical of this new kind of problems. It derives from a case study

about the management of a specific Dial and Ride system, which involves VIPA automated

vehicles and works in real time as a “horizontal elevator”. Constraints are the classical DARP

constraints, but performance criterion focuses on Stop Minimization: we do in such ways that,

as often as possible, vehicles follow their way while avoiding any break (deviation toward a

parking place, load/unload transactions…) in their trajectory. Though in practice, the related

decision problem has to be handled on line, with performance evaluated through discrete event

simulation, we set here, in order to get both benchmarks and a better understanding of the

problem, a specific static (off line) ILP Stop-Number decision model.

So the paper is organized as follows: in section 2, we set our Stop-Number problem in a

formal way, and provide it with an ILP formulation. Also, we discuss variants of this problem,

and propose a set covering oriented reformulation of the Stop-Number model, which avoids

considering the number of vehicles as a parameter of the model. Next, in section 3, we discuss

some theoretical features of our model, and perform an experimental analysis of the behavior

of its different ILP formulations. Finally, in section 4, we propose and test a GRASP heuristic

algorithm (see [19]), based on insertion mechanisms, specially well-fitted to on line contexts.

2. A Static ILP model

Automated VIPA Vehicles [10], run here along a closed network which has the shape of a

circuit , while meeting Dial and Ride demands (see [1, 3, 4, 5]). It would be possible to

propose other topologies for such a network, like tree or star topologies, but, in any case, a key

point here is that there will be only one elementary path connecting some origin o to some

destination d. So routing is not going to be here a part of the problem. The nodes of are

denoted by {0..n = 0}, and the vehicles always run in the same direction: in case a demand is

about the transportation of some load L from an origin o to some destination d, the related

trajectory is {o, o+1 Mod n, o+2 Mod n,.., d). Circuit is made of a common track and of

load/unload areas, associated with nodes {0..n-1} according to figure 1 below:

Figure 1: VIPA Track

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 219 -

Node 0 is a Depot node, where vehicles may charge batteries, and the speed of the

vehicles on the main track is constant (about 15 km/h): thus overtaking is forbidden on the

main track. When a vehicle gets out some load/unload area, it has no priority on the other

vehicles. Vehicles meet users on load/unload areas. The profile of the speed of a vehicle in the

neighborhood of a load/unload area comes as in figure 2:

Figure 2: VIPA Speed Profile

Running along the whole circuit without stopping anywhere only takes a few minutes. So,

an important feature of the problem is that a vehicle may run several times around (waiting

laps)before effectively servicing a user. Still we forbid such a user to stay a full tour inside the

vehicle. It comes that managing the vehicle fleet means, for every demand j, accepting it or

rejecting it, and, in case it is accepted, assigning it both a vehicle k and a waiting lap h, that

means the number of times the vehicle is going to run along before servicing this demand.

We adopt here a static point of view, and suppose that we are provided with a fixed

number K of identical vehicles, all located at time 0 in the Depot node of , all those vehicles

being endowed with a same capacity CAP, which represents a weight or a number of

passengers. Thus, a demand (or request) j = (o(j), d(j), L(j)) is defined by an origin o(j) and a

destination d(j), both in {0..n-1}, together with a load L(j). We first suppose here that users ask

for the system only when they are ready to move, and, so, that a demand does not involve any

kind of temporal requirement (time-window…). We denote by H the largest number of tours a

vehicle is allowed to perform before starting servicing a given demand (waiting lap). In order

to avoid dealing with Rejected Demand minimization, we suppose that the Vehicle Number K

is large enough to meet all demands according to the waiting lap restriction induced by H.

Since reliability, which is essentially correlated to load/unload transactions, is at

stake,we assign vehicles and waiting laps to users in such a way that vehicles minimize their

Stop Number, that means stay as often as possible on the main track without deviating onto the

load/unload areas. This defines the Stop-Number Minimization Problem. If we refer to the

standard Dial and Ride criteria (see [3, 5, 7]), we see that individual riding times are not part of

our problem. Also, we intuitively feel that, because of Figure 2, minimizing the Stop Number

will also tend to minimize the Global Riding Time of the fleet as well as the Vehicle Number,

which means the number of vehicles which are needed in order to meet the demands.

2.1 The ILP Stop Number Minimization Model

In order to cast our problem into a formal framework, we unfold the circuit as a linear

ordered set I() = {0..(H + 2).n}, which we call the Stop Node Set.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 220 -

Let D be the set of all demands j = (o(j), d(j), L(j)), j = 1..m. In case d(j) < o(j), we

replace d(j) by d(j) + n. So we associate, with every demand j = 1..m, a collection of H + 1

discrete intervals Ij,h = {o(j) + h.n, …, d(j) + h.n}, h = 0..H, of the Stop Node Set.

Clearly, we may suppose that every node i = 1..n-1 is active for our problem, that means

such that there exists at least one index value j such that i = o(j) or i = d(j). If it is not the case,

we remove all non-active nodes from the set {1..n-1}.

For any node i in the Stop Node Set, i ≠ (H+2).n, we set:

 Cross(i) = {(j,h), j = 1..m, h = 0..H, such that o(j) + h.n ≤ i < i+1 ≤ d(j) + h.n}: so, j

Cross(i) means that if a vehicle services j after running h times around , (that means

according to waiting lap h), then it must be carrying load L(j) when moving from node

i to its successor i+1;

 Stop(i) = {(j, h), j = 1..m, h = 0..H, such that (d(j)+ h.n = i) OR (o(j)+ h.n = i)}: so, j

Stop(i) means that if a vehicle services j according to waiting lap h, then it stops at i.

Then we get the following simple ILP model for the Stop Number Minimization problem,

in case the number K of available vehicles is fixed:

Stop-Number(K) ILP Model:

{Unknown vectors:

 Z = (Zj,k,h, j = 1..m, k = 1..K, h = 0..H) with {0, 1} values : Zj,k,h = 1 if vehicle k services

demand j according to waiting lap h;

 T = (Tk,i, k = 1..K, i = 1..n.(H+2)-1, with {0, 1} values : Tk,i = 1 if i is a stop node for

vehicle k.

Constraints:

 For any j = 1..m, k,h Zj,k,h = 1; (*Demand j is serviced once*)

 For k, i, (j,h) Cross(i) L(j). Zj,k,h ≤ CAP, (*Capacity Constraints*)

 For any k, i , any (j, h) Stop(i): Zj,k,h ≤ Tk,i. (*Coupling Constraints*).

Minimize : k, i Tk,i}

Let us denote by V-Stop-Number(K) the optimal value of the Stop-Number(K) program.

Then the Stop Number Minimization problem comes as follows: {Compute K = KSto such that

V-Stop-Number(K) be the smallest possible}. In case all loads L(j), j = 1..m, are equal to 1, we

talk about the Unit Stop-Number Problem.

2.2 Extensions and Variants

Time Windows: Introducing time windows in the Stop-Number model means imposing lower

and upper bounds Min(j), Max(j), j = 1..m on the waiting laps h(j), j = 1..m: which means

setting: Zj,k,h = 0 for any h {Min(j), .., Max(j)} and for any k = 1..K.

Let us denote now by Load-Vehicle(K) the feasibility problem which derives from

restricting the Stop-Number(K) ILP Model to vector Z.

Feasibility Load-Vehicle(K) ILP Model:

{Compute Z = (Zj,k,h, j = 1..m, k = 1..K, h = 0..H) with {0, 1} values such that:

 For any j = 1..m, k,h Zj,k,h = 1; (*Demand j is serviced once*)

 For any vehicle k, any stop node i = 0..(H+2).n - 1,

 (j,h) Cross(i) L(j). Zj,k,h ≤ CAP; (*Capacity Constraints*)}

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 221 -

This allows us to set the following variants of the Stop-Number problem:

 Vehicle Number Minimization: {Compute the smallest value K = KVeh such that Load-

Vehicle(K) has a feasible solution}

 Global Riding Time Minimization: {Compute K = KRid such that Load-Vehicle(K) has

a feasible solution and such that the sum 2K + (Optimal value of the following

program Global-Riding(K)) is the smallest possible}:

Global-Riding(K) ILP Model:

{Compute Z = (Zj,k,h, j = 1..m, k = 1..K, h = 0..H), with {0, 1} values, and Ridek , k =

1..K, with integral values, such that:

 For any j = 1..m, k,h Zj,k,h = 1; (*Demand j is serviced once*)

 For any k, any i, (j,h) Cross(i) L(j). Zj,k,h ≤ CAP; (*Capacity Constraints*)

 For any k, and any h,j, h.Zj,k,h ≤ Ridek;

 k Ridek is the smallest possible}

2.3 A Set Covering Oriented Generic Reformulation.

As it also happens for the graph coloring problem (see [6, 8, 12]), our previous formulation of

the Stop-Number problem is not a true ILP one, since it does not manage parameter K

according to the ILP formalism. Modifying it in such a way it induces a true ILP model

increases its size and leads to a rather clumsy formulation, which makes appear a large number

of useless vehicles. But it is possible, following [1, 9], to reformulate the Stop-Number model

as a set covering oriented ILP model. In order to do it, we define the notion of feasible service

 A feasible service is any pair s = (J, h), where J is some subset of the set {1..m}, and h

some function from {1..m} to {0..H}, such that, for any stop node i = 0..(H+2).n – 1:

 j J such that (j,h(j)) Cross(i) L(j) ≤ CAP.

Clearly, a feasible service identifies a set J of demands which might be serviced by a same

vehicle together with, for any such a demand j J, its related waiting lap h(j). According to

this, we use the notation j s in order to say that demand j is met by service s.

Then we denote by S the set of all feasible services. For any s = (J, h) S, we set: Stop-

Node(s) = {i 1..(2+H).n – 1, such that Stop(i) J is not empty}.We denote N-Stop(s) the

cardinality of Stop-Node(s). Doing it leads to following Stop-Number reformulation:

Stop-Number Set Covering Oriented Reformulation:

{Unknown vector: (Xs, s S) with {0, 1} values: Xs = 1 if some vehicle performs the

feasible service s.
Constraints : For any j 1..m, s such that j s Xs = 1 ; (*Every demand is serviced once*)

Minimize : s N-Stop(s).Xs}

We notice that this Set Covering oriented reformulation does not involve the parameter K.

3. A First Theoretical and Experimental Analysis

Before proposing and testing algorithms, we first try to identify the features which make it be a

really difficult problem. Also, we compare to each other in an experimental way the different

variants which were introduced in previous Section 2.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 222 -

3.1 Linking the Stop-Number Problem with Interval Graph Coloring: Discussing Complexity.

The first question which arises in a natural way is about worst case complexity. We may state:

Theorem 1: In the case when H = 0, and no hypothesis is done about CAP and the loads L(j),

j = 1..m, Stop-Number is NP-Hard.

Proof: We may consider a collection of demands j = 1..m such that:

 o(j) = 1 and d(j) = n-1 for every j = 1..m; 2.CAP = j L(j).

Then the optimal value of the related Stop-Number instance is equal to 4 iff the 2-

Partition instance which is defined by CAP and the loads L(j) has a solution. End-Proof.

In case L(j) are all equal to 1 (Unit Stop-Number Problem), we can only conjecture:

Conjecture: If H = 0, the Unit Stop-Number Problem is NP-Hard.

Still, in case H = 0, the Unit Stop-Number Problem is close to time-polynomiality. If H =

0, then the matrix associated with the Load-Vehicle(K) feasibility model is totally unimodular,

since, for every k = 1..K, the matrices Mk defined by the constraints:

 For any stop node i, (j,h) Cross(i) L(j). Zj,k,h ≤ CAP, (*Capacity Constraints*)

are a same interval matrix. As a matter of fact, if H = 0, the Unit Vehicle-Number problem can

be solved through a Min Flow algorithm (see for instance [8]).

Also, in the case when K and CAP are fixed and H = 0, it happens that the Stop-Number

problem is time-polynomial, even if no restriction is imposed on the load values L(j), j = 1..m.

Theorem 2: If H = 0 and if CAP, K are fixed, then the Stop-Number Problem can be

solved in polynomial time.

Proof: We only have to check that, in such a case, the Stop-Number problem may be

solved through dynamic programming, while involving a state space of polynomial size. We

scan the set TS of pairs (i, j), i = 1..n, j = 1..m, linearly ordered as follows: (i, j) << (i’, j’) iff (i

< i’) or ((i = i’) and (j < j’)). This set plays the role of the time space. We consider that the

current state of the process at such an time (i0, j0) in TS is defined as the current load functions

LOADk, k = 1..K, which to any load 1 ≤ L ≤ CAP makes correspond the largest node i1, i0 ≤ i1 <

i0 + n, such that the load of k is already scheduled to be larger or equal to L, based upon the

subset {j such that (o(j) < i0) or ((o(j) = i0) and (j < j0)} of the set {1..m} induced by all

demands which have already been assigned to vehicles k = 1..K. Then the decision consists in

assigning the smallest j1 ≥ j0 such that o(j1) = i0 to some vehicle k, in such a way the capacity

constraint is not broken and some Bellman equations be satisfied. End-Proof.

3.2 Evaluating the Practical Difficulty of Stop-Number: the Lower Bound Issue

In order to get an idea of the practical difficulty of the Stop-Number problem, we run the

Stop-Number(K) ILP program with the CPLEX library, while observing the way running times

vary as a function of n, m and K, together with the gap induced by relaxation of the integrality

constraints on both vector Z and T. Since no test-bed exists for the Stop-Number problem, we

randomly generate instances Gr_n-m-H-L-CAP, whose main characteristics are:

 n = number of active stop nodes of the circuit; m = number of demands;

 H = maximal waiting lap; L = mean load value; CAP = common vehicle capacity.

 For every instance, we apply the CPLEX12 library on both the Stop-Number(K) program

and its rational relaxation. We denote by:

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 223 -

 OPT: optimal value of Stop-Number(K); OPT*: optimal value of therelated rational

relaxation; GAP = (OPT – OPT*)/OPT; KSto = the related vehicle number;

 KVeh = optimal value of the Vehicle-Number model;

 CPU: CPU running time related to the resolution of Stop-Number(KVeh), in seconds.

Tests are performed on a serveur linux CentOS release 6.6, processeur Intel(R) Xeon(R)

CPU E7- 8870 @ 2.40GHz, with the help of the CPLEX12.5 LP Library, and we get:

Instance KVeh KSto OPT OPT* GAP (%) CPU

Gr_10-28-0-5-10 6 6 29 15 48.3 1.6

Gr_10-28-1-5-10 3 4 24 12.5 47.9 25.6

Gr_10-28-2-5-10 2 3 22 11.6 47.0 47.5

Gr_10-28-3-5-10 2 2 22 11.25 48.9 30.3

Gr_10-28-4-5-10 2 2 22 11 50.0 433.4

Gr_10-33-0-5-10 10 10 37 18 51.3 13.4

Gr_10-33-1-5-10 5 5 31 14 54.8 604.8

Gr_10-33-2-5-10 4 4 29 12.6 56.3 1636.5

Gr_10-33-3-5-10 3 3 29 12 58.6 4933.9

Gr_10-33-4-5-10 2 2 29 11.6 60.0 1512.0

Gr_10-38-0-5-10 8 8 33 16 51.5 122.7

Gr_10-38-1-5-10 4 4 29 13 55.1 617.0

Gr_10-38-2-5-10 3 3 28 12 57.1 3926.8

Gr_10-38-3-5-10 2 3 27 11.5 56.9 2473.5

Gr_10-38-4-5-10 2 2 27 11.1 58.8 5540.4

Gr_15-42-0-5-10 11 12 50 23 54.0 11244.7

Table 1: No Hypothesis about the loads L(j), j = 1..m.

Instance KSto OPT CPU OPT* GAP

Gr_10-28-0-1-5 6 23 3.1 15.00 34.78

Gr_10-28-1-1-5 3 20 16.9 12.50 37.50

Gr_10-28-2-1-5 2 19 31.3 11.67 38.60

Gr_10-28-3-1-5 2 18 37.7 11.25 37.50

Gr_10-28-4-1-5 2 18 200.6 11.00 38.89

Gr_10-33-0-1-5 10 26 17.3 18.00 30.77

Gr_10-33-1-1-5 5 22 239.6 14.00 36.36

Gr_10-33-2-1-5 4 21 830.2 12.67 39.68

Gr_10-33-3-1-5 3 20 1255.8 12.00 40.00

Gr_10-33-4-1-5 2 20 1227.2 11.60 42.00

Gr_10-38-0-1-5 8 25 61.7 16.00 36.00

Gr_10-38-1-1-5 4 22 665.1 13.00 40.91

Gr_10-38-2-1-5 3 21 1938.4 12.00 42.86

Gr_10-38-3-1-5 2 21 2390.1 11.50 45.24

Gr_10-38-4-1-5 2 21 11278.1 11.13 47.02

Gr_15-42-0-1-5 11 37 22493.8 23.00 37.84

Table 1.bis: The Unit Case.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 224 -

Analysis:

1. Not surprisingly, we fail solving the general Stop-Number(K) model, as soon as n and m

become larger than respectively 10 and 30. What can be seen here is that the GAP

value is very large: in most cases, the lower bound which is obtained through

relaxation of the integrality constraint of Stop-Number(K) is less than 50% of the

optimal value OPT. This can be easily explained because of the coupling constraint:

relaxing the integrality constraint on Z allows to split demands j = 1..m into several

small fractional pieces, and distribute them among the vehicles k = 1..K and the

waiting laps 0..H. It follows that related values Ti,k may turn out to be very close to 0.

2. The situation is improved when we limit ourselves to the case H = 0 and so keep

demands j = 1..m from being distributed along the temporal dimension.

3. As could be expected from previous subsection 3.1, the case when H = 0 and loads L(j)

are equal to 1 can be handled in a more efficient way. In such a case, we also see that

relaxing the integrality constraint of Stop-Number yields lower bounds with a GAP

value around 35% , that means with better quality.

The Lower Bound Issue: Using the Set Covering Oriented Reformulation.

If one wants to design exact methods for the Stop-Number problem, which will

outperform CPLEX12 and solve larger size instances, then one needs to be able to compute a

better lower bound that the standard one, obtained through relaxation of the integrality

constraint. One may think into getting a better lower bound by relaxing the integrality

constraint of the Set Covering Oriented Stop-Number Reformulation, and solving it through

column generation. This would lead to an exact resolution of the Stop-Number Problem

through Branch and Price algorithm.

Let us suppose that we are provided with an active service subset S0 of the feasible service

set S, and that we just solved the restriction of the Stop-Number Set Covering Reformulation.

Then we are provided with a related dual solution (= (j, j = 1..m)), and generating a new

service s = (J, h) means solving the following ILP model:

ILP Stop-Number-Price Model:

{Unknown vectors:

 Z = (Zj,h, j = 1..m, h = 0..H) with {0, 1} values : Zj,h = 1 if (j, h) is in s ;

 T = (Ti, i = 1..(2+H)n-1, with {0, 1} values : Ti = 1 if i Stop-Node(s).

Constraints:

 For any i = 0..(2+H).n-1: (j, h) Cross(i) L(j). Zj,h ≤ CAP;

 For any j =1..m, h = 0..H Zj,h ≤ 1; (*No Redundancy Constraint*)

 For any i = 1..(2+H).n-1, (j ,h) in Stop(i): Zj,h ≤ Ti; (*Coupling Constraints*)

Maximize : j j . Zj,h - i Ti, which should be > 0}.

If we suppose that we are able to efficiently solve this model, then it turns out that

relaxing the integrality constraint of the Stop-Number Set Covering oriented Reformulation

provides us with a very good lower bound, as shown by the following table 2:

 Gr_n-m-H-t-CAP has the same meaning as in sub-section 3.2.

 OPT is the optimal value of Stop-Number, and V is the lower bound obtained by

relaxing the integrality constraint in the Stop-Number Set Covering oriented

Reformulation;

 CPU is the CPU-Time (in seconds) which was necessary in order to get the V value;

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 225 -

 COL is the number of columns which have been generated in order to get V.

Instance KStop OPT V GAP (%) CPU COL

Gr_10-28-0-5-10 6 29 28.63 1.29 0.97 82

Gr_10-28-1-5-10 4 24 23.40 2.51 26.09 224

Gr_10-28-2-5-10 3 22 22.00 0.00 232.49 413

Gr_10-28-3-5-10 2 22 21.69 1.42 2278.34 539

Gr_10-28-4-5-10 2 22 21.50 2.27 3045.29 508

Gr_10-33-0-5-10 10 37 37.00 0.00 2.50 100

Gr_10-33-1-5-10 5 31 30.34 2.12 56.96 287

Gr_10-33-2-5-10 4 29 28.67 1.14 314.39 384

Gr_10-33-3-5-10 3 29 28.20 2.76 3724.86 446

Gr_10-33-4-5-10 2 29 Fail- time out 499

Gr_10-38-0-5-10 8 33 31.85 3.49 55.44 199

Gr_10-38-1-5-10 4 29 27.72 4.42 117.82 372

Gr_10-38-2-5-10 3 28 26.70 4.64 1624.9 533

Gr_10-38-3-5-10 2 28 Fail- time out 582

Gr_10-38-4-5-10 2 27 Fail- time out 626

Gr_15-42-0-5-10 12 50 50.00 0.00 3.35 117

Table 2: Column Generation with No Hypothesis about the loads L(j), j = 1..m.

But unfortunately, the issue which is raised by the Stop-Number-Price problem appears to

be difficult.

Practically, running times required by CPLEX12 in order to run Stop-Number-Price do

not allow to use it inside a global Branch/Price program. Experiments show that relaxing the

integrality constraint in Stop-Number-Price usually provides a very poor lower bound. As a

matter of fact, the very specific structure of the objective function, which is made of the

difference of two antagonistic quantities:

 j j .Zj,h and i Ti, is a part of the difficulty. Moreover, we may check that:

Theorem 3: The Stop-Number-Price problem is NP-Hard, even in the case when H = 0,

when the loads L(j), j = 1..m, are all equal to 1, and when CAP = + .

Proof: As a matter of fact, we only need to prove that if Q is some integral number in {1,

.. , n-1}, then solving Stop-Number-Price while imposing and i Ti = Q is NP-Hard. Let us

consider any non oriented graph G whose node set is the set {1, .. , n-1}. With every edge [x,

y], x < y, in this graph we may associate some demand j such that o(j) = x and d(j) = y, and set

j= 1. Then we see that computing a solution (Z, T) of Stop-Number-Price such that i Ti = Q

and j j .Zj,h ≥ Q.(Q-1)/2 means finding a complete sub-graph of G with exactly Q nodes.

End-Proof.

Still, if H = 0, and if CAP is considered as being fixed, our problem happens to be time-

polynomial:

Theorem 4: In case CAP is fixed and H = 0, then Stop-Number-Price can be solved in

polynomial time.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 226 -

Proof. It can be solved through dynamic programming, as a shortest path problem set on

an acyclic digraph F with a number of vertices which depends in a polynomial way on n and m.

We define a state as being any integer valued vector V = (V1,..,VCAP), such that n ≥ V1 ≥ V2 ≥ ..

≥ VCAP ≥ -1. A state corresponds to the possible load profile functions of a vehicle when it

arrives on some stop node i, while being loaded according to decisions which have been taken

on nodes i’ such that i’≤ i: the vehicle will carry a load ≥ c when arriving at any node i1 such

that i1 ≤ i + Vc and this load is going to be less than c when the vehicle leaves node i + Vc; V1

= -1 means that the vehicle is empty when it arrives to i. Clearly, vector V tells us whether the

vehicle is supposed to unload at node i, and, so, whether i is currently scheduled as a stop node

for the vehicle. We denote by SV the set of all possible states. Then the nodes in the digraph F

are all 3-uples (i, j, V), i = 0..n-1, j = 1..m, such that o(j) = i, V SV, augmented with 2

fictitious nodes Start and End. An arc ((i0, j0, V0), (i1, j1, V1)) exists in F if one of the following

cases holds:

 Case 1: i1 = i0 + 1, j1 = (smallest index value j, such that o(j) = i1), V1 = V0 – 1: the

meaning is that the vehicle moves from i0 to i0 + 1 without loading L(j0);

 Case 2: i1 = i0 + 1, j1 = (smallest index value j, such that o(j) = i1), V1 derives from V0

by taking into account the additional load L(j0) between o(j0) = i0 and d(j0) and the fact

the vehicle has been moving from i0 to i0 + 1 after loading L(j0): the meaning is that

the vehicle moves from i0 to i0 + 1 after loading L(j0);

 Case 3: i1 = i0, j1 = (smallest index value j > j0, such that o(j) = i1), V1 = V0: the

meaning is that the vehicle remains located at i0 and does not load L(j0);

 Case 4: i1 = i0 + 1, j1 = (smallest index value j > j0, such that o(j) = i1), V1 derives from

V0 by taking into account the additional load L(j0) between o(j0) = i0 and d(j0): the

meaning is that the vehicle remains located at i0 and decide to load L(j0).

In cases 1 and 3, the arc ((i0, j0, V0), (i1, j1, V1)) is provided with a null length. In cases 2

and 4, it is provided with a length which expresses the impact on the Stop Number of the

insertion of demand j0 into of the vehicle, taking into account current state V0. One easily

checks that solving our Stop-Number-Price problem means computing a shortest path in this

acyclic digraph F. End-Proof.

3.3 Experimental Comparison of the Stop-Number, Vehicle-Number, and Global-Riding

Models.

The tests which we present here aim at comparing the behavior of the variants Vehicle-Number

and Global-Riding of Stop-Number. At stake is the behavior of any multi-criterion model

which would simultaneously involve not only reliability but also some of the usual criteria of

the DARP models: global running costs, individual quality of service criteria. Our intuition is

that, while minimizing the Vehicle Number or the Global Riding Time has probably no impact

on the Stop Number, conversely, minimizing the Stop Number should tend to optimize those

other criteria.

In do it while considering the same instances as in previous sub-section 3.2., and solve the

related Vehicle-Number and Global-Riding models while using the CPLEX12 library. We

denote by:

 KRid and KVeh respectively the vehicle number K associated with optimal solution of the

Global-Riding and the Vehicle-Number models.

 Gl-Rid the optimal value of Global-Riding(KRid); Gl-Rid-Stop the Global Riding value

induced by an optimal value of Stop-Number; Gap the gap (Gl-Rid-Stop - Gl-Rid)/

Gl-Rid.

We get the following results:

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 227 -

Instance KSVeh KSto KRid Gl-Rid Gl-Rid-Stop Gap

Gr_10-28-0-5-10 6 6 6 12 12 0.00

Gr_10-28-1-5-10 3 4 3 9 12 33.33

Gr_10-28-2-5-10 2 3 2 8 12 50.00

Gr_10-28-3-5-10 2 2 2 8 9 12.50

Gr_10-28-4-5-10 2 2 2 8 11 37.50

Gr_10-33-0-5-10 10 10 10 20 20 0.00

Gr_10-33-1-5-10 5 5 5 15 15 0.00

Gr_10-33-2-5-10 4 4 4 14 15 7.14

Gr_10-33-3-5-10 3 3 3 13 15 15.38

Gr_10-33-4-5-10 2 2 2 12 12 0.00

Gr_10-38-0-5-10 8 8 8 16 16 0.00

Gr_10-38-1-5-10 4 4 4 12 12 0.00

Gr_10-38-2-5-10 3 3 3 11 12 9.09

Gr_10-38-3-5-10 2 2 2 10 15 50.00

Gr_10-38-4-5-10 2 2 2 10 11 10.00

Gr_15-42-0-5-10 11 12 11 22 24 9.09

Table 3: Comparing Models (No hypothesis on the loads L(j))

Comments: Values KStop, KVeh and KRid are most often very close: minimizing the Stop

Number or the Global Riding also tends to minimize the Vehicle Number. By the same way,

Gl-Rid-Stop is usually close to Gl-Rid: minimizing the Stop Number also tends to minimize the

Global Riding value.

4. A GRASP INSERTION BASED HEURISTIC for STOP-NUMBER

If we come back to the practical context which motivates the Stop-Number model, we should

think that our ultimate goal is the real time management of automated vehicles. So, we propose

now a heuristic approach, whose main characteristics is that it is likely to be suited to on line

utilization, since it relies on an insertion mechanism: at some time during the process, while

vehicles are already partially loaded, current demands are successively inserted into the

vehicles. This class of algorithm links in a well-fitted way off line and on line paradigms,

since, when dealing with an on line instance, we have to insert, in real time, newly emitted

demands into the current roadmap of the vehicle fleet, while taking into account those, among

the formerly emitted demands, which have not been completely services yet.

As a matter of fact, what we propose here is a GRASP heuristic (see [19]) algorithm

GRASP-Stop- Number-Insert, which can be decomposed into a non deterministic greedy

initialization process and a descent loop, according to the following scheme:

GRASP-Stop-Number-Insert (R: Replication Parameter);

For r =1..R do

While all demands have not been inserted do

Pick up j in {1..m}, which has not been inserted yet

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 228 -

and Insert j in the current vehicle set; (*Initialization Process*)

EndWhile

Not Stop

While Not Stop do

Try to perform a local transformation of the current solution (Z, T) which makes

decrease the related quantity k, i Tk,i; (*Local Search Process*)

EndWhile

EndFor

Keep the best solution (Z, T) ever obtained.

4.1 The Initialization Process

Since we suppose here that all demands have to be accepted, and since we do not know, at the

beginning of the process, the number of vehicles which are going to be involved, we use the

number K of vehicles as a variable, while introducing a fictitious empty vehicle which helps

dealing with the cases when the Insertion process requires an additional vehicle. Then the

initialization loop

While all demands have not been inserted do

 Pick up j in J, which has not been inserted yet and Insert j in the current vehicle set;

may be specified as follows:

GRASP-Stop-Number-Insert Initialization loop;

J {1..m}; K 0; Service(1) Nil; (*Comment: Service(k), k = 1..K +1, represents the

current service of vehicle k; K + 1 denotes the Fictitious Vehicle, and K the current Vehicle

Number*)

While J ≠ Nil do

Randomly pick up j0 J, according to some priority rules, and Remove it from J;

 (I1)

Compute k0 in 1..K, h0 = 0..H, such that inserting j0 into Service(k0) with waiting lap

value h(j0) = h0 is feasible and the Quality level is the highest possible;

Insert (j0, h0) into Service(k0); (I2)

If k0 = K + 1 then increase K by 1; EndIf

EndWhile

The final result is provided by the Vehicle Number K and by the collection Service(k),

k = 1..K.

We must provide now more details about the priority rules of instruction (I1) and about

the way the Quality measure, which commands the choice of both the insertion vehicle k0 and

the waiting lap value h0, is defined.

As a matter of fact, we do in such a way that, at any time during the process, we are

provided, for any vehicle k and any non inserted demand in J, with:

 A Profile function Pk : for any node i = 0..(2+H).n -1, Pk(i) is the residual capacity of

vehicle k between i and i +1;

 A Boolean valued function B-Stop: for any i = 1..(2+H).n - 1, k = 1..K, B-Stop(k, i) =

1 if k loads or unloads some inserted demand at node i, that means if i Stop-

Node(Service(k)).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 229 -

This information enables us to design both priority rules of (I1) and the Quality measure

of (I2) as follows:

Priority Rule (Instruction (I1)): at any iteration of the “While J ≠ Nil do” loop, we

compute, for any non inserted demand j in J, the set Kj of the vehicles which have enough

residual capacity to accept demand j, that means which are such that there exists h = 0..H

satisfying:

 for any i = o(j) + h …d(j) + h -1, L(j) ≤ Pk(i).

Then the priority rule targets demands j which are such that Card(Kj) does not exceed the

current value Min j J Card(Kj) + 1.

Choosing k0 and h0: the Quality Criterion.

Let us suppose that the target demand j0 has been identified. Then, in order to compute the

insertion parameters k0 and h0, we set, for any k in Kj0:

 INSER(j0, k) = {h = 0..H such that for any i = o(j0) + h …d(j0) + h -1, L(j0) ≤ Pk(i)}.

INSER(j0, k) provides us with the waiting lap values h which make possible inserting j

into Service(k).

Then, for any k in Kj0 and any h in INSER(i0, k), we define the additional stop quantity

Add-Stop(j0, k, h) as being the number 2 - B-Stop(k, o(j0) + h.n) - B-Stop(k, d(o(j0) + h.n) of

additional stop nodes which would be induced by the insertion of j0 into vehicle k according to

waiting lap h.

Next, for any k in Kj0 and any i in 1..(H+2).n – 1, we define the pyramidal residual

capacity of vehicle k in node i as being the quantity PRC(k, i) = i1 Z Pk(i-i1).(i1), where the

pyramidal shape function is defined by:

 (t) = 0 if Abs(t) = Absolute Value of t ≥ n;

 (t) = (1 – Abs(t)/n) else.

Intuitively, this pyramidal residual capacity evaluates the feasibility of the insertion into k

of a demand j which would induce a stop in i. It is computed as the result of a kind of

convolution sum with kernel function .

Then our Quality criterion is defined as the additional stop quantity Add-Stop(j0, k, h),

and, in case of tie-breaks, by the value PRC(k, i) of the pyramidal residual capacity which

measures the reusability of the additional stop node i in case we decide to insert j0 into k

according to waiting lap h. That means that, in case we need to create additional stop nodes for

target vehicle k0, we do it in such a way that those additional nodes become reusable, and that

demands which involve the same stop nodes might also be inserted into vehicle k0.

More specifically, we consider 3 cases:

 First case: there exists k, h such that Add-Stop(j0, k, h) = 0. Then we randomly

choose k0, h0 such that Add-Stop(j0, k0, h0) = 0, and assign vehicle k0 and waiting

time h0 to demand j0.

 Second case: the first case does not hold, but there exist pairs (k, h) such that Add-

Stop(j0, k, h) = 1. For any such a pair (k, h), assigning vehicle k and waiting time h

to j0 means creating an additional stop node i(k, h) for k. Then we choose (k0, h0)

such that the resulting pyramidal residual capacity PRC(k0, i(k0, h0)) be the largest

possible.

 Third case : neither the first case nor the second case holds. That means that for any

pair (k, h), h INSER(j0, k), assigning vehicle k and waiting time h to j0 means

creating 2 additional stop nodes i1(k, h) and i2(k, h). Then we choose (k0, h0) in

such a way that the pyramidal residual capacity PRC(k0, i1(k0, h0) + PRC(k0, i2(k0,

h0) be the largest possible.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 230 -

Remark: only the third case makes possible the use of a new vehicle. Experiments show

that this process also tends to minimize the Vehicle Number K.

4.2 The Local Search Process

We take here advantage of the generic features of the insertion mechanism, which give rise in a

natural way to a local transformation operator Trans-Insert(J1):

Trans-Insert (J1: Removal Parameter):

Remove all demands of J1 from the current solution K, Service(k), k = 1..K; (I3)

Reinsert the demands of J1 into the solution, while following the loop (I1) of the above

Grasp-Stop-Number-Insert-Initialization process, and considering that demands of J – J1

remain inserted as before.

Then the local search process works as follows:

Grasp-Stop-Number-Insert-LS Process (P: Trial Parameter; m1: Size Parameter):

We start from a current solution K, Service(k), k = 1..K;

Not Stop;

While Not Stop do

 Not Stop1; Counter 1;

 While Not Stop1 and Counter ≤ P do

 Pick up a subset J1 of {1..m}, with cardinality m1;

 Try Trans-Insert(J1);

 If the resulting Stop Number k, i Tk,i; is improved then

 Stop1; Perform Trans-Insert(m1);

 Else Counter Counter + 1;

 EndIf

 EndWhile

 If Counter > P then Stop; EndIf

EndWhile

P and m1 act as parameters for the above local search process.

Performing the Removal (I3) Instruction: What remains to be specified here, is the way

we proceed in order to perform the (I3) instruction which chooses those demands of J1 which

are removed at every trial of the Trans-Insert operator. The idea is to choose those demands

which may be considered as being poorly inserted, that means whose removal is likely to make

decrease in a significant way the Stop Number. More precisely, we consider a parameter value

Q and we set, for any (i, k) such that Ti,k is non null: NV(i, k) = the number of demands which

have been assigned to vehicle k and which are currently scheduled to load or unload in i.

Then we perform the (I3) instruction by computing the set W0 of the 2.Q pairs (i, k) with

smallest NV(i, k) value, by next randomly selecting a subset W1 of Q pairs inside W0, and by

finally removing all demands j which contribute to some of the NV(i, k) quantities, (i, k) in W1 .

Clearly, Q also becomes a parameter of the GRASP-Stop-Number-Insert algorithm.

4.3 Numerical Experiments: Behavior of the Initialization Process

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 231 -

We consider the instances Gr_n-m-H-L-CAP as before. R denotes here the value of the

Replication parameter. For R = 1, 10, 100, 1000:

 VIni denotes the value of the best solution ever obtained at the end of the process,

 K denotes the number of vehicles involved in this solution,

 GAP denotes the gap between VIni and OPT.

 In the case R = 1000, we also provides (Tables 5, 5.bis),

o the CPU time (in seconds) which was required in order to run the process,

o the worst stop number V-Max obtained during the process,

o the value V-Mean of the average value of the Stop Number obtained for all

1000 replications. We get:

R = 1 R =10 R = 100 R = 1000

Instance VIni K GAP(%) VIni K GAP (%) VIni K GAP (%) VIni K GAP (%)

Gr_10-28-0-5-10 37 7 27.59 31 6 6.90 31 6 6.90 29 6 0.00

Gr_10-28-1-5-10 34 4 41.67 29 4 20.83 28 3 16.67 27 3 12.50

Gr_10-28-2-5-10 39 3 77.27 28 2 27.27 27 2 22.73 25 2 13.64

Gr_10-28-3-5-10 30 2 36.36 30 2 36.36 26 2 18.18 24 2 9.09

Gr_10-28-4-5-10 32 2 45.45 29 2 31.82 26 2 18.18 25 2 13.64

Gr_10-33-0-5-10 43 10 16.22 39 10 5.41 38 10 2.70 37 10 0.00

Gr_10-33-1-5-10 38 5 22.58 37 5 19.35 35 5 12.90 34 5 9.68

Gr_10-33-2-5-10 37 4 27.59 34 4 17.24 34 4 17.24 32 4 10.34

Gr_10-33-3-5-10 33 3 13.79 33 3 13.79 33 3 13.79 32 3 10.34

Gr_10-33-4-5-10 36 2 24.14 35 3 20.69 32 2 10.34 31 2 6.90

Gr_10-38-0-5-10 36 8 9.09 36 8 9.09 36 8 9.09 35 8 6.06

Gr_10-38-1-5-10 40 5 37.93 36 4 24.14 32 4 10.34 31 4 6.90

Gr_10-38-2-5-10 37 3 32.14 32 3 14.29 32 3 14.29 30 3 7.14

Gr_10-38-3-5-10 33 2 17.86 33 2 17.86 32 2 14.29 30 2 7.14

Gr_10-38-4-5-10 39 2 44.44 34 2 25.93 31 2 14.81 31 2 14.81

Gr_15-42-0-5-10 57 11 14.00 55 11 10.00 53 12 6.00 52 12 4.00

Table 4: Impact of the Replication Parameter with no hypothesis on loads L(j).

R = 1 R =10 R = 100 R = 1000

Instance VIni K GAP(%) VIni K GAP (%) VIni K GAP (%) VIni K GAP (%)

Gr_10-28-0-1-5 33 4 43.48 31 4 34.78 26 4 13.04 26 4 13.04

Gr_10-28-1-1-5 28 2 40.00 25 2 25.00 23 2 15.00 22 2 10.00

Gr_10-28-2-1-5 31 2 63.16 22 2 15.79 21 2 10.53 21 2 10.53

Gr_10-28-3-1-5 25 1 38.89 21 1 16.67 21 1 16.67 20 1 11.11

Gr_10-28-4-1-5 27 1 50.00 22 1 22.22 21 1 16.67 20 1 11.11

Gr_10-33-0-1-5 38 4 46.15 33 4 26.92 32 4 23.08 31 4 19.23

Gr_10-33-1-1-5 29 2 31.82 29 2 31.82 26 2 18.18 25 2 13.64

Gr_10-33-2-1-5 29 2 38.10 29 2 38.10 27 2 28.57 24 2 14.29

Gr_10-33-3-1-5 29 1 45.00 24 2 20.00 24 2 20.00 23 1 15.00

Gr_10-33-4-1-5 33 1 65.00 25 1 25.00 24 1 20.00 23 1 15.00

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 232 -

Gr_10-38-0-1-5 38 5 52.00 35 5 40.00 32 5 28.00 31 5 24.00

Gr_10-38-1-1-5 30 3 36.36 28 3 27.27 28 3 27.27 28 3 27.27

Gr_10-38-2-1-5 30 2 42.86 30 2 42.86 28 2 33.33 26 2 23.81

Gr_10-38-3-1-5 32 2 52.38 28 2 33.33 26 2 23.81 24 2 14.29

Gr_10-38-4-1-5 29 1 38.10 26 1 23.81 25 1 19.05 25 1 19.05

Gr_15-42-0-1-5 51 6 37.84 50 6 35.14 48 6 29.73 46 6 24.32

Table 4.bis: The Unit Case

Instance VIni V-Max V-Mean CPU (s)

Gr_10-28-0-5-10 29 41 34.42 0.05

Gr_10-28-1-5-10 27 39 32.74 0.06

Gr_10-28-2-5-10 25 39 32.10 0.07

Gr_10-28-3-5-10 24 38 30.28 0.07

Gr_10-28-4-5-10 25 36 30.47 0.08

Gr_10-33-0-5-10 37 46 41.28 0.08

Gr_10-33-1-5-10 34 44 38.51 0.09

Gr_10-33-2-5-10 32 45 37.85 0.11

Gr_10-33-3-5-10 32 43 37.43 0.12

Gr_10-33-4-5-10 31 43 36.70 0.12

Gr_10-38-0-5-10 35 49 40.56 0.10

Gr_10-38-1-5-10 31 46 37.67 0.12

Gr_10-38-2-5-10 30 44 36.97 0.13

Gr_10-38-3-5-10 30 45 36.21 0.14

Gr_10-38-4-5-10 31 42 36.50 0.15

Gr_15-42-0-5-10 52 63 57.11 0.16

Table 5: More on the Case R =1000 with no hypothesis on loads L(j).

4.4 Numerical Experiments: Behavior of the whole GRASP Process

VGr, K, GAP, CPU are as in tables 4 and 5, but for the whole GRASP process. IMP is the

improvement ration IMP = (VIni – VGr)/VIni induced by the local search loop.

 R = 1 R = 100 R = 1000

Instance VGr K GAP(%) VGr K GAP(%) VGr K GAP(%) IMP (%) CPU

Gr_10-28-0-5-10 32 7 10.34 29 6 0.00 29 6 0.00 0.00 0.10

Gr_10-28-1-5-10 29 4 20.83 25 4 4.17 25 4 4.17 7.41 0.12

Gr_10-28-2-5-10 28 3 27.27 25 3 13.64 24 3 9.09 4.00 0.12

Gr_10-28-3-5-10 28 2 27.27 24 2 9.09 23 2 4.55 4.17 0.11

Gr_10-28-4-5-10 25 2 13.64 24 2 9.09 23 2 4.55 8.00 0.13

Gr_10-33-0-5-10 43 10 16.22 38 10 2.70 37 10 0.00 0.00 0.17

Gr_10-33-1-5-10 36 6 16.13 33 5 6.45 33 5 6.45 2.94 0.17

Gr_10-33-2-5-10 34 4 17.24 31 4 6.90 31 4 6.90 3.13 0.20

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 233 -

Gr_10-33-3-5-10 33 3 13.79 32 3 10.34 31 3 6.90 3.13 0.20

Gr_10-33-4-5-10 34 3 17.24 32 2 10.34 30 2 3.45 3.23 0.18

Gr_10-38-0-5-10 36 8 9.09 33 8 0.00 33 8 0.00 5.71 0.17

Gr_10-38-1-5-10 34 5 17.24 31 5 6.90 31 4 6.90 0.00 0.17

Gr_10-38-2-5-10 37 3 32.14 31 3 10.71 30 3 7.14 0.00 0.18

Gr_10-38-3-5-10 32 2 14.29 31 2 10.71 29 2 3.57 3.33 0.18

Gr_10-38-4-5-10 32 2 18.52 30 2 11.11 30 2 11.11 3.23 0.20

Gr_15-42-0-5-10 53 12 6.00 52 12 4.00 50 12 0.00 3.85 0.38

Table 6: Behavior of the GRASP Proces, with no hypothesis on loads L(j).

 R = 1 R = 100 R = 1000

Instance VGr K GAP(%) VGr K GAP(%) VGr K GAP(%) IMP (%) CPU (s)

Gr_10-28-0-1-5 27 4 17.39 24 4 4.35 23 4 0.00 11.54 0.07

Gr_10-28-1-1-5 25 2 25.00 20 2 0.00 20 2 0.00 9.09 0.07

Gr_10-28-2-1-5 26 2 36.84 21 2 10.53 19 2 0.00 9.52 0.08

Gr_10-28-3-1-5 19 1 5.56 19 1 5.56 19 1 5.56 5.00 0.08

Gr_10-28-4-1-5 26 1 44.44 19 1 5.56 18 1 0.00 10.00 0.09

Gr_10-33-0-1-5 32 4 23.08 28 4 7.69 27 4 3.85 12.90 0.10

Gr_10-33-1-1-5 27 2 22.73 24 2 9.09 24 2 9.09 4.00 0.09

Gr_10-33-2-1-5 29 2 38.10 23 2 9.52 22 2 4.76 8.33 0.10

Gr_10-33-3-1-5 27 1 35.00 22 1 10.00 22 1 10.00 4.35 0.10

Gr_10-33-4-1-5 24 1 20.00 22 1 10.00 21 1 5.00 8.70 0.11

Gr_10-38-0-1-5 31 5 24.00 27 5 8.00 27 5 8.00 12.90 0.10

Gr_10-38-1-1-5 30 3 36.36 25 3 13.64 24 3 9.09 14.29 0.11

Gr_10-38-2-1-5 28 2 33.33 24 2 14.29 24 2 14.29 7.69 0.12

Gr_10-38-3-1-5 26 2 23.81 24 2 14.29 23 2 9.52 4.17 0.12

Gr_10-38-4-1-5 26 1 23.81 24 1 14.29 24 1 14.29 4.00 0.13

Gr_15-42-0-1-5 42 6 13.51 38 6 2.70 38 6 2.70 17.39 0.24

Table 6.bis: The Unit Case

4.5 Discussion about the Experiments.

We notice that the local search loop induces a very satisfactory improvement ratio. Globally,

GRASP, combined with the insertion mechanism, appears as very well-fitted to the current

situation, since it provides us with small error gaps and small running costs , while being very

easy to adapt, because of its generic features, to real time contexts.

References

1. J.W. BAUGH, D.K. KAKIVAYA., J.R.STONE, Intractability of the dial-a-ride problem

and a multiobjective solution using simulated annealing. Engineering Optimization, 30(2),

91-124, (1998).

2. Ü. BILGE., J.M. TANCHOCO, AGV Systems with Multi-Load Carriers: Basic Issues

and Potential Benefits, Journal of Manufacturing Systems, 16 (3) , 159–174, (1997).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 234 -

3. R. BORNDORFER, M. GROTSCHEL, F. KLOSTERMEINER, C. KUTTNER, Telebus

Berlin: Vehicle routing scheduling in a dial a ride system, Konrad Zuse Zent. Info. Tech.

Berlin, (1997)

4. P. COLL, J. MARENCO, I. DIAZ, P. ZABALA, Facets of the graph coloring polytope,

Ann. Operat. Res. 116, p 79-90, (2002)

5. J.F. CORDEAU, G. LAPORTE, Dial/Ride: models and algorithms; An. OR 153-1, p 29-

46, (2007)

6. JF. CORDEAU, A branch and cut algorithm for the Dia/Ride, Ope. Res. 54-3, p 573-

586, (2006)

7. J.F. CORDEAU, M. GENDREAU, G. LAPORTE, J.Y. POTVIN, F. SEMET, A guide to

vehicle routing heuristics, Jour. Op. Res. Soc., 53-5, p 512-522 (2002)

8. D. CORNAZ, V. JOST, A one to one correspondence between coloring and stable sets,

Operat. Res. Letters (36), p 673-676 (2008)

9. De PAEPE, K.K. LENSTRA, S. JGALL, R. SITTERS, L. STOUGIE, Computer aided

complexity classification of Dial Ride Problems, INFORMS Journal of Computing 22, p

1130-1152 (2004)

10. J. DESROSIERS, Y.DUMAS, F.SOUMIS, A dynamic programming solution of the

large-scale single-vehicle dial-a-ride problem with time windows. American Journal of

Mathematical and Management Sciences, 6, 301–325, (1986).

11. M.GOLUMBIC, Algorithmic Graph Theory and Perfect Graphs, Academic Press (1980)

12. P. HANSEN, M. LABBE, D. SCHINDL, Set covering and packing formulations of graph

coloring: algorithms and first polyhedral results, Discrete Optimization 6, p 135-147

(2009)

13. L. HIGGINS, J.B. LAUGHLIN, K. TURNBULL, Automatic vehicle location and

advanced paratransit at Houston METROLift, Proc Transport. 2000 Research Board

Conf. (2000)

14. R.M. JORGENSEN, J.LARSEN, K.B. BBERGVINSDOTTIR, Solving the dial-a-ride

problem using genetic algorithms. Journal of the Operational Research Society, 58(10),

1321-1331, (2007).

15. Y. LUO, P. SCHONFELD, Reinsertion heuristic for static Dial/Ride, Trans. Res. B 41, p

736-755 (2007)

16. E. MALAGUTI, M. MONACCI, P. TOTH, An exact approach for the vertex coloring

problem, Disc. Optimization (2010)

17. A. MEHROTRA, M.A. TRICK: A column generation approach for graph coloring,

INFORMS Journal of Computing (8), p 344-354 (1996)

18. SCIIP, URL http://scip.zib.de.

19. I. MENDEZ-DIAZ, P. ZABALA, A cutting plane algorithm for graph coloring, Disc.

Applied Math. 154, p 826-847 (2006)

20. K. PALMER, M. DESSOUKY, T. ABELMAGUID, Impact of management practices and

advanced technologies on demand responsive transit systems, Transportation Research A

38, p 495-509 (2004)

 21. C.H. PAPADIMITRIOU, M. YANNANAKIS, Scheduling interval ordered tasks, SIAM

Journ. Computing 8, pp 405-409 (1979)

22. S.N. PARRAGH, K.F.DOERNER, R.F.HARTL, Variable neighborhood search for the

dial-a-ride problem, Computers & Operations Research, 37, 1129–1138, (2010)

23. A. QUILLIOT, S. DELEPLANQUE, Constraint propagation for the Dial and Ride

problem wit split loads, Recent Advances in Computational Optimization, Studies in

Computational Intelligence, Vol 470, p 31-50, Springer (2013)

24. M. RESENDE, C. RIBEIRO, Greedy Random Adaptative Procedure (2002)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 235 -

http://www.sciencedirect.com/science/article/pii/S019126150700015X#bib10

MISTA 2015

A mass-flow MILP formulation for energy-efficient
supplying in assembly lines

Maria Muguerza · Cyril Briand · Nicolas

Jozefowiez · Sandra U. Ngueveu · Victoria

Rodŕıguez · Matias Urenda Moris

Abstract This paper focuses on the problem of supplying the workstations of assem-

bly lines with components during the production process. For that specific problem,

this paper presents a Mixed Integer Linear Program (MILP) that aims at minimizing

the energy consumption of the supplying strategy. More specifically, in contrast of the

usual formulations that only consider component flows, this MILP handles the mass

flow that are routed from one workstation to the other.

Keywords Supplying strategy · Assembly lines · Energy efficiency · MILP.

1 Introduction

In general, feeding systems of assembly lines are composed by a central warehouse,

several workstations organized in sequence and a fleet of vehicles (tow trains) in charge

of delivering the components to the workstations. The components are packed in pallet

or boxes. The supermarket is a decentralized area of material supplies, located next

to the assembly line. For building up a supplying strategy, time is discretized in a set

of delivering periods. For each period, a workstation has a component consumption

(possibly periodic) expressed in terms of boxes. At each tour, the tow trains load the

boxes which have to be shipped to the assembly line, follow a supplying route, and

stop at the appropriate workstations for delivering its boxes. The supplying routes are

usually fixed and start and finish at the supermarket. The number of boxes that a

This work was supported by the ECO-INNOVERA-1rst call EASY (ANR-12-INOV-0002).

Maria Muguerza · Cyril Briand · Nicolas Jozefowiez · Sandra U. Ngueveu
CNRS, LAAS, UPS, INSA, INP, 7 avenue du colonel Roche, F-31400 Toulouse, France
E-mail: (briand,njozefow,ngueveu)@laas.fr

Victoria Rodŕıguez
Economics and Management School, University of Navarra,, 31080 Pamplona, Spain
E-mail: vrodriguez@unav.es

Matias Urenda Moris
Virtual Systems Research Centre, University of Skvde, PO Box 408, 54128 Skvde, Sweden
E-mail: matias.urenda.moris@his.se

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 236 -

tow train can transport in the same tour is limited. The number of boxes available at

each workstation should never exceed the storage capacity of the workstation (which

is usually low). A supplying strategy defines whether a vehicle has to stop at each

workstation at each time period and the number of boxes that should be delivered.

In a world where natural resources are limited, issues related to energy efficiency are

becoming more and more important. Vehicles in factories travel a significant quantity

of kilometers for supplying the workstations, causing effects in economic and energetic

expenses. Whether they use electric energy or fossil fuel, their energetic consumption is

not negligible and more and more attention has to be paid for exhibiting energy-efficient

supplying strategies. Several factors that are inherent to the problem have impact on

the energy consumption. We are interested in determining the most significant ones.

In the literature related to the Vehicle Routing Problem (VRP), some researchers

take interest in minimizing carbon dioxide emissions. One of the major contribution is

due to Bektas and Laporte [2] who present the Pollution-Routing Problem (PRP) as

an extension of the VRP with Time Windows. The PRP consists of routing a number

of vehicles to serve a set of customers within preset time windows, and determining

their speed on each route segment, so as to minimize a function comprising emissions

and driver costs. The author propose a MILP formulation that allows to optimize

both load and speed of the vehicles.The idea of controlling the vehicle velocity on

each route segment is fruitful for improving the energy efficiency in the context of

long distance transportation problem. However, in a very local transportation context,

as the distances travelled during the acceleration phase becomes non-negligible with

respect to the one covered at the maximum speed, other parameters can impact the

energy consumption.

The problem considered in this paper can be viewed as a particular Inventory

Routing Problem (IRP) . We intend to show that minimizing the travelled distance does

not necessarily implies the minimization of the energy. We prove that other parameters

can significantly influence the energy spending. The remainder of this paper is organized

as follows. An energy consumption analysis is proposed in Section 2. A MILP for energy

optimization is described in Section 3.

2 Energy modeling

The forces that have more influence on the power consumed by the vehicle are: the

traction force (Ft = mT a(t)) and the rolling resistance (FrmT = gCr), in Newtons

(N). The traction force is used to generate motion between an object and a tangen-

tial surface, and it depends on the mass (mT) and the acceleration of the vehicle

(a(t)). The rolling resistance is the force resisting the motion when a body rolls on a

surface and varies in function of the load (mT), the rolling coefficient (Cr) and the

gravity (g). The parameter (mT) represents the mass of the vehicle plus the trans-

ported load, which varies along the tour. The expresion of the energy consumption is

E =
∫
mT (a(t) + gCr)v(t)dt.

For sake of simplicity, the acceleration, the deceleration and the maximum speed

are assumed known and constant.Thanks to the literature, the rolling coefficient is

also known. Regarding the energy consumed between two workstations. Three phases

are distinguished according to the vehicle state. The first phase corresponds to the

acceleration phase where a peak of energy is produced, due to the acceleration. The

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 237 -

second phase begins when the speed of the vehicle reach its maximum value. Finally,

in the deceleration phase, the energy consumption is null.

The travelled distance is directly linked to the energy although it is not the only

significant parameter. Indeed, the energy consumption is different depending on the

way of delivering the load. The stops at the workstations also have effects on the energy

demand. Decreasing the number of vehicle stops in every workstation can reduces the

number of acceleration phases, hence the energy.

3 Energy-aware mathematical modeling

In this section, a mixed integer linear programming (MILP) model is presented. This

model integrates the previous influential factors, and similarly to the formulation

poposed in [1], takes advantage from a basic flow formulation. Nonetheless, instead

of taking the flow in terms of number of components into account, the mass of the

shipped components is considered. We assume that only one kind of pallet can be de-

livered to a given workstation, each having a well-known mass. Therefore, once the

mass of delivered components known, the number of components can be easily de-

duced. Reasoning in terms of masses is interesting since the energy spent for bringing

a pallet to one location i to another location j is proportional to its mass. Therefore,

one can considered directly inside the MILP formulation the energy cost (Cij), which

represents the energy consumption for shipping one mass unit directly from i to j with

j > i.

The component mass brought from i to j during period t is noted M t
ij . Decision

variables Zt
i represent the number of components left at workstation i during period t.

They can easily be deduced from the values of the M t
ij variables. Eventually, inventory

flow variables ILt
i, deduced from the Zt

i values, are also modelled.

Using the above decision variables, the energy minimization MILP can be formu-

lated as follows. The objective function (1) aims at minimizing the energy consumption,

which is proportional to the mass M t
ij traversing each arc (i,j) during period t. Con-

straints (2) model flow conservation together with demand satisfaction. Constraints (3)

ensure that the vehicle capacity A is never exceeded and enforce variables Y t to be

set to one when a tour is carried out in period t. The set of equations (4) ensures that

the inventory level at workstation i never exceeds the workstation storage capacity

ci. Constraints (5) enforce the difference 1
mi

(
∑

j<iM
t
j,i −

∑
j>iM

t
i,j) to be integral.

The constraints (6) impose that the mass brought back to the depot equals the vehicle

mass (0 and n+ 1 being two virtual nodes associated with the depot). Constraints (7)

ensure that, whether some components are delivered in workstation i during period t,

the vehicle has to stop in this station at that tour. Set of constraints (8) ensure that,

whether the vehicle stops in workstation i at time t, there exist an incoming and an

outcoming arc selected at workstation i during period t. Constraints (9) ensure that

whether there exists a mass flow between two workstations, an arc between these sta-

tions has to be selected too. Equations (10)-(12) define the domain of each variable

(mmax is the maximum load that the vehicle can transport).

Min z =

n∑
i,j

NT∑
t

CijM
t
ij (1)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 238 -

st:

Zt
i + ILt−1

i − dti = ILt
i ∀ (i, t) (2)

n∑
i=1

Zt
i ≤ AY

t ∀ (t) (3)

Zt
i + ILt−1

i ≤ ci ∀ (i, t) (4)

Zt
i −

1

mi
(
∑
j<i

M t
ji −

∑
j>i

M t
ij) = 0 ∀ (i, t) (5)

n∑
i=1

M t
in+1 = mvY

t ∀ (t) (6)

Zt
i ≤ X

t
i ci ∀ (i, t) (7)∑

j>i

φtij =
∑
j<i

φtji = Xt
i ∀ (i, t) (8)

M t
ij ≤ mmaxφ

t
ij ∀ (i, j, t) (9)

ILt
i,M

t
ij ≥ 0 ∀ (i, j, t) (10)

Zt
i ∈ N ∀ (i, t) (11)

φtij , X
t
i , Yt ∈ {0, 1} ∀ (i, j, t) (12)

4 Conclusion

We can conclude that taking the transported load, the number of stops and the total

travelled distance simultaneously into account is worthy. We propose a MILP formu-

lation that integrates these parameters all together inside the optimization procedure.

Nevertheless, the first experiments show that the computational effort required for

solving efficiently the model is high. Additional researches are needed in order to boost

the optimization procedure using either more compact MILP formulations or more ad-

vanced optimization mechanisms such as valid inequalities generation, variable fixing

techniques, or decomposition approaches.

References

1. C. Archetti, N. Bianchessi, S. Irnich and M.G. Speranza. Formulations for an inventory
routing problem, International Transactions in Operational Research, vol. 21(3), pp 353-
374 (2014).

2. T. Bektas and G. Laporte. The Pollution-Routing Problem, Transportation Research Part
B 45, pp 12321250 (2011).
asy/

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 239 -

MISTA 2015

Resource-Aware Scheduling for Data Centers with
Heterogenous Servers

Tony T. Tran+ · Peter Yun Zhang◦ · Heyse

Li+ · Douglas G. Down∗ · J. Christopher

Beck+

Abstract This paper presents an algorithm for resource-aware scheduling of compu-

tational jobs in a large-scale heterogeneous data center. The algorithm aims to allocate

different machine configurations to job classes to attain an efficient mapping between

job resource request profiles and machine resource capacity profiles. We propose a

three-stage algorithm. The first stage uses a queueing model that treats the system in

an aggregated manner with pooled machines and jobs represented as a fluid flow. The

latter two stages use combinatorial optimization techniques to take the solution from

the first stage and apply it to a more accurate representation of the data center. In the

second stage, jobs and machines are discretized. A linear programming model is created

to obtain a solution to the discrete problem that maximizes the system capacity. The

third and final stage is a scheduling policy that uses the solution from the second stage

to guide the dispatching of arriving jobs to machines. Using Google workload trace

data, we show that our algorithm outperforms a benchmark greedy dispatch policy.

We find that our algorithm is able to provide mean response times up to an order of

magnitude smaller than the benchmark dispatch policy. These results show that it is

important to consider the heterogeneity of machine configuration profiles in making

effective scheduling decisions.

1 Introduction

The cloud computing paradigm of providing hardware and software remotely to end

users has become very popular with applications such as e-mail, Google documents,

iCloud, and dropbox. Service providers employ large data centers to provide these

+ Department of Mechanical and Industrial Engineering,
University of Toronto
E-mail: {tran, hli, jcb}@mie.utoronto.ca

◦ Engineering Systems Division
Massachusetts Institute of Technology
E-mail: pyzhang@mit.edu

∗ Department of Computing and Software
McMaster University
E-mail: downd@mcmaster.ca

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 240 -

applications. As the demand for computational resources increases, the supply of ser-

vices must efficiently scale. Yet, data centers represent a significant capital investment.

Not only are servers for a data center expensive, maintaining and running a data cen-

ter is a substantial investment. Due to the significant cost of these machines, many

data centers are not purchased as a whole at one time, but rather built incrementally,

adding machines in batches. Data center managers may choose machines based on the

price-performance trade-off that is economically viable and favorable at the time [21].

Therefore, it is not uncommon to see data centers comprised of tens of thousands of

machines, which are divided into ten or so different machine configurations, each with

a large number of identical machines.

Under heavy loads, submitted jobs may have to wait for machines to become avail-

able before starting processing. These delays can be significant and can become prob-

lematic. Therefore, it is important to provide scheduling support that can directly

handle the varying workloads and differing machines so that efficient routing of jobs to

machines can be made. We study the problem of scheduling jobs onto machines such

that the multiple resources available on a machine (e.g., processing cores and memory)

can handle the assigned workload in a timely manner.

We develop an algorithm to schedule jobs on a set of heterogeneous machines to

minimize mean job response time, the time from when a job enters the system until

it starts processing on a machine. The algorithm consists of three stages. In the first

stage a queueing model is used. Here, the system is represented at a very high level

with resources and jobs both pooled. In each successive stage, a finer system model is

used, such that in the third stage we generate explicit schedules for the actual system.

Our experiments are based on job traces from one of Google’s compute clusters [18]

and show that our algorithm significantly outperforms a natural greedy policy that

attempts to minimize the response time of each arrival.

The contributions of this paper are:

– The introduction of a hybrid queueing theoretic and combinatorial optimization

scheduling algorithm for a data center, which efficiently maps job resource request

profiles to different machine resource capacities.

– An extension to the allocation linear programming (LP) model presented in [3] and

used for distributed computing in [2] to a data center that has multiple machines

with multi-capacity resources.

– An empirical study of our scheduling algorithm on real workload trace data, which

serves as a proof-of-concept of our proposed algorithm.

The rest of the paper is organized into a definition of the data center scheduling

problem in Section 2, related work on data center scheduling in Section 3, a presentation

of our proposed algorithm in Section 4, and experimental results in Section 5. Section

6 concludes our paper along with some plans for future work.

2 Problem Definition

The data center of interest is one that is comprised of many independent servers (also

referred to as machines). We are interested in dealing with a server cluster that has on

the order of tens of thousands of machines. These machines are not all identical; the

entire machine population is divided into different configurations denoted by the set

M . Machines belonging to the same configuration are identical in all aspects.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 241 -

Fig. 1: Processing cores resource

consumption profiles

Fig. 2: Memory resource consump-

tion profiles

We classify a machine configuration based on its resources. For example, machine

resources may include the number of processing cores and the amount of memory,

disk-space, and bandwidth. For our study, we generalize the system to have a set of

resources, R, which are limiting resources of the data center. Each machine configura-

tion is defined by the capacity of each resource available in the machines belonging to

that configuration. A machine of configuration j ∈M has cjl amount of resource l ∈ R
and within a configuration j there are nj identical machines.

In our data center scheduling problem, jobs must be assigned to the machines with

the goal of minimizing the mean response time of the system. We assume that jobs are

assigned immediately as they arrive and the assignment cannot be changed. Jobs arrive

to the data center dynamically over time. Times between arrivals are independent and

identically distributed (i.i.d.). Each job belongs to one of a set of K classes where the

probability of an arrival being of class k is αk. A distribution of resource requirements

for a job is defined by the class of the job. We denote the expected amount of resource

of type l required by a job of class k as rkl. The processing times for jobs in class k on

a machine of configuration j are assumed to be i.i.d. with mean 1
µjk

. The associated

processing rate is thus µjk.

Each job is processed on a single machine. However, a machine can process many

jobs at once, as long as the total resource usage of all concurrent jobs does not exceed

the capacity of the machine. Figures 1 and 2 depict an example schedule of six jobs on

a machine with two limiting resources: processing cores and memory. Here, the x-axis

represents time and the y-axis is the amount of resource used. The machine has 4

processing cores and 8 GBs of memory. Note that the start and end times of each job

are the same in both figures. This represents the job concurrently consuming resources

from both cores and memory during its processing time.

Any jobs that do not fit within the resource capacity of a machine must wait until

sufficient resources become available. We assume there is a buffer of infinite capacity for

each machine where jobs can queue until they begin processing. Figure 3 illustrates the

different states a job can go through in its lifetime. Each job begins outside the system

and joins the data center once submitted. At this point, the job must be dispatched

to one of the machines. This machine may or may not be immediately available for

the job. The job must wait in the queue if there are insufficient resources, but can

immediately start running if the required resources are available. If the job must join

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 242 -

Fig. 3: Stages of job lifetime.

the queue, then it will start running on the machine when resources free up and the

job has priority to start processing. Finally, after being processed, the job will exit the

data center.

3 Related Work

Scheduling in data centers has received significant attention in the past decade. Many

works consider cost saving through decreased energy consumption from lowering ther-

mal levels [22,23], powering down machines [4,7], or geographical load balancing [13,

14]. These works often attempt to minimize costs or energy consumption while main-

taining some guarantees on response time and throughput.

The literature on schedulers for distributed computing clusters has focused heavily

on fairness and locality [11,19,24]. Optimizing these performance metrics leads to

equal access of resources for different users and the improvement of performance by

assigning tasks close to the location of stored data in order to reduce data transfer

traffic. Locality of data has been found to be crucial for performance in systems such

as MapReduce, Hadoop, and Dryad. Our work does not consider data transfer or equal

access for different users. The works looking at fairness and locality also differ from

our work in that our model focuses on the heterogeneity of machines with regard to

resource capacity and how the mix of jobs that may be concurrently processed on a

machine is a non-trivial decision.

Ghodsi et al. [8] and Grandl et al. [9] look at scheduling a system with multiple

multi-capacity resources (e.g., CPU, memory, disk storage, and bandwidth). Ghodsi

et al. [8] propose a scheduling policy, Dominant Resource Fairness, that aims to fairly

share resources to each user based on their dominant resource. A dominant resource

for each user is found by first normalizing resource requirements using the maximum

capacity of the resource over all machines and then taking the resource that has the

largest normalized requirement. For example, if a user requests two cores and two GB

of memory and the maximum number of cores and memory on any system is four cores

and eight GB, the normalized values would be 0.5 cores and 0.25 memory. The dominant

resource for the user would thus be cores. Each user is then given a share of the resources

such that the proportion of dominant resources for each user is equal to the dominant

resource share of others. Note that this may compare resources of different types as the

consideration is based on a user’s dominant resource. Grandl et al. [9] study a similar

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 243 -

problem, but emphasize the efficient packing of jobs onto machines. They propose the

Tetris scheduler, which considers a linear combination of two scoring functions: packing

jobs onto machines to best fit the remaining resources, and least remaining work first

that looks at the remaining work (duration times resource requirements) of a job. The

first score favours large jobs, while the second favours small jobs. Tetris chooses the

next job to process based on the job with the maximum score. They compare Tetris

against Dominant Resource Fairness and show that focusing on fairness alone can lead

to poor performance. Their work shows the importance of considering efficient resource

allocation, an issue that has had more attention recently. However, to effectively use

Tetris, a system manager must tune several parameters to customize the job score for

their application. Based on the job score employed, Tetris may over-prioritize large or

small jobs and thus starve jobs that do not have high scores by constantly introducing

new jobs with higher priority. A comparison of our proposed algorithm and the Tetris

scheduler is a key area for future work.

Kim et al. [12] study dynamic mapping of jobs to machines in a heterogeneous envi-

ronment. Jobs have varying priorities and soft deadlines. They find that two scheduling

heuristics stand out as the best performers: Max-Max and Slack Sufferage. In Max-Max,

a job assignment is made by greedily choosing the mapping that has the best fitness

value based on the priority level of a job, its deadline, and the job execution time.

Slack Sufferage chooses job mappings based on which jobs suffer most if not scheduled

onto their “best” machines. Al-Azzoni and Down [2] schedule jobs to machines using

an allocation LP to efficiently pair job classes to machines. The solution of the LP

problem maximizes the system capacity and guides the scheduling rules to reduce the

long-run average number of jobs in the system. Further, they show that their heuristic

policy is guaranteed to be stable if the system can be stabilized. Rasooli and Down [20]

extend the allocation LP model to address a Hadoop framework. They compare their

work against the default scheduler used in Hadoop and the Fair-Sharing algorithm

and show that their algorithm greatly reduces the response time, while maintaining

competitive levels of fairness with Fair-Sharing. These papers focus on job execution

time as the key defining characteristic in machine heterogeneity and do not consider

multi-capacity resources of machines.

Chang et al. [5] consider a grid computing system where clusters of resources have

varying computing speeds and the bandwidth capacities between clusters are different.

The authors develop a scoring algorithm that maps jobs to resources based on the

bandwidth availability and cluster load. Maguluri et al. [17] examine a cloud comput-

ing cluster where virtual machines are to be scheduled onto servers. Virtual machines

require some amount of CPU, memory, and storage space that must fit onto the servers

they have been assigned to. Their work assumes that there are different types of vir-

tual machines: Standard, High-Memory, and High-CPU. Each virtual machine type has

specified resource requirements and different instances of virtual machines within a sin-

gle type do not differ. Based on these requirements and the capacities of the servers, the

authors determine all possible combinations of virtual machines that can concurrently

be placed onto each server. A preemptive algorithm is presented that uses the defined

virtual machine combinations. They show that their algorithm is throughput-optimal.

An alternative, non-preemptive algorithm is proposed that is close to throughput opti-

mal. The algorithm works by choosing at the beginning of a time slot the mix of virtual

machine types on each server to maximize the amount of work that can be done for

that time slot. An extension to their work was later done to prove a queue-length op-

timal algorithm for the same problem in the heavy traffic regime [16]. They propose a

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 244 -

routing algorithm that assigns jobs to servers with the shortest queue (similar to our

greedy algorithm presented in Section 5.2) and a mix of virtual machines to assign to a

server based on the same reasoning proposed for their throughput optimal algorithm.

These works differ from our work since virtual machine types have predetermined re-

source requirements. Therefore, it is known exactly how virtual machine types will fit

on a server without having to reason online about each assignment individually based

on their specific requirements. Because the virtual machine sizes are set, inefficiencies

due to fragmentation are not a concern as they are in our system. However, resource

wastage due to fragmentation still exists from virtual machines not completely filling

server capacities. Furthermore, fragmentation occurs inside the virtual machine as well

since jobs may not use the full resources of a virtual machine type and will then occupy

more resources (the size of a virtual machine) than required.

4 Data Center Scheduling

The proposed algorithm, Long Term Evaluation Scheduling (LoTES), is a three-stage

queueing-theoretic and optimization hybrid approach. Figure 4 illustrates the overall

scheduling algorithm. The first two stages are performed offline and are used to guide

the dispatching algorithm of the third stage. The dispatching algorithm is responsible

for assigning jobs to machines and is performed online. In the first stage, we use tech-

niques from the queueing theory literature, which represent the data center as a fluid

model where incoming jobs can be considered in the aggregate as a continuous flow.

We extend the allocation LP model presented by Andradóttir et al. [3] to account for

multiple resources. The allocation LP is used to find an efficient allocation of machine

resources to job classes. In the second stage, a machine assignment LP model is used

to assign specific machines to serve job classes using the results of the allocation LP.

In the final stage, jobs are dispatched to machines dynamically as they arrive to the

system.

4.1 Allocation LP

Andradóttir et al.’s [3] allocation LP was created for a similar problem but with a single

unary resource per machine. The allocation LP finds the maximum arrival rate for a

given queueing network such that stability is maintained. Stability is a formal property

of queueing systems [6] that can informally be understood as the queue lengths in the

system remaining bounded over time.

In our problem, there are |R| resources which must be accounted for. We modify

the allocation LP to accommodate these multiple resources. The model combines each

machine’s resources to create a single super-machine for each configuration. Thus,

there will be exactly |M | pooled machines (one for each configuration) with capacity

cjl × nj for resource l. The allocation LP ignores resource fragmentation within the

pooled machines. Fragmentation occurs when a machine’s resource capacity cannot be

fully utilized as a result of the currently available resources of a machine not being

sufficient to admit a job, leaving resources unused with jobs waiting in queue. For

example, if a configuration has 30 machines with 8 cores available on each machine

and a set of jobs assigned to the configuration requires exactly 3 cores each, the pooled

machine would have 240 processors that can process 80 jobs in parallel. However,

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 245 -

Fig. 4: LoTES Algorithm.

only 2 jobs could be placed on each individual machine. Therefore, only 60 jobs can be

processed in parallel. The effect may be further amplified when multiple resources exist

as fragmentation could occur for each resource. The subsequent stages of the LoTES

algorithm deal with the issue of fragmentation by treating each machine individually

(see Section 4.2).

The extended allocation LP is given by (1)-(5) below.

max λ (1)

s.t.
∑
j∈M

(δjklcjlnj)µjk ≥ λαkrkl k ∈ K, l ∈ R (2)

δjklcjl
rkl

=
δjk1cj1

rk1
j ∈M,k ∈ K, l ∈ R (3)

∑
k∈K

δjkl ≤ 1 j ∈M, l ∈ R (4)

δjkl ≥ 0 j ∈M,k ∈ K, l ∈ R (5)

Decision Variables

λ: Arrival rate of jobs

δjkl: Fractional amount of resource l that machine j devotes to job class k

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 246 -

The LP assigns the fractional amount of each resource that each machine pool

should allot to each job class in order to maximize the arrival rate of the system, while

maintaining stability. Constraint (2) guarantees that sufficient resources are allocated

for the expected requirements of each class. Constraint (3) ensures that the resource

profiles of jobs (i.e., the amount of each resource a job class is expected to request) are

properly enforced. For example, if the amount of memory required is twice the number

of cores required, the amount of memory assigned to the job class from a single machine

configuration must also be twice that of the core assignment. The allocation LP does

not assign more resources than available due to constraint (4). Finally, constraint (5)

ensures the non-negativity of assignments.

Solving the allocation LP will provide δ∗jkl values which tell us how we can efficiently

allocate jobs to machine configurations. However, due to fragmentation, the allocation

LP solution is only an upper bound on the achievable arrival rate of a system. The

bound for the single unary resource problem is tight: Andradóttir et al. [3] show that

utilizations arbitrarily close to one are possible. This is not possible when fragmentation

occurs.

4.2 Machine Assignment

In the second stage, we use the job-class-to-machine-configuration results from the

allocation LP to guide the choice of a set of job classes that each machine will serve.

We are concerned with fragmentation and so treat each job class and each machine

discretely, building specific sets of jobs (which we call “bins”) that result in tightly

packed machines and then deciding which bin each machine will emulate. This stage is

still done offline and so rather than using the observed resource requirements of jobs,

we use the expected values.

In more detail, recall that the δ∗jkl values from the allocation LP provide a fractional

mapping of the resource capacity of each machine configuration to each job class. Based

on the δ∗jkl values that are non-zero and the particular resource requests of jobs and

the capacities of the machines, the machine assignment algorithm will first create job

bins. A bin is any set of jobs that together do not exceed the capacity of the machine.

A non-dominated bin is a bin which is not a subset of any other bin: if any additional

job is added to it, one of the machine resource constraints will be violated. Figure 5

presents the feasible region for an example machine. Assume that the machine has one

resource (cores) with capacity 7. There are two job classes, job class 1 requires 2 cores

and job class 2 requires 3 cores. The integer solutions within the search space represent

the feasible bins. All non-dominated bins exist along the boundary of the polytope

since any solution in the polytope not at the boundary will have a point above or to

the right of it that is feasible.

We exhaustively enumerate all non-dominated bins. Once a complete set of non-

dominated bins is created to represent all assignments of jobs to machines based on

expected resource requirements, the machine assignment model decides, for each ma-

chine, which bin the machine should emulate. Thus, each machine will be mapped to

a single bin, but multiple machines may emulate the same bin.

Algorithm 1 below generates all non-dominated bins. We define Kj , a set of job

classes for machine configuration j containing each job class with positive δ∗jkl, and a

set bj containing all possible bins. Given κji , a job belonging to the ith class in Kj , and

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 247 -

Fig. 5: Feasible bin configurations.

bjy, the yth bin for machine configuration j, Algorithm 1 is performed for each machine

configuration j. We make use of two functions not defined in the pseudo-code:

– sufficientResource(κji , b
j
y): Returns true if bin bjy has sufficient remaining resources

for job κji .

– mostRecentAdd(bjy): Returns the job class that was most recently added to bjy.

Algorithm 1 Generation of all non-dominated bins

y ← 1
x← 1
x∗ ← x
nextBin← false
while x ≤ |Kj | do

for i = x∗ → |Kj | do
while sufficientResource(κji , bjy) do

bjy ← bjy + κji
nextBin← true

end while
end for
x∗ ← mostRecentAdd(bjy)
if nextBin then
bjy+1 ← bjy − κjx∗
y ← y + 1

else
bjy ← bjy − κjx∗

end if
if bjy == {} then
x← x+ 1
x∗ ← x

else
x∗ ← x∗ + 1

end if
end while

Algorithm 1 is run for each machine configuration j. The algorithm starts by greed-

ily filling the bin with jobs from a class. When no additional jobs from a class can be

added, the algorithm will move to the next class of jobs and attempt to continue filling

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 248 -

the bin. Once no more jobs from any class are able to fit, the bin is non-dominated. The

algorithm then backtracks by removing the last job added and tries to add jobs from

other classes to fill the remaining unused resources. This continues until the algorithm

has exhaustively searched for all non-dominated bins.

Since the algorithm performs an exhaustive search, solving for all non-dominated

bins may take a significant amount of time. If we let Lk represent the maximum number

of jobs of class k we can fit onto the machine of interest, then in the worst case, we must

consider
∏
k∈K Lk bins to account for every potential mix of jobs. We can improve the

performance of the algorithm by ordering the classes in decreasing order of resource

requirement. Of course, this is made difficult as there are multiple resources. One would

have to ascertain the constraining resource on a machine and this may be dependent

on which mix of jobs is used.1

Although the upper bound on the number of bins is very large, we are able to find

all non-dominated bins quickly (i.e., within one second on an Intel Pentium 4 3.00 GHz

CPU) because the algorithm only considers job classes with non-zero δ∗jkl values. We

generally see a small subset of job classes assigned to a machine configuration. Table 1 in

Section 5 illustrates the size of Kj , the number of job classes with non-zero δ∗jkl values

for each configuration. When considering four job classes, all but one configuration has

one or two job classes with non-zero δ∗jkl values. When running Algorithm 1, the number

of bins generated is in the thousands. Without the δ∗jkl values from the allocation LP,

we find that there can be on the order of millions of bins.

With the created bins, individual machines are then assigned to emulate one of

the bins. To match the δ∗jkl values for the corresponding machine configuration, we

must find the contribution that each bin makes to the amount of resources allocated

to each job class. We define Nijk as the number of jobs from class k that are present

in bin i of machine configuration j. Using the expected resource requirements, we can

calculate the amount of resource l on machine j that is used for jobs of class k, denoted

εijkl = Nijkrkl. The machine assignment LP is then

max λ (6)

s.t.
∑
j∈M

∆jklµjk ≥ λαkrkl k ∈ K, l ∈ R (7)

∑
i∈Bj

εijklxij = ∆jkl j ∈M,k ∈ K, l ∈ R (8)

∑
i∈Bj

xij = nj j ∈M (9)

xij ≥ 0 j ∈M, i ∈ Bj (10)

1 It may be beneficial to consider the dominant resource classification of Dominant Resource
Fairness when creating such an ordering [8].

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 249 -

Decision Variables

∆jkl: Amount of resource l from machine configuration j that is devoted to job

class k

xij : Total number of machines that are assigned to bins of type i in machine

configuration j

Parameters

εijkl: Amount of resource l of a machine in machine configuration j assigned to

job class k if the machine emulates bin i.

Bj : Set of bins in machine configuration j

The machine assignment LP will map machines to bins with the goal of maximizing

the arrival rate that maintains a stable system. Constraint (7) is the equivalent of con-

straint (2) of the allocation LP while accounting for discrete machines. The constraint

ensures that a sufficient number of resources are available to maintain stability for each

class of jobs. Constraint (8) determines the total amount of resource l from machine

configuration j assigned to job class k to be the sum of each machine’s resource con-

tribution. In order to guarantee that each machine is mapped to a bin type, we use

constraint (9). Finally, constraint (10) forces xij to be non-negative.

Although we wish each machine to be assigned exactly one bin type, such a model

requires xij to be an integer variable and therefore the LP becomes an integer pro-

gram (IP). We found experimentally that solving the IP model for this problem is not

practical given a large set Bj . Therefore, we use an LP that allows the xij variables to

take on fractional values. Upon obtaining a solution to the LP model, we must create

an integer solution. The LP solution will have qj machines of configuration j which are

not properly assigned, where qj can be calculated as

qj =
∑
i∈Bj

xij − bxijc.

We assign these machines by sorting all non-integer xij values by their fractionality

(xij − bxijc) in non-increasing order. Ties are broken arbitrarily if there are multiple

bins with the same fractional contribution. We then begin to round the first qj fractional

xij values up and round all other xij values down for each configuration. This makes

the problem tractable at the cost of optimality. However, given the scale of the problem

that we study where a configuration can contain thousands of machines, the value of

λ∗ produced by the LP solution is typically very close to the value produced by the IP

solution.

4.3 Dispatching Jobs

In the third and final stage of the scheduling algorithm, a two-level dispatching algo-

rithm is used to assign arriving jobs to machines. The goal of the dispatching algorithm

is to assign jobs to machines so that each machine emulates the bin it was assigned to

in the second stage. In the first level of the dispatcher, a job is assigned to one of the

|M | machine configurations. The decision is guided by the ∆jkl values to ensure that

the correct proportion of jobs is assigned to each machine configuration. In the second

level of the dispatcher, the job is placed on one of the machines in the configuration to

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 250 -

which it was assigned. At the first level, no state information is required to make deci-

sions. However, in the second level, the dispatcher will make use of the exact resource

requirements of a job as well as the states of machines to make a decision.

Deciding which machine configuration to assign a job to can be done by revisiting

the total amounts of resources each configuration contributes to a job class. We can

compare the ∆jkl values to create a policy that will closely imitate the machine as-

signment solution. Given that each job class k has been devoted a total of
∑|M |
j=1∆jkl

resources of type l, a machine configuration j should serve a proportion

ρjk =
∆jkl∑|M |

m=1∆mkl

of the total jobs in class k. The value of ρjk can be calculated using the ∆jkl values

from any resource type l. To decide which configuration to assign an arriving job of

class k, we use roulette wheel selection. We generate a uniformly distributed random

variable, u = [0, 1] and if
j−1∑
m=0

ρmk ≤ u <
j∑

m=0

ρmk,

then the job is assigned to machine configuration j.

The second step will then dispatch the jobs directly onto machines. Given a solution

x∗ij from the machine assignment LP, we create an nj × |K| matrix, Aj , with element

Aj
ik equal to 1 if the ith machine of j emulates a bin with one or more jobs of class k

assigned. Aj indexes which machines can serve a job of class k.

The dispatcher will attempt to dispatch the job to a machine belonging to the

configuration that was assigned from the first step. Machines are ordered arbitrarily

and the dispatcher will search over the machines based on the ordering. The first

machine found from those with Aj
ik = 1 that has the available resources for the job

will begin immediate service; this is a first-fit policy that is used by the dispatcher. In

the case where no machines are available, the dispatcher will sort all machines, other

than the machines belonging to the configuration that the job was initially assigned

to, in non-decreasing order of processing times of the job needing assignment. The

dispatcher will then search through these machines for immediate processing and if a

machine exists with sufficient resources to immediately process the job, it will begin

servicing the job. By allowing for the dispatcher to make assignments to machines

with δ∗jkl = 0, we enable free resources to be used immediately. One could expect

that a system that is not heavily loaded could benefit from the prompt service of jobs

arriving to the system even though the assignment is inherently inefficient according to

the allocation LP solution. If there exists no machine that can immediately process the

job, the job will enter the smallest queue of the machines belonging to the configuration

assigned in the first step with Aj
ik = 1. Ties are broken randomly. Following such a

dispatch policy attempts to schedule jobs immediately whenever possible with a bias

towards placing jobs on bins which have been found to be efficient.

Jobs that are waiting in the queue follow a first-come, first-served (FCFS) order.

An arriving job will have to wait until all jobs that arrived earlier have at least entered

into service before it too can begin processing on the machine. This ensures that some

level of fairness is maintained and prevents jobs with smaller resource requests from

jumping forward in the queue and possibly starving jobs with large resource requests.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 251 -

of machines Cores Memory |Kj |
6732 0.50 0.50 4
3863 0.50 0.25 2
1001 0.50 0.75 1
795 1.00 1.00 2
126 0.25 0.25 2
52 0.50 0.12 1
5 0.50 0.03 1
5 0.50 0.97 2
3 1.00 0.50 2
1 1.00 0.06 1

Table 1: Machine configuration details.

We use this ordering because it is often the default scheduling sequence used in practice

for frameworks that run jobs in a data center environment, such as Hadoop [1].

By dispatching jobs using the proposed algorithm, the requirement of system state

information is often reduced to a subset of machines that a job is potentially assigned

to. Further, keeping track of the detailed schedule on each machine is not necessary for

scheduling decisions since the only information used is whether a machine currently

has sufficient resources, which job is next to be scheduled in the queue, and the size of

the queue.

5 Experimental Results

We test our algorithm using cluster workload trace data provided by Google.2 This

data represents the workload for one of Google’s compute clusters over the one month

period of May 2011. The data captured in the trace workload provides information

on the machines in the system as well as the jobs that arrive, their submission times,

their resource requests, and their durations, which can be inferred from finding how

long a job is active. However, because we calculate the processing time of a job based

on the actual processing time realized in the workload traces, it is unknown to us

how processing times may have differed if a job was processed on a different machine.

Therefore, we assume that processing times are independent of machine configuration.

In-depth analysis on the workload has been previously done [21]; we will be using the

data as input for our scheduling algorithm to simulate its performance over the one

month period.

Although the information provided is extensive, we limit what we use for our ex-

periments. We do not consider failures of machines or jobs. Resubmitted jobs due to

failures are considered to be new, unrelated jobs. Machine configurations change over

time due to failures, the acquisition of new servers, or the decommissioning of old ones,

but we will only use the initial set of machines and keep that constant over the whole

month. Furthermore, system micro-architecture is provided for each machine. Some

jobs are limited in which types of architecture they can be paired with and how they

2 The data can be found at https://code.google.com/p/googleclusterdata/.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 252 -

Job class 1 2 3 4
Avg. Time (h) 0.03 0.04 0.04 0.03

Avg. Cores 0.02 0.02 0.07 0.20
Avg. Mem. 0.01 0.03 0.03 0.06
Proportion 0.23 0.46 0.30 0.01

of Total Jobs

Table 2: Job class details.

interact with these architectures, but we ignore this limitation for our scheduling ex-

periments. It is easy to extend the LoTES algorithm to account for system architecture

by setting µjk = 0 whenever a job cannot be processed on a particular architecture.

The focus for our work is on the efficient allocation of server resources to job classes

and so we abstract the trace data to look only at resource requests and job durations.

The cluster of interest has 10 machine configurations (we use the configurations

provided from the Google workload trace data) as presented in Table 1. Each configu-

ration is defined strictly by its resource capacity and the number of identical machines

with that resource profile. The resource capacities are normalized relative to the config-

uration with the most resources. Therefore, the job resource requests are also provided

after being normalized to the maximum capacity of machines.

5.1 Class Clustering

The Google data does not define job classes and so in order for us to use the data to

test our LoTES algorithm, we must first cluster jobs into classes. We follow Mishra

et al. [18] by using k-means clustering to create job classes. We make use of Lloyd’s

algorithm [15] to create the different clusters. To limit the amount of information that

LoTES is using in comparison to our benchmark algorithm, we only use the jobs from

the first day to define the job classes for the month. These classes are assumed to be

fixed for the entire month. Due to this assumption and because the Greedy policy does

not use class information, any inaccuracies introduced by making clusters based on the

first day will only make LoTES worse when we compare the two algorithms.

Clustering showed us that four classes were sufficient for representing most jobs.

Increasing the number of classes led to less than 0.01% of jobs being allocated to the

new classes and therefore, we use only four classes in our experiments. The different

job classes are presented in Table 2.

5.2 Benchmark Algorithm: A Greedy Dispatch Policy

To illustrate the performance of the LoTES algorithm, we propose a Greedy dispatch

policy as a benchmark. We chose to compare LoTES against the Greedy dispatch policy

because it is a natural heuristic, which aims to quickly process jobs. The dispatch

policy, like the LoTES algorithm, attempts to schedule jobs onto available machines

immediately if possible. If a machine is found that can immediately process a job, the

dispatch policy will make that assignment. In the case where no machines are available

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 253 -

for immediate processing, the policy will choose the machine with the shortest queue

of waiting jobs. Ties are broken randomly. However, an assignment cannot be made if

the requested resources of a job by themselves exceed the capacity of a machine. If a

queue forms, jobs will be processed in FCFS order.

The Greedy dispatch policy is similar to the LoTES algorithm. The key difference

in the two approaches is that the LoTES algorithm restricts the set of machines it con-

siders to the set of machines found from solving the higher level allocation problems in

the first two stages. By comparing against the Greedy policy, we can test how effective

LoTES is and how useful the proper machine-job mapping is to system performance.

5.3 Implementation Challenges

In our experiments, we have not directly considered the time it takes for the scheduler

to make dispatching decisions. As such, as soon as a job arrives to the system, the

scheduler will immediately assign it to a machine. In practice, decisions are not instan-

taneous and depending on the amount of information needed by the scheduler and the

complexity of the scheduling algorithm, the delay may be an issue. For every new job

arrival, the scheduler requires state information of one or more machines. The state of

the machine must provide the currently available resources and the size of the queue. As

the system becomes busier, the scheduler may have to obtain state information for all

machines in the data center. Thus, scaling may be problematic as the algorithms may

have to potentially search over a very large number of machines. However, in heavily

loaded systems where there are delays before a job can start processing, the scheduling

overhead will not adversely affect system performance so long as the overhead is less

than the waiting time delays. An additional issue may be present that could reduce

performance of the scheduler at heavy loads. The scheduler creates additional load on

the network connections within the data center itself. This may need to be accounted

for if the network connections become sufficiently congested.

Note, however, that the dispatching overhead of LoTES is no worse than that of

the Greedy policy. The LoTES algorithm benefits from the restricted set of machines

that it considers when making scheduling decisions, but that does not guarantee that

LoTES would not also end up obtaining state information on every machine when the

system is heavily loaded. Therefore, a system manager for a very large data center must

take into account the overhead required to obtain machine state information. There

is work showing the benefits of only sampling state information from a limited set of

machines to make a scheduling decision [10]. If the overhead of obtaining too much

state information is problematic, we suggest that one can further limit the number

of machines to be considered once a configuration has already been chosen. Such a

scheduler could decide which configuration to send an arriving job to and then sample

N machines randomly from the chosen configuration, where N ∈ [1, nj]. Restricting the

scheduler to only these N sampled machines, the scheduler can dispatch jobs following

the same rules as LoTES. This allows the mappings from the offline stages of LoTES

to still be used, but with substantially less overhead for the online portion.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 254 -

0 100 200 300 400 500 600 700
10−3

10−2

10−1

100

101

Time (h)

M
ea

n
R

es
po

ns
e

Ti
m

e
(h

)

Greedy
LoTES

Fig. 6: Response Time Comparison.

5.4 Simulation Results: Workload Trace Data

We simulate the LoTES algorithm and the Greedy dispatch policy using the workload

traces from Google. We created an event-based simulator in C++ to emulate a data

center with the workload data used as input to our system. The LP models are solved

using IBM ILOG CPLEX 12.5. We run our tests on an Intel Pentium 4 CPU 3.00 GHz,

1 GB of main memory, running Red Hat 3.4-6-3. Because the LP models are solved

offline prior to the arrival of jobs, the solutions to the first two stages are not time-

sensitive. Regardless, the total time required to obtain solutions to both LP models

and to generate bins requires less than one minute of computation time. This level of

computational effort means that it is realistic to re-solve these two stages periodically,

perhaps multiple times a day, if the job classes or machine configurations change due,

for example, to non-stationary distributions. We leave this for future work.

Figure 6 presents the performance of the system over the one month period. The

graph provides the mean response time of jobs over every one-hour long interval. We

include a job’s response time in the mean response time calculation in the interval in

which the job begins processing. We see that the LoTES algorithm greatly outper-

forms the Greedy policy. On average, the Greedy policy has response times an order

of magnitude longer (15-20 minutes) than the response times of the LoTES algorithm

(1-2 minutes). The difference on average shows the strong performance of LoTES, how-

ever, a more interesting result is the performance difference when the system becomes

heavily loaded. During the one-month period, the Greedy policy has two large spikes

in response times that occur where jobs must wait for close to 10 hours around the 70

hour and 280 hour time points. During both occurrences, the LoTES algorithm pro-

duces schedules with response times on the order of 1 hour long in the first occurrence,

and 10 minutes in the second occurrence.

Figures 7 and 8 provide the core and memory utilization of the machines over time.

At the end of each hour, we record the instantaneous utilization of resources over all

machines and graph those results. We observe that curves are typically very close to

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 255 -

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (h)

C
or

e
U

til
iz

at
io

n

Greedy
LoTES

Fig. 7: Processing Core Utilization Comparison.

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (h)

M
em

or
y

U
til

iz
at

io
n

Greedy
LoTES

Fig. 8: Memory Utilization Comparison.

each other, but at certain time points, the Greedy policy has higher utilization. We

believe the increased utilization is due to the build up of jobs in queue for the Greedy

policy. With a large queue, as soon as jobs are completed, the available space is filled

again with a waiting job. Since LoTES is doing a better job of increasing throughput in

the short term through efficient allocation, queues do not form as often. However, over

the long term, as this is an open system and we assume that no jobs are abandoned, the

long-run throughput of both systems will be the same and therefore long-run resource

utilizations are also the same. As a result, LoTES is doing a better job at smoothing

the utilization curves.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 256 -

0 100 200 300 400 500 600 700
0

2000

4000

6000

8000

10000

12000

14000

Time (h)

N
um

be
r o

f E
m

pt
y

Q
ue

ue
s

Greedy
LoTES

Fig. 9: Empty Queue Comparison.

Figure 9 plots the number of empty queues for both schedulers. Of the 12,583

machines present in the system, we graph the number of machines that have an empty

queue during each hour of the simulation. Although the queue length at a machine

may change during the hour long period, we only record the state of the queue at the

end of the hour. We see that very quickly, the LoTES algorithm is able to keep the

queues of all machines relatively empty. However, the Greedy policy often has a large

number of machines with a queue. This queue formation leads to the higher resource

utilization and the increased response times.

6 Conclusion and Future Work

In this work, we developed a scheduling algorithm that creates a mapping between

jobs and machines based on their resource profiles to improve the response time of

the system. The algorithm consists of three stages where a fluid representation and

queueing model are used at the first stage to fractionally allocate job classes to ma-

chine configurations. The second stage then solves a combinatorial problem to generate

possible assignments of jobs on machines. An LP model is developed to maximize sys-

tem capacity by choosing which of the generated sets of jobs that each machine should

aim to emulate. The final stage is an online dispatching policy that uses the solution

from the second stage to decide on the machine to assign to each incoming job. Our

algorithm was tested on Google workload trace data and was found to reduce response

times by up to an order of magnitude when compared to a benchmark dispatch policy.

This improvement in performance is also computationally cheaper than the benchmark

policy during the online scheduling phase since the proposed algorithm often requires

state information for fewer machines when making assignment decisions.

The data center scheduling problem is very rich from the scheduling perspective and

can be expanded in many different ways. Our algorithm assumes stationary arrivals

over the entire duration of the scheduling horizon. However, the real system is not

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 257 -

stationary and the arrival rate of each job class may vary over time. Furthermore,

the actual job classes themselves may change over time as resource requirements may

not always be clustered in the same manner. As noted above, the offline phase is

sufficiently fast (about one minute of CPU time) that it could be run multiple times

per day as the system and load characteristics change. Beyond this we plan to extend

the LoTES algorithm to more accurately represent dynamic job classes. This would

allow the LoTES algorithm to learn and predict the expected job population and

make scheduling decisions with these predictions in mind. Not only do we wish to be

able to adjust our algorithm to a changing environment, but we also wish to extend

our algorithm to be able to more intelligently handle situations where there is high

variance in the mix of job classes in the environment. The high variance will lead to

system realizations that differ significantly from the bins created in the second stage

of the LoTES algorithm.

We also plan to study the effects of errors in job resource requests. We used the

amount of requested resources of a job as the amount of resource used over the entire

duration of the job. In reality, most jobs may end up using less or more resources

than requested due to the fact that users may under or overestimate their resource

requirements. In addition, the utilization of a resource may change over the duration

of the job itself. We plan to incorporate these uncertainties regarding resource usage

to improve system utilization. This adds difficulty to the problem because instead of

creating a schedule where we know the exact amount of requested resources once a job

arrives, we only have an estimate of the requests and must ensure that a machine is

not underutilized or oversubscribed.

Acknowledgment

This work was made possible in part due to a Google Research Award and the Natural

Sciences and Engineering Research Council of Canada (NSERC).

References

1. Apache Hadoop. http://hadoop.apache.org
2. Al-Azzoni, I., Down, D.G.: Linear programming-based affinity scheduling of independent

tasks on heterogeneous computing systems. IEEE Transactions on Parallel and Distributed
Systems 19(12), 1671–1682 (2008)

3. Andradóttir, S., Ayhan, H., Down, D.G.: Dynamic server allocation for queueing networks
with flexible servers. Operations Research 51(6), 952–968 (2003)

4. Berral, J.L., Goiri, Í., Nou, R., Julià, F., Guitart, J., Gavaldà, R., Torres, J.: Towards
energy-aware scheduling in data centers using machine learning. In: Proceedings of the
1st International Conference on energy-Efficient Computing and Networking, pp. 215–224.
ACM (2010)

5. Chang, R.S., Lin, C.Y., Lin, C.F.: An adaptive scoring job scheduling algorithm for grid
computing. Information Sciences 207, 79–89 (2012)

6. Dai, J.G., Meyn, S.P.: Stability and convergence of moments for multiclass queueing net-
works via fluid limit models. IEEE Transactions on Automatic Control 40(11), 1889–1904
(1995)

7. Gandhi, A., Harchol-Balter, M., Kozuch, M.A.: Are sleep states effective in data centers?
In: International Green Computing Conference (IGCC), pp. 1–10. IEEE (2012)

8. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dominant
resource fairness: Fair allocation of multiple resource types. In: NSDI, vol. 11, pp. 24–24
(2011)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 258 -

9. Grandl, R., Ananthanarayanan, G., Kandula, S., Rao, S., Akella, A.: Multi-resource pack-
ing for cluster schedulers. In: Proceedings of the 2014 ACM conference on SIGCOMM,
pp. 455–466. ACM (2014)

10. He, Y.T., Down, D.G.: Limited choice and locality considerations for load balancing. Per-
formance Evaluation 65(9), 670–687 (2008)

11. Isard, M., Prabhakaran, V., Currey, J., Wieder, U., Talwar, K., Goldberg, A.: Quincy: fair
scheduling for distributed computing clusters. In: Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, pp. 261–276. ACM (2009)

12. Kim, J.K., Shivle, S., Siegel, H.J., Maciejewski, A.A., Braun, T.D., Schneider, M., Tide-
man, S., Chitta, R., Dilmaghani, R.B., Joshi, R., et al.: Dynamically mapping tasks with
priorities and multiple deadlines in a heterogeneous environment. Journal of Parallel and
Distributed Computing 67(2), 154–169 (2007)

13. Le, K., Bianchini, R., Zhang, J., Jaluria, Y., Meng, J., Nguyen, T.D.: Reducing electricity
cost through virtual machine placement in high performance computing clouds. In: Pro-
ceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, p. 22. ACM (2011)

14. Liu, Z., Lin, M., Wierman, A., Low, S.H., Andrew, L.L.: Greening geographical load bal-
ancing. In: Proceedings of the ACM SIGMETRICS Joint International Conference on
Measurement and Modeling of Computer Systems, pp. 233–244. ACM (2011)

15. Lloyd, S.: Least squares quantization in PCM. IEEE Transactions on Information Theory
28(2), 129–137 (1982)

16. Maguluri, S.T., Srikant, R., Ying, L.: Heavy traffic optimal resource allocation algorithms
for cloud computing clusters. In: Proceedings of the 24th International Teletraffic Congress,
p. 25. International Teletraffic Congress (2012)

17. Maguluri, S.T., Srikant, R., Ying, L.: Stochastic models of load balancing and scheduling
in cloud computing clusters. In: Proceedings IEEE INFOCOM, pp. 702–710. IEEE (2012)

18. Mishra, A., Hellerstein, J., Cirne, W., Das, C.: Towards characterizing cloud backend work-
loads: insights from Google compute clusters. ACM SIGMETRICS Performance Evalua-
tion Review 37(4), 34–41 (2010)

19. Ousterhout, K., Wendell, P., Zaharia, M., Stoica, I.: Sparrow: distributed, low latency
scheduling. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pp. 69–84. ACM (2013)

20. Rasooli, A., Down, D.G.: COSHH: A classification and optimization based scheduler for
heterogeneous hadoop systems. Future Generation Computer Systems 36, 1–15 (2014)

21. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity and
dynamicity of clouds at scale: Google trace analysis. In: Proceedings of the Third ACM
Symposium on Cloud Computing, pp. 1–13. ACM (2012)

22. Tang, Q., Gupta, S.K., Varsamopoulos, G.: Thermal-aware task scheduling for data centers
through minimizing heat recirculation. In: IEEE International Conference on Cluster
Computing, pp. 129–138. IEEE (2007)

23. Wang, L., Von Laszewski, G., Dayal, J., He, X., Younge, A.J., Furlani, T.R.: Towards
thermal aware workload scheduling in a data center. In: Pervasive Systems, Algorithms,
and Networks (ISPAN), 2009 10th International Symposium on, pp. 116–122. IEEE (2009)

24. Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., Stoica, I.: Delay
scheduling: A simple technique for achieving locality and fairness in cluster scheduling.
In: Proceedings of the 5th European conference on Computer systems, pp. 265–278. ACM
(2010)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 259 -

MISTA 2015

Examination timetabling at Technische Universität Berlin

Mirjana Lach · Gerald Lach · Erhard Zorn

Abstract We present a new integer programming based model for the examination

timetabling problem at Technische Universität Berlin. This problem has to be solved

to assign written examinations to rooms and timeslots at universities. Our model not

only respects students who have to take several exams in one examination period, but

it also allows for the preparation time of the students between consecutive exams. The

new model has been successfully used at Technische Universität Berlin with more than

32,000 students.

1 Introduction

The examination timetabling problem (ETP) describes the assignment of exams at

a university to rooms and timeslots without conflicts for students who have to take

several exams in one examination period. Usually the exams take place in a limited

period after the lecture period or before the next lecture period. The exam timetable

may be subject to additional constraints varying among universities. We describe how

to generate an exam timetable also respecting time between different exams of each

student, enough allowing to prepare for the next exam. Generating satisfactory exam

timetables at large universities is a sophisticated task; exams manually planned may

easily result in conflicts. In the last decade, at many European universities the number

of exams has increased significantly. This is, among other reasons, due to the Bologna

process at European universities, a consequence of an increasing number of courses of

studies and courses with final written examinations. At large universities like Technis-

che Universität Berlin (TU Berlin) with more than 32,000 students, this task cannot

Mirjana Lach
Technische Universität Berlin, Institute of Mathematics/innoCampus
E-mail: mirjana.lach@math.tu-berlin.de

Gerald Lach
Technische Universität Berlin, Institute of Mathematics/innoCampus
E-mail: gerald.lach@math.tu-berlin.de

Erhard Zorn
Technische Universität Berlin, Institute of Mathematics/innoCampus
E-mail: erhard@math.tu-berlin.de

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 260 -

be done manually. We present an integer programming (IP) based approach which has

been successfully used at TU Berlin since 2010.

2 Problem and solution outline

The Examination Timetabling problem is a special case of the timetabling problem

discussed in [4] and hence NP-hard. Consequently, it cannot be expected that an

algorithm can be found which solves the problem in polynomial time—unless P equals

NP.

In the literature, different techniques are used dealing with this problem, amongst

others heuristics ([5], [12], [3], [11]) and IP based techniques ([10], [2], [6]). Due to

different requirements on the generated timetable, not all approaches are directly com-

parable to the approach introduced in this paper, regarding the quality of the solutions

or the size of the problems.

As discussed in [8], linear integer programming can be successfully applied to the

University Course Timetabling problem; the authors used problem instances represen-

tative for large universities like TU Berlin, and which fulfilled typical requirements.

Because of the different requirements of both problems, the solution technique for

the University Course Timetabling problem from [8] cannot be applied directly to the

Examination Timetabling problem. However, the idea of [8] was used to decompose

the whole problem into two subproblems and to solve them separately. The solution

procedure of the first subproblem affects the second one in a certain manner in order

to obtain a conflict-free solution of the first subproblem. Consequently, the existence of

a conflict-free solution of the second subproblem is guaranteed and can be found with

another solution procedure. Finally, the solutions of the two subproblems are merged

into a complete solution of the original problem.

3 Examination timetabling at TU Berlin

The requirements for exam timetables vary significantly among universities. Therefore,

we will describe the requirements at TU Berlin in detail.

Timeslots

Timeslots identify the time frames of a day when an exam may take place. They

are disjoint and defined by a starting time and an end time. A typical example of

timeslots used at TU Berlin is a Monday 09:00–12:00 a.m. within a period of three

after the end of the lecture period. An exam may be assigned to a fixed timeslot

whereby the assignment of the other exams has to comply with this. This is a rare

exemption that requires a substantive reason. Therefore, this can only be done

by an administrator. A lecturer who offers an exam may indicate which timeslots

during the exam period come into consideration. If an exam has to take place

in more than one room, they will be assigned at the same timeslot—for obvious

reasons.

Rooms

The capacity of a room characterizes the number of seats which can be used for

the participants of an exam. In order to impede the communication among the

students during an exam, a certain physical distance between the attendees has

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 261 -

to be considered. Therefore, the examiner selects a ‘filling factor‘, e.g. 1/6 (which

corresponds to every second row, every third seat in a row for the examinees). The

examiner also specifies the number of rooms he is able to monitor (at the same

timeslot) with his staff and the number of students he is expecting to attend his

exam. In each room, there can only take place one exam at the same timeslot.

Furthermore, the examiner may request for rooms with different priorities. The

preferred rooms have to fulfill the data specified by the examiner (capacity and

number).

Time for preparation

For every exam a particular time period (in days) for preparation may be defined.

This ensures that a student can prepare his exam in sufficient time without the

need for preparing more than one exam at the same time. For a very tight exam

period this may at least ensure that there is a minimal time period (e.g. one day)

between two exams of the same student to allow for recapitulation.

Conflict matrix

The conflict matrix discloses which pairs of exams belong to a curriculum of one

term (1st term, 2nd term etc.) of a course of studies and may therefore not take

place at the same timeslot. A temporal distance may be observed between them

respectively (temporal conflict). The temporal distance complies with the time

needed for preparing the subsequent exam of the concerning two exams. If the time

for preparing for an exam is zero, then it has to be prevented that the concerning

exam is taking place at the same day as another exam which is in conflict with the

former one.

Curricula inclose the most important information to create a conflict-free exam

timetable. For most of the obligatory courses there is a determined term (1st term,

2nd term etc.) in which students of a specific course of studies are expected to

take the course/exam. For students failing there are often additional exams offered

in the next exam period (before the next lecture period). Therefore, the curricula

inclose the most reliable information for the conflict matrix.

But there are also courses students may choose to attend; e.g. they have to choose

two out of five courses in a special field, or students may select courses totaling

10 credits. It would be absurd to represent the exams of all these courses in a

conflict matrix: In most cases students have a free choice in which term they want

to attend the above mentioned courses. Therefore, they would have to be in conflict

with every other course! Fortunately, most of these ‘free’ courses will be attended

by students in their 2nd or 3rd year when they successfully passed most of the

obligatory courses. And often these are courses with few students that additionally

do not offer written exams but oral exams that are individually arranged. Yet, there

are ‘free’ courses that are attended by many students of a specific course of studies

in a specific term according to experience of the lecturers. Therefore, a conflict may

be added to the conflict matrix if it is well-known that two exams will be taken by a

significant number of students. These exams are not obliged to belong to one of the

curricula of the current term of the concerning students. Such additional conflicts

may also be used if it is well-known that a considerable number of students will

fail a course and repeat it the next term.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 262 -

4 Solution model for the ETP at TU Berlin

In what follows, we will describe how we developed a procedure to solve the ETP. Our

solution was implemented and has already been successfully applied to real data of TU

Berlin. To the best of our knowledge, it is the first exact program which may solve

instances of the ETP for large universities like TU Berlin [9].

Decomposition model

The decomposition model divides the ETP into two subproblems. The first subproblem

consists of the date assignment, i.e. every exam is assigned to a timeslot. The second

subproblem consists of the room assignment, i.e. every exam, which was already as-

signed to a timeslot, is assigned to the corresponding rooms. More precisely, during the

date assignment every exam is assigned to a timeslot without the need for two exams

of being in a temporal conflict. In addition, it is assured that after a date assignment

a room assignment is possible without a room being occupied by more than one exam

at the same time, and every exam which was assigned to a timeslot is assigned to

enough rooms. To put it another way, the existence of a conflict-free room assignment

is guaranteed after the date assignment. This is achieved by using an exponential num-

ber of constraints which can be separated in polynomial time. Consequently, the two

components are interdependent.

Let K be the set of exams, TS the set of timeslots, and R the set of rooms. For each

r ∈ R let K(r) be the set of exams for which r is an appropriate room. For each k ∈ K

let R(k) be set of rooms which are adequate for k, and TS(k) the set of timeslots at

which exam k may take place. Additionally, we define NR(k) as the number of rooms

which are required for exam k ∈ K.

Time conflicts are represented by a conflict graph Gconf = (Vconf, Econf): A vertex

vk,ts ∈ Vconf represents a possible timeslots ts for the exam of course k. An edge

vk1,ts1vk2,ts2 ∈ Econf exists if and only if either exam k1 must not take place at

timeslot ts1 or exam k2 must not take place at timeslot ts2.

The room conflicts are also modeled using a graph H = (Vnet ∪Rnet, Enet, s, t, u):

Again, a vertex vk,ts ∈ Vnet represents a possible timeslot ts for the exam of course k.

Furthermore, vertex rr,ts ∈ Rnet represents a timeslot ts where room r can be occupied

by an exam; s is the sink and t the target of the network. Based on the vertices the

edges

Enet = {(s, v) : v ∈ Vnet} ∪ {(r, t) : r ∈ Rnet} ∪ {(vk,ts, rr,ts) : r ∈ R(k)} (1)

and the capacity

u : Enet → N, u(e) =

{
NR(k) if e ∈ {(s, v) : v ∈ Vnet}
1 otherwise

(2)

are defined. Furthermore, for every A ⊂ Vnet we define ûA.

ûA : Enet → N, ûA(e) =

{
0 if e ∈ {(s, v) : v ∈ Vnet\A}
u(e) otherwise

(3)

Based on these definitions, we deduce the function

maxF : 2Vnet → N, maxF(A) 7→ Max. Flow on ĤA = (Vnet ∪Rnet, Enet, s, t, ûA)

(4)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 263 -

First subproblem of the decomposition model

Before we are going to present the first subproblem of the decomposition model, two

lemmata demonstrating the connection between these two subproblems are presented.

Lemma 1 Let ts ∈ TS, A ⊂ K, and Anet = {vk,ts : k ∈ A} ⊂ Vnet. Then there exists

a conflict-free room assignment for A at timeslot ts if and only if:

maxF(Anet) =
∑
k∈A

NR(k)

Lemma 2 Let ts ∈ TS, A ⊂ K, Anet = {vk,ts : k ∈ K} ⊂ Vnet, and x∗ ∈
R
|Anet|. Then there exists a polynomial time separation algorithm that detects an B ⊂

A, Bnet = {vb,ts : b ∈ B} such that

maxF(Bnet) <
∑
k∈B

NR(k) · x∗k,ts

or proofs that for all B ⊂ A, Bnet = {vb,ts : b ∈ B} holds:

maxF(Bnet) ≥
∑
k∈B

NR(k) · x∗k,ts

The proofs and a description of the separation algorithm can be found in [9]. Keeping

these lemmata in mind, we are able to define the IP model that assigns conflict-free

dates to as many exams as possible with respect to the room resources.

objective function

max
∑

k∈K,ts∈TS

yk,ts

constraints

yk1,ts1 + yk2,ts2 ≤ 1 (vk1,ts1vk2,ts2) ∈ Econf∑
vk,ts∈Knet

NR(k) · yk,ts ≤ maxF(Knet) Knet ⊂ Vnet

yk,ts ∈ {0, 1} vk,ts ∈ Vconf

Second subproblem of the decomposition model

Assuming having calculated the optimal yk,ts ∈ {0, 1} values in the first subprob-

lem, the second subproblem can be modeled similarly to a min-cost-flow problem. We

suggest that the yk,ts are not variables but constants for the second part of the decom-

position model. In the objective function the global sum of room priorities (prio(r, k))

which have been specified by the examiner is minimized.

objective function

min
∑

k∈K,r∈R,ts∈TS

xk,r,ts · prio(k, r)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 264 -

constraints

∑
r∈R(k)

xk,r,ts = NR(k) · yk,ts k ∈ K, ts ∈ TS

∑
k∈K(r)

xk,r,ts ≤ 1 r ∈ R, ts ∈ TS

xk,r,ts ∈ {0, 1} k ∈ K, r ∈ R, ts ∈ TS

5 Results

The Software was implemented using SCIP [1] and CPLEX [7]. The first timetable

for 116 exams was generated in Spring 2010 using the approach represented where no

conflicting exams overlap assuring that two courses of one curriculum never take place

on consecutive days. Courses from six of the seven faculties of TU Berlin participated,

that led to more than 7,400 students involved and more than 26,000 exam participants.

In particular, students of the first four semesters benefited from the better organization

of their exams. The running time for solving the problem instances is less than one

minute for all instances tested. In Table 1 the increasing number of participating exams

is shown. The room utilization per room denotes the average percentage of occupied

seats of a room during an exam. The room utilization per time period denotes the

occupied seats during all exams in a specific time period of two weeks after and two

weeks before the next lecture period. The room utilization is relevant, e.g., for the

steering committee of a university in order to save costs. By using as few rooms as

possible for exams, maintenance and external events may be organized in a better way,

and the number of external rooms to be rented may be reduced—if necessary at all.

A minimum time-lag to the exam day preferred by the examiner is important for the

acceptance of the new exam timetabling process. The examiners have to be convinced

that an algorithm can generate a better exam timetable—better, e.g., than a timetable

generated by a first come, first served principle. The time-lag to a preferred day of

a lecturer is less than one day in average. Nevertheless, we found that the procedure

and the algorithm for generating an exam timetable can still be improved. This will

be discussed in an upcoming paper.

Table 1 Number of exams, participants, room utilization, and time-lag to preferred day

semester exams participants room
utilization
per room

time-lag to
preferred

day

room
utilization
per time
period

Spring 2011 176 30,840 82% 0.84 52%
Fall 2011 193 36,875 80% 1.49 56%
Spring 2012 194 35,331 80% 0.76 53%
Fall 2012 204 39,326 81% 0.87 66%
Spring 2013 189 34,946 82% 0.27 49%

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 265 -

References

1. Achterberg, T., Berthold, T., Heinz, S., Koch, T., Wolter, K.: SCIP – Solving Constraint
Integer Programs, documentation (2009). http://scip.zib.de

2. Al-Yakoob, S., Sherali, H., Al-Jazzaf, M.: A mixed-integer mathematical modeling ap-
proach to exam timetabling. Computational Management Science 7(1), 19–46 (2010)

3. Bilgin, B., Özcan, E., Korkmaz, E.E.: An experimental study on hyper-heuristics and exam
timetabling. In: Proceedings of the 6th International Conference on Practice and Theory
of Automated Timetabling, pp. 123–140 (2006)

4. Cooper, T.B., Kingston, J.H.: The complexity of timetable construction problems. In:
Selected papers from the First International Conference on Practice and Theory of Auto-
mated Timetabling, pp. 283–295. Springer-Verlag, London, UK (1996)

5. Eley, M.: Ant algorithms for the exam timetabling problem. In: PATAT’06: Proceedings
of the 6th international conference on Practice and theory of automated timetabling VI,
pp. 364–382. Springer-Verlag, Berlin, Heidelberg (2007)

6. Fonseca, G., Santos, H.: A new integer linear programming formulation to the examination
timetabling problem. In: MISTA’13: Proceedings of the 6th Multidisciplinary International
Scheduling Conference, pp. 345–355 (2013)

7. IBM: CPLEX Optimizer (2009). URL http://www-
01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html. Last visited
20.05.2015

8. Lach, G., Lübbecke, M.: Optimal university course timetables and the partial transversal
polytope. In: C. McGeoch (ed.) 7th International Workshop on Efficient and Experimental
Algorithms (WEA08), LNCS, vol. 5038, pp. 235–248. Springer, Berlin (2008)

9. Lach, M.: Ein Verfahren zur Optimierung der Klausurterminplanng an der TU Berlin.
Master’s thesis, Technische Universität Berlin, Institut für Mathematik (2008). In German

10. MirHassani, S.A.: Improving paper spread in examination timetables using integer pro-
gramming. Applied Mathematics and Computation 179(2), 702–706 (2006)

11. Müller, T.: Real-life examination timetabling. In: MISTA’13: Proceedings of the 6th Mul-
tidisciplinary International Scheduling Conference, pp. 248–267 (2013)

12. Zampieri, A., Schaerf, A.: Modelling and solving the italian examination timetabling prob-
lem using tabu search (2006)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 266 -

MISTA 2015

Improving Upper Bounds in High School Timetabling by
Matheuristics

George H.G. Fonseca · Haroldo G. Santos ·
Eduardo G. Carrano

Abstract The High School Timetabling Problem requires assignment of timeslots and

resources to events, respecting given constraints. The most common approaches for this

type of timetabling problems are meta-heuristics. This work presents a matheuristic

approach combining a Variable Neighbourhood Search algorithm with mathematical

programming-based neighbourhoods for high school timetabling. The computational

experiments on well-known benchmark instances demonstrate the success of the pro-

posed matheuristic approach, improving the 14 out of 17 best known solutions from

the XHSTT-2014 archive.

Keywords Matheuristics ·High School Timetabling · Third International Timetabling

Competition

1 Introduction

The High School Timetabling Problem is faced by many educational institutions around

the world. It consists in assigning timeslots and resources to events, respecting several

constraints. Generally, this assignment is repeated weekly until the end of the semester.

Some common constraints present in this problem are to respect the availability of

teachers, to respect a limit of lessons of the same subject taught in a day and to avoid

idle times between activities.

The Third International Timetabling Competition (ITC2011) [14] stimulated the

development of several approaches to solve this problem. The competition considered

George H. G. Fonseca and Eduardo G. Carrano
Graduate Program in Electrical Engineering
Federal University of Minas Gerais
Av. Antônio Carlos 6627, 31270-901
Belo Horizonte, MG, Brazil
E-mail: george@decsi.ufop.br, egcarrano@ufmg.br

Haroldo G. Santos
Department of Computing
Federal University of Ouro Preto
St. Diogo de Vasconcelos 328, 35400-000
Ouro Preto, MG, Brazil
E-mail: haroldo@iceb.ufop.br

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 267 -

the eXtended Markup Language for High School TimeTabling (XHSTT) format [15],

which can specify several features of scheduling problems. More than 40 real world

datasets, from 12 different countries, are now available in this format to evaluate the

performance of algorithms for high school/university timetabling. In the competition,

meta-heuristic approaches achieved the best results, as component of GOAL solver [6].

Other finalists of ITC2011 were Lectio, HySTT and HFT. Lectio ranked second with a

Adaptive Large Neighbourhood Search (ALNS) approach [19]. In third place, HySTT

developed a Hyper-heuristic approach [8]. HFT ranked fourth with an Evolutionary

Algorithm [16].

More recently, GOAL team released a new solver based on the Variable Neighbour-

hood Search algorithm [6], Kingston [10] developed a solver based on his library for

handling XHSTT instances and HySTT team worked towards an improved version of

their Hyper-heuristic approach [1]. In mathematical programming field, Kristiansen et

al. [11] developed the first Integer Programming formulation for XHSTT timetabling

problems.

The integration of meta-heuristics and mathematical programming approaches,

namely matheuristics, is a growing field in operations research. For example, Toffolo et

al. [17] presented a matheuristic for Nurse Rostering, Pirkwieser et al. [12] presented

a matheuristic for Vehicle Routing and Merz et al. [4] presented a matheuristic for

Flow Shop Scheduling. Sorensen and Stidsen [18] presents some preliminary results in

matheuristics for XHSTT timetabling problems. However, no problem-specific neigh-

bourhood was presented in their work. In this way, the main objective of this work

is present some new matheuristic neighbourhoods for High School Timetabling along

with new results considering these neighbourhoods.

This paper is organized as follows. Section 2 presents a brief description of XHSTT

format. In Section 3 the proposed matheuristic for XHSTT and its neighbourhoods

are presented. Section 4 presents the computational experiments and discussion of the

results. Finally, in Section 5 the concluding remarks are presented.

2 XHSTT Format

An XHSTT instance is composed of four entities:

– Times. Contains the possible timeslots for allocations. These timeslots may also

be grouped into TimeGroups;

– Resources. Contains the available resources for assignments. Each resource has a

specific ResourceType. Resources are also commonly grouped into ResourceGroups;

– Events. Represents the events to be scheduled. Each event has a duration meaning

the amount of times in which it has to be scheduled and a demand for a set of

resources. Times and resources may be pre-assigned to the events. When these

entities are not pre-assigned, it is expected that a solver makes this assignment.

Optionally events may have a workload which is considered to its assigned resources.

Events are also commonly grouped into EventGroups;

– Constraints. Represents the set of constraints that should be respected in a so-

lution for an instance of this problem. Table 1 presents the 16 constraint types

available in this format. Each constraint may be either hard or soft. A solution

with any hard constraint violation is called infeasible while the soft constraints

measure the quality of a solution. Smaller values indicate a better solution. Each

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 268 -

Constraint Description
Assign Resource Event resource should be assigned a resource
Assign Time Event should be assigned a time
Split Events Event should split into a constrained number of sub-events
Distribute Split Events Event should split into sub-events of constrained durations
Prefer Resources Event resource assignment should come from resource group
Prefer Times Event time assignment should come from time group
Avoid Split Assignments Set of event resources should be assigned the same resource
Spread Events Set of events should be spread evenly through the cycle
Link Events Set of events should be assigned the same time
Order Events Set of events should be ordered
Avoid Clashes Resource’s timetable should not have clashes
Avoid Unavailable Times Resource should not be busy at unavailable times
Limit Idle Times Resource’s timetable should not have idle times
Cluster Busy Times Resource should be busy on a limited number of days
Limit Busy Times Resource should be busy a limited number of times each day
Limit Workload Resource’s total workload should be limited

Table 1 Different constraint types in the XHSTT format [13].

constraint also has a cost meaning the penalty for a single violation and a cost

function dictating how violations will be penalized in the objective function. A

deeper description of this format can be found in Post et al. [15] and Kingston [9].

3 Matheuristics

Matheuristics are optimization algorithms made by the interoperation of meta-heuristics

and mathematical programming (MP) techniques [2]. In the proposed approach the

meta-heuristic works at a master level, controlling low level local search procedures.

These local search procedures consists of Mixed Integer Programming (MIP) models

having a subset of variables fixed to their current values in the incumbent solution and

the remaining variables freed to be optimized by a MIP solver.

The main procedure is similar to the proposed by Sorensen and Stidsen [18]. How-

ever, the focus of our work is the matheuristic neighbourhoods for this problem. Con-

sidering that X represents the set of decision variables, s represents the current solution

and n(.) a neighbourhood function, the matheuristic framework is presented in Algo-

rithm 1.

Algorithm 1: Matheuristic

Input: XHSTT instance P .
Output: Best solution s found.

1 s← MIP solution considering only hard constraints;
2 while elapsedT ime < timeout do
3 obtain variables v ← n(s);
4 fix variables X − v to their current value;
5 invoke MIP solver with a short time limit;
6 unfix all variables;

7 return s;

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 269 -

In Line 1 the Algorithm starts with the MIP model searching for a feasible solution

(i.e. one that does not violate any hard constraint). In Line 3, the algorithm selects a

set of variables regarding a specific neighbourhood. In Line 4 all variables, except the

selected ones have their values fixed. In Line 5 the MIP solver is invoked with a small

time limit (see Table 2). After that, all variables are unfixed for the next iteration of

the algorithm.

The following subsections present the considered MIP model and four ways (neigh-

bourhoods) to select which variables will be unfixed in the MIP local search procedure.

3.1 MIP Model

The considered MIP Model was recently proposed by Kristiansen et al. [11]. This model

is able to handle any XHSTT instance. For sake of brevity, only the input data and

basic variables of the formulation given by Kristiansen et al. [11] will be described in

this paper.

The input data for this formulation is a set of times T , a set of resources R, a set

of events E and a set of constraints C. An event e ∈ E has a duration de ∈ N, and

a number of event resources, each one denoted as er ∈ e. An event resource defines

the requirement of the assignment of a resource to the event, and this resource can be

specified to be pre-assigned. If the resource is not pre-assigned, a resource of proper type

must be assigned. Furthermore an event resource er can undertake a specific roleer,

which is used to link the event resource to certain constraints. Generally an event has

to be split into sub-events whose sum of durations matches the duration of the original

event. This formulation creates the ‘full set’ of sub-events se with different lengths,

such that all possible combinations of sub-events for a given event can be handled.

Variable xse,t,er,r ∈ {0, 1} takes value 1 if sub-event se ∈ SE has been assigned

time t ∈ T as starting time and resource r ∈ er is assigned to event resource er ∈
se, and 0 otherwise. Binary variable yse,t takes value 1 if sub-event se ∈ SE has

been assigned time t ∈ T . To reduce the amount of non-zeros in the MIP model,

two auxiliary variables are introduced which inherits their values from xse,t,er,r. The

variable vt,r ∈ N0 denotes the number of times resource r ∈ R is used in time t ∈ T .

Finally, variable wse,er,r ∈ {0, 1} takes value 1 if sub-event se ∈ SE is assigned resource

r ∈ R for event resource er ∈ se, and 0 otherwise.

Upon these input data and variables the constraints in this problem are modelled.

Each point of application of each constraint has also a slack variable indicating a

penalty to be considered in the objective function. Eventually some constraint specific

variables are also required. The complete formulation is presented in Kristiansen et al.

[11].

3.2 Neighbourhood

3.2.1 Events Neighbourhood

In this neighbourhood, a randomly selected set of n events, along with all related

auxiliary variables are unfixed. Thus, it is possible to achieve a local optima regarding

how these events are split into sub-events, the time assignment for their sub-events and

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 270 -

the resource assignment for these events. Or course, this local optima has to respect

the assignments from fixed variables.

3.2.2 Times Neighbourhood

This neighbourhood randomly selects a set of n times and any variable related to these

times is unfixed. With this neighbourhood it is possible to find a local optima solution

regarding the use of these timeslots. Also the split of events into sub-events and the

resource assignment is optimized.

3.2.3 Resources Neighbourhood

This neighbourhood randomly selects a set of n resources. Each event that has at least

one of these resources as pre-assigned is selected. Then any variable related to these

events is unfixed. In this way, it is possible to achieve a local optima regarding the

times that the resources occupy. Thus constraints like Limit Idle Times and Cluster

Busy Times can be optimized for the selected resources.

3.2.4 Variables Neighbourhood

In this neighbourhood n percent of the variables are selected to become unfixed. This

is the simplest neighbourhood and it is not problem-dependant. However, problem-

dependant neighbourhoods perform much better than this totally random neighbour-

hood (see Table 3). Thus, this neighbourhood was considered only for comparison

purposes.

4 Computational Experiments

All experiments ran on an Intel R© i7 4510-U 2.6 Ghz computer with 8GB of RAM

computer under Ubuntu 12.04 operating system. The software was coded in C++ and

compiled with GCC 4.6.1. The obtained results were validated by HSEval validator1.

The time limit was adjusted to be equivalent of 1000 seconds in the benchmark provided

by the ITC2011 organizers. Following another ITC2011 rule, the number of available

threads was set to 1. Gurobi 6.0 was used as MIP solver.

The presented results are expressed by the pair (H,S), where H and S denote

the cost of violation of the hard-constraints and the soft-constraints. When no hard-

constraint is violated, only the cost of violation of the soft-constraints is presented. Our

solver, along with our solutions and reports, can be found at GOAL-UFOP website2.

We invite the interested reader to validate our results.

4.1 Neighbourhoods Performance

Table 2 presents the parameters considered in the experiments with proposed neigh-

bourhoods. These parameters were empirically adjusted and smarter ways of selecting

these parameters are subject of further research.

1 http://sydney.edu.au/engineering/it/ and ~jeff/hseval.cgi
2 http://www.goal.ufop.br/softwares/hstt

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 271 -

Parameter Value
Number of events for nEvents 20
Number of timeslots for nTimes 15
Number of resources for nResources 5
Percentage of variables for nV ariables 50
Time limit of each MIP local search iteration (sec.) 100

Table 2 Considered parameters in computational experiments.

Table 3 presents the results of the proposed matheuristics over the XHSTT-2014

archive3. Only the instances where MIP solver was able to find a feasible solution in the

given time limit are presented. Column MIP s0 presents the initial solution provided

for the matheuristics. Sub-columns s∗ and s̄ presents, respectively, the best and the

average cost of solutions between five executions of the algorithm. Last line presents

the average ranking of each solver according to the ITC2011 classification rules. For

each instance, each solver receives a rank from 1 (best) to 4 (worst) according to the

average result obtained in this instance. Then the average rank is calculated for each

solver over all instances.

Table 3 Matheuristic results

nEvents nTimes nResources nV ariables

Instance MIP s0 s∗ s̄ s∗ s̄ s∗ s̄ s∗ s̄
BR-SA-00 334 51 71.6 5 6.2 5 5.2 84 106.0
BR-SM-00 278 166 81.4 59 70.2 58 64.8 177 185.8
BR-SN-00 718 378 420.2 118 169.2 53 69.6 218 291.0
FI-WP-06 487 101 126.2 14 21.6 5 6.6 215 244.4
FI-MP-06 935 132 148.0 80 82.4 83 87.2 206 248.4
GR-H1-97 0 0 0.0 0 0.0 0 0.0 0 0.0
GR-P3-10 2332 337 446.8 0 2.8 39 91.4 2244 2314.4
GR-PA-08 135 49 58.6 3 4.6 10 11.4 74 79.8
IT-I4-96 25827 5138 7438.0 36 64.4 38 73.8 817 1284.0
Avg. Ranks 3.14 1.58 1.58 3.58

4.2 Improving Best Known Solutions

Table 4 presents the features of instances from XHSTT-2014 archive. It also presents

the lower bound for each instance (LB), the best known solution (UB) and the new

best known solution obtained in this work. When the previously best known solution is

already optimal it is marked with a dash (-) meaning that it is not possible to improve

this bound. To achieve these solutions, the best known solution was taken as initial

solution s0. After that, a improved version of GOAL solver, based in the Variable

Neighbourhood Search algorithm [7] is executed with a large time limit (1000 seconds)

generating a s
′

solution. In sequence, s
′

is taken as input for matheuristics Times

neighbourhood and Resources neighbourhood with 1000 seconds time limit each. This

procedure generates a s
′′

solution. If s
′′

is better than s0 the whole process is repeated

taking s
′′

as initial solution.

3 http://www.utwente.nl/ctit/hstt/archives/XHSTT-2014/

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 272 -

Table 4 New upper bounds for XHSTT-2014

Instance Times Resources Events Duration LB UB New UB
AU-BG-98 40 131 387 1564 0.0 (1, 386) (1, 365)
AU-SA-96 60 99 296 1876 0 24 17
AU-TE-99 30 76 308 806 0 125 67
BR-SA-00 25 20 63 150 5 5 -
BR-SM-00 25 35 127 300 51 51 -
BR-SN-00 25 44 140 350 35 35 -
DK-FG-12 50 438 1077 1077 285 3310 1775
DK-HG-12 50 694 1235 1235 (7, 0) (12, 3124) (12, 3056)
DK-VG-09 60 262 918 918 (0, 0) (2, 4097) (2, 2881)
ES-SS-08 35 91 225 439 334 336 336
FI-PB-98 40 111 387 854 0 0 -
FI-WP-06 35 41 172 297 0 1 1
FI-MP-06 35 64 280 306 77 83 77*
GR-H1-97 35 95 372 372 0 0 -
GR-P3-10 35 114 178 340 0 0 -
GR-PA-08 35 31 262 262 0 4 3
IT-I4-96 36 99 748 1101 27 34 28
KS-PR-11 62 164 809 1912 0 3 3
NL-KP-03 38 587 1156 1203 0 617 527
NL-KP-05 37 644 1235 1272 89 1078 1017
NL-KP-09 38 194 1148 1274 170 9180 6265
UK-SP-06 25 202 1227 1227 (0, 0) (16, 2258) (15, 1892)
US-WS-09 100 242 628 6354 0 697 111
ZL-LW-09 148 37 185 838 0 0 -
ZL-WL-09 42 70 278 1353 0 0 -

4.3 Discussion of Results

In Table 3 it is possible to conclude that Times neighbourhood and Resources neigh-

bourhood achieved the best results. The first one performed significantly better in the

Greek instances, while the second one had the best performance in Brazilian instances.

An explanation for this result can be found by analysing the existing constraints in

these instances. Greek instances has Link Events constraints, so, unfixing times for the

MIP model makes it easier to keep the attendance of this constraint. Thus, all linked

events may be moved to other times at the same time. This coincidence is harder to

occur in Resources neighbourhood. Meanwhile, Brazilian instances has Cluster Busy

Times constraint. Unlock all variables related to a resource is an efficient way to avoid

penalties of this constraint.

Problem-dependant neighbourhoods performed well. Even with a short time limit,

it was able to achieve the best known solution for 3 out of 9 instances. Actually, two of

them were better than the previously best known solution. For the remaining instances

the gap to the best known solution was also small (see best known solutions in Table 4).

On the other hand, Variables neighbourhood performed poorly in all experiments. This

was expected since problem-oriented neighbourhoods can avoid penalties for specific

constraints way better than (possibly) non-related variables.

Aiming at improving the best known solutions, the proposed neighbourhoods along

with the improved version of GOAL solver [7] were able to improve the best known

solution for 14 out of 17 instances. Note also that one of these matches the lower bound

and can be claimed optimal. The interaction between GOAL solver and the proposed

matheuristics is promising. The main GOAL solver weakness relies on small instances,

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 273 -

where it usually gets stuck in local optima. Meanwhile, matheuristics perform well in

this instance set. For big instances, mathematical approaches take a huge processing

time to achieve good solutions. An algorithm that uses both GOAL solver’s neigh-

bourhoods and matheuristic neighbourhoods would be a robust solver. To illustrate

this point, Figure 1 presents the behaviour of GOAL solver and matheuristic in in-

stance BR-SA-00. The red line represents the lower bound for this instance. Note that

GOAL solver becomes stuck in a local optima and spends ≈70% of available processing

time without any improvement. A matheuristic neighbourhood could, for example, be

invoked when situations like these were identified.

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

180

200

Time (sec.)

S
of

t c
os

t

(a) GOAL solver

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

180

200

Time (sec.)

S
of

t c
os

t

(b) Matheuristic

Fig. 1 Behaviour of GOAL solver and Matheuristic in instance BR-SA-00.

5 Concluding Remarks

This work presented four matheuristic neighbourhoods for High School Timetabling. In

the computational experiments one can observe the superiority of problem-dependant

neighbourhoods over random selection of variables. More specifically, Times and Re-

sources neighbourhoods achieved the best results.

Aiming at improving the best known solutions, the proposed neighbourhoods along

with the GOAL solver were able to improve 14 out of 17 previously best known so-

lutions. One of them can be claimed optimal since it matches the lower bound. The

integration of these matheuristic neighbourhoods with the existing local search ap-

proach of GOAL solver is promising. We strongly believe that an hybrid solver could

surpass the GOAL solver. This integration is the subject of further research.

Other possible future works are (1) improve the existing MIP formulation for XH-

STT and (2) make a deeper study about neighbourhood sizes and procedures such as

Local Branching [5] and Relaxation Induced Neighborhoods (RINS) [3].

Acknowledgements The authors would like to thank the Brazilian agencies CAPES, CNPq
and FAPEMIG for the financial support.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 274 -

References

1. Ahmed, L.N., Ozcan, E., Kheiri, A.: Solving high school timetabling problems worldwide
using selection hyper-heuristics. Expert Systems With Applications, in review (2015)

2. Boschetti, M., Maniezzo, V., Roffilli, M., Boluf Rhler, A.: Matheuristics: Optimization,
simulation and control. In: M. Blesa, C. Blum, L. Di Gaspero, A. Roli, M. Sampels,
A. Schaerf (eds.) Hybrid Metaheuristics, Lecture Notes in Computer Science, vol. 5818,
pp. 171–177. Springer Berlin Heidelberg (2009). DOI 10.1007/978-3-642-04918-7 13. URL
http://dx.doi.org/10.1007/978-3-642-04918-7_13

3. Danna, E., Rothberg, E., Le Pape, C.: Exploring relaxation induced neighborhoods to
improve mip solutions. Mathematical Programming 102(1), 71–90 (2005)

4. Della Croce, F., Grosso, A., Salassa, F.: A matheuristic approach for the total completion
time two-machines permutation flow shop problem. In: P. Merz, J.K. Hao (eds.) Evolu-
tionary Computation in Combinatorial Optimization, Lecture Notes in Computer Science,
vol. 6622, pp. 38–47. Springer Berlin Heidelberg (2011). DOI 10.1007/978-3-642-20364-0 4.
URL http://dx.doi.org/10.1007/978-3-642-20364-0_4

5. Fischetti, M., Lodi, A.: Local branching. Mathematical Programming 98(1-3), 23–
47 (2003). DOI 10.1007/s10107-003-0395-5. URL http://dx.doi.org/10.1007/
s10107-003-0395-5

6. Fonseca, G., Santos, H., Toffolo, T., Brito, S., Souza, M.: Goal solver: a hybrid local search
based solver for high school timetabling. Annals of Operations Research pp. 1–21 (2014).
DOI 10.1007/s10479-014-1685-4. URL http://dx.doi.org/10.1007/s10479-014-1685-4

7. Fonseca, G.H., Santos, H.G.: Variable neighborhood search based algorithms for high
school timetabling. Computers & Operations Research 52, Part B(0), 203 – 208 (2014).
DOI http://dx.doi.org/10.1016/j.cor.2013.11.012. URL http://www.sciencedirect.com/
science/article/pii/S0305054813003328. Recent advances in Variable neighborhood
search

8. Kheiri, A., Ozcan, E., Parkes, A.J.: HySTT: Hyper-heuristic search strategies and time-
tabling. In: Proceedings of the ninth international conference on the practice and theory
of automated timetabling (PATAT 2012), pp. 497–499 (2012)

9. Kingston, J.H.: A software library for school timetabling (2012). Available at http://
sydney.edu.au/engineering/it/~jeff/khe/, Accessed in December / 2012

10. Kingston, J.H.: KHE14: An algorithm for high school timetabling. In: 10th International
Conference of the Practice and Theory of Automated Timetabling (PATAT 2014), York,
United Kingdom, pp. 26–29 (2014)

11. Kristiansen, S., Srensen, M., Stidsen, T.: Integer programming for the generalized high
school timetabling problem. Journal of Scheduling pp. 1–16 (2014). DOI 10.1007/
s10951-014-0405-x. URL http://dx.doi.org/10.1007/s10951-014-0405-x

12. Pirkwieser, S., Raidl, G.R.: Matheuristics for the periodic vehicle routing problem with
time windows. Proceedings of matheuristics pp. 28–30 (2010)

13. Post, G., Ahmadi, S., Daskalaki, S., Kingston, J.H., Kyngas, J., Nurmi, C., Ranson, D.: An
xml format for benchmarks in high school timetabling. In: Annals of Operations Research
DOI 10.1007/s10479-010-0699-9., pp. 3867 : 267–279 (2010)

14. Post, G., Di Gaspero, L., Kingston, J., McCollum, B., Schaerf, A.: The third international
timetabling competition. Annals of Operations Research pp. 1–7 (2013). DOI 10.1007/
s10479-013-1340-5. URL http://dx.doi.org/10.1007/s10479-013-1340-5

15. Post, G., Kingston, J., Ahmadi, S., Daskalaki, S., Gogos, C., Kyngas, J., Nurmi, C.,
Musliu, N., Pillay, N., Santos, H., Schaerf, A.: XHSTT: an XML archive for high school
timetabling problems in different countries. Annals of Operations Research p. 17 (2011).
URL http://dx.doi.org/10.1007/s1047901110122. 10.1007/s1047901110122

16. Romrs, J., Homberger, J.: An evolutionary algorithm for high school timetabling. PATAT
’12 Proceedings of the 9th International Conference on the Practice and Theory of Auto-
mated Timetabling (2012)

17. Santos, H.G., Toffolo, T.A., Gomes, R.A., Ribas, S.: Integer programming techniques for
the nurse rostering problem. Annals of Operations Research pp. 1–27 (2014). DOI
10.1007/s10479-014-1594-6. URL http://dx.doi.org/10.1007/s10479-014-1594-6

18. Sørensen, M., Stidsen, T.R.: Hybridizing integer programming and metaheuristics for solv-
ing high school timetabling. 10th International Conference on the Practice and Theory of
Automated Timetabling pp. 557–560 (2014)

19. Srensen, M., Kristiansen, S., Stidsen, T.: International Timetabling Competition 2011: An
Adaptive Large Neighborhood Search algorithm, pp. 489–492 (2012)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 275 -

MISTA 2015

SAILS: Hybrid Algorithm for the Team Orienteering
Problem with Time Windows

Aldy Gunawan · Hoong Chuin Lau · Kun Lu

Abstract The Team Orienteering Problem with Time Windows (TOPTW) is the ex-
tended version of the Orienteering Problem where each node is limited by a given
time window. The objective is to maximize the total collected score from a certain
number of paths. In this paper, a hybridization of Simulated Annealing and Iterated
Local Search, namely SAILS, is proposed to solve the TOPTW. The efficacy of the
proposed algorithm is tested using benchmark instances. The results show that the
proposed algorithm is competitive with the state-of-the-art algorithms in the litera-
ture. SAILS is able to improve the best known solutions for 19 benchmark instances.

Keywords Orienteering Problem · Time Windows · Hybrid Algorithm · Simulated
Annealing · Iterated Local Search

1 Introduction

The Team Orienteering Problem with Time Windows (TOPTW) is an extension of
the Orienteering Problem (OP) [11]. A certain number of paths are required to serve
a set of nodes. The visit on each node is limited by a given time window. The score of
a particular node will be received once a node is visited within its time window. The
main objective of the TOPTW is to maximize the total score from all visited nodes.

Since the OP has been proven as a NP-hard problem [5], it is unlikely that the
TOPTW can be solved optimally within polynomial time. It is therefore interesting
to propose fast heuristics to solve the problem, especially when we are dealing with
real life large-scale applications of TOPTW, e.g. a personalized city trip planner [3,
21].

In this paper, we introduce a hybrid algorithm that combines two well-known
metaheuristics, Iterated Local Search (ILS) and Simulated Annealing (SA). Iterated

A. Gunawan, H.C. Lau and K. Lu
School of Information Systems, Singapore Management University
Tel.: +65-68085227
Fax: +65-68280901
E-mail: {aldygunawan, hclau, kunlu}@smu.edu.sg

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 276 -

Local Search [15] is a simple but effective metaheuristic. In general, since it accepts
only improving solutions or moves, we consider the incorporation of Simulated An-
nealing to avoid early termination in local optimality. Simulated Annealing [9] has
been successfully applied to several combinatorial optimization problems [12–14]. It
has the capability to escape from a local optimum by accepting a worse solution with
a probability that changes over time. Our proposed algorithm is competitive with the
state-of-the-art algorithms. More precisely, we show that it is able to improve the
best known solution values of 19 benchmark instances. Hence, our work also serves
as benchmark for future studies.

The paper is organized as follows. In Section 2, the TOPTW is briefly explained,
including most recent works related to the TOPTW. Section 3 describes the proposed
algorithm, SAILS, in detail. Section 4 is devoted to the experimental results and anal-
ysis. Finally, conclusions and ideas for future works are summarized in Section 5 .

2 The Team Orienteering Problem with Time Windows

2.1 Problem Description

The TOPTW is defined as follows. We are given an undirected network graph G =
(N,A) where N = {0,1,2, . . . , |N|} is the set of nodes, A = {(i, j) : i 6= j ∈ N} refers
to the set of arcs connecting two different nodes i and j and M = {1,2, . . . , |M|} is the
set of paths. The non-negative travel time between nodes i and j is represented as ti j.
Each node i ∈ N has a positive score ui that would be collected the first time the node
i is visited, a service time Si and a time window [ei, li]. ei and li refer to the earliest
and latest times allowed for starting the visit at node i.

In the TOPTW, it is assumed that node 0 is the start and end nodes, therefore
u0 = S0 = 0. The visit to node i is successful if it begins within a time window [ei, li].
Each node can only be visited at most once. The visit is allowed to wait until the
time window begins in the case of an earlier arrival. In the context of TOPTW, the
number of paths is fixed at |M|. Each path m ∈M is constrained within the time limit
[e0, l0]. We have e0 = 0 and l0 = T max, where T max is the time budget or the maximum
duration of the tour. The main objective is to maximize the total collected score of
the visited nodes from |M| paths. The mathematical formulation of the TOPTW can
be found in [21].

2.2 Literature Review

Vansteenwegen et al. [21] introduced an Iterated Local Search (ILS) algorithm to
solve the TOPTW with emphasis on providing a simple, fast and effective algorithm
that can be tailored for a realistic Tourist Trip Design Problem (TTDP). Only two op-
erations of ILS, INSERT and SHAKE, are considered in this deterministic algorithm. A
metaheuristic algorithm based on Ant Colony System (ACS) was proposed by Mon-
temanni and Gambardella [16]. The algorithm was further improved by Montemanni
et al. [17], namely the Enhanced ACS (EACS) algorithm. The EACS algorithm in-
cludes two additional operations to overcome the drawbacks of ACS. Both operations

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 277 -

are related to the consideration of using the best solution found so far during the con-
struction phase and applying the local search procedure only on those solutions on
which the local search has not been recently applied.

In addition, Lin and Yu [13] proposed two different versions of Simulated An-
nealing, Fast SA (FSA) and Slow SA (SSA), in order to tailor two different scenarios.
FSA is mainly for the applications that need quick responses, while SSA is more con-
cerned about the quality of the solutions at the expense of more computational time.
Labadie et al. [11] introduced an LP-based Granular Variable Neighborhood Search
(GVNS) for solving the TOPTW.

Another ILS algorithm was proposed by Gunawan et al. [6] for solving the OPTW.
The problem is also considered as the TOPTW with |M| = 1. The algorithm is start-
ed by generating an initial feasible solution using a greedy construction heuristic.
The initial solution obtained is further improved by ILS. ILS is mainly based on
several local search components, such as SWAP, 2-OPT, INSERT and REPLACE. The
combination between ACCEPTANCECRITERION and PERTURBATION mechanisms
is implemented to control the balance between diversification and intensification of
the search. Computational results show that ILS is able to improve 8 best known
solutions values of benchmark instances.

The idea of combining some advantages has been brought up by many researchers
for solving different combinatorial optimization problems. Several taxonomies relat-
ed to the hybrid algorithm were introduced by Talbi et al. [20] and Puchinger and
Raidl [18]. Labadie et al. [10] introduced a hybridization of a Greedy Randomized
Adaptive Search Procedure (GRASP) and an Evolutionary Local Search algorithm
(ELS) for the TOPTW. Different constructive heuristics based on GRASP are pro-
posed in order to build the initial solutions. Those initial solutions are further im-
proved by the ELS algorithm. Another hybrid algorithm which is based a local search
(LS) procedure, Simulated Annealing (SA) and Route Combination (RR) component
is proposed by Hu and Lim [7]. Three components are iteratively incorporated within
a certain number of iterations. It is shown that 35 new best solutions are found and
more than 83% of instances with optimal solutions can be obtained.

Most recently, Cura [1] proposed an Artificial Bee Colony (ABC) algorithm to
solve the TOPTW. Hybridization of SA and a new scout bee search behavior based on
a local search procedure is introduced to improve the solution quality of benchmark
instances. The proposed method is able to produce high-quality TOPTW solutions
and comparable to other approaches. There is no new best found solution reported.

3 Hybrid Algorithm

In this section, we describe the proposed algorithm that combines Simulated Anneal-
ing (SA) and Iterated Local Search (ILS), namely SAILS. Instead of starting with
a randomly generated initial solution which is commonly used in SA, we introduce
a greedy construction heuristic for providing an initial solution. The initial solution
is further improved by SAILS. By using SA, a new solution with a worse objective
function value may be accepted with a certain probability. The possible neighbor-

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 278 -

Algorithm 1 CONSTRUCTION (N , M)
N∗←node 0
N′← N\node 0
Initialize S0← N∗

F ← UPDATEF(N′ , M)
while F 6= /0 do
〈n∗, p∗, m∗〉 ← SELECT(F)
S0← 〈n∗, p∗,m∗〉
Update P(m)
N′← N′ \{n∗}
N∗← N∗ ∪{n∗}
F ← UPDATEF(N′ , M)

end while
return S0

Algorithm 2 UPDATEF (N′ , M)
F ← /0

for all n ∈ N′ do
for all m ∈M do

for all p ∈ P(m) do
if insert node n in position p of path m is feasible then

calculate ration,p,m
F ← F ∪〈n, p,m〉

end if
end for

end for
end for
Sort all elements of F in descending order based on ration,p,m
Select the best f elements of F and remove the rest
return F

hoods are generated by implementing ILS. The details of the SAILS algorithm are
described in the following sub-sections.

3.1 Greedy Construction Heuristic

The greedy construction heuristic is outlined in Algorithm 1. The idea of gen-
erating an initial solution is adopted from the one proposed by Gunawan et al. [6].
The earlier version is only dedicated for |M| = 1. Here, the heuristic is extended for
|M|> 1. N′ and N∗ denote the sets of unscheduled and scheduled nodes, respectively
(N′ ∪N∗ = N). N∗ is initialized by the start and end nodes, node 0, while N′ con-
sists of all unscheduled nodes. S0 refers the current feasible solution obtained so far,
represented as m-row vectors. Each row is initialized with start and end nodes, node
0.

The construction heuristic is started by generating a set of all feasible candidate
nodes to be inserted, F . Each element of F , which represents a feasible insertion of
node n in position p of path m, is represented as 〈n, p,m〉. All possibilities of inserting
an unscheduled node in position p of path m are examined. A insertion 〈n, p,m〉 is

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 279 -

Algorithm 3 SELECT (F)
SumRatio← 0
for all 〈n, p,m〉 ∈ F do

SumRatio← SumRatio+ ration,p,m
end for
for all 〈n, p,m〉 ∈ F do

probn,p,m← ration,p,m/SumRatio
end for
U ← rand(0,1)
AccumProb← 0
for all 〈n, p,m〉 ∈ F do

AccumProb← AccumProb+ probn,p,m
if U ≤ AccumProb then
〈n∗, p∗,m∗〉 ← 〈n, p,m〉
break

end if
end for
return 〈n∗, p∗,m∗〉

feasible if after the insertion, all scheduled nodes do not violate their respective time
windows and the total spent time of path m does not exceed T max.

Let P(m) be a set of positions of scheduled nodes on path m. For each possible
insertion, the benefit of insertion ration,p,m is calculated by equation 1. Di f fn,p,m
represents the difference between the total time spent before and after the insertion of
node n in position p of path m. All elements of F are then sorted in descending order
based on ration,p,m values. Only a subset of elements, f , would be kept. Algorithm 2
summarizes the algorithm of generating F .

ration,p,m =

(
u2

n

Di f fn,p,m

)
(1)

If F is not an empty set, Algorithm 3 is run in order to select which 〈n∗, p∗, m∗〉
to be inserted. Each 〈n, p, m〉 corresponds to a particular probability value, probn,p,m.
The probability is calculated by Equation 2:

probn,p,m =

(
ration,p,m

∑〈i, j,k〉∈F ratioi, j,k

)
(2)

The selection of 〈n∗, p∗, m∗〉 from F is based on Roulette-Wheel selection con-
cept [4]. This method assumes that the probability of selection is proportional to the
benefit of insertion of an individual, ration,p,m. The accumulative of probability val-
ues, AccumProb, is initially set to 0. A random number U ∼ rand[0,1] is generated.
We then select a particular 〈n∗, p∗, m∗〉 and update the value of AccumProb iterative-
ly. This loop will be terminated when (U ≤ AccumProb) and the corresponding 〈n∗,
p∗, m∗〉 is then selected. S0, N′ and N∗ will also be updated. The greedy construction
heuristic is terminated when F = /0.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 280 -

3.2 SAILS

Given the initial solution generated from the greedy construction heuristic, we pro-
pose a hybridization between Simulated Annealing (SA) and Iterated Local Search
(ILS) to further improve the quality of the initial solution. The outline of SAILS is
presented in Algorithm 4. The SA algorithm requires three parameters T0, α and IN-
NERLOOP. T0 refer to the initial temperature. α is a coefficient used to control the
speed of the cooling schedule. INNERLOOP denotes the number of iterations at a
particular temperature.

Let S0, S∗ and S′ be the current solution, the best found solution so far and the
starting solution for each iteration, respectively. At the beginning, the current temper-
ature Temp is equal to T0 and will be decreased after INNERLOOP iterations by using
the following formula: Temp = Temp×α (0 < α < 1).

At a particular value of temperature, we apply two components of ILS: PER-
TURBATION and LOCALSEARCH in order to explore neighborhoods of S0. For each
iteration, we calculate the difference between two solutions S0 and S′, denoted as δ.
If δ is greater than 0, which implies that the improvement of the objective function
does exist, S′ is replaced by S0. If S0 also improves S∗, S∗ is then replaced by S0. On
the other hand, if the solution generated is worse, a random number between 0 and
1, r, is generated and compared with exp(δ/Temp). If this worse solution is accepted
(r < exp(δ/Temp)), we update S′; otherwise, we return to S′. For each iteration, if
there is no improvement of S∗, we increase the number of no improvement NOIMPR
by one. In [21], the solution will only be accepted if it is better than the best found,
otherwise the number of non-improvement iteration will be increased by one.

The main difference of the standard SA and our SAILS lies in the additional
strategy applied. We include the intensification strategy. The idea of this strategy is
as follows. If there is no improvement of the solution obtained after a certain number
of iterations LIMIT, we focus the search once again starting from the best solution
obtained S∗. Finally, the entire algorithm will be run within the computational budget
TIMELIMIT.

The neighborhoods of the current solution is generated by ILS. Two components
of ILS are considered: PERTURBATION and LOCALSEARCH. Two different steps im-
plemented in PERTURBATION are: EXCHANGEPATH and SHAKE. If the number of
iterations without improvement, NOIMPR, is larger than THRESHOLD1 and (NOIM-
PR + 1) Mod THRESHOLD2 = 0, EXCHANGEPATH would be executed; otherwise,
SHAKE would be selected. THRESHOLD1 and THRESHOLD2 are two pre-set pa-
rameters. In EXCHANGEPATH step, all nodes from two different paths are selected
and swapped. The strategy of selecting two different paths are based on generating
of permutations by adjacent transposition method [8]. EXCHANGEPATH will only
be implemented if the number of paths is more than one. Otherwise, we implement
SHAKE.

The SHAKE step is adopted from [21]. One or more nodes will be removed from
each path m, which depends on two integer values, CONS and POST. CONS indicates
how many consecutive nodes to remove for a particular path while POST indicates
the first position of the removing process on a particular path. If we reach the last
scheduled node, the process will then be back to the first node after the start node,

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 281 -

Algorithm 4 SAILS (N,M)
S0 ← CONSTRUCTION(N,M)
S∗ ← S0
S′ ← S0
Temp← T0
NOIMPR← 0
while TIMELIMIT has not been reached do

INNERLOOP = 0
WHILE INNERLOOP < MAXINNERLOOP DO

S0 ← PERTURBATION(S0,N∗,N′,M)
S0 ← LOCALSEARCH(S0,N∗,N′,M)
δ← S0−S′

IF δ > 0 THEN
S′ ← S0
IF S0 IS BETTER THAN S∗ THEN

S∗ ← S0
NOIMPR← 0

ELSE
NOIMPR← NOIMPR + 1

END IF
ELSE

r← rand[0,1]
IF r < exp(δ/Temp) THEN

S′ ← S0
ELSE

S0 ← S′

END IF
NOIMPR← NOIMPR + 1

END IF
INNERLOOP← INNERLOOP + 1

END WHILE
Temp← Temp×α

IF NOIMPR > LIMIT THEN
S0 ← S∗

S′ ← S0
NOIMPR← 0

END IF
end while
return S∗

node 0. Both CONS and POST are initially set to 1. After each SHAKE step, POST
is increased by CONS. CONS would also be increased by 1 after a fixed number of
consecutive iterations, e.g. 2 iterations.

If POST is greater than the size of the smallest path, POST is subtracted with the
size of the smallest path to determine the new position POST. If CONS is greater than
the size of the largest path, or S∗ is updated, CONS is reset to one. Take note that
CONS is always increased by 1 for each iteration and would be set to 1 if it equals
to n

3×|M| in [21]. After removing CONS nodes, we update N′ and N∗ accordingly. F
is then regenerated based on Algorithm 2 and an unscheduled node that needs to be
inserted is selected using Algorithm 3. This is repeated until F = /0.

Table 1 presents six operations in LOCALSEARCH that are run consecutively and
applied to S0. When m = 1, only SWAP1, 2-OPT, INSERT and REPLACE are con-

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 282 -

Table 1: LOCAL SEARCH operations.

Operations Descriptions

SWAP1 Exchange two nodes within one path
SWAP2 Exchange two nodes within two paths
2-OPT Reorder the sequence of certain nodes within one path
MOVE Move one node from one path to another path
INSERT Insert nodes into a path
REPLACE Replace one scheduled node with one unscheduled node

sidered. SWAP1 is applied by exchanging two scheduled nodes within one particular
path with the lowest remaining travel time. We examine all possible combinations
of selecting two different nodes. SWAP1 is executed if it is able to increase the re-
maining travel time of selected path and there is no constraint violation. The idea
of SWAP1 is extended to two different paths with the lowest and the second lowest
remaining travel times, namely SWAP2. This operation will be accepted if the total
remaining travel times from both paths is increased. Both SWAP1 and SWAP2 would
be terminated when there is no further improvement in terms of the remaining travel
times.

2-OPT is started by selecting one path with the lowest remaining travel time. All
possible combinations of selecting two different nodes are enumerated and the se-
quence of scheduled nodes is reversed as long as there is no constraint violation. It
has to increase the remaining travel time of the selected path. This would be termi-
nated until no further improvement in terms of the total of remaining travel time of
the selected path.

MOVE is performed by reallocating one node from one path to another path. It is
started from the first scheduled node n∗ from first path m∗. We try to insert node n∗

in another path. First, F is generated by using Algorithm 2 where N′ = {n∗} and M =
M \{m∗}. If F 6= /0, node n∗ would be reallocated using Algorithm 3. Otherwise, the
process will continue to the next scheduled node. This operation would be terminated
if node n∗ is moved successfully or the last scheduled node of the last path |M| is
reached.

The purpose of INSERT is to insert one unscheduled node to a particular path. It is
started by generating F based on Algorithm 2 and selecting node i∈N′ to be inserted
by using Algorithm 3. After the insertion, S0, N′, N∗ and F are updated accordingly.
This is repeated until F = /0. In the last operation REPLACE, one scheduled node
i ∈ N∗ is replaced with one unscheduled node j ∈ N′. The operation is started by
selecting path m with the highest remaining travel time, followed by selecting one
node j ∈ N′ with the highest score u j. We then check each position p of the selected
path and examine whether selected node j can replace the node in position p. Once
this operation is successful, the process will continue to the next unscheduled node j
and repeat the operation. Otherwise, the operation would be terminated.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 283 -

Table 2: Benchmark Instances

References Names Instance Sets |N| |M|

[19] Solomon c100, r100, rc100 100 1 to 4
Cordeau pr01 - pr10 [48, 288]

[16] Solomon c200, r200, rc200 100 1 to 4
Cordeau pr11 - pr20 [48, 288]

[21] Solomon c100, r100, rc100 100
c200, r200, rc200 100 up to number of vehicles

Cordeau pr01 - pr10 [48, 288]

Table 3: Estimation of single-thread performance

Algorithm Experimental environment Estimate of single-thread performance

IterILS Intel Core 2 with 2.5 GHz processor 0.92
ACS Dual AMD Opteron 250 2.4 gigahertz CPU, 4 gigabytes RAM 0.39
SSA Intel Core 2 CPU, 2.5 gigahertz 0.92
GVNS Intel Pentium (R) IV, 3 gigahertz CPU 0.39
I3CH Intel Xeon E5430 CPU clocked at 2.66 gigahertz, 8 gigabytes RAM 1.16
SAILS Intel(R) Core(TM) i5 CPU with 3.2 GHz processor, 12 GB RAM 1

4 Computational Results

4.1 Benchmark Instances and Approach Comparison

The benchmark instances are categorized into three groups, as listed in Table 2. All
benchmark instances can be accessed at http://www.mech.kuleuven.be/en/cib/
op. The first two groups are considered as ”INST-M” which contain four instance
sets: ”Solomon 100”, ”Solomon 200”, ”Cordeau 1-10” and ”Cordeau 11-20”. The
last group is known as ”OPT”. The optimal solution for each instance in this group is
known as the total score of all nodes on the network graph [7].

The performances of SAILS are compared against the state-of-the-art algorithms:
Iterated Local Search (IterILS) [21], Ant Colony System (ACS) [16,17], Slow Sim-
ulated Annealing (SSA) [13], Granular Variable Neighborhood Search (GVNS) [11]
and Iterative Three-Component Heuristic (I3CH) [7]. In order to ensure the fairness
among algorithms, we also follow the same approach by using the SuperPi bench-
mark [7] to adjust the computational time to the speed of the computers used in
other solutions. The main idea is to set the performance of our machine to be 1 and
estimate the single-thread performance of other processors by multiplying with the
single-thread performance estimation, as shown in Table 3.

We propose two different scenarios for running SAILS. In the first scenario, we
refer to the computational time used by ACS since we are more concerned about the
quality of the solution rather than the solution time. Only ACS uses the computational
budget, while the rest use the number of iterations. Our experiments use 35% of
ACS’s computational budget (= 3600 seconds). Therefore, the computational budget
for each instance is set to 35% × 0.39 × 3600 seconds ≈ 492 seconds using our

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 284 -

Table 4: New best known solution values found by SAILS (first scenario)

Instance m Old BK New BK Instance m Old BK New BK

r206 1 1029 1032 pr18 2 938 946
r208 1 1112 1115 r104 3 777 778
rc206 1 895 899‡ rc104 3 834 835
r107 2 536 538 pr02 3 942 943
pr04 2 925 926 r104 4 972 973
pr09 2 905 909 rc103 4 974 975
c204 2 1480 1490 rc107 4 980 985
pr13 2 832 843
‡ Same result with that of ILS [6]

processor (refer to Table 3). In the second scenario, we conduct experiments in which
SAILS is set to the same computational time of I3CH. It has been proven that I3CH
outperforms other algorithms, such as IterILS, SSA and GVNS [7].

For SAILS, each instance is executed in 10 runs with different random seeds.
ACS was executed in 5 runs whereas GVNS was also executed 10 runs. IterILS, SSA
and I3CH were only executed once and reported one solution for each instance. Some
parameter settings adopted from [6] are as follows: f = 5, THRESHOLD1 = 20 and
THRESHOLD2 = 3. Other SA parameters have been selected according to preliminary
experiments using a subset of instances. The values of parameters considered are as
follows: α∈{0.5,0.75,0.9}, Temp∈{500,1000,1500,2000} and MAXINNERLOOP
∈ {50,100}. Only one parameter is set to a constant value, using the formula: LIMIT
= 0.05 × MAXINNERLOOP. All possible combinations were run in order to obtain
the final parameter values: α = 0.75, T0 = 1000 and MAXINNERLOOP = 50.

4.2 Computational Results

We report a comprehensive analysis of the results obtained by SAILS. Table 4 presents
15 new best known solutions (BKs) obtained by SAILS, 40% of them are from in-
stances with m= 2 while each of other m values has 20% of new BKs. Around 33% of
new BKs are from Cordeau et al.’s datasets which is harder to solve compared against
Solomon’s datasets [2]. We only report the results of Cordeau et al.’s datasets for m =
1 to 4 due to space constraints, as shown in Tables 5-8. The complete results is avail-
able at http://centres.smu.edu.sg/larc/Orienteering-Problem-Library.

Tables 5 - 8 consist of two identical structure parts. The first column shows the
instance name. The second column contains the best known solution value BK from
one of the state-of-the-art algorithms: IterILS, ACS, SSA, GVNS and I3CH. The
following three columns present maximum, average and minimum solution values
obtained by SAILS from 10 runs. The ”BG (%)” column refers to the percentage gap
between BK and the maximum (best) solution obtained by a particular algorithm. ”AG
(%)” provides the percentage gap between BK and the average solution obtained by a
particular algorithm. The last three columns show maximum, average and minimum
computational times (in seconds) required to obtain the best found within the given
computational time. The new BK are highlighted in bold.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 285 -

Ta
bl

e
5:

D
et

ai
le

d
re

su
lts

of
SA

IL
S

on
C

or
de

au
et

al
.’s

in
st

an
ce

s
w

ith
m

=
1

In
st

an
ce

B
K

SA
IL

S
B

G
AG

T
im

e
In

st
an

ce
B

K
SA

IL
S

B
G

AG
T

im
e

M
ax

A
vg

M
in

(%
)

(%
)

M
ax

A
vg

M
in

M
ax

A
vg

M
in

(%
)

(%
)

M
ax

A
vg

M
in

pr
01

30
8

30
8

30
8

30
8

0.
0

0.
0

5.
7

2.
4

0.
0

pr
11

35
3

35
3

35
3

35
3

0.
0

0.
0

41
2.

3
12

4.
7

10
.6

pr
02

40
4

40
4

40
4

40
4

0.
0

0.
0

23
0.

8
43

.4
6.

8
pr

12
44

2
44

1
44

0
43

9
0.

2
0.

5
87

.9
48

.2
6.

2
pr

03
39

4
39

4
39

4
39

4
0.

0
0.

0
40

.7
18

.7
0.

4
pr

13
46

6
45

8
45

5.
9

45
5

1.
7

2.
2

40
7.

8
15

2.
3

17
.7

pr
04

48
9

48
9

48
2.

8
47

1
0.

0
1.

3
42

5.
0

12
0.

3
16

.2
pr

14
56

7
55

2
54

5.
2

52
5

2.
6

3.
8

40
8.

5
12

8.
1

26
.2

pr
05

59
5

59
2

59
1.

1
59

0
0.

5
0.

7
48

1.
6

18
9.

5
34

.3
pr

15
70

7
70

7
68

6.
4

66
2

0.
0

2.
9

29
9.

2
15

6.
8

52
.6

pr
06

59
1

57
9

56
5

55
3

2.
0

4.
4

26
2.

5
90

.0
14

.5
pr

16
67

4
65

0
63

6
62

1
3.

6
5.

6
46

2.
3

13
5.

2
44

.2
pr

07
29

8
29

8
29

8
29

8
0.

0
0.

0
13

.9
3.

5
0.

1
pr

17
36

2
36

2
36

2
36

2
0.

0
0.

0
74

.4
37

.0
7.

8
pr

08
46

3
46

3
46

3
46

3
0.

0
0.

0
30

.6
10

.1
2.

6
pr

18
53

9
53

9
53

8
53

3
0.

0
0.

2
49

0.
9

98
.9

13
.3

pr
09

49
3

49
3

49
1.

8
49

0
0.

0
0.

2
15

3.
8

70
.8

5.
9

pr
19

56
2

56
0

54
6.

1
53

6
0.

4
2.

8
39

7.
3

15
1.

2
4.

1
pr

10
59

4
58

3
57

7.
7

56
3

1.
9

2.
7

49
0.

2
20

8.
2

30
.5

pr
20

66
7

64
8

63
5.

5
62

7
2.

8
4.

7
35

6.
5

15
1.

0
48

.1

Ta
bl

e
6:

D
et

ai
le

d
re

su
lts

of
SA

IL
S

on
C

or
de

au
et

al
.’s

in
st

an
ce

s
w

ith
m

=
2

In
st

an
ce

B
K

SA
IL

S
B

G
AG

Ti
m

e
In

st
an

ce
B

K
SA

IL
S

B
G

AG
Ti

m
e

M
ax

A
vg

M
in

(%
)

(%
)

M
ax

A
vg

M
in

M
ax

A
vg

M
in

(%
)

(%
)

M
ax

A
vg

M
in

pr
01

50
2

50
2

50
2

50
2

0.
0

0.
0

91
.5

22
.3

2.
2

pr
11

56
6

56
6

56
3.

5
55

9
0.

0
0.

4
19

5.
1

35
.1

5.
8

pr
02

71
5

71
2

70
1.

8
69

3
0.

4
1.

8
45

1.
4

13
6.

6
18

.6
pr

12
77

4
76

6
75

7.
8

74
3

1.
0

2.
1

26
0.

4
13

0.
4

26
.3

pr
03

74
2

74
2

73
2.

3
71

0
0.

0
1.

3
43

7.
4

25
2.

7
96

.9
pr

13
83

2
84

3
82

6.
8

81
1

-1
.3

0.
6

47
6.

5
17

4.
7

48
.8

pr
04

92
5

92
6

90
9.

4
89

8
-0

.1
1.

7
43

1.
0

21
8.

5
24

.6
pr

14
10

17
98

6
96

5.
4

92
4

3.
0

5.
1

47
1.

4
27

5.
4

88
.2

pr
05

11
01

10
92

10
68

.7
10

38
0.

8
2.

9
35

2.
7

21
8.

5
75

.7
pr

15
12

19
12

06
11

75
.6

11
30

1.
1

3.
6

47
0.

1
32

3.
2

19
5.

6
pr

06
10

76
10

45
10

22
.2

99
3

2.
9

5.
0

48
2.

3
30

3.
0

39
.7

pr
16

12
31

11
49

11
32

.7
11

07
6.

7
8.

0
40

6.
2

26
5.

8
13

1.
3

pr
07

56
6

56
6

56
6

56
6

0.
0

0.
0

37
2.

9
90

.2
5.

2
pr

17
65

2
64

6
64

4.
5

64
3

0.
9

1.
2

29
1.

6
12

8.
6

13
.5

pr
08

83
4

83
0

82
1.

7
80

9
0.

5
1.

5
45

5.
0

20
2.

2
19

.9
pr

18
93

8
94

6
92

4.
3

90
9

-0
.9

1.
5

43
9.

5
22

0.
0

33
.9

pr
09

90
5

90
9

88
8.

2
86

1
-0

.4
1.

9
45

3.
0

19
2.

4
35

.2
pr

19
10

34
10

23
99

3.
9

95
6

1.
1

3.
9

48
4.

9
32

1.
1

13
5.

9
pr

10
11

29
11

11
10

74
.6

10
44

1.
6

4.
8

42
4.

0
23

2.
9

71
.6

pr
20

12
32

12
03

11
72

.7
11

21
2.

4
4.

8
48

9.
4

31
4.

4
15

2.
4

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 286 -

Ta
bl

e
7:

D
et

ai
le

d
re

su
lts

of
SA

IL
S

on
C

or
de

au
et

al
.’s

in
st

an
ce

s
w

ith
m

=
3

In
st

an
ce

B
K

SA
IL

S
B

G
AG

T
im

e
In

st
an

ce
B

K
SA

IL
S

B
G

AG
T

im
e

M
ax

A
vg

M
in

(%
)

(%
)

M
ax

A
vg

M
in

M
ax

A
vg

M
in

(%
)

(%
)

M
ax

A
vg

M
in

pr
01

62
2

61
9

61
4.

5
60

6
0.

5
1.

2
39

0.
0

95
.6

2.
6

pr
11

65
4

65
4

65
2.

1
64

9
0.

0
0.

3
20

5.
6

57
.3

5.
5

pr
02

94
2

94
3

93
2.

4
92

0
-0

.1
1.

0
48

7.
9

24
6.

1
28

.2
pr

12
10

02
99

3
97

6.
4

95
9

0.
9

2.
6

45
4.

4
21

8.
2

33
.8

pr
03

10
10

10
04

99
2.

3
97

2
0.

6
1.

8
42

9.
4

18
7.

3
23

.7
pr

13
11

45
11

32
11

19
.1

11
08

1.
1

2.
3

36
0.

5
15

5.
6

44
.8

pr
04

12
94

12
81

12
59

.8
12

43
1.

0
2.

6
46

6.
6

28
2.

7
71

.6
pr

14
13

72
13

41
13

17
.2

12
94

2.
3

4.
0

45
4.

8
28

9.
6

14
3.

8
pr

05
14

82
14

59
14

34
.3

14
14

1.
6

3.
2

49
0.

2
35

0.
1

14
1.

2
pr

15
16

54
16

21
16

00
.5

15
78

2.
0

3.
2

48
4.

0
40

8.
6

26
4.

7
pr

06
15

14
14

74
14

28
.6

13
92

2.
6

5.
6

49
2.

4
32

5.
0

13
6.

5
pr

16
16

68
15

74
15

54
.5

15
32

5.
6

6.
8

47
2.

5
37

5.
7

25
2.

0
pr

07
74

4
74

1
73

6.
2

73
2

0.
4

1.
0

40
2.

6
15

2.
1

7.
3

pr
17

84
1

83
5

82
7.

4
81

7
0.

7
1.

6
33

1.
5

92
.9

13
.5

pr
08

11
39

11
24

11
07

.4
10

82
1.

3
2.

8
45

1.
5

23
7.

6
33

.8
pr

18
12

81
12

50
12

30
.4

12
02

2.
4

4.
0

39
7.

4
23

4.
2

77
.6

pr
09

12
75

12
44

12
25

.3
12

03
2.

4
3.

9
49

2.
0

26
0.

1
69

.0
pr

19
14

17
13

72
13

50
.4

13
11

3.
2

4.
7

48
8.

9
34

4.
1

13
7.

2
pr

10
15

73
15

37
14

90
14

48
2.

3
5.

3
38

4.
6

23
3.

1
75

.8
pr

20
16

84
16

51
16

08
.9

15
75

2.
0

4.
5

47
2.

5
33

3.
2

11
7.

7

Ta
bl

e
8:

D
et

ai
le

d
re

su
lts

of
SA

IL
S

on
C

or
de

au
et

al
.’s

in
st

an
ce

s
w

ith
m

=
4

In
st

an
ce

B
K

SA
IL

S
B

G
AG

T
im

e
In

st
an

ce
B

K
SA

IL
S

B
G

AG
T

im
e

M
ax

A
vg

M
in

(%
)

(%
)

M
ax

A
vg

M
in

M
ax

A
vg

M
in

(%
)

(%
)

M
ax

A
vg

M
in

pr
01

65
7

65
7

65
7

65
7

0.
0

0.
0

55
.1

8.
9

2.
0

pr
11

65
7

65
7

65
7

65
7

0.
0

0.
0

7.
0

4.
3

0.
3

pr
02

10
79

10
68

10
57

.3
10

41
1.

0
2.

0
47

6.
4

17
0.

9
13

.9
pr

12
11

32
11

12
11

00
.9

10
83

1.
8

2.
7

46
7.

8
17

4.
8

25
.5

pr
03

12
32

12
28

11
91

.7
11

57
0.

3
3.

3
43

9.
7

18
5.

2
79

.6
pr

13
13

86
13

63
13

32
.4

12
85

1.
7

3.
9

39
8.

3
17

8.
7

60
.8

pr
04

15
85

15
43

15
18

.5
14

74
2.

6
4.

2
44

3.
8

22
2.

9
53

.7
pr

14
16

70
16

60
16

06
.5

15
64

0.
6

3.
8

49
2.

7
32

7.
3

16
0.

8
pr

05
18

38
17

74
17

35
.3

16
59

3.
5

5.
6

45
3.

8
32

8.
9

16
0.

4
pr

15
20

65
19

53
19

24
.4

18
67

5.
4

6.
8

49
5.

6
38

9.
0

26
4.

6
pr

06
18

60
17

96
17

65
.8

17
29

3.
4

5.
1

48
1.

6
32

5.
2

14
0.

0
pr

16
20

65
19

45
19

14
.8

18
77

5.
8

7.
3

48
1.

0
38

2.
4

23
7.

1
pr

07
87

6
86

9
86

0
84

2
0.

8
1.

8
47

7.
2

16
7.

2
7.

6
pr

17
93

4
93

0
91

8.
6

90
6

0.
4

1.
6

48
8.

3
21

0.
5

12
.1

pr
08

13
82

13
49

13
33

.6
13

16
2.

4
3.

5
42

7.
8

22
7.

9
66

.0
pr

18
15

39
15

01
14

74
.9

14
50

2.
5

4.
2

46
3.

4
26

1.
8

82
.5

pr
09

16
19

15
73

15
40

.6
15

16
2.

8
4.

8
46

7.
2

37
1.

4
16

9.
1

pr
19

17
50

17
21

16
77

.2
16

38
1.

7
4.

2
47

6.
1

37
5.

9
15

0.
8

pr
10

19
43

18
69

18
35

.6
18

02
3.

8
5.

5
49

1.
9

33
5.

0
16

6.
5

pr
20

20
62

20
47

19
54

.6
19

03
0.

7
5.

2
45

9.
4

38
9.

7
18

1.
4

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 287 -

Ta
bl

e
9:

O
ve

ra
ll

”A
ve

ra
ge

”
C

om
pa

ri
so

n
of

SA
IL

S
to

th
e

st
at

e-
of

-t
he

-a
rt

al
go

ri
th

m
s

on
”I

N
ST

-M
”

in
st

an
ce

s

In
st

an
ce

N
um

b
It

er
IL

S
A

C
S

SS
A

G
V

N
S

I3
C

H
SA

IL
S

Se
t

B
G

(%
)

T
im

e
AG

(%
)

T
im

e‡
B

G
(%

)
T

im
e

AG
(%

)
T

im
e

B
G

(%
)

T
im

e
AG

(%
)

T
im

e‡

m
=

1
c1

00
9

1.
11

0.
3

0.
00

2.
4

0.
00

19
.4

1.
22

64
.3

0.
00

29
.3

0.
00

1.
0

r1
00

12
1.

90
0.

2
0.

24
14

8.
0

0.
11

21
.5

2.
68

11
.4

0.
56

33
.3

0.
00

5.
9

rc
10

0
8

2.
92

0.
2

0.
00

55
.3

0.
00

20
.4

3.
51

3.
8

1.
66

29
.7

0.
06

4.
8

c2
00

8
2.

28
1.

6
0.

58
13

2.
2

0.
13

34
.5

1.
11

74
.3

0.
40

98
.2

0.
14

68
.3

r2
00

11
2.

90
1.

6
3.

17
60

0.
9

1.
30

42
.1

3.
38

13
.1

1.
05

20
4.

9
1.

05
28

1.
6

rc
20

0
8

3.
43

1.
5

2.
04

59
6.

2
0.

96
46

.2
3.

96
6.

2
2.

68
13

8.
8

1.
20

15
8.

8
pr

01
-1

0
10

4.
74

1.
7

1.
22

62
7.

9
0.

98
10

3.
2

1.
62

4.
8

1.
07

12
6.

8
0.

93
75

.7
pr

11
-2

0
10

9.
56

1.
8

11
.8

7
34

2.
6

3.
71

14
9.

3
4.

26
9.

3
4.

28
15

1.
5

2.
28

11
8.

3

m
=

2
c1

00
9

0.
94

1.
0

0.
14

30
9.

9
0.

00
24

.3
0.

72
53

.9
0.

00
10

1.
2

0.
03

19
.8

r1
00

12
2.

36
0.

8
0.

55
53

2.
2

0.
23

33
.7

1.
80

23
.3

0.
58

73
.3

0.
08

83
.7

rc
10

0
8

2.
47

0.
6

1.
27

50
4.

1
0.

19
37

.2
2.

80
7.

8
0.

90
68

.5
0.

17
60

.4
c2

00
8

2.
54

3.
2

1.
81

53
9.

7
1.

18
49

.3
0.

58
13

.0
0.

68
46

6.
7

0.
90

12
4.

4
r2

00
11

2.
74

2.
1

3.
71

10
55

.8
0.

58
84

.0
1.

30
5.

7
0.

21
61

2.
9

1.
35

27
0.

1
rc

20
0

8
4.

14
2.

0
3.

83
90

4.
3

1.
25

73
.6

2.
57

4.
9

0.
62

51
1.

5
1.

96
23

3.
1

pr
01

-1
0

10
6.

22
4.

4
3.

57
72

9.
4

2.
45

15
9.

9
1.

79
15

.1
1.

11
28

7.
4

2.
09

18
6.

9
pr

11
-2

0
10

7.
86

4.
8

6.
15

92
0.

5
3.

88
18

5.
4

2.
18

31
.8

2.
70

35
4.

3
3.

11
21

8.
9

m
=

3
c1

00
9

2.
55

1.
4

0.
79

40
2.

7
0.

33
32

.4
0.

95
63

.7
0.

11
22

1.
3

0.
50

75
.7

r1
00

12
1.

79
1.

6
1.

30
68

1.
6

0.
39

51
.5

2.
27

28
.5

0.
21

13
7.

6
0.

57
10

8.
0

rc
10

0
8

3.
14

1.
0

1.
07

45
8.

7
0.

64
39

.3
2.

32
13

.0
0.

27
11

7.
4

0.
41

66
.0

c2
00

8
1.

93
2.

0
1.

63
50

9.
7

1.
24

54
.9

0.
19

3.
0

0.
00

14
.3

0.
86

15
4.

1
r2

00
11

0.
30

1.
3

0.
24

45
2.

3
0.

08
38

.6
0.

20
2.

7
0.

01
10

5.
6

0.
13

98
.4

rc
20

0
8

1.
44

1.
6

0.
94

58
8.

8
0.

27
54

.2
0.

44
2.

9
0.

04
19

0.
8

0.
40

82
.9

pr
01

-1
0

10
6.

58
8.

5
4.

21
81

8.
9

2.
34

18
1.

1
1.

13
33

.2
0.

36
49

3.
2

2.
85

23
7.

0
pr

11
-2

0
10

9.
19

8.
9

7.
24

99
7.

7
3.

81
23

1.
5

1.
80

58
.2

1.
11

57
8.

1
3.

39
25

0.
9

m
=

4
c1

00
9

3.
11

2.
2

1.
27

47
6.

8
0.

55
45

.5
1.

63
51

.4
0.

10
30

4.
5

1.
38

10
8.

0
r1

00
12

3.
31

2.
4

1.
92

68
4.

3
0.

73
53

.7
2.

28
32

.7
0.

16
21

4.
4

1.
40

11
7.

7
rc

10
0

8
3.

18
1.

8
2.

18
65

6.
3

0.
37

62
.6

1.
79

14
.2

0.
23

17
7.

3
0.

80
10

7.
9

c2
00

8
0.

00
0.

9
0.

07
3.

0
0.

00
38

.4
0.

00
0.

2
0.

00
0.

1
0.

00
14

.0
r2

00
11

0.
00

0.
8

0.
00

48
.8

0.
00

36
.5

0.
00

0.
1

0.
00

0.
2

0.
00

20
.9

rc
20

0
8

0.
00

1.
0

0.
01

24
9.

6
0.

00
36

.9
0.

01
0.

3
0.

00
0.

2
0.

00
27

.3
pr

01
-1

0
10

7.
08

13
.0

3.
42

96
6.

6
2.

23
23

5.
0

1.
60

49
.1

0.
36

65
9.

0
3.

58
23

4.
3

pr
11

-2
0

10
8.

47
12

.6
6.

34
99

7.
2

3.
95

26
1.

1
2.

81
89

.8
0.

45
84

7.
6

3.
97

26
9.

4

G
ra

nd
M

ea
n

3.
50

2.
8

2.
33

54
1.

5
1.

09
81

.2
1.

74
24

.8
0.

69
23

3.
8

1.
14

12
4.

1
‡

A
ve

ra
ge

co
m

pu
ta

tio
na

lt
im

e
to

ob
ta

in
th

e
be

st
fo

un
d

(i
n

se
co

nd
s)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 288 -

Table 10: Overall ”Best” Comparison of SAILS to the state-of-the-art algorithms on
”INST-M” instances

Instance Set Numb IterILS ACS SSA GVNS I3CH SAILS
BG (%) BG (%) BG (%) BG (%) BG (%) BG (%)

m = 1
c100 9 1.11 0.00 0.00 0.56 0.00 0.00
r100 12 1.90 0.00 0.11 1.72 0.56 0.00
rc100 8 2.92 0.00 0.00 1.88 1.66 0.00
c200 8 2.28 0.40 0.13 0.55 0.40 0.00
r200 11 2.90 2.19 1.30 2.45 1.05 0.13
rc200 8 3.43 1.23 0.96 2.53 2.68 0.23
pr01-10 10 4.74 1.06 0.98 0.56 1.07 0.44
pr11-20 10 9.56 11.13 3.71 3.17 4.28 1.14

m = 2
c100 9 0.94 0.00 0.00 0.47 0.00 0.00
r100 12 2.36 0.20 0.23 1.19 0.58 -0.03
rc100 8 2.47 0.33 0.19 0.78 0.90 0.00
c200 8 2.54 1.27 1.18 0.25 0.68 0.25
r200 11 2.74 3.16 0.58 0.67 0.21 0.46
rc200 8 4.14 2.70 1.25 1.68 0.62 0.68
pr01-10 10 6.22 2.59 2.45 0.82 1.11 0.56
pr11-20 10 7.86 5.00 3.88 1.21 2.70 1.40

m = 3
c100 9 2.55 0.22 0.33 0.45 0.11 0.11
r100 12 1.79 0.36 0.39 1.22 0.21 0.11
rc100 8 3.14 0.35 0.64 0.91 0.27 -0.01
c200 8 1.93 1.10 1.24 0.07 0.00 0.35
r200 11 0.30 0.13 0.08 0.11 0.01 0.04
rc200 8 1.44 0.42 0.27 0.32 0.04 0.13
pr01-10 10 6.58 2.96 2.34 0.36 0.36 1.26
pr11-20 10 9.19 5.40 3.81 1.02 1.11 2.02

m = 4
c100 9 3.11 0.36 0.55 1.04 0.10 0.38
r100 12 3.31 0.78 0.73 1.22 0.16 0.39
rc100 8 3.18 0.78 0.37 0.95 0.23 -0.01
c200 8 0.00 0.00 0.00 0.00 0.00 0.00
r200 11 0.00 0.00 0.00 0.00 0.00 0.00
rc200 8 0.00 0.00 0.00 0.00 0.00 0.00
pr01-10 10 7.08 2.76 2.23 1.08 0.36 2.08
pr11-20 10 8.47 5.53 3.95 2.05 0.45 2.05

Grand Mean 3.50 1.69 1.09 1.00 0.69 0.46

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 289 -

Ta
bl

e
11

:C
om

pa
ri

so
n

of
SA

IL
S

to
th

e
st

at
e-

of
-t

he
-a

rt
m

et
ho

ds
on

”O
PT

”
in

st
an

ce
s

In
st

an
ce

Se
t

N
um

b
It

er
IL

S
SS

A
G

V
N

S
I3

C
H

SA
IL

S
B

G
(%

)
T

im
e

B
G

(%
)

T
im

e
AG

(%
)

T
im

e
B

G
(%

)
T

im
e

B
G

(%
)

AG
(%

)
T

im
e‡

c1
00

9
1.

41
2.

8
1.

04
71

.4
0.

47
3.

0
0.

00
55

.4
0.

43
0.

87
93

.6
r1

00
12

1.
93

2.
7

0.
42

96
.2

1.
55

15
.3

0.
07

10
21

.0
0.

45
1.

18
20

3.
7

rc
10

0
8

2.
06

3.
5

0.
35

77
.8

1.
29

15
.2

0.
00

66
.7

0.
54

1.
11

14
7.

1
c2

00
8

0.
00

1.
0

0.
00

38
.5

0.
00

0.
2

0.
00

0.
7

0.
00

0.
00

19
.8

r2
00

11
0.

62
1.

5
0.

16
53

.6
0.

17
2.

1
0.

07
20

1.
7

0.
01

0.
22

16
6.

6
rc

20
0

8
0.

47
1.

6
0.

07
38

.0
0.

16
1.

1
0.

04
22

1.
2

0.
07

0.
10

75
.0

pr
01

-p
r1

0
10

2.
32

28
.0

1.
04

52
0.

3
1.

25
19

.8
0.

78
38

0.
0

1.
22

1.
53

26
0.

1

G
ra

nd
M

ea
n

1.
30

6.
1

0.
45

13
3.

7
0.

74
8.

5
0.

15
31

9.
4

0.
40

0.
75

14
6.

3
‡

A
ve

ra
ge

co
m

pu
ta

tio
na

lt
im

e
to

ob
ta

in
th

e
be

st
fo

un
d

(i
n

se
co

nd
s)

Ta
bl

e
12

:N
ew

be
st

kn
ow

n
so

lu
tio

n
va

lu
es

fo
un

d
by

SA
IL

S
(s

ec
on

d
sc

en
ar

io
)

In
st

an
ce

m
O

ld
B

K
N

ew
B

K
In

st
an

ce
m

O
ld

B
K

N
ew

B
K

r2
07

1
10

72
10

74
rc

20
1

2
13

84
13

85
rc

20
2

1
93

6
93

8‡
r1

12
4

97
1

97
2

‡
Sa

m
e

re
su

lt
w

ith
th

at
of

IL
S

[6
]

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 290 -

Tables 9 reports the average of AG (AG (%)) and the average computational time
(in seconds) (Time) for each instance set of ”INST-M”. Since IterILS, SSA and I3CH
were only run once, we also include their average of BG (BG (%)) although we cannot
directly compare with AG (%). The num column provides the number of instances in
a particular instance set. The values of Time for ACS and SAILS refer to the average
of computational time (in seconds) in order to obtain the best found from all runs.
On the other hand, the ones for IterILS, SSA, GVNS and I3CH refer to the average
of computational time (in seconds) for solving one particular instance set. All values
reported have been adjusted according to the computer’s speed as listed in Table 3.

In general, SAILS is competitive with the state-of-the-art algorithms. IterILS is an
algorithm with the main purpose of providing good solutions very quickly, whereas
SAILS focuses on finding better solutions at the cost of larger computational times.
SAILS outperforms ACS in terms of the computational time and the solution quality.
ACS requires 1 hour (≈ 1404 seconds using our PC) while SAILS only requires 492
seconds for solving one instance. The Grand Mean of Time of SAILS is around 23%
of ACS’s Grand Mean. In terms of the solution quality, SAILS is able to reduce the
Grand Mean of AG up to 48.9%. SAILS also outperforms GVNS in terms of the
solution quality. The AG’s Grand Mean of SAILS and GVNS are 1.14% and 1.74%,
respectively although SAILS spends more computational time compared against that
of GVNS.

Tables 10 summarizes the comparison among algorithms in terms of the values of
BG. All algorithms except IterILS are able to provide the Grand Mean of BG below
1.7%. SAILS is the best compared against other algorithms where the grand Mean
of BG is only 0.46%. It also has a narrow range of -0.03% to 2.08%. Three instance
sets give negative values, meaning that SAILS achieves some improvements of some
BKs in those instance sets. Two of them are from rc100 instance sets with m = 3 and
4. Table 11 reports the results obtained on ”OPT” instances [21]. SAILS outperforms
other algorithms, except I3CH in terms of the Grand Mean of BG. SAILS provides
better results with greater computational time. The Grand Mean values of AG for
GVNS and SAILS are 0.74% and 0.75%, respectively. Thus, we can conclude that
SAILS provides the trade-off between the solution quality and computational time,
on average.

At first glance, SAILS requires more computational time compared against those
of other algorithms except ACS. Therefore, we implement the following second s-
cenario. Additional experiments were done by setting the computational time as the
one of I3CH. It has been shown that I3CH outperforms other approaches when us-
ing the same computational time [7]. We encountered four additional new BKs, as
shown in Table 12. The results of using the same computational time are presented in
Tables 13 and 14. We observed that SAILS overall average performance in terms of
AG is 0.12% better than that of I3CH. I3CH has a wider range for BG values. SAILS
and I3CH ranges from -0.01% to 3.18% and from 0.00% to 4.28%, respectively. For
”OPT” instances, I3CH performs best with the lowest Grand Mean of BG. The value
is only 0.15%. The computational time using I3CH is less than the one used in the
first scenario, except for r100 instance set.

Table 15 summarizes the percentage improvement of the solution quality (in av-
erage) for all instance sets. In general, we can conclude that SAILS is able to improve

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 291 -

Table 13: Comparison with the same computational time on ”INST-M” instances

m Instance Set I3CH SAILS Time
BG(%) BG(%) AG(%) (seconds)

1 c100 0.00 0.00 0.00 29.3
r100 0.56 0.00 0.03 33.3
rc100 1.66 0.00 0.10 29.7
c200 0.40 0.00 0.32 98.8
r200 1.05 0.33 1.36 207.5
rc200 2.68 0.52 1.44 140.1
pr01-10 1.07 0.37 1.02 126.9
pr11-20 4.28 1.49 3.13 152.0

2 c100 0.00 0.00 0.18 101.0
r100 0.58 -0.01 0.31 73.2
rc100 0.90 0.02 0.32 68.4
c200 0.68 0.25 0.88 466.7
r200 0.21 0.51 1.48 616.0
rc200 0.62 0.51 1.90 512.5
pr01-10 1.11 0.73 1.81 287.2
pr11-20 2.70 1.54 2.96 355.4

3 c100 0.11 0.22 0.77 220.9
r100 0.21 0.14 0.70 137.4
rc100 0.27 0.00 0.60 117.2
c200 0.00 3.18 4.21 16.1
r200 0.01 0.27 0.61 109.8
rc200 0.04 0.52 1.49 192.3
pr01-10 0.36 1.17 2.92 492.7
pr11-20 1.11 1.41 3.05 578.8

4 c100 0.10 0.58 1.52 303.9
r100 0.16 0.43 1.52 214.0
rc100 0.23 0.17 0.99 177.0
c200 0.00 0.00 0.00 1.4
r200 0.00 0.02 0.13 4.0
rc200 0.00 0.15 0.34 2.1
pr01-10 0.36 1.74 3.72 658.2
pr11-20 0.45 1.92 3.41 847.6

Grand Mean 0.69 0.57 1.36 234.4

the initial solution generated by the Greedy Construction Heuristic. The values range
from 0.30% to 19.41%. SAILS performs best for m = 1 where the percentage of im-
provement is varied from 6.20% to 19.41%. Figure 1 shows the Grand Mean values
obtained in terms of percentage improvement, as shown in Table 15. We observe that
the higher the value of m, the lower the Grand Mean value. It is expected since the
problem is more difficult for higher values of m. ”OPT” instance sets are the most
difficult to solve.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 292 -

Table 14: Comparison with the same computational time on ”OPT” instances

Instance Set I3CH SAILS Time
BG(%) BG(%) AG(%) (seconds)

c100 0.00 2.15 2.92 55.6
r100 0.07 0.79 1.47 1018.6
rc100 0.00 1.15 1.90 66.8
c200 0.00 0.00 0.00 1.7
r200 0.07 0.31 0.97 204.8
rc200 0.04 0.38 0.96 222.5
pr01-10 0.78 1.46 1.89 382.1

Grand Mean 0.15 0.90 1.46 320.1

Table 15: The solution quality improvement by SAILS (in %)

Instance Set ”INST-M” ”OPT”
m = 1 m = 2 m = 3 m = 4

c100 9.43 10.47 9.45 9.03 5.08
r100 11.13 13.30 14.75 14.68 6.25
rc100 17.73 15.67 15.10 16.04 7.77
c200 6.20 6.15 6.71 0.40 0.30
r200 9.09 7.93 2.39 0.32 3.74
rc200 13.41 10.91 5.39 1.18 4.04
pr01-10 18.57 18.86 15.70 12.80 5.03
pr11-20 19.41 18.63 14.26 11.43 -

Grand Mean 12.87 12.59 10.50 8.17 4.50

Fig. 1: The Grand Mean values for m = 1 to 4

5 Conclusion

In this paper, we present a hybridization of Simulated Annealing and Iterated Local
Search, namely SAILS, to solve the TOPTW. The proposed algorithm is run in two
different scenarios. The first scenario is to run SAILS with longer computational time
since we are more concerned with the solution quality. The second scenario is mainly

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 293 -

tailored for the comparison purpose with the-state-of-the-art algorithms. This is done
by setting the computational times to those of one of the-state-of-the-art algorithms,
I3CH. Both scenarios are applied to benchmark instances.

Computational results show that SAILS is competitive with the-state-of-the-art
algorithms. Simulated Annealing is able to improve the performance of Iterated Local
Search by discovering 19 new best known solutions. Two areas of future work can
be considered. Using different scenarios for building the initial solutions in order
to observe the effect of Simulated Annealing would be one interesting area. And
since the Orienteering Problem and its variants have attracted more attention in recent
years, SAILS may be potentially applied to solve them.

Acknowledgements This research is supported by Singapore National Research Foundation under its
International Research Centre @ Singapore Funding Initiative and administered by the IDM Programme
Office, Media Development Authority (MDA).

References

1. Cura, T.: An artificial bee colony algorithm approach for the team orienteering problem with time
windows. Computers and Industrial Engineering 74, 270–290 (2014)

2. Duque, D., Lozano, L., Medaglia, A.: Solving the orienteering problem with time windows via the
pulse framework. Computers and Operations Research 54, 168–176 (2015)

3. Garcia, A., Arbelaitz, O., Vansteenwegen, P., Souffriau, W., Linaza, M.T.: Hybrid approach for the
public transportation time dependent orienteering problem with time windows. In: E. Corchado,
M. Romay, A. Savio (eds.) Hybrid Artificial Intelligence Systems, Lecture Notes in Computer Science,
vol. 6077, pp. 151–158. Springer, Berlin, Germany (2010)

4. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley, Reading, Massachusetts (1989)

5. Golden, B., Levy, L., Vohra, R.: The orienteering problem. Naval Research Logistics 34(3), 307–318
(1987)

6. Gunawan, A., Lau, H.C., Lu, K.: An iterated local search algorithm for solving the orienteering prob-
lem with time windows. In: G. Ochoa, F. Chicano (eds.) proceedings of the 15th European Confer-
ence on Evolutionary Computation in Combinatorial Optimisation (EvoStar 2015), 8-10 April 2015,
Copenhagen, Denmark, Lecture Notes in Computer Science, vol. 9026, pp. 61–73. Springer-Verlag,
Berlin, Germany (2015)

7. Hu, Q., Lim, A.: An iterative three-component heuristic for the team orienteering problem with time
windows. European Journal of Operational Research 232(2), 276–286 (2014)

8. Johnson, S.M.: Generation of permutations by adjacent transposition. Mathematics of Computation
17(83), 282–285 (1963)

9. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598),
671–680 (1983)

10. Labadie, N., Mansini, R., Melechovskỳ, J., Calvo, R.W.: Hybridized evolutionary local search algo-
rithm for the team orienteering problem with time windows. Journal of Heuristics 17(6), 729–753
(2011)

11. Labadie, N., Mansini, R., Melechovskỳ J.and Calvo, R.: The team orienteering problem with time
windows: an LP-based granular variable neighborhood search. European Journal of Operational Re-
search 220(1), 15–27 (2012)

12. Lee, D.H., Cao, Z., Meng, Q.: Scheduling of two-transtainer systems for loading outbound containers
in port container terminals with simulated annealing algorithm. International Journal of Production
Economics 107(1), 115–124 (2007)

13. Lin, S.W., Yu, V.F.: A simulated annealing heuristic for the team orienteering problem with time
windows. European Journal of Operational Research 217(1), 94–107 (2012)

14. Lin, S.W., Yu, V.F., Chou, S.Y.: Solving the truck and trailer routing problem based on a simulated
annealing heuristic. Computers and Operations Research 36(5), 1683–1692 (2009)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 294 -

15. Lourenço, H., Martin, O., Stützle, T.: Iterated local search. In: Handbook of metaheuristics, pp. 320–
353. Springer (2003)

16. Montemanni, R., Gambardella, L.M.: Ant colony system for team orienteering problem with time
windows. Foundations of Computing and Decision Sciences 34(4), 287–306 (2009)

17. Montemanni, R., Weyland, D., Gambardella, L.M.: An enhanced ant colony system for the team orien-
teering problem with time windows. In: Proceedings of 2011 International Symposium on Computer
Science and Society (ISCCS), pp. 381–384. Kota Kinabalu, Malaysia (2011)

18. Puchinger, J., Raidl, G.R.: Combining metaheuristics and exact algorithms in combinatorial optimiza-
tion: a survey and classification. In: J. Mira, J.R. Alvarez (eds.) Artificial Intelligence and Knowledge
Engineering Applications: First International Work-Conference on the Interplay between Natural and
Artificial Computation, Lecture Notes in Computer Science, vol. 3562, pp. 41–53. Springer (2005)

19. Righini, G., Salani, M.: Decremental state space relaxation strategies and initialization heuristics for
solving the orienteering problem with time windows with dynamic programming. Computers and
Operations Research 36(4), 1191–1203 (2009)

20. Talbi, E.G., Hafidi, Z., Geib, J.M.: A parallel adaptive tabu search approach. Parallel Computing
24(14), 2003–2019 (1998)

21. Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., Van Oudheusden, D.: Iterated local search
for the team orienteering problem with time windows. Computers and Operations Research 36(12),
3281–3290 (2009)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 295 -

Faezeh Akhavizadegan

M.Sc. Student, School of Industrial Engineering, College of Engineering, University of

Tehran, Tehran, Iran

f.akhavizadegan@ut.ac.ir

Reza Tavakkoli-Moghaddam

Professor, School of Industrial Engineering, College of Engineering, University of Tehran,

Tehran, Iran
tavakoli@ut.ac.ir

Fariborz Jolai

Professor, School of Industrial Engineering, College of Engineering, University of Tehran,

Tehran, Iran

fjolai@ut.ac.ir

Javad Ansarifar

M.Sc. Student, School of Industrial Engineering, College of Engineering, University of

Tehran, Tehran, Iran

javad.ansarifar@ut.ac.ir

MISTA2015

Cross-training performance of nurse scheduling with the learning effect

F. Akhavizadegan, R. Tavakkoli-Moghaddam, F. Jolai, J. Ansarifar

Abstract In recent years, the demand for health services has increased that causes one of the

fundamental problems, such as a shortage of nurses. One of the effective strategies to deal with

this problem is to use the cross-trained nurses. Furthermore, the nurse time spending on each

bed decreases because of their experiences. The exponential distribution is used as a learning

function. The learning effect can represent as the intuitive effect. Therefore, this research

applies cross-training and learning effect simultaneously to formulate the nurse scheduling as a

multi-objective mathematical model. The first objective minimizes the cost of nurses training

and nurses wage, while the second objective function maximizes the nurse utilization. The

third objective function reduces the nurse undesirability. Empirical data are collected from a

healthcare center in Tehran in order to show the performance of our model. To solve the

developed model, the NSGA-II and MOPSO algorithms are proposed and applied. The results

show that using cross-trained nurses are the result of increasing the utilization while

considering the learning effect can deal with the nursing shortage problem.

Keywords: Nurse scheduling; Cross-training; Learning effect; Nursing shortage

1 Introduction

One of the major challenges in improving the efficiency of healthcare services is nursing

shortage that has attracted significant attention during recent years [1]. The National Center for

Health Workforce Analysis reports that about 36% of nursing positions will stay vacant at

2020 in the United States [2]. Nature turnover of nurses and intention to leave their positions

exacerbates the problem of scheduling nurses. Cross-training applies the idle nurses in the

other home to work at home with the heavy demand [3]. Some researchers have considered

cross-training of nurses, and models are formulated considering this issue. In this research, we

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 296 -

mailto:tavakoli@ut.ac.ir
mailto:fjolai@ut.ac.ir

formulate the nurse scheduling problem by considering the cross-trained and learning effect as

well as several objective functions. Minimizing the cost of nurses training and nurses’ wage,

maximizing the utilization of nurse, and reducing nurse undesirability is considered as three

main objective functions of our model. In the literature, the undesirability means unwelcome

or unwanted because they are considered the harmful effect on the person or cause unpleasant

feeling. This research uses two meta-heuristic algorithms, namely NSGA-II and MOPSO, with

tuned parameters to solve the presented model. To the best of our knowledge, this is the first

work that presents cross-trained nurses scheduling with the learning effect with the foregoing

objectives simultaneously.

The paper is structured as follows. Section 2 reviews the literature related to nursing

scheduling and cross-training. Section 3 describes the mathematical model and methodology as

well as solution approach is represented in Section 4. The case study and results of our model

are shown in Section 5. Section 6 presents the sensitivity analysis of the model. The conclusion

and future research area are provided in Section 7.

2 Literature review

The nurse scheduling problem has been attended in recent decades with different models

and solutions for this subject. There are a number of comprehensive review papers on nurse

scheduling [4-8]. In several review papers, it can be seen that most researchers have

investigated the personnel and staff scheduling, specifically about nurses. However, they did

not review the cross-training and learning effect on healthcare systems.

Martinelly et al. [9] considered the scheduling of nurses and operating rooms as recent

published studies about nurse scheduling. Outpatient nurse scheduling was focused by Wang et

al. [10], whereas most researchers consider an inpatient nurse scheduling problem. See also Ko

et al. [11], Kim et al. [12], Wong et al. [13]. Santos et al. [14], Drake [15], Zheng and Gong

[16], and Burke and Curtois [17] were the recent studies that considered nurse scheduling

problems. One of the crucial challenges that many healthcare systems tackled is a shortage of

nurses for service. Flinkman et al. [18] and Hayes et al. [19] considered some review papers in

a nursing shortage issue and the nurse turnover problem which leads to nurse shortage. Chan et

al. [20] and Toh et al. [21] focused on a nursing shortage issue. The first article analyzed the

reasons for leaving work undertaken by nurses. The second article represented the relationship

between the nursing shortage and other factors. See also Goodin [22], Heinz [23], Lu et al.

[24], Ge et al. [25], and Zhu et al. [26] studied the nurse shortage in China.

One of the effective approaches to deal with the nursing shortage uses cross-trained

nurses [27] and results in reducing the staffing costs and increasing the nurse’s profit [28].

Zimmermann [29] and Li and King [30] considered the cross-training in nurse at the

hospital occupational health service and staff planning, respectively. However, they did not

consider the cross-training in their mathematical model. Inman et al. [31] and Alonso [32]

described the positive and negative impacts of cross-training and effect of team training for the

reduction of medical mistakes in a military health structure, respectively. Gnanlet and Gilland

[2] considered cross-training in their model and presented the benefits of cross-training. Bard

and Purnomo [33] represented a mathematical model for nurse scheduling with cross-trained

nurses with some modifications in model constraints. Wright and Bretthauer [1] provided the

strategies to deal with the US nursing shortage problem. Wright and Mahar [34] studied on

nurse scheduling with cross-training in a hospital. Their results show that cross training results

in reducing the costs and increasing the nurse satisfaction. The optimal models for allocation

and cross-trained workers into homes in two stages were provided by Easton [35] in an

uncertainty environment. Maenhout and Vanhoucke [36] developed the model for nurse

scheduling with the cross-training and an objective to efficiently use cross training. Salas et al.

[37] focused on the team training in the healthcare environment and proposed eight rules for

effective development, performance and evaluation of team training programs.

Punnakitikashem et al. [38] considered nurse scheduling with the cross-training effect, and that

minimizes the surplus workload on the nurse and personnel cost as their objective. Also, Paul

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 297 -

and MacDonald [27] presented cross training strategies to deal with the nurse shortage

problem and investigate the profits of cross training on nurse scheduling.

One of the contributions to this research is to consider the training effect in the

formulation of nurse scheduling. By training, nurses become multi skills and can be reached

skills needed to work in another home. Park [39] represented that training was recognized as a

tool for increasing the flexibility. Each nurse has at least one skill and belongs to one skill

level. Each nurse can be assigned to one home based on his/her skill level. During the each

shift, nurses can be trained new skill and can improve their skills to work in the other homes.

Considering the learning effect in a cross-trained nurse scheduling problem is the main

contribution of this research. The learning curve represents that the nurses’ productivity is

changed during each shift. If nurses perform the same work for a long time, they get tired and

their productivity decreases. On the other hand, by repeating their tasks, the newly nurses can

improve their productivity because learning results in reducing the time of doing tasks. Based

on the reduction of the learning curve time of doing a task, the working time after some

iterations are equal to 𝑃𝑛𝛽 Where P represents the initial time of doing tasks, the number of

iterations is shown as n and β is a negative coefficient. The learning effect was introduced for

the first time by Wright [40], and then Biskup [41] developed the scheduling problem with the

learning effect.

Some researchers have formulated the mathematical model to deal with the nurse

scheduling. Berrada et al. [42] proposed a multi-objective approach to schedule the nurse with

differentiates between hard and soft constraints. Gascon et al. [43] studied the scheduling of

the flying squad nurses in hospitals considering the multiple objectives, such as minimizing the

number of homes where a nurse works every two-week period and minimizing the number of

days that nurses will work in homes during the next month. As recent research, Legrain et al.

[44] developed a nurse scheduling model considering the multiple objectives, such as

minimizing the total costs, maximizing the nurses’ satisfaction, and leveling distributing the

workload. The multi-objective nurse scheduling is developed by Burke et al. [45] who

considered several objectives to deal with the nurse scheduling, such as minimizing the

number of consecutive assignments of a specific shift type during the planning period, and

maximizing the number of consecutive working days for part-time nurses during the planning

period.

To the best of our knowledge, none of these researches are considered the multiple

objectives, such as minimizing regular and Overtime wages and training cost, undesirability

for nurses, and nurse utilization. This study maximizes the nurse utilization according to the

learning effect concept. In addition to the cross-training, overtime has been taken into account

to deal with a shortage of nurses. Our model applies not only the learning effect in cross-

training and maximizing utilization as objective, but also some more modifications to the

model presented by Wright and Mahar [34] to clearly indicate cross-training of nurses.

3 Proposed model for nurse scheduling

We formulate the problem as a multi-objective mixed integer programming (MIP) model.

Minimizing the costs and staff undesirability is considered as the first and second objective

functions, respectively. In this study, the utilization is maximized as a new objective. We

develop the model proposed by Wright and Mahar [35]. We focus on the learning effect and

cross-training nurses simultaneously. Therefore, some modifications are applied to their model

[34].

Some assumptions are considered to formulate the nurse problem. Every nurse has a

home based on his/her skill and can work on the other homes when the required training is

passed and the demands of those homes are high. Each nurse must be working at least one shift

per day and does not work in two successive shifts. We consider the utilization as objective

function to be maximized. The time spent by a nurse on every bed is decreased by the learning

effects. As a result, every nurse can service more beds on his specific shift at the home and

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 298 -

provides services for several times. In other words, some homes required for fewer nurses in

some shifts. This action increases the nurse utilization. The sets, parameters and decision

variables that will be used to formulate the nurse scheduling problem are indicated below.

Sets:

N Set of nurses i N

J Set of shifts j J

K Set of homes ,k e K

jN Set of nurses available for shift j that nurse i is available to work jN N
iSH Set of shifts that nurse i is available to work iSH J

Decision Variables:

r

ijkX 1 if nurse i works shift j at regular time wages on home k; 0, otherwise

o

ijkX 1 If nurse i works shift j at overtime wages on home k; 0, otherwise

r

ijkeY 1 If nurse i whose home is k works shift j at regular time wages on home e; 0, otherwise

o

ijkeY 1 If nurse i whose home is k works shift j at overtime wages on home e; 0, otherwise

ijkeZ 1 if nurse i whose home is k reassigned to home e for first time at shift j; 0, otherwise

ijkR Number of shifts until shift j+1 that nurse i works on home k

ijkrH 1 if nurse i in shift j has worked r consecutive shifts on home k; 0, otherwise

ijkp Average time nurse i spend for every bed at shift j on home k

jkUL
 Utilization shift j on home k

Parameters:

jkV
 The total time that home k require for eight-hour shift j

su Upper limits on the number of shifts every nurse should work on planning horizon

sl Lower limits on the number of shifts every nurse should work on planning horizon

r

ijkc

Regular time wages if nurse i works shift j on home k

o

ijkc Overtime wages if nurse i works shift j on home k

r

ijkew Regular time wages if nurse i whose home is k works shift j on home e

o

ijkew Overtime wages if nurse i whose home is k works shift j on home e

ius Upper limits on the number of undesirable shifts assigned to nurse me

iup An upper limit on the number of homes which nurse i can be assigned

if An upper limit on the number of overtime shifts assigned to a nurse

ijka The undesirability that nurse, I have for shift j on home k

ijkeb

The undesirability that nurse i whose home is k has for shift j on home e

 Negative coefficient

kect Cost of cross-training every nurse from home k to home e

M Big number

The cross-trained nurses scheduling problem, according to the learning effect is

formulated by:

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 299 -

1

,

,

Min [(c c) (w w)]
i

i

r r o o r r o o

ijk ijk ijk ijk ijke ijke ijke ijke

i N k K e K e kj SH

ke ijke

i N k K e K e kj SH

Z X X

t Z

Y Y

c

 (1)

2

,

Min [() ((Y Y))]
i

r o

ijk ij

r o

ijk ijke ijke ijke

i N k K e K e kj S

k

H

Z a bX X

 (2)

3Max jk

k K j J

Z UL

 (3)

s.t.

,

P [() ()] ; ;
j

r o r o i

ijk ijk ijk ijek ijek jk

e K e ki N

X X Y Y v j SH k K

 (4)

,

 ;
i i

r r j

ijk ijke

k K k K e K e kj SH j SH

X Y sl i N

(5)

,

 ;
i i

r r j

ijk ijke

k K k K e K e kj SH j SH

X Y su i N

(6)

,

(()) ((Y Y)) ;
i i

r o j

ijk ijke ijke ijke i

k K k K e K

r o

ijk

e kj SH j S

k

H

ijX Xa b us i N

(7)

,

Y ;
i i

o j

ijke i

k K k K

o

e K e kj SH j SH

ijkX f i N

 (8)

1

1

Y Y M ; ; , ; {2,..., ;}
j

r o j i

ijke ijke ijke

j

Z i N K e K j SH e k

 (9)

,

 ;
i

j

ijke i

k K e K e kj SH

Z up i N

 (10)

3

3 2 ,

(() ()) 1 ; ; ; {1,..., J/ 3}
j

r o r o j

ijk ijk ijke ijke

j j e K e k

X X Y Y i N k K j

 (11)

1

,

(() ()) 1 , , ,
j

r o r o j i

ijk ijk ijke ijke

j j e K e k

X X Y Y i N k K j SH

(12)

1 ,

(() ()) ; ; ;
j

r o r o j i

ijk ijk ijk ijek ijek

j e K e k

R X X Y Y i N k K j SH

(13)

(; ; ;)ijk

j i

ijk ikp i N K j SHP kR

(14)

1 ; ; , ; , ; ; r r j i

ijk ij kX X i N k k K j j SH j j k k
 (15)

1 ; ; ; , ; , ; o o

i k

j

k j

i

ijX i N k k K j j SH k kX j j
 (16)

1 ; ; , ; ; r o

ijke ij

r

k

i

i e

j

jkX i N k e K e kY j SHY (17)

1 ; ; , ; ; o r

ijke ij

o

k

i

i e

j

jkX i N k e K e kY j SHY (18)

1 ; ; ; r j i

i ijjk

o

kX i N k K j SHX (19)

,

 ;
P [() ()]

;

j

jk i

jkr o r o

ijk ijk ijk ijek ijek

e K e ki N

v
UL k K j SH

X X Y Y

 (20)

0 ; ; ; r j i

ijkX i N k K j SH (21)

0 ; ; ; o j i

ijkX i N k K j SH (22)

0 ; ; , ; ; r

ijke

j ii N k e K e k j SHY (23)

0 ; ; , ; ; o

ijke

j ii N k e K e k j SHY (24)

 0,1 ; 0,1 ; 0,1 ; 0,1 ; ; ; r o r o j i

ijk ijk ijke ijkeX X Y Y i N k K j SH (25)

0 ; ; ; j i

ijk i N k K j SP H (26)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 300 -

 ; ; , ; ,1} ;0 { j i

ijkeZ i N k e K e k j SH (27)

R integer ; ; ; j i

ijk i N k K j SH (28)

The total nurses’ wages and the cost of cross-training the nurses are minimized by the

first objective function. The second objective function minimizes the nurses’ dissatisfaction

(i.e., undesirable shifts). The third objective function maximizes the sum of utilizations for

every shift and all homes.

Constraint (4) certifies that total time of nurses allocated in each home for each shift to

assure the time requirements. Constraint (5) guarantees that the number of regular time shifts

assigned to each nurse must be more, in which the minimum number of shifts each nurse

should work on the planning horizon. Constraint (6) ensures that the number of regular time

shifts assigned to each nurse cannot exceed the maximum number of shifts, in which each

nurse should work on the planning horizon. Constraint (7) is relevant to that undesirable

regular or overtime shift for each nurse must be lower than the number of undesirable shifts

assigned to a nurse. The number of overtime shifts assigned to each nurse must be lower than

the upper limit on the number of overtime shifts. This constraint is guaranteed by Constraint

(8). Constraint (9) represents that nurses cannot be assigned to other homes until their training

is completed. The number of homes that nurses can be work is restricted by Constraint (10).

Constraint (11) represents that each nurse must be working at least one shift per day and

Constraint (12) certifies that each nurse does not work in two successive shifts. The number of

shifts that each nurse works in each home shift j+1 is calculated by Constraint (13). Constraint

(14) calculates the time nurses spend in each shift in each home by considering the learning

effect. Every nurse must have only one home as base home. This constraint is guaranteed by

Constraints (15) and (16). Constraints (17) and (18) are used to assign a nurse to other homes

when he/she is not assigned to his/her home. Every nurse can work a regular or overtime type

in each shift. This constraint is ensured by Constraint (19). Constraint (20) considers the nurse

utilization by defining the utilization as the ratio of the total required time all, homes for all

shifts to the time that the nurse spends on all homes for all shifts. Constraints (21) to (24)

prevent assigning the nurse to the shifts, in which they are not available. Constraints (25) and

(27) indicate the binary variables, and Constraint (26) shows the integer variable.

4 Solution methodology

The most important purpose of each multi-objective optimization algorithm is to discover

not only one, but also a set of diverse solutions that called Pareto as optimal set. On the other

hand, these algorithms attempt to distinguish a precise Pareto-optimal set of solutions that are

not dominated and are a uniform distributed throughout the Pareto front. The NSGA-II and

MOPSO algorithms have attracted much attention and have successful results in a wide variety

of an optimization problem. Yin et al. [46] showed that each of these algorithms is one of the

most efficient algorithm to solve the optimization problem of nurse scheduling. As the

proposed model belongs to the NP-hard category the NSGA-II and MOPSO algorithms are

applied after setting their parameters by the reaction surface methodology. These algorithms

are used properly to obtain optimal solutions in a meaningful amount of time, specifically for

the large-sized problem. Indeed, the performance of meta-heuristic algorithms very much

depends on parameter configuration [47-49]. By setting their parameters for each of them, we

can guarantee that these algorithms can obtain, the more precise near-optimal solution. There

are several methods to tune the parameters of meta-heuristic algorithms. For example, Asefi et

al. [47] and Wang and Liu [48] applied the Taguchi method for tuning parameters, where the

surface response methodology (RSM) is used by Azadeh et al. [49] to tune our proposed

algorithms.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 301 -

4.1 Chromosome representation

We consider two chromosomes to code our model in MATLAB®. The feasible solution

can get with these two chromosomes. The first one contains the one row with K+2 gens as

shown in Figure 1. The first and second genes indicate the nurse’s number and home number,

as based home, respectively. Other genes indicates additional homes that one if nurses are

trained to work there and are assigned this home to the nurse.

e=1 e=2 …. e=k …. e=K

i k 0 or 1 0 or 1 …. 1 …. 0 or 1

Figure 1. Representation of the first chromosome

The second chromosome is shown in Figure 2 that contains one row and J+3 gens. The

first and second gene indicates the nurse’s number and home number, respectively. The third

gene indicates that the nurse is in regular or overtime and for other genes, if the gen takes 1, a

certain nurse allocated to specific home at shift j.

j=1 j=2 … j=J-1 j=J

i k 0 or 1 0 or 1 0 or 1 … 0 or 1 0 or 1

Figure 2. Representation of the second chromosome

4.2 NSGA-II

The genetic algorithm (GA) is the most popular and appropriate meta-heuristic algorithm

in order to solve multi-objective optimization problems, because it does not require

considering to prioritize, scale, or weigh for objectives [50]. Deb et al [51] introduced the fast

non-dominated sorting genetic algorithm (NSGA-II) as its main structure is shown in Figure 3.

Mutation operation

We consider two mutations in chromosomes. In the first mutation that is belonging to the

first chromosome, we choose a nurse at random and we put a number between 1 and k in the

gene for a home base randomly. In the second mutation that is belongs to the second

chromosome, we choose a nurse at random and we do not change the home base’s gen. Some

other gens are chosen randomly; if the gen’s number is equal 1 that was replaced with 0 and if

the gen’s number is equal 0 that was replaced with 1. For the second chromosome, we choose

a nurse and home number randomly. Some gens from 3 to J+3 are selected randomly; if the

gen’s number is equal 1 that was replaced with 0 and if the gen’s number is equal 0 that was

replaced with 1.

Nurse’s number

Home’s number 0 Over time

1 Regular time

Nurse’s number

Home number as based home

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 302 -

Crossover

We consider two crossovers for two chromosomes. In the first crossover that is belongs to

the first chromosome, we choose two nurses at random and we change the basis of their home

with each other. In the second crossover, we choose two nurses at random and we select a

number from 2 to k+1. From this gens to the end of the chromosome, gens are replaced peer to

peer with each other.

 Figure 3. Flow chart of the proposed NSGA-II

Giving a rank to each chromosome based on its non-domination level

Calculating crowding-distance

Selecting parents

Crossover

Mutation

Generating offspring population

Stopping creation

Stop

Start

Generating initial population (with size nPop)

Combining the parents and offspring population

Sorting the combined population

Selecting the best solution from the combined population

Creating new generation

Sending rank 1 solutions to the archive and eliminating dominated

and duplicated solution

No

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 303 -

4.3 MOPSO

One of the most popular meta-heuristic methods are particle swarm optimization (PSO),

because comparison of this algorithm with other evolutionary algorithms is relatively simple

and it is an appropriate algorithm to be used for multi-objective optimization problems. This

algorithm is introduced on the basis of the movements of a flock of birds or fishes who look

for food by Kennedy and Eberhart [52]. Despite all the algorithms are unsuccessful to find an

optimal solution in a reasonable time for various types of problems with multiple objectives,

MOPSO has demonstrated a suitable performance compared with other evolutionary multi-

objective algorithms [53]. Consequently, the objective functions of this research are optimized

by using the MOPSO algorithm. This algorithm was proposed by Moore and Chapman [54] for

the first time, while the researchers have focused on this area since 2002. We use the MOPSO

proposed by Coello et al. [53] to optimize the objective function. Based on this algorithm, the

repository is defined as the best non-dominated sorting solutions obtained until now. Position

and speed of each particle are calculated by:
1

1 1 2 2

t t t t t t

i i i i h iv wv c R p x c R rep x
(29)

1 1t t t

i i ix x v
(30)

where 𝑣𝑖
𝑡 and 𝑥𝑖

𝑡 show the current velocity of the i-th particle and position of the i-th particle,

respectively. R1 and R2 are uniform random numbers between [0, 1]. The parameters c1 and c2

represent the personal learning confident and global learning confident, respectively. The

inertia weight is considered as w. Also, 𝑝𝑖
𝑡 is the best experience of the i-th particle and 𝑟𝑒𝑝ℎ

𝑡

Represents the best nominated repository member that is chosen by the roulette wheel

selection method. The major structure of the MOPSO is represented in Figure 4.

Figure 4. Flow chart of the proposed MOPSO

Initialize repository: Initialize the external repository and evaluate its fitness value

Evaluate repository: evaluate fitness value of repository

Select leader: using roulette wheel selection, choose leader of repository

Update velocity and location: compute velocity and location of particles

Update repository: Update the repository by truncating its members

Update memory of particles: consider if current position dominates personal best

Check termination

condition

End

Start

Initialized particles: choose particles whit random position and velocity and evaluate their fitness value

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 304 -

4-4- Parameter tuning

In this section, we tune some NSGA-II parameters, such as a number of solutions in the

initial population (Npop), crossover probability (pc) and mutation probability (pm). The The

Taguchi method is applied to design experiments. The experiment’s factors are Npop, pc, pm.

three levels are considered for each factor and MINITAB® software is used to design the

experiment and analyze its result. The medium-sized problem is used to tune the parameters of

NSGA-II. The results of experiments and analysis of the parameters are shown in Table 2.

Based on the analysis of the Taguchi design, we can find out which amount of parameters

is appropriate and lead to better results. The abstracts of diagrams and results of this analysis

are summarized in Table 3.

Table 2. Taguchi design of the experiment and results for NSGA-II

Experiment
Parameters Pareto

front Npop Pc Pm

1 75 0.4 0.4 100

2 75 0.5 0.5 100

3 75 0.6 0.6 96

4 100 0.4 0.5 100

5 100 0.5 0.6 100

6 100 0.6 0.4 100

7 125 0.4 0.6 100

8 125 0.5 0.4 94

9 125 0.6 0.5 87

12510075

100

98

96

94

0.60.50.4

0.60.50.4

100

98

96

94

npop

M
e

a
n

 o
f

M
e

a
n

s

pc

pm

Main Effects Plot for Means
Data Means

Figure 5. Analysis of the Taguchi design for the NSGA-II parameters

Table 3. Results of parameters tuning for NSGA-II

Parameters

Npop Pc Pm

75 0.5 0.4

For the MOPSO algorithm, we consider the number of experiments in the personal

learning confident (c1), global learning confident (c2), Interia weight (w), repository size

(nRep), and interia weight damping rate (wdap) as the MOPSO parameters to tune this

parameter. We apply the Taguchi method to design the experiment. The medium-sized

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 305 -

problem is used to tune the parameters of MOPSO. The results of experiments and analysis of

parameters are shown in Table 4. The appropriate amount of parameters that lead to better

results from the analysis of the Taguchi method is represented in Table 5.

Table 4. Taguchi design of the experiment and results for MOPSO

Experiment
Parameters Number of

repository c1 c2 w nRep wdap

1 0.5 0.5 0.2 20 0.99 20

2 0.5 0.5 0.2 20 0.98 19

3 0.5 0.5 0.2 20 0.97 18

4 0.5 1 0.3 25 0.99 25

5 0.5 1 0.3 25 0.98 25

6 0.5 1 0.3 25 0.97 24

7 0.5 1.5 0.4 30 0.99 30

8 0.5 1.5 0.4 30 0.98 23

9 0.5 1.5 0.4 30 0.97 30

10 1 0.5 0.3 30 0.99 13

11 1 0.5 0.3 30 0.98 30

12 1 0.5 0.3 30 0.97 24

13 1 1 0.4 20 0.99 20

14 1 1 0.4 20 0.98 20

15 1 1 0.4 20 0.97 17

16 1 1.5 0.2 25 0.99 25

17 1 1.5 0.2 25 0.98 24

18 1 1.5 0.2 25 0.97 22

19 1.5 0.5 0.4 25 0.99 25

20 1.5 0.5 0.4 25 0.98 24

21 1.5 0.5 0.4 25 0.97 6

22 1.5 1 0.2 30 0.99 13

23 1.5 1 0.2 30 0.98 30

24 1.5 1 0.2 30 0.97 30

25 1.5 1.5 0.3 20 0.99 20

26 1.5 1.5 0.3 20 0.98 19

27 1.5 1.5 0.3 20 0.97 18

1.51.00.5

24

22

20

1.51.00.5 0.40.30.2

302520

24

22

20

0.990.980.97

c1

M
e

a
n

 o
f

M
e

a
n

s

c2 w

nRep wdamp

Main Effects Plot for Means
Data Means

Figure 6. Analysis of the Taguchi design for MOPSO parameters

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 306 -

Table 5. Results of parameters tuning for MOPSO

Parameters

c1 c2 w nRep wdap

0.5 1.5 0.2 30 0.98

5 Numerical experiments

In this section, 15 numerical samples of a real case in Tehran, the capital city of Iran, are

considered to illustrate how the proposed model works and to validate both the feasibility and

applicability of our model. Table 6 presents data and results of these numerical test problems.

We apply NSGA-II and MOPSO to solve these problems. These proposed algorithms are

coded in MATLAB® R2013b and run on Intel Core i7 1.60 GHz personal computers with 4

GB RAM. Each test problem runs five times and averages of these results are given in Table 6.

This table mentioned the average value of the three objective function of Pareto front and

average of running time on each test problem.

Table 6. Considered test problems.

No
Problem info MOPSO algorithm NSGA-II algorithm

𝑁 × 𝐽 × 𝐾 Z1 Z2 Z3
CPU

time (m)
Z1 Z2 Z3

CPU

time (m)

1 5 × 21 × 10 1300 65.64 0.5579 2.18 1150 72.61 0.6563 4.86

2 5 × 21 × 20 2875 103.86 0.4362 3.28 2375 98.34 0.4291 6.34

3 10 × 21 × 20 3900 144.31 0.4412 5.46 3325 123.02 0.4846 10.12

4 10 × 21 × 30 6050 225.91 0.558 9.46 6050 225.91 0.5541 16.61

5 15 × 42 × 30 9800 230.15 0.3578 12.2 9025 241.93 0.4381 21.83

6 15 × 42 × 40 21525 625.64 0.4988 19.36 18350 567.6 0.4516 36.7

7 20 × 42 × 40 35000 610.83 0.4594 27.8 36200 728.74 0.566 45.18

8 20 × 42 × 50 51300 828.34 0.4065 36.7 48300 794.29 0.4428 54.69

9 25 × 63 × 50 96500 2469.4 0.4125 47.25 81050 2300.36 0.6386 78.03

10 25 × 63 × 60 132375 3697.16 0.498 61.3 145450 3310.54 0.694 86.82

11 30 × 63 × 60 202300 3678.85 0.3829 75.03 173800 3921.22 0.6056 113.1

12 30 × 63 × 70 345750 4832.3 0.5595 81.28 298650 4148.76 0.4703 128.17

13 40 × 84 × 80 685600 9657.13 0.5148 96.54 606600 10035.17 0.5544 162.62

14 40 × 84 × 90 740200 10134.54 0.5936 110.46 767325 9843.61 0.3877 179.4

15 50 × 84 × 100 913500 17509.39 0.595 127.2 846700 16310.09 0.6672 194.08

Because of illustrating the performance of these algorithms, the results of the NSGA-II

and MOPSO algorithms for all problems in Table 6 are compared with each other. The result

of NSGA-II and MOPSO are compared with the t-test. CPU time and every objective function

are considered for the t-test. The data related to four factors containing an average of

completion time, an average of the first objective function (Z1), the average of the second

objective function (Z2), and average of the third objective function (Z3) for Pareto front and the

repository solution for each test problem mentioned above from the historical data on a real

case of Tehran. First, the normality assumption is investigated and the results show that the

output of the algorithm follows a normal distribution. The equality of means (𝐻0: 𝜇1 = 𝜇2) is

considered as the test of two-sample t-test. Before the t-test, the equality of variances

(𝐻0: 𝜎1
2 = 𝜎2

2) has also been checked by the F-test. The results of the ANOVA are summarized

in Table7. It is concluded that the performance of NSGA-II is equal to MOPSO in all

considered factors except the running time. Based on these results, MOPSO performs better in

terms of the computational time than the NSGA-II algorithm. However, since NSGA-II can

search more solution space, this higher running time is logical.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 307 -

Table 7. Analysis of variance for comparison between NSGA-II and MOPSO

Factor

F-test (equality of variances) t-test (equality of means)

F-value p-value
2 2

0 1 2:H

t-value p-value 0 1 2:H

Z1 1.11 0.847
Accepted at

α=0.05
0.12 0.903

No Rejected at

α=0.05

Z2 1.10 0.866
Accepted at

α=0.05
0.08 0.939

No Rejected at

α=0.05

Z3 0.60 0.358
Accepted at

α=0.05
-1.57 0.129

No Rejected at

α=0.05

CPU time 0.41 0.106
Accepted at

α=0.05
-3.41 0.03

Rejected at

α=0.05

6 Sensitivity analysis

In this section, the several parameters used in this proposed model are considered to test

the sensitivity of these parameters on the results and objective functions. An important issue

that must be addressed is that if the learning effect has an important impact on the other

objective or not. The historical data from a real case considered as a case, in which there is no

any learning effect. We formulate nurse scheduling without the learning effect and cross-

training by removing the related constraints and variables. This model is solved for five times

with two mentioned algorithms.

Different values of β (i.e., learning index) are considered to examine its influence on all

the objective functions. The results show that the third objective function is very sensitive to

learning effects. On the other hand, the first objective function (cost) is worse than the stated

learning effect applied. According to Constraint (14), it is reasonable when the learning effect

considers the time when each nurse must be spent in each bed and in each home. So this effect

results in some homes that need fewer nurses to respond to the demands of the room. Figure 7

represents this fact that if there is no learning effect in the model, the utilization is less than

when the learning effect is considered. Figure 8 shows the learning effect on the first objective

function. The second objective does not have much sensitive (Figure 9). Therefore, the cost

function and utilization can improve by the learning effect.

Figure 7. Changes in the utilization value versus changes in the value of learning index β

0

0.2

0.4

0.6

0.8

0 0.25 0.5 0.75 1v
a
lu

e
o
f

U
ti

li
za

ti
o
n

Learining effect β

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 308 -

Figure 8. Changes in the value of the first objective versus changes in the value of

learning index β

Figure 9. Changes in the value of the second objective versus changes in the value of

learning index β

6 Conclusion

This study is an initial work on a cross-trained nurse scheduling problem under the

learning effect. Our model has three objective functions that minimize the nurses cost and

training cost, minimizes undesirability and maximizes utilization. The NSGA-II and MOPSO

algorithms are applied to solve our model. Some problems in different sizes taken from a real

case have been considered to compare between these two algorithms. We have considered our

model with the learning effect versus without learning effect to illustrate the influence of this

factor on the effectiveness. Considering both of cross-training and learning effect concepts can

yield a good way to solve the given problem with the nursing shortage. As a direction for the

future framework, maximizing the cross-training level can be utilized as another objective. In

addition, in order to apply the learning effect, a linear learning function is used. As future

work, a non-linear learning function can be used as these functions are more efficient and

useful for real problems in the world. Moreover, the future researches can focus on uncertainty

circumstance for demand.

References

1. Lilleby, H. E. S., Schittekat, P., Nordlander, T. E., Hvattum, L. M., & Andersson, H.

(2012). Competence building with the use of nurse re-rostering. Lecture Notes in

Management Science, 4, 70-77.

2. Wright, P. D., & Bretthauer, K. M, Strategies for addressing the nursing shortage:

coordinated decision making and workforce flexibility, Decision Sciences, 41(2), 373-

401 (2010)

0

10000

20000

30000

40000

50000

60000

0 0.25 0.5 0.75 1

v
a
lu

e
o
f

co
st

s

Learining effect β

550

600

650

700

0 0.25 0.5 0.75 1v
a

lu
e
 o

f
u

n
d

e
si

r
a

b
il

it
y

Learining effect β

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 309 -

3. Gnanlet, A., & Gilland, W. G, Sequential and simultaneous decision making for

optimizing health care resource flexibilities, Decision Sciences, 40(2), 295-326 (2009)

4. Cheang, B., Li, H., Lim, A., & Rodrigues, B, Nurse rostering problems: a bibliographic

survey,European Journal of Operational Research, 151(3), 447-460(2003)

5. Burke, E. K., De Causmaecker, P., Berghe, G. V., & Van Landeghem, H, The state of the

art of nurse rostering, Journal of scheduling, 7(6), 441-499 (2004)

6. Lankshear, A. J., Sheldon, T. A., & Maynard, A, Nurse staffing and healthcare outcomes:

a systematic review of the international research evidence, Advances in Nursing Science,

28(2), 163-174 (2005)

7. Burke, E. K., Curtois, T., Post, G., Qu, R., & Veltman, B, A hybrid heuristic ordering and

variable neighbourhood search for the nurse rostering problem, European Journal of

Operational Research, 188(2), 330-341 (2008)

8. Causmaecker, P.D., & Berghe, G. V, A categorisation of nurse rostering problems,

Journal of Scheduling, 14(1), 3-16 (2011)

9. Martinelly, C.D., Baptiste, P., & Maknoon, M. Y, An assessment of the integration of

nurse timetable changes with operating room planning and scheduling, International

Journal of Production Research, 52(24), 7239-7250 (2014)

10. Wang, W. Y., & Gupta, D, Nurse absenteeism and staffing strategies for hospital

inpatient units, Manufacturing & Service Operations Management, 16(3), 439-454 (2014)

11. Ko, Y. W., Uhmn, S., & Kim, J, Nurse scheduling problem using approximation

algorithms with cost bit matrix, Life Science Journal, 11(7) (2014)

12. Kim, S. J., Ko, Y. W., Uhmn, S., & Kim, J, A strategy to improve performance of genetic

algorithm for nurse scheduling problem, International Journal of Software Engineering &

its Applications, 8(1) (2014)

13. Wong, T. C., Xu, M., & Chin, K. S, A two-stage heuristic approach for nurse scheduling

problem: A case study in an emergency department, Computers & Operations Research,

51, 99-110 (2014)

14. Santos, H. G., Toffolo, T. A., Gomes, R. A., & Ribas, S, Integer programming techniques

for the nurse rostering problem, Annals of Operations Research, 1-27 (2014)

15. Drake, R. G, The nurse rostering problem: from operational research to organizational

reality?, Journal of Advanced Nursing, 70(4), 800-810 (2014)

16. Zheng, Z., & Gong, X, Chemical reaction optimization for nurse rostering problem,

Frontier and Future Development of Information Technology in Medicine and Education,

3275-3279 (2014)

17. Burke, E. K., & Curtois, T, New approaches to nurse rostering benchmark instances,

European Journal of Operational Research, 237(1), 71-81 (2014)

18. Flinkman, M., Leino‐Kilpi, H., & Salanterä, S, Nurses’ intention to leave the profession:

integrative review. Journal of Advanced Nursing, 66(7), 1422-1434 (2010)

19. Hayes, C., Ponte, P. R., Coakley, A., Stanghellini, E., Gross, A., Perryman, S., &

Somerville, J, Retaining oncology nurses: strategies for today's nurse leaders, In

Oncology Nursing Forum, 32(6), 1087-1090 (2005)

20. Chan, C. W., & Perry, L, Lifestyle health promotion interventions for the nursing

workforce: a systematic review, Journal of Clinical Nursing, 21(15‐16), 2247-2261

(2012)

21. Toh, S. G., Ang, E., & Devi, M. K, Systematic review on the relationship between the

nursing shortage and job satisfaction, stress and burnout levels among nurses in

oncology/haematology settings, International Journal of Evidence‐based Healthcare,

10(2), 126-141 (2012)

22. Goodin, H.J., The nursing shortage in the United States of America: an integrative review

of the literature, Journal of Advanced Nursing, 43(4), 335-343 (2003)

23. Heinz, D, Hospital nurse staffing and patient outcomes: A review of current literature,

Dimensions of Critical Care Nursing, 23(1), 44-50 (2004)

24. Lu, H., While, A. E., & Barriball, K. L, Job satisfaction among nurses: a literature

review, International Journal of Nursing Studies, 42(2), 211-227 (2005)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 310 -

25. Ge, H., Wang, Z., & Yin, D, Facing the Challenge of Adapting to a Life ‘Alone’ and

Nursing Shortage among the Empty Nest Elderly in Southwest China. Life Science

Journal, 10(3) (2013)

26. Zhu, J., Rodgers, S., & Melia, K. M, The impact of safety and quality of health care on

Chinese nursing career decision‐making, Journal of Nursing Management, 22(4), 423-

432 (2014)

27. Paul, J. A., & MacDonald, L, Modeling the benefits of cross-training to address the

nursing shortage, International Journal of Production Economics, 150, 83-95 (2014)

28. Gnanlet, A., & Gilland, W. G, Impact of productivity on cross-training configurations

and optimal staffing decisions in hospitals, European Journal of Operational Research,

238(1), 254-269 (2014)

29. Zimmermann, P. G, The hospital occupational health service: Basic emergency nurse

cross-training and differences from emergency services, Journal of Emergency

Nursing, 22(6), 591-594 (1996)

30. Li, L. L. X., & King, B. E, A healthcare staff decision model considering the effects of

staff cross-training, Health Care Management Science, 2(1), 53-61 (1999)

31. Inman, R. R., Blumenfeld, D. E., & Ko, A, Cross-training hospital nurses to reduce

staffing costs, Health Care Management Review, 30(2), 116-125 (2005)

32. Alonso, A., Baker, D. P., Holtzman, A., Day, R., King, H., Toomey, L., & Salas, E,

Reducing medical error in the Military Health System: How can team training help?,

 Human Resource Management Review, 16(3), 396-415 (2006)

33. Bard, J. F., & Purnomo, H. W, Preference scheduling for nurses using column

generation, European Journal of Operational Research, 164(2), 510-534 (2005)

34. Wright, P. D., & Mahar, S, Centralized nurse scheduling to simultaneously improve

schedule cost and nurse satisfaction, Omega, 1042–1052 (2013)

35. Easton, F. F, Cross-training performance in flexible labor scheduling environments, IIE

Transactions, 43(8), 589-603 (2011)

36. Maenhout, B., & Vanhoucke, M, An integrated nurse staffing and scheduling analysis for

longer-term nursing staff allocation problems, Omega, 41(2), 485-499 (2013)

37. Salas, E., DiazGranados, D., Weaver, S. J., & King, H, Does team training work?

Principles for health care. Academic Emergency Medicine, 15(11), 1002-1009 (2008)

38. Punnakitikashem, P., Rosenberber, J. M., & Buckley-Behan, D. F, A stochastic

programming approach for integrated nurse staffing and assignment, IIE Transactions,

45(10), 1059-1076 (2013)

39. Park, P, The examination of worker cross-training in a dual resource constrained job

shop, European Journal of Operational Research, 51, 291-299 (1991)

40. Wright, T.P., Factors affecting the cost of airplanes, Journal of Aeronautical Sciences 3,

122-128 (1936)

41. Biskup, D., Single-machine scheduling with learning considerations, European Journal of

Operational Research, 115(1), 173-178 (1999)

42. Berrada, I., Ferland, J. A., & Michelon, P., A multi-objective approach to nurse

scheduling with both hard and soft constraints, Socio-Economic Planning

Sciences, 30(3), 183-193 (1996)

43. Gascon, V., Villeneuve, S., Michelon, P., & Ferland, J. A., Scheduling the flying squad

nurses of a hospital using a multi-objective programming model, Annals of Operations

Research, 96(1-4), 149-166 (2000)

44. Legrain, A., Bouarab, H., & Lahrichi, N., The Nurse Scheduling Problem in Real-

Life, Journal of medical systems, 39(1), 1-11 (2015)

45. Burke, E. K., Li, J., & Qu, R., A Pareto-based search methodology for multi-objective

nurse scheduling, Annals of Operations Research, 196(1), 91-109 (2012)

46. Yin, P. Y., Chao, C. C., & Chiang, Y. T, Multi-objective optimization for nurse

scheduling, Advances in Swarm Intelligence Springer Berlin Heidelberg, 66-73 (2011)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 311 -

47. Asefi, H., Jolai, F., Rabiee, M., & Araghi, M. T, A hybrid NSGA-II and VNS for solving

a bi-objective no-wait flexible flowshop scheduling problem, The International Journal of

Advanced Manufacturing Technology, 75(5-8), 1017-1033 (2014)

48. Wang, S., & Liu, M, Two-stage hybrid flow shop scheduling with preventive maintenance

using multi-objective tabu search method, International Journal of Production Research,

52(5), 1495-1508 (2014)

49. Azadeh, A., Farahani, M. H., Kalantari, S. S., & Zarrin, M, Solving a multi-objective open

shop problem for multi-processors under preventive maintenance. The International

Journal of Advanced Manufacturing Technology, 1-16 (2014)

50. Konak A, Coit Q. W, & Smith A. Multi-objective optimization using genetic algorithms:

A tutorial. Reliability Engineering & System Safety, 91(9), 992-1007 (2006)

51. Deb K, Pratap A, Agarwal S, and Meyarivan T. A. M. T, A fast and elitist multi-objective

genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6, 182-

197 (2002)

52. Kennedy, J., & Eberhart, R, Particle swarm optimization, Proceedings of the IEEE

International Conference on Neural Networks, 4, 1942-1948 (1995)

53. Coello, C., Pulido, G., & Lechuga, M., Handling multiple objectives with particle swarm

optimization, IEEE Transactions on Evolutionary Computation, 8(3), 256–279 (2004)

54. Moore, J., Chapman, R., & Dozier, G., Multi-objective particle swarm optimization,

Proceedings of the 38th Annual on Southeast Regional Conference, 56-57, (2000)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 312 -

MISTA 2015

A Fixed Route Dial-a-Ride Problem

Hagai Ilani · Elad Shufan · Tal Grinshpoun

Abstract Dial-a-ride (DARP) is a transportation solution with flexible routes and

flexible schedules. The DARP challenge is to optimally fulfill a set of pickup and de-

livery ride requests using a given vehicle fleet. We hereby present a DARP variant for

which the route is known in advance. The problem is then to set up the schedules

according to the requests. For a given operation cost, the aim is to maximize user sat-

isfaction, by minimizing the sum of passengers’ waiting times. We introduce algorithms

for solving two variants of the fixed route DARP – one for a fleet of infinite capacity

vehicles, and one for the more general case of vehicles with heterogeneous capacities.

Contrary to general DARP which is NP-hard, the presented algorithms are polynomial

in the number of ride requests.

1 Introduction

Traditional public transportation systems are very effective in highly-populated areas

where the networks of buses, trams, metro, etc., provide adequate solutions in various

aspects, such as service frequency, proximity of terminals (stations/stops), and price.

However, there are scenarios that require other, designated, transportation solutions.

These scenarios are broadly divided into two groups – scenarios that stem from special

geographic features and scenarios that involve special populations. The first group

usually relates to rural, sparsely-populated, areas, while the second group of scenarios

involves populations that require door-to-door service, such as elderly, disabled, or

children.

Hagai Ilani
Department of Industrial Engineering and Management, SCE – Shamoon College of Engineer-
ing, Ashdod, Israel
E-mail: hagai@sce.ac.il

Elad Shufan
Physics Department, SCE – Shamoon College of Engineering, Beer-Sheva, Israel
E-mail: elads@sce.ac.il

Tal Grinshpoun
Department of Industrial Engineering and Management, Ariel University, Ariel, Israel
E-mail: talgr@ariel.ac.il

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 313 -

The solution to the above scenarios takes the form of personalized and desig-

nated transportation solutions, broadly termed Demand Responsive Transportation

(DRT) [14]. A classic type of DRT is the Dial-a-Ride Problem (DARP) [5], in which

passengers ”dial” to request for ”rides” between origins and destinations. The ride re-

quests include release and/or due times. A solution to a DARP is a set of vehicle routes

and schedules that complies with various constraints, such as fleet size, vehicle capac-

ity, and driving distance, while trying to accommodate as many passenger requests as

possible. The classic DARP examples are of door-to-door transportation for elderly or

disabled people.

As many vehicle routing problems, DARP is generally NP-hard [13]. The practi-

cal meaning of DARP’s complexity is that there is no efficient method to optimally

solve the problem. One can better understand the origins of DARP’s complexity by

disassembling it to its two main ingredients:

1. Finding the routes for the vehicles.

2. Grouping together the passengers that share a ride, and determining the pickup

and drop-off times (e.g., the schedule).

The first ingredient is actually a compound instance of the famous Travelling Sales-

man Problem (TSP) [9]. It is compound, since it may include finding the routes for

several vehicles that operate in intersecting areas, resulting in a more complex problem

than a single TSP. TSP itself is known to be NP-hard [11].

Contrary to that, determining the schedules is usually an ”easier” problem to solve.

In fact, it was proven that for a DARP with two fixed locations, termed Two-Campus

Transport Problem (TCTP), the problem is polynomial in the number of passengers [8].

It was shown that for a TCTP an optimal solution can be found efficiently (in matters

of seconds or less) for problems with dozens of passengers. Other polynomial solutions

were proposed to resembling problems of two-station railway scheduling [7,12].

The complexity gaps between the two ingredients of DARP lead to the understand-

ing that it may be worthwhile to focus on problems in which the first task of finding

the routes is degenerated. While such relaxation of DARP may seem as a considerable

limitation, there are many scenarios where the use of fixed routes is acceptable or even

essential. The first group of scenarios includes geographical areas that have just a single

main road/highway connecting all the places-of-interest. The Florida Keys are a famous

example of such an area, but there are smaller, local, such areas in almost every country

in the world. In many cases, these are rural areas that may benefit from DRT services.

The second group of scenarios includes special populations. For example, the elderly

population is often characterised in limited geographical dispersion; many elderly peo-

ple reside in designated housings, such as retirement villages, housing complexes and

assisted living residences. Furthermore, they often share similar places-of-interest, such

as social clubs, medical centers, shopping centers, and volunteer centers. Another po-

tential advantage of using fixed routes for the elderly population lies in their preference

for stability; elderly people often dislike substantial alterations, so a transportation so-

lution that enables them to travel through known routes, has greater implementation

chances in this population than standard DARP solutions.

Whether for geographic reasons or for reasons relating to special populations, the

Fixed Route Dial-a-Ride Problem (FRDARP) is an important real-life problem that

has not received attention in past research. Although more specific than general DARP,

FRDARP itself has many variation and considerations, such as the shape of the (fixed)

route, characteristics of the vehicle fleet, and objective functions. The various consid-

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 314 -

erations of the model are thoroughly described in Section 2. Algorithmic solutions to

two real-life FRDARP scenarios are presented in Section 3. The proposed algorithms,

both relying on a reduction [3] to the shortest path problem [6], are polynomial in the

number of ride requests. A discussion in Section 4 concludes the paper.

2 Model Considerations

In this section we relate to various considerations of FRDARP. Some of these consid-

eration are relevant to any general DARP.

Terminals: Each ride request is a demand for a transportation from a pickup terminal

to a delivery terminal, both are chosen from a set of L terminals: {A0, A1, . . . , AL−1}.

Pickup and delivery times: A passenger requests to be picked from terminal Ai at

time t and delivered to a terminal Aj at time t′. The difference between pickup and

delivery times, ∆t = t′−t is expected to be as minimal as possible. In the case of a taxi

∆t equals the traveling time between the two terminals. In DARP several passengers

(possibly with different requests) share a ride, and therefore ∆t may be longer than the

traveling time. The quality of service is related to the deviation between the requested

departure or arrival times, and the actual scheduled times.

Request types: Some passengers have a rigid constraint only over the delivery time;

it is not optional for them to arrive to the delivery terminal later than some deadline

td. For example, a passenger may have a doctor’s appointment, hence should arrive

at the corresponding terminal no later than td, otherwise she will be late. Requests of

this character are called s-type requests, since they relate to the starting time of the

passenger’s activity. A different possibility is when the pickup time must not be earlier

than some release time tr. For example, if the passenger is expected to finish a meeting

at tr and requests for a ride back home, then the pickup time cannot be earlier than

tr. Such a request is termed r-type request, as it relate to the returning time of the

passenger, after the activity has been completed. The s-type and r-type requests are

known also as outbound and inbound requests, respectively. Both request types can

be described by the more general request type for which the costumer determines a

time window, which can refer to the pickup time or to the delivery time. Other types

of requests may be considered. For example, in a round-trip request, from terminal A

to terminal A′, and then back to A, the passenger might want to specify only the time

spent in A′ (A′ might be a shopping center being visited on the passenger’s day off).

Vehicle fleet: All the ride requests should be fulfilled by operating a given vehicle fleet

with M vehicles, which may generally have different speed, capacity, disabled service

facilities, etc. We distinguish between a fleet of finite-capacity vehicles and between the

case for which the capacity is not an issue, hence taken as infinite. The infinite capac-

ity assumption considerably simplifies the algorithmic solution of the corresponding

DARP. We use the term homogeneous fleet to describe a fleet of identical vehicles. A

fleet with vehicles that are identical with respect to all characteristics, except for their

capacity, is referred to as a heterogeneous fleet.

Routes: A major DARP issue concerns the problem of determining the vehicle routes.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 315 -

In a TCTP [8], which is a two-terminal DARP, it was shown that an optimal poly-

nomial solution exists. The problem of route determination makes the general DARP

NP-hard. In this paper we generalize the TCTP to a FRDARP with L terminals, by

setting the route between the terminals in advance. In a general DARP every vehicle

has a particular route, where each route contains a partial set of terminals. The visited

terminals as well as their visiting order, are determined by the specific solution. Con-

trary to that, a route in FRDARP consists of all the terminals, including a predefined

visiting order. In Figure 1 we show two possible variants of routes:

1. Line route: This route variant should be considered when the terminals reside on

a line (Figure 1(a)). A vehicle taking a line route begins at the main depot A0,

visits A1, A2, . . . , AL−2 until it reaches the second depot AL−1, and then returns

to AL−2, AL−3, . . ., until it reaches A0 again.

2. Circular route: When the terminals are scattered more sporadically, it is possibly

better to consider a circular route, schematically shown in Figure 1(b). A circular

route starts at a depot A0, goes through the terminals in a predetermined order

A1, A2, . . ., and finally returns back to the depot AL (which coincides with A0).

𝐴0

𝐴4

𝐴1

𝐴2

𝐴3

(a)

𝐴0
𝐴5

𝐴1

𝐴2

𝐴3

𝐴4

(b)

Fig. 1 FRDARP with (a) a line route, and (b) a circular route.

Both the circular and the line routes may have variants. For example, one can consider

a circular route with both clockwise and anticlockwise travel directions. A possible line

route variant is of a transport that returns to the main depot immediately after reach-

ing the second depot AL−1, without stopping on the way back. An example for such

a scenario is a transportation arrangement taking workers back home after they have

finished their shifts. Another possible line route variant is of a transport that waits at

the second depot AL−1 before commencing the way back to the main depot. TCTP is

an example of such a scenario [8].

Objective function: A DARP solution is in its nature a compromise between oper-

ating costs and quality of service. A standard goal in DARP is to minimize a combined

function of cost and inconvenience, which is related to both the ride durations and

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 316 -

the deviations from desired departure/arrival times. The strategy we take in this ar-

ticle is to maximize user satisfaction for a given cost. Hereinafter, the cost simply

corresponds to the number of transports, where a transport is a single vehicle that

completes the route once. (The cost of a transport is assumed to be independent of

the executing vehicle, even though the vehicles might have different capacities.) The

route can be repeated a number of times, by several vehicles. Enlarging the number of

transports increases the cost and usually decreases the deviation between the requested

departure/arrival times and the actual scheduled times. This, in turn, increases user

satisfaction. Because the route is fixed, the users know in advance the total ride du-

ration (assuming all vehicles have the same speeds). As a consequence, the departure

time deviation is equal to the arrival time deviation. The objective function is some

chosen function of these passengers’ waiting times.

Terminal waiting: Is it allowed for a vehicle to wait idly at a terminal, even if it

carries passengers that have not yet arrived at their destinations? Despite the fact that

allowing this option can improve the schedule, it may lead to customer objections. Even

if the costumers rationally know that the possibility of waiting at a terminal improves

the schedule (at least on the average), emotionally, when they actually wait, there is a

good chance that they will become frustrated. In addition, enabling the possibility of

terminal waiting considerably expands the search space, which may hinder the appli-

cability of corresponding algorithmic solutions.

Depot and working hours: Is there a single depot or multiple depots? In the case of

TCTP [8] it was assumed that vehicles start and end their working day at one depot (at

times t0 and tf , respectively). However, in the general case it makes sense to allow each

vehicle to have its own depots and working hours. Thus, the problem’s input should

include a list consisting of vehicles’ working hours and starting and ending depots.

Each of the above considerations influences the nature of the solution and its complex-

ity. In the following section we consider:

– One-directional circular route with a single depot.

– Two types of vehicle fleets: an infinite capacity fleet and a heterogeneous finite

capacity fleet.

– Ride requests which are either s-type or r-type.

– Waiting at terminals is not allowed (except at the depot). Each departure time

therefore determines the corresponding arrival time.

– The objective function is the sum of all passengers’ waiting times. Our goal is to

minimize this function for a fixed number of transports.

3 Algorithmic Solutions

The input for the circular-route DARPs, which are considered in this section, include:

– N requests for rides between pairs of terminals. The r-type or s-type requests are

grouped into sets Ri,j and Si,j , respectively. The indices i, j are terminal indices,

with 0 ≤ i < j ≤ L. For example, S1,2 = {s1,21 , s1,22 , . . . , s1,2|S1,2|} is a list of s-

type requested departure times from terminal A1 to terminal A2. Without loss of

generality we assume si,j1 ≤ si,j2 ≤ . . . ≤ si,j|Si,j |. Note that although si,jn might

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 317 -

equal si,jn+1 (two different passengers requesting a similar request) the departure

times are considered as two distinguished elements of Si,j .

– M vehicles with capacity Cm, m = 1, 2, . . . ,M . Vehicle m starts working at t0,m
and finishes working at tf,m.

– Dij is the traveling time between terminals Ai and Aj . We assume it is stationary

(i.e., constant during different daily hours) and independent of vehicle type. The

traveling time of a transport, D0L is also denoted D.

– Each transport starts and ends at the same depot. The depot is denoted A0 when

considered as a source terminal, or AL, when considered as a destination terminal.

– K is the total number of transports.

For each transport the schedule determines which vehicle operates the transport,

the departure time, and the passengers that are served by that transport. A solution

is therefore composed of the triplet (P,V, T), where:

– P = (p1, p2, . . . , pK) is a partition of the set
⋃

0≤i<j≤L(Si,j ∪Ri,j) into K disjoint

sets. The partition part pi represent the ith transport. A partition usually refers

to a set {1, 2, . . . , N}. Nevertheless, for notation simplicity we hereinafter relate to

the partition of the departure-time requests.

– V = (v1, v2, . . . , vK) is a list of vehicle indices. Each vehicle is numbered from 1 to

M and, according to V, the ith transport is operated by vehicle number vi.

– T = (t1, t2, . . . , tK) is a list of departure times. The ith transport departs from A0

at ti.

A solution (P,V, T) has to be feasible. The feasibility conditions include:

1. Partitioning constraints due to different request types: On the one hand, s-type

requests determine a deadline for the departure time. On the other hand, r-type

requests determine a release time. The combination of the two types limits the

partition possibilities.

2. Capacity constraints: The passengers that are grouped into the ith transport are

served by vehicle vi. The number of passengers at any given moment cannot exceed

Ci, the vehicle’s capacity.

3. Time constraints: Each partition part determines a time window for the departure

time – the vehicle has to depart early enough in order to satisfy all the s-type

requests, but cannot depart too early in order to accommodate all the r-type re-

quests. In addition to that, each vehicle is restricted to work between ti,0 and ti,f
(i = 1, 2, . . . ,M), and can only serve one transport at a time.

The feasibility conditions are thoroughly discussed in the next subsections. An

optimal schedule is a feasible schedule that minimizes a chosen objective function.

Here, the objective function is the sum of passengers’ waiting times. We show that

the problem of finding the optimal solution is polynomially solvable. The algorithm is

polynomial in the number of requests, for a given number of terminals, vehicles and

transports. It is based on reducing the problem to a shortest path problem, similarly to

the TCTP reduction [8]. A weighted graph is constructed, with arcs corresponding to

transports; a shortest path that consists of at most K arcs (in the constructed graph)

corresponds to an optimal schedule.

In Sections 3.1 and 3.2 we present detailed algorithmic solutions to two respective

scenarios – FRDARP with an infinite capacity fleet and FRDARP with a heterogeneous

fleet. The description of both algorithms is completed with a theoretic analysis of the

possible set of departure times (Section 3.3) and a complexity analysis (Section 3.4).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 318 -

3.1 Infinite capacity fleet

The case of infinite capacity is presented for two reasons. First, in many real-life sce-

narios vehicle capacity is not an issue, i.e., when the vehicle’s capacity is substantially

larger than the number of expected passengers. Accordingly, the removal of capacity

constraints may result in improved ability to implement larger instances. The second

reason is didactic – it is a good starting point for presenting a basic variation, before

advancing to the more general case of heterogeneous vehicles with finite capacities.

From an algorithmic point of view, the specific source and destination terminals

(in passenger requests) are not important in the infinite capacity scenario; vehicles do

not wait at terminals, so a request to depart from Ai (to any terminal Aj) at time

t, is equivalent to a request to depart from A0 at time t − D0i. Hence, we define

S̄i,j = {si,j1 − D0i, s
i,j
2 − D0i, . . .}. The set of all s-type requests is given by S =

∪i<j S̄
i,j = {s1, s2, . . . , sNs

}, where Ns = |S| is the total number of s-type requests.

Without loss of generality we assume s1 ≤ s2 ≤ . . . ≤ sNs
. We similarly define R̄i,j ,

R, and NR = |R|. The optimal solution which is found by the reduction algorithm

is such that if the transport of s ∈ S departs (from A0) at t, and the transport of

s′ ∈ S departs at t′, then s < s′ ⇒ t ≤ t′. A solution with this property is called

an S-ordered solution. The obtained solution is also R-ordered (similarly defined). In

the TCTP study it was explicitly proven that an SR-ordered solution always exists [8].

The proof is also valid for the FRDARP case.

Graph’s nodes and arcs: A node is a sequence (h, l; τ1, τ2, . . . , τM), also denoted

(h, l; τ). This node indicates that the requests {r1, r2, . . . , rh} and {s1, s2, . . . , sl} were

already handled, and that vehicle number m is available for the next transport from

time τm (m = 1, 2, . . . ,M). An arc between two nodes represents a possible transport:

(h, l; τ) connected to (h′, l′; τ ′) represents a transport shared by {rh+1, . . . , rh′} and

{sl+1, . . . , sl′}. If the transport is applied by vehicle number m then τ ′ differs from τ

only by the mth component τ ′m, which implies that vehicle m will be ready to the next

transport at τ ′m. The weight of an arc equals to the total waiting time of the passengers

in the considered transport. It depends on the departure time. Next, we discuss the

feasibility conditions and departure time considerations.

SR-constraints: The transport (h, l; τ) → (h′, l′; τ ′) cannot depart earlier than the

latest r-type request in that transport, rlast = rh′ . In addition, it cannot depart after

the earliest s-type request, sfirst = sl+1. Therefore, a transport is feasible only if

rlast ≤ sfirst (1)

In the graph construction we consider only arcs which represent transports that

are feasible with respect to this SR-constraint.

Departure time and availability: The earliest time of departure is given by tmin =

max{rlast, τm}. We therefore have a feasibility condition which is stronger than Con-

dition 1:

tmin ≤ sfirst (2)

The departure time depends on the total number of r-type requests, nr = h′ − h,

compared to the total number of s-type requests in the considered transport, ns = l′−l.
If nr ≥ ns then tdepart = tmin. In that case, departing at a later time will not decrease

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 319 -

the total waiting times of that transport; it also means that the vehicle’s availability for

the next transports will be impaired, which is clearly undesirable. However, if nr < ns,

the situation is different. On the one hand, the total waiting times of this transport

will be lowered by departing as late as possible (but not later than sfirst). On the

other hand, when departing at a later time the vehicle will be less available for the

next transports, which in turn may increase the waiting times of the next transports

or even render them inapplicable (following their respective Condition 2). Hence, if

nr < ns then tmin ≤ tdepart ≤ min{sfirst, tf,m − D}. According to Theorem 1

(Section 3.3), within this interval, the departure times that should be considered are

picked from a discrete set. For each departure time, the weight is easily calculated. The

choice of τ ′ also depends on the selected departure time of the considered transport:

τ ′m = tdepart +D.

Graph construction and the reduction: The graph is constructed dynamically.

The source node is (0, 0; t0,1, t0,2, . . . , t0,M). All the feasible nodes are constructed as

described above, according to the SR-constraints and the departure time and avail-

ability considerations. The procedure is repeated iteratively. An optimal solution is

obtained by finding a shortest path that consists of at most K arcs, which starts at the

source node, and ends at one of the destination nodes (NR, NS ; τ̃1, τ̃2, . . . , ˜τM), with

τ̃j ≤ tf,m, for m = 1, 2, . . . ,M . The construction herein broadly follows the respective

construction procedure for TCTP [8]. The reduction is based on the one proposed by

Chakravarty et al. [3] for the more general problem of set partitioning.

3.2 Heterogeneous fleet

The heterogeneous fleet scenario complexifies the problem by adding capacity con-

straints to all the considerations of the infinite fleet scenario. Now, the graph should

represent not just the requested departure times but also the corresponding source and

destination terminals of each request. For the partition of S and R of an infinite ca-

pacity fleet (Section 3.1), two indices (h, l) were sufficient to represent all the relevant

partitions. Here, the partition is related to (L − 1) · (L + 2) sets1: Si,j and Ri,j with

0 ≤ i < j ≤ L. A node therefore has (L− 1) · (L+ 2) +M coordinates. The reduction

will lead to a solution which is S-ordered and R-ordered only within each set Si,j and

Ri,j . This is in contrast to the infinite capacity scenario for which the SR-order relates

to the sets S and R of all the requested departure times, regardless of the specific

terminals.

Graph’s nodes and arcs: We define two vectors with integer components: h = (hi,j)

and l = (li,j), with 0 ≤ i < j ≤ L. Written explicitly, h = (h0,1, h0,2, . . . , h0,L−1, h1,2,
. . . , h1,L, . . . , hL−1,L). A node is the sequence (h_l; τ).2 This node indicates that all

the requests {ri,j1 , ri,j2 , . . . , ri,j
hi,j} and {si,j1 , si,j2 , . . . , si,j

li,j
}, for the respective i and j,

have been handled. The vehicle availability issues are exactly the same as in the in-

finite capacity scenario, and are thus not repeated. An arc connecting (h_l; τ) and

(h′_l′; τ ′) represents a transport shared by {ri,j
hi,j+1

, . . . , ri,j
h′i,j} and {si,j

li,j+1
, . . . , si,j

l′i,j
},

for all relevant pairs of i and j.

1 It is (L− 1) · (L + 2) rather than L · (L + 1) since requests from A0 to AL make no sense
and are thus not considered.

2 _ is used as a concatenation sign.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 320 -

Capacity constraints: The number of passengers present on the vehicle at any given

moment is restricted by the vehicle’s capacity. Consider a transport represented by

(h_l; τ) → (h′_l′; τ ′), where τ differs from τ ′ by the mth component (i.e., vehicle

m is the transporting vehicle). Consider the vector ∆h = (∆hi,j), with 0 ≤ i < j ≤ L,

which is defined by ∆h = h′−h. The component ∆hi,j is equal to the number of r-type

passengers requesting for a ride from Ai to Aj . Similarly, we define ∆l = (∆li,j) = l′−l

for s-type passengers. The total number of passengers requesting for a ride between Ai

and Aj is given by ∆n = ∆h +∆l. The capacity constraint is then given by:

ni ≤ Cm, i = 0, 1, . . . , L− 1 (3)

where ni =
∑i

p=0

∑L
q=i+1∆n

p,q is the number of passengers that are on the way from

terminal Ai to the successive terminal Ai+1.

SR-constraints, departure time and availability: The only difference between the

infinite capacity scenario and the heterogeneous one lies in the calculation of rlast,

sfirst, nr and ns (in case the sets S and R are no longer defined). Here,

rlast = max
i<j
{ri,j

h′i,j −D0i}

sfirst = min
i<j
{si,j

li,j+1
−D0i}

nr =
∑
i<j

∆hi,j

ns =
∑
i<j

∆li,j

3.3 Discrete available times

Follows is an analysis of the optional departure times of vehicles that should be con-

sidered. This analysis regards FRDARPs with a circular route, a fleet of M vehicles,

sequences of requested times of all the passengers, and a bound of K transports; it

is therefore relevant to both the scenarios of the previous subsections. The following

theorem states the possible departure times τm (m = 1, 2, . . . ,M) that should be con-

sidered in the graph’s nodes. The analysis follows the building blocks of the respective

analysis given for TCTP [8].

Theorem 1 If an instance of a circular route DARP has a feasible solution, then there

always exists an optimal solution in which any of the departure times from A0, of any

vehicle, takes one of the following forms:

1. t0,m + nD, 1 ≤ m ≤M or

2. si,jl −D0,i ± nD, 0 ≤ i < j ≤ L, 1 ≤ l ≤ |Si,j | or

3. ri,jh −D0,i ± nD, 0 ≤ i < j ≤ L, 1 ≤ h ≤ |Ri,j | or

4. tf,m − (n+ 1)D, 1 ≤ m ≤M

where n = 0, 1, . . . , (K − 1).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 321 -

Proof In a given solution, a vehicle may start a transport immediately after it has

finished one. For the sake of the proof we define a block of transports as a sequence of

transports which are operated by the same vehicle one after the other without breaks,

and is maximal with respect to that property. A block of transports may contain

one transport (if that transport does not start immediately after another, and is not

followed by an immediate transport of the same vehicle). Each transport in a given

solution is a member of a single block.

By definition, transports in a block satisfy the following properties concerning their

departure times and end times:

1. The departure times of two consecutive transports in a block differ by D.

2. A vehicle that operates a block of transports starts the block either at the starting

time of that vehicle or after a break.

3. When a vehicle completes operating a block of transports it either has a break or

is at the finish time of that vehicle.

Increasing (decreasing) the departure times of all the transports in a given block

by ε > 0 will increase (decrease) by ε the waiting time of each of the r-type passengers

in the block’s transports and will decrease (increase) by ε the waiting time of each of

the s-type passengers.

Let (P,V, T) be an optimal solution with a minimum sum of departure times. We

show that this solution satisfies the theorem’s assertion. Consider a block with a ma-

jority of s-type passengers. Since (P,V, T) is optimal, it must hold that the departure

time of the transports of that block are constrained by either an s-type request or by

the finish time of the vehicle. Therefore, the departure times of that block are either

of the form 2 or 4. For a block with equal or less s-type passengers (compared to r-

type passengers), decreasing the departure times of its transports will either decrease

the total passengers’ waiting time or keep the total waiting time unchanged, while

decreasing the sum of departure times. Since (P,V, T) is an optimal solution with a

minimum sum of departure times, the departure times of the transports of that block

are constrained by either some r-type request or by the starting time of the vehicle. In

this case, the departure times of that block are either of the form 1 or 3. �

3.4 Complexity

The complexity and efficiency of the algorithms depend on the number of states (nodes),

Nnodes, which is considered hereby. Nnodes depends on the partition indices, (h, l) or

(h_l) for the infinite capacity and heterogeneous fleet algorithms, respectively, as well

as on the available times indices.

Partition indices: There are (L − 1)(L + 2) ∼ O(L2) possible node coordinates for

the heterogeneous fleet algorithm. For each coordinate there are |Si,j | or |Ri,j | op-

tions, both are bounded by N , the total number of requests. For the infinite capacity

algorithm there are just two possible coordinates that describe the possible partitions,

each has at most N options.

Available times indices: Following Theorem 1, each of the M availability time co-

ordinates has 2K + N(2K − 1) possibilities: 2K for times of forms 1 and 4 (starting

and ending times) and N(2K − 1) for times of forms 2 and 3.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 322 -

The total number of nodes to be considered for the heterogeneous fleet algorithm is

therefore O(NL2

(KN)M). Since K at most equals N , we get O(NL2+2M) as a worst

case bound for the number of nodes. Applying the Bellman-Ford algorithm [1] for find-

ing the shortest path that consists of at most K arcs takes O(NarcsK) ∼ O(NarcsN),

where Narcs is the number of arcs in the graph. Hence, the total run-time complexity of

the heterogeneous fleet algorithm is O(N2L2+4M+1). Correspondingly, the total run-

time complexity of the infinite capacity fleet algorithm is O(N4M+5). Consequently,

for a fixed number of terminals (only in the heterogeneous fleet algorithm) and vehicles

(in both algorithms), the algorithms are polynomial in the number of ride requests.

4 Discussion

DARP is a popular solution for demand responsive transportation. In many real-life

scenarios the routes are inherently fixed, while the schedules are flexible. In this pa-

per we introduced the FRDARP model that represents such scenarios, and discussed

various considerations and variants of the model. The limitation to fixed routes con-

siderably reduces the complexity of the problem, which brings with it two perspectives

that are rarely considered for general DARPs: (i) situating user satisfaction as the pri-

mary focus of the objective function, and (ii) searching for efficient optimal solutions

(as opposed to non-optimal heuristics).

Indeed, we presented optimal polynomial-time algorithms for two variants of FR-

DARP with a circular route. The proposed algorithms may also be used for FRDARP

with a line route, as long as the vehicles do not wait at the second depot; this can

be achieved by applying minor indexing modifications (to reflect the representation

differences between a circular route and a line route).

Other variants that stem from the assortment of model considerations are left for

future work. It is especially interesting to investigate how different objective functions

affect the proposed algorithmic solutions. It is also motivating to consider terminal

waiting, since there are some real-life scenarios in which such waiting is acceptable

by the passengers (e.g., train connections in major stations). Moreover, terminal wait-

ing may enable the development of dynamic scheduling FRDARP, in which schedules

may be modified on-the-fly following new received ride requests. (FRDARP without

terminal waiting is static by nature due to its rigid routes.)

Another prospect for future work is to use the FRDARP algorithmic solutions

as part of heuristic solutions for general DARP. Such solutions may consist of two

recurring stages: (i) heuristically fix a route, and (ii) solve the corresponding FRDARP.

It will be interesting to compare such a heuristic paradigm with other DARP heuristics,

such as tabu search [4,10] and deterministic annealing [2].

References

1. Bellman, R.: On a routing problem. Quarterly of Applied Mathematics 16, 87–90 (1958)
2. Braekers, K., Caris, A., Janssens, G.K.: Exact and meta-heuristic approach for a general

heterogeneous dial-a-ride problem with multiple depots. Transportation Research Part B:
Methodological 67, 166–186 (2014)

3. Chakravarty, A.K., Orlin, J.B., Rothblum, U.G.: A partitioning problem with additive
objective with an application to optimal inventory groupings for joint replenishment. Op-
erations Research 30(5), 1018–1022 (1982). DOI 10.1287/opre.30.5.1018

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 323 -

4. Cordeau, J.F., Laporte, G.: A tabu search heuristic for the static multi-vehicle dial-a-ride
problem. Transportation Research Part B: Methodological 37(6), 579–594 (2003)

5. Cordeau, J.F., Laporte, G.: The dial-a-ride problem: models and algorithms. Annals of
Operations Research 153(1), 29–46 (2007)

6. Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische Mathe-
matik 1, 269–271 (1959)

7. Gafarov, E.R., Dolgui, A., Lazarev, A.: Two-station single track railway scheduling prob-
lem with equal speed of trains. In: Book of Abstracts of the 21st International Symposium
on Mathematical Programming (ISMP 2012) (2012)

8. Ilani, H., Shufan, E., Grinshpoun, T., Belulu, A., Fainberg, A.: A reduction approach
to the two-campus transport problem. J. of Scheduling 17(6), 587–599 (2014). DOI
10.1007/s10951-013-0348-7. URL http://dx.doi.org/10.1007/s10951-013-0348-7

9. Lawler, E.L., Lenstra, J.K., Kan, A.R., Shmoys, D.B.: The traveling salesman problem: a
guided tour of combinatorial optimization, vol. 3. Wiley New York (1985)

10. Lemouari, A., Guemri, O.: A two-phase scheduling method combined to the tabu search
for the darp. International Journal of Applied Metaheuristic Computing (IJAMC) 5(2),
1–21 (2014)

11. Lenstra, J.K., Kan, A.: Complexity of vehicle routing and scheduling problems. Networks
11(2), 221–227 (1981)

12. Musatova, E., Lazarev, A.: Algorithm for solving two-stations railway scheduling problem.
In: 25th European Conference on Operational Research (2012)

13. de Paepe, W.E., Lenstra, J.K., Sgall, J., Sitters, R.A., Stougie, L.: Computer-aided com-
plexity classification of dial-a-ride problems. INFORMS Journal on Computing 16(2),
120–132 (2004)

14. Parragh, S.N., Doerner, K.F., Hartl, R.F.: Demand responsive transportation. Wiley En-
cyclopedia of Operations Research and Management Science (2010)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 324 -

MISTA 2015

Modeling the single-processor scheduling problem with time
restrictions as a parallel machine scheduling problem

Rachid Benmansour · Oliver Braun · Hamid
Allaoui

Abstract This paper addresses the single processor scheduling problem with time restric-
tions. The problem is new in the scheduling literature and was described for the first time
by Braun et al. in [3]. A set ofn jobs are simultaneously available for processing, non-
preemptively, on a single processor which can handle only one job at a time. Furthermore,
the number of jobs being executed during any time period of lengthα > 0 is less than or
equal to a given integer valueB ≥ 2. The objective function is to minimize the makespan
Cmax.
We present a mixed integer programming (MIP) formulation to solve this problem opti-
mally. In addition, we show that this problem can also be considered as aB+ 1 parallel
machine scheduling problem with one dedicated machine among them. The performance of
the models are tested by running them on randomly generated instances.

1 Introduction

Scheduling problems are among the most frequently encountered problems in industry and
have many applications in other fields. The single machine scheduling problem remains
by far the most studied problem in the literature. This is due to its relative simplicity and
to the fact that obtained results for such a problem can provide information on the solu-
tion of more complicated machine environments such as flow-shop, job-shop or parallel
machine scheduling problems. Formally, the problem can be described as follows. A set
N1 = {1,2, . . . ,n} of n independent jobs are simultaneously available for processing at the
beginning of the horizon time. Each job has to be processed non preemptively on a single
processor that can handle only one job at a time. The objective function considered here is

Rachid Benmansour
University of Valenciennes and Hainaut Cambrésis, France
LAMIH – UMR CNRS 8201
E-mail: rachid.benmansour@univ-valenciennes.fr

Oliver Braun
Trier University of Applied Sciences, Environmental Campus Birkenfeld, 55761 Birkenfeld, Germany
E-mail: o.braun@umwelt-campus.de

Hamid Allaoui
University of Artois, France
E-mail: hamid.allaoui@univ-artois.fr

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 325 -

to minimize the makespanCmax. Furthermore, for a fixed integerB, no time interval [x, x+α)
is allowed to intersect more thanB jobs for any realx > 0. These constraints are known as
the time restriction constraints and they arise in many industrial applications. For instance,
when each job being processed requires the use of one ofB identical subprocessors, that can
be other external resources such as power, personnel, another machine, container, tank, etc.
Further, each subprocessor that has been used needs a certain amount of timeα to reset itself
before another job can use it again (maintenance, cleaning, etc). Hence, it is never possible
to process on more thanB jobs during an interval [x, x+α). In [3], Braun et al. proved that
this problem is NP-hard when the valueB is variable and provided a detailed worst-case
analysis. They showed, forB ≥ 3, that any feasible solution can be processed within a fac-
tor of 2− 1

B−1 of the optimum, plus an additional small constant. ForB = 2, this factor is

equal to4
3 , plus an additional small constant. Recently in [1], Benmansour et al. proposed a

MIP formulation to solve this problem optimally. They showed, via numerical experiments,
that this MIP formulation, which based on the time indexed variables, is not suited to solve
real-world instances. In this paper, we present two MIP formulations based on assignment
and positional date variables that are more effective. The first one gives the optimal objec-
tive value with the corresponding sequence on the single processor, whereas the second one,
modeled as a parallel machine scheduling problem, solves the problem optimally and gives
the sequence on each subprocessors in the case where external resources are used.

2 MIP formulations

There exist several MIP formulations for scheduling problems, and are classified based on
the choice of the decision variables:i) completion time variables,ii) time index variables,iii)
linear ordering variables andiv) assignment and positional date variables. For more details,
we refer the reader to papers [6] and [4]. In this section we propose two MIP formulations
to solve the single processor scheduling with time restrictions problem.

2.1 Assignment and positional date variable model - MIP1

Let N1 = {1,2, . . . ,n} be the set of jobs to be scheduled on the processor andpi (i ∈ N1) the
processing time of the jobi. Without loss of generality, these processing times are supposed
to be integers. The amount of time needed for each subprocessor to reset itself is equal to
α and is chosen asα = max

i∈N1
{pi}. In addition, we suppose that the number of jobs being

executed during any time period of lengthα is less than or equal to a given integer value
B ≥ 2. The objective is to minimize the makespan.
In order to model this problem, we define a binary assignment variable,xik, which equals 1
if job i is assigned to positionk and equals 0 otherwise. We define also the variableC[k] as
the completion time of the job in positionk. Similarly, the variablesS[k] andp[k] represent,
respectively, the starting time of the job in positionk and its corresponding processing time.
The relationship between these variables isC[k] = S[k]+ p[k]. Moreover, since in the optimal
schedule there may be idle times on the processor, we define the variableI[k] to represent
the possible idle time between the instantsC[k] andS[k+1]. The first MIP formulation (MIP1)
with assignment and positional date variables is as follows:

min S[n]+ p[n]

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 326 -

s.t.
n

∑
k=1

xik = 1 ∀i ∈ N1, (1)

n

∑
i=1

xik = 1 ∀k ∈ N1, (2)

p[k] =
n

∑
i=1

pixik ∀k ∈ N1, (3)

S[k+1] = S[k]+ p[k]+ I[k] ∀k ∈ N1\{n}, (4)

S[k+B] ≥ S[k]+ p[k]+α ∀k ∈ {1,2, . . . ,n−B}, (5)

I[k] ≥ 0 ∀k ∈ N1\{n}, (6)

xik ∈ {0,1} ∀(i,k) ∈ N2
1 , (7)

S[1] = 0, (8)

S[k] ≥ 0 ∀k ∈ N1\{1}. (9)

The constraints (1) guarantee that each jobi occupies only one position. The set of con-
straints (2) states that each positionk contains exactly one job. The processing time of the
job scheduled at thekth position and its starting time are determined, respectively, by con-
straints set (3) and constraints set (4). The time restrictions constraint is represented by
constraints (5). The firstB jobs are scheduled without any restriction since during the in-
terval [0,C[B](no time interval of durationα is able to intersect more thanB jobs. For the
following jobs, the differenceS[k+B]−C[k] must be greater or equal toα as otherwise, the
interval

[

C[k]− ε,S[k+B]

(

will intersectB+1 jobs forε sufficiently small positive real num-
ber. Finally, the idle time between two jobs, if it exists, is determined by constraints (4) and
(6). The last constraints (7) definexik as binary variables. Constraint (8) states that the first
scheduled job starts its processing at time 0. This is obvious as otherwise the optimal sched-
ule can always be shifted to the left.
This MIP formulation gives the optimal sequence of jobs on the processor but, does not pro-
vide any information on how to use theB external resources (if there are any). The purpose
of the following MIP model is to address this situation.

2.2 Parallel machine scheduling problem - MIP2

In this model, the positive integer numberB will be seen as the maximum number of sub-
processors that can be used anytime respecting the following constraint. Each subprocessor
needsα units of time to recover before another job can use it again. The sub-processors
and the main processor form a set ofB+1 parallel machines. Keeping the same notations
as in (2.1), we can say that first machine (M1) is dedicated to process jobs inN1, and the
remaining machines will process a set of dummy jobsN2 = {n+1,n+2, . . . ,2n}. Each time
a job i ∈ N1 is executed onM1, the jobi+n ∈ N2 is executed, at the same time, on a certain
machine (Mk,k 6= 1) and lasts forpi+n = pi +α units of time. That way, even if the jobi is
finished, the external resource remains unavailable forα units of time. The two sets form a
new set of jobsN = N1∪N2.
We define two additional sets for the machinesM = {1,2, . . . ,B+1} andM∗ = M\{1} and
a set for the positions of jobsP = {1,2, . . . ,n}.
The model presented here is based on assignment and positional date variables. It is based
on the MIP formulation proposed by Lasserre and Queyranne [5] and extended later by

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 327 -

Blazewicz et al. [2]. For ease of reading, we use the indexp to design a position,m to design
a machine, andj to design a job. Let the binary variablexp

jm = 1 if the job j is assigned to
positionp on machinem; and 0 otherwise. Let the variableF p

m denotes the completion time
of the job at positionp on machinem. Finally, the completion time of jobj (regardless of
its position) is defined by the variableC j. The second MIP formulation is as follows.

min Cmax

s.t. ∑
p∈P

∑
m∈M∗

xp
jm = 1 ∀ j ∈ N2 (10)

∑
p∈P

xp
j,1 = 1 ∀ j ∈ N1 (11)

∑
j∈N1

xp
j,1 = 1 ∀p ∈ P (12)

∑
j∈N2

xp
jm ≤ 1 ∀p ∈ P∀m ∈ M∗ (13)

F1
m ≥ ∑

j∈N2

p jx
1
jm ∀m ∈ M∗ (14)

F p
m ≥ F p−1

m + ∑
j∈N2

p jx
p
jm ∀m ∈ M∗,∀p ∈ P\{1} (15)

F1
1 = ∑

j∈N1

p jx
1
j,1 (16)

F p
1 = F p−1

1 + ∑
j∈N1

p jx
p
j1 ∀p ∈ {2,3, ...,B} (17)

F p
1 ≥ F p−1

1 + ∑
j∈N1

p jx
p
j1 ∀p ∈ {B+1, ...,n} (18)

F p
1 ≥ F p−B

1 +α + ∑
j∈N1

p jx
p
j1 ∀p ∈ {B+1, ...,n} (19)

C j ≥ F p
m −H(1− xp

jm) ∀ j ∈ N2,∀p ∈ P∀m ∈ M∗ (20)

C j ≥ z jp ∀ j ∈ N1,∀p ∈ P (21)

z jp ≤ Hxp
j1 ∀ j ∈ N1,∀p ∈ P (22)

z jp ≤ F p
1 ∀ j ∈ N1,∀p ∈ P (23)

z jp ≥ F p
1 −H(1− xp

j1) ∀ j ∈ N1,∀p ∈ P (24)

C j ≤ F p
1 +H(1− xp

j1) ∀ j ∈ N1,∀p ∈ P (25)

C j+n =C j +α ∀ j ∈ N1 (26)

Cmax ≥C j ∀ j ∈ N1 (27)

xp
jm ∈ {0,1} ∀(j, p) ∈ N2

1 ,∀m ∈ M (28)

z jp ≥ 0 ∀ j ∈ N1,∀p ∈ P (29)

Constraints (10) ensure that all jobs inN2 are assigned to exactly one position on only one
machine. Constraint set (11)-(12) state that each job inN1 is assigned to exactly one position
and, each position on machineM1 contains exactly one job. This is not the case for the other
machine since each position, on every machine, can contain at most one job. Constraints (13)
guarantee these restrictions. In order to determine the completion time of the job at position

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 328 -

p on each machine inM∗, we introduce constraints (14) and (15). Similarly, constraints (16)-
(19) determine the completion time of the job at positionp on M1. This set of constraints
includes thetime restriction constraints. The completion time of jobj ∈ N2 (regardless of
its position) is given by constraint set (20). The set of constraints (21)-(24) is a linearization
of the following constraints:

C j ≥ F p
1 xp

j1∀ j ∈ N1,∀p ∈ P

wherez jp = F p
1 xp

j1 andH is a large positive integer. The value ofH can be chosen asH =

∑i∈N1
pi + ⌊n/B⌋α.

The meaning of these constraints is straightforward. If jobj ∈ N1 is scheduled on position
p on M1 thenC j ≥ F p

1 . The constraint (25) becomes thenC j ≤ F p
1 which leads toC j = F p

1 .
Otherwise, i.e.xp

j1 = 0, the set of constraint (21)-(25) imposes thatC j ≥ 0 which is no
restrictive. The last two constraints are simple. Constraints (26) state that the starting time
of job i on machineM1 is exactly the same as the starting time of jobi+ n on one of the
parallel machinesMk,k 6= 1. Constraints (27) calculate the value of the makespan. Finally
restrictions (28), respectively (29), define the variablesxp

jm as binaries and the variablesz jp

as continuous and positive.

2.2.1 Illustrative example

Given an instance withB = 2 (number of subprocessors),n = 9 jobs,α = 10 (time for a
subprocessor to reset itself), and the processing times of the jobs as given in Table 2.2.1.
The optimal objective function value can be obtained by applying the MIP2 formulation as
given above. It takes 2.04 seconds to solve the problem using on ILOG CPLEX 12.6 on

Job 1 2 3 4 5 6 7 8 9
pi 6 5 4 10 9 8 2 8 7

Table 1 Example instance forn = 9.

a personal computer with 2.8 GHz CPU and 16GB RAM memory. The optimal sequence
for then = 9 problem instance is 7-1-2-5-4-8-9-6-3 as shown in Fig. 1, with a value of the
objective function (makespan)Cmax = 68. In this solution, the first job to be scheduled on
the processor (i.e.M1) is job 7. At the same time job 16 (7+ n) starts its execution onM2.
The completion time of this job isC16 = 12, which means that even if job 7 is completed at
C7 = 2, the machineM2 remains unavailable for an extraα units of time. The second job in
the sequence is job 1. This job cannot use the external resourceM2 just after job 7. Instead it
can useM3 which is still not used yet. etc. The same example was solved with the MIP1 in
0.13 seconds. The optimal sequence is the following 3-8-6-4-5-1-2-9-7 as shown in Fig. 2.

3 Conclusion and Further work

We have proposed two MIP formulations to solve the single-processor scheduling problem
with time restrictions. Preliminary results show that the first MIP formulation is way better
than the second one which requires a large number of variables. However this model allows
the scheduler to obtain detailed information about how to use the external resources (if

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 329 -

Fig. 1 Scheduling on a single processor with two external and identical resources (a)

Fig. 2 Scheduling on a single processor with two external and identical resources (b)

any). At the conference we will provide more details and some experimental results on our
formulations. We will present also an algorithm to determine which external resource to use
in case MIP1 formulation is used. It’s more likely that the studied problem is NP-hard even
if B is fixed. Our future work is to prove the NP-hardness of the problem and then think
about some heuristics and metaheuristics to provide good solutions for the problem.

References

1. Benmansour R, Braun O, Artiba A (2014) On the single-processor schedul-
ing problem with time restrictions. In: Control, Decision and Information Tech-
nologies (CoDIT), 2014 International Conference on, IEEE, pp 242–245, DOI
10.1109/CoDIT.2014.6996900

2. Blazewicz J, Dror M, Weglarz J (1991) Mathematical programming formulations for
machine scheduling: a survey. European Journal of Operational Research 51(3):283–300

3. Braun O, Chung F, Graham R (2014) Single-processor scheduling with time restrictions.
Journal of Scheduling 17(4):399–403

4. Keha A, Khowala K, Fowler J (2009) Mixed integer programming formulations for single
machine scheduling problems. Computers & Industrial Engineering 56(1):357–367

5. Lasserre JB, Queyranne M (1992) Generic scheduling polyhedra and a new mixed-
integer formulation for single-machine scheduling. In: IPCO, pp 136–149

6. Unlu Y, Mason SJ (2010) Evaluation of mixed integer programming formulations for
non-preemptive parallel machine scheduling problems. Computers & Industrial Engi-
neering 58(4):785–800

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 330 -

MISTA 2015

An IP-based Model for the Post-Enrollment-based
Course Timetabling Problem at TU Berlin

János Höner · Gerald Lach · Erhard Zorn

Abstract In this paper, we present a new IP-based model for the post-enrollment-
based course timetabling problem at TU Berlin; this problem has to be solved in
order to assign students to tutorials. We show that the new model yields better
results than an old one, which uses two separate assignments of students to tutorials
and tutorials to timeslots and rooms. The new model is applied to real-world data of
24,700 assignments for 8,600 students in 1,000 tutorials of 80 courses in 170 rooms
within 500 seconds on an i7 quad-core machine.

1 Introduction

The post-enrollment-based course timetabling problem (PECT problem) is a time-
tabling problem with which many large universities have to struggle. The goal is to
assign students to courses and courses to rooms with the full information regarding
which student attends which course. The resulting timetable has to satisfy a number
of hard constraints in order to be feasible. Usually, there are additional soft con-
straints or other measures to define the quality of a feasible timetable. A detailed
definition of this problem is given for the International Timetabling Competition
(ITC) in [9]. In general, this problem is known to be hard to solve [8].

For courses with large numbers of students, there are often additional exercise
sessions called tutorials. Tutorials are usually held by graduate students—tutors—in
small classes. Consequently, there may be a large number of tutorials for one course.
The planning of these tutorials is a typical example of the PECT problem. At TU
Berlin, the planning of tutorials is managed by means of MosesKonto. This software

János Höner
Technische Universität Berlin, Institute of Mathematics/innoCampus
E-mail: hoener@math.tu-berlin.de

Gerald Lach
Technische Universität Berlin, Institute of Mathematics/innoCampus
E-mail: lach@math.tu-berlin.de

Erhard Zorn
Technische Universität Berlin, Institute of Mathematics/innoCampus
E-mail: erhard@math.tu-berlin.de

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 331 -

was developed by innoCampus, a department that develops software to support e-
learning and course management at universities.

1.1 Details of tutorial planning at TU Berlin

At TU Berlin, in the first week of the semester, students subscribe for their tutorials
and prioritize timeslots in which they would prefer to schedule these tutorials. This
data is used to compute a timetable that satisfies as many of the students’ priorities
as possible. At present, a model based on an integer program is used to optimize the
assignment of students to tutorials. The preceding assignment of tutorials to rooms
and timeslots is done by hand but with some heuristic software assistance: The user
sees how many students of a course prefer which timeslots for their tutorials. Based
on this, he can adapt the number of tutorials at specific timeslots, in accordance
with the students’ wishes—provided there are enough free rooms and tutors for that
timeslot.

Tutors of a course who are graduate students also taking other courses inform
the person in charge of their course when they will presumably be able to give their
tutorials. This information is used to define the maximal number of (simultaneous)
tutorials of a course at a given timeslot. As most tutors—graduate students—do not
have to attend tutorials themselves, there is a small risk of conflicts.

MosesKonto has been used since 2004 to manage the planning of tutorials at
TU Berlin. At first, only the tutorials of five mathematics courses for engineers were
planned using MosesKonto; at present the software is used for approximately 1,100
tutorials of more than 90 large courses—the majority of all tutorials at TU Berlin.

Due to the massive increase in the number of courses and tutorials, the preced-
ing assignment of tutorials to rooms and timeslots is strenuous. Additionally, only
two-hour timeslots for all courses can be planned using the original model. At TU
Berlin, we generally use an ‘even’ 2-hours time pattern (i.e. courses can take place
8:00–10:00 a.m. and so on). Most of the courses take place within a two-hour slot
between 08:00 a.m. and 06:00 p.m. But several courses also use 4-hour timeslots (e.g.
laboratories). Furthermore, the resulting timetable may deviate considerably from
an optimal one due to the two separate assignments of, first, tutorials to rooms and
timeslots and, second, students to tutorials. Therefore, we integrated the process of
assigning tutorials to rooms and timeslots into the optimization algorithm in order
to attain better timetables and to develop a more automated planning procedure. To
achieve this, we adapted the old model to obtain a more advanced one that serves
our needs.

1.2 Related work

The problem of constructing timetables is a well-researched field, one that has pro-
duced a wide variety of algorithmic solutions. Due to the complexity of these prob-
lems, many of them are of a heuristic nature, such as local search [11, 2] and ant
algorithms [10, 1]. Besides these heuristics, the approach to modeling timetabling
problems as an integer program has gained in popularity only recently. This non-
heuristic approach might be a little computation-heavy, but provides an optimal

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 332 -

solution or, at least, some global statement about the distance to optimality. It has
already been used in several cases and yields good results [7, 4, 12].

2 Old model at TU Berlin

The goal of the old model is to find an assignment of students to tutorials, as is
already planned in the preceding procedure (see Subsection 1.1). In this context,
a tutorial is fully defined by a tuple of the kind (course, timeslot, room). If we
now assign students to tutorials, we would get tuples of the form (student, course,
timeslot, room). To simplify our model, we omit the room in this assignment. If the
room is not unique (i.e. there is more than one tutorial of the same course at the
same timeslot in different rooms), then the distribution of the students into these
rooms can be chosen arbitrarily. This results in the task of finding tuples of the form
(student, course, timeslot)

The old model, which has been used so far to solve the PECT problem at TU
Berlin, is basically an integer program with hard constraints modeled as constraints
and the soft constraints modeled as the objective function. It tries to formulate this
integer problem. Thus, we need the following variables:

– A set T of q pairwise disjoint two-hour timeslots that, together, cover the whole
time span of a timetable

– A set C of n courses
– A set S of m students that attend different courses
– The number of students cap(c, t) that a course c can admit at a timeslot t. This

is the sum of the numbers of students that all tutorials of course c at timeslot t
can admit (there may be simultaneous tutorials of a course; these simultaneous
tutorials can have different capacities depending on the room and other factors)

– A subset Cs ⊂ C of all the courses student s has to take

A feasible timetable is an assignment of students to courses and timeslots in such a
way that:

– no student has to take more than one course at a time;
– there should only be as many students assigned to a course as the course can

accomodate at each time; and
– each student has to be assigned to all the courses he or she wants to take.

Such a feasible timetable is called optimal if the students’ priorities are taken
into account as well as possible. The priority of student s for course c at time t is
given by prio(s, c, t) (where a lower value denotes a higher priority).

An assignment of students will be represented as a vector X ∈ {0, 1}|X̂ |, where

X(s,c,t) =

{
1 if student s is assigned to course c at time t
0 else

and
X̂ := {(s, c, t) : s ∈ S, c ∈ Cs, t ∈ T}

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 333 -

2.1 Formulation as an integer program

Using all the details given above, the PECT problem is formulated as an integer
program as follows:

min
∑

(s,c,t)∈X̂

X(s,c,t) · prio(s, c, t)

s.t.
∑
t∈T

X(s,c,t) = 1 ∀s ∈ S, c ∈ Cs∑
c∈Cs

X(s,c,t) ≤ 1 ∀s ∈ S, t ∈ T

∑
s∈S

X(s,c,t) ≤ cap(c, t) ∀c ∈ C, t ∈ T

X ∈ {0, 1}|X̂ |

(IP-OLD)

The first constraint ensures that every student attends exactly one tutorial of each
course that he or she wants to take. The second ensures that no student has to
attend more than one tutorial at a time. Finally, the third constraint sees to it that
the number of students attending one course at the same time does not exceed the
course’s capacity at that time.

2.2 Graphical interpretation

The above given integer program (IP-OLD) can be interpreted in a graph theoretical
way as a min-cost-flow problem (for details, see [13]) with additional constraints. This
is shown in Figure 1; the graph is composed of a source S, a target T , and three
different sets of nodes:

– S: the set of all students
– TS :=

⋃
i T

si , where T si :=
⋃
t∈T t

si : a copy of all timeslots for each student si
(s-timeslots)

– TC :=
⋃
j T

cj , where T cj :=
⋃
t∈T t

cj : a copy of all timeslots for each course cj
(c-timeslots)

Each student node s is connected to the source S and to all of its corresponding
s-timeslots in T s. All the s-timeslots in T s are connected to the corresponding c-
timeslots in T c, if student s takes course c; in addition, there are edges from each
c-timeslot to the target T . The capacities of the edges from the source to the students
are given by the number of courses that each student takes. On the edges from c-
timeslots to the target, capacities are defined by the number of students that a
course can admit. All remaining edges get a capacity of one. Costs only exist for the
edges between s-timeslots and c-timeslots; these are given by the priority the student
assigned to that combination of course and timeslot.

From that, we get the following four sets of edges and their capacities:

1. (S, s) : ∀s ∈ S with c ((S, s)) = |Cs|

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 334 -

2. (s, ts) : ∀s ∈ S, ts ∈ T s with c ((s, ts)) = 1
3. (ts, tc) : ∀ts ∈ T s, tc ∈ T c, if student s takes course c with c ((ts, tc)) = 1
4. (tc, T) : ∀tc ∈ TC with c ((tc, T)) = cap(c, T)

After defining the following subset of edges

Σ :=
⋃

s∈S,c∈C

σs,c with σs,c :=
⋃
t∈T

(ts, tc)

and setting the demand and supply to the total number of student tutorial assign-
ments, we can formulate the PECT problem as a min-cost-flow problem with a
further constraint (1) to ensure that each student attends only one course at a time.
This flow problem can again be formulated as an integer program [6] for the set of
vertices V and the set of edges E:

min
∑
e∈W

cost(e)xe

s.t.
∑

e∈δ+(S)

xe =
∑

e∈δ−(T)

xe =
∑
s∈S

|Cs|

∑
e∈δ+(v)

xe −
∑

e∈δ−(v)

xe = 0 ∀v ∈ V \ {S, T }

∑
e∈σ

xe ≤ 1 ∀σ ∈ Σ (1)

0 ≤ xe ≤ c(e) ∀e ∈ E

x ∈ Z|E|

W is the the set of priority edges (item 3 in the above list) and σ is a subset of edges
from T s to T c for all t ∈ T and s ∈ S. δ+(v) and δ−(v) denotes the set of outgoing
and ingoing edges of node v, respectively.

3 New model at TU Berlin

As stated in the Introduction, the old model is simply an assignment of the students
to the courses, according to their priorities. The assignment of courses to rooms has
to be carried out in a preceding separate step. Although the process is supported
by some heuristics, it still includes a lot of work done by hand; moreover there is no
way to guarantee optimality. The new model we developed includes the assignment of
courses to rooms in the optimization process; therefore, it not only provides us with
much better results but also leads to a more advanced and highly automated process
to construct the timetables. Besides this structural improvement of the algorithmic
part, we also adapted the underlying time model to become more flexible. In the
end, our model satisfies the following two new requirements:

1. One tutorial can occupy two or more (not necessarily consecutive) timeslots.
2. The assignment of courses to rooms and times should be done by the algorithm

considering the priorities of the students.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 335 -

S

s1

...

sm

ts1
1

ts1
2

...

ts1
q

tsm
1

...

tsm
q

Σ ≤ 1

Σ ≤ 1

Σ ≤ 1

tc1
1

tc1
2

...

tc1
q

tcn
1

...

tcn
q

T

S s ts tc T

source

students

s-timeslots c-timeslots

target

(0, |Cs|) (0, 1) (prio(s, c, t), 1) (0, cap(c, t))

Fig. 1 Graph of the min-cost-flow formulation of the PECT problem stated in Section 2.2.
Sample costs and capacities are given below the actual graph where the first value is the cost
and the second the capacity of the edge. Image adapted from [5].

3.1 Time model

In order to allow tutorials to occupy more than one timeslot, we introduce a new
entity called period. A period is a subset of the set of all timeslots. In a period we
can combine as many timeslots in one entity as we need. The set P of all periods is
a subset of the power set of the set of all timeslots: P ⊂ P(T). Typically, P contains
all timeslots and some subsets of T with more than one element. Furthermore, for a
timeslot t, let Pt ⊂ P be the set of all periods that contain timeslot t:

Pt := {p ∈ P : t ∈ p}

With this new time model, we can reformulate the constraints of (IP-OLD) as follows:
We define

X̂ := {(s, c, p) : s ∈ S, c ∈ Cs, p ∈ P}

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 336 -

A vector X ∈ {0, 1}|X̂ | is said to be feasible if it satisfies the following constraints:∑
p∈P

X(s,c,p) = 1 ∀s ∈ S, c ∈ Cs∑
c∈Cs,p∈Pt

X(s,c,p) ≤ 1 ∀s ∈ S, t ∈ T

∑
s∈S

X(s,c,p) ≤ cap(c, p) ∀c ∈ C, p ∈ P

Note that not only are the three constraints changed but also the space over which
we optimize.

3.2 Variable room assignment

In order to let the algorithm handle the assignment of courses into rooms, we intro-
duce a new set of variables:

Yc,p,r =

{
1 if course c takes place in room r at time p
0 else

With these new variables Y , we have to change some of the old constraints and add
a couple of new ones to our model.

First, the number of students that a course can take at a certain time (cap(c, p))
is no longer a fixed parameter, but depends on the size or capacity of the rooms
where the course takes place at that time. Second, the following six constraints must
be satisfied by the room assignment Y :

1. Each course has to offer exactly the required amount of tutorials.
2. Tutorials need to take place in suitable rooms.
3. At each time, there cannot be more than one tutorial per room.
4. Existent timetables (which room is available at what time) have to be taken into

account.
5. The capacity of a room must not be exceeded.
6. The maximum number of tutorials that a course can offer at a time and the

maximum number of students that are permitted in a tutorial of a course must
be taken into account.

To be able to model all these new requirements, we introduce the following list of
parameters:

S Set of m students
C Set of n courses
T Set of q timeslots
P Set of q̃ periods needed
R Set of ` rooms
Cs Set of all courses that student s wants to take
Rc Set of all rooms that are suitable for course c
Pr Set of all periods in which room r is available
Pc Set of all periods in which course c can at least offer one tutorial

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 337 -

Ps Set of all periods in which student s can take courses
prio(s, p) Priority of student s for period p

nc Total number of tutorials offered by course c
cap(r) Capacity (number of seats) of room r
m(c, p) Maximum number of tutorials that can be offered by course c in

period p
lc Maximum number of students that are permitted in one tutorial of

course c

3.3 Integer program formulation

With these parameters, and the variables X and Y, it is possible to formulate the
extended problem of finding an optimal timetable as an integer program. To keep
the space over which we optimize as small as possible, we exclude some infeasible
assignments a priori. For example, Yc,p,r is infeasible if room r is unavailable at time
p or if it is unsuitable for courses c. Let X and Y be defined by X := S×C ×P and
Y := C × P ×R. Then, we define the sets of all possible assignments as:

X̂ := {(s, c, p) ∈ X : c ∈ Cs, p ∈ Pc ∩ Ps}

Ŷ := {(c, p, r) ∈ Y : r ∈ Rc, p ∈ Pr ∩ Pc}

The objective function is the same as in (IP-OLD) and the constraints can be modeled
in a straightforward manner; they result in the following integer program:

min
∑

(s,c,p)∈X̂

X(s,c,p) · prio(s, p)

s.t.
∑

(s,c,p)∈X̂

X(s,c,p) = 1 ∀s ∈ S, c ∈ Cs (2)

∑
p∈Pt,(s,c,p)∈X̂

X(s,c,p) ≤ 1 ∀s ∈ S, t ∈ T (3)

∑
(c,p,r)∈Ŷ

Y(c,p,r) = nc ∀c ∈ C (4)

∑
p∈Pt,(c,p,r)∈Ŷ

Y(c,p,r) ≤ 1 ∀r ∈ R, t ∈ T (5)

∑
(c,p,r)∈Ŷ

Y(c,p,r) ≤ m(c, p) ∀c ∈ C, p ∈ P (6)

∑
(s,c,p)∈X̂

X(s,c,p) −
∑

(c,p,r)∈Ŷ

Y(c,p,r) ·max(cap(r), lc) ≤ 0 ∀c ∈ C, p ∈ Pc (7)

Y ∈ {0, 1}|Ŷ|

X ∈ {0, 1}|X̂ |

Constraint (2) and (3) are taken over from the old model and ensure that each
student takes exactly one tutorial in each of the courses he or she has to take as well

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 338 -

as that no student has to attend more than one tutorial at a time. Constraint (7)
replaces the last constraint of the old model (IP-OLD) and ensures that the number
of attending students never exceeds the maximal tutorial size or the room capacity.
The remaining constraints ensure that the correct number of tutorials is offered for
each course (4) but does not exceed the given maxima for each time and course (6)
and that there is, at most, one tutorial at a time in each room (5).

3.4 Graphical interpretation

As for the old model in Section 2, we found a strong connection to network-flow
problems for the new one as well. We take the graph from Figure 1, substitute all
timeslot nodes with period nodes, and add a third category of nodes: the r-periods.
R-periods are located between the target and the c-periods all connected to the
target and with an edge to a c-period if the corresponding room is suitable for the
corresponding course. The costs of all new edges are zero and the capacity of edges
from r-periods to the target are defined by the room’s capacity cap(r), while edges
between c- and r-periods are given by the maximum number of students per tutorial
lc. The resulting graph is depicted in Figure 2. Again, the min-cost-flow model is
not fully capable of modeling all the needed constraints. Therefore, we define some
subsets of edges

Ω :=
⋃
c∈C

ωc with ωc :=
⋃

p∈P,r∈Rc

(pc, pr)

Θ :=
⋃

c∈C,p∈P

θc,p with θc,p :=
⋃
r∈Rc

(pc, pr)

Σ :=
⋃

s∈S,c∈C

σs,c with σs,c :=
⋃
p∈P

(ps, pc)

and then formulate the PECT problem with variable room assignment as a min-
cost-flow problem with some additional constraints:

min
∑
e∈W

cost(e)xe

s.t.
∑

e∈δ+(s)

xe =
∑

e∈δ−(t)

xe = n

∑
e∈δ+(v)

xe −
∑

e∈δ−(v)

xe = 0 ∀v ∈ V \ {s, t}

∑
e∈σ

xe ≤ 1 ∀σ ∈ Σ∑
e∈ω

ye ≤ nc ∀ω ∈ Ω∑
e∈θ

ye ≤ m(c, p) ∀θ ∈ Θ

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 339 -

∑
e∈δ−(P r

t)

ye ≤ 1 ∀r ∈ R, t ∈ T (8)

∑
e∈δ−(P s

t)

xe ≤ 1 ∀s ∈ S, t ∈ T (9)

c(e)ye − xe ≥ 0 ∀e ∈ E
0 ≤ xe ≤ c(e) ∀e ∈ E

x ∈ Z
y ∈ {0, 1}

4 Computing a timetable

To compensate for inconsistencies in the data that would result in an infeasible IP,
we introduce penalty variables for students who cannot be assigned to their courses
(as,c) as well as for courses that cannot be assigned to rooms (bc). Using these new
variables, we get the final IP that we used for computing timetables with; this led
to a significant improvement in the solution, as compared to the old model.

min
∑

(s,c,p)∈X̂

X(s,c,p) · prio(s, p) +
∑
c∈C

bc · β +
∑

s∈S,c∈Cs

as,c · α

s.t.
∑

(s,c,p)∈X̂

X(s,c,p) + as,c = 1 ∀s ∈ S, c ∈ Cs

∑
p∈Pt,(s,c,p)∈X̂

X(s,c,p) ≤ 1 ∀s ∈ S, t ∈ T

∑
(c,p,r)∈Ŷ

Y(c,p,r) + bc = nc ∀c ∈ C

∑
p∈Pt,(c,p,r)∈Ŷ

Y(c,p,r) ≤ 1 ∀r ∈ R, t ∈ T

∑
(c,p,r)∈Ŷ

Y(c,p,r) ≤ m(c, p) ∀c ∈ C, p ∈ P

∑
(s,c,p)∈X̂

X(s,c,p) −
∑

(c,p,r)∈Ŷ

Y(c,p,r) ·max(cap(r), lc) ≤ 0 ∀c ∈ C, p ∈ Pc

Y ∈ {0, 1}|Ŷ|

X ∈ {0, 1}|X̂ |
(IP-FINAL)

In the graphical model, you can see the introduction of penalty variables in the
following way. First, the supply of the source and the demand of the target are
reduced iteratively until a feasible flow exists. Thereafter, the flow is minimized with
respect to its costs.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 340 -

S

s 1 . . .

s m

p
s

1 1

p
s

1 2 . . .

p
s

1
q̃

p
s

m 1 . . .

p
s

m
q̃

∑ σ

x
≤

1

∑ σ

x
≤

1

∑ σ

x
≤

1

p
c

1 1

p
c

1 2 . . .

p
c

1
q̃

p
c

n 1 . . .

p
c

n
q̃

∑ θ

y
≤
n
c

1

∑ ω

y
≤
m

(c
n
,p

1
)

∑ ω

y
≤
m

(c
n
,p
q̃
)

p
r

1 1

p
r

1 2 . . .

p
r

1
q̃

p
r

` 1 . . .

p
r

`
q̃

T

S
s

p
s

p
c

p
r

T

so
ur

ce

st
ud

en
ts

s-
pe

ri
od

s
c-

pe
ri

od
s

r-
pe

ri
od

s

ta
rg

et

(0
,|
C
s
|)

(0
,1

)
(p

ri
o(
s,
p
),

1)
(0
,l
c
)

(0
,c

ap
(r

))

F
ig

.
2

G
ra

ph
of

th
e

m
in

-c
os

t-
flo

w
m

od
el

fo
r

th
e

va
ri

ab
le

ro
om

as
si

gn
m

en
t.

T
he

tw
o

co
ns

tr
ai

nt
s

(8
)

an
d

(9
)

ar
e

no
t

m
od

el
ed

in
th

e
gr

ap
h

it
se

lf.
C

os
ts

an
d

ca
pa

ci
ti

es
of

ed
ge

s
ar

e
gi

ve
n

be
ne

at
h

th
e

ac
tu

al
gr

ap
h.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 341 -

4.1 Complexity

Similar to most of the timetabling problems, the one defined in (IP-FINAL) is NP-
hard, and we will show this by reducing it to the problem of finding the maximum
3-dimensional matching in a given hypergraph.

Theorem 1 The PECT problem defined by (IP-FINAL) is NP-hard.

Proof We show the NP-hardness by a reduction to the maximum 3-dimensional
matching problem

Definition 1 Let A, B, and C be three disjoint finite sets and T ⊂ (A×B ×C) be
the set of edges. A subset M ⊂ T is called a 3-dimensional matching if, for any two
distinct triples (a1, b1, c1), (a2, b2, c3) ∈M, the following holds:

a1 6= a2 ∧ b1 6= b2 ∧ c1 6= c2 (10)

Finding such a 3-dimensional matching of maximum size is a common NP-hard
problem [3] and we reduce (IP-FINAL) as follows:

Let (A,B,C, T) be an instance based on which we try to find the maximum 3-
dimensional matching M , i.e., it maximizes the cardinality of M . We then set A, B,
and C to be the sets of students, courses, and rooms in (IP-FINAL), respectively.
The subsets Cs and Rc are chosen in such away that the set {(s, c, r) ∈ S×C×R : c ∈
Cs, r ∈ Rc} matches the set of edges in T . The set of all periods and the subsets for
each room P = Pr = {p} are all set to the same single element. The timeslots do not
matter and can be chosen arbitrarily. By setting cap(r) = m(c, p) = lc = nc = 1, we
enforce that each course offers one tutorial at time p and that each of these tutorials
can take exactly one student.

If there exists a feasible timetable of this problem, it is an assignment of students
into tutorials and rooms at a single time p in such a way that, at most, one student is
attending one tutorial at a time, and, at most, one tutorial takes place in one room.
In other words, the resulting timetable will consist of assignment triples (s, c, r)
that satisfy the condition of a 3-dimensional matching (pairwise different in each
component, see equation (10)). These triples will correspond to a 3-dimensional
matching M = T that covers all edges.

If no such feasible timetable exists, solving (IP-FINAL) will lead to a set of triples
(s, c, r) that has maximum cardinality.

In both cases, we get a solution to the maximum 3-dimensional matching ut

5 Results

The final model (IP-FINAL) was implemented in the modeling language OPL and
solved using CPLEX on an i7 quad-core machine. The data sets were real data from
the MosesKonto, collected during the period 2011–2013. The smaller set includes
64 different courses and about 16,200 student-tutorial assignments. The larger one
contains 80 courses and appoximately 24,700 student-tutorial assignments. We set a
time limit of 500 seconds for the CPLEX solver for both data sets. For the smaller
set, we were able to compute an optimal timetable in the given time, whereas, for
the larger set, the found solution differs less than 1% from the optimum.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 342 -

Table 1 Comparison of the solutions of the new model and the old model.

summer term 2011 winter term 2012/13

courses 64 80
tutorials 869 1,014
rooms 136 166
students 5,756 8,564
assignments 16,198 24,686
average priority (old model) 1.23 1.27
average priority (new model) 1.13 1.16
distance to optimum 0 < 1%

To compare our new solution with the old one (i.e. the actual timetable that was
used at TU Berlin), we examined the average incorporated priority of the student-
tutorial assignments (see Table 1). For the smaller data set, this value decreased from
1.23 to 1.13, which corresponds to a single-priority improvement in about 1,500 cases
(more than 9%). For the larger sample with a total of 24,686 assignments, the average
decreased from 1.27 to 1.16, which corresponds to a single-priority improvement in
about 2,900 cases (more than 12%).

6 Conclusion

We have presented a new model for the post-enrollment-based timetabling problem
at TU Berlin. The new model involves the assignment of students to courses and
of courses to timeslots and rooms as well. Thus, these two separate assignments of
the old model are now included in one optimization process. The new model yields
better results and enables an automated process to construct timetables.

7 Outlook

One way to gain even more flexibility and automation is by managing all tutors
in some sort of a tutor pool. The assignment of a tutor to a tutorial will then be
maintained automatically by the algorithm as well. Tutors can prioritize certain
timeslots in the same manner as students, and the algorithm tries to take these into
account. Of course, there will be some new constraints that need to be satisfied (e.g.
the qualification of a tutor must match the required qualification of the tutorial,
and no tutor can give more than one tutorial at the same time). Integrating this
step into the optimization process would possibly lead to better results and the only
work that still has be done manually (finding the parameter m(c, p)) would become
superfluous.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 343 -

References

1. Ayob, M., Jaradat, G.: Hybrid ant colony systems for course timetabling problems. In:
Data Mining and Optimization, 2009. DMO’09. 2nd Conference on, pp. 120–126. IEEE
(2009)

2. Cambazard, H., Hebrard, E., O’Sullivan, B., Papadopoulos, A.: Local search and con-
straint programming for the post enrolment-based course timetabling problem. Annals of
Operations Research 194(1), 111–135 (2012)

3. Crescenzi, P., Kann, V.: A compendium of NP optimization problems (1995)
4. Daskalaki, S., Birbas, T., Housos, E.: An integer programming formulation for a case

study in university timetabling. European Journal of Operational Research 153(1), 117–
135 (2004)

5. Jeschke, S., Lach, G., Luce, R., Pfeiffer, O., Zorn, E.: Management and optimal distribution
of large student numbers. In: Automation, Communication and Cybernetics in Science and
Engineering 2009/2010, pp. 71–84. Springer (2011)

6. Jeschke, S., Luce, R., Pfeiffer, O., Zorn, E.: An optimized algorithm for distributing large
numbers of students to small exercise groups. In: Advanced Learning Technologies, 2007.
ICALT 2007. Seventh IEEE International Conference on, pp. 232–234. IEEE (2007)

7. Lach, G., Lübbecke, M.E.: Optimal university course timetables and the partial transversal
polytope. In: Experimental Algorithms, pp. 235–248. Springer (2008)

8. Lewis, R.: A survey of metaheuristic-based techniques for university timetabling problems.
OR spectrum 30(1), 167–190 (2008)

9. Lewis, R., Paechter, B., McCollum, B., et al.: Post enrolment based course timetabling: A
description of the problem model used for track two of the second international timetabling
competition. http://www.cs.qub.ac.uk/itc2007/postenrolcourse/report/Post Enrolment
based CourseTimetabling.pdf (2007). Last visited 28.04.2015

10. Nothegger, C., Mayer, A., Chwatal, A., Raidl, G.R.: Solving the post enrolment course
timetabling problem by ant colony optimization. Annals of Operations Research 194(1),
325–339 (2012)

11. Schaerf, A.: Local search techniques for large high school timetabling problems. systems,
Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on 29(4), 368–377
(1999)

12. Schimmelpfeng, K., Helber, S.: Application of a real-world university-course timetabling
model solved by integer programming. OR Spectrum 29(4), 783–803 (2007)

13. Schrijver, A.: Combinatorial Optimization Polyhedra and Efficiency. Springer, Berlin
(2003)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 344 -

MISTA 2015

Simulation Based Cause and Effect analysis of Input Variables in Wafer

Fabrication

Rashmi Singh

 . M. Mathirajan

Abstract: Controlling a re-entrant flow line typically found in the semiconductor wafer

fabrication industry is complex. To obtain a fundamental understanding of the system and to

evaluate the effects of different input variables on selected parameters such as cycle time, WIP

(work-in-process) level and throughput, we construct a simulation model of Intel Mini-Fab

using Arena simulation software. The Intel Mini Fab has been selected for this study as it

captures the challenges involved in scheduling the highly re-entrant semiconductor wafer

fabrication flow lines. The input variables include arrival rate, arrival distribution, processing

time, maintenance schedule, operator’s schedule, batch size, dispatching rule and lot release

control. Instigating this experimentation brings the major influencing variables and the most

desirable lot release pattern.

Keywords – Simulation, lot release control, re-entrant flow, semiconductor, wafer fabrication

1 Introduction

Semiconductor industry has long been a driving force behind major advances in

computing and electronics. It is one of the fastest growing and most significant industries due

to its effect on accelerating the advance in technology and the resulting effect on world’s

economy. Semiconductor industry differs from many other manufacturing environments by the

complexity and the variability of its processes. The entire semiconductor industry is very

sensitive to the economic and trade climates. It is characterized by extremely short product life

cycles, frequently decreasing profit margins and intense competition. In addition to this, the

cycle time in semiconductor manufacturing is long in general due to the trade-off of waiting

time in exchange for high equipment utilization in a factory of unreliable equipment. In

general semiconductor manufacturing flow can be divided into four stages: wafer fabrication,

wafer probe, assembly or packaging and final testing.

Wafer fabrication is arguably the most technologically complex, competitive and

capital intensive stage of semiconductor manufacturing. This process is highly re-entrant and

involves hundreds of machines, restrictions, and processing steps.

Rashmi Singh

Department of Management Studies

Indian Institute of Science

E-mail: rashmi@mgmt.iisc.ernet.in

Dr. M. Mathirajan

Department of Management Studies

Indian Institute of Science

E-mail: msdmathi@mgmt.iisc.ernet.in

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 345 -

mailto:rashmi@mgmt.iisc.ernet.in
mailto:msdmathi@mgmt.iisc.ernet.in

Figure 1: Basic Operation in Wafer Fab

In wafer fabrication, the layers of the ICs are fabricated onto raw silicon wafers. The

manufacturing procedure for each layer involves a complex sequence of processing steps, with

the number of operations typically in hundreds that includes: cleaning, oxidation/thin film

deposition, photolithography, etching, diffusion/Ion implantation, inspection and

measurement. These operations must be performed in a very clean environment known as

wafer fab. The basic sequence of operations in wafer fabrication is presented in Figure 1.

Sequence of operations may vary considerably for different products. In addition, random

yield, rework, diverse equipment, availability of data, maintenance and unbalanced production

facilities put together further intricacy in wafer fabrication process. Interested readers are

referred to [22] for detail description on wafer fabrication complexities.

Each wafer lot visits the same workstation several times at different stages of

processing, before exiting the system. This type of flow is known as re-entrant flow which is a

distinguishing characteristic of semiconductor wafer fabrication manufacturing systems. In

addition, the machines used for processing jobs are extremely expensive, some as high as US

$40 million, and thus are scarce resources. In such a volatile scenario, maintaining a

competitive advantage and remaining profitable, in operational terms necessitates the

development of a control paradigm that will allow the effective and efficient deployment and

operation of contemporary fabs.

In this paper we provide an overall cause and effect analysis of the behaviour of some

key parameters in semiconductor wafer fabrication, which include cycle time, WIP level and

throughput in response to changes in the Intel Mini Fab environment. For this purpose a

simulation model is constructed for the Intel Mini-Fab using Arena simulation software. The

Intel Mini Fab has been selected for this study as it captures the challenges involved in

scheduling the highly re-entrant semiconductor wafer fabrication flow lines. Instigating this

experimentation brings the major influencing variables and the most desirable lot release

pattern.

The remainder of this paper is organized as follows: Section 2 summarises the

literature involving shop floor control strategies and simulation model in wafer fabrication

industry. Section 3 presents a proposed simulation model for Intel Mini Fab. The experimental

performance evaluation and the results are presented and discussed in section 4. Finally, the

conclusions and the plan for future research are presented in section 5.

Oxidation (Dry/Wet

oxidation) Processing time:

4 to 6 hrs

Cleaning (Piranha/RCA

clean/Acceton /IPA

clean/DI water) processing

time: 1 to 30 minutes

Lithography (Direct

laser writing/UV/Electron

beam) Processing time: 8

to 24 hrs

Etching (Dry/Wet

etching) Processing

time: 12 to 16 hrs

Diffusion / Ion

Implantation

Processing time: 3 to 8

hrs

Thin Film Deposition /

Metallization

processing time: 2 to 3

hrs

Inspection /

Measurement

Processing

time: 1 to 2

days

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 346 -

2 Literature Review

In semiconductor manufacturing wafer fabrication is the most technologically

complex and capital intensive process found today in existence. Therefore, a lot of dynamic

shop floor control techniques have been stated in publications over the last years to improve

the performance of semiconductor wafer fabrication. Given the complexity of semiconductor

wafer fabrication, simulation emerges as powerful technique that describes the detail

interactions among elements of such a manufacturing environment [13]. In addition, traditional

techniques through mathematical models or even deterministic models are simply not adequate

to analyse these complex manufacturing environments [1]. Consequently, discrete event

simulation is used in evaluating such a complex system. Moreover, simulation offers the

advantage of developing a feasible and accurate schedule in shorter computation times

compared to some of the other techniques [15 and 10].

 In Wafer fabrication industry several simulation studies are reported by different

authors in the literature [3, 24, 8, 4, 9, 2, 12, 17, 7 and 21]. A lot of researcher’s have proposed

a new job release control rule to improve the wafer fabs performance in terms of cycle time,

WIP level and throughput. Furthermore, they compared empirically through simulation their

proposed job release control rule with other input control rules on several semiconductor wafer

manufacturing job shops with favourable results [3, 24, 8 and 4]. Kim et al. [9] have recently

focuses on lot release control, mask scheduling and batch scheduling collectively to improve

the average cycle time, WIP level and throughput rate of wafer fabs. In addition to this a new

input control rule is proposed by Chern et al. [2] to decrease setup time and increase

throughput in the photolithography area without increasing cycle time of the wafer fabs.

Furthermore, Lin et al. [12] presents a dynamic releasing scheme (D-Roll), which determines

when and which wafer lot should be released into the shop floor using the concept of rolling

correction. Several studies [17, 7 and 21] have utilized an input control and sequencing rule or

both in wafer fabs to improve its performance in terms of cycle time, WIP level and

throughput. A point on which many authors seem to agree is that the improvement in wafer

fabs performance can be achieved with input control rule or sequencing rule or both.

Although to improve the performance of wafer fabs system, it is important and

necessary to analyse the impact of different decision variables on main production process

parameters, such as cycle time, WIP level and throughput. This has been ignored in the

previous research studies. Though, there is one study reported in the literature by Chao and

Shivakumar [16] that analyses the effect of arrival distribution, batch size, downtime pattern

and lot release control on selected parameters such as cycle time, WIP level and equipment

utilization rates. However, the simulation experimentation is not done in a realistic setting of

wafer fabs. Furthermore, the breadth of input decision variables which has been investigated is

very limited. Therefore, the objective of this study is to evaluate the effects of different input

variables on selected parameters, such as cycle time, WIP level and throughput in realistic

settings of wafer fabs. The selected variables include arrival rate, arrival distribution,

processing time, maintenance schedule, operator schedule, batch size, dispatching rule and lot

release control. For each variable, different magnitude of their parameters would be modelled

to analyse the effects on the processes. In this way, it could be evaluated which variable would

be the most influential, and thus possible measures could be suggested to improve the

performance of the fab.

There are three aspects to keep in mind in order to appreciate the effort put forth in

this study. The first is the way we modelled Intel Mini Fab to mirrors the complexity of the

actual semiconductor fabrication in terms of including factors such as re-entrant flow,

batching, operators, transporters and set-up operations. The second is the breadth of the input

decision variables that has been investigated in this study. Finally, the findings that can benefit

semiconductor wafer fabs.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 347 -

3 A Simulation model for Intel Mini Fab

The Intel Mini Fab is selected for the study because it exhibits all the characteristic

features of real semiconductor wafer fabs such as re-entrant loops, operators, transporters,

batching, failures, preventive maintenance, setups, disparate processing, loading and

unloading. Moreover, it is a benchmark system for all kinds of semiconductor research and

also is a popular one used by several authors for evaluating different sequencing rules [7, 21

and 25].

Figure 2: Intel five-machine six steps Mini-Fab

Intel Mini-Fab includes six processing steps and five machines distributed in three

work stations as presented in Figure 2. The three processing workstation includes diffusion,

ion-implantation and lithography respectively. Diffusion workstation consists of two machines

A and B that can process batch of 3 lots at a time and it serves step 1 and 5. Ion-implantation

workstation consists of two machines C and D and it can process one lot at a time and serves

step 2 and 4. Lithography workstation consists of one machine E that process one lot at a time

and serves step 3 and 6. The three critical operations performed per layer, namely diffusion,

ion-implantation and lithography are considered in the Mini Fab [4].

In each week, the nominal arrival rate is 84 jobs per week, with 51 of the arrivals

being product A, 30 are product B and the rest are test wafers. All product types follow the

same predefined route, illustrated in Figure 2. For detail description of Intel Mini-Fab, the

interested readers are referred to [6].

Individual characteristics such as step number, processing time, loading and

unloading time, batch size and number of machines per station for three workstations are

presented in Table 1. The operation of loading and unloading before and after the processing at

each machine is done by operators. In addition, for processing steps 3 and 6 setup is provided

by the operators depending upon changes of processing step to be performed and type of

product to be processed.

The Mini-Fab operates the 24 hours of the day, 7 days of week. Each day of

operations is composed of two shifts of 12 hours. In the Mini-Fab machine failures and

emergency repairs occur as random events. In particular, only machines C and D can have

failures that occur every 50 ±26 hours and the repair time requires 420 ± 60 minutes.

Preventive maintenance (PM) operations are included in the model by the specification of PM

tasks for each machine in the system. The specification of the PM tasks for each machine of

the Mini-Fab is presented in Table 2.

Machine A, B

A

B

Diffusion

Station

Machine C, D

 C

D

Ion Implantation

Station

Machine E

E

Lithography

Station

Wafer In

Wafer

Out

Station 1 Station 2 Station 3

Step 1

Step 5 Step 4

Step 2

Step 6

Step 3

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 348 -

Table 1: Individual Characteristics for Workstation in Mini-Fab

*For Detail Description of Intel Mini Fab aar.faculty.asu.edu/research/intel/papers/fabspec.html

Table 2: Preventive Maintenance Specification for Machines in Mini-Fab

Machine’s Preventive Maintenance Specification

A and B 75 minutes every day

C and D 120 minutes every shift

E 30 minutes every shift
*For Detail Description of Intel Mini Fab aar.faculty.asu.edu/research/intel/papers/fabspec.html

In our simulation model, each lot entering the segment of the fab has a process flow

that consists of 6 total operations at three different workstations. In model, the arrival of jobs is

considered as deterministic with inter-arrival mean of 120 minutes, which is equivalent to 84

jobs per week. In addition, the three different product types (Pa, Pb and test wafers (TW)) are

produced that follow an empirical distribution with probabilities 0.61, 0.36 and 0.03

respectively. It is assumed that the lot size is constant throughout the study and one lot is equal

to one job. Rework is not considered. In addition, two operators referred as PO1 and PO2 are

modelled for loading and unloading operations as well as to provide setups at respective

workstations. However, operators travelling time is not considered. To exclude blocking from

the model, the buffers are modelled to have infinite capacity. Technician is not considered. For

batching similar type of products are batched together for the same production step at diffusion

workstation. Machine restriction is not considered for the test wafers to avoid the complexity.

Moreover, each operator is equally efficient at performing their tasks. The machines have

different processing times and it determines correct processing time via the production step of

the product it has received. The schedules for preventive maintenance are deterministic and

repeated every day or shift. The unscheduled or random breakdowns for machines C and D at

Ion-Implantation station are uniformly distributed with a minimum of 24 hours and maximum

of 76 hours. The repair time is uniformly distributed with a minimum of 6 hours and maximum

of 8 hours. Hence, it can be concluded that the developed simulation model is stochastic in

nature.

Verification and Validation for Proposed Simulation Model

The simulation model is build starting with a simple version that contain the basic production

processes and subsequently extending it with additional complexity until every aspect of the

Mini Fab has been included in the model. At each and every level, the computer program is

S.No Workstation

Individual Characteristic’s

Step

No.

Processing

Time

(minutes)

Loading

Time

(minutes)

Unloading

Time

(minutes)

Batch

Size

No. of

Machines

per

station

1. Diffusion S1 225 20 40 3 2

S5 255 20 40 3

2. Ion

Implantation

S2 30 15 15 1 2

S4 50 15 15 1

3. Lithography S3 55 10 10 1 1

S6 10 10 10 1

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 349 -

Table 3: Partial Trace Data for the Verification of Mini Fab

Entity

Number

Event Start

Time

Event End

Time

Time

(hrs) State Step Workstation

Lot_1_1

13/01/2015

00:00:00

13/01/2015

05:36:00 5.6 Waiting 1 Diffusion

Lot_1_1

13/01/2015

05:36:00

13/01/2015

09:41:00 4.0833 Processing 1 Diffusion

Lot_1_1

13/01/2015

09:41:00

13/01/2015

10:21:00 0.6667 Waiting 1 Diffusion

Lot_1_1

13/01/2015

10:21:00

13/01/2015

10:36:00 0.25 Waiting 2

Ion

Implantation

Lot_1_1

13/01/2015

10:36:00

13/01/2015

11:06:00 0.5 Processing 2

Ion

Implantation

Lot_1_1

13/01/2015

11:06:00

13/01/2015

11:21:00 0.25 Waiting 2

Ion

Implantation

Lot_1_2

13/01/2015

02:48:00

13/01/2015

05:36:00 2.8 Waiting 1 Diffusion

Lot_1_2

13/01/2015

05:36:00

13/01/2015

09:41:00 4.0833 Processing 1 Diffusion

Lot_1_2

13/01/2015

09:41:00

13/01/2015

10:21:00 0.6667 Waiting 1 Diffusion

Lot_1_2

13/01/2015

10:21:00

13/01/2015

10:36:00 0.35 Waiting 2

Ion

Implantation

Lot_1_2

13/01/2015

10:36:00

13/01/2015

11:21:00 0.5 Processing 2

Ion

Implantation

checked and debugged in steps to verify the simulation model. In addition to this, the

validation is performed further by comparing the theoretical value of cycle time from the

dataset and the cycle time obtained from the simulation. The theoretical value of cycle time for

one job as calculated from the dataset is 14.95 hour, and the result from simulation showed a

cycle time of 15.0 hour, a slight increase of 0.05 hour is there which is negligible. However,

the slight increase of 0.05 hour in cycle time is due to the operator non availability that cannot

be captured in theoretical calculation of the cycle time. Therefore, it can be concluded that the

model reflects sufficiently accurately the actual cycle time of the processes.

 Furthermore, the technique of “trace” is employed to verify the proposed simulation

model. This is one of the most powerful technique that can be used to debug a discrete event

simulation program Law and Kelton [2009]. For instance, considering the single part type

case, few lots of part type 1 are simultaneously released into the system at the beginning of

simulation run, and then the operation events on these lots are traced. The event tracing record

is compared to the expected event schedule, which can be derived from the route illustrated in

Figure 2. The Table 3, shows the partial trace data of the release lots. The model verification is

confirmed since the achieved event schedule is consistent with the intended one.

4 Experimentation

In this section, we will investigate the effects of altering the different input decision

variables on cycle time, WIP level and throughput. The input variables include arrival rate,

arrival distribution, processing time, maintenance schedule, operator’s schedule, batch size,

dispatching rule and lot release control. For each variable, different magnitude of their

parameters are tested by varying only one variable at a time. The detail experimental

environment is summarised in Table 4.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 350 -

Table 4: Summary of Experimental Environment

Input Variable’s No of

levels

Levels

Arrival Rate 8 Inter-arrival mean with (2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4)

Arrival Distribution 7 Deterministic (2.8), Random, Poisson(2.8), Normal(2.8,

0.5), Normal (2.8, 2), Uniform(2.66, 2.94) &

Uniform(2.52, 3.08)

Processing Time 2 Deterministic, Random

Preventive

Maintenance

Schedule

6 Schedule 1, Schedule 2, Schedule 3, Schedule 4, Schedule

5, Schedule 6

Operator’s Schedule 4 Schedule 1, Schedule 2, Schedule 3, Schedule 4

Batch Size 5 2, 3, 4, 5, 6

Dispatching Rule 5 FIFO, LIFO, EST, SPT, LPT

Lot Release Control 2 Push, CONWIP

Arena simulation software is used to build the model and conduct these experiments.

In the course of the simulation, each scenario is tested for 200 replications of 9600 hours

length each. The first 4800 hours are discarded to avoid the influence of transient state

behaviour. This number and length of replications provided uniformly good statistical

precision across the outputs (95% confidence interval half widths within 3% of the respective

sample means). Machine reliability is the main factor behind variability, and different random

stream seed increments were used in each run. The data obtained after the 4800 hours are used

for the performance analysis. The performance indices considered in this experiment are cycle

time, WIP level and throughput.

The significance of cycle time performance in semiconductor manufacturing is a

well-known fact. Cycle time (also known as throughput time, flow time, or sojourn time) is the

time elapsed between a job entering the facility and leaving the facility as a finished product,

consisting of processing time, transportation time between workstations, set-ups time, loading

and unloading time and waiting time in queues. The average WIP level is defined as the

average number of jobs present in the Mini Fab during the non-transient run time period and

throughput is the number of jobs that came out after the last step in the process. In this study,

throughput is measured on weekly basis to facilitate the comparison with the target throughput

of 84 jobs per week. The weekly throughput is calculated for the analysis by dividing the

throughput value with 200 and then multiplying the value by 7. This is because, the simulation

run length is 400 days or 9600 hours and the warm-up period is selected as 200 days or 4800

hours to avoid the effect of transient bias.

4.1 Impact of Arrival Rate

In this section, we investigated the effects of altering the arrival rate on cycle time,

WIP level and weekly throughput. The arrival rate is the number of arrivals per unit of time. It

can be measured as the arrival rate or the inter-arrival time (time between arrivals). In reality

arrival rates are highly variable and difficult to predict. In this model we choose a mean arrival

rate as 0.5 lots per hour, to achieve a throughput of 84 lots per week. The steady state

behaviour is observed which indicates that the lithography workstation is utilized heavily

among all the workstations. Furthermore, it is observed that even though lithography

workstation is utilized heavily but still there are many jobs waiting in the queue to get hold of

lithography machine for processing. Subsequently, it can be concluded that the bottleneck

workstation of the flow line is lithography workstation. It can be observed from Table 5 that

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 351 -

the achieved throughput is 50.81 products per week or 60.48 % of the required throughputs

with inter-arrival mean of 2.0 hours. Moreover, it is observed that the mean cycle time of the

products is increasing, because the work in process is increasing. The processes have much

idle time and the machines have to wait for loading and unloading operations. Therefore, we

can conclude that the control of the flow line is poor.

Table 5: Performance of Mini Fab with different Arrival Rate

Inter-arrival means Average Cycle

Time (hr)

Average WIP Weekly

Throughput

Deterministic (2.0) 2839.11 1419.80 50.81

Deterministic (2.2) 2151.55 978.50 53.45

Deterministic (2.4) 1376.05 574.27 56.69

Deterministic (2.6) 566.71 219.20 59.70

Deterministic (2.8) 45.92 17.80 60.04

Deterministic (3.0) 40.36 14.73 56.01

Deterministic (3.2) 38.67 13.27 52.50

The implementation of improved control in the flow line is required to increase the

achieved throughput of the line by 39.52% to meet the target throughput. To determine the

maximum throughput that can be achieved with FIFO control, the input of the flow line is

decreased until the work in process is just not increasing in steady state during the simulation.

The ratio of the product types is kept identical to the ratio in the Mini Fab. It can be observed

from Table 5, that the maximum throughput with FIFO control is achieved at inter-arrival

mean of 2.8 hours and it is equal to the 60.04 products per week or 71.47% of the target

throughput. This is because no work is wasted on the semi-finished products that form the

increasing work in process. Moreover, it can be observed further that the parameters of average

value of both cycle time and WIP level are reasonably good for inter-arrival mean of 2.8 hours.

The performance measure of interest is calculated as average of 200 replications, one per run.

4.2 Impact of the Arrival Distribution

In this section, we will investigate the effects of altering the distribution of arrival on

cycle time, WIP level and weekly throughput. In real life, there is variability in the inter-arrival

times of the incoming jobs due to the uncertainty in multiple external factors such as demand,

customer order schedules and work in process inventory and transportation irregularities.

However, we consider a scenario whereby the fab manager could decide the arrival rate based

on maximum throughput that can be achieved with FIFO control in Mini Fab. Assuming the

mean inter-arrival time equals to 2.8 hours, we have to decide the characteristic for lot release.

Consequently based on the frequently used arrival or inter-arrival distributions in the literature,

we have experimented six distributions to release the job on the shop floor. These six

distributions include Poisson (2.8), normal (2.8, 0.5), normal (2.8, 2), uniform (2.66, 2.94),

uniform (2.52, 3.08) and random. The parameters for uniform distribution are selected with an

offset of 5% and 10% of the inter-arrival mean value on both sides. For comparison purpose,

these six arrival distributions are compared with deterministic arrival rate with inter-arrival

mean of 2.8 hours. The behaviour of these release patterns were tested based on FIFO control

and the results are presented in Table 6.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 352 -

Table 6: Performance of Mini Fab with Different Arrival Distribution

Arrival

Distribution

Average

Cycle Time

(hr)

Standard

Deviation of

Cycle Time

Average WIP Weekly

Throughput

Deterministic (2.8) 45.92 26.85 17.80 60.04

Random 113.57 51.67 42.51 60.02

Poisson (2.8) 69.98 34.71 26.53 60.09

N (2.8, 0.5) 47.68 27.01 18.45 60.05

N (2.8, 2) 55.83 31.84 20.88 58.56

U (2.66, 2.94) 45.85 26.98 17.78 60.03

U (2.52, 3.08) 46.08 27.08 17.86 60.04

The performance of random release distribution is obviously the worst. This result has

been proven mathematically by Shivakumar [20]. The result of deterministic arrival rate is best

in terms of each performance measure value because there is less variability in input rate.

Furthermore, it can be observed from the Table 6, that under the Poisson distribution, the

parameters of average value of both cycle time and WIP level are the worst except for that of

random scenario. It is interesting to note the difference between the standard deviation of the

two results using normal distribution, although they have identical mean frequency. The one

with the larger deviation produce longer cycle time and also much higher standard variation in

cycle time. This result corresponds to the theory that variability would increase the cycle time

of production [5, 19 and 20]. The results shown in the uniform distribution have the same trend

as that of the normal distribution. However, given an opportunity the fab manager should go

for uniform distribution to release the job on the shop floor because it is giving the best results

in terms of cycle time and WIP level. Moreover, less variability is being observed in uniform

distribution because we are getting close results with an offset of 5% and 10% of the inter-

arrival mean value on both sides. Therefore, we can conclude that the uniform distribution is

more robust in nature. The similar observation is reported by Chao and Shivakumar [16].

4.3 Impact of Processing Time

It is well known fact that the wafer fabrication typically involves different types of

products. These product mix environment plays an important role in adding the variability to

the processing time. In order to address this issue we considered two possibilities of processing

time one is deterministic and the other one is random.

Table 7: Performance of Mini Fab with Different Processing Time

Processing Time

Average Cycle

Time (hr)

Average WIP

Weekly

Throughput

Deterministic 45.92 17.80 60.04

Random (expo) 53.64 20.87 60.00

Two different simulation experiments were performed under two different scenarios

for processing time that is deterministic and random. The random processing times were

assumed to be exponentially distributed with means equal to the processing times indicated in

Table 1. It can be observed from Table 7 that under random processing time, the parameters of

average value of both cycle time and WIP level are the worse than deterministic processing

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 353 -

time. This result again corresponds to the theory that variability would increase the cycle time

of production [5, 19 and 20].

4.4 Impact of Schedules for Maintenance

The production equipment used in semiconductor manufacturing is technologically

sophisticated. Therefore, it requires extensive preventive maintenance (PM) to ensure that the

equipment would operate in optimum conditions. Preventive maintenance is the scheduled

process of intentionally taking a tool offline for routine maintenance. The machines will not be

available during the preventive maintenance and this kind of downtimes is referred to as

scheduled downtimes. It is used to increase the tool reliability and availability. Six different

simulation experiments were performed under six different and arbitrary PM schedules. The

Table 8 provides the details of the six PM schedules utilized daily in the experiments where

the start times for the PM tasks are given in the usual time format hours:min:secs and

assuming that the first work shift starts at 00:00:00.

Table 8: Description of PM Schedules for Machines in Mini Fab

Machine PM Task Start Time

Schedule 1 Schedule 2 Schedule 3 Schedule 4 Schedule 5 Schedule 6

A 06:00:00 06:00:00 06:00:00 06:00:00 00:00:00 03:00:00

B 12:00:00 08:00:00 10:00:00 06:00:00 02:00:00 05:00:00

C 00:00:00 06:00:00 04:00:00 02:00:00 04:00:00 00:00:00

D 08:00:00 04:00:00 08:00:00 10:00:00 06:00:00 08:00:00

E 03:00:00 03:00:00 02:00:00 04:00:00 08:00:00 10:00:00

Table 9: Performance of Mini Fab with Different PM Schedules

PM Schedules

Average Cycle Time

(hr)

Average WIP

Weekly

Throughput

Schedule 1 45.92 17.80 60.04

Schedule 2 46.02 17.83 60.03

Schedule 3 45.93 17.81 60.03

Schedule 4 45.84 17.77 60.03

Schedule 5 46.21 17.89 60.02

Schedule 6 46.05 17.84 60.03

It would seem intuitive that the more sophisticated the maintenance schedule, the

higher the asset availability would be and therefore the performance would be better. However,

it can be observed from Table 9 that the parameter of the performance metrics for schedule 1 is

the best among all the schedules and it is worst for schedule 5. Though, changes in parameters

of the performance metrics are not very significant with the change in maintenance schedule.

Furthermore, it is observed that the schedule should be prepared intuitively according to the

machine processing time and their maintenance need. Specifically, the preventive maintenance

should be provided to the machines when they are least needed.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 354 -

4.5 Impact of Operator’s Schedule

The operators are required to load and unload the jobs in the machine at the beginning

and at the end of process. However, operators will not be available all the time as they have

three off times of 60 minutes each. Subsequently a schedule is prepared for the operators in

four different ways as given in Table 10 to provide details of their accessibility.

Table 10: Description of Operator Schedules for Mini Fab

Operators Operator’s Break Start Time

Schedule 1 Schedule 2 Schedule 3 Schedule 4

OP0 (12:00:00,

3:00:00,

09:00:00)

(12:00:00,

02:00:00,

08:00:00)

(02:00:00,

07:00:00,

10:00:00)

(03:00:00,

07:00:00,

11:00:00)

OP1 (01:00:00,

05:00:00,

10:00:00)

(04:00:00,

09:00:00,

1:00:00)

(12:00:00,

06:00:00,

11:00:00)

(12:00:00,

04:00:00,

08:00:00)

Table 11: Performance of Mini Fab with Different Operator’s schedules

Operator’s

Schedules

Average Cycle

Time (hr)

Average WIP

Weekly

Throughput

Schedule 1 45.98 17.89 60.01

Schedule 2 41.69 16.34 60.01

Schedule 3 62.11 23.62 60.02

Schedule 4 45.92 17.80 60.04

It can be observed from Table 11, that the parameters of average value of both cycle

time and WIP level are almost same for schedule 1 and schedule 4. This is because there is not

much difference in their respective schedules as well. It is interesting to note that the

performance of schedule 3 is really worst among all the schedules. The reason for this is that

the operators off time are scheduled independently of the maintenance need of the machine,

whereas it should be scheduled when operators are least needed. The parameters of average

value of both cycle time and WIP level are best for schedule 2. The reason for this is simple

that the operator off time is scheduled when operators are least needed. Therefore, we can

conclude that the operator schedule significantly influence the parameters of the system

performance metrics. Furthermore, it is observed that the operators off time should be

scheduled based on the maintenance need of machines.

4.6 Impact of Batch Size

The predominance of batch processing systems in a semiconductor wafer fabrication

facility is a well-known fact. The processes of the wafer fabrication involve a number of batch

processing operations such as oxidation, diffusion and deposition which are performed by the

batch processing machines. For instance if batch sizes are too small, then the batch processing

machines may run out of capacity. On the other hand, if batch sizes are too large, then the

waiting times to form batches may increase. Consequently, there is no specific rule to set batch

sizes of all products simultaneously so that the performance of the system is improved. A

thorough batch size analysis requires extended study and is beyond the scope of this paper.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 355 -

Table 12: Performance of Mini Fab with Different Batch Size

Batch Size

Average Cycle

Time (hr)

Average WIP

Weekly

Throughput

Batch (2) 718.56 380.68 54.26

Batch (3) 45.92 17.80 60.04

Batch (4) 53.48 20.10 60.04

Batch (5) 60.35 22.35 60.03

Batch (6) 67.90 24.90 60.04

To determine the optimal batch size we have experimented with five different batch

sizes in the range of two to six as given in the Table 12. It can be observed that the batch size

of two gives the worst results. This might be because the batch size of two is very small and

the processing time of diffusion furnace is large that is 4.25 hours. It is interesting to note that

the batch size of three is giving the best result among all the batch sizes tested for Intel Mini

Fab. Furthermore, it is noticed that as we are increasing the batch size more beyond three the

flow time is increasing because the work in process is increasing. Consequently, we can

conclude that batch size adds variability into a system because jobs wait to form batch and

upon service completion jobs are released to downstream machines.

4.7 Impact of Dispatching

 Dispatching in wafer fabrication is enviable task. In reality, dispatching rule

determines the sequence in which jobs in front of machine are processed according to some

variable. Since, the choice of dispatching rule is not the focus of this study. Therefore, most

commonly used dispatching rules such as First-In-First-Out (FIFO), Last-In-First-Out (LIFO),

Earliest Start Time (EST), Shortest Processing Time (SPT) and Longest Processing Time

(LPT) found in the literature are experimented in simulation. The lithography is found to be

bottleneck workstation in Intel mini fab so; dispatching rules are applicable only at lithography

workstation.

Table 13: Performance of Mini Fab with Different Dispatching Rules

Dispatching

Policies

Average Cycle

Time (hr)

Average WIP Weekly

Throughput

FIFO 45.92 17.80 60.04

LIFO 57.30 21.85 60.07

EST 50.30 19.45 60.03

SPT 44.79 17.40 60.02

LPT 50.69 19.52 60.05

 It can be observed from Table 13 that the LIFO rule is giving worst performance as

compared to others because waiting time is more for jobs which are arriving earlier at

lithography. Henceforth, the flow time and work in process is more for this dispatching rule.

EST and LPT rule is giving similar results. Actually, in case of EST, the job will be coming for

production step 3 which is having longer processing time. Henceforth, the result of EST

dispatching rule is very close to the LPT dispatching rule. Among all the dispatching rules,

SPT is the best dispatching rule in terms of cycle time and work in process because it is giving

preference to the job having the shortest processing time.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 356 -

4.8 Impact of Input Control

To evaluate the effect of release control in Mini Fab Push and CONWIP release

method is discussed. The PUSH release control loads the job shop uniformly (or with any

other distribution) based on demand. Job is moved through the facility in a first-come-first-

serve manner. No feedback on the status of the shop floor is employed. It is an open loop

method. In this section, we will discuss the scenario of CONWIP as push is already being

discussed in impact of arrival distribution and the same is presented in Table 15. In CONWIP

release policy, the number of jobs in the system is held constant. A new job is released into the

system whenever a job finishes processing at the final workstation. The results are shown

below in Table 5 under different WIP levels. One of the distinct benefits of CONWIP is its

simplicity to adjust and to implement. This property becomes more advantageous when the

system environmental conditions are constantly changing. It can be observed from Table 14

that input control has a significant impact on wafer fabrication performance measures.

Table 14: Performance of Mini Fab with CONWIP Release Control

WIP levels Average Cycle

Time (hr)

Standard deviation

of Cycle time (STD)

Weekly

Throughput

WIP 10 37.63 37.33 44.61

WIP 12 39.37 32.39 51.24

WIP 14 42.20 29.25 55.73

WIP 15 43.71 28.22 57.65

WIP 16 45.32 27.46 59.29

WIP 17 44.24 26.40 60.03

WIP 18 43.74 26.97 60.02

WIP 20 43.84 26.93 60.02

WIP 22 43.76 26.88 60.01

WIP 24 43.74 26.78 60.01

Table 15: Comparison of CONWIP and other Arrival Distribution (Push)

Release

Control

Arrival

Distribution

Average

Cycle Time

(hr)

Standard

Deviation of

Cycle Time

Weekly

Throughput

Push Deterministic

(2.8)

45.92 26.85 60.04

Random 113.57 51.67 60.02

Poisson (2.8) 69.98 34.71 60.09

N (2.8, 0.5) 47.68 27.01 60.05

N (2.8, 2) 55.83 31.84 58.56

U (2.66, 2.94) 45.85 26.98 60.03

U (2.52, 3.08) 46.08 27.08 60.04

CONWIP WIP (17) 44.24 26.40 60.03

It can be observed from the Table 14, that initially average cycle time is increasing

with the increase in WIP level. However, it is interesting to note that the average cycle time

started decreasing with WIP (17) level. Moreover, the values of standard deviation of cycle

time and weekly throughput is best at WIP (17) level. Furthermore, it can be observed that

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 357 -

there is not much change in the values of average cycle time, standard deviation of cycle time

and throughput rate beyond WIP (18) level. Hence we can conclude that in our simulation

model the best results are obtained for WIP (17). In reality, most common release control used

in the wafer fabrication is the open loop control such as uniform start. However, it can be

observed from Table 15 that the performance of CONWIP is much better than that of the other

arrival distribution. This result corresponds to the conclusion of many authors in the literature

that the input control has the greatest impact on cycle time and WIP level [24, 3 and 8]. In

addition, we can conclude that any reasonable closed loop control performs better than open

loop control. This result corresponds to the conclusion of Glassey and Resende [3]. This is

because all the closed loop control rules adjust the arrival rate to the shop so that it is

negatively correlated with the queue length at the bottleneck.

5 Conclusions

In this paper we constructed a simulation model of Intel Mini Fab using the Arena

simulation software. The objective of the study is to evaluate the effects of different input

variables on selected parameters, such as cycle time, WIP level and throughput rate. The input

variables include arrival rate, arrival distribution, processing time, maintenance schedule,

operator’s schedule, batch size, dispatching rule and lot release control. A simple model of

Intel Mini Fab is selected because it captures the challenges involved in scheduling re-entrant

manufacturing line.

Most importantly, it is noticed in case of arrival distribution and processing time that

the system performance decreases with the increase in system variability. This result

corresponds to the theory that variability would increase the cycle time of production [5, 19

and 20]. Furthermore, the results show that the relationship between input variables and system

performance metrics are extremely complex due to the complexity of semiconductor wafer

fabrication. However, it is important to stress few facts that the operator off time should be

scheduled according to the maintenance need of the machines rather independently. Preventive

maintenance should be provided intuitively to the machines based on their processing time and

maintenance need. Moreover, it has been observed that the choice of batch size and

dispatching rule also affects the system performance. Therefore, a watchful decision is

required by the fab managers while choosing batch size and dispatching rules on the shop

floor.

But the most important conclusion drawn from the analysis is that the input control

has the greatest impact on cycle time and WIP level in wafer fabrication. This conclusion is

consistent with the argument by Wein, Glassey and Resende and Kim et al. [24, 3 and 8].

Moreover, it is noticed that closed loop release method works better than an open loop method

such as uniform release rule. This is mainly because a closed loop release method is capable of

adjusting the release decision responding to the dynamic events, which happen in the system

due to stochastic factors.

The future research will focus on closed loop release methods, considering the real

time status and uncertainties in the system. Furthermore, we would like to test all the

previously developed closed loop release methods in realistic settings of wafer fabrication.

References

1. Arisha, Amr, Young Paul, Baradie, M.El and Hashmi, M.S.J, “Intelligent shop scheduling for

semiconductor manufacturing,” PhD Thesis, School of Mechanical and Manufacturing

Engineering, Dublin City University, 2003.

2. Chern, ching-chin and Haung, Kwei-long, A heuristic control method for a single product, high

volume wafer fabrication process to minimize the number of photomask changes. Journal of

Manufacturing Systems; 23, 1; ABI/INFORM Global, pg 30, 2004.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 358 -

3. Glassey, C.R., and Resende, M.G.C., “Closed-loop job release control for VLSI circuit

manufacturing,” IEEE Transactions on Semiconductor Manufacturing, Vol. 1,No. 1, pp. 36-46,

1988.

4. Glassey, C. R., Shanthikumar, J. G., and Seshadri, S., Linear control rules for production

control of semiconductor fabs, IEEE Transactions on Semiconductor Manufacturing, vol. 9, no.

4, pp. 536-549, 1996.

5. Hopp, Wallace J., L. Spearman, Factory Physics: Foundations of Manufacturing Management,

Irwin/McGraw-Hill, Inc, 2000.

6. Kempf, K, “Intel five-machine six-step Mini-Fab description,”

http://aar.faculty.asu.edu/research/intel/papers/fabspec.html, accessed on 17th Feb 2015.

7. Khouly, Ingy A. El, Kilany, Khaled S. El and Sayed, Aziz E. El, “Effective scheduling of

semiconductor manufacturing using simulation,” World Academy of Science, Engineering and

Technology Vol: 5, 2011.

8. Kim Jongsoo, Leachman Robert.C and Suhn Byungkyoo: Dynamic Release Control policy for

the Semiconductor Wafer Fabrication Lines. Journal of the Operational Research Society 47,

1516-1525, 1996.

9. Kim Dae, Yeong, Lee Ho, Dong and Kim Ug, Jung: A simulation study on lot release control,

mask scheduling, and batch scheduling in semiconductor wafer fabrication facilities. Journal of

manufacturing systems, vol. 17, No. 2, 1998.

10. Kiran, A.S., Simulation and Scheduling, In Handbook of Simulation, ed. J. Banks, 677-717,

New York: John Wiley & Sons, Inc, 1998.

11. Law, Averill M., and Kelton, W. David, Simulation Modelling and Analysis,McGraw-Hill, Inc,

1991.

12. Lin Hsin-Yu, Tsai Hung Chih, Lee En Ching, Liu Kaung Sheng: A dynamic releasing scheme

for wafer fabrication. International Journal of the Computer, the Internet and Management Vol.

15#1, pp 33 – 42, 2007.

13. Lou, Sheldon X. C. and Kager, Patrick W, “A robust production control policy for VLSI wafer

fabrication,” IEEE Transactions on semiconductor manufacturing, Vol. 2, No 4, 1989.

14. Matthias Thürer, Mark Stevenson, Cristovao Silva, Martin Land and Moacir Godinho Filho:

Workload control and order release in two-level multi-stage job shops: an assessment by

simulation, International Journal of Production Research,pg 1-14, 2012.

15. Mazziotti, B.W., and Horne, Jr., R.E., Creating a flexible, simulation-based finite scheduling

tools. In Proceeding of the Winter Simulation Conference, 1997.

16. Qi, Chao and Sivakumar, A. I, Simulation based cause and effect analysis in semiconductor

wafer fabrication, Journal of the Institution of Engineers, Singapore Vol. 44, Issue 4, 2004.

17. Qi, Chao, Sivakumar, A. I. And Gershwin, Stanley .B: An efficient new job release control

methodology. International Journal of Production Research, Vol. 47, No. 3, 1, pg 703–731,

2009.

18. Sivakumar, A.I., “Optimization of cycle time and utilization in semiconductor Test

manufacturing using simulation based, on-line, near-real-time scheduling system,” Proceedings

of the Winter Simulation Conference, 1999.

19. Sivakumar, A.I., “Simulation based cause and effect analysis of cycle time Distribution in

 semiconductor backend,” Proceedings of the Winter Simulation Conference, 2000.

20. Sivakumar, A.I., Chong, C.S., “A simulation based analysis of cycle time Distribution and

throughput in semiconductor backend manufacturing,” Computers in Industry, Vol. 45, pp. 59-

78, 2001.

21. Tabatabaei, R.A and Salazar, Carlos F. Ruiz, “Effective wip dependent (EWD) lot release

policies: a discrete event simulation approach,” Winter Simulation Conference, 2011.

22. Uzsoy, R., Lee, C.Y., and Martin-Vega, L.A., “A review of production planning and scheduling

models in the semiconductor industry – Part І: system characteristics, Performance evaluation

and production planning,” IIE Transactions, Vol. 24, No. 4, pp. 47-60, 1992.

23. Uzsoy, R., Lee, C.Y., Martin-Vega, L.A., “A review of production planning and Scheduling

models in the semiconductor industry – Part II: shop-floor control,” IIE Transactions, Vol. 26,

No. 5, pp. 44-55, 1994.

24. Wein, L.M., “Scheduling semiconductor wafer fabrication,” IEEE Transactions on

Semiconductor Manufacturing, Vol. 1, No. 3, pp. 115-130, 1988.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 359 -

MISTA 2015

Optimisation of Staff Absences

C. Klöcker · J. Ostler · P. Wilke

Abstract Most timetabling problems to date focus on the presence of employees like nurses
or teachers or, in general, resources like rooms or classes. Although, for example, in nurse
rostering attention is paid to time intervals in which nurses are on a holiday, it seems that –
to the best of our knowledge – no fundamental approach to pure absence planning exists. In
order to fill this gap, we introduce a novel approach to staff absence optimisation through
leave request approval or rejection: the Absence Scheduling Problem (ASP). Using the
Erlangen Advanced Time Tabling Software (EATTS) framework we implemented a very
flexible absence request model that includes alternatives to first choice requests, multiple
periods for a single request, and sophisticated possibilities to specify the requested time
slots within each period. In this paper we describe our data model and the corresponding
problem constraints, like fulfilling minimal staff or absence quota conditions, including a
mathematical model for both.

Additionally, we compare the performance of Tabu Search (TS) and Simulated Anneal-
ing (SA) paired with two different move pools, one of them including repair moves, on the
ASP. For this purpose, we first describe our test data generator and present test results for
problem sizes of 100 and 250 employees afterwards. We show that the ‘advanced’ move
pool with repair moves on the one hand helps TS to find slightly better solutions but, on the
other hand, actually hinders SA’s optimisation process for the smaller problem size while
having a positive effect for the 250 employees problem.

1 Introduction

In the broad field of timetabling problems, two big problem classes have been receiving
most of the scientific attention to date: nurse rostering and school timetabling. We introduce
a new problem class which has certain similarities with these well-established problems, but
– which makes it worth being investigated – some unique characteristics, too: optimisation
of staff absences, or, in short, the Absence Scheduling Problem (ASP). The two problems

Multi Criteria Optimisation Group
Pattern Recognition Lab
Computer Science Dept.
University Erlangen-Nuernberg, Martensstrasse 3, 91058 Erlangen, Germany
E-mail: Peter.Wilke@FAU.DE

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 360 -

mentioned first have fixed time slots for shifts or classes with relatively constant interde-
pendent time scopes for each assignable resource; a nurse must have a certain resting time
between two shifts and should work the same shift for a certain number of days; school
timetables may have certain restrictions for parallel events, i.e. during the same class time
slot, or requirements targeting the whole week.

By contrast, our absence planning model, described in detail later on, potentially has a
great freedom of choice when it comes to granting leave. A leave request may have alter-
natives from which the one to be granted has to be chosen, and each request is also very
variable in terms of specifying the fitting time slots, which may be very numerous and di-
verse in duration: consisting of just a single day or, for instance, a two to three week leave
with 21 possible starting days. Additionally, we define problem specific constraints that also
have very diverse time scopes ranging from one day to the whole planning period and, be-
sides, cause very high interdependencies between requests.

We implemented our absence planning system using the Erlangen Advanced Time Ta-
bling Software (EATTS), a flexible framework with an own XML based description lan-
guage for general timetabling problems [6].

2 The Problem

Timetabling problems usually consist of assigning resources to certain time slots. In nurse
rostering, for example, nurses are assigned to shifts while in high school course scheduling
teachers, rooms, and other resources are assigned to certain fixed time slots. In the ASP,
the according approach is to allocate the employees that will be working to each day of the
planning period , i.e. are not scheduled for a leave. An equivalent problem model, which
we will be using, is the assignment of time slots to absence requests, wherein the time slots
represent a time period in which the corresponding employee is on leave. This model is
outlined in the following.

The time slots suitable for a certain absence request are specified by its periods. Let
P= {p1, . . . , pn} be the set of days in the planning period where ∀k∈{1, . . . ,n−1} : pk, pk+1
are consecutive. A single period has a start date, ps, and an end date, pe, 1 ≤ s ≤ e ≤ n, a
minimum duration, dmin ∈N, and a maximum duration, dmax ∈N, 1≤ dmin ≤ dmax ≤ e−s+
1, and a list of possible start days S = {ps1 , . . . , psm},∀k ∈ {1, . . . ,m} : s≤ sk ≤ e−dmin +1.
From this, the fitting time slots T result by all continuous time intervals that have a duration
between the given minimum and maximum, start on one of the given start days and do not
end after the end date of the period, i.e.:

T = {(pa, pb) | a≤ b,dmin ≤ b−a+1≤ dmax, pa ∈ S,b≤ e}

The planning problem thus is discrete having a granularity of one day, so a period with
x days could have a maximum of x(x+1)/2 fitting time slots. Our period scheme could be
used, for instance, to request a one week leave (duration) sometime in October (start and end
date) starting on Tuesday or Thursday (possible start days) because on those days especially
low priced flights would depart.

Each absence request has at least one period and, optionally, a number of other absence
requests as alternatives; the base request will then be called the first choice. The approval
of a request is equivalent to the assignment of one time slot to each period. Since periods
of a request may overlap with periods of one of its alternatives, it is possible that a time
slot assignment is ambiguous in terms of which request it approves – an example is given in

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 361 -

figure 1 – and the constraints, described later on, thus independently choose for every time
slot the alternative where the lowest costs arise.

May 1 June 30

first choice
alternative 1
alternative 2

period interval (ps, pe)
possible start days (S)
duration (dmin = dmax)
allocated time slot

assignments ap-
proving first choice

assignment approving alt. 1 only

assignments ap-
proving alt. 2 only

assignment approving alt. 1 or 2

Fig. 1 Absence request with alternatives and all of its approving time slot assignments. A valid time slot has
to start on a ‘possible start day’, match the given duration, and must not exceed the period interval. Note that
the first choice can only be approved by assigning two time slots and that the first possible starting day does
not have to correspond with the first day of the period.

3 Problem Specific Constraints

The first conflict of interests in the planning process in most cases arises from the fact that,
on the one hand, all employees want their first choice requests to be approved and, on the
other hand, only a certain number of employees may be on leave at once. With these two
simple premisses the planning problem already becomes considerably hard. Lets say, that on
each day of the planning period at least one employee must be present and that the rejection
of an absence request yields costs of 1. For a single employee, the costs for them to be
working at a time interval that is included in one of their requests would therefore be 1,
otherwise 0. The (work) days of the planning period are thus fully covered by time intervals,
i.e. sets of days, with cost 1 or 0 and the objective is to cover all days with at least one subset
as to satisfy the minimal manning of 1. This optimisation problem is a weighted set covering
problem which has been proven to be NP-hard [4].

3.1 Minimal Manning Constraint

In our planning framework, the ‘minimal manning constraint’ was implemented by defining
groups and the number of employees required for each group on each day of the planning
period. Employees may be members of an arbitrary number of groups and increment the
actual manning of each of their groups by one when they are at work. The applications
of the minimal manning constraint and the requirements themselves can be very versatile:
the constraint can state, for instance, that each company division always needs at least one
appointed first aider to be present, who, simultaneously, could fulfil another manning re-
quirement for his actual job role; that in a special two week period 95% of staff have to be
present for a corporate event; or that on every day at least one barista, three waiters and two

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 362 -

chefs have to be at work. If the minimal manning on one day is violated by a difference of
x employees, the costs for this group are increased by xp, p > 1, so the constraint will yield
more costs if the manning is x employees short on one day, than if it is short one employee
on x days respectively.

Lets consider a single group with manning requirements R= {r1, . . . ,rn},∀k∈{1, . . . ,n} :
rk ≥ 0 for each day of the planning period. Let A = {a1, . . . ,an} be the actual number of em-
ployees not on leave in a certain leave schedule. The minimal manning constraint’s costs,
cman, for a single group are then given by

cman =
n

∑
k=1

(ck)
r,ck = max{0,rk−ak}

For our test setup we used r = 1.2.

3.2 Approval Constraint

The penalty for an absence request rejection, or for approving an alternative rather than
the first choice, is given by the ‘approval constraint’. We use the concept of bonus points
to enable employees to prioritise certain first choice requests over others – their own as
well as requests of different employees. All employees, at the start of each planning period,
receive a fixed number of bonus points, βmax, and distribute them among their requests;
in our model all bonus points are used up, but it could also make sense to let employees
‘bank’ bonus points for use in a later planning period; furthermore, long-term employees or
the severely-disabled could receive more points than others. While bonus points define the
priority between absence requests, an applicant may specify an additional priority value π ,
0 ≤ π ≤ 1, for each alternative of a first choice request, to weight them differently among
each other. The accepted constraint then computes costs using the request’s bonus point
value βreq, in case of a complete rejection, and the respective priority πalt, in case that an
alternative is approved rather than the first choice.

In mathematical terms, at first the influence of the bonus points is given by

γbonus = c1 ·
βreq

βmax
+ c2

and is used to compute the costs of the complete rejection: γfull = γbonus + c3. The costs of a
rejected first choice whose k-th alternative is approved then result from the difference to the
full rejection costs:

γaltk = γfull− (πalt · γbonus + c4)

The constants c1, . . . ,c4 are used to control certain aspects of the cost computation. c2 for ex-
ample represents fixed minimum costs the rejection of an absence request has, independent
from its bonus points. We used the following values: c1 = 30,c2 = 2,c3 = 2,c4 = 1.

A single time slot that is allocated to an absence request may match several alternatives
at once, as shown earlier in figure 1. Accordingly, only the alternative which causes the
lowest costs must be used as reference for the approval constraint. Let Tk be all the fitting
time slots of alternative k; then the minimal costs of an allocated time slot (pa, pb) are

c(pa,pb) = min
k|(pa,pb)∈Tk

{γaltk}

and the approval constraint’s final costs, capp, for a single absence request with allocated
time slots P̃:

capp =

{
γfull P̃ = /0
max(pa,pb)∈P̃{c(pa,pb)} else

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 363 -

3.3 Quota Constraint

Additionally, the granted absence days of an employee, for instance for holiday leaves, must
not sum up to more than a certain quota the employee can use. This could be avoided by
preventing beforehand that employees apply for more days than they are entitled to, but this
would also mean that they could only utilise the quota fully if no request was rejected. For
this reason, we use the ‘quota constraint’ that, for every employee, checks each quota for
under- and over-usage. An application example for lower and upper quota bounds is the
German labour law that requests the usage of at least 12 out of 24 paid vacation days for
recreational purposes, with 24 days being the minimal granted annual amount for full-time
employees. As in the minimal manning constraint, the costs are higher for a single severe
violation than for several light violations.

Since our period model, as described before, allows time slots with variable durations to
grant the same absence request, and thus causing the same costs in the approval constraint,
planning algorithms would tend to assign time slots with minimal duration as longer ones
would cause more manning violations. At this point, the quota constraint is of great impor-
tance because it counteracts such tendencies since short time slots alone would most likely
not sum up to the minimum quota usage.

Every quota has a validity period v = (pi, p j), i ≤ j, and a minimum, qmin ∈ N0, and
maximum, qmax ∈ N, of days to use within this period (to simplify matters, we here only
consider quotas whose validity periods do not overlap). Let T be all allocated time slots for
a certain employee, not only those belonging to a single request. The number of days these
time slots overlap the quota’s validity period is thus given by:

u = ∑
(pa,pb)∈T

(max{0,min{b, j}−max{a, i}}+1)

and the quota constraint’s costs for a single employee and a single quota type by:

cquota =

(
max

{
0,c1 ·

qmin−u
qmin

})c3

+

(
max

{
0,c2 ·

u−qmax

qmax

})c4

We used c1 = 20,c2 = 20,c3 = 2,c4 = 2.

3.4 Time Clash Constraint

Finally, it is not only sufficient to allocate fitting time slots (or none) for each absence request
period to construct a feasible solution, but it is also required to avoid overlaps between the
granted absence periods of one employee. We postulate that feasible problem input data
has no possible intersections between first choice periods. However, request alternatives are
allowed to possibly intersect each other. The ‘time clash constraint’ produces relatively high
costs for any such overlap to guide solutions to a feasible region without prohibiting them
altogether to visit ‘clash regions’ as intermediate results.

4 Move Pools

To visit the neighbourhood of a certain planning solution, we implemented two different
sets of possible next moves: a ‘naïve’ move pool which just randomly changes time slot
assignments and an ‘advanced’ pool that additionally takes the current constraint violations

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 364 -

into account. The naïve pool contains the moves necessary to explore the whole search
space: a rejection move to deallocate all time slots from an absence request and a change
move to make a new random time slot assignment. It also contains a move allocating first
choice time slots and a move that only assigns time slots to a rejected request, i.e. presently
without any time slots. Those four moves each operate on a randomly chosen target request
and are all executed with equal probability.

The second, advanced move pool additionally works with repair moves. A repair move
tries to mitigate a specific conflict in the current planning solution. Since conflicts are defined
by the corresponding constraints, each constraint has its repair move. It would be unwise to
try and find the correction which solves a local conflict best as a specific constraint’s repair
move is independent from the other constraints: a minimal manning conflict, for example,
is locally solved best by rejecting all involved requests which directly leads to high costs in
the approval constraint. For this reason, our repair move implementations randomly try to
change affected requests and return the first new assignment that causes less violations in
the constraint being repaired. In addition to the repair moves, the advanced move pool also
includes the basic reject and change moves also used by the naïve pool. A repair move is
chosen over one of the two basic moves with a rate of 2 : 1.

5 The Algorithms

Our first focus lay on getting a general idea of the challenges in absence optimisation
and the influence of the two different move pools. Consequently, we at first used well-
established metaheuristics which we adapted to our specific problem only to a small extent
as to capitalise on the performance of the basic approaches. The two metaheuristics we em-
ployed were Tabu Search (TS) [2] and Simulated Annealing (SA) [5], which both are not
population-based and strongly influenced by their neighbourhood definition given by the
move pool.

Our implementation of TS follows basic design paradigms described, for example, in [3].
The tabu list length is equal to the problem dimension, that is, the total number of first choice
requests; it is kept fixed throughout the optimisation. For our problem model, the full neigh-
bourhood of a current solution would consist of all other solutions visitable by a single
move. Since the size of this neighbourhood is too large for an efficient TS implementation,
we artificially limited the neighbourhood size by choosing a fixed number of random moves
as candidates representative for the complete neighbourhood. A tabu list entry is generated
by computing the delta of newly allocated/deallocated absence days from the last executed
move. An exemplary computation is shown in figure 2: Only those days that have not been
allocated before are prohibited to be deallocated and those that have newly been deallocated
are prohibited to be allocated again. We did not incorporate any major changes to the stan-

October 12 November 5

old
new

tabu entry
possible

deallocation is forbidden allocation is forbidden

Fig. 2 Example of tabu list entry generation. New and old time slots are compared and the tabu list is filled
accordingly. An assignment that would still be allowed afterwards is given as ‘possible’.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 365 -

dard algorithm design [1] in the SA either. The only deviation consists of an adaptive cooling
scheme which pays attention to a predefined maximum iteration count and thus incorporates
slower cooling for more iterations and vice versa.

We carried out preliminary experiments to determine good parameters for our algorithms
and ended up with a cooling factor of 0.95 for SA and 20 as the neighbourhood size for TS;
these values delivered the best expected – as we are dealing with randomised algorithms and
initialisation – solution quality.

6 Results

Due to data privacy protection issues, real-world leave application data unfortunately was
not accessible for testing at the time of writing this paper. We therefore designed a ran-
domised test data generator according to typical real-world conditions:

– The planning period spans over a single calendar year.
– Employees have a quota of 30 days for holiday leave, of which 14 days should be granted

at least.
– The probability that an employee applies for a leave is higher on bridge days and during

(German) school holidays.
– There is a group hierarchy with, for a total of n employees, n/10 ‘base groups’ and a

probability of 10/n that a certain employee is in a certain base group. There are also
k additional groups with probability 0.3k for an employee to be member of additional
group k. This can be interpreted as a hierarchy of superiors with three superiors per base
group on the first level, 0.3 of those on the second, and so forth.

– The minimal manning requirement for all groups is increased around mid-year.
– Employees are randomly assigned to groups according to the respective group member-

ship probability but are member in at least one group. Paired with the hierarchical group
model, the absence or presence of an employee has a high probability to influence the
headcount of more than one group at once.

– Employees use an average of 95% of their leave quota for absence requests.

Exemplary test data generated thus with 100 employees had more than 10343 potential
solutions1, other data with 500 employees had 101951 solutions. In figure 3 an example of
a generated absence request distribution and the corresponding minimal manning require-
ments is shown (for the sake of simplicity, all employees are in one single base group only).
It is impossible in our test setup to find a solution with no constraint violations, because on
several days more first choice requests overlap than would be allowed to fulfil the minimal
group manning, and the rejection of a first choice always causes costs > 0.

All optimisation runs were executed on a machine with an Intel R© CoreTM i5-3570K pro-
cessor (4 cores, maximum clock rate 3.5GHz) under a 64-bit Ubuntu Linux version 14.04.
Solutions were initialised randomly, i.e. by assigning random feasible time slots to each ab-
sence request or rejecting it. The maximum optimisation time was chosen arbitrarily only
with respect to providing TS with a sufficiently generous time to converge.

In table 1 the averaged results of ten optimisation runs for problem sizes of 100 and
250 employees are shown. It is interesting to note that the advanced move pool could only
slightly improve some results and even caused significantly worse final costs in some cases.
Figure 4 shows the costs of the best solution found so far over time for single representative

1 approx. 700 first choice requests with an average of one alternative each, slightly more than one period
per request, and about 5 possible time slots per first choice/alternative

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 366 -

15

0
January 1st
2014

December 31st
2014

summer holidaysbridge day

Fig. 3 Plot of generated test data with 50 employees. For each day of the planning period the accumulated
number of overlapping first choice absence requests (dark grey) and the maximum allowed number of ab-
sent employees (light grey) are shown. Gaps in the latter result from days where the minimal manning is 0
(Sundays and public holidays).

naïve move pool advanced move pool
simulated annealing tabu search simulated annealing tabu search

100
costs at start 5254.96 5343.54 5425.37 5268.26

final costs 522.9 575.9 529.57 540.84
time [s] 440 440 430 430

250
costs at start 13333.84 13258.21 12921.56 13273.32

final costs 1067.56 1197.44 1074.68 1118.5
time [s] 1034 1034 1101 1101

Table 1 Averaged minimal final costs after ten test runs found by TS and SA for randomly generated prob-
lems with 100 and 250 employees.

algorithm executions. Although for the 100 employees problem, the advanced move pool
caused SA to find better solutions faster within the first half minute of execution, it in fact
led to a slower convergence speed that did not even result in lower costs. This may be
due to the fact that the computation of repair moves is more complex and takes thus more
time such that, on the one hand, more algorithm iterations with the naïve move pool can
be executed in the same time compared to using the advanced pool. On the other hand, the
solely random moves do not reduce the search space by concentrating on specific current
constraint conflicts and thereby allow more different solutions to be visited and possibly
better ones to be found. However, the advanced move pool did improve SA’s optimisation
process for the larger – 250 employees – problem. It seemed like the higher problem size
did relativise the computational overhead of the advanced move pool such that the additional
effort proved to be worthwhile in the end.

Besides the influences of the two move pools, the final results of SA were a little better
than those of TS while the latter reached good solutions a lot earlier.

7 Conclusion and Future Work

We have shown that the optimisation of staff absences, at least the way we modelled it,
is no easy task: the ASP has a considerably large search domain, constraints with high
interrelation among each other, and diverse factors that cause high variability in the input
data, like school and public holidays or different general workload throughout the planning
period. It remains to be determined whether, and to what extent, the modelling possibilities,

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 367 -

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.1 1 10

co
n
st

ra
in

t
co

st
s

 50 100 150 200 250 300 350

elapsed time [s]

SA + advanced move pool
TS + advanced move pool

SA + naive move pool
TS + naive move pool

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0.1 1 10

co
n
st

ra
in

t
co

st
s

 100 200 300 400 500 600

elapsed time [s]

SA + advanced move pool
TS + advanced move pool

SA + naive move pool
TS + naive move pool

Fig. 4 Exemplary optimisation runs on the 100 employee (top) and 250 employee (bottom) problem. The
different starting costs are the result of randomised initialisation and first optimisation step of the respective
algorithm.

for instance multiple periods per request, will be incorporated in real-world applications or
whether they cause negative feedback by overcomplicating the leave application process.

Additionally, we demonstrated how the ‘usual suspects’ TS and SA can improve a ran-
domly initialised solution by a great deal, but that special attention has to be paid on the
possible negative effects of more sophisticated move pools as is strongly suggested by our
simulation runs.

Our next steps will include optimisation runs on anonymised real-world data and closer
examination of the acceptance of the generated vacation schedules, both by the applicants
and those responsible for planning.

References

1. E. Aarts, J. Korst, and P. Laarhoven. Simulated Annealing. In E. Aarts and J. K. Lenstra, editors, Local
Search and Combinatorial Optimization, pages 91–120. John Wiley & Sons Ltd., 1997.

2. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.
3. A. Hertz, E. Taillard, and D. de Werra. A Tutorial on Tabu Search. In Proceedings of Giornate di Lavoro

AIRO, volume 95, pages 13–24, 1995.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 368 -

4. R. M. Karp. Reducibility Among Combinatorial Problems. In R. E. Miller and J. W. Thatcher, editors,
Complexity of Computer Computations, pages 85–104, New York, 1972. Plenum Press.

5. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Annealing. Science, 220:671–
680, 1983.

6. J. Ostler and P. Wilke. The Erlangen Advanced Timetabling System (EATTS) Unified XML File Format
for the Specification of Timetabling Systems. In Proceedings of the 8th International Conference on the
Practice and Theory of Automated Timetabling, pages 447–464. Patat2010 – Queen’s University Belfast,
2010.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 369 -

MISTA 2015

Solving Huge Real-World Timetabling Instances

Gerald Lach · Mirjana Lach · Erhard Zorn

Abstract In this paper, we present a new IP-based model for the university course

timetabling problem. It has been applied successfully to huge real-world instances. We

have been able to generate timetables at RWTH Aachen University and Technische Uni-

versität Berlin—two of the largest technical universities in Germany—with more than

30,000–40,000 students, serious room limitations, and several additional constraints.

1 Introduction

Before the start of a new semester, universities are confronted with the problem of

coordinating courses, rooms, lecturers, and student groups in such a way that the

generated course timetable satisfies a multitude of needs. This problem is called the

university course timetabling problem (UCT)—and known to be NP-complete. Owing

to the complexity of the problem as well as many organizational issues, most universities

do not generate automated timetables. Due to the lack of adequate tools, the majority

of German universities do not calculate suitable timetables. As a result, the old course

timetables are maintained year after year. This way of coordinating the resources often

leads to serious problems: Changes in the courses of study—for example, changes due

to the Bologna process—result in new challenging demands on the timetable which are

often impossible to satisfy by just manually adapting the old one. Furthermore, the

hoarding of room capacity by lecturers causes an enormous waste of room resources

and results in costs—which are avoidable.

Gerald Lach
Technische Universität Berlin, Institute of Mathematics/innoCampus
E-mail: lach@math.tu-berlin.de

Mirjana Lach
Technische Universität Berlin, Institute of Mathematics/innoCampus
E-mail: mlach@math.tu-berlin.de

Erhard Zorn
Technische Universität Berlin, Institute of Mathematics/innoCampus
E-mail: erhard@math.tu-berlin.de

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 370 -

University course timetabling remains a challenging issue. Especially large univer-

sities with more than 30,000 students often get overstrained owing to the creation of

timetables that satisfy all requirements. Due to the high complexity of the problem,

manually creating timetables seems impossible. On the other hand, although the uni-

versity course timetabling problem has been of great interest over the past few years,

there has been little research on solution methods that focus on such huge problems.

With our work, we take a first step to close this gap, and present a solution to this

problem. So far, our method has been successfully implemented at two of the largest

technical universities in Germany: RWTH Aachen University and Technische Univer-

sität Berlin.

1.1 History

In 2003, a team of innoCampus, a department of TU Berlin, started research on new

ways to deal with university timetabling problems. Over the decade, the IT system

MosesKonto was developed as a technical basis, consisting of a variety of components:

IP solver, database, graphical user interface, and web services. After having successfully

introduced new solution methods for the post-enrollment timetabling problem in 2003

([5],[4]) and the examination timetabling problem in 2010 at TU Berlin, the innoCampus

team and the department of operations research at RWTH Aachen University were

contacted by the administration of RWTH Aachen University. Owing to an increasing

number of first-year students in 2013 and a delay in constructing new lecture halls,

RWTH Aachen University had to improve the coordination of their resource ‘room’.

In 2012, innoCampus and the department of operation research started the carpe diem

project. The aim of the project was to extend the MosesKonto by a tool—including an

IP solver—that is capable to automatically generate a conflict-free course timetable for

all courses taught at RWTH Aachen University—a university with more than 42,000

students, 1,200 lecturers, and 500 rooms. Furthermore, the generated timetable had to

be accepted by all users. After one year of researching, implementing and collecting

data, the first automatically generated timetable for fall semester 2013 was published

in June 2013. One and a half years later, TU Berlin also stopped copying the old course

timetables and started to create them automatically with the MosesKonto.

1.2 Our contribution

In the last 10 years, scheduling in general and timetabling in particular have been a

point of interest in research. The conference series Practice and Theory of Automated

Timetabling (PATAT) only addresses timetabling problems. Every four years, as part

of the International Timetabling Competition (ITC), best solution methods for stan-

dardized problem formulations are looked for. In all the problem instances considered

in the ITC, the problem size had been significantly smaller than the problem sizes we

had to deal with at RWTH Aachen University or TU Berlin. While in ITC 2007 and

2011 no instance with more than 400 courses and 50 lecturers had been included in the

test sets, our solution methods had to solve approximately 5–8 times larger instances.

In this paper, we introduce our approach for solving huge university course time-

tabling problems. The problem is decomposed into two parts; depending on their type,

courses are scheduled in the first step or in a subsequent second step. If a course consists

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 371 -

of a multitude of lectures, and every attending student has only to participate in one

of them, we categorize the course as a ‘tutorial’ and consider it in the second step,

otherwise in the first one. Though the problems of the first and the second step appear

to be similar, there is one difference that impacts the model significantly. Although

the definition of a ‘conflict’ between non-tutorial courses is straightforward, this could

not be applied to tutorials. This difference results in different problem formulations

that are solved consecutively. Both steps are solved using integer programming (IP)

techniques.

We tested our solution method on various real-world problem instances from RWTH

Aachen University and TU Berlin, and were able to find good feasible solutions for all

instances in reasonable running times. Differences in the structure of the universities

lead to a discrepancy in the quality of the solutions. While it generally took one day

to find a solution with an optimality gap of 15 % for the problem instances of RWTH

Aachen University, problems of TU Berlin could be solved nearly optimally in less than

two hours. To the best of our knowledge, we are the first to solve such huge timetabling

problems, and whose methods have been successfully implemented at universities.

1.3 Related work

Over the past few years, university course timetabling problems have received a lot

attention. Many heuristic (e.g. [10], [11]) or logic programming ([1]) solution methods

have been published. In the last six years, integer programming techniques ([2], [8]) have

also been used. Although we do not use a two-stage decomposition in firstly assigning

timeslots and secondly rooms, the presented model is based on the work of Lach and

Lübbecke [7]. Due to the requirements of RWTH Aachen University and TU Berlin—

mainly a variety of different spans of the course timeslots—the model described in [7]

was not applicable. Other time-room decomposition approaches as discussed in [12] are

also not suitable. Due to tight room resources, we did not consider neglecting the room

resources in the first step.

As mentioned before, the majority of the published solution methods for the uni-

versity course timetabling problem focus on solving complex, combinatorial but small

problem instances. One project UniTime also focuses on solving larger timetabling in-

stances. In [10], a detailed explanation of an approach for solving timetabling instances

for up to 7,000 students is given. In contrast to our approach, here heuristics methods,

as opposed to integer programming techniques, are used.

2 Problem formulation

In the following sections, we introduce our IP formulation for both steps of the decom-

position model. For ease of exposition, we do not introduce a bunch of soft constraints.

The soft constraints were mainly added to the IP formulation in order to be able to

model deductive requirements stipulated by the lecturers. Neglecting these would enor-

mously decrease the user acceptance and result in a failure of the project. A detailed

research on the soft constraints will be presented in an upcoming article.

We denote C = CT ∪ CN to be the set of all courses, and L to be the set of

all lectures. CT ⊂ C is the set of all courses c which are of the type tutorial, and

CN ⊂ C the set of all non-tutorial courses. Each course c comprises multiple lectures

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 372 -

Lc ⊂ L, and for every lecture l, we denote lc ∈ C the course belonging to l. The set of

all lectures belonging to a tutorial course is denoted by LCN

, and the set of lectures

belonging to a non-tutorial course by LCT

. There is a structural difference between a

course cT ∈ CT and a course cN ∈ CN : Every student who participates in course cN

has to attend all lectures l ∈ LcN , whereas a student participating in the course cT

has to attend only one lecture l ∈ LcT .

Furthermore, let D be the set of the days of a week, H be a set of pairwise disjoint

times of day intervals and T = {(d, h) : d ∈ D,h ∈ H} the set of all possible timeslots.

Assuming for all h1, h2 ∈ H to be disjoint, consequently all t1, t2 ∈ T are disjoint.

Most of the problems known in the literature—e.g. [9] or [8]—assume that all lectures

are of the same duration. We found that this formulation is not sufficient to model the

situation at German universities. Therefore, we introduced the following set of periods:

P = {(d,
m⋃
i=1

hi) : d ∈ D, 1 ≤ n ≤ |H|, hi, hi+1 are consecutive} (1)

For every lecture l, we denote the set of all eligible periods Pl ⊂ P , and for every

course c, we denote all eligible periods Pc =
⋃

l∈Lc
Pl.

For ease of presentation, we define a timeslot t = (dt, ht) ∈ T to be an element of

a period p = (dp,
⋃n

i=1 h
p
i) (t ∈ p) if dt = dp and ht ∈

⋃n
i=1 h

p
i .

Moreover, we extended the commonly used model of the resource room in order

to fit needs of the real world. For a non-negligible number of courses, we had to offer

the ability to be held in multiple rooms at the same time—some lectures have to be

live-streamed in another room, or laboratories are to be held simultaneously. Therefore,

for the set of rooms R, we define the set of room groups in the following manner:

RG = {rg ∈ 2R : ∃l ∈ L such that l is to be held in all r ∈ rg at once} ⊂ 2R (2)

With RGr ⊂ RG, we denote all room groups which room r is a part of, with

RGl ⊂ RG all for lecture l appropriate room groups and Tr ⊂ T all timeslots for which

room r is available. Based on the availability of the rooms, we deduce the (period)

availability of a room group Prg ⊂ P as follows:

Prg = {p ∈ P : ∀r ∈ rg∀t ∈ p t ∈ Tr} (3)

Time conflicts are represented by two conflict graphs Gconf = (Vconf, Econf) and

Ĝconf = (V̂conf, Êconf). While Gconf = (Vconf, Econf) is used to model the time conflicts

to be considered in the first decomposition step, Ĝconf = (V̂conf, Êconf) is suitable for

the time conflicts in the second step. Each node in Vconf = {(l, p) : l ∈ L∧p ∈ Pl ∧ lc ∈
CN} and V̂conf = {(l, p) : l ∈ L ∧ p ∈ Pl ∧ lc ∈ CT } represents a possible period p

where lecture l should take place. Two nodes v1 = (l1, p1), v2 = (l2, p2) are adjacent if

l1 held at p1 prohibits l2 to be held at p2. There can be a number of reason for adding

a conflict to Gconf, for example some student groups may be compelled to take l1 and

l2 at the same time, or l1 and l2 have the same instructor, or for all student groups

at least one lunch slot per day should be free. Ĝconf has less edges. At most, an edge

v1 = (l1, p1), v2 = (l2, p2) is added to the graph if p1 = p2 and l1 and l2 are both

instructed by the same lecturer.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 373 -

2.1 Integer program of the first step

In the first step of our decomposition approach, we disregard all lectures l ∈ LCT

.

In our opinion—due to the ability of the students to opt for just one of the many

possible lectures, the conflicts for all lectures l belonging to a tutorial are soft and can

be coordinated in a secondary way—this approach is suitable.

Before creating the model based on the first part, we preprocess and calculate an

inclusion minimal clique cover U ⊂ 2Vconf of Gconf using the algorithm introduced by

Kou, Stockmeyer, and Wong introduced in [6].

The IP formulation is a modified version of the well-known tree-index formulation

presented in [7]. With the modification, the model turned out to be suitable to solve

huge timetabling instances. For all v = (l, p) ∈ Vconf, we introduce a binary variable

xl,p which is set to one if lecture l takes place at period p. Furthermore, we define

LRGP = {(l, p, rg) : (l, p) ∈ Vconf ∧ p ∈ Prg ∧ rg ∈ RGl} (4)

to be the set of all feasible lecture-period-room-group assignments. For each element

(l, rg, p) ∈ LRGP , we define a variable yl,rg,p which is set to one if lecture l is scheduled

in room group rg at period p, otherwise it is zero. Adding an objective coefficient ul,rg,p
to yl,rg,p representing time respectively room preferences of the lecturer and dummy

variable dl, we formulate the model as follows:

min
∑

(l,rg,p)∈LRGP

ul,rg,p · yl,rg,p+
∑

l∈LCN

1, 000 · dl (5)

s.t.
∑
p∈Pl

xl,p + dl = 1 ∀l ∈ LCN

(6)

∑
(l,p)∈Ui

xl,p ≤ 1 ∀Ui ∈ U (7)

xl,p −
∑

(l,rg,p)∈LRGP

yl,p,rg = 0 ∀(l, p) ∈ Vconf (8)

∑
rg∈RGr,t∈p,(l,rg,p)∈LRGP

yl,rg,p ≤ 1 ∀r ∈ R, t ∈ T (9)

xl,p ∈ {0, 1} ∀(l, p) ∈ Vconf (10)

yl,rg,p ∈ {0, 1} ∀(l, rg, p) ∈ LRGP (11)

Constraint (6) guarantees that every lecture is assigned a period. (7) guarantees a

conflict-free coordination of the lectures. In (8), it is ensured that every lecture takes

place in an appropriate room group and finally in (9) it is ensured that no room is

booked twice at the same time. For a clear arrangement of the formulation, we skip

some specific needs of TU Berlin and RWTH Aachen University which could be easily

integrated into the model. For example, there are some lectures that do not need any

room to be assigned to but have to be considered in the formulation in order to ensure

conflict-free coordination of the lectures.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 374 -

2.2 Integer program for the second step

The basic idea in the second step of our decomposition approach is to simulate a post-

enrollment course timetabling problem by taking into account the created timetable of

the first decomposition step—for a detailed description of the post-enrollment course

timetabling problem, see [3]. We base our formulation on the availability of the study

plans of all programs of study at the university and define a student group as a set of

students of a specific term pursuing a particular program of study. By denoting SG the

set of all student groups, we define Csg ⊂ C as the set of all courses the student group

sg should take based on their study plan and SGc ⊂ SG the set of student groups

participating in course c. In addition, we define the average lecture capacity (alc) of a

c ∈ CT :

alc(c) =

∑
sg∈SGc

|sg|
|Lc|

(12)

In order to find a globally feasible solution, we have to consider the solutions of

the first part in the second part. Especially it is important to block slots for student

groups that have been assigned compulsory courses. Assuming Usg ⊂ C to be the set of

compulsory courses of student group sg, we define remaining student group timeslots

(RSGT) as follows:

RSGT = {(sg, t) : ∀c ∈ CN ∩ Usg 6 ∃l ∈ Lc such that t ∈ p and xl,p = 1 } (13)

Based on the remaining student group timeslots, we claim the set remaining student

group periods (RSGP) as follows:

RSGP = {(sg, p) : sg ∈ SG, p ∈ P ∧ 6 ∃t ∈ p such that (sg, t) 6∈ RSGT} (14)

The set student group course periods (SGCP) represents all periods P when mem-

bers of a student group sg are able to attend a lecture l of the (tutorial) course c:

SGCP = {(sg, c, p) : sg ∈ SG c ∈ Csg p ∈ P such that (sg, p) ∈ RSGP ∧ p ∈ Pc}
(15)

To avoid overbooking, we make allowance for the room occupation plan calculated

in the first step and define P̂rg:

P̂rg = Prg\{p ∈ P : ∃l ∈ L ∃r ∈ rg ∃r̂g ∈ RGr ∃t ∈ p ∃p̂ ∈ P t ∈ p̂ ∧ yl,r̂g,p̂ = 1}
(16)

Based on P̂rg, we set the lecture-period-room-group-assignment ̂LRGP of the sec-

ond step as follows:

̂LRGP = {(l, rg, p) : (l, p) ∈ V̂conf ∧ p ∈ P̂rg ∧ rg ∈ RGl} (17)

Similar to the model of the first part, every v ∈ V̂conf is represented by a binary

variable x̂l,p set to one if lecture l takes place at period P and every (l, rg, p) ∈ ̂LRGP

by another binary variable ŷl,rg,p set to one if lecture l takes place at period P in room

group rg. Additionally, for every triple (sg, c, p) ∈ SGCP , we introduce an integer

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 375 -

variable z, which implies the number of member sg participating at period p in a

lecturer of course c. Finally, adding dummy variables dsg,c, which are penalizing if a

student group member is not able to visit any lecture of a tutorial course he should

have to, we get the following integer program:

min
∑

(l,rg,p)∈ ̂LRGP

ul,rg,p · ŷl,rg,p+
∑

sg∈SG

∑
c∈Csg

10 · dsg,c +
∑

l∈LCT

1, 000 · dl (18)

s.t.
∑
p∈Pl

xl,p + dl = 1 ∀l ∈ LCT

(19)

∑
(sg,c,p)∈SGCP

zsg,c,p + dsg,c = |sg| ∀sg ∈ SG,∀c ∈ Csg (20)

∑
(sg,c,p)∈SGCP,t∈p

zsg,c,p ≤ |sg| ∀sg ∈ SG,∀t ∈ T (21)

∑
(sg,c,p)∈SGCP

zsg,c,p −
∑
l∈Lc

alc(c) · x̂l,p ≤ 0 ∀c ∈ CT , ∀p ∈ Pc (22)

x̂l1,p1
+ x̂l2,p2

≤ 1 ∀((l1, p1), (l2, p2)) ∈ Êconf

(23)

x̂l,p −
∑

(l,rg,p)∈ ̂LRGP

ŷl,rg,p = 0 ∀(l, p) ∈ V̂conf (24)

∑
rg∈RGr,t∈p,(l,rg,p)∈ ̂LRGP

ŷl,rg,p ≤ 1 ∀r ∈ R, t ∈ T (25)

x̂l,p ∈ {0, 1} ∀(l, p) ∈ V̂conf (26)

ŷl,rg,p ∈ {0, 1} ∀(l, rg, p) ∈ ̂LRGP (27)

zsg,c,p ∈ N ∀(sg, c, p) ∈ SGCP (28)

Constraint (20) and (21) ensure every student group member is assigned to the

lectures of all (tutorial) courses without conflict. Constraint (22) guarantees that for

all possible periods the capacity of the lectures is sufficient for the assigned students.

All remaining constraints can be easily deduced from the integer program (5) – (11).

3 Results

Our model has been successfully applied to problem instances at TU Berlin and RWTH

Aachen University. Both universities are among the largest in Germany, and for both

we were able to find feasible and nearly optimum solutions in reasonable running time.

In Table 3, basic conditions of TU Berlin and RWTH Aachen University are presented.

Some problem characteristics turned out have an enormous influence on the per-

formance of the solver. In particular, the size of the set H significantly affected the

running time. The finer the discretization of the set periods-per-day, the purer the per-

formance of the solver. Therefore, two different definitions of H were used in our test

set: H1 = {08 − 10, 10 − 12, 12 − 13, 13 − 14, 14 − 15, 15 − 16, 16 − 18, 18 − 20} and

H2 = {08 − 10, 10 − 12, 12 − 14, 14 − 16, 16 − 18, 18 − 20}. Moreover, the number of

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 376 -

Table 1 Problem statistics

Uni Semester |C| |CN | |CT | |L| |SG| U |R|

RWTH WS 13/14 2,354 2,312 42 2,915 1,345 1,448 192
RWTH SS 14 2,540 2,487 53 3,601 1,114 1,480 214
RWTH WS 14/15 2,932 2,865 67 3,892 1,382 1,527 227
RWTH SS 15 3,179 2,677 57 3,702 1,135 1,516 276
TUB SS 15 1,970 1,884 86 3,773 704 860 337

conflicts—the number of edges in Gconf—heavily influenced the running time of the

solver. For ease of exposition in Tables 2 and 3, we denote with conf ⊂ C ×C all con-

flicting course tuples, which means if (c1, c2) ∈ conf all lectures of c1 and c2 should not

be scheduled at the same time. Table 2 shows the running time statistics for the first

step of the decomposition model of two representative problem instances, while Table

3 shows the running time statistics for the second step of the decomposition model of

the two problem instances.

Table 2 Problem statistics for the first step

Instance H |conf| Relaxation Root-Node Gap ≤ 20

RWTH WS 14/15 H1 56,647 5,874 sec. 9,770 sec 9,000 sec.
RWTH WS 14/15 H1 25,401 1,380 sec. 21,562 sec. 17,871 sec.
RWTH WS 14/15 H2 56,647 3,583 sec. 8,520 sec. 8,126 sec.
RWTH WS 14/15 H2 25,401 380 sec. 5,064 sec. 2,247 sec.
TUB SS 15 H1 16,170 90 sec. 500 sec. 752 sec.
TUB SS 15 H1 6,467 23 sec. 130 sec. 320 sec.
TUB SS 15 H2 16,170 25 sec. 209 sec. 258 sec.
TUB SS 15 H2 6,467 10 sec. 100 sec. 123 sec.

Table 3 Problem statistics for the second step

Instance H |conf| Relaxation Root-Node Gap ≤ 15

RWTH WS 14/15 H1 10 8 sec. 50 sec. 30 sec.
RWTH WS 14/15 H1 10 64 sec. 170 sec. 170 sec.
RWTH WS 14/15 H2 10 12 sec. 12 sec. 135 sec.
RWTH WS 14/15 H2 10 30 sec. 265 sec. 879 sec.
TUB SS 15 H1 0 140 sec. 3,304 sec. 3,304 sec.
TUB SS 15 H1 0 50 sec. 750 sec. 460 sec.
TUB SS 15 H2 0 132 sec. 1,894 sec. 1,894 sec.
TUB SS 15 H2 0 71 sec. 1,000 sec. 3,200 sec.

4 Outlook

It was a great success for us to be able to to solve such huge timetabling instances and

implementing our software at RWTH Aachen University and TU Berlin. Our future

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 377 -

research will focus on ways to improve the quality of the timetable. One main issue will

concern robust timetabling algorithms. Taking into account the old timetable and the

new basic conditions to come up with a new feasible timetable that largely matches

the old one seems to be an interesting point of view.

References

1. Banbara, M., Soh, T., Tamura, N., Inoue, K., Schaub, T.: Answer Set Programming as a
Modeling Language for Course Timetabling. Theory and Practice of Logic Programming
(2013)

2. Burke, E.K., Mareek, J., Parkes, A.J., Rudov, H.: Decomposition, reformulation, and div-
ing in university course timetabling. Computers & Operations Research 37(3), 582–597
(2010)

3. Ceschia, S., Di Gaspero, L., Schaerf, A.: Design, engineering, and experimental analysis
of a simulated annealing approach to the post-enrolment course timetabling problem.
Computers & Operations Research 39(7), 1615–1624 (2012)

4. Gora, W., Jeschke, S., Lach, G., Lübbe, J., Pfeiffer, O., Zorn, E.: Management and optimal
distribution of large student numbers. In: Proceedings of the Education Engineering 2010,
pp. 1891–1896 (2010)

5. Jeschke, S., Luce, R., Pfeiffer, O., Zorn, E.: Study Management and Allocation of Exercise
Classes for Large Lectures at TU Berlin. In: Proceedings of the CISSE 2007, pp. 235–248.
Springer, Berlin (2008)

6. Kou, L.T., Stockmeyer, L.J., Wong, C.K.: Covering edges by cliques with regard to keyword
conflicts and intersection graphs. Commun. ACM 21(2), 135–139 (1978)

7. Lach, G., Lübbecke, M.E.: Optimal university course timetables and the partial transversal
polytope. In: C. McGeoch (ed.) 7th International Workshop on Efficient and Experimental
Algorithms (WEA08), LNCS, vol. 5038, pp. 235–248. Springer, Berlin (2008)

8. Lach, G., Lübbecke, M.E.: Curriculum based course timetabling: new solutions to Udine
benchmark instances. Annals of Operations Research 194(1), 255–272 (2012)

9. McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A.J., Gaspero,
L.D., Qu, R., Burke, E.K.: Setting the research agenda in automated timetabling: The
second international timetabling competition. INFORMS Journal on Computing 22(1),
120–130 (2010)

10. Müller, T., Rudov, H.: Real-life curriculum-based timetabling with elective courses and
course sections. Annals of Operations Research pp. 1–18 (2014)

11. Murray, K., Schluttenhofer, S.: University course timetabling & student sectioning system
12. Phillips, A.E., Waterer, H., Ehrgott, M., Ryan, D.M.: Integer programming methods for

large-scale practical classroom assignment problems. Computers & OR 53, 42–53 (2015)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 378 -

MISTA 2015

Scheduling a conference to minimize attendee preference
conflicts

Jeffrey Quesnelle · Daniel Steffy

Abstract This paper describes a conference scheduling (or timetabling) problem where, at
the time of registration, participants indicate preferences for events within the conference
that they would like to attend. Based upon these preferences, an assignment of events to
rooms and time slots should be determined that minimizes the number of attendee pref-
erence conflicts and satisfies a number of hard constraints. Ideally the schedule should be
constructed so that for most, or all, participants the events that they would like to attend are
assigned to different time slots. We show that our problem, and several variants of it, are
NP-hard. An integer programming model is developed to solve the problem and a computa-
tional study of this model is performed on instances generated from real data. Improvements
to the model, including a symmetry breaking reformulation and a dualization of some hard
constraints, are shown to significantly improve solution times, making the problem tractable
for the desired real world application.

1 Introduction

This project was motivated by the problem of scheduling events within PenguiCon [5], a
conference organized by the open-source community in Michigan. The conference typically
includes approximately 250 events such as lectures, demonstrations and panel discussions,
all of which must be scheduled into rooms and time slots. Many of the events involve multi-
ple presenters/panelists, and many presenters participate in more than one event; it is a hard
constraint that no speaker can be multi-booked during a given time period. Furthermore,
the registration website will give conference participants the ability to indicate preferences
for events before the schedule is generated, giving the extra complication of trying to gen-
erate the schedule based on these responses that minimizes participant schedule conflicts.
Our problem is related to previously studied conference and class scheduling problems but

Jeffrey Quesnelle
University of Michigan-Dearborn
E-mail: jfquesne@umich.edu
This paper was written while the author was an undergraduate at Oakland University

Daniel Steffy
Oakland University
E-mail: steffy@oakland.edu

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 379 -

includes what we believe is a novel and difficult combination of constraints and objectives.
The goal of this paper is to model our problem, relate it to previous work, and implement
solution methods that can be deployed to schedule the PenguiCon conference in practice.

In Section 2 we discuss some related work. In Section 3 we formally describe our prob-
lem and relate it to previous work, we also show that our scheduling problem, and some
variants, are all NP-hard. Section 4 describes an integer programming model for the prob-
lem. Various improvements to the model are also described and evaluated computationally.
Section 5 provides concluding remarks.

2 Background and related work

One of the oldest scheduling problems that has been studied is the timetable design problem
(TTD). Given a set of time slots, a set of teachers and their available teaching hours, and
a matrix describing which courses each teacher is required to teach, the TTD problem is
the problem of determining if there exists a schedule that satisfies the constraints. TTD was
shown to be NP-Complete in 1976 via reduction from 3-SAT [1]. However it is notable that
certain variants of the TTD problem are known to be polynomial time solvable. For example,
if each teacher is only available for up to two hours, or each teacher is able to teach any class,
then the problem is solvable in polynomial time [2].

The basic TTD model often doesn’t map well onto several common problems such as
scheduling courses for a university. Specifically, the requirement that a teacher must teach
certain classes may be relaxed to describing those classes they are willing to teach. This is
know as the Basic Course Scheduling problem (BCS); it was shown to be solvable in poly-
nomial time by Lovelace [3]. Extensions of the BCS, for example including the requirement
that courses are assigned to rooms, results again in an NP-hard problem.

The scheduling problem considered in this paper more closely resembles the TTD prob-
lem, before introducing it we will give a precise formulation of the TTD. Here we denote
the decision variables as a function f , which gives the assignment of presenters to talks and
hours. We henceforth refer to the courses, or events as talks. We also assume that all talks
have the same length and introduce a set of hours which is used to represent the set of time
slots in which talks can be scheduled.

TIMETABLE DECISION PROBLEM

INSTANCE:
1. a finite set H of hours and numbers n and m indicating the number of presenters

and talks, respectively;
2. a collection P = {P1,P2, · · · ,Pn}, where Pi ⊆ H (there are n presenters and Pi is

the set of hours during which the ith presenter is available for presenting);
3. a collection T = {T1,T2, · · · ,Tm}, where Tj ⊆ H (there are m talks and Tj is the

set of hours during which the jth talk can be given);
4. an n×m matrix G of nonnegative integers (Gi j is the number of hours (times)

which the ith presenter will give the jth talk).
QUESTION: Does there exist a function

f (i, j,h) : {1, · · · ,n}×{1, · · · ,m}×H→{0,1}

(where f (i, j,h) = 1 if and only if presenter i gives talk j during hour h) such that
(a) f (i, j,h) = 1⇒ h∈ Pi∩Tj (the presenter and talk are both available to be sched-

uled at hour h);

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 380 -

(b) ∑
h∈H

f (i, j,h) = Gi j for all 1≤ i≤ n and 1≤ j ≤ m (the ith presenter was sched-

uled for the jth talk the required number of times);

(c)
n
∑

i=1
f (i, j,h)≤ 1 for all 1≤ j≤m and h∈H (no talk has more than one presenter

at a time);

(d)
m
∑
j=1

f (i, j,h) ≤ 1 for all 1 ≤ i ≤ n and h ∈ H (no presenter is giving more than

one talk simultaneously).

3 Conference scheduling problem

We now consider extensions and modifications of the TTD problem that incorporate require-
ments arising from our application.

3.1 Conference TTD Problem

Although the TTD problem is related to our target problem, it does not capture all of the
decisions and constraints involved. One requirement is that some talks may involve multiple
presenters, each of which may have additional differing scheduling conflicts. In the TTD
model, constraint (c) ensures that each talk is scheduled to exactly one presenter. In the case
where multiple presenters are allowed we most likely wish to add a different constraint: that
for each talk every presenter that can be scheduled is scheduled. For example, if Alice is
giving talks A, B, and C, and Bob is giving talks B, C, and D, all scheduled instances of
B and C should include both Alice and Bob. We call this variant the Conference Timetable
Decision problem (CTTD).

CONFERENCE TIMETABLE DECISION PROBLEM

Same as TTD, but with constraint (c) changed to
(c) (Gi j > 0)∧ (Gi′ j > 0)⇒ f (i, j,h) = f (i′, j,h) for all 1 ≤ i, i′ ≤ n, 1 ≤ j ≤ m

and h ∈ H (all presenters that are required to give a talk must be present at all
instances of that talk);

We now show that CTTD is NP-complete via reduction from the Graph k-colorability
problem, the decision problem of determining whether or not a graph admits a k-coloring,
which is well known to be NP-complete [4]. As we will see in the proof, the CTTD problem
is NP-complete even without the inclusion of the availability constraints and even if each
entry Gi j is equal to zero or one.

Proposition 1 CTTD is NP-Complete.

Proof We first note that CTTD is clearly in NP. Given a graph G = (V,E) and a positive
integer k, we will show how to construct an instance of CTTD that is feasible if and only if
G is k-colorable. For simplicity of presentation we assume that G contains no isolated nodes
(coloring of such nodes is trivial). Essentially, a talk is created to correspond to each vertex in
G, each of the k colors corresponds to an hour in which talks can be scheduled and speakers
are created to correspond to the edges in G. More formally, define H = {1,2, · · · ,k} and for
each vertex v j ∈V = {v1,v2, · · · ,v|V |} let Tj = H. For each edge el ∈ E = {e1,e2, · · · ,e|E|}
we let Pl =H. For each el = (vi,v j)∈E, where vi,v j ∈V , we let Ĝli = Ĝl j = 1, and let Ĝlm =

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 381 -

0 for each m 6= i, j. We now have an instance (H,P,T, Ĝ) of CTTD (whose construction was
easily computed in polynomial time).

We now observe that (H,P,T, Ĝ) has a feasible schedule f if and only if G is k-colorable.
Given a feasible schedule f , each vertex va in G is assigned color h, where h is the timeslot
in which talk a is assigned. For any edge el = (vi,v j) ∈ E we note that since a speaker l
was created to give talks i and j they will not be scheduled in the same time slots, and thus
vi,v j are assigned different colors, leading to a valid k-coloring of G. Conversely, given a
k-coloring of G it is easy to construct a feasible schedule f for (H,P,T, Ĝ) using the same
idea. Finally we conclude that CTTD is NP-Complete.

3.2 Basic Conference TTD Problem

Lovelace showed that a relaxed version of TTD (called BCS for “Basic Course Scheduling”)
can be solved in polynomial time using a network flow model [3]. The principal differences
between BCS and TTD are the reduction of many “hard” requirements such as those insist-
ing that presenters give exactly a certain number of talks of a certain type to simply saying
they may give at most the number of talks for which they are willing to give. BCS does
maintain a hard requirement that all presentations must be scheduled, but offers flexibility
in which speaker makes each presentation. We give a formulation of BCS using notation
consistent with our description of the Basic Timetable Decision Problem (BTTD).

BASIC TIMETABLE DECISION PROBLEM

INSTANCE:
1. a finite set H of hours and numbers n and m indicating the number of presenters

and talks, respectively;
2. a collection P = {P1,P2, · · · ,Pn}, where Pi ⊆ H (there are n presenters and Pi is

the set of hours during which the ith presenter is available for presenting);
3. a collection T = {T1,T2, · · · ,Tm}, where Tj ⊆ H (there are m talks and Tj is the

set of hours during which the jth talk can be given);
4. a function L : Z+ → Z+

0 , where L(n) is the maximum number of talks that the
nth presenter can give;

5. a function S : Z+ → Z+
0 , where S(m) is the desired number of instances of the

mth presentation;
6. a function WT P : {1,2, · · · ,n}×{1,2, · · · ,m} → {0,1}, where WT P(i, j) indi-

cates if the ith presenter is Willing To Present the jth talk.
QUESTION: Does there exist a function

f (i, j,h) : {1, · · · ,n}×{1, · · · ,m}×H→{0,1}

(where f (i, j,h) = 1 if and only if presenter i gives talk j during hour h) such that
(a) f (i, j,h) = 1⇒ h∈ Pi∩Tj (the presenter and talk are both available to be sched-

uled at hour h);
(b) ∑

h∈H
f ′(j,h) = S(j) for all 1≤ j ≤ m where f ′(j,h) = 1 ⇐⇒ ∃i with 1≤ i≤ n

such that f (i, j,h) = 1, and 0 otherwise (the jth talk is given the required number
of times);

(c)
m
∑
j=1

f (i, j,h)≤ 1 for all 1≤ i≤ n and h ∈H (there is no more than one presenter

scheduled for each instance of a talk);

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 382 -

(d) f (i, j,h) = 1⇒WT P(i, j) = 1 (only presenters willing to give a talk are sched-
uled for it);

(e)
n
∑
j=1

∑
h∈H

f (i, j,h) ≤ L(i) for all 1 ≤ i ≤ n (the total number of talks that the ith

presenter is scheduled for is at most their maximum number of presentations)

(f)
m
∑
j=1

f (i, j,h) ≤ 1 for all 1 ≤ i ≤ n and h ∈ H (no presenter is giving more than

one talk simultaneously).

Remark 1 BTTD ∈ P [3].

The difference between TTD and CTTD is the ability for presentations to have multiple
presenters, and the requirement that all presenters be scheduled for all instances of a talk.
Likewise, we can formulate a modified version of BTTD that incorporates this new con-
straint which we will call the Basic Conference Timetable Decision problem (BCTTD).

BASIC CONFERENCE TIMETABLE DECISION PROBLEM

Same as BTTD, but with constraint (c) changed to
(c) WT P(i, j) =WT P(i′, j)⇒ f (i, j,h) = f (i′, j,h) for all 1 ≤ i, i′ ≤ n, 1 ≤ j ≤ m

and h ∈ H (all presenters that are required to give a talk must be present at all
instances of that talk);

We observe that after this constraint is introduced, we may apply the same reduction
used in Proposition 1 and thus we have the following.

Proposition 2 BCTTD is NP-Complete.

3.3 Extended Conference TTD Problem

We now present a modification to CTTD that introduces room assignment decisions and
room compatibility constraints. The CTTD problem assigns speakers to talks and time slots
but, as in many other applications, we also require that talks are assigned to suitable rooms.
Furthermore, rooms also may only be available during certain times or suitable for certain
talks and this information must be factored into the problem. This leads us to the Extended
Conference Timetable Decision problem (ECTTD).

EXTENDED CONFERENCE TIMETABLE DECISION PROBLEM

INSTANCE: Same as CTTD, but with the additional parameters:
5. a finite set R of rooms;
6. a collection {A1,A2, · · · ,Ar}, where Ak ⊆ H (there are r = |R| rooms and Ak is

the set of hours during which the kth room is available);
7. a collection {S1,S2, · · · ,Sm}, where Sl ⊆ R (there are m talks and Sl is the set of

rooms that the lth presentation may be given in)
QUESTION: Does there exist a function

f (i, j,h,r) : {1, · · · ,n}×{1, · · · ,m}×H×R→{0,1}

(where f (i, j,h,r) = 1 if and only if presenter i gives talk j during hour h in room r)
such that
(a) f (i, j,h,r) = 1⇒ h∈ Pi∩Tj∩Ar∧r ∈ S j (the ith presenter, jth presentation and

room r are all available to be scheduled at hour h and room r is suitable for the
jth presentation);

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 383 -

(b) ∑
r∈R

∑
h∈H

f (i, j,h,r) = Gi j for all 1 ≤ i ≤ n and 1 ≤ j ≤ m (the ith presenter was

scheduled for the jth presentation the required number of times);
(c) Gi j > 0∧Gi′ j > 0⇒ f (i, j,h,r) = f (i′, j,h,r) for all 1 ≤ i, i′ ≤ n, 1 ≤ j ≤ m,

h ∈ H, and r ∈ R (all presenters that are required to give a talk must be present
at all instances of that talk);

(d) ∑
r∈R

m
∑
j=1

f (i, j,h,r) ≤ 1 for all 1 ≤ i ≤ n and h ∈ H (no presenter is giving more

than one talk simultaneously);

(e)
m
∑
j=1

f ′(j,h,r)≤ 1 for each h∈H and r∈R where f ′(j,h,r)= 1 ⇐⇒ ∃i with 1≤

i≤ n such that f (i, j,h,r) = 1, and 0 otherwise (room r is scheduled for at most
one talk at hour h).

We also note that since this is a clear generalization of CTTD, and in the class NP, it is also
NP-Complete.

Proposition 3 ECTTD is NP-Complete.

3.4 Preference Conference Optimization Problem

We have examined several different variations of scheduling problems as they relate to con-
ferences; we now offer a final variation that will be the subject of study for the rest of the
paper. In particular we are interested in not only finding a schedule that is feasible with
respect to speaker and room logistics, but one that also minimizes attendee preference con-
flicts. Formally, an attendee preference conflict is a tuple (e, j, j′) where e is an attendee,
j, j′ are two events for which e has indicated an interest to attend, and j, j′ are scheduled
to occur during the same time slot. Namely, given the set of conference attendees and their
preferences for talks they would like to attend, we want to minimize the total number of
times that a given attendee has shown preference for a pair of talks that are scheduled in
the same time period. We call the resulting optimization problem the Preference Conference
Optimization problem (PCO).

PREFERENCE CONFERENCE OPTIMIZATION PROBLEM

INSTANCE: Same as ECTTD, but with the additional parameters:
8. a finite set E = {e1,e2, · · · ,et} of attendees;
9. a t×m 0-1 matrix W (We j indicates if the eth attendee would like to attend the

jth talk).
GOAL: Find a function

f (i, j,h,r) : {1, · · · ,n}×{1, · · · ,m}×H×R→{0,1}

that satisfies all the constraints of the ECTTD problem while minimizing the sum
of the attendee preference conflicts where, as described above, an attendee pref-
erence conflict is any tuple (e, j, j′) such that there exist i, i′,h,r and r′ such that
f (i, j,h,r) = f (i′, j′,h,r′) = 1 where We j = 1 and We j′ = 1.

4 Integer programming models

We will present integer programming models that can solve PCO and ECTTD. The data
used to measure the models comes from a real conference held in 2013, which we shall

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 384 -

refer to as PC2013. PC2013 had 195 presenters giving a total of 253 talks. Figure 1 helps
illustrate the data we worked with: each vertex represents a talk and adjacent vertices share
a common presenter and cannot be scheduled at the same time. By Proposition 1, solving
CTTD is equivalent to asking if this graph admits an h-coloring (where h is the number of
time slots available at the conference).

Fig. 1 Presenter conflicts that must be scheduled around in PC2013

4.1 Model for the Extended Conference Timetable Decision Problem

Before describing the model for the PCO problem, we give an integer programming model
where feasible solutions determine values of functions f which correspond directly to sched-
ules that satisfy the constraints laid out in the ECTTD decision problem. We note that the
size of f , i.e. the number of variables in our model, can be very large when building models
corresponding to our application data.

size of f = # of presenters × # of talks × # of hours × # of rooms

For PC2013, size of f = 193×253×37×15 = 27,421,440. This number of variables could
be problematic computationally, however, we know that many (nearly all) of these variables
will be zero based on information we have at formulation time. For example, if a presenter

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 385 -

i doesn’t give talk j, then f (i, j,h,r) = 0 for all h ∈ H,r ∈ R. Although integer program-
ming solver may automatically fix such variables to zero in the preprocessing phase, we
exclude these variables from the model at the time of construction. We create an index set
F ⊆ {1, · · · ,n}×{1, · · · ,m}×H×R where fi, j,h,r ∈F only if presenter i gives talk j; the
talk j, presenter i and room r are available at hour h; and room r is suitable for the jth talk. In
addition to this condition, we restrict the inclusion of variable indices in F to the intersec-
tion of the available hours of all co-presenters (pairs of presenters that give the same talk),
e.g. if co-presenters i, i′ have availability sets {h2,h3} and {h3,h4} (assuming room and talk
availability is at least {h2,h3,h4}) then only variables with h = h3 for these co-presenters
and talk will be included. In practice, the reduction of our solution space to only F gives a
massive performance gain. For PC2013, this immediately reduced the number of variables
down to 91,514 (a reduction of 99.997%).

The variables indexed by F can be thought of as a sparse representation of the interest-
ing elements of the domain of f . In addition to F we will use the index set G to represent
tuples (j,h,r) for which talk j can be given by any presenter at hour h in room r, and vari-
ables g j,h,r will indicate whether or not this occurs. We will now describe a formulation that
implements each of the constraints on f in ECTTD.

ECTTD formulation

minimize: 0 (1)

subject to: (2)

∑
h,r:(i, j,h,r)∈F

fi, j,h,r = Gi j for every presenter i and talk j (3)

fi, j,h,r− fi′, j,h,r = 0 for every talk j with co-presenters i, i′ (4)

∑
j,r:(i, j,h,r)∈F

fi, j,h,r ≤ 1 for every presenter i and hour h (5)(
∑

i:(i, j,h,r)∈F
fi, j,h,r

)
−U×g j,h,r ≤ 0 for each g j,h,r ∈ G (6)

∑
j:(j,h,r)∈G

g j,h,r ≤ 1 for each hour h and room r (7)

binary: fi, j,h,r,g j,h,r (8)

The first requirement (a) of ECTTD merely enforces all availability and suitability sets. We
implicitly enforce this in our model by considering only the variables indexed over F . As
such, no specific constraints are needed in our model.

The second requirement (b) ensures that every presenter is scheduled for all of their
talks, which we receive as parameter G to ECTTD where Gi j is the number of times pre-
senter i should give talk j. For each presenter i and talk j, the sum of the times they are
scheduled (over all hours and rooms) should be Gi j; this is constraint (3).

To ensure requirement (c) we force that all co-presenters have the same schedule for
their shared talk (constraint (4)).

Requirements (a)-(c) guarantee that all presenters are scheduled for their talks and that
co-presenters are scheduled together. Requirement (d) ensures that if a presenter has multiple
talks, then these talks are scheduled during different hours. For each presenter i and hour h,
the sum of their schedule variables for their talks in all rooms must be less than or equal to
one (constraint (5)).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 386 -

The final requirement (e) ensures that room scheduling is exclusive. We would like to
simply iterate over F for a particular pair of hour h and room r, summing all of these
together. If we didn’t allow co-presenters (like TTD) then we could simply make this sum
less than or equal to one. But, for talks with co-presenters this sum varies. To overcome this
we create indicator variables g j,h,r where g j,h,r = 1 whenever talk j is scheduled at hour h
in room r; this is modeled in constraint (6), where U represents a sufficiently large number.
Finally, constraint (6) ensures that no room is multi-booked by checking the sum of g j,h,r
for each pair h,r.

Solving this feasibility problem proved tractable. We solved this formulation with the
open source IP solver CBC on PC2013 with varying numbers of talks pruned out to see how
the model scales. The results are given in Figure 2.

Fig. 2 Run time of ECTTD model

0

5

10

15

20

25

30

35

0 50 100 150 200 250

R
un

tim
e

(s
ec

on
ds

)

Number of talks

+
+

+
+ +

+
+ + +

+
+

+
+

+

+

+
+

+ + + +
+

+
+

+

4.2 Model for the Preference Conference Optimization Problem

We now turn our attention to the Preference Conference Optimization (PCO) problem. PCO
adds an additional layer of complexity to ECTTD by including a matrix of preferences for
attendees with the goal of minimizing the number of conflicts caused by concurrent talks.
Through experimentation we have found that considering these preferences significantly
increases the difficulty of solving our conference scheduling problem. We now present an
integer programming model for PCO.

The PCO model we present builds on our previous ECTTD model. In addition to the G
variables which collapse the four dimensional f function down to three dimensions (talk×
hour× room), all the while considering only those variables for which a feasible schedule is
even possible given the different availability constraints, we will introduce three new classes

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 387 -

of variables for PCO. The first is z which will collapse g to two dimensions (talk× hour).
Next, we will expand z to c which will have a three dimensional range from talk× talk×
hour; it will indicate if two talks j, j′ are given concurrently at hour h. As with previous
models, the corresponding script (e.g. Z for z) will represent the index set of variables that
are possible given availability constraints. The parameter w is constructed from W as a talk×
talk×hour matrix where each entry is the number of attendees who wish to attend both talks
j, j′ for all h when j, j′ can be given based on talk, presenter, and room availability. Formally,
w j, j′,h = |{ek ∈ E : ek has Wk j = 1 and Wk j′ = 1}| for each h where (h, j)∪(h, j′)⊆Z . The
objective function that is minimized in the model is the sum of elements in c.

PCO formulation

minimize: ∑
(j, j′,h)∈C

w j, j′,h× c j, j′,h (9)

subject to: (10)

∑
h,r:(i, j,h,r)∈F

fi, j,h,r = Gi j for every presenter i and talk j (11)

fi, j,h,r− fi′, j,h,r = 0 for every talk j with co-presenters i, i′ (12)

∑
j,r:(i, j,h,r)∈F

fi, j,h,r ≤ 1 for every presenter i and hour h (13)(
∑

i:(i, j,h,r)∈F
fi, j,h,r

)
−U×g j,h,r ≤ 0 for each (j,h,r) ∈ G (14)

∑
j:(j,h,r)∈G

g j,h,r ≤ 1 for each hour h and room r (15)(
∑

j,h:(j,h,r)∈G
g j,h,r

)
−U× z j,h ≤ 0 for each room r (16)

∑
h:(j,h)∈Z

z j,h = Gi j for each talk j and some presenter i (17)

z j,h + z j′,h− c j, j′,h ≤ 1 for each (j, j′,h) ∈ C (18)

binary: fi, j,h,r, g j,h,r, z j,h, c j, j′,h (19)

Constraints (11) - (15) are the same as in our model for ECTTD. Constraint (16) begins to
build the z variables which will be 0-1 indicators of talk j being given at hour h via the same
boolean cast mechanism described previously by collapsing the room entries for j,h in g.
To ensure that only the correct number of zs are set to one, constraint (17) sums all hours h
for each talk j and sets it equal to the number of times that talk j was set to be given in the
problem instance (the matrix G). It is of note that we pick any presenter i’s entry in G for talk
j; although it is possible that a co-presenter i′ may have a different value for Gi′ j requirement
(c) of PCO explicitly forbids this since it would be impossible for all co-presenters to be at
all instances of a talk if they had different entries for their shared talk j, thus we can pick
any presenter i.

The z variables will now be used to generate c, which indicates if a pair of talks j, j′

are being given concurrently at hour h. Specifically, constraint (18) , enforces that z j,h =
1 and z j′,h = 1 =⇒ c j, j′,h = 1. The objective (9) of the model is to minimize the sum of
attendee preference conflicts. Each variable c j, j′,h appears with coefficient of w j, j′,h, which is
the number of attendee preference conflicts generated by talks j and j′ being scheduled in the

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 388 -

same time period. Note that if the coefficient w j, j′,h is nonzero, then the minimization nature
of the problem will force the corresponding c j, j′,h to take zero value whenever possible.

To measure the efficiency of our model we tested it on our sample set PC2013. This
data set included information about talks, speakers and attendance, but did not include at-
tendee preferences (as they were not solicited that year), however we may use this data to
generate reasonable instances by taking the historical attendance data as a basis for generat-
ing hypothetical attendee preferences. Attendance figures we recorded for each talk given at
PC2013; a distribution of the attendance per talk is shown in Figure 3. The sum of all atten-

Fig. 3 Distribution of attendance at PC2013

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

N
um

be
ro

ft
al

ks

Attendance

dance counts was 4101 [6] for around 1000 unique attendees. For the purposes of testing our

model created a W such that
n
∑

i=0
Wi j was equal to the attendance count for that talk j, i.e. we

created an indicated attendance preference for each individual talk attendance at PC2013.
Since individual attendee attendance wasn’t tracked (only totals were) we took some lib-
erties in distributing the preference responses across the attendees in our model. We first
randomly spread the preference responses over the attendees using a uniform distribution;
that is, if talk j had an attendance of 24 in PC2013 then 24 attendees were randomly chosen
to express a preference for attending this talk. We solved our model with commercial solver
Gurobi which returned a solution with an objective value of 0 after 64 seconds, i.e. a sched-
ule with absolutely no attendee conflicts. All computations were run on a machine with 4
12-core Intel Xeon E5-2695 CPUs running at 2.4 GHz with 96 GB of RAM

After finding a non-conflicting schedule for uniformly distributed random attendees that
followed the attendance counts in PC2013 we turned our attention to how the solver would
react when the random attendees were not distributed uniformly. Our intuition was that, like
the actual attendance figures, the distribution of attendance per attendee would not be evenly
spaced out; there would be some attendees who went to many talks, and some who went to

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 389 -

only a few. We chose a normal distribution with µ = 500,σ = 100. For each attendance in the
PC2013 distribution (Figure 3) a random integer from the normal distribution was chosen.
Since µ = 500 those attendees with index around 500 were much more likely to be chosen
to indicate a preference to the talk then those with indices 50 or 950, which implemented
our intuition that a small percentage of attendees will indicate attendance preferences for
many talks while the bulk of those remaining will indicate preferences for relatively few.
In addition, we added a check to ensure that no attendee was selected to attend more talks
than were hours available; such a scenario would automatically preclude a zero objective
value. Even with an extremely powerful computer to run our model on and a state-of-the-art
commercial solver we were unable to solve this instance after 24 hours. To help understand
this phenomenon we created a half-sized problem (half as many talks and hours) and ran the
model with decreasing values of σ and found that the solving time exploded exponentially
as σ decreased; the average running time for σ = 200 was 22 seconds but increased to
22,683 seconds for σ = 100.

4.2.1 Performance considerations

After including attendee preferences in our test models, the integer programming models
became significantly more difficult to solve. One possible cause of this is symmetry present
in the models, a property that often leads to increased solution time [7]. An integer program-
ming model is said to be symmetric if some of its variables can be permuted (nontrivially)
without changing the structure of the problem [8]. Our model exhibits high amounts of sym-
metry in relation to the scheduling of talks in rooms. If two rooms have the same availability
and suitability set then permuting talk assignments among them in each hour produces no
discernible change to the objective. It may be, however, that the solver will choose to branch
early on in its branch-and-bound tree on these room assignments, leading to lots of unneces-
sary computation. In general it is difficult for the solver to detect that such variables “really”
represent the same thing, although there are several mechanisms for determining and avoid-
ing symmetry in solvers [9]. However, it is easy for us to identify this symmetry and avoid
it.

Two rooms will be said to be symmetric if they have the same suitability and availability
sets, i.e. for rooms Rα and Rβ we have that Rα and Rβ are symmetric if and only if

Aα = Aβ and

{i | Rα ∈ Si for all 1≤ i≤ m}= {i | Rβ ∈ Si for all 1≤ i≤ m}.

To break the symmetry we create room classes which will represent several rooms with
the same attributes. First, we make a new room set R′ = {r′ = {r1,r2, · · · ,rp} ⊆ R | all r ∈
r′ are symmetric with each other}. The corresponding new availability set A′ has simply the
common availability set for each new r′ ∈ R′. For the new suitability set S′ we replace each
instance of r with the room class r′ that r is a member of. When we solve our model talks
will be booked to room classes, avoiding the symmetry that arises by having to consider
two essentially “equal” rooms separately. When our model is solved we will have bookings
in room classes, and we can arbitrarily assign the talk to any room in that class. We must
make only one adjustment to our model: Constraint (15) in the PCO model ensures that each
room has only one talk booked in it per hour. For our room classes we wish to relax this,
requiring only that the number of bookings be at most the number of rooms in the class; this
way, when we assign actual rooms from the solved model we can match talks to rooms in a

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 390 -

one-to-one way. Formally, we will change constraint (15) to

∑
j∈Gh,r

g j,h,r ≤ |r|. (20)

It is easy to see that this model degenerates to our regular PCO model when no rooms
are symmetric; in this case each room class would contain only one room. In practice the
removal of the room symmetries increased performance by roughly a factor of 5x for our
solver on PC2013, which contained only three room classes but had fourteen rooms (see
Figure 4).

The next step we took to improve performance was to dualize one class of constraints.
In this technique, these requirements are moved from being hard constraints in the model,
to appearing in the objective function with a sufficiently large penalty to ensure their satis-
faction. We chose to dualize constraint (d), namely that no presenter is scheduled for more
than one talk per hour. Intuitively, this seemed like a promising adjustment because these
constraints are similar in structure to the attendee preference conflicts that are minimized in
the objective function. We first created 0-1 indicator variables di,h = 1 ⇐⇒ presenter i is
doubly (or more) booked at hour h by changing (13) (which enforced (d)) to ∑

j,r∈Fi,h

fi, j,h,r

−U×di,h ≤ 1. (21)

Where U is a sufficiently large number. The left hand side of (21) is the number of times
that presenter i is scheduled at hour h, and di,h may be 0 or 1 if this sum is less than 2, but
must be 1 if the sum is 2 or greater. We then changed the objective (9) to

minimize: ∑
(j, j′,h)∈C

w j, j′,h× c j, j′,h + ∑
(i,h)∈D

U×di,h. (22)

Our new objective places a penalty of U on presenters being multiply booked. We should
choose U sufficiently large so d is identically zero, otherwise the model can be resolved
with a larger value of U . In our experiments the dualized constraints were always satisfied
after solving the model. In practice, dualizing PCO led to moderate performance increases
of roughly 75% faster.

For a summary of solution times comparing the original model with the improved mod-
els discussed in this subsection see Figure 4. The three models compared are: the Standard
model, which corresponds to the PCO formulation given by (9)-(15); the Symmetry model,
which incorporates the symmetry breaking reformulation described above; and finally the
Dualized model, which incorporates both the symmetry breaking reformulation, and the du-
alization of constraint (d) as described above. The graph plots the average running time for
solving 10 randomly generated instances for values of σ between 100 and 400 with incre-
ments of 10. The table shows the same information, only listing times for instances where
σ is a multiple of 50. All times are listed in seconds. We also note that it turned out that for
the generated instances solved in these experiments, the optimal solutions had an objective
value of zero.

5 Conclusion

Conference scheduling represents an important class of timetabling problems. This paper
studies a conference scheduling problem where attendee preference conflicts are minimized,

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 391 -

Fig. 4 Run time of PCO model with decreasing σ

0.1

1

10

100

1000

10000

100000

100150200250300350400

R
un

tim
e

(l
og

sc
al

e)

σ

Standard

+ +
+

+ +
+

+ +
+ + + +

+ +
+ +

+ + + + +
+ +

+

+ +

+
+

+
+

+
+

Symmetry

× ×

×

×
× × × ×

×

×

×

×

×
×

× × ×
× ×

×
× × ×

×

× ×
×

× ×

× ×

×
Dualized

∗
∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗
∗ ∗

∗ ∗
∗
∗ ∗

∗
∗ ∗ ∗

∗ ∗

∗ ∗
∗ ∗

∗

∗
∗

(σ) Standard Symmetry Dualized
400 5.4 0.8 0.4
350 10.0 1.2 0.4
300 6.8 3.0 0.8
250 12.8 6.0 2.2
200 22.8 10.2 2.0
150 196.2 156.8 45.2
100 22683.7 4179.2 3282.6

subject to a collection of hard constraints. We have demonstrated integer programming to be
an effective solution technique, especially after incorporating symmetry breaking and other
improvements.

References

1. Even, S., A. Itai, and A. Shamir. 1976. On the complexity of timetable and multicommodity flow problems.
SIAM Journal on Computing 5, (4) (12): 691-13

2. Garey, M., and D. Johnson. 1976. Computers and Intractability: A Guide to the Theory of NP-
Completeness. New York: W. H. Freeman

3. Lovelace, A. 2010. On the complexity of scheduling university classes. M.S. in Computer Science Thesis.
California Polytechnic State University: U.S.A.

4. Garey, M., D. Johnson, and L. Stockmeyer. 1976. Some simplified NP-Complete graph problems. Theo-
retical Computer Science 1: 237-267

5. Penguicon Conference, http://www.penguicon.org/, Accessed: January, 2015.
6. Penguicon Programming Ops. http://penguicon.info/doku.php/programmingops?s=attendance.

Accessed: January, 2015.
7. Sherali, H.D., and J.C. Smith. 2001. Improving Discrete Model Representations via Symmetry Consider-

ations. Managements Science 47: 1396-1407.
8. Margot, F. 2009. Symmetry in Integer Linear Programming. 2010. 50 Years of Integer Programming

1958-2008, Chapter 16: 647-681. Springer.
9. Ostrowski, J. 2008. Symmetry in Integer Programming. Ph.D. Thesis. Lehigh University: U.S.A.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 392 -

Lotfi Hidri

Department of Industrial Engineering,

College of Engineering, King Saud University,

E-mail: lhidri@ksu.edu.sa

Achraf Gazdar

Department of Software Engineering,

College of Computer Sciences and Information Systems, King Saud University,

E-mail: agazdar@ksu.edu.sa

MISTA 2015

Bounding schemes for the parallel processors scheduling problem with

release date, delivery time and with no-idle time constraint

Lotfi Hidri • Achraf Gazdar

Abstract: In this paper, we address the parallel processors scheduling problem with release

date, delivery time and no-idle time. In this problem we are given a system composed of

parallel processors intended to treat a family of tasks. These tasks are characterized by a

release date (arrival time), processing time and delivery time. In addition, the idle time

between consecutive tasks is not allowed during the treatment on each processor. The no-idle

time constraint is intended to avoid wasting the consumed energy while treating tasks. The

objective is to provide a feasible schedule that minimizes the completion time of the last

treated task (makespan). In order to solve this optimization scheduling problem we propose a

tight and new lower bound, which is based on the optimal solution of a relaxed parallel

processors scheduling problem. In addition a family of two-phase heuristics, providing a near

optimal solution is presented. More precisely, Phase 1 is intended to construct an initial

feasible schedule that is improved in Phase 2. Finally, we present the results of extensive

computational experiments in order to evaluate the performance of the proposed procedures.

1 Introduction

The parallel computing consists in treating several tasks simultaneously, using many

processors instead of one ([1], [5]). Therefore, large problems can be divided into small ones

treated concurrently (in parallel) [14], [2]). This kind of treatment allows speeding up the

processing of complex problems. Consequently, the parallel computing attracted the attention

of the computer science community and a lot of literature was provided.

Several real life applications owe their spectacular progress to the parallel computing

advances, as in aerospace engineering, mechanical engineering, civil engineering,

mathematical optimization, medicine, biology , chemistry, high performance computing,

transportation, management, etc. ([11], [15], [10]). These spectacular technological progresses

are due to the simulation of a lot of phenomena which becomes possible thanks to high

performance computing offered by the parallel computing.

The costs of the computing hardware (computer, network, and storage) are decreasing

dramatically, however the power consumption, cooling and buildings facilities required by the

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 393 -

http://en.wikipedia.org/wiki/Concurrency_(computer_science)

parallel computing deployment are becoming more and more expensive. Thus, the costs of the

needed infrastructure and the consumed power exceed the computing equipment itself. Recent

statistics inquiries show that 2% of the greenhouse released gazes are due to the computing

power consumption and that these gazes's emissions are increasing by 6% each year [17].

Therefore a new field of research emerges; it is the High Performance Green Computing. This

field is interested in providing new solutions that reduce the computing equipment’s power

consumption.

In this context we propose some solutions that contribute in the power consumption

reduction. For that aim we assume that a set of tasks have to be processed by a set of parallel

processors, and we have to assign these tasks to the processors such that the consumed electric

energy is reduced. Saving the consumed power is done by finishing the treatment of the tasks

as soon as possible (minimizing the total completion time) under the no-idle constraint. This

constraint requires that the idle time between the consecutive tasks on each processor during

the treatment of the tasks is eliminated, which participates in the electric energy saving. The

obtained problem is a scheduling one. Scheduling can be viewed as an assignment of scarce

resources (processors) to specific items (tasks), in order to optimize an objective function.

During the last two decades, parallel processor scheduling problem has drawn a lot of attention

and has become the subject of an extensive study ([16], [7], [4]). For a detailed survey the

reader is referred to [5] and the references therein.

It is worth noting that most scheduling research has been focused on deterministic

scheduling which generates enough variety. In contrast to stochastic scheduling problems,

deterministic problems assume that all parameters are known in advance. Although processing

times and task arrivals may be subject to fluctuations, the deterministic assumption may be

suitable for several practical situations in particular for our case where we limit our study to

the deterministic parameters [20]. Indeed, in many cases, these fluctuations are of no

significant impact on the quality of the schedule. Also, the deterministic assumption is often

imposed by certain applications such as in computer control systems working in a hard-real-

time environment [18]. Moreover, there are many cases where a simple rule which is merely a

heuristic for the deterministic model has a stochastic reformulation which solves the stochastic

model to optimality [19]. This allows the studying of the stochastic variants of our problem.

The paper is organized as follows: in Section 2, we briefly define the treated scheduling

problem. In Section 3, a new lower bound is proposed. In section 4, a family of two-phase

heuristics, providing a near optimal solution is presented. In Section 5, we present the results

of an extensive computational analysis of the different lower bounds and heuristics. Finally,

we conclude by providing a summary of our results and indicating some directions for future

research.

2 Problem definition

In order to model the parallel computing with energy saving, we treat in this work the

parallel processors scheduling problem with release date, delivery time and with no-idle time,

which is stated as follows. We are given a set J = {1, 2,…,n} of n tasks that have to be

processed on m identical parallel processors, denoted Mi for (i = 1, 2,…, m). In addition, each

task jϵ J is characterized by:

 rj: a release date from which j is ready to be processed(arrival time).

 pj: a processing time on a processor.

 qj: a delivery time that elapsed between the processing completion in a processor and

the exiting of the system(communication for example).

The processing of the tasks is done under the following constraints:

 Idle time between consecutives tasks is not permitted during the processing of tasks

for each processor.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 394 -

 Each task jϵ J is totally processed in only one processor.

 For all jϵ J, rj, pj and qj are assumed to be integral and deterministic.

 All the processors are ready for processing tasks from time zero.

 Preemption is not allowed during the processing of each job jϵ J.

 Each processor treats at most one job at the same time.

 Our objective is to find a feasible schedule, that minimizes the completion time of the

last treated job Cmax (makespan). Following the Graham's notation [9] this problem will be

denoted Pm,NI/rj,qj / Cmax. This problem is NP-Hard in the strong sense since its relaxation Pm

/rj,qj / Cmax is NP-Hard in the strong sense ([7], [8]). At the best of our knowledge this problem

is not treated in literature except for the one processor with release date, delivery time and with

no-idle time ([13], [3], [12]).

Example 1: Consider the following instance: m = 2 and n = 5, the processing times,

release dates and delivery times are displayed in Table 1.

j rj pj qj

1 2 6 3

2 8 7 2

3 5 3 4

4 3 3 16

5 7 9 6

 Table 1: Data of example 1

In this case, we have the following feasible (Figure 1) schedule with makespan 23:

Figure 1: Gantt chart of a feasible schedule having a makespan equal to 23

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 395 -

3 Lower bound and heuristics

3.1 Lower bound

In this subsection, we propose a new lower bound for the treated scheduling problem.

This lower bound is based on the optimal solution of the parallel processors scheduling

problem with release date and delivery time. In this context we present the following Lemma.

Lemma 1: The value C
*

max of an optimal solution for the Pm /rj,qj/Cmax problem is a

lower bound for the Pm,NI/rj,qj / Cmax problem.

Proof: An optimal schedule for Pm,NI/rj,qj / Cmax with optimal value C
NI

max is a feasible

schedule for Pm /rj,qj/Cmax, thus C
*

max ≤ C
NI

max and C
*
max is a lower bound for Pm,NI/rj,qj / Cmax,

which is referred to as LB (LB= C
*

max).

It is worth noting that the optimal value C
*

max is obtained using the algorithm provided in

[7]. Now we return back to the example 1 where the obtained lower bound LB = 22 which

corresponds to the schedule presented in the Figure 2.

Figure 2: Gantt chart of an optimal schedule of Pm /rj,qj/Cmax having C

*
max = LB = 22

3.2 Heuristics

In this section we develop a family of heuristics composed of two phases; the first one is

constructive and the second phase is an improvement one.

3.2.1 Heuristic Hopt-opt

Phase 1: The constructive phase for this heuristic Hopt-opt is based on solving the Pm / rj,qj

/ Cmax problem. The obtained optimal solution S will present one of the following cases:

 There is no idle time in the schedule and then the S is an optimal solution for the

Pm,NI / rj,qj / Cmax problem.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 396 -

 There are idle times that will be eliminated by right shifting the tasks until there

is no idle time. In this case the obtained schedule is denoted S
R
. If after the right

shifting the makespan remains C
*
max then S

R
 is an optimal solution for the Pm,NI

/ rj,qj / Cmax problem and the procedure is halted.

 There are idle times and the right shifting changes the makespan value, in this

case we denote the obtained solution by S
R

1.

Phase 2: Once we get S
R

1 we introduce the following notations that will be required in

the improvement phase:

 Jk (k = 1, . . . , m) the subset of the scheduled jobs on machine Mk

 Ck = max{C(j), jϵ Jk }, with C(j) denotes the completion time of job j.

In addition, we assume that C1 ≤ C2 ≤··· ≤ Cm. The improvement phase (Phase 2) itself

consists on selecting iteratively a couple of machines (Mk, Mm) and solving the P2 /rj,qj/Cmax

problem on the k mJ J job subset (1 ≤ k ≤ m-1) with C
k
max the optimal corresponding value.

It is worth noting that machine Mm contains a job with maximum completion time Cm. If C
k
max

≤ Cm, then the old schedule on machines Mk and Mm is replaced by the new one and the

procedure is reiterated once again until there is no improvement: C
k
max = Cm (k = 1, . . . , m-1)

and the obtained feasible schedule is denoted S
R

2 with makespan UBopt-opt

To illustrate the latter procedure we introduce the following example.

Example 2: Consider the following instance: m = 3 and n = 10, the processing times,

release dates and delivery times are displayed in Table 2.

j 1 2 3 4 5 6 7 8 9 10

rj 1 11 10 3 3 5 9 5 2 7

pj 8 6 10 1 6 4 10 8 3 10

qj 8 10 1 7 1 18 3 3 8 10

 Table 2: Data of example 2

Solving the Pm / rj, qj / Cmax corresponding problem gives the following feasible schedule

(Figure 3):

Figure 3: Gantt chart of an optimal schedule of Pm /rj,qj/Cmax for example 2

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 397 -

Observing that the obtained schedule has idle times:

 2 units between jobs 9 and 10,

 1 unit between jobs 4 and 6,

 2 units between jobs 6 and 2.

The right shifting procedure yields the following schedule (Figure 4), with makespan equal to

29:

Figure 4: feasible schedule obtained after the Right shifting procedure

For the improvement phase (Phase 2), observing that:

 J1 = {1,2,8} and C1=26,

 J2 = {9,10,3} and C2=28,

 J3 = {4,6,7,5} and C3=29.

Solving the two parallel machine problem P2 / rj, qj / Cmax on the machines M3 and M1, with

jobs subset JN = {4,6,7,5,1,2,8}. The resulting schedule is presented in the Figure 5.

Since the last schedule has a makespan UBopt-opt =28 = LB, then it is optimal.

Figure 5: Gantt chart of a feasible schedule having LB = C

*
max = 28.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 398 -

3.2.2 Heuristic HSchrage-Schrage

Recall that the Schrage algorithm is developed to provide a feasible solution for the

Pm /rj,qj/Cmax scheduling problem. It consists on scheduling among the unscheduled

jobs, on the first available machine, the job with the largest delivery time (qj). In this

section we propose to use a modified version of the Schrage algorithm, during the

first and the second phase. The modified version consists on scheduling the job with

largest delivery time on one of the available machines such that the makespan for the

scheduled jobs is minimized. Using the modified version of Schrage algorithm as it

was done for the Hopt-opt for Phase 1 and Phase 2 will provide us with an heuristic

denoted HSchrage-Schrage and the obtained makespan is referred to as UBSchrage-Schrage

3.2.3 Heuristics HSchrage-opt and H opt -Schrage

The two last heuristics are a combination of the Schrage algorithm and the exact

resolution algorithm. HSchrage-opt is set for the one where we use for the Phase 1 the

Schrage algorithm and for the Phase 2 the exact algorithm. If we use the exact

algorithm in Phase 1 and the Schrage algorithm in Phase 2, the obtained heuristic is

denoted H opt-Schrage. The obtained makespan are UBSchrage-opt and UB opt -Schrage for the

HSchrage-opt and H opt -Schrage heuristics, respectively.

4 Preliminary computational results

4.1 Test problems

The performance of the proposed lower bound and heuristics has been assessed through

experimental tests over the test problems that are generated as in [4]. More precisely, the

number of jobs n {10, 20, 40, 50, 200}. The number of machines m {2, 3, 5, 8}. The

processing times pj U[1, 10], heads and tails rj , qj U[1, Kn/m] , with K {1, 3, 5, 7}. For

each combination of n, m and K, 10 instances are generated. All the procedures were coded in

C and implemented in Visual C++ 6.0 on a Pentium IV 3.2 GHz Personal Computer with 1.5

GB RAM. We report in Table 3-4 the results with:

 LB (Time): average time needed to compute LB.

 RG = 100(UB-LB)/LB: the relative gap.

 Gap: the average relative gap.

 Time: average time for the heuristic.

 Iter: average number of iterations in Phase 2.

4.2 Numerical results

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 399 -

Gap Time Iter Gap Time Iter Gap Time Iter Gap Time Iter

10 2 0 0 0.01 0 0 0 0 0 0.01 1 5.15 0.01 1

20 2 0 1.49 0.01 0.1 0.71 0.01 0.2 1.06 0.02 1 9.94 0.02 1

40 2 0.02 0.15 0.03 0.1 0.02 0.02 1 1.27 0.04 1 9.32 0.02 1

50 2 0.01 0.72 0.03 0.3 0.48 0.03 1 1.56 0.04 1 9.88 0.03 1

200 2 1.1 0.45 1.31 0.3 0.05 1.26 1 0.05 4.77 1 12.44 0.19 1.2

10 3 0 1.36 0.01 0.4 0 0.01 1 0.77 0.01 1.3 2.91 0.01 1.5

20 3 0 1.55 0.03 0.6 0.23 0.02 1 0.11 0.03 1.9 5.85 0.03 1.4

40 3 0.01 0.12 0.03 0.2 0 0.02 1 3.71 0.04 1.5 6.22 0.03 1.4

50 3 0.01 1.27 0.06 0.8 0.46 0.05 1.5 1.85 0.06 1.5 5.66 0.07 3.6

200 3 2.48 0.31 2.72 0.6 0 2.64 2.5 0.12 1.63 2.2 8.78 0.24 2.3

10 5 0 2.3 0.02 0.8 0 0.01 4.4 1.05 0.02 3.3 3.33 0.01 3.1

20 5 0 0.35 0.03 0.4 0 0.01 3 0.72 0.03 1.4 2.52 0.03 1.1

40 5 0 0.74 0.05 0.8 0.51 0.04 2.9 0.85 0.07 3.9 4.15 0.07 4.8

50 5 0 0.7 0.06 0.8 0.3 0.06 5.5 0.61 0.06 3.4 4.2 0.05 2.2

200 5 1.28 1.11 1.51 1.4 0.79 1.55 2.7 1.4 0.37 3.1 5.53 0.32 2.4

10 8 0 0 0.01 0 0 0.01 9 0 0.01 1.9 0.67 0.01 1

20 8 0.01 0.06 0.05 1.4 0 0.04 6.6 0.5 0.06 1.5 2 0.06 1.7

40 8 0 1.43 0.1 2.8 0 0.14 2.4 0.33 0.06 9.2 1.47 0.06 1.7

50 8 0 0 0.05 0.1 0 0.03 1 0.25 0.11 4.9 2.35 0.07 5.2

200 8 1.25 0.66 1.59 2.2 0 1.62 2.8 0.25 0.71 7.6 1.69 0.42 6.4

UBSchrage-SchrageUBSchrage-Opt
n m LB (Time)

UBOpt-Opt UBOpt-Schrage

Gap Time Iter Gap Time Iter Gap Time Iter Gap Time Iter

0.7385 0.3855 0.705 0.1775 0.3785 2.525 0.823 0.4075 2.68 5.203 0.0875 2.25

UBOpt-Opt UBOpt-Schrage UBSchrage-Opt UBSchrage-Schrage

 Table 3: Detailed numerical results

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 400 -

According to the obtained results, the UBOpt-Schrage obtained is the best combination in term of

gap and time. In addition, the gap for this heuristic is 0.177 which is a proof of the reasonable

performance of the proposed procedures.

4 Conclusion and future directions

 In this paper we addressed the parallel processors scheduling problem with release date,

delivery time and with no-idle time constraint. A family of a two phases’ heuristics is

developed and a new lower bound is proposed. An extensive experimental study proofs the

efficiency of the proposed procedures. As a future direction, the proposed procedures will be

integrated to an exact Branch and Bound algorithm, in order to solve optimally the studied

scheduling problem.

Acknowledgements The authors would like to gratefully acknowledge the support for this

work provided by the Research Centre in the College of Computer & Information Sciences

(CCIS) under project number: RC131038, as well as the Deanship of Scientific Research at

King Saud University.

References

1. Amdahl, G, The validity of the single processor approach to achieving large-scale
computing capabilities, AFIPS Press, coll, In Proceedings of AFIPS Spring Joint

Computer Conference, Atlantic City, N.J, 483–85 (1967)

2. Bernstein, A. J, Program Analysis for Parallel Processing, IEEE Trans. on Electronic

Computers .EC-15, 757–62 (1966).

3. Carlier J., Hermès F., Moukrim A., Ghédira K, Exact resolution of the one-machine

sequencing problem with no machine idle time, Computers & Industrial Engineering, 59,

193-199 (2010)

4. Carlier J, Scheduling jobs with release dates and tails on identical machines to minimize

the makespan, European Journal of Operational Research, 29, 298-306 (1987)

5. Culler, D.E., Jaswinder P.S., and Anoop G, Parallel Computer Architecture - A

Hardware/Software Approach, Morgan Kaufmann Publishers (1999)
6. Emrah B. E, Oguz C., OzkarahanI, Parallel machine scheduling with additional

resources: Notation, classification, models and solution methods, European Journal of

Operational Research, 230, 449-463 (2013)

7. Gharbi A., Haouari M., Minimizing Makespan on Parallel Machines Subject to Release

Dates and Delivery TimesJournal of Scheduling, 5, 329-355 (2002)

8. Garey M.R., Johnson D.S, Computers and Intractability :A Guide to the Theory of NP-

Completeness, Freeman (1979)

9. Graham R.L., Lawler E.L., Lenstra J.K., RinnooyKan A.H.G, Optimization and

approximation in deterministic sequencing and scheduling: a survey, Annals of Discrete

Mathematics, 5, 287-326 (1979)

10. Hao W, Xudong F, Guangqian W, Tiejian L, Jie G, A common parallel computing

framework for modeling hydrological processes of river basins, Parallel Computing, 37,

302-315 (2011)

11. Johnson E.A., Proppe C., Spencer Jr. B.F., Bergman L.A., Székely G.S., Schuëller G.I,

Parallel computing in experimental mechanics and optical measurement: A review ,

Probabilistic Engineering Mechanics, 18, 37-60 (2003)

12. Jouglet A, Single-machine scheduling with no idle time and release dates to minimize a

regular criterion, J Sched, 15, 217–238 (2012)

13. Kacem I., Kellerer H, Approximation algorithms for no idle time scheduling on a single

machine with release times and delivery times", Discrete Applied Mathematics, , (2011)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 401 -

http://fr.wikipedia.org/w/index.php?title=David_Culler&action=edit&redlink=1
http://www.sciencedirect.com/science/article/pii/S0143816611001989

14. Roosta, Seyed H."Parallel processing and parallel algorithms: theory and computation",

Springer, 114 (2000)

15. Wenjing G, Qian K, Parallel computing in experimental mechanics and optical

measurement: A review, Optics and Lasers in Engineering, 50, 608-617(2012)

16. Veltman B., Lageweg B.J., Lenstra J.K, Multiprocessor scheduling with communication

delays, Parallel Computing, 16, 173-182 (1990)

17. Donald S.,Martin W.,Neal K. ,Min Y.,Grant W.,Gopal N., High Performance Green

Computing, ACM, 2007.

18. Bertossi A.A., FusielloA, Rate-monotonic scheduling for hard-real-time systems,

European Journal of Operational Research, 96, 429-443 (1997)

19. Lawler E.L., Lenstra J.K., RinnooyKan A.H.G., Shmoys D, Sequencing and scheduling:

Algorithms and Complexity, Handbooks in Operations Research and Management

Science 4, S.S. Graves, A.H.G. RinnooyKan, P. Zipkin (eds.), 445-522(1993)

20. Kostadis R., Nawaf B., Robert E, Deterministic Batch Scheduling without Static

Partitioning, Job Scheduling Strategies for Parallel Processing, IPPS/SPDP’99Workshop,

JSSPP’99, San Juan, Puerto Rico, April 16, ,Proceedings, 220-237 (1999)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 402 -

Lotfi Hidri

Department of Industrial Engineering

College of Engineering

King Saud University

E-mail: lhidri@ksu.edu.sa

Belgacem Ben Youssef

Department of Computer Engineering

College of Computer & Information Sciences

King Saud University

E-mail: bbenyoussef@ksu.edu.sa

Achraf Gazdar

Department of Software Engineering

College of Computer & Information Systems

King Saud University

E-mail: agazdar@ksu.edu.sa

MISTA 2015

Lower bounds for the parallel processing scheduling problem with

multiprocessor tasks, release date and delivery time

Lotfi Hidri • Belgacem Ben Youssef • Achraf Gazdar

Abstract: In this paper, we consider the multiprocessor-task scheduling problem in a parallel

processing system. The tasks are characterized by a release date (or arrival time), processing

time, and delivery time. In addition, a task requires more than one processor to be processed in

parallel. The objective of this research is to provide a feasible schedule that minimizes the

completion time, or makespan, of the last treated task. Multiprocessor task scheduling plays a

fundamental role in the performance of parallel and distributed computing systems. In this

regard, we propose a family of new tight lower bounds. Finally, we present results related to the

assessment of the efficiency of the proposed lower bounds after undertaking extensive

computational experiments.

1 Introduction

During the last two decades, parallel computing has received a lot of attention from the

computational science and engineering community. This has been due to the stunning

technological advances that provided ever more precise, fast, and cheap processors. On the other

hand, the use of parallel computing systems in the form of multicore and many-core architectures

has become widespread. This wide adoption and extensive use in several fields has resulted in

the further acceleration of technological and scientific advances in areas such as mechanical

engineering, aerospace engineering, mathematical optimization, civil engineering, medicine,

biology, chemistry, scientific computing, transportation, management, etc. ([11], [13], [22]).

One of the main concepts of parallel computing is to divide a complex problem into many

small parts. These parts can be classified into two sets: One set containing the parts that can be

executed in parallel while the other set contains those parts that are related by precedence

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 403 -

constraints. The parallel parts are processed using multiple processors concurrently yielding fast

execution time and high performance speedup ([2], [5], [7], [19]).

Task scheduling is the assignment of tasks or jobs to the available resources in a system, in

order to obtain optimum performance. When multiple processors are used, the objective is to

achieve a linear speedup in performance and maximum efficiency. Unfortunately, this is not the

case for most problems because of several factors including communication overhead, control

overhead, and precedence constraints between tasks [31]. It follows that improving the efficiency

and the performance of parallel processing systems requires the development of efficient task

scheduling techniques [32]. While several heuristic algorithms with effective solutions have been

published, these techniques are limited to small size instances [33].

The concept of a multiprocessor task involves the idea that each task requires more than

one processor for execution at the same time ([6], [15], [14], [18], [20]). In addition, a complex

problem that will be executed using parallel processors is divided itself into two sets of tasks.

The first one contains the parallel processed tasks and the second one contains the tasks subject

to precedence constraints. A precedence constraint between two tasks means that some

information must be communicated from one task to the other in order for the processing of this

task to progress and continue forward. Thus, a communication delay appears in this situation and

must be considered when trying to solve the problem at hand ([12], [3], [18], [4]).

In this research work, we are interested in the scheduling of multiprocessor tasks in a

parallel computing environment whereby these tasks have a release date, and delivery time. The

resolution of the current scheduling problem could provide new computational methods and

techniques to solve other related scheduling problems, such as the Hybrid Flow Shop Scheduling

problem with Multiprocessor Tasks (HFSMT) [34, 35, 36]. The HFMST is defined as follows: A

set of K stages Z1,…, ZK containing respectively m1,…, mK (max(m1,…, mK) > 1) identical

parallel processors, has to process a set J = {1,..., n} of n tasks in the following way. Each task

jЄJ is treated over Z1,…, ZK in that order, during p1j,…, pKj units of time and using size1j,..., sizeKj

parallel processors, respectively. The processors treat the tasks without preemption with the

objective of building a feasible schedule that minimizes the makespan Cmax or the completion

time of the last treated task on ZK. The restriction to each stage generates K multiprocessor task

scheduling problems. The consecutive resolution of these K problems yields a feasible solution

for the HFSMT. In general, a resolution of the presented scheduling problem is suitable for any

type of parallel architecture containing multiprocessor tasks.

The current state of the art in the literature indicates the presence, however, of some

relaxation assumptions that were studied and some heuristic solutions being provided as

described in [1, 4, 16, 17, 21, 23, 24, 25, 26, 27, 28, 29, 30]. Therefore, our research work

consists of providing efficient computational procedures that solve this scheduling problem of

Pm/ rj, qj, sizej /Cmax. These procedures will be some lower bounds. The assessment of the

efficiency of the proposed procedures will be undertaken over extensive computational

experiments.

The paper is organized as follows: in Section 2, we briefly define the treated scheduling

problem. In Section 3, a family of new lower bounds is proposed. Section 4 is dedicated to the

presentation of the results of an extensive experimental analysis of the different lower bounds.

Finally, we present some directions for future research.

2 Problem definition

The addressed scheduling problem in this paper is the parallel processors scheduling

problem with release date, delivery time, and multiprocessor tasks (PMT), which can be stated as

follows. We are given a set J = {1, 2,…,n} of n tasks that have to be processed on m identical

parallel processors, denoted by Mi for (i = 1, 2,…,m). In addition, each task jϵ J is characterized

by these parameters:

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 404 -

 sizej: The number of processors required to treat the task j in parallel (ie, at the same

time).

 rj: A release date upon which task j is ready to be processed.

 pj: A processing time for task j.

 qj: A delivery time that elapsed between the completion of the processing and the

exiting of the system.

Moreover, the processing of the tasks is done under the following constraints:

 For all jϵ J, rj , pj and qj are assumed to be integral and deterministic.

 All the processors are ready to process from the time zero.

 Preemption is not allowed during the processing of each job jϵ J.

 Each processor treats at most one task at a given time.

Our objective is to find a feasible task schedule, which minimizes the completion time of

the last treated job, Cmax, also known as the makespan. Following Graham's notation in [10], this

problem is denoted as: Pm/ rj, qj, sizej /Cmax. It is known to be NP-Hard in the strong sense since

its relaxation Pm/rj, qj /Cmax is NP-Hard in the strong sense ([8], [9]). The Pm/ rj, qj, sizej /Cmax

scheduling problem is of practical interest since it models realistically encountered scenarios in

parallel processing. The precedence constraints induce a release date, which is the earliest date to

process the task, and delivery time for each task [37]. This scheduling problem is prevalent in the

application of parallel computing in several areas of study such as image and video processing

[38] and linear algebra [24], to name just a few. In the following we present an example of a

feasible schedule.

Example 1: Consider the following instance of m = 6 and n = 5, with the processing times,

release dates and delivery times being displayed in Table 1.

j 1 2 3 4 5

rj 0 2 5 7 8

pj 3 3 3 3 6

qj 4 8 11 1 3

sizej 6 5 4 3 3

Table 1: Data for example 1

And a corresponding feasible schedule with Cmax=20 is presented over Figure 1, where the

completion time of each job is presented at the tip of the corresponding arrow.

3

M1

6 9 12 0

1

2

3

4

5

15

7 14 18 20 13

M2

M3

M4

M5

M6

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 405 -

Figure 1: Gantt chart of feasible schedule of Pm/ rj, qj, sizej /Cmax for example 1

3 Lower bounds

2.1 Trivial lower bound

A trivial lower bound is presented over the following lemma.

Lemma 1: A valid lower bound is:

 0 max j j j
j J

LB r p q

 (1)

Proof: Any job j has to spend at least rj+pj+qj units of time before completion. Thus, we get the

result. In addition, LB0 can be computed in O(n) time.

2.2 Simple lower bound

Lemma 2: A simple and valid lower bound is:

1 min min

j j

j J

j j
j J j J

size p

LB r q
m

 (2)

Proof: Relaxing the starting time of all the jobs to the minimum release date, relaxing the

delivery times to the minimum one and allowing the preemption give us the result.

2.3 Subset-based lower bound

Interestingly, if the set of jobs is restricted to a particular subset, we can derive a lower bound.

The following proposition presents such a lower bound.

Proposition 1: A valid lower bound for the current scheduling problem is:

 2

1
min min

2
j j j j j

j A B j A B
j A j B

LB r size p p q

 (3)

Where

:
2

:
2

j

j

m
A j J size

m
B j J size

Proof: Observing that A B , then jobs from A and B can not be treated within the same

time interval. Each job j in A is processed lonely during pj. In addition, allowing the preemption

for the jobs in B gives a load equal to:

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 406 -

1 1 1

2 2
j j j j

j B j B j B

m
size p p p

m m

 ..

The remaining part of the proof is obtained by relaxing the starting times and the delivery times

to min j
j A B

r

 and min j
j A B

q

, respectively.

2.4 Splitting-based lower bound

This lower bound is based on the concept of splitting relaxation, which consists on subdividing a

job j into a set 1 2, ,...,
jj sizeA j j j composed of sizej jobs. Each job ji (i =1,.., sizej) having

the following characteristics:
ij jr r ,

ij jp p ,
ij jq q and 1

ijsize . Therefore,

the obtained problem (P) will be a parallel processors scheduling problem with release date and

delivery time, where the jobs set is j

j J

A

. Interestingly, we have the following result.

Lemma 3: Any lower bound for (P) is a lower bound for Pm / rj, qj, sizej / Cmax.

Proof: An optimal schedule for Pm / rj, qj, sizej / Cmax with optimal value C
A

max is a feasible

schedule for (P). Let C
*

max be the optimal value for (P), then C
*
max ≤ C

A
max . For any lower

bound LB for (P), we have LB ≤ C
*

max ≤ C
A

max. Thus, LB is a valid lower bound for Pm / rj, qj,

sizej /Cmax .

Remark: The considered splitting based lower bound is:

 LB3= C
*

max (P), (4)

where the optimal value C
*

max (P) is obtained using the algorithm in [9].

2.5 Revisiting energy-based reasoning lower bound

The concept of energy-based reasoning (ER) relies on the computation of the part of the jobs that

must be processed within the time interval [t1; t2], in any feasible schedule. This part is called the

work or the mandatory part of the job j over [t1; t2]. In order to determine this work, a job j starts

at it is release date rj or finishes at it is due date dj . In other terms the job j is the left-shifted (rj)

or right-shifted (dj) on their time window [rj; dj]. The left-work of a job j over [t1; t2], denoted by

W
l
j(t1; t2), is defined as the length of 1 2, ,j j jt t r r p

. Symmetrically, the right-work of a job

j over [t1; t2],, denoted by W
r
j(t1; t2), is defined as the length of 1 2, ,j j jt t d p r

. Thus, the

work of a job j over [t1; t2]; denoted by Wj(t1; t2), is equal to the minimum between W
l
j(t1; t2),

and W
r
j(t1; t2). In other terms we have:

 2 1 11 min , , max 0,,
j j j

l

j jW size t t p r p tt t ,

 2 1 21 min , , max 0,,
j j j

r

j jW size t t p t d pt t ,

 1 1 1min ,, , ,l r

j j jW W Wt t t t t t

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 407 -

 1 2 1 2, ,j
j J

W Wt t t t

 this is the total work within [t1; t2].

Obviously, if 1 2 2 1,W t t m t t , the instance is infeasible. Moreover, the slack of job j is

defined by: 2 2 1 2 21 1 1, , ,
j j

s t t m t t W t t W t t , then rj and dj may be adjusted as follows.

 If

2

2 2

1

1 1 2max
,

, , then : ,
j

j

l

j j j

j

s t t
s t t W t t r r t

size

 If

2

2 2

1

1 1 1max
,

, , then : ,
j

j

r

j j j

j

s t t
s t t W t t d d t

size

The authors of [39] proved that only O(n
2
) relevant values of t1 and t2 need to be considered.

More recently, authors in [41] observed that in any feasible schedule, at times t1 and t2 there is no

more than m jobs that can be placed. Thus an improvement for the computation of the total work

is performed for the parallel processors scheduling problem, this is the Revisited Energetic

Reasoning (RER). The ERE is extended to the parallel processors with multiprocessor tasks and

the minimum total work is the optimal solution of the following integer linear program.

1

2

1 2 1 2 1 2

1 1 1

;

;

, min , ,

1 1,..,

, , 0,1

i

i

n n n
l r

RER i i i i i i

i i i

i i i

i i

i J r t

i i

i J t d

i i i

W t t W t t x W t t y p z

St

x y z i n

size x m

size y m

x y z

 (5)

where the decision variables xi , yi and zi are defined as:

1

2

1 2

1 if job is placed left

0 otherwise

1 if job is placed right

0 otherwise

1 if job is placed inside ,

0 otherwise

i

i

i

i t
x

i t
y

i t t
z

 (7)

Next, the RER-based lower bound is performed by starting with an initial simple lower bound

LB. After that, the due dates are setup to: dj = LB - qj and the RER is applied, if an infeasibility is

detected (1 2 1,RERW t t m t t) then LB is incremented (LB:= LB+1). The procedure is halted if

there is no infeasibility. The obtained lower bound is denoted LB5. In addition, we denote:

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 408 -

0,...,4

max
iall

i
LB LB

 (5)

3 Preliminary computational results

3.1 Test problems

The performance of the proposed lower bound and heuristics has been assessed through

experimental tests over the test problems that are generated as in [40]. More precisely,

 The number of jobs n {10, 20, 40, 50, 200}.

 The number of machines m {2, 3, 5, 8}.

 The processing times pj U[1, 10],

 The heads and tails rj , qj U[1, Kn/m] , with K {1, 3, 5, 7}.

 The required number of processors to treat the jobs sizej is generated uniformly

from [1, m].

 For each combination of n, m and K, 10 instances are generated. All the procedures

were coded in C and implemented in Visual C++ 6.0 on a Pentium IV 3.2 GHz Personal

Computer with 1.5 GB RAM.

3.2 Numerical results

We report in Table 2 the obtained results:

 % LBall : the percentage the LBi = LBall.

 Time (second): average time for the lower bound.

LBi LB0 LB1 LB2 LB3 LB4

% LBall 0% 0% 35% 79,5% 100%

Time <10
-9

 <10
-9

 <10
-9

 3.89 23.56

Table 2: Summary of numerical results

According to the obtained results, we observe that the RER (LB4) performs well in terms of

reaching the maximum for all 10 instances. However the required computational time is

relatively high. In addition, the splitting-based lower bound (LB3) yields overall acceptable

results both in terms of time and lower bound performance, the latter as given by % LBall . Thus,

the results yielded by LB3 display a balance between the required computational time and the

quality of the lower bound.

4 Conclusion and future directions

 In this paper, we investigated some aspects of the multiprocessor task-scheduling problem

with release date and delivery time. In particular, a family of new lower bounds has been

developed. Using a suite of benchmark tests, our numerical experimentation results show that the

proposed lower bounds are efficient and tight. As future directions of this work, we plan to

propose several heuristics based on evolutionary computational techniques, such as genetic

algorithms, in order to obtain a feasible solution. An exact Branch and Bound technique

integrating the proposed lower bounds will be also explored.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 409 -

Acknowledgements The authors would like to acknowledge the support for this work provided

by the Research Centre in the College of Computer & Information Sciences (CCIS) under project

number: RC140221, as well as the Deanship of Scientific Research at King Saud University.

References

1. A. V. Fishkin, G. Zhang, On maximizing the throughput of multiprocessor tasks ,

Theoretical Computer Science, 302, 319-335 (2003)

2. G. Amdahl, The validity of the single processor approach to achieving large-scale

computing capabilities, In Proceedings of AFIPS Spring Joint Computer Conference,

Atlantic City, NJ, AFIPS Press, 483–485 (1967)

3. A. Moukrim, Scheduling unitary task systems with zero-one communication delays for

quasi-interval orders, Discrete Applied Mathematics, 127(3), 461-476 (2003)

4. A. Moukrim, E. Sanlaville, F. Guinand, Parallel machine scheduling with uncertain

communication delays, RAIRO - Operations Research, 37(1), 1-16 (2003)

5. A. J. Bernstein, Program analysis for parallel processing, IEEE Transactions on Electronic

Computers, EC-15, 757–762 (October 1966)

6. R. C. Correa, A. Ferreira, P. Rebreyend, Scheduling multiprocessor tasks with genetic

algorithms, IEEE Transactions on Parallel and Distributed Systems, (1999), 10(8), 825–37

(1999)

7. D. E. Culler, P. S. Jaswinder, G. Anoop, Parallel computer architecture: A

hardware/software approach, Morgan Kaufmann Publishers, San Francisco (1999)

8. M. R. Garey, D. S. Johnson, Computers and intractability: A Guide to the theory of NP-

Completeness, W. H. Freeman, New York (1979)

9. A. Gharbi, M. Haouari, Minimizing makespan on parallel machines subject to release sates

and delivery times, Journal of Scheduling, 5, 329-355 (2002)

10. R. Graham, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Optimization and

approximation in deterministic sequencing and scheduling: A survey, Annals of Discrete

Mathematics, 5, 287-326 (1979)

11. W. Hao, F. Xudong, W. Guangqian, L. Tiejian, G. Jie, A common parallel computing

framework for modeling hydrological processes of river basins, Parallel Computing, 37,

302-315 (2011)

12. J. J. Hwang, Y-C. Chow, F. D. Anger, C-Y. Lee, Scheduling precedence graphs in systems

with inter-processor communication times, SIAM Journal on Computing, 8, 244–58 (1989)

13. E. A. Johnson, C. Proppe, B. F. Spencer Jr., L. A. Bergman, G. S. Székely, G. I. Schuëller,

Parallel computing in experimental mechanics and optical measurement: A review,

Probabilistic Engineering Mechanics, 18, 37-60 (2003)

14. K.-H. Yang, P. S. Pulat, Y. Guan, Embedded simulation on a multiprocessor job scheduling

system with inspection, Computers & Industrial Engineering, 57, 592-607 (2009)

15. M. Drozdowski, Scheduling multiprocessor tasks — An overview, European Journal of

Operational Research, 94, 215-230 (1996)

16. P. Dell’Olmo, A. Iovanella, G. Lulli, B. Scoppola, Exploiting incomplete information to

manage multiprocessor tasks with variable arrival rates, Computers & Operations Research,

35, 1589-1600 (2008)

17. P. Baptiste, A note on scheduling multiprocessor tasks with identical processing times,

Computers & Operations Research, 30, 2071-2078 (2003)

18. R. Hwanga, M. Genb, H. Katayama, A comparison of multiprocessor task scheduling

algorithms with communication costs, Computers & Operations Research, 35, 976–993

(2008)

19. S. H. Roosta, Parallel processing and parallel algorithms: Theory and computation, p. 114,

Springer, New York (2000)

20. T. Thanalapati, S. Dandamudi, An efficient adaptive scheduling scheme for distributed

memory multicomputers, IEEE Transactions on Parallel and Distributed Systems, 12(7),

758–68 (2001)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 410 -

http://www.informatik.uni-trier.de/~ley/db/journals/dam/dam127.html#Moukrim03
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Sanlaville:Eric.html
http://www.informatik.uni-trier.de/~ley/pers/hd/g/Guinand:Fr=eacute=d=eacute=ric.html
http://www.informatik.uni-trier.de/~ley/db/journals/rairo/rairo37.html#MoukrimSG03
http://www.sciencedirect.com/science/article/pii/S0143816611001989

21. B. Veltman, B. J. Lageweg, J. K. Lenstra, Multiprocessor scheduling with communication

delays, Parallel Computing, 16, 173-182 (1990)

22. G. Wenjing, K. Qian, Parallel computing in experimental mechanics and optical

measurement: A review, Optics and Lasers in Engineering, 50, 608-617 (2012)

23. M. Drozdowski, Scheduling for parallel processing, Springer-Verlag, London (2009)

24. S. Jin, G. Schiavone, D. Turgut, A performance study of multiprocessor task scheduling

algorithms, Journal of Supercomputing, 43, 77-97 (2008)

25. A. Zaki, S. Shahul, O. Sinnen, Scheduling task graphs optimally with A*, Journal of

Supercomputing, 51, 310-332 (2010)

26. M. Abdeyazdan, S. Parsa, A. M. Rahmani , Task graph pre-scheduling, using Nash

equilibrium in game theory, Journal of Supercomputing, 64, 177-203 (2013)

27. G. Wei, A. V. Vasilakos, Y. Zheng, A game-theoretic method of fair resource allocation for

cloud computing services, Journal of Supercomputing, 54, 252-269 (2010)

28. V. Bonifaci, A. Marchetti-Spaccamela, Feasibility analysis of sporadic real-time

multiprocessor task systems, Algorithmica, 63, 763-780 (2012)

29. M. E. Moghaddam, An Immune-based genetic algorithm with reduced search space coding

for multiprocessor task scheduling problem, International Journal of Parallel Programming,

40, 225-257 (2012)

30. P. Regnier, G. Lima, E. Massa, G. Levin, S. Brandt, Multiprocessor scheduling by

reduction to uniprocessor: An original optimal approach, Real-Time Systems, 49, 436-474

(2013)

31. Y. C. Lee, A. Y. Zomaya, Immune system support for scheduling, Advances in Applied

Self-Organizing Systems, Self-Organizing Computation, 247-270 (2008)

32. J. Liu, A-X. Zhu, C-Z. Qin, Estimation of theoretical maximum speedup ratio for parallel

computing of grid-based distributed hydrological models, Computers & Geosciences, 60,

58-62 (2013)

33. B. Macey, A. Zomaya, A performance evaluation of CP list scheduling heuristics for

communication intensive task graphs, In Proceedings of Joint 12
th

 International Parallel

Processing Symposium and Ninth Symposium on Parallel and Distributed Programming,

538–541 (1998)

34. A. Lahimer, P. Lopez, M. Haouari, Improved bounds for hybrid flow shop scheduling with

multiprocessor tasks, Computers & Industrial Engineering, 66, 1106-1114 (2013)

35. F-D. Chou, Particle swarm optimization with cocktail decoding method for hybrid flow

shop scheduling problems with multiprocessor tasks, International Journal of Production

Economics, 141, 137-145 (2013)

36. C. Kahraman, O. Engin, İ. Kaya, R. E. Öztürk, Multiprocessor task scheduling in

multistage hybrid flow-shops: A parallel greedy algorithm approach, Applied Soft

Computing, 10, 1293-1300 (2010)

37. R. Kunis, G. Rünger, Optimization of layer-based scheduling algorithms for mixed parallel

applications with precedence constraints using move-blocks, In Proceedings of the 2009

17
th

 Euromicro International Conference on Parallel, Distributed and Network-Based

Processing, 70-77, (2009)

38. A. Merigot, A. Petrosino, Parallel processing for image and video processing: Issues and

challenges, Parallel Computing, 34, 694-699 (2008)

39. P. Baptiste, C. Le Pape, W. Nuijten, Satisfiability tests and time bound adjustments for

cumulative scheduling problems, Annals of Operations Research, 92, 305-333 (1999)

40. J. Carlier, Scheduling jobs with release dates and tails on identical machines to minimize

the makespan, European Journal of Operational Research, 29, 298-306 (1987)

41. L. Hidri, A. Gharbi, M. Haouari, Energetic reasoning revisited: Application to parallel

machine scheduling, Journal of Scheduling, 11, 239-252 (2008)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 411 -

MISTA 2015

University Course Timetabling with Conflict Minimization
and Elective Courses

A Decomposition-Based Approach to a Real-Life Case

Ernst Althaus · Udo Muttray

Abstract In this paper, we describe an integer programming approach to a real-life

university timetabling case from Germany. Due to the special nature of the considered

study program, a conflict-free timetable usually does not exist. Therefore, we propose

a model to minimize the number of conflicts. In addition, decomposition is used to split

the problem into a model for compulsory courses and a model for elective courses. Both

models incorporate various additional hard constraints, such as the need for consecutive

slots or even for desired conflicts across different semesters.

1 Introduction

1.1 Motivation

Educational timetabling poses a considerable challenge at numerous universities and

schools. In addition to the computational complexity of the problem itself, the institu-

tional models vary substantially, as pointed out by McCollum [13].

The problem considered in this paper deals with the scheduling of courses for

students who want to become a teacher. At the University of Mainz, these students

select 2 out of 21 eligible subjects and take courses in these two subjects as well as in

educational sciences. If there is no central planning of the courses, students typically

have conflicts, i.e. several of the courses they have to take in a semester are at the

same time. Although it will not be possible to obtain a conflict-free timetable for each

student, mathematical optimization can drastically reduce the number of conflicts.

Hence, the university opted for a global assignment of the courses from this partic-

ular study program a few years ago. The key ideas of the original model developed by

Kreuzer [10] are the distinction between compulsory and elective courses and a fixed

number of available slots per subject and semester. We improve upon this approach

by suggesting a more detailed model, factoring in the actual number of required slots

of courses as well as certain hard constraints. Furthermore, integer programming tech-

Ernst Althaus · Udo Muttray
Institute of Computer Science, Johannes Gutenberg University Mainz, Germany
E-mail: {ernst.althaus, udo.muttray}@uni-mainz.de

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 412 -

niques are used to optimize the model, while the previous (non-optimal) solution has

been manually obtained.

As a global model with both compulsory and elective courses becomes intractable,

we apply a decomposition-based approach. At first, compulsory courses are assigned

such that the number of conflicts is minimized and some special constraints are satisfied.

After that, the obtained timetables of the compulsory courses form the input data for

a subsequent assignment of the elective courses.

1.2 Related Work

A great deal of previous research has been conducted on the various types of educa-

tional timetabling. Schaerf describes the common problem variants: university course

timetabling, examination timetabling and school timetabling [16].

In most instances of university course timetabling, a conflict-free solution is avail-

able and consequently sought for. A recent overview is given by Bettinelli et al. [2].

Kiaer and Yellen develop a weighted graph model to describe problems which do

not have conflict-free solutions and use a heuristic algorithm to solve them [9]. Those

methods have been further refined by Wehrer and Yellen [19].

Another frequently neglected challenge is the existence of elective courses. Müller

and Rudová report on the successful implementation of elective courses and course

sections into the course timetabling system UniTime, using local search [15].

Regarding the methodology, according to Burke and Petrovic, at lot of research

has focused on heuristic solution strategies [6]. However, with the growing capabil-

ities of IP solvers over the last years, integer programming approaches have gained

attention, as shown by Daskalaki et al. [8], MirHassani [14], Al-Yakoob and Sherali [1],

Schimmelpfeng and Helber [17], Lach and Lübbecke [11] and Bonutti et al. [7].

Decomposition-based models constitute another common trend. They have effec-

tively been used by Lach and Lübbecke to match courses to slots first, and courses/slots

to rooms second. Other successful applications of decomposition-based models include

the works form Burke et al. [5] and Sørensen and Dahms [18].

Our models incorporate both conflict-minimization and elective courses. Contrary

to most previous approaches to such models, we use integer programming to solve

them.

1.3 Organization of the Paper

This paper is organized as follows: In Section 2, we introduce the real-life timetabling

problem from Germany. A decomposition-based integer programming model is pre-

sented in Section 3. In Section 4, we report computational results from real and artificial

instances. In Section 5, we discuss alternative model formulations. Finally, Section 6

contains some conclusions and future research directions.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 413 -

2 Problem Description

2.1 Conflict Minimization and Other Peculiarities

In comparison to most timetabling problems presented in the literature, our real-life

case differs in four fundamental ways. Yet if those special features are considered, it

usually does not happen in the context of integer programming techniques.

First, the timetabling instances come from a study program for students who aim

at becoming a teacher. As such, they have to choose 2 out of 21 subjects and attend

the respective courses. In addition, all students have to take courses from educational

sciences. Preassigning courses from educational sciences, this is still roughly equivalent

to a timetabling problem with 200 different curricula where each curriculum shares

courses with 40 other curricula. In this situation, a conflict-free timetable can rarely be

achieved. Instead, the objective must be to minimize the number of conflicts (weighted

by the number of affected students).

The second difference is the existence of so called elective courses, which will be

described in detail in the following section.

Third, courses may have special constraints, which might even link courses from dif-

ferent semesters. This requires the simultaneous construction of timetables for several

semesters and is further explained in Section 2.5.

Finally, if not too many courses are scheduled simultaneously, in our case there is

always an adequate number of rooms available. Therefore, the assignment of rooms is

not considered. Note that this feature actually makes the problem easier to solve.

2.2 Slots and Course Types

Courses are taught on a weekly basis. To this end, the week is divided into 25 slots

or time periods, five slots per working day, each slot two hours long. Courses have a

certain number of required slots (usually between one and four).

Courses can be divided into two course types, compulsory courses and elective

courses. Compulsory courses are offered only once a week, while elective courses are

offered at least twice. The latter is often the case for identical tutorials offered multiple

times in order to keep group sizes small or for advanced lectures (potentially covering

different topics, but all equivalent for the purpose of examination regulations).

The important difference between the course types is that students must be able to

attend all of the compulsory courses, but only one of at least two offers of each elective

course. Notice that according to the policy of our university, all offers of an elective

course are equivalent. Consequently, the possibility to select elective courses such that

there is no conflict is sufficient. Students’ preferences to a specific offer of an elective

course are deliberately not taken into account as this would probably induce additional

conflicts.

2.3 Assignment of Subjects and Courses

In the interest of students’ ability to attend all required courses, the university gives

priority to a minimal-conflict timetable over lecturers’ preferences. For our objective

functions, only an assignment of subjects to slots will be required (though the models

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 414 -

will be able to provide feasible assignments of courses as well). Therefore, the assign-

ment of courses and lecturers to the preassigned subject specific slots is done afterwards

by the departments of the subjects. This way, lecturers get some flexibility to customize

their personal timetables.

Note that the described procedure is generally applicable, except for courses with

special constraints (cf. Section 2.5).

2.4 Semesters

The year is divided into a winter semester and a summer semester. Students can be-

gin their studies in both semesters, implying different curricula depending on the type

of start semester. As the majority of students begins in a winter semester, only the

curricula for students starting in a winter semester are currently considered. Besides, in-

cluding curricula for both types of start semester would have the following consequence:

All courses that are offered only once a year would now be part of the curricula for

both start semester types and would therefore have to be assigned to specific slots,

taking further flexibility from the departments. The associated political issue has not

been finally decided, though our model can be extended to the general case.

Denoting the set of all winter semesters by SW and the set of all summer semesters

by SS , we can specify these sets. For a study program of 10 semesters and students

beginning their studies in a winter semester, we have

SW = {1, 3, 5, 7, 9} and SS = {2, 4, 6, 8, 10},

whereas for students beginning their studies in a summer semester we would have

SW = {2, 4, 6, 8, 10} and SS = {1, 3, 5, 7, 9}.

2.5 Special Constraints

Around 20 % of all courses have special (hard) constraints, falling into one of the

following categories:

1. consecutive slots (only if the course needs more than one slot),

2. desired “conflicts” with other courses, involving courses with the same course type

from different subjects or semesters (w.l.o.g. all with the same number of required

slots),

3. no conflicts with other courses, involving courses with the same course type from

the same subject from different semesters,

4. restrictions on the set of feasible slots.

We give some examples to illustrate why the above constraints are important: Consec-

utive slots are usually required for practicals with long experiments that can not be

done in one slot. Desired conflicts can occur when two or more subjects have a common

course (e.g. “Introduction to Linguistics” in French, Italian and Spanish) or when a

course is offered only once, but must be taken in multiple semesters (e.g. a choir in

music with all students from semesters 1 – 4). No conflicts between two courses from

one subject and different semesters can be required when the same courses are also

to be attended by students from another study program. When those courses occur

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 415 -

during the same semester according to the curriculum of the other study program,

they can not be placed in the same slot in our study program. Finally, some courses

are instructed by external lecturers who can only adapt to specific slots.

2.6 Period of Validity of the Constructed Timetables

Since a conflict-free timetable does not exist for the presented problem, it is impor-

tant for students to be able to plan ahead in case they encounter conflicting lectures.

The same is true for students who exchange one of their subjects for another one dur-

ing their course of studies, which is a very common phenomenon amongst students

from the study program for future teachers. In other words, students’ ability to plan

ahead is preferred to an optimization with up to date input data. Therefore, a con-

structed timetable should be in use for several semesters, possibly subject to some local

modifications due to subsequent changes to one of the curricula. Once a critical mass

of changes to the input parameters has been reached, the timetable will be globally

rebuilt.

3 Decomposition-based Integer Programming Model

3.1 General Considerations

In the beginning of this section, we discuss the decomposition approach and introduce

notation. Sections 3.2 and 3.3 contain the models for compulsory and elective courses.

The main idea is a decomposition, assigning compulsory courses first and elective

courses second. Both parts will be formulated and solved as integer programs. From

a theoretical point of view, there is a chance that the first step produces a solution

which leads to a (globally) non-optimal solution during the second step, as it is the

case for all heuristic decomposition-based models. From a practical point of view, the

suggested decomposition enables us to tackle an otherwise intractable problem. In

our case, the disadvantages seem to be acceptable since there are usually a lot more

compulsory courses than elective courses. Furthermore, elective course are sometimes

offered more often than it is required by the model (cf. Section 3.3) which provides

additional flexibility.

As the optimization problems for winter and summer semesters are independent, we

solve the models for both compulsory and elective courses once for the winter semesters

SW and once for the summer semesters SS . On the other hand, all courses in a winter

semester need to be dealt with simultaneously due to the second and third special

constraint. The same statement applies for the courses in a summer semester. As a

result, for each timetabling instance we need to perform four computations as shown

in Figure 1.

All our timetabling instances are defined over the same sets, namely the set of

subjects I, the set of slots K, the previously introduced sets of winter and summer

semesters SW and SS , the set of elective blocks T and various sets for courses X/E,

(X/E)s, (X/E)si , X∗ and Xs
∗ . To simplify the notation, we uniquely assign indices to

these sets. Later on, we will only use the indices and omit the sets if the latter ones

are obvious from the context.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 416 -

For winter semesters SW :

Compulsory
Courses

Elective
Courses

For summer semesters SS :

Compulsory
Courses

Elective
Courses

Fig. 1: Decomposition based on semester type

Table 1: Sets and indices

Set Index Description

I i, j Set of subjects (excluding educational sciences),
∗ Subject “educational sciences”,

P ⊂ I (i, j) Set of eligible subject combinations,
2I L Set of all subsets of subjects,
K k Set of slots,
SW/SS s Set of winter/summer semesters,
T t, u Set of elective blocks,
X/E c Set of compulsory/elective courses from all semesters s ∈ SW/SS

and all subjects i ∈ I,
(X/E)s c Set of compulsory/elective courses from semester s from all

subjects i ∈ I (i.e. ∀ c ∈ (X/E)s : σc = s),
(X/E)si c Set of compulsory/elective courses from semester s from

subject i (i.e. ∀ c ∈ (X/E)si : σc = s and ιs = i),
X∗ c Set of compulsory courses from all semesters s ∈ SW/SS from

educational sciences,
Xs
∗ c Set of compulsory courses from semester s from ed. sciences.

Table 2: Numerical and course specific data

Data Description

θij Number of students with subject combination (i, j),
θL Weighted number of conflicts for a set of subjects L ⊂ I,
ιc Subject of a course c,
σc Semester of a course c according to the curriculum,
ρc Number of required slots for a course c,
Φc ⊂ K Set of feasible slots for a course c,
Cα Set of courses that must have consecutive slots,

{Cβg }g∈Gβ Sets of courses that must be assigned to the same slot, using index set Gβ ,

{Cγg }g∈Gγ Sets of courses that must be assigned to different slots, using index set Gγ .

In Table 1 we present the sets and indices. In addition to those sets we have

some numerical and some course specific data as given in Table 2. Notice that for the

sets introduced at first we always use capital letters, and for numerical and course

specific data we use Greek letters. For indices, we use small letters (except for index L

which represents a subset of I). Variables of our integer programming models will also

have small letters and can be distinguished from indices as the variables have indices

themselves.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 417 -

Table 3: Variables for the compulsory courses

hsLk ∈ {0, 1} ∀ s ∈ SW/SS , L ⊂ I : |L| ≤ n, k ∈ K,
hsLk = 1 ⇔ in semester s, exactly the subjects in L are assigned to slot k,

xck ∈ {0, 1} ∀ c ∈ X ∪X∗, k ∈ K,
xck = 1 ⇔ course c is assigned to slot k (the course determines the semester),

ack ∈ {0, 1} ∀ c ∈ (X ∪X∗) ∩ Cβ , k ∈ K,
ack = 1 ⇔ consecutive slots of course c start in slot k.

3.2 Model for Compulsory Courses

The model for the compulsory courses can be seen as a problem of quadratic semi-

assignment type, incorporating additional constraints as the special constraints from

Section 2. Since the number of conflicts only depends on the subjects of the conflict-

ing courses, one could formulate an objective function using variables ysik ∈ {0, 1} to

describe whether subject i is assigned to slot k in semester s or not. This was done

in a similar fashion for examination timetabling by Laporte and Desroches [12] and

Bullnheimer [4]. In our case, the objective function would be given by

min
∑
s,k

∑
i<j

θij · ysik · y
s
jk.

Instead of linearizing the quadratic objective function, we introduce (exponentially

many) variables hsLk ∈ {0, 1} for each subset of subjects L, slot k and semester s,

and link them to the respective course variables xck. Analogously, Cacchiani et al.

propose models with exponentially many variables for the Udine Course Timetabling

instances [3], which result in equally elegant expressions for the objective functions [7].

In addition to the variables for subject sets and courses, we need variables ack for

the special consecutiveness constraint, indicating where a consecutive series of slots

starts. All the variables are also listed in Table 3.

For the set variables, we made the heuristic assumption that no slot will have

more than a given number n of different subjects. This assumption was supported by

preliminary analysis without taking the special constraints into account, comparing

weighted conflicts between both models. It will additionally contribute to the room

distribution.

The refined objective function is minimizing the conflicts weighted by the number

of affected students, using variables hsLk:

min
∑
s,k

∑
L

θL · hsLk.

For a subset of subjects L ⊂ I, the weighted number of conflicts θL is calculated as:

θL :=
∑
i,j∈L
i<j

θij .

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 418 -

To count the undesired conflicts, one would have to subtract the desired conflicts within

a semester according to the second special constraint (this number is a constant):

1

2

∑
g∈Gβ

∑
c1,c2∈Cβg ∩X:
σc1=σc2

ρc1 · θιc1 ιc2 .

Finally, we present the various types of constraints for the compulsory courses. We

start with the constraints involving the subset variables (and courses from educational

sciences), move on to those involving the other course variables and conclude with the

special constraints.

For each semester and slot, there can be either a subset of subjects or a course

from educational sciences assigned to that slot:∑
L

hsLk +
∑
c∈Xs∗

xck ≤ 1 ∀ s, k. (1)

There are |K| slots for subsets of subjects and compulsory courses from educational

sciences. Technically, this constraint is redundant in terms of describing a correct model

as it is implied by the previous constraint and Constraint (6) for courses from educa-

tional sciences. Nonetheless, the following constraint did improve upon the runtime,

which is why we include it (notice that further alternative formulations are discussed

in Section 5): ∑
L,k

hsLk +
∑
c∈Xs∗

ρc = |K| ∀ s. (2)

There are as many subsets containing a specific subject as are needed for the courses

from that subject. This constraint is also technically redundant, because it can be

obtained from the constraint for the slot requirements of the courses (6) and the linking

constraint (7). We include it for the same reason as the above constraint:∑
L:i∈L

∑
k

hsLk =
∑
c∈Xsi

ρc ∀ s, i. (3)

In order to guarantee that every combination is viable to study, no eligible combination

should have more than one conflict, regardless of the number of affected students.

This is considered to be the maximal acceptable number of conflicts for any student.

Note that this constraint could potentially lead to infeasible models (this usually only

happens for instances with a very low ratio of slots to subjects). In that case, it should

be relaxed by incrementing the right-hand side by one. In addition, those constraints

will be relaxed for subjects having courses with desired conflicts:∑
L:i,j∈L

∑
k

hsLk ≤ 1 ∀ s, (i, j) ∈ P. (4)

The following constraint is a model simplification, setting those subset variables to zero

where courses from educational sciences are preassigned:

hsLk = 0 ∀ s, L, k : [∃ c ∈ Xs
∗ : Φc = {k}]. (5)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 419 -

Now we move on to the constraints involving course variables. Each course has the

required amount of slots: ∑
k

xck = ρc ∀ s, c ∈ Xs ∪Xs
∗ . (6)

Courses are assigned to slots where the chosen subset contains the subject of the

course. Combined with Constraint (1) the following constraint also implies that for

each semester no two courses from the same subject can be assigned to the same slot:∑
c∈Xsi

xck =
∑
L:i∈L

hsLk ∀ s, i, k. (7)

We conclude by describing the special constraints. Some courses c, which require more

than one slot, may need consecutive slots. If a slot k is characterized as the first slot

of such a course (i.e. ack = 1), this one and the following ρc − 1 slots are taken by the

course:

ack ≤ xc(k+f) ∀ c ∈ X ∩ Cα, k ∈ K, f ∈ {0, . . . , ρc − 1} : k + f ≤ |K|. (8)

There is exactly one starting slot:∑
k

ack = 1 ∀ c ∈ X ∩ Cα. (9)

The first slot k of a consecutive sequence of slots for course c must be chosen in such

a way that

– all ρc − 1 following slots are during the same day and

– all ρc slots including the first one are feasible slots for course c (i.e. in Φc).

If this is not the case, we fix the corresponding variables ack at zero.

As for the sets of courses which must be assigned to the same slot, we simply

equalize the corresponding course variables:

xc1k = xc2k ∀ g ∈ Gβ , c1, c2 ∈ Cβg ∩X, k. (10)

Furthermore, for each common slot from two courses within the same semester, we

will allow one additional conflict between the subjects in that particular semester by

incrementing the right-hand side of Constraint (4).

Some courses from a set of courses shall not be assigned to the same slot (i.e. no

two courses of such a set shall be assigned to the same slot):∑
c∈Cγg∩X

xck ≤ 1 ∀ g ∈ Gγ , k. (11)

Some courses c can not be assigned to certain slots:

xck = 0 ∀ c ∈ X, k ∈ K\Φc. (12)

This constraint completes the model for the compulsory courses.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 420 -

Table 4: Data gathered from the assignment of compulsory courses

ysik ∈ {0, 1} ∀ s ∈ SW/SS , i ∈ I, k ∈ K,
ysik = 1 ⇔ in semester s, a compulsory course from subject i is in slot k,

ys∗k ∈ {0, 1} ∀ s ∈ SW/SS , k ∈ K,
ys∗k = 1 ⇔ in semester s, a compulsory course from ed. sciences is in slot k,

Q ⊂ I2 combinations with undesired conflicts from compulsory courses.

3.3 Model for Elective Courses

Elective courses are characterized by the fact that they are offered at least twice.

Therefore, we introduce two elective blocks and require that each elective course is

offered at least once in each elective block.

As pointed out in Section 2, it is important to give departments as much influence

as possible on the assignment of specific courses to slots. Departments insist that

the model for the elective courses respects the following rule, which was originally

developed by Kreuzer [10]: Each student has to choose for each subject either the

complete elective block 1 or the complete elective block 2 (in contrast to choose for

each course either elective block 1 or elective block 2). Naturally, the chosen block

can vary among students with different subject combinations. This way, staff from the

department has the freedom to assign the specific courses to slots for each elective

block.

Courses offered more often than twice can be assigned to arbitrary slots as long

as they are offered at least once in each elective block. When, for example, tutorials

associated to an elective course are offered more often than twice, it is usually a good

idea to offer them multiple times in each elective block to accommodate group sizes.

On the other hand, it can also help to offer some tutorials in other slots to provide

additional options to the students.

Technically speaking, for each semester s and combination of subjects (i, j), there

must exist a valid choice of elective blocks (t, u) ∈ T 2 = {1, 2}2 such that students can

attend the elective courses in block t for subject i and in block u for subject j without

further conflicts between either the two chosen elective blocks or a chosen elective

block with previously assigned compulsory courses. This can be seen as a disjunctive

constraint, stating that choice (1, 1), (1, 2), (2, 1) or (2, 2) must be valid. Since such

a choice may not exist, we allow additional conflicts from the elective courses and

minimize their weighted number.

Elective courses from educational sciences are assumed to be offered in an ample

amount such that every student always has a suitable choice. Consequently, elective

courses from educational sciences are not part of the elective model (otherwise one

would have to guarantee a valid choice (t, u, v) ∈ T 3).

Caused by the decomposition, this model uses the results from the first step as

input data. We refer to the data specified in Table 4, which can be easily computed

from the values of variables hsLk or xck.

Instead of explicitly describing the four choices, we introduce additional variables

wsijtu to indicate which pair of elective blocks (t, u) is a valid choice for a combination

(i, j), allowing at most one conflict. We further use the variables presented in Table 5.

Variables ms
itk indicate whether a subject i is assigned to elective block t in slot k

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 421 -

Table 5: Variables for elective courses

msitk ∈ {0, 1} ∀ s ∈ SW/SS , i ∈ I, t ∈ T, k ∈ K,
msitk = 1 ⇔ in semester s, subject i, elective block t, is assigned to slot k,

wsijtu ∈ {0, 1} ∀ s ∈ SW/SS , i, j ∈ I : i < j, t, u ∈ T ,

wsijtu = 1 ⇔ in semester s, (t, u) is a valid choice for combination (i, j),

allowing at most one conflict,

rsijtuk ∈ [0, 1] ∀ s ∈ SW/SS , i, j ∈ I : i < j, t, u ∈ T, k ∈ K,

rsijtuk = 1 ⇔ in semester s, courses from subject i, elective block t, and

courses from subject j, elective block u, have a conflict in
slot k,

ṙsijtk ∈ [0, 1] ∀ s ∈ SW/SS , i, j ∈ I : i < j, t ∈ T, k ∈ K,

ṙsijtk = 1 ⇔ in semester s, courses from subject i, elective block t, and

compulsory courses from subject j have a conflict in slot k,

r̈sijuk ∈ [0, 1] ∀ s ∈ SW/SS , i, j ∈ I : i < j, u ∈ T, k ∈ K,

r̈sijuk = 1 ⇔ in semester s, compulsory courses from subject i and courses

from subject j, elective block u, have a conflict in slot k,

ectk ∈ {0, 1} ∀ c ∈ E, t ∈ T, k ∈ K,
ectk = 1 ⇔ course c, elective block t, is assigned to slot k

(the course determines the semester),

actk ∈ {0, 1} ∀ c ∈ E ∩ Cbm, t ∈ T, k ∈ K,
actk = 1 ⇔ consecutive slots of course c, elective block t, start in slot k.

during semester s. Variables rsijtuk describe if there is a conflict between an elective

course of i in block t and an elective course of j in block u in slot k. Variables ṙsijtk
and r̈sijuk describe if there is a conflict between an elective course of subject i in block

t and compulsory courses of j respectively a compulsory course of subject i and an

elective course of j in block u in slot k. Notice that we always assume i < j. Similar to

the previous model, we have variables ectk for course assignments and variables actk
indicating where a consecutive series of slots starts.

The objective function minimizes the additional conflicts induced by elective courses:

min
∑
s,k

∑
i<j

θij

(∑
t,u

rsijtuk +
∑
t

ṙsijtk +
∑
u

r̈sijuk

)
.

Once again, we start by describing the constraints involving the variables for the sub-

jects, move on to those involving courses and conclude with the special constraints.

Elective courses do not have conflicts with compulsory courses from educational

sciences or from the same subject:

ms
itk = 0 ∀ s, i, t, k : ys∗k + ysik ≥ 1. (13)

For a valid choice of elective blocks, there are no conflicts between the chosen elective

blocks, unless indicated otherwise by variables rsijtuk:

ms
itk +ms

juk + wsijtu ≤ 2 + rsijtuk ∀ s, i < j, t, u, k. (14)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 422 -

For a valid choice of elective blocks, there are no conflicts between the chosen elective

blocks and the previously assigned compulsory courses, unless indicated otherwise by

variables ṙsijtk or r̈sijtk:

ms
itk + ysjk +

∑
u

wsijtu ≤ 2 + ṙsijtk ∀ s, i < j, t, k, (15)

ysik +ms
juk +

∑
t

wsijtu ≤ 2 + r̈sijuk ∀ s, i < j, u, k. (16)

There can be no further conflict for combinations which already have undesired conflicts

from the compulsory courses:

rsijtuk = ṙsijtk = r̈sijuk = 0 ∀ s, (i, j) ∈ Q : i < j, t, u, k. (17)

For each (other) combination, there can be at most one conflict from elective courses.

In case of desired conflicts, the right-hand side will be relaxed as in Constraint (4).∑
k

(rsijtuk + ṙsijtk + r̈sijuk) ≤ 1 ∀ s, i < j, t, u. (18)

For each eligible combination of subjects, there is at least one valid choice of elective

blocks (with at most one conflict):∑
t,u

wsijtu ≥ 1 ∀ s, (i, j) ∈ P. (19)

For each elective block, there are as many slots containing a specific subject as are

needed for the courses from that subject (for all courses, not just for those with special

constraints): ∑
k

ms
itk =

∑
c∈Esi

ρc ∀ s, i, t. (20)

Now we move on to the constraints involving course variables. Each course has in each

elective block the required amount of slots:∑
k

ectk = ρc ∀ s, c ∈ Es, t. (21)

Courses are assigned to slots where the subject of the course has a slot. This constraint

also implies that for each semester and each elective block no two courses from a subject

can be assigned to the same slot:∑
c∈Esi

ectk = ms
itk ∀ s, i, t, k. (22)

The special constraints for elective courses are very similar to those for compulsory

courses. We simply describe the semantics of these constraints:

– Courses with consecutive slots need to have consecutive slots in each elective block.

– Two courses with a desired conflict must have a conflict in elective block 1 and a

conflict in elective block 2.

– Courses that can not have a conflict with certain other courses can not have a

conflict in either elective blocks with any of the other courses.

– Courses with restrictions on the set of feasible slots must respect those in both

elective blocks.

These constraints complete the model for the elective courses.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 423 -

Table 6: Comparison of test instances

Undesired Conflicts Runtime

Instance Students θ = 0 Sem. Compulsory Elective Co. [min] El. [sec]

InstReal 8836 30
SW 620 2 805 5
SS 167 0 322 3

Inst01 9381 31
SW 474 0 200 5
SS 141 0 31 4

Inst02 9892 37
SW - - mem -
SS 106 0 238 4

Inst03 10054 31
SW 371 0 103 2
SS 46 0 68 2

Inst04 10973 25
SW 626 0 136 3
SS 171 0 47 3

Inst05 10566 37
SW 277 0 29 4
SS 45 0 3 4

Inst06 8719 32
SW 354 0 84 4
SS 86 0 55 2

Inst07 7972 30
SW 539 0 322 8
SS 173 0 35 4

Inst08 6756 26
SW 525 5 477 9
SS 164 0 118 2

Inst09 11326 28
SW 619 0 255 4
SS 195 0 162 4

Inst10 9737 30
SW 637 0 37 7
SS 198 0 13 4

4 Computational Results

In this section, we start by providing some basic information from our test cases. Then,

we present the computational results obtained from the real and the artificial instances.

The problem includes 21 different subjects with 658 courses in total which need

to be assigned to 25 slots in 10 semesters. Hence, each model is run twice with 5

simultaneously considered semesters. 350 courses are offered during a winter semester

and 308 courses during a summer semester. Out of the 658 courses, 415 courses are

compulsory courses and 243 are elective ones. The average amount of required slots

per semester is 74 slots, ranging from 43 to 98 slots. 12 courses need consecutive slots,

85 courses need desired conflicts, 5 courses have other courses they are not allowed to

share slots with and 35 courses are restricted regarding the slots.

In the real-life case, 8836 students were enrolled in total and 30 of the 210 combi-

nations were not chosen by any student (i.e. θ = 0). Two combinations were ineligible,

a phenomenon that was exploited by constraints (4) and (19).

The decomposition and the models were implemented in Java 8, using Gurobi 6.0.0

as the solver. Notice that the programming language has almost no influence on the

runtime, as the solver is responsible for by far the greatest part of the runtime. Exper-

iments were performed on a 64-bit Linux system, running on an Intel Core i7-5820K

CPU (6 × 3.3 GHz) with 32 GB of RAM. For the compulsory courses, a size limit of

n = 4 for the subject sets L and a time limit of 24 hours were laid down.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 424 -

Furthermore, 10 random, artificial instances were generated to test our model. To

this purpose, the number of students for each subject combination was varied while

the data for the courses was kept the same. Numbers were generated using a model

with two components: First, unchosen combinations were determined using a Bernoulli

distribution. Then, random numbers for the chosen combinations were generated, as-

suming a log-normal distribution and ceiling values to obtain integers. Parameters for

both components were estimated by maximum-likelihood estimators. The results from

the artificial instances can also be found in Table 6.

To reduce variability from the solver, optimizations were executed twice for both

SW and SS in each instance, using solver seeds 0 and 1. In each entry of Table 6, the

better one of the two results is presented, considering a solution with less conflicts to

be better than a solution obtained in less runtime.

As expected, the number of conflicts and the runtime of the model for the com-

pulsory courses depend heavily on the specific instance. In one case, the model for

the compulsory models could not be solved due to memory restrictions. Taking the

better one of the two results, in 19 out of 21 cases the elective courses did not produce

further conflicts, proving optimality of the solution with respect to the decomposition.

Although we only allow conflicts from the elective courses for those combinations that

do not already have conflicts from the compulsory courses, the number of additional

conflicts in the second step is very low in comparison to the existing conflicts from

the first step. Obviously, the number of additional conflicts from the elective courses

depends on the previous assignment of the compulsory courses.

For all instances, subsequent experiments without the size limitation and without

taking some of the special constraints into account were performed. Those models were

usually solved within 10 to 20 minutes. In all cases, the experiments yielded the same

number of conflicts as the original models, proving optimality with respect to the size

assumption n = 4.

In contrast, size limitations of n < 4 for the original models led to additional

conflicts, while models with size limitations of n > 4 were not solvable within 24 hours.

5 Alternative Model Formulations

In this section, we discuss some conceivable modifications to the provided models.

There are several modifications to the described model that technically do not

change the set of feasible solutions, but may have influence on the runtime or memory

consumption. In our case, one could remove Constraint 2 or use for several other

constraints an equality relation instead of an inequality relation, or vice versa. The

variants presented in Sections 3.2 and 3.3 are the ones which performed best in our

case. However, when working with black box solvers, such tuning should always be

interpreted with caution.

For the compulsory courses, experiments were performed with constraint types

given by Hall’s theorem to describe the special constraints without explicit course

variables. If there is only one special constraint, e.g. if courses from subjects i and j1
should have one desired conflict, one can describe this in the following way (without

using Hall’s theorem yet): ∑
L:i,j1∈L

∑
k

hsLk ≥ 1,

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 425 -

If there are several such constraints, it does not suffice to add their isolated formula-

tions, but one has to consider them together. For example, when in semesters s courses

from subjects i, j1 should have one desired conflict and courses from subjects i, j2
should have one, we would express this, using Hall’s theorem, in the following way:∑

L:i,j1∈L

∑
k

hsLk ≥ 1, (23)

∑
L:i,j2∈L

∑
k

hsLk ≥ 1, (24)

∑
L:i,j1∈L
∨i,j2∈L

∑
k

hsLk ≥ 2. (25)

The point is that simply one slot with subjects i, j1 and j2 is not enough because both

desired conflicts come from different courses. In this case, we call constraints (23) and

(24) interacting. If there are more than two constraints to be considered, we have to

factor in additional restrictions for every subset of interacting constraints. As long as

there are only constraints from one type involved, it is quite easily possible to formulate

necessary and sufficient Hall-type constraints as demonstrated above and solve the cor-

responding integer programming models. This agrees with the successful application of

Hall’s theorem to timetabling construction used by Lach and Lübbecke [11]. Formulat-

ing necessary and sufficient Hall-type constraints for constraints of different types (one

needs to consider all possible combinations of them) requires an exponential number

of types of constraints and is very complicated and error prone. Hence, we decided to

use the course variables.

Course variables were generally introduced for all courses and not only for courses

with special constraints. This led the solver to earlier heuristic solutions which overall

accelerated the solving process in comparison to models incorporating course variables

only for courses with special constraints.

As was mentioned in Section 3.3, elective courses offered more often than twice

can be assigned to arbitrary slots as long as they are offered at least once in each

elective block. A formal exploitation of these courses does currently not seem to be

advantageous as the current model performs sufficiently well and provides flexibility

for the departments.

Although the model was not presented explicitly, we did a first test for the real-

life case using a combined model for both students starting in a winter semester and

students starting in a summer semester. To this purpose, one replaces all semester

indices s by pairs (b, s), where b indicates the type of start semester, winter or summer.

To give an estimate of the quality of the solution for the combined model, we separately

determined the optima for the compulsory courses for the cases with students starting

in a winter semester and with students starting in a summer semester. The sum of

these optima is a valid lower bound for the model with all students. The solution for

SW was within 4 % of the lower bound and was obtained after 2 days, the solution for

SS was within 2.5 % of the lower bound and was obtained after 0.5 hours. Even if good

quality solutions were found quite quickly without solver tuning, proving optimality

within the model turned out to be intractable. In smaller test cases, where we could

prove optimality for the solutions of the combined model, those lower bounds were

usually no sharp bounds, but also rarely much more than 5 % off. Therefore, it seems

promising to use the following procedure for the combined model:

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 426 -

1. Solve the models for SW and SS separately to optimality.

2. Find good solutions for the combined model.

3. Prove optimality/estimate the quality of the solutions for the combined model using

the lower bound given by the sum of the separate solutions for SW and SS .

6 Conclusions

In this paper, we presented an approach to a real-life timetabling case. The problem

incorporates certain peculiarities, uncommon to most timetabling problems from the

literature. We proposed a model that minimizes the number of conflicts and is in

particular able to cope with the request for flexibility by the involved departments at

the university. Decomposition was used to split the problem into a model for compulsory

courses and a model for elective courses.

For the compulsory courses, additional variables for subsets of subjects were intro-

duced. These simplified the computation of the objective function and made a lineariza-

tion expendable. Elective courses were modelled using elective blocks and without the

explicit need for disjunctive constraints. Both models were solved by integer program-

ming and for the great majority of cases optimal solutions were obtained.

As there is a real-life application associated to the research project, the obtained

timetables are expected to be implemented soon. Although the description of the prob-

lem seems to be specific to our university, several other universities in Germany face

the same type of challenges. Therefore, we consider our work a significant contribution

towards the practical applicability of timetabling.

Future research should address the problem of students beginning their studies

during a summer semester. This phenomenon remained mostly unconsidered, as it

drastically increases the computational complexity and is mostly unwanted by the de-

partments. Nonetheless, having the students’ best interests in mind, it appears to be a

reasonable requirement, even if the current solution already greatly improves upon the

previously used timetables. Besides from the suggested procedure in Section 5, it would

be interesting to implement a column generation approach, since the computational

complexity arises mostly from the vast amount of variables. Furthermore, column gen-

eration approaches have recently been successfully applied to timetabling problems by

Cacchiani et al. [7] as well as by Sørensen and Dahms [18] and might enable us to

relinquish the heuristic size limitation for the subset variables.

On the practical side, data for the numbers of students on a semester specific level

of detail should and will be taken into account, allowing us to consider drop-out rates.

In addition, a time series forecasting model for the numbers of students is planned and

will hopefully also compensate for the rather long period of validity of the timetables.

References

1. Al-Yakoob SM, Sherali HD, A mixed-integer programming approach to a class timetabling
problem: A case study with gender policies and traffic considerations, European Journal of
Operational Research, 180, 1028–1044 (2007)

2. Bettinelli A, Cacchiani V, Roberti R, Toth P, An overview of curriculum-based course
timetabling, TOP, 1–37 (2015)

3. Bonutti A, De Cesco F, Di Gaspero L, Schaerf A, Benchmarking curriculum-based course
timetabling: formulations, data format, instances, validation, visualization, and results, An-
nals of Operations Research, 194(1), 59–70 (2012)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 427 -

4. Bullnheimer B, An Examination Scheduling Model to Maximize Student’s Study Time,
In: Burke EK, Carter MW (eds.), PATAT 1997, Lecture Notes in Computer Science, 1408,
78–91. Springer, Berlin Heidelberg (1998)

5. Burke EK, Mareček J, Parkes AJ, Rudová H, Decomposition, reformulation, and diving in
university course timetabling, Computers & Operations Research, 37, 582–597 (2010)

6. Burke EK, Petrovic S, Recent research directions in automated timetabling, European
Journal of Operational Research, 140, 266–280 (2002)

7. Cacchiani V, Caprara A, Roberti R, Toth P, A new lower bound for curriculum-based course
timetabling, Computers & Operations Research, 40, 2466–2477 (2013)

8. Daskalaki S, Birbas T, Housos E, An integer programming formulation for a case study in
university timetabling, European Journal of Operational Research, 153, 117–135 (2004)

9. Kiaer L, Yellen J, Weighted graphs and university course timetabling, Computers & Oper-
ations Research, 19(1), 59–67 (1992)

10. Kreuzer A, Starcevic-Srkalovic L, Das Zeitfenstermodell für Lehramtsstudiengänge, In:
Zervakis PA (ed.), Lehrerbildung heute. Impulse für Studium und Lehre, 22–23. HRK
Hochschulrektorenkonferenz self-published, Bonn (2014, in German)

11. Lach G, Lübbecke ME, Optimal University Course Timetables and the Partial Transversal
Polytope, In: McGeoch CC (ed.), WEA 2008, Lecture Notes in Computer Science, 5038, 235–
248. Springer, Berlin Heidelberg (2008)

12. Laporte G, Desroches S, Examination timetabling by computer, Computers & Operations
Research, 11(4), 351–360 (1984)

13. McCollum B, A Perspective an Bridging the GAP Between Theory and Practice in Univer-
sity Timetabling, In: Burke EK, Rudová H (eds.), PATAT 2006, Lecture Notes in Computer
Science, 3867, 3–23. Springer, Berlin Heidelberg (2007)

14. MirHassani SA, A computational approach to enhancing course timetabling with integer
programming, Applied Mathematics and Computation, 175, 814–822 (2006)

15. Müller T, Rudová H, Real-life curriculum-based timetabling with elective courses and
course sections, Annals of Operations Research, 1–18 (2014)

16. Schaerf A, A Survey of Automated Timetabling, Artificial Intelligence Review, 13, 87–127
(1999)

17. Schimmelpfeng K, Helber S, Application of a real-world university-course timetabling
model solved by integer programming, OR Spectrum, 29, 783–803 (2007)

18. Sørensen M, Dahms F, A Two-Stage Decomposition of High School Timetabling applied
to cases in Denmark, Computers & Operations Research, 43, 36–49 (2014)

19. Wehrer A, Yellen J, The design and implementation of an interactive course-timetabling
system, In: McCollum B, Burke EK, White G (eds.), PATAT 2010, Conference Proceedings,
556–558. Queen’s University, Belfast (2010); Annals of Operations Research, 218(1), 327–345
(2013)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 428 -

Erfan Rahimian, Kerem Akartunali

Dept. of Management Science, University of Strathclyde, Glasgow, G1 1QE, UK

E-mail: {erfan.rahimian, kerem.akartunali}@strath.ac.uk

John Levine

Computer And Information Sciences, University of Strathclyde, Glasgow, G1 1XH, UK

E-mail: john.levine@strath.ac.uk

MISTA 2015

A Hybrid Constraint Integer Programming Approach to Solve Nurse

Scheduling Problems

Erfan Rahimian • Kerem Akartunali • John Levine

Abstract The Nurse Scheduling Problem can be simply defined as assigning a series of shift

sequences (schedules) to several nurses over a planning horizon according to some constraints

and preferences. The inherent benefits of having higher-quality and more flexible schedules are

a reduction in outsourcing costs and an increase of job satisfaction in health organizations. In

this paper, we present a novel systematic hybrid algorithm, which combines Integer

Programming (IP) and Constraint Programming (CP) to efficiently solve highly-constrained

Nurse Scheduling Problems. Our focus is to exploit the problem-specific information to improve

the performance of the algorithm, and therefore obtain high-quality solutions as well as strong

lower bounds. We test our algorithm based on some real-world benchmark instances. Very

competitive results are reported compared to the state-of-the-art algorithms from the recent

literature, showing that the proposed algorithm is able to solve a wide variety of real-world

instances with different complex structures.

1 Introduction

In order to ensure the right staff on the right duty at the right time, Nurse Scheduling (NS)

has drawn significant attention during the last few decades, helping many health organizations

to increase their efficiency and productivity. Creating a high-quality nurse schedule raises the

recruitment and retention levels of nursing personnel, and maintains a reasonable overtime

budget for nursing staff. In terms of financial issues, it can reduce outsourcing and planning

costs due to hiring fewer bank nurses to compensate gaps in rosters, and having flexible

schedules [1, 2]. In terms of human resource issues, it can increase the job satisfaction and

diminish the fatigue and stress, and hence result in improving caring services provided to patients

[3, 4].

Nurse Scheduling Problem (NSP) aims to generate schedules for several nurses over a

planning horizon. A schedule consists of a sequence of different types of shifts (e.g. early, late,

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 429 -

vacations) spanning over the whole planning period. The pattern of shifts is generated according

to a set of requirements such as hospital regulations, and a number of preferences such as fair

distribution of shifts between nurses. Due to their complex and highly-constrained structure,

most NSPs in real-world situations are computationally challenging and they can be also

classified as NP-hard [5, 6]. The inherent nature of the problem usually leads to divide all

constraints to two categories in practice: hard and soft constraints. Hard constraints must be

satisfied to have a feasible roster, whereas soft constraints may be violated. To evaluate the

quality of a roster, one can minimize the sum of all penalties incurred due to soft constraint

violations. For more information regarding NSPs and generally staff scheduling problems, we

refer interested readers to [3, 28].

The focus of this paper is on integrating Integer Programming (IP) and Constraint

Programming (CP) to solve NSPs, where we exploit the problem-specific information in order

to improve both IP and CP performance. In the literature, there are two areas of general methods

used to solve these problems: exact and heuristic methods. Exact methods involve IP [1, 7, 8]

and CP [9, 10], which are capable of finding the optimal solution, albeit often resulting in

unacceptable computational times. However, recent research in Operations Research and

Artificial Intelligence communities, combined with powerful solvers such as IBM Ilog Cplex

and Gurobi, focused on using these methods in hybrid settings [14-16]. On the other hand, in

order to address the computational limitations of exact methods, many heuristic methods have

been proposed in the literature. However, these methods sacrifice the guarantee of an optimal

solution (or even any information about the solution quality) in order to generate good solutions

in acceptable computational times. We note [11-13] as some recent examples of using heuristic

methods in the NSP literature.

In recent years, some researchers experimented with hybridizations of different methods,

e.g. CP and heuristics [14], IP and heuristics [15], and less well-investigated combination of IP

and CP [16], in order to utilize the strengths of all methods together. In this paper, we propose a

new systematic hybrid algorithm using IP and CP approaches, which is capable of finding the

optimal solution. Due to the exact nature of the proposed algorithm, it can generate a good

solution as well as a good lower bound in contrast to heuristic methods. The hybrid algorithm

exploits the problem-specific information to reduce the search space, to fine tune the search

parameters, and to improve the efficiency of the search process in a novel way. In other words,

using an IP approach as the main solution method, we employ a CP approach and some other

algorithmic aids to improve the efficiency of the algorithm. Moreover, the proposed algorithm

is designed to obtain the best result in a pre-defined limited computational time. We model the

problem according to a general comprehensive model reported in the literature [17] and evaluate

it using some test instances published therein.

The rest of this paper is organized as follows: problem definition and assumptions are

explained in Section 2. The mathematical and CP formulations is presented in Section 3 and 4.

In Section 5, we describe the proposed hybrid algorithm and its components. Computational

results are reported in Section 6, and some conclusions are drawn in Section 7.

2 Problem Definition

NSP is the process of assigning a number of nurses to a number of work shifts during a

planning horizon according to a set of requirements and constraints. These constraints are

usually categorized to hard and soft constraints. In the following, we define decision variables

and constraints according to the conceptual model described in [17], which will be used to

construct an IP model.

We define our decision variables for each nurse, for each day, and for each shift type. This

way of modeling allows us to better utilize the problem-specific structure in order to reduce the

search space, although it is less flexible and contains more symmetry compared to the pattern-

based modelling (e.g. [12]), which generates all possible weekly shift sequences (patterns) and

hence considers all constraints except coverage constraints. We assume the current roster is

modelled over a planning horizon in an isolated way, i.e. no information (history) from the

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 430 -

previous roster is used to construct the current one. We also consider a day-off as a shift type for

modelling purposes. For the sake of simplicity, we assume all nurses belong to the same skill

category. In addition, we assume all rosters start from Monday and are made from a complete

week (includes seven days with a two-day weekend). The constraints of the model are:

1. Maximum one assignment per shift type per day,

2. Coverage constraints: the number of shift types for each day must be fulfilled,

3. The minimum and maximum number of:

(a) shift assignments within the scheduling period,

(b) consecutive working days over the planning horizon,

(c) working hours within the scheduling period (and/or during a week),

(d) shift assignments within a week,

(e) shift assignments at the weekend,

(f) consecutive shift types over the planning period,

4. Minimum number of days-off after a night shift or a series of night shifts,

5. Complete weekends: over the weekends, there should be either an assignment to all

days of weekends or no assignments at all,

6. No night shift before free weekends, where there is no assignment at all,

7. Maximum number of consecutive worked weekends, where there is at least one

assignment,

8. Requested shifts (days) on or off,

9. Forbidden shift type patterns (e.g. the “ND” pattern, where the shift type “D” is not

allowed to be assigned right after the shift type “N”).

In the next two sections, we formulate this model using Integer Programming (IP) and

Constraint Programming (CP). We also note that the above constraints can be considered hard

or soft according to different settings. For the sake of simplicity, we only provide here a

formulation assuming that all constraints are hard. In case any soft constraints exist in the model,

our objective function can be defined as the weighted sum of all slack variables in IP or reified

variables in CP for each soft constraint.

3 Mathematical Formulation

Here we present our mathematical formulation using Integer Programming based on the

definitions and assumptions from the previous section. The variables, parameters, and

constraints of the model are defined as follows:

Decision Variables:

𝑥𝑒𝑎𝑑 Binary variable indicating whether shift type a on day d is

assigned to nurse e or not.

𝑝𝑒𝑑 Binary variable indicating whether nurse e works on day d or

not.

𝑘𝑒𝑤 Binary variable indicating whether nurse e is assigned to

weekend w or not.

𝑦𝑒𝑎 Total number of times that shift type a assigned to nurse e over

the planning period.

𝑧𝑒𝑤𝑎 Total number of shift type a assigned to nurse e during week

w.

Parameters:

𝑁 Set of nurses.

𝐷 Set of days.

𝐴 Set of shift types.

𝑊 Set of weeks.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 431 -

𝐻𝑎 Set of shift types that cannot be assigned immediately after

shift type a.

𝑃𝑅𝑎𝑑 Set of pre-assigned nurses to shift type a on day d.

𝑀𝐿𝑒 , 𝑀𝑈𝑒 Minimum and maximum number of shifts that can be assigned

to nurse e within the planning period.

𝑊𝐿𝑤 ,𝑊𝑈𝑤 Minimum and maximum number of shifts that can be assigned

to a nurse within week w.

𝑉𝐿𝑑 , 𝑉𝑈𝑑 Minimum and maximum number of shifts that can be assigned

to nurses on day d.

𝐴𝐿, 𝐴𝑈 Minimum and maximum number of hours that can be assigned

to each nurse during the planning period.

𝐸𝐿𝑤 , 𝐸𝑈𝑤 Minimum and maximum number of hours that can be assigned

to each nurse during week w.

𝑁𝐿,𝑁𝑈 Minimum and maximum number of consecutive working days

over the planning period.

𝐻𝐿𝑎 , 𝐻𝑈𝑎 Minimum and maximum number of consecutive shift type a

over the planning period.

𝐾𝐿, 𝐾𝑈 Minimum and maximum number of worked weekends over the

planning horizon.

𝐶𝑈 Maximum number of consecutive worked weekends over the

planning period.

𝑈𝑇𝑎 Total workloads (hours) of shift type a within the planning

period.

𝑈𝑇𝑎𝑤 Total workloads (hours) of shift type a during week w.

Constraints:

Next, we present our IP formulation, where the order of the constraints is preserved the

same as the order of the constraints presented in Section 2:

∑𝑥𝑒𝑎𝑑
𝑎∈𝐴

= 1, ∀𝑒 ∈ 𝑁, 𝑑 ∈ 𝐷
(1)

𝑝𝑒𝑑 = ∑ 𝑥𝑒𝑎𝑑
𝑎∈𝐴−{𝑟}

, ∀𝑒 ∈ 𝑁, 𝑑 ∈ 𝐷
(2)

𝑉𝐿𝑑 ≤ ∑𝑝𝑒𝑑
𝑒∈𝑁

≤ 𝑉𝑈𝑑 , ∀𝑑 ∈ 𝐷

𝑦𝑒𝑎 = ∑𝑥𝑒𝑎𝑑
𝑑∈𝐷

, ∀𝑒 ∈ 𝑁, 𝑎 ∈ 𝐴
(3.a)

𝑀𝐿𝑒 ≤∑𝑦𝑒𝑎
𝑎∈𝐴

≤ 𝑀𝑈𝑒 , ∀𝑒 ∈ 𝑁

∑ 𝑝𝑒𝑔

𝑁𝑈+𝑑

𝑔=𝑑

≤ 𝑁𝑈, ∀𝑒 ∈ 𝑁, 𝑑 ∈ {1… |𝐷| − 𝑁𝑈}
(3.b)

∑ 𝑝𝑒𝑑+𝑖

𝑁𝐿−1

𝑖=1

≤ 𝑝𝑒𝑑 + 𝑝𝑒𝑑+𝑁𝐿 + 𝑁𝐿 − 2, ∀𝑒 ∈ 𝑁, 𝑑 ∈ 𝐷

𝐴𝐿 ≤ ∑𝑦𝑒𝑎𝑈𝑇𝑎
𝑎∈𝐴

≤ 𝐴𝑈, ∀𝑒 ∈ 𝑁
(3.c)

𝑧𝑒𝑤𝑎 = ∑ 𝑥𝑒𝑎𝑑

7𝑤

𝑑=7(𝑤−1)+1

, ∀𝑒 ∈ 𝑁, 𝑎 ∈ 𝐴,𝑤 ∈ 𝑊

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 432 -

𝐸𝐿𝑤 ≤∑𝑧𝑒𝑤𝑎𝑈𝑇𝑎𝑤
𝑎∈𝐴

≤ 𝐸𝑈𝑤 , ∀𝑒 ∈ 𝑁,𝑤 ∈ 𝑊

𝑊𝐿𝑤 ≤∑𝑧𝑒𝑤𝑎
𝑎∈𝐴

≤ 𝑊𝑈𝑤 , ∀𝑒 ∈ 𝑁,𝑤 ∈ 𝑊
(3.d)

𝑘𝑒𝑤 ≤ 𝑝𝑒𝑑 + 𝑝𝑒𝑑+1 ≤ 2𝑘𝑒𝑤 , ∀𝑒 ∈ 𝑁,𝑤 ∈ 𝑊, 𝑑 = 7𝑤 − 1 (3.e)

𝐾𝐿 ≤ ∑ 𝑘𝑒𝑤
𝑤∈𝑊

≤ 𝐾𝑈, ∀𝑒 ∈ 𝑁

∑ 𝑥𝑒𝑎𝑔

𝐻𝑈𝑎+𝑑

𝑔=𝑑

≤ 𝐻𝑈𝑎 , ∀𝑒 ∈ 𝑁, 𝑎 ∈ 𝐴, 𝑑 ∈ {1… |𝐷| − 𝐻𝑈𝑎}

(3.f)

∑ 𝑥𝑒𝑎𝑑+𝑖

𝐻𝐿𝑎−1

𝑖=1

≤ 𝑥𝑒𝑎𝑑 + 𝑥𝑒𝑎𝑑+𝐻𝐿𝑎 + 𝐻𝐿𝑎 − 2, ∀𝑒 ∈ 𝑁, 𝑎 ∈ 𝐴, 𝑑 ∈ 𝐷

𝑥𝑒𝑛𝑑 ≤ 𝑥𝑒𝑛𝑑+1 + 1 − 𝑝𝑒𝑑+1, ∀𝑒 ∈ 𝑁, 𝑑 ∈ {1… |𝐷| − 1} (4)

𝑥𝑒𝑛𝑑 − 𝑝𝑒𝑑+1 ≤ 1 − 𝑝𝑒𝑑+2, ∀𝑒 ∈ 𝑁, 𝑑 ∈ {1… |𝐷| − 2}

𝑥𝑒𝑟𝑑 = 𝑥𝑒𝑟𝑑+1, ∀𝑒 ∈ 𝑁, 𝑑 ∈ {6,13, … , |𝐷| − 1} (5)

𝑥𝑒𝑛𝑑 ≤ 𝑝𝑒𝑑+1 + 𝑝𝑒𝑑+2, ∀𝑒 ∈ 𝑁, 𝑑 ∈ {5,12, … , |𝐷| − 2} (6)

∑𝑘𝑒𝑤+𝑖

𝐶𝑈

𝑖=0

≤ 𝐶𝑈, ∀𝑒 ∈ 𝑁,𝑤 ∈ {1… |𝑊| − 𝐶𝑈}
(7)

𝑥𝑒𝑎𝑑 = 1, ∀𝑒 ∈ 𝑃𝑅𝑎𝑑 , 𝑎 ∈ 𝐴, 𝑑 ∈ 𝐷 (8)

𝑥𝑒𝑎𝑑 + 𝑥𝑒ℎ𝑑+1 ≤ 1, ∀𝑒 ∈ 𝑁, 𝑎 ∈ 𝐴, ℎ ∈ 𝐻𝑎 , 𝑑 ∈ {1… |𝐷| − 1} (9)

In constraint (4), we assume that there should be two days-off after a night shift or a series

of night shift types. Furthermore, in constraints (2), (4), (5), and (6), “n” and “r” indicate a night

shift type and a day-off, respectively.

4 Constraint Programming Formulation

Here we present our CP formulation based on Constraint Satisfaction Problem (CSP)

model according to the definitions and assumptions provided in Section 2. The presented model

is detailed enough for the needs of this paper, however, we would add other redundant

constraints or variables to increase the efficiency of the CP solver. In this section, first, we

concisely explain the two types of global constraints which we use in the CP model: Cardinality

and Stretch. For more information about global constraints in CP, we refer to [24-25]. Next, we

define the variables, parameters, and constraints of the model. We use the same parameters as

defined in IP formulation (Section 3), therefore we define only new ones here.

Cardinality constraints (aka. GCC or generalized cardinality) bounds the number of times

that variables take a certain set of domain values. It is written as 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦(𝑥, 𝑣, 𝑙, 𝑢) where

𝑥 is a set of variables (𝑥1, … , 𝑥𝑛); 𝑣 is a m-tuple of domain values of the variables 𝑥; 𝑙 and 𝑢 are

m-tuples of non-negative integers defining the lower and upper bounds of the times value 𝑣

being taken by variable 𝑥, respectively. The constraint defines that, for 𝑗 = 1,… ,𝑚, at least 𝑙𝑗

and at most 𝑢𝑗 of the variables 𝑥 take value 𝑣𝑗.

Stretch constraints bounds the sequence of consecutive variables that take the same value

(stretch), i.e. 𝑥𝑗−1 ≠ 1, 𝑥𝑗 , … , 𝑥𝑘 = 𝑣, 𝑥𝑘+1 ≠ 𝑣. It is written as 𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑥, 𝑣, 𝑙, 𝑢, 𝑃) where 𝑥 is

a set of variables (𝑥1, … , 𝑥𝑛); 𝑣 is a m-tuple of possible domain values of 𝑥; 𝑙 and 𝑢 are m-tuples

of lower and upper bounds for 𝑥, respectively. 𝑃 is a set of patterns, i.e. pairs of values (𝑣𝑗 , 𝑣𝑘),

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 433 -

requiring that when a stretch of value 𝑣𝑗 immediately precedes a stretch of value 𝑣𝑘, the pair

(𝑣𝑗 , 𝑣𝑘) must be in 𝑃.

Decision Variable:

𝑠𝑒𝑑 Integer variable indicating the shift type assigned to nurse e on

day d.

Parameters:

𝐻𝑎 Set of shift types that can be assigned immediately after shift

type a.

UT The vector of total workloads (hours) of the shift types within

the planning period.

𝑈𝑇𝑤 The vector of total workloads (hours) of the shift types during

week w.

Constraints:

Next, we present our CP formulation based on the defined global constraints, where the

order of the constraints is preserved the same as the order of the constraints presented in Section

2:

𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 (⋃𝑠𝑒𝑑
𝑒∈𝑁

, 𝐴, 𝑉𝐿𝑑 , 𝑉𝑈𝑑) , ∀𝑑 ∈ 𝐷
(2)

𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 (⋃𝑠𝑒𝑑
𝑑∈𝐷

, 𝐴,𝑀𝐿𝑒 , 𝑀𝑈𝑒) , ∀𝑒 ∈ 𝑁
(3.a)

𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑠𝑒𝑑 , 𝐴, 𝑁𝐿, 𝑁𝑈, 𝑃), ∀𝑒 ∈ 𝑁, 𝑑 ∈ 𝐷, 𝑃 = {(𝑎, 𝑟)|𝑎 ∈ 𝐴} (3.b)

𝐴𝐿 ≤ 𝑝𝑟𝑜𝑑(𝑠𝑒𝑑 , 𝑈𝑇) ≤ 𝐴𝑈, ∀𝑒 ∈ 𝑁, 𝑑 ∈ 𝐷 (3.c)

𝐸𝐿𝑤 ≤ 𝑝𝑟𝑜𝑑(𝑠𝑒𝑑 , 𝑈𝑇𝑤) ≤ 𝐸𝑈𝑤 , ∀𝑒 ∈ 𝑁,𝑤 ∈ 𝑊,𝑑 = 7(𝑤 − 1) + 1

𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 (⋃ 𝑠𝑒𝑑

7𝑤

𝑑=7(𝑤−1)+1

, 𝐴,𝑊𝐿𝑤 ,𝑊𝑈𝑤) , ∀𝑒 ∈ 𝑁,𝑤 ∈ 𝑊

(3.d)

𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦(𝑠𝑒𝑑 , 𝑟, 𝐾𝐿, 𝐾𝑈), ∀𝑒 ∈ 𝑁, 𝑑 ∈ {7𝑤 − 𝑖|𝑤 ∈ 𝑊, 𝑖 ∈ {0,1}} (3.e)

𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑠𝑒𝑑 , 𝑎, 𝐻𝐿𝑎 , 𝐻𝑈𝑎 , 𝑃), ∀𝑒 ∈ 𝑁, 𝑑 ∈ 𝐷, 𝑎 ∈ 𝐴, 𝑃 = {} (3.f)

𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑠𝑒𝑑 , 𝑛, 2,3, 𝑃), ∀𝑒 ∈ 𝑁, 𝑑 ∈ 𝐷, 𝑃 = {(𝑛, 𝑟)} (4)

𝑠𝑒𝑑 = 𝑠𝑒𝑑+1, ∀𝑒 ∈ 𝑁, 𝑑 ∈ {6,13, … , |𝐷| − 1} (5)

𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑠𝑒𝑑 , 𝑛, 2,3, 𝑃), ∀𝑒 ∈ 𝑁, 𝑑 ∈ {7𝑤 − 𝑖|𝑤 ∈ 𝑊, 𝑖 ∈ {0,1,2}}, 𝑃

= {(𝑛, 𝑟)}

(6)

𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑠𝑒𝑑 , 𝑟, 2(|𝑊| − 𝐶𝑈), 2|𝑊|, 𝑃), ∀𝑒 ∈ 𝑁, 𝑑

∈ {7𝑤 − 𝑖|𝑤 ∈ 𝑊, 𝑖 ∈ {0,1}}, 𝑃 = {(𝑟, 𝑟)}

(7)

𝑠𝑒𝑑 = 𝑎, ∀𝑒 ∈ 𝑃𝑅𝑎𝑑 , 𝑎 ∈ 𝐴, 𝑑 ∈ 𝐷 (8)

𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑠𝑒𝑑 , 𝑎, 0,2, 𝑃), ∀𝑒 ∈ 𝑁, 𝑑 ∈ 𝐷, 𝑃 = {(𝑎, 𝐻𝑎)|𝑎 ∈ 𝐴} (9)

In constraint (4), we assume that there should be two days-off after a night shift or a series

of night shift types. Furthermore, in the mentioned constraints, “n” and “r” indicate a night shift

type and a day-off, respectively. It should be noted that constraint (1) is already satisfied due to

the inherent structure of the CP model.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 434 -

5 Integration of CP and IP

For small- to medium-sized problems, IP solvers are often efficient to find the optimal

solution and to generate strong lower bounds. Similarly, CP solvers are capable of finding

feasible solutions. However, using these approaches on their own for solving large-scale

problems, or even small-scale problems with a highly-constrained structure often leads to a very

poor performance. For example, solving NSPs using the model presented in Section 3 with a

pure IP approach, we were not able to obtain an optimal solution (and in some cases even a

good-quality solution) in a reasonable amount of time, where some instances took more than 24

hours to solve. Similarly, a pure CP approach results in poor performance as well, since it often

takes a long time to achieve a feasible or optimal solution. Therefore, it is intuitive to hybridize

them in order to utilize their strengths for efficiently solving NSPs. In this paper, we integrate

IP and CP approaches in a pipeline fashion to solve the problem. To improve the efficiency of

the hybrid algorithm, we exploit the problem structure to provide valuable information about

search space, hence improve the performance of the proposed algorithm. Indeed, we use a CP

approach and some other algorithmic procedures to help the IP approach as our main solution

method.

The algorithm presented in this paper is tested on nine different instances published in [17].

The diversity in the structure and complexity of these instances allows us to test our algorithm

thoroughly. Table 1 provides more information about these instances, where the reported number

of variables and constraints are based on the described model presented in Section 3. It is

noteworthy to mention that although we tried to solve a few instances based on real-world cases,

we developed our solution method without any fine tuning. Therefore, we believe that our

approach can be easily generalized to solve different instances based on the presented IP model.

Table 1. Benchmark instances
Instance Nurses Shift

types

Days Shift

permutations

Variables Constraints

GPOST 8 3 28 3136 5680 5504

GPOSTB 8 3 28 3136 5680 5496

ORTEC01 16 5 33 7821 19096 19170

ORTEC02 16 5 33 7821 19101 19175

Valouxis-1 16 4 28 5824 9776 9968

SINTEF 24 6 21 6867 8118 6927

WHPP 30 4 14 5880 6000 5842

MILLAR-1 8 3 14 784 1956 1820

LLR 27 4 7 1323 1139 979

In the following, we provide a brief description of the performance of the hybrid algorithm,

and later we will elaborate each associated component. After a quick pre-processing in order to

create appropriate data structures for the algorithm, at first step, we employ an IP pre-solver in

order to identify any valuable information. If any valuable information is identified, we continue

to use the IP solver (rather than a CP solver) for the next steps, since it has more potential to be

successful in solving the problem, as we experienced in our experiments. In the next step, we

employ a CP solver to solve the problem considering only those constraints which will not make

the problem difficult to solve. Identifying difficult constraints is achieved with solving a

hierarchy of different CSPs iteratively. Next, using the information provided by the CP solver

operated on a modified problem and generated CSPs, we solve the problem by an IP solver (or

the CP solver based on the obtained information from the IP pre-solver) during the remaining

time. We also add three other components to reinforce the search process using the exploited

problem-specific information: i) Symmetry breaker, which tries to remove (or mitigate) the

symmetric structures; ii) Weight balancer, which tries to modify each constraint’s weight based

on a pre-defined threshold in order to tighten the problem formulation; and iii) Decomposer,

which provides a lower bound for the IP solver.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 435 -

It should be noted that the proposed hybrid algorithm runs in a pre-defined time to solve

the problem. In fact, the user determines the running time of each component by setting the

relevant computational time parameter.

The schematic diagram of the proposed algorithm is depicted in Figure 1:

Fig. 1. Schematic diagram of the proposed hybrid algorithm

Next, we explain each component individually in more details:

IP Pre-solver: In fact, this component is the first step in most of the commercial solvers to

analyze and simplify the problem structure, and also identify any specific structures such as

network flow or assignment problems. If the IP solver can identify any particular structures, it

often leads to a better performance during the search process. Here, we only call the pre-solve

step of an IP solver from the hybrid algorithm as a black-box. We use the information obtained

from this step to predict if there are any specific structures, and therefore improving the

performance of the IP solver. Particularly, we use the obtained lower bound and relaxed

objective function value to understand the existence of any specific structures in this black-box

indirectly. According to our experiments, if the IP pre-solver component provides a stronger

(greater) lower bound compared to the relaxed objective function value (the initial identified

lower bound for an IP problem), the employed IP solver is a better choice to solve the problem,

otherwise we will use the CP solver instead. We also switch on the relevant parameter for the

pre-solve step of the IP solver to the highest degree (aggressive mode) in this component (e.g.

setting the Presolve parameter in Gurobi). Moreover, using the reported number of constraints

and variables in this step, if they are more than a user-defined threshold (psThr), we will change

the search strategy of the IP Solver accordingly. We will explain this setting in the IP Solver

component in more details.

CP Solver: During the search process, the hybrid algorithm may call the CP solver in two cases:

first, as the main solver if the IP pre-solver does not provide valuable information about the

problem due to its complex and highly-constrained structure; second, as an aid for the IP solver

to provide a good-quality initial solution. This solver solves the problem based on the Constraint

Satisfaction Problem (CSP) model presented in Section 4. In our experiments on the benchmark

instances, CP approach did not provide very good-quality solutions in a limited time. To address

this issue, we implement the following procedure: First, we generate a CSP model considering

all constraints that have a weight higher than a user-defined threshold (cspThr). If the problem

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 436 -

is infeasible, we will increase the threshold by one unit. Otherwise, we will generate a number

of solutions based on the modified model according to a user-defined parameter (numSols).

Therefore, on each threshold level, there might be several feasible solutions. This process

continues until the number of constraints in the new generated model is equal to the number of

constraints in the original model. Finally, we report the best-quality solution in terms of objective

function value. Next if the IP solver is a candidate for solving the problem, the reported solution

will be imported to the IP solver. Otherwise, we continue solving the problem using the CP

solver in the remaining time. We will explain this setting in the IP solver component in more

details. The pseudo code of this procedure is presented below, where p, p’, cspThr, and numSols

indicate the original problem, the new generated problem in each threshold level, the user-

defined threshold level, and the user-defined number of solutions needs to be generated in each

threshold level, respectively.

Solutions = empty

p’ = p

While (true)

p’ = generateCSP(p, cspThr)

If p’ is feasible then

For i = 1 to numSols

 Solutions.add(solve(p’))

Next

Else

cspThr++

End If

If numConstraint(p’) >= numConstraint(p) then break

End While

Return bestObj(Solutions)

Using the information provided in this procedure by solving a variety of CSP problems,

we can also find out an estimate for the difficulty of each constraint. If the solution time for

adding a constraint to a problem in order to generate a new modified problem is significant, we

will count it as a “difficult constraint”. We only record the solution time for the last occurrence

when a specific constraint is added to a problem during the process of generating CSPs. To our

experiments, 15 seconds is sufficient for most of the benchmark instances. This simple inference

helps us later in the Weight Balancer component to make the formulation of the problem tighter.

IP Solver: In this component, we use a state-of-the-art IP solver to solve the problem during the

remaining time. The only difference between this component and running a pure IP solver is the

initial solution and parameter settings provided to the solver from other relevant components.

We use the solution obtained from the CP solver as a warm start for the IP solver. Moreover, we

change some parameters of the IP solver based on the information provided by the IP Pre-solver.

Indeed, if the IP Pre-solver provides a good lower bound (elaborated in the IP Pre-solver

component), we switch off the pre-solve step in this component (e.g. setting the Presolve

parameter in Gurobi). We also change the search strategy based on the number of constraints

and variables provided by the IP Pre-solver, and a user-specified threshold, i.e. psThr. If the

number of constraints and variables of the problem are more than psThr, we set the search

strategy to spend more efforts on obtaining a feasible solution rather than proving optimality.

We do not change the default search strategy in case a problem is not difficult to solve. In most

of the modern solvers, the user can change the search strategy by a specific parameter defined

therein. For example, in Gurobi solver, the user can tailor the search strategy by setting the

MIPFocus parameter. Furthermore, using the lower bound provided by the Decomposer

component, we enforce it on the IP solver by setting the relevant parameter accordingly (e.g.

setting the Start parameter in Gurobi).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 437 -

Symmetry Breaker: As we mentioned in Section 2, modeling the problem using indexed

variables can create symmetry issues. To resolve these issues, we add lexicographic ordering

constraints [25] to both CSP and IP models applied to the main variables (i.e. xead and sed,

respectively). We then use the new model for both the IP and CP Solver components. In Section

6, we will mention that breaking a symmetric structure in the model is often beneficial for the

solver.

Weight Balancer: In order to improve the efficiency of the IP solver during the search process,

we modify the weights in the objective function due to the difficulty degree of constraints, which

we elaborated in the CP Solver component. Based on this degree, if a constraint is not difficult,

we impose it to the IP solver as a hard constraint. Theoretically, this process may lead to an

infeasible problem. In this case, we undo the relevant change and continue the process for the

rest of the constraints. Finally, we solve the new modified problem using the IP solver. This

technique helps to reduce the search space, which results in a better efficiency during the search

process.

Decomposer: One of the design aspect of the proposed hybrid algorithm is to generate a good

lower bound for most of the benchmark instances. In this component, we decompose the problem

to weekly rosters, and then we evaluate all possible shift patterns according to “forbidden shift

pattern” and “request on or off” constraints (constraints 8 and 9 in Section 2). In this process,

we try to find out whether there is an inevitable conflict in the model, which can be discovered

before solving the problem. When there is an inherent conflict in the model according to the

current data, we can calculate the associated penalty based on the objective function and consider

it as a new lower bound. We do this particular evaluations for all decomposed weekly rosters in

a problem. This process is elaborated in [7], where the authors try to infer a lower bound for two

specific instances. However, here we use the same technique but for all decomposed weekly

rosters, and not only for particular instances. Apart from this process, we also solve all

decomposed weekly rosters by an IP solver to discover any further potential lower bounds.

Finally, the best lower bound calculated in this component will be imported to the IP solver by

setting the relevant parameter (e.g. setting the Start parameter in Gurobi).

6 Computational Results

To evaluate the proposed hybrid algorithm, we implemented our algorithm in Java 1.7, and

used the IBM ILOG CP solver 1.7 for solving all CSPs and Gurobi 5.6 to solve all IPs. The

reason to use the aforementioned solvers is that we found them easier to implement in terms of

modeling, and also they suit our hybrid framework better than other software packages. In

addition, we note that the benchmarks reported in [27] show that Gurobi and IBM Ilog Cplex

produce very similar results for most of the instances. We run our experiments on a PC with

Intel 3.4 GHz processor and 4 GB of RAM, and we used the benchmark instances introduced in

Section 5. The variety in benchmark instances helps us to test and analyze our algorithm in

different circumstances. To the best of our knowledge, we are the first researchers experimenting

with all these instances.

For evaluation purposes, we run the hybrid algorithm for 10 minutes, and distribute 10%,

30%, and 50% of the time to IP Pre-solver, CP Solver, and IP Solver components, respectively.

The rest of the time is distributed equally to other components as they require very short times

in comparison. The reasons for benchmarking the proposed algorithm in 10 minutes are two-

fold: i) we primarily designed the hybrid algorithm to run in a short time; ii) the selected time is

in line with the testing times used by most of the algorithms reported in the literature, including

the time used in the first International Nurse Rostering Competition (INRC-I) [26], and hence

provides a platform for a fair comparison. Furthermore, we set the threshold parameters for the

IP Pre-solver and CP Solver components, i.e. psThr and cspThr, to 10000 and 10 respectively.

We also set the numSols parameter for the CP Solver component to 500. The design of the

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 438 -

algorithm is primarily deterministic, however to address the minor random behavior due to the

intrinsic nature of the employed solvers, we run it three times per instance for each experiment

and report average values.

We conducted two experiments to test the proposed algorithm: first, we investigate the

benefit and efficiency of the Symmetry Breaker and Weight Balancer components, and how they

affect the performance of the algorithm. Then, we compare the hybrid algorithm against five

most recent best algorithms in the literature.

The first experiment is designed to investigate the effects of breaking symmetry and

modifying weights on overall performance of the hybrid algorithm. For each test, the best

objective function value, lower bound, and duality gap were recorded. The results are shown in

Table 2. It should be noted that the algorithm solved instances SINTEF, MILLAR-1, and LLR

in less than 3 seconds, therefore, we only report the results for the rest of the instances (six

instances) in this experiment.

The results of running the hybrid algorithm using all the components are indicated as

“default setting” in the first part of Table 2. For the next two parts, we remove the Symmetry

Breaker and Weight Balancer components, respectively. As it can be seen, having symmetry

structures in the problem worsens the duality gap for three of instances, i.e. GPOST, ORTEC01,

ORTEC02, whereas it does not change the duality gaps for instances GPOSTB, Valouxis-1, and

WHPP. The reason to obtain the same results is because of the limited complexity in the structure

of these instances. As a result, the hybrid algorithm solved them easily compared with the other

instances, although they have symmetry issues. Therefore, Symmetry Breaker component seems

to improve the efficiency of the hybrid algorithm, in particular for problems with a very complex

structure.

In the third part, we removed only the Weight Balancer component. The results show

similar duality gaps to the second part for all the instances except a reduction for instance

ORTEC02, and an increase for instance ORTEC01, which are not significant. Indeed, these

instances have a particular structure that only modifying weights could not improve the

performance of the algorithm. However, one can see the effect of this component when it is

accompanied by the Symmetry Breaker component (Table 3). Consequently, we decided to

include this component in the default setting for two reasons: first, our aim is to develop a hybrid

algorithm, which is able to solve a variety of instances (in particular hard ones) successfully.

Since the third instance is one of the difficult instances in our benchmark, and adding the Weight

Balancer component results in a better solution, it is reasonable to keep this component in the

hybrid algorithm. Second, according to our other experiments on some modified version of the

current instances, and also some new generated instances, we found that generally including the

Weight Balancer component leads to better-quality solutions.

Table 2. The hybrid algorithm results in different settings

To compare the performance of the current algorithm against the stat-of-the-art algorithms

reported in the literature, Table 3 shows the best-published results from: a hybrid Variable

Neighborhood Search [18], a Memetic Algorithm [19], a Variable Depth Search [20], a Harmony

Search Algorithm [21], a Scatter Search [22], and another hybrid Variable Neighborhood Search

[23]. Unfortunately, to the best of our knowledge, we are not aware of any exact approaches and

Default setting No Symmetry Breaker No Weight Balancer

UB LB G (%) UB LB G (%) UB LB G (%)

GPOST 5 5 0 8 5 37.5 5 5 0

GPOSTB 5 0 100 3 0 100 5 0 100

ORTEC01 380 150 60.52 530 140 73.58 680 140 79.41

ORTEC02 370 150 59.45 570 140 75.44 340 140 58.82

Valouxis-1 20 0 100 20 0 100 20 0 100

WHPP 5 0 100 5 0 100 5 0 100

Instance

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 439 -

hence we did not include any in our benchmarking. Moreover, as we mentioned in Section 5, we

do not report the results of pure IP and CP solvers due to their poor performance on most of the

benchmark instances. In Table 3, the column “Opt.” shows the known optimal solution for the

benchmark instances according to [17], where often obtained using column generation and

relaxation techniques with an IP solver for a long runtime. We report the best results and their

computational times (in seconds) in columns “Best” and “T”, respectively. Although we run all

experiments only for 10 minutes, we report the computational times for any instances the hybrid

algorithm could find an optimal solution sooner. Columns “LB” and “G(%)” indicate the

obtained lower bounds and duality gaps for the benchmark instances, respectively.

As it can be seen, our proposed hybrid algorithm is able to outperform other algorithms for

six instances, and obtained promising results for instances ORTEC01 and ORTEC02. For

instance WHPP, we could not find out any reported result in the literature other than the optimal

solution mentioned in [17]. Furthermore, for instances GPOST, SINTEF, MILLAR-1, and LLR,

the hybrid algorithm obtained the optimal solution in a very short time compared to other

algorithms. Comparing the results of our algorithm with the Scatter Search, for instances

GPOSTB, MILAAR-1, and LLR, we obtained the same results, but in a shorter time. For

instances GPOST, Valouxis-1, and SINTEF, the hybrid algorithm found the best solutions,

which are significantly better than the others.

It is worth noting that the proposed algorithm found the solutions reported in Table 3, while

our aim of designing the hybrid algorithm was not only to find a good feasible solution, but also

to achieve a better duality gap for ensuring solution quality.

Table 3. Benchmark results for our algorithm versus other algorithms reported in the literature

7 Summary and Conclusion

This paper proposed a new systematic hybrid algorithm combining IP and CP to solve real-

world Nurse Scheduling Problems. The algorithm utilized the strengths of CP to aid the IP solver

to achieve better solutions. Concentrated on the problem structure, we developed some

components to provide valuable problem-specific information for both IP and CP solvers so that

better performance can be achieved in solving highly-constrained instances. In contrast to

heuristic methods reported in the literature, we attempted to design a hybrid method to generate

a good optimality gap. Moreover, we provided both CP and IP models of the problem.

We tested our algorithm on a diverse test bed of nine real-world instances from the

literature. We conducted two experiments to evaluate the effectiveness of different components

of the proposed algorithm, and its performance compared to some state-of-the-art algorithms.

The results show that proposed algorithm is capable of obtaining competitive results.

Our future work will investigate different models for the Nurse Scheduling Problems

compared with the classical model consists of indexed variables. We will also try to add a

heuristic component to the proposed hybrid algorithm to improve its performance. Exploiting

the problem-specific information, we will attempt to design a more sophisticated framework

The hybrid algorithm [18] [19] [20] [21] [22] [23]

Best LB G (%) T(s) Best T(h) Best T(s) Best T(s) Best T(s) Best T(s) Best T(s)

GPOST 5 5 5 0 323 915 121 9 861 8 234

GPOSTB 3 5 0 100 789 95 5 791

ORTEC01 270 380 150 60.52 541 12 535 1516 360 300 310 412 365 680

ORTEC02 270 370 150 59.45 330 446

Valouxis-1 20 20 0 100 560 593 100 800 160 3780

SINTEF 0 0 0 0 6 8 175 4 821

MILLAR-1 0 0 0 0 1 100 8 0 182 0 1

WHPP 5 5 0 100

LLR 301 301 301 0 8 305 38 301 423 314 79

Instance Opt.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 440 -

doing lots of heuristics, automation, etc. to accommodate different characteristic of the problem.

Finally, we are going to extend our algorithm to other scheduling problems.

References

1. M’Hallah, R. and A. Alkhabbaz, Scheduling of nurses: A case study of a Kuwaiti health

care unit. Operations Research for Health Care, 2013. 2(1–2): p. 1-19.

2. Kazahaya, G., Harnessing technology to redesign labor cost management reports.

Healthcare financial management: journal of the Healthcare Financial Management

Association, 2005. 59(4): p. 94-100.

3. Burke, E., et al., The State of the Art of Nurse Rostering. Journal of Scheduling, 2004. 7(6):

p. 441-499.

4. Ozcan, Y.A., Quantitative methods in health care management: techniques and

applications. Vol. 4. 2005: John Wiley & Sons.

5. Brucker, P., R. Qu, and E. Burke, Personnel scheduling: Models and complexity. European

Journal of Operational Research, 2011. 210(3): p. 467-473.

6. Karp, R.M., Reducibility among combinatorial problems. 1972: Springer.

7. Glass, C.A. and R.A. Knight, The nurse rostering problem: A critical appraisal of the

problem structure. European Journal of Operational Research, 2010. 202(2): p. 379-389.

8. Maenhout, B. and M. Vanhoucke, Branching strategies in a branch-and-price approach for

a multiple objective nurse scheduling problem. Journal of Scheduling, 2009. 13(1): p. 77-

93.

9. Soto, R., et al., Modeling NRPs with Soft and Reified Constraints. AASRI Procedia, 2013.

4(0): p. 202-205.

10. Gîrbea, A., C. Suciu, and F. Şişak, Design and implementation of a fully automated

planner-scheduler constraint satisfaction problem. 2011 6th IEEE International

Symposium on Applied Computational Intelligence and Informatics (SACI), 2011: p. 477-

482.

11. Lü, Z. and J.-K. Hao, Adaptive neighborhood search for nurse rostering. European Journal

of Operational Research, 2012. 218(3): p. 865-876.

12. Burke, E.K., J. Li, and R. Qu, A Pareto-based search methodology for multi-objective nurse

scheduling. Annals of Operations Research, 2012. 196(1): p. 91-109.

13. Brucker, P., et al., A shift sequence based approach for nurse scheduling and a new bench-

mark dataset. Journal of Heuristics, 2010. 16(4): p. 559-573.

14. Stølevik, M., et al., A Hybrid Approach for Solving Real-World Nurse Rostering Problems,

in Principles and Practice of Constraint Programming – CP 2011, J. Lee, Editor. 2011,

Springer Berlin Heidelberg. p. 85-99.

15. Valouxis, C., et al., A systematic two phase approach for the nurse rostering problem.

European Journal of Operational Research, 2012. 219(2): p. 425-433.

16. Spencer, K.L., L. Ho-fung, and J.H.M. Lee. Guided complete search for nurse rostering

problems in Tools with Artificial Intelligence, 2005. ICTAI 05. 17th IEEE International

Conference on. 2005.

17. Burke, E.K., et al., Problem model for nurse rostering benchmark instances. 2009:

http://www.cs.nott.ac.uk/∼tec/NRP/papers/ANROM.pdf [last accessed on: 2nd July

2014].

18. Burke, E.K., Curtois, T., Post, G., Qu, R., Veltman, B.: A hybrid heuristic ordering and

variable neighbourhood search for the nurse rostering problem. European Journal of

Operation-al Research 188, 330-341 (2008)

19. Burke, E., Cowling, P., De Causmaecker, P., Berghe, G.V.: A memetic approach to the

nurse rostering problem. Applied intelligence 15, 199-214 (2001)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 441 -

20. Burke, E.K., Curtois, T., Qu, R., Berghe, G.V.: A Time Pre-defined Variable Depth Search

for Nurse Rostering. (2007)

21. Hadwan, M., Ayob, M., Sabar, N.R., Qu, R.: A harmony search algorithm for nurse

rostering problems. Information Sciences 233, 126-140 (2013)

22. Burke, E.K., Curtois, T., Qu, R., Berghe, G.V.: A scatter search methodology for the nurse

rostering problem. Journal of the Operational Research Society 61, 1667-1679 (2009)

23. Métivier, J.-P., Boizumault, P., Loudni, S.: Solving Nurse Rostering Problems Using Soft

Global Constraints. In: Gent, I. (ed.) Principles and Practice of Constraint Programming -

CP 2009, vol. 5732, pp. 73-87. Springer Berlin Heidelberg (2009)

24. Laburthe, F., Jussien., N.: CHOCO solver documentation. (2012)

25. Beldiceanu, N., Carlsson, M., Rampon, J.-X.: Global Constraint Catalog. (2014)

26. Haspeslagh, S., Causmaecker, P.D., Stolevik, M., Schaerf, A.: INRC-First International

Nurse Rostering Competition 2010. (2010)

27. Mittelmann, H.D.: Decision Tree for Optimization Software. (2014)

28. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: A

review of applications, methods and models. European Journal of Operational Research

153, 3-27 (2004)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 442 -

MISTA 2015

Minimizing regular criteria in the flexible job-shop
scheduling problem

A. Garćıa-León · S. Dauzère-Pérès · Y. Mati

Abstract Algorithms for minimizing other regular criteria than the makespan in the

Flexible Job-shop Scheduling Problem (FJSP) are rather scarce. In this paper, we

propose a local search algorithm to optimize any regular criterion in the FJSP, which

makes use of the disjunctive graph model to represent schedules and search for an

optimal solution. Two neighborhood structures are proposed based on moving critical

operations. Efficient conditions for testing the feasibility of moves are presented and

new move evaluation functions are proposed. The efficiency of the algorithm is shown

on instances of the classical job-shop scheduling problem with total weighted tardiness,

as well as on instances of the FJSP with other regular criteria.

1 Introduction

Scheduling is a fundamental decision within organizations regardless of their types of

activities. It aims at providing the optimal schedules of the resources such as workforce

and machines in order to reduce costs, improve the productivity and hence increase

customer satisfaction. In many manufacturing systems, increasing the customer service

is essential for companies to compete. Thus, optimizing customer-oriented criteria such

as maximum tardiness, total weighted tardiness and total weighted number of tardy

jobs is very important. An illustrative example can be found in the Tolima region of

Colombia where, in the small and medium companies of the lithographic industry, most

of the customer orders are not delivered on time.

Andrés Alberto Garćıa-León
École des Mines de Saint-Étienne, Department of Manufacturing Sciences and Logistics, CNRS
UMR 6158 LIMOS, France
Universidad de Ibagué, Industrial Engineering Program, Ginnova research team, Colombia
E-mail: garcia-leon@emse.fr

Stéphane Dauzère-Pérès
École des Mines de Saint-Étienne, Department of Manufacturing Sciences and Logistics, CNRS
UMR 6158 LIMOS, France
E-mail: Dauzere-peres@emse.fr

Yazid Mati
Qassim University, College of Business and Economics, Saudi Arabia
E-mail: matie@qu.edu.sa

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 443 -

The Job-shop Scheduling Problem (JSP) is widely studied in scheduling literature

since it allows a great number of real-life applications to be modeled. The JSP as-

sumes that the machine on which an operation must be processed is fixed. However,

this assumption may not be verified in some situations where the machine assigned

to an operation must be selected in a predefined candidate set. For instance, in the

lithographic industry, the operation needed in the printing area can be processed by

several alternative machines which have different characteristics that vary according

to the technological level.

The Flexible Job-shop Scheduling Problem (FJSP) is an extension of the JSP where

the operation flexibility is allowed. Different from the JSP for which a huge number

of papers have been published, the FJSP needs more attention from researchers, in

particular to deal with customer-based criteria. Indeed, the majority of the previous

studies to solve the FJSP focus on minimizing the makespan criterion and, even for

the JSP, very few papers address other criteria than the makespan. This paper is the

first study, to our knowledge, that addresses the minimization of any regular criterion

in the flexible job-shop scheduling problem.

The paper is organized as follows. Section 2 presents the description of the FJSP

with regular criteria and introduces the disjunctive graph used to model and solve

the FJSP. Section 3 highlights the main previous studies for solving the FJSP with

the makespan criterion and also reviews some papers on the JSP with other regular

criteria than the makespan. Section 4 presents the proposed local search algorithm and

its parameters. Computational results are shown and discussed in Section 5. Section 6

provides some conclusions and future research directions.

2 Problem description and modeling

The flexible job-shop scheduling problem can be stated as follows. A set of n jobs

J = {J1, . . . , Jn} must be performed on a set M = {M1, . . . ,Mm} of m machines that

are always available for processing the jobs. Each machine can only process one job

at a time. A job Ji consists of ni operations that must be performed according to a

predefined sequence, called routing, which can be different from one job to another.

For sake of clarity, we associate a unique integer number y (y = 1, . . . ,
∑
i ni) to each

operation of the jobs and denote the operation by j. The preemption of operations is

not allowed, which means that an operation cannot be interrupted once started. Each

job Ji has a release date ri, a weight wi and a due date di. In the FJSP, contrary to most

classical shop scheduling problems, there is a flexibility when performing operations on

machines, i.e. the machine needed to perform an operation j is not fixed in advance

but must be selected from a subset Rj ⊆M of eligible machines. The processing time

of an operation j depends on the selected machine in Rj . These processing times are

non-negative integer, known and deterministic. For sake of clarity of notations, the

processing time of operation j will be denoted by pj regardless of the assigned machine

to operation j.

To obtain a feasible schedule of the FJSP, two main decisions have to be made,

namely assignment and sequencing. The assignment decision consists of selecting, for

each operation j, the machine that will perform the operation from the subset Rj while

the sequencing decision deals with obtaining a sequence of operations on each of the

selected machines. The FJSP aims at obtaining a feasible schedule that minimizes a

given objective function. In this paper, contrary to most of the literature on solving

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 444 -

the FJSP, we consider the minimization of any regular criterion. A criterion is said

to be regular if it is an increasing function of the completion times Ci of the jobs Ji.

Among the most widely used regular criteria for scheduling problems are the makespan

Cmax, the maximum tardiness Tmax = maxi Ti where Ti = di − Ci if di > Ci and 0

otherwise, the total weighted completion time
∑
wiCi, the total weighted tardiness∑

wiTi, and the total weighted number of late jobs
∑
wiUi where Ui = 1 if di > Ci

and 0 otherwise.

When the assignment of machines to operations is fixed, the FJSP becomes the

job-shop problem with possible repetition of machines for different operations of the

same job. In this case, an extension of the disjunctive graph originally developed in

Roy and Sussmann (1964) can be nicely used to represent the problem. This extension,

that has been used in Mati et al. (2011) allows representing the job-shop problem with

any regular criteria. The graph is noted G = (V,A,E), where V is the set of nodes, A

is the set of conjunctive arcs and E is the set of disjunctive arcs. The nodes in the set

V represent operations of jobs, plus a dummy node 0 that represents the start of each

job, and n dummy nodes φi, where φi represents the completion time of job Ji. The

set A contains conjunctive arcs that connect two consecutive operations on the routing

of jobs, the node 0 and every first operation of each job, and the last operation of each

job Ji to a dummy node φi. The set E = ∪kEk (k = 1, . . . ,m) contains disjunctive

arcs between every pair of operations assigned to the same machine Mk. The arc from

0 to the first operation of a job Ji has a length equal to the release date ri of Ji. Any

remaining conjunctive or disjunctive arc has a length equal to the processing time of

the operation from which it starts.

A selection, which corresponds to a schedule of the FJSP for a given assignment,

is obtained by fixing a direction to each disjunctive arc in E. The selection is feasible

if the induced graph is acyclic. The graph contains many redundant arcs that must be

removed to ensure that every node x has at most one predecessor and one successor on

the machine that performs x. We denote by prx (resp. frx) the node preceding (resp.

following) x on the routing, and by psx (resp. fsx) the node preceding (resp. following)

x on the sequence of the machine assigned to x.

The starting time hx = L(0, x) of a node x, called head, corresponds to the length

of a longest path from 0 to x. Thus, the completion time Ci of a job Ji is equal to hφi
.

The tail qix from a node x to a dummy nodes φi is equal to L(x, φi)−px if a path exists

from x to φi and −∞ otherwise. A path from 0 to φi is called critical if its length is

equal to Ci, and every node x belonging to this critical path is critical according to

job Ji. A critical node x for job Ji satisfies hx + px + qix = Ci. An arc belonging to the

critical path from 0 to φi is called critical if it connects two operations x and y 6= frx
assigned to the same machine. Note that an arc may be critical for several jobs. The

level of a node x in G, which is the maximum number of arcs in a path from 0 to x,

is denoted by lx. Having obtained the heads of the nodes of the graph, the objective

function of the feasible schedule represented by the selection can be determined in

O(n) from the starting times of the dummy nodes φi. For instance, the makespan is

obtained using the formula Cmax = maxCi (i = 1, . . . , n).

3 Literature review

The aim of this section is not to provide a complete list of the contributions on the

FJSP, but rather to highlight the papers closely related to our work, in particular

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 445 -

those dealing with regular criteria other than the makespan. For the JSP, a state-

of-the-art is provided in Jain and Meeran (1999) and there has been an increased

interest during the recent years but still most of the papers consider the minimization

of the makespan. Among the approaches that form the state-of-the-art for the JSP

with
∑
wiTi are genetic algorithms Essafi et al. (2008), simulated annealing Zhang

and Wu (2011), shifting bottleneck Pinedo and Singer (1999), hybrid methods Bülbül

(2011), and large step random walk Kreipl (2000). A general approach that deals with

any regular criterion is proposed in Mati et al. (2011), which is based on a new and

efficient evaluation of swap moves. This evaluation has been extended in Braune et al.

(2013) to deal with insertion moves.

Methods for solving the FJSP are not as abundant as for solving the JSP, but there

has been a significant increase of papers in the last ten years. Some papers analyze the

complexity of special cases of the FJSP Brucker and Schlie (1990) and Mati and Xie

(2004). The majority of the methods for solving the FJSP are heuristic methods that

can be hierarchical Brandimarte (1993) or integrated approaches Dauzère-Pérès and

Paulli (1997). In the former type of approaches, assignment and sequencing decisions

are separated whereas, in the second type, assignment and sequencing decisions are

considered simultaneously. Most of the state-of-the-art approaches for the FJSP are

metaheuristics that make use of the disjunctive graph model. In Hurink et al. (1994), a

tabu search algorithm that uses the block concept is developed for the case where the

processing times of operations are independent of the assigned machines. Another tabu

search algorithm is developed in Dauzère-Pérès and Paulli (1997) based on moving op-

erations on the critical path. New results on testing the feasibility of insertion moves

and evaluating the quality of moves are developed. The tabu search in Mastrolilli and

Gambardella (2000) uses the insertion moves but new conditions for ensuring the fea-

sibility of moves are developed as well as new move estimations. An integrated greedy

heuristic that schedules jobs iteratively is developed in Mati et al. (2001). Two algo-

rithms, namely hybrid harmony search and large neighborhood search, are developed

in Yuan and Xu (2013). An analysis of four mathematical formulations of the FJSP is

presented in Demir and İşleyen (2013). An artificial bee colony algorithm is proposed

in Wang et al. (2012), and a variant of the climbing discrepancy search approach is

described in Hmida et al. (2010). The FJSP with additional constraints such as lim-

ited resource constraints is also investigated Rajkumar et al. (2011). It is worth noting

that many authors have also concentrated on solving the FJSP with multi-objective

functions (see for instance Jia and Hu (2014)).

Note again that the majority of the papers on FJSP are dedicated to the makespan.

An important contribution of this paper is the development of an approach for opti-

mizing any regular criterion in the FJSP. This approach is a local search method and

its parameters are described in the next section.

4 A Tabu thresholding based local search algorithm

This section starts with an overview of the proposed tabu thresholding algorithm for the

FJSP. We then focus on describing the most important characteristics of the algorithm

that are the main contributions of the paper.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 446 -

4.1 Overview of the algorithm

The disjunctive graph model introduced in Section 2 is used to represent feasible solu-

tions of the FJSP and to explore the solution space to search for an optimal solution.

Using this graph, a tabu thresholding algorithm is proposed that consists of two it-

erative steps: Improvement and diversification. The former is a steepest descent that

performs iterative improvements until a local optimum is reached. At each iteration of

this step, a set of neighbor solutions is generated using a neighborhood structure that

consists of moving a critical operation i between two operations j and k. After testing

the feasibility of moves and estimating the value of the criterion, the best move in the

neighborhood is determined. When the improvement step reaches a local optimum, the

diversification step starts by selecting a random number b ∈ [tmin, tmax] that repre-

sents the maximum number of moves that will be performed. During this step, a critical

arc (x, y) is randomly selected and a move is randomly chosen among the resequenc-

ing of x, the resequencing of y, the reassignment of x or the reassignment of y. If the

selected move is feasible, the algorithm advances to the next iteration, otherwise the

above process is repeated until a feasible move is obtained. If a new best value of the

criterion is obtained in the diversification step, the search returns to the improvement

step, otherwise it continues until b iterations are performed. Experimental analysis

showed that the value of b ∈ [4, 10] allows the search to escape from local optima. The

remaining important characteristics of our tabu thresholding algorithm, i.e. the initial

solution, the neighborhood structure, the feasibility test and the evaluation of moves,

are described in the following subsections.

4.2 Initial solution

The initial solution is iteratively constructed by examining an operation at each step.

The jobs are sorted in non-decreasing order of their weights, and the ties are broken

using due dates di of jobs and then the average processing times
∑ni

j=1
1

|Rj |
∑
a∈Rj

pj .

Note that the weights and due dates are not considered if the considered criterion does

not consider them. At each step, a set of eligible operations is defined, which initially

contains the first operation of each job. Operations of this set are examined according

to the established order of jobs to which they belong. For a given operation x and

for each machine Mk ∈ Rx, the time tk at which the machine finishes on its previous

operation v (if it exists) is calculated. Thus, operation x is assigned to the machine

Ma with the minimum value tk + px. An arc (v, x) is then added to the graph and the

procedure continues until all operations of jobs are considered.

4.3 Neighborhood structures

The neighborhood structure is one of the most important parameters of local search

methods. It allows generating a solution by performing small perturbations of the

current one. In our paper, the perturbation consists in choosing an operation x currently

processed on a machine Mx and moving it between two operations j and k assigned to

a machine belonging to the subset Rx of candidate machines of operation x. Note that

if the current machine of x is the same for j and k, the perturbation is a resequencing

move, otherwise it is a reassignment move. The move is performed in the following

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 447 -

way: The arcs (psx, x) with psx 6= 0 and (x, fsx) with fsx 6= 0 are first deleted, and

the arc (psx, fsx), with psx 6= fsx 6= 0 is added; then the arc (j, k) is deleted and the

arcs (j, x) with j 6= 0 and (x, k) with k 6= 0 are added. Accordingly, two neighborhood

structures, denoted N1 and N2, are proposed. In N1, the operation x to be moved must

be critical for at least one job. The neighborhood N2 ⊂ N1 is a slight modification of

N1 by focusing on the first and last operations of consecutive operations on the same

machine on a critical path (notion of “block” in classical job-shop scheduling). For both

neighborhoods N1 and N2, only feasible moves are considered as described in the next

subsection. It is worth mentioning, based on the results in Dauzère-Pérès and Paulli

(1997), that the two neighborhoods N1 and N2 are connected.

4.4 Feasibility of moves

Note that, if a path from x to y exists in the graph, then hy ≥ hx+px and qx ≥ qy+py.

This property is the basic idea for testing the feasibility of moves. Indeed, after moving

an operation x between operations j and k, the resulting graph will not contain circuits

whenever the two following statements are true: (i) No path from frx to j exists and (ii)

No path from k to prx exists. In Dauzère-Pérès and Paulli (1997), the two statements

are verified using sufficient conditions that only use the heads while, in Mastrolilli

and Gambardella (2000), the first (resp. second) statement is only verified using heads

(resp. tails). In this paper, we use a combination of conditions based on heads and tails

leading to the property below.

Moving x between j and k is feasible if the two following conditions are satisfied:

(i) (hj < hfrx +pfrx)∨ (qfrx < qj +pj) and (ii) (hk+pk > hprx)∨ (qprx +pprx > qk).

We will show through computational tests in Section 5.1 that the new combined

conditions are more efficient to prove the feasibility of moves than using heads and

tails alone.

4.5 Move evaluation

We propose a new estimation function for evaluating the criterion of the neighbor

solutions without performing the moves. This estimation has several properties: It

does not distinguish between reassignment and resequencing moves, deals with any

regular criterion, is efficient and fast, and provides a lower bound of the criterion if

the move is performed. Let x be an operation sequenced between operations s and t

which is moved between operations j and k. Since regular criteria are considered in

this paper, we need to evaluate the new completion times C̃i of the dummy nodes φi
if the move is performed.

The proposed estimation function extends the one proposed in Dauzère-Pérès and

Paulli (1997) by using the idea of Mati et al. (2011) for the classical job-shop scheduling

problem. Indeed, rather than only estimating the length of the paths that go through

the node x, we estimate the length of two suitably selected groups of paths. The first

group contains the new paths created after the move is performed while the second

group consists of a subset of paths that are available in the current and the new graphs.

To do so, we distinguish the two cases below.

– Case 1: lx ≤ lj
We focus in this case on estimating the length of the new created paths that use the

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 448 -

arcs (s, t) or (j, frj) or that go through nodes x, which are evaluated respectively

using L1, L2 and L3; and the length L4 of a subsets of paths that already exist

in the graph, which are paths that use a node w in the same partition of i (Mati

et al. (2011)). Thus, the estimated value of C̃i is calculated as follows:

C̃i =

Ci if qix = qik = −∞

max{L1, L2, L3, L4} otherwise

with

L1 = hs + ps + pt + qit
L2 = h̃j + pj + pfrj + qifrj

L3 = h̃x + px + max{pfrx + qifrx , pk + qik}
L4 = maxω∈S1

{hω + pω + qiω}

where px is the processing time of x after the move and

h̃j = hj − ht + max{hs + ps, hprt + pprt}
h̃x = max{h̃j + pj , hprx + pprx}

S1 = {ω 6= i/lω = li}

It can be proved that the quantities hs, q
i
k, qifrx and qifrj remain the same after

performing the move. Hence, C̃i is a lower bound of the completion time of φi in

the new graph.

– Case 2: lx > lj
Again we investigate the new created paths that use the arcs (s, t) or (x, fri) or

that go through node k, using respectively the expressions L1, L2 and L3; and a

subset of paths that use a node w in the same partition of i, which are evaluated

by L4. Thus, the estimated value of C̃i is calculated as follows:

C̃i =

Ci if qix = qik = −∞

max{L1, L2, L3, L4} otherwise

with

L1 = hs + ps + pt + qit
L2 = h̃x + px + pfrx + qifrx

L3 = h̃k + pk + q̃ik
L4 = maxω∈S1

{hω + pω + qiω}

where px is the processing time of x after the move and

q̃ik = qik − q
i
s + max{pfrs + qifrs , pt + qit}

h̃x = max{hj + pj , hprx + pprx}
h̃k = max{h̃x + px, hprk + pprk}

S1 = {ω 6= i/lω = li}

It can be shown that the quantities hj , the qit and qifri do not change after per-

forming the move, which means that C̃i is a lower bound of the completion time of φi
in the new graph.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 449 -

5 Computational experiments

To validate and evaluate our approach, computational experiments are conducted on

the feasibility tests and for various criteria: The makespan for the FJSP, the Total

Weighted Tardiness (TWT) for the JSP and the Total Flow Time (TFT) and the max-

imum tardiness (Tmax) for the FJSP. The latter instances can be used as benchmarks

for future research. Our algorithm was developed in Java and the experiments were

conducted on PC with 3.40 GHz and 8GB RAM. Each best result in Tables 2 4 and

5 is provided with the computing time required to obtain the result. Although many

best solutions are obtained rather fast, our future work aims at reducing the computing

times.

5.1 Feasibility tests

To study the efficiency of the feasibility tests presented in Section 4.4, we want to ana-

lyze how the test HT (based on heads and tails) increases the number of possible moves

compared to the tests H (heads alone) and T (tails alone). By considering the total

number of feasible moves provided by HT , it is possible to determine the percentage

of moves allowed by the two other tests (H and T). Table 1 shows the percentage of

efficiency of each test for the two types of moves (resequencing and reassignment) for

the test H, T and HT using the v-data instances of Hurink et al. (1994) and when the

makespan is minimized. Additionally, improving and non-improving moves are sep-

arated. Only improving moves lead to a better value of the objective function. The

values in Table 1 correspond to the percentage of success of each test. For instance, on

average for the instances from la01 to la05, there are 27.73% of improving moves when

resequencing with HT , 21.92% with H and 26.41% with T .

It is important to highlight that the percentage of improving and non-improving

moves depends on how close the current solution is to a (globally or locally) optimal

solution. Note that the feasibility test T allows for more improving moves than the

feasibility test H. The difference between the improving moves obtained with HT and

T is lower than 3%, whereas the difference for non-improving moves varies between 8

and 10%.

5.2 Minimizing the makespan for the FJSP

To minimize the makespan, the two neighborhood structures N1 and N2 were tested

on the data sets e-data, r-data and v-data of Hurink et al. (1994). Table 2 is structured

as follows: Column “Best known value” provides the best known value for the instance,

columns “N1” and “N2” provide the makespan obtained with neighborhoods N1 and

N2 respectively, where * indicates that the best known value is found and the number

in parentheses is the computational time in seconds to find the best solution.

The results in Table 2 show that our approach obtains the best known value in

many instances, and the gap is small when the best known solution is not found. We

believe it is still possible to reduce computational times by decreasing the number of

evaluations and improving the structure of the algorithm. In general, using N2 leads to

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 450 -

Table 1 Average efficiency of the different feasibility tests

Type of Instances m x n Improving moves Non-improving moves
moves H (%) T (%) HT (%) H (%) T (%) HT (%)

la01-la05 5x10 21.92 26.41 27.73 53.16 61.08 72.27
la06-la10 5x15 29.87 37.05 38.35 46.04 54.25 61.65
la11-la15 5x20 37.19 45.78 47.03 39.43 46.94 52.97
la16-la20 10x10 17.39 21.48 24.65 54.28 56.10 75.35

Resequencing la21-la25 10x15 14.53 17.02 18.71 63.97 67.86 81.29
la26-la30 10x20 17.85 20.36 21.74 63.70 68.08 78.26
la31-la35 10x30 27.15 29.71 30.75 57.45 62.21 69.25
la36-la40 15x15 13.93 16.97 19.70 61.03 61.20 80.30
la01-la05 5x10 18.07 20.84 21.72 62.52 72.54 78.28
la06-la10 5x15 19.04 23.70 24.66 59.51 70.84 75.34
la11-la15 5x20 21.15 25.84 26.79 59.62 69.30 73.21

Reassignment la16-la20 10x10 23.20 26.19 28.14 59.20 62.77 71.86
la21-la25 10x15 16.92 18.61 19.81 69.88 73.58 80.19
la26-la30 10x20 16.02 17.71 18.70 76.07 81.20 81.30
la31-la35 10x30 15.91 17.27 17.98 71.41 78.34 82.02
la36-la40 15x15 21.75 23.04 25.05 63.86 66.01 74.95

better solutions than N1, although the dominance is not very strong. This is because

less and more promising moves are explored in N2, which is particularly relevant for

the Cmax criterion. This illustrates that the notion of “block” used in the job-shop

scheduling literature is relevant.

Table 2 Results for the makespan on the instances of Hurink et al. (1994) (computational
times to obtain the best solution are in parentheses)

Inst Best e-data Best r-data Best v-data
known value N1 N2 known value N1 N2 known value N1 N2

la01 609 *(7) *(18) 570 573(134) 572(124) 570 *(73) *(107)
la02 655 *(87) *(12) 529 535(85) 531(87) 529 *(258) *(310)
la03 550 563(85) 554(94) 477 478(168) 478(175) 477 479(245) 479(237)
la04 568 576(42) *(57) 502 507(145) 504(187) 502 *(77) *(96)
la05 503 *(97) *(25) 457 458(189) 458(227) 457 458(143) 458(154)
la06 833 *(180) *(190) 799 *(357) *(402) 799 *(427) *(457)
la07 762 766(114) 765(125) 749 751(615) 751(578) 749 750(124) 750(141)
la08 845 *(154) *(127) 765 768(446) 766(473) 765 766(380) 766(351)
la09 878 *(361) *(327) 853 854(687) 854(657) 853 *(319) *(289)
la10 866 *(347) *(296) 804 805(580) 805(561) 804 805(147) 805(173)
la11 1103 *(458) 1104(370) 1071 *(304) *(412) 1071 *(529) *(614)
la12 960 *(387) *(438) 936 *(614) *(573) 936 *(452) *(497)
la13 1053 *(814) *(741) 1038 *(661) *(578) 1038 *(289) *(257)
la14 1123 *(547) *(589) 1070 *(875) *(784) 1070 *(324) *(315)
la15 1111 1118(875) *(967) 1089 1090(1320) 1090(1278) 1089 1090(275) 1090(287)
la16 892 *(168) *(177) 717 *(327) *(364) 717 *(328) *(345)
la17 707 *(147) *(176) 646 *(412) *(387) 646 *(264) *(217)
la18 842 843(54) *(89) 666 669(514) 669(496) 663 *(224) *(195)
la19 796 *(394) *(415) 700 703(591) 703(578) 617 *(512) *(394)
la20 857 *(187) *(227) 756 *(293) *(320) 756 *(187) *(149)
la21 1009 1037(712) 1018(621) 835 856(635) 860(514) 804 815(514) 815(498)
la22 880 883(224) 888(145) 760 782(745) 782(714) 736 743(275) 743(264)
la23 950 *(680) 954(430) 842 860(479) 857(578) 815 819(425) 819(408)
la24 908 914(378) 909(419) 808 823(714) 823(679) 775 788(519) 788(473)
la25 936 945(521) 947(254) 791 806(724) 806(701) 756 764(647) 764(625)
la26 1107 1137(432) 1138(314) 1061 1077(541) 1075(841) 1052 1057(415) 1057(278)
la27 1181 1205(513) 1208(378) 1091 1108(812) 1108(758) 1084 1090(315) 1090(248)
la28 1142 1161(325) 1160(469) 1080 1097(857) 1100(785) 1069 1075(524) 1075(457)
la29 1111 1151(478) 1145(680) 998 1010(814) 1010(726) 993 999(790) 999(783)
la30 1195 1238(452) 1239(217) 1078 1091(614) 1091(527) 1069 1074(487) 1074(452)
la31 1538 1571(478) 1566(785) 1520 1534(671) 1529(874) 1520 1522(394) 1522(370)
la32 1698 1704(752) *(955) 1659 1670(158) 1670(108) 1658 1660(609) 1660(521)
la33 1547 1565(658) 1580(430) 1499 1518(189) 1511(278) 1497 1500(287) 1500(312)
la34 1599 1652(549) 1630(746) 1535 1554(612) 1546(578) 1535 1537(745) 1537(814)
la35 1736 *(479) *(501) 1550 1570(279) 1558(327) 1549 1551(357) 1551(381)
la36 1160 1169(189) 1162(289) 1030 1041(852) 1034(925) 948 *(499) *(479)
la37 1397 *(458) 1398(267) 1077 1088(529) 1088(444) 986 *(571) *(524)
la38 1141 1151(688) 1158(715) 962 969(785) 969(743) 943 *(591) *(587)
la39 1184 1186(679) 1187(389) 1018 1027(557) 1034(549) 922 *(287) *(221)
la40 1144 1155(218) 1146(267) 970 981(157) 974(478) 955 *(292) *(267)
mt06 55 *(27) *(5) 47 *(35) *(37) 47 *(48) *(12)
mt10 871 *(104) *(87) 686 *(24) *(37) 655 *(107) *(91)
mt20 1088 1091(799) 1105(347) 1022 *(879) *(891) 1022 *(468) *(457)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 451 -

5.3 Minimizing the Total Weighted Tardiness (TWT) for the JSP

For the JSP, the instances in Singer and Pinedo (1998) are used to minimize the

TWT. The numerical experiments consisted in running our algorithm 10 times for each

instance and with each neighborhood structure. For each instance, 600 000 evaluations

were performed, and the time of each run is 380 seconds. Table 3 shows the results of

the experiments and is structured as Table 2. Note that many best known solutions

are reached with our approach. Note that neither N1 nor N2 is dominating.

Table 3 Results for the TWT on the instances of Singer and Pinedo (1998) (380 seconds for
each instance)

Inst Best f=1.30 Best f=1.50 Best f=1.60
known value N1 N2 known value N1 N2 known value N1 N2

abz5 1403 * * 69 * * 0 * *
abz6 436 * * 0 * * 0 * *
la16 1169 * * 166 * * 0 * *
la17 899 * * 260 * * 65 * *
la18 929 * * 34 * * 0 * *
la19 948 * * 21 * * 0 * *
la20 805 * * 0 * * 0 * *
la21 463 * * 0 * * 0 * *
la22 1064 1072 1072 196 * * 0 * *
la23 835 * * 2 * * 0 * *
la24 835 * * 82 * 94 0 * *
MT10 1363 * * 394 * * 141 * *
ORB1 2568 2618 2605 1098 1141 1141 566 604 569
ORB2 1408 * 1434 292 * * 44 52 52
ORB3 2111 2199 2199 918 * * 422 426 526
ORB4 1623 1694 * 358 505 546 66 74 *
ORB5 1593 1736 1736 405 443 433 163 181 181
ORB6 1790 * * 426 * * 28 * *
ORB7 590 * * 50 * * 0 * *
ORB8 2429 2494 2439 1023 * 1079 621 646 646
ORB9 1316 * * 297 * * 66 * *
ORB10 1679 * * 346 372 372 76 95 128

5.4 Minimizing Tmax and the Total Flow Time (TFT) for the FJSP

To create instances for minimizing Tmax and the TFT for the FJSP, we used the

instances of Hurink et al. Hurink et al. (1994). To generate due dates for Tmax, we

introduced a parameter f , fixed at 1.3. The due date di of job Ji is determined by

multiplying f by the average processing time of jobs.

The results obtained for Tmax with our two neighborhood structures can be found

in Table 4, where a bold number indicates the best value and the number in parentheses

specifies the computing time to obtain the best solution. It can be noted that most of

the best results are obtained with N2. Hence, N2 is not penalized by the fact that the

search space from a given solution is smaller than the search space using N1. Again,

this illustrates that the notion of “block” is often relevant. For some instances in the

r-data and v-data sets (la16-la20, la36-la40, mt06 and mt10), our approach obtains the

optimal solutions.

The results in Table 5 show that the neighborhood N2 strongly dominates the

neighborhood N1. In all instances, using N2 is at least as effective, and the gap with

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 452 -

Table 4 Results for Tmax on the instances of Hurink et al. (1994) (computational times to
obtain the best solution are in parentheses)

Inst e-data r-data v-data
N1 N2 N1 N2 N1 N2

la01 267(5) 267(75) 129(21) 129(32) 126(110) 126(124)
la02 177(27) 177(8) 113(28) 113(32) 108(53) 108(65)
la03 187(7) 187(29) 123(74) 123(10) 109(85) 109(54)
la04 249(104) 246(121) 121(87) 120(51) 120(125) 119(167)
la05 210(5) 210(18) 131(73) 131(95) 127(89) 125(92)
la06 439(57) 439(11) 353(154) 352(168) 358(547) 356(598)
la07 392(214) 392(199) 355(67) 355(44) 352(24) 350(26)
la08 425(49) 425(36) 351(149) 351(154) 337(48) 336(56)
la09 441(32) 441(18) 400(314) 400(208) 394(87) 394(46)
la10 475(8) 475(69) 348(208) 346(489) 340(239) 339(520)
la11 697(589) 696(944) 606(81) 606(95) 598(26) 598(89)
la12 585(15) 585(42) 519(647) 517(664) 514(134) 512(179)
la13 624(50) 624(102) 597(846) 595(981) 570(710) 569(706)
la14 696(70) 696(78) 598(628) 597(604) 595(215) 595(190)
la15 674(327) 666(125) 640(429) 639(650) 630(654) 629(1024)
la16 95(40) 95(54) 0(28) 0(49) 0(41) 0(87)
la17 70(245) 70(127) 0(20) 0(68) 0(28) 0(37)
la18 124(89) 120(130) 0(45) 0(16) 0(47) 0(30)
la19 65(53) 65(98) 0(120) 0(133) 0(48) 0(27)
la20 93(31) 93(59) 0(25) 0(37) 0(79) 0(60)
la21 244(198) 235(294) 115(615) 110(723) 62(492) 57(653)
la22 287(324) 280(425) 121(689) 116(883) 65(875) 62(994)
la23 225(70) 225(89) 132(548) 127(571) 88(317) 86(478)
la24 218(294) 209(374) 120(498) 117(666) 67(547) 62(684)
la25 244(89) 238(67) 107(418) 102(464) 43(745) 43(815)
la26 396(498) 394(522) 324(548) 321(643) 284(669) 278(762)
la27 451(247) 450(285) 359(477) 351(515) 318(501) 314(574)
la28 457(734) 457(857) 344(378) 338(367) 295(715) 291(750)
la29 403(486) 396(693) 307(587) 297(642) 263(587) 259(601)
la30 433(805) 416(752) 306(548) 303(687) 256(874) 251(918)
la31 851(678) 833(713) 791(654) 763(728) 734(614) 733(789)
la32 936(842) 916(861) 874(894) 865(987) 843(1098) 843(1258)
la33 891(785) 883(726) 778(962) 778(1154) 740(905) 738(806)
la34 917(810) 899(805) 825(354) 796(338) 776(1025) 776(727)
la35 1019(280) 1019(486) 841(1240) 819(1041) 787(985) 778(1184)
la36 130(145) 123(136) 0(425) 0(143) 0(289) 0(239)
la37 263(189) 263(120) 0(124) 0(99) 0(67) 0(40)
la38 186(214) 182(295) 0(108) 0(129) 0(248) 0(95)
la39 118(489) 118(370) 0(155) 0(297) 0(215) 0(73)
la40 102(638) 99(821) 0(148) 0(291) 0(40) 0(99)
mt06 9(1) 9(62) 0(3) 0(25) 0(1) 0(12)
mt10 190(62) 187(32) 0(37) 0(85) 0(16) 0(58)
mt20 692(263) 692(325) 589(295) 588(283) 581(524) 580(1073)

the solution obtained using N1 is sometimes significant. This again could be explained

by the fact that many non-relevant moves in N1 are not considered in N2. Moreover,

the evaluation of moves in N2 is probably more effective and closer to the actual value

after the move is performed, thus leading to a steepest descent in the improvement

phase.

6 Conclusions

This paper presented a local search algorithm for solving the flexible job-shop schedul-

ing problem with any regular criterion. Using the properties of the disjunctive graph

model, we developed two neighborhood structures N1 and N2 that consist of moving

a critical operation between two positions on the sequence of machines belonging to

its candidate set. Feasibility test conditions as well as new move evaluation functions

are proposed. The computational results show the efficiency of the feasibility test con-

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 453 -

Table 5 Results for TFT on the instances of Hurink et al. (1994) (computational times to
obtain the best solution are in parentheses)

Inst e-data r-data v-data
N1 N2 N1 N2 N1 N2

la01 4567(58) 4567(40) 4341(785) 4339(764) 4172(742) 4139(854)
la02 4259(254) 4235(320) 3962(542) 3962(458) 3850(985) 3840(1427)
la03 3931(62) 3931(128) 3564(578) 3564(758) 3510(378) 3500(475)
la04 4156(192) 4156(180) 3795(687) 3791(821) 3796(524) 3768(478)
la05 3796(157) 3796(52) 3512(389) 3504(548) 3466(584) 3451(794)
la06 8425(441) 8425(458) 7965(358) 7912(248) 7781(857) 7750(945)
la07 7812(198) 7812(180) 7498(657) 7441(594) 7378(299) 7298(117)
la08 8071(245) 8017(34) 7628(456) 7583(847) 7418(627) 7388(901)
la09 8930(269) 8848(305) 8583(99) 8499(127) 8324(378) 8262(473)
la10 8496(359) 8461(418) 7908(358) 7830(319) 7690(459) 7639(662)
la11 14136(710) 13902(702) 13119(259) 13094(119) 12886(504) 12740(682)
la12 11779(917) 11779(1012) 11205(367) 11082(689) 10898(995) 10781(1748)
la13 13184(269) 13069(158) 12701(994) 12673(1884) 12343(876) 12343(991)
la14 14032(789) 14032(658) 13093(1589) 12987(2272) 12794(1289) 12711(1680)
la15 14275(458) 14275(317) 13955(587) 13607(470) 13309(2547) 13190(4401)
la16 7202(128) 7202(657) 6216(513) 6141(438) 5595(89) 5549(70)
la17 6148(80) 6148(139) 5419(611) 5402(794) 4917(885) 4879(976)
la18 6935(669) 6895(727) 6001(587) 5971(459) 5462(1052) 5384(1162)
la19 6963(785) 6939(265) 6408(398) 6306(282) 5664(2385) 5581(2482)
la20 7132(297) 7115(363) 6418(319) 6377(267) 5742(920) 5677(1370)
la21 12183(1015) 12098(996) 11135(2614) 11036(2457) 10595(2230) 10504(2160)
la22 11447(899) 11387(787) 10402(985) 10279(775) 9937(1258) 9735(3151)
la23 12345(568) 12343(684) 11498(1879) 11359(1910) 10975(2547) 10823(3576)
la24 11645(652) 11623(587) 10830(2600) 10830(2584) 10283(2147) 10204(3060)
la25 11521(687) 11456(267) 10450(2101) 10367(2372) 9883(4257) 9753(4593)
la26 18802(1970) 18459(2476) 18224(1489) 17798(1784) 17054(2247) 16694(10974)
la27 20045(1957) 19850(1528) 18517(997) 18415(653) 17780(5471) 17419(9861)
la28 19717(957) 19414(864) 18296(2004) 18264(2506) 17527(1985) 17141(5911)
la29 17597(1261) 17498(915) 16922(993) 16465(1634) 15832(2489) 15527(3726)
la30 19181(1478) 18882(1677) 17847(4589) 17778(7956) 16672(2578) 16573(5108)
la31 38145(1278) 36912(1341) 36819(2499) 36259(9162) 35422(2762) 34479(4575)
la32 41544(3527) 41189(3679) 40227(5427) 39298(9034) 38468(1989) 38312(8153)
la33 37416(3247) 36697(4125) 35754(1489) 35104(6021) 34493(3312) 33884(3484)
la34 39062(2180) 38338(2748) 37820(8402) 37297(11537) 36639(2697) 36032(3896)
la35 39089(5107) 38762(5746) 37145(6278) 36853(9755) 35923(1845) 35211(2880)
la36 15976(1025) 15714(759) 14378(776) 14216(1212) 12608(1854) 12462(3141)
la37 17453(665) 17305(897) 15074(1856) 14960(2174) 13487(1007) 13428(1255)
la38 15335(697) 14994(1027) 13507(1025) 13273(1122) 12409(1897) 11996(4078)
la39 15372(859) 15258(924) 13879(2148) 13689(3987) 12664(3059) 12326(4099)
la40 15219(883) 15162(1007) 13997(1885) 13645(2921) 12638(2024) 12302(2142)
mt06 255(28) 255(59) 219(10) 219(28) 209(32) 209(10)
mt10 7138(379) 7138(687) 6066(429) 6042(554) 5324(29) 5297(67)
mt20 13645(888) 13572(1479) 12644(752) 12644(622) 12282(3425) 12048(3565)

ditions and that both neighborhoods N1 and N2 are able to find satisfactory solutions

with an advantage to N2.

We are currently investigating various improvements to speed-up the algorithm, to

improve the move evaluation functions and to propose new neighborhood structures.

Acknowledgements This work is supported by École des Mines de Saint-Étienne (France),
Universidad de Ibagué (Colombia), the government of Colombia in the program of scholarships
Colfuturo-Ascun and the embassy of France in Colombia.

References

Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search.

Annals of Operations Research 41 (3), 157–183.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 454 -

Braune, R., G. Zäpfel, and M. Affenzeller (2013). Enhancing local search algorithms

for job shops with min-sum objectives by approximate move evaluation. Journal of

Scheduling 16 (5), 495–518.

Brucker, P. and R. Schlie (1990). Job-shop scheduling with multi-purpose machines.

Computing 45 (4), 369–375.

Bülbül, K. (2011). A hybrid shifting bottleneck-tabu search heuristic for the job shop

total weighted tardiness problem. Computers & Operations Research 38 (6), 967–983.

Dauzère-Pérès, S. and J. Paulli (1997). An integrated approach for modeling and

solving the general multiprocessor job-shop scheduling problem using tabu search.

Annals of Operations Research 70, 281–306.

Demir, Y. and S. K. İşleyen (2013). Evaluation of mathematical models for flexible

job-shop scheduling problems. Applied Mathematical Modelling 37 (3), 977–988.

Essafi, I., Y. Mati, and S. Dauzère-Pérès (2008). A genetic local search algorithm for

minimizing total weighted tardiness in the job-shop scheduling problem. Computers

& Operations Research 35 (8), 2599–2616.

Hmida, A. B., M. Haouari, M.-J. Huguet, and P. Lopez (2010). Discrepancy search for

the flexible job shop scheduling problem. Computers & Operations Research 37 (12),

2192–2201.

Hurink, J., B. Jurisch, and M. Thole (1994). Tabu search for the job-shop scheduling

problem with multi-purpose machines. OR Spectrum 15 (4), 205–215.

Jain, A. S. and S. Meeran (1999). Deterministic job-shop scheduling: Past, present and

future. European journal of operational research 113 (2), 390–434.

Jia, S. and Z.-H. Hu (2014). Path-relinking tabu search for the multi-objective flexible

job shop scheduling problem. Computers & Operations Research 47, 11–26.

Kreipl, S. (2000). A large step random walk for minimizing total weighted tardiness in

a job shop. Journal of Scheduling 3 (3), 125–138.

Mastrolilli, M. and L. M. Gambardella (2000). Effective neighbourhood functions for

the flexible job shop problem. Journal of Scheduling 3 (1), 3–20.

Mati, Y., S. Dauzre-Prs, and C. Lahlou (2011). A general approach for optimizing

regular criteria in the job-shop scheduling problem. European Journal of Operational

Research 212 (1), 33 – 42.

Mati, Y., N. Rezg, and X. Xie (2001). An integrated greedy heuristic for a flexible job

shop scheduling problem. In Systems, Man, and Cybernetics, 2001 IEEE Interna-

tional Conference on, Volume 4, pp. 2534–2539. IEEE.

Mati, Y. and X. Xie (2004). The complexity of two-job shop problems with multi-

purpose unrelated machines. European Journal of Operational Research 152 (1),

159–169.

Pinedo, M. and M. Singer (1999). A shifting bottleneck heuristic for minimizing the

total weighted tardiness in a job shop. Naval Research Logistics 46 (1), 1–17.

Rajkumar, M., P. Asokan, N. Anilkumar, and T. Page (2011). A grasp algorithm for

flexible job-shop scheduling problem with limited resource constraints. International

Journal of Production Research 49 (8), 2409–2423.

Roy, B. and B. Sussmann (1964). Les problemes d’ordonnancement avec contraintes

disjonctives. Note ds 9.

Singer, M. and M. Pinedo (1998). A computational study of branch and bound

techniques for minimizing the total weighted tardiness in job shops. IIE transac-

tions 30 (2), 109–118.

Wang, L., G. Zhou, Y. Xu, S. Wang, and M. Liu (2012). An effective artificial bee

colony algorithm for the flexible job-shop scheduling problem. The International

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 455 -

Journal of Advanced Manufacturing Technology 60 (1-4), 303–315.

Yuan, Y. and H. Xu (2013). An integrated search heuristic for large-scale flexible job

shop scheduling problems. Computers & Operations Research 40 (12), 2864–2877.

Zhang, R. and C. Wu (2011). A simulated annealing algorithm based on block prop-

erties for the job shop scheduling problem with total weighted tardinessobjective.

Computers and Operations Research 38 (5), 854 – 867.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 456 -

MISTA 2015

Robustness of Partial Order Schedules:
Understanding the Chaining algorithm

Daan Wilmer · Tomas Klos

Abstract If a schedule is executed under conditions that are uncertain at the time

the schedule is constructed, then a flexible schedule is more useful than a fixed-time

schedule. A flexible schedule can absorb unforeseen events that arise during execution,

by incorporating a variety of fixed-time schedules. We say a schedule is robust if it

admits the realized execution as one of these schedules.

Various methods have been proposed that give flexibility to schedules for the

resource-constrained project scheduling problem. We focus on schedules that have the

form of a partially ordered set of the project activities (a ‘partial order schedule’). A

partial order schedule is flexible because it incorporates all the fixed-time schedules

that are consistent with the partial order.

In this paper we study the ‘chaining’ algorithm for constructing partial order

schedules. In particular, we use empirical methods to try to understand how chain-

ing heuristics affect the robustness of the resulting schedules, which we estimate using

simulations. We propose an explanatory model, and test its implications in controlled

experiments. Our experimental results confirm some but not all of our predictions, and

so motivate us to elaborate our model.

1 Introduction

We study a problem model called the resource-constrained project scheduling problem

(RCPSP). Scheduling a project means assigning start times to a number of precedence-

and resource-constrained activities. If we want to minimize an objective function such

as the last activity’s start time, this is an NP-hard problem [2].

There is often considerable uncertainty about the environment in which a schedule

is executed: resources may become unavailable, activities may take longer or shorter

than expected, etc. A lot of research work has focused on incorporating flexibility

in schedules, to make them more robust in the face of uncertainties arising during

Daan Wilmer
E-mail: daan@daanwilmer.nl

Tomas Klos
TU Delft
E-mail: t.b.klos@tudelft.nl

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 457 -

schedule execution. One approach is to design a set of schedules as the solution to a

scheduling problem, as opposed to only a single assignment of fixed starting times.

During execution, a suitable fixed-time schedule can be chosen from the set. This set

of solutions can be represented as a Partial Order Schedule (POS), which is in fact a

scheduling problem of its own, albeit one that’s efficiently solvable. A POS consists of

the activities and precedence constraints of the original problem instance, plus a set of

extra precedence constraints such that any assignment of starting times that satisfies

all precedence constraints is guaranteed to satisfy all resource constraints as well. Such

an assignment of starting times can be generated during execution in little time.

One such method is Precedence Constraint Posting (PCP). This starts from a

schedule that satisfies only the precedence constraints, and iteratively identifies po-

tential conflicts that can arise when this schedule allows the concurrent execution of

several activities whose combined use of at least one resource exceeds its capacity. Ev-

ery such conflict is eliminated by adding (‘posting’) precedence constraints between

some activities involved, such that the resource conflicts can not arise in the execution

of any schedule that also satisfies these additional constraints. The result is a POS that

can be used during execution to efficiently dispatch activities. Chaining is a method

for selecting the precedence constraints to be posted between activities, by considering

each unit of each resource, and posting precedence constraints that smartly chain ac-

tivities that use each unit. Several heuristics have been proposed for selecting chains.

The method was evaluated by computing the flexibility and the slack of the resulting

POS, which are metrics that characterize its structure.

In fact what we are interested in, is the robustness of the schedule when it is exe-

cuted. A schedule’s robustness indicates how accurately it predicts its own execution: a

robust schedule is executed as it was designed, while the execution of a schedule that’s

not robust will deviate from the schedule. Policella et al. measure a POS’s flexibility

because they “expect a flexible schedule to be easy to change, and the intuition is that

the degree of flexibility in this schedule is indicative of its robustness.”

In this paper, we first investigate the validity of this intuition. Then we undertake

an empirical study, aimed at understanding how chaining decisions affect the robustness

of the resulting POS. Our study is not aimed at comparing methods by setting up a

‘horse race’ among different heuristics [7] but rather at improving our understanding

of individual algorithms.

After a formal treatment of relevant concepts in section 2, we outline our approach

in section 3. This involves an exploratory study in section 4, the description of our

explanatory model and the derivation of experimental predictions in section 5, and the

empirical test of these predictions in section 6. We conclude in section 7.

2 Background and Related work

RCPSP The problem model we study is the resource-constrained project scheduling

problem (RCPSP). An instance of the RCPCP is a tuple I = 〈A,P,R, c,d,q〉, where

A is a set of n activities, P ⊆ A×A is a binary precedence relation on A, and R is the

set of resources. Each activity a ∈ A has a duration da ∈ N>0 and uses qa,r units of

resource r during the duration of its execution. A resource r has capacity cr.

If (ai, aj) ∈ P , activity ai has to finish before aj can start. The set of immediate

predecessors of a is pred(a) = {x ∈ A | (x, a) ∈ P} and the set of (all) predecessors of a

is pred∗(a) = pred(a)∪
⋃
x∈pred(a) pred∗(x). Similarly, the set of immediate successors

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 458 -

of an activity a is denoted succ(a) = {x ∈ A | (a, x) ∈ P}, while the set of successors

of a is succ∗(a) = succ(a) ∪
⋃
x∈succ(a) succ∗(x).

Schedule A (fixed time) schedule is an assignment s : A → R≥0 of start times to

activities, that satisfies all precedence and resource constraints. Precedence constraints

are satisfied if s(aj) ≥ s(ai) + di for all (ai, aj) ∈ P , and resource constraints if∑
a∈δ(t)

qa,r ≤ cr ∀t ∈ [0,mks(s)], ∀r ∈ R,

where δ(t) = {a ∈ A | s(a) ≤ t < s(a) + da} is the set of activities that are active at

time t according to assignment s, and mks(s) = maxa∈A(s(a) + da) is the makespan

of schedule s.

Partial Order Schedule In order to allow for adaptation to unexpected circumstances

that arise during execution, it is desirable to have a set of schedules available, so

that one can switch to an alternative when the fixed-time schedule currently in use is

rendered invalid by unforeseen events such as failures or delays. Several possibilities for

obtaining such a set of schedules have been explored in the literature. One option is

to assign intervals of starting time points to activities, rather than single time points

[17, 21]. The option we consider here is to construct a Partial Order Schedule (POS)

that encodes a set of schedules for the scheduling problem [16, 14], by only specifying

the precedence constraints that have to be satisfied by fixed-time schedules.

A POS S for an RCPSP instance I = 〈A,P,R, c,d,q〉, is a pair S = 〈A,P ∪ U〉,
where U is a set of additional precedence constraints chosen such that every assignment

of start times to activities s that satisfies all precedence constraints in (P ∪ U) is a

fixed-time schedule for I. One of the fixed-time schedules that is consistent with a

POS, and can be derived from it in linear time, is the earliest time schedule ŝ, in which

every activity starts at its earliest start time ŝ(ai) = est(ai) without violating any

precedence constraints [14].

Constructing a POS Following the definition above, a Partial Order Schedule is con-

structed by generating a set U of precedence constraints to supplement the precedence

constraints P of the instance. The set U should be chosen such that in every assignment

of starting times that satisfies P ∪ U , there can be no ‘resource conflict,’ a timepoint

where the number of units required by the activities active at that timepoint, exceed

the available capacity for at least one resource. An easy solution is to enforce the

activities to execute in a topological ordering, allowing no activities to run concur-

rently. Constructing POSes with more desirable qualities, e.g. a shorter makespan, is

non-trivial.

According to Policella et al. [13], methods for computing a POS come in two flavors:

In the “outside-in” approach called precedence constraint posting (PCP), precedence

constraints are iteratively added (“posted”) to the set of constraints, to reduce the set of

fixed-time schedules until they are all valid for the RCPSP instance; In the “inside-out”

approach called Solve-and-Robustify, a fixed-time schedule for the RCPSP instance is

first created by some heuristic, and subsequently extended (“robustified”) to a POS.

We study an algorithm that implements Solve-and-Robustify, but first discuss both

methods for added understanding.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 459 -

Precedence Constraint Posting This method starts with a schedule for just the tempo-

ral constraints, and iteratively finds a resource conflict and solves it by posting prece-

dence constraints between activities involved in the conflict. One method for identifying

resource conflicts [4] uses ‘resource profiles,’ which show the resource usage over time,

given a schedule. Since the start times for activities in a POS are not fixed, Cesta et

al. use an upper bound resource profile and a lower bound resource profile. The lower

bound resource profile counts activities only at time points when they must be sched-

uled because of resource constraints, while the upper bound resource profile counts

activities at all time points where they could be scheduled. The upper bound resource

profile is used to detect possible resource conflicts, while the lower bound resource

profile is used to prioritize conflicts. When it is decided which conflict to solve, it is

reduced or resolved by adding a precedence constraint chosen to maximize slack, or

the temporal distance between activities.

Another method focuses on ‘critical sets’: sets of activities that, when looking at the

precedence constraints only, could be scheduled concurrently, but that would violate a

resource constraints if they were. These sets can be detected by solving a minimum-flow

problem, as proposed in [10]. To solve a resource conflict, a critical set is reduced to a

‘minimal critical set’: a critical set that is no longer critical when one of the activities

is removed from it. Just one precedence constraint then suffices between two activities

in this MCS to eliminate the conflict.

Solve-and-Robustify, Chaining With Solve-and-Robustify, one first “solves” the RCPSP

instance by constructing a fixed-time schedule, for example using the ESTA algorithm

[4] or a Schedule Generation Scheme. Then, this fixed-time schedule is “robustified”

by transforming it into a POS. There are several methods for doing this; we focus on

a greedy algorithm called ‘chaining’ [4, 14]. This method is based on the idea that,

during execution of a schedule, each unit of each resource may be used by a series,

or chain, of activities. When it finishes executing, an activity releases all the resource

units is used to other activities that may subsequently use them. A chain is created

for each unit of resource. Then, in the order of their starting time in the fixed-time

schedule, activities are assigned to one chain for each unit of each resource they use,

such that two activities that are scheduled to execute concurrently cannot be assigned

to the same chain. The chains are then fixed by adding precedence constraints between

each pair of consecutive activities in the chain.

A partial order schedule constructed in this way always contains the fixed-time

schedule that was used as input for chaining. However, which other schedules will be

admitted by the POS depends on its structure, which is determined to a large extent

by the way in which chains are selected to assign activities to. Whenever a chain is

selected for activity ai, a precedence constraint (ak, ai) is added to U , where ak was the

last activity on the chain—before this becomes ai. The “basic” chain selection heuristic

[13] says that “the next activity ai is always dispatched to the first available resource

unit (chain) associated with its required resource rj” [14]. A chain with last activity ak
is available for ai if s(ai) ≥ (s(ak) + dk). In [14], Policella et al. introduce two further

heuristics, “Maximize Common Chains” (maxCC) and “Minimize InterDependencies”

(minID), both aimed at reducing the number of added precedence constraints, so as to

produce a POS that maximizes the number of incorporated solutions.

The maxCC heuristic selects a chain for activity ai at random from those available,

and adds the precedence constraint (ak, ai) to U , where ak is the last activity in that

chain. If ai requires more units of this resource, maxCC allocates ai to other chains that

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 460 -

also end in ak, and otherwise to random other available chains. The minID heuristic

also tries to maximize common chains, but starts not with a randomly selected chain

for ai, but if possible, with a chain that ends in an activity aj for which (aj , ai) ∈ P ,

because then this constraint is already part of the POS and doesn’t have to be added.

These two heuristics are combined to form a policy for assigning new activities to

chains, called maxCCminID. It first tries to use the maxCC heuristic, if that does not

work it tries the minID heuristic, and otherwise a random activity is chosen.

Robustness A schedule’s robustness indicates how accurately it predicts its own execu-

tion: a robust schedule is executed as it was designed. This entails that we can estab-

lish a POS’s robustness ex post, by measuring the deviations between the schedule (the

planned execution) and it’s realized execution in an environment with disturbances and

unforeseen events. When designing robust schedules, however, one will try to optimize

some ex ante measure that is expected to yield a robust schedule. In our study, we

make use of three ex ante measures and two ex post measures, which we describe now.

Ex ante robustness measures capture structural aspects of schedules that can

be (i) influenced, and (ii) expected to lead to robust schedules. Chtourou and Haouari

[5] present a set of measures for the robustness of a fixed-time schedule. We adapt them

to measure the robustness of a POS by considering its earliest time schedule ŝ. The

measures are all based on slack, which is defined for an activity as “the time that an

activity i (. . .) can slip without delaying the start of any of its immediate successors,

while upholding resource feasibility.” For a POS, this means an activity’s slack is

slack(a) = min
x∈succ(a)

(ŝ(x)− (ŝ(a) + da))

The slack of the complete schedule is calculated by taking the weighted sum of the

slack values of the activities, using one of four weightings (see [5] for details).

Policella et al. use a metric called flexibility that applies directly to POSs [15,

13, 14]. It was introduced by Aloulou and Portmann [1] as ‘sequential flexibility,’ and

defined as “the number of non-oriented edges in the transitive graph representing the

partial order”. Policella et al. normalized Aloulou and Portmann’s measure:

flex =
|{(ai, aj) | (ai, aj) /∈ P+ ∧ (aj , ai) /∈ P+}|

n(n− 1)
, (1)

where P+ is the transitive closure of P .

The pairwise float (PF) metric was introduced in [3] as the objective function of

a (mixed) integer programming formulation of the problem of creating a robust POS,

based on a fixed-time schedule. Therefore, PF is based on both the fixed-time schedule

and the partial order schedule. For two activities ai and aj , PFai,aj = s(aj)− (s(ai) +

dai) if (ai, aj) ∈ P . If (ai, aj) ∈ (P+ − P), then PFai,aj = minπ∈Π PFπ, where π is

a path from ai to aj in P+, Π is the set of all such paths, and PFπ is the sum of

the pairwise floats of all pairs of activities on π. If (ai, aj) /∈ P+, then PFai,aj = C, a

constant. The pairwise float of a schedule is

PF =
∑

ai,aj∈A
PFai,aj .

Ex post robustness measures measure the difference between the schedule,

and the realized state of affairs after the schedule is executed under disturbances. An

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 461 -

important characteristic of a schedule is its makespan. The metric∆makespan measures

the deviation of the realized end time of the last activity from this activity’s end time

in a POS S’s earliest time schedule. We normalize this difference by the summed

duration of all activities, to account for the fact that delays are often dependent on

these durations. The number of delays metric [22] measures the number of activities of

which the start time is delayed, compared to their start times in the POS S’s earliest

time schedule.

3 Empirical Algorithm Analysis

Various chain selection heuristics have been proposed for use in the chaining algorithm.

They are designed with the aim of increasing the resulting POS’s flexibility or fluidity

(see [13]). The assumption is that this will also lead to a robust schedule [13]:

“We expect a flexible schedule to be easy to change, and the intuition is that the

degree of flexibility in this schedule is indicative of its robustness.”

Previous experimental work has shown that different chain selection heuristics indeed

influence the flexibility of the POS. However, these studies have the ‘algorithmic race’

character lamented by Hooker [7], and have merely focused on singling out the best—

usually the authors’—algorithm. There has not been any investigation aim at un-

derstanding how chain selection heuristics influence flexibility, and more importantly,

robustness—the property of a POS we’re ultimately interested in optimizing.

In this paper, we adopt an empirical approach as advocated by Hooker [6] and

McGeoch [11], to the study of chain selection heuristics in the chaining algorithm. We

are interested in improving our understanding of the relation between the way chain

selection decisions are made, and the robustness of the resulting POS. Ultimately,

we will want to exploit this understanding, but the current paper addresses the first

step of deepening our understanding. In this context of algorithmics as an empirical

science, as emphasized by Hooker [7], “negative results are as important as positive

results.” Also, “it is symptomatic of the situation that in OR and computer science

one cannot publish reports that an algorithm does not perform well in computational

tests.” In our opinion, little has changed in the twenty years since Hooker wrote his

paper, unfortunately.

In this current paper we apply this empirial approach as follows. We start with

an exploratory study (section 4), in which we try to give ourselves as many different

views as possible on the behavior of the heuristics, and their relation with robustness.

We highlight the differences in the robustness properties of POSes created using the

various chain selection heuristics, and also investigate the relation between a POS’s ex

ante and its ex post robustness, to see if we confirm Policella et al.’s intuition above.

Then, we build an explanatory model in section 5. Since this model contains unob-

servable characteristics of chain selection heuristics and (their interaction with) the

environment in which they operate, we can’t rely on direct measurements to confirm

this model. Instead, we derive predictions from the model about the behavior of the

algorithm under unknown conditions. Then we perform systematic, controlled experi-

ments designed to refute these predictions, by setting up the required conditions and

recording the algorithm’s behavior (section 6): only if the model withstands our ac-

tive attempts to overthrow it, can we call it valuable and trust it. If we are unable

to refute these predictions, then this increases our confidence in the validity of our

model—although by no means does this prove that the model is correct.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 462 -

Simulation Environment We used the PSPLIB benchmark set for the RCPSP [9] in

both our exploratory and our controlled experiments for testing. This PSPLIB consists

of four sets of instances: J30, J60, J90, and J120, concerning projects consisting of the

indicated number of activities. For the “solve” step, we created fixed-time schedules

using a very simple Serial Schedule Generation Scheme ([8], see [12] for a thorough

empirical study of a scheduling heuristic for the RCPSP). Using the fixed-time schedule,

the next step is to create a partial order schedule. We used the chaining algorithm with

the (1) basic, (2) maxCC, (3) minID and (4) maxCCminID chain selection heuristics.

We also have an implementation using Mixed Integer Programming [3] that we used

for additional insight in one of our exploratory experiments.

For every POS we constructed, we computed the values for the ex ante robustness

metrics slack, flexibility, and pairwise float. To compute a POS’s value for the ex post

robustness metric ∆makespan, we compared the makespan of the POS’s earliest start

schedule with the makespan of a simulation of its execution using an earliest start

policy to dispatch the activities, under conditions of activities with extended durations

(‘delays’). We introduced delays by multiplying every activity’s duration with a factor

≥ 1. Every activity’s factor was drawn from a distribution; a set of factors for all

activities in a project is called a ‘delay pattern.’ We generated several different delay

patterns, the combination of which we call a delay set. We experimented with four

distributions—again, to provide ourselves with the opportunity to make a wide range

of observations of this algorithm ‘in the wild.’ We generated four delay sets (sets of

delay patterns):

exp2 A delay set with factors chosen from an exponential distribution with λ = 2, with

a minimum factor of 1. These delay patterns reflect the case where, if an activity

is delayed, a small delay is more likely than a large delay. In this set, on average

14% of activities is delayed, with a (sample) mean factor of 1.51. This results in a

mean delay of 7.1% over all activities.

fixed 50 30 A delay set where one half of the activities is delayed by 30 percent, or

Pr(x = 1) = 0.5 and Pr(x = 1.3) = 0.5. This distribution is inspired by the delay

distributions used in [22], and is meant as an example where many activities are

delayed but only by a small amount.

unif 80 5 A delay set where twenty percent of activities is delayed, by a factor chosen

from a uniform distribution between 1 and 5. This distribution has a slightly larger

proportion of delayed activities than the exp2 delay set, but a smaller proportion

than the fixed 50 30 set. The delays are quite large, to simulate a scenario with a

lot of delay, testing the robustness of schedules under quite extreme conditions.

gauss 02 A delay set where delays are chosen according to a gaussian distribution with

µ = 1 and σ = 0.2. This is the only set where factors smaller than 1 occur, and it

is chosen to capture the context of scheduling projects with external contractors.

In this case the act of rescheduling an activity can be very costly, regardless of the

difference between the old and new start time of the activity.

Our code is released in [19] and available on GitHub.

4 Exploratory Study

In this section we report on our exploratory study, where we observe the behavior of the

algorithm under a variety of circumstances. In this study, we tested all combinations

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 463 -

of instance set (J30, J60, J90, or J120) and delay set (as described in Section 3), unless

specified otherwise. Because we’re only interested in observations that are not likely

to be due to chance, we determine the significance of differences between heuristics

using the Wilcoxon signed-rank test [18]. This test is used for paired data that are not

normally distributed. The pairing comes from the fact that we compare the results of

partial order schedules for each instance individually, as opposed to viewing all POSes

as a group. This reduces the influences of differences between instances, and instead

focuses on differences between algorithms. In this paper we will summarize our findings;

more detailed results — in the form of 14 pages of graphs and tables — are in [20].

Robustness Differences between Algorithms Since the goal of the heuristics is to in-

crease the robustness of the resulting Partial Order Schedule, we first compare the

robustness of POSes constructed using different heuristics. For all combinations of in-

stance set and delay set, the differences between heuristics in terms of ∆makespan

were very clear. POSes created using maxCC had lower ∆makespan than POSes cre-

ated using basic chaining, minID gave POSes with lower ∆makespan than maxCC, and

finally maxCCminID produced POSes with the lowest ∆makespan under all tested cir-

cumstances. Although variation among POSes created using the same heuristic was

larger than the difference between heuristics, all these differences proved statistically

significant using the Wilcoxon signed-rank test with p < 0.001. We suspect that the

large variety in instances contributes a large amount to the difference between POSes

created using the same heuristic.

The differences in number of delays, follow the same pattern. Again, maxCCminID

performed best, then minID, then maxCC, and basic chaining is the least robust ac-

cording to this metric. For this measure, however, this pattern was not in all cases

statistically significant: with three parameter combinations, the difference between

maxCC and minID was not significant with a p < 0.001. All other differences were

statistically significant, giving us confidence that the different heuristics are effective

at their goal of creating more robust POSes.

4.1 Correlation between Flexibility and Robustness

We now investigate Policella et al.’s intuition, that the degree of flexibility is indicative

of its robustness. We found not only a very strong correlation between flexibility and

robustness but also a large variance among partial order schedules. Because of this

variance, we investigated the differences between partial order schedules created for

the same RCPSP instance using different heuristics. This is done using what we call a

comparison plot.

The values in a comparison plot are relative values of a POS, created using one

heuristic, compared to a baseline POS, created using another heuristic. To illustrate

the creation of this plot: for one particular instance, maxCCminID produces a POS

with flexibility 0.42 and basic chaining produces a POS with flexibility 0.21. During

simulation, the normalized makespan increase for the baseline POS might be 0.2 while

the POS created by maxCCminID measures 0.15. We then plot a point for maxCC-

minID at coordinates (0.420.21 ,
0.15
0.2), or (2, 0.75). Moreover, we also show data points for

the other two heuristics (maxCC and minID), compared to basic chain selection. For

ease of reading we draw two lines at x = 1 and y = 1. These denote equality of the val-

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 464 -

ues of the measured POS and the baseline POS, and provide a visible division between

cases where the POS measured higher or lower than the baseline POS.

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

● ●

●
● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●
●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

● ● ●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●●● ●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●
●

●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●● ●●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

● ●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●

●

●
●●

●

●

●

●

●

●

●●

●

●● ●●

●

●

●

●

●

●
●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

● ●●

●

●

●

●
●

●

●

●●
●

●

●●

●
●

●

●

●

●

●●
●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●●

●

●

●●
●

●

●

●

●

●
●
●

●

●

●

●●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●
●

●

●
●

●

●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
● ●●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●
●

●
●

●

●
● ●

●

●

1.0 1.5 2.0 2.5

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

Relative Flexibility

R
el

at
iv

e
M

ak
es

pa
n

In
cr

ea
se

●

●

●

●

●●

●

●

●

●

● ●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●

●

●
●●

●

●

●

●

●

●

●●

●

●● ●●

●

●

●

●

●

●
●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

● ●●

●

●

●

●
●

●

●

●●
●

●

●●

●
●

●

●

●

●

●●
●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●●

●

●

●●
●

●

●

●

●

●
●
●

●

●

●

●●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●
●

●

●
●

●

●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
● ●●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●
●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●
●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

● ● ●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●●● ●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●
●

●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●● ●●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

● ●

●
● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

(a) Makespan Increase compared to Flexibility
Increase

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ● ●
●

●

●

●

●

●

●

●●
●

●
●

● ●

●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●
●

●
●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●

● ●

●

●

●●

●

●

●●
●
●

●
●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●● ●

●

●
●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●● ●
●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

● ●
●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

● ● ●●

●

●

●

●

●

●

●

●●

●

●● ●

●
●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
● ● ●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●●●

●
●

●

●

●

●

●
●
●
●

●

●
●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●
●● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

● ●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●● ●

●

●● ●●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●●

●
●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●
●

●

●

●

● ●

●
●

●

●

●●● ●●

●●

●●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●●
●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●● ●● ●●
●

● ● ●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●

● ●
●

●●● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●●

●

●

●

●

● ●
●

● ●● ●
●

●

●
●

●

●

●

●

●

●
●

●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●● ●●
●●

●●

●

●

●

●
●

●

●●
●

●●

●
●

●

●●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

● ●

●
●

●

●

●

●

●
●

●

●

● ●
●

●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

1.0 1.5 2.0 2.5

0.
7

0.
8

0.
9

1.
0

Relative Flexibility

R
el

at
iv

e
N

um
be

r
of

 V
io

la
tio

ns

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●
●

●

●

●

● ●

●
●

●

●

●●● ●●

●●

●●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●●
●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●● ●● ●●
●

● ● ●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●

● ●
●

●●● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●●

●

●

●

●

● ●
●

● ●● ●
●

●

●
●

●

●

●

●

●

●
●

●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●● ●●
●●

●●

●

●

●

●
●

●

●●
●

●●

●
●

●

●●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

● ●

●
●

●

●

●

●

●
●

●

●

● ●
●

●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

● ● ●●

●

●

●

●

●

●

●

●●

●

●● ●

●
●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
● ● ●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●●●

●
●

●

●

●

●

●
●
●
●

●

●
●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●
●● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

● ●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●● ●

●

●● ●●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●●

●
●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ● ●
●

●

●

●

●

●

●

●●
●

●
●

● ●

●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●
●

●
●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●

● ●

●

●

●●

●

●

●●
●
●

●
●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●● ●

●

●
●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●● ●
●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

● ●
●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●
●

(b) Increase in number of delays compared to
Flexibility Increase

Figure 1: Flexibility and Robustness of POSes created using maxCC (red), minID

(green), and maxCCminID (blue) compared to basic chaining, for the J30 instance set

and exp2 delay set.

Figure 1 shows two comparison plots for flexibility and the two robustness measures

(∆makespan and number of delays), each plot comparing the three heuristics to basic

chaining. The plots show a majority of points with relative flexibility greater than

one and the two metrics lower than one, suggesting that high values for flexibility are

correlated with low values on these two metrics. Since these metrics actually measure

the absence of robustness (low robustness means large makespan increase and a large

number of start time delays), these plots that in a vast majority of cases flexibility and

robustness both increased. This supports the idea that there is indeed, in general, a

strong connection between flexibility and robustness.

To further test this idea, we used optimization for flexibility using Mixed Integer

Programming, similar to the approach in [3], to construct POSes with the lowest pos-

sible number of constraints. Due to the long time needed for calculation, we limited

these tests to instances of the J30 instance set. In the majority of cases, both flexibil-

ity and robustness increased, although there are also cases where flexibility increased

and robustness decreased. This leads us to observe that flexibility indeed has a strong

correlation with robustness, but that there are other factors that have to be taken into

account.

Correlation between Slack and Robustness Another metric that is associated with ro-

bustness is slack. Recall that this metric measures, for an activity, the time by which it

can be postponed without disturbing other activities. For a schedule, it is the summed

slack of all activities, and for a partial order schedule S we define it as the slack of

S’s earliest start schedule. These metrics in [5] are based on three ways of measuring

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 465 -

slack, which we call slack, binary slack, and capped slack. The first is slack as defined

in section 2, the second is a binary value which is 1 if and only if the absolute slack is

larger than 0, and the third is the minimum of the slack and a fraction of the activity’s

processing time. In the original paper this fraction is defined as the expected delay,

but here we fix it to 1 to ease computations and reasoning.

For summing these values for a schedule, Chtourou and Harouari use one of four

weightings: unweighted, weighted by number of successors, weighted by resource us-

age, and weighted by number of successors multiplied by resource usage [5]. While

unweighted and weighted by number of resources speak for themselves, the weighting

by resource usage needs some explanation: this weighting counts the slack once for each

item of each resource an activity requires. For each of the twelve possible metrics, we

calculated the correlation between the metric and the two robustness measures. The

first thing that we noticed, is that the metrics weighted by resource usage had a low or

even positive correlation with the robustness metrics. Remember that the robustness

metrics, ∆makespan and number of delays, actually measure the lack of robustness: an

increase in some of these slack metrics weighted by resource usage therefore indicates a

decrease in robustness. Secondly we noticed that the correlation strengths of the other

six metrics—slack, binary slack, and capped slack, either unweighted or weighted by

number of successors—with robustness varies quite a lot. The correlations are not as

strong as the correlation between flexibility and robustness, but they are strong enough

to notice: slack might be another factor affecting robustness besides flexibility.

5 Robustness Model

Having found these correlations in the exploratory study, we now want to understand

why these correlations exist, and possibly (after sufficient empirical confirmation): how

we can use this to our advantage? In other words: how does chaining produce robust

partial order schedules, and how can we exploit this?

In this section we try to answer this question by proposing three models. The

first model, the delay propagation model, describes how a single activity is affected by

disturbances. The second model, which we call the robustness model, uses the delay

propagation model to describe what makes a partial order schedule robust. The third

and final model, called the chain selection model, uses the robustness model to describe

the strategy that heuristics should use in order to create robust partial order schedules.

If we understand this algorithm and the environment in which it operates well (if our

models are correct, that is), then this implies that an improved heuristic we derive from

our models should perform better than the current heuristics. This test is the subject

of section 6—and it illustrates that it’s not necessarily bad to compare algorithms, if

this is done to test a prediction about how this comparison will turn out.

5.1 Delay Propagation Model

Our first model we call the Delay Propagation Model. This model describes how the

exension of the duration of activities affects other activities’ start times. In order to

reason about this, we describe the earliest start schedule under delay as a function of

the original earliest start schedule and the introduced delays.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 466 -

s(a) =

{
0 : |pred(a)| = 0

maxp∈pred(a)(s(p) + dp) : otherwise
(2)

We can define the earliest start schedule using Equation 2. If we denote s′ and d′ to be

the schedule and the duration under delay, respectively, we can substitute these in the

formula to get the earliest start schedule under delay. However, we want to express s′

as a function of s and the delay.

For that purpose, we introduce the notion of start delay, which is the difference

between the original start time and the start time under delay: SDa = s′(a) − s(a).

Rewritten, we get s′(a) = s(a) + SDa. To further highlight the effects of the duration

extension, we split d′ into the original duration and the extension. We introduce ∆a as

the duration extension of an activity a: ∆a = d′a−da. Subsituting these in Equation (2)

for the predecessors’ start time, we get the following.

s′(a) =

{
0 : |pred(a)| = 0

maxp∈pred(a)(s(p) + SDp + dp +∆p) : otherwise

If we introduce the margin between to subsequent activities as ma,b = s(b)−(s(a)+da),

we can rewrite this equation as follows:

s′(a) =

{
0 : |pred(a)| = 0

maxp∈pred(a)(s(a)−mp,a + SDp +∆p) : otherwise

Now we can use Equation 2 to get the following.

s′(a) = s(a) + max(0, max
p∈pred(a)

(SDp +∆p −mp,a)),

which means, that we can define the start delay SDa as follows:

SDa = max(0, max
p∈pred(a)

(SDp +∆p −mp,a)) (3)

This model is still quite opaque: it shows the start delay of an activity only based

on its direct predecessors. We can, however, expand the scope of the model to include

all predecessors (the set pred∗). We do this by focusing only on delayed activities —

activities a with ∆x > 0. All other activities do not contribute to the start delay of

subsequent activities but merely propagate their start delay, hence the name of the

model.

As we can see in Equation 3, the influence on SDa of its predecessor p is reduced by

the margin between the activities, mp,a. When two activities are not directly related by

precedence constraints, but there is a path between them, we can use the Pairwise Float,

or PFp,a (see section 2), as introduced in [3]. For two activities, directly connected

through a precedence constraint, it is equal to the margin between these activities.

For two activities which are connected through exactly one path, it is equal to the

sum of the margins between the activities on the path. If there is more than one path

connecting two activities, the pairwise float of these activities is equal to the minimum

of the pairwise floats of the paths.

If we then define the set of delayed activities as delayed = {a ∈ A|∆a > 0}, we can

finally define the start delay SDa as follows:

SDa = max(0, max
p∈(pred∗(a)∩delayed)

(SDp +∆p − PFp,a)) (4)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 467 -

5.2 Robustness Model

By the ex post robustness measures, a robust POS is a schedule with as few start time

delays and as little makespan increase as possible. Using the Delay Propagation model

as a guidance, we now propose a model for how properties of partial order schedules

influence its robustness.

5.2.1 Size of pred∗

In Equation 4 we can see that the start delay of an activity a depends on the elements

of pred∗(a) ∩ delayed . We reason that if this set contains more elements, the expected

maximum increases. Reducing this set, by reducing the size of pred∗(a), will there-

fore reduce the expected start delay. This, in turn, increases robustness by increasing

stability and reducing ∆makespan.

The size of pred∗ is closely related to flex , as defined in Equation (1) in Section 2.

After all: flexibility is the fraction of unrelated pairs of activities, while
∑
a∈A |pred∗(a)|

equals the number of related pairs of activities. We can therefore state the following

relationship:
∑
a∈A |pred∗(a)| = 1

2 (1 − flex)(n − 1). Note that here we do not take

ordering of pairs into account: the pairs (a, b) and (b, a) are equal.

This reasoning would explain the strong correlation between flexibility and robust-

ness. Based on this, we also predict that increasing flexibility will increase robustness.

5.2.2 Pairwise Float

We can also observe in equation 4 that pairwise float reduces the start delay. Pairwise

Float therefore contributes to robustness.

This can be used to explain the correlation between slack and robustness. Slack

is the amount of time an activity can be postponed without disturbing any of its

successors, and is therefore the minimum margin between the activity and any of its

successors. Since the pairwise float is the sum of margins between activities, it is likely

that an increase in slack is correlated with an increase in pairwise float.

Furthermore, pairwise float and flexibility are also connected. From Equation 4 we

can see that a delay of activity x ∈ pred∗(a) on a is completely negated if PFx,a ≥
SDx + ∆x. For the start delay of a and its successors, this is effectively the same as

x and a not being connected. A sufficient amount of pairwise float might therefore be

used to simulate the effects of flex . This is what is used in [3] to incorporate flexibility

into their pairwise float heuristic: by defining the pairwise float of an unrelated pair of

activities as a large value.

How much pairwise float is sufficient depends on the delays and how these are prop-

agated. We reason that, when delays are small and few, pairwise float might have an

effect on robustness comparable to flexibility. When delays are larger or more numer-

ous, more pairwise float is needed to yield the same effect on robustness compared to

flexibility. We predict that an increase in pairwise float therefore increases robustness

if it does not decrease flexibility, or if delays are small and few and the reduction in

flexibility is comparable to the increase in pairwise float. It is uncertain what we can

consider “small and few” or “comparable”, we need further investigations to determine

these.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 468 -

5.3 Chain Selection Model

The Robustness Model predicts that increasing flexibility, or reducing the average size

of pred∗(a), increases robustness. One method to approach this, is to minimize the size

of pred(a) for each activity individually during chaining. This method will not produce

an optimal flexibility in all cases, but we suspect that it will produce flexible POSes

without much computational cost.

This explains why the maxCC and minID heuristics produce more flexible POSes

than basic chaining. Both heuristics only take the current activity into account when

assigning schedules and reduce the size of pred(a). MaxCC reduces the number of

added constraints by choosing chains such that the activity under consideration shares

as many chains as possible with its predecessors — thereby reducing the number of

predecessors. MinID reduces the number of added constraints by choosing chains such

that there already is a constraint from the last activity in the chain to the activity

under consideration — thereby “re-using” the existing constraint.

However, the maxCCminID heuristic does not minimize the size of pred(a). We pre-

dict that another heuristic which further reduces the size of pred(a) or even minimizes

it, can be used to produce more flexible partial order schedules.

6 Model Testing

In the previous section we proposed three models. In this section, we investigate the

validity of these models. We will do this by deriving a new heuristic, which is predicted

to increase robustness, and measuring if the predictions hold.

6.1 Proposed Heuristic

The Chain Selection Model predicts that if we optimize the size of pred(a) for each

activity a individually, we can increase flexibility. This should then increase robustness,

if the Robustness Model is correct. We therefore propose a new heuristic, called max-

Chains, which groups all available chains by the last activity, and then picks a chain

from the largest group.

Our proposal is to use this in combination with maxCCminID to form maxC-

CminIDmaxChains. We can describe it as follows:

– Select a chain x such that last(x) = last(prev), where prev is the previously selected

chain (maxCC).

– If that is not possible, select a chain such that last(x) ∈ pred∗(a) (minID).

– If that is not possible, determine for each activity in how many chains it is the latest

activity. Of these activities, select the activities with the most chains of which it is

the latest. Select a chain x such that last(x) is one of these activities (maxChains).

If we use this heuristic, the algorithm will first select all “free chains”, i.e. chains

such that the constraints dictated by those chains are already present, using minID and

maxCC. Then it will select chains such that it can get the most chains per added con-

straint, since it selects a chain from the largest group of chains with the same activity as

latest activity, using maxChains and maxCC. This will produce, when only considering

activity a, a minimum size pred(a). According to the Chain Selection Model, this will

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 469 -

increase flexibility compared to maxCCminID. The Robustness Model predicts that

this increase in flexibility should increase robustness compared to maxCCminID.

6.2 Measured Results

We performed several simulations with partial order schedules created using maxCC-

minID and maxCCminIDmaxChains. We first measured the difference in flexibility

between partial order schedules created using the two different heuristics. In some

cases flexibility decreased, but the mean flexibility increased by 2.8%, 2.5%, 2.6%, and

3.5% for the J30, J60, J90, and J120 instance sets, respectively. Although this might

not seem like much, this increase in flexibility proved significant: using the Wilcoxon

signed-rank test we found p-value orders of magnitude smaller than 0.001. This finding

supports our confidence in the validity of the Chain Selection Model.

Having established that this heuristic does increase flexibility, we then tested whether

robustness was increased as well — according to the Robustness Model, it should have.

However, the data contradict our prediction: of the sixteen combinations of instance

set and delay set, we found four combinations where both ∆makespan decreased and

stability increased with a p-value of p < 0.001. In two more cases, either ∆makespan

decreased or stability increased significantly, with the other metric not improving sig-

nificantly or even deteriorating. We can therefore not conclude that the maxCCminID-

maxChains metrics produces more robust partial order schedules than maxCCminID.

These observations therefore do not support the Robustness Model.

6.3 Discussion of Findings

The predictions made using the Chain Selection Model were matched by results: al-

though variance is quite large, the mean flexibility has increased. We suspect that this

varience in flexibility is largely due to the large diversity in the instances. However,

since we completely minimized the size of pred(a) for each individual activity a, this

model no longer provides any hints on how to further increase flexibility. Finding cor-

relations between instance properties and flexibility might provide new insights in how

flexibility can be achieved, although that we will be part of future work.

The predictions made according to the robustness model were not matched by

results: the predicted increase in robustness was lacking or insignificant in most cases.

Because there are many factors influencing robustness — in contrast to flexibility, which

is a product of the algorithm and the source instance — we investigated two other

possible sources of change in robustness: a change in pairwise float or an inaccurate

delay set. These proved not to be the source of this incongruency, however: pairwise

float actually increased, which should have also increase robustness, and a delay set

consisting of more delay patterns yielded the same result. We therefore conclude that

the Robustness Model is incorrect or inaccurate.

Since it is based on the mathematically derived low-level description of delays given

by the Delay Propagation Model, we suspect that the Robustness Model is not entirely

incorrect but merely incomplete. The Delay Propagation Model and the Robustness

Model both do not take the structure of the network into account, only the number of

predecessors count. We suspect that this structure does have influence on robustness,

but that this influence was overshadowed by the influence of the large changes in

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 470 -

flexibility caused by the maxCC, minID, and maxCCminID heuristics, which is why it

was not noticed before.

7 Discussion

We found a strong correlation between flexibility and robustness. Although this cor-

relation was already suspected and it not very surprising, the evidence was lacking—

presenting this evidence is our first contribution. More interesting is the finding of the

correlation between slack and robustness, which was not as strong as expected by other

work, although circumstances were also different.

Our main contribution lies in the three models we proposed and the way we tested

them. We first proposed the Delay Propagation model, which expresses the start delay

of an activity as a function of the delays and pairwise float. Secondly we proposed the

Robustness Model, which uses the Delay Propagation Model to describe two factors

influencing robustness and their relative importance. This model proved to be lacking

in predictory power, causing us to suspect that there are other factors at play, that

we did not yet take into account, probably in the structure of the activity network.

Finally we proposed a Chain Selection model, which explains how flexibility can be

increased by optimizing a surrogate measure. Using this model we also proposed a

new heuristic which produces slightly more flexible POSes than the existing chaining

heuristics, although this increase did not result in more robustness.

The approach we used is one not often seen in the field of algorithmics. Often, when

using empirical evaluation, the goal (if any) is merely to compare results. Our focus is

not on good or bad results, but rather on understanding the chaining algorithm. This

can inform us how better results can be achieved.

Based on our work, there is a lot more work that can be done. Our suggestions

for future work are mainly based on two motivations: the motivation to increase the

applicability of the work, and the motivation to increase the validity of the work.

For increasing applicability, we suggest performing similar experiments with in-

stances and delay patterns from a wider variety of sources, and preferably from actual

industrial applications. Furthermore, we have selected low makespan and high stability

(low number of start time delays) as desired properties of schedules. We can imagine

that there are applications in which these metrics are not the best tools for the job. It

would therefore be very interesting to see if our findings still hold when other properties

are needed for robustness.

To increase the validity of the work, we see a lot of opportunity in refining the mod-

els. The current models are not entirely accurate, and we suspect that more accuracy

can be gained by studying the influence of the structure of the activity network.

References

1. M.A. Aloulou and M.C. Portmann. An efficient proactive reactive scheduling ap-

proach to hedge against shop floor disturbances. In Proceedings MISTA, 2003.

2. J. Blazewicz, J.K. Lenstra, and A.H.G. Rinnooy Kan. Scheduling subject to re-

source constraints: classification and complexity. Discrete Applied Math., 1983.

3. K. Braeckmans, E. Demeulemeester, W. Herroelen, and R. Leus. Proactive resource

allocation heuristics for robust project scheduling. DTEW Report 0567, 2005.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 471 -

4. A. Cesta, A. Oddi, and S.F. Smith. Profile-Based Algorithms to Solve Multiple

Capacitated Metric Scheduling Problems. In Proceedings AIPS, 1998.

5. H. Chtourou and M. Haouari. A two-stage-priority-rule-based algorithm for robust

resource-constrained project scheduling. Comp. & Indust. Eng., 55, 2008.

6. J.N. Hooker. Needed: An empirical science of algorithms. Oper. Res., 42, 1994.

7. J.N. Hooker. Testing heuristics: We have it all wrong. J. of Heuristics, 1, 1995.

8. R. Kolisch. Serial and parallel resource-constrained project scheduling methods

revisited: Theory and computation. European J. OR, 90, 1996.

9. R. Kolisch and A. Sprecher. PSPLIB - a project scheduling problem library. Eu-

ropean Journal of Operational Research, 96, 1996.

10. M. Lombardi and M. Milano. A min-flow algorithm for Minimal Critical Set de-

tection in Resource Constrained Project Scheduling. Artificial Intelligence, 2012.

11. C.C. McGeoch. Feature Article — Toward an Experimental Method for Algorithm

Simulation. INFORMS Journal on Computing, 8, 1996.

12. F. De Nijs and T. Klos. A novel priority rule heuristic: Learning from justification.

In Proceedings ICAPS, 2014.

13. N. Policella, A. Cesta, A. Oddi, and S.F. Smith. From Precedence Constraint

Posting to Partial Order Schedules. AI Communications, 20, 2007.

14. N. Policella, A. Cesta, A. Oddi, and S.F. Smith. Solve-and-robustify. Journal of

Scheduling, 12, 2009.

15. N. Policella, A. Oddi, S.F. Smith, and A. Cesta. Generating Robust Partial Order

Schedules. In Proceedings Constraint Programming (CP). Springer, 2004.

16. N. Policella, S.F. Smith, and A. Oddi. Generating Robust Schedules through

Temporal Flexibility. In Proceedings ICAPS, 2004.

17. M.E. Pollack and I. Tsamardinos. Efficiently dispatching plans encoded as simple

temporal problems. In Intelligent Techniques for Planning. Idea Group, 2005.

18. F. Wilcoxon. Individual Comparisons by Ranking Methods. Biometrics Bulletin,

1(6), 1945.

19. D. Wilmer. RCPSP Testing Framework, 2014.

https://github.com/dwilmer/rcpsp-testing-framework.

20. D. Wilmer. Robust solutions for the resource-constrained project scheduling prob-

lem: Understanding and improving robustness in partial order schedules produced

by the chaining algorithm. Master’s thesis, Delft University of Technology, 2015.

http://discover.tudelft.nl:8888/recordview/view?recordId=TUD:oai:

tudelft.nl:uuid:f403f220-e233-4f9f-8602-584d928adfc8.

21. M. Wilson, T. Klos, C. Witteveen, and B. Huisman. Flexibility and Decoupling in

Simple Temporal Networks. Artificial Intelligence, 214, 2014.

22. M. Wilson, C. Witteveen, T. Klos, and B. Huisman. Enhancing flexibility and

robustness in multi-agent task scheduling. In Proceedings OPTMAS, 2013.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 472 -

https://github.com/dwilmer/rcpsp-testing-framework
http://discover.tudelft.nl:8888/recordview/view?recordId=TUD:oai:tudelft.nl:uuid:f403f220-e233-4f9f-8602-584d928adfc8
http://discover.tudelft.nl:8888/recordview/view?recordId=TUD:oai:tudelft.nl:uuid:f403f220-e233-4f9f-8602-584d928adfc8

MISTA 2015

Heuristic Methods for Single Machine Scheduling with
Periodic Maintenance

Paz Perez-Gonzalez · Manuel Dios · Victor

Fernandez-Viagas · Jose M Framinan

Abstract In this paper we address the problem of scheduling jobs taking into account

the existence of cyclical unavailability periods where no operation can be performed,

a problem which is usually denoted in the literature as scheduling with periodic main-

tenance. More specifically, our research is focused onto the single machine scheduling

problem with periodic maintenance and makespan minimisation as objective. This

NP-hard problem has been studied previously in the literature and, although several

approximate procedures have been proposed, no computational evaluation among them

has been carried out. We conduct an exhaustive computational evaluation of the state-

of-the-art heuristics, and propose a new heuristic for the problem that outperforms the

existing ones both in terms of the quality of the solutions obtained and in the CPU

time requirements.

1 Introduction

In many real-life manufacturing scenarios, scheduling of jobs must take into account

the existence of –usually cyclical– periods where no operation can be performed. These

unavailability periods may be seen as an special case of scheduling with deterministic

machine availability constraints, in this case due to periodic maintenance, non-working

shifts, holidays, etc. Although the motivation of our work is the natural interruption

of operations in the factory during the weekends, the literature usually assumes that

the unavailability periods are due to preventive maintenance activities that must be

carried out cyclically and therefore the problem is denoted as scheduling with periodic

maintenance (see e.g. [Angel-Bello et al., 2011,Yu et al., 2014]).

In our case, it is desirable that the jobs are completed within a shift, so no job should

be left unfinished for the next shift. This is a usual practice in many manufacturing

companies with relatively complex manual operations (such as the assembly of wiring

harness in the aerospace industry, from which our case is taken), as shifts are formed

by different teams of workers and having one worker to complete the tasks of a previous

worker is not desirable in terms of efficiency and quality of the operation.

Paz Perez-Gonzalez, Manuel Dios, Victor Fernandez-Viagas, Jose M Framinan
Industrial Management, School of Engineering, University of Seville
E-mail: pazperez@us.es, mdios@us.es, vfernandezviagas@us.es, framinan@us.es

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 473 -

More specifically, our problem deals with scheduling jobs for a single operation

(machine) where the jobs should start and be completed within a working shift. The

goal is to minimise the maximum completion time of the jobs, or makespan. Note that,

although the single machine scheduling problem with makespan objective is trivial if

no availability constraints are considered, it turns to be NP-hard in the strong sense

if periodic maintenance is included [Hsu et al., 2010,Low et al., 2010]. Several approx-

imate solution procedures have been presented in the literature, including both con-

structive heuristics [Ji et al., 2007,Hsu et al., 2010,Yu et al., 2014] and metaheuristics

[Low et al., 2010]. However, no exhaustive computational study has been carried out

to compare the different solution procedures for different availability periods, so their

practical suitability has not be established.

In this paper, we first carry out an exhaustive computational experimentation

among the existing heuristics. In view of the excellent results obtained by one rela-

tively fast constructive heuristic, we embed it in a fast local search schema and obtain

a new heuristic which does not only outperform the rest of the constructive heuristic,

but also the best up-to-now metaheuristic for the problem while consuming much less

CPU time.

The rest of the paper is organised as follows. Section 2 presents the notation for the

problem and the state-of-the-art. In Section 3 we present all heuristics identified in the

literature, including some new constructive heuristics, and a new heuristic. In Section

4 we describe the test beds generated to carry out the computational experience. The

results provided by all methods described in Section 3 are presented, and their statis-

tical significance is tested. Finally, in Section 5 some conclusions are discussed along

future research lines.

2 Background

A recent review on scheduling with availability constraints is due to [Ma et al., 2009].

In their work, the problems are classified according to the layout and the most critical

assumption, i.e.: the effect of the unavailability constraints on the disrupted job. In

the resumable case, if an operation cannot be finished before the unavailability period,

it is preempted and it can continue when the machine is available again. In the non-

resumable case, preemption is not allowed and the disrupted operation has to totally

restart rather than continue. In the semi-resumable case the disrupted job will have to

partially restart.

Our problem consists on scheduling n jobs, J1, . . . , Jn in a single machine with

processing times pi, i = 1, . . . , n. The machine is not continuously available due to

deterministic causes, and the unavailability periods are fixed, with a common deter-

mined duration t which have to be carried out after T units of availability time. In

the literature, the availability periods are denoted batches, bins or blocks. Jobs are

non-resumable, so we assume that T ≥ pi ∀i = 1, . . . , n in order to guarantee the

feasibility of the problem. The objective is to minimize the makespan or maximum

completion time of the jobs. The problem can be denoted 1|nr − pm|Cmax according

to the standard notation [Ji et al., 2007].

To the best of our knowledge, [Ji et al., 2007] is the first paper considering the

1|nr−pm|Cmax problem, although it is not included in the review by [Ma et al., 2009].

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 474 -

Fig. 1 Illustration of the problem [Ji et al., 2007]

As mentioned before, this problem is NP-hard in the strong sense [Hsu et al., 2010,

Low et al., 2010]. In their paper, [Ji et al., 2007] describe the problem, and identify

the similarity of this problem to the bin packing problem, since the interval between

two consecutive maintenance periods can be considered as a batch with capacity T (see

Figure 1). Its clear (see Property 1 in [Ji et al., 2007]), that the optimal schedule must

have the minimum number of batches (i.e. it corresponds to an optimal solution for

the bin-packing problem), denoted L. [Ji et al., 2007] show that the worst-case ratio of

the LPT (Longest Processing Time first) algorithm is 2. The authors assume in their

LPT heuristic that jobs are first sorted in descending order of their processing times

and then are assigned one by one in the first block with sufficient slack, an assignment

policy known in the bin-packing literature as First Fit. Note that other bin packing

assignment policies could be possible, therefore in order to be precise we denote their

algorithm as FFD, indicating a First-Fit assignment of jobs sorted in Descending order

of their processing times.

[Hsu et al., 2010] consider an extended version of the problem, considering two

maintenance strategies: a machine should stop to maintain after a periodic interval

T , or to after a fixed amount of jobs processed K. This problem is 1|nr − pm|Cmax

when K = n. They provide a two-stage BIP (Binary Integer Programming) model: the

first-stage model determines the minimum number of batches L required for processing

the n jobs; the second-stage minimizes the total gap within the first L − 1 batches.

The makespan can be calculated once the second-stage model is solved. Moreover, they

present some heuristic approaches, the first one is called Decreasing order with Best

Fit (denoted BFD in our paper), where jobs are arranged by LPT but the assignment

to the batches is done according to the so-called Best Fit bin packing policy, i.e. jobs

are assigned to the block with current minimum slack. The second one is the so-called

Butterfly order with Best Fit (denoted BFHILO in our paper, in Section 3), which

arranges the jobs according to the so-called butterfly order, i.e. given the jobs in LPT

order, select first the largest one, then the smallest, the second largest, the second

smallest, and so on.

They compare the results provided by solver LINGO for the BIP model to the

heuristics in a test bed with n = 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 500, 1000, 2000

and 10000 for 10 instances per size, with pi and t drawn from a uniform distribution

[1, 5, 10]. Moreover T = max t{⌈a
∑n

i=1 pi⌉,max1≤i≤n pi} where a = 1
5 ,

1
4 and 1

3 . Fi-

nally K = ⌈bn⌉ with b = 1, 12 ,
1
3 ,

1
4 ,

1
5 . They show that BFHILO is better than BFD

when K ≤ ⌈n2 ⌉, being BFD better otherwise.

[Low et al., 2010] solve the 1|nr − pm|Cmax problem using a Particle Swarm Op-

timization (PSO) algorithm. They use different heuristics to generate a initial popu-

lation with 10 individuals, combining five arrangement rules with two policies of the

bin-packing problem: best fit and first fit. The five arrangement rules are LPT, SPT, V-

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 475 -

Sharp, A-Sharp and Butterfly (see Section 3). They compare different versions of PSO

algorithm with a test bed with n = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300,

pi uniformly distributed in [1, 50], t uniformly distributed in [5, 20] and T uniformly

distributed in [150, 200].

[Angel-Bello et al., 2011] study a generalization of the problem considering se-

quence dependent setup-times, denoted 1|nr−pm, sij |Cmax, with sij the setup-time of

job j that depends on the job i processed just before j. They provide a MILP (Mixed

Integer Linear Programming) model, but they show that it is not efficient and solve the

problem using GRASP with an improvement phase based on Tabu Search. They use two

test beds. The first test bed is generated randomly with 10, 12 and 15 jobs, and sij+pj
generated by an uniform distribution in three different intervals: (2,8); (4,2) and (5,20).

Finally T = 2.25dm, 2.5dm, 3dm, 4dm, with dm = max1≤i≤n{(s0i + pi + si0 + p0)/2},
where i = 0 is the index for maintenance activities. For the second test bed they con-

sider the published instances for the Asymmetrical Vehicle Routing Problem (AVRP),

based on the idea about each batch of jobs is a route with a distance constraint. They

use three instances for the AVRP created by [Fischetti et al., 1994] with 33, 38 and 44

clients as jobs, the distance between the clients as sij + pj , and finally the distance

constraint as T . They do not apply existing methods for solving the VRP since the

objective of the problem corresponds to minimize the number of routes and the length

of the shortest route, which is not a usual objective in routing problems.

[Pacheco et al., 2012] consider the same problem 1|nr− pm, sij |Cmax, providing a

MILP and solving it by an algorithm called Multi-Start Tabu (MST). They generate a

test bed with 10, 12, 15, 20, 30, 40 and 50 jobs, and the rest of the parameters in the

same way that the test bed by [Angel-Bello et al., 2011]. They compare their results to

those provided by [Angel-Bello et al., 2011], being the MST better than the GRASP

for the biggest instances.

Finally, [Yu et al., 2014] consider the 1|nr − pm|Cmax problem, and they provide

three constructive heuristics, called LS, LPT and MLPT. The first one, LS, is the List

Scheduling algorithm, which consists of generating a random order and apply the First

Fit algorithm. In the following, we denote this algorithm as FFR (First Fit Random).

LPT is the same FFD algorithm by [Ji et al., 2007]. Finally MLPT is a modified version

of the FFD algorithm applied to the bin packing problem by [Yue and Zhang, 1995].

This heuristic is detailed in the Section 3 and denoted MFFD. [Yu et al., 2014] prove

that the complexity of the three heuristics is O(n2), show that the worst case bound in

all cases is 2, and compare the performance bound, concluding that MFFD outperforms

the other methods.

As a conclusion, to the best of our knowledge there are no comparison regarding

the efficiency of the different methods that have been proposed for 1|nr − pm|Cmax.

In the next section, we present these methods in detail so they are classified in order

to carry out a computational evaluation in Section 4.

3 Heuristics

In this section we describe the heuristics found in the reviewed literature and some new

heuristics to be tested in the experimental evaluation. First, we describe some construc-

tive heuristics (CH) from different authors, including new proposals. Then, we describe

a PSO (Particle Swarm Optimization) metaheuristic by [Low et al., 2010]. Finally, we

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 476 -

propose a new heuristic, based on BFD with a local insertion method. We have not in-

cluded those methods presented by [Angel-Bello et al., 2011,Pacheco et al., 2012] since

they consider setup times and the problem is very different.

3.1 Constructive Heuristics

Most of the constructive heuristics (CH) have the following structure:

Phase 1: Arrange the job according a given order, and form a sequencing priority

list S.

Phase 2: Apply a bin-packing policy to assign the jobs from S to the blocks.

Let the index of the jobs be such us p1 ≤ p2 ≤ . . . pn (i.e. the processing times of

the jobs to be scheduled given in non-decreasing order, SPT). Then, we consider the

following different rules to sort the jobs:

– Random

– LPT: pn, . . . , p1
– SPT: p1, . . . , pn
– V-Sharp: pn, pn−2, . . . , p1, . . . , pn−3, pn−1

– A-Sharp: p2, p4, . . . , pn−1, pn, pn−2, . . . , p3, p1
– HILO: pn, p1, pn−1, p2, pn−2, p3, . . . (denoted as Butterfly in the literature)

– LOHI: p1, pn, p2, pn−1, p3, pn−2, . . .

Moreover, we consider the following bin-packing policies. We call slack of a block

to the difference between T and the sum of the processing times of all jobs assigned to

that block:

1. First Fit: Insert the first job scheduled in S, j, into the first block where the slack

is greater or equal to pj . Remove j from S. Repeat the procedure until all jobs in

S are assigned.

2. Best Fit: Insert the first job scheduled in S, j, into the block which has the minimum

slack such us this slack is greater or equal to pj . Remove j from S. Repeat the

procedure until all jobs in S are assigned.

Not all the combinations of sorting rules and bin-packing policies have been tested

in the literature. Table 1 shows the CH described previously, indicating whether it has

been previously proposed and, if so, the reference where it can be found.

[Yu et al., 2014] develop a most sophisticated CH, denoted MFFD (Modified First

Fit Decreasing). It is based on the construction of the following sets: A = {j : pj >

T/2}, B = {j : T/3 < pj ≤ T/2}, C = {j : T−pn

5 < pj ≤ T/3} and D = {j : 0 < pj ≤
T−pn

5 }. MFFD is described as follows:

Step 1: Given the jobs in the LPT order, assign the jobs in A to the first |A| bins
in order, so that the levels of the bins form a non-increasing sequence (i.e., the level of

a bin is the total processing times of the jobs it contains).

Step 2: From right to left (i.e., from binX|A| toX1): if the two smallest unscheduled

jobs from C will not fit together in Xi , or if there is only one such job left, do nothing.

Otherwise assign the smallest unscheduled job Js from C in Xi, together with the

largest remaining unscheduled job Jl from C that will fit, and then take Js out of Xi

and assign the largest remaining unscheduled job from C that will fit together with Jl
into Xi.

Step 3: Use the BFD algorithm to assign the remaining jobs to bins starting from

X1.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 477 -

Phase 1 Phase 2 Notation Name Reference
Random FF FFR First Fit Random [Yu et al., 2014]
LPT FF FFD First Fit Decreasing [Ji et al., 2007,Low et al., 2010,Yu et al., 2014]
LPT MFF MFFD Modified Fisrt Fit Decreasing [Yu et al., 2014]
SPT FF FFI First Fit Increasing [Low et al., 2010]
V-Sharp FF FFV First Fit V-Sharp [Low et al., 2010]
A-Sharp FF FFA First Fit A-Sharp [Low et al., 2010]
HILO FF FFHILO First Fit HILO [Low et al., 2010]
LOHI FF FFLOHI First Fit LOHI Not considered
Random BF BFR Best Fit Random Not considered
LPT BF BFD Best Fit Decreasing [Hsu et al., 2010,Low et al., 2010]
SPT BF BFI Best Fit Increasing [Low et al., 2010]
V-Sharp BF BFV Best Fit V-Sharp [Low et al., 2010]
A-Sharp BF BFA Best Fit A-Sharp [Low et al., 2010]
HILO BF BFHILO Best Fit HILO [Hsu et al., 2010,Low et al., 2010]
LOHI BF BFLOHI Best Fit LOHI Not considered

Table 1 Constructive Heuristics considered in the experimental evaluation

3.2 PSO

In this section we describe briefly the Particle Swarm Optimization (PSO) by [Low et al., 2010].

In this metaheuristic, each sequence is coded as a particle in the following way: Xr
i =

(xri11, x
r
i12, . . . , x

r
inn), with xrijk = 1 if job j of particle i is in the position k in

the iteration r, and 0 in other case. Each particle i in the iteration r has a veloc-

ity V r
i = (vri11, v

r
i12, . . . , v

r
inn). Let P

r
i = (pri11, p

r
i12, . . . , p

r
inn) be the best particle i

obtained in r iterations. Let P r
g = (prg11, p

r
g12, . . . , p

r
gnn) be the best particle of the

population obtained in r iterations. The specified PSO applied by [Low et al., 2010] is

the following:

Step 1: r = 0: Initialize a population of K particles with random velocities V 0
i .

Step 2: For each particle i, evaluate Cmax(X
r
i).

Step 3: For each particle i, if Cmax(X
r
i) < Cmax(P

r
i) then P

r
i = Xr

i .

Step 4: For each particle i, if Cmax(X
r
i) < Cmax(P

r
g) then P

r
g = Xr

i .

Step 5: Update the velocities as follows: vrijk = wvr−1
ijk + c1rand1(p

r
ijk − xrijk) +

c2rand2(p
r
gjk − xrijk), with w = wmax − wmax−wmin

itermax
r, with itermax the maximal

number of iterations. Positions of particles are updates by the algorithm LPV (Largest

Position Value) as follows:

1. For each particle i, π = ∅, and S = {s(vri11), s(v
r
i12), . . . , s(v

r
inn)} with s(x) =

1
1+e−x .

2. Select the LPV of S, s(vrilm) and place the unscheduled job l in the position m

in π. Remove s(vrilm) ∀l,m from S. Repeat this step until S = ∅.

Step 6: If all particles are identical and e =
Cmax(P

r
g)−Clow

Clow
≥ 0.01, with Clow a

lower bound of Cmax for the instance, then one of particles is kept and the rest k − 1

particles are randomly generated.

Step 7: Go to step 2 until one of the following criteria is met:

1. Cmax(P
r
g) = Clow

2. All particles are identical and e < 0.01.

3. r = itermax.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 478 -

3.3 New heuristic

Finally, we propose a new heuristic based on the BFD with a local insertion, denoted

HBF. The heuristic uses the excellent performance of the BF assignment policy to

explore different starting orders. The steps are the following:

Step 1: Sort the jobs according to the LPT rule, obtaining sequence Π

Step 2: Assign the jobs to the block according to the Best Fit policy, thus obtaining

a sequence SBF (Π) and make the corresponding makespan to be best, i.e. best :=

Cmax(SBF (Π)).

Step 3: Do:

For i = 1 to n:

1. Removes one job from Π at random and insert it in the rest of the positions.

For each so-obtained solution Π ′, assign the jobs to the block according to the Best

Fit policy and calculate the makespan, i.e. curr := Cmax(SBF (Π ′)).
2. If curr < best, then best := curr, Π := Π ′.
while there is improvement in best.

4 Experimental Results

As mentioned in Section 1, there are several test beds for our problem. However, we

have created an extended test bed, with n ∈ {10, 20, 25, 50, 80, 100, 150, 200, 250, 300},
similar to [Low et al., 2010], where the processing times pi uniformly distributed in

[1, 99] as usual in the scheduling literature. For each size, we have generated 20 in-

stances, making a total of 200 instances.

In order to determine the influence of the availability period in the problem, we solve

each instance for different values of T . Hence, T = max{⌈a
∑n

i=1 pi⌉,max1≤i≤n pi},
with a ∈ [0, 1], in the same way that [Hsu et al., 2010]. With this method the problem

is feasible (T ≥ max1≤i≤n pi}) and it is not trivial (T ≤
∑n

i=1 pi). We consider

a = 0.16, 0.2, 0.25, 0.33 and 0.5. Moreover, we have included the following fixed values

for T : 200, 300 and 500. Note that we assume t = 0 and the length of the preventive

maintenance activity has no influence on the solution procedure (although the value of

the makespan would increase).

We have solved all instances in this testbed using the 15 CH described in Section

3, the PSO and the new heuristic HBF. The parameters used for the PSO are the same

than in [Low et al., 2010]: K = 20 with the initial population composed by the ten

sequences generated by FFD, FFI, FFHILO, FFV, FFA, BFD, BFI, BFHILO, BFV

and BFA and ten sequences randomly generated. Moreover, c1 = c2 = 2, wmax = 0.9,

wmin = 0.4 and rand1, rand2 uniformly generated in (0,1). For each instance, we have

computed the makespan value, and it has been compared to Clow =
∑n

j=1 pj , which

is a lower bound of the optimal makespan value for the problem. Therefore, the RPD

(relative percentage deviation) is computed as follows:

RPD =
Cmax(HEUR)− Clow

Clow
· 100

Table 2 shows the average RPD (ARPD) values obtained for each heuristic, and the

average number of blocks needed by the methods (denoted by n*). Results are shown

for the different cases of T . Finally, the average computation times are included in the

last column. It can be observed that the four best methods are FFD, MFFD, PSO and

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 479 -

Fig. 2 95% Confidence Interval for ARPD: All heuristics

our proposal HBF, being the best results provided by HBF. Figure 2 shows these results

graphically, by the 95% confidence intervals of ARPD for each heuristic. Additionally,

in Table 2 we can seen that the heuristics have the worst values of ARPD for the case

T = 200, and in this case the average number of blocks n* are the largest. It could be

interpreted in the following way: as n* increases, it becomes harder for the heuristics

to make the most of the capacity of the blocks. Regarding computation times, all CH

are almost instantaneous. PSO and HBF need higher computation times, being HBF

fastest.

In order to determine the differences among the four best heuristics, Figure 3 shows

the 95% confidence intervals. MFFD by [Yu et al., 2014] is not better than FFD. Note

that MFFD is the same method than FFD when T/2 > max{pj}. For our testbed, it

provides the same results than FFD for the cases T = 200, 300 and 500. Additionally,

according to the results presented in the Figure 3, there are not significant differences

among FFD, MFFD and PSO, but there are significant differences among them and

our proposal HBF, this last method providing the best ARPD values.

Finally, in order to specifically compare PSO and our proposed HBF, we have gen-

erated a new test bed along the lines described by [Low et al., 2010] so their algorithm

is compared under the same conditions as in the original paper. More specifically,

n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300} and pj ∼ U [1, 50]. Fifty in-

stances for each size (a total of 700 instances), have been generated and solved with

T ∼ U [150, 200]. Figure 4 confirms the previous results, being HBF the best method.

Regarding CPU times, constructive heuristics are almost instantaneous, but results

show that PSO requires an average of 2.68, while HBF requires 1.73 seconds.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 480 -

a
=

0
.1

6
a
=

0
.2

a
=

0
.2

5
a
=

0
.3

3
a
=

0
.5

T
=

2
0
0

T
=

3
0
0

T
=

5
0
0

A
v
er

a
g
e

A
v
er

a
g
e

H
eu

ri
st

ic
s

A
R

P
D

n
*

A
R

P
D

n
*

A
R

P
D

n
*

A
R

P
D

n
*

A
R

P
D

n
*

A
R

P
D

n
*

A
R

P
D

n
*

A
R

P
D

n
*

A
R

P
D

ti
m

e
B

F
R

3
.3

8
2
5

7
.0

3
.5

2
5
9

5
.8

3
.4

6
9
4

4
.7

2
.8

0
9
2

4
.0

2
.4

7
3
1

2
.5

3
.9

4
5
1

3
0
.8

2
.1

8
4
1

2
0
.5

1
.2

3
8
4

1
2
.4

2
.8

7
8
5

0
.0

0
0
1

B
F

D
1
.2

4
6
6

7
.0

1
.2

2
1
8

5
.4

0
.9

4
1
1

4
.4

0
.6

9
4
4

4
.0

0
.4

0
7
2

2
.3

1
5
.9

6
3
4

3
0
.3

0
.4

2
0
7

2
0
.3

0
.1

6
9
0

1
2
.4

2
.6

3
3
0

0
.0

0
0
1

B
F

I
9
.6

4
6
0

7
.2

8
.7

9
5
0

6
.1

7
.8

4
3
8

5
.1

5
.4

5
8
8

4
.0

4
.7

5
0
0

3
.0

1
5
.9

6
3
4

3
4
.7

1
0
.6

9
5
9

2
2
.3

6
.4

8
2
5

1
3
.1

8
.7

0
4
4

0
.0

0
0
1

B
F

H
IL

O
3
.8

9
2
1

7
.0

3
.2

6
5
1

6
.0

2
.9

4
7
0

5
.0

2
.3

5
6
6

4
.0

2
.2

5
9
5

2
.9

6
.5

3
9
4

3
2
.1

4
.1

8
6
9

2
1
.1

2
.3

8
2
0

1
2
.7

3
.4

7
8
6

0
.0

0
0
1

B
F

L
O

H
I

4
.3

3
2
9

7
.0

4
.2

4
1
7

6
.0

3
.1

4
6
6

5
.0

2
.5

6
4
1

4
.0

2
.5

1
6
8

3
.0

6
.9

8
7
1

3
2
.1

4
.3

8
8
9

2
1
.1

2
.5

4
2
4

1
2
.6

3
.8

4
0
1

0
.0

0
0
2

B
F

V
4
.9

2
7
2

7
.0

4
.6

7
0
6

6
.0

4
.5

6
5
6

5
.0

3
.9

2
9
7

4
.0

2
.6

9
5
9

2
.3

8
.7

3
8
4

3
2
.4

5
.5

0
8
4

2
1
.3

3
.4

0
1
1

1
2
.7

4
.8

0
4
6

0
.0

0
0
2

B
F
A

2
.5

6
8
9

7
.0

2
.1

4
1
8

5
.6

2
.3

3
6
6

4
.5

1
.2

5
3
8

4
.0

0
.7

3
5
2

2
.3

1
.9

9
2
4

3
0
.5

0
.8

4
7
6

2
0
.4

0
.3

2
5
4

1
2
.4

1
.5

2
5
2

0
.0

0
0
2

F
F

R
3
.5

2
7
0

7
.0

3
.7

4
6
3

5
.8

3
.4

4
1
0

4
.7

2
.8

0
9
2

4
.0

2
.4

7
3
1

2
.5

4
.2

1
5
5

3
0
.9

2
.2

6
2
5

2
0
.5

1
.2

5
4
9

1
2
.4

2
.9

6
6
2

0
.0

0
0
2

F
F

D
1
.2

3
7
1

7
.0

1
.2

1
8
3

5
.4

0
.9

4
6
0

4
.4

0
.6

9
3
6

4
.0

0
.4

3
2
7

2
.3

0
.7

0
4
4

3
0
.3

0
.4

0
7
1

2
0
.3

0
.1

7
0
6

1
2
.4

0
.7

2
6
2

0
.0

0
0
2

F
F

I
9
.6

4
6
0

7
.2

8
.7

9
5
0

6
.1

7
.8

4
3
8

5
.1

5
.4

5
8
8

4
.0

4
.7

5
0
0

3
.0

1
5
.9

6
3
4

3
4
.7

1
0
.6

9
5
9

2
2
.3

6
.4

8
2
5

1
3
.1

8
.7

0
4
4

0
.0

0
0
1

F
F

H
IL

O
3
.9

2
7
3

7
.0

3
.2

6
5
1

6
.0

2
.9

4
7
0

5
.0

2
.3

5
6
6

4
.0

2
.2

5
9
5

2
.9

6
.6

3
3
3

3
2
.1

4
.2

1
9
8

2
1
.1

2
.3

9
5
5

1
2
.7

3
.5

0
0
5

0
.0

0
0
1

F
F

L
O

H
I

4
.3

5
8
7

7
.0

4
.3

3
0
0

6
.0

3
.1

4
6
6

5
.0

2
.5

8
0
7

4
.0

2
.5

1
6
8

3
.0

7
.0

8
1
2

3
2
.1

4
.4

2
8
4

2
1
.1

2
.5

4
8
7

1
2
.6

3
.8

7
3
9

0
.0

0
0
2

F
F

V
4
.9

7
8
0

7
.0

4
.6

7
0
6

6
.0

4
.5

6
5
6

5
.0

3
.9

2
9
7

4
.0

2
.6

9
5
9

2
.3

8
.7

7
4
4

3
2
.4

5
.5

2
0
0

2
1
.3

3
.4

0
1
1

1
2
.7

4
.8

1
6
9

0
.0

0
0
2

F
F
A

2
.4

6
6
9

7
.0

2
.1

1
6
3

5
.6

2
.1

1
7
7

4
.5

1
.2

5
4
1

4
.0

0
.7

3
9
5

2
.4

1
.9

8
7
3

3
0
.5

0
.8

6
9
4

2
0
.4

0
.3

2
9
7

1
2
.4

1
.4

8
5
1

0
.0

0
0
1

M
F

F
D

1
.2

3
2
4

7
.0

1
.3

5
3
7

5
.4

1
.0

5
8
2

4
.4

0
.6

4
9
6

4
.0

0
.4

3
2
7

2
.3

0
.7

0
4
4

3
0
.3

0
.4

0
7
1

2
0
.3

0
.1

7
0
6

1
2
.4

0
.7

5
1
1

0
.0

0
4
5

P
S

O
1
.2

1
1
5

7
.0

1
.1

1
2
9

5
.3

0
.8

8
4
5

4
.3

0
.6

2
7
4

4
.0

0
.1

8
3
0

2
.1

0
.6

2
3
5

3
0
.3

0
.2

8
6
4

2
0
.3

0
.1

1
4
6

1
2
.4

0
.6

3
0
5

6
.7

1
1
8

H
B

F
0
.9

4
0
7

7
.0

0
.8

7
4
3

5
.2

0
.7

0
9
2

4
.1

0
.4

3
6
7

4
.0

0
.0

4
2
3

2
.0

0
.2

3
6
3

3
0
.2

0
.0

4
9
0

2
0
.3

0
.0

4
4
7

1
2
.4

0
.4

1
6
6

3
.7

6
0
7

Table 2 ARPD and n* for each heuristic depending on T .

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 481 -

Fig. 3 95% Confidence Interval for ARPD: FFD, MFFD, PSO and HBF

Fig. 4 95% Confidence Interval for ARPD: FFD, MFFD, PSO and HBF. Testbed
[Low et al., 2010]

5 Conclusions

In this paper we address the single machine scheduling problem with periodic mainte-

nance and makespan minimisation. This NP-hard problem has been studied previously

in the literature and, although several approximate procedures have been proposed,

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 482 -

no computational evaluation has been carried out. We conduct an exhaustive compu-

tational evaluation of the state-of-the-art heuristics, and propose a new heuristic. The

results show that the proposed heuristic outperforms existing ones in terms of quality

of solutions and in CPU time requirements.

References

[Angel-Bello et al., 2011] Angel-Bello, F., Alvarez, A., Pacheco, J., and Mart́ınez, I. (2011).
A heuristic approach for a scheduling problem with periodic maintenance and sequence-
dependent setup times. Computers & Mathematics with Applications, 61(4):797–808.

[Fischetti et al., 1994] Fischetti, M., Toth, P., and Vigo, D. (1994). A branch-and-bound algo-
rithm for the capacitated vehicle routing problem on directed graphs. Operations Research,
42(5):846–859.

[Hsu et al., 2010] Hsu, C.-J., Low, C., and Su, C.-T. (2010). A single-machine scheduling
problem with maintenance activities to minimize makespan. Applied Mathematics and Com-
putation, 215(11):3929–3935.

[Ji et al., 2007] Ji, M., He, Y., and Cheng, T. (2007). Single-machine scheduling with periodic
maintenance to minimize makespan. Computers & Operations Research, 34(6):1764–1770.

[Low et al., 2010] Low, C., Hsu, C.-J., and Su, C.-T. (2010). A modified particle swarm op-
timization algorithm for a single-machine scheduling problem with periodic maintenance.
Expert Systems with Applications, 37(9):6429–6434.

[Ma et al., 2009] Ma, Y., Chu, C., and Zuo, C. (2009). A survey of scheduling with determin-
istic machine availability constraints. Computers & Industrial Engineering, 58(2):199–211.

[Pacheco et al., 2012] Pacheco, J., Angel-Bello, F., and Alvarez, A. (2012). A multi-start
tabu search method for a single-machine scheduling problem with periodic maintenance and
sequence-dependent set-up times. Journal of Scheduling, 16(6):661–673.

[Yu et al., 2014] Yu, X., Zhang, Y., and Steiner, G. (2014). Single-machine scheduling with
periodic maintenance to minimize makespan revisited. Journal of Scheduling, 17(3):263–270.

[Yue and Zhang, 1995] Yue, M. and Zhang, L. (1995). A simple proof of the inequality
MFFD(L)71/60 OPT(L) + 1,L for the MFFD bin-packing algorithm. Acta Mathematicae
Applicatae Sinica, 11(3):318–330.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 483 -

MISTA 2015

A novel Approximate/Exact objective based search
technique for precedence constrained scheduling problems

Andrzej Kozik · Rados law Rudek

Abstract In this paper, we propose a novel Approximate/Exact objective based search

technique, where a low computational cost approximation of the objective value is

used to evaluate examined solutions during searching process. We apply the proposed

approach for simulated annealing solving the single machine scheduling problem to

minimize the total completion times with ready times, sequence dependent setups and

precedence constraints. The numerical analysis reveals the advantages of the novel

technique, which overwhelms the typical approach.

1 Introduction

Consider an algorithm that performs some move on the solution, where a move is a

small change in the solution, and consider the evaluation of the objective function is

computationally expensive (see [3]). On the other hand, there exists an approximation

of the objective function that takes less computational time to be evaluated. Applying

it to a local search algorithm (see [2]) results in better running times, but at the cost

of worse solution delivered by the algorithm.

In this paper, we develop a novel Approximate/Exact (A/E) technique applied for

local search algorithms, in which the algorithm uses approximation of the objective

value to score examined solutions. By controlling the ratio between number of exact

and approximate iterations, a family of algorithms with different trade-offs between

computational-time and quality of delivered solutions can be obtained.

The remainder of this paper is organized as follows. The considered scheduling

problem is formulated in the next section. The novel Approximate/Exact objective

based search technique together with the tuned simulated annealing algorithm and the

applied neighborhood are described subsequently. The numerical analysis is provided

subsequently and the last section concludes the paper.

Andrzej Kozik
Institute of Mathematics and Informatics, Opole University, Poland
E-mail: andrzej.kozik@outlook.com

Rados law Rudek
Institute of Business Informatics, Wroc law University of Economics, Poland
E-mail: rudek.radoslaw@gmail.com

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 484 -

2 Problem formulation

At first, we will define a scheduling problem that is used to depict the idea of the

proposed Approximate/Exact objective search technique. Related scheduling problems

were considered in [3], [7], [8] and for a recent survey see [1].

There is given a single machine and a set J = {1, . . . , n} of n jobs. There are

precedence constraints between jobs, which means that if job j must be processed

before job k (denoted by j ≺ k), then only such schedules are feasible. Let Gp(V,Ep)

be an acyclic directed graph representing precedence constraints between jobs, where

V is a set of vertices representing jobs and Ep is a set of directed edges such that

(i, j) ∈ Ep if i ≺ j. Jobs are available at their ready times rj and the machine is

continuously available and can process at most one job at a time. Once it begins

processing a job, it will continue until this job is finished. Due to practical reasons,

it is assumed that each job j may required additional setup time sij to prepare the

machine after the previous job i is completed, i.e., it is sequence dependent.

Let π =
⟨
π(1), ..., π(i), ..., π(n)

⟩
denote the sequence of jobs (a permutation of the

elements of the set J), where π(i) is the job processed in position i in this sequence.

By Π, we denote the set of all possible permutations, whereas Π+ ⊂ Π is the set of

all such feasible permutations, which hold the defined precedence constraints. For the

given sequence (permutation) π ∈ Π+, we can easily determine the completion time

Cπ(i) of a job placed in the ith position in π from the following formulae:

Cπ(i) = max{rπ(i), Cπ(i−1) + sπ(i−1),π(i)}+ pπ(i), (1)

where Cπ(0) = 0.

The objective is to find such a schedule (sequence) π of jobs on the single machine,

which minimizes the total completion time criterion TC(π) ,
∑n

i=1 Cπ(i). Formally

the optimal schedule π∗ ∈ Π+ for the total completion time minimization problem is

defined as π∗ , argminπ∈Π+

{
TC(π)

}
, where Π+ is a set of all feasible schedules.

For convenience and to keep an elegant description of the considered problem we will

use the standard three field notation scheme X | Y | Z (see [5]), where X describes the

machine environment, Y describes job characteristics and constraints and Z represents

the minimization objectives. According to this notation the problem analysed in the

paper will be denoted as 1|rj , sij , prec|
∑
Cj .

3 Approximate/Exact objective based search

In this section, we present the idea of the Approximate/Exact (A/E) objective based

search technique applied for the well known simulated annealing algorithm ([6]). For

more details concerning metaheuristic algorithms see [4], [?].

Let describe the general concept of the considered simulated annealing (SA). The

search process of SA is a semi-random trajectory in the search space, biased towards

the promising region of a solution space. In its basic form SA combines an intensifica-

tion strategy (an iterative local search using a neighborhood concept) with a form of

diversification (by so-called cooling-schedule allowing uphill moves to escape from the

local minimum).

The considered SA starts the search process from a feasible initial solution. Next, at

each iteration SA performs a random deletion of a job (say, k) from the actual solution

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 485 -

π followed by the evaluation of considered neighborhood, i.e. all possible insertion

positions of k into solution π are evaluated, and the new solution π′ is randomly

sampled from this neighborhood. Let TC(π) be the objective function to be minimized.

During searching process SA with A/E uses alternately the exact (E) objective value or

its approximate (A) value (which is defined in the further part of this paper). The new

solution π′ replaces the old solution π either with a probability computed following

the Boltzmann distribution as follows min
{
1, exp(−(TC(π′)− TC(π))/T)

}
, where T

is the temperature parameter, which is decreased after each iteration of an algorithm

by a geometric cooling scheme, i.e., T = λT and λ ∈ (0, 1).

Now, let us describe the neighborhood search and the approximation of the objec-

tive value applied for the considered scheduling problem. Let π ∈ Π+ be a feasible

permutation and πD be π with removed job k. Let π′ be permutation πD with ar-

bitrarily inserted job k. The neighborhood search procedure, given as Algorithm 1,

computes all feasible insertions of job k into πD. It returns a set N of pairs (i, TC),

where i is an insertion position of job k and TC is its corresponding criterion value.

The insertion position i of job k partitions jobs in πD into two subsets: on the left

side of k in permutation πD (in positions 1, . . . , i) and on the right size (in positions

i+ 1, . . . , n). Example insertion of k is presented in Figure 1.

CkCb
rk rRJCa CcCRJ

a b k RJ c d

Cd

C =CMmax

RC

vc

vRJ

sb,k sk,RJ

Fig. 1 Example insertion of job k into permutation ⟨a, b, RJ, c, d⟩.

Let RJ be a job in position i+1 in πD on the right side (assume, π(n+1) = 0 and

s0,i = 0 and si,0 = 0 for each i ∈ J). Let LS be a sum of completion times of jobs on

the left (LS = Ca +Cb in Figure 1), and let RS be a sum of times between Cmax and

completion of jobs on the right (RS = vc + vRJ in Figure 1). Let RN be the number

of jobs on the right of k and let RC be the time needed to complete jobs on the right.

Let CM be a minimum value of the makespan Cmax (the completion time of the last

job) such that each job on the right of k starts its execution not earlier than its ready

time – it is calculated according to (1).

The initial solution is feasible, thus, each considered permutation π is also feasible

permutation. Therefore, in πD all precedence constraints between jobs from πD are

met, and feasibility of π′ depends only on satisfiability of constraints on job k. To

efficiently verify the feasibility of a solution, the parameter Λ is applied. It denotes the

number of unsatisfied constraints on job k. Since the insertion of job k starts from the

last position, then initially, there are no jobs on the right of k. Thereby Λ is equal to

the number of jobs that (according to the precedence constraints described by graph

Gp) have to be processed after k, i.e., Λ = |{(k, i) ∈ Gp : i ∈ J}|.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 486 -

Let us analyse formally the neighborhood search procedure (Algorithm 1), which for

the input permutation πD with deleted job k calculate the set N of feasible insertions

of k with corresponding criterion values. The algorithm initializes the required values

(lines 1-5) and it starts the analyse insertions of k starting from the last position (n) to

the first in πD (line 6). Note that the insertion into the first position is considered in

lines 23-27. For each insertion position i, the algorithm first computes the approximated

total completion time TC (lines 7-11). Next, the feasibility of insertion of k to position i

is evaluated (line 12), i.e., if there are no unsatisfied constraints, then the insertion i and

corresponding criterion value TC are added to the resulting set of feasible insertions N .

If job j in position before k must be processed after it, then the number of unsatisfied

constraints is decreased (line 13), since in the next step, job j is after k. On the other

hand, if job j must be processed before k, then the searching process is terminated,

since next insertion are infeasible (line 14). In lines 15-21 the required parameters are

updated.

Since each iteration of the loop (lines 7-21) is performed in the constant time, and

the initialization part (lines 1-5) takes O(n) time, the procedure takes O(n) in total.

Therefore, each solution in the neighborhood is evaluated in an amortized constant

time.

Algorithm 1 Neighborhood search procedure (πD,k)

1 : N = ∅ // the set of feasible insertions is empty
2 : Λ = |{(k, i) ∈ Gp : i ∈ J}| // the number of jobs that must be proceeded after k
3 : For each j ∈ πD compute its completion time Cj

4 : LS =
∑

j∈πD Cj

5 : RS = RC = RJ = RN = CM = 0
6 : For i = n to 2 do
7 : j = πD(i− 1) //a job in position i− 1 in πD

8 : Ck = max{Cj + sj,k, rk} + pk
9 : Cmax = Ck + sk,RJ + RC
10: If Cmax < CM then Cmax = CM
11: TC = LS + Ck + RN · Cmax −RS
12: If Λ = 0 then N = N ⊎ (i + 1, TC) //add insertion to feasible solutions
13: If (k, j) ∈ Gp then Λ = Λ− 1 // k must be processed before j
14: If (j, k) ∈ Gp then return N //next insertions are infeasible - terminate
15: LS = LS − Cj

16: S = RC + s(j, RJ)
17: RS = RS + S
18: RC = S + pj
19: If RC + rj > CM then CM = RC + rj
20: RN = RN + 1
21: RJ = j
22: End For
23: Ck = rk + pk
24: Cmax = Ck + sk,RJ + RC
25: If Cmax < CM then Cmax = CM
26: TC = LS + Ck + RN · Cmax −RS
27: If Λ = 0 then N = N ⊎ (1, TC)
28: Return N

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 487 -

4 Numerical analysis

In this section, we will analyse the simulated annealing algorithms based on A/E search

to solve the considered problem. They were coded in C++ and simulations were run

on PC, CPU Intelr CoreTMi7-2600K 3.40GHz and 8GB RAM.

The following algorithms are compared:

– SA1 – simulated annealing that chooses a first feasible solution from a neighbor-

hood, which is the reference algorithm for the proposed approach;

– SAN – simulated annealing that chooses a random feasible solution from all feasible

solutions in a neighborhood; it is slower than SA1, since it calculates all feasible

insertions, but on the other hand it provides better results;

– SAAPR – SAN that uses an approximation of an objective value in each iteration;

– A/Em – it alternately uses SAAPR during 100× (1−m) iterations and next SAN

for 100×m iterations.

Note that SAAPR ≡ A/E0 and SAN ≡ A/E1.

Values of the parameters of simulated annealing were chosen empirically as follows:

Iterations = 25000, T0 = 1000 and λ = 0.998. The initial permutation is a random

feasible solution.

The proposed approach is evaluated for the following problem sizes n ∈ {100, 500}
and in the given ranges of parameters: pj ∈ [1, 10] and [1, 100] (i.e., {1, 2, . . . , 10} and

{1, 2, . . . , 100}), sij ∈ [1, 10] and [1, 100], rj ∈ [0, τ
∑n

j=1 pj], where τ ∈ {0.5, 1.0, 2.0}
for j = 1, . . . , n. For each combination of the parameters, 100 different random instances

(replications) were generated from the uniform distribution over the integers (i.e., 2400

different instances).

The algorithms are compared in reference to an initial random solution, for each

instance, according to the relative error δA that is calculated in the following way:

δA =
(
TC(πA)− TC0

TC0

)
· 100%, (2)

where TC0 is an initial random solution that is reference to evaluate efficiency of the

algorithms and TC(πA) denotes the criterion value provided by algorithm A ∈ {SA1,

SAN , A/E0, A/E0.25, A/E0.50, A/E0.75} for each instance.

The results concerning the percentage values of mean relative errors provided by

the analysed algorithms as well as their mean running times are presented in Table 1.

From Table 1 follows that SA1 is about 10% faster than SAN , but it delivers

significantly worse solutions (20% to 30%). This clearly shows the advantage of the

proposed neighborhood within simulated annealing algorithm.

Due to the low computational complexity of the neighborhood evaluation, SAAPR ≡
A/E0 is 7 times faster than SAN for n = 100 and 25 times faster for n = 500. However,

it delivered solutions up to 15% worse than SAN . It shows that criterion approximation

errors can influence the search process more than the fast neighborhood evaluation.

On the other hand, adding correction iterations to SAAPR, i.e., A/E0.25, A/E0.50 and

A/E0.75 results in run-time 30%, 60% and 90% of SAN , respectively. Thus, solutions

are significantly better than that of SAAPR, most frequently close to SAN .

The impact of the problem size n on the running times of the algorithms is shown

in Table 1 (for the fixed numbers of iterations). However, to conduct a fair comparison

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 488 -

Table 1 Percentage values of mean relative errors of algorithms and their mean running times
(in square brackets) in seconds

n pj sij τ SA1 SAN SAAPR A/E0.25 A/E0.50 A/E0.75

100 10 10 0.5 -22.11 -52.43 -52.13 -52.46 -52.43 -52.48
[0.28] [0.30] [0.04] [0.11] [0.18] [0.25]

1 -19.13 -55.27 -53.59 -54.67 -55.12 -55.19
[0.28] [0.30] [0.04] [0.11] [0.18] [0.24]

2 -15.09 -50.02 -45.02 -49.63 -49.89 -49.98
[0.28] [0.30] [0.04] [0.11] [0.18] [0.25]

100 0.5 -42.56 -73.12 -73.22 -73.29 -73.48 -73.24
[0.28] [0.31] [0.04] [0.11] [0.19] [0.26]

1 -39.69 -71.91 -71.9 -71.88 -71.87 -71.90
[0.28] [0.31] [0.04] [0.11] [0.18] [0.25]

2 -34.88 -68.83 -67.47 -68.25 -68.41 -68.69
[0.28] [0.30] [0.04] [0.11] [0.18] [0.25]

100 10 0.5 -19.74 -48.09 -47.45 -47.92 -48 -48.06
[0.28] [0.30] [0.04] [0.11] [0.17] [0.24]

1 -16.94 -50.07 -46.26 -49.76 -49.98 -50.04
[0.28] [0.30] [0.04] [0.11] [0.17] [0.24]

2 -15.68 -44.79 -35.54 -44.51 -44.73 -44.76
[0.28] [0.31] [0.04] [0.11] [0.18] [0.25]

100 0.5 -25.32 -54.63 -54.2 -54.31 -54.41 -54.68
[0.28] [0.31] [0.04] [0.11] [0.18] [0.25]

1 -22.91 -57.05 -55.15 -56.37 -56.7 -56.91
[0.28] [0.30] [0.04] [0.11] [0.18] [0.24]

2 -19.66 -52.2 -46.39 -51.78 -52.08 -52.14
[0.28] [0.30] [0.04] [0.11] [0.18] [0.25]

500 10 10 0.5 -18.88 -50.37 -48.8 -49.16 -49.65 -50.13
[7.29] [8.13] [0.29] [2.27] [4.24] [6.22]

1 -15.45 -54.36 -47.51 -49.71 -51.93 -53.41
[7.53] [8.19] [0.28] [2.30] [4.29] [6.27]

2 -12.51 -52.64 -38.23 -45.61 -50.03 -51.74
[8.04] [8.62] [0.28] [2.42] [4.54] [6.62]

100 0.5 -40.68 -69.86 -69.8 -69.71 -69.61 -69.86
[7.95] [8.43] [0.29] [2.35] [4.40] [6.45]

1 -38.58 -67.94 -67.32 -67.49 -67.54 -67.76
[7.95] [8.48] [0.29] [2.38] [4.45] [6.53]

2 -33.76 -64.59 -61.77 -62.66 -63.31 -64.02
[7.78] [8.22] [0.28] [2.29] [4.29] [6.30]

100 10 0.5 -14.53 -49.4 -46 -47.02 -48.02 -48.65
[7.64] [8.20] [0.28] [2.29] [4.28] [6.28]

1 -11.35 -56.77 -42.58 -50.69 -54.48 -55.96
[7.49] [8.17] [0.30] [2.28] [4.23] [6.15]

2 -10.14 -49.97 -36.11 -43.82 -47.68 -49.23
[7.66] [8.24] [0.28] [2.27] [4.24] [6.27]

100 0.5 -22.47 -52.73 -51.31 -51.66 -51.94 -52.37
[8.12] [8.52] [0.29] [2.39] [4.48] [6.58]

1 -19.3 -59.04 -50.88 -54.4 -56.63 -58.29
[7.79] [8.20] [0.29] [2.30] [4.30] [6.24]

2 -16.45 -55.15 -43.96 -48.66 -51.8 -54.13
[8.33] [8.76] [0.30] [2.37] [4.47] [6.62]

between the algorithms, it is also worth analysing their accuracy in finding efficient

solutions when their running times are the same. Therefore, an additional experiment

is provided, where the stopping condition of the algorithms is the running time that is

set to 1s. The results of this experiment are shown in Table 2.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 489 -

Table 2 Percentage values of mean relative errors of algorithms; the running times of the
algorithms are set to 1s

n pj sij τ SA1 SAN SAAPR A/E0.25 A/E0.50 A/E0.75

100 10 10 0.5 -21.94 -52.82 -53.76 -53.15 -53.01 -52.91
1 -18.61 -55.74 -55.45 -55.92 -55.81 -55.72
2 -14.03 -49.81 -46.37 -49.87 -49.85 -49.84

100 0.5 -42.34 -74.16 -75.85 -75.06 -74.46 -74.19
1 -39.83 -73.13 -74.61 -73.95 -73.43 -73.42
2 -35.65 -70.28 -70.76 -70.56 -70.41 -70.29

100 10 0.5 -18.28 -47.62 -47.74 -47.77 -47.65 -47.70
1 -16.76 -50.25 -48.2 -50.27 -50.26 -50.26
2 -15.45 -44.72 -36.47 -44.72 -44.72 -44.72

100 0.5 -25.92 -55.83 -56.59 -56.19 -55.9 -55.93
1 -23.29 -57.55 -57.2 -57.64 -57.59 -57.56
2 -18.74 -51.4 -47.24 -51.46 -51.45 -51.45

500 10 10 0.5 -16.98 -27.73 -54.49 -42.41 -36.21 -31.41
1 -13.32 -24.17 -53.48 -39.62 -32.57 -28.37
2 -10.71 -21.76 -44.44 -34.03 -28.4 -24.86

100 0.5 -38.65 -51.24 -74.37 -63.64 -58.64 -54.65
1 -36.93 -49.4 -72.17 -61.54 -56.07 -52.52
2 -32.69 -44.21 -66.54 -56.28 -51.25 -47.64

100 10 0.5 -13.44 -24.14 -50.13 -38.37 -31.53 -27.12
1 -11.28 -27.99 -48.28 -40.28 -34.16 -30.55
2 -9.55 -20.98 -40.38 -31.41 -26.89 -23.50

100 0.5 -21.48 -31.37 -56.61 -44.59 -38.51 -34.56
1 -17.84 -30.74 -57.77 -43.88 -38.17 -34.00
2 -15.39 -26.92 -51.38 -39.02 -33.6 -29.57

For n = 500, SAAPR is 20-30% better than SAN . Similarly, A/Em are also better

than SAN . This clearly shows the advantage of the power of examining the greater

fraction of the solution space, neglecting approximation errors, whereas SAN has no

sufficient time to reach good solutions. This is visible for n = 100, where one second is

still to short for SAN to find good solutions, but enough for A/Em to find solutions

better than SAAPR. This reveals that using A/Em, a trade-off between run-time of

algorithm and quality of delivered solutions can be determine. It is especially important

in the time-constrained applications.

5 Conclusions

In this paper, a novel Approximate/Exact objective based search technique is pro-

posed. Its main idea is the low computational cost approximation of the objective

value to evaluate examined solutions during searching process. We applied the pro-

posed approach for simulated annealing solving the single machine scheduling problem

to minimize the total completion times with ready times, sequence dependent setups

and precedence constraints. The numerical analysis proved the A/E technique to be a

new promising direction of research.

Therefore, our future research will focus on the further evolvement of the method,

its application to other metaheuristics (e.g., tabu search) as well as the development of a

general framework that covers different combinatorial optimization problems, especially

in the field of scheduling with precedence constraints.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 490 -

Acknowledgements This work was supported by The National Science Centre, Poland,
under project no 2012/05/D/HS4/01129.

References

1. Allahverdi A., The third comprehensive survey on scheduling problems with setup
times/costs, European Journal of Operational Research, 246, 345–378 (2015)

2. Blum C., Roli A., Metaheuristics in combinatorial optimization: Overview and conceptual
comparison, ACM Computing Surveys, 35, 268-308 (2003)

3. Driessel R., Mönch L., Variable neighborhood search approaches for scheduling jobs on
parallel machines with sequence-dependent setup times, precedence constraints, and ready
times, Computers & Industrial Engineering, 61, 336–345 (2011)

4. Eglese R.W., Simulated annealing: a tool for operational research, European Journal of
Operational Research, 46, 271–281 (1990)

5. Graham, R. L. and Lawler, E. L. and Lenstra, J. K. and Rinnooy Kan, A. H. G., Opti-
mization and approximation in deterministic sequencing and scheduling: a survey, Annals of
Discrete Mathematics, 5, 287–326 (1979)

6. Kirkpatrick, S. and Gelatt, C. D. and Vecchi, M. P., Optimization by simulated annealing,
Science, 220, 671–680 (1983)

7. Tanaka S., Sato S., An exact algorithm for the precedence-constrained single-machine
scheduling problem, European Journal of Operational Research, 229, 345–352 (2013)

8. Wang J.-B., Wang J.-J., Single-machine scheduling problems with precedence constraints
and simple linear deterioration, Applied Mathematical Modelling, 39, 1172–1182 (2015)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 491 -

MISTA 2015

Tropical optimization problems in project scheduling

Nikolai Krivulin

Abstract We consider a project that consists of activities operating in parallel under various
temporal constraints, including start-to-start, start-to-finish and finish-to-start precedence
relations, early-start, late-start and late-finish time boundaries, and due dates. Scheduling
problems are formulated to find optimal schedules for the project with respect to different
objective functions to be minimized, including the project makespan, the maximum devia-
tion from the due dates, the maximum flow-time, and the maximum deviation of finish times.
We represent the problems as optimization problems in terms of tropical mathematics, and
then solve these problems by applying direct solution methods of tropical optimization. As
a result, new direct solutions of the problems are obtained in a compact vector form, which
is ready for further analysis and practical implementation.

1 Introduction

Tropical optimization problems, which are formulated and solved in the framework of trop-
ical mathematics, find increasing use in various fields of operations research, including
project scheduling. As an applied mathematical discipline concentrated on the theory and
applications of idempotent semirings, tropical (idempotent) mathematics dates back to a
few seminal papers by Pandit [30], Cuninghame-Green [8], Giffler [11], Hoffman [15],
Vorob’ev [35], and Romanovskiı̆ [31], including the papers [8] and [11] concerned with
optimization problems drawn from machine scheduling.

In succeeding years, tropical optimization problems were investigated in a number of
publications, in which scheduling issues frequently served to motivate and illustrate the
study. Specifically, various scheduling problems are examined in terms of tropical optimiza-
tion by Cuninghame-Green [7], U. Zimmermann [38], K. Zimmermann [36, 37], Bouquard
et al. [4], Fiedler et al. [10], Butkovič and Tam [6], Butkovǐc [5], Houssin [16], and Aminu
and Butkovǐc [2]. Many optimization problems are formulated in the tropical mathematics
setting to minimize a linear or nonlinear function defined on vectors over an idempotent

Nikolai Krivulin
Faculty of Mathematics and Mechanics
Saint Petersburg State University
St. Petersburg, 198504, Russia
E-mail: nkk@math.spbu.ru

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 492 -

semifield (a semiring with multiplicative inverses), and mayhave constraints in the form of
vector equalities and inequalities (see, e.g., an overview in [22]). For some problems, com-
plete direct solutions are obtained in a closed form under fairly general assumptions. Other
problems are solved algorithmically by means of iterative computational procedures.

In this paper, we examine several problems drawn from project scheduling, to provide
new solutions on the basis of recent results in tropical optimization. For details on the models
and methods of project scheduling, one can consult the monographs by Demeulemeester and
Herroelen [9], Neumann et al. [29], T’kindt and Billaut [33], and Vanhoucke [34].

We consider scheduling problems, which are to find an optimal schedule for a project
that involves a set of activities operating in parallel under various temporal constraints, in-
cluding start-to-start, start-to-finish, finish-to-start, early-start, late-start, late-finish, and due-
date constraints. As optimization criteria to minimize, we take the project makespan, the
maximum deviation from due dates, the maximum flow-time, and the maximum deviation
of finish times. The problems under study are known to have algorithmic solutions in the
form of iterative computational procedures, and can also be solved as linear programming
problems by an appropriate linear programming algorithm [9,29,33,34].

We represent the scheduling problems as tropical optimization problems, which are then
solved by applying direct solution methods developed by Krivulin in [20, 21, 23, 24, 27].
As a result, we offer new direct solutions to the scheduling problems considered, which,
in contrast to the conventional algorithmic solutions, provide results in a compact explicit
vector form, ready for further development and practical implementation. Specifically, the
new solutions allow various constraints to be incorporated in a unified and constructive way.
The calculation of the solutions involves simple matrix-vector computations according to
explicit formulae, which forms a basis for efficient computational algorithms and software.

The rest of the paper is organized as follows. In Section 2, we present scheduling prob-
lems that motivate and illustrate the study, and formulate these problems by using the ordi-
nary notation. Section 3 includes a brief overview of preliminary definitions and results of
tropical mathematics to be used in the subsequent sections. In Section 4, we describe some
tropical optimization problems together with their solutions. In Section 5, we first rewrite
the scheduling problems as tropical optimization problems, and then solve them by applying
the results from Section 4.

2 Project scheduling model and example problems

We start with the description of a project scheduling model and the formulation of example
problems of optimal scheduling in a general form (see, e.g., [9,29,33,34] for further details
on the common terminology and notation used in the area).

Consider a project that consists ofn activities operating in parallel under start-to-start,
start-to-finish and finish-to-start precedence relations, due dates, and time boundaries in the
form of early-start, late-start and late-finish constraints. To describe the temporal constraints
and scheduling objectives, we use, for each activityi = 1, . . . ,n, the notationxi andyi to
represent the unknown start and finish times of the activity, respectively.

2.1 Temporal constraints

We now examine constraints on the start and finish times of each activityi = 1, . . . ,n. First,
we represent precedence relations, which link activityi with other activities. Letai j be the

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 493 -

minimum time lag between the start of activityj and the finish ofi. The time lagaii specifies
the minimum duration of the activity (the duration provided that no other constraints are
imposed). Note that a negativeai j can be interpreted as the maximum time lag between the
finish of j and the start ofi. If there is no lag defined, we assumeai j =−∞.

The start-to-finish constraints take the form of the inequalitiesai j + x j ≤ yi holding
for all j = 1, . . . ,n. The activity is assumed to finish immediately after all start-to-finish
constraints are satisfied, and thus at least one of the inequalities holds as an equality. Then,
these inequalities are equivalent to one equality

max(ai1 +x1, . . . ,ain +xn) = yi .

Furthermore, we denote bybi j the minimum time lag between the start of activityj and
the start ofi, and putbi j = −∞ if the lag is not indicated. The start-to-start constraints are
given by the inequalitiesbi j +x j ≤ xi for all j, which can be rewritten as one inequality

max(bi1 +x1, . . . ,bin +xn)≤ xi .

Let the minimum time lag between the finish of activityj and the start ofi be denoted by
ci j , with ci j =−∞ if undefined. The finish-to-start constraints are written as the inequalities
ci j +y j ≤ xi for all j, or as one inequality

max(ci1 +y1, . . . ,cin +yn)≤ xi .

Finally, we introduce due dates and time boundary constraints. The due date indicates
the time when the activity is expected to finish, and therefore, it is not actually a strict
constraint. For activityi, we denote the due date bydi .

Let gi andhi be the earliest and latest possible times to start, andfi be the latest possible
time to finish. The early-start, late-start, and late-finish constraints provide strict boundaries
for the start and finish times, given by

gi ≤ xi ≤ hi , yi ≤ fi .

2.2 Optimization criteria

To describe different scheduling objectives, we use several criteria that commonly arise in
the development of optimal schedules in real-world problems. The criteria are written below
in the form ready for further translation into terms of tropical mathematics.

We begin with the makespan, which is the interval between the earliest start time and
the latest finish time of activities in a project. The makespan describes the total duration
of the project and finds wide application as a natural objective function to be minimized in
scheduling problems. With the notation introduced above, the makespan is given by

max
1≤i≤n

yi − min
1≤i≤n

xi = max
1≤i≤n

yi + max
1≤i≤n

(−xi).

Another important criterion takes the form of the maximum absolute deviation of finish
times of activities from given due dates for a project. The minimum value of this criterion
corresponds to the minimal violation of due dates, which can be accomplished in the project.
The maximum deviation from due dates is written as

max
1≤i≤n

|yi −di |= max
1≤i≤n

max(yi −di ,di −yi).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 494 -

The flow-time of an activity (also known as the system, throughput and turn-around
time) is defined as the difference between its start and finish times, and can determine
expenses related to undertaking the activity in the project. The flow-time of activityi is
bounded from below by the value ofaii , which is commonly assumed to be nonnegative. In
general, the flow-time may be greater than this bound due to other temporal constraints.

In many real-world problems, the objective is formulated to minimize the maximum
flow-time taken over all activities. The maximum flow-time is described by the expression

max
1≤i≤n

(yi −xi).

Finally, we consider the maximum deviation of completion times of all activities. The
minimization of this criterion is equivalent to finding a schedule, where all activities have
to finish simultaneously as much as possible. Such a problem can arise in just-in-time man-
ufacturing, when certain delivery operations must be completed at once. The maximum
deviation of completion times is given by

max
1≤i≤n

yi − min
1≤i≤n

yi = max
1≤i≤n

yi + max
1≤i≤n

(−yi).

2.3 Examples of scheduling problems

We conclude with typical examples of scheduling problems, which are to serve to both
motivate and illustrate the results in the rest of the paper. To formulate the problems, we use
the notation and formulae introduced above to represent the unknown variables and given
parameters, as well as to write the constraints and objectives for scheduling.

2.3.1 Minimization of maximum flow-time

First, we consider a problem of minimization of maximum flow-time under start-to-finish,
start-to-start, finish-to-start and early-start temporal constraints. Givenai j , bi j , ci j andgi for
all i, j = 1, . . . ,n, the problem is to find the start and finish timesxi andyi for each activity
i = 1, . . . ,n, that

minimize max
1≤i≤n

(yi −xi),

subject to max
1≤ j≤n

(ai j +x j) = yi , max
1≤ j≤n

(bi j +x j)≤ xi ,

max
1≤ j≤n

(ci j +y j)≤ xi , gi ≤ xi , i = 1, . . . ,n.

(1)

2.3.2 Minimization of maximum deviation from due dates

We now formulate a problem to minimize the maximum deviation from due dates under
start-to-finish, start-to-start, finish-to-start and due dates constraints. Given parametersai j ,
bi j , ci j anddi , the problem seeks to obtain the unknownsxi andyi that

minimize max
1≤i≤n

max(yi −di ,di −yi),

subject to max
1≤ j≤n

(ai j +x j) = yi , max
1≤ j≤n

(bi j +x j)≤ xi ,

max
1≤ j≤n

(ci j +y j)≤ xi , i = 1, . . . ,n.

(2)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 495 -

2.3.3 Minimization of makespan

Suppose that we need to minimize the makespan under start-to-finish, early-start, late-start
and late-finish constraints. Given parametersai j , gi , hi and fi , we findxi andyi that solve the
problem

minimize max
1≤i≤n

yi + max
1≤i≤n

(−xi),

subject to max
1≤ j≤n

(ai j +x j) = yi , gi ≤ xi ≤ hi ,

yi ≤ fi , i = 1, . . . ,n.

(3)

2.3.4 Minimization of maximum deviation of finish times

Consider the problem of minimizing the maximum deviation of finish times under start-to-
finish, start-to-start, finish-to-start, and late-finish constraints: givenai j , bi j , ci j and fi , find
xi andyi , that

minimize max
1≤i≤n

yi + max
1≤i≤n

(−yi),

subject to max
1≤ j≤n

(ai j +x j) = yi , max
1≤ j≤n

(bi j +x j)≤ xi ,

max
1≤ j≤n

(ci j +y j)≤ xi , yi ≤ fi , i = 1, . . . ,n.

(4)

Note that such problems can normally be solved using iterative computational algo-
rithms (see [9, 29, 33, 34] for overviews of available solutions). In addition, these problems
can be reformulated as linear programming problems to solve them by applying one of
the computational methods of linear programming. Below, we provide new solutions to the
problems, which are based on optimization methods in tropical mathematics, and offer re-
sults in a compact explicit vector form rather than in the form of a numerical algorithm.

3 Preliminary algebraic definitions and results

In this section, we give a brief overview of preliminary definitions, notation and results of
tropical algebra to provide a formal basis for describing and solving tropical optimization
problems as well as for applying them in project scheduling in the next sections. Both intro-
ductory and advanced material on tropical mathematics is provided in many publications,
including [1,3,5,12–14,17,28,32] to name only a few. The overview below is mainly based
on the presentation of results in [21,23,24,27], which provides a useful framework to obtain
direct solutions to the problems under study in a compact vector form.

3.1 Idempotent semifield

We consider a system(X,⊕,⊗,0,1), whereX is a set closed under addition⊕ and mul-
tiplication ⊗ with zero0 and identity1, such that(X,⊕,0) is a commutative idempotent
monoid,(X\{0},⊗,1) is an Abelian group, multiplication is distributive over addition, and
0 is absorbing for multiplication. This system is usually called the idempotent semifield.

Addition is idempotent, which means thatx⊕ x = x for eachx ∈ X. The idempotent
addition induces onX a partial order such thatx ≤ y if and only if x⊕ y = y. It follows

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 496 -

directly from the definition thatx ≤ x⊕ y and y ≤ x⊕ y for all x,y ∈ X. Moreover, the
inequalityx⊕ y ≤ z appears to be equivalent to the two inequalitiesx ≤ z andy ≤ z, and
both addition and multiplication are monotone in each argument. Finally, we assume that
the partial order is extendable to a total order, and thus considerX to be linearly ordered.

Multiplication is invertible to let each nonzerox ∈ X have the inversex−1 such that
x⊗ x−1 = 1. The inverse operation is antitone, which implies that, for all nonzerox andy,
the inequalityx≤ y yieldsx−1 ≥ y−1 and vise versa.

The power notation with integer exponents is used to represent repeated multiplication
defined asx0 = 1, xp = xp−1⊗ x andx−p = (x−1)p for all nonzerox and positive integer
p. The integer power is assumed to extend to rational exponents to makeX algebraically
closed (algebraically complete, radicable). In the algebraic expressions below, we omit the
multiplication sign to save writing, and read the exponents only in the above sense.

A typical example of the idempotent semifield under consideration is the real semifield
Rmax,+ = (R ∪ {−∞},max,+,−∞,0), where the addition⊕ is defined as maximum and
the multiplication⊗ as ordinary addition, with the zero0 given by−∞ and the identity1
by 0. Each numberx ∈ R has the inversex−1, which is equal to the opposite number−x
in the conventional notation. For allx,y ∈ R, the powerxy is well-defined and coincides,
in ordinary arithmetic, with the productxy. The partial order induced by the idempotent
addition corresponds to the standard linear order given onR.

As another example, consider the semifieldRmin,× =(R+∪{+∞},min,×,+∞,1), where
R+ is the set of positive real numbers,⊕ = min, ⊗ = ×, 0 = +∞ and1 = 1. In this semi-
field, the notation of inverses and exponents has the standard interpretation. The partial order
defined by addition extends to a linear order that is opposite to the standard order onR.

3.2 Matrices and vectors

We now examine matrices and vectors over the idempotent semifield introduced above. The
set of matrices that havem rows andn columns with entries fromX is denotedXm×n. A
matrix, in which all entries are0, is the zero matrix. A matrix is called row-regular (column-
regular), if it has no row (column) consisting entirely of0. Provided that a matrix is both
row-regular and column-regular, it is called regular.

For any matricesA,B ∈ X
m×n andC ∈ X

n×l , and a scalarx ∈ X, the matrix addition,
matrix multiplication and scalar multiplication follow the standard rules with the scalar op-
erations⊕ and⊗ in the place of the ordinary addition and multiplication, given by

{A⊕B}i j = {A}i j ⊕{B}i j , {AC}i j =
n

⊕

k=1

{A}ik{C}k j, {xA}i j = x{A}i j .

The partial order associated with the idempotent addition and its properties extend to
those on the set of matrices, where the relations are expanded entry-wise.

Consider any matrixA= (ai j) ∈ X
m×n. The transpose ofA is the matrixAT ∈ X

n×m.
The multiplicative conjugate transpose ofA is the matrixA− = (a−i j), wherea−i j = a−1

ji

if a ji 6= 0, anda−i j = 0 otherwise.

Consider square matrices of ordern, which form the setXn×n. A matrix which has the
diagonal entries equal to1 and all off-diagonal entries equal to0 is the identity matrixI.
The power notation with nonnegative integer exponent serves to represent iterated products
asA0 = I andAp =Ap−1A for any square matrixA and positive integerp.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 497 -

For any matrixA= (ai j) ∈ X
n×n, the trace is given by

trA=
n

⊕

i=1

aii .

Every matrix that has only one row (column) is considered a row (column) vector. All
vectors below are column vectors unless otherwise specified. The set of column vectors of
ordern is denotedXn. A vector with all elements equal to0 is the zero vector. If a vector has
no zero elements, it is called regular. The vector of all ones is1= (1, . . . ,1)T .

Let A ∈ X
n×n be a row regular matrix andx ∈ X

n be a regular vector. Then, the vector
Ax is regular. If the matrixA is column regular, then the row vectorxTA is also regular.

The multiplicative conjugate transpose of a nonzero column vectorx = (xi) ∈ X
n is a

row vectorx− = (x−i) with the entriesx−i = x−1
i if xi 6= 0, andxi = 0 otherwise.

It is not difficult to verify that the conjugate transposition has the following useful prop-
erties. First, the equalityx−x= 1 is valid for any nonzero vectorx.

Furthermore, suppose thatx andy are regular vectors of the same order. Then, it is easy
to see that the element-wise inequalityx ≤ y is equivalent tox− ≥ y−. In addition, the
matrix inequalityxy− ≥ (x−y)−1I holds, and becomesxx− ≥ I wheny = x.

Finally, consider a square matrixA∈X
n×n. A scalarλ ∈X is an eigenvalue ofA, if there

exists a nonzero vectorx ∈ X
n to satisfy the equalityAx = λx. The maximum eigenvalue

with respect to the order defined onX is called the spectral radius and given by

λ =
n

⊕

k=1

tr1/k(Ak).

3.3 Solution to linear inequalities

We conclude the overview of the preliminary definitions and results with the solution of
linear inequalities to be used below in the analysis of tropical optimization problems.

Suppose that, given a matrixA ∈ X
m×n and a regular vectord ∈ X

m, we need to find
vectorsx ∈ X

n that satisfy the inequality

Ax≤ d. (5)

A direct complete solution to the problem under various assumptions is obtained in
[23,27] in the following form.

Lemma 1 For any column-regular matrixA and regular vectord, all solutions to inequal-
ity (5) are given by

x≤ (d−A)−.

Furthermore, we consider the problem: given a matrixA ∈ X
n×n, find regular vectors

x ∈ X
n to solve the inequality

Ax≤ x. (6)

To represent a solution to the problem for any matrixA ∈ X
n×n, we define a function

that takesA to produce the scalar

Tr(A) =
n

⊕

k=1

trAk,

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 498 -

and use the asterisk operator (the Kleene star), which mapsA to the matrix

A∗ =
n−1
⊕

k=0

Ak.

The next result obtained in [24,26,27] by using various arguments offers a direct, com-
plete solution to inequality (6).

Theorem 1 For any matrixA, the following statements hold:

1. If Tr(A) ≤ 1, then all regular solutions to(6) are given byx = A∗u, whereu is any
regular vector.

2. If Tr(A)> 1, then there is no regular solution.

4 Tropical optimization problems

Tropical optimization problems present an area in tropical mathematics, which is of both
theoretical interest and practical importance (see, e.g., [22] for an overview, and [5, 7, 38]
for further details on particular problems). Many problems are formulated in the framework
of tropical mathematics to minimize or maximize nonlinear functions defined on vectors
over idempotent semifields and calculated using multiplicative conjugate transposition of
vectors. These problems may have constraints given by linear inequalities and equalities.

There are problems that can be solved directly in a rather general setting. For other
problems, only algorithmic solution are known in the form of an iterative computational
scheme to produce a particular solution, if there is any, or signify that no solutions exist.

The purpose of this section is twofold: first, to offer representative examples to demon-
strate a variety of optimization problems under study, and second, to provide an efficient
basis for the solution of scheduling problems in the next section. We consider examples of
both unconstrained and constrained optimization problems with different objective functions
defined in the common setting in terms of a general idempotent semifield. For all problems,
direct solutions are given in a compact vector form ready for further analysis and straight-
forward computations. For some problems, the solutions obtained are complete solutions.

We start with the following problem: given matricesA,B ∈ X
n×n and a vectorg ∈ X

n,
find regular vectorsx ∈ X

n that

minimize x−Ax,

subject to Bx⊕g ≤ x.
(7)

A direct complete solution to the problem is given in [21,24] as follows.

Theorem 2 LetA be a matrix with spectral radiusλ > 0 andB a matrix withTr(B)≤ 1.
Then, the minimum value in problem(7) is equal to

θ = λ ⊕
n−1
⊕

k=1

⊕

1≤i1+···+ik≤n−k

tr1/k(ABi1 · · ·ABik),

and all regular solutions are given by

x= (θ−1A⊕B)∗u, u≥ g.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 499 -

Furthermore, suppose that, given a matrixA ∈ X
n×n and vectorsf ,g,h ∈ X

n, we need
to find regular vectorsx ∈ X

n that solve the problem

minimize x−Ax,

subject to g ≤ x≤ h.
(8)

The following direct exact solution is proposed in [21].

Theorem 3 LetA be a matrix with spectral radiusλ > 0, andh be a regular vector such
thath−g ≤ 1. Then the minimum value in problem(8) is equal to

θ = λ ⊕
n−1
⊕

k=1

(h−Akg)1/k,

and all regular solutions are given by

x= (θ−1A)∗u, g ≤ u≤ (h−(θ−1A)∗)−.

Given a matrixA ∈ X
m×n and a vectord ∈ X

m, consider the problem to find regular
vectorsx ∈ X

n that
minimize d−Ax⊕ (Ax)−d. (9)

A direct solution proposed to the problem in [18,25,27] is as follows.

Theorem 4 LetA be a row-regular matrix andd be a regular vector. Then, the minimum
value in problem(9) is equal to

∆ = ((A(d−A)−)−d)1/2,

and the maximum solution is given by

x= ∆(d−A)−.

Finally, we present a solution to the problem: given matricesA,B ∈ X
m×n and vectors

p,q ∈ X
m, find regular vectorsx ∈ X

n to

minimize q−Bx(Ax)−p. (10)

The next statement offers a direct solution to the problem [19].

Theorem 5 Let A be row-regular andB column-regular matrices,p be nonzero andq
regular vectors. Then, the minimum value in problem(10) is equal to

∆ = (A(q−B)−)−p,

and attained at any vector
x= α(q−B)−, α > 0.

5 Application to project scheduling

We are now in a position to derive solutions to the scheduling problems formulated in the
beginning of the paper. In this section, we first represent each problem in the framework of
the idempotent semifieldRmax,+ in both scalar and vector forms, and then solve this problem
by reducing to an optimization problem of the previous section.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 500 -

5.1 Minimization of maximum flow-time

Consider problem (1) and describe it in terms of the semifieldRmax,+. By replacing the usual
operations by those ofRmax,+, we obtain the problem to find the unknownsxi andyi for all
i = 1, . . . ,n, which

minimize
n

⊕

i=1

x−1
i yi ,

subject to
n

⊕

j=1

ai j x j = yi ,
n

⊕

j=1

bi j x j ≤ xi ,
n

⊕

j=1

ci j y j ≤ xi ,

gi ≤ xi , i = 1, . . . ,n.

To put the problem in a vector form, we introduce the following matrix-vector notation:

A= (ai j), B = (bi j), C = (ci j), g = (gi), x= (xi).

With this notation, the problem is to find vectorsx andy that

minimize x−y,

subject to Ax= y, Bx≤ x, Cy ≤ x,

g ≤ x.

(11)

A direct complete solution of the problem is given as follows.

Theorem 6 LetA be a matrix with spectral radiusλ > 0, B andC be matrices such that
Tr(B⊕CA)≤ 1. Then, the minimum value in problem(11) is equal to

θ = λ ⊕
n−1
⊕

k=1

⊕

1≤i1+···+ik≤n−k

tr1/k(A(B⊕CA)i1 · · ·A(B⊕CA)ik),

and all regular solutions are given by

x= (θ−1A⊕B⊕CA)∗u, y =A(θ−1A⊕B⊕CA)∗u, u≥ g.

Proof By substitution of the first equality constrainty = Ax, we eliminate the vectory.
Then, we combine all inequality constraints into one, to write the problem

minimize x−Ax,

subject to (B⊕CA)x⊕g ≤ x.

Clearly, this problem has the form of that at (7), whereB is replaced byB⊕CA. Thus,
a direct application of Theorem 2 yields the desired result. ⊓⊔

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 501 -

5.2 Minimization of maximum deviation from due dates

Consider problem (2), which, in terms of the semifieldRmax,+, takes the form

minimize
n

⊕

i=1

(d−1
i yi ⊕y−1

i di),

subject to
n

⊕

j=1

ai j x j = yi ,
n

⊕

j=1

bi j x j ≤ xi ,
n

⊕

j=1

ci j y j ≤ xi , i = 1, . . . ,n.

In addition to the previously introduced matrix-vector notation, we define the vector
d= (di), and write the problem as

minimize d−y⊕y−d,

subject to Ax= y, Bx≤ x, Cy ≤ x.
(12)

The next result offers a solution to the problem.

Theorem 7 LetA be a row-regular matrix,B andC matrices such thatTr(B⊕CA)≤ 1,
andd be a regular vector. Then, the minimum value in problem(12) is equal to

∆ = ((A(B⊕CA)∗(d−A(B⊕CA)∗)−)−d)1/2,

and the maximum solution is given by

x= ∆(B⊕CA)(d−A(B⊕CA)∗)−, y = ∆A(B⊕CA)(d−A(B⊕CA)∗)−.

Proof After substitutiony =Ax, we combine both inequality constraints into one inequal-
ity (B⊕CA)x ≤ x. Furthermore, application of Theorem 1 to the last inequality yields
x= (B⊕CA)∗u, whereu is any regular vector.

By substitution of this solution, we reduce problem (12) to the unconstrained problem

minimize d−A(B⊕CA)∗u⊕ (A(B⊕CA)∗u)−d.

This problem has the form of (9) withA replaced byA(B⊕CA)∗. Therefore, we can
apply Theorem 4 to obtain a solution in terms of the vectoru. Turning back to the vectors
x andy, we complete the proof. ⊓⊔

5.3 Minimization of makespan

In the framework of the semifieldRmax,+, problem (3) is rewritten as

minimize
n

⊕

i=1

yi

n
⊕

j=1

x−1
j ,

subject to
n

⊕

j=1

ai j x j = yi , gi ≤ xi ≤ hi , yi ≤ fi , i = 1, . . . ,n.

By adding the vector notationf = (fi) and using1 to indicate the vector of ones, we
represent the problem in the form

minimize 1
Tyx−

1,

subject to Ax= y, g ≤ x≤ h,

y ≤ f .

(13)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 502 -

Theorem 8 LetA be a nonzero matrix,h andf be regular vectors satisfying the condition
(h−⊕f−A)g ≤ 1. Then, the minimum makespan in problem(13) is equal to

θ = 1
TA(I⊕gh−)1,

and all regular solutions are given by

x= (I⊕θ−1
11

TA)u, y =A(I⊕θ−1
11

TA)u,

where
g ≤ u≤ ((h−⊕f−A)(I⊕θ−1

11
TA))−.

Proof As before, we first substitutey = Ax. An application of Lemma 1 to solve the in-
equalityAx ≤ f yields x ≤ (f−A)−. Then, we take the two upper boundariesx ≤ h

and x ≤ (f−A)−, and apply conjugate transposition to rewrite them asx− ≥ h− and
x− ≥ f−A. By coupling both inequalities into one, and again taking the conjugate transpo-
sition, we obtain one upper boundx≤ (h−⊕f−A)−.

Finally, we represent the objective function1TAxx−
1 in its equivalent formx−

11
TAx

to write the problem as

minimize x−
11

TAx,

subject to g ≤ x≤ (h−⊕f−A)−.
(14)

The problem obtained is of the form of (8), whereA is replaced by11TA andh by
(h−⊕f−A)−. To apply Theorem 3, we first calculate

(11TA)k = (1TA1)k−1
11

TA, tr(11TA)k = (1TA1)k, k= 1, . . . ,n;

from which it directly follows that the spectral radius of the matrix11
TA is equal to

λ = 1
TA1> 0.

Furthermore, we consider the minimum, which is given by

θ = 1
TA1⊕ (1TA1)

n−1
⊕

k=1

((1TA1)−1h−
11

TAg)1/k.

First, suppose that1TA1≤ h−
11

TAg. Since the inequality(1TA1)−1h−
11

TAg ≥ 1

holds, we have

((1TA1)−1h−
11

TAg)1/k ≤ (1TA1)−1h−
11

TAg,

and hence,θ = h−
11

TAg. On the other hand, if1TA1> h−
11

TAg, then we immediately
find thatθ = 1

TA1. By combining both results, we finally obtain

θ = 1
TA1⊕h−

11
TAg = 1

TA1⊕1
TAgh−

1= 1
TA(I⊕gh−)1.

To describe the solution set according to Theorem 3, we examine the matrix

(θ−1
11

TA)∗ =
n−1
⊕

k=0

(θ−1
11

TA)k = I⊕θ−1
n−1
⊕

k=1

(θ−1
1

TA1)k−1
11

TA.

Considering thatθ ≥ 1
TA1, we obtain(θ−1

11
TA)∗ = I⊕θ−1

11
TA. Substitution into

the solution provided by Theorem 3 yields

x= (I⊕θ−1
11

TA)u, g ≤ u≤ ((h−⊕f−A)(I⊕θ−1
11

TA))−.

Finally, we represent the vectory =Ax, which completes the proof. ⊓⊔

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 503 -

5.4 Minimization of maximum deviation of finish times

After rewriting problem (4) in terms ofRmax,+, the problem becomes

minimize
n

⊕

i=1

yi

n
⊕

j=1

y−1
j ,

subject to
n

⊕

j=1

ai j x j = yi ,
n

⊕

j=1

bi j x j ≤ xi ,

n
⊕

j=1

ci j y j ≤ xi , yi ≤ fi , i = 1, . . . ,n.

Switching to matrix-vector notation puts the problem in the form

minimize 1
Tyy−

1,

subject to Ax= y, Bx≤ x, Cy ≤ x,

y ≤ f .

(15)

The following result offers a solution to the problem.

Theorem 9 Let A be row-regular andB column-regular matrices,p be nonzero andq
regular vectors. Then, the minimum value in problem(15) is equal to

∆ = (A(B⊕CA)∗(1TA(B⊕CA)∗)−)−1,

and attained if

x= α(B⊕CA)∗(1TA(B⊕CA)∗)−, y = αA(B⊕CA)∗(1TA(B⊕CA)∗)−,

where
α ≤ (f−A(B⊕CA)∗(1TA(B⊕CA)∗)−)−1.

Proof After substitutiony = Ax, we combine the first two inequalities in the constraints
into one inequality(B⊕CA)x≤ x. This inequality is then solved by using Theorem 1 to
obtainx= (B⊕CA)∗u, whereu is a regular vector.

Furthermore, we write the last inequality in the constraints asA(B⊕CA)∗u≤ f , and
apply Lemma 1 to findu≤ (f−A(B⊕CA)∗)−. The problem takes the form

minimize 1
TA(B⊕CA)∗u(A(B⊕CA)∗u)−1,

subject to u≤ (f−A(B⊕CA)∗)−.

First, we remove the constraints and solve the obtained unconstrained problem. By ap-
plying Theorem 5, where both matricesA andB are replaced byA(B⊕CA)∗, and both
vectorsp andq by 1, we find the minimum

∆ = (A(B⊕CA)∗(1TA(B⊕CA)∗)−)−1,

which is attained at the vector

u= α(1TA(B⊕CA)∗)−, α > 0.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 504 -

To find the values ofα, which satisfy the constraintu≤ (f−A(B⊕CA)∗)−, we solve
the inequality

α(1TA(B⊕CA)∗)− ≤ (f−A(B⊕CA)∗)−.

By applying Lemma 1 withα as the unknown, we have

α ≤ (f−A(B⊕CA)∗(1TA(B⊕CA)∗)−)−1.

It remains to turn back to vectorsx andy to complete the proof. ⊓⊔

Acknowledgements The author is very grateful to three referees for their careful reading of a previous draft
of this paper, and for their constructive suggestions, which have been incorporated in the final version.

References

1. Akian, M., Bapat, R., Gaubert, S.: Max-plus algebra. In: L. Hogben (ed.) Handbook of Linear Algebra,
Discrete Mathematics and Its Applications, pp. 25-1–25-17. Taylor and Francis, Boca Raton, FL (2007).
DOI 10.1201/9781420010572.ch25

2. Aminu, A., Butkovǐc, P.: Non-linear programs with max-linear constraints: A heuristic approach. IMA
J. Manag. Math.23(1), 41–66 (2012). DOI 10.1093/imaman/dpq020

3. Baccelli, F.L., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and Linearity: An Algebra for
Discrete Event Systems. Wiley Series in Probability and Statistics. Wiley, Chichester (1993)

4. Bouquard, J.L., Lenté, C., Billaut, J.C.: Application of an optimization problem in max-plus
algebra to scheduling problems. Discrete Appl. Math.154(15), 2064–2079 (2006). DOI
10.1016/j.dam.2005.04.011

5. Butkovǐc, P.: Max-linear Systems: Theory and Algorithms. Springer Monographs in Mathematics.
Springer, London (2010). DOI 10.1007/978-1-84996-299-5

6. Butkovǐc, P., Tam, K.P.: On some properties of the image set of a max-linear mapping. In: G.L. Litvi-
nov, S.N. Sergeev (eds.) Tropical and Idempotent Mathematics,Contemp. Math., vol. 495, pp. 115–126.
American Mathematical Society (2009). DOI 10.1090/conm/495/09694

7. Cuninghame-Green, R.: Minimax Algebra,Lecture Notes in Economics and Mathematical Systems, vol.
166. Springer, Berlin (1979)

8. Cuninghame-Green, R.A.: Describing industrial processes with interference and approximating their
steady-state behaviour. Oper. Res. Quart.13(1), 95–100 (1962). DOI 10.2307/3007584

9. Demeulemeester, E.L., Herroelen, W.S.: Project Scheduling: A Research Handbook. International Series
in Operations Research and Management Science. Kluwer Acad. Publ., New York (2002)

10. Fiedler, M., Nedoma, J., Ramı́k, J., Rohn, J., Zimmermann, K.: Linear Optimization Problems with
Inexact Data. Springer, Berlin (2006). DOI 10.1007/0-387-32698-7

11. Giffler, B.: Scheduling general production systems using schedule algebra. Naval Res. Logist. Quart.
10(1), 237–255 (1963). DOI 10.1002/nav.3800100119

12. Golan, J.S.: Semirings and Affine Equations Over Them: Theory and Applications,Mathematics and Its
Applications, vol. 556. Kluwer Acad. Publ., Dordrecht (2003)

13. Gondran, M., Minoux, M.: Graphs, Dioids and Semirings: New Models and Algorithms,Operations
Research / Computer Science Interfaces, vol. 41. Springer, New York (2008). DOI 10.1007/978-0-387-
75450-5

14. Heidergott, B., Olsder, G.J., van der Woude, J.: Max-plus at Work: Modeling and Analysis of Synchro-
nized Systems. Princeton Series in Applied Mathematics. Princeton Univ. Press, Princeton, NJ (2006)

15. Hoffman, A.J.: On abstract dual linear programs. Naval Res. Logist. Quart.10(1), 369–373 (1963).
DOI 10.1002/nav.3800100131

16. Houssin, L.: Cyclic jobshop problem and (max,plus) algebra. In: S. Bittanti, A. Cenedese, S. Zampieri
(eds.) Proceedings of the 18th IFAC World Congress, 2011,World Congress, vol. 18, pp. 2717–2721.
IFAC (2011). DOI 10.3182/20110828-6-IT-1002.03095

17. Kolokoltsov, V.N., Maslov, V.P.: Idempotent Analysis and Its Applications,Mathematics and Its Appli-
cations, vol. 401. Kluwer Acad. Publ., Dordrecht (1997)

18. Krivulin, N.: A solution of a tropical linear vector equation. In: S. Yenuri (ed.) Advances in Computer
Science,Recent Advances in Computer Engineering Series, vol. 5, pp. 244–249. WSEAS Press (2012)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 505 -

19. Krivulin, N.: Explicit solution of a tropical optimization problem with application to project schedul-
ing. In: D. Biolek, H. Walter, I. Utu, C. von Lucken (eds.) Mathematical Methods and Optimization
Techniques in Engineering, pp. 39–45. WSEAS Press (2013)

20. Krivulin, N.: Complete solution of a constrained tropical optimization problem with application to loca-
tion analysis. In: P. Ḧofner, P. Jipsen, W. Kahl, M.E. M̈uller (eds.) Relational and Algebraic Methods in
Computer Science,Lecture Notes in Computer Science, vol. 8428, pp. 362–378. Springer, Cham (2014).
DOI 110.1007/978-3-319-06251-822

21. Krivulin, N.: A constrained tropical optimization problem: Complete solution and application example.
In: G.L. Litvinov, S.N. Sergeev (eds.) Tropical and Idempotent Mathematics and Applications,Contemp.
Math., vol. 616, pp. 163–177. AMS, Providence, RI (2014). DOI 10.1090/conm/616/12308

22. Krivulin, N.: Tropical optimization problems. In: L.A. Petrosyan, J.V. Romanovsky, D.W.K. Yeung
(eds.) Advances in Economics and Optimization: Collected Scientific Studies Dedicated to the Memory
of L. V. Kantorovich, Economic Issues, Problems and Perspectives, pp. 195–214. Nova Science Publ.,
New York (2014)

23. Krivulin, N.: Extremal properties of tropical eigenvalues and solutions to tropical optimization problems.
Linear Algebra Appl.468, 211–232 (2015). DOI 10.1016/j.laa.2014.06.044

24. Krivulin, N.: A multidimensional tropical optimization problem with nonlinear objective function and
linear constraints. Optimization64(5), 1107–1129 (2015). DOI 10.1080/02331934.2013.840624

25. Krivulin, N.K.: On solution of linear vector equations in idempotent algebra. In: M.K. Chirkov (ed.)
Mathematical Models. Theory and Applications. Issue 5, pp. 105–113. Saint Petersburg University, St.
Petersburg (2004). (in Russian)

26. Krivulin, N.K.: Solution of generalized linear vector equations in idempotent algebra. Vestnik St. Pe-
tersburg Univ. Math.39(1), 16–26 (2006)

27. Krivulin, N.K.: Methods of Idempotent Algebra for Problems in Modeling and Analysis of Complex
Systems. Saint Petersburg Univ. Press, St. Petersburg (2009). (in Russian)

28. Litvinov, G.: Maslov dequantization, idempotent and tropical mathematics: A brief introduction. J. Math.
Sci. (NY) 140(3), 426–444 (2007). DOI 10.1007/s10958-007-0450-5

29. Neumann, K., Schwindt, C., Zimmermann, J.: Project Scheduling with Time Windows and Scarce Re-
sources, 2 edn. Springer, Berlin (2003). DOI 10.1007/978-3-540-24800-2

30. Pandit, S.N.N.: A new matrix calculus. J. SIAM9(4), 632–639 (1961). DOI 10.1137/0109052
31. Romanovskiı̆, I.V.: Asymptotic behavior of dynamic programming processes with a continuous set of

states. Soviet Math. Dokl.5(6), 1684–1687 (1964)
32. Speyer, D., Sturmfels, B.: Tropical mathematics. Math. Mag.82(3), 163–173 (2009)
33. T’kindt, V., Billaut, J.C.: Multicriteria Scheduling: Theory, Models and Algorithms. Springer, Berlin

(2006)
34. Vanhoucke, M.: Project Management with Dynamic Scheduling. Springer, Berlin (2013). DOI

10.1007/978-3-642-40438-2
35. Vorob’ev, N.N.: The extremal matrix algebra. Soviet Math. Dokl.4(5), 1220–1223 (1963)
36. Zimmermann, K.: Some optimization problems with extremal operations. In: B. Korte, K. Ritter (eds.)

Mathematical Programming at Oberwolfach II,Mathematical Programming Studies, vol. 22, pp. 237–
251. Springer, Berlin (1984). DOI 10.1007/BFb0121020

37. Zimmermann, K.: Disjunctive optimization, max-separable problems and extremal algebras. Theoret.
Comput. Sci.293(1), 45–54 (2003). DOI 10.1016/S0304-3975(02)00231-1

38. Zimmermann, U.: Linear and Combinatorial Optimization in Ordered Algebraic Structures,Annals of
Discrete Mathematics, vol. 10. Elsevier, Amsterdam (1981)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 506 -

MISTA 2015

Thesis Defense Timetabling

Michele Battistutta · Sara Ceschia · Fabio

De Cesco · Andrea Schaerf

Abstract The thesis defense timetabling problem consists in composing the suitable
committee for a set of graduation sessions and assigning each candidate to one of
the sessions.

In this work, we define the problem formulation that applies to some Italian
universities, and we provide two solution methods based on local search and con-
straint satisfaction, respectively. In addition, we perform an experimental analysis
and comparison on both real-world and artificial instances.

1 Introduction

The thesis defense and the graduation ceremony are ineludible activities of the
management of a university. Large departments may have many students gradu-
ating at the same time, and consequently need to split the graduation procedure
into several sessions, with separate committees and possibly running in different
days.

The corresponding timetabling problem consists in both assigning each can-
didate to one session and composing the suitable committees, satisfying various
constraints and objectives.

This is an interesting NP-hard problem that, up to our knowledge, has been
little studied in the relatively-large literature on educational timetabling problems
(see [6,8,11] for surveys).

In this work, we propose a problem formulation obtained by modeling the
real-world problem of an Italian university (Department of Psychology of the Uni-
versity of Milano-Bicocca). We develop both a MiniZinc [9] model and a local
search technique to solve the problem. We also develop an instance generator that

Michele Battistutta, Sara Ceschia, and Andrea Schaerf
DIEGM, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
E-mail: {michele.battistutta,sara.ceschia,schaerf}@uniud.it

Fabio De Cesco
EasyStaff s.r.l., Via Adriatica, 278 - 33030 Campoformido (UD), Italy.
E-mail: fabio@easystaff.it

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 507 -

2 Michele Battistutta et al.

produces realistic cases, in order to have enough instances available to test our
solvers. We compare the results of some available CP-based MiniZinc engines and
our local search solver on a set of instances produced by our generator and a few
real-world ones, on a fixed timeout (5 minutes).

The outcome has been that, on the given dataset and timeout, the local search
solver clearly outperformed the MiniZinc engines working on the proposed model.

All instances and results are available on the website https://bitbucket.org/

satt/tdtt-instances.

2 Problem formulation

The thesis defense timetabling (TDTT) problem consist on the assignment of grad-
uation candidates (students) to different sessions. In addition, for every session the
committee must be composed by selecting appropriate faculty members. Usually
there are two sessions per day (morning and afternoon) and the duration depends
on the number of students assigned. If these are not enough to schedule all stu-
dents, the university adds new sessions, typically in parallel to the ones already
scheduled.

Students must be assigned exactly to one session, whereas faculty members
can participate to more than one committee (or none). The number of members of
the committee is not fixed, but it is bound by limits prescribed by university rules
and traditions. In addition, there are limits on the composition of the committee
in terms of qualified members, such as full and associate professors.

The presence of students and faculty members is interconnected because each
student has a supervisor, that must be in the committee examining the student.
In addition, the committee should include also an opponent (or challenger) that is
a faculty member with expertise in the area of the thesis.

Summarizing, the main entities of the problem are:

Faculty members: The list of university staff that can be assigned as committee
members. They are characterized by their role (e.g., full professor) and a list
of sessions which they are unavailable to attend.

Students: For each student, it is given his/her supervisor and a list of the potential
opponents. Supervisors and opponents are necessarily faculty members.

As customary, constraints are divided into hard and soft ones. The former must
be always satisfied, the latter compose the objective function.

The hard constraints are:

Supervision: For each student, the supervisor must be present at the session
assigned to the student.

Students per session: The number of students assigned to a session must be less
than or equal to the given maximum.

Overlapping sessions: In case that two sessions overlap in time, no member can
be assigned to the committee of both sessions.

Committee composition: Each committee must be formed respecting the min-
imum and maximum number of professor for each academic level (or role). In
detail, there are four levels, which are (starting from the highest): full professor,
associate professor, assistant professor, and external teacher.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 508 -

Thesis Defense Timetabling 3

Minimum and maximum values for Committee composition must be interpreted
as minimum and maximum number of members with the given level or a higher
one. For example, if we require a minimum of four associate professors, this can be
also fulfilled with two associate professors and two full professors. Consequently,
the limits for the lowest level represent the limits for the total number of members.

Notice that it is not explicitly defined a minimum number of students per
session because the number of sessions is already regulated to fit the given number
of students.

The soft constraints are:

Multiple duties: Each time a faculty member has to be in more than one com-
mittee, a penalty is assigned. In order to avoid high loads, the penalty of the
violations is quadratic. That is, if p is the number of presences of a faculty
member, the associated penalty is (p− 1)2.

Opponent’s presence: For every student, there must be at least one of the sug-
gested opponents in the corresponding session. Each student without opponent
counts as one violation of this constraint.

Regarding the size of real cases, they can get to 20 sessions, and 150 candidates
and 150 faculty members. The typical size of a committee is between 7 and 10
members. The number of possible opponents for each student normally ranges
between 1 and 3. However, in some rare cases, it is possible that no opponent
is suggested for a student. In this situation, all faculty members are considered
suitable opponents for the student.

3 Computational complexity

We now prove that the decision problem underlying TDTT is NP-complete. The
following proof considers only one single session, in which all students are assigned
to it. This means that the subproblem of selecting the appropriate faculty members
for a single session is already NP-complete.

Consider a set covering problem with universe U , with |U | = m, the sets
S1, . . . , Sn ⊆ U , and an integer c, with c < n. It is well known (see [4], prob-
lem SP4) that checking if there is a set of c sets that covers the whole U is an
NP-complete problem.

We now show that we can build an instance of TDTT such that it has a 0 cost
solution if and only if there is a covering of U composed of c sets.

We create a TDTT instance with m students and n+ 1 faculty members, such
that all students have as supervisor the faculty member number n + 1. For each
faculty member i from 1 to n, we assign her/him as opponent of all students in
Si. All faculty members are available for the session. Finally we set a maximum
number of members equal to c+ 1 (one spot is for the supervisor n+ 1). It is easy
to see that if there is a committee in which all students have an opponent, this
corresponds to a selection of the sets that covers all elements in U .

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 509 -

4 Michele Battistutta et al.

4 Solution techniques

4.1 Local search

We developed a solver based on local search that works on a reduced search space:
only students (and consequently supervisors) and opponents are assigned to ses-
sions. Then the procedure has a post-processing step that uses a greedy technique
to complete the committee with available members, satisfying committee compo-
sition constraints.

The main features of our local search algorithm are:

Search space: The search space consists in the assignment of all students to any
session, and the selection of one opponent to each of them. The supervisor and
the selected opponent are inserted in the committee of the candidate. Infeasible
solutions are part of the search space and the violation of hard constraints are
penalized in the cost function with a high weight.

Initial solution: The algorithm start from an initial solution in which students
are assigned to a random session and the opponent is chosen randomly from
the list of potential ones.

Neighborhood relation: The neighborhood relation is composed by the union of
four different moves:
1. Assign the student to a different session and/or change the assigned oppo-

nent.
2. Swap the sessions of two students.
3. Assign to a different session a group of student that are assigned to the

same session and have the same supervisor.
4. Swap the sessions for two groups of students: each group is formed by

students in the same session and with the same supervisor.

In neighborhoods 2-4 the selected opponent remains unchanged, and she/he
moves to the new session along with the student.

Neighborhoods 3 and 4 were added for a better space exploration since the
solver, affected by the constraint of the maximum number of members for com-
mittee and by the objective of limit the presence of each member, tends to reach
solutions where students with the same supervisor are assigned to the same ses-
sion. All four types of move have the same probability of being chosen when the
algorithm generates a random move.

Since in our search space, only the supervisor and the opponent are assigned
to the committee, it is normally necessary to add other members to complete the
committee reaching the minimum number. In this case, the solution is processed
with a greedy algorithm that assigns to the committee the missing members min-
imizing multiple duties.

As metaheuristic technique, we use Simulated Annealing, in its “standard”
version as proposed in [1].

4.2 Constraint programming

We developed a constraint model in MiniZinc that uses as decision variables:

– an array of integers that assigns to each student the selected session,

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 510 -

Thesis Defense Timetabling 5

– an array of sets that assigns to each session the set of faculty members that
compose the committee.

array [1.. Candidates] of var 1.. Sessions: StudentSession;
array [1.. Sessions] of var set of 1.. FacultyMembers: SessionMembers;

Using set variables for the committee composition makes automatically satis-
fied the constraint that all members must be distinct. In addition, the constraints
regarding simultaneous sessions can be easily expressed using the built-in disjoint

operator between sets.
The constraints about the composition of the committees based on the level of

the participants are expressed as follows, where the component 1 of the elements
of the array LimitMembersForLevel is the minimum and the component 2 is the
maximum.

constraint forall (s in 1.. Sessions , lv in 1.. Levels)
(((sum (p in 1.. FacultyMembers)(AcademicLevel[p] <= l
/\ p in SessionMembers[s]))

>= LimitMembersForLevel[lv ,1]) /\
((sum (p in 1.. FacultyMembers)(AcademicLevel[p] <= l
/\ p in SessionMembers[s]))

<= LimitMembersForLevel[lv ,2]));

In order to define the objective function to be minimized, we introduce new
decision variables that are functionally related to the main ones. We show here
the ones defined for the objective component Opponent’s presence (corresponding
ones are used for Multiple duties).

In detail, we introduce the following variables, where missing opponent is the
variable that is included in the objective function with the given weight.

array [1.. Candidates] of var 0.. FacultyMembers: NumOpponents;
var 0.. Candidates: missing_opponent;

These new (redundant) variables are linked to the main ones by the following
constraints

constraint forall (s in 1.. Candidates)
(NumOpponents[s] = sum (op in Opponents[s])

(op in SessionMembers[StudentSession[s]]));

constraint
missing_opponent = sum (s in 1.. Candidates)

(NumOpponents[s] == 0 /\ card(Opponents[s]) > 0);

The full model is available along with the instances and the results on the
website.

5 Experimental analysis

The local search code is written in C++, using the framework EasyLocal++
[3], compiled using gcc v. 4.9.1, and parameter tuning has been performed us-
ing json2run [13].

All experiments ran on an Ubuntu Linux 13.04 machine with 16 Intel R© Xeon R©

CPU E5-2660 (2.20 GHz) physical cores, hyper-threaded to 32 virtual cores. A
single virtual core has been dedicated to each experiment.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 511 -

6 Michele Battistutta et al.

5.1 Instances

We used three real-world instances, coming from the Department of Psychology of
the University of Milano-Bicocca. In addition, we developed an instance generator
parametrized by the number of sessions.

The generator randomly selects the number of students and faculty members
based on the limits fixed for the composition of sessions. The maximum number
of students for session is a value between 8 and 10 and is used along with the
number of sessions to define the total number of students, so that each session has
at least 6 students. The generator also pairs a random number of session for the
simultaneous constraint, the number of pair simultaneous sessions in a generated
instance ranges from 0 to one fourth of the number of sessions.

The committee size and composition are fixed: the committee goes from 7 to
10 members with at least 1 faculty member of rank 1 and three of rank lower or
equal to 2. We choose to use these fixed values since they were common for all the
real cases that we analyzed. A student normally has up to 3 opponents.

In order to create realistic data for the opponents, all faculty members are
assigned to an area. Once the supervisor is randomly selected, the potential op-
ponents are selected among the faculty member of the area of the supervisor and
the two adjacent ones. If no member, besides the supervisor, exists in these three
areas, the student is left without suggested opponents, so that the opponent can
be anyone in the committee.

We have created 20 instances with a number of sessions ranging from 5 to
15, and experiments are performed on these instances. Instances are written in
MiniZinc data format and they are available on the website (https://bitbucket.
org/satt/tdtt-instances), along with the MiniZinc model.

5.2 Tuning

Simulated Annealing has several control parameters: the cooling rate (α), the
number of neighbors sampled at each temperature (N), and the starting and final
temperatures (T0 and Tmin). In order to find the best configuration of these param-
eters using a statistically-principled approach, we resort to the F-Race procedure
[2] with a 95% confidence.

With the aim of equalizing approximately the running times for all different
configurations, we fix the total number of iterations I = 106 and compute the
parameter N from the others so that the total I is always the same. This results
in an average running time of 5 minutes on our machine.

Preliminary results demonstrate that our solution method is not sensitive to
small variations of the cooling rate, thus we decided to set α = 0.99 and focus on
the other control parameters T0 and Tmin.

We test 30 different configurations generated according to the Hammersley

point set [5] for the ranges whose bounds are T0 = [100, 102] and ρ = [101, 103],
with ρ = T0/Tmin. The winning configuration turned out to be T0 = 1.18 and
Tmin = 0.104. All the following experiments have been performed using these
values for the parameters.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 512 -

Thesis Defense Timetabling 7

MiniZinc Gecode Opturion CPX Local search
Instance fd avg best
gtt-art01 – – 210 3.7 1
gtt-art02 346 386 293 1.2 0
gtt-art03 169 204 167 0.3 0
gtt-art04 347 – 258 6.2 2
gtt-art05 – – 268 0.2 0
gtt-art06 – – 265 0.5 0
gtt-art07 – – 333 1.7 0
gtt-art08 – – 296 1.1 0
gtt-art09 74 – 67 4.1 2
gtt-art10 – – 310 1.5 0
gtt-art11 394 450 277 2.0 0
gtt-art12 88 – 118 1.0 1
gtt-art13 227 – 219 8.2 5
gtt-art14 – – 342 3.3 2
gtt-art15 – – 224 11.0 7
gtt-art16 461 447 417 7.3 4
gtt-art17 – – 288 1.7 0
gtt-art18 78 123 111 7.0 6
gtt-art19 – 314 302 1.6 0
gtt-art20 402 – 326 6.4 4
gtt-real01 – 567 289 61.1 59
gtt-real02 68 – 80 0.0 0
gtt-real03 – 904 440 54.1 52

Table 1 Comparison between MiniZinc engines and local search on the testbed.

5.3 Comparison of results

We experimented several engines for MiniZinc. Among those available in the
MiniZinc distribution v.2.0 only fd and fdmip support the set construct which
is used by our model. However, in Table 1 we decided to show only the results
obtained by fd, which is the default evaluation algorithm for MiniZinc, given that
they have the same performances. In addition, we compare our results with Gecode
v.4.3.3 [12], which is a pure constraint programming (CP) solver, and Opturion
CPX v.1.0.2 [10], which combines CP and SAT techniques.

In Table 1 we show the cost of the best solution obtained by each solver within
5 minutes of running time. For our local search solver, we also report the average
cost of 30 repetitions, obtained with the parameter configuration described in
Section 5.2. The dash symbol states that the solver was not able to obtain any
solution in the timeout.

The outcome is that the local search solver clearly outperforms all the other
solution methods both on generated and real cases within the granted computa-
tional time. In detail, it was able to find the perfect solution for 11 instances; in
addition in one case (gtt-real02) the perfect solution was obtained in all 30 trials.

6 Discussion and conclusions

We have modeled and solved a timetabling problem that, up to our knowledge,
has not been formalized yet in the scientific literature. A similar problem has been
considered in [7], in which however constraints and objectives are different; for

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 513 -

8 Michele Battistutta et al.

example, in their case the committee changes for each single student, so that the
order of presentation is also important to minimize the time spent by committee
members.

For this new problem, we have collected 3 real cases and developed an instance
generator in order to abstain from overtuning on such a small number of available
instances.

We have developed both a local search method and a MiniZinc model and
tested several MiniZinc engines. The experimental analysis shows that the local
search solver outperforms indisputably the MiniZinc engines, at least on the ground
(instances and timeout) defined in the work. This is however not a fair comparison,
given that the MiniZinc engines are exact solvers and they would need more time
to explore their search tree effectively for instances of this size.

This model has been used to generate the graduation calendar for the Faculty
of Psychology of the University of Milano-Bicocca and it has been used by the
university with satisfactory results.

For the future, we plan to investigate on the management of the thesis defense
procedure in other universities, in order to design a more general formulation. In
addition, we plan to try to improve the MiniZinc model, with the aim of making
it more suitable to be solved with the available engines.

Another future development is to collect more real-life instances, and to use
them for the improvement of the generator, in such a way that it can create more
realistic instances.

References

1. Emile Aarts and Jan Karel Lenstra. Local Search in Combinatorial Optimization. John
Wiley & Sons, Chichester, 1997.

2. Mauro Birattari, Z. Yuan, P. Balaprakash, and Thomas Stützle. F-Race and iterated
F-race: An overview. Springer, Berlin, 2010.

3. Luca Di Gaspero and Andrea Schaerf. EasyLocal++: An object-oriented framework for
flexible design of local search algorithms. Software—Practice and Experience, 33(8):733–
765, 2003.

4. M. R. Garey and D. S. Johnson. Computers and Intractability—A guide to NP-
completeness. W.H. Freeman and Company, San Francisco, 1979.

5. John Michael Hammersley, David Christopher Handscomb, and George Weiss. Monte
Carlo methods. Physics today, 18:55, 1965.

6. Jeffrey H. Kingston. Educational timetabling. In A. Sima Uyar, Ender Ozcan, and Neil
Urquhart, editors, Automated Scheduling and Planning, volume 505 of Studies in Com-
putational Intelligence, pages 91–108. Springer Berlin Heidelberg, 2013.

7. Beáta Kochaniková and Hana Rudová. Student scheduling for bachelor state examinations.
In Proc. of the 6th Multidisciplinary International Conference on Scheduling : Theory and
Applications (MISTA-13), pages 762–766, 2013.

8. Rhydian Lewis. A survey of metaheuristic-based techniques for university timetabling
problems. OR Spectrum, 30(1):167–190, 2008.

9. Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J Duck,
and Guido Tack. MiniZinc: Towards a standard CP modelling language. In Principles
and Practice of Constraint Programming–CP 2007, pages 529–543. Springer, 2007.

10. Opturion. Opturion CPX website. URL: http://www.opturion.com/cpx.html. Viewed:
2nd February 2015.

11. Andrea Schaerf. A survey of automated timetabling. Artificial Intelligence Review,
13(2):87–127, 1999.

12. Christian Schulte, Mikael Lagerkvist, and Guido Tack. Gecode/Flatzinc website. URL:
http://www.gecode.org/flatzinc.html. Viewed: 2nd February 2015.

13. Tommaso Urli. json2run: a tool for experiment design & analysis. CoRR, abs/1305.1112,
2013.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 514 -

Khalid Shaker

Department of Information Technology,

College of Information Technology, Ahlia

University, Kingdom of Bahrain

E-mail: khalidalhity@gmail.com

Salwani Abdullah • Arwa Alqudsi

Center for Artificial Intelligence Technology,

FTSM, Universiti Kebangsaan Malaysia,

43600 Bangi, Selangor, Malaysia

E-mail: salwani@ukm.edu.my,

 arwa.alqudsi81@gmail.com

MISTA 2015

Bacteria Swarm Optimisation Approach for Enrolment-Based Course

Timetabling Problems

Khalid Shaker • Salwani Abdullah • Arwa Alqudsi

Abstract The university course timetabling problem is known as a NP-hard problem. It is also

sometimes known as a class/teacher timetabling that refers to a set of courses that need to be

scheduled into a given number of rooms and timeslots within a week and, at the same time,

students and teachers are assigned to courses so that the meetings can take place. A novel

population based approach is proposed in this paper called a Bacteria Swarm Optimisation

(BSO) algorithm. BSO is developed based on the behavior of bacteria when it searches for the

nutrients. The search space is divided into three regions namely, risk, null and rich regions.

Differential Evolution algorithm (DE) is embedded within BSO to move the solutions toward

the best solution. The performance of our approach is tested over eleven benchmark datasets

(representing one large, five medium and five small problems). Experimental results show that

our approach is able to generate competitive results when compared with previous available

approaches. Possible extensions upon this simple approach are also discussed.

Keywords: Bacteria swarm optimisation, Differential Evolution, Timetabling.

1 Introduction

The course timetabling problem deals with the assignment of a set of courses to specific

timeslots and rooms within a working week subject to a variety of hard and soft constraints. In

this paper, a Bacteria Swarm Optimisation (BSO) algorithm for university course timetabling

is presented. BSO was proposed by Passino [17]. It is inspired by the chemotactic behavior of

the E. Coli. Chemotaxis is the phenomenon in which bacteria direct their movements

according to certain chemicals substances in their environment. Bacteria move toward places

with large concentrations of nutrients and they move away from places with low

concentrations of nutrients. The bacterial system consists of four principal mechanisms,

namely chemotaxis, elimination, reproduction and swarming [17]. This work attempts to apply

the behaviour of bacteria swarm to solve university course timetabling problems.

Various methods have been investigated to solve university course timetabling problems.

Carter and Laporte [10] divided these methods into four categories such as sequential,

metaheuristics, constraint-based and cluster methods. A few years later Petrovic and Burke

[18] included some other types such as case-based reasoning techniques, multi-criteria

approaches and hyper-heuristic methods. Graph colouring heuristics were the earliest

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 515 -

approaches in solving timetabling problems. Currently, metaheuristic methods have shown a

success in solving this problem. For example, population-based methods have been applied to

course timetabling problems i.e. genetic algorithm [12]; ant algorithm [22]; artificial immune

system [14] and harmony search [7]. Single solution-based methods that have employed on the

same problem are such as dual simulated annealing [4]; variable neighbourhood search [2];

graph-based hyper heuristic [9]; non-linear great deluge [11] and extended great deluge

[16].The hybridisation method with an aim to take the best feature from one approach and to

incorporate it with another good (or better) feature from another (or more) approach(es) have

also shown some success. For example the hybridisation between genetic and sequential local

search [5]; iterated local search with mutation operator [3] and electromagnetic-like

mechanism with great deluge [25]. Overviews of the previous approaches for course

timetabling problems are available in [8, 13, 15, 20, and 21].

2 Problem Description

The Enrolment-based Course Timetabling Problem considered in this work was initially

defined by the Metaheuristics Network
1
. This problem was discussed as an assignment of

lecture events to timeslots and rooms according to a variety of hard and soft constraints. The

problem description that is employed in this paper is adapted from the description presented in

[22]. This problem includes four hard constraints and three soft constraints as follows:

Hard constraint:

 Event conflict i.e. no student can be assigned to more than one course at the same time

(coded as H1).

 Room features i.e. the room should satisfy the features required by the event (coded as

H2)

 Room capacity i.e. the number of students attending the event should be less than or

equal to the capacity of the room (coded as H3).

 Room occupancy i.e. no more than one event is allowed at a timeslot in each room

(coded as H4).

Soft constraints:

 Event in the last timeslot i.e. a student shall not have to sit a course that is scheduled

in the last timeslot of the day (coded as S1)

 Two consecutive events i.e. a student shall not have more than 2 consecutive events

(coded as S2).

 One event a day i.e. a student shall not have to sit a single course on a day (coded as

S3).

Hard constraints act an inviolable requirement. A timetable which meets the hard

constraints is recognized as a feasible solution.

The problem has:

 A set of N courses, e = {e1,…,eN}

 45 timeslots

 A set of R rooms

 A set of F room features

 A set of M students.

The main objective is to minimise the violation of the soft constraints in a feasible solution that

later represents the quality of the obtained solution. A solution consists of an ordered list of

length N where the position corresponds to the events i.e. position i corresponds to event ei

for i = 1,…,N. The values for each position are a number between 0 to 44 corresponding to

1 http://www.metaheuristics.net

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 516 -

the timeslot index and 0 to R-1 corresponding to the room index. For example, a timeslot

vector is given as (0,17,30,…,10) and a room vector is given as (4,3,0,…,3) means that event

e1 is scheduled in timeslot 0 at room 4. Event e2 is scheduled in timeslot 17 at room 3 and

finally event eN is scheduled in timeslot 10 at room 3.

 The objective function for the problem is defined in the formula below.

 ∑

 (1)

where S1, S2 and S3 represent the relevant soft constraints.

3 Proposed method: Bacteria Swarm Optimisation (BSO)

The proposed algorithm consists of two phases i.e. build a feasible initial population using a

constructive heuristic; and an improvement algorithm with an aim to optimise the violation of

the soft constraints while maintaining the feasibility of the solutions.

3.1 Constructive Heuristic

The initial population is produced using a constructive heuristic called a least saturation degree

which starts from an empty timetable [16]. This feasible solution is obtained by adding or

removing appropriate events (courses) from the schedule based on room availability (we

attempt to schedule those courses with the least room availabilities earlier on in the process),

without taking into account any of the soft constraints violations, until the hard constraints are

met. If a feasible solution is found, the algorithm stops. Otherwise, the neighbourhood moves

infeasible to feasible solution. Nbs1 is applied for a certain number of iterations. If a feasible

solution is met, then the algorithm stops. Otherwise the algorithm continues by applying a

Nbs2 neighbourhood structure for a certain number of iterations. In this work, across all

instances tested, the schedules are made feasible before starting the improvement algorithm.

3.2 Improvement algorithm using a Bacteria Swarm Optimisation algorithm

In this work we divide the search space into three regions (“risk” region, “null” region and

“rich” region) based on the cardinality-based method that was proposed by Zäpfel et al.

(2010).

 μ= gmin + α (gmax+ gmin) (2)

 From equation (2), we count how many solutions will be included in each region,

where α [0, 1]. For example, suppose we have 50 initial solutions in the population that are

sorted in ascending order based on the quality of solutions. Assume that the lowest penalty cost

among these solutions is 100, the highest is 500, and α=0.5. Then we get the interval

μ=100+0.5(500-100) =300. That means the boundary of first region (rich region) will be in

between 100 and 300. For the rest of solutions assume that the lowest penalty cost among these

solutions is 310, of course, the highest is 500. Then we get the interval μ=310+0.5(500-310)

=405. That means the boundary of second region (null region) will be in between 310 and 405

and the remained of solutions will be in the last region (risk region), the lowest penalty cost is

410 for example and the highest is 500. The solutions in the risk region and null region have to

move toward the rich region. Also the solutions in the rich region have to move toward the

global solution (the best solution in the rich region). At the improvement phase, after

initialized all parameters, the algorithm identifies four mechanisms.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 517 -

3.2.1 Chemotaxis

This process simulates the movement of bacteria through swimming via flagella. In

this work we use DE (see subsection 3.3) to move the solutions toward the optimal

solution.

 During improvement, within this mechanism, the search starts with a randomly

selected two parent solutions (p1, p2) from the population P based on D value which is

set to 10. The D value represents the distance between two solutions to select the

parents; which is calculated from the difference between the penalty costs of two

solutions in the population. The purpose of D value is to achieve the exploitative of

solutions as the algorithm selects only the parent timetables which are close to each

other. The Chemotaxis mechanism has number procedures:

 A. Mutation Operator: the mutation operator is carried out on the selected

parents (p1, p2). Randomly selected neighbourhood structures (discussed in Section

7.4.2) will be applied on p1 and p2 to generate a new parent solutions denoted as p1*

and p2*.

 B. Crossover operator: by taking the two parent timetables (p1*, p2*) and exchanging

two timeslots selected randomly between p1*and p2*, new two off-springs will be generated

called child1 and child2. This will be disused in details in Section 7.4.2. .

 C. Evaluation and Selection Operator: the evaluation and selection operators are carried

out to evaluate and select the best new offspring. The quality of new offspring solutions

(f(child1), f(child2)) is calculated. The best solution among child1 and child2 (called child*) will

be compared with the best solution, Solbest. If there is an improvement, the counter of number

of consecutive non-improving solution (life_ pi) will be decreased by one and child* and its

parents (p1, p2) will be replaced with three worse solutions in P. Otherwise, life_ pi will be

increased by one. Note that life_ pi is between 0 and 3 (0< life_ pi <3). Note the best solution so

far will be kept in the next generation.

3.2.2 Elimination

The least healthy bacteria eventually die, while each of the healthier bacteria (those yielding

lower value of the objective function in this work) is split into two bacteria, which are then

placed in the same region. This keeps the swarm size constant. In our work, if life_ parenti ≥ 3,

that mean the parent pi unable to generate a better child after 3 generations and should be

eliminated from the population P. Then the population size needs to be fixed, a new solution

need to replace the eliminated solution. This will be achieved next step (Reproduction).

3.2.3 Reproduction

The best solution in the same region that parent pi was eliminated from (in the previous

process) will be selected to apply a neighbourhood structure (randomly selected) on it to

generate a new solution. This keeps the swarm size is fixed.

3.2.4 Swarming

An adaptive process could be occurred by rearranging the search space regions (based on

equation 2 in subsection 3.2), thus, a different size of search regains based on the quality of

population solutions. This could contribute a small diversification of solutions to the search.

Where, improved solutions may move to another region, which diversify the collection of

solutions once were in the region. As well as the range of regions will become different. The

algorithm stops when the maximum number of iterations is reached or the penalty cost is zero.

The pseudo code for the algorithm implemented in this work is given in Fig.1.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 518 -

 Fig.1 The pseudo code of Bacteria swarm optimisation algorithm

3.3 Differential Evolution Algorithm (DE)

DE is a basic algorithm of the population as genetic algorithms using similar perators,

crossover, mutation and selection. The main difference in obtaining better solutions is that

genetic algorithms rely on crossover while DE is based on the operation of mutation. The main

operation is based on differences of pairs of random solutions in the population. The algorithm

uses mutation operation as a search mechanism and selection operation to direct the search

toward the potential regions in the search space.

 This population then is improved by applying mutation, crossover and selection

operators. The main steps of the differential evolution algorithm are given in Fig. 2.

 Fig. 2 Differential Evolution Algorithm

 Step1: Initialisation:
 Set S: total number of bacteria in the population P;

 Set NumOfgenBSO: number of generations;

 Set Solbest: the best solution in initial population;

 Set Pi: the solution in P;

 Set life_ pi: number of consecutive non-improving solution;

 Distribute the search space to three regions;

 Step2: Procedures:

 Repeat
 A: Chemotaxis: apply DE algorithm:

 Selection: Randomly select 2 parents from P, (p1, p2) based on D;

 Mutation: select neighbourhood structure Ni randomly and apply it on p1

 and p2 to generate p1*, p2*;
 Crossover: generate child1 and child2 via exchanging the time slots (selected

 randomly) between p1* and p2* ;

 Evaluation & Selection: Choose the best between child1 and child2, called

 child*

 if (f(child*) < f(Solbest))

 life_ pi --;

 replace the child* and its parents (p1,p2)

 with three worse solutions in P;

 else

 life_ pi ++;

 B: Elimination: if life_ pi ≥ 3

 eliminate pi (the parent which unable to generate better child

 after 3 generations will be eliminated from P);

 C: Reproduction: select the best solution in the same region of the eliminated pi,

 and apply a randomly selected neighbourhood structure togenerate

 a new solution to keep the cardinality of the population size fixed;

 D: Swarming: rearrange the search space to three regions

 Until (termination criterion is met);

 Initialization

 Evaluation

 do while (termination criteria are met)

 Mutation

 Crossover

 Evaluation

 Selection

 do

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 519 -

3.3.1 Chromosome Representation

A simple chromosome representation can improve the crossover and mutation operations

(Pongcharoen et al. 2008). Fig. 3 shows an example of the chromosome representation that is

composed of a string of genes. Each chromosome represents a feasible timetable, where the

gene represents timeslot ti, room ri, and course ci. For example, courses c1, c5, c7, c12 are

scheduled at timeslot t1 in the rooms r1, r2, r3 and r4, respectively.

Fig. 3 Representation of chromosome for course timetabling problems

3.3.2 Mutation and Crossover Operations

The mutation is considered as a main operation for DE algorithm , as it relies on mutation

operation (Storn and Price 1997). Random selections of neighborhood structures listed below

are used in a mutation process which is based on a mutation rate.

Nbs1: Choose a single course at random and move to a feasible timeslot that can generate the

lowest penalty cost.

Nbs2: Select two courses at random from the same room (the room is randomly selected) and

swap timeslots.

The crossover operation is illustrated as in Fig. 4. We use the same crossover mechanism that

is proposed by (Abdullah et al. 2008).

Fig. 4 Crossover operation

 The crossover operator exchanges the shaded timeslots between p1 and p2 to form the

offspring. The shaded timeslots, i.e. t3 and t7 are randomly selected. In this case, the feasibility

of the solution is likely will be violated. In order to maintain the feasibility of the offspring,

two conditions are considered:

1. Course can be moved only if the corresponding timeslots is empty. For example, c6 can be

moved from timeslot t2 in Parent1 to timeslot t8 in Parent2.

2. No conflicts occur between moved course and scheduled courses. For example, in

Offspring1, there should be no conflict between moved course c8 from t8 (Parent2) and

scheduled courses c6, c7 in t2 (Parent1).

 t1 t2 t3 t4 t5 t6 t7 t8 t9

r1 c1 c10 c3

r2 c5 c11 c8 c6

r3 c7 . c13 c9

r4 c12 . c16

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 520 -

4 Experimental Results

The algorithm was implemented on a Pentium 4 Intel Core i3 1.8 GHz PC Machine using

Matlab on a Windows XP Operating System. We have evaluated our results on the instances

taken from Socha et al. [17] and which are available at

http://iridia.ulb.ac.be/~msampels/tt.data/. Table 1 shows the Parameters setting for the

proposed algorithm after some preliminary experiments and almost similar with the papers in

the literature (e.g. Yang and Jat 2011). We ran the experiments for 200000 iterations with 11

test-runs to obtain an average value

 Table 1 Parameters setting of BSO algorithm

Parameters Value

Number of Generations 200000

Population Size 50

Crossover rate 0.8

Mutation rate 0.5

 We have evaluated our results on the instances taken from Socha et al. (2002). The

best results out of 11 runs obtained are presented in Table 2. The table shows the comparison

of the approach in this work against other available approaches reported in the literature.

Table 2 Comparison Results

Where:

M1 Genetic algorithm and local search by Abdullah and Turabieh (2008).

M2 Randomised iterative improvement algorithm by Abdullah et al. (2007).

M3 An Elitist-Ant System by Jaradat and Ayob (2010)

M4 Hybridized artificial bee colony with hill climbing by Asaju et al. (2014).

M5 Hybrid harmony search metaheuristic algorithm by Al-Betar et al. (2014).

M6 Extended great deluge by McMullan (2007).

M7 Non-linear great deluge by Landa-Silva and Obit (2008).

M8 Electromagnetic-like mechanism with great deluge by Turabieh et al. (2009).

M9 Genetic Algorithms and Local Search by Yang and Naseem Jat: et al. (2011).

M10 Harmony search by Al-Betar et al. (2010).

M11 The max-min ant algorithm by Socha et al. (2002).

M12 The tabu hyper heuristics by Burke et al. (2003).

 Note that the best results are presented in bold. The term “-” in Table 2 indicates a

percentage of runs that failed to obtain feasible solution. It can be seen that in general, our

approach is better than other approaches reported in the table and is able to generate two best

solutions i.e. medium4 and medium5 datasets. It can be clearly seen that the BSO approach

performs well for the small datasets where the algorithm is able to obtain the optimal solutions

with zero penalty, because the small datasets might have more feasible solution points in the

 Dataset
 Our

 method
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

 small1 0 0 0 0 0 0 0 3 0 0 0 1 1

 small2 0 0 0 0 0 0 0 4 0 0 0 3 2

 small3 0 0 0 0 0 0 0 6 0 0 0 1 0

 small4 0 0 0 0 0 0 0 6 0 0 0 1 1

 small5 0 0 0 0 0 0 0 0 0 0 0 0 0

 medium1 87 175 242 84 73 99 80 140 96 139 124 195 146

 medium2 78 197 161 82 79 73 105 130 96 92 117 184 173

 medium3 146 216 265 123 132 135 139 189 135 122 190 248 267

 medium4 55 149 181 62 69 112 88 112 79 98 132 164 169

 medium5 60 190 151 75 61 87 88 141 87 116 73 219 303

 Large 589 912 - 690 462 498 730 876 683 615 424 851 1166

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 521 -

http://dblp.uni-trier.de/pers/hd/a/Ayob:Masri

search space compared to the medium and large datasets. We believe that the way of the

algorithm explore the search space helps significantly the algorithm to avoid the stagnation

state which occurs when there is no update to the population during the improvement process.

In addition, the novel strategy used to replace the new child and it is parents (not only the

child) with the worse three solutions in the population P gives a chance to deal only with

flexible solutions which could generate better solutions.

 Fig. 5 (a), (b), (c) and (d) illustrate the effectiveness of the algorithm when it explores

the search space on small1, medium3, medium5 and large datasets, respectively. The x-axis

represents the number of iterations, while the y-axis represents the penalty cost. The figures

show that the approach is able to produce fast convergence. This due to that the algorithm

performs the mutation operator before the crossover operator. That is, the mutation directs the

search toward the prospective regions in the search space. The BSO significantly reduces the

search space by considering feasible solution spaces, as well as by determining the boundaries

of the nutrition regions. Where, these regions are restricted to boundaries based on the

maximum and minimum penalty cost of solutions which are close to each other in term of

distances.

 In case of small datasets, the way the algorithm explores the search space clearly

indicates that further improvement is achieved. The algorithm is also effective for the medium

and large datasets, in the graphs clearly indicating that a further reduction of almost 70% of

initial solutions in the cost evaluation can be achieved.

 Fig. 5 Convergences results of (a) small5, (b) medium3, (c) medium5, and (d) large datasets

The quality of the results illustrated in Fig. 6 (a) and (b) which show the box plots of the

penalty costs when solving small, medium and large instances, respectively.

 Fig. 6 (a) and (b) show that the results of small datasets are high dispersed than

medium datasets, but it can be clearly seen that in small1, small2 and small3 the median is

closer to the best than the worst. However, the figures show a deceived illustration of the

algorithm’s runs over the small datasets. Where, it can be seen that the dispersion of the

datasets lies within a short interval (e.g. between 0 and 3 for small2). Thus, we need to refer to

the standard deviation values of the datasets in order evaluate correctly whether if there is a

high dispersion of the small datasets or not. This will be conducted in the following paragraph.

In the other hand, the results for the medium datasets are less dispersed compared to large and

Small5 Medium3

Medium5 Large

Number of Iterations Number of Iterations

Number of Iterations Number of Iterations

P
en

al
ty

 C
o

st

P
en

al
ty

 C
o

st

P
en

al
ty

 C
o

st

P
en

al
ty

 C
o

st

(a) (b)

(c) (d)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 522 -

small datasets as the median is closer to the best than the worst in all medium datasets. This

indicates that the algorithm deals only with the much closed solutions, and this clarifies that

our algorithm is effective, consistent, and able to generate competitive results when compared

to other state-of-the-art techniques. For high dispersed results obtained for large datasets, we

believe that the size of the search space is different from one problem to another, thus the

dispersion of solution points are significantly different from one to another.

 Fig. 6 (a) and (b) Box plots of the penalty costs for small, medium and large datasets.

5 Conclusion

This work in this paper presents an effective Bactria Swarm Optimisation Algorithm (BSO) for

the university course timetabling problem, showing that evolutionary computation can deal

successfully with the problem. The use of the effective Differential Evolution Algorithm (DE)

is an important element of its high performance.

 There are four advantages from using DE within BSO; first, move the solutions

toward the best solutions, secondly, finding a true global minimum regardless the parameter

values, thirdly, fast convergence, and lastly, a few control parameters are used.

 The performance of the BSO has been compared to that of some other well-known

heuristic algorithms. From the simulation results, it is observed that the convergence speed of

the BSO is significantly better than other approaches in the literature. Therefore, the BSO

seems to be a promising approach for course timetabling problems. Our future work will try to

apply BSO on curriculum-based course timetabling problems ITC2007.

References

1. Asaju La'aro Bolaji, Ahamad Tajudin Khader, Mohammed Azmi Al-Betar, Mohammed

A. Awadallah: University course timetabling using hybridized artificial bee colony with

hill climbing optimizer. J. Comput. Science 5(5): 809-818 (2014)

2. Abdullah, S., Burke, E.K., McCollum, B.: A hybrid evolutionary approach to the

university course timetabling problem. IEEE Congress on Evolutionary Computation,

ISBN: 1-4244-1340-0, pp 1764-1768 (2007)

3. Abdullah, S., Burke, E.K., McCollum, B.: An investigation of variable neighbourhood

search for university course timetabling. The 2nd Multidisciplinary International

Conference on Scheduling: Theory and Applications (MISTA), pp. 413–427 (2005)

4. Abdullah, S., Burke, E.K., McCollum, B.: Using a randomised iterative improvement

algorithm with composite neighbourhood structures for university course timetabling. In

Metaheuristics: Progress in complex systems optimization (Operations Research /

Computer Science Interfaces Series), Chapter 8. Published by Springer, ISBN:978-0-387-

71919-1 (2007)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 523 -

http://dblp.uni-trier.de/pers/hd/k/Khader:Ahamad_Tajudin
http://dblp.uni-trier.de/pers/hd/a/Al=Betar:Mohammed_Azmi
http://dblp.uni-trier.de/pers/hd/a/Awadallah:Mohammed_A=
http://dblp.uni-trier.de/pers/hd/a/Awadallah:Mohammed_A=
http://dblp.uni-trier.de/db/journals/jocs/jocs5.html#BolajiKAA14

5. Abdullah, S., Shaker, K., McCollum, B., McMullan, P.: Dual Sequence Simulated

Annealing with Round-Robin Approach for University Course Timetabling. EVOCOP

2010, LNCS 6022, Springer-Berlin /Heidelberg, pp 1–10 (2010)

6. Abdullah, S., Turabieh, H.: Generating university course timetable using genetic

algorithms and local search. The Third 2008 International Conference on Convergence

and Hybrid Information Technology ICCIT, vol. I, pp 254-260 (2008)

7. Khalid Shaker, Salwani Abdullah, Arwa Alqudsi, Hamid Jalab: Hybridizing Meta-

heuristics Approaches for Solving University Course Timetabling Problems. RSKT 2013:

374-384, (2013)

8. Khalid Shaker, Salwani Abdullah, Arwa Hatem: A Differential Evolution Algorithm for

the University course timetabling problem. DMO 2012: 99-102, (2012)

9. Khalid Shaker & Salwani Abdullah: Controlling Multi Algorithms Using Round Robin

for University Course Timetabling Problem. FGIT-DTA/BSBT 2010: 47-55, (2010)

10. M.A. Al-Betar, A.T. Khader, M. Zaman: University course timetabling using a hybrid

harmony search metaheuristic algorithm, IEEE Trans. Syst. Man Cyber- net. C,

Appl.Rev. doi.org/10.1109/TSMCC.2011.2174356, (2014)

11. Ghaith M. Jaradat, Masri Ayob: An Elitist-Ant System for Solving the Post-Enrolment

Course Timetabling Problem. FGIT-DTA/BSBT 2010: 167-176 (2010)

12. Shengxiang Yang, Sadaf Naseem Jat: Genetic Algorithms with Guided and Local Search

Strategies for University Course Timetabling. IEEE Transactions on Systems, Man, and

Cybernetics, Part C 41(1): 93-106 (2011)

13. Al-Betar, M., Khader, A., Yi Liao, I.: A Harmony Search with Multi-pitch Adjusting

Rate for the University Course Timetabling. In: Z.W. Geem: Recent Advances in

Harmony Search Algorithm, SCI 270, pp. 147–161. Springer, Heidelberg (2010)

14. Burke, E., Eckersley, A., McCollum, B., Petrovic, S., Qu, R.: Hybrid variable

neighbourhood approaches to university exam timetabling. Technical Report NOTTCS-

TR-2006-2, University of Nottingham, School of CSiT (2006)

15. Burke, E.K., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper-heuristic for

timetabling problems. European Journal of Operational Research 176, pp 177-192 (2007)

16. Landa-Silva, D., Obit, J.H.: Great deluge with non-linear decay rate for solving course

timetabling problem. The fourth international IEEE conference on Intelligent Systems.

Varna, Bulgaria, pp. 8.11–8.18 (2008)

17. Lewis, R., Paechter, B.: New crossover operators for timetabling with evolutionary

algorithms. Proceedings of the 5th International Conference on Recent Advances in Soft

Computing (ed. Lotfi), UK, December 16th-18th, pp 189-194 (2004)

18. Lewis, R.: A survey of metaheuristic-based techniques for University Timetabling

problems. OR Spectrum 30, 167–190 (2008)

19. Malim, M.R., Khader, A.T., Mustafa, A.: Artificial Immune Algorithms for University

Timetabling. In: Burke, E.K., Rudova, H. (eds.) The 6th International Conference on

Practice and Theory of Automated Timetabling, Brno, Czech Republic, pp. 234–245

(2006)

20. McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A., Di

Gaspero, L., Qu, R., Burke, E.: Setting the Research Agenda in Automated Timetabling:

The Second International Timetabling Competition, Accepted for publication to

INFORMS Journal on Computing. doi 10.1287/ijoc.1090.0320 (2009)

21. McMullan, P.: An extended implementation of the great deluge algorithm for course

timetabling, Computational Science – ICCS, Part I, LNCS 4487, Springer-Verlag Berlin

Heidelberg, pp 538–545 (2007)

22. Qu, R., Burke, E.K., McCollum, B., Merlot, L.T.G., and Lee, S.Y.: A Survey of Search

Methodologies and Automated System Development for Examination Timetabling.

Journal of Scheduling, 12(1): pp 55-89 (2009)

23. Schaerf, A.: A Survey of Automated Timetabling. Artif. Intelli. Rev. 13, 87–127 (1999)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 524 -

http://dblp.uni-trier.de/pers/hd/a/Abdullah:Salwani
http://dblp.uni-trier.de/pers/hd/a/Alqudsi:Arwa
http://dblp.uni-trier.de/pers/hd/j/Jalab:Hamid
http://dblp.uni-trier.de/db/conf/rskt/rskt2013.html#ShakerAAJ13
http://dblp.uni-trier.de/pers/hd/a/Abdullah:Salwani
http://dblp.uni-trier.de/pers/hd/h/Hatem:Arwa
http://dblp.uni-trier.de/db/conf/dmo/dmo2012.html#ShakerAH12
http://dblp.uni-trier.de/pers/hd/a/Abdullah:Salwani
http://dblp.uni-trier.de/db/conf/fgit/dta2010.html#ShakerA10
http://dblp.uni-trier.de/pers/hd/a/Ayob:Masri
http://dblp.uni-trier.de/db/conf/fgit/dta2010.html#JaradatA10
http://dblp.uni-trier.de/db/journals/tsmc/tsmcc41.html#YangJ11
http://dblp.uni-trier.de/db/journals/tsmc/tsmcc41.html#YangJ11
http://www.springerlink.com/content/?Author=Mohammed+Azmi+Al-Betar
http://www.springerlink.com/content/?Author=Ahamad+Tajudin+Khader
http://www.springerlink.com/content/?Author=Iman+Yi+Liao

24. Socha, K., Knowles, J., Samples, M.: A max-min ant system for the university course

timetabling problem. The Proceedings of the 3rd International Workshop on Ant

Algorithms (ANTS 2002), LNCS 2463, Springer-Verlag, pp 1-13 (2002)

25. Thompson, J., Dowsland, K.: A robust simulated annealing based examination

timetabling system. Computers & Operations Research, 25:637–648 (1998)

26. Turabieh, H., Abdullah, S., McCollum, B.: Electromagnetism-like Mechanism with Force

Decay Rate Great Deluge for the Course Timetabling Problem. In: RSKT 2009. LNCS,

vol. 5589, pp. 497–504. Springer, Heidelberg (2009)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 525 -

MISTA 2015

A lexicographic goal programming approach for staff
assignment with acceptance levels

Tom Rihm · Philipp Baumann

Abstract We present a real-world staff-assignment problem that was reported to us by

a provider of an online workforce scheduling software. The problem consists of assigning

employees to work shifts subject to a large variety of requirements related to work laws,

work shift compatibility, workload balancing, and personal preferences of employees.

A target value is defined for each requirement, and deviations from the target values

are associated with acceptance levels. The objective is to minimize the total number of

deviations in lexicographical order of the acceptance levels. This objective cannot be

represented in existing goal programming approaches straightforwardly. We develop a

lexicographic goal programming formulation that models this objective efficiently, and

we introduce aggregation techniques to reduce the number of constraints. To evaluate

the performance of the proposed formulation, we derive a test set of 27 instances from

real-world data. The approach is able to devise optimal or near-optimal solutions for

small- and medium-sized instances in short running times. The solutions obtained by

our approach are used by the software provider as benchmark results to evaluate and

improve its software.

1 Introduction

A large number of companies and organizations in the service industries have to assign

employees to work shifts on a regular basis. Typical examples are hospitals, hotels, call

centers, airports and police departments. As people are the most critical resource for

such service providers, a careful and proper planning can lead to significant improve-

ments in productivity. In general, a large number of potentially conflicting requirements

related to work regulations, work shift compatibility, workload balance, and personal

preferences of employees must be considered. A major challenge lies in balancing the

requirements of different stakeholders such as management, employees and customers.

Tom Rihm
University of Bern
E-mail: tom.rihm@pqm.unibe.ch

Philipp Baumann
University of California, Berkeley
E-mail: philipp.baumann@berkeley.edu

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 526 -

In this paper, we present a particular type of staff assignment problem that was

reported to us by a provider of an online workforce scheduling software. This provider

has developed a framework that helps decision makers to specify trade-offs between

different requirements. The decision maker is asked to specify a target value for each

requirement and assign acceptance levels to deviations from the target value. In general,

decision makers assign lower acceptance levels to larger deviations. For the sake of

simplicity and transparency, the mapping of deviations to acceptance levels is piecewise

constant, and less-accepted deviations are considered to be strictly more important

than more-accepted deviations. According to the software provider, this framework

is well received by their clients. The resulting staff assignment problem consists of

assigning employees to work shifts such that the number of deviations from target

values is minimized, with a reduction in the number of less-accepted deviations being

always preferred to any reduction in the number of more-accepted deviations. A typical

problem instance has a planning horizon of four weeks and comprises between 10 and

15 different types of requirements.

The literature on staff-assignment problems with multiple and potentially con-

flicting requirements concentrates on goal programming approaches (cf. [15]). In goal

programming, each requirement is assigned a target value, and deviations from the

target values are minimized (cf. [7,6]). The most widely-used variants of goal pro-

gramming in practical applications are lexicographic, Chebyshev and weighted goal

programming. Lexicographic goal programming minimizes deviations sequentially and

is therefore used for applications with a predefined ranking of requirements. Cheby-

shev goal programming minimizes the maximum deviations across all requirements

and is therefore used when a balanced achievement of the requirements is desired.

Only weighted goal programming is used to model trade-offs between requirements.

In weighted goal programming, the deviations are normalized, and a weighted sum of

deviations is minimized. Various extensions of weighted goal programming have been

proposed which enable decision makers to specify trade-offs between requirements more

accurately (cf., e.g., [10,13]). These extensions include penalty functions that assign

larger weights to larger deviations. However, weighted goal programming is not appli-

cable to the problem considered here because the range of weights required to ensure

that less-accepted deviations are always minimized before more-accepted deviations

grows rapidly with the number of different acceptance levels and may become large

enough to cause numerical problems for solvers.

In this paper, we develop a lexicographic goal programming formulation for the

staff assignment problem under study. The proposed formulation is able to efficiently

account for trade-offs between requirements. The key idea is to decompose each require-

ment into a set of sub-requirements, each of which is associated with an acceptance

level and has its own target value. The formulation contains one constraint and one

binary deviational variable for each sub-requirement. The binary deviational variables

indicates whether or not a sub-requirement is violated. To determine the assignment,

we iteratively minimize the total number of sub-requirement violations that map to the

same acceptance level, starting with the lowest acceptance level in the first iteration.

We increase the computational efficiency of the formulation by introducing aggregation

techniques that reduce the number of constraints. The performance of the proposed

approach is evaluated based on a test set of 27 problem instances. Our approach devises

optimal or near-optimal solutions for small- and medium-sized instances in short CPU

times. The aggregation techniques are particularity effective for instances with a large

number of sub-requirements.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 527 -

Acceptance level

100

70

50

20

Weekends off
0 1 2 3

Acceptance level

100

67

34

0 Workload [h]
64 72 80 88 96

Fig. 1 Two examples of functions that map deviations from target values to acceptance levels.

The remainder of the paper is structured as follows. In Section 2, we describe the

planning problem in more detail. In Section 3, we review the related literature. In

Section 4, we present our solution approach. In Section 5, we illustrate the proposed

solution approach by means of an illustrative example. In Section 6, we report on the

computational results. Finally, Section 7 concludes the paper.

2 Problem description

The staff assignment problem considered in this paper can be described as follows.

Given are a set of employees, a set of work shifts with predefined start times and

durations, and a set of requirements. Some requirements are hard requirements, i.e.,

they must be satisfied by all feasible assignments. They are related to general work

laws, contract specifications and the availability and qualifications of employees. Other

requirements are soft requirements and are concerned with personal preferences of em-

ployer and employees. Examples of soft requirements are the achievement of predefined

workloads for employees, the consideration of employee’s requests for days off and the

equal assignment of night shifts. These soft requirements are goals to be reached. Hence,

for each soft requirement, a target value is specified. In addition, a piecewise-constant

function is given that maps deviations from the target value to integer acceptance lev-

els in the interval [0,100]. An acceptance level of zero indicates that the corresponding

deviation is unacceptable and leads to an infeasible assignment. An acceptance level

of 100 indicates that the target value or an even better value was achieved.

Figure 1 shows the mapping functions for two different requirements. The function

on the left corresponds to the requirement that an employee has at least three weekends

off during the planning horizon. Hence, if the employee has three or more weekends off,

an acceptance level of 100 is achieved. Having only two or fewer weekends off results in

an acceptance level below 100. The function on the right corresponds to the requirement

of an employee to work exactly 80 hours during the planning horizon. Working more or

less than 80 hours results in a lower acceptance level. A workload of less than 64 hours

or more than 96 hours is infeasible, which is indicated by an acceptance level of zero.

The assignment problem consists of finding an assignment of employees to work shifts

such that all hard requirements are satisfied and the number of deviations from target

values of soft requirements is minimized. Thereby a reduction in the number of less-

accepted deviations is always preferred to any number of reductions in more-accepted

deviations.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 528 -

3 Literature review

In this section, we provide a brief overview of goal programming variants related to the

planning problem described in Section 2 and discuss their use in practical applications.

In goal programming, each requirement is associated with a target value and devi-

ations from target values are captured by deviational variables (cf. [7,6]). A so-called

achievement function minimizes the deviational variables according to the preferences

of the decision maker. The most widely used variants of goal programming are lexico-

graphic, Chebyshev and weighted goal programming.

Lexicographic goal programming requires a ranking of the requirements that re-

flects their importance. The unwanted deviations from the target values are minimized

sequentially according to the given ranking. This variant has been used by decision

makers who do not need to model trade-offs between requirements because they have a

clear ranking of the requirements in mind (cf., e.g., [2]). Chebyshev goal programming

minimizes the maximum unwanted deviation across all requirements. It has been used

by decision makers who are interested in a balanced achievement of requirements (cf.,

e.g., [9]).

Weighted goal programming allows for direct trade-offs between requirements. A

weight is defined for each deviational variable that quantifies its relative importance.

The achievement function is the weighted sum of the deviational variables. In the

traditional form of weighted goal programming it is assumed that the weights are

constant and do not change at further distances from the target value (cf., e.g., [1]).

As this assumption is too restrictive to fit the preferences of many decision makers,

various extensions have been proposed.

Charnes and Collomb [5] introduced interval goal programming which allows de-

cision makers to specify a target interval instead of a target value. Deviations from

either end of the interval are penalized in the achievement function. Later [8] intro-

duced penalty functions that penalize large deviations with a higher weight than small

deviations. This idea was extended by [12] and also [10] who proposed more com-

plex penalty functions including decreasing functions, functions with discontinuities

and non-linear functions. Romero [13] consolidates U -Shaped Penalty Functions in an

achievement function with a general structure. This achievement function also encom-

passes the basic variants of lexicographic and Chebyshev goal programming. The use of

complex penalty functions requires the introduction of binary variables and additional

constraints which increases computational cost. To address this drawback of interval

goal programming models [3] and [4] proposed techniques to reduce the number of

variables and constraints required to model specific penalty functions.

The extensions described above allow a more accurate modelling of the decision

maker’s preferences and have been applied to many real-world applications (cf. the

reviews of [14] and [11]). However, in order to apply weighted goal programming to

the problem considered here, the penalty functions need to assign weights in such a

way that the weight of a less-accepted deviation is always greater than the sum of all

weights of more-accepted deviations. For a small problem instance with 40 different

acceptance levels and ten deviational variables per acceptance level, the largest weight

has to be more than 1040 times bigger than the smallest weight. Such large numbers

may slow down commercial solvers or even cause numerical problems. We therefore

present in the next section a lexicographic goal programming approach that is able to

consider trade-offs between requirements.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 529 -

AL

100

67

34

0 [h]
64 72 80 88 96

AL

100

67

34

0 [h]
64 72 80 88 96

AL

100

67

34

0 [h]
64 72 80 88 96

AL

100

67

34

0 [h]
64 72 80 88 96

AL

100

67

34

0 [h]
64 72 80 88 96

Fig. 2 Decomposition of a requirement into four sub-requirements.

4 Proposed solution approach

Our solution approach comprises two phases. In the first phase, we decompose each

requirement into a set of sub-requirements. The number of sub-requirements is equal

to the number of kinks in the mapping function of the original requirement. Each sub-

requirement gets the target value and the acceptance level from the corresponding kink

in the mapping function. Figure 2 shows the decomposition of a requirement that has

four kinks in the corresponding mapping function.

In the second phase, we formulate and solve a lexicographic goal program (LGP).

For each sub-requirement, we introduce a binary deviational variable that is equal to

one when the sub-requirement is violated. The LGP is solved iteratively as a series of bi-

nary linear programs (BLPs). The first BLP minimizes the number of sub-requirement

violations associated with the lowest acceptance level. The second BLP minimizes the

number of sub-requirement violations associated with the second lowest acceptance

level, etc. In each iteration, an additional constraint is added to ensure that the num-

ber of violations from the previous optimization will not be exceeded in subsequent

iterations.

Note that the additional constraints do not fix assignments as the corresponding

deviational variables can still change in subsequent iterations as long as the total num-

ber of violations does not exceed the prescribed upper bound. A distinctive feature of

our approach is that all deviational variables are binary, which provides great flexibil-

ity for extensions. E.g., a balanced distribution of sub-requirement violations among

employees could be incorporated easily.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 530 -

5 Illustrative example

For the purpose of illustration, we apply the proposed solution approach to an il-

lustrative example. We introduce the notation in Subsection 5.1, present the data of

the example in Subsection 5.2, and formulate the lexicographic goal program in Sub-

section 5.3. Finally, we present aggregation techniques for reducing the number of

constraints in Subsection 5.4.

5.1 Notation

We use the following notation.

Indices

a Acceptance level

d Combination of indices (domain)

i Employee

q Requirement

r Sub-requirement

s Shift

t Day

w Weekend

Sets

A Acceptance levels

Dr Domain of sub-requirement r

Dra Domain of sub-requirement r at acceptance level a

I Employees

Is Employees compatible with shift s

Rsub Sub-requirements

Rsub
q Sub-requirements of requirement q

Rsub
q,i Sub-requirements of requirement q relevant for employee i

S Shifts

Sit Compatible shifts of employee i starting on day t

Sk
it Pair of shifts between which the rest period is less than k hours

T Days

Tw Days of weekend w

W Weekends

Parameters

grd/ĝrd Factor of deviational variable zrd for formulation (BF)/(AF)

ls Length of shift s

brd Target value of sub-requirement r for index combination d

va Allowed number of violations at acceptance level a

Variables

xis = 1, if employee i is assigned to shift s; = 0, else

yiw = 1, if employee i has weekend w off; = 0, else

zrd = 1, if LHS of constraint rd exceeds/falls below target value; = 0, else

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 531 -

Week 1

Mon Tue Wed Thu Fri Sat Sun

Week 2

Mon Tue Wed Thu Fri Sat Sun
Name Start End

Qualified

employees

Shift A 8am 4pm Ann,Dan, Eva A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14

Shift B 11am 7pm Ann,Bob,Dan B1 B3 B5 B6 B7 B9 B11 B13 B14

Early Shift 4am 12pm Dan, Eva,Gil E1 E2 E3 E4 E5 E8 E9 E10 E11 E12

Late Shift 3pm 11pm Bob,Dan,Gil L2 L4 L8 L10 L12

Admin Shift 9am 5pm Ann,Bob AS3 AS9 AS11

Fig. 3 Illustrative example: shifts to be assigned to employees

5.2 Data

Over a planning horizon of two weeks, five different types of shifts need to be assigned

to employees. Figure 3 shows for each shift type the name, the start and end times,

all employees with the required qualification and the days on which the shift should

be performed. There are five employees (Ann, Bob, Dan, Eva, and Gil) who can be

assigned to the shifts. The assignment of shifts must consider two hard requirements

and should consider nine soft requirements. Table 1 provides a short description of all

eleven requirements.

Table 2 shows the result of the decomposition phase. The soft requirements have

been decomposed into twelve sub-requirements. The third column of Table 2 contains

the domain of each sub-requirement. The acceptance levels and target values associated

with sub-requirements are listed in the fourth and fifth column of Table 2. The last

column specifies the maximum positive or negative undesired deviation from the target

value that is still considered feasible.

The domain defines the set of employees, shifts or days for which the sub-requirement

applies to. For example, according to requirements R3 each shift should be assigned

once. The domain of sub-requirement r = R3–1 thus applies to all shifts and the target

value for each shift is 1. The maximal allowed deviation in this case is grs = −1. Sub-

requirement R4–1 applies to employee Bob on days 1, 5, 11, and 12 and to employee

Gil on days 12, 13, and 14. If Bob or Gil have to work on one of these days, a violation

associated with acceptance level 30 occurs. The information given for sub-requirements

R9–1 and R9–2 says the following. Ann and Dan have ideally two or more weekends off

which is expressed by the target value of sub-requirement r = R9–1. From grd = −2

follows that the hard lower bound on the number of weekends off is 0. Having only one

weekend off satisfies sub-requirement R9–2 but violates sub-requirement R9–1. Such

a violation is associated with an acceptance level of 80. Having no weekend off also

violates sub-requirement R9–2 which is associated with an acceptance level of 50.

5.3 Model formulation

The objective is to minimize the total number of sub-requirement violations associated

with acceptance level a∗.

Min
∑

r∈Rsub

∑
d∈Dra∗

zrd (1)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 532 -

Requirement Description Type
R1 At most one shift per employee and day hard
R2 Only assign an employee with the required qualification to a

shift
hard

R3 Each shift is assigned once (at most once) soft
R4 Employee’s requests for days off should be considered soft
R5 Employees should not work on more than five consecutive days soft
R6 No isolated days off soft
R7 At least k = 11 hours layup between consecutive shifts soft
R8 Either zero or two shifts on weekends soft
R9 Lower bound on number of weekends off soft
R10 Workload should not exceed target soft
R11 Workload should not be below target soft

Table 1 Requirements for illustrative example

Require- Sub-require-
Domain d

Acceptance Target Para-
ment q ment r level a value brd meter grd

R3 R3–1 s ∈ S 1 1 -1
R4 R4–1 i ∈ {Bob}, t ∈ {1, 5, 11, 12} 30 0 1

i ∈ {Gil}, t ∈ {12, 13, 14} 30 0 1
R5 R5–1 i ∈ I, t ∈ T : t > 5 60 5 1
R6 R6–1 i ∈ I, t ∈ T : 1 < t < |T | 60 1 1
R7 R7–1 i ∈ I, t ∈ T : t > 1 1 1 1
R8 R8–1 i ∈ I, w ∈ W 30 2 -1
R9 R9–1 i ∈ {Ann,Dan} 80 2 -2

i ∈ {Bob,Eva,Gil} 60 1 -1
R9–2 i ∈ {Ann,Dan} 50 1 -1

R10 R10–1 i ∈ {Ann,Bob,Dan} 70 80 16
i ∈ {Eva,Gil} 60 40 16

R10–2 i ∈ {Ann,Bob,Dan} 30 88 8
i ∈ {Eva,Gil} 20 48 8

R11 R11–1 i ∈ {Ann,Bob,Dan} 70 80 -16
i ∈ {Eva,Gil} 60 40 -16

R11–2 i ∈ {Ann,Bob,Dan} 30 72 -8
i ∈ {Eva,Gil} 20 32 -8

Table 2 Sub-requirements for illustrative example

5.3.1 Hard requirements

Constraints (2) bound the number of sub-requirement violations at acceptance levels

a < a∗ to ensure that the optimal values from previous iterations are maintained.

∑
r∈Rsub

∑
d∈Dra

zrd ≤ va (a ∈ A : a < a∗) (2)

Constraints (3) address requirement R1, i.e., they ensure that each employee i ∈ I is

assigned to at most one shift each day t ∈ T .

∑
s∈Sit

xis ≤ 1 (i ∈ I, t ∈ T) (3)

Requirement R2 ensures that for every shift only employees with the required qualifi-

cations are assigned to. This is achieved by the construction of the sets Is and Sit.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 533 -

5.3.2 Soft requirements

Sub-requirement r = R3–1 is considered by constraints (4), which prevent more than

one employee being assigned to the same shift and penalize if no employee is assigned

to one shift. The left-hand side counts the number of employees assigned to shift s.

The target value brs for each shift s ist one and the maximum allowed deviation is

grs = −1.∑
i∈Is

xis = brs + grszrs (r = R3–1, s ∈ Dr) (4)

Constraints (5) cover sub-requirement R4–1, which aims at complying with employee’s

requests for days off. For each request (employee i on day t), the target value is zero.

∑
s∈Sit

xis ≤ brit + gritzrit (r = R4–1, (i, t) ∈ Dr) (5)

If the left-hand side is greater than or equal to one, the request of employee i on

day t is rejected. As the target value is zero, deviational variable zrit must be one.

Sub-requirement r = R5–1 tries to prevent that employee i ∈ I works on more than

brit = 5 consecutive days. As grd is positive, only exceedances of the target value of 5

are penalized.

t∑
t′=t−brit

∑
s∈Sit′

xis ≤ brit + gritzrit (r = R5–1, (i, t) ∈ Dr) (6)

Each time, an employee has to work on a day even though he/she worked on the

preceding brit = 5 days, the left-hand side exceeds the target value and a violation

occurs. We do not consider the previous period. For this reason, sub-requirement

r = R5–1 cannot be violated on the days t ≤ brit and the domain set Dr is con-

structed such that t > brit. Sub-requirement R6–1 considers that employees prefer two

consecutive days off. We implement this sub-requirement with constraints (7) which

penalize if a day off is preceded and succeeded by a work-day.

∑
s∈Sit−1

xis −
∑
s∈Sit

xis +
∑

s∈Sit+1

xis ≤ brit + gritzrit (r = R6–1, (i, t) ∈ Dr) (7)

Constraints (8) cover sub-requirement R7–1, which aims at providing employees a k

hours layup between consecutive shifts. Set Sk
it contains all pairs of shifts

(s1 ∈ Sit−1, s2 ∈ Sit) between which the layup is less than k hours. The requirement

is violated if both of these shifts are assigned to the same employee.

xis1 + xis2 ≤ brit + gritzrit (r = R7–1, (i, t) ∈ Dr, (s1, s2) ∈ Sk
it) (8)

Note that the shifts (s1, s2) are not included in the domain Dr as a maximum of one

violation per day is possible. Constraints (9) address sub-requirement R8–1, which aims

at assigning employees either no weekend shifts or one shift on each day of the weekend.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 534 -

The binary variable yiw indicate whether employee i ∈ I has weekend w = (t1, t2) ∈W

off. This variable is reused to model requirement R9.

2yiw +
∑
t∈Tw

∑
s∈Sit

xis = briw + griwzriw (r = R8–1, (i, w) ∈ Dr) (9)

Constraints (10) impose a minimum number of weekends off per employee. For this

purpose we introduce set Rsub
q which comprise all the sub-requirements of requirement

q = R9.

∑
w∈W

yiw ≥ bri + grizri (r ∈ Rsub
9 , i ∈ Dr) (10)

Constraints (11) cover requirement R10, which aims at not exceeding the target work-

loads of employees.

∑
t∈T

∑
s∈Sit

lsxis ≤ bri + grizri (r ∈ Rsub
10 , i ∈ Dr) (11)

The left-hand side indicates the total workload of employee i by summing over all days

t ∈ T and shifts planned on that day. If this sum exceeds the target value bri, variable

zri is equal to one to note the violation. In this case, the right-hand side is equal to

bri +gri, which is a hard upper bound for the workload. Analogeously, constraints (12)

cover requirement R11, which aims at achieving the target workloads of employees.

∑
t∈T

∑
s∈Sit

lsxis ≥ bri + grizri (r ∈ Rsub
11 , i ∈ Dr) (12)

xis ∈ {0, 1} (i ∈ Is, s ∈ S) (13)

yiw ∈ {0, 1} (i ∈ I, w ∈W) (14)

zrd ∈ {0, 1} (r ∈ Rsub, d ∈ Dr) (15)

5.4 Model size reduction

The size of the formulation in terms of constraints can be reduced with the following

techniques. A moderate reduction can be achieved by aggregating sub-requirements of

the same requirement which have overlapping domains. More precisely, each require-

ment with two or more kinks in the mapping function can be described by only one

constraint per employee. Thereby, the deviational variables zrd denote the position of

the violation in the mapping function. In doing so, we need to define set Rsub
q,i contain-

ing all sub-requirements of requirement q relevant for employee i. And we introduce

parameter ĝri, which captures the distance between one kink and its adjacent kink

with lower acceptance level. Formally:

ĝri = gri − max
r′∈Rsub

qi :|gri|>|gr′i|
(gr′i).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 535 -

For example for i =Ann, we aggregate sub-requirements r = R9–1, r′ = R9–2 using

Rsub
9,Ann = {r, r′}, ĝri = gri − gr′i = −2− (−1) = −1 and ĝr′i = gr′i = −1 as shown in

constraints (16).∑
w∈W

yiw ≥ max
r∈Rsub

9,i

(bri) +
∑

r∈Rsub
9,i

ĝrizri

(
i ∈

⋃
r∈Rsub

9

Dr

)
(16)

Analogously, we aggregate (11) and (12):∑
t∈T

∑
s∈Sit

lsxis ≤ min
r∈Rsub

10,i

(bri) +
∑

r∈Rsub
10,i

ĝrizri

(
i ∈

⋃
r∈Rsub

10

Dr

)
(17)

∑
t∈T

∑
s∈Sit

lsxis ≥ max
r∈Rsub

11,i

(bri) +
∑

r∈Rsub
11,i

ĝrizri

(
i ∈

⋃
r∈Rsub

11

Dr

)
(18)

The model size can further be reduced by aggregating sub-requirements of different

requirements. This is possible when two requirements are structurally similar (identical

LHS), have overlapping domains and share the same target values. For example, sub-

requirements r1 = R10–1, r2 = R10–2, r3 = R11–1, and r4 = R12–2 are aggregated as

shown in constraints (19).∑
t∈T

∑
s∈Sit

lsxis = min
r∈Rsub

10,i

(bri) +
∑

r∈Rsub
10,i∪Rsub

11,î

grizri

(
i ∈

⋃
r∈Rsub

10

Dr ∩
⋃

r∈Rsub
11

Dr

)
(19)

We note that for this last aggregation, minr∈Rsub
10,i

(bri) = maxr∈Rsub
11,i

(bri) must apply.

In Section 6, we compare the performance of the basic model formulation (BF) of

Section 5.3 with the performance of the aggregated model formulation (AF):

(BF)

Min (1)

s.t. (2)− (9)

(10)− (12)

(13)− (15)

(AF)

Min (1)

s.t. (2)− (9)

(16), (19)

(13)− (15)

5.5 Optimal solution

Figure 4 shows an optimal schedule of the illustrative example. All the requirements

violations are listed in ascending order to their corresponding acceptance level.

Both model formulations (BF and AF) lead to the same schedule, and the corre-

sponding CPU times are negligible (<< 1 s).

6 Computational analysis

We conduct an experimental analysis to evaluate the performance of the proposed

approach. In Subsection 6.1, we describe the 27 problem instances that we derived from

real-world data. In Subsection 6.2, we use these instances to evaluate the performance

of the basic formulation (BF) and the aggregated formulation (AF).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 536 -

Week 1

Mon Tue Wed Thu Fri Sat Sun

Week 2

Mon Tue Wed Thu Fri Sat SunEmpl.

Ann B1 A2 AS3 A4 B5 A8 AS9 AS11 A12 A13 A14

Bob L2 B3 L4 B6 B7 L8 B9 L10 B13 B14

Dan A1 E2 E3 E4 A5 E8 A9 A10 B11 L12

Eva A3 A6 A7 A11 E12

Gil E1 E5 E9 E10 E11

Sub-requirements violations:

a r d
60 R6–1 i =Ann, t = 10
60 R6–1 i =Bob, t = 5
60 R9–1 i =Bob
70 R10–1 i =Ann
80 R9–1 i =Ann

Fig. 4 Optimal schedule

6.1 Test set

The planning horizon of each instance is four weeks which coincides with the planning

horizon of real-world instances. The requirements to be considered in each instance are

the same as presented in Table 1. This selection reflects the diversity of requirements

that emerge in real-world instances. Our test instances were constructed such that they

differ with respect to three complexity parameters:

– The number of available employees NE: We generated small-sized instances with

10 employees, medium-sized instances with 20 employees and large-sized instances

with 30 employees. For each employee, we randomly selected a target workload

from the set {80,88,. . . ,160}.
– The workload ratio WR: Given the target workloads of employees, the workload

ratio determines the number of eight-hour shifts to be performed. The number of

shifts is obtained by multiplying the sum of target workloads of all employees by

WR and dividing the result by 8 (the length of a shift). We generated instances

with a workload ratio of 0.9, 1, and 1.1. For each shift, we randomly determined the

start time and the set of employees who are qualified to perform it. It is ensured

that the start times of shifts are well distributed across the planning horizon.

– The decomposition factor DR: The decomposition factor determines the number of

kinks in the mapping functions of requirements R10, R11. We generated instances

with a decomposition factor of 2, 6 and 10. Requirement R9 is always decomposed

into three sub-requirements. All other soft requirements are decomposed into a

single sub-requirement.

The domain, target values and acceptance values of sub-requirements were defined ran-

domly within ranges derived from the real-world instances. In total, we generated 27

instances, one instance for each possible combination of the three complexity parame-

ters.

6.2 Numerical results

We applied the proposed approach with the basic formulation (BF) and the aggregated

formulation (AF) to the 27 problem instances described in the previous subsection.

Both formulations were implemented in AMPL and solved with the Gurobi Optimizer

5.6.3. All computations were performed on a standard PC with a 3.40GHz Intel i7

CPU and 4GB RAM. We prescribed a CPU time limit of 300 seconds per iteration.

The numerical results are presented in Tables 3 and 4. Columns two, three and

four of Table 3 contain the values of the complexity parameters of the corresponding

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 537 -

instance. Column five states the number of iterations that were performed. Note that

the number of iterations is equal to the number of different acceptance levels. Columns

six and seven and eight and nine list the results for the formulations (BF) and (AF),

respectively. For both formulations, we state the number of iterations that were solved

to optimality (# Opt.) and the required CPU time (CPU) in seconds. An instance is

solved to optimality only if all iterations were solved to optimality. These instances are

with an asterisk. Furthermore, in column ten we note which formulation leads within

the time limit to the better final schedule, i.e., a schedule with less sub-requirement

violations with a lower acceptance value. Thereby, a bar indicates that both schedules

are equally good. Note that, in contrast to formulation (BF), formulation (AF) has

solved instances 5 and 21 to optimality. Nevertheless the resulting schedules are equally

good.

Small- and medium-sized instances are solved to optimality in short CPU time by

both formulations. In total, formulation (AF) is able to solve 10 instances to optimality,

while formulation (BF) solves 8 instances to optimality. For those instances that were

solved to optimality by both models, formulation (BF) has an average CPU time

requirement of 51.8 sec, while formulation (AF) has an average CPU time requirement

of 45.9 sec. Finally, formulation (AF) generates for eight instances better schedules and

for only three instances worse schedules than formulation (BF).

BF AF Better schedule
Inst. NE WR DR #It.

#Opt. CPU #Opt. CPU obtained by

1 10 0.9 2 26 26 ∗ 17.6 26 ∗ 8.7 —
2 10 0.9 6 58 58 ∗ 41.9 58 ∗ 19.0 —
3 10 0.9 10 69 69 ∗ 8.8 69 ∗ 6.8 —
4 10 1 2 27 26 456.0 26 442.8 —
5 10 1 6 56 54 976.8 56 ∗ 357.6 —
6 10 1 10 73 72 488.0 73 ∗ 303.1 AF
7 10 1.1 2 27 27 ∗ 336.2 25 774.3 —
8 10 1.1 6 59 59 ∗ 10.4 59 ∗ 11.8 —
9 10 1.1 10 76 76 ∗ 44.2 76 ∗ 64.8 —

10 20 0.9 2 27 25 866.1 26 758.6 AF
11 20 0.9 6 62 61 542.1 60 791.1 —
12 20 0.9 10 71 71 ∗ 35.3 71 ∗ 26.2 —
13 20 1 2 28 27 785.6 27 728.0 AF
14 20 1 6 62 58 1,532.1 58 1,608.6 BF
15 20 1 10 79 77 1,140.6 76 1,231.5 —
16 20 1.1 2 28 22 1,957.5 22 1,956.1 AF
17 20 1.1 6 65 63 1,742.1 60 2,629.7 —
18 20 1.1 10 77 62 4,793.3 61 5,021.7 AF
19 30 0.9 2 28 28 ∗ 204.8 28 ∗ 184.1 —
20 30 0.9 6 64 57 2,726.2 56 2,769.3 —
21 30 0.9 10 79 78 771.8 79 ∗ 274.9 —
22 30 1 2 27 24 1,028.3 25 1,078.4 BF
23 30 1 6 66 63 1,250.6 63 1,215.1 AF
24 30 1 10 78 73 1,700.5 73 1,896.2 —
25 30 1.1 2 28 23 1,710.3 18 3,097.4 BF
26 30 1.1 6 64 59 2,498.2 58 2,276.6 AF
27 30 1.1 10 76 68 3,100.8 68 2,944.7 AF

Table 3 Numerical results of the models BF and AF for all instances

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 538 -

average #Viol. average CPU #Best #Inst. Opt.
Parameter #Inst.

BF AF BF AF BF AF BF AF

10 9 25.1 25.1 264 221 0 1 6 7

20 9 47.3 46.4 1,488 1,639 1 4 1 1NE

30 9 60.8 60.3 1,666 1,749 2 3 1 2

0.9 9 43.9 43.9 579 538 0 1 5 6

1 9 22.3 21.7 1,040 985 2 3 0 2WR

1.1 9 67 66.3 1,799 2,086 1 4 3 2

2 9 50.7 50.2 818 1,003 2 3 3 2

6 9 42.2 41.7 1,258 1,298 1 2 2 3DR

10 9 40.3 40.0 1,343 1,308 0 3 3 5

All instances 27 44.4 44.0 1,139 1,203 3 8 8 10

Table 4 Consolidated results w.r.t. the complexity parameters

In Table 4, columns one and two display the values of the complexity parameters

and column three indicates the number of instances with these complexity parameter

values. Columns four and five refer to the average number of violations per instance

(average #Viol) for the formulations (BF) and (AF), respectively. Columns six and

seven present the average required CPU time (average CPU) in seconds. Columns eight

and nine (#Best) contain the information how often each formulation obtained a better

final schedule within the time limit than the other formulation. Finally, columns ten and

eleven contain the number of instances that were solved to optimality (#Inst. Opt.).

On average formulation (BF) has 44.4 violations whereas formulation (AF) has

44 violations. The required CPU time is on average 64 seconds lower for formulation

(BF). Formulation (AF) requires more time in later iterations because formulation

(AF) generates in some iterations a better schedule, hence it has tighter restrictions

for the next iterations and consequently needs more CPU time. Parameters NE and

WR mainly drive the required CPU time. The number of employees NE defines the size

of an instance and the workload ratio WR the complexity. For a larger decomposition

factor (DR = 10) or a larger workload ratio (WR = 1.1), formulation (AF) is superior

and generates better schedules.

7 Conclusions

We have presented a lexicographic goal programming approach for a real-world staff

assignment problem. The problem consists of assigning employees to work shifts sub-

ject to hard and soft requirements. Unlike existing lexicographic goal programming

approaches which rely on a ranking of requirements, our approach is able to account

for trade-offs between requirements. To this end, we decompose the soft requirements

into sets of sub-requirements. The ranking is then specified for the sub-requirements

according to the preferences of the decision maker. To reduce the size of the resulting

goal programming formulation, we propose techniques to aggregate constraints. The

applicability of the approach is demonstrated for a collection of problem instances that

were derived from real-world data. The approach can solve small- and medium-sized

instances to optimality in short CPU times. The aggregation techniques improved the

performance of the approach for instances with a large number of sub-requirements.

The software provider involved in this research benefits from our research in two ways.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 539 -

First, the solutions generated by our approach enable the provider to evaluate the cur-

rent performance of its software. Second, the provider gains insights into the structure

of optimal solutions which is helpful for improving the performance of its software.

In future research, we will extend the approach to allow for a fair distribution

of sub-requirement violations among employees. This extension can be incorporated

by imposing soft upper bounds on the number of violations per employee. Another

direction for further research is the development of BLP-based heuristics for large-

scale instances. The idea is to reduce the search space in each iteration by fixing a part

of the decision variables.

References

1. Beaulieu, H., Ferland, J. A., Gendron, B., Michelon, P., A mathematical programming
approach for scheduling physicians in the emergency room, Health Care Management Science,
3, 193–200 (2000)

2. Berrada, I., Ferland, J. A., Michelon, P., A multi-objective approach to nurse scheduling
with both hard and soft constraints, Socio-Economic Planning Sciences, 30, 183–193 (1996)

3. Chang, C.-T., Mixed binary interval goal programming, Journal of the Operational Research
Society, 57, 469–473 (2006)

4. Chang, C.-T., Lin, T.-C., Interval goal programming for S-shaped penalty function, Euro-
pean Journal of Operational Research, 199, 9–20 (2009)

5. Charnes, A., Collomb, B., Optimal economic stabilization policy: Linear goal-interval pro-
gramming models, Socio-Economic Planning Sciences, 6, 431–435 (1972)

6. Charnes, A., Cooper, W. W., Management models and industrial applications of linear
programming, John Wiley & Sons (1961)

7. Charnes, A., Cooper, W. W., Ferguson, R. O., Optimal estimation of executive compensa-
tion by linear programming, Management Science, 1, 138–151 (1955)

8. Charnes, A., Cooper, W. W., Harrald, J., Karwan, K. R., Wallace, W. A., A goal interval
programming model for resource allocation in a marine environmental protection program,
Journal of Environmental Economics and Management, 3, 347–362 (1976)

9. Ignizio, J. P., Optimal maintenance headcount allocation: an application of Chebyshev Goal
Programming, International Journal of Production Research, 42, 201–210 (2004)

10. Jones, D. F., Tamiz, M., Expanding the flexibility of goal programming via preference
modelling techniques, Omega, 23, 41–48, (1995)

11. Jones, D. F., Tamiz, M., Goal programming in the period 1990-2000, in: Ehrgott, M.,
Gandibleux, X. (eds.), Multiple criteria optimization - state of the art annotated biblio-
graphic surveys, Kluwer Academic Publishers, Dordrecht, 129–170 (2002)

12. Kvanli, A. H., Financial planning using goal programming, Omega, 8, 207–218 (1980)
13. Romero, C., A general structure of achievement function for a goal programming model,

European Journal of Operational Research, 153, 675–686 (2004)
14. Tamiz, M., Jones, D. F., El-Darzi, E., A review of goal programming and its applications,

Annals of Operations Research, 58, 39–53 (1995)
15. Van den Bergh, J., Bel̈ıen, J., De Bruecker, P., Demeulemeester, E., Personell scheduling:

a literature review, European Journal of Operational Research, 226, 367–385 (2013)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 540 -

MISTA 2015

A list-scheduling approach for the planning of assessment
centers

Adrian Zimmermann · Norbert Trautmann

Abstract Many companies run assessment centers in order to select candidates for

open job positions. During an assessment center, each candidate performs a set of

exercises; thereby, the candidates are evaluated by so-called assessors. Additional con-

straints such as preparation and evaluation times, participation of actors in the ex-

ercises, no-go constraints, and time windows for lunch breaks contribute to the com-

plexity of planning such assessment centers. We propose a list-scheduling approach

to solve this planning problem heuristically; to this end, we develop novel procedures

for devising an appropriate scheduling list and for generating a feasible schedule. In

an experimental performance analysis, we applied this approach to a set of problem

instances that represent or are devised from real cases. It turns out that the approach

generates optimal or near-optimal schedules within relatively short CPU times.

1 Introduction

Empirical evidence indicates that human capital is a key success factor for a firm’s per-

formance (cf., e.g., [3]). The task of developing the human capital is performed by the

firm’s human resources managers. E.g., they must recruit new employees from a pool

of candidates. Such personnel decisions require an evaluation of the candidates’ skills,

know-how, and personality. To obtain these evaluations, human resources managers

often conduct assessment centers (cf., e.g, [6]). During an assessment center, the can-

didates perform a series of exercises during which they are observed and evaluated by

so-called assessors, e.g., usually managers or psychologists. Based on the observations

made during the exercises, the assessors derive an overall evaluation for each candidate.

The planning problem discussed in this paper consists of determining (1) the start

times of all exercises and lunch breaks of such an assessment center, and (2) a feasible

assignment of assessors and other personnel, such as actors, to exercises. The objective

Adrian Zimmermann
University of Bern
E-mail: adrian.zimmermann@pqm.unibe.ch

Norbert Trautmann
University of Bern
E-mail: norbert.trautmann@pqm.unibe.ch

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 541 -

is to minimize the duration of the assessment center. Each candidate should be observed

by approximately half the number of all available assessors. So-called no-go restrictions

prohibit the assignment of specific assessors to a candidate. Finally, the requirements

for candidates, assessors, and other personnel can vary over the course of an exercise.

To the best of our knowledge, this planning problem has not been treated in the

literature. Related planning problems are the multi-mode resource-constrained project

scheduling problem (MRCPSP) and the timetabling problem. Timetabling deals with

constructing timetables for schools or universities (cf., e.g., [9]). In timetabling, it is

assumed that all classes have the same duration; this is not the case for the exercises

of the assessment center. In this work, we interpret the assessment center planning

problem as the extension of an MRCPSP. The exercises performed by each candidate

correspond to the project activities, and the assessment center participants can be

interpreted as renewable resources, i.e., resources with a constant capacity in each

time period of the planning horizon. Each feasible assignment of assessors to an exercise

corresponds to an alternative execution mode of the project activity. In the literature,

only a few variants of the MRCPSP with specific mode-assignment constraints have

been studied (cf. [4], [5], [7], and [8]); none of these variants corresponds to the assessor-

assignment constraints of the planning problem discussed here.

In this paper, we propose a new list-scheduling approach for planning assessment

centers heuristically. Our heuristic is based on a list-scheduling approach (cf., e.g., [1]):

first, we order the activities in a list and apply randomized sampling; then, we schedule

the activities sequentially using a novel schedule generation scheme (SGS). We devise

novel criteria for ordering the activities in the list, and for assigning assessors to the

activities. We apply our approach to four real-world instances and to 30 test instances

that we constructed based on real-world data. Our computational results indicate that

our heuristic approach generates optimal or near-optimal schedules within short CPU

time.

The remainder of this paper is structured as follows. In Section 2, we describe the

assessment center planning problem and present an illustrative example. In Section

3, we present our list-generating criteria and the SGS. In Section 4, we discuss our

computational results. In Section 5, we give some concluding remarks.

2 Planning problem

In Section 2.1, we state the planning problem discussed in this paper. In Section 2.2,

we provide an illustrative example.

2.1 Overview

The assessment center planning problem discussed in this paper has been reported

to us by a Swiss-based service provider in the human resources sector. This service

provider organizes assessment centers for firms.

An assessment center takes place during one day; there is no prescribed maximum

length of the assessment center. There are three different groups of participants: (1)

the candidates, who need to perform a series of exercises, (2) the assessors, who observe

and evaluate the candidates during those exercises, and (3) the actors, who in exercises

designed as role-plays represent, e.g., an unhappy customer with whom the candidate

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 542 -

must interact with. To improve the comparability between the overall evaluations,

each candidate must perform the same exercises. Each candidate has to perform each

exercise exactly once. Depending on the exercise type, one or two assessors must be

present.

When assigning assessors to candidates the following restrictions must be taken into

account. To ensure an objective overall evaluation, each candidate should be observed

by at least half the number of assessors rounded down. Do to fairness considerations,

each candidate should be observed by approximately the same number of assessors.

Hence, no candidate should be observed by more than half the number of assessors

rounded up plus one. Once an assessor has observed a candidate, there is no limit

on how many more times this assessor can observe that same candidate. We refer to

these restrictions as the 50%-assignment rule. Additionally, there might exist so-called

no-go relationships that prohibit the assignment of an assessor to a candidate. Such

relationships arise if the candidate and the assessor know each other personally. We

assume that an assignment of the assessors to the candidates exists which is feasible

w.r.t. all these constraints.

The requirements for candidates, assessors, and actors can vary over the course of

an exercise. Exercises often include a preparation time during which only the candidate

is required. During the actual execution of the exercise, the candidate is then joined

by the assessors and, if required, the actor. After the execution, the assessors and

actors in general require some time to record their observations; this time is called

evaluation time and can be different for assessors and actors. Figure 1 illustrates these

time-varying requirements. The grey-shaded bars represent the time during which the

participants are occupied over the course of an exercise.

Besides exercises, each candidate must have a lunch break within a prescribed time

window.

︷ ︸︸ ︷............................

preparation ︷ ︸︸ ︷...................

execution ︷ ︸︸ ︷......................................

evaluation

...︸ ︷︷ ︸
total duration

Candidate

Assessor

Actor

- time

Fig. 1 Varying requirements for candidates, assessors, and actors during an exercise

2.2 Illustrative example

In this section we illustrate the planning problem with an example that is based on

real-world data. The number of participants and exercises, and the no-go relationships

are shown in Table 1. The lower limit on the number of different assessors that have

to be assigned to each candidate is 2, and the upper limit is 3.

The data of the exercises and the lunch break is listed in Table 2. The duration and

the preparation, execution, and evaluation times are stated in 5-minute time periods.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 543 -

Candidates Assessors Actors Exercises No-go relationships
{C1,C2,C3} {A1,A2,A3,A4} {R1} {E1,E2,E3,E4} (C2,A4)

Table 1 Illustrative example: main data

Only the candidates have a lunch break and cannot be involved in any other activity

during the lunch break. The earliest possible and the latest possible start times of the

lunch break are the time periods 30 and 78, respectively.

Exercise E1 E2 E3 E4 Lunch break
Total duration 18 29 16 6 6
Preparation time 8 19 0 0 -
Execution time 8 8 12 6 -
Evaluation time 2 2 4 0 -
Required # of assessors 2 2 2 1 -
Required # of actors 1 - - - -

Table 2 Illustrative example: exercise and lunch break data

Since there are four exercises which have to be performed by each of the three

candidates once, there is a total of 12 activities. Table 3 shows the indices of these

activities. The lunch breaks for the candidates are denoted with LB.

Exercise E1 E2 E3 E4 Lunch break
Candidate C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3
Activity 1 2 3 4 5 6 7 8 9 10 11 12 LB LB LB

Table 3 Illustrative example: activities

3 List-scheduling approach

In this section, we present our list-scheduling approach. We model each candidate and

each assessor as a renewable resource with a capacity of one, and we model the set of

actors as a renewable resource with a capacity that equals the number of actors. We

divide the planning horizon into 5-minute time periods.

An overview of the procedure is depicted as a flowchart in Figure 2. First, the

activities are ordered in a list by applying appropriate sorting criteria (cf. Section 3.1).

Then, the order of the activities is modified by applying a random sampling method

(cf. [2]), i.e., with some low probability, the order of two activities that are in adjacent

positions is switched. Based on the order of the activities in the list, the activities

and lunch breaks are then scheduled with the help of a schedule generation scheme (cf.

Section 3.2). In Section 3.3, we describe how the assessors are assigned to the activities.

In Section 3.4, we depict two schedules for the illustrative example obtained by our

list-scheduling approach.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 544 -

Start list-scheduling

Determine order
of activities in list

Apply random sampling

Randomized
activity list

Apply serial sched-
ule generation scheme

Feasible
schedule

Stop list-scheduling

Fig. 2 Flowchart: list-scheduling procedure

3.1 List generation

Priority rules proposed in the literature are not appropriate for determining the order

of the activities of an assessment center, since (1) there are no precedence constraints

between the exercises, and (2) there is no difference between the activities that refer

the same exercise. In what follows, we derive novel criteria for ordering the activities

in the list.

The list-generation procedure is depicted as a flowchart in Figure 3. First, the

number of positions in the list L is calculated by multiplying the number of exercises

E with the number of candidates C. Next, the candidates 1, . . . , C are assigned E times

to the positions 1, . . . , L. Finally, the exercises are assigned to the positions 1, . . . , L

such that each exercise is included once for each candidate.

Determine order
of activities in list

Calculate number
of positions L:=EC

Assign E times candidates
1, . . . , C to positions 1, . . . , L

Assign exercises to
positions 1, . . . , L

Order of activi-
ties determined

Fig. 3 Flowchart: list-generation procedure

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 545 -

The list consists of three parts, for which the following criteria apply (cf. Figure 4).

If these criteria are not sufficient to distinguish between exercises, we use the activity

index as a tie-breaker.

– To the last C positions of the list, an exercise with the shortest duration is assigned.

By scheduling this activity last, some waiting time of the participants might be

reduced.

– To the positions in the first part of the list, an exercise with the shortest preparation

time is assigned. The number of positions where this criteria applies corresponds to

the number of activities that can be performed simultaneously w.r.t. the number

of assessors required. By scheduling the corresponding activities first, some of the

waiting time of the assessors can be reduced.

– To the positions in the middle part of the list, the exercises are assigned such that

the distance between two positions of the same exercise is maximized. As secondary

criterion, either the minimum or the maximum preparation time is used. With each

of the two secondary criteria, a list is generated. By scheduling activities referring

to different exercises such that they run (partially) in parallel, some candidates can

already begin with the preparation of an exercise, while the remaining candidates

are occupied with the execution of another exercise.

The two alternative lists for the illustrative example are depicted in columns four and

six of Table 4. The dashed lines indicate the three different parts of the list.

Position 1 2 ... L
Candidate 1 2 C 1 2 C 1 2 C 1 2 ... C

Criteria
Shortest pre-

Largest distance between same exercise
Shortest

paration time duration

Fig. 4 Criteria for assigning exercises to positions

Position Candidate Secondary criteria
maximum preparation time minimum preparation time
exercise activity exercise activity

1 C1 E3 7 E3 7
2 C2 E3 8 E3 8
3 C3 E2 6 E1 3
4 C1 E1 1 E2 4
5 C2 E2 5 E1 2
6 C3 E1 3 E2 6
7 C1 E2 4 E1 1
8 C2 E1 2 E2 5
9 C3 E3 9 E3 9

10 C1 E4 10 E4 10
11 C2 E4 11 E4 11
12 C3 E4 12 E4 12

Table 4 The two alternative lists for the illustrative example

3.2 Serial schedule generation scheme

The flowchart of the serial schedule generation scheme is depicted in Figure 5. Based

on their order in the list, the activities are selected sequentially and scheduled as early

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 546 -

as possible. To this end, the earliest resource-feasible start time tS is determined. It

may occur that when the selected activity is scheduled at tS , it is no longer possible

to schedule the lunch break within its time window. In that case, the corresponding

lunch break is scheduled first, and tS is calculated anew for the selected activity. Once

all activities in the list have been scheduled, all remaining lunch breaks are scheduled.

Start serial schedule
generation scheme

Select activity based
on position in list

Determine earliest resource-
feasible activity start time tS

Lunch-break
time window

violated?

Schedule lunch-break
as early as possible

Schedule selected
activity at tS

All activities
in list

scheduled?

Schedule all remain-
ing lunch breaks

Stop serial schedule
generation scheme

Yes

No

No Yes

Fig. 5 Flowchart: schedule generation scheme

3.2.1 Earliest resource-feasible start time

The flowchart of the procedure that determines the earliest resource-feasible start time

tS for the selected activity is depicted in Figure 6. The procedure starts by selecting

the first time period of the planning horizon. From the selected time period onwards,

the availability of the required candidate and, in the case of a role-play exercise, the

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 547 -

actors is determined. When determining the availabilities, only those time periods are

considered during which the respective participants have to be present.

Once the candidate (and, in the case of a role-play exercise, an actor) is available, a

sub-procedure for the assessor assignment is initiated (see Section 3.3). If the assessor

assignment is successful, tS is set to the currently selected time period and the pro-

cedure stops. Otherwise, the next time period of the planning horizon is selected, and

the availabilities of the participants are examined anew.

Determine ear-
liest resource-

feasible start time

Select first time period
of planning horizon

Candidate
(and actor)
available?

Select next time period
of planning horizon

Assessor assignment

Assessor
assignment
successful?

Earliest resource-
feasible start

time determined

No

Yes

Yes

No

Fig. 6 Flowchart: determine earliest resource-feasible start time

3.2.2 Lunch breaks

Before scheduling an activity at tS , the following procedure determines whether the

lunch-break time window is violated. Assuming that the activity is scheduled at tS ,

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 548 -

the candidate’s resulting availability is determined throughout the lunch-break time

window. If it is impossible to schedule the lunch break within this time window, the

lunch break is scheduled before the activity.

The above-described situation might never arise and, thus, some lunch breaks might

never be considered during the scheduling of the activities in the list. After all activities

have been scheduled, all remaining lunch breaks are scheduled at their earliest resource-

feasible start times.

Scheduling the lunch break after the completion of the last activity might increase

the duration of the schedule unnecessarily. Starting with the candidate that has the

smallest index value, for each candidate we determine whether the lunch break is

performed after the last activity. If the schedule duration is reduced, we switch the

order of that last activity and the lunch break. The reduction of a schedule’s duration

by such a switch is illustrated in Figure 7. The light grey bars correspond to activities

performed by the same candidate. The dark grey bar represents the time during which

the assessor is occupied with another candidate’s activity.

Candidate

Assessor

Candidate

Assessor -

LB

-

LB

Fig. 7 Lunch break switch

3.3 Assessor assignment

The flowchart of the procedure that assigns the assessors to an activity is depicted in

Figure 8. First, the assessors are ordered randomly, i.e., the assessor assignment may

vary in different runs of the procedure. Then, the assessors are selected sequentially

based on that random order. An assessor is temporarily assigned if (1) the assignment

does not violate the lower and upper limit of the 50%-assignment rule, (2) there is no

no-go relationship with the required candidate, and (3) the assessor is available.

The procedure stops if the required number of assessors has been assigned and the

temporarily assignments are fixed, or if all assessor have been examined. If the required

number of feasible assessors could not be assigned, any temporarily assignments to the

selected activity are reversed.

Whether an assessor assignment violates the 50% assignment rule depends on which

assessors have observed the required candidate thus far. The following two cases and

corresponding feasibility criteria are considered.

a) The number of different assessors that observe the required candidate equals the

upper limit. Only assessors that have already observed the required candidate at

least once are feasible.

b) The number of different assessors that observe the required candidate lies below

the lower limit. Only assessors that have not yet observed the required candidate

are feasible.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 549 -

In any other case, no additional feasibility criteria apply. Note that the criteria in a)

or b) might become active after the first assessor has been assigned.

Start assessor
assignment

Determine random
order of assessors

Select first asses-
sor in that order

50%-
assignment

rule
violated?

No-go re-
lationship
violated?

Assessor
available?

Temporarily assign
assessor to activity

Required
number of
assessors
assigned?

All
assessors

examined?

Undo any tempo-
rary assignments

Select next assessor

Fix temporary
assignments

Assessor
assignment
successful

Assessor
assignment

not successful

Stop assessor
assignment

No

No

Yes

Yes

No

Yes

No

Yes

Yes

No

Fig. 8 Flowchart: assign required number of assessors to activity

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 550 -

- t
71

C1

C2

C3

A1

A2

A3

A4

R1

LB
LB

LB

7

7

7

8

8

8

6

6
6

1

1
1

1

5

5
5

3

3
3
3

4

4
4

2

2
2

2

9

9
9

10

10

11

11

12

12

- t
70

C1

C2

C3

A1

A2

A3

A4

R1

LB
LB
LB

7

7

7

8

8
8

6

6
6

1

1
1

1

5

5
5

3

3
3
3

2

2
2

2

4

4
4

9

9
9

10

10

11

11

12

12

Fig. 9 Illustrative example: schedules obtained by our SGS without random sampling (left)
and with random sampling (right)

3.4 Results for the illustrative example

For the illustrative example, we obtained an optimal schedule with a duration of 70

time units by applying the mixed-integer linear program (MILP) presented in [10].

Two alternative schedules for the illustrative example obtained by our list-scheduling

approach are depicted in Figure 9. The duration of the best schedule generated with the

list based on the maximum-preparation-time criteria and random assessor assignment

is 71 time units. With the random sampling approach, an optimal schedule is generated.

4 Computational results

We have implemented the list-scheduling approach presented in Section 3 in Visual

Basic for Applications (VBA) in Microsoft Excel. We compare our approach against

the MILP presented in [10]. All calculations were performed on a desktop PC with an

Intel Core i5 CPU with 2.7GHz and 4GB RAM.

In Section 4.1, we describe the test instances that we used in our computational

study. In Section 4.2, we discuss our computational results.

4.1 Test set

Four real-world instances of our test set were provided by the Swiss-based service

provider. All these instances include five different exercises and one lunch break for

each candidate. The number of candidates (C), assessors (A), actors (R), exercises

(E), and activities (I) of the instances are listed in the first columns of Table 5.

Based on the data of the real-world instances, we have generated 30 additional test

instances. We have designed the largest test instance (test instance 30) such that it

corresponds to real-world instance 4, except that test instance 30 contains one addi-

tional no-go relationship. We have systematically varied the number of candidates from

four to six and the number of assessors from five to nine. For each combination of the

different number of candidates and assessors, we have generated an instance with four

and an instance with five exercises including one or two role-plays and two or three

actors, respectively. Each test instance contains one no-go relationship.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 551 -

4.2 Experimental design and results

For the solution of the MILP, we have used the Gurobi Optimizer 5.6 as solver. We have

limited the CPU time of the solver to 3’600 seconds for the real-world instances, and to

1’200 seconds for the test instances. For each of the two activity lists, we have generated

200 schedules with the random sampling method. Hence, per instance, our procedure

has generated 400 schedules. After some preliminary tests, we set the probability for

switching two activities adjacent in the list to 15%.

The results of our analysis are shown in Table 5. The duration of the best schedules

obtained is displayed in the columns titled with [dur]. The column titled with [gap]

shows the MIP gap of the solution obtained by the MILP. The entry ∗ indicates that

the instance was solved to optimality within the prescribed time limit. The column

[CPU] shows after how many seconds the MILP obtained the best solution. The last

column [CPU] shows the total running time of our algorithm in seconds. The columns

[max. prep.] and [min. prep.] show the best results obtained with the lists generated

by the maximum-preparation-time criteria and the minimum-preparation-time criteria,

respectively. The best results obtained per instance are highlighted in bold.

First, we ran our heuristic without the random sampling procedure. We still per-

form 200 runs for each list, due to the possibility of randomly assigning assessors to

the activities. The results are summarized in the column [no random sampling]. On av-

erage, the list generated with the maximum-preparation-time criteria performs better

than the list generated with the minimum-preparation-time criteria. Seven test in-

stances and real-world instance 3 are solved better with the latter criteria. The column

[random sampling] shows that the random sampling procedure can improve a solution

considerably. E.g., with the minimum-preparation-time criteria, the duration obtained

for test instance 21 is 114 with and 122 without random sampling.

Compared to the MILP, the solution to the largest real-world instance obtained

by our procedure is 5 time units shorter. The solutions to the remaining real-world

instances are slightly longer, but they are obtained much faster. E.g., for real-world

instance 3, the MILP obtains a solution that is one time unit shorter than the heuristic

solution. The time required to obtain that solution is more than 50 minutes whereas

the heuristic only requires 20 seconds.

5 Conclusions

In this work, we considered a real-world assessment center scheduling problem. We

developed a list-scheduling approach for solving this problem heuristically. We applied

our approach to solve real-world instances as well as several problem instances that

were constructed based on real-world data. We showed that our approach consistently

generates good schedules within a short amount of computational time.

Sometimes assessment centers include group exercises that are performed by mul-

tiple candidates simultaneously in the presence of several assessors. The list-scheduling

approach presented in this paper should be extended by procedures for forming these

groups and scheduling the activities accordingly. Additionally, we will integrate the

presented approach into an MIP-based heuristic.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 552 -

References

1. Adam, T. L., Chandy, K. M., Dickson, J. R., A comparison of list schedules for parallel
processing systems, Communications of the ACM, 17, 685–689 (1974)

2. Hartmann, S. Project scheduling with multiple modes: a genetic algorithm, Annals of Op-
erations Research, 102, 111–135 (2001)

3. Huselid, M. A., The impact of human resource management practices on turnover, produc-
tivity, and corporate financial performance, Academy of Management Journal 38, 635–672
(1995)

4. Li, H., Womer, K., Modeling the supply chain configuration problem with resource con-
straints, International Journal of Project Management, 26, 646–654 (2008)

5. Salewski, F., Schirmer, A., Drexl, A., Project scheduling under resource and mode identity
constraints: model, complexity, methods, and application, European Journal of Operational
Research, 102, 88–110 (1997)

6. Spychalski A. C., Quinones M. A., Gaugler B. B., Pohley K. (1997): A survey of assessment
center practices in organizations in the United States, Personnel Psychology, 19, 195–203
(1997)

7. Tareghian, H. R., Taheri, S. H., A solution procedure for the discrete time, cost and quality
tradeoff problem using electromagnetic scatter search, Applied Mathematics and Computa-
tion, 190, 1136–1145 (2007)

8. Tiwari, V., Patterson, J. H., Mabert, V. A., Scheduling projects with heterogeneous re-
sources to meet time and quality objectives, European Journal of Operational Research,
193, 780–790 (2009)

9. de Werra, D., An introduction to timetabling. European Journal of Operational Research,
19, 151–162 (1985)

10. Zimmermann, A., Trautmann, N., Scheduling of assessment centers: an application of
resource-constrained project scheduling, in: Fliedner, T., Kolisch, R., Naber, A. (eds.), Pro-
ceedings of the 14th International Conference on Project Management and Scheduling, 263–
266 (2014)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 553 -

In
st
a
n
c
e
s

M
IL

P
H
e
u
ri
st
ic

n
o
ra

n
d
o
m

sa
m
p
li
n
g

ra
n
d
o
m

sa
m
p
li
n
g

ra
n
d
o
m

sa
m
p
li
n
g

m
a
x
.
p
re
p
.

m
in
.
p
re
p
.

m
a
x
.
p
re
p
.

m
in
.
p
re
p
.

c
o
m
b
in
a
ti
o
n

re
a
l-
w
o
rl
d

C
A

R
E

I
d
u
r.

g
a
p

[%
]

C
P
U

d
u
r.

d
u
r.

d
u
r.

d
u
r.

C
P
U

1
7

1
0

2
5

4
2

8
7

8
.0

2
6
1
7

9
0

9
3

9
1

9
2

1
2

2
1
1

1
1

3
5

6
6

1
1
9

8
.3

1
7
8
8

1
1
5

1
1
6

1
1
5

1
1
4

3
6

3
9

1
1

3
5

5
4

9
7

6
.3

3
1
5
6

1
0
0

9
9

9
8

9
9

2
0

4
6

9
3

5
3
6

8
5

3
.6

6
2
0

8
6

9
5

8
6

8
8

8
te
st

se
t

C
A

R
E

I
d
u
r.

g
a
p

[%
]

C
P
U

d
u
r.

d
u
r.

d
u
r.

d
u
r.

C
P
U

1
4

5
2

4
2
0

7
5

4
.0

3
5

7
9

7
7

7
9

7
7

3
2

4
6

2
4

2
0

6
9

2
.9

6
1

7
0

7
5

6
9

7
5

3
3

4
7

2
4

2
0

6
9

2
.9

1
7
3

7
3

6
9

7
3

3
4

4
8

2
4

2
0

6
7

∗
2

6
7

6
7

6
7

6
7

3
5

4
9

2
4

2
0

6
7

∗
1

6
7

6
7

6
7

6
7

3
6

5
5

2
4

2
5

9
2

2
.2

1
5

1
0
1

9
8

9
2

9
2

4
7

5
6

2
4

2
5

7
3

8
.0

1
3
9

7
9

7
5

7
5

7
5

4
8

5
7

2
4

2
5

7
1

5
.6

2
9

7
3

7
3

7
3

7
3

4
9

5
8

2
4

2
5

6
9

2
.9

1
4

7
5

7
5

6
9

7
5

4
1
0

5
9

2
4

2
5

6
9

2
.9

1
7
3

7
3

6
9

6
9

4
1
1

6
5

2
4

3
0

1
1
0

1
.8

7
7
7

1
1
4

1
1
1

1
1
1

1
0
8

6
1
2

6
6

2
4

3
0

8
4

7
.1

5
8
6

8
5

8
5

8
4

8
3

6
1
3

6
7

2
4

3
0

7
9

8
.9

4
1
5

7
9

7
9

7
9

7
9

6
1
4

6
8

2
4

3
0

7
1

5
.6

5
5

7
5

7
5

7
5

7
5

6
1
5

6
9

2
4

3
0

7
1

5
.6

1
6

7
3

7
3

7
3

7
3

6
1
6

4
5

3
5

2
4

9
7

9
.3

9
0

1
0
2

9
8

9
8

9
4

4
1
7

4
6

3
5

2
4

8
2

2
.4

7
8
2

8
9

8
2

8
9

4
1
8

4
7

3
5

2
4

8
2

2
.4

8
8
2

8
7

8
2

8
7

4
1
9

4
8

3
5

2
4

8
0

∗
1
4

8
0

8
0

8
0

8
0

4
2
0

4
9

3
5

2
4

8
0

∗
2

8
0

8
0

8
0

8
0

4
2
1

5
5

3
5

3
0

1
1
3

2
.7

1
2
8

1
1
9

1
2
2

1
1
2

1
1
4

6
2
2

5
6

3
5

3
0

9
0

1
1
.1

4
9
4

9
2

9
2

9
4

9
2

6
2
3

5
7

3
5

3
0

8
5

5
.9

5
9
2

8
9

8
8

8
8

8
8

6
2
4

5
8

3
5

3
0

8
2

2
.4

2
1

8
2

8
9

8
2

8
9

6
2
5

5
9

3
5

3
0

8
2

2
.4

5
6

8
2

8
7

8
2

8
7

6
2
6

6
5

3
5

3
6

1
3
7

3
.7

5
2
2

1
3
8

1
4
0

1
3
4

1
3
2

8
2
7

6
6

3
5

3
6

1
0
4

8
.7

6
3
7

1
0
3

1
0
1

1
0
5

1
0
1

8
2
8

6
7

3
5

3
6

9
8

9
.2

2
5
8

1
0
2

9
7

9
6

9
6

8
2
9

6
8

3
5

3
6

8
8

9
.1

7
0
0

9
0

9
1

8
9

9
1

8
3
0

6
9

3
5

3
6

8
5

5
.9

6
2
0

8
6

9
5

8
6

8
8

8

T
a
b
le

5
C

o
m

p
u

ta
ti

o
n

a
l

re
su

lt
s

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 554 -

MISTA 2015

Home Health Care Scheduling: A Case Study

Zhi Yuan · Armin Fügenschuh

Abstract This article provides a case study on the problem of scheduling nurses for home
health care on a weekly basis. The list of health care tasks are available before the start of the
week. Each client may require multiple visits per week, and they can specify the preferred
day and the time window on each preferred day that they expect a visit. Besides, certain
visits require a minimum number of days’ difference in between. The nurse may also spec-
ify the preferred working day and the maximum working hours. The optimal schedule to be
found should minimize the personnel cost as well as the total working time, without compro-
mising the service quality. This problem is a combination of the staff rostering problem that
consists in assigning health care tasks to a competent nurse on the appropriate day without
exceeding her maximum working hours, and the vehicle routing problem with time win-
dows, where an optimal route for each day’s scheduled visits should be found respecting the
time windows. We formulate this problem as an integer linear programming model based on
the multi-commodity network flow formulation, and develop also problem specific greedy
construction and local search approaches for it. The scalability of different approaches are
studied, and a real-world instance is used for validating our proposed approach. An estimate
of at least 10% cost reduction potential is observed comparing with the current manual plan.

1 Introduction

The health care service system in Germany and many other countries is facing increasing
costs due to the aging population. In this work in cooperation with a local health care service
provider in medium-size town (150,000 inhabitants) in Germany, we focus on the specific
field of home health care, i.e., visiting and providing medical services to clients at home.
These medical services range from cleaning, personal hygiene to some medical treatments,
including blood pressure measuring, medication prescription, injections and so on.

The home health care scheduling can be regarded as a combination of staff rostering
problem [10] and a vehicle routing problem (VRP) with time windows [8]. On the one side,
one has to assign weekly visits to nurses with sufficient competence, following the preferred

Zhi Yuan and Armin Fügenschuh
Professorship of Applied Mathematics, Department of Mechanical Engineering, Helmut Schmidt University
/ University of the Federal Armed Forces, Hamburg, Germany
E-mail: {yuanz,fuegenschuh}@hsu-hh.de

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 555 -

days specified by both the nurses and clients, without exceeding the nurse maximum work-
load. On the other side, the workload or the working time of each nurse depends on how fast
one can arrive from one client’s home to another client’s home within each client’s specified
time slots on each of their preferred days. Besides, different from most of the existing home
health care scheduling problems in the literature, our scheduling task is on a weekly basis.
This is because certain medical treatments require a minimum day difference in between.
For example, the insulin injections of certain clients need to be given twice per week, with
three days difference in between. This inter-visit day difference is also considered in our
optimization process.

In this preliminary case study, the optimization objective is to cover all the weekly client
visits with minimal operating cost, especially the personnel size, and also to minimize the
nurses’ total workload by an effective routing procedure. This should be achieved without
the loss of the service quality, for example, sufficient treatment duration should be guaran-
teed, and the client-specified day and time slots should be obeyed as hard constraint.

This weekly based home health care scheduling problem is formulated as an integer
linear programming (ILP) model as a multi-commodity flow problem. Besides, a problem
specific greedy construction method is developed and a local search procedure is applied
to further improve the constructed solution. The parameters of the algorithm are automati-
cally adapted during the algorithm run, to obtain an instance-specific best parameter setting.
Furthermore, the solution found by the heuristic approach is also input as an initial upper
bound for a commercial ILP solver to speed up the branch-and-bound process. Real-world
instances with up to 90 patients and 460 weekly treatments have been used to validate our
approach.

The rest of the article is organized as follows. Section 2 provides a brief literature
overview on the home health care scheduling problem. This problem will be described in
more details in Section 3, and will be formulated as an ILP model in Section 4. The primal
heuristics are presented in Section 5. Section 6 is dedicated to the experimental setup and
the computational results for the real-world instances from our industrial partner. Finally,
Section 7 provides some concluding remarks and discussions for potential future directions.

2 Literature Review

In general, the home health care scheduling problem belongs to a broader class of problems
called workforce scheduling and routing problem, see for example [5] for a literature sur-
vey. Such problems can be regarded as a combination of staff rostering problem [10] and a
vehicle routing problem (VRP) with time windows [8]. Particularly from the staff rostering
aspect, it has many things in common with the nurse rostering and scheduling problem [6,
4] in terms of skill category, shift type, and time related constraints. However, the home
health care scheduling problem has the further requirement of a routing task from patient
to patient. There exists also works that focus only on the routing part of the home health
care scheduling problem, for example, Kergosien et al. [14] modelled it into a multiple trav-
eling salesman problem, and solved the resulting integer linear programming model by a
branch-and-cut approach.

Begur et al. [2] presented the use of a spatial decision support system to schedule and
route home health care nurses in Birmingham, Alabama, USA. The system integrates geo-
graphic information system with scheduling heuristics and databases, and it is reported an
over 20,000 US Dollars saving annually for travel expenses and scheduling preparation, and

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 556 -

it helps improve the balance of work among nurses. A saving-type route-building heuris-
tic is proposed and described, and a route improvement is done manually through a visual
interactive system.

Cheng and Rich [7] formulated the home health care scheduling problem as a multiple
depot vehicle routing problem with time windows. Both full-time and part-time nurses are
considered, and each nurse starts and ends their daily service from their home. The lunch
break problem is considered by adding an additional lunch node into the scheduling graph.
Two mixed integer programming models were presented, and were reported to be able to
solve by CPLEX problems of size up to 10 patients. A two-phase heuristic is also developed,
using a randomized greedy algorithm to construct a possibly infeasible solution in the first
phase, and then improve it by a problem-specific local search in the second phase.

Eveborn et al. [11] introduced a decision support software, developed to aid the staff
planner creating daily schedules at a home health care organization in Sweden. Various
practical constraints such as staff competence, time windows for visits, or breaks for meals
were considered. A mixed-integer programming formulation is given, based on a set parti-
tioning model. As solution method, they make use of repeated matching approach, which
maps the staffs-to-home-visits problem into a matching problem, and then solves the re-
sulting matching problem with an exact method or a repeated assignment heuristic. They
estimate a total cost saving of 20%, and a reduction of 7% of the total working time.

Rasmussen et al. [22] further presented the home care crew scheduling problem in Den-
mark. The scheduling is also on a daily basis with temporal dependencies and some other
service oriented constraints. One example of such temporal dependencies given by the au-
thors is this: A first home carer switches on a washing machine, and a second home carer
should come and empty the washing machine after two to four hours. In such case, the rout-
ing part of the problem amounts to the VRP with coupled time windows [13]. The other
service oriented constraints include, for example, leaving as few visits uncovered as possi-
ble. Each visit is associated with a priority, and if some visits may have to be rescheduled
or cancelled, it should not cancel the most important visits of the day. The problem is for-
mulated as a set partitioning problem and a branch-and-price algorithm is developed for its
solution.

Koeleman et al. [16] consider a home health care scheduling problem in a stochastic
setting. They assume the patients arrive according to a Poisson distribution, and the prob-
ability distribution of to which class the patients belong to, and their health care duration
per week, is assumed to be known. Then the decision has to be made whether they should
accept, reject, or put the patient in a waiting list. This problem is modelled as a Markov de-
cision process, and the (near-)optimal policy can be found by a trunk reservation heuristic.
However, no timetabling and routing of the nurses to patients have been considered.

Bertels and Fahle [3] also stated that the home health care scheduling problem is a
combination of a staff rostering and a vehicle routing problem. They developed also a hybrid
algorithm that consists of linear programming, constraint programming and metaheuristics
for solving the problem.

Most of the existing literature as listed above schedules home health care on a daily ba-
sis. There exists only few works that schedules in a multi-day horizon, including Nickel et
al. [21] and Di Gaspero et al. [9]. Both works formulated the problem as constraint program-
ming (CP) models, and then developed large neighborhood search metaheuristics upon the
CP models. The main difference from the application perspective between the both works is
that Nickel et al. [21] required the same patients to be visited by the same nurse, while this
requirement is relaxed in [9].

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 557 -

To the best of our knowledge, none of the presented models are completely applica-
ble to our problem, mainly for some or all of the following reasons. Our schedule is on
a weekly basis, and the inter-visit day difference should be integrated into the optimiza-
tion process [23]. In the literature, e.g. [2], a two-visit-per-week patient will be fixed to a
Monday and Thursday or a Tuesday and Friday before the optimization process starts. Al-
though such fixed assignments simplifies the problem, it also reduced scheduling flexibility
and efficiency. In this work, we model inter-visit day difference as a constraint, and let the
optimization process to determine the treatment day. Besides, not only the daily maximum
working time but also the total weekly maximum working time can be imposed for each
nurse. Furthermore, each nurse as well as the patient should be able to specify their individ-
ual preference on working days in advance.

3 Problem Description

For notational simplicity we will refer to the employees of the service as nurses, the clients
as patients, the service activities that the clients require as treatments. Our task is to develop
computer software to assist the health care provider to generate a nurse schedule on a weekly
basis.

The optimization task is to assign each patient or treatment to a nurse with competent
qualification on an appropriate day at a time within a patient-specified time window.

Patients and treatments. A patient may require a number of nurse visitations, or treat-
ments, in a week. A treatment is a medical activity to be performed by a visiting nurse
at a proper time on an appropriate day. These treatments include washing, cleaning,
bandage changing, medication prescription, and giving injections. The duration of each
treatment is fixed and given in advance, but the start time of each visit can be varied
within a patient-specified time window.

Day preference and time windows. Each patient can specify which days are preferred for
his weekly treatments, e.g., only Monday and Tuesday, or no treatments on Thursday,
etc. Furthermore, on each of these preferred days, a time window within which treatment
can start can be specified by the patient, e.g., the cleaning can start on Monday from 9:00
to 11:00 or Thursday from 8:00 to 9:00. Note that the time windows imposed here are
hard constraints, which means that if the nurse is scheduled to arrive earlier than the
given lower bound of the time window, he or she would have to wait.

Inter-visit day difference. For some patients who need several visits per week, there may
be some pairs of visits between which at least one to three days’ difference must be
retained. Examples of such pairs of treatments include some injections that must be
given twice a week with at least three days break in between.

Nurses. There are mainly two types of nurses distinguished by our application partner,
namely, the professional nurse and the assistant nurse, differing in qualification and also
salary cost. Becoming a professional nurse in Germany requires three years’ education,
and one must pass the national exam to obtain the medical certificate. These nurses are
able to perform all types of treatments. The assistant nurse usually receives a short-term
on-the-job training. They can perform simple treatments such as cleaning or changes of
bandages, etc. However, they are not allowed to perform treatments such as prescriptions
or injections. The assistant nurses’ salary is also lower than the professional nurses’
salary, and it is estimated to be 70% of what the professional nurses receive.

Working date and time. Nurses’ everyday work starts at 7 a.m. in the headquarter of the
organization with a car, and the car must return to the headquarter by the end of the

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 558 -

day’s work. According to the organization’s legal regulation, the daily working hour of
each nurse cannot exceed 6 hours, while the total weekly working hours for each nurse
cannot be over 30 hours. Each nurse can also choose on which day (normally working
days from Monday to Friday) and at most how many hours she is willing to work on a
day or within a week. Working time includes the treatment time that a nurse spends at a
patient, the driving time between patients and from or to the headquarter, as well as the
waiting time, if she arrives at a patient too early.

Goals and objectives. In this work, our objective is to reduce the operating cost and the
nurses’ workload without compromising the service quality, e.g., the treatment duration,
patient-specified date and time and certain required treatment qualification need to be
kept. Our primary optimization goal is to reduce the personnel cost, i.e., to use as few
staff as possible to carry out all the tasks. The secondary optimization goal is to reduce
the total working time of all nurses.

4 Mathematical Models

We formulated the home health care scheduling problem as an integer linear programming
(ILP) model based on the multi-commodity flow model with the Miller-Tucker-Zemlin con-
straints to handle the time consistency [19].

4.1 A graphical example

A graphical example of the home health care scheduling problem is shown in Figure 1.
Each depot node is depicted as a triangle, di, j, and represents a nurse i on a day j. Each
circle represents a treatment node. Here, nurse 1 carries out treatments t1, t2, and t5 on day
1, and carries out treatment t4 on day 2. Nurse 2 has treatments t6 and t3 on day 1, and has a
free day on day 2. We also follow the terms used in multi-commodity flow, meaning that the
arcs from a depot node to a treatment node, e.g., from d1,1 to t1, are called pull-out arcs, the
arcs between two treatment nodes, e.g., t1 to t2, are called deadhead arcs, and the arcs from
a treatment node to depot node, e.g., t5 to d1,1, are called pull-in arcs.

4.2 Sets

We denote the set of all nodes with N. There are two types of nodes in the example shown
in Figure 1, namely, depot nodes and treatment nodes.

– Nd p: the set of depot nodes where a nurse starts and ends his or her day at;
– Ntrm: the set of treatment nodes that should be visited by one of the nurses.

Similarly, we denote the set of all arcs with A, and distinguish three types of arcs existing
in our graphical example, namely, pull-out arcs, deadhead arcs, and pull-in arcs.

– Apullout : a pull-out arc starts from a depot node and ends at a treatment node;
– Adeadhead : a deadhead arc starts and ends both at a treatment node, representing a trip

from one patient to another patient;
– Apullin: a pull-in arc starts from a treatment node and ends at a depot node;

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 559 -

Fig. 1 A graphic example of the home health care problem. Triangles represent depot nodes, where node
di, j represents a nurse i on a day j. Note that some nurse may be totally free on some day. Circles represent
treatment nodes with its index. Each tour must start and end at a depot node.

Apart from the sets that are visible in the figure, there are some other sets outside the
graph, such as

– K: the set of nurses;
– D: the set of working days, i.e., D := {1, . . . ,5}, representing Monday to Friday. Note

that we consider each nurse per day as a depot in our model;
– R ⊂ Ntrm×Ntrm: the set of pairs of treatments that are related, in the sense that if two

treatments i and j are related, (i, j) ∈ R, then treatments i and j must have some days’
difference between each other.

4.3 Parameters

The parameters used in the ILP model are listed below:

– ck
start : the starting cost of each nurse k ∈ K.

– uk,d
i, j : the upper bound for the flow capacity on each arc (i, j) ∈ A for a nurse k ∈ K on a

day d ∈ D. The value of u is binary, since each treatment node must be visited once and
only once, and each depot can deploy only one unit of flow. Besides, we also use this
parameter to remove some infeasible arcs in preprocessing, e.g.,
1. if a treatment i ∈ Ntrm cannot be taken by a nurse k ∈ K, then we set all the arcs

that are incident to node i to be infeasible by assigning their upper bounds to 0, i.e.,
uk,d

i, j := 0,uk,d
j,i := 0,∀ j ∈ N,d ∈ D.

2. If a treatment i ∈ Ntrm cannot be taken on a day d ∈ D, similarly we set the upper
bounds of all arcs incident to node i on day d to 0.

3. If a nurse k ∈ K is not possible to work on day d ∈ D, then all arcs on this layer are
set to infeasible, uk,d

i, j := 0,∀(i, j) ∈ A.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 560 -

– t i and t i: the lower bound and the upper bound of the time window for a treatment i.
– δi, j: the necessary duration from the start of treatment i until the start of treatment j,

if j is taken by the same nurse on the same day subsequently after i. It consists of
two parts, the service time for treatment i, and the trip duration from i to j, i.e., δi, j =
δ service

i +δ deadhead
i, j .

– T k,d
day : the daily maximum working time of a nurse k on day d.

– T k
week: the weekly maximum working time of nurse k.

– σi, j: the necessary day difference between two related treatments (i, j) ∈ R. The value
of σ is typically restricted by 1≤ σ ≤ 3.

4.4 Variables, Objective, and Constraints

The decision variables are listed as follows:

– xk,d
i, j ∈ {0,1}: the flow variable representing whether an arc (i, j) ∈ A is traveled by a

nurse k ∈ K on day d ∈ D;
– ti ∈ Z+: the starting time of a treatment i ∈ Ntrm;
– sk ∈ {0,1}: binary variable to indicate whether a nurse k ∈ K has been deployed.
– τk,d ∈ Z+

0 : the working time of a nurse k on a day d minus the starting time of 420, i.e.,
7 a.m. If a nurse on a day does not start any tour, then its value equals to 0.

The objective function consists of two hierarchical parts. Firstly, in this work, the pri-
mary objective for the organization is to reduce the personnel cost (without compromising
the service level, e.g., service time and nurse qualification). Imprecisely speaking, the goal
is to use as few nurses as possible to take care of all the clients. Note that nurses with dif-
ferent qualifications may require different starting cost, then it is the total starting cost to
be minimized. Secondly, at a subsidiary level, we wish to shorten the nurse’s daily working
hours. So the objective is formulated as follows:

min ∑
k∈K

ck
start · sk + ∑

k∈K,d∈D
τ

k,d , (1)

subject to the following constraints:

– bundle constraint, every treatment will be visited exactly once,

∑
k∈K,d∈D,i∈N

xk,d
i, j = 1, ∀ j ∈ Ntrm, (2)

– flow capacity constraint, the flow cannot exceed the upper bound on each arc,

xk,d
i, j ≤ uk,d

i, j , ∀(i, j) ∈ A,k ∈ K,d ∈ D, (3)

– flow conservation constraint, the inflow of each treatment node should equals its outflow,

∑
j∈N

xk,d
j,i = ∑

j∈N
xk,d

i, j , ∀i ∈ Ntrm,k ∈ K,d ∈ D, (4)

– time window constraint, which the starting time of each treatment should obey,

t i ≤ ti ≤ t i, ∀i ∈ Ntrm, (5)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 561 -

– time compatibility constraint, i.e., the starting time difference between two consecu-
tive nodes should not be smaller than its necessary amount, for the three types of arcs,
namely,
1. deadhead arcs:

ti +δi, j +M · (xk,d
i, j −1)≤ t j, ∀(i, j) ∈ Adeadhead ,k ∈ K,d ∈ D, (6)

with sufficiently large value for M;
2. pull-out arcs:

420+δi, j +M · (xk,d
i, j −1)≤ t j, ∀(i, j) ∈ Apullout ,k ∈ K,d ∈ D, (7)

where every nurse is supposed to start their daily work at 7 am (420 minutes after
0:00); and

3. pull-in arcs:

ti +δi, j +M · (xk,d
i, j −1)−420≤ τ

k,d , ∀(i, j) ∈ Apullin,k ∈ K,d ∈ D, (8)

where the daily working time τk,d of a nurse k on a day d is measured by the differ-
ence between the ending time of her work at the depot and the starting time of her
work at 7 a.m.;

– the maximum daily working time should not be exceeded,

τ
k,d ≤ T k,d

day , ∀k ∈ K,d ∈ D, (9)

– the maximum weekly working time should not be exceeded,

τ
k ≤ T k

week, ∀k ∈ K, (10)

– the nurse deployment indicator sk is determined by checking each pull-out arc,

sk ≥ ∑
(i, j)∈Apullout ,d∈D

xk,d
i, j , ∀k ∈ K, (11)

– and the necessary day difference between a pair of related treatments is modeled in two
steps:
1. the former treatment i should not start too late so that the latter treatment j can be

visited during the week, i.e., i should start latest on the day of (5−σi, j):

∑
h∈N,k∈K,d∈{1,...,5−σi, j}

xk,d
h,i = 1, ∀(i, j) ∈ R, (12)

2. then the latter treatment j should be started no earlier than the day d′ ≥ d +σi, j,

∑
h∈N,k∈K

xk,d
h,i + ∑

h′∈N,k′∈K,d′∈{1,...,d+σi, j−1}
xk′,d′

h′,i ≤ 1, ∀(i, j)∈R,d ∈{1, . . . ,5−σi, j}.

(13)

To sum up, the home health care scheduling problem can be formulated as follows:

minimize (1),

subject to (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13),

x ∈ {0,1}|A|×|K|×|D|, t ∈ Z|Ntrm|
+ ,s ∈ {0,1}|K|,τ ∈ Z+ |K|×|D|

0 .

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 562 -

5 Primal Heuristics

Our primal heuristics include a tailored greedy construction, different local search operators,
and a PGreedy mechanism for automatic adaptation of the greedy parameters.

5.1 Greedy Construction Heuristic

The greedy construction heuristic builds a complete solution from scratch, by iteratively
choosing an immediate best solution component, until a complete solution is generated.
There are two greedy decisions to be made during the construction: choosing a nurse to
start, and choosing a next treatment node to append.

There are two types of nurses. An assistant nurse can handle only a subset of “simple”
treatments and is less expensive than professional nurses. If there are only very few (less
than 20) simple treatments left, we will always start with the professional nurse. Otherwise,
given the proportion of simple treatments as Ps, we select an assistant nurse by the prob-
ability Passist := Ps ·

cpro f
cassist

, where cpro f and cassist refer to the cost of a professional and an
assistant nurse, respectively. Within the same nurse type, we start with the nurse with the
most maximum weekly working time.

After the nurse is chosen, all his or her allowed working days are randomized. Then for
each day, we first filter the treatments that are feasible for that day, and then build the sched-
ule by iteratively appending the next best treatment node. For selecting the next treatment,
the following factors are considered:

Link time. ∆ t j := min{δi, j, t j− tcurrent}, i.e., the earliest possible starting time of the next
node j minus the current time;

Time window size. tday
j := t j−max{t j, t

current + δi, j}, i.e., how flexible the treatment can
start during the day, since the treatments that are less flexible may be more preferred
during the construction, while the more flexible treatment may be treated at a later time;

Time window in other days. tother
j , which is the sum of the time window size of any other

days. The same rationale above applies here: if a treatment can be only taken on this
day, it should have a higher priority than the ones that are more flexible.

Then the greedy best next node j∗ is selected as follows:

j∗ = argmini∈N f easible
∆ t j +α · tday

j +β · tother
j , (14)

where the two greedy weighting parameters α and β are determined dynamically by a
PGreedy approach described below.

5.2 Local Search

We have applied two types of local search operators: a node insertion and a nurse type
exchange operator.

Node insertion. Since our primary objective is to reduce the number of nurses, this is also
the goal for the node insertion. We first sort all the nurses in the constructed schedule
by the number of treatments handled. Then we iteratively try to insert a treatment node
from the least-loaded nurse to all the nurses that are more-loaded. The best-improvement

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 563 -

strategy is applied, i.e., if there are multiple positions with multiple nurses where a treat-
ment can be inserted, then the one with the least additional working hours is chosen. Ties
are broken randomly. Note that after a node has been inserted, the corresponding time
windows of the treatment nodes have to be updated by a constraint propagation. After all
the nodes from the least-loaded nurse have been tried, then we resort all the nurses ex-
cept the least-loaded nurse, and we start from the second least-loaded nurse, and repeat
inserting all its nodes to more-loaded nurses as described above. Once a node is inserted
to the schedule of another nurse, we check immediately whether the least-loaded nurse
can insert its nodes to the nurse with a decremented node. This process ends, when all
the nurses but the most-loaded one have been tried to insert their nodes. Note that this
node insertion local search does not necessarily reduce the overall objective value, but
its goal is mainly to try to reduce the number of nurses. It happens in some cases that the
objective value may increase after the node insertion operation, since the total working
time increases. However, it is very effective in reducing the number of nurses.

Nurse type exchange. After the node insertion operation, a nurse type exchange is per-
formed. It starts by checking all the treatments of each professional nurse, if all the
treatments taken by a professional nurse can be taken by an assistant nurse, then an
assistant nurse is deployed instead.

5.3 Online Parameter Adaptation

The best greedy criterion is usually unknown in advance, besides, each instance may have
a different best greedy criterion. The weighting parameters in the greedy construction, α

and β can be adapted while running the algorithm. This is done by following the procedure
described as Parameterized Greedy (PGreedy) [12]. The PGreedy algorithm can find the best
greedy criterion while running on a particular instance, by using a black-box optimization
algorithm to search the greedy parameter space. One example of such black-box search
algorithm proposed in [12], and adopted in our work, is the improving hit-and run (IHR)
procedure [24].

The heuristic procedure works as follows. The improving hit-and-run is applied to adapt
the best-so-far greedy parameter setting to start each iteration. In each iteration, it runs a
greedy construction (Section 5.1) with the adapted parameter setting, followed by a local
search (Section 5.2). If a new best-so-far solution is found, we also update the best-so-far
greedy parameter setting to the new one as in the IHR procedure. It leaves to define the range
of the parameters. In our preliminary experiments, α is set to [0,0.2], and β is set to [0,0.1].

6 Experiments and Results

The primal heuristics are implemented in Java. The code is executed on a personal computer
with AMD AthlonXP CPU at 1.5 GHz and 256 MB DDR RAM, running Windows XP as
operating system. The mathematical model is formulated using the Zimpl language [15],
and the Zimpl generated ILP model is then solved by ILOG CPLEX 10. Zimpl and CPLEX
ran on a computing server with 32 GB RAM and 8 × 2.4 GHz AMD Opteron 880 CPU,
running SUSE 10.2 Linux OS.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 564 -

Table 1 The instances used in our case study, extracted from a current real-world home care schedule. The
entire instance has 99 patients, 460 treatments, and 9 nurses. Smaller instances were extracted, including from
22 to 285 treatments. Below it lists the size of the problems including the number of patients, treatments,
nurses and related pairs, as well as the size of the ILP models built by Zimpl, including the number of
variables, constraints and non-zero coeffecients.

Instance Problem size ILP model size
#patient #treatment #nurse #related-pair #variable #constr #non-zero

nurse22 5 22 2 0 5.3K 8.4K 4.3K
nurse75 15 75 3 4 87K 99K 124K
nurse110 25 110 3 3 185K 218K 202K
nurse153 33 153 4 5 474K 542K 583K
nurse210 46 210 4 10 891K 962K 1.4M
nurse285 60 285 6 9 2.1M 2.1M 3.0M
nurse460 99 460 9 17 8.5M 8.9M 69.8M

6.1 The Instances

One data set is available from our application partner, a local home health care service
provider in the whole town area. This instance is a real-world weekly nurse schedule cur-
rently in use. It contains 99 patients, 460 treatments, and 9 nurses, and is named nurse460.
The number of pairs with inter-visit day difference is already greatly reduced in our dataset
preprocessing phase, and 17 pairs are still left. Each treatment has a patient-specific time
window, which is given in advance. The size of the time window varies greatly, ranging
from 30 minutes to 360 minutes. The resulting ILP model from Zimpl consists of over 8
millions variables, 9 millions constraints, and 70 millions non-zeros, as listed in the last row
of Table 1. CPLEX is not able to even finish one run of the simplex algorithm for the LP
relaxation model within our computation time limit, which is set to 6 hours.

In order to better study the problem scalability, we further extract smaller instances from
the real-world instance nurse460. These instances were extracted by randomly selecting a
number of patients, and then including all the treatments and related pairs of the selected
patients. The size of the extracted instances ranges from 5 patients with 22 treatments to
60 patients with 285 treatments. The number of nurses has an important influence on the
computational difficulty of the ILP model, since each individual nurse determines a specific
commodity layer in our multi-commodity network, hence the size of the network model
is proportional to the number of nurses. For more details on this issue, we refer to [23].
Therefore, we tried to minimize the number of nurses for the extracted instances by taking
the number of nurses of the best found heuristic solution. The size of the ILP model built
by Zimpl, including the number of variables, constraints, and non-zero coefficients for each
instance is also presented in Table 1.

6.2 Computational Results of the Primal Heuristics

For each of the extracted subinstances, 10 trials of the heuristic are run, and each trial was
allowed 30 seconds CPU time. We reported the best solution of the 10 trials in Table 2, and
reported its overall computation time as 30×10 = 300 seconds.

It is worth mentioning that for the real-world instance nurse460 a good scheduling
solution can be found by our heuristic algorithm within 5 minutes. This schedule requires
only eight nurses, which improves the original manual nurse schedule currently in use by

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 565 -

Table 2 The computational results of the primal heuristics. Reported is the best solution out of 10 runs of
30 CPU seconds each. The objective value, total number of nurses and number of nurses of the two different
types (professional or assistant), total working time and the average working time per nurse are listed.

Instance Comp. Obj. Nurses Total Total Average
Time Value (prof. / asst.) #nurse Work Time Work Time

nurse22 300 1702200 1 / 1 2 2200 1100
nurse75 300 2702071 2 / 1 3 2071 690
nurse110 300 2704577 2 / 1 3 4577 1526
nurse153 300 3705336 3 / 1 4 5336 1334
nurse210 300 3706175 3 / 1 4 6175 1544
nurse285 300 5707509 5 / 1 6 7509 1252
nurse460 300 7713293 7 / 1 8 13293 1662

Table 3 The computational results of the commercial ILP solver. Two LP relaxation strategies were used:
simplex and interior point method. The computation time in seconds, the best integer solution (upper bound),
best node (lower bound) and the gap is reported.

Instance
Simplex Interior Point

Comp. Best Best Gap Comp. Best Best GapTime integer node Time integer node

nurse22 33 1702200 1702200 0% 27 1702200 1702200 0%
nurse75 21600 - 1003438 - 21600 2702103 2000098 26%
nurse110 21600 - 1000359 - 21600 - 1000359 -
nurse153 21600 - 1000000 - 21600 - 1333692 -
nurse210 21600 - 700633 - 21600 - 701800 -
nurse285 21600 - 0 - 21600 - 1000000 -
nurse460 21600 - 0 - 21600 - 0 -

reducing one nurse. It would be also interesting to compare the secondary optimization goal,
the total working time, with the manual schedule, but unfortunately, this information is not
available from our application partner.

6.3 Computational Results of the ILP Solver

The commercial ILP solver CPLEX is also used to solve the model of the instances presented
above. Two different strategies were applied to solve the subsidiary LP relaxation in the
branch-and-bound procedure: the default simplex method and the interior point method.

As shown in Table 3, the solver CPLEX has difficulty in solving the ILP model. Only the
smallest instance nurse22 can be solved to optimality. The interior point method appears
to be a better alternative for solving the LP relaxation problem by providing better lower
bounds compared to the default simplex method. Therefore, the interior point method is used
instead of simplex for solving LP relaxation. For instances that are larger than 75 treatments,
no feasible integer solution was found. In such case, the branch-and-bound procedure cannot
prune any subtree, and it results in an exhaustive search. Therefore, the heuristic approach
is essential for solving this problem. Not only can the heuristic provide feasible solutions, it
may also be used as an initial upper bound to help the branch-and-bound procedure to prune
provable inferior subtrees.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 566 -

Table 4 The computational results of initializing the ILP solver CPLEX by heuristic solution. The second
and third column presents the best heuristic solution and its gap with respect to the lower bound calculated in
Table 3; the fourth to seventh column shows the computation time (in seconds), best integer (objective value),
best node (lower bound), and the root gap of the ILP solver with initialization of the heuristic solution; the
eighth and ninth column shows the number of nurses, and the total working minutes (and the reduced minutes
with respect to best heuristic solution).

Instance
Primal heuristic ILP solver with heuristic initinalization Final Solution
Obj. Gap Comp. Best Best Gap #Nurse Work Time

Value Time integer node (diff.)

nurse22 1702200 0% 30 1702200 1702200 0% 2 2200 (0)
nurse75 2702071 26% 21600 2702001 2000144 26.0% 3 2001 (3.4%)
nurse110 2704577 63% 21600 2704525 1000359 63% 3 4525 (1.1%)
nurse153 3705336 64% 21600 3705336 1500359 60% 4 5336 (0)
nurse210 3706175 81% 21600 3706175 701800 81% 4 6175 (0)
nurse285 5707509 82% 21600 5707509 1000000 82% 6 7509 (0)
nurse460 7713293 100% 21600 7713293 0 100% 8 13293 (0)

6.4 Initialize ILP Solver by Heuristic Solution

As indicated in the previous section, although the ILP solver CPLEX is equipped with var-
ious heuristic approaches for finding feasible solution, it is unable to find feasible solution
within our computation time limit. One possible speed-up is to provide the best heuristic so-
lution as an initial feasible solution for the ILP solver. The advantage of doing so is twofold:
on the one side it may help the branch-and-bound procedure to reach more nodes by discard-
ing some provable inferior subtrees; and on the other hand, the ILP solver may help further
improve the heuristic solution.

The results are shown in Table 4. Comparing to the lower bound listed Table 3, the lower
bound in nurse75 and nurse153 is improved. Especially the lower bound improvement of
nurse153 leads to over 4% improvement of the root gap. From the upper bound perspective,
although the number of nurses calculated by the heuristic is not further improved, we observe
that the total working time in nurse75 and nurse110 has been improved by 3.4% and 1.1%,
respectively.

7 Conclusions and Future Works

The current work presented a preliminary case study of the home health care scheduling
problem for a local health care provider in Germany. At the current stage, it is important
to evaluate the scalability of different solution approaches, as well as the potential cost
saving for the organization. In this work, we formulated the weekly based home health care
scheduling problem as an integer linear programming model, and applied a state-of-the art
ILP solver to it. Unfortunately, the current model is only able to be solved optimally up
to a tiny instance size. The heuristics on the other hand perform very well, and are able to
obtain good solutions within five minutes. Initializing the branch-and-bound process with a
heuristic solution seems to speed up the solving process, but the gap for a real-world size
instance is still vast. The results also indicate at least 10% cost saving potential for using a
computerized optimization process.

As this is still an ongoing work, there are many directions that the current work can
be extended. The future directions can be categorized into two aspects, methodology and

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 567 -

application. From the methodological aspect, although this work shows that local search
approaches are more preferable for the real-world size problem than the exact approaches, it
is still interesting to obtain a provable optimality or a lower bound to assess the local search
approaches. A potential direction is to reformulate the current mathematical model into a set
partitioning problem and solve it by a branch-and-price approach [1], since the branch-and-
price approaches have proven to be successful for solving the VRP with time windows [8].
As for the heuristic approach, it will be interesting to further explore the more effective local
search techniques. Our current node insertion operator is mainly aimed at reducing personnel
size. It will be interesting to start a second phase of the local search aiming at also reducing
the total working time, and rebalancing the workload among different nurses. To this end,
local search operators such as node exchange and swapping can be also effective. In fact,
it will also be interesting to iterate these local search operators in a variable neighborhood
descent fashion [20], so that the local optimum found is the local optimum with respect to
all the local search operators. Besides, instead of restarting the heuristic in each iteration
from scratch, it will be more effective to perturb a small part from the best-so-far solution,
and then perform local search afterwards without a full construction, as done in the iterated
local search [18].

From the application aspect, currently we consider mainly minimizing operating cost
as the optimization objectives. In fact, there are still other objectives that our application
partner cares about other than costs, such as follows.

Workload balancing. Each nurse should have more or less the same amount of workload,
such that each nurse has a similar number of patients or treatments to handle. The current
schedules generated by the node insertion local search may cause certain nurses with
very heavy workload while some other nurses have only very few treatments to handle.
This can be done by adding a balancing objectives into the mathematical model, and
by also applying node insertion to insert treatments from heavily-loaded nurses to less-
loaded nurses.

Dynamic reallocation. The scheduling tool should be robust in the presence of changes.
If any changes happen, the reallocation of a new schedule should be made in a short
time with as few modifications to the original schedule as possible. There are various
possible changes, for instances, new clients joining in, clients changing their preferred
visitation dates or time windows, or nurse staff’s availability. Some of these changes
are known one week before, but in some urgent cases, which are not rare, patients may
call in a short time to change the visit appointment to another time, nurses may call
in sick shortly before the schedule starts, or a damage to their car suddenly occurs. In
such cases, especially the last minute cases, a new schedule should be generated in a
short time, with as few changes to the original schedule as possible. In such case, a local
search procedure is important.

Consistent nurse. One important feature to improve the service quality is to always assign
the same nurse to the same patient’s treatments. From the nurse’s perspective, it is easier
to catch up with the patient’s situation, while from the client’s perspective, they also de-
sire more consistency. Keeping the nurse consistency may reduce scheduling flexibility,
and may result in higher operating cost or longer working time. Technically, each node
insertion will need to consider inserting a set of treatments of the same patient instead of
inserting one treatment node. To this end, Kovacs et al. [17] also provides a nice survey
of vehicle routing problems with consistency considerations.

Acknowledgements This work is supported by BMBF Verbundprojekt E-Motion.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 568 -

References

1. C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance. Branch-and-price:
Column generation for solving huge integer programs. Operations research, 46(3):316–329, 1998.

2. S. V. Begur, D. M. Miller, and J. R. Weaver. An integrated spatial DSS for scheduling and routing
home-health-care nurses. Interfaces, 27(4):35–48, 1997.

3. S. Bertels and T. Fahle. A hybrid setup for a hybrid scenario: combining heuristics for the home health
care problem. Computers & Operations Research, 33(10):2866–2890, 2006.

4. E. K. Burke, P. De Causmaecker, G. Vanden Berghe, and H. Van Landeghem. The state of the art of
nurse rostering. Journal of scheduling, 7(6):441–499, 2004.

5. J. A. Castillo-Salazar, D. Landa-Silva, and R. Qu. Workforce scheduling and routing problems: literature
survey and computational study. Annals of Operations Research, pages 1–29, 2014.

6. B. Cheang, H. Li, A. Lim, and B. Rodrigues. Nurse rostering problems – a bibliographic survey. Euro-
pean Journal of Operational Research, 151(3):447–460, 2003.

7. E. Cheng and J. L. Rich. A home health care routing and scheduling problem. Technical report, Technical
Report TR98-04, Department of CAAM, Rice University, 1998.

8. J. F. Cordeau, G. Desaulniers, J. Desrosiers, M. M. Solomon, and F. Soumis. VRP with Time Windows.
In P. Toth and D. Vigo, editors, The vehicle routing problem, pages 157–193. Society for Industrial and
Applied Mathematics, 2001.

9. L. Di Gaspero and T. Urli. A CP/LNS approach for multi-day homecare scheduling problems. In M. J.
Blesa et al., editors, Hybrid Metaheuristics, volume 8457 of Lecture Notes in Computer Science, pages
1–15. Springer International Publishing, 2014.

10. A. T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier. Staff scheduling and rostering: A review of
applications, methods and models. European journal of operational research, 153(1):3–27, 2004.

11. P. Eveborn, P. Flisberg, and M. Rönnqvist. LAPS CARE – an operational system for staff planning of
home care. European Journal of Operational Research, 171(3):962–976, 2006.

12. A. Fügenschuh. Parametrized greedy heuristics in theory and practice. In Proceedings of Hybrid Meta-
heuristics, volume 3636 of Lecture Notes in Computer Science, pages 21–31. Springer, 2005.

13. A. Fügenschuh. The vehicle routing problem with coupled time windows. Central European Journal of
Operations Research, 14(2):157–176, 2006.

14. Y. Kergosien, C. Lenté, and J.C. Billaut. Home health care problem: An extended multiple traveling
salesman problem. In Proceedings of 4th Multidisciplinary International Conference on Scheduling:
Theory and Applications (MISTA), 2009. 8 pages.

15. T. Koch. Rapid Mathematical Prototyping. PhD thesis, Technische Universität Berlin, 2004.
16. P. M. Koeleman, S. Bhulai, and M. Van Meersbergen. Optimal patient and personnel scheduling policies

for care-at-home service facilities. European Journal of Operational Research, 219(3):557–563, 2012.
17. A. A. Kovacs, B. L. Golden, R. F. Hartl, and S. N. Parragh. Vehicle routing problems in which consis-

tency considerations are important: A survey. Networks, 64(3):192–213, 2014.
18. H. Lourenço, O. Martin, and T. Stützle. Iterated local search. Handbook of metaheuristics, pages 320–

353, 2003.
19. C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer programming formulation of traveling salesman

problems. Journal of the ACM, 7(4):326–329, 1960.
20. N. Mladenović and P. Hansen. Variable neighborhood search. Computers & Operations Research,

24(11):1097–1100, 1997.
21. S. Nickel, M. Schröder, and J. Steeg. Mid-term and short-term planning support for home health care

services. European Journal of Operational Research, 219(3):574–587, 2012.
22. M. S. Rasmussen, T. Justesen, A. Dohn, and J. Larsen. The home care crew scheduling problem:

Preference-based visit clustering and temporal dependencies. European Journal of Operational Re-
search, 219(3):598–610, 2012.

23. Z. Yuan. Solving Real-World Vehicle Routing Problems Using MILP and PGreedy Heuristics, Diplo-
marbeit, Technische Universität Darmstadt, 2007.

24. Z. B. Zabinsky, R. L. Smith, J. F. McDonald, H. E. Romeijn, and D. E. Kaufman. Improving hit-and-run
for global optimization. Journal of Global Optimization, 3(2):171–192, 1993.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 569 -

MISTA 2015

A biased random-key genetic algorithm for scheduling

divisible loads

Julliany S. Brandão · Thiago F. Noronha ·

Mauricio G. C. Resende · Celso C. Ribeiro

Abstract A divisible load is an amount W ≥ 0 of computational work that can be

arbitrarily divided into chunks and distributed among a set P of worker processors

to be processed in parallel. The Divisible Load Scheduling Problem consists in (a)

selecting a subset of active workers, (b) defining the order in which the chunks will

be transmitted to each of them, and (c) deciding the amount of load αi that will

be transmitted to each active worker, so as to minimize the makespan, i.e., the total

elapsed time since the master began to send data to the first worker, until the last

worker stops its computations. We propose a biased random-key genetic algorithm for

solving the divisible load scheduling problem. Computational results show that the

genetic algorithm outperforms the best heuristic in the literature.

Keywords Divisible load scheduling, Random-key genetic algorithms, parallel

processing, scientific computing

Julliany S. Brandão
Universidade Federal Fluminense, Rua Passo da Pátria 156, Niterói, RJ 24210-240, Brazil, and
Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Av. Maracanã 229, Rio de
Janeiro, RJ 20271-110, Brazil
E-mail: jbrandao@ic.uff.br

Thiago F. Noronha
Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG
24105, Brazil
E-mail: tfn@dcc.ufmg.br

Mauricio G. C. Resende
Mathematical Optimization and Planning, Amazon.com
333 Boren Avenue North, Seattle, WA 98109, USA (work of this author was done when he was
employed by AT&T Labs Research)
E-mail: resendem@amazon.com

Celso C. Ribeiro
Universidade Federal Fluminense, Rua Passo da Pátria 156, Niterói, RJ 24210-240, Brazil
E-mail: celso@ic.uff.br

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 570 -

1 Introduction

A divisible load is an amount W ≥ 0 of computational work that can be arbitrarily

divided and distributed among different processors to be processed in parallel. The

processors are arranged in a star topology and the load is stored in a central master

processor. The latter splits the load into chunks of arbitrary sizes and transmits each of

them to other processors, called workers. The master does not process the load itself.

The master can only send load to one worker at a time. Any worker can only start

processing after it has completely received its respective chunk of the load. The workers

are heterogeneous in terms of processing power, communication speed, and setup time

for start communicating with the master. Not all available processors should necessarily

be used for processing the load.

The Divisible Loading Scheduling Problem (DLSP) was introduced in [12], moti-

vated by an application in intelligent sensor networks. Applications of DLSP arise from

a number of scientific problems, such as parallel database searching [11], parallel image

processing [25], parallel video encoding [26,35], processing of large distributed files [37],

and task scheduling in cloud computing [28], among others.

In this work, we deal with the same DLSP variant treated in [1, 10]. Let P =

{1, ..., n} be the set of worker processors indices. Each worker i ∈ P has (i) a setup

time gi ≥ 0 to start the communication with the master, (ii) a communication time

Gi ≥ 0 needed to receive each unit of the load from the master and (iii) a processing

time wi ≥ 0 needed to process each unit of the load. Therefore, it takes gi + αi · Gi

units of time for the master to transmit a load chunk of size αi ≥ 0 to the worker i ∈ P .

Furthermore, it takes an additional wi · αi units of time for this worker to process the

chunk of load assigned to it.

The scheduling problem consists of (a) selecting a subset A ⊆ P of active workers,

(b) defining the order in which the chunks will be transmitted to each active worker

and (c) deciding the amount of load αi that will be transmitted to each worker i ∈ A,

so as to minimize the makespan, i.e., the total elapsed time since the master began

to send data to the first worker, until the last worker stops its computations. This

problem was proved to be NP-hard in [42].

Since the load can be split arbitrarily, all workers stop at the same time in the

optimal solution [5]. In addition, if the order in which the chunks are transmitted to

the workers is fixed, then the best solution can be computed in O(n) time, using the

AlgRap algorithm developed in [1]. In other words, given a permutation of the workers

in P , AlgRap computes the set of active workers and the amount of load that has to

be sent to each of them to minimize the makespan. Therefore, DLSP can be reduced

to the problem of finding the best permutation of the processors, i.e., the one which

induces the minimum makespan. In order to find this permutation, we propose a biased

random-key genetic algorithm [18,19,22], which has been successfully used for solving

many permutation based combinatorial optimization problems [17,19–21,23,30].

The paper is organized as follows. Related work is reviewed in the next section. The

proposed heuristic is described in Section 3. Computational experiments are reported

and discussed in Section 4. Concluding remarks are drawn in the last section.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 571 -

2 Related work

There are many variants of DLSP in the literature. Divisible load scheduling may be

performed in a single round or in multiple rounds. In the single round case [1, 3–5, 7,

9, 10, 13, 15, 16, 24, 27, 32, 36, 38, 39], each active worker receives and processes a single

chunk of the load. In the multi-round case [1, 4, 6, 8, 14–16, 31, 33, 39–41], each active

worker receives and processes multiple chunks of load. After the master finishes the

transmission of the first round of load to all active workers, it immediately starts the

transmission of the next batch of load chunks following the same order, until all the

load is distributed among the workers.

The workers may be homogeneous or heterogeneous. If the workers are homoge-

neous, the values of gi, Gi, and wi are the same for all processors i ∈ P [4,8,9,24,40,41].

Contrarily, in the heterogeneous case the values of gi, Gi, and wi may be different for

each worker [1, 3, 5, 6, 10,13–16,27,31–33,36,38–41].

The system can be dedicated or non-dedicated. When the system is dedicated, it is

assumed that all resources (processors, memory, network, etc.) are used to process a

single computational load [1, 5–7, 9, 10, 13, 15, 16, 31, 36, 38–41]. Non-dedicated systems

may be used to simultaneously process different computational loads [6, 7, 32].

In this work, we consider the single round DLSP with dedicated and heterogeneous

workers [1, 4, 5, 10, 15, 38, 42], that was proved to be NP -hard in [42]. Blazewicz and

Drozdowski [10] showed that once a permutation of the workers is given, a solution

with minimum makespan can be obtained in O(n log n) time, where n = |P | is the

number of workers. Later, Abib and Ribeiro [1] proposed the faster AlgRap algorithm

that finds this solution in O(n) time.

Non-linear programming formulations for the single round DLSP with dedicated

and heterogeneous workers was proposed in [13]. The first mixed integer linear pro-

gramming formulation was proposed in [4] and was later improved and extended in [1].

Computational experiments reported in [1] have shown that the CPLEX branch-and-

cut algorithm based on this formulation was able to find optimal solutions for 490 out

of 720 instances with up to 160 processors. However, for the largest unsolved instances,

the computational gaps were very high, which motivated the development of heuristics

for solving DLSP.

To the best of our knowledge, the best heuristic in the literature for the DLSP

variant studied in this paper is the HeuRet algorithm of Abib and Ribeiro [1]. At each

iteration, their algorithm (i) estimates the performance ei of each worker in i ∈ P and

(ii) builds a solution by taking the processors in P in a non-increasing order of the ei
values. The algorithm sets ei = Gi, for all i ∈ P , in the first iteration and makes use

of the exact AlgRap algorithm to compute an initial solution s0 with makespan T0.

Next, at each forthcoming iteration k, the estimated performance ei of each worker

i ∈ P is updated from the values of gi, wi, Gi, and Tk−1 and a new solution with

makespan Tk is built by algorithm AlgRap considering the new order defined on the

workers. The procedure stops when Tk−1 < Tk, i.e. when the new solution degenerates

the makespan of the previous one.

The heuristic proposed in the next section improves upon HeuRet because, instead

of defining a greedy local search on the performance estimation of the workers, it

performs a global search in the space of worker permutations in order to find the

permutation that induces the optimal or a near-optimal solution.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 572 -

3 Biased random-key genetic algorithm

Genetic algorithms with random keys, or random-key genetic algorithms (RKGA), were

first introduced in [2] for combinatorial optimization problems whose solutions can be

represented by a permutation vector. Solutions are represented as vectors of randomly

generated real numbers called keys. A deterministic algorithm, called a decoder, takes

as input a solution vector and associates with it a feasible solution of the combinatorial

optimization problem, for which an objective value or fitness can be computed. Two

parents are selected at random from the entire population to implement the crossover

operation in the implementation of a RKGA. Parents are allowed to be selected for

mating more than once in a given generation.

A biased random-key genetic algorithm (BRKGA) differs from a RKGA in the way

parents are selected for crossover [19]. In a BRKGA, each element is generated combin-

ing one element selected at random from the elite solutions in the current population,

while the other is a non-elite solution. The selection is said biased because one parent

is always an elite individual and has a higher probability of passing its genes to the

new generation.

The BRKGA-DLS biased random-key genetic algorithm for DLSP evolves a pop-

ulation of chromosomes that consists of vectors of real numbers (keys). Each solution

is represented by a |P |-vector, in which each component is a real number in the range

[0, 1] associated with a worker processor in P . Each solution represented by a chromo-

some is decoded by a heuristic that receives the vector of keys and builds a feasible

solution for DLSP using algorithm AlgRap [1]. Decoding consists of two steps: first,

the processors are sorted in a non-decreasing order of their random keys; next, the

resulting order is used as the input for AlgRap. The makespan of the solution provided

by AlgRap is used as the fitness of the chromosome.

We use the parametric uniform crossover scheme proposed in [34] to combine two

parent solutions and produce an offspring. In this scheme, the offspring inherits each of

its keys from the best fit of the two parents with probability 0.60 and from the least fit

parent with probability 0.40. Instead of the mutation operator, the concept of mutants

is used: a fixed number of mutant solutions are introduced in the population in each

generation, randomly generated in the same way as in the initial population.

The keys associated to each worker are randomly generated in the initial popula-

tion. At each generation, the population is partitioned into two sets: TOP and REST .

Consequently, the size of the population is |TOP | + |REST |. Subset TOP contains

the best solutions in the population. Subset REST is formed by two disjoint sub-

sets: MID and BOT , with subset BOT being formed by the worst elements on the

current population. As illustrated in Figure 1, the chromosomes in TOP are simply

copied to the population of the next generation. The elements in BOT are replaced by

newly created mutants. The remaining elements of the new population are obtained

by crossover with one parent randomly chosen from TOP and the other from REST .

This distinguishes a biased random-key genetic algorithm from the random-key genetic

algorithm of Bean [2], where both parents are selected at random from the entire pop-

ulation. Since a parent solution can be chosen for crossover more than once in a given

generation, elite solutions have a higher probability of passing their random keys to

the next generation. |MID | = |REST | − |BOT | offspring solutions are created. In our

implementation, the population size was set to |TOP | + |MID| + |BOT | = 5 × |P |,

with the sizes of sets TOP , MID , and BOT set to 0.15 × 5 × |P |, 0.7 × 5 × |P |, and

0.15× 5× |P |, respectively, as suggested by Noronha et al. [30].

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 573 -

Fig. 1 Population evolution between consecutive generations of a BRKGA.

4 Computational experiments

We report computational experiments to assess the performance of the biased random-

key genetic algorithm BRKGA-DLS. This algorithm was implemented in C++. The

experiments were performed on a Quad-Core AMD Opteron(tm) Processor 2350, with

16 GB of RAM memory.

The set of instances used in the experiments was proposed in [1]. There are 120

grid configurations with n = 10, 20, 40, 80, 160 worker processors and eight combi-

nations of the parameter values gi, Gi and wi, i = 1, . . . , n, each of them rang-

ing either in the interval [1, 100] or in the interval [1000, 100000]. Three instances

were generated for each combination of n, gi, Gi, and wi. Six different values of the

load W = 100, 200, 400, 800, 1600, 3200 are considered for each grid configuration, cor-

responding to 18 instances for each combination of parameters gi, Gi and wi, and

amounting to a total of 720 test instances. Each heuristic was run ten times for each

instance, with different seeds for the random number generator of [29].

The first experiment consisted in evaluating if BRKGA-DLS efficiently identifies

the relationships between keys and good solutions and converges faster to near-optimal

solutions. We compare its performance with that of a multi-start procedure that uses

the same decoding heuristic as BRKGA-DLS. Each iteration of the multi-start proce-

dure, called MS-DLS, applies the same decoding heuristic of BRKGA-DLS, but using

randomly generated values for the keys. In this experiment, BRKGA-DLS was run for

1000 generations and MS-DLS for 1000× q iterations, where q = 5× |P | is the popu-

lation size of BRKGA-DLS. The average solution values found by BRKGA-DLS were

4.95% better than those provided by MS-DLS over the 720 instances. Also, the worst

(resp. best) solution values found by BRKGA-DLS were 5.98% (resp. 3.78) smaller

than the respective worst (resp. best) solution values obtained with MS-DLS. These

results indicate that BRKGA-DLS identifies the relationships between keys and good

solutions, making the evolutionary process converge to better solutions faster than

MS-DLS.

In the second experiment, we compared BRKGA-DLS with HeuRet and MS-DLS.

We first evaluated how many optimal solutions have been obtained by each heuristic

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 574 -

over the 720 test instances. The default CPLEX branch-and-cut algorithm based on

the formulation in [1] was also run for the 720 instances. Version 12.6 of CPLEX was

used and the maximum CPU time was set to 24 hours. CPLEX was able to prove the

optimality for 497 out of the 720 test instances. The first line of Table 1 shows that

BRKGA-DLS found optimal solutions for 413 instances (i.e. 83.1%) out of the 497

instances for which the optimal solutions are known, while HeuRet found 320 optimal

solutions and MS-DLS found only 177 of them. The second line of Table 1 gives the

number of instances for which each heuristic found the best known solution value. The

third line of this table shows the number of runs for which BRKGA-DLS and MS-

DLS found the best known solution values (we recall that HeuRet is a deterministic

algorithm, while the others are randomized). Finally, the last line of this table gives,

for each of the three heuristics, a score that represents the sum over all instances of

the number of methods that found strictly better solutions than the specific heuristic

being considered. The lower a score is, the best the corresponding heuristic is. It can

be seen that BRKGA outperformed both HeuRet and MS-DLS heuristics with respect

to the number of optimal and best solutions found, as well as with respect to the score

value. In particular, BRKGA-DLS obtained better scores than HeuRet for all but one

instance and found the best known solution values for 645 out of the 720 test instances,

while HeuRet found the best solution values for only 313 instances.

Table 1 Summary of the numerical results obtained with BRKGA-DLS, HeuRet and MS-DLS
for 720 test instances.

MS-DLS HeuRet BRKGA-DLS
Optimal values (over 497 instances) 177 320 413
Best values (over 720 instances) 189 313 645
Best values (over 7200 runs) 2166 - 6191
Score value 803 112 1

The third and last experiment provides a more detailed comparison between HeuRet

and BRKGA-DLS, based on 20 larger and more realistic instances with |P | = 320 and

W = 10, 000. The values of Gi and gi have been randomly generated in the ranges

[1, 100]and [100, 100, 000], respectively. However, differently from [1], the values of wi

have been randomly generated in the interval [200, 500]. These values are more realistic,

since the processing rate of a real computer is always larger than its communication

rate. In this experiment, BRKGA-DLS was made to stop after |P | generations with-

out improvement in the best solution found. The results are reported in Table 2. The

first column shows the instance name. The second and third columns display, respec-

tively, the makespan and the computation time (in seconds) obtained by HeuRet. The

next two columns provide the average makespan over ten runs of BRKGA, the corre-

sponding coefficient of variation, defined as the ratio of the standard deviation to the

average. The average computation time in seconds of BRKGA over ten runs is given

in the sixth column. The last column shows the percent relative reduction between

the average solution found by BRKGA-DLS with respect to that found by MS-DLS.

It can be seen that the average makespan obtained by BRKGA-DLS is always smaller

than that given by HeuRet. In addition, the coefficient of variation of BRKGA-DLS

is very small, indicating that it is a robust heuristic. The percent relative reduction of

BRKGA-DLS with respect to MS-DLS amounted to 3.19% for instance dls.320.10 and

to 2.38% on average.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 575 -

As in real-life applications the load size may be very large, and the total commu-

nication and processing times may take many hours, reductions in the elapsed time of

this magnitude may be very significant. Although the running times of BRKGA-DLS

are larger than those of HeuRet, their average values never exceeded the time taken

by HeuRet by more than 30 seconds. Since practical applications of parallel process-

ing take long elapsed times, the trade-off between the reduction in the elapsed time

and this small additional running time needed by BRKGA accounts very favorably to

BRKGA-DLS. In addition, we notice that the BRKGA-DLS genetic algorithm itself

may be efficiently parallelized with a high speed-up and distributed over the set P of

processors, making its computation time irrelevant when compared with that of the

parallel application.

Table 2 BRKGA vs. HeuRet on the largest instances with 320 processors.

HeuRet BRKGA
Instance makespan time (s) makespan CV (%) time (s) reduction (%)
dls.320.01 312813.64 0.01 306613.22 0.04 27.24 1.98
dls.320.02 321764.07 0.01 313847.15 0.07 16.72 2.46
dls.320.03 402264.85 0.01 392059.46 0.11 23.72 2.54
dls.320.04 348474.15 0.01 341436.89 0.02 28.16 2.02
dls.320.05 342086.46 0.01 334946.37 0.03 21.67 2.09
dls.320.06 311824.17 0.01 305601.28 0.02 21.93 2.00
dls.320.07 325732.30 0.01 316467.42 0.02 23.19 2.84
dls.320.08 323171.95 0.01 315065.11 0.03 26.23 2.51
dls.320.09 312326.77 0.01 305948.81 0.02 25.03 2.04
dls.320.10 296984.47 0.01 287521.34 0.12 24.04 3.19
dls.320.11 290559.21 0.01 284822.15 0.04 20.56 1.97
dls.320.12 343076.56 0.01 333085.72 0.05 19.53 2.91
dls.320.13 287276.21 0.01 281525.27 0.04 22.77 2.00
dls.320.14 311054.47 0.01 303796.42 0.06 26.81 2.33
dls.320.15 362369.67 0.01 352642.18 0.04 20.41 2.68
dls.320.16 287083.60 0.01 281082.29 0.09 25.38 2.09
dls.320.17 339666.43 0.01 329893.61 0.04 23.53 2.88
dls.320.18 368795.14 0.01 361281.06 0.07 22.08 2.04
dls.320.19 347671.73 0.01 338075.70 0.03 27.59 2.76
dls.320.20 372427.24 0.01 364013.40 0.06 18.28 2.26
Averages 330371.15 0.01 322486.24 0.05 23.24 2.38

5 Conclusions

We considered the single round divisible load scheduling problem with dedicated and

heterogeneous workers. A new biased random-key genetic algorithm has been proposed

for the problem.

The BRKGA-DLS heuristic improves upon the best heuristic in the literature, since

it performs a global search in the space of worker permutations in order to find the

best order in which the active worker processors will receive load from the master.

Computational experiments on 720 test instances with up to 160 processors have

shown that BRKGA-DLS found optimal solutions for 413 instances (out of the 497 in-

stances where the optimal solution is known), while the HeuRet heuristic found optimal

solutions for only 320 of them. Moreover, BRKGA-DLS obtained better scores than

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 576 -

HeuRet for all but one instance and found solutions as good as the best known solution

for 645 out of the 720 test instances. To summarize, BRKGA-DLS outperformed the

previously existing HeuRet heuristic with respect to all measures considered in Table 1.

For the new set of larger and more realistic instances with 320 processors, BRKGA-

DLS found solution values 2.38% better than HeuRet on average. In addition, the

processing times of BRKGA-DLS are relatively small and never exceeded 30 seconds.

Therefore, parallel processing applications dealing with large amounts of data and

taking long elapsed times can benefit from BRKGA-DLS, since the additional running

time needed by BRKGA-DLS may result in a significant reduction in the makespan.

References

1. Abib, E.R., Ribeiro, C.C.: New heuristics and integer programming formulations for
scheduling divisible load tasks. In: Proceedings of the IEEE Symposium on Computa-
tional Intelligence in Scheduling, pp. 54–61. Nashville (2009)

2. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA
Journal on Computing 2, 154–160 (1994)

3. Beaumont, O., Bonichon, N., Eyraud-Dubois, L.: Scheduling divisible workloads on het-
erogeneous platforms under bounded multi-port model. In: International Symposium on
Parallel and Distributed Processing, pp. 1–7. IEEE, Miami (2008)

4. Beaumont, O., Casanova, H., Legrand, A., Robert, Y., Yang, Y.: Scheduling divisible loads
on star and tree networks: results and open problems. IEEE Transactions on Parallel and
Distributed Systems 16, 207–218 (2005)

5. Beaumont, O., Legrand, A., Robert, Y.: Optimal algorithms for scheduling divisible work-
loads on heterogeneous systems. In: 12th Heterogeneous Computing Workshop, pp. 98–111.
IEEE Computer Society Press, Nice (2003)

6. Berlinska, J., Drozdowski, M.: Heuristics for multi-round divisible loads scheduling with
limited memory. Parallel Computing 36, 199–211 (2010)

7. Berlińska, J., Drozdowski, M., Lawenda, M.: Experimental study of scheduling with mem-
ory constraints using hybrid methods. Journal of Computational and Applied Mathematics
232, 638–654 (2009)

8. Bharadwaj, V., Ghose, D., Mani, V.: Multi-installment load distribution in tree networks
with delays. IEEE Transactions on Aerospace and Electronic Systems 31, 555–567 (1995)

9. Bharadwaj, V., Ghose, D., Mani, V., Robertazzi, T.G.: Scheduling divisible loads in par-
allel and distributed systems. IEEE Computer Society Press (1996)

10. Blazewicz, J., Drozdowski, M.: Distributed processing of divisible jobs with communication
startup costs. Discrete Applied Mathematics 76, 21–41 (1997)

11. B lażewicz, J., Drozdowski, M., Markiewicz, M.: Divisible task scheduling–concept and
verification. Parallel Computing 25, 87–98 (1999)

12. Cheng, Y.C., Robertazzi, T.G.: Distributed computation with communication delay. IEEE
Transactions on Aerospace and Electronic Systems 24, 700–712 (1988)

13. Drozdowski, M.: Selected Problems of Scheduling Tasks in Multiprocessor Computer Sys-
tems. 321. Politechnika Poznanska (1997)

14. Drozdowski, M., Lawenda, M.: Multi-installment divisible load processing in heterogeneous
systems with limited memory. Parallel Processing and Applied Mathematics 3911, 847–
854 (2006)

15. Drozdowski, M., Wolniewicz, P.: Divisible load scheduling in systems with limited memory.
Cluster Computing 6, 19–29 (2003)

16. Drozdowski, M., Wolniewicz, P.: Optimum divisible load scheduling on heterogeneous stars
with limited memory. European Journal of Operational Research 172, 545–559 (2006)

17. Duarte, A., Mart, R., Resende, M., Silva, R.: Improved heuristics for the regenerator
location problem. International Transactions in Operational Research 21, 541–558 (2014)

18. Ericsson, M., Resende, M.G.C., Pardalos, P.M.: A genetic algorithm for the weight setting
problem in OSPF routing. Journal of Combinatorial Optimization 6, 299–333 (2002)

19. Gonçalves, J.F., Resende, M.G.: Biased random-key genetic algorithms for combinatorial
optimization. Journal of Heuristics 17, 487–525 (2011)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 577 -

20. Gonçalves, J.F., Resende, M.G.: A biased random key genetic algorithm for 2D and 3D bin
packing problems. International Journal of Production Economics 145, 500–510 (2013)

21. Gonçalves, J.F., Resende, M.G.: An extended Akers graphical method with a biased
random-key genetic algorithm for job-shop scheduling. International Transactions in Op-
erational Research 21, 215–246 (2014)

22. Gonçalves, J.F., Resende, M.G.C.: An evolutionary algorithm for manufacturing cell for-
mation. Computers and Industrial Engineering 47, 247–273 (2004)

23. Gonçalves, J.F., Resende, M.G.C., Costa, M.D.: A biased random-key genetic algorithm
for the minimization of open stacks problem. International Transactions in Operational
Research (2015). DOI 10.1111/itor.12109

24. Kim, H.J.: A novel optimal load distribution algorithm for divisible loads. Cluster
Computing- The Journal of Networks Software Tools and Applications 6, 41–46 (2003)

25. Lee, C.k., Hamdi, M.: Parallel image processing applications on a network of workstations.
Parallel Computing 21, 137–160 (1995)

26. Li, P., Veeravalli, B., Kassim, A.A.: Design and implementation of parallel video encoding
strategies using divisible load analysis. IEEE Transactions on Circuits and Systems for
Video Technology 15, 1098–1112 (2005)

27. Li, X., Bharadwaj, V., Ko, C.: Divisible load scheduling on single-level tree networks with
buffer constraints. IEEE Transactions on Aerospace and Electronic Systems 36, 1298–1308
(2000)

28. Lin, W., Liang, C., Wang, J.Z., Buyya, R.: Bandwidth-aware divisible task scheduling for
cloud computing. Software: Practice and Experience 44, 163–174 (2014)

29. Matsumoto, M., Nishimura, T.: Mersenne twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM Transactions on Modeling and Computer
Simulation 8, 3–30 (1998)

30. Noronha, T.F., Resende, M.G.C., Ribeiro, C.C.: A biased random-key genetic algorithm
for routing and wavelength assignment. Journal of Global Optimization 50, 503–518 (2011)

31. Shokripour, A., Othman, M., Ibrahim, H.: A method for scheduling last installment in a
heterogeneous multi-installment system. In: Proceedings of the 3rd IEEE International
Conference on Computer Science and Information Technology, pp. 714–718. Chengdu
(2010)

32. Shokripour, A., Othman, M., Ibrahim, H., Subramaniam, S.: A new method for job
scheduling in a non-dedicated heterogeneous system. Procedia Computer Science 3, 271–
275 (2011)

33. Shokripour, A., Othman, M., Ibrahim, H., Subramaniam, S.: New method for scheduling
heterogeneous multi-installment systems. Future Generation Computer Systems 28, 1205–
1216 (2012)

34. Spears, W., deJong, K.: On the virtues of parameterized uniform crossover. In: R. Belew,
L. Booker (eds.) Proceedings of the Fourth International Conference on Genetic Algo-
rithms, pp. 230–236. Morgan Kaufman, San Mateo (1991)

35. Turgay, A., Yakup, P.: Optimal scheduling algorithms for communication constrained par-
allel processing. Lecture Notes in Computer Science 2400, 197–206 (2002)

36. Wang, M., Wang, X., Meng, K., Wang, Y.: New model and genetic algorithm for divisible
load scheduling in heterogeneous distributed systems. International Journal of Pattern
Recognition and Artificial Intelligence 27 (2013)

37. Wang, R., Krishnamurthy, A., Martin, R., Anderson, T., Culler, D.: Modeling commu-
nication pipeline latency. ACM Sigmetrics Performance Evaluation Review 26, 22–32
(1998)

38. Wang, X., Wang, Y., Meng, K.: Optimization algorithm for divisible load scheduling on
heterogeneous star networks. Journal of Software 9, 1757–1766 (2014)

39. Wolniewicz, P.: Divisible job scheduling in systems with limited memory. Ph.D. thesis,
Poznan University of Technology, Poznań (2003)

40. Yang, Y., Casanova, H.: RUMR: Robust scheduling for divisible workloads. In: Proceedings
of the 12th IEEE Symposium on High Performance and Distributed Computing, pp. 114–
125. Seattle (2003)

41. Yang, Y., Casanova, H.: UMR: A multi-round algorithm for scheduling divisible workloads.
In: Proceedings of the 17th International Parallel and Distributed Processing Symposium,
pp. 24–32. Nice (2003)

42. Yang, Y., Casanova, H., Drozdowski, M., Lawenda, M., Legrand, A., et al.: On the com-
plexity of multi-round divisible load scheduling. Tech. Rep. 6096, INRIA Rhône-Alpes
(2007)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 578 -

MISTA 2015

Optimisation of a Stagger Chart for Aviation Fleet Planning

Richard Weedon • Samad Ahmadi • Mike Critchley

Abstract Within the Commercial Aviation Industry, the maintenance planning process takes
into account the number of spare engines available to meet a minimum spares level (usually
contractual). This is to minimize the risk of disruption to aircraft, if engines are required to be
replaced due to unplanned events. To ensure the efficient use of the spare engines pool while
maximizing the engine time on wing between planned removals requires a forecast that is set
for the predicted life of an operator’s specific aircraft type fleet. The engines are required to be
refurbished at certain intervals which can be projected on to a forecast plan. The process of
producing this plan by implementing the engine removals is known as Stagger. The aim of this
research is to produce good quality Stagger Plans using evolutionary algorithms based upon
data from an actual forecast. This paper presents our early attempts on modelling this problem
and then solving it with Genetic Algorithms. Results show that the Stagger Plan produced by
the GA reduced the number of weeks that the spare engines level had fallen below the
minimum spare engine value when this was compared to the original forecast.

1 Introduction

 Often, Operators of aircraft have various contracts with external companies such as the
engine manufacturers to maintain their aircraft engine fleets. These fleets can consist of
hundreds of engines. The maintenance of these engines is highly regulated to ensure maximum
safety is adhered to and compliance with major air worthiness authorities. The modern
commercial jet engine consists of thousands of parts which generally have specific working
lives as determined by a time limits manual set by the manufacturer. These lives are also
affected by how the engine is operated and in what environments. The lives are measured in
hours and cycles, where a cycle in this paper is considered as a takeoff and landing. Typically
these parts are affiliated with modules of the engine. The lives of certain key parts of the
engine are typically tracked by using an engine health management system (EHM) and
documented at shop floor visits. This information can be used in addition with the dates the
engine entered into service with the operator, to predict over the life time of the fleet, a
forecast of planned engine refurbishments.

To keep the aircraft operational in order to maximize revenue requires additional spare
engines to account for unplanned events and also for engines that are required to come off
wing due to part life time expiry or another reason as highlighted by the EHM system, for
refurbishment. Typically an engine refurbishment can take between 3 – 4 months turnaround
time from removal to being installed back on wing. The duration of shop visits in the Stagger
Plan in this paper are between 15 and 16 weeks. If a part delivery of a fleet of aircraft to the
operator occurs at a similar time then this can cause engines to require refurbishment at the
same time which if not monitored can cluster and leave the spares pool empty. This could
result in aircraft being grounded due to no engine availability, resulting in loss of revenue and

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 579 -

cancelled flights. If the engine removals are staggered, then this can reduce the risk of the
number of spare engines falling below the accepted minimum value and also reduce the load
on the overhaul workshops. However removing an engine off an aircraft too early than the
planned removal date, results in parts being replaced which have an amount of useable life left.
This is usually referenced as lost days. To monitor the operator’s fleet, Forecasting and Stagger
Planning tools are used but typically involve a large amount of manual processing. This paper
is part of an ongoing research on this problem by authors and aims to introduce the Stagger
concept and propose a basic model of the problem. A solution to the Stagger problem is
developed using Evolutionary Algorithms.

2 Other studies

 The maintenance of aircraft engines is a complex and expensive process that involves
exhaustive fleet planning but also ensuring parts are ordered in advance (due to the complexity
and associated lead times of some parts) and ready for engines that are removed. Gatland et. al.
[1] discusses the problems that arise from the maintenance capacity planning of engines. They
produce a simulation that models an engine maintenance facility that investigates effects of
facility loading on turnaround time, throughput and capacity. Their paper provides further
information on factors that dictate engine removals and the duration of shop visits (turnaround
times). To reduce costs in the overhaul of engines accurate costing of the removal is an
important part of the forecast. Engine maintenance decisions are often evaluated by using a
metric commonly known as the life cycle cost (LCC).
 Painter and Beachkofski [2] explain the costing implications and subsequent engine
maintenance decision making by developing a simulator and data mining model to produce a
more accurate LCC metric. An engine generally consists of modules. These modules are often
swapped between engines to increase turnaround time at the overhaul workshop. Matching
modules with similar life remaining can increase the time on wing (TOW) and reduce costs. In
[3] a module swapping optimization simulator was developed for use with the air force but
could equally be used in civilian engines.
 A similar problem to Stagger is shown in [4] where a multi agent simulator was
developed for cost reduction of engine removal scheduling. The OPS tool used an original
removal plan forecast and readjusts the schedule by prioritizing engines that required overhaul
due to Weibull scoring, or unforeseen circumstances. The tool does not readjust the forecast
for optimization in the same way that this Stagger problem aims to provide however, it does
explain the constraints such as lost days, and minimum spares. The paper also provides some
mathematical representation of the turnaround times and the ratio of spare engines to fleet sizes
which have not been explained in detail in this Stagger research. Additionally [4] provides
information on how fleet planners/manager maintain a schedule of engine removals. Another
similar problem to Stagger is also seen in [5] but for navy ship repair scheduling. Here, the
paper mathematically models the constraints and fitness function to minimize the number of
overlapping activities to maximize availability. The schedule is for 200 weeks with 1
maintenance cycle per ship. Instead of spare engines as a constraint, in this case 2/3 of the fleet
has to be operational at any time. An evolutionary algorithm is used similarly in [5] to the
Stagger solution presented in this paper.
 There are software solutions available that claim to manage maintenance and cost
planning such as EFPAC [6]. This software does claim to have a removal plan optimizer but
does not go into detail about how this is performed. Also Clockwork Solutions [7], have a
product called Insight LCM, the LSC Group [8], provide modelling and simulation solutions
with optimized resource planning. SAS also provide various optimized solutions such as SAS
Asset Performance Analytics [9].
Finding the optimal solution for the forecast that enables the engine to be removed with
minimal lost days but maintains a minimum spare engine level can be related to timetabling
problems where events can be represented as the engine removals and periods are represented

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 580 -

as the week numbers in the forecast subject to certain constraints which are explained later in
the mathematical model shown in figure 3. There is a large amount of literature on timetabling
problems and methods of solving them. Typically the approaches to solving these problems
have been categorized into Sequential methods, cluster methods, constraint based methods,
generalized search, hybrid evolutionary algorithms, metaheuristics, multi-criteria approaches,
case based reasoning techniques, hyper-heuristics and multi-criteria approaches (for survey of
approaches see [11,12]).
 The study conducted in this paper, is to solve a Stagger problem that incorporates the
use of an evolutionary algorithm to produce a Stagger Plan.

3 Forecasting and Stagger Planning Design

3.1 Problem Definition

 The main focus of this study is to identify the best sequencing of maintenance activities
based on constraints of the size of the engine spares pool and minimum contractual spares
level while minimizing total lost days on wing for the fleet. A typical dataset has been
produced for this problem that consisted of actual data that would normally be obtained from
various information systems such as EHM data and engine shop visit forecasting data. The
dataset consists of an engine number that determines the engine unique id, a start and end date
of the forecast which typically shows the perceived life of the aircraft in the operator’s fleet
(the aircraft maybe sold to another operator at the end of the forecast or mothballed). The term
mothballed is where an aircraft is kept for storage or awaiting scrap. The dataset also includes
a list of all the engine removal dates that are planned for refurbishments for each engine. These
refurbishments are classified as check & repair, first refurbishment, second refurbishment and
mature refurbishment. There are other types of shop visits which are not relevant to this
particular problem. Additionally aircraft and engine retirement dates if earlier than the end of
the forecast are also included in the dataset and their induction to the Operator’s fleet. The
Minimum spares level for the duration of the forecast is set to 2 in this particular study.

Fig. 1: A Non-Optimal Stagger Plan

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 581 -

3.2 Modelling the Stagger Problem
An example of a Stagger Plan that has not been optimized can be seen in figure 1, this

shows the engines on the far left with the weekly dates for the duration of the forecast at the top.
The 0 represents an engine that is currently available either as a spare or currently flying. The
pink colored 1 represents engines that are currently having a shop visit. A white – 1 identifies an
engine that has not been inducted into the fleet and therefore cannot be included into the
calculations. Check & Repairs are not included as a main shop visit and are subsequently not
recognized as a shop visit in the removal data used for the Stagger Plan of an individual engine.
However, a weekly total of check & repairs has been included and is part of a calculation that
affects how many engines are available as spares.

The chart in figure 1 is similar to what the final designed optimized Stagger Plan will show
with an additional calculated value – lost days. The lost days and spare engines can be seen
graphically for a Stagger forecast in figures 4, 5 and 6 in section 5. The calculations required to
produce the minimum spares level and lost days are as follows:

Spares Available = Engine Count Available – Engine Demand. (1)

Engine Count Available = Engine Count – C&R Count - Engines
in shop that week

(2)

Engine Demand = Aircraft Count × no. of engines on an
aircraft.

(3)

Engine Count = No. of engines in shop (removal) for a
particular week.

(4)

Lost Days = Original engine removal week – adjusted engine
removal week × 7.

(5)

3.3 A Genetic algorithm for the Stagger Problem
 In this paper an evolutionary algorithm is developed to produce an optimal solution for a
Stagger Plan. A chromosome was represented by a 3 dimensional array. The first dimension
contained all of the week numbers in the forecast, the second dimension was the engine serial
numbers (ESN’s) and the third dimension consisted of 9 values: ESN, start of removal week
number, end of removal week number, Number of weeks removal moved forward, week ESN
inducted into fleet, week ESN removed from fleet, Total Fleet spares Value, Lost Days and
finally a Marker that is a Boolean data type. All of the dates have been converted to week
numbers over a range from 0 to the last week of the forecast – 1.

The fitness function is required to determine the quality of each member of the population.
In this study the fitness function is actually an inequality which was developed around the
number of spare engines available each week and the number of lost days. The number of spare
engines available should never fall below the minimum value and the function should be
weighted accordingly. The lost days should be kept as minimal as possible but should not
override the spare engines available. When the child is being scored the coding checks every
week of the forecast and if the spare engines level drops below the minimum level then the
inequality shown in equation (6) is used.

 (6)

Alternatively if the spare engines level is above the minimum for the whole forecast then the
inequality in equation (7) is used:

 (7)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 582 -

These inequalities were designed so that the lost days should achieve a higher performance
as the lost day’s approaches 0 if the minimum spare engines level is maintained for the whole
forecast. A positive fitness score would represent that the minimum spares level has been met
for the whole forecast. A negative fitness function would indicate that the minimum spares
figure has fallen below the threshold. How close the negative fitness score is to zero indicates
that the lost days are minimal.

The crossover operation consisted of copying one part of one parents array by randomly
picking an ESN and copying all of the ESN’s to the left (including the randomly picked ESN)
and then copying the remaining ESN’s to the right from another parents array to create a child.
To enable the selection of the chromosomes to represent the parents then 3 methods of selection
were developed to determine if any specific method produced an improvement to the results.
These selection methods are roulette wheel selection, elitism selection and a random selection.
The roulette wheel selection used an array to store the proportioned fitness of all the individuals
by using the formula:

Stagger Fitness / Total Population Fitness × 360

 (8)

The elitism method uses an array that orders those individuals by their fitness and the
highest scoring chromosomes are then selected as parents. Likewise for the random method a
random number generator was used to pick parents randomly in an array. The mutation operator
stage of the process was developed by calling a random number generator with the range of
numbers from 1 to 2 as shown in the pseudo code in figure 2.

Fig. 2

 If a 1 was generated then the mutation operation was implemented. At mutation, another
random number was generated from 0 to the number of engines in the forecast – 1, to pick an
engine at random. The code was developed to determine if an engine is in shop in a particular
week and whether the engine was inducted into the fleet within 26 weeks of the forecast start
week. Also if the removal date is less than the 26 weeks from the induction week then this needs
to be accounted for. The resultant figure from the above logic is sent as a range for another
random number to be generated. This random number is subtracted from the original removal
week to produce a new removal week. Finally the weakest (fitness) chromosome was erased
from the population after each chromosome is spawned.
 The software used to develop the optimized Stagger Plan was Microsoft Excel VBA 2010.
The structure of the coding involved the use of 2 and 3 dimensional arrays. As mentioned
earlier, an array was used to store the data that was imported from the worksheets which is
referenced in the Setup worksheet with the cell ranges that the data lies within. Another array
was created that produced a generic Stagger Plan with the original engine removals and the
week number of the forecast. A third dimension was used to switch between removal start and
end dates, engine induction dates, adjusted removal date, engine retired from fleet date, lost
days and fleet spare engines. This array was used as a template and was copied into each

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 583 -

chromosome at the initialize population stage of the fleet prior to mutation. At initialization of
the population stage no crossover operation was used due to no parents. To create a
chromosome a class module was used to create a collection called Staggers.
 A Stagger is a member (property) of the Staggers collection which was used to store the
chromosome. Each Stagger had a property associated with it. These include a variant type array
which was a version of Stagger Plan, a generation property to store the generation number that it
was spawned in and a name property. After each Stagger was created another array was used to
work out its fitness and store the result. This array varXScore was used to compare all the other
active chromosomes in the population to identify which one is erased. A temporary array was
used to sort the highest score in descending order, from the varXScore array when this process
was initiated.
 Once the population was initialized then subsequent generations were created using a loop
until the required number of generations was reached as set on the Setup worksheet. At the
Mutation stage, if it was selected by the random generator the mutation was set by using the
original removal date and randomly moving the removal date forward by the criteria discussed
earlier.
When the last generation was created the Stagger Plan from the chromosome with the best
fitness was exported into a worksheet called Final. The scores of all of the chromosomes can be
seen in the Score worksheet.

4 Results

4.1 Initial Tests
 The test runs were produced initially with the population set to 4 and the number of
generations set at 3. The number of parents per generation for this study was always set to 2.
These settings were used initially to test the duration of the run and whether any major
performance issues would be encountered. The table below shows the fittest chromosome from
each run for both the roulette wheel selection and elitism selection methods used for the
selection of parents:

Run 1

Min
Spares

Av.
Lost
days

Fitness
score

Id Gen. Time Crossover

-3 14.28 -0.31 6 3 00:00:36 Elitism

-3 15.04 -0.32 7 4 00:00:33 Elitism

-3 15.85 -0.34 6 3 00:00:34 Elitism

-2 15.90 -0.34 7 4 00:00:37 Roulette

-3 14.30 -0.31 5 2 00:00:36 Roulette

-3 14.35 -0.31 5 2 00:00:34 Roulette

Due to the very small population and number of generations created, there was an improvement
to the Stagger Plan. A positive fitness score would represent that the minimum spares level has
been met for the whole forecast. A negative fitness would indicate that the minimum spares
figure has fallen below the threshold. How close the negative fitness score is to zero indicates
that the lost days are minimal. In fact the average lost days for all removals in the Stagger is
around 14 days in the above table. All the parents that are created at the initialization stage
contain an average lost day’s figure > 250 which is suggesting there is a problem with the
calculation of the creation of the parents as the maximum Stagger should only be 180 days.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 584 -

However the figure settles with the next generations. Due to time constraints of this study this
problem was not investigated further. Changing the population to 20 with 10 generations did
increase the processing time from around 35 seconds to 105 seconds as shown in the table
below.

Run 2

Min
Spares

Av.
Lost
days

Fitness
score

Id Gen. Time Crossover

-1 13.89 -0.30 28 9 00:01:44 Roulette

-2 13.75 -0.29 23 4 00:01:39 Elitism

-3 14.28 -0.31 24 5 00:01:28 Roulette

-2 13.75 -0.29 23 4 00:01:40 Elitism

As can be seen in the above tables increasing the population size and the number of generations
has not improved the results too much at this point. Increasing the generations to 25 with a
population of 20 increased the processing time to approximately 225 seconds. The best fitness
achieved for these runs only improved by +0.01 and the average lost days decreased to 13.04.

Run 3

Min
Spares

Av.
Lost
days

Fitness
score

Id Gen. Time Crossover

-2 13.49 -0.29 45 26 00:03:47 Elitism

-3 13.04 -0.28 41 22 00:03:52 Roulette

It can be seen through the above tables that there is no real difference between the elitism and
roulette wheel selection methods at this stage. Increasing the generations to 75 again showed an
improvement with the fitness with respect to the lost days being reduced to 11.6 days for the
whole Stagger Plan. The processing time was 13 minutes. However the minimum spares value
is not improving for this run because the best chromosome still had – 2. The fitness function is
improving the lost days consistently with the increase in the number of generations.

4.2 Improving the Fitness Function
An amendment was made to the inequality of equation (6) to give:

 (9)

This was designed to provide more weight to the minimum spares level to ensure it would add
more bias to the spare engines rather than the lost days. Using a population of 20 and 10
generations provided the following results as shown in run 4.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 585 -

Run 4

Min
Spares

Av.
Lost
days

Fitness
score

Id Gen. Time Crossover

-2 13.52 -0.29 22 3 00:01:42 Roulette

-3 13.54 -0.29 22 3 00:01:44 Elitism

In run 5, the p represents the population size and g represents the number of generations. The
colored section represents the fitness inequality in equation (8) and the uncolored section
represents the fitness inequality in equation (7). Each of the results displayed in the above table
are those chromosomes who have the best fitness function of that particular test. Interestingly,
the elitism selection for the fitness inequality in equation (7) outperforms the roulette wheel
selection for fitness and lost days and the weekly remaining spare engines. For the revised
fitness function, the operators are similar. Comparing the spare engines remaining between the 2
fitness inequalities clearly show that the fitness inequality in equation (8) produces a better
spare engine remaining figure and appears to consistently improve the spare engine figure as the
generations are spawned.

A further elitism selection run produced a minimum spare level of 1 which was using a
population size of 10 and 40 generations. The fitness was 1.64 and the average lost days for
each week of the forecast was 16.85 days. The lost days can be seen in a plot as shown in figure
3 and the minimum spare engines can be seen in figure 4 below.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 586 -

Fig.3

Fig.4

The Stagger Plan produced above did fall below the minimum spares level of 2 however, the
total lost days across all weeks in the forecast was 8372 days. Although this figure seems high
but the lost days per engine (114 in this fleet) are 73.4. Also if the average daily cycles flown
per engine is 2.2 then the total number of cycles lost is 18418.4. The lost cycles per engine are
then 161.6. Typically an engine is taken off wing at approximately 50 cycles prior to the latest
possible removal date to provide a safety margin.

The results have shown that the evolutionary algorithm overall improved the optimization of
Stagger. The results from tables 1 to 4 show an improvement in the fitness score for lost days.
However, the minimum spares level was completely random from –1 to -3 for the majority of
the test runs above. Improving the fitness function to that of equation 8 did not improve the
fitness scores until a code change to the mutation operator was addressed. After this amendment

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 587 -

the fitness scores did improve. The elitism selection and the roulette wheel selection did not
seem to be too different for both fitness inequalities. Run 3 shows the roulette wheel selection
produced a better fitness score and lost day values where run 2 produced better elitism selection
results. The final run produced better results that were an improvement from the standard
Stagger Plan that used the forecasted removal dates with – 4 spare engines as the lowest value
of spares as shown in figure 5 below:

Fig.5

The majority of the runs above were timed to determine that the processing is consistent for
each run of similar settings and also to evaluate how much time a large population and number
of generations would take to complete, providing the system could handle the memory and
processor resources required. The times were fairly consistent with the runs. The computer that
performed the test runs was running windows 7, 32-bit operating system with 4GB ram and an
AMD Phenom II quad core processor – 3.3GHz. Typically performing a run used
approximately 25% on the CPU and increased the RAM usage by 0.06GB consistently,
providing no other applications were used in addition to Microsoft Excel. These values include
all the other system processes that are running in the background.

None of the above runs produced an optimal solution that satisfied the condition that no spare
engines would fall below the minimum value. However, if the population was increased to 100
and left for 10000 generations, then this may produce a better solution. This figure would create
a total of 10,100 members. To create a population with 10 members over 50 generations (60 in
total) involved a processing time of approximately 7 minutes which if used as a guide for
10,100 members would take 19.64 hours to generate. The best result was obtained with a
population of 50 to a 100 with 40,000,000 iterations (generations). Unfortunately using that
many generations with the existing set up would not be feasible.

5 Conclusion
In this paper the Stagger problem has been introduced with a basic solution developed that uses
an evolutionary algorithm. The Stagger problem could be expanded to cover Life Separation.
This is where some engines are taken off wing as they are delivered to the fleet and replaced
with a spare engine that has half of the life of the new engine. The engine that has been taken
off is typically stored as new for a length of time to allow a break between future removals and
subsequently reduce demand in the future as all of the engines need to be refurbished. However,
there are a limited number of spare engines for a fleet to use as can be seen in figures 7 and 8
and where a high volume of shop visits occur these spare engines may be required. This extra
feature of Stagger could be investigated in future work.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 588 -

Future work is also planned to present a Mathematical model and also more accurate and
sophisticated algorithms to find optimal solutions.

References

1. Gatland, R.; Yang, E.; Buxton, K., “Solving engine maintenance capacity problems
with simulation”, Simulation Conference, 1997, IEEE, pages 892-899, 7-10 Dec.
1997

2. Painter, M.K.; Erraguntla, M.; Hogg, G.L.; Beachkofski, B., "Using Simulation, Data
Mining, and Knowledge Discovery Techniques for Optimized Aircraft Engine Fleet
Management," Proceedings of the Winter Simulation Conference, 2006. IEEE, pages
1253,1260, 3-6 Dec. 2006

3. Yutsung W; Jaw, L.; Rendek, P.; Moses, E.; Robinson, M.; Driver, S.; Senior, K.,
"Demonstration of A Reliability Centered Maintenance (RCM) Tool to Extend
Engine's Time-On-Wing (TOW)," Aerospace Conference, 2007, IEEE, Pages 1,5, 3-
10 March 2007

4. Stranjak, A.; Dutta, P.S.; Ebden, M.;Rogers, A.;Vytelingum, P.
5. “A multi-agent simulation system for prediction and scheduling of aero engine

overhaul”, 2006, Proceedings of the International Conference on Autonomous Agents
and Multi-Agent Systems (Industrial Track), ACM DL, Industrial Track, 8-12 May
2006

6. Deris, S.; Omatu S.; Ohta H.; Kutar S.; Samat P. A.; “Ship maintenance scheduling
by genetic algorithm and constraint-based reasoning”, European Journal of
Operational Research, 1999, Volume 112, Issue 3, 1 February 1999, Pages 489-502

7. Aerdata, 2015, EFPAC Engine Maintenance Cost Planning [Online] Available from
http://www.aerdata.com/efpac-engine-management-system.html, [Accessed 14/05/15]

8. LSC Group, 2015, Modelling & Simulation [online] Available from:
http://www.lsc.co.uk/our_services/ikm__business_analysis/modelling__simulation/L
SC Group, [Accessed 03/06/2015]

9. Clockwork Solutions, 2015, Insight LCM, [online] Available from: http://clockwork-
solutions.com/products/insight-lcm/, [Accessed 03/06/2015]

10. SAS, 2015, SAS Asset Performance Analytics, [online] Available from:
http://www.sas.com/en_us/software/supply-chain/asset-performance-analytics.html,
[Accessed 03/06/2015]

11. Babaei, H, Karimpour, J. and Hadidi, A., A survey of approaches for university
course timetabling problem, Computers & Industrial Engineering, Available online 21
November 2014, ISSN 0360-8352, http://dx.doi.org/10.1016/j.cie.2014.11.010.

12. Burke, E.K. and Petrovic, P., Recent research directions in automated timetabling,
European Journal of Operational Research, Volume 140, Issue 2, 16 July 2002, Pages
266-280, ISSN 0377-2217, http://dx.doi.org/10.1016/S0377-2217(02)00069-3.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 589 -

http://www.aerdata.com/efpac-engine-management-system.html
http://dx.doi.org/10.1016/j.cie.2014.11.010

Abstracts

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 590 -

Neha Prajapat; Marco Pattacini

Alstom Power, Rugby, CV21 2NH; Cranfield University, MK43 0AL, United Kingdom

E-mail: neha.prajapat@power.alstom.com; marco.pattacini@power.alstom.com

Windo Hutabarat, Prof Ashutosh Tiwari

Cranfield University, Bedford, MK43 0AL, United Kingdom

E-mail: w.hutabarat@cranfield.ac.uk; a.tiwari@cranfield.ac.uk

MISTA 2015

Investigating Scheduling models for Power Plant Preventive Maintenance

using Genetic Algorithm

Neha Prajapat • Windo Hutabarat • Ashutosh Tiwari • Marco Pattacini

1 Introduction

Optimal scheduling of preventive maintenance tasks is imperative for power generation

companies as maintenance activities have a substantial impact on equipment reliability and

production costs. Power generation companies are responsible for providing a dependable

service at a competitive price to customers; thus high value power plant equipment must be

subjected to preventive maintenance at predetermined intervals to prevent unexpected failures.

All maintenance activities require the plant to be taken off-line which can cost companies in

the region of millions in lost revenue. In particular combined cycle power plants have a large

number of expensive machines which have different maintenance guidelines and strict

maintenance intervals. Alignment of these activities through optimization can provide many

significant advantages for generation companies. The preventive maintenance scheduling

problem has been widely studied within the power industry with different applications areas.

The Generator Maintenance Scheduling problem (GMS) has received the most academic

interest as this addresses a large scale complex system [1] which often governs other planning

and operations activities [2]. The preventive maintenance scheduling problem has been

formulated in numerous different ways including: integer programming [3; 4], dynamic

programming [5] and simulation methods [6].

Optimization criteria for preventive maintenance scheduling are typically cost and

reliability based [7]. Cost based criteria are the most popular approach often accounting for

maintenance and production costs, start-up costs, indirect costs and fuel and electricity prices

for profit calculation. Reliability has been used as a primary objective function particularly for

the GMS problem [4]. A number of different optimization methods have been used to solve the

preventive maintenance scheduling problem including: heuristic methods [8], decomposition

methods [9] and evolutionary computation approaches among others. Evolutionary

computation approaches have been an area of growing interest with algorithms such as Genetic

Algorithms [10], Simulated Annealing [11] and Particle Swarm Optimization [12] being

increasingly applied to solve the problem.

In the following sections two models are proposed to solve the preventive maintenance

scheduling optimization problem for the main components of a combined cycle power plant.

This paper presents the multi objective optimization problem of scheduling multiple

maintenance activity types for major combined cycle power plant equipment such as the gas

turbine, steam turbine and steam generator.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 591 -

Nomenclature

𝑖- machine number

𝑗- period number

𝑘- maintenance activity index

𝑟𝑖- minimum inspection frequency

𝑑𝑖- fixed duration of maintenance of machine i

𝑥𝑖,𝑗- maintenance assignment variable

𝐶𝑖,𝑘- period number variable for maintenance k for machine i

𝐵- number of outage days

𝑆𝑖- constraint violation indicator for machine i

𝑇- total constraint violation

𝑈𝑖- minimum number of maintenance activities for machine i

𝑊1, 𝑊2- weighting factors for equivalent operating hours EOH

2 Problem Description

Combined cycle power plants have a large number of high value equipment such as the

gas turbine, steam turbine, and heat recovery steam generator. Maintenance intervals for the

machinery are based on equivalent operating hours (EOH) accrued by the power plant. The

EOH limits or inspection intervals are governed by the number of operating hours of the plant

(OH- operating hours), the number of cyclic events (CE- cyclic events such as start-up and

shut down), the operating mode of the gas turbine and by the operating regime of the entire

plant. These factors influence the degradation of equipment due to the temperature gradient

and hence govern the inspection intervals. The EOH limit for each piece of equipment is

calculated using formula (1). This is used as a minimum inspection frequency.

 𝐸𝑂𝐻 = 𝑊1𝑂𝐻 + 𝑊2𝐶𝐸 , 𝐸𝑂𝐻 = 𝑟𝑖 (1)

In (1) 𝑊1and 𝑊2are weighting factors based on the operating regime of the power plant

and the operating mode of the gas turbine. This paper considers the case where the power plant

will be run on one particular operating mode and one operating regime for the plant lifetime.

The EOH limits are a minimum inspection frequency for the equipment.

The problem formulation is based on 0/1 integer programming [3]. Machines are

maintained at integer multiples of a fixed time period [13] and each maintenance activity has a

duration 𝑑𝑖 which is a fixed number of outage days. The value of k is incremented by 1 for

each machine every time another maintenance activity is scheduled. Quarter of a year was

chosen as an appropriate time period; there are 80 periods in the plant lifetime. The

minimization of the number of outage days is chosen as the objective function. The

optimization problem is formulated as follows:

Minimise 𝐵 = ∑ max𝑖(𝑥𝑖,𝑗𝑑𝑖)
80
𝑗=1 (2)

Subject to interval constraint 𝐶𝑖,𝑘+1 − 𝐶𝑖,𝑘 ≤ 𝑟𝑖 where ∀𝑥𝑖,𝑗 = 1, 𝑗 = 𝐶𝑖,𝑘 (3)

The constraint violation of the maintenance interval length is formulated as an objective

function for both models; formulation of both models is as follows.

2.1 Model 1

This model has been designed to be easy to manipulate for engineers and the solutions

produced will have the same number of maintenance activities as current solutions. The

primary objective function is given in (2). The second objective function is the minimization of

maintenance interval constraint violations as given in equation (4). A variable 𝑆𝑖 is used to

indicate if there is any constraint violation for each machine. This model also fixes the number

of maintenance activities to 30 as a constraint in equation (6). This constraint is based on the

existing solution.

Minimise 𝑇 = ∑ 𝑆𝑖
6
𝑖=1 (4)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 592 -

For each machine 𝑖 ∀𝑘 𝑆𝑖 = {
0 𝑖𝑓 𝐶𝑖,𝑘+1 − 𝐶𝑖,𝑘 ≤ 𝑟𝑖

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5)

Subject to ∀𝑖, 𝑗 ∑ 𝑥𝑖,𝑗 = 30 (6)

2.1 Model 2

 In this model the total number of maintenance activities is not fixed; this provides more

flexibility allowing a much larger search space to be explored. The first objective function for

this model is given in equation (2). The second objective (7) is to minimize the sum of

constraint violations; this sums the degree of constraint violation for all violations.

Mimimise 𝑇 = ∑ 𝐶𝑖,𝑘+1 − 𝐶𝑖,𝑘 − 𝑟𝑖 𝑖,𝑘 ∀ 𝑖, 𝑘: 𝐶𝑖,𝑘+1 − 𝐶𝑖,𝑘 ≤ 𝑟𝑖 (7)

After test runs it was noticed that this constraint led to very few maintenance activities

being scheduled so a further penalty of 500 was applied to each machine schedule which did

not meet the minimum number of maintenance activities. A new variable is introduced for the

minimum number of activities for each machine 𝑈𝑖. This variable has fixed values for each

machine based on current solution.

 ∀𝑖 𝑖𝑓 𝑘 ≤ 𝑈𝑖 𝑇𝑖 = 500 (8)

The second model is designed to explore solutions which may not be intuitive to

engineers and to provide flexibility with respect to the constraint violations.

3 Results and Discussion

The optimization platform chosen is GanetXL [14] and the multi objective optimization

algorithm used is NSGAII. GanetXL is an add-in for MS Excel to enable optimization on

spreadsheet based models. The model was formulated with multiple objectives in Excel and

solved using the NSGAII algorithm.

A manual ‘trial and error’ optimization exercise was carried out on the first model. This

heuristic method resulted in a solution with no constraint violations and 320 outage days

providing a saving in the region of 12% relative to the current solution. This solution was for

comparison and was not used as a starting point by the optimizer in subsequent runs.

 Following the manual optimization, both

models were run with different setting

combinations for the mutation and crossover

operators. Setting combinations used are shown

in Table 1; the probabilities of each operator are

indicated in brackets.

 Model 1 was run with a population size of

200 for 50,000 generations for all combinations

in Table 1. Out of all 200,000 solutions

generated only 5 solutions were found

which did not violate the interval

constraints. It was concluded that the model

was not able to find solutions which

didn’t violate constraints in a reasonable

number of evaluations, hence no further

investigation was performed using this

model. Model 2 was run with a

population size of 200 for each of the

settings combinations in Table 1, the

model was run until either convergence or

50,000 evaluations for each case.

 Results are shown in Figure 1 for all

4 scenarios against the current solution.

Mutation

Simple
(0.05)

By-gene
(0.05)

Crossover

No crossover
(0)

1

Single point
(0.95) 2 3

Multi point
(0.95) 4

Table 1- A table to show the various run settings with the
NSGAII optimisation algorithm

Figure 1- A graph to show constraint violation against outage
days for various setting combinations for model 2

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 593 -

Figure 3- Diagrammatic schedules for the initial optimized solution (above)

and the optimal solution found using setting 1 (below).

The region of interest is highlighted by the circled area. Figure 2 focusses in on this region.

The solutions of interest in

figure 2 lie on and near the x axis

as these solutions have little or no

constraint violations. It can be

seen that the optimization settings

3 and 4 produce no solutions in

figure 2; hence the by-gene

mutation operator is not able to

find solutions in the region of

interest. For optimization setting

2 a range of solutions were found

with differing constraint

violations close to the x axis;

however the only solution which

did not violate any constraints

had 400 outage days. This is a

significantly worse result

compared to the current

solution. The best result from

setting 2 had 288 outage days

and a constraint violation of 2.

This result could be considered

interesting for engineers to analyze. For optimization setting 1, only 1 solution was found in

the region of interest. The solution found had no constraint violations and 292 outage days;

this is a reduction of 20% compared to the current solution and a reduction of around 9%

compared to the initial optimized result. This is a highly impressive result considering the large

number of input variables and the large search space. Counter intuitively this schedule

increases the overall number of maintenance activities assigned to machine 1. Diagrammatic

schedules are shown in Figure 3 for the initial optimized solution and the optimal result

produced using setting 1.

A number of interesting observations and conclusions can be made based on the results

produced. Model 1 took considerably less time to run than the second model due to the

increased size of the search space in model 2. The constraint violation was implemented

differently for both models. Model 2 performed much better as the magnitude of the overall

constraint violation was calculated by the model and the algorithm was able to use this

information to guide the search. The advantage of model 2 is that the results show a range of

solutions with exact constraint violation information allowing the decision maker to consider

various solutions; this information is not calculated in model 1. The by-gene mutation operator

was not able to produce solutions in the region of the optimal solutions suggesting it is a poor

choice for this optimization model. Remarkably the simple mutation operator without

crossover performed extremely well within a limited number of generations. This result was

unexpected and the algorithm was able to produce solutions which aligned the maintenance

activities very early in the optimization run; this was not evident in previous optimization runs.

The result increased the total number of maintenance activities for machine 1 in the first row

which is counter intuitive for engineers. However this counter intuitive method has led to an

overall reduction in outage days and provides a highly interesting solution for engineers to

assess. Some modification will be required as some activities are scheduled too close together.

Further research and repeat optimization runs are required to confirm the advantage of the

simple mutation operator and to explore the effect of the crossover operator on the results.

Refinement of the optimized solution using expert opinion and cost analysis is also required.

Figure 2 - A graph to show constraint violation against outage days
for various setting combinations for model 2

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 594 -

4 References

[1] Perez-Canto, S. "Using 0/1 mixed integer linear programming to solve a reliability-centered problem of power
plant preventive maintenance scheduling", Optimization and Engineering, vol. 12, no. 3, pp. 333-347, (2011).

[2] Dahal, K. P., Aldridge, C. J. and McDonald, J. R. "Generator maintenance scheduling using a genetic algorithm

with a fuzzy evaluation function", Fuzzy Sets and Systems, vol. 102, no. 1, pp. 21-29, (1999).

[3] Dopazo, J. F. and Merrill, H. M. "Optimal Generator Maintenance Scheduling Using Integer Programming.",

IEEE Trans Power Appar Syst, vol. PAS-94, no. 5, pp. 1537-1545, (1975).

[4] Perez-Canto, S. and Rubio-Romero, J. C. "A model for the preventive maintenance scheduling of power plants
including wind farms", Reliability Engineering and System Safety, vol. 119, pp. 67-75, (2013).

[5] Yamayee, Z. A. and Sidenblad, K. "Computationally Efficient Optimal Maintenance Scheduling Method.", IEEE

transactions on power apparatus and systems, vol. PAS-102, no. 2, pp. 330-338, (1983).

[6] Tsai, Y. -., Wang, K. -. and Teng, H. -. "Optimizing preventive maintenance for mechanical components using

genetic algorithms", Reliability Engineering and System Safety, vol. 74, no. 1, pp. 89-97, (2001).

[7] Reihani, E., Sarikhani, A., Davodi, M. and Davodi, M. "Reliability based generator maintenance scheduling
using hybrid evolutionary approach", International Journal of Electrical Power and Energy Systems, vol. 42,

no. 1, pp. 434-439, (2012).

[8] Moghaddam, K. S. and Usher, J. S. "Preventive maintenance and replacement scheduling for repairable and
maintainable systems using dynamic programming", Computers and Industrial Engineering, vol. 60, no. 4, pp.

654-665, (2011).

[9] Marwali, M. K. C. and Shahidehpour, S. M. "A deterministic approach to generation and transmission
maintenance scheduling with network constraints", Electric Power Systems Research, vol. 47, no. 2, pp. 101-

113, (1998).

[10] Baskar, S., Subbaraj, P., Rao, M. V. C. and Tamilselvi, S. "Genetic algorithms solution to generator
maintenance scheduling with modified genetic operators", IEE Proceedings: Generation, Transmission and

Distribution, vol. 150, no. 1, pp. 56-60, (2003).

[11] Kim, H., Nara, K. and Gen, M. "A method for maintenance scheduling using GA combined with SA",
Computers and Industrial Engineering, vol. 27, no. 1-4, pp. 477-480, (1994).

[12] Pereira, C. M. N. A., Lapa, C. M. F., Mol, A. C. A. and Da Luz, A. F. "A Particle Swarm Optimization (PSO)

approach for non-periodic preventive maintenance scheduling programming", Progress in Nuclear Energy, vol.
52, no. 8, pp. 710-714, (2010).

[13] Zhao, Y., Volovoi, V., Waters, M. and Mavris, D. "A sequential approach for gas turbine power plant

preventive maintenance scheduling", Proceedings of the ASME Power Conference, 2005, Vol. PART A, pp.
353, (2005).

[14] Savic, D. A., Bicik, J. and Morley, M. S. "A DSS generator for multiobjective optimisation of spreadsheet-

based models", Environmental Modelling and Software, vol. 26, no. 5, pp. 551-561, (2011).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 595 -

Yoshiaki Shikata

Shobi University

E-mail: shikata@ictv.ne.jp

Nobutane Hanayama

Shobi University

E-mail: nob-hanayama@jcom.home.ne.jp

MISTA 2015

Routing Strategy for Prioritized Limited Multi-server Processor-Sharing

System that includes Servers with Various Capacities

Yoshiaki Shikata • Nobutane Hanayama

1 Introduction

Under the processor-sharing (PS) discipline, if there are n (> 0) requests in a single-server

system, each request receives 1/n of the server capacity. No arriving request has to wait for

service because it is served promptly, even if the service rate becomes slow. Thus, the sojourn

time of each request that receives service in the server is n times the service time. A PS

discipline with a priority structure has been proposed, wherein a larger service ratio is

allocated to requests with higher-priority [1]. In order to prevent an increase in the sojourn

time of each request in such a prioritized single-server PS paradigm, and to realize a realistic

sharing model, a method for limiting the number of requests that receive service has been

proposed [2]. In such a prioritized limited single-server PS system, a higher-priority request is

allocated a larger service ratio compared with a lower-priority request. Moreover, the sum of

the number of the requests that receive service is restricted to a fixed value. Arriving requests

that cannot receive service are attached to the service waiting queue (waiting system), or are

rejected (loss system).

On the other hand, communication services, such as web server farms, database systems,

and grid computing clusters, routinely employ multi-server systems to provide a range of

services to their customers. An important issue in such multi-server systems is to determine the

server to which an arriving request should be routed in order to optimize a given performance

criterion. Therefore, in this paper, we first propose a novel prioritized limited multi-server PS

system where each server can have various capacities, and N (≥2) priority classes are allowed

in each PS server. Routing strategies of such prioritized limited multi-server PS system that

take into account the capacity of each server are also proposed, and the performance evaluation

procedure of these strategies is discussed. Then, practical performance measures of these

strategies, such as loss probability, mean waiting time in the service waiting queue, and mean

sojourn time, are evaluated via simulation. Based on the evaluation results, we discern the

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 596 -

most suitable routing strategies of the prioritized limited PS system that includes multi-servers

with various capacities, and requests of N priority classes.

Under the PS rule, when a request either arrives or departs from the PS server, the

remaining sojourn time of other requests currently receiving service is extended or reduced,

respectively. This extension or reduction of sojourn time is calculated using the number of

requests of each class and the priority ratio. Employing a simulation program to execute these

events and calculations allows us to analyze the prioritized limited multi-server PS rule, which

is realistic in a time-sharing system (TSS) with a sufficiently small time slot.

Load-balancing strategies for multi-class multi-server PS systems with a Poisson input

stream and heterogeneous service rates have been investigated [3]-[7]. However, there have

been few studies on prioritized limited PS systems [8]. Accordingly, routing strategies for

prioritized limited multi-server PS systems with various capacities are scarce, and practical

performance measures of such strategies have yet to be investigated.

2. Prioritized limited multi-server PS system that includes servers with various capacities

2.1 System concept

In the prioritized limited multi-server PS system, an arriving request enters the dispatcher,

which routes the request to each PS server according to a predetermined strategy. Suppose that

there are N classes, and an arriving request, which is routed to server h, encounters nhj class-j

requests (including the arriving request). According to the proposed prioritized limited multi-

server PS rule, if (∑ mj ∗N
j=1 nhj) / Ch ≤ SFC, an arriving class-k request individually and

simultaneously receives mk / ∑ mj ∗N
j=1 nhj of the capacity of server h. When a server that

meets condition (∑ mj ∗N
j=1 nhj) / Ch ≤ SFC does not exist, the arriving request is queued in the

corresponding class waiting room prepared in the dispatcher, or rejected. Here, mj (≥ 1)

denotes the priority ratio of the class-j request, SFC (≤ ∞) is the service facility capacity, and

Ch is the capacity ratio of server h to the reference server. The service time of a request in the

server h is given by the service time of that request in the server with capacity ratio one (the

reference server) divided by Ch. In the waiting system, when the service for a request ends in

one of the servers, another request is obtained from the service waiting queue and is routed to

this server.

2.2 Routing strategies

 The following four routing strategies are considered, and their performances are compared.

(1) RST-based strategy

In this strategy, at the arrival of a request, the sum of the remaining service time (RST,

see section 2.3) of each class request currently receiving service for each server is evaluated.

An arriving request is routed to the server that satisfies the condition (∑ mj ∗N
j=1 nhj) / Ch ≤

SFC, and has the smallest sum of the RST.

(2) NSC-based strategy

In this strategy, at the arrival of a class-k request, the value Ch* mk / (∑ mj ∗N
j=1 nhj) of

server h, which is called the normalized service capacity (NSC) that can be allocated to this

request, is evaluated. An arriving request is routed to the server that satisfies the condition

(∑ mj ∗N
j=1 nhj) / Ch ≤ SFC, and has the largest value Ch* mk / (∑ mj ∗N

j=1 nhj).

(3) NNR-based strategy

In this strategy, at the arrival of a request, the value (∑ nhj
N
j=1) / Ch of server h, which is

called the normalized number of requests (NNR) that receive service, is evaluated. An arriving

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 597 -

request is routed to the server that satisfies the condition (∑ mj ∗N
j=1 nhj) / Ch ≤ SFC, and has

the smallest value (∑ nhj
N
j=1) / Ch.

For these three strategies, when plural servers with the same evaluation for the RST sum,

NSC, or NNR exist, a server to which an arriving request is routed is chosen from these servers

with the same probability.

(4) RAND strategy

In this strategy, the arrival request is dispatched to each server that satisfies the condition

(∑ mj ∗N
j=1 nhj) / Ch ≤ SFC randomly with the probability Ch / ∑ C𝑙

𝑆𝑛
l=1 for server h. Here, Sn

represents the server number in the system.

2.3 Extension or reduction of remaining sojourn (or service) time

At the arrival of a request to server h, the remaining sojourn time of this request is

determined based on the service time of this request and the server capacity given to it. The

service time is inversely proportional to the capacity ratio of server h (see section 2.1). For

example, when a class-k request arrives at server h, if nhj class-j requests (including the

arriving request) are served in this server, mk/ ∑ mj ∗N
j=1 nhj of this server capacity is given to

the request from this time, until the arrival (or departure) of the next request. The sojourn time

of an arriving class-k request Sak is then given by

Sak = (Srk / Ch) * ∑ mj ∗N
j=1 nhj / mk , (1)

where Srk represents the service time of an arriving class-k request in the reference server.

Moreover, at the arrival of a request, the server capacity given to each request currently

receiving service decreases owing to the increase in the number of requests that share the

server capacity. The ratio of the sojourn time of each request before and after the arrival of a

request is equal to the inverse ratio of the server capacity given to each request before and after

the request’s arrival. For example, when a class-k request arrives, mi/ {∑ mj ∗k−1
j=1 nhj + mk ∗

(nhk − 1) + ∑ mj ∗N
j=k+1 nhj} of the server capacity is given to the class-i request that receives

service by this time, but from this time until the arrival (or departure) of the next request, mi/

(∑ mj ∗N
j=1 nhj) is given to a class-i request. Therefore, the remaining sojourn time Sni of each

class-i request after this class-k request arrives is then extended as follows:

Sni = Soi ∗ (∑ mj ∗N
j=1 nhj) / { ∑ mj ∗k−1

j=1 nhj + mk ∗ (nhk − 1) + ∑ mj ∗N
j=k+1 nhj } (2)

where Soi is the remaining sojourn time of a class-i request immediately before this class-k

request arrives.

Similarly, at the end of the sojourn time of a request, the server capacity given to requests

currently receiving service increases owing to the decrease in the number of requests that share

the server capacity. The ratio of the sojourn time of each request before and after the departure

of a request is also equal to the inverse ratio of the server capacity given to each request before

and after the request’s departure. For example, for the end of the sojourn time of a class-k

request, the remaining sojourn time Sni of each class-i request after this class-k request departs

is reduced as follows:

Sni = Soi * {∑ mj ∗k−1
j=1 nhj + mk ∗ (nhk − 1) + ∑ mj ∗N

j=k+1 nhj}/ (∑ mj ∗N
j=1 nhj) (3)

where Soi is also the remaining sojourn time of a class-i request immediately before this class-k

request departs, and nhk does not include a departing request.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 598 -

By executing these events and calculations in a simulation program, the performance of

the prioritized limited multi-server PS system can be analyzed. In the simulation program, the

variable time increment method, where the simulation time is omitted until the next event that

causes a change in the system state occurs, such as the arrival or departure of a request

mentioned above, is used in order to shorten the simulation execution time.

At the arrival of a class-k request in server h, RST for this request is calculated as Srk /

Ch. Then, RST reduction for this request at the outbreak of each event mentioned above can be

evaluated by the duration of the omitted time from the outbreak of the previous event by

mk / (∑ mj ∗N
j=1 nhj).

3 Some evaluation results

In the evaluation, the class-1 (m1 = 4), class-2 (m2 = 3), and class-3 (m3 = 2) requests are

assumed to be served in each server. The arrival rate, or mean service time of each priority

class request, is assumed to have the same value, and to be 0.7 or 1.0. Three servers are

prepared, and each server has capacity ratio 1, 0.8, and 0.6, respectively. SFC is assumed to be

20. The two-stage Erlang inter-arrival time distribution and exponential service time

distribution are considered. Evaluation results are obtained as the average of ten simulation

results. Approximately 140,000 requests were produced for each class in each run.

The loss probability of the class-1 request in the case of the NNR-based and RST-based

strategies (0.019) is slightly smaller than that value in the case of the other strategies. On the

other hand, the loss probability of the class-3 request in the case of the NSC-based strategy

(0.0033) is smaller than that value in the case of the other strategies. The loss probability of the

class-2 request in the NNR-based, RST-based, and NSC-based strategies shows almost the

same value.

The sojourn time of the class-1 and class-2 requests in the case of the NSC-based strategy

(2.27 and 2.73, respectively) is smaller than that value in the case of the other strategies. The

sojourn time of the class-3 request in the case of the NNR-based strategy (3.3) is smaller than

that value in the case of the other strategies. The loss probability and sojourn time in the case

of the RAND strategy is larger than that value in the case of the other strategies.

In the case of the NSC-based strategy, the largest number of class-1 requests is dispatched

to the server with the highest capacity. The largest number of class-3 requests is dispatched to

the server with the lowest capacity. The class-2 requests are dispatched to each server in

approximately the same ratio. On the other hand, in the case of the RST-based strategy, each

class request is dispatched to each server in approximately the same ratio.

References

1. L. Kleinrock, "Time-Shared Systems: A Theoretical Treatment", J.A.C.M Vol.1, No.14,

242-261 (1967).

2. G. Yamazaki and H. Sakasegawa, “An optimal design problem for limited sharing systems,
Management Science”, vol.33(8), pp.1010--1019 (1987).

3. E. Altman1, U. Ayesta, and B.J. Prabhu, “Load Balancing in Processor Sharing Systems”,

Telecommunication Systems, June 2011, Volume 47, Issue 1-2, pp 35-48

4. H.L. Chen, J. Marden, and A. Wierman, “The effect of local scheduling in load balancing

designs”, In Proceedings of IEEE INFOCOM, 2009.

5. V. Gupta, M. Harchol-Balter, K. Sigman, and W. Whitt, “Analysis of join-the-shortest-

queue routing for web server farms”, In Proceedings of Performance, page 180, 2007.

6. E. Altman1, U. Ayesta, and B.J. Prabhu, “Load Balancing in Processor Sharing Systems”,

Telecommunication Systems, June 2011, Volume 47, Issue 1-2, pp 35-48.

7. M. Haviv and T. Roughgarden. “The price of anarchy in an exponential multi-server”,

Operations Research Letters, 35:421–426, 2007.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 599 -

http://link.springer.com/journal/11235
http://link.springer.com/journal/11235/47/1/page/1
http://link.springer.com/journal/11235
http://link.springer.com/journal/11235/47/1/page/1

8. Y.Shikata, W.Katagiri, and Y.Takahashi, “Prioritized Limited Processor-Sharing System

with its Performance Analysis”, International Conference on Operations Research, August30 -

1, 2011 Zurich

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 600 -

MISTA 2015

An efficient simulated annealing for two-agent scheduling
with exponential job-dependent position-based learning
consideration

Jin Young Choi

1 Introduction

Two-agent single-machine scheduling problem can be found in various industrial ap-

plications where two agents compete for a single common machine to achieve their

respective objectives. For example, we can consider a production system under main-

tenance planning. The production department (agent) wants to operate the system

without any idle time in order to maximize the system utilization. On the other hand,

the maintenance department (agent) calls for frequent pauses of the production system

in order to reduce the number of unexpected breakdowns of the system. Therefore, two

departments (agents) share the production system, while pursuing different objective

functions.

Of particular interest is a two-agent single-machine scheduling problem with expo-

nential job-dependent position-based learning effect. This means that each job has its

own learning effect, implying that the learning in the production process of some jobs

is faster than those of others. Moreover, the actual processing time of a job is expressed

as an exponential decreasing function of learning effect and processing sequence. For

example, performing similar tasks repeatedly can improve the skills of workers so that

they can perform setups and handle raw materials faster, while reducing the actual pro-

cessing time. This modeling concept is a plausible scenario in real-life manufacturing

environment, deserving some attention.

2 Problem definition and a branch-and-bound algorithm

Two agents A and B have sets of jobs JA = {JA1 , JA2 , · · · , JAnA
} and JB = {JB1 , JB2 , · · · ,

JBnB
} to process, respectively, while competing for a single common machine. The

objective of agent A is to minimize the total weighted completion time and agent B

wants to keep the makespan, CBmax, less than an upper bound U . Each job for agent A

is assigned with a weight wAi and a normal processing time pAi , 1 ≤ i ≤ nA. Each job for

agent B has a normal processing time pBj , 1 ≤ j ≤ nB . All jobs have job-dependent and

Jin Young Choi
Dept. of Industrial Engineering, Ajou University
E-mail: choijy@ajou.ac.kr

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 601 -

position-based learning effect, so that actual processing time of job JXi , X ∈ {A,B}
processed at the rth position in a sequence, pXi (r), can be expressed as an exponential

decreasing function pXi (r) = pXi r
−bXi , where bXi > 0 is a learning ratio of job JXi ,

X ∈ {A,B}. Then, the scheduling problem under consideration can be represented as

1

∣∣∣∣pAi (r) = pAi r
−bAi , pBj (v) = pBj v

−bBj
∣∣∣∣ nA∑
i=1

wAi C
A
i : CBmax ≤ U, (1)

where CAi is the completion time of job JAi .

[1] showed that 1

∣∣∣∣∣∣∣∣∑nA

i=1 w
A
i C

A
i : CBmax ≤ U is binary NP-hard. It implies that our

problem in Equation 1 is at least binary NP-hard, and we need an efficient solution

approach to solve it. In our work, we suggest a branch-and-bound (B&B) algorithm

to obtain an optimal solution, and a simulated annealing algorithm for a near optimal

solution.

For a B&B, we first develop four dominance properties based on a pairwise in-

terchange comparison method as follows. Suppose that we have two schedules S1 and

S2 such that S1 = (π, JXi , J
X
j , π

′) and S2 = (π, JXj , J
X
i , π

′), where π is a scheduled

part of (r − 1) jobs and π′ is a unscheduled part of (n − r − 1) jobs. Then, S1 can

dominate S2 if (i) S1 has smaller total weighted completion time for agent A than that

of S2, (ii) CXl (S1) ≤ U for l ∈ {i, j} s.t. JXl ∈ J
B , and (iii) CXj (S1) < CXi (S2). By

defining δXXij = bXi − b
X
j and applying these conditions (i) – (iii) to four different cases

in constructing S1 and S2, we have the following properties.

Property 1 For JXi , J
X
j ∈ J

A, if
wA

j

wA
i

(r + 1)δ
AA
ij ≤ pAi

pA
j

< min

{
1,

[
(r+1)

bA
j −rb

A
j
]

(r+1)
bA
i −rb

A
i

(r + 1)δ
AA
ij

}
rδ

AA
ij , then S1 dominates S2.

Property 2 For JXi ∈ J
A, JXj ∈ J

B , if (i)
pAi
pB
j

<
(r+1)

bB
j −rb

B
j

(r+1)
bA
i −rb

A
i

[
r(r + 1)

]δAB
ij and

(ii) t+ pAi r
−bAi + pBj (r + 1)−b

B
j ≤ U , then S1 dominates S2.

Property 3 For JXi ∈ JB , JXj ∈ JA, if (i)
pBi
pA
j

<
[
1 −

(
r
r+1

)bAj]rδBA
ij and (ii)

t+ pBi r
−bBi ≤ U , then S1 dominates S2.

Property 4 For JXi , J
X
j ∈ J

B , if
wB

j

wB
i

(r + 1)δ
BB
ij ≤ pBi

pB
j

< min

{
1,

[
(r+1)

bB
j −rb

B
j
]

(r+1)
bB
i −rb

B
i

(r + 1)δ
BB
ij

}
rδ

BB
ij , then S1 dominates S2.

Moreover, we have three more feasibility properties of a sequence and one lemma to

compute a lower bound, which are the components of the suggested B&B algorithm.

3 Design of simulated annealing algorithm

As an efficient near optimal solution approach, we suggest a simulated annealing (SA)

algorithm. The main features of the algorithm can be described as follows.

Initial solution We first arrange the jobs for agent B ahead in generating an

initial solution, to make CBmax as small as possible, following the jobs for agent A.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 602 -

We can consider different methods to make the partial sequences for the two agents.

Specifically, we consider three methods to arrange jobs for agent A such as (i) ISA1 =

random order, (ii) ISA2 = shortest normal processing time (SPT) order, and (iii) ISA3
= shortest weighted normal processing time (WSPT) order. In the case of scheduling

jobs for agent B, we suggest two methods to order jobs for agent B such as (i) ISB1 =

random order and (ii) ISB2 = non-decreasing order of bBj . Therefore, we can consider

3 × 2 = 6 different methods to generate an initial solution.

Neighborhood generation For a given trial solution with the objective function

value zc, we select two jobs randomly and interchange them. If CBmax is feasible, we

call it next trial solution and compute its objective function value zn. Otherwise, we

reapply this procedure until we get a feasible one.

Move selection If zc > zn, we accept the next trial solution and update the cur-

rent trial solution with it. Otherwise, we can accept it with the acceptance probability

defined as Pa = e
zc−zn

T , where T is a control parameter, called the temperature.

Temperature schedule First, we set the initial temperature as T1 = c1 × zc,

(0 < c1 < 1). Then, after performing a fixed number of iterations N at T1, we decrease

the value of T1 by (1− c2)× 100%, represented as T2 = c2 × T1, (0 < c2 < 1). We can

repeat this procedure for a fixed number of steps C. Hence, the temperature schedule

can be expressed as Ty = c2 × Ty−1, y = 2, 3, · · · , C, with N iterations at each Ty.

4 A numerical experiment and conclusions

We designed a numerical experiment to evaluate the performance of the suggested

algorithms as follows. First, we considered four different values of n = nA + nB as

n = 10, 12, 14, 16 with nA = nB . The value of U was set by U = (1+α)Umin+αUmax,

where Umin and Umax are the minimum and maximum value of the makespan that

can be made using all jobs for agent B, respectively, and α(0 < α < 1) is a real-valued

parameter. We considered three different values of α as α = 0.25, 0.50, 0.75.

Then, for each configuration of (n, α), we generated 50 problem instances and

solved them using the B&B (or SA(ISAh , IS
B
d), h = 1, 2, 3, d = 1, 2. For each case, we

calculated the mean, standard deviation, and maximum number of generated nodes,

CPU time, and % error. The SAs showed good performance in the sense that they had

low % errors in almost all configurations of (n, α) with a mean of less than 2 %. The

CPU time is within 1.1 s in all configurations, that is obviously favorable over that of

B&B in environments requiring real-time scheduling. Moreover, the CPU times were

not affected by n by being increased linearly as n increases for a fixed value of α.

References

1. Agnetis, A., Billaut, JC, Gawiejnowicz, S., Pacciarelli, D., and Soukhal, A., Multiagent
Scheduling - Models and Algorithms, Springer, 2014.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 603 -

O. Baron

Rotman School of Management, University of Toronto

E-mail: opher.baron@rotman.utoronto.ca

O. Berman

Rotman School of Management, University of Toronto

E-mail: berman@rotman.utoronto.ca

D. Krass

Rotman School of Management, University of Toronto

E-mail: krass@rotman.utoronto.ca

J. Wang

Nanyang Business School, Nanyang Technological University

E-mail: wangjf@ntu.edu.sg

MISTA 2015

Strategic Idling and Dynamic Scheduling in Open-Shop Service Network:

Case Study and Analysis

O. Baron • O. Berman • O. Berman • D. Krass • J. Wang

Abstract
In Open-shop service networks customers would like to obtain service from a set of stations,

most of them without a specific order. This paper is motivated by XYZ (not the real name), a

company in the healthcare service industry that operates a stochastic open shop network where

the stations of the network administer medical tests that customers can take within several

hours of the same day. According to senior management of XYZ there are two types of

complaints about the service that customers of XYZ experience. One is with respect to the total

time that customers spend in the system; the other is with respect to the long waiting time at a

specific station. In fact the company believes that customers get upset when they wait more

than 20 minutes for a particular station (such customers appear on the computer screen of the

schedulers with red faces).

We focus in this paper on two types of service levels: the more traditional macro-level

measures such as minimizing total waiting time or total system time (waiting plus service

times) or minimizing total tardiness, and the “micro-level” measure of reducing excessive

long waits at any individual workstation within the process. The only paper we are aware of

that discusses systematically and analytically micro service level is [1] where a strategic idling

(SI) scheduling policy is suggested.

The idea behind SI is that when a downstream station is very congested operating the upstream

station in a normal rate may increase the congestion at the downstream station. Instead, idling

the upstream station until the downstream station is less congested could be beneficial.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 604 -

mailto:berman@rotman.utoronto.ca

Therefore while work-conserving policies are optimal for macro-level measures, scheduling

policies with SI might be helpful for the micro-level measure. In [1] we showed the benefits of

SI for the two stations in tandem network where customers arrive to the network according to a

Poisson process and services at the stations are exponentially distributed. In the current paper

we examine whether similar ideas can be applied to a much more complex environment of a

stochastic open shop network.

There was no official policy of using SI in XYZ. However using the empirical data we found

statistical evidence that SI is in fact used by the schedulers to effectively manage the micro-

level measure. This SI was done using only intuition of the schedulers of XYZ. We provide in

this paper an efficient way to combine the SI and Dynamic Scheduling Policies (DSPs) so that

the resulting policies can simultaneously address both macro- and micro-level measures.

For deciding which customer should be assigned to the next freed-up station we use 6 DSPs

that include among others rules such as: “Longest System time first” and “Longest Current

Waiting time first”. In all of the 6 DSPs used the station that is just freed-up and has the

highest remaining workload is assigned to a waiting customer.

Since the stochastic open-shop networks are very difficult to analyze analytically, we

developed two simulation models. The first simulation model is based on the empirical data

(ED) for arrivals and service times. We compared the micro and macro service levels for the

following policies: ED; ED with no idling; the six DSPs with no idling and the six DSPs with

SI. The main findings are: (1) ED with no idling results in better macro service levels than ED

but with much worse micro-level performance, (2) The DSPs with no idling are much better

than ED in their macro service levels but perform worse on micro-level than ED, (3) The DSPs

with SI result in worse (but not by a lot) macro service levels than those without idling but are

much better than the DSPs without SI and quite close to the ED policy in the micro-level

performance. The second simulation model is based on randomly generated open-shop

networks aiming to show benefits of using SI with DSPs for general networks. The results

obtained with the second simulation are in line with those of the first model and show that

combining DSPs with SI is a promising strategy in general stochastic open-shop environments.

References

1. O. Baron, O. Berman, D. Krass and J. Wang. Using strategic idleness to improve

customer service experience in service networks. Operations Research, 62(1), 123-140.

(2014).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 605 -

MISTA 2015

A Matheuristic for Curriculum-Based Course Timetabling

Michael Lindahl · Matias Sørensen ·
Thomas R. Stidsen

1 Introduction

Finding efficient methods to schedule courses for universities has received a lot of at-

tention from the Operations Research community and the problem exists in many

variations, see the surveys Burke and Petrovic (2002); Schaerf (1999). This paper will

address the problem known as Curriculum-Based Course Timetabling where the goal

is to create a conflict-free timetable with all lectures planned. Conflicts occur if courses

from the same curriculum or courses taught by the same teacher are planned simultane-

ously. The quality of a timetable is measured by the amount of violated soft constraints,

for example if lectures from the same course, are scheduled in different rooms.

This problem received a lot of attention due to the second International Timetabling

Competition (ITC 2007) where a formulation of the problem was provided by Gaspero

et al (2007) together with a number of benchmark instances. This is the formulation

and instances used to benchmark the algorithm proposed in this paper.

To solve this problem we use a combination of integer programming and heuristics.

As shown by Burke et al (2008) integer programming is good at handling the hard

constraints but has difficulties when the soft constraints are taken into account. A new

model was formulated in Lach and Lübbecke (2012) where the problem is divided into

two stages, where each stage consists of a integer program that is both smaller and

easier to solve than the full model. This makes it possible to solve large instances.

Mixed integer programming solvers have improved significantly over the last decade

as shown by Bixby (2012), but usually do not perform as well as metaheuristics when

time limits are short or the instances are large. Combining metaheuristics and integer

Michael Lindahl
Department of Management Engineering
Technical University of Denmark
E-mail: miclin@dtu.dk

Matias Sørensen
MaCom A/S
E-mail: ms@macom.dk

Thomas Stidsen
Department of Management Engineering
Technical University of Denmark
E-mail: thst@dtu.dk

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 606 -

programing into matheuristics has proven to work well on a large variety of problems

as shown in Blum et al (2011). The purpose of the proposed matheuristic is to create a

framework on top of the two stage model, which makes it possible to find high quality

solutions, using less computational resources on problem of various sizes. This is to the

authors knowledge the first time this is done in university course tabling.

2 Curriculum-based Course Timetabling

We use the ITC 2007 formulation of the Curriculum-based Course Timetabling from

Gaspero et al (2007). The goal is to create weekly schedules for university courses by

assigning each lecture to a room and a time period. Courses that are part of the same

curriculum or are taught by the same teacher cannot be scheduled at the same time.

Furthermore time periods are given where a teacher not is available to teach.

In order to determine the quality of a timetable a number of soft constraints are

defined and the goal is to find solutions that violate these as least as possible. Each

violation is associated with a number of penalty points and the objective is to minimize

the sum of these points.

2.1 Mixed integer programming model

The model used as a basis for the matheuristic is the one proposed by Lach and

Lübbecke (2012) that consists of two stages solved sequentially. The decomposition is

exact with respect to hard constraints and thereby no feasible solutions are lost.

2.1.1 Stage I

The first stage determines at what time periods each lecture should be taught. It does

not assign any rooms, but keeps track of how many rooms of different sizes are used

in each time slot. This stage therefore takes all the objectives into account except for

the room stability. The decision variable in this stage is defined as:

xc,p =

{
1 if course c is planned at period p

0 otherwise

The model consists of many other variables and constraints. We refer to the original

article for a description of these.

2.1.2 Stage II

After each lecture has been assigned to a time period the second stage assigns a room

to each lecture while minimizing the roomstability violation. This gives the following

decision variable:

uc,pvr,p =

{
1 if course c is planned in room r at period p

0 otherwise

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 607 -

Which courses there should be planned in which time periods are constrained by the

solution from stage I. The model consists of many other variables and constraints. We

refer to the original article for a description of these.

3 Matheuristic

The difficult part of solving the two stage model is the first stage. The matheuristic is

therefore used on this stage and the second stage is solved using the integer program-

ming solver Gurobi directly.

The heuristic is a local search hill climber, which iteratively improves the solution.

This is done by creating a neighborhood around the solution and search for an improv-

ing solution within the chosen neighborhood. A neighborhood is defined as a set of the

decision variables that are allowed to change in the current iteration, others decision

variables will be fixed to their value from the previous solution. This means that only

a small part of the solution is altered in each iteration.

The neighborhood chooses variables that are related, this could for example be deci-

sion variables for courses that share a curriculum. Several neighborhoods with different

focus are implement. The pseudocode for the algorithm can be seen in Algorithm 3.1.

Algorithm 3.1 Matheuristic

1: input:
2: problem instance
3: Set of neighbourhoods N and initial size S
4: output:
5: Solution
6: x∗

c,p ← Create Initial solution
7: Fix all decision variables
8: while stopping criteria not met do
9: Pick neighbourhood n ∈ N . A neighbourhood is chosen at random

10: X(R) = NeighbourhoodCreator(n) . Find connected decision variables
11: Unfix variables X(R)
12: x∗

c,p ← Optimize sub problem
13: Update Sn . Evaluate the neighbourhood based on performance
14: end while
15: Solve StageII(x∗

c,p)

4 Conclusion

To compare the matheuristic with state-of-the-art the ITC 2007 data sets are used.

The method is able to improve a solution more rapidly than solving the two-stage

decomposition directly with Gurobi. An example of this is seen on Figure 1.

In Table 1 a comparison with the winner of the ITC2007, Müller (2009), is seen.

It can be seen that mixed-integer-programming can give comparable results to using

pure metaheuristics.

Because the underlying model is a MIP-model it is easy to incorporate new con-

straints. Because it uses a MIP solver it also takes advantage of future improvements

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 608 -

in this field. The method is therefore very promising as it combines problem specific

knowledge with the power of MIP solvers making it possible to perform well on a large

variety of instances and get solutions fast.

Fig. 1 An example of a run on the data set comp05. The matheuristic makes a lot more small
improvements to the solution compared to Gurobi, which results in the matheuristic to find a
better solution in less time.

Instance Müller Matheuristic
comp01 5.0 11.6
comp02 61.3 49.8
comp03 94.8 75.4
comp04 42.8 38.6
comp05 343.5 341.0
comp06 56.8 56.0
comp07 33.9 34.8
comp08 46.5 49.0
comp09 113.1 104.8
comp10 21.3 24.6
comp11 0.0 6.4
comp12 351.6 358.8
comp13 73.9 69.6
comp14 61.8 60.6
comp15 94.8 75.4
comp16 41.2 41.6
comp17 86.6 85.4
comp18 91.7 83.8
comp19 68.8 65.4
comp20 34.3 37.8
comp21 108.0 117.0
No. of best 9/21 12/21

Table 1 Prelimenary results: Comparison with the ITC2007 winner.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 609 -

References

Bixby RE (2012) Optimization Stories, 21st International Symposium on Mathematical

Programming Berlin, vol Extra, Journal der Deutschen Mathematiker-Vereinigung,

chap A Brief History of Linear and Mixed-Integer Programming Computation, pp

107–121

Blum C, Puchinger J, Raidl GR, Roli A (2011) Hybrid metaheuristics in combinatorial

optimization: A survey. Applied Soft Computing 11(6):4135 – 4151

Burke E, Petrovic S (2002) Recent research directions in automated timetabling. Eu-

ropean Journal of Operational Research 140(2):266 – 280

Burke E, Marecek J, Parkes A, Rudová H (2008) Uses and abuses of mip in course

timetabling. In: Poster at the Workshop on Mixed Integer Programming, MIP2007,

Montréal

Gaspero LD, Schaerf A, McCollum B (2007) The second international timetabling

competition (itc-2007): Curriculum-based course timetabling (track 3). Tech. rep.,

School of Electronics, Electrical Engineering and Computer Science, Queens Univer-

sity SARC Building, Belfast, United Kingdom

Lach G, Lübbecke M (2012) Curriculum based course timetabling: new solutions to

udine benchmark instances. Annals of Operations Research 194:255–272

Müller T (2009) Itc2007 solver description: a hybrid approach. Annals of Operations

Research 172:429–446

Schaerf A (1999) A survey of automated timetabling. Artificial Intelligence Review

13:87–127

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 610 -

Pedro Fernandes

Bullet Solutions, Porto, Portugal

E-mail: pedro.fernandes@bulletsolutions.com

Armando Barbosa

Bullet Solutions, Porto, Portugal

E-mail: armando.barbosa@bulletsolutions.com

MISTA 2015

Solving the staff scheduling problem in a retail company

Pedro Fernandes • Armando Barbosa

1 Introduction

Throughout the years, many papers about staff scheduling and rostering problems have been

published [1], [2], [3] and [4].

Due to the huge heterogeneity that can be found in the diverse sectors of activity that

have to schedule employees, a considerable amount of models, approaches and solutions have

been proposed [5], [6] and [7].

One study applied to the retail sector in particular can be found in [8]. It is also pertinent

referring to the work presented in [9], where part-time employees are considered, although the

focus of the paper is not restricted to the retail sector.

This extended abstract presents a summary of the work performed by Bullet Solutions

over the last few years, which focused on solving a real staff scheduling problem in the retail

sector.

2 Problem description

In the work presented in this paper, the staff scheduling problem of a large Portuguese retail

company was addressed.

The company has 30 stores around the country, with a workforce of about 12.000

employees that must be scheduled, on a monthly basis.

Each store has its own group of employees, which are divided into teams (20 per store,

more or less), according to their skills.

Each team has different needs throughout the day and two days with equal needs are

rarely found. These needs can be mandatory (minimum needs) or normal (ideal needs).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 611 -

The needs vary in 15 minute intervals, from an opening to a closing hour, which might

also vary from team to team and from day to day. These needs can require a specific skill (or

set of skills) or can be performed by anyone on the team.

Employees can have different skills (preferred and alternative) and contracts (with

different workloads, constraints and benefits).

There are no daily fixed shifts (the number of employees that should be working in each

interval of 15 minutes is determined by the needs) and this implies that an employee can have

very diverse allocations along a week (e.g. 8 hours on Monday, starting at 9.00 AM; 6 hours

on Tuesday, starting at 11.00 AM; 9 hours on Wednesday, starting at 8.00 AM, and so on). To

prevent from having unmanageable schedules for employees, some restrictions can be

imposed, such as a limit to the oscillation between the starting hours of each working shift on

consecutive days.

In some cases an aid system between teams can be used, if one team is short on

employees and another one has surpluses (according to the needs of both teams in a specific

time interval). This aid can only be used if the employees have the required skills.

More than 15 different types of hard constraints (legal rules and company rules mainly

imposed by the workers union) and 20 different soft constraints were identified as being used

in the real case, as well as several exceptions.

The company felt that the staff scheduling process was far from being optimized,

resulting in extra costs, bad service quality and frequent errors.

The time spent on the monthly scheduling activity was huge (about 20 team leaders in

each of the 30 stores spending on average 3 days per month in the process; 20 team leaders *

30 stores * 3 days * 12 months = 21.600 days spent per year only in the creation of the original

schedules).

Since the schedules were manually created, errors occurred frequently (serious errors,

where the hard constraints were not respected and fines were applied to the company) and the

introduction of changes was a painful process (normal changes such as shift swap between two

employees or the substitution of an absent member of the staff), consuming extra precious time

along the month.

The quality of the service presented to the customer was below expectations (bad

distribution of the employees resulting in abnormal waiting times) and the entire scheduling

process was not uniform among the stores and sometimes even among teams of the same store.

3 Proposed approach

The main objective of our work was solving the staff scheduling problem of the company, by

creating a decision support system to encompass the entire process.

The proposed system has 4 main stages:

a) Forecast of resource working needs – staff allocation is managed according to the

anticipated demand for the different times of the day, days of the week and months of the year,

starting with the historical data available;

b) Automatic scheduling generation – respecting a set of hard constraints (legal or

internal rules) and according to the selected soft constraints, the working schedules are

generated. A sequential heuristic is used to build the initial schedules from scratch. Once the

initial solution to the problem is found, the optimization phase is initiated, where better

solutions are progressively searched. The search for new solutions (the improvement

heuristics) is based on neighbourhood structures;

c) Intelligent manual editing – allows manual adjustments to the generated schedules,

guided by an intelligent decision support system. The application provides information

regarding the desired changes, returning only feasible solutions;

d) Daily monitoring of scheduling execution – facilitates the daily monitoring of the

schedules’ execution, enabling day to day changes, such as exchanges between employees,

marking absences or replacements.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 612 -

Although a complete system was developed, the main focus of our work was on the

second stage of the problem – the automatic scheduling generation.

4 Preliminary results

In order to validate the developments of the different phases of the project, a test store was

chosen. The choice fell on one of the biggest stores of the company that is also one of the

hardest ones to deal with, due to the heterogeneity of situations that coexist and that must be

addressed by the same system/algorithms.

The development of the heuristics that solve the staff scheduling problem was a real

challenge, due to the huge number of rules and exceptions that exist in the company. After

more than 10 months of testing and tuning, the team leaders finally felt comfortable with the

scheduling results provided by the system.

At the end of the testing and tuning phase, some of the main conclusions that can be

underlined are: the heuristics obtained much faster results and error free solutions (only

feasible solutions are shown to the user, both in the generation process and in the posterior

manipulation phase); the solutions presented by the heuristics were considered to be of better

quality when compared with the manual ones (better use of the available resources, with a

better distribution of the workforce according to costumers’ needs, better management of the

peak demands and better fulfilment of the general soft constraints of the problem).

At present, the test store is ready to “go-live” and the dissemination plan for the rest of

the stores is being prepared.

We intend to present, at the Conference, details about the proposed model (hard and soft

constraints involved, fundamental concepts and exceptions, among other useful information),

the heuristics conceived to solve the problem and the main results of the project. At the time,

we also expect to have additional information to share (real scenarios and results), at least from

the store that will be already using the system.

References

1. J. Van den Bergh, J. Beliën, P. De Bruecker, E. Demeulemeester and L. De Boeck,

“Personnel scheduling: A literature review”, European Journal of Operational Research,

vol. 226, no. 3, pp. 367–385 (2013)

2. H. K. Alfares, “Survey, Categorization, and Comparison of Recent Tour Scheduling

Literature”, Annals of Operations Research, vol. 127, no. 1–4, pp. 145–175 (2004)

3. E. K. Burke, P. De Causmaecker, G. Vanden Berghe and H. Van Landeghem, “The State

of the Art of Nurse Rostering”, Journal of Scheduling, vol.7, no. 6, pp. 441–499 (2004)

4. B. Cheang, H. Li, A. Lim and B. Rodrigues, “Nurse rostering problems – a bibliographic

survey”, European Journal of Operational Research, vol. 151, no. 3, pp. 447–460 (2003)

5. A.T. Ernst, H. Jiang, M. Krishnamoorthy and D. Sier, “Staff scheduling and rostering: A

review of applications, methods and models”, European Journal of Operational

Research, vol. 153, no. 1, pp. 3–27 (2004)

6. P. Brucker, R. Qu and E. Burke, “Personnel scheduling: Models and complexity”,

European Journal of Operational Research, vol. 210, no. 3, pp. 467–473 (2011)

7. A. Meisels and A. Schaerf, “Modelling and Solving Employee Timetabling Problems”,

Annals of Mathematics and Artificial Intelligence, vol. 39, no. 1–2, pp 41–59 (2003)

8. Ö. Kabak, F. Ülengin, E. Aktaş, Ş. Önsel and Y. I. Topcu, “Efficient shift scheduling in

the retail sector through two-stage optimization”, European Journal of Operational

Research, vol. 184, no. 1, pp. 76–90 (2008)

9. M. Hojati and A. S. Patil, “An integer linear programming-based heuristic for scheduling

heterogeneous, part-time service employees”, European Journal of Operational

Research, vol. 209, no. 1, pp. 37–50 (2011)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 613 -

MISTA 2015

Ant Colony Optimisation for a Job Shop with Flexible
Maintenance

Ivar Struijker Boudier · Kevin Glazebrook ·
Mike Wright · Paul Jennings

1 Introduction

Our scheduling problem is motivated by the scheduling challenges encountered at a

particular facility in the nuclear power industry. The work passing through this facility

can be modelled as a job shop problem, with a number of additional non-standard fea-

tures. Existing research which does take into consideration such non-standard features

tends to consider a single complication in isolation.

We have developed an ant colony optimisation algorithm for a generalisation of the

job shop scheduling problem. It deals with a number of the non-standard features faced

by schedulers at the aforementioned facility, including: flexible maintenance scheduling;

jobs which merge into one, or split into many; jobs with release dates; jobs with prece-

dence constraints; and the rescheduling of a schedule in progress, either in response to

a machine breakdown, or to include new jobs which have become available.

2 Problem Outline

The problem is an extension of the standard job shop scheduling problem. We wish

to schedule a fixed set of jobs. Each job consists of a number of operations to be

processed in a given order. Each operation has to be carried out on a specified machine.

Operations are assumed to have a known, deterministic processing time. It is assumed

Ivar Struijker Boudier
Lancaster University
E-mail: i.struijkerboudier1@lancaster.ac.uk

Kevin Glazebrook
Lancaster University
E-mail: k.glazebrook@lancaster.ac.uk

Mike Wright
Lancaster University
E-mail: m.wright@lancaster.ac.uk

Paul Jennings
The National Nuclear Laboratory
E-mail: paul.jennings@nnl.co.uk

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 614 -

each machine can process only one operation at a time. Operations are assumed to

be non-preemptive. Each job has a release date. Jobs can have precedence constraints.

Jobs have soft and hard due dates.

Each machine has a preventive maintenance programme. These flexible mainte-

nance activities must start within a specified time window. The start and end of this

time window are the soft and hard due date, respectively, for the start of the mainte-

nance activity. If maintenance is not started by its hard due date, the affected machine

must be shut down. This is due to strict safety regulations in the nuclear industry.

Each maintenance event is scheduled as a single-operation job.

The jobs have soft and hard due dates. A penalty is incurred if the final operation

of a job is not completed before its soft due date. The size of the penalty increases with

the delay, and rises rapidly beyond the hard due date.

Some jobs can only start when multiple other jobs come together on completion.

There are also jobs which, on completion, allow a number of other jobs to start. Prece-

dence constraints are used to schedule jobs which merge or split like this.

The flexible maintenance activities receive penalties based on their scheduled start-

ing time. Maintenance can start no earlier than its soft due date. If maintenance has

not started by its hard due date, the relevant machine must be shut down. There-

fore a missed hard due date for maintenance is penalised much more heavily than a

missed hard due date for jobs. The algorithm aims to minimise the overall penalty cost.

The penalty structure encourages the following ordering of priorities, starting with the

highest: Schedule maintenances to start before their hard due dates; Schedule jobs to

finish before their respective hard due dates; Reduce any remaining delay of jobs and

maintenance activities.

Each of our test problems contain 20 jobs (some with merges or splits) and 10

maintenance activities, for a total of 102 operations. This is in the order of magnitude

of the sets of work being scheduled at the facility.

3 Ant Colony Optimisation for the Job Shop Problem

In this section, ‘job’ refers to both jobs and maintenances. Ant colony optimisation

(ACO) [2] algorithms construct a large number of solutions simultaneously, and this

is repeated over many iterations. ACO algorithms build solutions one step at a time.

For our scheduling algorithm this means that the operations are sequentially inserted

into a partial schedule, until the schedule is complete. The operations are inserted

according to probabilistic rules, which depend on the heuristic information ηij and the

pheromone level τij . If operation i is the most recently inserted operation, then the

probability pij that job j is progressed next is given by

pij =
τij

αηij
β∑

j∈Ni

τijαηijβ
for j ∈ Ni, α, β ≥ 0, [2]

where Ni denotes the set of jobs available at this stage of the schedule construction.

A job is not available for scheduling if its precedence constraints are not satisfied, or

if the job has been completed. A job may have a future release date, or may currently

be busy, but this does not make it unavailable for scheduling. To ensure feasibility,

the operation to be added to the partial schedule next is not chosen directly. When

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 615 -

operation i has just been added, the algorithm decides which job j ∈ Ni to progress

next. The next operation is then defined to be the next available operation of job j.

The heuristic information ηij for travelling salesman problems is often chosen to be

the inverse of the distance from the current city i to each unvisited city j. In the case of

our job shop, the distance from operation i to job j, dij , can be set as the length of time

until the next operation of job j could be started, given the restrictions imposed by the

current partial schedule. An operation can be started when its preceding operation (if

any) has been completed, when the required machine is available and when the job’s

release date has been met. Therefore we define dij to be the difference between the

latest of these three times, and the current time in the schedule construction.

Initially we used ηij = exp
(
−d+ij

)
, which can handle the case in which the distance

is zero. Better results are obtained when the remaining slack of job j is also considered.

The slack is the difference between the remaining time until the job’s soft due date

and the time required to complete it. In our heuristic information, the contribution of

slack is weighted by the contribution of the distance. If slack is not weighted by the

distance, the algorithm has the undesirable property of jumping to jobs which are not

available for a long time, if their slack happens to be small. Our heuristic information

is then as follows:

ηij = exp
(
−d+ij

)
×
{

1 + exp
(
−slack+j

)}
.

The pheromone levels τij contain information on how rewarding it has previously

been to insert an operation belonging to job j immediately after inserting operation

i. All pheromone levels are equal initially and updated at the end of each iteration.

Pheromone updating involves the standard ACO procedure of global evaporation, fol-

lowed by both rank-based and elitist pheromone deposits [1].

4 Future Work

Our algorithm is already capable of solving problems with a number of non-standard

features which have often been considered in isolation. In its current form it is implicitly

assumed that there is infinite queuing capacity for jobs at each machine. Since storage

capacity is very limited at the facility for which the algorithm is being developed, our

research will now focus on how to modify the existing algorithm to produce feasible

schedules in a no-storage scenario. The problem can then be modelled as a blocking

job shop, with all the non-standard features described above. Rescheduling of partially

completed schedules, in response to machine breakdowns or the arrival of new jobs, is

also being considered.

Acknowledgements This research is jointly funded by the Engineering and Physical Sciences
Research Council (EPSRC) and the National Nuclear Laboratory (NNL).

References

1. Bernd Bullnheimer and Richard F. Hartl and Christine Strauß, A New Rank Based Version
of the Ant System - A Computational Study, Central European Journal for Operations
Research and Economics, 7, 25-38 (1997)

2. Marco Dorigo and Thomas Stützle, Ant Colony Optimization. MIT Press, Cambridge Mas-
sachusetts (2004)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 616 -

MISTA 2015

Complexity of minimizing the total flow time on parallel
machines with interval data and minmax regret criterion

Maciej Drwal

1 Introduction

In this paper we apply the minmax regret approach to one of the basic multi-processor

scheduling problems. We focus on the problem of scheduling on parallel identical ma-

chines to minimize the total flow time (i.e., the sum of completion times of all jobs)

when the job processing times are uncertain, and known only to be contained within

fixed intervals.

Since in practical applications the input data to most problems can be rarely given

precisely, many researchers in combinatorial optimization proposed a robust solution

approach. In the context of scheduling, very often processing times of tasks are not

known in advance, but their values may fluctuate within certain bounds. In such set-

tings, we aim to determine the solution that performs satisfactorily even in the worst

possible scenario of events. One widely adopted approach is to minimize the maximum

deviation of a solution from the optimum, which is also called the maximum regret

criterion [1], [2], [3]. When the parameter uncertainty may have significant impact on

the outcome of optimization, this approach appears to be very useful alternative to the

traditional methods. Unfortunately, robust solutions are often more difficult to find

than their deterministic counterparts.

The problem under consideration is denoted interval P ||
∑
Ci, using the standard

scheduling theory notation [4], combined with a prefix indicating the uncertain version

of the optimization problem. In the absence of the parameter uncertainty, this problem

can be solved in polynomial time, e.g., by applying the shortest processing time first

rule (sorting all jobs by processing times in nondecreasing order). However, its minmax

regret version becomes NP-hard even for a single machine, i.e., interval 1||
∑
Ci. In [5]

it is shown that even when midpoints of all intervals are equal and the number of jobs

is odd, then finding the optimal robust sequence on a single machine is weakly NP-hard

(surprisingly, for the even number of jobs this problem is polynomially solvable). Thus

the case in which the number of machines is given as a part of the input can be no easier.

Since some of the weakly NP-hard problems may admit practically efficient algorithms,

Maciej Drwal
Department of Computer Science, Wroclaw University of Technology, Wroclaw, Poland
E-mail: Maciej.Drwal@pwr.edu.pl

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 617 -

and since the instances used in the complexity proofs seem to be quite restricted, the

important question is whether the general case of the problem is strongly NP-hard.

This problem remains open for the single machine case. Recently, Conde [6] in-

dicated a simple reduction from the minmax regret assignment problem [7] of m

jobs to m machines, which implies that in case of m parallel unrelated machines

(interval R||
∑
Ci) the problem is strongly NP-hard. Unfortunately, this reduction

no longer applies to the case of parallel identical machines, since in that settings the

assignment becomes trivial. In this paper we extend the aforementioned complexity

results, showing that strong NP-hardness occurs even for identical machines. More-

over, we indicate that the parallel machines case has a strong resemblance to the single

machine case.

2 Problem formulation

An instance of the considered scheduling problem P ||
∑
Ci is given by the integer n,

denoting the number of jobs, the integer m, denoting the number of machines (proces-

sors), and the set of processing times of each job: integers pi for i = 1, . . . , n. Each job

has to be assigned to exactly one machine. Let πj denote a vector of nj integers, where

πj(k) is the index of job scheduled on jth machine as kth to the last (jobs on each

machine are scheduled starting from time zero and without idle times). The completion

time of job is: Cj,k =
∑nj

i=k pπj(i) (Cj,k = 0 if there is no such job). The objective is

to minimize the sum of completion times (also called total flow time), expressed as:

F (π) =

m∑
j=1

nj∑
k=1

Cj,k =

m∑
j=1

nj∑
k=1

kpπj(k), (1)

where π = [π1, . . . , πm] is called a schedule. We will sometimes refer to this problem

formulation as a deterministic version of the scheduling problem.

The definition of minmax regeret version of this problem with interval uncertainty,

denoted interval P ||
∑
Ci, differs in that, instead of exact processing times, we are

given only intervals [p−i , p
+
i], i = 1, . . . , n, to which the actual processing times belong.

Denote by S = [pS1 , . . . , p
S
n] any vector that satisfies p−i ≤ p

S
i ≤ p

+
i for all i = 1, . . . , n.

Such a vector will be called a scenario. For any schedule and scenario we define the

value of regret as: Z(π, S) = F (π, S)− F ∗(S), where F (π, S) is the objective function

(1) from the deterministic version of problem P ||
∑
Ci with input data S, and F ∗(S)

is the value of optimal solution of this problem. The objective of interval P ||
∑
Ci is

to minimize over schedules the maximum of regret over scenarios:

Z∗ = min
π

max
S

(
F (π, S)− F ∗(S)

)
.

A schedule that minimizes the maximum regret will be called robust optimal. An opti-

mal solution of deterministic version of the problem, obtained by taking a worst-case

scenario for π as an input data, is called the worst-case alternative for π.

3 Main results

The maximum regret Z(π) = maxS F (π, S) can be computed in polynomial time.

The method is based on constructing appropriate instance of assignment problem on

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 618 -

bipartite graph with jobs in one partite set and positions on machines in the other one.

The construction is very similar to the one presented in [6] for unrelated machines case,

with the main difference that in the identical machines case the input data contains a

single interval [p−i , p
+
i] in place of m intervals given in unrelated machines case.

Before we state our main theorem, we need to develop some auxiliary results. In

this extended abstract, we omit proofs of all lemmas, giving only the general idea of

our method. From now on we consider only instances with n jobs and m machines

where m|n, that is, there exists integer n0 > 1, such that n = n0m. In particular, it is

a known result for deterministic version of the considered problem, that any optimal

schedule has always the numbers of jobs on each machine that differ by at most 1. It

turns out that this extends to the maximum regret version.

Lemma 1 If m|n then in optimal robust schedule every machine is assigned the same

number of jobs.

Next, we exploit the fact that in robust optimal solutions, for any job the choice

of machine is irrelevant: it is only required to select an appropriate position on any

machine.

Lemma 2 Let π be a schedule, where π is a m×n0 matrix (each ith column contains

jobs scheduled as ith to the last on their respective machines). Consider a schedule π′

obtained by switching a pair of elements in any column of π. Both schedules have the

same maximum regret.

Observe that the formulation of the considered problem remains valid when bounds

of intervals p−i and p+i are arbitrary (possibly negative) integers, and that adding the

same constant to all bounds of intervals does not change the value of maximum regret.

Consider instances with equal midpoints, that is [p−i , p
+
i] = [−p+i , p

+
i]. Consider a

single machine j. Due to [5] we know that if the number of jobs on a machine is odd,

nj = 2kj + 1, then optimal solution can be obtained as:

Zj(π
∗) = kj

nj∑
i=1

p+i + max{P1, P2}, (2)

where (P1, P2) is a solution of the optimization version of the partition problem (i.e.,

P1 and P2 are sums of two disjoint subsets of 2kj smallest jobs, and the value |P1−P2|
is minimal among all such 2-partitions). The job with the widest uncertainty interval

is always inserted in the middle of the permutation and does not appear in P1 or P2.

The remaining jobs are scheduled in such a way that the wider the interval, the closer

it is to the middle of the permutation.

The following lemma states that it is always possible to permute columns of an

optimal robust solution π and its worst-case alternative σ, to obtain an equivalent

robust optimal solution, which in fact consists of m solutions of interval 1||
∑
Ci

problem.

Lemma 3 There exists optimal robust schedule of interval P ||
∑
Ci, such that for

any machine j = 1, . . . ,m, the schedule on machine j is the same as the optimal robust

schedule in problem interval 1||
∑
Ci.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 619 -

The main theorem is based on the reduction from a variant of set partitioning

problem (related to 3-partition problem [8]). We define problem 4-partition-into-

pairs (problem 4-pp for short) as follows: given is a set of 4m positive integers ai,

i = 1, . . . , 4m. The question is whether it is possible to partition the given set of

integers into m disjoint quadruplets of integers A1, . . . , Am, such that there exists a

bijective function f : {1, . . . ,m} → {1, . . . ,m}, such that:

∀i∈{1,...,m} s(Ai) = s(Af(i)) and f(i) 6= i and f(f(i)) = i,

where s(A) is the sum of elements in A. In other words, we want to partition the set

of integers into m 4-sets in such a way that all the 4-sets can be arranged in distinct

pairs of equal sums. It can be shown that 4-pp is strongly NP-complete.

Theorem 1 Problem interval P ||
∑
Ci, in which the number of machines is given

as a part of the input, is strongly NP-complete.

The sketch of a proof is as follows. We reduce an instance of 4-pp to inter-

val P ||
∑
Ci problem with m/2 machines and n = 4m+m/2 jobs. For each integer ai

we create a job with processing interval [−ai, ai], and, additionally, we create m/2 jobs

with processing intervals [−B,B], where B > max ai. From Lemma 3 and equation (2)

we know that each machine with 9 jobs gives optimal maximum regret:

Zj(πj) = 4(

9∑
i=1

aπj(i)) + max{s(Aj1), s(Aj2)},

where s(Aj1) = aπj(1) + aπj(2) + aπj(3) + aπj(4), and s(Aj2) = aπj(6) + aπj(7) +

aπj(8) + aπj(9). It is enough to show that the instance of 4-pp has a solution if and

only if Z(π∗) = 4mB + 9
2

∑4m′

i=1 ai. This can be seen by first noticing that exactly

one job [−B,B] must be assigned to each machine in the middle of job sequence (fifth

position). Then the minimal maximum regret on each machine is obtained when both

four-job subsets on the left and the right of the middle job have equal sums (computed

by taking upper bounds of intervals [−ai, ai]).

4 Conclusions

In this extended abstract we showed that one of the easiest scheduling problems on

parallel machines becomes strongly NP-hard when interval uncertainty in the input

data is taken into consideration, and the minmax regret criterion is used to define a

robust solution. This suggests that in order to handle uncertainty in practice, either

less restrictive notion of robustness should be applied, or approximation algorithms

and heuristics should be used. The design of efficient approximation algorithms for

scheduling problems with uncertain parameters is the subject of further work.

References

1. P. Kouvelis, G. Yu, Robust discrete optimization and its applications, Springer, 1997.
2. H. Aissi, C. Bazgan, D. Vanderpooten, Min–max and min–max regret versions of combina-

torial optimization problems: A survey, European Journal of Operational Research 197 (2)
(2009) 427–438.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 620 -

3. A. Kasperski, Discrete optimization with interval data: minmax regret and fuzzy approach,
Springer, 2008.

4. R. Graham, E. Lawler, J.K. Lenstra R. Kan, Optimization and approximation in deter-
ministic sequencing and scheduling: a survey, Annals of Discrete Mathematics, 5 (1979)
287–326.

5. V. Lebedev, I. Averbakh, Complexity of minimizing the total flow time with interval data
and minmax regret criterion, Discrete Applied Mathematics 154 (15) (2006) 2167–2177.

6. E. Conde, A MIP formulation for the minmax regret total completion time in scheduling
with unrelated parallel machines, Optimization Letters 8 (4) (2014) 1577–1589.

7. H. Aissi, C. Bazgan, D. Vanderpooten, Complexity of the min–max and min–max regret
assignment problems, Operations Research Letters 33 (6) (2005) 634–640.

8. M. Garey, D. Johnson, Computers and intractability. W.H. Freeman, 2002.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 621 -

Kris Van Marcke

Ordina NV

E-mail: kris.vanmarcke@ordina.be

Osman Ali

Ordina NV

E-mail: osman.ali@ordina.be

MISTA 2015

Scheduling the operation of a phosphate pipeline for OCP: A Case Study

Abstract

Kris Van Marcke • Osman Ali

1. Introduction

The scheduling problem described is part of a large and highly strategic project for OCP, the

world’s largest phosphate miner and producer. In the context of a supply chain optimization

project Ordina undertakes for OCP, it also built a scheduler for scheduling operations of a

pipeline that is transporting rough phosphate slurry coming from the mines to the plants located

at the coast over a distance of 187 kilometers. The scheduling algorithm uses a multi-agent

system metaphor.

2. Case Description

2.1. Situating OCP and the pipeline

OCP is the world’s largest exporter of phosphate and phosphoric acids; and one of the largest

exporters of phosphoric fertilizers. With a total production of 24 million tons per year, exported

to over 40 countries it accounts for 25% of the Moroccan export. OCP exploits 4 mines

(Khouribga, Benguerir, Youssoufia, Boucraa), 2 chemical plants (Jorf Lasfar, Safi), and exports

from 4 ports (Casablanca, Jorf Lasfar, Safi, Lâayoune).

The new pipeline is taken into production between Khouribga and Jorf Lasfar. Four mining

sites are connected via secondary pipes to one head station. From the Khouribga head station, a

primary pipe transports the phosphate directly to the chemical plant from Jorf Lasfar 187

kilometers further. The total pipe length is 236 kilometers.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 622 -

2.2. Summary of the Supply Chain Optimization Project DLP

DLP aims at the global optimization of the downstream logistics supply chain project at OCP.

It is a complex balancing exercise between sales and sales commitments to customers, maritime

activities including vessel allocation, laycan allocation, docking, loading, …, the production

plan in the chemical plants (which product will be produced when), the production plan in the

mines (which phosphate quality to mine and when), storage capacity (in mines, plants, ports)

and transport plans (between mines and ports, mines and plants, and plants and ports).

The main DLP optimization target is ‘fulfillment’: maximize the total volume shipped. The

main bottleneck is logistics: the loading capacity in the ports, the storage capacity and the

transportation capacity. All volumes must be planned to arrive just in time at the quay as the

storage capacity in the port is very low. Mining capacity is virtually unlimited and OCP is

increasing its production capacity yearly.

This planning puzzle is resolved by means of a linear program, which is executing the

following planning decisions: allocation of laycans to vessels; when a vessel will dock, be

loaded, sail; where to store finished goods and how to transport them just-in-time to the quay;

when to produce which quality of finished goods; when and how to receive which quality of

phosphate from the mine; how to transport it (train, pipe); how/when to import additional

primary materials (like ammoniac, sulfur) via the port.

2.3. The Scheduling Case

The pipeline assures a continuous phosphate flow between the four mine sites of Khouribga and

the chemical plant in Jorf Lasfar. In addition, it enables OCP to move from an isolated make-to-

stock mining facility towards an integrated make-to-order approach with different phosphate

qualities to be mined.

The scheduler assures that the OCP production plan receives the right volume of phosphate,

with the right phosphate quality level (BPL), with the right flow rate, on the right day.

Figure 1: Product flow

There are four mining sites and hence four stocks of phosphate ore. In the four ‘wash

plants’ different quality levels can be obtained. The result is phosphate slurry, i.e. phosphate

mingled with water. Three of the four wash plants have local storage capacity for slurry. There

are four secondary pipes to transport the slurry to the head station, where it can be stored in two

distinct tank groups. From the head station the slurry is transported via the primary pipe to the

terminal station, where it can be stored in three different tank-groups. From there it is used for

consumer orders. The described product flow is depicted in figure 1.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 623 -

The wash plant can control the quality level of its output by means of three different

operations: washing (L), floating (F) and grinding (B). By correctly scheduling those three

operations the correct output quality can be obtained. In the head station the feed balance

between the slurry from the three input pipes is decided in order to get the correct quality into

the primary pipe with the expected throughput.

3. The Scheduler

3.1. The Scheduling Objective

The input for the scheduler consists of the consumer demand (volume per quality plus input flow

requirements) on a day by day basis; forecasted stock levels for the four mine sites, predicted

unavailabilities, and monthly recipe objectives (defined by the central planning board).

A recipe is a concept that encompasses the different planning decisions to be taken. For a

given output product quality and density, it defines a mix of input products from the different

wash plants with a ratio, flow-rate and production steps. By defining monthly recipe objectives

the central planning board can steer the scheduler to be in-line with the mining plan.

The scheduler is expected to choose the recipe and to schedule the corresponding batches

on the different units (wash plants, tank-groups, pipes).

The scheduler takes into account the aggregated orders (customer orders are aggregated

per day and per quality level) and BPL, the available/predicted volumes, objectives per recipe,

set-up times and MES events. MES events provide real-time information about measured

volumes, flow-rates and quality-levels. When real-time information deviates from the planned

situation, the scheduler must be able to adapt the schedule to compensate the deviated values.

3.2. The Scheduling Algorithm

The scheduling algorithm is based on a multi-agent system (MAS) approach that uses a model

of the process under consideration and coordinating agents to organize the search [1]. The

approach is typically suited for scheduling of operations and resource allocation.

The MAS is structured according to the PROSA reference architecture [2]. It makes use of

3 scheduling agent types (agents representing all fragments of the scheduling problem) and 2

search agent types (agents that organize the search).

Every order to be scheduled is represented by an order agent. The order agent has the

know-how to assess a solution with respect to completeness and quality. Every resource that

can be allocated is represented by a resource agent, which manages the resource’s local

schedule. Product agents correspond to a process, i.e. they represent valid sequences of process

steps or operations together with their resource requirements. Product agents possess the

necessary know-how to determine, given a partial solution for an order, what are the next actions

that must be undertaken to make the solution more complete.

Search agents consist of exploring agents and intention agents. Exploring agents are

delegates of order agents, generated at regular intervals. Exploring agents interact with product

agents and resource agents to construct a valid solution – for the order agent they work for – and

ask for the availability of resource capacity. When sufficient solutions are explored, the order

agent picks the most suited. Next, the order agents creates intention agents who go out to contact

the resource agents to reserve the necessary capacity of resources and get an update on the

execution constraints. When the resources turn out to be no longer available, the intention agent

fails to finalize this selected solution. New solutions will be constructed by different exploring

agents and at some point in time the order agent will select a new solution and re-generate

intention agents for reserving capacities on the resources indicated in the new solution.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 624 -

3.3. Application of the planning approach

The MAS algorithm is applied in the following way. Customer orders are grouped per product

and day into aggregated orders. An order agent is created for every aggregated order. For every

unit (wash plant, tank group, pipe) in the system, a resource agent is created.

For an aggregated order, there are between 5 and 15 possible routes, depending on the

available recipes. Each recipe is represented by a product agent.

The aggregated orders are sorted according to priority. The corresponding order agents

generate a sequence of exploring agents that construct a series of possible solutions in

coordination with product agents and resource agents. When there are sufficient solutions

available the order agents evaluate the solutions and select one. Next one intention agent is

generated to interact with the resource agents to make the final resource capacity reservations.

Organizing the MAS like this generates an eager local search mechanisms: the orders are

planned in sequence of priority and they block resource capacity before the next order gets a

chance. This local search configuration gives satisfactory results and very rapidly.

Different search approaches can be imagined just building upon the same metaphor.

Imagine the orders are not a priori sequenced, and all order agents launch their exploration

delegates at the same time. Many solutions will be building-up, until one order agent decides

that one solution is satisfactory and starts blocking the resources. At that point some of the other

exploration agents have constructed solutions that are no longer feasible or satisfactory.

Resource agents should give agents that have already asked for capacity an update on availability

and timing. Exploration agents may decide to continue or to fail depending on the decision

whether the plan built-up so far is still valid.

This solution is still an eager local search, but one that no longer depends on a-priori

sequencing of the orders. The knowledge is now entirely encapsulated in the knowledge of the

agents. The quality of the result is now depending on the quality of the acceptance function, i.e.

when does an order agent finds a solution satisfactory. If it accepts a solution too easily, certain

resources may be reserved for a solution that is not a very good global solution after all. By

giving order agents information on their own priority in the overall search space, lower priority

agents may postpone their decisions a bit so that the high priority agents get a better shot.

4. Conclusions

The scheduling case described in this paper is part of a pipeline constructing value with high

strategic impact for OCP. The economical stakes are huge, and the stability and reliability of

the scheduler are crucial.

The scheduling algorithm has been configured using a MAS metaphor, in such a way that it

implements an eager local search process. This configuration gives good results very rapidly.

We have argued that the same metaphor can be configured in slightly different ways to realize

different search processes, which will always converge rapidly to a quality solution.

Therefore, in conclusion, we believe

• that an agent metaphor can be used for solving scheduling problems,

• that it is applicable in highly critical real live applications,

• that it converges rapidly to good results,

• that is it applicable to solve real-world closed-loop planning problems,

• that it opens perspectives for obtaining different search process on top of the same model.

References

1. O. Ali, et.al, Towards online planning for open-air engineering processes, Computers in

Industry (64), issue 3, 242-251 (2012)

2. H. Van Brussel, et. al, Reference architecture for holonic manufacturing systems: PROSA.

Computers in Industry, (37), 255-274 (1998)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 625 -

MISTA 2015

Online and semi-online scheduling of two job types on a

set of multipurpose machines

Shlomo Karhi · Dvir Shabtay

1 Introduction

We study a set of scheduling problems, where q = 2 job types are to be processed

on a set of m (m ≥ 2) identical multipurpose machines. This set of problems can be

formally presented as follows. A set of n jobs J = {J1, J2, ..., Jn} is to be processed

non-preemptively on a set of m parallel machines M = {M1,M2, ...,Mm}. Each job

Jj (j = 1, ..., n) is characterized by its processing time parameter, pj , and by a subset

Mj of machines (Mj ⊆ M) to which it can be assigned (subset Mj is referred to as

the processing set of job Jj). We focus on the case where there are only two possible

Mj subsets. The first is for jobs of type 1, while the second is for jobs of type 2. Let

tj be the type of job Jj (tj ∈ {1, 2}). Without loss of generality, we assume that if

job Jj is of type 1 (tj = 1) then Mj = {M1, ...,Mk} and if if job Jj is of type 2

(tj = 2) then Mj = {Ms+1, ...,Mm}, where s < k ≤ m and s ≥ m− k. Our objective

is to schedule the jobs to minimize either the makespan (Cmax = max{C1, ..., Cn})

or the total completion time (ΣCj), where Cj is the completion time of job Jj for

j = 1, ..., n. Following the traditional three-field notation our problem can be referred

to by P
∣∣Mj , q = 2

∣∣F (F ∈ {Cmax, ΣCj}) and an instance for this problem is defined

by n,m, s, k the processing time pj , and the type tj ∈ {1, 2} of each job Jj ∈ J .The

literature on multipurpose machine scheduling can be divided into two major streams:

offline and online scheduling, depending on the knowledge that the scheduler has prior

to making any scheduling decision. In contrast to offline scheduling where the scheduler

has access to the entire instance of the problem prior to making any scheduling decision,

in online scheduling the scheduler does not have this ability. Accordingly, for the online

variant of our P
∣∣Mj , q = 2

∣∣F problem there is uncertainty about the number of jobs to

be processed (n), their processing time (pj for j = 1, ..., n) and type (tj for j = 1, ..., n).

We study several variants of the online version of the P
∣∣Mj , q = 2

∣∣F problem

(F ∈ {Cmax, ΣCj}), assuming it follows the online-list paradigm, where the jobs are

ordered in a list and are presented to the scheduler one by one. As soon as a job is

presented to the scheduler he knows its processing time and type. According to the

online-list paradigm, the scheduler has to assign the jobs by using an online algorithm,

e-mails: shlomo.karhi@biu.ac.il and dvirs@bgu.ac.il

Address(es) of author(s) should be given

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 626 -

where each job has to be assigned to some machine before the next job is presented

and the assignment is irreversible.

We use the competitive analysis evaluation technique presented by Sleator and

Tarjan [4] to evaluate the performance of online algorithms. For an input instance I,

let FA(I) denote the objective value produced by an online algorithm A and F ∗(I)

denote the corresponding minimum objective value determined by an optimal offline

algorithm OPT . According to the competitive analysis evaluation technique, Algorithm

A is called ρ-competitive if there exists some nonnegative value v, independent of the

instance, such that FA(I) ≤ ρF ∗(I) + v for any input instance I. Moreover, the

competitive ratio of algorithm A, denoted by ρA, is the infimum of ρ such that A is

ρ-competitive. We say that an online scheduling problem has a lower bound ρ if no

online algorithm has a competitive ratio smaller than ρ, and an online algorithm is

called optimal if its competitive ratio matches the lower bound of the problem.

2 Literature review and motivation

Both Park et al. [3] and Jiang et al. [1] provide an online algorithm with a competitive

ratio of 5/3 for the special case of the P2
∣∣Mj , q = 2

∣∣Cmax problem with s = 1 and

k = m = 2. Jiang [2] study the special case of the P
∣∣Mj , q = 2

∣∣Cmax problem, where

k = m. He show that an algorithm that assigns each job Jj to the least loaded machine

inMj has a competitive ratio of 4−1/m. Moreover, he present an alternative algorithm

with a competitive ratio of 12+4
√
2

7
≈ 2.522, and prove that the problem has a lower

bound of 2 on the competitive ratio of any online algorithm. The main disadvantage

of the results obtained by Jiang [2] is that a constant competitive value is used, rather

than one which fits itself to the exact values of s and m. Zhang et al. [5] overcome this

disadvantage by providing an algorithm with a competitive ratio of

ρ = 1 +
m(m− 1)

m(m− s) + s2
. (1)

Note that the value in (1) is less than 7
3
for any s ≤ m and thus the competitive result

obtained by Zhang et al. [5] is much better than that obtained by Jiang [2]. Zhang

et al. also improve the lower bound presented by Jiang [2] by providing several lower

bounds, each for a different set of s and m values.

Zhang et al. [5] results are restricted to an inclusive processing set structure (where

k = m). Moreover, they consider only the case of arbitrary processing times and it

might be that for more restricted processing times models, algorithms with better

competitive ratio and tighter lower bounds can be computed. Thus, the main purpose

of our research is to provide a competitive analysis, as a function of the processing set

structure (i.e., as a function of s, k andm), for different variants of the P2
∣∣Mj , q = 2

∣∣F
problem.

3 Problems studied and Results

We study the following eight different variants of the P
∣∣Mj , q = 2

∣∣F problem:

— Variant 1: (P
∣∣Mj , q = 2, pj = 1

∣∣Cmax): The online problem of minimizing the

makespan with unit processing times.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 627 -

— Variant 2: (P
∣∣Mj , q = 2, pj ∈ {a1, a2}

∣∣Cmax): The online problem of minimiz-

ing the makespan with job-type dependent processing times, where ai denote the

processing time of any job of type i (i = 1, 2).

— Variant 3: (P
∣∣Mj , q = 2, pj ∈ {aF , aNF }

∣∣Cmax): The online problem of mini-

mizing the makespan with machine-set dependent processing times; where aF
denote the processing time of any job assigned to the set of flexible machines

({Ms+1, ...,Mk}) and aNF denote the processing time of any job assigned to the

set of non-flexible machines ({M1, ...,Ms} ∪ {Mk+1, ...,Mm}).

— Variant 4: (P
∣∣Mj , q = 2

∣∣Cmax): The online problem of minimizing the makespan

with arbitrary (but machine independent) processing times;

— Variant 5: (P
∣∣Mj , q = 2, known n

∣∣Cmax): The semi-online problem of minimizing

the makespan with arbitrary processing times, where the number of jobs (n) is

known in advance.

— Variant 6: (P
∣∣Mj , q = 2, known Σpj

∣∣Cmax): The semi-online problem of minimiz-

ing the makespan with arbitrary processing times, where the total processing time

is known in advance.

— Variant 7: (P2
∣∣Mj , q = 2, pj = 1

∣∣ΣCj): The online problem of minimizing the

sum of completion times with m = 2 machines and unit processing times.

Table 1 below summarizes the competitive results we obtain:

Variant Competitive ratio Optimal

Variant 1 mk

(m−s)k+s2
≤ 4/3

√

Variant 2 mk

(m−s)k+s2
≤ 4/3

√

Variant 3 1 +
as(k−s)

((k−s)+(m−k)a)(as+k−s)+s2a2
≤ 4/3∗

√

Variant 4 1 +
k(m−1)

k(m−s)+s2
< 7/3

Variant 5 1
√

Variant 6 2− 1/m

Variant 7 1 +

(
−α+

√
4α3−α2+2α−1

2α2+1

)
+O(1

n
)∗∗

√
∗∗∗

∗ a = a2/a1 ≥ 1
∗∗ α ≈ 1.918
∗∗∗The algorithm is asymptotically optimal.

Table 1 Competitive ratio results for the seven variants we study.

References

1. Jiang, Y.W., He, Y., and Tang, C.M., Optimal Online Algorithms for Scheduling on Two
Identical Machines Under a Grade of Service, Journal of Zhejiang University Science A, 7
(3), 309—314 (2006).

2. Jiang, Y., Online Scheduling on Parallel Machines with Two GoS Levels, Journal of Com-
binatorial Optimization, 16 (1), 28-38 (2008).

3. Park, J., Chang, S.Y., and Lee, K., Online and Semi-Online Scheduling of Two Machines
under a Grade of Service Provision, Operations Research Letters, 34 (6), 692—696 (2006).

4. Sleator, D.D., and Tarjan, R.E., Amortized Efficiency of List Update and Paging Rules,
Communications of the ACM, 28, 202-208 (1985).

5. Zhang, A., Jiang, Y., and Tan, Z., Online Parallel Machines Scheduling with Two Hierar-
chies, Theoretical Computer Science, 410, 3597-3605 (2009).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 628 -

MISTA 2015

The resource dependent assignment problem with a convex
assignment cost function and its relation to scheduling
with controllable processing times

Dvir Shabtay · Liron Yedidsion · Andrey

Lisovoy

1 Introduction

Assignment problems deal with the question of how to assign a set of n agents to a set

of n tasks such that each task is performed only once and each agent is assigned to a

single task so as to minimize a specific predefined objective. An assignment is simply a

permutation φ which maps each element i of {1, 2, . . . , n} onto a unique element φ (i) of

{1, 2, . . . , n} and can be presented by a permutation vector φ = (φ (1) , φ (2) , ..., φ (m)),

where φ (i) = j means that agent j is assigned to task i in permutation φ. The most

well-known assignment problem is the linear sum assignment problem (LSAP), where

the cost of assigning agent j to a task i is given by a fixed parameter, cij for i, j = 1, ..., n

and the objective is to minimize
∑n
i=1 ciφ(i). However, in many real-life applications of

assignment problems, the assignment cost may be controllable by allocating resources

to each agent for executing his task. Accordingly, Yedidsion et al. [8] present and

analyze a new variant of an assignment problem, which they refer to as the resource

dependent assignment problem (RDAP). In the RDAP the cost of assigning agent j

to task i is given by

cij = ξipj(uj), (1)

where ξi is task i’s assignment cost parameter, uj is the amount of resource allocated

to agent j and pj(uj) is the assignment cost function of agent j, which is a decreasing

function of uj .

A solution for the RDAP is defined by a permutation φ and by a resource allocation

vector u = (u1, u2, ..., un) and the quality of a solution is measured by two different

criteria. The first is the total assignment cost which is given by

c (A) =
n∑

i=1

ci,φ(i)(uφ(i)) =
n∑

i=1

ξipφ(i)(uφ(i)), (2)

where A = (φ,u). The second is the total resource consumption cost which is given by

e-mails: dvirs@bgu.ac.il, lirony@ie.technion.ac.il and lisovoy1987@gmail.com

Address(es) of author(s) should be given

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 629 -

U (A) =
n∑

j=1

vjuj , (3)

where vj is the cost of assigning one unit of resource to agent j.

We focus on two different variations of the RDAP. In the first, RDAP1, we aim to

find a solution A that minimizes c (A)+U (A), while in the second, RDAP2, we aim to

find a solution A that minimizes c (A), subject to U (A) ≤ Uv , where Uv is an upper

bound on the total resource consumption cost.

2 Single machine scheduling problems with controllable processing times

and their relation to the RDAP

Let us first present a formal definition of the set of single machine scheduling prob-

lems with controllable processing times. A set of n independent jobs, J = {1, 2, . . . , n},
is to be processed on a single machine. The processing time of job j, pj , is a func-

tion of the amount of resource, uj , allocated to the processing operation. A solution

is specified by a resource allocation vector u = (u1, u2, ..., un) and by a job per-

mutation φ ∈ Φ where Φ is the set of all n! possible permutations of the n jobs.

Similar to RDAP, the quality of a solution is measured by two criteria: The first,

f , is a scheduling criterion and is dependent on the job completion times, and the

second, U, is the resource consumption criterion. Among the possible f criterion are

f ∈
{∑n

j=1Cj ,
∑n
j=1Wj ,

∑n
j=1Ej ,

∑n
j=1 Tj , Cmax

}
, where Cj is the completion time

of job j; Wj = Cj − pj is the waiting time of job j; dj is the due date of job j;

Lj = Cj − dj is the lateness of job j; Tj = max
{
0, Lj

}
is the tardiness of job j;

Ej = max
{
0,−Lj

}
is the earliness of job j and Cmax = max

j=1,...,n

{
Cj
}

is the maximal

completion time (makespan). The U criterion is given by eq. (3), where here vj is the

cost of assigning one unit of resource to the operation of job j.

Similar to RDAP, we define two variations for each scheduling problem (denoted by

SP1 and SP2) that are identical to the two variations of RDAP (RDAP1 and RDAP2),

with the scheduling criterion f replacing the assignment cost c (A). Yedidsion et al. [8]

show that there is a large set of single machine scheduling problems in which their

scheduling criterion, f, can be represented by the model in (1) with a specific set of

ξj values associated with each one of them. Thus, the corresponding SP1 and SP2

problems on a single machine can be viewed as special cases of RDAP.

Consider, for example, a single machine scheduling problem with controllable process-

ing time, where scheduling criterion is to minimize the total completion time, i.e.,

the case where f =
∑n
j=1Cj . It is well-known that for the single machine problem∑n

j=1Cj =
∑n
i=1(n− i+ 1)pφ(i)(uφ(i)), where j = φ (i) implies that job j is assigned

to position i in job processing sequence φ. It implies that the cost of assigning job j

to position i is given by cij = ξipj(uj) ,where ξi = (n− i+ 1). Accordingly, the single

machine scheduling problem with controllable processing time, where the scheduling

criterion is to minimize the total completion time is a special case of the RDAP where

ξi = (n− i+ 1) for i = 1, ..., n.

A subset of the set of scheduling problems that can be viewed as special cases of

RDAP is presented in Table 1 below, where α, β, γ and δ are nonnegative parameters

and ETC = α
∑n
j=1Ej + β

∑n
j=1 Tj + δCmax.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 630 -

The Scheduling Criterion Positional Penalties (ξi)∑n
j=1 Cj n+ i− 1∑n

i=1

∑n
j=i |Ci −Cj | (i− 1) (n− i+ 1)∑n

i=1

∑n
j=i |Wi −Wj | i (n− i)

ETC + γ
∑n
j=1 dj

(∗) α (i− 1) + γn+ δ for i ≤ l∗

β (n− i+ 1) + δ for i > l∗

ET + γ
∑n
j=1 dj

(∗∗) αi+ γ (n+ 1) + δ for i ≤ l∗ − 1
β (n− i) + γ + δ for i ≥ l∗

ET + γ
∑n
j=1 dj

(∗∗∗) ǫ (n− i+ 1) + δ

ET + γ1nd+ γ2nD
(∗∗∗∗)

α (i− 1) + nγ1 + δ for i ≤ l∗1
nγ2 + δ for l∗1 < i ≤ l

∗

2
β (n− i+ 1) + δ for i > l∗2

(∗) dj = d for j = 1, ..., n andd is a decision variable.
l∗ can be computed in constant time.

(∗∗) dj = pj + s for j = 1, ..., n and s is a decision variable
l∗ can be computed in constant time.

.

(∗∗∗) Each job can be assigned a due date with no restrictions.

(∗∗∗∗)

The scheduler can assign a common due window[
d, d = d+D

]
where D is a constant, for the completion

time of each job. l∗1 and l∗2 can be computed in constant time.

Table 1 A subset of single machine scheduling problems which can be represented as special
cases of the RDAP

3 Literature review and our objectives

Yedidsion et al. [8] study the RDAP with the following linear assignment cost function

pj
(
uj
)
= pj − bjuj , 0 ≤ uj ≤ uj < pj/bj , (4)

where pj is the non-compressed assignment cost of agent j; uj is the upper bound on

the amount of resource that can be allocated to agent j; and bj is the positive cost

compression rate of agent j. They prove that RDAP1 is solvable in O(n3) time, and

that RDAP2 is NP-hard for any set of ξi parameters satisfying ξi �= ξj for any i �= j.
In a different paper, Shabtay et al. [6] provide a pseudo-polynomial time algorithms

for solving RDAP2 when the assignment cost function is given by (4).

Although commonly used in resource allocation problems, the linear function in

(4) has the drawback that it fails to reflect the law of diminishing marginal returns.

This law states that productivity increases at a decreasing rate with the amount of

resource employed, i.e., that dpj(uj)/duj > 0 and d2pj(uj)/(duj)
2 < 0 for any uj > 0.

Thus, we analyze the RDAP by using the following convex decreasing assignment cost

function which does reflect the law of diminishing marginal returns :

pj
(
uj
)
= Bj +

(
wj/uj

)k
, (5)

where wj represents the workload of job j, Bj is a lower bound on the processing time

of job j and k is a positive constant.

Eq. (5) is commonly used in resource allocation problems. For example, Flynn

et al. [1] show that in computer microprocessors the processing time is reduced by

approximately the cube root of the allocated power, implying that k = 1/3. Flynn’s

et al. cube-root rule for Complementary Metal—Oxide Semiconductor (CMOS) based

devices was later adopted by many other researchers (see the survey paper by Irani

and Pruhs [2]). Monma et al. [4] pointed out that the time required to perform many

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 631 -

actual government and industrial operations can be expressed by eq. (5) with k = 1,

and that the time required to perform very large scale integration (VLSI) circuit design

operations may also be presented by (5) with k = 0.5. Yao et al. [7] also use eq. (5)

with k = 0.5 for modeling CPU time via energy consumption.

4 Analysis of RDAP1 and RDAP2 with a Convex assignment cost function

4.1 A polynomial time solution to RDAP1

Our objective here is to find a solution A = (φ,u) which minimizes

z(A) = c(A) + U(A) =

n∑

i=1

ξi(Bφ(i) +
(
wφ(i)/uφ(i)

)k
) +

n∑

j=1

vφ(i)uφ(i). (6)

Lemma 1 When expressed as a function of the assignment decision, the optimal re-

source allocation, u∗ (φ) = (u∗φ(1), u
∗

φ(2), ..., u
∗

φ(n)), for RDAP1 is

u∗φ(i) =

(
ξik

vφ(i)

) 1
k+1 (

wφ(i)

) k

k+1

for i = 1, ..., n. (7)

Proof By taking the derivative of eq. (6) with respect to uφ(i), equating it to zero and

solving it for uφ(i), we obtain eq. (7). Since the objective is a convex function, these

are necessary and sufficient conditions for an optimal resource allocation.

By substituting eq. (7) into the objective in eq. (6), we obtain that:

z
(
φ,u∗ (φ)

)
=

n∑

i=1

ξiBφ(i) + (k
−k

k+1 + k
1

k+1)
n∑

i=1

(ξi)
1

k+1 ηφ(i),

where

ηφ(i) =
(
wφ(i)vφ(i)

) k

k+1

for i = 1, ..., n. (8)

Therefore, if we define the value cij by

cij = ξiBj + (k
−k

k+1 + k
1

k+1) (ξi)
1

k+1 ηj (9)

it represents the minimal possible cost resulting from assigning agent j to task i. Since

each agent is assigned to a single task and each task is performed only once, RDAP1

reduces to the LSAP and the following optimization algorithm can be applied to solve

RDAP1 :

An optimization algorithm for RDAP1

Step 1. Calculate the cij values by using eq. (9) with eq. (8).

Step 2. Solve the resulting LSAP to determine the optimal assignment, φ∗.

Step 3. Allocate the resources according to eq. (7) with φ = φ∗.

Theorem 1 Algorithm 4.1 solves RDAP1 in O(n3) time.

Proof The correctness of the algorithm follows from the analysis that appears in this

section. Step 1 requires O(n2) time. Step 2 requires the solution of LSAP which takes

O(n3) time (see, e.g., [5]) and Step 3 can be performed in linear time. Thus, the overall

computational complexity of the algorithm is indeed O(n3).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 632 -

4.2 The Analysis of RDAP2

Lee and Lei [3] study the RDAP2 problem in a context of a scheduling problem with

ξi = n− i+1. They conclude that the general problem is probably NP-hard although

they fail to prove it. We, however, where able to prove that the following much more

general theorem holds.

Theorem 2 RDAP2 is NP-hard for any given set of task cost parameters satisfying

ξl �= ξm for any l �= m, even for the special case where vj = 1 for j = 1, ..., n.

The following lemma is later used to reduce RDAP2 to a purely combinatorial

problem (the proof is omitted for the sake of brevity).

Lemma 2 When expressed as a function of the assignment decision, the optimal re-

source allocation, u∗ (φ) = (u∗φ(1), u
∗

φ(2), ..., u
∗

φ(n)), for RDAP2 is

u∗φ(i) =
(ξi)

1
k+1

(
wφ(i)

) k

k+1

(
vφ(i)

) 1
k+1 ∑n

j=1

(
ξj
) 1
k+1 ηφ(j)

Uv for i = 1, ..., n. (10)

By substituting eq. (10) into eq. (2) (with pφ(i)

(
uφ(i)

)
given by (5)), we obtain

that the minimal assignment cost can be expressed as follows:

c
(
φ,u∗ (φ)

)
=

n∑

i=1

ξiBφ(i) + U
−k
v

(
n∑

i=1

(ξi)
1

k+1 ηφ(i)

)k+1
= c1 (φ) + U

−k
v (c2 (φ))

k+1 ,

(11)

where c1 (φ) =
∑n
i=1 ξiBφ(i) and c2 (φ) =

∑n
i=1 (ξi)

1
k+1 ηφ(i). Thus, RDAP2 reduces

to a purely combinatorial (and non-linear) problem of finding φ which minimizes (11).

We develop several algorithms to solve the reduced combinatorial problem. Among

them is an exact branch and bound algorithm, and several heuristic algorithms. Among

the heuristic algorithms is a unique approximation algorithm, which is based on solving

a weakly polynomial number of RDAP1’s. Furthermore, by the implementation of a

set of experimental studies we show that our unique approximation algorithm can

easily solve very large instances of RDAP2 with an average gap of approximately zero

between the value of the heuristic solution and the value of a tight lower bound.

References

1. Flynn, M. J., Hung, P., and Rudd, K. W., 1999, Deep-Submicron Microprocessor Design
Issues, IEEE Micro, 19(4), 11-22.

2. Irani, S., and Pruhs, K., 2005, Algorithmic Problems in Power Management, SIGACT News,
36(2), 63-76.

3. Lee, C. Y., and Lei, L. 2001, Multiple-Project Scheduling with Controllable Project Dura-
tion and Hard Resource Constraint: Some Solvable Cases, Annals of Operation Research,
102, 287-307.

4. Monma, C. L., Schrijver, A., Todd, M. J., and Wei, V. K., 1990, Convex Resource Allocation
Problems on Directed Acyclic Graphs: Duality, Complexity, Special Cases and Extensions,
Mathematics of Operations Research, 15, 736-748.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 633 -

5. Papadimitriou, C. H., and Stieglitz, K., 1982, Combinatorial Optimization: Algorithms and
Complexity, Prentice-Hall, Englewood Cliffs, NJ.

6. Shabtay, D., Steiner, G., and Yedidsion, L., A Pseudo-Polynomial Time Algorithm for
Solving the Resource Dependent Assignment Problem, Discrete Applied Mathematics, ,
182, 115-121 (2015).

7. Yao, F., Demers, A., and Shenker, S., 1995, A Scheduling Model for Reduced CPU Energy,
IEEE Syposium on Foundations of Computer Science, Los Alamitos, CA, 374—382.

8. Yedidsion, L., Shabtay, D., and Kaspi, M., 2011, Complexity Analysis of an Assignment
Problem with Controllable Assignment, Discrete Applied Mathematics, 159, 1264-1278
(2011).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 634 -

MISTA 2015

The two-machine flowshop total completion time problem:
A branch-and-bound based on Network-flow formulation

Boris Detienne · Ruslan Sadykov · Shunji

Tanaka

1 Introduction

We consider the problem of scheduling a set J = {1, . . . , n} of jobs in a two-machine

flowshop with the objective to minimize the sum of the completion times of jobs. The

jobs are available at time zero and they should be processed first on machine 1, and

then on machine 2. Each machine can process at most one job at a time. Let pmj denote

the processing time of job j on machine m, where m = 1, 2. All the processing times are

integer. Preemption of the processing of the jobs in not allowed on either machine. Let

Cm
j denote the completion time of job j on machine m. According to the scheduling

classification, the problem is denoted by F2||
∑
Cj . It is known to be NP-hard in the

strong sense [6]. It has been shown by Conway et al. [3] that there exists at least one

optimal solution where both machines have the same sequence of the jobs. Thus, we

may restrict the search to permutation schedules only.

The problem F2||
∑
Cj has been studied in the literature for many years. Akkan

and Karabati [1] suggest a network flow formulation for the problem. They use a

Lagrangian relaxation to obtain a lower bound which is used inside a branch-and-

bound algorithm. This algorithm is able to solve instances with up to 60 jobs with

small processing times (up to 10) and up to 45 jobs with large processing times (up

to 100). In this work, we propose an improved branch-and-bound algorithm for the

problem F2||
∑
Cj based on their work. To obtain stronger dual bounds, we use a

network which is larger than the one used in [1]. Different dominance rules and filtering

techniques are exploited in order to cope with the size of the network. The structure

of the network allows us to compute the dual bound only once in the root, and then

recompute the bound in linear time at every node of the enumeration tree. Thus, tens

Boris Detienne
INRIA team RealOpt and Mathematics Institute, Bordeaux University, Talence, France
E-mail: boris.detienne@math.u-bordeaux1.fr

Ruslan Sadykov
INRIA team RealOpt and Mathematics Institute, Bordeaux University, Talence, France
E-mail: ruslan.sadykov@inria.fr

Shunji Tanaka
Institute for Liberal Arts and Sciences, Kyoto University, Japan
E-mail: tanaka@kuee.kyoto-u.ac.jp

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 635 -

of millions of nodes can be checked in a reasonable time. Using the proposed algorithm,

we were able to solve all instances of the problem F2||
∑
Cj with up to 100 jobs with

large processing times.

2 Network formulation

In the following, [k] denotes the index of the job in position k. The completion times

Cm
[k] of the job in position k, k ∈ J , on machines m = 1, 2 can be computed as

C1
[k] = C1

[k−1] + p1[k] and C2
[k] = max{C1

[k], C
2
[k−1]}+ p2[k]

In [1], the authors introduce the notion of time lag between the processing of a

same job on both machines to write an assignment model and a network flow model

for the problem. This kind of models is also called waiting time-based [models] in [7].

The completion-to-completion lag Lc
k of the job in position k, k ∈ J is defined as

the time elapsed between the completion of the job on machine 1 and its completion

on machine 2 : Lc
k = C2

[k] − C
1
[k] = max{0, Lc

k−1 − p
1
[k]} + p2[k]. In order to design a

convenient network model, the objective function can be expressed as:∑
k

C2
[k] =

∑
k

(C1
[k] + Lc

k) =
∑
k

(
(n− k + 1)p1[k] + Lc

k

)
(1)

Our model is based on a transshipment type network G(V,A), which extends the

one proposed in [1]:

– Each node vk,l,i ∈ V of the network is associated with one position k in the

sequence, and the start of job i when the completion-to-completion lag of the

previous job is l. Two dummy nodes (0, 0, ∅) and (n+1, ∅, ∅) are added, representing

the start and the end of the schedule, respectively.

– Each arc (vk,l1,i1 , vk+1,l2,i2) ∈ A from node vk,l1,i1 to node vk+1,l2,i2 is associated

with the processing of job i1 in position k, when the completion-to-completion

lag of the previous job is equal to l1, so that job i1 ends with a completion-to-

completion lag equal to l2 and is immediately followed by job i2. According to

the expression of the objective function given by (1), the cost of using the arc is

c(vk,l1,i1 , vk+1,l2,i2 , j) = (n− k + 1)p1i1 + l2.

The scheduling problem can be seen as the problem of finding a minimum cost flow

of value 1 (a path) from the source node to the sink node, going through exactly one

arc associated with each job.

Network reduction By dualizing these job occurence constraints, we obtain a La-

grangian lower bound. Given a vector of Lagrange multipliers, this bound can be

computed by solving a simple shortest path problem in G. Using the same idea, a

lower bound of the length of a feasible path that passes through a node (resp. an

arc) is computed and the node (resp. the arc) is removed from the network if it is

greater than an upper bound of the path length. This lower bound can be computed

by applying dynamic programming in both forward and backward manners when the

shortest path problem is solved [8]. More reductions are obtained by reinforcing the job

assignment constraint in the shortest path problem for one job at a time [5]. Moreover,

several dominance rules from [10,4,2] are used to remove some arcs in the graph.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 636 -

3 Branch-and-bound algorithm

The set of possible job sequences is explored, by enumerating the set of feasible (with

respect to the job occurence constraint) paths in graph G. We proceed from the left to

the right in the graph. We perform a Depth-First-Search. In a preprocessing stage, an

upper bound is computed using a dynasearch procedure [9], and graph G is reduced

using a subgradient procedure inside which the network reduction procedures are ap-

plied. For each job j and node v of G, we compute the cost of a shortest path from

v to the sink node going through exactly one arc representing j, as well as the cost

of one going through no arc representing j. In order to evaluate a partial sequence

σ represented by a path ending at node v, we compute a lower bound of the cost of

extending σ into a feasible schedule. For each job j, we derive in constant time a lower

bound in which the job assignment constraint is enforced for j. A job is a candidate for

the next job in the sequence only if there is a corresponding arc in G and the resulting

subsequence is not dominated according to several dominance rules, coming from the

literature or extending some of them. Candidate jobs are processed in non-decreasing

order of the distance from the corresponding terminal node to the sink.

4 Numerical results

The branch-and-bound algorithm solves to optimality all instances of our test bed,

composed of randomly generated instances with up to 100 jobs with up to 100-unit

long processing times (as in [1]). The hardest instance is solved in 7759 seconds, while

all the others are solved in less than one hour on a laptop equipped with a 2.7GHz

processor and 4GB RAM. The average computing time for 100-job instances is 502.6

seconds, and the average size of the search tree is 128.8 millions of nodes.

References

1. C. Akkan and S. Karabati. The two-machine flowshop total completion time problem: Im-
proved lower bounds and a branch-and-bound algorithm. European Journal of Operational
Research, 159(2):420–429, December 2004.

2. B.W. Cadambi and Y.S. Sathe. Two-machine flowshop scheduling to minimize mean flow
time. Opsearch, 30(1):35–41, 1993.

3. R. W. Conway, W. L. Maxwell, and L. W. Miller. Theory of Scheduling. Addison-Wesley,
Reading, MA, 1967.

4. F. Della Croce, V. Narayan, and R. Tadei. The two-machine total completion time flow
shop problem. European Journal of Operational Research, 90(2):227 – 237, 1996.

5. B. Detienne, S. Dauzère-Pérès, and C. Yugma. An exact approach for scheduling jobs
with regular step cost functions on a single machine. Computers & Operations Research,
39(5):1033–1043, 2012.

6. M. R. Garey, D. S. Johnson, and Ravi Sethi. The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research, 1(2):117–129, 1976.

7. A. Gharbi, T. Ladhari, M. K. Msakni, and M. Serairi. The two-machine flowshop schedul-
ing problem with sequence-independent setup times: New lower bounding strategies. Eu-
ropean Journal of Operational Research, 231(1):69–78, November 2013.

8. T. Ibaraki and Y. Nakamura. A dynamic programming method for single machine schedul-
ing. European Journal of Operational Research, 76(1):72–82, July 1994.

9. S. Tanaka. An extension of the dynasearch to the two-machine permutation flowshop
scheduling problem. In Proceedings of the 2010 International Symposium on Flexible
Automation, page 6, 2010.

10. S.L. van de Velde. Minimizing the sum of the job completion times in the two-machine
flow shop by lagrangian relaxation. Annals of Operations Research, pages 257–268, 1990.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 637 -

Rebekka Volk, Karlsruhe Institute of Technology (KIT), Institute of Industrial Production (IIP),

E-mail: rebekka.volk@kit.edu

Felix Hübner (KIT, IIP), E-mail: felix.huebner@kit.edu

Frank Schultmann (KIT, IIP/University of Adelaide), E-mail: frank.schultmann@kit.edu

MISTA 2015

Robust multi-mode resource constrained project scheduling of building

deconstruction under uncertainty

Rebekka Volk • Felix Hübner • Frank Schultmann

1 Introduction

Buildings are characterized by their immobility, heterogeneity and uniqueness. Due to their long

lifecycles, buildings undergo several decades and are refurbished, retrofitted, remediated or

modernized by generations of users, residents and proprietaries to adapt the building to changing

users’ and environmental requirements. During their lifecycles, different building elements and

products are installed, removed or changed due to building modification. Often, these modifica-

tions of the building structure, equipment and fittings as well as the deterioration and contamina-

tion of buildings are not documented. In addition, some buildings cannot economically be

adapted to changing requirements. The buildings in question undergo deconstruction (and re-

placement) processes, often in spatially limited sites of dense urban areas and with limited re-

sources available. The objective of the responsible stakeholders of the deconstruction is either

makespan minimization or cost minimization or both depending on the type of building, the

urgency or the preference of the responsible parties.

In building deconstruction, different scarce renewable resources (machines, staff) can be applied

to perform so called jobs like separation, deconstruction, crushing, sorting and loading activities

that might be performed several times due to reworks e.g. in the case of contaminations. Fur-

thermore, technical or organizational precedence relations of activities have to be respected. Job

shop scheduling on m machines where each job has its own predetermined route [1] with prece-

dence constraints, makespan minimization and under resource-constraints (Jm | prec | Cmax)

seems the most appropriate scheduling type for this application case [2]. But as deconstruction

belongs to the category of site fabrication, there are rather different modes jobs can be per-

formed in than predetermined routes on a machine environment. Thus, here we consider a multi-

mode project scheduling problem (MPS | prec | Cmax) under resource constraints (MRCPSP) and

with zero-lag finish-start precedence relations (notation according to [3,4]). Single-mode and

multi-mode project scheduling problems are a generalization of job shop scheduling problems

[2,3,5,6]. This problem class is NP complete [2].

The consideration of uncertainty is crucial in deconstruction projects to reduce disruptions and

vulnerability of the project. Uncertainties in project scheduling might arise from work content,

resource availabilities, precedence constraints in the project network etc. [7]. In deconstruction

projects, main sources of uncertainty are processing times of activities and the existence of activ-

ities which depend on the building configuration (set of building elements and their specific

properties such as different secondary raw materials or hazardous materials) and onsite resource

and location availability and capacity (such as staff, hydraulic excavators, site equipment, con-

tainers etc.). Since uncertainty is mostly caused by building inherent elements, in a first step our

approach restricts to the creation of a robust schedule which is the proactive consideration of

potential disturbances resulting from building elements to avoid multiple changes in schedules.

Other uncertainties onsite (resource availability) might be considered in a second step regarding

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 638 -

project execution e.g. via reactive scheduling and repairing methods in multi-period scheduling

that are not considered in this contribution.

First, our contribution will give a short literature overview about existing scheduling models

under the consideration of uncertainty. Subsequently, we will give a brief summary of our

scheduling model for building deconstruction under uncertainty and first results. Our contribu-

tion is concluded by a short summary and outlook.

2 Literature review

Literature about project scheduling under uncertainty is extensive and several publications are

dedicated to predictive-reactive, proactive (robust), fuzzy and stochastic scheduling [8]. Re-

search focuses on the development of proactive schedules and reactive (reparation) strategies in

the case of schedule infeasibility during project execution and some work has already been done

in the field of proactive and reactive project scheduling for the single-mode RCPSP [9]. Main

approaches focus on the consideration of duration variability and related buffer insertion proce-

dures [10,11] or resource unavailability [12]. However, literature on proactive-reactive schedul-

ing in multi-mode RCPSP (MRCPSP) is still quite rare [9]. Fuzzy scheduling is based on expert

estimations of activity durations whereas stochastic scheduling is based on known distributions

of activity durations. Scenario-based robust scheduling approaches are based on discrete robust

optimization (e.g. [13]) and are considered in recent literature for RCPSP where uncertainty is

modeled via scenarios using discrete or discretized probabilities [14,15].

In deconstruction projects, activity-based and location-based scheduling can be differentiated.

Activity-based scheduling models consider activities explicitly, location-based scheduling de-

scribe activities only implicitly by their occupation of locations during activity completion. Ac-

tivity-based problems with limited renewable (constrained over time periods and available after

activity is terminated) and non-renewable (budgeted over the whole project) resources are for-

mulated as RCPSP where scheduling and capacity planning is performed simultaneously

[1,3,8,16]. Location-based approaches are often applied in construction projects [17,18] and thus

seem promising for deconstruction application, too. Here, we consider a joint activity-based

approach where locations are considered as resources that are required for activity performance.

Although robust RCPSP approaches and their problem variants [7,8,19,14,20] are numerous,

applied works in deconstruction are rare [2,21–24]. Scheduling applications in deconstruction

projects are mainly limited to deterministic approaches [2,22,23,25,26] yet although uncertain-

ties are indispensable when it comes to deconstruction scheduling of decades old and often un-

documented buildings at the end of their life cycle. Schultmann (2003) [22] formulates a fuzzy

scheduling approach, that is divided into six crisp RCPS problems with optimistic, more or less

expected and pessimistic values with different fuzzy set membership values (1, ε, λ). However,

this approach does not cover all uncertainties decision makers are confronted with such as fuzzy

due dates, fuzzy capacity constraints, uncertain composition of the components or fuzzy prece-

dence relations [22]. As in building deconstruction, several potential scenarios of building con-

figurations can be anticipated, that strongly influence activity durations and scheduling, a sce-

nario-based approach seems promising.

3 Approach

In our approach, a MRCPSP is formulated and solved (B) for several potential scenarios of

building configurations (A) and recommendations for decision making in deconstruction pro-

jects are given (C) (see Figure 1). Thus, our approach combines a scenario simulation, with

robust optimization (scheduling). Due to the buildings’ uniqueness the assignment of probabili-

ties of occurrences, e.g. of activity durations or building element existence, is difficult. However,

the creation of possible scenarios (building configurations) and related activity durations is pos-

sible. Thus, our approach is based on a scenario construction and expert estimates on optimistic,

expected and pessimistic activity durations that can be represented by fuzzy sets. A stochastic

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 639 -

approach is theoretically possible, but assumptions on parameters of the related beta distribution

can only be estimated.

Figure 1: Model overview

3.1 Scenario construction of building configurations

In building deconstruction, several epistemic uncertainties are prevalent (aleatoric uncertainties

are not considered in this work since they are hardly quantifiable). Relevant project-related sce-

nario attributes such as the characteristics of building elements, the material of the elements and

varying resource capacities contain epistemic uncertainties. Activity-related scenario attributes

such as the activity durations also contain epistemic uncertainties which can be e.g. represented

by a minimum, expected and maximum duration per activity and per building element unit.

Different scenarios are created via an initial building configuration of an examined building that

is varied with other possible discrete project-related and activity-related scenario attributes as

described above. In the presented case, each building element is assigned to a single ‘decon-

struction activity’ and consequently, ‘building element existence’ and ‘element material’ are not

only scenario attributes but also activity-related attributes. Thus, in this case a scenario consists

of different occurring parameter values of the mentioned activity-related attributes based on the

information just before project start. E.g. a building with reinforced concrete slabs versus timber

slabs leads to different activities (existence) and resource demands (durations, modes) to be

scheduled. If sample pre-testing revealed specific materials, varying material combinations for

the respective building element are excluded from scenario construction.

Complete enumeration theoretically leads to more than 4*10
12

 scenarios with 10 different build-

ing element types that are permuted with 22 potential element materials (on average 4.7) per

building element. We tested the approach so far with 10 to 100 scenarios.

For each scenario, project activities are derived from the respective enumerated building config-

uration with their belonging activity durations, precedence constraints and renewable resource

demands (e.g. machine, staff). Depending on the parameter value ‘element material’ per activity,

the expected activity duration is calculated via duration per element unit and per material and the

related mode selection is adapted according to technical feasibility. For simplicity, project-

related uncertainties such as uncertain resource availabilities are neglected in this model, yet.

3.2 Time and capacity planning (MRCPSP) per scenario

In deconstruction projects, activity 𝑗 is planned with expected durations 𝐸(𝑑𝑗𝑚𝑗
) of the respec-

tive scenario on limited resources 𝑞𝑗 and is subject to acyclic precedence constraints. Decon-

struction activities are performed with different resources such as hydraulic excavators, hand-

held pneumatic drills, chisels, crane and varying number of skilled staff and associated cost, so-

called modes 𝑚. Thus, we formulate a classical MRCPSP with activity zero-lag finish-start

precedences with the objective of minimizing project makespan. For each scenario, the optimal

activity modes and the optimal schedule (start times 𝑡 and resource usage of each activity) are

determined in pre-calculated time windows between earliest finish (EF) and latest finish (LF).

For reasons of simplicity and due to the application case, the model restricts to modeling of

renewable (𝑟) resources 𝑞𝑗𝑚𝑟 that can be used in different modes 𝑚 and equally qualified staff is

assumed. A further technical constraint is the restricted selection of activity modes that depend

on the prevalent building ‘element material’ that has to be deconstructed. Furthermore, on lim-

ited job-sites the definition of location-based activities is helpful to schedule working teams and

A. Scenario construction

of building configurations

B. Time and capacity

planning (MRCPSP) per

scenario

 Cmax, x

…
MPS | prec | Cmax

C. Selection of a robust

deconstruction strategy

 Cmax, x

…
MPS | prec | Cmax

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 640 -

their resources in different parts the site to avoid obstructing accumulations of resources or ma-

terial. In a consequence and due to safety reasons, location 𝑙 ∈ 𝐿 is formulated as a specific re-

newable resource where every activity is at least occupying a location at a time (𝑞𝑗𝑚 ≥ 1, ∀ 𝑙 ∈
𝐿) and in every location only one activity can take place simultaneously (𝑄𝑙𝑡 = 1 ∀ 𝑙 ∈ 𝐿):

min 𝐶max = ∑ ∑ 𝑡 ∗ 𝑥𝐽𝑚𝑡

𝐿𝐹𝐽

𝑡=𝐸𝐹𝐽

𝑀𝑗

𝑚=1

Subject to:

∑ ∑ 𝑥𝑗𝑚𝑡 = 1

𝐿𝐹𝑗

𝑡=𝐸𝐹𝑗

𝑀𝑗

𝑚=1

,

𝑓𝑜𝑟 𝑗 = 1, … , 𝐽
Time and mode selection constraint

∑ ∑ 𝑡 ∗ 𝑥𝑖𝑚𝑖𝑡 ≤ ∑ ∑ (𝑡 − 𝐸(𝑑𝑗𝑚𝑗
)) ∗ 𝑥𝑗𝑚𝑗𝑡,

𝐿𝐹𝑗

𝑡=𝐸𝐹𝑗

𝑀𝑗

𝑚=1

𝐿𝐹𝑖

𝑡=𝐸𝐹𝑖

𝑀𝑖

𝑚=1

𝑓𝑜𝑟 𝑗 = 2, … , 𝐽; 𝑖 ∈ 𝑃𝑗; 𝑚𝑖 ∈ 𝑀𝑖; 𝑚𝑗 ∈ 𝑀𝑗

Precedence constraint relations

∑ ∑ 𝑞𝑗𝑚𝑟

𝑀𝑗

𝑚=1

𝐽

𝑗=1

∑ 𝑥𝑗𝑚𝜏

𝑡+𝑑𝑗𝑚−1

𝜏=𝑡

≤ 𝑄𝑟𝑡
𝑓𝑜𝑟 𝑟 ∈ {𝑅, 𝐿}, 𝑡 = 1, … , 𝑇, 𝑞𝑗𝑚 ≥ 1, 𝑄𝑙𝑡 = 1

∀ 𝑙 ∈ 𝐿, Renewable resource constraint 𝑄𝑟

𝑥𝑗𝑚𝑡 ∈ {0,1}
𝑗 = 1, … , 𝐽; 𝑚𝑗 = 1, … 𝑀𝑗 , Boolean decision

variable deciding on activity j starting at time t in

mode m.

The model is implemented as a binary, linear integer problem (BILP) in MATLAB R2015b. The

commercial CPLEX solver from IBM ILOG Optimization Studio 12.5.1 is used to solve the

problem.

Usual problem sizes in deconstruction start at about 100 activities on 10-15 modes and 30-40

renewable resources. As this is a computably challenging problem and is considerably increased

in large deconstruction projects by location resources, we performed first tests with problem

instances with 17 real activities, 9 modes, 11 resources and 4 locations that showed promising

results. On average, this includes 4.2 potential modes per activity, 2.7 different resources per

mode, a resource factor RF=0.24 and a resource strength RS=0 (without locations)
1
. The latter

indicates resource scarcity, so that some activities have to be scheduled consecutively [4].

3.3 Selection of a robust, proactive deconstruction strategy

Quality robustness aims at the minimization of the deviation from the best-case scenario objec-

tive value (here: makespan), while solution robustness covers the minimization of schedule de-

viation between scenarios [8,27] to increase preparedness for the worst-case. In deconstruction

projects, the focus mostly lies on the compliance with time constraints regarding the project

deadline [2] due to tight time schedules of owners and general contractors that will reuse the

parcel of land or remaining building parts after the deconstruction is completed. However,

changes in schedule are associated with additional setup time and cost to organize necessary

resources. Thus, on the one hand quality robustness with a reasonably good objective value

under any likely scenario [14] seems appropriate to plan deconstruction projects. On the other

hand, a solution-robust (stable) schedule is preferable from a time-based and also from an organ-

izational point of view. Our approach aims at proactively finding a total solution-robust schedule

𝑥 where all absolute regrets (earliness and tardiness) 𝐴𝑅𝑘(𝑥) = 0 for all scenarios 𝑘 = 1, … , 𝐾

and at the same time finding a solution that comprises the ‘most’ quality-robust schedule.

In this step, the generated optimum schedules are transformed into deconstruction strategies

(sequence of activities and resources/locations used). Then, the deconstruction strategies are

1 𝑅𝐹 =

1

𝑛|𝑅|
∑ ∑ 𝛿(𝑞𝑗𝑟)𝑟∈𝑅

𝐽
𝑗=1 , ∀𝑟 ∈ {𝑅}, with 𝛿(𝑞𝑗𝑟) = {

1, 𝑓𝑜𝑟 𝑞𝑗𝑟 > 0

0, 𝑓𝑜𝑟 𝑞𝑗𝑟 = 0
} and 𝑅𝑆 =

𝑄𝑟𝑡−𝑄𝑟
𝑚𝑖𝑛

𝑄𝑟
𝑚𝑎𝑥−𝑄𝑟

𝑚𝑖𝑛 = 0, ∀𝑟 ∈ {𝑅}, where

𝑄𝑟
𝑚𝑖𝑛 and 𝑄𝑟

𝑚𝑎𝑥 are lower and upper bounds of resource capacities. See [4] for further information on definitions of
control parameters RF and RS.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 641 -

applied on all scenarios and the respective project makespan is calculated. The deconstruction

strategies of all scenarios are aggregated, assessed and compared with each other via several

robustness criteria. Applied robustness criteria are the mean, the variance and the standard devia-

tion of project makespan, as well as Laplace, maxi-min, maxi-max, Hurwicz and Savage-

Niehans (regret) criteria. Other possible criteria can be found e.g. in [7]. Results include rank-

ings of alternative deconstruction strategies with respect to deconstruction strategy frequency

and mean objective value, mean and standard deviation of objective value and mean and vari-

ance of objective value. According to the decision makers’ risk preferences, recommendations

for the adequate project strategy are given.

The presented approach is based on previous works of MRCP scheduling under uncertainty. The

difference to known approaches is the strong relation to the presented application case in decon-

struction projects, as well as the extension by a scenario construction to get more suitable activi-

ty durations, the consideration of locations in MRCPSP and the combination of the two robust-

ness criteria solution robustness and quality robustness. A proactive approach is more practical

for the given application case, as the MRCPSP consists of many activities, modes and resources

whose status has to be updated manually when the schedule becomes infeasible. A reactive or

dynamic scheduling might become interesting, if auditing and controlling of project status is

automated or supported via optical sensors.

4 Conclusion

In the field of building deconstruction the consideration of uncertainties is crucial for project

planning, scheduling and management. However, our literature review shows that in this appli-

cation case most approaches insufficiently apply project scheduling methods under resource

constraints and uncertainty. The model results show that the consideration of uncertainties in

different building configurations and activity durations via scenarios has an impact on project

scheduling, resource management and decision making in deconstruction projects. Furthermore,

the consideration of robustness criteria and decision makers’ risk preferences leads to other pre-

ferred strategies and schedules.

Further work might be concentrated on the extension of the approach with respect to reactive or

dynamic scheduling (e.g. schedule repair or rolling horizon). Also, the examination of non-

renewable resource constraints such as project budget might be included and the assumption that

each building element is assigned to several activities might be included in an extended case

study. Scheduling of multi-projects, multi-skills and dynamic scheduling aspects with unex-

pected events might be considered, too.

Acknowledgements

We would like to thank the anonymous reviewers for their recommendations that noticeably

improved the comprehensiveness and clarity of our paper. This work is supported by the Federal

Ministry of Education and Research (BMBF) of Germany and the project ResourceApp as part

of funding “r³ - innovative technologies for resource efficiency”. Furthermore, we thank Dr.

Julian Stengel for his brilliant work and his numerous helpful suggestions and inputs.

References

1. Pinedo, M. Scheduling - Theory, Algorithms and Systems. (Springer, 2011).

2. Schultmann, F. Kreislaufführung von Baustoffen - Stoffflußbasiertes Projektmanagement für

die operative Demontage- und Recyclingplanung von Gebäuden. (Erich Schmidt Verlag

(Reihe Baurecht und Bautechnik), 1998).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 642 -

3. Brucker, P., Drexl, A., Möhring, R., Neumann, K. & Pesch, E. Resource-constrained project

scheduling: Notation, classification, models and methods. European Journal of Operational

Research 112, 3–41 (1999).

4. Neumann, K., Schwindt, C. & Zimmermann, J. Project Scheduling with Time Windows and

Scarce Resources - Temporal and Resource-Constrained Project Scheduling with Regular

and Nonregular Objective Functions. (Springer, 2002).

5. Brucker, P. Scheduling Algorithms. (Springer Verlag, 2004).

6. Kolisch, R. Project Scheduling under Resource Constraints - Efficient Heuristics for Several

Problem Classes. (Springer, 1995).

7. Hazir, Ö., Haouari, M. & Erel, E. Robust scheduling and robustness measures for the discrete

time/cost trade-off problem. European Journal of Operational Research 207, 633–643

(2010).

8. Herroelen, W. & Leus, R. Project scheduling under uncertainty: Survey and research poten-

tials. European Journal of Operational Research 165, 289–306 (2005).

9. Deblaere, F., Demeulemeester, E. & Herroelen, W. Exact and heuristic reactive planning

procedures for multimode resource-constrained projects. 45 (Research Center for Operations

Management Department of Decision Sciences and Information Management Faculty of

Business and Economics Katholieke Universiteit Leuven (Belgium), 2008). at

<http://www.econ.kuleuven.be/fetew/pdf_publicaties/KBI_0818.pdf>

10. Van de Vonder, S., Demeulemeester, E. & Herroelen, W. Proactive heuristic procedures for

robust project scheduling: An experimental analysis. European Journal of Operational Re-

search 189, 723–733 (2008).

11. Van de Vonder, S., Demeulemeester, E., Herroelen, W. & Leus, R. The use of buffers in

project management: The trade-off between stability and makespan. International Journal of

Production Economics 227–240 (2005).

12. Lambrechts, O., Demeulemeester, E. & Herroelen, W. Proactive and reactive strategies for

resource-constrained project scheduling with uncertain resource availabilities. J. Sched. 11,

121–136 (2008).

13. Aissi, H., Bazgan, C. & Vanderpooten, D. Min-max and min-max regret versions of combi-

natorial optimization problems: A survey. European Journal of Operational Research 197,

427–438 (2009).

14. Artigues, C., Leus, R. & Talla Nobibon, F. Robust optimization for resource-constrained

project scheduling with uncertain activity durations. Flexible Services and Manufacturing

Journal 25, 175–205 (2013).

15. Mulvey, J., Vanderbei, R. & Zenios, S. Robust optimization of large scale systems. Oper.

Res. 43, 264–281 (1995).

16. Hartmann, S. & Briskorn, D. A survey of variants and extensions of the resource constrained

project scheduling problem. European Journal of Operational Research 207, 1–14 (2010).

17. Seppänen, O., Ballard, G. & Pesonen, S. The Combination of Last Planner System and Loca-

tion-Based Management System. Lean Construction Journal 2010, 43–54 (2010).

18. Kenley, R. & Seppänen, O. Location-Based Management for Construction - Planning,

Scheduling and Control. (Spon Press, 2010).

19. Chtourou, H. & Haouari, M. A two-stage-priority-rule-based algorithm for robust resource-

constrained project scheduling. Computers & Industrial Engineering 55, 183–194 (2008).

20. Demeulemeester, E. & Herroelen, W. Robust Project Scheduling. 3, (now Publishers Inc.,

2009).

21. Schultmann, F. & Rentz, O. Environment-oriented project scheduling for the dismantling of

buildings. OR Spektrum 23, 51–78 (2001).

22. Schultmann, F. Dealing with uncertainties in (de-)construction management - the contribu-

tion of fuzzy scheduling. in CIB Report 287 ‘Deconstruction & Materials Reuse’ - Proceed-

ings of the 11th Rinker International Conference on Deconstruction and Materials Reuse (ed.

A. Chini) 73–82 (2003).

23. Sunke, N. Planning of Construction Projects: A Managerial Approach. (Siegen, 2009).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 643 -

24. Schultmann, F. & Rentz, O. Fuzzy Scheduling for the Dismantling of Complex Products. in

Operations Research Proceedings 2002, Selected Papers of the International Conference on

Operations Research (SOR 2002), Klagenfurt (eds. Leopold-Wildburger, U., Rendl, F. &

Wäscher, G.) 302–307 (Springer Verlag, 2003).

25. Schultmann, F., Sindt, V., Ruch, M. & Rentz, O. Schadstofforientierte Erfassung und De-

montage von Gebäuden. Abfallwirtschaftsjournal 3, 38–42 (1997).

26. Spengler, T. in Industrielles Stoffstrommanagement - Betriebwirtschaftliche Planung und

Steuerung von Stoff- und Energieströmen in Produktionsunternehmen, zugl. Karlsruhe, Uni-

versität, Habilitationsschrift, Dissertation 1998 54, (Erich Schmidt Verlag (ESV), 1998).

27. Scholl, A. Robuste Planung und Optimierung - Grundlagen, Konzepte und Methoden, Expe-

rimentelle Untersuchungen. (Physica-Verlag, 2001).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 644 -

MISTA 2015

Approaches to modeling job-shop problems with blocking
constraints

Julia Lange

1 Introduction

Considering blocking constraints in job-shop problems is motivated by the idea of

tackling train scheduling problems. In a train scheduling problem a set of trains is

regarded in a given network with different routes, entering and desired leaving times.

All trains have to be scheduled, so that the sum of their tardiness according to the

leaving times is minimal. This is done by deciding in which order and with which

starting times the trains pass the track sections. For more detailed problem descriptions

see for example [9] and [5].

A specific characteristic of train scheduling problems is the appearance of blocking

constraints. These constraints refer to situations in which a train occupies a track

section longer than necessary until the succeeding section is free to travel. Further

conditions regarding deadlocks and the train length (see e.g. [5]), headways (see e.g.

[3]), acceleration and deceleration (see e.g. [1]) and others can be included in the

problem to match real-world situations but will not be regarded here.

The given problem structures can be transferred to a blocking job-shop scheduling

problem. The track sections are taken as machines Mk, whereby the trains refer to jobs

Ji with different technological orders and processing times on the machines. Every job

has a given release and (desired) due date and the objective function is to minimize

the sum of tardiness of all jobs. In the majority of the literature dealing with job-shop

scheduling problems the optimization criterion is the minimization of the makespan

(see e.g. [7] and [4]). But during the last two decades the observation of more complex

tardiness-based sum criteria gained interest especially with regard to customer needs

in train scheduling and other transportation problems.

The given train scheduling problem is shown to be NP-complete in [2] even without

blocking constraints. Therefore a variety of solution approaches like meta-heuristics

(see e.g. [8] and [10]), graph-based modeling and solution methods and problem-fitted

branch and bound procedures (see e.g. [3]) are presented in the literature to obtain

good, feasible solutions.

In the following the performance of different types of modeling approaches and IP

Julia Lange
Institute of Mathematical Optimization, Otto-von-Guericke-Universität Magdeburg
E-mail: julia.lange@ovgu.de

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 645 -

formulations for the blocking job-shop scheduling problem is compared. Two problem

representations are modeled by the use of different assignment variables to evaluate the

effect of routing flexibility and the choice of variables on the optimal objective function

value and computation times.

2 Railway networks and their representation

CA

B

D

E

Fig. 1 Single track network

The networks regarded mainly consist of bidirectional single tracks. The only pos-

sibilities for trains to overtake in these single-track networks are stations with different

numbers of parallel tracks and sidings. A simple example is given in Figure 1. The

network consists of 4 bounding nodes A, B, D and E, at which trains enter and leave

the network at given release and desired due times. C is a station with 2 parallel tracks

and the single track between station C and the branch D,E has a parallel siding.

A single track section is transferred to a machine Mk. The representation of stations

with parallel tracks and sidings basically depends on including or excluding the plat-

forming decision. Two possibilities to represent parallel tracks are given in Figure 2.

Applying the Parallel-Machine Approach (PMA) each track refers to one machine Mk

and the route of the train (the machines a job is to be processed on) has to be given

in advance. This means that the platforming decision for a train in a station or siding

is not done within the optimization but made in a previous planning phase. On the

contrary, the Machine-Unit Approach (MUA) transfers parallel tracks to machine units

l = 1, . . . ,mk of one machine Mk. With this the number of machines in the problem

is reduced and the platforming decision is included in the optimization program. Since

the exact assignment of trains to tracks or jobs to machines is not given in advance,

a job-shop problem with flexible routes is considered. The integrated flexibility is ex-

pected to improve the optimal solution against the PMA by working with an optimal

job-to-machine-unit-assignment and to extend the size of the model and with this its

solving time.

Parallel-Machine Approach

fixed route

Mk

Mk+1

Mk+2

Mk+3

Machine-Unit Approach

flexible route

Mk+1

Mk l = 1

l = 2

Mk+2

Fig. 2 Representation of parallel tracks

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 646 -

3 Model approaches and blocking restrictions

In the following two different types of decision variables are used to model the job-shop

problems described above. Both are defined based on Operations Oij , which refer to

the j-th operation of job Ji or the j-th passing of a track section of a train. This is

done to enable trains to pass a certain track section more than once on their routes.

Such a situation appears each time a train visits a terminus (terminal station) as an

intermediate station on its route. The determination of the order in which jobs are

processed on a machine or trains pass a track section can be modeled by precedence

variables

yiji′j′k :=

{ 1 if operation Oij is scheduled before Oi′j′

on machine Mk

0 else.

applied first by Manne in 1960 (see [6]) and order variables

xrijk :=

{ 1 if operation Oij is scheduled as the r-th operation

on machine Mk

0 else.

used first by Wagner in 1959 (see [11]).

Both model approaches are implemented considering blocking constraints. These re-

strictions account for trains blocking a track section, after passing it, until the next

track section on their route is available. This refers to manufacturing of parts which

exceed warehouse capacities in weight or height and therefore cannot be stored in in-

termediate buffers while processing. Mathematically, the starting time of an operation

Oi′j′ is defined to be greater or equal to the starting time of the successor of the

operation Oij if yiji′j′k = 1 on machine Mk holds.

4 Test instances and computational results

To generate test instances based on the railway network given in Figure 1 eight char-

acteristic trains are defined. Their properties and routes are chosen to represent typ-

ical train movements. The travel times are determined so that passenger trains with

medium speed, express trains with high speed and freight trains with low speed are

depicted. Two of these trains traverse station C like a terminus and form the necessity

of an operation-based modeling. The platforming decision for the PMA is done arbi-

trarily in advance.

To do the first computational experiments five instances with 10 trains of different

types are generated. The decisions regarding the occurrence of train types and the

release times are made randomly, whereby it was assured that each characteristic (Pas-

senger/Express/Freight train and terminus/traversing) appears at least once in each

instance. The computational results reached by PMA and MUA as well as by apply-

ing precedence variables (PrecVar) and order variables (OrderVar) are summarized in

Table 1.

The instances were solved using ZIMPL with SCIP 3.1.0 and CPLEX 12.6.1. The

computation time in these first calculations was limited to three hours. For each of

the instances the best result obtained is given and results denoted with asterisk state

optimal objective function values.

Overall it is clear to see that the appliance of precedence variables outperforms the

use of order variables. This might be due models formed with precedence variables

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 647 -

Parallel-Machine Approach Machine-Unit Approach

Instance
PrecVar OrderVar PrecVar OrderVar∑
Ti Time

∑
Ti Time

∑
Ti Time

∑
Ti Time

10 1 138* 5.8 s - 180 min 80* 36.45 min 621 180 min
10 2 90* 1.39 s - 180 min 82* 18.8 min 735 180 min
10 3 72* 0.97 s 804 180 min 61* 2.56 min 953 180 min
10 4 41* 0.62 s 466 180 min 27* 7.97 s - 180 min
10 5 71* 1.33 s 940 180 min 42* 24.07 s 940 180 min

Table 1 Computational results

including more variables but less constraints than those constituted with order vari-

ables. Furthermore, the results show that including flexibility with the platforming

decision effects total tardiness as well as computation time significantly. A simultane-

ous determination of an optimal job-to-machine-assignment and optimal starting times

decreases minimal total tardiness.

In future research the trade off between flexibility and computation time will be stud-

ied as well as improving the solution procedure by the help of heuristic methods and

dominance relations. Additionally, a closer look will be taken on theoretical reasons for

the results observed above.

References

1. Burdett, R. L. and Kozan, E., A disjunctive graph model and framework for constructing
new train schedules, European Journal of Operational Research, 200, 85–98 (2010).

2. Cai, X. and Goh, C. J., A fast heuristic for the train scheduling problem, Computers and
Operations Research, 21, 499–510 (1994).

3. D’Ariano, A., Pacciarelli, D. and Pranzo, M., A branch and bound algorithm for scheduling
trains in a railway network, European Journal of Operational Research, 183, 643–657 (2007).

4. Fattahi, P., Mehrabad, M. S. and Jolai, F., Mathematical modeling and heuristic approaches
to flexible job shop scheduling problems, Journal of Intelligent Manufacturing, 18, 331–342
(2007).

5. Liu, S. Q. and Kozan, E., Scheduling trains as a blocking parallel-machine job shop schedul-
ing problem, Computers and Operations Research, 36, 2840–2852 (2009).

6. Manne, A., On the job-shop scheduling problem, Operations Research, 8, 219–223 (1960).
7. Mascis, A. and Pacciarelli, D., Job-shop scheduling with blocking and no-wait constraints,

European Journal of Operational Research, 143, 498–517 (2002).
8. Mattfeld, D. C. and Bierwirth, C., An efficient genetic algorithm for job shop scheduling

with tardiness objectives, European Journal of Operational Research, 155, 616–630 (2004).
9. Oliveira, E. and Smith, B. M., A job-shop scheduling model for the single-track railway

scheduling problem, Research Report Series - University of Leeds - School of Computer
Studies, 21 (2000).

10. Pranzo, M. and Pacciarelli, D., An iterated greedy metaheuristic for the blocking job shop
scheduling problem, Research Report Universita degli Studi Roma Tre, RT-DIA-208-2013
(2013).

11. Wagner, H. M., An integer linear-programming model for machine scheduling, Naval Re-
search Logistics Quarterly, 6, 131–140 (1959).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 648 -

MISTA 2015

A dynamic model of task processing for scheduling

problems without additional resources

Mateusz Gorczyca · Adam Janiak ·

Maciej Lichtenstein

1 Introduction

There is a very large amount of scheduling papers concerning problems where no ad-

ditional resources are needed (besides processors) to complete the task. To the best

of our knowledge, all mathematical models used to describe processing without addi-

tional resources are static ones. In other words, the rate of task processing is not given

explicitly in the mathematical description of task. Usually, the task processing time is

simply defined as a function of a single variable instead.

Take for example the static model of task introduced by Biskup [2]. In this model,

time pi(r) needed to process the i-th task depends only on r, which is simply a position

of the task in the sequence. Precisely, it is a product of the constant factor pi (defined

as normal processing time) and ra, where a > 0 is a learning factor. Task processing

time pi(r) = pir
a decreases with task position in the sequence.

Another example is the model of task processing described by Alidaee and Ahma-

dian [1], where the processing speed is given by function v : {1, . . . , n} → [0; 1]. This

speed depends on the number of already processed tasks and does not change during

processing of the task. The processing time of the i-th task pi(r) = pi/v(i).

Since the task execution is usually a dynamic process, the static model of task is

just an approximation. This approximation is supposed to have a convenient form (as

in the above examples) and acceptable accuracy, which usually contradict each other.

Thus, there arise a question if it is possible to include the dynamics of processing in

the task model and still have a tractable scheduling problem. Such a dynamic model of

task can be general enough to include many static models as its special case. If so, then

the methodology obtained for scheduling problems with such a model can be useful for

a broad class of problems.

In the next section we propose a dynamic model of processing for which the instan-

taneous rate of processing depends on two factors: the total contribution of the tasks

already completed by the processor and the influence of the currently processed task.

Further, we show that models of Biskup as well as model of Alidaee and Ahmadian are

exemplary special cases of the presented model.

Mateusz Gorczyca · Adam Janiak · Maciej Lichtenstein
Systems Research Institute, Polish Academy of Sciences, Poland
E-mail: {mateusz.gorczyca,adam.janiak,maciej.lichtenstein}@pwr.wroc.pl

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 649 -

2 The model of task processing

The set T = {1, 2, . . . , n} of non-preemptive tasks is to be processed on a single

variable-speed processor. The processor can process at most one task at a time. The

processing of task i is described as changing its (processing) state xi from 0 to the final

state denoted by x̂i > 0. It is assumed that the each processed task i being in state

xi has a measurable instant influence ei(xi) on the processing rate. Moreover, each

completed task adds a contribution êi := ei(x̂i) to the processing rate. For a given task

i processed after completion of tasks from a given subset T ⊂ T , the task processing

rate is defined by the following dynamic model:

dxi(t)

dt
:= f

∑

k∈T∪{0}

êk + ei(xi(t))

 , (1)

where:

– function ei : [0, x̂i] → [0, emax

i] represents the influence (of task i in state xi(t) on

the processing rate),

– value ê0 ≥ 0 represents the initial contribution (which can be the contribution of

the tasks processed before tasks from the set T , service tasks, etc.),

– function f : [ê0, ê0 +
∑n

i=1
emax

i] → [0,∞) characterizes the processing rate and

takes into account both contribution of the completed tasks and influence of the

processed task.

It is assumed that ei(·), i = 1, . . . , n, and f(·) are piecewise continuous and non-

negative. The exemplary influence function and rate function is presented, respectively,

in upper-left and upper-right plot in Figure 1.

Denote the total contribution of the already processed tasks (except initial con-

tribution) by e :=
∑

k∈T
êk. After some simple transformations and integration we

obtain the following formula for the task processing time:

pi(e) =

∫ x̂i

0

dxi
f (ê0 + e+ ei(xi))

. (2)

The processing time in dependance of e for influence and rate functions from Figure

1 is presented in the lower-left plot in the same figure. As it follows from the above

formula, the performance time is equal to the integral of 1/f(e(x)) over interval [0, x̂].

If e is constant, 1/f(e) can be interpreted as a time needed to change the task state

by one unit. The value of 1/f(e) for the considered example is given in the lower-right

plot in Figure 1.

2.1 Special cases

The presented model of task processing is a special case of many models considered in

the literature. It directly reflects model of Alidaee and Ahmadian [1] after the following

substitution:

x̂i = pi, i = 1, . . . , n, (3)

ê0 = 0, (4)

êi(xi) = 1, 0 ≤ xi ≤ x̂i, i = 1, . . . , n, (5)

f(e) = v(i), e = 1, . . . , n, (6)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 650 -

Fig. 1 The exemplary influence function (upper-left), processing rate function f(e) (upper-
right), processing time (lower-left) and function 1/f(e) (lower-right).

and the model of Biskup [2] after:

x̂i = pi, i = 1, . . . , n, (7)

ê0 = 1, (8)

ei(xi) =

{

0 for 0 ≤ xi < x̂n

1 for xi = x̂n
, i = 1, . . . , n, (9)

f(e) = e−a. (10)

3 Conclusion

The model presented above can be very useful in describing task processing where

the dynamics is essential. As it was shown above with the special cases, the presented

model is also very flexible. The methodology for solving scheduling problems with the

proposed model and makespan criterion will be presented at the conference.

Acknowledgements This research has been supported by Polish National Science Center,
decision No. DEC-2011/03/B/ST6/00364.

References

1. Bahram Alidaee and Ahmad Ahmadian, Scheduling on a single processor with variable
speed, Information Processing Letters, 60, 189-193 (1996)

2. Dirk Biskup, Single-machine scheduling with learning considerations, European Journal of
Operational Research, 115, 173-178 (1999)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 651 -

MISTA 2015

Vector space decomposition for linear programming

Jacques Desrosiers · Jean Bertrand

Gauthier · Marco E. Lübbecke

1 Introduction

Dantzig proposed the Primal Simplex algorithm in the summer of 1947. The race

for shaving seconds off the resolution process started soon after. While researchers

keep breaking records, all of the methods steer the algorithm away from its original

simplicity. It turns out that all of the methods return on investment. Amongst the most

promising ones, we find those of which that account for the phenomenon of degeneracy

one way or another. The Primal Simplex algorithm may cycle and this is only possible

under degeneracy. An important survey on anti-cycling schemes and pivot-selection

rules can be found in [17] where a very large number of these are examined.

All known primal algorithms base their stopping criteria on the optimality con-

ditions provided by the dual variables and the reduced cost values. Since no two al-

gorithms share the same iterative process, there must be different levels of exposure

that can be harvested from dual feasibility. This presentation focusses on the results

of a recent paper [11] where we propose pivot-selection rules guided by dual feasibility

considerations.

2 Literature review

Such concerns about degeneracy appeared within the Column Generation algorithm,

the counterpart of the Primal Simplex algorithm for linear programs with a very large

number of variables. Over the last three decades, column generation has been widely

used to solve complex problems for routing and scheduling applications, see [13]: In

Jacques Desrosiers
GERAD & HEC Montréal; 3000, Côte-Sainte-Catherine ; Montréal, Canada, H3T 2A7
E-mail: jacques.desrosiers@hec.ca

Jean Bertrand Gauthier
GERAD & HEC Montréal; 3000, Côte-Sainte-Catherine ; Montréal, Canada, H3T 2A7
E-mail: jean-bertrand.gauthier@hec.ca

Marco E. Lübbecke
RWTH Aachen University, Kackertstraße 7, D-52072 Aachen, Germany
E-mail: marco.luebbecke@rwth-aachen.de

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 652 -

urban transportation systems (for buses and drivers, handicapped and elderly people

in adapted transportation); in airline, rail and maritime industries (for various fleet

assignment; aircraft, locomotive and ship routing and scheduling; daily, weekly and

monthly crew schedules); for traffic assignment in satellite communication systems; for

real-time dispatching of automobile service units; and many other fields.

Degeneracy in column generation has been dealt with using Dual Variable Stabiliza-

tion, see for example [5], and [1] for a stabilized column generation framework and the

many references therein. Another remarkable approach is the Improved Primal Simplex

algorithm (IPS) [7,15,16]. This algorithm (1) dynamically updates a working basis of

reduced size (indeed, the cardinality of the subset of non degenerate variables), (2) fixes

the dual variables of an associated row-reduced problem, and (3) selects a convex com-

bination of variables entering the basis in a pricing problem derived from a linear

transformation of the original problem based on the current working basis. IPS not

only prevents degenerate pivots at every iteration but also maintains the basis status

of the current solution.

Set partitioning models are well suited for many practical combinatorial optimiza-

tion problems such as vehicle routing and crew scheduling applications [4,3]. Unfortu-

nately, they largely suffer from degeneracy. Historically speaking, the Dynamic Con-

straint Aggregation (DCA) of [8,6] was specifically designed to overcome this situation

in the context of solving the linear relaxation of the set partitioning problem by col-

umn generation. Although DCA is a precursor of IPS, its methodology does not follow

the same decomposition scheme. The slight difference is that the linear transformation

used to derive both the row-reduced and the pricing problems does not necessarily rely

on a subset of the current basic columns. Indeed, a set of linearly independent columns,

leading or not to a feasible solution, is sufficient. A survey on recent tools for primal

degenerate linear programs can be found in [10] whereas [2] presents an implementation

of a stabilized DCA algorithm for set partitioning problems.

3 Contribution

Consider the linear program (LP) with lower and upper bounded variables:

z? := min cᵀx

subject to Ax = b [π]

l ≤ x ≤ u,

(1)

where x, c, l,u ∈ Rn, b ∈ Rm, A ∈ Rm×n, and m < n. We assume matrix A is of

full row rank and LP is feasible and bounded. The vector of dual variables π ∈ Rm

associated with the equality constraints appears within brackets on the right-hand side.

In the presentation, we describe a vector space decomposition framework which,

given a feasible basic solution, (1) fixes the values of a subset of dual variables, and

(2) optimizes the remaining ones for finding the smallest value of the reduced cost.

It turns out that the dual formulation of this pricing problem selects a convex com-

bination of variables to move from one solution to the next. The way to divide these

two subsets of dual variables (either fixed or optimized) relies on the choice of a vector

subspace basis and opens a wide spectrum of algorithmic possibilities.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 653 -

The vector space decomposition framework has many well known algorithms as

special cases. In the following, we list some of these algorithms together with the most

important results.

• The most known special case of the proposed framework is the Dantzig’s rule for

the Primal Simplex algorithm. It considers all dual variables fixed and selects a

single entering variable of minimum reduced cost. This myopic strategy commonly

results in degenerate pivots and unfortunately may not converge.

• At the other extreme when none of the dual variables are fixed, we stumble upon

the Minimum Mean Cycle-Canceling algorithm (MMCC) originally devised for net-

work flow problems. This algorithm is strongly polynomial [12,14], and [9] further

improves on the complexity results.

• Given a basic solution to LP , selecting as the vector subspace basis all the columns

associated with the nondegenerate variables leads to the IPS algorithm.

• The proposed framework closes the theoretical gap between IPS and DCA, showing

that the latter is also a special case of a unified primal framework.

• Based on the values taken by the variables at every iteration, the unified primal

framework partitions the set of constraints in two parts; one set in the row-reduced

problem, the other set in the pricing problem. This strategy can be seen as a dy-

namic application of the Dantzig-Wolfe decomposition principle, this time driven

by the current value of the variables, not by the structure of the formulation.

• Properties of this framework allows identifying a number of subspace bases for

which the derived a family of algorithms that totally avoids degenerate pivots. One

such algorithm is IPS that finds movements along the edges of the polyhedron de-

fined by the constraints, from one vertex to another, while improving the value of

the objective function at every iteration.

• We also show that all other members of this family (amongst which belongs MMCC)

not only identify improving edge directions but also non-edge ones, that is, direc-

tions that are interior to the polyhedron. Moreover, these interior directions are

nonnegative combinations of the edge directions identified by IPS.

This methodological presentation proposes a better understanding of the primal

algorithms for linear programming and, more importantly, of the phenomenon of de-

generacy which can always be eliminated in various ways. It unifies within the same

framework a variety of specialized algorithms for linear and network programs. Hope-

fully, this added comprehension will lead to the design of much better exact and heuris-

tic algorithms for large scale applications.

References

1. Hatem M. T. Ben Amor, Jacques Desrosiers, and Antonio Frangioni. On the choice of ex-
plicit stabilizing terms in column generation. Discrete Applied Mathematics, 157(6):1167–
1184, 2009.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 654 -

2. Pascal Benchimol, Guy Desaulniers, and Jacques Desrosiers. Stabilized dynamic constraint
aggregation for solving set partitioning problems. European Journal of Operational Re-
search, 223(2):360–371, 2012.

3. Guy Desaulniers, Jacques Desrosiers, Irina Ioachim, Marius M. Solomon, François Soumis,
and Daniel Villeneuve. A unified framework for deterministic time constrained vehicle
routing and crew scheduling problems. In TeodorGabriel Crainic and Gilbert Laporte,
editors, Fleet Management and Logistics, pages 57–93. Springer, New York, NY, USA,
1998.

4. Jacques Desrosiers, Yvan Dumas, Marius M. Solomon, and François Soumis. Time con-
strained routing and scheduling. In Michael Ball, Tom Magnanti, Clyde Monma, and
George Nemhauser, editors, Handbooks in Operations Research and Management Science,
Vol. 8: Network Routing, volume 8, chapter 2, pages 35–139. Elsevier, Maryland Heights,
MO, USA, October 1995.

5. Olivier du Merle, Daniel Villeneuve, Jacques Desrosiers, and Pierre Hansen. Stabilized
column generation. Discrete Mathematics, 194:229–237, 1999.

6. Issmail Elhallaoui, Guy Desaulniers, Abdelmoutalib Metrane, and François Soumis. Bi-
dynamic constraint aggregation and subproblem reduction. Computers & Operations Re-
search, 35(5):1713–1724, 2008.

7. Issmail Elhallaoui, Abdelmoutalib Metrane, Guy Desaulniers, and François Soumis. An
Improved Primal Simplex algorithm for degenerate linear programs. INFORMS Journal
on Computing, 23:569–577, 2011.

8. Issmail Elhallaoui, Daniel Villeneuve, François Soumis, and Guy Desaulniers. Dynamic
aggregation of set partitioning constraints in column generation. Operations Research,
53(4):632–645, 2005.

9. Jean Bertrand Gauthier, Jacques Desrosiers, and Marco E. Lübbecke. About the minimum
mean cycle-canceling algorithm. Discrete Applied Mathematics, 2014.

10. Jean Bertrand Gauthier, Jacques Desrosiers, and Marco E. Lübbecke. Tools for primal
degenerate linear programs: IPS, DCA, and PE. EURO Journal on Transportation and
Logistics, 2015.

11. Jean Bertrand Gauthier, Jacques Desrosiers, and Marco E. Lübbecke. Vector space de-
composition for linear programs. Les Cahiers du GERAD G-2015-16, HEC Montréal,
Montreal, QC, Canada, March 2015.

12. Andrew V. Goldberg and Robert Endre Tarjan. Finding minimum-cost circulations by
canceling negative cycles. Journal of the ACM, 36(4):873–886, 1989.

13. Marco E. Lübbecke and Jacques Desrosiers. Selected topics in column generation. Oper-
ations Research, 53(6):1007–1023, 2005.

14. Tomasz Radzik and Andrew V. Goldberg. Tight bounds on the number of minimum-mean
cycle cancellations and related results. Algorithmica, 11(3):226–242, 1994.

15. Vincent Raymond, François Soumis, and Abdelmoutalib Metrane. Improved primal sim-
plex version 3: Cold start, generalization for bounded variable problems and a new imple-
mentation. Les Cahiers du GERAD G-2009-15, HEC Montréal, Montreal, QC, Canada,
2009.

16. Vincent Raymond, François Soumis, and Dominique Orban. A new version of the Im-
proved Primal Simplex for degenerate linear programs. Computers & Operations Research,
37(1):91–98, 2010.

17. Tamás Terlaky and Shuzhong Zhang. Pivot rules for linear programming: A survey on re-
cent theoretical developments. Annals of Operations Research - Annals OR, 46-47(1):203–
233, 1993.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 655 -

Adil Baykasoglu

Dokuz Eylul University, Izmir, Turkey

adil.baykasoglu@deu.edu.tr

Fehmi Burcin Ozsoydan

Dokuz Eylul University, Izmir Turkey

burcin.ozsoydan @deu.edu.tr

MISTA 2015

A GRASP based approach to dynamic scheduling of parallel heat

treatment furnaces in a manufacturing company

Adil Baykasoglu • Fehmi Burcin Ozsoydan

1 Introduction

 Scheduling is an active research area due to its central role for manufacturing

systems. There are copious reported studies focusing variants of scheduling problems in the

related literature [1]. As one of them, parallel machine scheduling problem (PMSP) has

numerous applications in industry. The present study addresses an industrial application of

identical PMSP, where jobs have planned release times and sequence-dependent set-up times

between jobs are considered along with machine eligibility constraints. Moreover, dynamic

events like job arrivals or cancellations make the handled problem more complex. In the firm,

where the project is being carried out, respectable amount of machine components (mainly

bolts and nuts) are manufactured particularly for automotive industry. In one of the stages of

this manufacturing system, five similar parallel heat treatment furnaces are employed in order

to satisfy the required durability of the machine components. According to the numerous

examinations and analysis performed in the plant, it was shown that, this stage of the system is

a bottleneck for the firm and findings demonstrated that, even a minor improvement in the

scheduling process of those furnaces, might yield to a considerable amount of economical

savings for the firm.

 In the mentioned problem, each job (order from customers) has three distinctive

attributes namely, raw material type, diameter of the component and its quality class, which

determine the required temperature to be applied and the processing time. Based on these

distinctive attributes, required temperature to be treated and required processing time (duration

of heat treatment) are estimated by heat treatment engineers in a fuzzy manner. The reason to

avoid using deterministic set-up times can be explained as follows.

 For the problem of interest, consecutive jobs might require different levels of

temperature. However, heating or cooling of the furnaces differs considerably. Heating up the

furnaces from to is not the same task as cooling from to . Thus, the

required setup time from job i to job j differs from the setup time between jobs j and i.

Moreover, like current temperature of the medium, there exist some other uncontrollable

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 656 -

aspects which are affecting the required setup times. For this reason, a fuzzy rule based system

(via ANFIS-Adaptive neuro-fuzzy inference system) is developed in order to estimate the

sequence depended setup times.

 Another fact, affecting the scheduling process is the release times of jobs, which are

actually the corresponding completion times of the previous manufacturing process, cold

forming. By using this information, which is kept in enterprise resource planning (ERP)

system of the firm, more efficient scheduling scheme is aimed. However, there are also many

disturbances in the system like dynamic events, including changing due dates, changing

priorities, arrivals or cancellation of jobs, etc. The proposed dynamic scheduling system is also

able to handle such dynamic events. Several performance indicators are also considered in

developing effective schedules dynamically.

 In the present work, a Greedy Randomized Adaptive Search Procedure (GRASP) [2]

based optimization approach is proposed for the stated problem. We tried to utilize the

“constructive solution generation scheme” and the “multi-start” ability of GRASP along with

several improvements in order to develop an easy to implement yet effective dynamic

scheduling algorithm.

2 Solution approach

 The main reason for using a constructive approach is related to easiness in developing

an effective algorithm to handle dynamic events (unplanned order arrivals, changes in

parameters, cancellations etc.). Let's consider a standard evolutionary algorithm like genetic

algorithms. As one can expect, the length of a chromosome is dependent on number jobs and

number of machines. However, as a result of dynamic events like unplanned job arrivals or job

cancellations, a repair or revision is required in the solution representation (encoding) strategy,

which requires additional effort. On the other hand, if a solution is constructed from scratch at

each generation (where job list, restricted candidate list, etc. are updated according to dynamic

events) rather than using standard chromosome representation, handling dynamism becomes

easier, which is actually an intrinsic feature of GRASP.

 The algorithm of interest, GRASP has two main phases namely, construction and

local improvement phases. In construction phase, a greedy rule is used for sorting jobs with

respect to their greedy values. The next job to be scheduled is randomly selected from among

restricted candidate list (RCL), which is a subset of all sorted jobs whose greedy value exceeds

a threshold value defined by GRASP parameters [2]. In order to evaluate greedy values, the

greedy function presented in [3], is adopted here. The function is as follows:

 (1)

where

 (2)

and is the priority index, is the due date, is the release time, is the process time of job

j, respectively, t denotes the current time, is the setup time between jobs i and j, and

denote, respectively, the average processing time and the average setup time of the

unprocessed jobs on machine m, and and are look-ahead parameters given by rules. Note

that the first exponent gives higher priority to jobs, which are closer to their due date, and the

second exponent prioritizes jobs, which have a small setup time relative to the average setup

time and are ready for processing.

 Subsequent to evaluating priority values of jobs, normalized priority values of each

job is obtained as given in (3) [3]. Next, RCL is generated using formulation presented in (4),

where is fixed to 0,3 [3]. Finally a random job is selected from RCL and scheduled to the

first released available machine.

 (3)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 657 -

 (4)

 In the second phase, where the constructed solution is attempted to be improved,

inter-machine/intra-machine swaps and insertion local moves [3] are performed. If any

improvement is achieved, improved solution is accepted. These two phases are repeated until a

termination criterion like achieving maximum number of generations is met. As we already

mentioned, the lists and parameters utilized in GRASP algorithm are updated in ERP system of

the company, if a dynamic event occurs. The developed optimization procedure is coded in

MATLAB and JAVA. Integration of the developed algorithm to the ERP system of the firm is

still under progress. From the preliminary tests of the proposed algorithm, it is observed that

the proposed approach is capable of handling dynamic events and generating acceptable

schedules. An illustration of the proposed scheduling procedure is depicted in Figure 1. As it

can be seen from this figure, all of the required data is recorded and execution of algorithm is

performed through ERP system of the firm.

Figure 1. An illustration of the proposed approach.

3 Conclusion

 The current work focuses on a real-life scheduling problem encountered in heat treatment

process of a manufacturing company, where parallel furnaces need to be scheduled

dynamically. Sequence dependent setup times, dynamic job arrivals/cancellations, changes in

parameters and possible break down or maintenance of machines are some of the distinctive

features of the current scheduling problem. For handling the mentioned dynamic parallel

machine scheduling problem, a GRASP based scheduling system is developed. The

preliminary findings and results obtained from the proposed systems are promising. The

efficiency of the proposed approach is currently being tested by using real data.

Acknowledgements The current work is supported by “Republic of Turkey, Ministry of

Science, Industry and Technology” under project number: SANTEZ 0293.STZ.2013-2.

References

1. Pinedo, M., Scheduling: theory, algorithms, and systems, page numbers. Prentice Hall,

New Jersey (2002).

2. Feo, T., Resende, M. G. C., Greedy randomized adaptive search procedures, Journal of

Global Optimization, 2, 1–27, (1995).

3. Armentano, V. A., Filho, M. F. F., Minimizing total tardiness in parallel machine

scheduling with setup times: An adaptive memory-based GRASP approach, European

Journal of Operational Research, 183, 100–114, (2007).

Start

ERP

(attributes of jobs,
released jobs, due dates,
process times, release
times, new events, other
required data)

Construct solution

ANFIS

(on-line generation
of set-up times)

Improve solution

Terminate

GRASP
Scheduling procedure

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 658 -

MISTA 2015

The Discrete Parallel Machine Makespan
Scheduling-Location Problem

Corinna Heßler · Kaouthar Deghdak

1 Introduction

Scheduling-Location (ScheLoc) Problems combine the two well-studied fields of location

planning and scheduling theory. The goal of ScheLoc Problems is to simultaneously

locate a set of machines and schedule a set of jobs on the machines such that some

scheduling objective is optimized. Each job is stored in a job location and for processing

on a machine the job first has to be moved to the corresponding machine location. The

arrival time of the job at the machine location is the time the job becomes available for

processing, i.e., it is the release date of the job. Therefore, this release date is dependent

on the location of the job and the machine. In ScheLoc Problems pure scheduling

objectives are considered, like minimizing the makespan. However, its optimal value

is still dependent on the location decisions because the availability of jobs depends on

the machine locations.

Although location planning is more of a strategic decision, while machine scheduling is

situated in the operational level of the supply chain, there are still many applications

where solving the two problems simultaneously is required to overcome the suboptimal

results of a sequential approach. One example of an application can be found in the

mining industry where crushers are used in processing the minerals. Those crushers are

movable and can change their location after processing a given set of valuable minerals.

An overview of applications can be found in [4].

The ScheLoc Problem was introduced in [2,3]. In these studies the Single Machine

Network (SMN) ScheLoc Problem is considered, i.e., the problem where the location

of a single machine in a network is to be found, and some polynomial time algorithms

for special cases are reported. Single Machine Planar (SMP) ScheLoc Problems were

treated by [1,4,5] and polynomial time algorithms for special cases developed. More

recently a polynomial time algorithm for a Network ScheLoc Problem with preemption

Corinna Heßler
Department of Mathematics, Optimization Research Group, Technical University of Kaiser-
slautern
E-mail: c.hessler@mathamatik.uni-kl.de

Kaouthar Deghdak
Université François-Rabelais de Tours, CNRS, LI EA 6300, OC ERL CNRS 6305, Tours, France
E-mail: deghdak@univ-tours.fr

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 659 -

was proposed in [6].

The Parallel Machine ScheLoc Problem was defined in [2] (for the network case) and [4]

(for the general case), however, there are no specialized algorithms for these problems.

In this study we consider the Discrete Parallel Machine Makespan (DPMM) ScheLoc

Problem, i.e., the problem of selecting a fixed number p of machine locations from a

finite set of possible locations, in each of them one of p parallel machines is located,

and schedule a given set of jobs on the machines respecting location-dependent release

dates such that the makespan is minimized. We propose several clustering heuristics

and a local search to solve this problem.

2 Problem Definition

Let N = {1, . . . , n} denote the set of jobs,M = {1, . . . ,m} the set of possible machine

locations and D ∈ Rn×m the matrix of distances, i.e., D(i, k) = dist(i, k) is the distance

between the location of job i and possible machine location k. Furthermore, let pi be

the processing time of job i and p the number of machines to be located. The release

date rik of job i if processed on a machine in location k is given by the distance between

the corresponding locations rik = dist (i, k). The DPMM problem consists of selecting

exactly p locations fromM and scheduling all jobs i ∈ N on the selected machines such

that the location-dependent release dates rik are respected and Cmax = max{Ci|i ∈ N}
is minimized where Ci is the completion time of job i.

3 Clustering Heuristics

The DPMM ScheLoc Problem consists of three different subproblems: Locating the

machines, assigning the jobs to the machines, and scheduling the assigned jobs on each

machine. Once the machine locations have been chosen and the jobs have been as-

signed to the machines, the remaining scheduling problem can be solved optimally in

polynomial time since it reduces to p Single Machine Makespan Problems. Therefore,

we focus on heuristics that solve the first two subproblems.

If the scheduling data (rik, pi) is ignored these two subproblems reduce to an uncapac-

itated discrete location problem for which various clustering type heuristics exist (see

e.g., [7]). Formally, the clustering problem is defined as follows: Given a discrete set of

possible locationsM, a set of demand locations N with demand di for each i ∈ N and

a distance function dist (i, k) for i ∈ N and k ∈M, find a subset C ⊂M of size p called

cluster centers and an assignment Ck ⊂ N of demand locations to cluster centers k ∈ C
such that ∪k∈CCk = N , Ck ∩ Cl = ∅ for all k, l ∈ C, and

∑
k∈C

∑
i∈Ck

didist (i, k) is

minimized. In case of uncapacitated clusters, each demand location i is assigned to the

closest cluster center Ck independent of the values di.

Given the solution to the uncapacitated clustering problem we can compute a solution

to the DPMM ScheLoc Problem by solving p single machine problems. However, to

improve the solution of the clustering we have to include the scheduling data in the

clustering decisions. To do this we consider the location part (choosing the cluster cen-

ters) and the clustering part (finding the assignment sets Ck) and solve the problems

sequentially in one of the following forms:

1. First choose all cluster centers then assign the jobs to the cluster centers.

2. First cluster the jobs then assign each cluster to a cluster center.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 660 -

3. Iteratively choose a cluster center and assign jobs to it until p clusters are obtained.

In each of the subproblems we can integrate the scheduling data. For example we can

choose cluster centers k such that maxi∈N rik + pi is minimal to avoid machines being

located far from jobs that have large processing times. To choose the clusters we would

for example like to balance the sum of processing times assigned to each machine, i.e.,

we want to minimize maxk∈C
∑

i∈Ck
pi. Since the scheduling data cannot be optimally

integrated we identified and tested various such criteria.

The drawback of the clustering heuristics is that once a decision has been made it will

not be altered afterwards. That means that a poor decision at the beginning of the

heuristic will have a large impact on the result of the heuristic.

To overcome this weakness we combined clustering heuristics 1 and 2 to a local search

algorithm similar to the algorithm proposed in [7] for the uncapacitated clustering

problem. The algorithm alternatingly leaves the clusters unchanged while trying to

improve the cluster centers or leaves the cluster centers unchanged while trying to

improve the assignment. If an improving move is found this is implemented and the

procedure is iterated until no improving move is found.

Tests have been performed for all clustering heuristics as well as the local search

with different starting solutions on instances with up to 300 jobs, 60 locations and

50 machines. The local search was tested with different starting solutions, namely

the results of the clustering heuristics and a randomly generated solution. The tests

showed that the local search is able to significantly improve the solutions of the clus-

tering heuristics within short computation time. For small instances of up to 30 jobs,

10 locations and 8 machines solutions were compared to the optimal results provided

by a commercial IP solver. The tests showed that for those small scale problems the

clustering heuristics provide optimal or near optimal results. For larger instances the

commercial IP solver is not able to provide a feasible solution within reasonable run-

time.

Acknowledgements Partially supported by the Federal Ministry of Education and Research
Germany, grant DSS Evac Logistic, FKZ 13N12229 and by the French National Research
Agency as ANR-11-SECU-002-01 (CSOSG 2011).

References

1. Elvikis D., H.W. Hamacher and M.T. Kalsch, Simultaneous Scheduling and Location (Sche-
Loc): The Planar ScheLoc Makespan Problem, J of Sched, 12, 361-374 (2008)

2. Hennes H., Integration of Scheduling and Location Models, PhD Thesis, University of
Kaiserslautern, 2005

3. Hennes H., H.W. Hamacher, Integrated Scheduling and Location Models: Single Machine
Makespan Problems, Stud in Locat Anal, 16, 77-90 (2007)

4. Kalsch, M. T., Scheduling - Location (ScheLoc) Models, Theory and Algorithms, PhD
Thesis, University of Kaiserslautern (2009)

5. Kalsch M.T., Z. Drezner, Solving scheduling and location problems in the plane simultane-
ously, Comput and Oper Res, 37, 256-264 (2010)

6. Kaufmann, C., A Polynomial Time Algorithm for an Integrated Scheduling and Location
Problem, Proceedings of the 14th International Conference on Project Management and
Scheduling, 124-128 (2014)

7. Maranzana, F. E., On the location of supply points to minimize tranport costs, Oper Res
Q, 15, 261-270 (1964)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 661 -

MISTA 2015

A new lower bound for optimisation of energy consumption
of robotic cells

Libor Bukata · Přemysl Š̊ucha · Zdeněk Hanzálek

1 Introduction

Robotic cells, broadly used in automotive industry for assembling and welding, are

usually designed under time pressure with the only optimisation requirement to satisfy

the production cycle time. As a result, there is a huge potential for the energy saving

as robots are usually moving at a maximal speed leading to long waiting times [1]. It is

a little surprising that even though the problem is so widespread, there is no effective

solution for energy optimisation of robotics cells which would result in money savings

and improvements of green credentials of industrial companies.

And therefore, this work can be perceived as a first step in designing of an efficient

exact algorithm for the above mentioned problem since a completely new lower bound,

which is the most crucial part of these algorithms, based on the Interior Point Method

(abbr. IPM) is proposed. The preliminary results revealed that the bound is both fast

and tight.

The abstract is structured in the following way. In the next section the related work

is discussed shortly. Section 3 provides a brief explanation of the lower bound. And

finally, the last section is devoted to experiments and conclusion.

2 Related Work

The research on energy optimisation of robotic cells can be classified into the following

categories: local optimisation, and global optimisation. In the local optimisation (e.g.

[2]) individual robot trajectories are optimised with respect to the speed, acceleration,

and trajectory go-through points in order to reduce the required energy. The global

optimisation aims to minimise the aggregated power consumption of the whole robotic

cell by considering e.g. different order of operations, speed of robot movements, and

stationary positions of robots at the same time.

Libor Bukata · Přemysl Š̊ucha · Zdeněk Hanzálek
Department of Control Engineering, Faculty of Electrical Engineering,
Czech Technical University in Prague, Prague, Czech Republic
E-mail: bukatlib@fel.cvut.cz, suchap@fel.cvut.cz, hanzalek@fel.cvut.cz

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 662 -

The state-of-the-art work of Wigström et al. [3] can be perceived as a pioneer in

the global optimisation of robotic cells. The authors created a model of the robot and

solved the optimal control problem by using Dynamic Programming. The trajectory

path was fixed and the time optimal trajectory obtained from ABB Robot Studio

was required. Afterwards, the locally optimised trajectories were used as an input for

the global solver to find a solution that is energy efficient and satisfying demanded

production cycle time. Although their algorithm is the first one considering the global

energy aspects only small instances were solvable in a reasonable time.

The lower bound presented in this abstract can be perceived as a supporting pro-

cedure for exact algorithms. It should enable them to solve industrial-sized problems of

the energy optimisation from the global point of view. Even though, the lower bound

is a pure continous optimization problem, the full problem is a scheduling one since

there are many discrete variables determining e.g. order of operations, power modes,

and so on.

3 Lower Bound Based on the Interior Point Method

As our lower bound must be fast and as tight as possible, we have neglected some

aspects that we have identified as less important for energy reasoning. In particular,

the robots are considered to be independent, i.e. synchronisations are ignored, selection

of power saving modes and robot configurations is not taken into account, and collision

zones are not addressed. These aspects must be resolved during the branching.

The mathematical formulation in Equation (1) clearly outlines the problem solved

for each robot. Basically, the goal of the bound is to find a lower estimation of the robot

consumed energy for its movements and waitings with respect to the fixed production

cycle time. For each robot movement or waiting there is a convex function fi(di) (see

e.g. [3]) that corresponds to the dependence of energy consumption on its duration di.

minimise

n∑
i=1

fi(di)

s.t.

n∑
i=1

di = CT

di ≤ di ≤ di ∀i ∈ {1, . . . , n}

(1)

Even though, the problem could be solved by general solvers, it is beneficial to use

our Adapted Interior Point method (abbr. AIPM) since we have revealed that it is

possible to exploit the problem properties in the way of the special form of Hessian

matrix. The inversion of the matrix, used in the embedded Newton method, can be

accomplished in O(n2) time complexity that is much faster than general algorithms,

and as a consequence, the bound can be evaluated in a fraction of time.

4 Preliminary Results and Conclusion

To verify the correctness of our approach we have implemented the lower bound in

Matlab and compared it with a Linear Programming (abbr. LP) formulation, which

was solved by IPM, where the convex functions were substituted by piece-wise linear

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 663 -

functions. By the method of sampling, i.e. a lower or upper envelope of the convex

function, the optimal solution of the LP formulation is either the lower or upper bound.

As it is shown in Fig. 1 the calculated lower bound of AIPM is always lower than the

LP upper bound.

5 10 15 20 25 30 35 40
1200

1400

1600

1800

2000

2200

2400

2600

production cycle time

en
er

gy

Aggregated energy function
IPM - lower bound
AIPM - lower bound
IPM - upper bound

1340

1350

1360

1370

1380

en
er

gy

Aggregated energy function

zoom

Fig. 1 Dependence of the energy consumption on the production cycle time.

Our preliminary results obtained from 4 randomly generated instances are pre-

sented in Table 1 where ’LP size’ is the size of the LP formulation in the form of

’number of constrains’ x ’number of continuous variables’. It can be seen that our

AIPM outperforms the Matlab implementation of IPM about 2.11 to 8.5 in terms of

speedup. Even though the acceleration is not so high at first sight, we expect that the

algorithm will be boosted at least about a factor of ten by re-implementing it to native

code. Moreover, the exact inversion seems to be very suitable for code vectorisation.

number of energy functions IPM (LP) LP size AIPM IPM/AIPM

3 22.0 ms 60 x 6 2.57 ms 8.56

6 25.6 ms 120 x 12 5.28 ms 4.85

9 30.0 ms 180 x 18 7.82 ms 3.84

60 67.8 ms 1200 x 120 32.2 ms 2.11

Table 1 Preliminary results for the lower bound.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 664 -

So, in summary, we have proposed the Adapted Interior Point Method exploit-

ing the problem specific properties. The resulting lower bound is faster than general

methods and seems to be suitable for effective bounding in exact algorithms.

Acknowledgements This work was supported by the Grant Agency of the Czech Technical
University in Prague, grant No. SGS13/209/OHK3/3T/13.

References

1. D. Meike, M. Pellicciari, and G. Berselli. Energy efficient use of multirobot production
lines in the automotive industry: Detailed system modeling and optimization. Automation
Science and Engineering, IEEE Transactions on, 11(3):798–809, July 2014.

2. Koen Paes, Wim Dewulf, Karel Vander Elst, Karel Kellens, and Peter Slaets. Energy
efficient trajectories for an industrial ABB robot. Procedia CIRP, 15(0):105 – 110, 2014.
21st CIRP Conference on Life Cycle Engineering.

3. O. Wigstrom, B. Lennartson, A. Vergnano, and C. Breitholtz. High-level scheduling of
energy optimal trajectories. Automation Science and Engineering, IEEE Transactions on,
10(1):57–64, Jan 2013.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 665 -

MISTA 2015

A heuristic procedure for the personnel task re-scheduling
problem

Broos Maenhout · Jeroen Burgelman ·
Mario Vanhoucke

1 Introduction

When composing a duty timetable, a personnel planner makes different assumptions

with respect the demand for staff, the duration of tasks and the availability of personnel.

However, personnel schedules are often disrupted by unexpected events as a result

of the uncertainty of demand, uncertainty of arrival and/or uncertainty of capacity

([11]). These schedule disruptions may render the personnel schedule infeasible and

adaptations to this original roster are necessary to restore its workability.

In this research, we consider the personnel re-scheduling problem that restores the

feasibility and/or workability of a personnel roster. As a reaction to disruptions, a

new feasible schedule needs to be constructed that contains as few as possible devia-

tions compared to the original roster. In the literature, all re-scheduling problems have

been studied in a deterministic setting assuming that all disruptions are known at the

moment of decision-making. Different network-based mathematical formulations have

been devised by [7,8] for the nurse re-rostering problem. [9], [10], [5] and [6] developed

meta-heuristic evolutionary algorithms as a solution methodology for this personnel

shift scheduling problem. Personnel re-scheduling is also studied in the transportation

industry. [2] and [1] discuss a literature overview for the real-time task-based crew

recovery problem in the airline industry and the railway sector respectively.

Different from the literature, we investigate in this research the personnel re-

scheduling problem in a dynamic setting where the personnel planner does not know

if and when disruptions will arise. We consider the general personnel task scheduling

problem ([4]) where the disruptions may the result of three sources of uncertainty, i.e.

Broos Maenhout
Faculty of Economics and Business Administration, Ghent University, Belgium
E-mail: Broos.Maenhout@Ugent.be

Jeroen Burgelman
Faculty of Economics and Business Administration, Ghent University, Belgium
E-mail: Jeroen.Burgelman@Ugent.be

Mario Vanhoucke
Faculty of Economics and Business Administration, Ghent University, Belgium
Vlerick Business School, Belgium
University College London, United Kingdom
E-mail: Mario.Vanhoucke@Ugent.be

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 666 -

uncertainty of capacity, arrival and/or demand. In this setting, we propose a heuristic

algorithm that makes use of different recovery procedures depending on the type of

disruption.

2 Problem description

We consider the Personnel Task Scheduling Problem (PTSP) ([4]), which assigns a set of

fixed contiguous tasks to a set of available homogeneous workers who work according

to shifts. All shifts have a fixed length of 8 hours. The tasks have fixed start and

finish times. Tasks cannot be interrupted and restarted later in the planning horizon

but can be continued by another worker. Different from the literature, the personnel

task scheduling problem under study considers a planning horizon of multiple days. In

this context, time-related constraints are imposed upon the construction of a feasible

schedule for an individual employee.

In this research, we consider the related reactive personnel task re-scheduling prob-

lem. As disruptions occur unexpectedly during the execution of the personnel roster

and not all disruption information is known at the beginning of the planning period,

re-scheduling decisions need to be taken in a dynamic setting. We consider three types

of disruptions, i.e.

– Uncertainty of capacity: The personnel resources may become unavailable to work

a particular shift, day or longer period of time.

– Uncertainty of demand: Due to variability in demand, the demand can be lower or

higher than expected.

– Uncertainty of arrival: The processing time of tasks can be lower or higher than

expected.

The personnel planner may react to these disruptions and restore the workability

by adapting the personnel roster with as minimal schedule changes as possible, which

embodies the objective function. This re-rostering decision is threefold, i.e. the decision

to re-schedule or not at a certain point in time, the length of the re-scheduling period

and the type of recovery procedure.

3 Solution methodology

The proposed solution methodology imitates the real-life decision process. Informa-

tion on the uncertainty of capacity, demand and arrival is generated at certain dis-

ruption information points through simulation. Taking this knowledge into account,

a re-scheduling decision is undertaken by means of a heuristic optimisation procedure

at certain re-rostering decision points to restore the workability of the personnel roster.

Simulation of uncertainty

Disruptions are generated by a Monte Carlo simulation through independent Bernouilli

trials. For each type of uncertainty, probability distributions with adequate parameters

are conjectured in a simulation experiment. Multiple simulation runs will enable us to

examine the robustness of different solution strategies. The (un-)availability of employ-

ees is modelled as a discrete time stochastic process such that a capacity disruption

can last for several days. The demand for staff is simulated for all tasks or new tasks

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 667 -

are generated using a particular distribution (e.g. the Poisson distribution). There is

also variability in the task duration, which is modelled by a triangular distribution ([3]).

A heuristic optimisation procedure

The re-scheduling is undertaken by an evolutionary heuristic with problem-specific op-

erators that considers only a limited number of tasks, personnel members and days

when re-scheduling. Moreover, the implemented variable neighbourhood search incor-

porates problem-specific information where the applied recovery technique is dependent

upon the type of encountered disruption, the problem characteristics and possible phase

transitions in problem complexity.

4 Computational experiments

We provide computational insights into our heuristic procedure and shows the ben-

efits of the adaptive variable neighbourhood search compared to a non-dedicated re-

scheduling method. Moreover, we utilise the proposed procedure as a simulation tool

and investigate the impact of different policy decisions and strategies.

References

1. Cacchiani, V., Huisman, D., Kidd, M., Kroon, L., Toth, P., Veelenturf, L., and Wagenaar,
J., An overview of recovery models and algorithms for real-time railway rescheduling, Trans-
portation Research Part B, 63, 1537 (2014)

2. Clausen, J., Larsen, A., Larsen, J., and Rezanov, N., Disruption management in the airline
industry: Concepts, models and methods, Computers & Operations Research, 37, 809821
(2010)

3. Johnson, D., The triangular distribution as a proxy for the beta distribution in risk analysis,
The Statistician, 46, 387398 (1997)

4. Krishnamoorthy, M. and Ernst, A., The personnel task scheduling problem, Applied Opti-
mization, 52, 343368 (2001)

5. Maenhout, B. and Vanhoucke, M., An evolutionary approach for the nurse reros- tering
problem, Computer & Operations Research, 38, 14001411 (2011)

6. Maenhout, B. and Vanhoucke, M., An artificial immune system based approach for solving
the nurse re-rostering system, Lecture Notes in Computer Science, 7832, 97 108 (2013)

7. Moz, M. and Pato, M. (2003). An integer multicommodity flow model applied to the reros-
tering of nurse schedules. Annals of Operations Research, 119:285301 (2003)

8. Moz, M. and Pato, M., Solving the problem of rerostering nurse schedules with hard
constraints: New multicommodity flow models, Annals of Operations Research, 128:179197
(2004)

9. Moz, M. and Pato, M., A genetic algorithm approach to a nurse rerostering problem, Com-
puters & Operations Research, 34:667691 (2007)

10. Pato, M. and Moz, M., Solving a bi-objective nurse rerostering problem by using a utopic
Pareto genetic heuristic, Journal of Heuristics, 14, 359374 (2008)

11. Van den Bergh, J., Belien, J., De Bruecker, P., Demeulemeester, E., and De Boeck, L.,
Personnel scheduling: A literature review. European Journal of Operational Research, 226,
367385 (2013)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 668 -

MISTA 2015

A heuristic procedure to proactively increase employee
substitutability and personnel roster robustness

Jonas Ingels · Broos Maenhout

1 Introduction

The management and planning of personnel is a widely studied topic in the operational

research literature [10,11,5,4]. In personnel planning, three hierarchical phases can be

distinguished, i.e. the strategic staffing phase, the tactical scheduling phase and the

operational allocation phase [2,5]. In the staffing phase, the personnel mix and budget

required to meet the service demand in the long term is determined. This phase fo-

cuses on the determination of the personnel characteristics, e.g. the competencies and

degree of employment, and subsequently constrains the decision freedom in the tactical

scheduling phase. During this phase, a medium-term personnel roster is constructed

based on predictions and assumptions. However, these predictions and assumptions

may prove to be incorrect in the operational allocation phase This uncertainty neg-

atively impacts the workability of the original roster and requires adjustments to be

executed in the short-term.

In personnel scheduling, three sources of uncertainty exist, i.e. uncertainty of demand,

uncertainty of capacity and uncertainty of arrival [4]. Organisations need to adopt a

proactive and a reactive approach to deal with this uncertainty.

During the scheduling phase, organisations can proactively build in robustness in their

personnel rosters. This improves the absorption and adjustment ability of the original

roster when unexpected events occur in the operational allocation phase. The robust-

ness of a personnel roster can be improved by using capacity buffers and time buffers.

Time buffers can be used in project management and personnel task scheduling prob-

lems [9,15]. Capacity buffers include the scheduling of reserve crew or the definition

of preferred requirements that are higher than the minimum requirements [7,6,17].

Alternatively, unit crewing can also improve the roster robustness by keeping crew

with different skills together for as long as possible in a pairing [16]. Unit crewing

Jonas Ingels
Faculty of Economics and Business Administration, Ghent University
E-mail: jonas.ingels@ugent.be

Broos Maenhout
Faculty of Economics and Business Administration, Ghent University
E-mail: broos.maenhout@ugent.be

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 669 -

is especially useful when there are limited opportunities to recover from disruptions

by resource substitution. In general, resource substitution is a good indicator for the

robustness in crew and aircraft scheduling [8]. Shebalov and Klabjan [14] proactively

maximise the number of move-up crews that can exchange tasks to overcome opera-

tional disruptions. The authors state that crew substitution is a cost-efficient option

when disruptions occur.

Thus, robustness involves both stability and flexibility. On the one hand, a stable sched-

ule exhibits a high absorption ability and subsequently a small number of changes when

the operating environment changes. On the other hand, a flexible schedule has a high

adjustment ability and provides sufficient change possibilities to efficiently recover from

unexpected events [12,8].

In this paper, we consider a personnel shift scheduling problem in which employees are

assigned to cover the demand for shifts and skills. We proactively improve the short

term adjustment ability or flexibility of the original personnel roster by maximising the

substitution possibilities between different personnel members. An employee substitu-

tion is available when at least one employee can take over the skill-shift assignment of

another employee on a particular day. The total number of substitution possibilities

for a skill and shift on a day is the product of the number of assigned employees to

the skill-shift combination and the number of employees that can be reassigned to that

combination on the same day.

2 Methodology

We adopt a proactive approach to improve the personnel roster robustness by max-

imising the number of build-in substitution possibilities between personnel members.

This proactive approach entails the application of a population-based evolutionary

algorithm to construct a personnel roster for a medium-term period. The algorithm

encompasses three stages: i.e. the construction of an initial population of rosters, local

search and combination of personnel rosters.

First, we construct initial rosters by exploiting a two-phase algorithm. In the first

phase, we build a days-on days-off schedule for every employee. In the second phase,

we assign shifts to the employees based on the days-on days-off schedule.

Next, we increase the number of substitution possibilities through local search. Dur-

ing the local search, a neighbourhood structure is selected and the personnel roster is

searched based on a chosen guiding order. We propose three neighbourhood structures,

i.e. a cell-by-cell search, a horizontal schedule search and a vertical schedule search.

Furthermore, we apply an evolutionary cycle where the population elements are sub-

ject to roster combination and roster repair. The roster combination includes employee-

and day-based crossovers [13]. The repair function ensures the satisfaction of the time-

related constraints. After the execution of each evolutionary cycle, we update the pop-

ulation and repeat the cycle until a stop criterion is met.

We validate the improved robustness of a personnel roster by applying a three-step

methodology [3,1]. After the construction of the personnel roster in the first step, we

test its applicability in the operational allocation phase and evaluate the proactively

build-in adjustment ability of the tactical personnel roster. Based on the associated

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 670 -

costs, we assess different strategies to improve the adjustment ability in the opera-

tional allocation phase.

3 Computational experiments

We generate test instances for 10, 20 and 40 employees for a planning horizon of

7 days and a personnel shift scheduling problem with a multi-skilled heterogeneous

workforce. These test instances can be classified as easy or hard depending on the

imposed time-related constraints. The hard test instances include all the imposed time-

related constraints, i.e. one assignment per day, forward rotation of shift assignments,

minimum and maximum number of assignments and maximum consecutive number

of assignments. In the easy test instances, we assume that all duties are day duties

relaxing the forward rotation constraint.

The hard test instances are used to show the validity of each individual building block

of our algorithm. The easy test instances allow us to show the validity of the complete

algorithm. For this purpose, we compare the results of our algorithm with the results

obtained with optimisation software.

We compare the robustness of three strategies, i.e. a pure maximisation of the number of

substitution possibilities, a maximisation of substitution possibilities with a constraint

on the allowed cost increase and a maximisation of the lowest number of substitution

possibilities on a given day during the planning horizon. These strategies are evaluated

based on the number of unresolved shortages, the number of executed substitutions

and the total assignment cost.

References

1. Abdelghany, K., Abdelghany, A., Ekollu, G.: An integrated decision support tool for air-
lines schedule recovery during irregular operations. European Journal of Operational
Research 185(2), 825 – 848 (2008)

2. Abernathy, W., Baloff, N., Hershey, J.: A three-stage manpower planning and scheduling
model a service sector example. Operations Research 21, 693–711 (1973)

3. Bard, J., Purnomo, H.: Hospital-wide reactive scheduling of nurses with preference con-
siderations. IIE Transactions 37, 589–608 (2005)

4. Van den Bergh, J., Beliën, J., De Bruecker, P., Demeulemeester, E., De Boeck, L.: Personnel
scheduling: A literature review. European Journal of Operational Research 226, 367–385
(2013)

5. Burke, E., De Causmaecker, P., Vanden Berghe, G., Van Landeghem, H.: The state of the
art of nurse rostering. Journal of Scheduling 7, 441–499 (2004)

6. De Causmaecker, P., Vanden Berghe, G.: Relaxation of coverage constraints in hospital
personnel rostering. Lecture Notes in Computer Science 2740 (2003)

7. Dowsland, K., Thompson, J.: Solving a nurse scheduling problem with knapsacks, networks
and tabu search. Journal of the Operational Research Society 51, 825–833 (2000)

8. Dück, V., Ionescu, L., Kliewer, N., Suhl, L.: Increasing stability of crew and aircraft sched-
ules. Transportation Research Part C: Emerging Technologies 20(1), 47 – 61 (2012)

9. Ehrgott, M., Ryan, D.M.: Constructing robust crew schedules with bicriteria optimization.
Journal of Multi-Criteria Decision Analysis 11(3), 139–150 (2002)

10. Ernst, A., Jiang, H., Krishnamoorthy, M., Owens, B., Sier, D.: An Annotated Bibliography
of Personnel Scheduling and Rostering. Annals of Operations Research 127, 21–144 (2004)

11. Ernst, A., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: A review
of applications, methods and models. European Journal of Operational Research 153, 3–27
(2004)

12. Ionescu, L., Kliewer, N.: Increasing flexibility of airline crew schedules. Procedia - Social
and Behavioral Sciences 20, 1019 – 1028 (2011)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 671 -

13. Maenhout, B., Vanhoucke, M.: Comparison and hybridization of crossover operators for
the nurse scheduling problem. Annals of Operations Research 159, 333–353 (2008)

14. Shebalov, J., Klabjan, D.: Robust Airline Crew Pairing: Move-up Crews. Transportation
Science 40, 300–312 (2006)

15. Tam, B., Ehrgott, M., Ryan, D.M., Zakeri, G.: A comparison of stochastic programming
and bi-objective optimisation approaches to robust airline crew scheduling. OR Spectrum
33(1), 49–75 (2011)

16. Tam, B., Ryan, D., Ehrgott, M.: Multi-objective approaches to the unit crewing problem
in airline crew scheduling. Journal of Multi-Criteria Decision Analysis 21(5-6), 257–277
(2014). DOI 10.1002/mcda.1517. URL http://dx.doi.org/10.1002/mcda.1517

17. Topaloglu, S., Selim, H.: Nurse scheduling using fuzzy modelling approach. Fuzzy Sets
and Systems 161, 1543–1563 (2010)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 672 -

MISTA 2015

Structural properties of an open problem in preemptive
scheduling

Bo Chen · Ed Coffman · Dariusz Dereniowski · Wiesław Kubiak

1 Introduction

Structural properties of optimal preemptive schedules have been studied in a number of
recent papers. These papers focus mainly on two characteristics: the minimum number of
preemptions necessary, and the minimum required sizes of shifts, i.e., the sizes of uninter-
rupted intervals bounded by job preemptions, starts, resumptions and completions. These
two characteristics have been investigated for a large class of preemptive scheduling prob-
lems, but so far only crude bounds for them have been derived for specific problems. This
paper sharpens the bounds on these characteristics for a well-known open problem in the the-
ory of preemptive scheduling: Instances consist of in-trees of n unit-execution-time (UET)
jobs with release dates r j, and the objective is to minimize the total completion time

∑
C j

on two processors. For simplicity we denote this problem by P; in the standard 3-field nota-
tion the problem specification is P2|pmtn, in-trees, r j, p j = 1|

∑
C j. P is among the current,

tantalizing “threshold” problems of scheduling theory. Our brief literature survey in the next
section reveals that the more interesting generalizations lead to NP-hard problems and non-
trivial simplifications lead to tractable problems with polynomial-time solutions.

For problem P, we show that the number of preemptions necessary for optimality need
not exceed 2n−1 and that the minimum shift sizes need not be less than 2−2n+1. These bounds
are obtained by combinatorial analysis of optimal preemptive schedules rather than by the
analysis of polytope corners for linear-program formulations of the problem, an approach to
be found in earlier papers. In particular, our approach establishes, as the centerpiece of the
paper, a normal form for optimal preemptive schedules, whereby minimal shift sizes of a job

B. Chen
Centre for Discrete Mathematics and Its Applications (DIMAP) and Warwick Business School, University of
Warwick, Coventry, UK. E-mail: bo.chen@wbs.ac.uk

E. Coffman
Departments of Electrical Engineering and of Computer Science, Columbia University, New York, USA. E-
mail: coffman@cs.columbia.edu

D. Dereniowski
Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk,
Poland. E-mail: deren@eti.pg.gda.pl

W. Kubiak
Faculty of Business Administration, Memorial University, St. John’s, Canada. E-mail: wkubiak@mun.ca

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 673 -

are exponentially decreasing functions. Specifically, the first interval between a job’s start
and its first preemption must be a multiple of 1/2. Subsequent intervals between the pre-
emptions, starts and completions of jobs must have sizes that are multiples of 1/4, 1/8, and
in general, the i-th preemption must occur after a shift having a size that is a multiple of 2−i.
The bounds on structural characteristics follow immediately from the normal-form theorem
of Section 3. Finally, we show that there exists a sequence of instances of P indexed by n
such that in any corresponding sequence of optimal preemptive schedules, the maximum of
the number of preemptions required by jobs grows logarithmically in n.

In summary, our results on the structural characteristics of the preemptions in optimal
schedules for P

– greatly reduce the solution space of optimal preemptive schedules for P,
– improve our understanding of possible preemption structures as a step towards deter-

mining the complexity of P. On the one hand, normal-form optimal schedules may lead
us to a polynomial-time algorithm. On the other hand, the fact that a single job may need
as many as order log n preemptions could be useful in proving NP-completeness,

– significantly improve the lower bound on the resolution of P.

In the next section we briefly review the literature bearing on our problem in the theory
of preemptive scheduling. Section 3 formally states our new results, then describes the gen-
eral approach of the proofs. The section concludes with a sequence of instances that exhibit
a growth logarithmic in n of the maximum number of preemptions needed by individual
jobs in optimal preemptive schedules.

2 Background

In broad terms, this section considers optimal preemptive scheduling for n > 1 jobs with re-
lease dates {r j} on m > 1 parallel processors under the total completion time criterion ΣC j.
Within this class of problems, various choices for the parameters m, the job execution times
{p j}, and the precedence constraints ≺will be made and the tractability of the resulting prob-
lems assessed.. The problems are denoted collectively by P|pmtn,≺, r j, p j|

∑
C j. P has been

studied by many as a natural sequel to other problems, each with more constrained instances
and a polynomial-time optimization algorithm. As primary examples, in P the number m of
processors can be reduced to 1, Baptiste et al [1]; precedence constraints can be eliminated,
Herrbach, Lee, and Leung [7]; differing release dates can be eliminated, Coffman, Sethu-
raman, and Timkovsky [6]; and in-tree precedence constraints can be replaced by out-tree
constraints, Baptiste and Timkovsky [3].

Research in optimal preemptive scheduling has often turned to the study of measures
of schedule structure, particularly with NP-hard problems and open problems like P. Two
characteristics have been of special interest, one being the smallest number of preemptions
needed by any optimal schedule, which dates back to the origins of preemptive schedul-
ing theory, McNaughton [8]. The more recent one concerns the durations of uninterrupted
intervals of job execution in optimal preemptive schedules. These durations, the shifts in-
troduced in Section 1, are bounded by scheduling events, i.e., job starts, completions, and
preemptions. Under the UET assumption, the smallest shift required for the optimality of a
preemptive schedule of a given problem instance is known as the resolution of that instance.
The smallest resolution over all problem instances is the problem resolution. These char-
acteristics have been investigated for a large class of preemptive scheduling problems by
Baptiste et al [2] who give general bounds on these quantities. Coffman, Ng and Timkovsky

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 674 -

[5] provide further bounds on the resolutions of various scheduling problems. In particular,
they show for our problemP a resolution upper bound of 2−(n−1)/3 and a corresponding lower
bound of (n + 2)−(2n+1)/2. In [10], [2] and [5] bounds are obtained on problem resolutions by
analyzing the corners of feasibility regions of linear programs designed for the problem. Our
approach is combinatorial and does not make use of the theory of linear programming. Our
approach gives a lower bound exponentially small in n, which is a significant improvement
for intrees over the essentially factorially small bound that follows from the results in [5].
Results are formalized more precisely in the next section.

3 Results

An analysis of optimal preemptive scheduling has often come down to proving that for ev-
ery optimal schedule there exists an equivalent one in some given, highly structured normal
form, e.g., a sequence of small blocks each having a very simple structure. Equivalence here
means that the value of the scheduling criterion is unchanged. This general approach to pre-
emptive scheduling problems dates back to research done in the late ’60’s by Muntz and
Coffman and published in [9]. The ultimate result was an optimization algorithm for UET,
2-processor, makespan scheduling with the precedence relation arbitrary and preemptions
allowed. It is further illustrated in the work of Coffman and Garey [4] on the same ba-
sic problem instances. They proved a bound on the relative increase in optimal makespans
when preemptions are disallowed. The proofs of strong normal-form results are usually quite
daunting, with lengthy, intricate case analysis being typical. This remark also applies to the
proof of our new normal-form theorem. This last result for the instances of P is given next.

Theorem 1 For every instance of problem P there exists a normal-form optimal schedule
in which every shift is a multiple of 1/22n.

The proof of this result shows that an optimal schedule can be constructed as a sequence
of blocks, each with at most three jobs. No job starts or completes inside a block but there
is at least one job start or completion at the beginning of a block, and at least one job com-
pletion at the end of a block. A block is called l-normal if each job duration in the block is
a multiple of 1/2l+1, and the block length is a multiple of 1/2l. In a normal-form schedule
the first block must be 1-normal, the second 2-normal and so on. The proof verifies that, in a
normal-form schedule with q blocks, each preemption occurs at a multiple of 1/2q+1, where
q ≤ 2n − 1. The ultimate goal is to show that there exists an optimal schedule that has nor-
mal form. The proof is by contradiction. The initial assumption is that an optimal schedule is
also maximal in the sense that it has a latest possible abnormality point i, i.e., a latest block i
which is not i-normal. The proof shows that such a block must have exactly three jobs. One
completes at the end of the block and has an (i + 1)-normal duration, but the durations of the
other two are not (i + 1)-normal. These two jobs then trigger an alternating chain of jobs to
which they also belong. The completion times of the jobs in the chain are not (i + 1)-normal
which makes it possible under normal-form block circumstances to either extend the chain
by one job or prove that the abnormality point must exceed i; this is the key result of the
proof. Thus, a contradiction appears in either case since the number of jobs is finite and the
schedule is maximal. The normal-form block circumstances here mean that the alternating
chain does not end with a certain structure that we call an A-configuration, a configuration
that prevents an extension of the alternating chain. However, it is shown that there always
exists a maximal schedule which does not include an A-configuration. The main result of

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 675 -

the paper follows and states that there is a normal schedule that is optimal for P.

Finally, we exhibit sequences of problem instances indexed by n for which the rate at
which the maximum number of preemptions required by jobs in optimal preemptive sched-
ules of these instances increases logarithmically in n. Let Ai, i ≥ 0, be a set of four jobs,
denoted by ai

1, a
i
2, a

i
3, a

i
4 such that r(ai

j) = 2i for each j ∈ {1, 2, 3}, r(ai
4) = 2i + 1 and

ai
j ≺ ai

4 for each j ∈ {1, 2, 3}. Then, define the set of jobs
⋃p

i=0 Ai, where ai
4 ≺ ai+1

4 for each
i ∈ {0, . . . , p − 1}. (See Figure 1.)

a01 a02 a03

a11 a12 a13a04

a21 a22 a23a14

a24
...

0:

1:
2:

3:
4:

5:

r
e
le

a
s
e

d
a
t
e
s
:

Fig. 1 The precedence constraints and job release dates, p ≥ 2

It can be proved that the job ap
4 should complete exactly at 2p + 3 − 1/2p+1 in any

optimal schedule. This is done by first proving that no valid schedule (optimal or not) can
complete ap

4 earlier, and then by proving that starting ap
4 later leads to a schedule that cannot

be optimal. Omitting further details, we have the following result supported by Figure 1.

Theorem 2 With I an instance ofP, define ρ(I) as the largest integer such that every optimal
preemptive schedule for I has at least one job that is preempted ρ(I) times. Then there exists
a sequence of instances {In}n≥1 of P indexed by the number n of jobs such that

ρ(In) = Ω(log n).

References

1. P. Baptiste, P. Brucker, S. Knust, and V.G. Timkovsky. Ten notes on equal-processing-time scheduling.
4OR, 2(2):111–127, 2004.

2. P. Baptiste, J. Carlier, A. Kononov, M. Queyranne, S. Sevastyanov, and M. Sviridenko. Properties of
optimal schedules in preemptive shop scheduling. Discrete Applied Mathematics, 159(5):272–280, 2011.

3. P. Baptiste and V.G. Timkovsky. On preemption redundancy in scheduling unit processing time jobs on
two parallel machines. Oper. Res. Lett., 28(5):205–212, 2001.

4. E. G. Coffman, Jr. and M. R. Garey. Proof of the 4/3 conjecture for preemptive vs. nonpreemptive
two-processor scheduling. In Proceedings of the Twenty-third Annual ACM Symposium on Theory of
Computing, STOC ’91, pages 241–248, New York, NY, USA, 1991. ACM.

5. E.G. Coffman Jr., C.T. Ng, and V.G. Timkovsky. How small are shifts required in optimal preemptive
schedules? Journal of Scheduling, pages 1–9, 2013.

6. E.G. Coffman Jr., J. Sethuraman, and V.G. Timkovsky. Ideal preemptive schedules on two processors.
Acta Inf., 39(8):597–612, 2003.

7. Lee A. Herrbach and Joseph Y.-T. Leung. Preemptive scheduling of equal length jobs on two machines
to minimize mean flow time. Operations Research, 38(3):487–494, 1990.

8. R. McNaughton. Scheduling with deadlines and loss functions. Manage. Sci., 6:1–12, 1959.
9. R.R. Muntz and E.G. Coffman. Optimal preemptive scheduling on two-processor systems. IEEE Trans.

Comput., 18(11):1014–1020, 1969.
10. N. W. Sauer and M. G. Stone. Rational preemptive scheduling. Order, 4:195–206, 1987.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 676 -

MISTA 2015

Solving resource constrained shortest path problems with
branch-and-cut

Markó Horváth · Tamás Kis

1 Introduction

The resource constrained shortest path problem (RCSPP) is an extension of the familiar

shortest path problem. Given a directed graph D = (V,A), where V is a finite set of

nodes, and A ⊆ V ×V is a finite set of arcs, a cost function c : A→ Z on the arcs, and

two selected nodes s, t ∈ V , with s 6= t. In addition, we also have m resource functions

wr : A → Z (r = 1, . . . ,m) on the arcs representing certain resource consumptions,

and for each resource r we have a resource limit W r ∈ Z. In the (elementary) resource

constrained shortest path problem a minimal cost directed (elementary) path P from

s to t is sought, such that the resource consumptions along the path do not exceed the

resource limits.

The RCSPP has several application fields in practice, see e.g., [1, 5]. Several types

of methods have been proposed to solve variants of RCSPP, for an overview, see e.g.,

[3]. We are focusing on methods based on polyhedral characterization of the set of

feasible solutions and in particular those using cutting planes. For instance, Avella et

al. [1] use cutting planes to solve RCSPP with negative cycles. In Jepsen et al. [4],

a model with resource weights on the nodes is considered, and generalized subtour

elimination inequalities are proposed to ensure elementary paths. The authors also

suggest generalized capacity inequalities, but computational experiments show that

they are not effective in practice. Garcia [2] propose several types of valid inequalities

for the polytope of feasible solutions of RCSPP, some of which being valid for RCSPP

with cycles, while others only for the acyclic special case. A detailed computational

evaluation shows the merits of the various classes in solving the two variants of the

problem by branch-and-cut.

Our main results are new cutting planes for solving RCSPP by branch-and-cut,

along with exact and heuristic separation methods. Our results extend those of Garcia

[2]. We also prove that a class of inequalities proposed by Garcia is NP-hard to separate.

In the following sections we briefly summarize these results.

Markó Horváth and Tamás Kis
Institute for Computer Science and Control, Hungarian Academy of Sciences
E-mail: {marko.horvath, tamas.kis}@sztaki.mta.hu

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 677 -

2 New valid inequalities for the RCSPP polytope

We can formulate the RCSPP by a mathematical program in which there is a binary

decision variable xa on each arc a ∈ A indicating whether the path sought goes through

the arc or not.

min
∑
a∈A

caxa (1)

s.t.
∑

a∈δout(i)

xa −
∑

a∈δin(i)

xa =

1 if i = s

0 if i ∈ V \ {s, t}
−1 if i = t

, i ∈ V (2)

∑
a∈A

wraxa ≤W r, r = 1, . . . ,m (3)

x ∈ {0, 1}A (4)

In the above formulation, δin(i) and δout(i) denote the set of arcs entering and leaving

node i, respectively. The objective function (1) expresses the total cost of the path

sought. Constraints (2) along with (4) ensure that the feasible solutions are paths. The

resource usage of the paths are bounded by (3). If we need elementary paths, and the

graph D contains cycles, then additional means are needed to eliminate cycles in the

solution. The polytope of feasible solutions of RCSPP is QRCSPP = {x ∈ RA+ : (2)

and (3) hold for x}.

Fix a pair of arcs e1, e2 of D with e1 6= e2, and let i1 := tail(e1), j1 := head(e1)

and i2 := tail(e2), j2 := head(e2). A necessary condition for a resource-feasible path π

visiting e1 and e2 in this order to exist is that for each resource r, the inequality

σrs,i1 + wre1 + σrj1,i2 + wre2 + σrj2,t ≤W
r (5)

holds, where σri,j is the length of the shortest path from node i to j with respect to

resource weights wr. Assuming that there is no directed path from the head of e2 to the

tail of e1, any directed s–t path containing both e1 and e2 must go through e1 first, and

then through e2. In the new cut-based inequalities, we fix a pair of arcs with the above

condition, and consider cuts (in turn) separating s from i1, j1 from i2, and j2 from t,

respectively. Those cuts give rise to new classes of valid inequalities for QRCSPP by

observing that an s–t path P through e1 and e2 can pass through only such an arc of,

say, an s–i1 cut which yields a resource feasible path with respect to resource weights

wr. The form of the new cuts is

x(F) ≥ xe1 + xe2 − 1, (6)

where F is an appropriate subset of arcs of an s–i1 cut, or i2–j1 cut, or j2–t cut. In

fact, this class of inequalities extends that of Garcia, in which only one arc is fixed.

Our second class of new valid inequalities is based on infeasible subpaths. Again,

we fix a pair of arcs e1 and e2 such that there is no directed path from the head of e2
to the tail of e1, and then we consider a subpath P ′ between the head of e1 and the tail

of e2 which is resource infeasible for one of the resources. Now, any resource feasible

directed P path through e1 and e2 must pass these arcs in this order due to the above

condition, and must leave P ′ at some point between e1 and e2. This observation gives

rise to a new class of valid inequalities of the same form as (6), but with F chosen from

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 678 -

those arcs leaving P ′. This class generalizes the infeasible subpath based inequalities

of Garcia, as those inequalities have been defined with respect to one fixed arc only.

We have also shown that both Garcia’s inequalities and ours in this class are NP-hard

to separate, and provided a separation heuristic.

3 Variable fixing and primal heuristic

There are many ways to improve the performance of a branch-and-bound procedure.

For instance, finding a feasible integer solution may strengthen the actual upper bound,

hence we developed a depth-first-search based feasible solution search heuristic to find

an s–t path which is feasible for all resource constraints when a fractional solution to

the LP-relaxation is available. One can also improve the branch-and-bound procedure

by strengthening the LP relaxation by fixing some variables. We developed a cost based

variable fixing method to fix some variables to 0.

4 Computational results

We implemented our RCSPP solver in C++ language by using the FICO XPRESS

callable library as a branch-and-cut framework. We used randomly generated instances

to perform our computational experiments. We have compared the cuts of Garcia to our

generalizations, and found that our generalized infeasible subpath based inequalities

give better results than those of Garcia, but there is no clear advantage of using our

generalization of cut based inequalities. We have also found that a good combination of

cutting planes, primal heuristics and variable fixing methods gives significantly better

results than FICO XPRESS after tuning.

Acknowledgements This work has been supported by the OTKA grant K112881, and by
the NFÜ grant ED 13-2-2013-0002. The research of Tamás Kis has been supported by the
János Bolyai research grant BO/00412/12/3 of the Hungarian Academy of Sciences.

References

1. Avella, P., Boccia, M., and Sforza, A., Resource constrained shortest path problems in path
planning for fleet management, Journal of Mathematical Modeling and Algorithms, 3, 1–17
(2004)

2. Garcia, R., Resource Constrained Shortest Paths and Extensions, PhD thesis, Georgia
Institute of Technology (2009)

3. Irnich, S. and Desaulniers, G., Shortest path problems with resource constraints, 33–65.
Springer US (2005)

4. Jepsen, M., Petersen, B., Spoorendonk, S., A Branch-and-Cut Algorithm for the Elementary
Shortest Path Problem with a Capacity Constraint, Technical report, DIKU (2008)

5. Steinzen, I., Gintner, V., Suhl, L., and Kliewer, N., A time-space network approach for
the integrated vehicle-and crew-scheduling problem with multiple depots, Transportation
Science, 44(3), 367–382 (2010)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 679 -

MISTA 2015

Lower bounds for Scheduling Problems with production and
consumption of resources

Abderrahim Sahli · Jacques Carlier · Aziz
Moukrim

1 Introduction

The Event Scheduling Problem with Consumption and Production of Resources (ESPCPR)
[4] is an extension of the Resource Constrained Project Scheduling Problem (RCPSP) where
activities are replaced by events which can produce or consume the resources. ESPCPR
consists in scheduling a group of events limited by precedence and resource constraints in
order to minimize the makespan. Some other authors have worked on models similar to the
ESPCPR. We can quote the works of Neumann and Schwindt [6] and of Laborie [5].

The aim of this paper is to introduce for ESPCPR new lower bounds whose calculation
serves two goals. First, lower bounds can help in deleting useless nodes in a branch-and-
bound tree in order to decrease the computation time. Second, they may help in evaluating
the efficiency of heuristic methods when optimal solutions are not available.

The paper is organized as follows. We define in Section 2 the ESPCPR. In Section 3,
we briefly present the Cumulative Scheduling Problem (CuSP) and we show how we can
get a relaxation from ESPCPR to CuSP. In Section 4, we present our lower bounds and we
conclude the paper in Section 5.

2 Problem description

An instance I = (X ,U,a,v) of ESPCPR is defined by a set X = A∪ {0,n+ 1} of events
where A = {1,2, ...,n} is the set of real events and 0 (resp. n+1) is the fictitious beginning
(resp. termination) event of the project, U is the set of precedence relations on the set X of
events, a is the vector of resource production and consumption of events, and v is the matrix
of time lags. The number of resource units produced or consumed by event i is defined by
ai, where a0 corresponds to the initial resource units of the project. If ai < 0, then event i
consumes |ai| resource units, whereas if ai > 0, it produces ai resource units. A schedule S
is a function assigning an occurrence time ti to each event i ∈ X . The time lag from event
i to event j is defined by vi j. If vi j ≥ 0, then event j cannot occur before time ti + |vi j|,

Abderrahim Sahli · Jacques Carlier · Aziz Moukrim
Sorbonne universités, Université de Technologie de Compiègne, CNRS, laboratoire Heudiasyc UMR 7253,
CS 60 319, 57 avenue de Landshut 60 203 Compiègne cedex, France
E-mail: abderrahim.sahli, jacques.carlier, aziz.moukrim@hds.utc.fr

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 680 -

where ti is the occurrence time of event i. If vi j < 0, this implies that event i has to occur no
later than time t j + |vi j|. At any time the resource availability has to remain positive or null.
The makespan of a schedule S can be computed as Cmax = tn+1. A schedule is feasible if it
satisfies all precedence and resource constraints. An optimal schedule is a feasible schedule
which minimizes the makespan. In the case of multiple resources, K is the set of resources
and ak

i defines the quantity of resource k produced or consumed by event i, where k ∈ K.

3 Cumulative Scheduling Problem (CuSP)

In the Cumulative Scheduling Problem, a set I of n activities has to be scheduled without
preemption in order to minimize the makespan. Each activity i has a processing time or
duration di, a release date ri, a tail or latency duration qi and a resource requirement ei, the
availability of the resource is equal to R. Carlier and Pinson in [3] have adapted the Jackson’s
Pseudo-Preemptive Schedule (JPPS) to this problem in order to compute a lower bound with
O(n logn+nm logm)-time complexity.

This problem is of prime interest for solving more complex scheduling problems like
the ESPCPR. In fact, we can get a relaxation for ESPCPR based on CuSP as follows. We
separate all events into two subsets. Let C contain all consumption events and P contain
all production events. For each consumption event c, we compute its earliest starting time
ESTc and store it as rc. For each production event p, we compute its latest starting time
LSTp and denote qp = l0,n+1−LSTp, which means latency duration or tail where l0,n+1 is
the length of the longest path from the beginning event 0 to the termination event n+ 1.
For a production event p and a consumption event c, if there exists a positive path from
c to p, we denote lcp the length of the longest path between c and p. So a bipartite graph
G′ is established G′ = (C∪P,U ′) where U ′ = {(c, p)|c ∈ C, p ∈ P, lcp ∈ N∗}, it defines a
transportation problem (lcp is the benefit).

A solution of the transportation problem is computed and transformed into a CuSP
where each assignment of the resource is regarded as an activity. The resource flow between
two events is converted into the resource required by the activity and lcp into the duration of
the activity. rc is the release date and qp is the tail.

Production and consumption events, which are not included in the solution, can also be
transformed into activities by setting a hypothetic makespan Cmax. Let P′ (resp. C′) be the set
of the remaining production (resp. consumption) events and a′p (resp. a′c) the new quantity to
produce (resp. consume) by event p of P′ (resp. c of C′). For each production event p (resp.
consumption event c), it corresponds an activity i with release date ri = 0 (resp. ri = LSTc),
a processing time di = ESTp (resp. di =Cmax−LSTc), a tail qi =Cmax−ESTp (resp. qi = 0)
and a resource capacity requirement ei = a′p (resp. ei = −a′c). The resource availability of
this new instance which we denote CuSP(Cmax) is equal to ∑p∈P′ a′p.

4 Lower bounds for ESPCPR

The first lower bound we present is a destructive bound based on JPPS that we compute as
follows. First we fix a hypothetic makespan Cmax and we extract an instance of the Cumu-
lative Scheduling Problem CuSP(Cmax) as explained in the previous section. Then we apply
JPPS to the corresponding instance to get a lower bound JPPS(Cmax). If Cmax < JPPS(Cmax)
then Cmax +1 is a lower bound for ESPCPR.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 681 -

The second lower bound is based on the Shifting Algorithm. The Shifting Algorithm
[1] [2] was introduced to solve the Financing Problem in polynomial time (O(n logn)). This
problem is a special case of the ESPCPR, where the dates of production events are given. So
to compute this bound, first we make a relaxation from ESPCPR to the Financing Problem
by setting the production events at their earliest starting times and the consumption events
at their latest starting times according to l0,n+1. Then, we apply the Shifting Algorithm to
the corresponding instance. At last, we take the makespan as a lower bound for ESPCPR.

Another destructive bound can be computed as follows. We fix the value of Cmax and we
set the date of production events at their earliest starting times and the date of consumption
events at their latest starting times. If a resource conflict is detected then Cmax +1 is a lower
bound [2] [6].

The last lower bound is a destructive bound based on flow that we compute as follows.
First, we introduce a bipartite graph GI = (P∪C,UI). The first part of the graph is the set
of all production events P and the second part is the set of all consumption events C. We
fix a hypothetic makespan Cmax and we set the date of production events at their earliest
starting times and the date of consumption events at their latest times. We consider an arc
between a production event p and a consumption event c, if event p can start before event c
which is obviously impossible if there exists a strictly positive path from c to p. If the flow
problem defined by the graph GI does not admit any solution then Cmax +1 is a lower bound
for ESPCPR.

5 Conclusion

In this paper, we have studied the Event Scheduling Problem with Consumption and Produc-
tion of Resources (ESPCPR). We have shown how we can get a relaxation from ESPCPR
to the Cumulative Scheduling Problem and the Financing Problem. Moreover, we have pro-
posed three new lower bounds for this problem. We have tested them on the benchmark
of Neumann and Schwindt [6]. Our lower bounds are very close to the optimal solution
makespans. In fact, they reach them for more than 90.29% instances with 1.12% average
deviation in percent. As a perspective, we aim to build a branch-and-bound method to solve
the ESPCPR using our lower bounds.

Acknowledgements This work was carried out and funded in the framework of the Labex MS2T. It was
supported by the French Government, through the program “Investments for the future” managed by the
National Agency for Research (Reference ANR-11-IDEX-0004-02). It was also partially supported by the
National Agency for Research, under ATHENA project (Reference ANR-13-BS02-0006).

References

1. Carlier, J., Rinnooy Kan, A.H.G., Financing and Scheduling, Oper. Res. Letters, 1, 52-55(1982)
2. Carlier, J., Problèmes d’ordonnancement à contraintes de ressources: algorithmes et complexité, Doctorat

d’état, Habilitation thesis, Université Pierre et Marie Curie (Paris VI), (1984)
3. Carlier, J., Pinson, E., Jackson’s pseudo-preemptive schedule and cumulative scheduling problems, Dis-

crete Applied Mathematics, 145, 80-94(2004)
4. Carlier, J., Moukrim, A., Xu, H., The Project Scheduling Problem with Production and Consumption of

Resources: a list-scheduling based algorithm, Discrete Applied Mathematics, 157, 3631-3642(2009)
5. Laborie, P., Algorithms for propagating resource constraints in AI planning and scheduling: Existing ap-

proaches and new results, Artificial Intelligence, 143, 151-188(2003)
6. Neumann, K., Schwindt, C., Project Scheduling with inventory constraints, Mathematical Methods of

Operations Research, 56, 513-533(2002)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 682 -

Guy Wachtel

Department of Management, Bar Ilan University, Ramat Gan, Israel

E-mail: Guy.Wachtel@outlook.co.il

Amir Elalouf

Department of Management, Bar Ilan University, Ramat Gan, Israel

E-mail: Amir.Elalouf@biu.ac.il

MISTA 2015

"Floating Patients" method based on scheduling algorithm for emergency

department's service improvement

Guy Wachtel • Amir Elalouf

1 Introduction

A hospital’s emergency department (ED) is the place where patients receive initial diagnosis

and treatment and is responsible for assigning incoming patients to appropriate departments in

the hospital, or for referring them to general practitioners or to specialists for further treatment.

Overcrowding in EDs is a serious problem in healthcare systems around the world and in Israel

in particular. A common solution for handling overcrowding is to determine a maximum level

of occupancy for the ED and, once this level is exceeded, to turn away arriving patients and

ambulances (by referring them to other EDs in the area) and reject non-urgent patients. Those

“turn-aways” and rejections not only inconvenience patients but result in loss of income for

hospitals and EDs.

In addition, overcrowding in EDs has a negative influence on the quality of medical care as

well as on hospital profits [1]. ED overcrowding and patient length-of-stay (LOS) have

therefore been attractive subjects for operations and health care researchers for many years,

and numerous approaches have been developed to improve ED work flow. Most studies have

focused on forecasting patient volume, scheduling physicians' and nurses' shifts, medical

process chains and planning resource utilization. These works have relied largely on three

approaches: queuing and scheduling, mathematical and dynamic programming, and

economics.

Another current of literature uses algorithmic approaches to derive recommendations for

improving the quality of care provided by EDs. Most of the papers in this current address the

problem of increasing the accuracy of triage examination. Ballard et al. [2] validated an

algorithm for categorizing patients' severity in the New York University ED. Lowe and Fu [3],

from another angle, tested the ability of ED algorithms to detect changes in ED use. They

found that even if an algorithm can efficiently identify the severity of different patients'

conditions and various patient characteristics, it is less useful than other methods in predicting

differences in patients' access to care (length of stay). An algorithm-based study by Yeh and

Lin [4] departs from the focus on triage examination, proposing a genetic algorithm that seeks

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 683 -

mailto:Guy.Wachtel@outlook.co.il
mailto:Amir.Elalouf@biu.ac.il

to improve nurses' shift scheduling for the purpose of enhancing ED care quality. The genetic

algorithm approach is useful for planning and determining the allocation of resources in the

ED within the constraints of the hospital's budget. Yeh and Lin's [4] results imply that it is

possible to improve quality of care merely by adjusting nurses' schedules, even without

increasing the number of nurses in the system.

In this paper we assume that the ED determines a maximal (fixed or dynamic) value for

patients' length of stay, and that patients who cannot be evaluated in the ED in a timely fashion

are redirected for treatment into other hospital departments. The latter approach (referred to as

the "floating patient" method) is practiced, for example, in Israel. We suggest a dynamic

programming (DP) algorithm and corresponding FPTAS (Fully Polynomial Time

Approximation Scheme) to schedule patients' examination and treatment in the ED while

taking into account maximal LOS because of the need for fast decision in the ED environment.

Our work is based on the assumption that appropriate scheduling and programming approaches

can speed up patient handling procedures, thereby reducing the amount of time that patients

spend in the ED, improving service quality, increasing patient throughput and,

correspondingly, increasing the ED's revenue and profit. We will extend this problem to more

closely resembling real life by taking into account stochastic factors, time-flow and uncertainty

regarding the patients' actual medical requirements during their stay in the ED. To demonstrate

an application of our approach, we carry out simulations using data collected from actual

observations in an ED.

2 Problem description

As we address a minimizing version of the JSDP (Job Sequencing with Deadlines Problem) we

can define the problem as follows: A set of n independent, non-preemptive, patients has

arrived at the ED, {J1,J2,…,Jn} and is to be evaluated by a physician. We assume that the

physician is assigned a group of patients, to whom he provides initial examinations; these

examinations provide the physician with information on the duration that is expected for a full

evaluation. At any point in time, the physician can decide to stop carrying out initial

examinations and to send the other (unexamined) patients to other departments as "floating

patients". The physician then schedules full evaluations for the examined patients (he can still

decide to send some of them as "floating patients"). After the initial examination, the physician

knows/forecasts the patient's evaluation (processing) time (ti), and the patient's condition

uncertainty (pi). If patient's uncertainty (pi) is high, the physician will prefer to keep the patient

in the ED for full evaluation. The patient's evaluation deadline (Di) is calculated from the

patient's arrival time, ri (different times {r1,r2,…,rn} and the maximal LOS that was decided by

the ED management (D), as follows: Di=ri+D. The problem is to find a permutation π =

(π(1),π(2),…,π(n)) of {1,2,…,n}, that is, to schedule patients in such an order as to minimize the

total uncertainty:

1...
i i

i n

P p x

Where:

 1 2

if ... then 1 else 0
i i i

x t t t D

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 684 -

3 Pseudo-polynomial time algorithm

It is well known [5][6], that we can limit our search to schedules such that: (i) patients which

are to be on time are evaluated in increasing order of their deadlines, with the tardy patients

following them in arbitrary order. In our case tardy patients are sent as "floating patients" to

the other departments; and (ii) there is no idle time between patients. Such schedules contain

an optimal one. Next, we order all the patients by their deadlines, earliest deadline first and let

 if patient is to be late 1 else 0i ix J

Then the MIN-JSDP can written as the following integer-programming problem:

MIN-JSDP: minimize 1... i i jx i j
P t x B

 , 1...j n

Subject to 1... j i i jx i
T t x B

 , 1...j n

 0 or 1ix , 1...i n

Where
1... jj i ji

B t D

 , 1...j n

 1 stands for ,..., nx x x

As there exists an optimal and feasible schedule in which the jobs are scheduled in EDD order,

we say that one feasible schedule dominates another feasible schedule if for any extension of

the schedule there exists an extension of it with the same or a better profit and the same or a

shorter evaluation due time. Obviously, in this case this schedule can be removed from further

consideration without loss of optimality.

4 FPTAS

Our approach for constructing a new FPTAS (Fully Polynomial Time Approximation Scheme)

for the MIN-JSDP follows the computational scheme recently developed by [7]. The algorithm

consists of three main stages:

Stage A: Find a preliminary lower bound LB and an upper bound UB on the optimal solution

such that UB/LB ≤ n.

Stage B: Find improved lower and upper bounds on the optimal solution such that UB/LB≤ 2.

Stage C: Perform a partition of the interval [LB, UB] into ┌n/ε┐ equal sub-intervals, delete

sufficiently close solutions in the sub-intervals, and then find an ε-approximation solution.

The complexity of the entire three-stage FPTAS is O(n2/ε)

The FPTAS will eliminate sub-schedules in each loop of the algorithm, keeping only the n/ε

optimal sub-schedules.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 685 -

5 Concluding remarks

This paper introduces the emergency department's patients scheduling problem with maximal

due-time (LOS) constraints. We propose a DP scheduling algorithm with halting an FPTAS,

with complexity O(n2/ε). When dealing with a large scale network (i.e. network of areal/frontal

emergency departments) and\or an on-line scheduling in real-life scenarios, the FPTAS

reduces the algorithm’s running time in practice. We will propose a simulation method that can

be practiced in real-life scenarios.

References

1. Kim, K., Carey, K., Burgess, J. Emergency department visit: The cost of trauma

centers. Health Care Manage Sci 12, 243–251. 2009.

2. Ballard, D.W., Price, M., Fung, V., Brand, R., Reed, M.E., Fireman, B., New- house,

J.P., Selby, J.V., Hsu, J. Validation of an algorithm for categorizing the severity of

hospital emergency department visits. Medical Care 48, 58–63. 2010.

3. Lowe, R.A., Fu, R. Can the emergency department algorithm detect430 changes in

access to care? Academic Emergency Medicine 15, 506–516. 2008.

4. Yeh, J.Y., shan Lin, W. Using simulation technique and genetic algorithm to improve

the quality care of a hospital emergency department. Expert Systems with

Applications 32, 1073–1073. 2007.

5. W.E. Smith. Various optimizers for single-stage production, Naval Research

Logistics Quarterly, 3 (1-2), pp. 59-66. 1956.

6. E.L. Lawler, Moore, J.M. A functional equation and its application to resource

allocation and sequencing problems, Management Science 16 (1), pp. 77-84. 1969.

7. Tang, Huajun, et al. Efficient computation of evacuation routes on a three-

dimensional geometric network. Computers & Industrial Engineering 76: 231-242.

2014.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 686 -

MISTA 2015

Fairness in employee scheduling

Erica Stockwell-Alpert · Christine Chung

1 Introduction

In commercial, industrial, and retail settings, it can be tedious and difficult to find a schedule
for workers that fills every shift, gives every employee the hours they need, and does not
exceed the company’s budget. There may be a large number of shifts of varying lengths, all
of which require a minimum amount of coverage, as well as a large number of employees
who each require a different number of hours of work per week (or scheduling period).

We consider the problem of finding a work schedule that satisfies all employee and shift
requirements: where each employee has a minimum number of hours they must work, each
shift must be covered by a minimum number of employees, each employee has a set of
shifts they are available to work, and there is a limit on the total number of hours available
for distribution. We show that deciding whether a feasible schedule exists (one where each
employee is working at least their required number of hours) is NP-complete. We then con-
sider the corresponding NP-hard optimization goal of finding the most fair schedule, where
the least “satisfied” employee is as satisfied as possible. That is, we wish to minimize the
maximum ri−hi, where hi is the hours assigned to employee i and ri is the number of hours
employee i is required to work.

In game-theoretic terms, rather than the utilitarian objective of maximizing the aver-
age satisfaction over the employees, we focus on the egalitarian objective of maximizing
the satisfaction of the least-satisfied employee, i.e., looking for a solution that is as fair as
possible.

We are intentionally ambiguous about the source of the parameter ri, since it can be in-
terpreted as the number of hours the employee specifies they wish to work, or might instead
be specified by an employer/manager as a minimum number of hours an employee must
work based on work regulations, bookkeeping logistics, etc.

Our problem, which we call the Employee Satisfaction Problem (ESP), has similarities
to many employee timetabling problems (ETPs) that have been studied. Much of the work on

Erica Stockwell-Alpert
NorthPoint Digital, Boston, MA
E-mail: estockwell-alpert@northpointdigital.com

Christine Chung
Department of Computer Science, Connecticut College, New London, CT
E-mail: cchung@conncoll.edu

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 687 -

ETPs has been in the artificial intelligence and operations research communities; numerous
experimental studies have been conducted using heuristic methods such as local search,
branch-and-bound, genetic algorithms, constraint programming and ILP solvers, e.g., see
[1–3,10,18,20,21]. However the variants of timetabling problems in previous works have
different constraints and objectives from ours. In particular, they do not focus on fairness to
employees. Another point of contrast is that we provide a formal worst-case guarantee on
the quality of our algorithm’s solution relative to the optimal solution.

Another important distinction between our problem and many other timetabling prob-
lems is that our employee requirements are defined in terms of hours, rather than shifts. The
difference in the shift lengths is a very real and practical issue, e.g., an employee who is
given a series of 3- or 4-hour shifts rather than 8-hour shifts may not actually be working
enough hours to support themselves. And indeed, the differing shift durations are the crucial
factor in the intractability of ESP.

1.1 Related work

There is a prodigious amount of work done in timetabling, shift assignment, personnel
scheduling, and the like. We mention here some of the works that have more significant
similarities to ours.

The ESP is similar in nature to the timetable problem studied early on by Gotlieb [16,
15], which Even et al. later show to be NP-complete [13]. They consider the problem of
scheduling teachers in a school to class periods, and their problem has many parallels to
ours. But while classes may only be taught by one teacher, the work shifts (“classes”) in
our problem each have a positive integer parameter specifying the minimum number of
employees (“teachers”) that must be assigned to it. Each teacher in Gotlieb’s problem also
has a required number of hours that they must teach each class, while our employees simply
have a minimum total number of required hours they must work.

Cooper and Kingston [9] demonstrated intractability of timetabling problems in assorted
ways, the most similar to ours of which is referred to as “intractibility owing to meeting
size,” which roughly translates to intractability owing to shift length in our problem. But
again the parameters and details of the problems they study have meaningful differences
from ours. Their timetabling problem is more complicated, requiring multiple sets to be
assigned to the ”shifts,” with the requirement that certain members of set A be placed on
the same shift as certain members of set B, in addition to the basic availability constraints.
Aloul et al. proposed a SAT-based approach to solve a variant of employee timetabling [1].
In their formulation, employee requirements are defined in terms of minimum days rather
than minimum hours, all shifts are considered equal, and they seek to minimize the number
of idle workers.

A wide variety of techniques have been used to solve timetabling problems. To name a
few, Aloul et al. [1,2] examined Boolean satisfiability and ILP-solvers; Boyer et al. [4] used
a branch-and-price algorithm to ensure that employees are only assigned to tasks they are
capable of; Elahipanah et al. (2013) use a branch-and-bound search tree [1,2,4,12]. Robin-
son et al. [22] studied a personnel scheduling problem where a set of tasks must be assigned
to a set of employees during specific task intervals with the objective of minimizing labor
costs. They, along with a later work [5], propose a network flow solution, but in this setting
the employees have already been assigned their shifts, and the flow network is for assigning
tasks within that schedule. In our work, we also use a network flow-based algorithm, but our

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 688 -

algorithm is used to assign employees to shifts, the problem setting is quite different, and we
provide a formal gaurantee on how closely our algorithm approximates an optimal solution.

The scheduling problem most similar to our our own is probably the nurse rostering
problem, as it is concerned with fairness to employees [6–8,17,19]. Approaches to solving
the nurse rostering problem include tabu heuristic search [6]; variable depth search [7]; and
heuristic ordering hybridized with a variable neighborhood search [8]. The nurse rostering
problem has similar constraints as ESP: there is a set of shifts available for each day (typ-
ically “day,” “night,” and “late night”); an employee has a set availability, and cannot be
scheduled when they are unavailable; an employee can only be given one shift per day (this
restriction is not necessary for ESP, but we address how to handle this restriction) [19]. The
key difference between ESP and the nurse rostering problem is that in ESP, shifts may vary
in length, so employee satisfaction is determined based on total hours rather than total num-
ber of shifts assigned, and one set of shifts may satisfy an employee while an equal number
of shorter shifts may not.

1.2 Contributions

We show that the decision version of ESP is NP-complete. We then present an algorithm
that solves a special case of ESP where shifts are of the same length. We further show that
for instances that admit a feasible employee schedule (one where mini hi/ri ≥ 1), the same
algorithm gives approximation guarantees for two variants of our problem: (1) when the
“required hours” ri for each employee i are interpreted to be a minimum number of hours
that the employee must work, and additional hours above ri add to employee satisfaction,
and (2) when the “required hours” ri for each employee i are in fact interpreted to be the
desired hours of the employee, and hence any additional hours do not add to employee
satisfaction, so we cap OPT = mini hi/ri at 1.

In the first case, we learn that the further the budget of total available hours k surpasses
the total required hours of all employees R, the better the fairness guarantee. And in both
cases, keeping all shifts similar in length also improves the fairness guarantee. In particular,
in the second case, our algorithm approximates the value of the optimal solution to within
an additive

δ ≤ tmax− tmin

tmax

where tmin and tmax are the lengths of the shortest and longest shifts, respectively.
However, these results are stipulated by the fact that we allow for a (reasonably bounded

amount of) budget overflow. Note that in real world settings tmin and tmax may not be dramat-
ically different, and the closer they are, the better the approximation guarantee and the lower
the budget overflow. Furthermore, in any instance where k/R ≥ tmax/tmin, our algorithm is
guaranteed to satisfy all employee requirements, i.e., for every employee ei, hi ≥ ri.

2 Model and preliminaries

The Employee Satisfaction Problem (ESP) can be formalized as follows. We are given as
input:

1. A total number of hours available for distribution, k
2. A set of shifts S = {s1,s2, . . . ,sn}, where for each shift j = 1...n, we have:

– a positive integer t j, the length of shift j

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 689 -

– a positive integer m j, the minimum number of employees needed to cover shift s j
3. A set of employees E = {e1,e2, . . . ,em}, where for each employee i = 1...m, we have:

– Si ⊆ S, the subset of shifts that employee i is available to work
– a positive integer r j, the minimum number of hours that employee ei must be sched-

uled to work

We make the following basic assumptions on the input, without which the instance
would be trivially infeasible.

1. k ≥ ∑s j∈S m jt j, i.e., there are at least as many hours in the budget as the shifts require
2. k≥∑ei∈E ri, i.e., there are at least as many hours in the budget as the employees require

For convenience and without loss of generality, we also make the assumption that ri ≥
tmin for i = 1...m. (If ri < tmin for an employee ei, we can round ri up to tmin because, since
ri > 0, any employee must work at least 1 shift, and it is not possible to assign any employee
less than 1 tmin-hour shift.)

A solution to the problem (or schedule or assignment) is a mapping σ : E → 2S of
employees to sets of shifts they are scheduled to work such that the following constraints
are met.

1. for any employee ei, σ(ei)⊆ Si, [employee availability constraints]
2. for any shift s j, |{ei : s j ∈ σ(ei)}| ≥ m j, and [shift requirements]
3. ∑ei∈E ∑s j∈σ(ei) t j ≤ k [budget constraint]

We note that we have not yet addressed the issue of overlapping shifts. As currently
stated, the problem allows the same employee to be assigned to two shifts that overlap in
time. Indeed, the input as specified above does not even include information about which
shifts overlap. For the sake of simplifying presentation, we defer our solution to this issue
to Section 5.

The total number of hours assigned by schedule σ for employee ei is denoted

hi = ∑
s j∈σ(ei)

t j

(so the third constraint above can be rewritten ∑ei∈E hi ≤ k).
The decision problem ESP-D is to decide whether a schedule exists where all employees

work at least their required number of hours, i.e.,

max
ei∈E

ri−hi ≤ 0,

or, alternatively,
min
ei∈E

hi/ri ≥ 1.

We refer to such schedules as feasible.
We highlight both formulations of the objective here because maxi ri−hi may in fact be 0

or negative. Hence, rather than a standard multiplicative approximation to the corresponding
optimization problem, we use the second formulation, and give an additive approximation.1

Thus, our corresponding optimization objective for ESP will be to assign shifts to em-
ployees so as to

1 A multiplicative approximation of the second objective would be awkward and perhaps misleading since
this objective is effectively formulated as a percentage.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 690 -

maximize min
ei∈E

hi/ri.

As previously mentioned, we also allow for two interpretations of the input parameters
ri: (1) ri represents the minimum required hours an employee must work, and satisfaction
level hi/ri may exceed 1, or (2) ri represents the maximum number of hours the employee
wishes to work, and hence satisfaction level hi/ri is capped at 1. Formally, the second in-
terpretation yields the following objective, and we refer to this variant of the problem as
ESPW.

maximize min
{(

min
ei∈E

hi/ri

)
,1
}
.

We provide results for both ESP and ESPW. For the remainder of this paper, we denote
T = ∑

n
j=1 t j, R = ∑

m
i=1 ri, tmin = min j t j, tmax = max j t j, rmin = mini ri, and rmax = maxi ri. We

use OPT or σ∗ to denote the optimal solution, and h∗i will refer to the total hours assigned
to employee i in σ∗. We use |σ | to denote the objective function value of the solution σ .
We sometimes abuse notation and use an algorithm’s name to also refer to the solution it
returns. An algorithm A is an additive δ -approximation for ESP if |A| ≥ |OPT |− δ for all
possible instances of ESP.

2.1 Intractability

We show that the decision version of the ESP problem is NP-complete by reduction from
PARTITION.

Theorem 1 ESP-D is NP-complete

Proof Given as assignment of employees to shifts it can easily be determined in polyno-
mial time whether hi/ri ≥ 1 for all ei ∈ E. It remains to show that ESP-D is NP-hard.
Recall that the problem PARTITION is defined as follows. Decide whether a set of integers
{x1,x2, . . . ,xn} can be partitioned into two subsets of equal sum. Given an instance of parti-
tion, reduce it to ESP as follows. For each integer x j in the set of integers, we create a shift
of duration t j, with m j = 1. There are two employees with r1 = r2 = k/2. Both employees
are available to work every shift, and we set k = T , the sum of the shift durations. Note that
if a feasible schedule of shift assignments exists, then all of the shifts have been assigned
exactly once, and so the set of integers has been divided into two subsets of equal sum. If a
feasible assignment does not exist, there must be no way to partition the integers. ut

3 The algorithm

In this section we look at a special case of ESP-D to provide context and build intuition for
our proposed algorithm. Specifically, we demonstrate that if all shifts are the same length,
the problem can be solved efficiently. In this case, the problem can be solved in polynomial
time by reducing to the circulation problem, which can be reduced to the classic max-flow
problem [14].

An instance of the circulation problem is comprised of a flow network G = (V,E), a
flow demand value dv for each node v ∈V , and a capacity specification [`e,ce] for each edge
e ∈ E , where `e is the minimum amount of flow required on edge e and ce is the maximum

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 691 -

Figure 1 An example of the graph G with 3 employees and 4 shifts. Note that the special case of tmin = tmax
is under consideration in this section.

capacity of edge e. Flow must pass along the edges such that the demands specified at each
node are satisfied, and capacity constraints on the edges are observed. Demand on the node
v is satisfied if (flow into v)− (flow out of v) = dv. A feasible circulation is a flow where all
the edge capacity bounds are observed and the demands on each node are satisfied.

Our network (see Figure 1) has an underlying bipartite graph structure with “employee
nodes” on one side and “shift nodes” on the other. A unit of flow from an employee node ui
to a shift node v j means the employee ei is assigned to shift s j.

We now present the algorithm that we will be analyzing for the general case where shifts
may be differing lengths, keeping in mind that in this section, we assume all shift lengths are
equal, hence tmin = tmax. We let d = bk/tminc, as this is the maximum number of shifts that
can be assigned without exceeding k when tmin = tmax. For each employee ei, the minimum
number of shifts that could satisfy their requirement ri is dri/tmaxe. Therefore, we use this
as the basis for the lowerbound on the edge incident to the employee node. Finally, we scale
each lowerbound by k/R to ensure that any excess hours will be distributed. Formally, the
graph G is constructed as stated in Algorithm 1.

We round down rik/R in the lowerbound expression to make sure that we do not overes-
timate our demand and preclude a feasible solution. Finally, we define the algorithm CIRC-D
here as Algorithm 2.

The circulation problem can be efficiently solved by reducing it to the max-flow problem
and using, for example, the classic Edmonds-Karp algorithm [11] which has a runtime of
O(|V |2|E |), or, in the context of our problem, O((n+m)2(nm)). (Better run-times can of
course be gained by using any of the series of successive improvements to the run time of
solving this classic problem.)

The proof of the following theorem may be found in the full version of this paper.

Theorem 2 If tmax = tmin, the algorithm CIRC-D correctly solves the problem ESP-D.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 692 -

Algorithm 1: Reducing ESP to the Circulation Problem
Data: a set of employees E, a set of shifts S, the shift availability Si of each employee i, and a total

number of hours k
Result: A circulation flow network G

1 Add a “source” node s and a “sink” node t;
2 for each shift s j in S do
3 Add a node v j to the “right” side of G;
4 Add an edge (v j, t) with capacity bounds [m j,d];
5 end
6 for each employee ei in E do
7 Add a node ui to the “left” side of G;
8 Add an edge (s, ui) with capacity bounds [min {dbrik/Rc/tmaxe, |Si|},d] ;
9 for each shift s j ∈ Si do

10 Add an edge (ui,v j) with capacity bounds [0,1];
11 end
12 end
13 Add an edge (s, t) with capacity [0, d];
14 Give s a demand value of −d and t a demand value of d;
15 Give all other nodes a demand value of 0;

Algorithm 2: Circ-D
Data: ESP inputs
Result: Whether or not there is a feasible employee schedule

1 Follow the procedure in Algorithm 1 to construct the network G using the relevant inputs to the
ESP-D instance;

2 Run a circulation solver on the graph G;
3 if there is a feasible circulation then
4 output YES;
5 else
6 output NO;
7 end

4 Additive approximation guarantee

We use Algorithm 2 to approximate an optimal solution to the general ESP (where tmin
and tmax are not necessarily equal), save for the following modifications, and we refer to the
resulting algorithm as CIRC:

– In step 2 we return the circulation itself
– In step 3 we construct the assignment of employees to shifts by adding a shift s j to the

set σ(ei) for each edge (ui,v j) that has one unit of flow in the circulation. We then return
the assignment σ .

The circulation is the same as in Section 3; however, in the general case that tmin <
tmax, the lowerbound produced by dbrik/Rc/tmaxe on each edge (s,ui), i = 1...m, may be
fewer than the minimum number of shifts that could satisfy the requirement ri, and thus no
longer guarantees that hi ≥ ri. The budget restrictions are also effectively relaxed with d =
bk/tminc, which is now a potentially loose upperbound on the number of shifts the budget can
afford, and can allow more than k hours of shifts to be assigned. These effectively loosened
restrictions ensure that, if no feasible circulation is found, then no feasible assignment of
employees exists.

The proof of the following lemma may be found in the full version of this paper.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 693 -

Lemma 1 If a feasible solution exists for an instance of ESP-D, a feasible circulation can
be found (by CIRC) in G.

Of course, the algorithm may return a feasible circulation when there is no feasible
assignment of employees to shifts, and it may indeed return an assignment that exceeds the
budget of k, which we will also provide worst-case bounds on. But Lemma 1 ensures that if
the algorithm does not return a solution, no feasible solution exists, which perhaps indicates
to the employer that the input values are unreasonable and must be reconsidered.

We note that the flow demand value d = bk/tminc is the minimum possible that still
ensures there will be a feasible circulation when there is a feasible assignment. Indeed, if d <
bk/tminc, there are instances with a feasible assignment where the circulation is infeasible.

As an interesting sidenote, we now show that if bk/Rc ≥ tmax/tmin, all employee require-
ments are guaranteed to be satisfied by CIRC.

Proposition 1 If bk/Rc ≥ tmax/tmin, then the solution returned by CIRC ensures that hi ≥ ri
for all i = 1...m.

Proof Due to the lowerbounds on edges out of s, each employee ei is guaranteed to be as-
signed at least dbrik/Rc/tmaxe ≥ dbk/Rcri/tmaxe shifts. Thus, we have hi ≥ dbk/Rcri/tmaxe ·
tmin. And with bk/Rc ≥ tmax/tmin, then hi ≥ dritmine/tmin ≥ ri. ut

This simple fact may imply a practical rule of thumb for employers: they should have
a budget of at least k >= (tmax/tmin)R total hours for distribution if they wish to guarantee
that employees can all work the number of hours they are required to.

Before proceeding with proving our guarantee on minimum employee satisfaction, we
first show that the budget overflow of CIRC can be reasonably small when (1) shift lengths
are all close in size (i.e., tmax− tmin is small), or (2) there is a large number of tmin-length
shifts in S.

Let nmin be the number of shifts of length tmin. The proof of the following lemma may
be found in the full version of this work.

Lemma 2 In the solution returned by CIRC, the budget k will not be exceeded by more than
b = tmax · (bk/tminc−nmin)+ tmin ·nmin− k

≈ k(tmax/tmin−1)−nmin(tmax− tmin).

As a possible rule of thumb for employers: the budget overflow is lower when the num-
ber and duration of maximum-length shifts is lower.

We now move onto the approximation guarantee for minimum employee satisfaction.
Let |CIRC| denote the objective function value of our algorithm’s solution. We start by giving
a lowerbound on the quality of our algorithm’s solution (the proof of which may be found
in the full version of this work).

Lemma 3 For any instance of ESP,

|CIRC| ≥ drmaxbk/Rc/tmaxe · tmin

rmax

Theorem 3 Assuming there is a feasible solution to ESP-D, and allowing for a budget
overflow of b, the algorithm CIRC provides an additive δ -approximation to ESP, where

δ ≤ T
rmax
− bk/Rctmin

tmax

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 694 -

Proof In any instance, the most hours that any employee can have is T : in the case where
they are assigned to every existing shift. Therefore, for any employee ei we have hi/ri ≤
T/ri; and hence the minimum satisfaction over all employees in OPT is at most T/rmax.

Combining this with Lemma 3:

|OPT|− |CIRC| ≤ T
rmax
− drmaxbk/Rc/tmaxe · tmin

rmax

≤ T
rmax
− bk/Rc · tmin

tmax

ut
We defer to the full version of this work the proof of the following theorem, which shows

that the above guarantee on the performance of CIRC for ESP (Theorem 3) is essentially
tight.

Theorem 4 There is an instance of ESP where

|OPT|− |CIRC|= δ ≥ T
rmax
− drmaxbk/Rc/tmaxetmin

rmax

In the case of the problem ESPW (where satisfaction levels hi/ri are always capped
at 1, which would be the case when the ri inputs represent employees’ maximum desired
hours rather than minimum required hours), we immediately arrive at the following simple
characterization of the guarantee of CIRC.

Theorem 5 Assuming there is a feasible solution to ESP-D, and allowing for a budget over-
flow of b, the algorithm CIRC provides an additive δ -approximation to ESPW, where

|OPT|− |CIRC|= δ ≤ tmax− tmin

tmax

Proof By Lemma 3, and since bk/Rc ≥ 1, we have

|CIRC| ≥ bk/Rctmin

tmax
≥ tmin/tmax.

By definition of ESPW we know that |OPT | ≤ 1, hence |OPT| − |CIRC| ≤ 1− tmin/tmax.
ut

We now demonstrate that Theorem 5 is tight.

Theorem 6 There is an instance of ESPW where

δ ≥ tmax− tmin

tmax

Proof The lowerbound on our algorithm for ESPW is demonstrated by a worst-case instance
described as follows (also see Figure 2). The instance has m = 4 employees, n = m+1 = 5
shifts, and k = T = 29. Employee requirements and availability are: r1 = 7,S1 = {s1,s2,s3};
r2 = 5,S2 = {s2,s3}; r3 = 5,S3 = {s1,s4}; r4 = 7,S4 = {s4,s5}.

Shift lengths and are alternating: t1 = 5, t2 = 7, t3 = 5, t4 = 7, and t5 = 5, and shift
requirements are m j = 1 for j = 1 . . .5. The lowerbound for each employee edge (s,ui),
i = 1 . . .m, is hence 1. d = bk/tminc= 5, which means there are 5 shifts available for distri-
bution among the employees. In the optimal solution, the shifts are assigned as illustrated in
Figure 2 for an objective function value of |OPT |= 1. However, another feasible circulation
exists (as illustrated) that does not satisfy all employees’ required hours, giving a minimum
satisfaction of tmin/tmax. Hence |OPT |− |CIRC|= δ ≥ 1− tmin/tmax. ut

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 695 -

Figure 2 An instance that demonstrates the lowerbound of δ for ESPW.

5 Overlapping shifts

Our algorithm as presented thus far assumes that shifts do not overlap. Any two shifts as-
signed to an employee must not share any hours or else the assignment is invalidated. In
order to resolve this and ensure that overlapping shifts are not assigned to the same em-
ployee, the following change can be applied to the circulation design.

For each employee ei, for every pair of overlapping shifts in {sx,sy} ∈ Si:

1. Remove the two edges (ui,vx) and (ui,vy).
2. Add a “median” node wi “between” the corresponding shift nodes vx and vy as follows.

Add an edge from ui to the median node wi.
Add edges from the median node wi to each of the two shift nodes vx and vy.
Set all edges to and from wi to have capacity [0,1].

3. If either of the shift nodes vx or vy now has two or more of these median nodes adjacent
to it (emanating from ui), further modify the graph as follows. For each such shift node
v j, j ∈ {x,y}, with adjacent median nodes (wi1 . . . wiµ):

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 696 -

Figure 3 Shifts s1 and s2 overlap, and shifts s2 and s3 overlap, but shifts s1 and s3 are not in conflict

For each edge (wik ,v j), k = 1 . . .µ:
Set its capacity to [0,1/µ]

An example output of this adjusted procedure is illustrated in Figure 3. In this example,
shifts s1 and s2 overlap, and shifts s2 and s3 overlap, but shifts s1 and s3 are not in conflict.

The algorithm must further be modified to prefer whole flows to fractional ones in its
tie-breaking; an available edge with capacity of 1 should be preferred over an available edge
with a fractional capacity. For example, in Figure 3, there are many different flows that will
saturate both edges leaving u1, but the one that sends whole units of flow over the edges
(w11,v1) and (w12,v3) is preferred.

The assignments of employees to shifts is determined as before: an employee i is as-
signed to a shift j if and only if there is one unit of flow from node ui to node v j. In particu-
lar, if there is less than 1 unit of flow from an employee node to a shift node, that employee
is not assigned to that shift.

With this additional procedure, the guarantees of the algorithm remain the same, but
now it is certain that no employee will be scheduled for overlapping shifts.

6 Conclusion

Our work shifts the focus of employee timetabling problems onto employee satisfaction.
We present an approximation algorithm for the egalitarian objective of maximizing mini-
mum employee satisfaction. ESP can be applied to many types of work environments where
varying weekly schedules are used. It addresses the concerns of both the management and
the employees: while we allow some budget overflow, we provide a bound for the overflow
amount, which the employer can make use of in setting their initial budget (k) value; em-
ployees are guaranteed a lowerbound on how many hours they will be given relative to what
they need, which promises that the schedule will be relatively fair; and all shift requirements
are satisfied, ensuring that every shift will have adequate coverage.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 697 -

The quality of the guarantees are dependent on the input, specifically on the size differ-
ence between the shortest and longest shift in the set, the maximum employee requirement,
and the size of k.

Some important future directions include: (1) finding an algorithm with a better approx-
imation guarantee, (2) considering the more complex problem of allowing both a minimum
and maximum amount hours to be specified for each employee, and (3) considering the
employee’s ri values to be private information that must be extracted from the employee
truthfully (making it a mechanism design problem).

References

1. Aloul, F., Al-Rawi, B., Al-Farra, A., & Al-Roh, B. “Solving the employee timetabling problem using
boolean satisfiability.” in 2006 Innovations in Information Technology, November 19-21, 2006, Dubai,
4085403 (2006).

2. Aloul, F., Zahidi, S., Al-Farra, A., & Al-Roh, B. “Solving the employee timetabling problem using
advanced SAT & ILP techniques.” Journal of Computers, Vol. 8(4), pp. 851-858, 2013.

3. Artigues, C., Gendreau, M., Rousseau, L.M., & Vergnaud, A. “Solving an integrated employee
timetabling and job-shop scheduling problem via hybrid branch-and-bound.” Computers and Operations
Research, Vol. 36(8), pp. 2330-2340, 2009.

4. Boyer, V., Gendron, V., & Rousseau, L. “A branch-and-price algorithm for the multi-activity multi-task
shift scheduling problem.” Journal of Scheduling, pp. 1-13, 2013.

5. Brucker, P., & Qu, R. “Network flow models for intraday personnel scheduling problems.” Annals of
Operations Research, pp. 1-8, 2012.

6. Burke, E., Cowling, P., De Causmaecker, P., Vanden Berghe, G. “A Memetic Approach to the Nurse
Rostering Problem.” Applied Intelligence, Vol. 15(3), pp. 199-214, 2001.

7. Burke, E., Curtois, T., Qu, R., & Vanden Berghe, G. “A Time Pre-defined Variable Depth Search for
Nurse Rostering.” Technical Report, University of Nottingham, 2007.

8. Burke, E., Curtois, T., De Causmaecker, P., Post, G., Qu, R., Vanden Berghe, G. & Veltman, B. “A hybrid
heuristic ordering and variable neighbourhood search for the nurse rostering problem.” European Journal
of Operational Research, Vol. 188(2), pp. 330-341, 2008.

9. Cooper, T. B., & Kingston, J. H. (1996, October). The Complexity of Timetable Construction Problems.
In Practice and Theory of Automated Timetabling, Edinburgh, UK, August 1995.

10. Dowsland, K. “Nurse scheduling with tabu search and strategic oscillation.” European Journal of Oper-
ational Research, Vol. 106, pp. 393-407, 1998.

11. Edmonds, J., & Karp, M. “Theoretical improvements in algorithmic efficiency for network flow prob-
lems.” Journal of the Association for Computing Machinery, pp. 248-264, 1972.

12. Elahipanah, M., Dulniers, G., & Lacasse-Guay, E. “A two-phase mathematical- programming heuristic
for flexible assignment of activities and tasks to work shifts.” Journal of Scheduling, pp. 1-18, 2013.

13. Even, S., Itai, A., & Shamir, A. “On the complexity of timetable and multicommodity flow problems.”
SIAM J. Comput., Vol. 5(4), pp. 691-703, 1976.

14. Ford, L. R., and Delbert Ray Fulkerson. Flows in networks. Vol. 1962. Princeton University Press:
Princeton, 1962.

15. Gotlieb, C. C. (1963, January). The construction of class-teacher time-tables. In IFIP congress (Vol. 62,
pp. 73-77).

16. Gotlieb, C. C. (1962, January). The construction of class-teacher time-tables. In COMMUNICATIONS
OF THE ACM (Vol. 5, No. 6, pp. 312-313).

17. Holmes, H., Pierskalla, W., & Rath, G. “Nurse Scheduling Using Mathematical Programming.” Opera-
tions Research, Vol. 24(5), 1976.

18. Kragelund, L. “Solving a timetabling problem using hybrid genetic algorithms.” Software - Practice and
Experience, Vol. 27, pp. 1121-1134, 1997

19. Maenhout, B. & Vanhoucke, M. “Comparison and hybridization of crossover operators for the nurse
scheduling problem.” Annals of Operations Research, Vol 159, pp.333-353, 2007.

20. Meisels, A., Gudes, E., & Soloterevsky, G. “Combining rules and constraints for employee timetabling.”
Int’l Journal of Intelligent Systems, Vol.12, pp.419-439, 1997.

21. Meisels, A., & Shaerf, A. “Modelling and solving employee timetabling problems.” Annals of Mathe-
matics and Artificial Intelligence, Vol. 39(1-2), pp. 41-59, 2003.

22. Robinson, R., Sorli, R., Zinder, Y. (2005). Personnel scheduling with time windows and preemptive tasks.
Proceedings of the 5th International Conference on the Practice and Theory of Automated Timetabling,
Pittsburgh, August 2004.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 698 -

MISTA 2015

Model for planning of distributed data production

Dzmitry Makatun · Jérôme Lauret ·
Hana Rudová · Michal Šumbera

1 Introduction

The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) studies a primor-

dial form of matter that existed in the universe shortly after the Big Bang. Collisions

of heavy ions occur millions of times per second inside the detector, producing tens

of petabytes of raw data each year. All the raw data has to be processed in order

to reconstruct physical events which are further analyzed by scientists. This process is

called data production. Like any other modern experiment in High Energy and Nuclear

Physics (HENP), STAR intends to rely on distributed data processing, making use of

several remote computational sites (for some experiments this number can scale up to

several hundreds).

When running data intensive applications on distributed computational resources

long I/O overheads may be observed as access to remotely stored data is performed.

Latency and bandwidth can become the major limiting factors for the overall com-

putation performance and can reduce the CPU time / wall time ratio due to excessive

I/O wait. Widely used data management systems in the HENP community (Xrootd,

DPM) are focused on providing heterogeneous access to distributed storage and do not

consider data pre-placement with respect to available CPUs, job duration or network

performance. At the same time job scheduling systems (PBS, Condor) do not reason

about transfer overheads when accessing data at distributed storage. For this reason,

Dzmitry Makatun
Faculty of Nuclear Physics and Physical Engineering, Czech Technical University in Prague
E-mail: dzmitry.makatun@fjfi.cvut.cz

Jérôme Lauret
STAR, Brookhaven National Laboratory (BNL), USA
E-mail: jlauret@bnl.gov

Hana Rudová
Faculty of Informatics, Masaryk University, Brno, Czech Republic
E-mail: hanka@fi.muni.cz

Michal Šumbera
Nuclear Physics Institute (NPI), Academy of Sciences (ASCR), Czech Republic
E-mail: sumbera@ujf.cas.cz

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 699 -

an optimization of data transferring and distribution across multiple sites is often done

manually, using a custom setup for each particular infrastructure [2].

In previous collaboration between BNL and NPI/ASCR, the problem of efficient

data transferring in a Grid environment was addressed [6]. Data transfers between

n computational sites and m data locations were considered but job scheduling was

not covered by that work. In [4] we proposed a constraint programming planner that

schedules computational jobs and data transfers in a distributed environment in order

to optimize resource utilization and reduce the overall completion time. Since such

global scheduling is computationally demanding it should be divided into several stages

in order to improve scheduler performance and scalability. A planning of resource load

can be completed in the first stage before scheduling file transfers and jobs. In this

work we address the problem of data production planning, answering the question how

the data should be transferred given the network structure, bandwidth, storage and

CPU slots available. This will allow local schedulers to process jobs and have CPUs

busy all the time while not exceeding disk and network capacities.

Optimization of data intensive applications in Grid was studied in [5]. In this work

an optimization was achieved by replication of highly used files to more sites while the

jobs were executed where their input data is located. However, this is not the case for

data production, when each file has to be processed once. Explicit model distributing

jobs over a Grid with respect to the network bandwidth was proposed in [3]. The

network structure of the Grid was modeled as a tree and all the files were assumed

to be of the same size and processing time. In our study we do not limit the network

topology to trees, and assume fluctuations of job parameters.

2 Modeling

Due to a data level of parallelism a typical workflow of HENP computation consists

of independent jobs using one CPU, one input and one output file. We assume there

is a local scheduler running at each site, which picks a new input file to process from

the local storage of that site each time when a CPU becomes free. Input data must be

transferred from the central storage to each site in such a manner that at the every

moment of time there is enough input files at each site to keep all the available CPUs

busy while not exceeding the local storage and network throughput. Another task is

to transfer the output files back to central storage, cleaning each local storage for the

new input.

Let us consider a scheduling time interval ∆T . We assume that at the starting

moment all the CPUs in the Grid are busy, and there is some amount of input data

already placed at each site. We need to transfer the next portion of data to each site

during time interval ∆T in order to avoid draining of the local queue by the end of

this interval.

The computational Grid is represented by a directed weighted graph where vertexes

ci ∈ C are computational nodes and edges lj ∈ L are network links. The weight of each

link bj is the amount of data that can be transferred over the link per unit of time (i.e.

bandwidth). One of the nodes c0 is the central storage where all the input files for the

further processing are initially placed. All the output files has to be transferred back

to c0 from the computational nodes. We will give two separate problem formulations:

for an input and output transfer planning.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 700 -

In order to formulate a network flow maximization problem [1] for input/output file

transferring we have to define a capacitated {s, t} network, which is a set of vertexes V

including a source s and a sink t; and a set of edges e ∈ E with their capacities cap(e).

A solution that assigns a nonnegative integer number f(e) to each edge e ∈ E can be

found in polynomial time with known algorithms.

In order to transform a given graph of a Grid into a capacitated {s, t} network

for an input transfer problem we add two dummy vertexes: a source s and a sink t.

Next we add dummy edges di ∈ D from each computational node i to the sink, and a

dummy edge q0 from the source s to the central storage c0. These dummy edges allow

us to introduce constraints on the storage capacity of the nodes. The set of vertexes V

consists of computational nodes C and dummy vertexes: V = C ∪ {s, t}. The final set

of edges consists of real network links L, dummy edges D from computational nodes

to the sink and from the source to the central storage q0: E = L ∪D ∪ {q0}. Capacity

of each edge defines the maximal amount of data that can be transferred over an edge

within time interval ∆T :

cap(e) =

bj ·∆T if e = lj ∈ L
wi if e = di ∈ D
k0 if e = q0

(1)

where wi is the maximal amount of data that can be transferred to the node i without

exceeding its storage capacity Diski and k0 is the total size of available input files at

c0. We denote the solution for the input transfer problem as f in(e).

For transfer of output files we use a similar transformation, but swap the source s

and the sink t, change the direction of dummy edges and redefine capacities of dummy

edges. In this case the capacity k0 of the dummy edge q0 leading from the central

storage c0 to the sink s is equal to the amount of data which can be transferred to c0
within time interval ∆T (it is limited by the available space at the central storage).

The capacity wi of dummy edges di leading from the source t to computational nodes

ci is equal to the maximum amount of output data which can be transferred from the

node ci.

cap(e) =

bj ·∆T if e = lj ∈ L
wi if e = di ∈ D
k0 if e = q0

(2)

We denote the solution for the output transfer problem as fout(e).

Let us consider data production jobs which perform the same type of processing on

the same type of files. Duration pj of a job j processing an input file of size InSizej
at a node i is pj = αi · InSizej where αi is constant for each node i. The ratio of size

of input InSizej and output OutSizej files of each job j is considered to be constant

for the same type of data processing, i.e., OutSizej = β · InSizej . During the time

interval ∆T a node i with NCPUi of CPUs will process 1
αi
· NCPUi · ∆T of input

data and will produce β
αi
·NCPUi ·∆T of output data. Using constraints on storage

space, we can define the maximal amount of input wi and output wi data which can

be transferred to/from a node i:

wi = Diski − Iini − I
out
i +

1− β
αi

·NCPUi ·∆T +Delouti (3)

wi = Iouti +
β

αi
·NCPUi ·∆T −Minouti (4)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 701 -

where Diski is available disk space at the node i, Iini and Iouti are the initial size of

input and output data at a local storage respectively, Delouti is the amount of output

data that will be transferred out of the node and deleted from its storage during ∆T ;

Minouti is the total size of output files which cannot be transferred because the jobs

which produce them are not finished (output files of running jobs).

In the Eqn. 3, Delouti is equal to the amount of data which will be transferred from

a node ci, i.e., the solution to the output transfer problem fout(di). In the Eqn. 4, ∆T

and Minouti are parameters of the scheduler. The other values used in Eqns. 3–4 can

be obtained from monitoring data right before each planning iteration.

3 Solving Procedure

It can be proven that the maximum flow problems for input and output transfers

can be solved independently under assumptions: (a) all the real network links in the

considered Grid are full-duplex, i.e., a network throughput between two nodes is the

same in both directions (b) in a steady state the size of the output transferred from

each node is proportional to the size of the input transferred to that node in each

scheduling interval, i.e., fout(di) = β · f in(di), where β ≤ 1.

Since in real environment the assumption (b) will not strongly hold due to resource

performance fluctuations we propose the following approach to solve the problem:

1. Calculate values for wi using Eqn. 4.

2. Solve the problem for output data flows to obtain fout(e).

3. Using Eqn. 3 and Delouti = fout(di) calculate wi.

4. For real links l ∈ L reduce the capacity by the amount which is used by output

transfers: cap(lj) = bj ·∆T − fout(lj).
5. Solve the problem for input transfers with wi and cap(lj) defined in previous steps.

Find input data flows f in(e).

To conclude, this procedure is expected to compute feasible data transfers such that

CPUs in Grid are busy with computational jobs while not exceeding local disk ca-

pacities. An evaluation of the proposed heuristic with the help of Grid simulations is

planned as the next part of the research.

4 Conclusion

In this paper we proposed a model of distributed data production, where all the files

from a single source has to be processed once and transferred back. This model al-

lows planning of WAN, storage and CPU loads using the network flow maximization

approach. The proposed model will be used in a distributed data production planner

which is being developed. The planner will enable automated and scalable planning and

optimization of distributed computations which are highly required in data intensive

computational fields such as High Energy and Nuclear Physics.

Acknowledgements This work has been supported by the Czech Science Foundation (13-
20841S, P202/12/0306), the MEYS grant CZ.1.07/2.3.00/20.0207 of the European Social Fund
(ESF) in the Czech Republic: Education for Competitiveness Operational Programme (ECOP)
and the Office of Nuclear Physics within the U.S. Department of Energy.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 702 -

References

1. Ahuja, R.K., Magnati, T.L., Orlin, J.B.: Network flows : theory, algorithms, and applica-
tions. Prentice Hall (1993)

2. Balewski, J., Lauret, J., Olson, D., Sakrejda, I., Arkhipkin, D., et al.: Offloading peak
processing to virtual farm by STAR experiment at RHIC. J. Phys.: Conf. Ser. 368(012011)
(2012)

3. Beaumont, O., Carter, L., Ferrante, J., Legrand, A., Robert, Y.: Bandwidth-centric allo-
cation of independent tasks on heterogeneous platforms. IEEE International Parallel and
Distributed Processing Symposium (2002)

4. Makatun, D., Lauret, J., Rudová, H., Šumbera, M.: Planning for distributed workflows:
constraint-based coscheduling of computational jobs and data placement in distributed
environments. Journal of Physics: Conference Series 608(1), 012,028 (2015)

5. Ranganathan, K., Foster, I.: Decoupling computation and data scheduling in distributed
data-intensive applications. 11th IEEE International Symposium on High Performance
Distributed Computing pp. 352–358 (2002)

6. Zerola, M., Lauret, J., Barták, R., Šumbera, M.: One click dataset transfer: toward efficient
coupling of distributed storage resources and CPUs. J. Phys.: Conf. Ser. 368(012022) (2012)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 703 -

MISTA 2015

A Decomposition Heuristic for a Bicriteria Evacuation
Scheduling Problem

Kaouthar Deghdak · Vincent T’kindt

1 Introduction

Evacuation after a major disaster is a very complicated task which needs an effective

scheduling to transport resident from endangered areas to safe destinations. Whenever

a disaster take place, many sub-problems arise: when should people be evacuated?

What are the best shelters’ locations to accommodate evacuees? How to transport

the evacuees there?. Evacuation problems have been of a great interest for researchers

due to an increasing number of natural and man-made catastrophes, where developing

evacuation plans for urban area are necessary. Frequently, several operation research

approaches have been used to solve these problems separately or partially. Important

reviews about evacuation modeling and disaster management can be found in [1] and

[3].

One interesting problem tackled as an OR problem is the shelter location decision

and the evacuation routing problem. It has been firstly adressed in [5] and later are

followed by others publications mainly introducing heuristics. Recently, Bish [2] has

introduced the bus evacuation problem, in which a mathematical model and heuristics

are proposed. Bretschneider [7] has introduced the multiple commodity evacuation

problem using buses and vehicles. The aim is to define routes and timetables, in such

a way a weighted linear combination of the flows of the commodities arriving at their

corresponding destinations and the total number of emergency lanes is minimized.

Furthermore, an heuristic based on mathematical formulation is proposed to solve this

problem. This heuristic is able to solve small instances in a reasonable time.

The purpose of this work is to study the problem of evacuating an urban area after a

major disaster. We consider the real-world instances of Nice (France) and Kaiserslauter

(Germany). Also, we consider simultaneously the location choice of shelters, bus routing

for public transport, and routing for individual traffic. The objective is to minimize

both evacuation time and evacuation risk. This problem was introduced in [6] and

they solved this problem by using a genetic algorithm. In contrast to the integrated

approach developed in [6], we propose an heuristic based on a decomposition of our

Kaouthar Deghdak, Vincent T’kindt
Université François-Rabelais de Tours, CNRS, LI EA 6300, OC ERL CNRS 6305, Tours, France
E-mail: {deghdak,tkindt @univ-tours.fr}

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 704 -

problem into sub-problems. The solution of these sub-problems is achieved by exact or

heuristic algorithms.

2 Problem definition

Let C be the set of collection points: any cj ∈ C is defined by its geographic coordinates

and a maximum capacity cCj . Let BS be the set of bus stops: any bsj ∈ BS is defined

by its geographic coordinates. Let S be the set of shelters: any sj ∈ S is defined

by its geographic coordinates and a maximum capacities cSj and cPj representing the

number of people who can be hosted at that shelter and the parking space available

near this shelter, respectively. Let B be the set of buses used to evacuate people from

the bus stops and collections points towards shelters: any bj ∈ B is defined by its initial

geographic coordinates (depot) and a capacity in terms of number of people who can

be transported at the same time. We make the assumption that all the buses have the

same capacity.

Consider a transportation network within the study area represented by a directed

graph G = (N ,A). N is the set of nodes and A is the set of arcs between two nodes. A

node ni ∈ N can model either a crossroad, a shelter location s ∈ S, a collection point

c ∈ C, or a bus stop bs ∈ BS . An arc ai,j = (ni, nj) indicates that a flow of buses/cars

can go from node ni towards node nj . Besides, it is associated with two capacities cbi,j
(the maximum number of buses using the arc at a given time t) and cvi,j (the maximum

number of cars using the arc at a given time t), a traversing time pi,j , and a risk value

ri,j indicating the likelihood of a building collapse.

The aim is then at computing a set of solutions, which minimize the evacuation

duration Tevac and the total risk R. A solution is defined by: (I) the list of shelters that

will be opened and accomodate evacuees, (II) the routing of cars towards the shelters,

and (III) the routing of buses to evacuate all people located at the bus stops and the

collection points towards the shelters.

In the field of multicriteria optimization, many methods to compute the Pareto

front are known [8]. In this work we use the ε-constraint approach as follows: the

total risk R is minimized under the constraint that the maximum evacuation time

Tevac is lower or equal to a given value ε. From practical point of view, solving one

ε-constraint problem makes sense: the ε value represents a threshold which guarantee

that the evacuation is performed in no more than ε time units. Then the aim becomes

at minimizing the total risk within that time limit. Additionally, while the evacuation

time is a very descriptive value, the total risk is a more abstract value, and fixing a

desired quality is hardly possible in practice.

3 Decomposition heuristic

While the Genetic algorithm[6] already solves the problem it is not expected to be

capable to solve large instances like the case of the city of Nice. Consequently, our goal

in this communication is to propose an efficient and a fast heuristic capable of handling

such large instances.

We describe below the main steps of our decomposition heuristic.

(1) Bicriteria paths: This step is fundamental and aims at reducing the size of the

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 705 -

transportation network. For each couple (collection point/bus stop ; shelter), we calcu-

late bictreteria paths, where the two criteria considered are the maximum evacuation

time and the total risk. For this, we use the algorithm proposed in [4].

(2) Shelters’ locations: The maximum number of shelters which can be opened dur-

ing the evacuation is fixed by the decision maker. In this step, we choose the set of

the best shelters’ locations among all available. In term of optimization models, this

problem can be modeled as a multi-dimensional knapsack problem. To this end, we

propose a dynamic program to enumerate sets of shelters’ locations. For each set, we

solve the bus-routing and the car-routing problems. These steps are explained in detail

below.

(3) Car-routing: The choice of routes for cars is performed using a min-max flow al-

gorithm on a time expanded network, while only the paths that respect the ε-constraint

in the Tevac criterion are considered.

(4) Bus-routing: After the evacuation of all cars, we evacuate all people by buses. The

bus-routing problem is more elaborated and complicated than the car-routing prob-

lem, as a single bus may perform several trips from collection points toward shelters.

Initially all buses are located in a depot. Then, the buses are routed to the nearest

collection points and bus stops. We apply a min cost flow algorithm to transport evac-

uees from collection points or buses stops to shelters, where the risk R is minimized

under the ε-constraint. We uses a shortest path algorithm to route empty buses from

shelters to collection points or bus stops.

(5) Local search: Finally, solutions are post-optimized using a local search based on

permutation of the paths used by buses and cars. To reduce computation times, the

local search is performed until a given number of iterations has been performed, or a

local optimum is reached.

4 Results

We have tested the decomposition heuristic and the genetic algorithm on the real in-

stances of Nice city (France). Preliminary results show that the decomposition heuristic

complements the Pareto front obtained by the genetic algorithm. In other words, the

decomposition heuristic is capable for finding a non dominated solutions that are not

calculated by the genetic algorithm. Notice that, apparently, the convergence of the de-

composition heuristic towards an approximation of the Pareto front seems to be slower

than for the genetic algorithm.

During the conference, we will present detailed comparisons between the two meth-

ods in terms of running times and solutions’ quality for several instances of Nice city

and Kaiserslautern city.

Acknowledgements This research has been supported by ANR-11-SECU-002-01, project
DSS EVAC LOGISTIQUE (CSOSG 2011).

References

1. N. Altay, W. G. Green III, OR/MS research in disaster operations management, Eur. J.
Oper. Res, 175, 475493 (2006)

2. D R. Bish, Planning for a bus-based evacuation, OR Spectrum, 33(3), 629-654(2011)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 706 -

3. H. Hamacher, S. Heller, W. Klein, G. Kster, S. Ruzika, A sandwich approach for evacua-
tion time bounds. In: Peacock, R.D., Kuligowski, E.D., Averill, J.D. (Eds.), Pedestrian and
Evacuation Dynamics,503513. Springer, USA (2011)

4. G. Sauvanet, E. Néron, Search for the best compromise solution on Multiobjective shortest
path problem, Electronic Notes in Discrete Mathematics, 36, 615-622 (2010)

5. H.D. Sherali, T.B. Carter, A.G. Hobeika, A location-allocation model and algorithm for
evacuation planning under hurricane/flood conditions, Transp. Res. Part B: Methodol, 25,
439-452 (1991)

6. M. Goerigk and K. Deghdak and P. Hessler, A comprehensive evacuation planning model
and genetic solution algorithm, Transportation Research Part E: Logistics and Transporta-
tion Review, 71, 82 - 97 (2014)

7. S. Bretschneider, Mathematical Models for Evacuation Planning in Urban Areas, Springer
(2010)

8. V. T’kindt and J-C. Billaut, Multicriteria scheduling: theory, models and algorithms,
Springer-Verlag Berlin Heidelberg, 2nd edition, (2006)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 707 -

MISTA 2015

Iterated Local Search for the Generator Maintenance

Scheduling Problem

Ahmad Almakhlafi · Joshua Knowles

Abstract We consider the task of devising an effective metaheuristic for a variant

of the preventive maintenance scheduling problem (PMSP) — the (power) generator

maintenance scheduling problem (GMSP). Recent research on metaheuristics for this

problem has made progress on it, but the potential economic benefits of effective meth-

ods is significant in this area, and warrants further focused work. We propose here a

solution method based on Iterated Local Search (ILS) following an earlier study by us

on neighbourhood search for the same task. Several extensions to a basic ILS design are

developed and analysed, including specialised operators and delta-evaluation, as well as

restart and portfolio strategies. With these methods, we obtain a significant improve-

ment in performance (in terms of solution quality, runtime and function evaluations)

over recent techniques for real-world derived instances of the GMSP. We also provide

a benchmark (and results on additional benchmark instances) for future studies of this

problem.

Keywords Iterated Local Search, Algorithm Portfolio, Maintenance Scheduling

Problem, Generators, Delta Function, Variable Neighbourhood Descent, Hybrid,

Evaluation Function, Restart Strategy, Run Length Distribution, Benchmarks.

1 Introduction

Preventive maintenance (PM) is a series of tasks, such as regular inspections or the

replacement of aged parts, carried out to extend the life of a machine. PM is done

preemptively before the machine has reached a point of critical wear and is about

to fail [53], and hence it is a planned activity, dependent on scheduling. Due to the

First Author
School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manch-
ester, M13 9PL, United Kingdom
E-mail: almakhla@cs.man.ac.uk

Second Author
School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manch-
ester, M13 9PL, United Kingdom
E-mail: j.knowles@manchester.ac.uk

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 708 -

widespread use of PM in production and service industries, and its economic bene-

fits in preventing damage to (often very expensive) equipment or infrastructure, some

commentators have suggested that improving PM scheduling is one of the most signif-

icant problems faced by industry today [74]. Its economic importance is likely to easily

rival more better-known planning problems such as production scheduling [43], nurse

rostering [13] and timetabling [60].

One important form of the PMSP is the Generator Maintenance Scheduling Prob-

lem (GMSP) in the power generation industry, which concerns the maintenance of

expensive infrastructure that can also be critical to the reliability of national power

grids. This problem has been studied for a number of years in the OR literature (often

using rather small benchmark instances) and several optimization methods, from ex-

act methods to metaheuristics, have been developed and applied (e.g., see [74,24,41,

68]). We here tackle the GMSP using local search as our basis, following some earlier

investigative work where we found it a promising approach to the problem [2]. Here we

use the framework of Iterated Local Search (ILS), a simple but powerful metaheuristic

framework for improving the performance of basic local search, which has been applied

successfully to a number of problems including the travelling salesman problem [65],

the permutation flowshop [22] and the quadratic assignment problem [64]. We aim here

to achieve similarly good results with the GMSP.

To pursue our goal, we use a staged development process. We first analyse the main

components of the ILS algorithm using a set of in-house developed GMSP instances for

the testing. Then we suggest several extensions of the proposed ILS: an ILS with restart

strategy, an ILS with delta evaluation implementation, an ILS hybrid with Variable

Neighbourhood Descent (VND) algorithm and a Portfolio of ILSs. These algorithms are

developed carefully by looking at run-length distributions and other analysis tools. The

performance of the proposed ILS and its variants are also tested on two GMSP instances

from the existing literature, allowing us to compare directly with some previously

proposed algorithms.

The remainder of the paper is organized as follows: a description of the GMSP and

its mathematical formulation is presented in Section 2. Section 3 details the different

ILS operators proposed and the function of the run-length distributions used for anal-

ysis in this work. In Section 4 we suggest several extensions to the initial proposed ILS

algorithm. In section 5, we present an analysis of the run-length behaviour of different

configurations of the ILS. The proposed ILS algorithm and its variants are tested and

compared with some results from the literature in Section 6. Finally, some concluding

remarks are given in Section 7.

2 PMSP in power plants

In this section, we introduce the generator maintenance scheduling problem, give the

formulation we will consider in this paper, and briefly survey related work on the

development of solution methods.

2.1 Overview

Maintenance plays a crucial role in the power-generating industry’s planning and op-

eration. Modern power plants utilize large capacity units making a single outage cause

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 709 -

Table 1: List of parameters used to formulate the GMSP.

i Index of generating units I Total number of units
t Index of intervals T Total number of intervals
Cit Generating capacity of Cs Generating capacity of the system

unit i in interval t Mt Available manpower at interval t
mit Manpower needed to maintain Rt Nett reserve for interval t

unit i in interval t di Duration of maintenance for unit i
Rm Reserve safety margin Pt Predicted load for interval t

both a possible large loss of generation capacity and increased cost of corrective mainte-

nance [51]. Hence, the effective scheduling of preventive maintenance activities, where

units need to be taken off-line for maintenance, allows the power system to perform

its function reliably and achieve considerable savings. The preventive maintenance

scheduling problem of power plants is dealt with as a long-term planning problem

in which the power and energy resources are utilized and maintained during a time

horizon from several weeks to several months or years into the future, discretized into

intervals [51,39]. Usually, the maintenance outages are planned on a yearly time hori-

zon with scheduling intervals being set at one week [40,30]. The starting times of these

outages have to be determined taking into account organizational objectives, system

constraints and consumers’ power demands [51,39]. The GMSP is a constrained opti-

mization problem [38,73], and is NP -hard in most forms [53,12,11,6].

2.2 Problem formulation

Consider a collection of I ∈ Z
+ generating units which can generate a total power of

Cs over a scheduling horizon of T ∈ Z
+ intervals. The scheduling horizon is organized

in weeks and remains constant for all units. Each i = 1, . . . I has a generating capacity

Ci and must be maintained exactly once for di consecutive weeks during the period

T . The maintenance tasks are performed by a workforce of size mit, where i indexes

the unit under maintenance and t ∈ 1, . . . , T is the maintenance interval. However, the

total size of the workforce maintaining generators at an interval t cannot exceed the

maximum manpower available Mt at that interval. The nett reserve of the system Rt

at any interval t is the power remaining after subtracting the generation loss due to

meeting demand and scheduled maintenance outages for that interval. At any interval

t, nett reserve must be greater than or equal to the minimum reserve, which is the total

of the predicted load Pt for interval t and any reserve safety margin Rm. The problem

parameters are summarized in Table 1.

The objective function aims to level the reserve load over the planning horizon by

minimizing the sum of the squares of the reserve loads (SSR). In real-world terms,

the SSR value measures the reliability of the power system. The constraints present

in this problem consist of the system meeting the minimum reserve, the availability

of the maintenance workforce, the maintenance window and the duration for each

unit to be offline for maintenance, as well as any exclusion constraints to prevent the

simultaneous maintenance of certain combinations of generators. In our formulation,

the pseudoboolean solution vector X is two-dimensional, and its element Xit represents

the status of unit i in interval t as follows:

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 710 -

Xit =

{

1 if unit i is under maintenance during interval t

0 otherwise.
(1)

The optimization problem, which has the goal to minimize the sum of squares of the

reserve (SSR) generation, can be written as

Minimize

SSR =

T
∑

t=1

(

Cs − Pt −

I
∑

i=1

CitXit

)2

(2)

subject to the minimum reserve constraints

I
∑

i=1

Cit(1−Xit) ≥ Pt +Rm for all t = 1, . . . , T, (3)

the manpower constraints

I
∑

i=1

Xitmit ≤ Mt for all t = 1, . . . , T, (4)

and the duration constraints

si+di−1
∑

t=si

Xit = di for all i = 1, . . . , I (5)

where si represents the interval in which the maintenance of unit i starts. In addition,

this expression ensures the continuous maintenance requirements of units. In general,

a GMSP may include alternative or additional constraints. Although this formulation

seems to be pure and simple, it actually reflects the problem settings in the power

company described in [2].

2.3 GMSP Optimization Methods

The initial formulation of the GMSP was presented in [16,34,33]. Later, the cost func-

tion of the problem formulation was improved by Yamayee and Sidenblad [75]. In

literature, GMSP has been optimized by many different techniques and each technique

has its own difficulties. They can be classified into two groups: exact optimization

methods, and metaheuristic methods.

The exact methods, such as integer programming [41,44], dynamic programming [78,

70] and the branch and bound method [23,24,15,69], have generally been applied to

small GMSPs. Although these methods have the capability of finding the optimal solu-

tion, they cannot generally be applied to large-scale problems, because the size of the

solution space increases exponentially with the increasing number of generator units,

increasing the computational time of these algorithms accordingly.

To overcome these disadvantages, metaheuristics have been applied to solve the

GMSP. These methods include the application of GAs [73,8,2], Simulated Anneal-

ing [56,58] and Tabu Search [14,25]. Although metaheuristics can find (near-) optimal

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 711 -

solutions for large problem sizes better than the exact methods with a reasonable

computational time, finding such solutions is not guaranteed.

By exploiting individual advantages of the exact and metaheuristic techniques,

they can be combined to form hybridized algorithms with good overall performance.

Variants of such algorithms which have been proposed in recent years are reported to

be superior to their pure counterparts in terms of solution quality and computational

time, especially when optimizing real-world NP -hard problems [54]. These approaches

are commonly referred to as hybrid algorithms.

An emerging optimization method is algorithm portfolios [32]. This method uses

collections of multiple algorithms, either different copies of the same algorithm or

different algorithms running in a parallel or interleaved in time [59], to optimize a

problem . Compared to a single algorithm, a portfolio can offer better performance

when optimizing many instances or even on a single instance [31,32]. An application

of this method to optimize GMSP can be found in [3]. Other approaches to solve the

maintenance scheduling problem in the power-generating industry include Knowledge-

based [5], fuzzy logic [26] and expert systems [46].

Algorithm 1: Iterated Local Search

1 s0 ← GenerateInitialSolution ;
2 s ← LocalSearch(s0) ;
3 repeat

4 s′ ← Perturbation(s, history) ;
5 s′′ ← LocalSearch(s′, history) ;
6 s ← AcceptanceCriterion(s, s′′, history) ;

7 until termination condition met ;
8 return s

3 ILS for GMSP

Iterated local search [47,48] is a simple yet powerful framework which can be imple-

mented in any type of local search algorithm to improve its performance. The algo-

rithm walks randomly in the space of the local optimum performing a stochastic greedy

search. The search strategy of ILS consists of utilizing the local search algorithm to find

the local optimum in the defined neighbourhood and then applying small perturbations

on the local optimum to escape the basin of attraction of the current local optimum.

The local search is then restarted from the perturbed solution.

Despite its simplicity, ILS has been applied successfully to several combinatorial

optimization problems like the travelling salesman problem (TSP) [65,49] and various

scheduling problems [17,27,42]. Its performance is comparable with several state-of-

the-art metaheuristics, such as Simulated Annealing, Tabu Search, Genetic Algorithm

and Ant-Colony Optimization [22]. In order to apply ILS to the GMSP, its building

components have to be defined: initial solution generation, to generate an initial so-

lution; local search, to find an improved solution; perturbation, to perturb a solution;

and acceptance criterion, to decide from which solution to continue the search. The

architecture of ILS is given by Algorithm 1 [48].

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 712 -

Is there

more than one

interval with the same

value?

Move units until

First Improved

solution is found

Move units until

Best Improved

solution is found

Yes

No

A local optimum

is found

Select one

interval

randomly to

be the worst

interval

Scan intervals for the interval with the maximum

violations/ minimum nett reserve to locate units

Is a

better solution

found?

Yes No

Start algorithm

Is

the solution

fesabile?

Yes

No

Scan all intervals for intervals

with maximum violations

Scan all intervals for intervals

with minimum nett reserve

(a) FILS and BILS

Scan scheduling period for

the worst and best intervals

Is there more

than one interval

with the same worst

value?

Yes

No

Select one

interval

randomly to

be the worst

interval

Scan interval with violations/minimum nett reserve

��� ������� ���	
 ��� ��� 	�� 	� 	� ���
	 �� ���	
�

Does

the new solution

dominate the current

one?

Yes No

Is the

���
	 �� ���	
�

empty?

Yes

No

A local

optimum is

found

�����	 � ���	 ���� 	� ���
	 �� ���	
� 	� �� �����

Is the

���	 �� 	� ���
	

of moved

���	
�?

Move unit to the best interval, ��� ���	 	� 	� ���
	 ��

����� ���	
� ��� ������ �	 ���� 	� ���
	 �� ���	
�

Yes

No

Start algorithm

(b) WBLS

Fig. 1: Flowcharts of the proposed local search operators. Flowchart (a) is similar for

BILS and FILS algorithms except for the moving units part. The WBLS algorithm is

presented in Flowchart (b).

Making the best possible choice of ILS components is essential to achieve the best

overall performance of the algorithm for a particular problem. In the following subsec-

tions we provide further details of the components used in this work.

3.1 Initial solution generation

We use a heuristic to generate the initial solution. It is encoded using a two-dimensional

binary string representation of (T × I) bits such that ‘1’ means that the unit is under

maintenance (offline), whilst ‘0’ means that it is operational (online). The heuristic

assigns each unit exactly one job in the scheduling horizon and determines the position

of this job uniformly at random. The schedule is regenerated if a maintenance duration

collides with the end of the scheduling period.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 713 -

3.2 Local search

A local search algorithm searches for an improved solution by exploring the neighbour-

hood of a given initial one. If a better solution is found, it replaces the current solution

and the search is continued until a local optimum is found. One of the main ingre-

dients of a local search algorithm is defining the neighbourhood structure. A proper

neighbourhood structure definition allows for an efficient move from one solution to

another. For the local search component of the ILS algorithm we considered three

algorithms (FILS, BILS and WBLS, described next) with different neighbourhood def-

initions. These algorithms were designed to guide the search to the feasible region of

the search space and maintain feasibility afterwards. Hence, they would not move to

an infeasible solution when the current one was feasible.

First Improvement Local Search (FILS): This algorithm has an advanced ver-

sion of the intelligent mutation operator described in [2] and is shown in Figure 1(a).

The algorithm starts by checking the feasibility of the solution. When the solution is

infeasible, it scans all intervals in the scheduling horizon to identify the interval(s) with

the maximum violations. If a solution is feasible, it scans all intervals to find one(s)

with the minimum nett reserve. In a case where there is more than one interval with the

same maximum violations / minimum nett reserve, one interval is selected uniformly

at random as the worst interval. The worst interval is then scanned to locate the offline

units (under maintenance). Each of these is tried in each of the intervals in sequence,

starting from the first week of the scheduling horizon, until an improvement is found

and this is moved to. If the end of the scheduling period is reached without finding

a fitter solution, the next unit is considered until a better neighbourhood is found.

The algorithm continues until no improved solution is found and terminates with the

current best when there are no more units to be moved.

Best Improvement Local Search (BILS): BILS has the same mutation op-

erator as that used in FILS, except that it evaluates all possible solutions resulting

from moving units from the targeted interval. The best solution among the possible

solutions is then chosen. The FILS and BILS algorithms are enhanced versions of the

hill climbers (FIHC and BIHC) we presented previously in [2]. The mutation operator

in FIHC and BIHC scans all intervals in the scheduling horizon to identify the one

with minimum nett reserve, while in FILS and BILS it scans first for the intervals with

high violations. When the solution is feasible, it scans for the intervals with minimum

reserve. Figure 1(a) illustrates a flowchart of the FILS and BILS algorithms.

Worst Best Local Search (WBLS): WBLS incorporates a tracking heuristic

and a memory structure. The heuristic tracks changes in the constraint violations and

in the objective function value and locates the worst and best intervals. When a solution

is infeasible, the worst interval is the interval with the highest number of violations. If

these violations are caused by different constraints, the heuristic checks for which of

them contributes more of the violations. The best interval is then determined such that

moving the units from the worst interval will reduce the total number of violations for

the solution. When the solution becomes feasible, the worst and best intervals are the

intervals with minimum and maximum nett reserve respectively. The heuristic makes

sure that the search is restricted to the feasible region.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 714 -

Weeks

O
ld

in
te

rv
a
ls

N
e
w

in
te

rv
a
ls

(a) Perturbation INSERT

Weeks

O
ld

in
te

rv
a
ls

N
e
w

in
te

rv
a
ls

(b) Perturbation SWAP

Fig. 2: Two perturbation operators are illustrated. Figure (a) shows the principle of the

INSERT operator where units are relocated randomly in other intervals. The SWAP

operator shown in Figure (b) where units exchange their maintenance starting intervals.

The memory structure tracks the units moved during the search. Units which are

scheduled to be maintained on the worst interval are added to the ‘unitsToBeMoved’

list, from where they are selected one by one and moved to the best interval. When a

unit is moved, it is added to the ‘movedUnits’ list to prevent it from moving again. An

attempt is also made at this juncture to move a different unit in order to bias the search

towards promising areas of the search space. Solutions are compared on the basis of

a constraint violation test and objective function value. In cases where there is more

than one worst interval, the algorithm utilizes a similar mechanism to that described

for the FILS and BILS algorithms. When there are no more units to be moved, the

search is considered to have reached equilibrium and the current solution is reported

as a local optimum. Figure 1(b) is a flowchart of the WBLS algorithm.

3.3 Perturbation

With a local search algorithm, progress is made by moving only to better solutions

and the search terminates in a local optimum. The aim of the perturbation phase is to

modify a current local optimum so that it can be effectively escaped and to provide a

good starting solution for the local search. The perturbation should be strong enough

to allow the local search to escape the local optimum, but also weak enough to maintain

some features of the current solution. In this context, we identify two concepts related

to perturbation: perturbation strength and perturbation nature [48].

Perturbation Strength: In this work, perturbation strength refers to the number

of units that are moved from their current intervals to some other ones. We examine

two types of perturbation strengths, deterministic and adaptive. The deterministic per-

turbation strengths are fixed for all of the instances where 2 and 3 units are considered

for perturbation for any instance. The adaptive perturbation strengths are determined

by the size of the instance as a percentage of the number of units in an instance (25%,

50% and 75%).

Type of Perturbation: We considered two different types of perturbation for the

GMSP described previously: INSERT and SWAP. The INSERT perturbation modifies

a solution by moving a uniformly randomly selected unit from its interval(s) to another

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 715 -

interval or intervals selected uniformly at random, while the SWAP perturbation mod-

ifies a solution by exchanging the starting intervals of two uniformly random selected

units (without replacement), as Figure 2 shows.

3.4 Acceptance criterion

The acceptance criterion defines the conditions of transition from the current solution

to a newly generated one. If the new solution is accepted, it will be perturbed and serves

as an initial solution for the next iteration of the search. We consider two acceptance

criteria: BETTER and PROBABILITY. BETTER accepts the new solution if it is

better than the current solution. This criterion, which is similar to one described in [64],

is defined as:

BETTER(s∗, s∗′) =

{

s∗′ if f(s∗′) < f(s∗)

s∗ otherwise
(6)

where f(s∗′) and f(s∗) are the objective functions for the new and current solutions re-

spectively. Such a criterion may result in a very strong intensification of the search. To

introduce some diversification of the search, PROBABILITY can accept a worse solu-

tion with a probability p. We used three values for p: 1%, 3% and 5%. PROBABILITY

can be defined as:

PROBABILITY (s∗, s∗′) =

s∗′ if f(s∗′) < f(s∗)

s∗′ if rp < p

s∗ otherwise

(7)

where rp is a randomly generated number within the range [0, 1]. This criterion can

be used to control the balance between intensification and diversification of the search.

Note that PROBABILITY tends to make the search more intensive when p is smaller

and to make the search more diverse if it is larger.

3.5 Run-length distributions for evaluating ILS

We follow visualization methods introduced in [62] and [36] to support the analysis

of our ILS algorithms. These methods, called run-length distributions (RLDs), are

useful to see how the solution quality grows with time (or, here, function evaluations)

while properly accounting for the stochastic nature of an ILS or other metaheuristic.

The RLDs in Figure 3 (a) show the best solution found and various bounds on the

solution quality given as the percentage deviation from the best found solution; these

are plotted against the run length (number of function evaluations) for a large number

of independent algorithm runs.

As well as basic visualization of an algorithm’s performance, RLDs can be used

to compare algorithms in detail [36,62], which can facilitate the design of algorithm

portfolios that perform better than any of the constituent algorithms (see Section 4.4).

Figure 3 (b) shows the RLDs for two ILS algorithms, A and B, and the crossing over

of their RLD curves indicates that a portfolio based on these two could be beneficial.

Finally, RLDs may also be used to consider restart strategies. By fitting an expo-

nential distribution to an RLD, one can detect stagnation of an optimizer. An example

of this method is given in Figure 3 (c), where the run-length distributions of an ILS

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 716 -

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000

E
m

p
ir

ic
al

 S
o
lu

ti
o
n
 P

ro
b
ab

il
it

y

Evaluations

(a)

best
0.25%
0.5%

1%
3%
5%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000

E
m

p
ir

ic
al

 S
o
lu

ti
o
n
 P

ro
b
ab

il
it

y
Evaluations

(b)

Crossing of RLDs

A
B

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000

E
m

p
ir

ic
al

 S
o
lu

ti
o
n
 P

ro
b
ab

il
it

y

Evaluations

(c)

Optimal cutoff

s01
f(x)
s02

g(x)

Fig. 3: The empirical run-length distributions for GMSP instances across 100 indepen-

dent runs of different ILS algorithms in semi-log plots. The x-axis gives the number of

evaluations used and the y-axis represents the empirical probability to find a solution.

(a) The RLD for an ILS algorithm that is allowed to run for 200000 evaluations. The

RLDs are for the best solution found and various bounds on the solution quality given

as the percentage deviation from the best found solution. (b) RLDs for two ILS algo-

rithms, A and B. The algorithm allowed to run for 100000 evaluations per each run.

(c) The RLDs of an ILS algorithm measured on two GMSP instances, s01 and s02. The

exponential approximations of the ILS are indicted by f(x) for instance s01 and g(x)

for instance s02.

algorithm measured on two GMSP instances are plotted. For instance s01, the run

length distribution is well approximated by the exponential distribution f(x). This

indicates that the restart strategy would not improve the algorithm performance on

this instance. The instance s02, on the hand, develops significantly below the exponen-

tial curve g(x) from the tangential point on the empirical RLD. Hence, the algorithm

suffers from a stagnation behaviour when optimizing this instance and the tangential

point (here at about 18000 evaluations) is hypothesised to be the optimum cut-off

value [64]. However, an optimum value of a cut-off may depends on the particular

GMSP instance. Hence, Stützle suggested using soft restarts instead of applying fixed

cut-offs for restarting an ILS algorithm [63,65,64].

We refer the interested reader to the extensive discussion provided by Hoos [36]

and Stützle [62] in their PhD thesis where they discussed the RLDs theoretically and

practically.

4 ILS-extended algorithms

In the previous section, we have presented different basic ILS operators for the GMSP.

In the following, we discuss four possible extensions to the base method: using a restart

strategy, use an objective function with delta evaluation, a hybrid with a VND algo-

rithm, and an algorithm portfolio of ILSs.

4.1 ILS with restart strategy

Stagnation, where an algorithm fails to find a better solution for an extensive number

of evaluations, can afflict metaheuristics such as ILS, reducing their effectiveness. The

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 717 -

simplest solution to this problem is to restart the algorithm from a new initial solution

after a predefined number of evaluations (cut-off value). As stated in Section 3.5, an

empirical RLD can be approximated by an exponential distribution, while departure

from that distribution can serve to detect stagnation and help to identify the most

appropriate cut-off value for the restart. Based on a well-known result from probability

theory, if a given algorithm has an exponential RLD and it is allowed to run k runs for

e evaluations, the probability of finding a target solution using such configurations is

the very same as when running the algorithms once for evaluations k.e. Hence, using

a restart strategy for an exponentially distributed ILS algorithm will not affect the

probability of obtaining the target solution [64,65]. Restarting an ILS algorithm will

enhance its performance only if the empirical run-length distribution falls below the

plotted exponential.

4.2 ILS with delta evaluation

Delta evaluation is an important technique to reduce the amount of computational

work performed by local search algorithms [9,10]. In this approach, any solution is

partially evaluated by computing only the cost difference between that solution and its

neighbouring solution. When scheduling the generator maintenance tasks, it considers

only the fitness function contribution of intervals that are not common between the two

schedules, which reduces the repeated evaluations. Let us demonstrate the usefulness

of this method using an example of GMSP. Consider the case where a unit i with a

duration of di needs to be moved from its current position within a range of total

intervals of T . Usually, the solution is evaluated by computing the change of the nett

reserve on each interval, which is equal to T times. Using delta evaluation, only the

intervals that the unit i has moved from and to are computed and these will be in the

range between d+1 and d× 2 intervals. Hence, the cost of moving the unit i evaluated

using the delta function compared to using a full evaluation would be in the range

between (d+1)/T and (d×2)/T to 1. For instance, for a unit with a duration of di = 6

and scheduling horizon of T = 52, the delta evaluation would be between 0.135 and

0.231 evaluations. This method is more effective for schedules with many units having

a small number of durations.

In this ILS variant, the algorithm has the same components as a standard ILS, but

a different fitness function. Delta evaluation is utilized and the new fitness is calculated

using the function: SSRnew = Fdelta(solutionold, solutionnew , SSRold). This function

uses the information from the fitness and content of an existing solution in order to

calculate a new neighbouring solution’s fitness much more rapidly.

Algorithm 2: Hybrid ILS/VND

1 s0 ← GenerateInitialSolution;
2 s ← V ND(s0);
3 repeat

4 s′ ← Perturbation(s, history);
5 s′′ ← V ND(s′);
6 s ← AcceptanceCriterion(s, s′′, history);

7 until termination condition met ;
8 return s

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 718 -

4.3 ILS/VND hybrid

Each of the various exact methods and metaheuristics has its assets and shortcomings.

By exploiting individual advantages, algorithms can be combined to form hybridized

algorithms with better overall performance. Hybrid metaheuristics tend to be supe-

rior to their pure counterparts in terms of solution quality and computational time,

especially when optimizing larger-scale instances [7]. Several ILS and VND [35] hybrid

algorithms are proposed for several problems, such as the Vehicle Routing Problem [67],

the attribute reduction in rough set theory [4] and the TSP [55]. In this section, we

propose a new hybrid ILS and VND algorithm for solving the GMSP. This hybrid

integrates a VND procedure into the framework of an ILS algorithm.

Algorithm 3: VND Procedure

1 N : Set of neighborhood structures ;
2 k: Index of the current neighbourhood structure ;
3 Set k = 1 ;
4 while k ≤ |N | do
5 s′′ ← LocalSearch(s′, Nk) ;
6 if s′′ dominates s′ then

7 s′′ ← s′ ;
8 end

9 k = k + 1 ;

10 end

11 return s′′

Variable neighbourhood descent is a variant of Variable Neighbourhood Search

(VNS) [35], where there is no shaking step and the change of neighbourhood is per-

formed in a deterministic way, in the descent to local optimum. More precisely, the

idea behind VND is to alternate between different neighbourhood structures where the

local minimum found by a local search algorithm on one neighbourhood is the starting

point of the algorithm within the next neighbourhood. The framework of the proposed

algorithm is presented in Algorithm 2 and explained as follows:

Initial solution generation: The initial solution is generated using the same

heuristic described in section 3. Each unit is assigned exactly one job in the scheduling

horizon and the outage period of this job is determined uniformly at random.

Base ILS algorithm: The ILS considered here utilizes an INSERT(3) perturba-

tion operator, BILS as its local search and the BETTER acceptance criterion. These

ILS components have been described earlier in Section 3.

Variable Neighbourhood Descent: In GMSP, an incumbent solution can often

be improved by a valid movement of the units from their current intervals to others

within the scheduling horizon. How many units should move determines a neighbour-

hood’s structure and size. This moving process is essential to the definition of the

neighbourhood structures used in the proposed algorithm, which defines two neigh-

bourhoods:

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 719 -

N1: This is a large neighbourhood structure where the effective search space can be

as large as T I . An INSERT operator is used to remove a unit from interval i and

reinsert it in interval j, anywhere in the scheduling horizon. If the maintenance

period has multiple intervals, i and j represent the first interval of the maintenance

period.

N2: This is a small neighbourhood search structure where the effective search space

can be approximatly 2I . An INSERT operator is also used to remove a unit, but the

movement is limited to one interval earlier and one interval later than the current

first interval of the maintenance period.

The VND procedure, described by Algorithm 3, is used to search the neighbourhood

defined by the operator Nk of the current solution using the local search component.

The procedure starts by exploring in the large neighbourhood N1 until a local optimum

is reached, then it performs a small neighbourhood search for a better solution than

the current one in N2. The best solution found by the procedure is returned.

Stopping criterion: Similar to the other ILS variants, the hybrid algorithm stops

when it reaches the maximum number of evaluations allowed.

The performance of the hybrid algorithm is tested and compared with other ILS

algorithms presented here and some metaheuristic results from the literature in Sec-

tion 6.

4.4 A portfolio of ILS algorithms

The term algorithm portfolio was introduced originally by Huberman et al [37] and

was also studied by Gomes and Selman [32]. Algorithm portfolio can be defined as “A

collection of different algorithms (heterogeneous portfolio) and/or different copies of

the same algorithm (homogeneous portfolio) running on different processors” [59]. The

motivation behind studying algorithm portfolios arose from the fact that there is not a

single algorithm which can guarantee to be able to find an optimum or near-optimum

solution for a specific type of problem with varying dimensions and complexities where

its performance varies based on the problem instance. Portfolios comprising different

algorithms, or differently configured instances of an algorithm, can offer better perfor-

mance even on a single instance, since switching between algorithms is likely to match

each phase of the search to a good algorithm, or search can be terminated earlier when

one constituent algorithm finds a good solution. Such portfolios can probably be further

enhanced by exchanging of information between constituent algorithms. For instance,

Peng et. al. [52] have used different strategies to communicate adaptively between con-

sistent algorithms and reported an improvement in performance. In a well-regarded

technique called AMALGAM [71,72], multiple different search algorithms are run si-

multaneously and learn from each other through information exchange using a common

population of points. The computational effort of each one is adapted continuously dur-

ing the course of the optimization, in order to favour individual algorithms that exhibit

the highest reproductive success during the search. Results from experiments show that

AMALGAM significantly improves the efficiency of evolutionary search.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 720 -

Algorithm 4: ILS Portfolio

1 Define:

2 A : The total number of constituent algorithms;

3 P : The main population;

4 ϕa : Algorithm a contribution to overall improvements in objective function

where a = 1, . . . , A;

5 Na: Number of individuals in Algorithm a to be migrated from its

sub-population Pa to P ;

6 Ps : Size of population and sub-populations;

7 epm : Maximum evaluations for the portfolio algorithm;

8 eim : Maximum evaluations for each iteration of optimizing the main

population;

9 νa : Minimum contribution of solution to be migrated for each algorithm a;

10 Set ep = 0 /* Portfolio evaluations counter */

11 Generate initial solutions in population P ;

12 Calculate fitness and constraints violations for all individuals in P ;

13 while ep ≤ epm do

14 Set ei = 0 /* Iteration evaluations counter */

15 while ei ≤ eim do

16 for a = 1 to A do

17 Algorithm a uses each individual in P as s0 to generate a

sub-population Pa of size Ps;

18 Calculate fitness and constraints violations for all individuals in

sub-population Pa;

19 end

20 end

21 Clear population P ;

22 Calculate ϕa where a = 1, . . . , A;

23 Update N = Na, ..., NA according to equation 8;

24 for a = 1 to A do

25 for n = 1 to NA do

26 while solution does not exist in P do

27 Move Na solution from sub-population Pa to population P ;

28 end

29 end

30 end

31 Update ep;

32 end

33 return Best solution

For the ILS algorithms studied here, several observed phenomena suggest that the

portfolio approach would be beneficial for optimizing the GMSP. First, no single algo-

rithm has dominated the others and we occasionally observed the crossing of the RLDs

of different algorithms. Secondly, we noticed that for different instances, different ILS

algorithms showed the best performance. Thus, to improve performance over a broad

range of instances, it would be advantageous to combine several of the best-performing

ILS algorithms mentioned previously into a portfolio. The approach has proved ef-

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 721 -

fective for solving many problems such as satisfiability, planning and scheduling [61].

Although algorithm portfolios have been applied to different scheduling problems [59,

50], they appear to have limited application to the GMSP. In fact, to the best of our

knowledge, it has been applied only as reported in [3], where constituent algorithms in

a portfolio were run in parallel (all algorithms being executed concurrently), with no

communication between algorithms. A similar application was used here, except that

the constituent algorithms were able to exchange information, based on the AMAL-

GAM approach.

The pseudocode of the portfolio algorithm is given in Algorithm 4. It employs

a population-based elitism search strategy to find the best solution of a GMSP us-

ing the predefined objective function. The algorithm is initiated by creating a main

population P of randomly generated solutions using the procedure GenerateInitialSo-

lution described in section 3. The fitness value and number of constraint violations

are then computed for each solution in the population. Each algorithm a creates a

sub-population Pa of the size of the main population, where each individual in P is op-

timized and the solution achieved is added to Pa. The solutions in all sub-populations

are evaluated and their constraint violations are recorded. A defined number of solu-

tions N = {N1, ..., NA} is migrated from each sub-population Pa for a = 1, . . . , A.

This number is different for each algorithm and depends on its performance. A two-

step procedure is used to update the N in each iteration. First, we measure for each

algorithm a its contribution to the overall improvement in objective function, denoted

as ϕa. The second step is to update N for each algorithm a according to this equation:

Na =

⌊

(Ps − (νa × A))
ϕa

∑A
i ϕa

⌋

. (8)

Based on the calculated values of N , the best solutions are migrated from the sub-

populations to the main population. Whatever the values of N , there is always a

minimum number of solutions that each algorithm needs to contribute to the main

population to avoid the possibility of disabling an algorithm which may provide better

solutions in the future with higher evaluations. This learning mechanism ensured that

the algorithms with the best performance were rewarded in the next iteration by allow-

ing them to contribute more solutions. As a result, a faster convergence may have been

achieved. However, to preserve population diversity and prevent too early convergence

of the portfolio algorithm, we took three precautions:

1. A diverse set of ILS algorithms was considered as constituent algorithms for the

portfolio. The best performing ILSs using BILS and WBLS were selected; these

were A05 (BILS, INSERT(3), BETTER) and A69 (WBLS, INSERT(3), BETTER)

respectively, see section 5.2. In the same section, it is shown that ILSs with these

two local searches may achieve better performance when optimizing a GMSP coop-

eratively. In addition, the ILS variants mentioned in this section were considered,

as they have different approaches to performing optimization. Two algorithms of

each variant were added, one with BILS and the other with WBLS. Choosing con-

stituent algorithms that exhibited different behaviours on the GMSP problem to

be optimized may have led to better performance.

2. When migrating a solution from a sub-population to the main population, it was

compared to the solutions already in the population, based on the Hamming dis-

tance. If the Hamming distance of the solution to be migrated was equal to zero

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 722 -

Table 2: List of the components of the best ILS algorithms.

ILS Local Search Perturbation Acceptance Criterion ILS Local Search Perturbation Acceptance Criterion

A05 BILS INSERT(3) BETTER A65 WBLS INSERT(2) BETTER
A69 WBLS INSERT(3) BETTER A13 BILS INSERT(0.5) BETTER
A01 BILS INSERT(2) BETTER A33 FILS INSERT(2) BETTER
A09 BILS INSERT(0.25) BETTER A37 FILS INSERT(3) BETTER
A73 WBLS INSERT(0.25) BETTER

compared with any solution in P , the next better solution was selected, even if its

quality was lower than that of the first chosen solution.

3. To introduce new solutions during the search process, we used two ILS algorithms

which both had INSERT perturbation and the PROBABILITY acceptance crite-

rion, but different local search algorithms: BILS and WBLS. For both algorithms,

the perturbation strength and probability of accepting worsening moves were set

high (0.75). New solutions which improved upon the current best solution could

then be found during the search.

The portfolio algorithm is stopped when it reached the maximum evaluations al-

lowed. The portfolio seems to be a promising approach to optimize different large,

complex and dynamic problems such as the GMSP. Just as for the other ILS variants

suggested, the performance of the proposed ILS-based portfolio was investigated on

two GMSPs from the literature, as reported in section 6.

5 Selecting ILS best components

In this section, we investigate the effectiveness of different ILS components (in all,

96 ILS algorithm with different components and parameters) using run-length distri-

butions over a set of 11 problem instances. The more advanced variants of the ILS,

using delta-evaluation, restarts or a portfolio, were formed from the best of the ILS

components tested here; these are evaluated in Section 6.

5.1 Experimental Settings

A set of 96 ILS algorithms was constructed by combining the components described

in section 3. To test the performance of these algorithms, we ran them on a set of

11 instances from our own GMSP instance generator, based on the problem model

described in section 2. The instances were hand-crafted to represent different sizes and

characteristics of generator scheduling problems, with the number of units from 4 to

29. The scheduling horizon for all instances was 52 weeks.

Each algorithm optimized each instance for 100 runs and the mean Percentage

Deviation (PD) from the best known solution for that instance was calculated using

the formula PD = (f(s)−f(sbest))/f(sbest)×100. For each algorithm we also measured

the Infeasibility Ratio (IR) (IR = number of infeasible solutions/ number of runs ×

100). All algorithms were allowed to run to their maximum evaluations, calculated

by the formula maxEvaluation = αI + β, where α = β = 20000 and I is the total

number of units for an instance (Table 1). A list of the ILSs tested, showing the their

components and the instance details, is provided at [1], including instances and results.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 723 -

Timing information is given below; these results are from an implementation in

Java run on a server with 12 cores (2x6 XEON-5690 cores @ 3.6 GHz) using 32 GB of

RAM.

5.2 Results and findings

For the sake of making this paper short, a detailed discussion of the results is provided

in the supplementary section S1 while in this section we wish to identify some ‘overall

best’ ILS algorithms. To do so, we ranked the PD and IR values obtained by all

algorithms for each instance. In both cases, these rankings start from zero and the

lower the rank, the better the performance of the algorithm. Each algorithm’s ranks

were then summed for all instances and plotted in Figure 4. The left plot of the figure

shows the sum of the ranks for all the algorithms divided into three groups, based on the

local search algorithm used. It can be observed from the plot that the ILS algorithms

using BILS tended in general to perform better than the other ILSs and to have a

spread of data points towards the bottom left. On the other hand, the ILS algorithms

with FILS seem to have varied in performance, indicating that they struggled to find

feasible and good quality solutions for all instances. The best performing ILS algorithm

with FILS was A33. The ILSs with WBLS showed less variation in performance than

those with FILS, but more variation than the ILSs with BILS. The seven best ranked

ILSs are shown in the right plot of the figure and listed in Table S1, while Table 2

lists their components and those of algorithms A33 and A37. All nine of these ILSs

managed to obtain feasible solutions for all runs on all instances; IR = 0. The best

ranked ILS algorithm was A05, with the components BILS, INSERT(3) perturbation

and BETTER acceptance criterion. This choice of configurations seems to have allowed

the ILS algorithm to achieve good solutions for all GMSP instances. Indeed, it was the

best solver for many of them. Algorithm A69 also showed solid performance over all

instances.

As an outcome of this analysis, we propose the ILS algorithms A05 and A69 as

effective algorithms for GMSPs such as the one modelled here. The implementation and

behaviour analysis of these algorithms showed them to be easily adaptable alternatives

to other more complex metaheuristics, as they showed excellent performance after some

straightforward optimizations. The performance of the proposed ILSs were tested on

two benchmark GMSPs from the literature and compared to the results for other

metaheuristics on the same instances.

Finally, there seems to have been a strong positive correlation between the IR

and PD sums of ranks of the ILS algorithms, as can be seen from the scatter plot

in Figure 4 (Spearman rank correlation coefficient ρ = 0.976). This suggests that the

ability to obtain feasible solutions was strongly linked to the ability to find high quality

solutions for these instances.

5.3 Overall benchmark results

Results for 100 runs of all 96 algorithms across the full set of 11 instances are presented

in Table 3. It should be noted that every one of the algorithms managed to find a

feasible solution for instance s10 during all runs. On the other hand, a feasible solution

for instance s09 proved difficult to find on more than half of the optimization runs.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 724 -

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 50 100 150 200 250 300

S
u
m

 o
f

P
er

ce
n
ta

g
e

D
ev

ia
ti

o
n
 R

an
k
s

Sum of Infeasibility Ratio Ranks

BIHC
FIHC

WBHC
 0

 20

 40

 60

 80

 100

 0 5 10 15 20

S
u
m

 o
f

P
er

ce
n
ta

g
e

D
ev

ia
ti

o
n
 R

an
k
s

Sum of Infeasibility Ratio Ranks

BIHC
FIHC

WBHC

A01

A05

A09

A13

A65

A69

A73

Fig. 4: The performance of different ILS algorithms represented as the sum of the ranks

of the algorithms percentage deviation against the sum of the ranks of their infeasibility

ratio. For each algorithm optimizes an instance, the percentage deviation from the best

know solution for that instances is calculated for all runs and then averaged over them

while the infeasibility ratio is calculated according to the equation in Section 5.1. The

percentage deviation and infeasibility ratio ranking starts from zero. The lower the

x-axis and y-axis values the better.

The last column shows the number of times the best solution was found for an instance

among all optimizations. The highest number of runs resulting in a best solution was

obtained on instance s01, yet it represented only about 29% of the optimization runs.

For the instances s07 to s11, which were the largest instances in the set, only once was

the best solution achieved, and in general they seem to have been the hardest among

the set. As we belive that this set of instances are likely to be valuable as benchamrks

for the GMSP, due to the different sizes and characteristics of the instances, we have

made it available to the optimization community and it can be downloaded from [1].

6 Comparative study

This section reports the experimental evaluation of the performance of two standard

ILS algorithms and the ILS variant algorithms proposed in section 4 on the test systems

described in section 6.1. The standard ILS algorithms are those proposed in section 5.2

based on their overall performance: A05 and A69, referred to here as ILS-BILS and

ILS-WBLS respectively. The ILS with the restart strategy is referred to as Restart and

that with delta evaluation as Delta. The ILS/VND hybrid is referred to as Hybrid.

Finally, we refer to the portfolio of different ILS-based algorithms simply as Portfolio.

For each problem, all algorithms were run for 100 independent trials and were given the

same number of evaluations per optimization run. In order to facilitate fair comparisons

for the 21-unit system, we used the same number of evaluations (30000) as were used

in previous studies which investigated this problem. As the 32-unit system had more

units, the algorithms were given 41000 evaluations per run to optimize the problem. All

experiments were implemented in Java and run on the same hardware configuration

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 725 -

Table 3: Computational times required to find the best solution (averaged over 100

runs and algorithms), percentage of feasible solutions (of all runs and algorithms) and

the number where the best fitness was achieved (among 9600 optimizations).

Instance Number Best Avg Best Min Avg Max % Feasible NBSA
of units Solution Solution Time (s) Time (s) Time (s) Solutions

s01 4 15995312 16417081.42 0.49 0.57 1.31 82.48 2789
s02 8 49680 54918.41 1.26 1.35 2.32 78.9 721
s03 9 5075 5252.88 1.48 1.82 2.51 96.99 667
s04 12 11025 12415.38 2.4 2.92 3.31 80.23 21
s05 14 11799791 12256051.82 3.24 3.87 6.47 98.82 542
s06 16 110349 125927.05 4.06 4.34 6.35 72.74 12
s07 17 80975 82373.58 4.46 4.46 4.46 99.96 1
s08 21 480832 502959.79 6.67 6.67 6.67 86.65 1
s09 24 639884 652454.35 7.93 7.93 7.93 40.33 1
s10 25 18320744 18385367.47 8.44 8.44 8.44 100 1
s11 29 980211 1034613.82 13.7 13.7 13.7 97.14 1

mentioned in section 5.1. The resultant objective functions (SSR) for all runs of all

algorithms are available to be downloaded at [1].

6.1 Test systems

The case studies considered in this research as benchmarks to investigate the effec-

tiveness of the proposed algorithms are two GMSP test systems obtained from the

literature in which reliability is considered as the optimality criterion. The objective

of both problems is to minimise the sum of the squares of the reserve (SSR) over a

52-week scheduling horizon while meeting the problem constraints.

The first test system comprised 21 units. It was loosely derived from the problem

in [76] and presented with some simplifications and additional constraints in [20]. Each

unit must be maintained continuously for a given duration within a specified window,

either in the first or second half of a year’s scheduling horizon, while meeting prob-

lem constraints such as the load demand and the availability of maintenance crew.

The details of the problem including the unit capacities, maintenance allowed periods,

duration of maintenance and manpower needed are available in [20,19].

Several metaheuristics have been applied to this test system. They are GAs in [20,

18,21], Simulated Annealing (SA) in [21] and hybrid algorithms (GA,SA and a heuris-

tic) in [19]. The best results were obtained by Foong [29] using the Ant Colony Opti-

misation (ACO) algorithm. Recently, Schlünz and Vuuren [57,58] managed to match

the best known objective function found by Foong using an SA algorithm and an

SA/Heuristic hybrid. However, they were unable to match or improve the best known

average incumbent solution quality.

The second test system was the 32-unit scheduling problem first introduced in [58].

This is a modified version of the system presented in the 1979 IEEE Reliability Test

System [66], with parameter values and constraints added. It has additional exclusion

constraints compared to the 21-unit problem, to prevent certain units from being in a

state of simultaneous maintenance. The problem has a safety reserve to be considered

during scheduling and is assumed to be highly constrained by both its maintenance

crew and power demand constraint sets. The details of the test system are available

in [57,58].

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 726 -

6.2 Algorithm parameters

All ILS variants were extensions to the standard ILS-BILS algorithm. The Restart

algorithm required a single parameter (∂) to be set in order to calculate the cut-off

evaluations. If the objective function of a solution has not improved for er = I.∂

evaluations, then the algorithm will start with a new random solution where ∂ = 210.

The Delta and Hybrid algorithms have no parameters to be set. Finally, the Portfolio

algorithm starts by creating a P of size 50. The same size was chosen for the sub-

population of the algorithms. The eim was set according to the formula (eim = αI+β,

where α = 100 and β = 900). The minimum number of solutions that an algorithm

a needs to contribute was set to νa = 2. All the parameter settings were based on

preliminary experiments performed to check the effects of different settings on the

performance of the algorithms.

6.3 Performance of ILS variants

Similar to section 5.2, we provide an extensive results and detailed discussion of them

in the supplementary section S2. Here, we can summarize the above observations from

Figures S6 and S7 concerning the performance of the ILS standard and variant algo-

rithms as follows:

– Keeping in mind that ILS-BILS and ILS-WBLS were standard ILS algorithms that

had not been modified or tuned on the test problems, they showed good perfor-

mance, especially ILS-WBLS. This difference can be credited to the advanced local

search in WBLS, as the two algorithms were similar in terms of their other com-

ponents.

– The restart strategy was not effective for the ILS algorithms, indicating that they

did not suffer from stagnation behaviour when optimizing the GMSP modelled in

this work.

– Implementing the VND within the ILS framework as a hybrid algorithm signifi-

cantly improved the performance of the ILS algorithm on both objective values

achieved and computation evaluations required.

– As shown by the plots, the principle of using a portfolio of ILS algorithms that can

communicate proved to be efficient and effective in optimizing the test instances in

a short time and on finding excellent solutions. These findings encourage the use

of such a method for larger and harder problems, such as those ocurring in the

industry.

We validated these outcomes by a further exploration of the results using applicable

statistical tests (see supplementary section S3). These tests confirmed the conclusions

mentioned earlier, as follows:

– There were statistically significant differences in performance between the ILS al-

gorithms with BILS and WBLS for both test cases. Both median and mean values

showed better performance for ILS with the WBLS algorithm.

– The t-test (21-unit problem) and Mann-Whitney test (32-unit problem) revealed no

significant difference in the SSR results of the standard ILS algorithm (ILS-BILS)

and its variant with the restart strategy (Restart). This indicates that the ILS

algorithms did not suffer stagnation behaviour on the GMSP instances studied

here, making the restart strategy superfluous.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 727 -

Table 4: Comparison of ILS algorithms with other algorithms from previous studies.

Column three represents the best fitness obtained in all runs, while columns four and

five list the average (over 100 runs) of the run output and standard deviation respec-

tively. Column six lists the median and the worst fitness achieved during the runs is

shown in column seven. Column eight shows the number of evaluations required by an

algorithm to find the best solution in a single run, averaged over 100 runs.

System Algorithm Best Mean StD Median Worst Average

×107 ×107 ×105 ×107 ×107 Evaluations

2
1
-U

n
it

S
y
st
em

ACO [28] 1.3665 1.3682 0.11 1.3681 1.3722 13593
GA [20] 1.3791 1.4671 - - - -
SA [19] 1.4049 1.4606 - - - -
PSO [77] 1.3749 1.3871 0.11 - 1.4015 -
SA [58] 1.3665 1.3988 0.19 - - -
MIQP [57,58] 1.3973 - - - - -
Global Solver [57,58] 1.3884 - - - - -
ILS-BILS 1.3845 1.4488 3.53 1.4502 1.5575 21926.5
ILS-WBLS 1.3675 1.4234 3.82 1.4252 1.5449 15854.4

GA/SA hybrid [19] 1.3812 1.4578 - - - -
SA/Heuristic hybrid [58] 1.3665 1.3732 - - - -
GA/SA/Heuristic hybrid [19] 1.3910 1.4171 - - - -
Restart 1.3812 1.4547 3.32 1.4561 1.5312 21139.5
Hybrid 1.3665 1.3721 1 1.3687 1.4193 10518.7
Delta 1.3681 1.3884 1.94 1.384 1.4486 18079.9
Portfolio 1.3665 1.3669 0.05 1.3665 1.3681 4675.7

3
2
-U

n
it

S
y
st
em

SA [57,58] 3.3639 3.3709 7.3 - - -
MIQP [57,58] 3.3904 - - - - -
Global Solver [57,58] 3.5463 - - - - -
ILS-BILS 3.3847 3.4084 1.47 3.4066 3.4445 36522.4
ILS-WBLS 3.3726 3.3913 1.06 3.3903 3.4166 36041.2

SA hybrid [58] 3.3627 3.37 - - - -
Restart 3.3822 3.4082 1.71 3.4041 3.4867 36799.8
Hybrid 3.3644 3.377 0.69 3.3754 3.3957 24137.2
Delta 3.3682 3.3868 0.92 3.3852 3.4111 36578.9
Portfolio 3.3628 3.3667 0.17 3.3668 3.3698 24096.8

– The tests revealed a statistically highly significant difference in the results of the

standard ILS algorithm (ILS-BILS) and the versions with the delta evaluation

(Delta) and VND (Hybrid) implementations. The median and mean values demon-

strate that the hybrid ILS variants performed much better than the standard ver-

sion.

– When comparing the performance of the Portfolio and Hybrid algorithms which

achieved the best results among all algorithms, as shown in Figures S7 and S8, the

tests show a superiority of performance for Portfolio over Hybrid, particularly on

the 21-unit system.

6.4 Comparison with other methods

As described in section 6.1, the 21- and 32-unit systems had been studied previously

using different optimization methods, as reported in the literature. The results ob-

tained for the ILS algorithms are compared with those from the literature in Table 4,

which shows the objective function values (MW 2) as the best SSR achieved, the mean

averaged over 100 runs, the standard deviation, the median and the worst fitness value.

In addition, it lists the number of evaluations required to reach the best solution in

a single run averaged over the runs. It should be mentioned that the previous studies

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 728 -

mainly reported the best solution and average only to measure the performance of

their proposed methods. For the results of the ACO, we used the raw data available in

Foong’s dissertation [28] and performed the required statistical analysis.

To make a fair judgement of the performance of the ILS algorithm and its variants,

we divided the optimization algorithms in Table 4 into two groups: the standard op-

timization methods and the non-standard methods, such as the hybridized algorithms

and the portfolio. Looking at the performance of the standard algorithms on the 21-

unit system, we notice that the ACO and SA algorithms provided by [58] achieved

the best results, followed very closely by ILS-WBLS. On the 32-unit system, the same

SA performed the best among the standard algorithms, followed by ILS-WBLS and

ILS-BILS. Considering the non-standard algorithms, Table 4 shows that the Portfolio

algorithm was able to match the best known objective function value. Compared to the

ACO results and a hybridized version of the SA mentioned above, Portfolio performed

better in terms of the average, standard deviation and median values.

Furthermore, the average number of evaluations on all runs that Portfolio took

to find the best solution was less than 35% of the number that ACO needed. The per-

formance of Portfolio looks better than the ACO according to these figures; in order

to confirm this outcome, we used statistical procedures similar to those which we used

before. First, we checked the normality of the results (number of runs = 50) of the ACO

algorithm. The K-S test of normality after Lilliefors significance correction indicated

that the results were not normally distributed, as the p-value= 7.140e-08, which is less

than the significance level α = 0.05. Hence, the non-parametric test (Mann-Whitney)

was used, as the Portfolio data were not normally distributed, as explained previ-

ously. The test revealed a statistically significant difference in the performance of the

two algorithms, as the probability value (p = 3.421e-14) was much less than the sig-

nificance level of α = 0.05. The Hybrid algorithm also managed to match the best

objective function value, but could not improve on the ACO algorithm in terms of the

other statistical values.

On the 32-unit system, none of the ILS algorithms was able to match the best

objective function value obtained by [58]. However, Portfolio achieved a value very

close to it and improved the average value. Unfortunately, no performance metrics

other than the best value and the average are available from this previous study. The

second best algorithm in terms of performance was Hybrid, which managed to find

good solutions in almost the same average number of evaluations as the Portfolio

algorithm.

Finally, it should be mentioned that the SA [57,58] algorithm was heavily tuned

on both test instances, while no tuning was applied to the ILS algorithm and its

variants; yet the standard ILS algorithm (ILS-WBLS) performed well compared to SA

and to the methods used previously. In addition, results show that the ILS variants

Hybrid and Portfolio were able to find the best solutions in a much smaller number

of evaluations. Generally, Portfolio seems to be the most robust optimization method

among all those tested and compared to the methods reported in the literature.

The results for all algorithms, and the best schedules found for the 21 and 32 units

system, are available at [1].

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 729 -

7 Conclusion

Iterated Local Search (ILS) is an efficient and effective metaheuristics yet it is simple to

implement. It has been applied to many combinatorial optimization problems. In this

paper, we explored the application of ILS to the Generator Maintenance Scheduling

Problem (GMSP). Several ILS operators are proposed and used to form many ILS

algorithms. The ILSs have been tested on in-house developed GMSP instances. Their

Run-Length Distributions (RLD) have empirically analysed where they revealed that

there is no single ILS algorithm that dominates the others and the ILS algorithms

did not show stagnation behaviour. Moreover, crossover of some algorithms RLD have

been noticed which indicates that these algorithms can perform better if they work

cooperatively. Two ILS algorithms were proposed to optimize the GMSP. We also

provide a benchmark for future studies of this problem.

Based on the observations from the RLD, several extensions to a standard ILS de-

sign are developed and analysed, including specialised operators and delta-evaluation,

as well as restart and portfolio strategies and an ILS/VND hybrid. The ILS algorithms

have been tested on two benchmark problems obtained from the literature. The exper-

imental and statistical analysis we carried out showed a superior performance of the

portfolio and hybrid ILS variants. However, the restart strategy has not been success-

ful to improve the final solution which confirms the previous finding. In addition, the

standard ILS showed a good performance and managed to find good quality solutions.

Despite the simplicity of the ILS framework, the experimental results show that

algorithm can obtain very high solution quality. In fact, some ILS variants are new

state of-the-art algorithms for one of the GMSP benchmark problems.

Supplementary Materials

S1. Selecting ILS best components discussion

Figure S1 shows the empirically observed RLDs for three ILS algorithms with IN-

SERT(3) perturbation operator and BETTER acceptance criterion but different local

search algorithms on the GMSP instances s01, s02, s03 and s05. Figure S2 is similar but

shows the effects of different choices of perturbation operators and strengths, whilst

Figure S3 and S4 show the effect of acceptance criteria choices. Finally, Figure S5 illus-

trates the empirical run-length distributions for the two GMSP instances s01 and s03
with ILS algorithms that uses INSERT(3) perturbation, BETTER acceptance criterion

and BILS and WBLS as their local search operators. The figure shows the RLDs of the

best solution found at several levels of required solution quality. Additionally, exponen-

tial distributions which may indicate stagnation behaviour are fitted to approximate

the RLDs for the best quality solutions. It can be noticed that on both instances using

the BILS and WBLS algorithms, it is rather easy to get within 1% or even 0.5% of the

best solution. Yet, if a higher solution quality is required, the performance of the ILS

algorithms is less good. In particular, when the WBLS is the local search, the plots

indicate that a higher number of evaluations are needed to reach the target solution

quality. An important observation from the plots is that the run length distribution is

well approximated by the exponential distribution f(x). This indicates that the restart

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 730 -

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000

E
m

p
ir

ic
al

 S
o

lu
ti

o
n

 P
ro

b
ab

il
it

y

Evaluations

s01

BILS
FILS

WBLS
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 36000 72000 108000 144000 180000

E
m

p
ir

ic
al

 S
o

lu
ti

o
n

 P
ro

b
ab

il
it

y

Evaluations

s02

BILS
FILS

WBLS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 40000 80000 120000 160000 200000

E
m

p
ir

ic
al

 S
o

lu
ti

o
n

 P
ro

b
ab

il
it

y

Evaluations

s03

BILS
FILS

WBLS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 60000 120000 180000 240000 300000

E
m

p
ir

ic
al

 S
o

lu
ti

o
n

 P
ro

b
ab

il
it

y

Evaluations

s05

BILS
FILS

WBLS

Fig. S1: A comparison of empirical run-length distributions of ILS algorithms for the

different choices of local search algorithms. The ILS algorithms are with BETTER

acceptance criterion, INSERT(3) perturbation and different local search algorithms

(BILS, FILS and WBLS).

strategy would not improve the algorithm performance on these instances. Later, we

will examine this observation experimentally and statistically.

A review of all these RLDs allows some useful observations to be made. In general,

no single individual ILS algorithm dominated all the others. Hence, there was no single

‘winner’ among the components tested for the local search, perturbation and acceptance

criterion operators. For each operator configuration, we found a mix of performance,

depending on the instance being optimized. Table S1 shows the seven members of

the set of 96 ILS algorithms that achieved the best percentage deviations (the lower

the better) for all instances averaged over all runs. All of these algorithms had a 0

infeasibility ratio, which means that they managed to find feasible solutions for all the

runs. Based on the PD values, instance s01 appears to have been the easiest problem

to solve, as all the best algorithms found the best solution to it on all runs. Conversely,

instances s04 and s06 had the largest PD values, indicating that they were the hardest

of the eleven problems.

Regarding the local search algorithms, the performance of BILS seems to have

improved as the number of evaluations increased, while the WBLS algorithm seems

to have performed better at the beginning of the search. This may be explained by

the ability of WBLS to guide the search faster than BILS to the feasible area of the

search space. Figure S6 compares the number of evaluations needed by three ILS algo-

rithms with INSERT(3) perturbation, the BETTER acceptance criterion and the local

search algorithms used in this work (BILS, FILS and WBLS) to move the search to

the feasible region of the search space for all instances. In addition, the figure shows

the lowest number of evaluations required that was achieved by any algorithm, aver-

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 731 -

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000

E
m

p
ir

ic
al

 S
o

lu
ti

o
n

 P
ro

b
ab

il
it

y

Evaluations

BILS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000

E
m

p
ir

ic
al

 S
o

lu
ti

o
n

 P
ro

b
ab

il
it

y

Evaluations

WBLS

INSERT (2)
INSERT (3)

INSERT (0.25)
INSERT (0.5)

INSERT (0.75)
SWAP (2)
SWAP (3)

SWAP (0.25)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 40000 80000 120000 160000 200000

E
m

p
ir

ic
al

 S
o

lu
ti

o
n

 P
ro

b
ab

il
it

y

Evaluations

BILS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 40000 80000 120000 160000 200000

E
m

p
ir

ic
al

 S
o

lu
ti

o
n

 P
ro

b
ab

il
it

y

Evaluations

WBLS

Fig. S2: A comparison of different choices for the perturbation operators. The ILS algo-

rithms are with two local search algorithms (BILS, WBLS) and BETTER acceptance

criterion but different perturbation operators and strengths for instance s01 (top) and

s03 (bottom). The legend in the top right plot is applicable to all plots in the figure.

aged over all the runs. On all instances, the WBLS algorithm always needed a lower

number of evaluations than BILS and FILS (note that the y-axis is a log scale). By

examining the algorithms that achieved the lowest number of evaluations, we found

that they all implemented WBLS as their local search operator but had different per-

turbation operators and acceptance criteria. However, the results for ILS with WBLS

presented here are relatively close to the lowest ones achieved by other algorithms.

For the ILS algorithms, we observed that domination between different algorithms and

configurations seems to be the rule. In many cases, a crossing of RLDs was observed for

instances within our benchmark suite. Such an observation can generally be exploited

to enhance the overall performance on optimizing an instance by combining a suitable

configuration of ILS algorithms—such as an ILS with BILS and an ILS with WBLS—

into algorithm portfolios. This behaviour was also noticed when testing the acceptance

criteria, where accepting worse solutions by PROBABILITY yielded a better perfor-

mance, leading to the suggestion that modifying PROBABILITY to reflect the quality

of a solution would improve the performance. In other words, solutions only marginally

worse than the current solution would have a higher probability of acceptance than a

plainly awful solution (as is the case for simulated annealing and threshold accepting,

for example).

S2. Performance of ILS variants dicussion

Figure S7 and S8 present the respective results of optimizing the 21- and 32-unit

systems by ILS algorithms. Each figure consists of three plots. The top one is a scatter

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 732 -

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000

E
m

p
ir

ic
al

 S
o

lu
ti

o
n

 P
ro

b
ab

il
it

y

Evaluations

s01

BETTER
Pr(0.01)
Pr(0.03)
Pr(0.07)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 36000 72000 108000 144000 180000

E
m

p
ir

ic
al

 S
o

lu
ti

o
n

 P
ro

b
ab

il
it

y

Evaluations

s02

BETTER
Pr(0.01)
Pr(0.03)
Pr(0.07)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 40000 80000 120000 160000 200000

E
m

p
ir

ic
al

 S
o

lu
ti

o
n

 P
ro

b
ab

il
it

y

Evaluations

s03

BETTER
Pr(0.01)
Pr(0.03)
Pr(0.07)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 60000 120000 180000 240000 300000

E
m

p
ir

ic
al

 S
o

lu
ti

o
n

 P
ro

b
ab

il
it

y

Evaluations

s05

BETTER
Pr(0.01)
Pr(0.03)
Pr(0.07)

Fig. S3: A comparison of different choices for the acceptance criteria when BILS is

the local search algorithm with INSERT(3) perturbation. The x-axis represents the

number of evaluations and the y-axis is the cumulative empirical solution probability.

Table S1: The best algorithms for all instances based on the percentage deviation (PD)

achieved, averaged over 100 runs.

s01 s02 s03 s04 s05 s06
Algorithm PD Algorithm PD Algorithm PD Algorithm PD Algorithm PD Algorithm PD

A01 0 A05 0 A13 0.084 A73 2.891 A05 0.15 A05 3.416
A05 0 A09 0 A09 0.097 A05 3.17 A13 0.152 A09 3.437
A13 0 A13 0.054 A05 0.104 A09 3.341 A09 0.157 A01 4.138
A17 0 A01 0.067 A69 0.113 A13 3.349 A29 0.2 A73 4.245
A65 0 A17 0.481 A65 0.121 A69 3.669 A25 0.201 A69 4.292
A73 0 A33 2.231 A73 0.123 A65 3.765 A17 0.229 A13 4.776
A77 0 A41 2.439 A01 0.143 A01 3.925 A01 0.229 A29 4.908

s07 s08 s09 s10 s11 Sum of Ranks

Algorithm PD Algorithm PD Algorithm PD Algorithm PD Algorithm PD Algorithm PD
A05 0.212 A69 0.616 A69 0.535 A05 0.026 A21 0.506 A05 15
A01 0.214 A73 0.698 A65 0.565 A01 0.029 A25 0.51 A69 36
A09 0.222 A65 0.721 A05 0.613 A25 0.03 A69 0.545 A01 42
A65 0.317 A25 0.78 A93 0.629 A69 0.035 A89 0.568 A09 49
A69 0.343 A29 0.782 A01 0.711 A93 0.036 A05 0.641 A73 54
A73 0.38 A05 0.81 A73 0.868 A65 0.037 A01 0.681 A65 59
A29 0.394 A01 0.836 A09 0.931 A29 0.037 A65 0.685 A13 88

plot of the optimization runs performed by all algorithms, which shows the trade-off

between the best objective function found (SSR) and the number of evaluations needed

to find it. The bottom left plot illustrates the same trade-off between the SSR and the

number of evaluations averaged over all runs. Finally, at the bottom right of the figure

is a boxplot which presents a graphical view of the distribution of the best solutions

found and compares multiple algorithms. The lower the box in the boxplot, the better

the performance of the corresponding algorithm.

In the scatter plot of Figure S7, we can discern two different patterns of behaviour

of the algorithms. The ILS-BILS, ILS-WBLS and Restart solutions are spread over all

the plot, showing the stochastic nature of these algorithms. It should be remembered

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 733 -

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000

E
m

p
ir

ic
al

 S
o

lu
ti

o
n

 P
ro

b
ab

il
it

y

Evaluations

s01

BETTER
Pr(0.01)
Pr(0.03)
Pr(0.07)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 36000 72000 108000 144000 180000

E
m

p
ir

ic
al

 S
o

lu
ti

o
n

 P
ro

b
ab

il
it

y

Evaluations

s02

BETTER
Pr(0.01)
Pr(0.03)
Pr(0.07)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 40000 80000 120000 160000 200000

E
m

p
ir

ic
al

 S
o

lu
ti

o
n

 P
ro

b
ab

il
it

y

Evaluations

s03

BETTER
Pr(0.01)
Pr(0.03)
Pr(0.07)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 60000 120000 180000 240000 300000

E
m

p
ir

ic
al

 S
o

lu
ti

o
n

 P
ro

b
ab

il
it

y

Evaluations

s05

BETTER
Pr(0.01)
Pr(0.03)
Pr(0.07)

Fig. S4: A comparison of different choices for the acceptance criteria when WBLS is

the local search algorithm with INSERT(3) perturbation. The x-axis represents the

number of evaluations and the y-axis is the cumulative empirical solution probability.

that they were basic ILS algorithms without modification. However, ILS-WBLS found

many solutions using a relatively low number of evaluations compared to the other

ILSs. As discussed previously, the local search component of ILS-WBLS was designed to

find feasible solutions quickly and it seems to have performed well on this test system.

Almost all of the solutions found by the Hybrid and Portfolio algorithms were close

to the best solution known for the test system. While Hybrid and Delta found the

solutions with different values of evaluations, the portfolio algorithm found all of the

solutions in fewer than 12000 evaluations.

Averaging the SSR and evaluation results for the solutions provides an indication

of the overall performance of the ILS algorithms. In the bottom left plot, the superior

performance of the Portfolio is noticeable, as it had the best average SSR and the

lowest computational cost of optimization. The Hybrid algorithm also appears to have

performed well, achieving an average SSR close to that of Portfolio at almost double

the computational cost. On the other hand, the ILS-BILS and Restart algorithms

demonstrated the worst performance. Their average SSR and evaluations were close;

however, ILS-WBLS showed a better overall performance compared to them. It was

even better in terms of evaluations than the Delta algorithm, but worse in terms of

the objective function value.

A better overview of the distribution of the solutions is represented by the boxplot.

It can be seen that there was substantially more variation in the ranges of ILS-BILS,

ILS-WBLS and Restart compared to the Hybrid, Delta and Portfolio algorithms.

ILS-BILS and Restart had similar solution ranges and relatively close median values,

while ILS-WBLS had a better inter-quartile range and median. It tended to find better

solutions, as shown by the fact that its lower whisker was proportionally shorter than

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 734 -

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000

E
m

p
ir

ic
al

 S
o
lu

ti
o
n
 P

ro
b
ab

il
it

y

Evaluations

s01

f(x)
best

0.25%
0.5%

1%
3%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000

E
m

p
ir

ic
al

 S
o
lu

ti
o
n
 P

ro
b
ab

il
it

y

Evaluations

s01

f(x)
best

0.25%
0.5%

1%
3%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000

E
m

p
ir

ic
al

 S
o
lu

ti
o
n
 P

ro
b
ab

il
it

y

Evaluations

s03

f(x)
best

0.25%
0.5%

1%
3%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000

E
m

p
ir

ic
al

 S
o
lu

ti
o
n
 P

ro
b
ab

il
it

y

Evaluations

s03

f(x)
best

0.25%
0.5%

1%
3%

Fig. S5: The plots show empirical run-length distributions across 100 independents

runs of an ILS algorithm with BETTER acceptance criterion, INSERT(3) perturbation

and BILS local search algorithm for instances s01 (top left) and s03 (bottom left) and

WBLS local search for s01 (top right) and s03 (bottom left). Several bounds on the best

known solution quality are given as percentage deviation. The f(x) curves represent

approximations of the empirically measured distributions via exponential distributions.

the upper one compared to ILS-BILS and Restart. Although there were some minor

differences in the median and spread between the ILS-BILS, ILS-WBLS and Restart

runs, these differences do not seem significant. The Hybrid, Delta and Portfolio

ranges were comparatively short, in particular the Portfolio, with several outliers.

The boxplot and outliers for Portfolio are so close that they cannot be distinguished

visually. This indicates a consistently significant performance compared to the other

algorithms. The performance of Hybrid was good as well, and better than that of

Delta.

From the scatter plot of the 32 units test S8, it can be noticed that solutions are

skewed to the higher evaluations side of the plot except for the Hybrid and Portfolio

algorithms. It seems that the other algorithms can not find good solutions with low

number of evaluations compare to the Hybrid and Portfolio. This is understandable

as the 32 units system is larger and more constrained than the 21 units system. The

Hybrid managed to find several solutions in lower number of evaluation compare to

the Portfolio algorithm.

The bottom left plot shows that in terms of evaluations, the Hybrid and Portfolio

algorithms have almost the same average of evaluations while the other algorithms av-

erage evaluations are close. However, the performance of algorithms in term of SSR

obtained are different except for the ILS-BILS and Restart where the averaged SSR

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 735 -

 10

 100

 1000

 10000

 100000

 1e+06

s01 s02 s03 s04 s05 s06 s07 s08 s09 s10 s11

E
v
al

u
at

io
n
s

Instances

Minimum Evaluations
WBHC
BIHC
FIHC

Fig. S6: The number of evaluations (averaged over 100 runs) required ILS algorithms

with BETTER acceptance criterion, INSERT(3) perturbation and different local search

algorithms to guide the search process to the feasible search space area. The Minimum

Evaluations is the lowest evaluations required for all instances optimized by all algo-

rithms.

values are almost identical. The Portfolio obtained by far the best solutions followed

by Hybrid algorithm. Just like its performance on the 21 units system, the ILS-WBLS

performed better than the ILS-BILS algorithm although the computational cost re-

quired is similar to ILS-BILS.

The boxplots of the ILS-BILS, ILS-WBLS and Restart algorithms show smaller

variations than was the case for the 21-unit system, with fewer outliers. The range

of solutions found by the ILS-BILS and Restart algorithms were similar, with close

median values. The boxplot of the ILS-WBLS algorithm shows a lower range of SSR

values and a lower median, indicating better performance. Delta performed slightly

better than ILS-WBLS, with similar IQR and close median values. The performance of

the Hybrid and Portfolio algorithms was more consistent on this test problem than

on the 21-unit problem. There were no outliers for Portfolio and few for Hybrid.

Portfolio was the algorithm which performed best of all in terms of boxplot range,

position and median.

S3. Statistical analysis

Prior to choosing the appropriate test to validated these outcomes, it was necessary

to check the normality of distribution of the results. The Kolmogorov-Smirnov test of

normality after the Lilliefors significance correction [45] was chosen over other tests

because it is commonly applied and is considered conservative. The test rejects the

normality hypothesis for most of the algorithm results for the 21 units problem and

some algorithms for the other problem. In this case, it was more practical to use a non-

parametric test to examine the significance of the statistical results, as the normality

assumption had been violated by some of the algorithms.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 736 -

 1.36

 1.38

 1.4

 1.42

 1.44

 1.46

 1.48

 1.5

 1.52

 1.54

 1.56

 0 5000 10000 15000 20000 25000 30000

S
S

R
 (

/1
0

7
)

Evaluations

BILS
WBLS

Restart
Hybrid function

Delta
Portfolio

 1.36

 1.37

 1.38

 1.39

 1.4

 1.41

 1.42

 1.43

 1.44

 1.45

 1.46

 0 6000 12000 18000 24000 30000

A
v

er
ag

e
S

S
R

 (
/1

0
7
)

Average Evaluations

 1.36

 1.38

 1.4

 1.42

 1.44

 1.46

 1.48

 1.5

 1.52

 1.54

 1.56

BILS WBLS Restart Hybrid Delta Portfolio

S
S

R
 (

/1
0

7
)

Algorithms

Fig. S7: The performance of the ILS algorithms on the ‘21 Units System’ is presented as

a scatter plot (top) of the runs, evaluations against SSR averaged over all runs (bottom

left) and the boxplots (bottom right). BILS and WBLS stands for the algorithms

ILS-BILS and ILS-WBLS respectively.

Table S2: The comparison of selected pairs of algorithms where each algorithm has

executed 100 runs. Each test was performed at a significance level of α = 0.01 after

applying the Bonferroni adjustment. The statistics show the direction of the difference

as mean or median.

21-Unit System

Pair of algorithms Test Statistic P-value Significance

BILS and WBLS Mann-Whitney Median 14502209/14252268 1.465e-06 Significant
BILS and Restart T-test Mean 14487741/14547422 0.612 Not significant
BILS and Delta Mann-Whitney Median 14502209/13839697 9.060e-27 Highly significant
BILS and Hybrid Mann-Whitney Median 14502209/13687191 3.263e-33 Highly significant
Portfolio and Hybrid Mann-Whitney Median 13664879/13687191 2.739e-28 Highly significant

32-Unit System

Pair of algorithms Test Statistic P-value Significance

BILS and WBLS T-test Mean 34083826/33912796 1.210e-23 Highly significant
BILS and Restart Mann-Whitney Median 34066316/34041033 0.651 Not significant
BILS and Delta T-test Mean 34083826/33867678 9.990e-36 Highly significant
BILS and Hybrid Mann-Whitney Median 34066316/33753789 1.303e-32 Highly significant
Portfolio and Hybrid T-test Mean 33666498/33769502 2.807e-09 Significant

The Kruskal-Wallis test is a non-parametric method of testing the null hypothesis

that all populations are identical against the alternative that there is at least one pop-

ulation which differs from the others. We used the test here to validate the following

hypotheses:

H0: The algorithms have a similar performance,

H1: At least one of the algorithms tends to achieve better results than the others.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 737 -

 3.36

 3.38

 3.4

 3.42

 3.44

 3.46

 3.48

 3.5

 0 5000 10000 15000 20000 25000 30000 35000 40000

S
S

R
 (

/1
0

7
)

Evaluations

BILS
WBLS

Restart
Hybrid function

Delta
Portfolio

 3.365

 3.37

 3.375

 3.38

 3.385

 3.39

 3.395

 3.4

 3.405

 3.41

 0 8000 16000 24000 32000 40000

A
v

er
ag

e
S

S
R

 (
/1

0
7
)

Average Evaluations

 3.36

 3.38

 3.4

 3.42

 3.44

 3.46

 3.48

 3.5

BILS WBLS Restart Hybrid Delta Portfolio

S
S

R
 (

/1
0

7
)

Algorithms

Fig. S8: The performance of the ILS algorithms on the ‘32 Units System’ is presented as

a scatter plot (top) of the runs, evaluations against SSR averaged over all runs (bottom

left) and the boxplots (bottom right). BILS and WBLS stands for the algorithms

ILS-BILS and ILS-WBLS respectively.

The value of the significance level obtained by the test (p-value = 3.757e-98 and

8.277e-95 for the 21- and 32-unit systems respectively) was much less than α = 0.05,

leading to the clear rejection of H0 and revealing a statistically highly significant dif-

ference in the SSR values across the algorithms for both problems. Therefore, the

alternative hypothesis H1 was accepted. However, this result does not indicate which

of the algorithms were statistically significantly different from one another. A multiple

comparison method can be used to perform tests between pairs of algorithms. The

method required to test a pair of algorithms depends on their normality. The t-test

can be used for testing pairs where results for both are normally distributed, while

the non-parametric Mann-Whitney test should be used otherwise. Table S2 shows the

probability values for different tests and the direction of the difference as mean or

median for the t-test and Mann-Whitney tests respectively.

The pair tests were performed at a significance level of α = 0.01 after applying the

Bonferroni adjustment. Any probability value (p) higher than the α value indicates

that the result was not significant and that there was no statistical difference in the

performance of the pair of algorithms under study.

Acknowledgements Ahmad Almakhlafi gratefully acknowledges support by the Saudi Ara-
bian Cultural Bureau under grant number SACB-D184.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 738 -

References

1. A. Almakhlafi. http://www.cs.man.ac.uk/∼almakhla/ILS.html, 2014.
2. A. Almakhlafi and J. Knowles. Benchmarks for maintenance scheduling problems in power

generation. In Evolutionary Computation (CEC), 2012 IEEE Congress on, pages 1–8.
IEEE, 2012.

3. A. Almakhlafi and J. Knowles. Systematic construction of algorithm portfolios for a main-
tenance scheduling problem. In Evolutionary Computation (CEC), 2013 IEEE Congress
on, pages 245–252. IEEE, 2013.

4. Y. Z. Arajy and S. Abdullah. Hybrid variable neighbourhood search algorithm for attribute
reduction in rough set theory. In Intelligent Systems Design and Applications (ISDA),
2010 10th International Conference on, pages 1015–1020. IEEE, 2010.

5. S. Arueti and D. Okrent. A knowledge-based prototype for optimization of preventive
maintenance scheduling. Reliability Engineering & System Safety, 30(1-3):93–114, 1990.

6. A. Bar-Noy, R. Bhatia, J.S. Naor, and B. Schieber. Minimizing service and operation
costs of periodic scheduling. In Proceedings of the ninth annual ACM-SIAM symposium
on Discrete Algorithms, pages 11–20. Society for Industrial and Applied Mathematics,
1998.

7. H. Bashir and R. Neville. A hybrid evolutionary computation algorithm for global op-
timization. In IEEE Congress on Evolutionary Computation (CEC), pages 2700–2707,
2012.

8. S. Baskar, P. Subbaraj, M. V. C. Rao, and S. Tamilselvi. Genetic algorithms solution to
generator maintenance scheduling with modified genetic operators. Generation, Trans-
mission and Distribution, IEE Proceedings-, 150(1):56–60, 2003.

9. L. Bianchi, J. Knowles, and N. Bowler. Local search for the probabilistic traveling salesman
problem: correction to the 2-p-opt and 1-shift algorithms. European Journal of Operational
Research, 162(1):206–219, 2005.

10. M. Birattari, P. Balaprakash, T. Stützle, and M. Dorigo. Estimation-based local search
for stochastic combinatorial optimization using delta evaluations: a case study on the
probabilistic traveling salesman problem. INFORMS Journal on Computing, 20(4):644–
658, 2008.

11. G. Budai, D. Huisman, and R. Dekker. Scheduling preventive railway maintenance activ-
ities. Journal of the Operational Research Society, 57:1035–1044(10), 2 September 2006.

12. G. Budai, D. Huisman, and R. Dekker. Scheduling preventive railway maintenance activi-
ties. In Systems, Man and Cybernetics, 2004 IEEE International Conference on, volume 5,
pages 4171 – 4176 vol.5, 10-13 2004.

13. E. K. Burke, P. De Causmaecker, G. V. Berghe, and H. Van Landeghem. The state of the
art of nurse rostering. Journal of Scheduling, 7(6):441–499, 2004.

14. E. K. Burke and A. J. Smith. A multi-stage approach for the thermal generator mainte-
nance scheduling problem. In Evolutionary Computation, 1999. CEC 99. Proceedings of
the 1999 Congress on, volume 2. IEEE, 1999.

15. D. Chattopadhyay. A game theoretic model for strategic maintenance and dispatch deci-
sions. Power Systems, IEEE Transactions on, 19(4):2014–2021, 2004.

16. W. R. Christiaanse and A. H. Palmer. A technique for the automated scheduling of the
maintenance of generating facilities. Power Apparatus and Systems, IEEE Transactions
on, PAS-91(1):137–144, 1972.

17. R. K. Congram, C. N. Potts, and S. L. Van De Velde. An iterated dynasearch algorithm
for the single-machine total weighted tardiness scheduling problem. INFORMS Journal
on Computing, 14(1):52–67, 2002.

18. K. P. Dahal, C. J. Aldridge, and J. R. McDonald. Generator maintenance scheduling using
a genetic algorithm with a fuzzy evaluation function. Fuzzy Sets and Systems, 102(1):21–
29, 1999.

19. K. P. Dahal and N. Chakpitak. Generator maintenance scheduling in power systems using
metaheuristic-based hybrid approaches. Electric Power Systems Research, 77(7):771–779,
2007.

20. K. P. Dahal and J. R. McDonald. Generator maintenance scheduling of electric power sys-
tems using genetic algorithms with integer representation. In IEE conference publication,
pages 456–461. Institution of Electrical Engineers, 1997.

21. K. P. Dahal, J. R. McDonald, and G. M. Burt. Modern heuristic techniques for scheduling
generator maintenance in power systems. Transactions of the Institute of Measurement
and Control, 22(2):179–194, 2000.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 739 -

22. X. Dong, H. Huang, and P. Chen. An iterated local search algorithm for the permuta-
tion flowshop problem with total flowtime criterion. Computers & Operations Research,
36(5):1664–1669, 2009.

23. J. F. Dopazo and H. M. Merrill. Optimal generator maintenance scheduling using integer
programming. Power Apparatus and Systems, IEEE Transactions on, 94(5):1537–1545,
1975.

24. G. T. Egan, T. S. Dillon, and K. Morsztyn. An experimental method of determination of
optimal maintenance schedules in power systems using the branch-and-bound technique.
Systems, Man and Cybernetics, IEEE Transactions on, 6(8):538–547, 1976.

25. I. El-Amin, S. Duffuaa, and M. Abbas. A tabu search algorithm for maintenance scheduling
of generating units. Electric Power Systems Research, 54(2):91–99, 2000.

26. M. Y. El-Sharkh and A. A. El-Keib. Maintenance scheduling of generation and transmis-
sion systems using fuzzy evolutionary programming. Power Systems, IEEE Transactions
on, 18(2):862–866, 2003.

27. L. Fanjul-Peyro and R. Ruiz. Iterated greedy local search methods for unrelated parallel
machine scheduling. European Journal of Operational Research, 207(1):55–69, 2010.

28. W. K. Foong. Ant colony optimisation for power plant maintenance scheduling. PhD
thesis, School of Civil and Environmental Engineering, The University of Adelaide, 2007.
http://digital.library.adelaide.edu.au/dspace/handle/2440/47786.

29. W. K. Foong, H. R. Maier, and A. R. Simpson. Ant colony optimization for power plant
maintenance scheduling optimization. In Proceedings of the 2005 Conference on Genetic
and Evolutionary Computation, pages 249–256. ACM, 2005.

30. D. Frost and R. Dechter. Maintenance scheduling problems as benchmarks for constraint
algorithms. Annals of Mathematics and Artificial Intelligence, 26(1):149–170, 1999.

31. C. P. Gomes and B. Selman. Algorithm portfolio design: Theory vs. practice. In Proceed-
ings of the Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI), pages
190–197. Morgan Kaufmann Publishers Inc., 1997.

32. C. P. Gomes and B. Selman. Algorithm portfolios. Artificial Intelligence, 126(1-2):43–62,
2001.

33. J. Gruhl. Electric generation production scheduling using a quasi-optimal sequential tech-
nique. Technical report, MIT Energy Lab, 1973.

34. J. Gruhl. Electric power unit commitment scheduling using a dynamically evolving mixed
integer program. Technical report, MIT Energy Lab, 1973.

35. P. Hansen and N. Mladenović. Variable neighborhood search: Principles and applications.
European Journal of Operational Research, 130(3):449–467, 2001.

36. H. Hoos. Stochastic Local Search - Methods, Models, Applications. PhD thesis, Darmstadt
University of Technology, 1999.

37. B. A. Huberman, R. M. Lukose, and T. Hogg. An economics approach to hard computa-
tional problems. Science, 275(5296):51, 1997.

38. A. Khanlari, K. Mohammadi, and B. Sohrabi. Prioritizing equipments for preventive main-
tenance (pm) activities using fuzzy rules. Computers & Industrial Engineering, 54(2):169–
184, 2008.

39. B. Kralj and R. Petrović. Optimal preventive maintenance scheduling of thermal gen-
erating units in power systems–a survey of problem formulations and solution methods.
European Journal of Operational Research, 35(1):1–15, 1988.

40. B. Kralj and R. Petrovic. A multiobjective optimization approach to thermal generating
units maintenance scheduling. European Journal of Operational Research, 84(2):481–493,
1995.

41. B. Kralj and N. Rajakovic. Multiobjective programming in power system optimization:
new approach to generator maintenance scheduling. International Journal of Electrical
Power & Energy Systems, 16(4):211–220, 1994.

42. B. Laurent and J. K. Hao. Iterated local search for the multiple depot vehicle scheduling
problem. Computers & Industrial Engineering, 57(1):277–286, 2009.

43. D. Lei. Multi-objective production scheduling: a survey. The International Journal of
Advanced Manufacturing Technology, 43(9):926–938, 2009.

44. R.-C. Leou and S.-A. Yih. A flexible unit maintenance scheduling using fuzzy 0-1 integer
programming. In Power Engineering Society Summer Meeting, 2000. IEEE, volume 4,
pages 2551–2555. IEEE, 2000.

45. H. W. Lilliefors. On the kolmogorov-smirnov test for normality with mean and variance
unknown. Journal of the American Statistical Association, 62(318):399–402, 1967.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 740 -

46. C. E. Lin, C. J. Huang, C. L. Huang, C. C. Liang, and S. Y. Lee. An expert system for gen-
erator maintenance scheduling using operation index. Power Systems, IEEE Transactions
on, 7(3):1141–1148, 1992.

47. H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local search. Handbook of Meta-
heuristics, page 321, 2003.

48. H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local search: Framework and
applications. In Handbook of Metaheuristics, pages 363–397. Springer, 2010.

49. P. Merz and J. Huhse. An iterated local search approach for finding provably good solutions
for very large tsp instances. In Parallel Problem Solving from Nature–PPSN X, pages 929–
939. Springer, 2008.

50. T. Messelis, S. Haspeslagh, B. Bilgin, P. De Causmaecker, and G. Vanden Berghe. Towards
prediction of algorithm performance in real world optimisation problems. In Proceedings
of the 21st Benelux Conference on Artificial Intelligence, volume 21, pages 177–183, 2009.

51. D. K. Mohanta, P. K. Sadhu, and R. Chakrabarti. Deterministic and stochastic approach
for safety and reliability optimization of captive power plant maintenance scheduling using
ga/sa-based hybrid techniques: A comparison of results. Reliability Engineering & System
Safety, 92(2):187–199, 2007.

52. F. Peng, K. Tang, G. Chen, and X. Yao. Population-based algorithm portfolios for nu-
merical optimization. Evolutionary Computation, IEEE Transactions on, 14(5):782–800,
2010.

53. G. Quan, G. W. Greenwood, D. Liu, and S. Hu. Searching for multiobjective preventive
maintenance schedules: Combining preferences with evolutionary algorithms. European
Journal of Operational Research, 177(3):1969–1984, 2007.

54. G. Raidl, J. Puchinger, and C. Blum. Metaheuristic hybrids. Handbook of Metaheuristics,
pages 469–496, 2010.

55. L. Ren, C. Duhamel, and A. Quilliot. A hybrid ILS/VND heuristic for the one-commodity
pickup-and-delivery traveling salesman problem. In International Workshop on Green
Supply Chain–GSC 2012, 2012.

56. T. Satoh and K. Nara. Maintenance scheduling by using simulated annealing method.
Power Systems, IEEE Transactions on, 6(2):850–857, 1991.

57. E. B. Schlünz. Decision support for generator maintenance scheduling in the energy sector.
Master’s thesis, Stellenbosch: Stellenbosch University, 2011.

58. E. B. Schlünz and J. H. van Vuuren. An investigation into the effectiveness of simu-
lated annealing as a solution approach for the generator maintenance scheduling problem.
International Journal of Electrical Power & Energy Systems, 53:166–174, 2013.

59. N. Shukla, Y. Dashora, M. K. Tiwari, F. T. S. Chan, and T. C. Wong. Introducing
algorithm portfolios to a class of vehicle routing and scheduling problem. In Proceedings
of The 2nd International Conference on Operations and Supply Chain Management, pages
1015–1026. Novotel Siam Square Hotel, Bangkok, Thailand., 2007.

60. B. Sigl, M. Golub, and V. Mornar. Solving timetable scheduling problem using genetic
algorithms. In Proc. of the 25th int. conf. on information technology interfaces, pages
519–524, 2003.

61. B. Silverthorn and R. Miikkulainen. Latent class models for algorithm portfolio methods.
In Twenty-Fourth AAAI Conference on Artificial Intelligence, pages 167–172, 2010.

62. T. Stützle. Local Search Algorithms for Combinatorial Problems. PhD thesis, Darmstadt
University of Technology, 1998.

63. T. Stützle. Local search algorithms for combinatorial problems: analysis, improvements,
and new applications. Infix Sankt Augustin, Germany, 1999.

64. T. Stützle. Iterated local search for the quadratic assignment problem. European Journal
of Operational Research, 174(3):1519–1539, 2006.

65. T. Stützle and H. Hoos. Analyzing the run-time behaviour of iterated local search for
the tsp. In C.C. Ribeiro, editor, Proceedings of the Third Metaheuristics International
Conference MIC 99, pages 1–18, Universidade Catolica do Rio de Janeiro, Angra dos Reis,
1999.

66. P. M. Subcommittee. Ieee reliability rest system. Power Apparatus and Systems, IEEE
Transactions on, 6:2047–2054, 1979.

67. A. Subramanian, L. A. F. Cabral, and L. S. Ochi. An efficient ils heuristic for the vehicle
routing problem with simultaneous pickup and delivery. Relatório Técnico, Universidade
Federal Fluminense, dispońıvel em http://www. ic. uff. br/˜ satoru/index. php, 2008.

68. K. Suresh and N. Kumarappan. Combined genetic algorithm and simulated annealing for
preventive unit maintenance scheduling in power system. In Power Engineering Society
General Meeting, 2006, pages 1–5. IEEE, 2006.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 741 -

69. N. M. Tabari, M. Pirmoradian, and S. B. Hassanpour. Revenue based maintenance schedul-
ing of a genco in restructured power systems. In Computational Technologies in Electrical
and Electronics Engineering, 2008. SIBIRCON 2008. IEEE Region 8 International Con-
ference on, pages 155–158. IEEE, 2008.

70. R. Tonić and M. Rakić. Annual preventive maintenance scheduling for thermal units in
an electric power system. The Yugoslav Journal of Operations Research ISSN: 0354-0243
EISSN: 2334-6043, 20(2), 2010.

71. J. A. Vrugt and B. A. Robinson. Improved evolutionary optimization from geneti-
cally adaptive multimethod search. Proceedings of the National Academy of Sciences,
104(3):708, 2007.

72. J. A. Vrugt, B. A. Robinson, and J. M. Hyman. Self-adaptive multimethod search for global
optimization in real-parameter spaces. Evolutionary Computation, IEEE Transactions on,
13(2):243–259, 2009.

73. Y. Wang and E. Handschin. A new genetic algorithm for preventive unit maintenance
scheduling of power systems. International Journal of Electrical Power & Energy Systems,
22(5):343–348, 2000.

74. T. Wireman. Benchmarking best practices in maintenance management. Industrial Press
Inc., 2nd edition edition, 2010.

75. Z. Yamayee, K. Sidenblad, and M. Yoshimura. A computationally efficient optimal main-
tenance scheduling method. IEEE Trans. Power Appar. Syst.;(United States), 102(2),
1983.

76. Z. A. Yamayee. Maintenance scheduling: description, literature survey, and interface with
overall operations scheduling. Power Apparatus and Systems, IEEE Transactions on,
101(8):2770–2779, 1982.

77. Y. Yare and G. K. Venayagamoorthy. Optimal maintenance scheduling of generators using
multiple swarms-mdpso framework. Engineering Applications of Artificial Intelligence,
23(6):895–910, 2010.

78. H. H. Zurn and V. H. Quintana. Several objective criteria for optimal generator pre-
ventive maintenance scheduling. Power Apparatus and Systems, IEEE Transactions on,
96(3):984–992, 1977.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 742 -

Eugene Levner

School of Economics, Ashkelon Academic College, Ashkelon, Israel

E-mail: elevner@acad.ash-college.ac.il

Amir Elalouf

Department of Management, Bar Ilan University, Ramat Gan, Israel

E-mail: amir.elalouf@biu.ac.il

MISTA 2015

A general technique for improving the complexity of FPTAS for

scheduling problems

Eugene Levner • Amir Elalouf

 1 Introduction

 An approximation algorithm is called a fully polynomial time approximation scheme

(FPTAS) if it satisfies two conditions: (i) for any instance of an optimization problem and a

parameter ε >0, it finds an approximate solution Z
A
 that satisfies Z

A
≤ Z*(1+ε) or Z

A
≥ Z*(1-ε),

respectively, for the minimization and maximization problem, where Z* is the optimal

solution; (ii) its running time is polynomial in problem size and 1/ε. An FPTAS is the strongest

polynomial approximation method that can be obtained for a NP-hard problems (if P ≠ NP).

 We describe a technique for improving the complexity of known FPTAS for scheduling

problems. The suggested approach continues and extends the computational procedure

developed by Ergun et al. [3] for the restricted shortest path problem and later extended by the

authors of the current paper for several scheduling and routing problems ([1], [2], [9]).

 We suggest the improved FPTAS to consist of three stages as follows:

 Stage A: Find a preliminary “rough” lower bound LB and an upper bounds UB on the

optimal solution such that UB/LB ≤ n.
 Stage B: Using the preliminary, “rough” bounds of Stage 1, find the improved lower and

upper bounds on the optimal solution, such that

 UB/LB ≤ 2. (1)

 Stage C: Using the improved bounds of Stage B, run a standard (known) FPTAS for

deriving an ε-approximation solution to a considered problem.

 In this work we will focus on improving the complexity of stage B.

2 Previous work

 Over the past decades, there have evolved a number of different approaches for designing

fast approximation schemes for scheduling and routing problems; we refer to [6], [10] and

[12], for excellent reviews of definitions and recent results.

 For various scheduling and routing problems, the rough preliminary bounds, such that

UB/LB ≤ n, have long been known to researchers as folklore. In past three decades, for several

scheduling/routing problems, improved bounds satisfying (1) have been obtained in

polynomial time. Table 1 presents a summary of corresponding complexity results. The second

(logarithm-containing) term in the formulas of Table 1 displays the worst-case complexity of

constructing the improved bounds, where n stands for the number of jobs in scheduling

problems. Actually, the improved bounds for the problems in Table 1 have been obtained as

follows: If a FPTAS for a problem runs in time bounded by a polynomial p(L, 1/ε) in problem

size L and 1/ε then the improved bound is built in O(p(L) log (UB/LB)) time.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 743 -

Table 1. Complexity of the FPTAS for scheduling problems

Problem Complexity Source

Scheduling to minimize the number of late

items

O(n2/ε + n2 log UB/LB) Gens & Levner [4]

Scheduling to minimize the total tardiness O(n6/ε + n6 log UB/LB) Kovalyov [7]

Scheduling to minimize the number of late

Items

O(n3/ε + n3log UB/LB) Kovalyov [7]

Scheduling with set-ups to minimize the

number of late jobs

O(n3/ε +n3 log UB/LB) Kovalyov [7]

Two-machine problem to maximize the

weighted number of early jobs

O((n4/ε +n4log UB/LB) Shabtay &

Bensoussan [11]

 A breakthrough in this line of research came in 2002, when Ergun, Sinha and Zhang [3]

have proved that the ratio UB/LB ≤ 2 for the restricted shortest path (RSP) problem can be

obtained in O(Nm) time, where N denotes the number of nodes and m the number of arcs. As a

result, Hasin’s FPTAS algorithm of O(Nm/ε +Nm log UB/LB) time [5] was improved to

O(Nm/ε).

 The authors of the current work have continued this line of research for the knapsack and

scheduling problems (see [1], [2] and [9]), and, in particular, they have answered positively the

question posed in [4], whether a FPTAS can be built for the minimization version of the job-

scheduling-problem-with-deadlines running in O(n
2
/ε).

 In the next section, we develop an accelerating construction based on the Ergun’s et al.

procedure which allows to improve the FPTAS complexities for all the scheduling problems

displayed in Table 1. Namely, all the expressions for the improved complexity have the form

of O(n
y
/ε) (where y is an integer) while the term of the form n

y
 log UB/LB is deleted.

3 Improving the complexity of the FPTAS at stage B

 For all scheduling problems of Table 1, Stage B is constructed with two building blocks, an

approximate binary search procedure denoted by Test(w,ε) and a narrowing procedure denoted

by NARROW, which uses Test(w, ε) as a sub-procedure. Test(w, ε) is a parametric dynamic

programming algorithm that has the following property: Given positive parameters w and ε,

and an objective function Z to be minimized, Test(w, ε) reports that for the optimal objective

value Z* either Z* ≤ w holds or Z* ≥ w(1-ε) holds. This type of algorithm was first suggested

by Gens and Levner [4] for the scheduling problem with deadlines and later further studied by

Hassin [5], Kovalyov [7], Ergun et al. [3], Levner et al. [8], among others, for improving the

UB/LB ratio in various combinatorial problems.

 For each problem in Table 1, the complexity of Test(w, ε) depends on ε and is O(n
y
/ε). This

fact is proved along the same line as the proof for the scheduling problem with deadlines in

[4]. Test(w, ε) with fixed ε values is repeatedly applied as a sub-procedure in the NARROW

algorithm to make UB/LB ≤ 2.

 The idea of the NARROW algorithm is based on the dynamic approximate binary search that

chooses a larger error value ε when the bounds UB and LB are far from each other and a

smaller ε when the UB and LB get closer. The implementation of this idea is given in [3], and,

also, can be found in [1], [2] and [9].
 The complexity of the algorithm NARROW for the considered scheduling problems is

O(n
y
) where parameter y is shown in the corresponding expressions in Table 1. The proof

proceeds along the same line as that of Lemma 5 in Ergun et al. [3], and establishes that

Test(w,ε) should run in the NARROW algorithm at most 7 times. From the latter fact it

immediately follows that in all the expressions for the FPTAS complexity for the problems in

Table 1, the second term, of the form n
y
 log UB/LB (where y is a fixed integer) is excessive,

and we derive the main result:

Theorem 1. The FPTAS for all the scheduling problems in Table 1 have complexity O(n
y
/ε).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 744 -

4 Sufficient conditions for the problems allowing for an improved FPTAS

 The following theorem formulates sufficient conditions under which the set of

combinatorial problems with the improved FPTAS can be extended. Let P be a general

scheduling problem with n jobs for which the following conditions are assumed to hold:

(i) The optimal solution Z* can be found, e.g., by dynamic programing, in O(n
y

UB),

where UB is the upper bound to Z*, and y is a fixed positive integer;

(ii) Initial upper bound UB and lower bound LB such that UB/LB<n can be found in at

most O(n
y+1

) time.

Then the following claim takes place:

 Theorem 2. Under conditions (i) and (ii), the complexity of the FPTAS for a problem P is

O(n
y+1

/ε).

 This is based on a straightforward consideration of the three-stage FPTAS construction

where at stage B the accelerating algorithm NARROW is being used. At each stage the time

complexity is, clearly, at most O(n
y+1

/ε).

 The proposed general technique can be extended according to Theorem 2 and used for

finding the improved FPTAS for other combinatorial problems, such as inventory problems,

multi-constrained and multimodal routing problem, and others. Finding more accurate

conditions than those of Theorem 2 is a challenge for future research.
a.

References

[1] A. Elalouf, E. Levner, E.Cheng, Routing and dispatching of multiple mobile agents in

integrated enterprises, International Journal of Production Economics, 145(1), pp. 96-106

(2013).

[2] A. Elalouf, E. Levner, H. Tang, An improved FPTAS for maximizing the weighted

number of just-in-time jobs in a two-machine flow shop problems. Journal of Scheduling,

16(4), pp. 429-435 (2013)

[3] F. Ergun, R. Sinha, L. Zhang, An improved FPTAS for restricted shortest path,

Information Processing Letters, 83, pp. 287-291 (2002).

[4] G.V. Gens, E.V. Levner, Fast approximation algorithm for job sequencing with

deadlines, Discrete Applied Mathematics, 3, pp. 313-318 (1981).

[5] R. Hassin, Approximation schemes for the restricted shortest path problem, Mathematics

of Operations Research, 17, pp. 36-42 (1992).

[6] I. Kacem, H. Kellerer, Y. Lanuel. Approximation algorithms for maximizing the weighted

number of early jobs on a single machine with non-availability intervals. Journal of

Combinatorial Optimization, doi:10.1007/s10878-013-9643-7 (2013).

[7] M.Y. Kovalyov, Improving the complexities of approximation algorithms for optimization

problems, Operations Research Letters 17 85–87 (1995).

[8] E. Levner, A. Elalouf, An improved approximation algorithm for the ancient scheduling

problem with deadlines, Control, Decision and Information Technologies, International

Conference on, Metz, 3-5 November 2014, IEEE Publ. pp.113-116 (2014).

[9] E. Levner, A. Elalouf, T.C.E. Cheng, An improved FPTAS for mobile agent routing with

time constraints, Journal of Universal Computer Science, 17, pp.1854-1862 (2011).

[10] P. Schuurman, G.J. Woeginger, Approximation Schemes - A Tutorial.

Manuscript, available at http://www.win.tue.nl/~gwoegi/papers/ptas.pdf , 65pp. (2011).

[11] D. Shabtay, Y. Bensoussan. Maximizing the weighted number of just-in-time jobs in

several two-machine scheduling systems. Journal of Scheduling 15 pp.39-47 (2012).

[12] G.J. Woeginger. When does a dynamic programming formulation guarantee the

existence of a fully polynomial time approximation scheme (FPTAS)? INFORMS

Journal on Computing 12, pp 57-75 (2000).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 745 -

http://scholar.google.co.il/citations?user=rtfJhO0AAAAJ&hl=en&oi=sra
http://www.win.tue.nl/~gwoegi/papers/ptas.pdf

MISTA 2015

Family Scheduling in Flow Shop Manufacturing Systems

with Batch Availability

Liji Shen · Jatinder N. D. Gupta

1 Introduction

This paper addresses a batch scheduling problem in flow shop production systems,

where jobs are grouped into families according to their technological similarities. The

objective is to minimize makespan. In this context, family setup times (major setup) are

usually defined as the change-over costs for the processing of jobs from different families

[1]. In comparison, setup times between jobs in the same family (minor setup) are

typically small and are commonly included in the processing time of a job. Moreover,

we take into account sequence dependency. That is, the magnitude of setup times

depends on the family of the current job as well as the family of its previous job.

Due to the time-consuming and costly setups, production efficiency can be improved

by choosing a long run-length for each family, which leads to the batching consideration.

Batching refers to the decision of whether or not to schedule similar jobs contiguously

[5]. Therefore, a batch is a maximal subset of jobs which share a single setup and must

be processed jointly. If a batch must contain an entire family, it is referred to as group

technology assumption [2,6] (GTA). As a result of integrating batching decisions into

the family scheduling model, advantages occur due to the reduced number of setups

and therefore, higher machine utilization.

Furthermore, there are two variants depending on when jobs are dispatched. Job

availability, as a traditional type of processing, assumes that a job becomes available

once it is completed on a certain machine. Batch availability, on the other hand, requires

that all jobs of a batch are not available for processing on a downstream stage until

the entire batch completes. In such cases, jobs in a batch are processed sequentially

so that the processing time of a batch is equal to the sum of the processing times of

its jobs or operations. Applications arise when, for example, the jobs in a batch are

placed on pallets, containers or boxes which can only be removed upon the completion

Liji Shen
Faculty of Business and Economics, Technische Universitaet Dresden, 01062 Dresden, Germany
E-mail: liji.shen@tu-dresden.de

Jatinder N. D. Gupta
College of Business Administration, University of Alabama in Huntsville, Huntsville, AL 35763,
USA

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 746 -

of the last job [4]. Strongly motivated by the practical relevance, we consider batch

availability in this study. In addition, inconsistent batches are allowed, which indicate

different batch formations on different machines.

To examine problems with batch availability closely, Figure 1 presents three optimal

solutions to the same flow shop problem subject to different assumptions. Given that

the first family consists of jobs 1, 2 and 3, the first Gantt-diagram depicts a permutation

schedule with GTA imposed; the next one is a permutation schedule without GTA. In

comparison, the last solution drops GTA and adopts inconsistent batches, where differ-

ent batches are formed for the first family on different machines. This schedule differs

from traditional permutation flow shops, and is essentially a non-permutation schedule.

Apparently, makespan is remarkably improved by applying inconsistent batches and

violating GTA. In general, permutation schedule is not optimal for flow shop problem,

if sequence dependent setup times are present [3]. More importantly, explicitly consid-

ering batching decisions is necessary when batch availability is required. The problem

Fig. 1 Benefits of Batching with inconsistent batches

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 747 -

now is to find both batch composition and batch sequence for the flow shop system

so that makespan is optimized. We focus on determining schedules with inconsistent

batches on different machines. This, however, is complicated by the fact that batch-

ing and scheduling are inter-dependent. Although production efficiency is maximized

by selecting large batches, this may cause delays to other families. Thus, these two

decisions must be integrated in order to achieve a satisfactory compromise.

2 The tabu search algorithm

For solving the problem under study, we develop a tabu search algorithm with multiple

neighbourhood functions, which are well adjusted to problem structures. Our neigh-

bourhood functions primarily employ insertion-based moves. Note that they concern

more operations and thus, provide thorough changes to the current schedule.

Besides utilizing specifically defined moves, particular attention is paid to setup

times. In comparison to traditional scheduling problems, setup times play a crucial

role in the family scheduling model since they represent a significant portion in the

resulting makespan. From this point of view, it is essential to adjust the neighbourhood

structure emphasizing family setup times.

First of all, we focus on critical operations as they define the resulting makespan.

Moves involving these operations thus have the potential of immediately improving

makespan. Furthermore, we propose neighbourhood functions using batch-based as

well as extraction-based moves.

3 Computational results

The purpose of the experiments is to verify the advantages of batching first. In addition,

we also conduct experiments examining various neighbourhood functions. Problem in-

stances are randomly generated by using the common structure of benchmark instances

for flow shop problems.

To the best of our knowledge, this specific scheduling problem has not been ad-

dressed in the literature so far. Since no comparable heuristic is currently available,

we use modified CDS and NEH heuristics, and the state-of-the-art metaheuristic of [7]

as references for comparison. Computational results not only confirm the remarkable

benefits provided by batching, they also suggest improving production efficiency by

dropping the group technology assumption.

For future research, more sophisticated algorithms for solving this problem are

desirable, which would also represent a challenge to our approach.

References

1. Cheng, T.C.E., Lin, B.M.T., Toker, A.: Makespan minimization in the two-machine flow-
shop batch scheduling problem. Naval Research Logistics 47, 128–144 (2000)

2. Gupta, J.N.D., Stafford, E.F.: Flowshop scheduling research after five decades. European
Journal of Operational Research 169, 699–711 (2006)

3. Gupta, J.N.D., Tunc, E.A.: Scheduling a two-stage hybrid flowshop with separable setup
and removal times. European Journal of Operational Research 77(3), 415–428 (1994)

4. Potts, C.N., Kovalyov, M.Y.: Scheduling with batching: A review. European Journal of
Operational Research 120, 228–249 (2000)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 748 -

5. Potts, C.N., Van Wassenhove, L.N.: Integrating scheduling with batching and lot-sizing: A
review of algorithms and complexity. The Journal of the Operational Research Society 43,
395–406 (1992)

6. Schaller, J.E., Gupta, J.N.D., Vakharia, A.J.: Scheduling a flowline manufacturing cell with
sequence dependent family setup times. European Journal of Operational Research 125,
324–339 (2000)

7. Shen, L., Gupta, J.N.D., Buscher, U.: Flow shop batching and scheduling with sequence-
dependent setup times. Journal of Scheduling 17, 353–370 (2014)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 749 -

MISTA 2015

Three approaches to solving the problem of cosmonauts’
training planning

S. Bronnikov · V. Gushchina · A. Lazarev ·
N. Morozov · A. Sologub · D. Yadrentsev

1 Introduction

We consider the problem of distribution operation’s qualifications among cosmo-

nauts. The proper preparation of cosmonauts is a long, expensive and sophisticated

process. In order to maintain reliability of a flight, the members of a crew are obligated

to be trained for different types of situations and operations, obtain required skills and

Sergei Bronnikov
Rocket and Space Corporation Energia after S.P. Korolev, 4A Lenin Street, Korolev, Moscow
Region, 141070, Russian Federation;
E-mail: sbronnik@mail.ru

Varvara Gushchina
Lomonosov Moscow State University, Russian Federation;
V.A. Trapeznikov Institute of Control Science of Russian Academy of Sciences, Moscow, Rus-
sian Federation;
E-mail: vg@kvartasoft.ru

Alexander Lazarev
V.A. Trapeznikov Institute of Control Science of Russian Academy of Sciences, Moscow, Rus-
sian Federation;
Lomonosov Moscow State University, Moscow, Russian Federation;
Moscow Institute of Physics and Technology, Moscow Region, Russian Federation;
National Research University Higher School of Economics, Moscow, Russian Federation
E-mail: jobmath@mail.ru

Nikolai Morozov
Lomonosov Moscow State University, Russian Federation;
V.A. Trapeznikov Institute of Control Science of Russian Academy of Sciences, Moscow, Rus-
sian Federation;
E-mail: morozov.nikolay@physics.msu.ru

Alexander Sologub
Lomonosov Moscow State University, Russian Federation;
V.A. Trapeznikov Institute of Control Science of Russian Academy of Sciences, Moscow, Rus-
sian Federation;
E-mail: sologub10@gmail.com

Denis Yadrentsev
YU. A. Gagarin Research & Test Cosmonaut Training Center, Star City, 141160 Moscow Re-
gion, Russian Federation;
E-mail: D.Yadrentsev@gctc.ru

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 750 -

knowledge before launch. Hence YU. A. Gagarin Research & Test Cosmonaut Training

Center (CTC) must plan and schedule list of trainings for every cosmonaut.

In this paper we consider crew of three cosmonauts. The cosmonauts are divided

into two groups: experienced and inexperienced. In general three crew qualification

levels are defined: User, Operator and Specialist. For every onboard complex a set of

minimum qualifications is needed to operate safely. Consequently, the training program

for each crewmember is assigned individually tailored to his or her set of tasks and pre-

defined qualification levels.

Amount of time needed to train cosmonaut to certain qualification level on certain

onboard complex are known.

Main goal is to distribute qualification levels between cosmonauts achieving mini-

mal differences between the total time of the preparation of all team members.

In [1] is presented algorithms for the ”exact” solution of the problem when there

is only one qualification level. In [6] was shown that these algorithm have pseudo-

polinimial time complexity. In the same article was also proved that problem is strongly

NP-hard for generalm. Thus the algorithm in [1] cannot guarantee the optimal solution

unless P 6= NP, although it may be used as good heuristic ([2]).

From the statement of the problem can be seen that its possible to use one of the

multi-way partition problem’s objective function. In [4] was shown that there were at

least three of them: minimizing the largest subset sub, maximizing the smallest subset

sum and minimizing the difference between the largest and smallest subset sums. In

present work we will use the third of them.

2 Mathematical Problem

– The crew of K cosmonauts K = {1, . . . ,K}. Each cosmonaut k ∈ K can be either

experienced (ek = 1) or inexperienced (ek = 0) ;

– 3 qualification levels are known: Specialist (q = 1), Operator (q = 1) and User

(q = 1);

– J = {1, . . . , J} — set of onboard complexes;

– pjqek — amount of time needed to train experienced (ek = 1) or inexperienced

(ek = 0) cosmonaut k ∈ K to qualification level q on onboard complex j ∈ J ;

– njq — required amount of cosmonauts with qualification level q on onboard complex

j ∈ J ;

– xkjq ∈ {0, 1} — boolean variables. xkjq = 1 iff cosmonaut k ∈ K should has

qualification level q on onboard complex j ∈ J ;

– τk =
J∑

j=1

∑
q={1,2,3}

pjqekxkjq — total time of training of cosmonaut k ∈ K.

The objective function:

(max
k∈K

τk −min
k∈K

τk)→ min, (1)

subject to:

for every qualification level required exist cosmonaut which should be trained for

it ∑
k∈K

xkjq = njq, (2)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 751 -

cosmonaut can’t have two different qualification levels on the same onboard complex

∑
q={1,2,3}

xkjq ≤ 1. (3)

By the local replacement ([3]) its possible to show that the problem isNP-complete.

Suppose that all cosmonauts have an equal training time for every job and nj =

[1 0 0], ∀j. Then the problem reduces to multiway-partition problem that is actually

NP-complete. So the cosmonauts assignment problem is NP-complete too.

3 Heuristic ”Greedy” algorithm

This algorithm comprises two parts: at the first step we find any feasible solution, and

at the second one we search for single qualification permutations that lead to a lower

objective value. Initially all xkjq are zero. At each step we are fixing an operation and

assign a minimal qualification level to a cosmonaut with maximal training duration.

Each qualification to be appointed until the constraint (2) is met. So this algorithm has

a pseudopolynomial complexity, but however it has an arbitrary error. Accuracy may

be improved if all qualifications are sorted with key maxl tjl in nonincreasing order.

As a result we obtain the first approximation of the problem and denote the objective

value as δ0 = maxi τi −mini τi
The next step is to find such a swap of qualification assignments that will lower an

objective value. Without loss of generality we assume that the first cosmonaut has the

maximal training time and the third one has the minimal training time. Let’s denote

pii′j = |tjl{l : xijl 6=0} − tjl′{l′ : xi′jl′ 6=0}| as a lag between assigned qualifications. So

we search if there exists a lag that satisfies one of the conditions :

0 < p13j < 2δ0 − (τ2 − τ3) or 0 < p13j < δ0 + (τ2 − τ3) or 0 < p13j < δ0,

0 < p12j < δ0 − (τ2 − τ3) or 0 < p12j < δ0 − (τ2 − τ3)/2,

0 < p23j < (τ2 − τ3) or 0 < p23j <
δ0 + (τ2 − τ3)

2
.

If one of those inequalities holds, we make a swap of corresponding qualifications.

4 Integer programming relaxation

Here we’ve used the branch&bound method, where at each brunch the relaxed linear

problem was solved. More specifically we’ve replaced the boolean variables xkjq by the

set of variables that belong to the interval [0,1]. So 0 ≤ xkql ≤ 1, ∀k, q, l. Then the

linear programming problem was solved by the interior point method, and then the

new solution was searched with the brunch and bound methodology [5].

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 752 -

Data
Sample

Experience
”Greedy” algorithm Integer Programming relaxation
max min δ max min δ

1

3 Inexperienced 887.8 886.75 1.05 888.05 887.75 0.3
3 Experienced 570.5 569 1.5 570 569.5 0.5
1 Exp 2 Inexp 697.25 695.25 2
2 Exp 1 Inexp 616.5 612.75 3.75

2

3 Inexperienced 266.25 265 1.25 265.75 265.2 0.55
3 Experienced 234.2 233 1.2 233.75 233.25 0.5
1 Exp 2 Inexp 244.45 244 0.45
2 Exp 1 Inexp 233.75 233.25 0.5

3

3 Inexperienced 661.25 657.5 3.75 659.85 659.75 0.1
3 Experienced 353.5 353.05 0.45 353.5 353 0.5
1 Exp 2 Inexp 484.05 481.75 2.3
2 Exp 1 Inexp 393.5 392.5 1

4

3 Inexperienced 925.75 922.25 3.5 925 924.8 0.2
3 Experienced 587 586.5 0.5 587 586.5 0.5
1 Exp 2 Inexp 731.5 730.75 0.75
2 Exp 1 Inexp 628.75 628 0.75

5 Experiments

The numerical experiments for two algorithms were carried out. All the initial data

were given by YU. A. Gagarin Research & Test Cosmonaut Training Center. We have

crew of three cosmonauts. Four possible cases of crew experience were considered. All

obtained results are presented in the table. Here we fix the maximal and minimal total

training times and also its difference (the unit of time equals to an hour).

The obtained results show that the second algorithm has the best accuracy, but

even in the worst case, the error of each of the algorithms does not exceed 1 percent

of the maximal training time.

Time of working of the first ”Greedy” algorithm was less then 0.001 seconds in all

cases. Time of working of the second algorithm was limited to 5 seconds: if the algorithm

worked for 5 seconds, branching stopped. But for overwhelming majority of experiments

processing time was less then 1 second.

6 Conclusion

In this paper the problem of volume planning was presented. The next step will be

to set and to solve the calendar planning problem. Only after numerical experiments

with calendar problem we could understand what algorithm is better: more accurate

relaxation algorithm or quicker ”Greedy”.

References

1. Aggarwal, V., Tikekar, V., Hsu, L.: Bottleneck assignment problems under categorization.
Computers & Oper. Res. 13, 11–26 (1986)

2. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. SIAM e-books. Society
for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia,
PA 19104) (2009). URL http://books.google.ru/books?id=nHIzbApLOr0C

3. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. A Series of books in the mathematical sciences. W. H. Freeman (1979).
URL http://books.google.ru/books?id=fjxGAQAAIAAJ

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 753 -

4. Korf, R.E.: Objective functions for multi-way number partitioning. In: Pro-
ceedings of the Third Annual Symposium on Combinatorial Search, SOCS
2010, Stone Mountain, Atlanta, Georgia, USA, July 8-10, 2010 (2010). URL
http://aaai.org/ocs/index.php/SOCS/SOCS10/paper/view/2098

5. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley-
Interscience, New York, NY, USA (1988)

6. Punnen, A.: On bottleneck assignment problems under categorization. Computers & Oper.
Res. 31, 151–154 (2004)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 754 -

MISTA 2015

An exponential dynamic programming algorithm for the
3-machine flowshop scheduling problem to minimize the
makespan

L. Shang · C. Lenté · M. Liedloff · V.

T’Kindt

1 Introduction

Scheduling theory is a common interest for numerous researchers and it is concerned

in many different areas, such as operations research, combinatorial optimization and

industrial engineering. Most intriguing scheduling problems areNP−hard, i.e. the best

algorithm that we can expect, to find an optimal solution, is super polynomial (unless

P = NP). To deal with NP−hard problems, the design of exponential algorithms

has become a hot topic during the last decades. However, for NP−hard scheduling

problems, few results are yet known. Some results for basic scheduling problems can

be found in the survey of Lenté et al. [3], Cygan et al. [1] and Lenté et al. [4].

In this paper, we deal with the 3-machine flowshop scheduling problem, which has

been proved as NP−hard. The problem, denoted by F3‖Cmax, is described as follows.

Consider n jobs to be scheduled, each of which must be processed first on machine one,

then on machine two and machine three in this order. Each machine can only have

one job being processed at a time. The objective is to find an optimal job sequence

that will minimize the makespan of all jobs. This problem can be trivially solved by

enumerating all possible job permutations, which yields a O(n!) time algorithm.

The aim in this paper is to design a good exponential algorithm, that is, an algo-

rithm in O∗(cn) time with the constant c as small as possible. We make use of the

notation O∗ to express the worst-case complexity of an algorithm. An algorithm is in

O∗(αn) time iff there exists a polynomial p such that the algorithm is in O(p(n) ·αn).

With a Dynamic Programming approach, we have established an algorithm that solves

the problem in O∗(3n) time and space.

L. Shang, C. Lenté, V. T’Kindt
Université François-Rabelais de Tours, Laboratoire d’Informatique (EA 6300), ERL CNRS OC
6305, 64 avenue Jean Portalis, 37200 Tours, France
E-mail: {shang,lente,tkindt}@univ-tours.fr

M. Liedloff
LIFO, Université d’Orléans, 45067 Orléans Cedex 2, France
E-mail: mathieu.liedloff@univ-orleans.fr

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 755 -

2 Dynamic Programming

We note Cj the completion time on machine j of the last scheduled job, j ∈ {1, 2, 3}.
Given a job permutation π, Cj(π) returns the corresponding completion time of the

machine j for this scheduling. We also define a binary operator “.” which concatenates

two permutations.

The proposed Dynamic Programming algorithm is based on the following theorem

(Theorem 1).

Theorem 1 Let S be a set of n jobs to be processed, S′ ⊂ S. Given π and π′ as two

permutations of jobs from S′, σ as a permutation of jobs from S r S′, then we have :

If

{
C2(π) ≤ C2(π′)

C3(π) ≤ C3(π′)
then

{
C2(π.σ) ≤ C2(π′.σ)

C3(π.σ) ≤ C3(π′.σ)

that is, the partial permutation π dominates π′.

The proof of Theorem 1 is straightforward, note that C1(π) = C1(π′) always holds.

The idea of Dynamic Programming is that, when trying to construct an optimal

solution with partial solutions, only the partial solutions that are not dominated need

to be considered. If we represent partial solutions as 2D points in the criteria space

< C2, C3 >, then the non-dominated partial solutions can be seen as the Pareto Front

of points (Fig. 1).

Figure 1 Partial solutions and Pareto Front from a given subset S′ of jobs in criteria space

Now let us formulate the algorithm, starting with some definitions.

Definition 1 Given a set of permutations of a job set S, Pareto Permutations define

a subset of permutations whose resulting criteria vector < C2, C3 > is not dominated

by the criteria vector of another permutation in the set. Let MinPerm be a function

that takes a set of job permutations as input and returns its Pareto Permutations

set. OptPerm(S) is the Pareto Permutations of all jobs from S and OptPerm(S,m)

m ∈ {1, ..., |OptPerm(S)|} is the m-th permutation (the numeration is arbitrary).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 756 -

Lemma 1 For |S′| = t, the number of its Pareto Permutations |OptPerm(S′)| is
O∗(2t)

Lemma 2 We note Pij , a non-negative integer, the processing time of job i on machine

j. If ∀i, j Pij ≤M , then for a given job set S′ of t jobs, the number of non-dominated

criteria vectors < C2, C3 >, in Pareto Permutations, is O((t+ 1)M) = O∗(M).

Lemma 1 comes from the maximum number of possible critical paths (n2n) that

lead to different C2 values. Lemma 2 is based on the consideration that the maximum

value of C2 will not exceed (n+ 1)M .

Theorem 2 OptPerm(S) can be computed by Dynamic Programming as follows :

OptPerm(S) = MinPerm
k∈S;

m∈{1,...,|OptPerm(Sr{k})|}

(
OptPerm(S r k,m).{k}

)
Theorem 2 is directly based on Theorem 1.

According to Lemma 1, for a fixed S with t elements there are O∗(2t) different

OptPerm(S r k,m) to consider. The function MinPerm employs an existing algo-

rithm ([2]) for finding non-dominated criteria vectors < C2, C3 >, with a complexity

of O(N logN) for N vectors. Therefore, computing OptPerm(S) from solved sub-

problems yields a complexity of O∗(2t log 2t) = O∗(2t).
The algorithm traverses across all subsets of problem, the overall time complexity

for calculating OptPerm(S) is

n∑
t=1

(
n

t

)
O∗(2t) = O∗(3n)

Alternatively, based on Lemma 2, the time complexity can also be expressed as

n∑
t=1

(
n

t

)
O∗(M) = O∗(M2n)

Cmax can be calculated trivially from OptPerm(S) in O∗(2n) (or O∗(M)) time,

which does not change the established complexity. The space complexity is also O∗(3n)

(or O∗(M2n)) considering the storage of all necessary Pareto Permutations.

3 Conclusion and Perspectives

The algorithm is being computationally evaluated while we are still trying to

achieve further theoretical improvements. Several questions were naturally raised.

Are there really O∗(2t) points in the Pareto Front in the worst case ? This number

is calculated by considering the number of possible critical paths that have different C2

values. However, with the natural constraints of F3‖Cmax, it is not clear to construct

an instance for which all these paths are critical.

Can we improve the space complexity of the algorithm ? An initial experiment sho-

wed that the space requirement of the algorithm might be more critical than the time

requirement. So this is also our consideration for further improvements.

Finally we are also thinking about generalising this algorithm to Fm‖Cmax.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 757 -

Références

1. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O. : Scheduling partially ordered
jobs faster than 2 n. Algorithmica 68(3), 692–714 (2014)

2. Kung, H.T., Luccio, F., Preparata, F.P. : On finding the maxima of a set of vectors. J. acm
22(4), 469–476 (1975)

3. Lenté, C., Liedloff, M., Soukhal, A., T’Kindt, V. : Exponential algorithms for scheduling
problems (2014). URL https ://hal.archives-ouvertes.fr/hal-00944382

4. Lenté, C., Liedloff, M., Soukhal, A., T’Kindt, V. : On an extension of the Sort & Search
method with application to scheduling theory. Theoretical Computer Science 511, 13–22
(2013)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 758 -

MISTA 2015

Nurse Rostering Problem: Tighter Upper Bound for
Pricing Problem in Branch and Price Approach

Antońın Novák · Roman Václav́ık · Přemysl

Š̊ucha · Zdeněk Hanzálek

1 Introduction

The Nurse Rostering Problem (NRP) is a well-known combinatorial problem, in general

NP-hard, dealing with the rostering of human resources in a hospital. The high quality

of hospital rosters is very desirable since it rises many advantages for an employer,

employees (nurses) and, last but not least, patients. Specifically, the balanced roster,

i.e. a fair distribution of shifts among the available personnel in a simplified way,

causes a bigger satisfaction of nurses and a better hospital budget mainly due to a

good utilization of nurses’ workloads. Altogether, it leads to an increase in a quality of

overall health care.

In this paper, we focus on the exact method. Branch and Price (BaP) approach can

be considered as one of the most promising exact methods [3,6]. However, it consists of

several parts which are executed every time from scratch and are very time demanding.

For example, the pricing problem being NP-hard [7], which generates new rosters

for nurses, takes about 90% of the entire algorithm runtime [6]. Since this process is

repeated frequently it would be profitable to use an experience/knowledge from the

previous iterations to speed up the process in the actual or future iterations.

Therefore, the main contribution of this paper is to apply a machine learning tech-

nique within the pricing problem. Namely, a regression is employed to tighten up the

upper bound of the objective function of the pricing problem. The upper bound is used

for better pruning of the search tree and, thus, less nodes have to be looked through.

2 Problem Statement

The nurse rostering problem [4] is parametrized by the number of nurses n, the number

of days during the planning period d, the number of shifts s and the set of constraints.

Then the solution to this problem is roster R which is a binary matrix such that

∀i ∈ {1 . . . n},∀j ∈ {1 . . . d}, ∀k ∈ {1 . . . s} Rijk = 1 iff shift k is assigned to nurse i on

A. Novák · R. Václav́ık · P. Š̊ucha · Z. Hanzálek
Department of Control Engineering, Faculty of Electrical Engineering,
Czech Technical University in Prague, Prague, Czech Republic
E-mail: novakan9@fel.cvut.cz, vaclarom@fel.cvut.cz, suchap@fel.cvut.cz, hanzalek@fel.cvut.cz

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 759 -

day j and 0 otherwise. The quality of roster R is given by objective function Z which

is defined as Z(R) = (
∑n

i=1 Zi(R)) + C(R), where Zi is the quality of the assignment

related to nurse i and C is the cover penalty (=0 if all shifts are assigned). The quality

of an assignment Zi is given by the number of violations of soft constraints. The hard

constraints do not contribute to the objective function Z since they determine whether

the roster is feasible or not. Then, the goal of the NRP is to assign demanded shifts to

nurses while the value of objective function Z is minimized and the roster is feasible.

The branch and price approach is a general framework for solving huge problems

[1] which can be described in the following way. At the beginning, there is an original

problem formulation described in the previous paragraph which has to be decomposed

to the so called Master Problem (MP) and Pricing Problem (PP). After that, the

Restricted Master Problem (RMP) is created in such a way that only few columns are

considered. In our case, the column represents the roster of one employee and RMP

decides whether the given column is assigned to a nurse or not. The dual prices from

the solution of relaxed RMP are then used to find the new column within the so called

pricing problem. The column has to have a negative reduced cost which means it will

violate the current dual problem and therefore it can improve the objective value of

RMP. If such a column is found it is added to the RMP and the relaxed RMP is solved

again. On the other hand, if the column is not found the solution of RMP is checked

whether it is integral or not. If yes, the solution is final and optimal. Otherwise, the

branching has to be performed and, thus, the new relaxed RMPs, with fixed variables

according to branching rules, have to be solved.

3 Regression for Tighter Upper Bound

As it can be seen from the outline of branch and price approach, the pricing problem is

called very often. Around 90% of the whole algorithm runtime is spent only just in the

pricing problem [3]. Moreover, each iteration of pricing problem solves the problem from

scratch without considering already observed information from the previous iterations.

Therefore, we propose a machine learning technique like a linear regression to tighten

up the upper bound and, thus, to prune more nodes in the search tree.

Since the heterogeneous environment (i.e. various instances which means completely

different data) is taken into account, the online learning is the best way how to tackle

this issue [2]. Therefore, the learning framework (LF) is the following. At each iteration,

LF observes new features values and has access to the previous features and their target

values. Based on this information, LF outputs its new prediction of the upper bound

which is used in the pricing problem. After the run of the pricing problem, LF obtains

the current true value.

The values are predicted from the continuous interval and, thus, we face a regression

problem. Arguably the most popular and one of the simplest methods to solve the

problem is Ordinary Least Squares Method (LSM) [8]. However, in our case, the LSM

is not suitable since our loss function is skewed in a sense that the underestimating of

the true value of Zi is unwanted. Moreover, the predicted values cannot be expected to

be equal to the target values since the small number of datapoints are available which

means the LF is not likely to reach the highest possible accuracy. So, some reasonable

small distance from target values should be used. Therefore, the criterion is a sum

of skewed epsilon insensitivity loss functions. Additionally, the discounting function is

employed since the contribution of older datapoints to the final loss function is less

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 760 -

important than the contribution of the recent observations. These requirements lead

us to develop our custom criterion

min
w,r

∑
i∈D

c+i r
+
i + c−i max{r−i − ε, 0} (1)

subject to

∀i ∈ D : wTxi + r+i − r
−
i = yi (2)

∀i ∈ D : r+i , r
−
i ≥ 0 (3)

w ∈ Rn (4)

where c±i is a discounting constant for datapoint i ∈ D and the value of r±i measures

an error made by prediction for datapoint i. Then, the predictive hypothesis is given

as y = wTx. Finally, the whole LF is outlined as a pseudo-code in Algorithm 1.

Algorithm 1: Upper bound prediction for pricing problem

1 do
2 π ← current dual solution of restricted master problem (RMP)

3 ûb← wTφ(π)

4 yil ← solve pricing problem with upper bound ûb
5 if pricing problem is infeasible then
6 yil ← solve pricing problem without upper bound
7 end
8 add column yil into the RMP

9 add new columns r±i into the prediction model
10 add constraint in form of (2)
11 w← solution of (1)

12 while column with negative reduced cost exists;

If the pricing problem with the predicted bound is not able to find any column

(line 5), it cannot guarantee that column with negative reduced cost does not exist. In

that case, it is needed to run pricing solver without the tighter upper bound (line 6).

Fortunately, it does not need to start completely from the scratch — partial solutions

that were pruned in the previous stage due to the tighter upper bound can be stored

and re-expanded in this stage.

Figure 1 depicts the tighter upper bound over the iterations of pricing problem.

One can see that LF has some minor issues at the beginning since it does not have

enough data to make very good predictions. However, from the 7th iteration, LF starts

to copy the optimal value of upper bound very accurately.

4 Experimental results

To demonstrate the usability of our approach, two pricing problem solvers were con-

sidered : A* algorithm and ILP (Integer Linear Programming) solver. A* algorithm is

based on the branch and bound method and our tight upper bound can be used di-

rectly for the comparison with lower bound. ILP solver uses the tight upper bound in

a similar way, i.e. to prune nodes which do not lead to the optimal solution.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 761 -

iteration
0 5 10 15 20 25 30 35 40 45 50

v
a
lu

e
 [
-]

-800

-600

-400

-200

0

200

400

600

800
optimal value
baseline bound
predicted value

Fig. 1 Tighter upper bound for pricing problem on Millar instance.

Table 1 shows the preliminary results of the impact of our approach on the stan-

dard benchmark instances [5]. The numbers in the second column indicate the ratio of

the visited nodes with to the visited nodes without applying our approach in the A*

algorithm. Similarly, the third column represents the ratio of the algorithm runtime

with to the algorithm runtime without applying our approach in the ILP solver.

Table 1 Impact of tighter upper bound on the performance. Values < 1 indicates a positive
speedup.

Instance # visited nodes ratio [-] Runtime ratio [-]

Millar 0.95 -
WHPP 0.75 -
Valouxis - 0.79
Azaiez - 0.55
SINTEF - 0.94

Average 0.85 0.76

So far, with using our approach, we are able to visit 15% less nodes, on average, in

A* algorithm and to achieve 25% speedup, on average, for ILP solver. Moreover, the

preliminary results for the whole branch and price method with the described approach

and other improvements (e.g. subproblem skipping, symmetry breaking, etc.)[7] seem

to be promising since they are better than the results reported in [3] on significant

number of instances.

References

1. C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance.
Branch-and-price: Column generation for solving huge integer programs. Operations re-
search, 46(3):316–329, 1998.

2. L. Bottou. Online algorithms and stochastic approximations. In David Saad, editor, Online
Learning and Neural Networks. Cambridge University Press, Cambridge, UK, 1998. revised,
oct 2012.

3. E. K. Burke and T. Curtois. New approaches to nurse rostering benchmark instances.
European Journal of Operational Research, 237(1):71 – 81, 2014.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 762 -

4. E. K. Burke, P. De Causmaecker, G. Vanden Berghe, and H. Van Landeghem. The state
of the art of nurse rostering. J. of Scheduling, 7(6):441–499, November 2004.

5. T. Curtois. Employee scheduling benchmark data sets, September 2014.
6. B. Maenhout and M. Vanhoucke. Branching strategies in a branch-and-price approach for

a multiple objective nurse scheduling problem. Journal of Scheduling, 13(1):77–93, 2010.
7. A. Novák, R. Václav́ık, P. Š̊ucha, and H. Hanzálek. Methods of the efficient state space

search for the nurse rostering problem using branch-and-price approach. Technical report,
Czech Technical University in Prague, 2015.

8. C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning. MIT
Press, Cambridge, Massachusetts, USA, 2006.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 763 -

MISTA 2015

A framework of constructive heuristics for
permutation-type scheduling problems

Victor Fernandez-Viagas · Manuel Dios ·
Paz Perez-Gonzalez · Jose M. Framinan

1 Introduction

Many scheduling problems of practical interest are known to be NP-hard, therefore

the bulk of the effort in scheduling research has focused on developing heuristics, i.e.

procedures aimed at providing good solutions for the problem but without guaranteeing

its optimality.

Among heuristics, it is customary to distinguish between constructive heuristics

and improvement heuristics. Broadly speaking, the former construct a solution from

scratch, while the latter require one or several initial solution(s) to generate neighbour

solutions and to (hopefully) obtain better solutions. Usually, such initial solutions are

provided by one or more constructive heuristics.

While a great deal of effort has been carried out in improvement heuristics (includ-

ing the development of an array of templates or metaheuristics that can be tailored for

different combinatorial optimization problems), the development of constructive heuris-

tics is a hand-craft -like process, conducted in many cases through trial-and-error. As a

consequence, in many cases there is a poor understanding of how constructive heuristics

are designed, and of which elements of their design influence their performance.

Our research aims at establishing a framework for constructive heuristics for permutation-

type scheduling problems, which include many well-known scheduling problems (includ-

ing single-machine and permutation flowshops, among others). Within this framework,

we identify a general template that is adopted by the most efficient constructive heuris-

tics. By doing so, we hope to provide further insights on how existing constructive

heuristics for scheduling problems work, as well as to set guidelines for the develop-

ment of new constructive heuristics. More specifically, in this contribution we present

a framework or template of constructive heuristics for scheduling problems.

Victor Fernandez-Viagas, Manuel Dios, Paz Perez-Gonzalez, Jose M Framinan
Industrial Management, School of Engineering,
University of Seville. Camino de los Descubrimientos s/n. 41092 Seville, Spain
E-mail: {vfernandezviagas,mdios,pazperez,framinan}@us.es

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 764 -

Fig. 1 Example

2 A framework for constructive heuristics

In this Section, we try to identify a common template which is adopted by many

constructive heuristics in scheduling problems as well as by other traditional algorithms

such as Beam Search, Branch and Bound, or A+. All these methods have in common

that a sequence (a solution for the problem) is constructed by appending jobs one by

one. In this process of construction, several decisions have to be taken, such as e.g.:

which are the candidates to be chosen? how are the candidates evaluated? are discarded

nodes considered in the following iterations? is it possible to recover removed nodes? ...

All these decisions are classified in the proposed template. We identify five phases which

are followed by most of the constructive heuristics in their iterations (see example in

Figure 1):

Let us assume that the solution of the scheduling problem can be represented by

a sequence of n jobs. Typically, a constructive algorithm iterates along k = 1, . . . , n

stages. Let us denote Nk
i the i-th partial solution (node) in stage k (i = 1, . . . , xk,

where xk is a parameter of the algorithm, typically constant). Clearly, each partial

solution is composed of k jobs, i.e. |Nk
i | = k. Let us denote by Uk

i the set of jobs not

in Nk
i . Additionally, we have a list Dk of nodes discarded from selection.

1. For i = 1 to i = n:

(a) Candidates Generation: In this phase, a set of C candidate nodes are gen-

erated:

i. For each Nk
i , append each job in Uk

i at the end of the sequence. In this

manner, (k − 1) · xk candidates are generated. Let us Bki be the set of the

candidates obtained from node Nk
i , and

ii. optionally, each node in Dk is added to the set.

Ck := ∪i=1,...,xBki ∪ D
k

(b) Filter: A threshold or filter is established in this phase, so some nodes in Ck are

removed (removed nodes in the following) if they do not pass the threshold. The

threshold may be based on Problem Properties (PP), Dominance Rules (DR),

Comparison among bounds (CB) (e.g. lower bound lower than upper bound),

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 765 -

Heuristic IO Gen. Filtr. Evaluation Sel. Recov. LS Reference
Prior. TC

Examples X B — PM FSU G[x] — — [Fernandez-Viagas and Framinan, 2015]
Based on NEH — B L PM — — I — E.g. [Nawaz et al., 1983]

FRBX — B L PM — — I1, I2 — [Rad et al., 2009]
WY — B L PM — G[1] I — [Woo and Yim, 1998]
FL — B L PM — — I, T — [Framinan and Leisten, 2003]

FF(a) X B — PM — L[1, x] — — [Fernandez-Viagas and Framinan, 2015]
LR(a) X B — PM FU L[1, x] — — [Liu and Reeves, 2001]

LR(a)-FPE(b) X B — PM — L[1, x] — T [Liu and Reeves, 2001]
IC1 X B — PM — L[1, x] — I [Li et al., 2009]
IC2 X B — PM — L[1, x] — I+T [Li et al., 2009]
IC3 X B — PM — L[1, x] — I+T [Li et al., 2009]

Based on B&B X B + D B, DR PM LB G[1] — — [Wang and Liu, 2013]
PW X B — PM FU G[1] — — [Pan and Wang, 2012]

MM, PF, wPF X B — PM — G[1] — — [Ronconi, 2004], [Pan and Wang, 2012]

Branch-and-bound — B + D B PM LB X — — E.g. [Blazewicz et al., 2007]
Beam Search — B — PM — L[1, x] — — E.g. [Valente and Alves, 2008]

A* — B + D — P-PM X G[1] — — E.g. [Russell and Norvig, 2007]
Greedy Search — B — X G[1] — — E.g. [Russell and Norvig, 2007]

Table 1 Adaptation of several Constructive Heuristics of the PFSP to our template

list of jobs (L) (in each iteration the first job of the list is the only candidate

and is removed from the list)... The idea behind this phase is to decrease the

number of candidates which are evaluated in the next phase.

(c) Evaluation: The filtered candidates are evaluated. The nodes can be evaluated

by means of: priority evaluation where the last node is considered with (PM) or

without (P) consideration of the previous ones; total cost where the evaluation

is performed by an estimation of final cost though upper bounds (UB), lower

bounds (LB), forecast based on the unsequenced jobs (FU), forecast based on

the sequenced and unsequenced jobs (FSU),...

(d) Selection: Once filtered nodes are evaluated, xk+1 nodes are selected according

to either:

– a global approach (G[xk+1]) where xk+1 nodes are selected among all nodes

in Ck, or

– a local approach (L[yi, xk]) where the best yi nodes of each Bki (with i ∈
[1, . . . , xk]) for iteration k are selected (

∑
yi = xk+1).

Then, the Dk+1 set of non selected nodes, that may be eventually employed in

the Candidates Generation of the next iteration, is updated.

(e) Recovery: This phase tries to recover nodes which are potentially good nodes

but were removed and/or discarded from previous iterations. The recover ele-

ments are typically chosen based on insertion (I) or interchange (T).

Several examples of constructive heuristics for the Permutation Flowshop Schedul-

ing problem are shown in Table 1. Last four rows shown some traditional algorithms

under the proposed templates. Note that first column indicates the procedure to deter-

mine the initial exploration nodes and 9th column shows if some local search methods

are applied after the iterated procedure.

Due to the limitations of the extended abstract, the following aspects will be dis-

cussed in the conference:

– Discuss the contribution of the different elements identified within this framework,

and

– Illustrate the discussion using some examples from well-known scheduling problems

which clearly improve the state-of-the-art algorithms.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 766 -

References

[Blazewicz et al., 2007] Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., and Weglarz, J.
(2007). Handbook on Scheduling: From Theory to Applications. Springer.

[Fernandez-Viagas and Framinan, 2015] Fernandez-Viagas, V. and Framinan, J. M. (2015).
A new set of high-performing heuristics to minimise flowtime in permutation flowshops.
Computers and Operations Research, 53(0):68 – 80.

[Framinan and Leisten, 2003] Framinan, J. and Leisten, R. (2003). An efficient constructive
heuristic for flowtime minimisation in permutation flowshops. OMEGA, The International
Journal of Management Science, 31:311–317.

[Li et al., 2009] Li, X., Wang, Q., and Wu, C. (2009). Efficient composite heuristics for total
flowtime minimization in permutation flow shops. Omega, 37(1):155–164.

[Liu and Reeves, 2001] Liu, J. and Reeves, C. (2001). Constructive and composite heuristic
solutions to the P ||

∑
ci scheduling problem. European Journal of Operational Research,

132:439–452.
[Nawaz et al., 1983] Nawaz, M., Enscore Jr., E., and Ham, I. (1983). A heuristic algorithm for

the m-machine, n-job flow-shop sequencing problem. OMEGA, The International Journal
of Management Science, 11(1):91–95.

[Pan and Wang, 2012] Pan, Q.-K. and Wang, L. (2012). Effective heuristics for the blocking
flowshop scheduling problem with makespan minimization. Omega, 40(2):218–229.

[Rad et al., 2009] Rad, S. F., Ruiz, R., and Boroojerdian, N. (2009). New high performing
heuristics for minimizing makespan in permutation flowshops. OMEGA, The International
Journal of Management Science, 37(2):331–345.

[Ronconi, 2004] Ronconi, D. (2004). A note on constructive heuristics for the flowshop problem
with blocking. International Journal of Production Economics, 87(1):39–48.

[Russell and Norvig, 2007] Russell, S. and Norvig, P. (2007). Artificial Intelligence: A Modern
Approach. Prentice Hall.

[Valente and Alves, 2008] Valente, J. and Alves, R. (2008). Beam search algorithms for the
single machine total weighted tardiness scheduling problem with sequence-dependent setups.
Computers and Operations Research, 35(7):2388–2405.

[Wang and Liu, 2013] Wang, S. and Liu, M. (2013). A heuristic method for two-stage hybrid
flow shop with dedicated machines. Computers and Operations Research, 40(1):438–450.

[Woo and Yim, 1998] Woo, H.-S. and Yim, D.-S. (1998). A heuristic algorithm for mean
flowtime objective in flowshop scheduling. Computers & Operations Research, 25(3):175–
182.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 767 -

MISTA 2015

Manufacturing Scheduling Systems: What are they made
of?

Manuel Dios · Victor Fernandez-Viagas ·
Paz Perez-Gonzalez · Jose M. Framinan

1 Introduction

Many companies use the so-called Decision Support Systems (DSSs) for manufactur-

ing scheduling, i.e. computerised systems for handling scheduling of operations. These

systems are built upon a robust body of scheduling research that has been carried

out during the last 5 decades, involving different approaches from various research

disciplines, methods and techniques for tackling the decision problems arising in man-

ufacturing scheduling. In view of this rather large source of information at hand, it

would be interesting to classify existing implementations of DSSs for manufacturing

scheduling in order to investigate which of these techniques and approaches are em-

bedded into these DSSs.

Therefore, the main goal of our paper is to analyse how the different case stud-

ies about DSSs in manufacturing scheduling published in literature face the problem

of obtaining a schedule, i.e. which are the most common disciplines, approaches and

techniques applied. To do so, 97 contributions of literature have been reviewed describ-

ing 84 different DSSs for manufacturing scheduling. Given that a widely recognised

gap between research and practice in the scheduling field [MacCarthy and Liu, 1993,

Framinan and Ruiz, 2010] has been claimed, our work may serve to identify the most

application-oriented areas within the scheduling research, and to identify the tech-

niques that –at least from a practical viewpoint– are more employed, together with the

description of their main advantages and shortcomings.

2 Review Methodology

The procedure followed to select the DSSs to review can be split into two stages. First,

a systematic review was developed for papers published from 2000 to 2014. We focused

on this period as we are not so interested in older papers, given the processing and

graphical capabilities of computers prior to that date. Nevertheless, in a second stage

(described below) we also consider previous contributions in order not to miss any

Manuel Dios, Victor Fernandez-Viagas, Paz Perez-Gonzalez, Jose M. Framinan
Industrial Management, School of Engineering, University of Seville
E-mail: {mdios,vfernandezviagas,pazperez,framinan}@us.es

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 768 -

relevant contribution. For the systematic review we used the SCOPUS search engine

by Elsevier, given that the majority of relevant journals and conference proceedings

are indexed. We launched a set of different search queries, such as “(manufacturing

OR production) AND scheduling AND (DSS OR “Decision Support System”)”. Due

to the heterogeneity and ambiguity of the results, not all of them were suitable for our

study. Therefore, we followed a three-step procedure to filter the results.

– Title. First we rejected those works whose title was not relevant for our study.

– Abstract. The abstracts of those works that seemed to be relevant were carefully

read and those that did not focused on the topic under study were excluded from

the review.

– Full Document. We analysed in depth those works that still remained as relevant

and obtained the final set of contributions for the review.

In a second stage we extended the resulting set of contributions by adding the

relevant references cited by the set of contributions in the first stage, in this case without

discriminating referenced dated prior to 2000. To filter the resulting contributions, we

adopted the same three-step procedure as explained above. Moreover, we included some

book chapters that were not considered in previous stage, but that were listed in the

references.

After completing this process, a set of 97 works dealing with the implementation

of DSS in manufacturing scheduling in a period covering from 1988 and 2014 were

obtained. The full reference list is available on the URL in Section 4.

3 Classification Framework

In this section we briefly describe the framework utilized for classifying the DSSs.

First, we classify the references according with the supporting disciplines or body of

knowledge. Furthermore, they are also classified according to the approach adopted to

model the scheduling problem. Finally, the specific technique employed for solving the

scheduling problem is also employed to classify the references. The categories employed

for the classification are based on the “Design Platform for Planning, Scheduling and

Control Systems” in [Monfared and Yang, 2007], but we also integrate the classification

regarding the different decision models in [Suri, 1985] (also in [Blazewicz et al., 2001]),

where authors distinguish between generative, i.e. those models looking for a “good

enough” candidate solution, and evaluative decision models, i.e.those models searching

within a given set of possible solutions.

In addition to the supporting disciplines, approaches and techniques applied in

each system, we also highlight the variety of sectors where they have been deployed in

practice.

3.1 Supporting Discipline

Within this category we classify the research field used for handling the scheduling

problem. As it has been stated by different authors(e.g. [Wiers, 1997]), manufacturing

scheduling has been addressed from different research communities, each of them with

their benefits and shortcomings. Therefore, it is interesting to analyse how the problem

is treated in the different DSSs. Here we consider ”Operations Research” (OR) and

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 769 -

Decision Models Modelling Approach Supporting Discipline Number

Generative Models

Exact Techniques
Operations Research 19
Computer Science 8

Heuristics
Operations Research 36
Computer Science 12

Neural Networks
Operations Research 1
Computer Science -

Artificial Intelligence
Operations Research 20

Evaluative Models

Computer Science 40

Simulation
Operations Research 11
Computer Science 8

Queuing Theory
Operations Research 2
Computer Science 1

Fuzzy Logic
Operations Research -
Computer Science 1

Table 1 Results of the Review (I).Supporting Disciplines, Approaches and Decision Models.

”Computer Science”(CS). According to the platform by [Monfared and Yang, 2007]

we take out ”Control Theory” from our framework as we are focusing on scheduling

decisions and those systems within that discipline mainly concentrate on control (i.e.

monitoring of the execution).

3.2 Modelling Approach

For this category we scatter those approaches commented in the previously mentioned

platform, to get a more precise idea of how the reviewed DSSs face the problem of

scheduling. Here we differentiate between “Exact Techniques”(ET), ”Heuristics” (H),

“Neural Networks” (NN), ”Artificial Intelligence” (AI), “Simulation” (S), ”Queuing

Theory” (QT) and “Fuzzy Logic” (FL).

3.3 Technique

Finally, within each modelling approach, we classify the specific technique used for

solving the scheduling problem. We can see the techniques used in our classification in

Table 2.

4 Review of Manufacturing Scheduling DSSs

In Tables 1 and 2 we can see a summary of the results obtained from the review. Due

to space problems, the complete review and comments about some of the contributions

will be done in the conference. Nevertheless, the whole review can be consulted in

http://taylor.us.es/componentes/mdr/MISTA/Review_MISTA_2015.pdf.

Finally, in Table 3 we can see the main sectors where these systems has been

deployed. In the review, apart from systems specifically developed for a sector we

found some prepared for different environments, these appear in Table 3 as ”Generic

Systems”. Moreover, we also found some systems developed for a concrete case but that

hadn’t been evaluated yet. These systems are classified in the category “Theoretical

Systems”. Finally, as we identified many different sectors where these systems had been

deployed, we grouped into ”Other Sectors” those that didn’t belong to any of the most

typical ones.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 770 -

Modelling Approach Technique Number

Exact Techniques
Mixed Integer Linear Programming (MILP) 12

Branch & Bound (B&B) 2

Heuristics

Dispatching Rules (DR) 18
Specific Heuristcs (SH) 42

Simulated Annealing (SA) 3
Genetic Algorithm (GA) 9

Tabu Search (TS) 1
Ant Colony (AC) 3

Neural Networks
Feed Forward NN (FF) 1

Multi-Layered Perceptron (MLP) 1

Artificial Intelligence

Expert Systems (ES) 33
Constraint Programming (CP) 24
Case Based Reasoning (CBR) 1
Multi Agent Systems (MAS) 6

Simulation Discrete Event Simulation (DES) 15

Queuing Theory Queuing Networks (QN) 1

Table 2 Results of the Review (II). Approaches and Techniques.

Sector Number

Metallurgical Industry 12
Paper Industry 10

Electronics Industry 8
Aerospace Industry 5
Chemical Industry 4

Automotive Industry 3

Generic Systems 15
Theoretical Systems 8

Other Sectors 21

Table 3 Results of the Review (III). Main sectors of deployment.

References

[Blazewicz et al., 2001] Blazewicz, J., Ecker, K., Pesch, E., Schmidt, G., and Weglarz, J.
(2001). Computer integrated production scheduling. In Scheduling Computer and Man-
ufacturing Processes, pages 421–468. Springer Berlin Heidelberg.

[Framinan and Ruiz, 2010] Framinan, J. M. and Ruiz, R. (2010). Architecture of manufactur-
ing scheduling systems: Literature review and an integrated proposal. European Journal of
Operational Research, 205(2):237 – 246.

[MacCarthy and Liu, 1993] MacCarthy, B. L. and Liu, J. (1993). Addressing the gap in
scheduling research: A review of optimization and heuristic methods in production schedul-
ing. International Journal of Production Research, 31(1):59–79.

[Monfared and Yang, 2007] Monfared, M. and Yang, J. (2007). Design of integrated manu-
facturing planning, scheduling and control systems: a new framework for automation. The
International Journal of Advanced Manufacturing Technology, 33(5-6):545–559.

[Suri, 1985] Suri, R. (1985). An overview of evaluative models for flexible manufacturing
systems. Annals of Operations Research, 3(1):13–21.

[Wiers, 1997] Wiers, V. b. (1997). A review of the applicability of or and ai scheduling tech-
niques in practice. Omega, 25(2):145–153.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 771 -

MISTA 2015

How to Unload Bulk Carriers Quickly?

Mathematical Models to Identify Efficient Loading Patterns

Heiner Ackermann · Karl-Heinz Küfer ·
Neele Leithäuser · Andreas Meyer ·
Sebastian Velten

1 Introduction

Increasing globalization leads to a steady rise of the quantity of goods to be transported.

The main mode of transportation for bulk materials (like coal or sand, but also grain)

is transportation via ship. As central hubs, ports handling bulk materials play a crucial

role in the underlying logistic networks. Well-balanced unloading, transportation and

stockyard capacities are essential for the economic success of these terminals. Moreover,

strategic decisions involve high investments and have to be well prepared.

In this context, simulation models are important tools to analyze the complex

interactions between unloading, loading and (intermediate) storage. However, to obtain

meaningful results for the complete system, the decision problems of the sub-systems

have to be understood first.

In this paper we study one of these sub-systems namely the unloading process of a

single ship carrying bulk materials. Given a fixed infrastructure of unloading facilities

as well as a ship with a given loading pattern and amount of bulk material, our goal is

to find unloading sequences which minimize the total unloading time.

The unloading facilities that are taken into account are cranes and conveyer belts.

The cranes unload the bulk materials onto the conveyor belts. During this process

several cranes can work in parallel, but two or more cranes can use one conveyor belt

at the same time if and only if they unload the same type of bulk material. In addition,

a set of safety rules as well as technical restrictions have to be respected to obtain

feasible unloading sequences.

Bulk carriers are structured into different compartments called hatches or cargo

holds. We consider bulk carriers with 5 to 7 hatches, but larger ships with more hatches

will be operating in future as well (see [3]). In a hatch a single type of bulk material

is stored, but different hatches can contain different types. Furthermore, a loading

Heiner Ackermann, Karl-Heinz Küfer, Neele Leithäuser, Sebastian Velten
Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany
E-mail: heiner.ackermann@itwm.fraunhofer.de, karl-heinz.kuefer@itwm.fraunhofer.de,
neele.leithaeuser@itwm.fraunhofer.de, sebastian.velten@itwm.fraunhofer.de

Andreas Meyer
Interdisciplinary Center for Scientific Computing IWR, Heidelberg University, Germany
E-mail: andreas.meyer@iwr.uni-heidelberg.de

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 772 -

pattern describes the assignment of different product types to the hatches of a ship and,

depending on the unloading facilities, may have significant influence on the minimal

unloading time.

We propose and compare two mathematical models to optimally solve the problem.

The first one is a mixed integer linear program, the second a constraint program.

On the one hand optimal unloading times are an important input for simulations of

the overall logistic system of a port. The results of this work have been used in practice

in exactly this way to given decision support during the design of a logistic system.

On the other hand the mathematical models can be used to analyze and compare

different loading patterns. This information can be used to obtain optimal policies for

the operation of the port.

To the best of our knowledge models to optimize the unloading time of bulk carriers

have only been studied once before (see [1] and references therein). In contrast to our

work, in [1] heuristic solution approaches and mixed integer linear programs providing

lower bounds are presented.

2 Problem Description

We consider a ship with a given set of hatches H. Due to stability issues of the separat-

ing walls it is in general not possible to unload a hatch completely before its adjacent

hatches are unloaded at least partly. To model this requirement we split each hatch in

a set of levels L. The number of levels is identical for each hatch (see Figure 1).

Fig. 1 Hatch/Level structure of a bulk carrier.

Next, let P be the set of different products and P(h) the product loaded in hatch

h ∈ H. These products are unloaded using a set of cranes C and a set of conveyor belts

B. Furthermore, let C(h) be the set of cranes that can access hatch h ∈ H and let B(c)

the set of belts crane c ∈ C can unload on.

Given these index sets let tc(h,l) be the time needed to unload level l in hatch h

using crane c. These values may differ for different hatch/level combinations and cranes

because of different fill levels and crane speeds. Moreover, unloading lower levels takes

more time than unloading upper levels since wheel loaders have to be used to clear the

corners of a hatch. In addition to the unloading time we have to consider the driving

time of the cranes between the hatches, ∆h1,h2
(h1, h2 ∈ H, h1 6= h2), the time to

clear a conveyor belt between two different products, ∆B , and the time to put the

wheel loader in a hatch using a crane, ∆C .

The goal is to find an assignment for each hatch/level combination to a crane and

belt as well as a schedule for each unloading facility so that the total unloading time is

minimized. Cranes can unload only one hatch at a time. However, two or more cranes

can be assigned to the same belt at the same time if they unload the same product

and the capacity of the belt is not exceeded. Furthermore, adjacent hatches cannot be

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 773 -

unloaded at the same time and the unloading of hatch/level combination (h, l) has to

be completed before the unloading of the following hatch/level combinations begins:

(h−1, l+1), (h, l+ 1), (h+ 1, l+ 1) (if h−1, h+1, l+1 exist and l = 1 being the highest

level). In addition, the unloading process needs to be balanced. This means that the

amount unloaded from the left side of the ship is not allowed to differ too much from

the amount unloaded from the right side, and vice versa. We model this by requiring

the difference between the sum of finished hatch/level combinations on the left and on

the right side to be at most 1 at all time. Finally, the time for putting the wheel loader

into a hatch before processing the last level of this hatch has to be respected.

3 Mathematical Models

To solve the optimization problem presented in the previous section, we propose two

mathematical models. A feasible solution in one corresponds to a feasible solution in

the other with the same objective value. They are summarized in this section.

Mixed Integer Linear Program: The mixed integer linear program is mainly

based on two types of variables. On the one hand, variables representing the assignment

of hatch/level combinations to cranes, respectively belts. On the other hand, variables

modeling the sequence in which the hatch/level combinations assigned to a crane,

respectively belt, are processed. Given these variables we use depended variables for

the start and end times of the hatch/level unloading tasks. Moreover, we apply a set of

variables representing the end time of the hatch/level unloading tasks in non-decreasing

order. These variables are needed to model the balance requirements appropriately. To

keep the number of variables as small as possible, all variables are defined so that a

time index is avoided.

Constraint Program: The constraint program is developed to apply the auto-

matic search of the commercial constraint solver IBM ILOG CPLEX CP Optimizer

(see [2]). Therefore, we use the generic modeling components provided in this library.

In this regard, hatch/level tasks are modelled with optional interval variables. For these

variables the library contains generic constraints with which the required precedences

and the assignments to cranes and belts can be incorporated. To obtain the assignment

constraints, it is important that the interval variables are optional, which means that

the solver decides whether an interval variable belongs to the final solution or not.

Furthermore, variable step functions are used to model the restricted capacity of the

unloading facilities and the balance requirement. At last, the aspect that more than

one crane can be assigned to a belt if and only if they unload the same product is

represented using predefined state functions.

4 First Results

Both mathematical formulations have been implemented on the basis of the class li-

braries IBM ILOG Concert, CPLEX Optimizer and CPLEX CP Optimizer (Version

12.6, see [2]). The C++ API of these libraries has been used and computations are

executed on a Intel(R) Core(TM) i5-2400 Processor with 3.10GHz and 4 cores.

The examples in Figure 2 show how the proposed models can be used to optimize

loading patterns for given product distributions. A product distribution describes how

many hatches for each product type are given. In both examples ships with 7 hatches

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 774 -

are considered and ship sizes as well as speed and capacity of unloading facilities are

taken from a real port. For each product distribution there are 105 loading patterns so

that in total 205 unloading times have been determined using the models of Section 3.

Fig. 2 Unloading times and clustering of loading patterns for two product distribution.

It becomes clear that the loading pattern may have a signification influence on the

minimal unloading time. Note that in practice it will not always be possible to apply the

pattern with the minimal unloading time. However, by solving the unloading problem

for all possible loading patterns, clusters of loading patterns can be determined that

should be avoided.

Comparing the solution times it becomes clear that the constraint programming

approach outperforms the mixed integer linear formulation. The average solution times

are faster by one order of magnitude, the maximal ones even more (see Table 1).

CP MIP

Product Distribution Min. Avg. Max. Min. Avg. Max.

3 - 2 - 2 0.19 3.61 8.09 3.25 38.44 211.04

4 - 2 - 1 1.54 3.23 6.40 4.18 39.63 235.72

Table 1 Minimal, average and maximal solution times (in s).

5 Further Research

Further research activities in this area comprise the development of improved model

formulations and the analysis of different objectives. Moreover, problem specific solu-

tion procedures may lead to faster solution times which is especially important if the

unloading is part of a larger simulation.

References

1. K. Hazeghi and F. Weinberg, Optimization of the Unloading Strategy for Bulk Carriers,
OR Spektrum, Volume 11, 101-110 (1989)

2. IBM ILOG CPLEX Optimization Studio,
www.ibm.com/software/products/en/ibmilogcpleoptistud

3. Wikipedia, Bulk carrier — Wikipedia, The Free Encyclopedia,
http://en.wikipedia.org/w/index.php?title=Bulk carrier&oldid=645677638, (2015)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 775 -

MISTA 2015

Scheduling with incompatible jobs: model and algorithms

Gustavo Campos Menezes · Geraldo Robson

Mateus · Mart́ın Gómez Ravetti

1 Introduction

In production systems, the integration of planning and scheduling problems is critical

for the profitability of companies and the correct use of resources to meet deadlines.

These problems are applicable in a broad range of sectors, such as the casting industry

[5], the food industry [4], and cargo transportation in port terminals [9]. In this paper,

a scheduling problem that appears as a subproblem in a decomposition algorithm in

bulk cargo terminals is investigated.

Consider a scheduling problem with a set of jobs to be performed within a limited

number of time period. For each job, we know its duration (processing time). The goal

is to assign the start and end times for all of these jobs, considering incompatibility

constraints. The set of constraints states that for some jobs pairs i and j their pro-

cessing cannot overlap. Preemption is not allowed and the objective is to minimize the

makespan. Hereafter, this scheduling problem is called the scheduling problem with

incompatibility jobs (SPIJ). We propose two approaches to solve this problem: The

first use a mathematical programming and optimization package. The second, based

on GRASP (Greedy Randomized Adaptive Search Procedure). Instances for computa-

tional experiments were generated based on a real application.

The remainder of this article is structured as follows: Section 2 defines the inte-

grated production planning and scheduling problem . Section 3 presents the scheduling

problem, the mathematical model and algorithms. Section 4 is dedicated to computa-

tional results. Finally conclusions and future research directions.

Gustavo Campos Menezes
Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Brasil and
Centro Federal de Educação Tecnológica de Minas Gerais, Brasil. E-mail: gcm@dcc.ufmg.br

Geraldo Robson Mateus
Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Brasil E-
mail: mateus@dcc.ufmg.br

Mart́ın Gómez Ravetti
Departamento de Engenharia de Produção, Universidade Federal de Minas Gerais, Brasil,
E-mail: martin.ravetti@dep.ufmg.br

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 776 -

2 Product flow planning and scheduling problem

To better understand the planning and scheduling problem consider the following sce-

nario. There exist a reception with a set of supply nodes (where the products are

available for transportation), storage areas for such products (stockyards) and demand

nodes. The products are available at the supply nodes, stored at the stockyards and

delivered on certain dates to meet the demand. To perform the transportation of these

products between the three set of nodes (supply, stockyard and demand), equipments

with pre-defined capacities are used. They work together in a given sequence between

nodes. This equipment sequence will be called a route. Figure 1 provides a schematic

representation of the problem.

Fig. 1 Reception, storage and deliv-
ery system.

Fig. 2 Routes with shared equip-
ments.

The amount of equipments is limited, they have flow capacities and the various

routes may share equipments. Thus, if different products are assigned to routes that

share equipment, these routes must be active at time intervals that do not overlap.

Figure 2 shows a case where two routes (routes 1 and 2) share the same equipment.

The problem consists in defining the amount and destination of each product from

supply nodes to stockyard or to demand nodes, or from stockyard to demand nodes, and

simultaneously establishing a set of feasible routes (where there is no conflict regarding

equipment allocation) to guarantee that the products are transported on schedule. In

the remainder of this article, this problem will be called the Product Flow Planning

and Scheduling Problem or PFPSP .

In this article, we investigate only the scheduling problem. It is considered that

production planning has been solved and the production variables are available for

production scheduling. The remaining sections only investigate the scheduling problem.

3 Scheduling with Incompatible Jobs

An example is used to clarify the definition of the SPIJ and to illustrate the jobs and

constraints. Assume that the relaxed PFPSP (disregarding scheduling constraints)

was solved and that the variables (jobs) for a specific time period were extracted from

the solution (Table 1).

In the first row of the Table 1, the variable x12 (column Variables) represents that

the product 2 should be carried by Route 1, and the total time to transport this product

on Route 1 will be 4 hours (column Values). This variable corresponds to job or vertex

A in the conflict graph (Figure 4). The remaining rows of the Table 1 have similar

operations.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 777 -

Table 1 Solution of the relaxed PFPSP (disregarding scheduling constraints)

jobs Variables Values Routes

A x1
2 4 R1

B x2
5 6 R2

C x8
5 3 R8

D x9
3 5 R9

E x10
6 6 R10

F x6
4 3 R6

Fig. 3 Routes with conflicts

Fig. 4 Conflict graph

Figure 3 illustrates the conflict between routes. The routes 1 and 2 share equipment

and therefore cannot operate simultaneously. The same is true for the routes numbered

6 and 9 and three other routes sharing equipment among themselves (routes 6, 8, and

10). In the conflict graph G (Figure 4), the vertices are the jobs (column jobs, table 1)

and the edges are created from the conflicts presented in Figure 3. For instance, the

vertices A and B must be connected in the conflict graph. A mathematical programming

model that represents all SPIJ features is described in the next section.

3.1 SPIJ Formulation

To model the SPIJ consider the following parameters, sets and variables: Let pi be a

parameter related to the processing time of job i, parameter K a high-value constant,

set J of jobs, and set E of all pairs of incompatible jobs (defining an edge in the conflict

graph), and let the following variables: Cmax the makespan, ti the job i start time,

and ui,j a binary variable that defines the precedence between pairs of incompatible

jobs.

A SPIJ formulation can be given by:

min Cmax (1)

subject to:

Cmax− (ti + pi) ≥ 0, ∀i ∈ J (2)

ti − tj − pj ≥ −Kui,j , ∀(i, j) ∈ E (3)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 778 -

tj − ti − pi ≥ −K(1− ui,j), ∀(i, j) ∈ E (4)

ti ≥ 0, ∀i ∈ J (5)

ui,j ∈ (0, 1) ≥ 0, ∀(i, j) ∈ E (6)

The objective function (1) minimizes the makespan. Constraints (2) set the value

of Cmax, equations (3 and 4) guarantee the incompatible constraints to establish the

order of jobs that share equipments. If ui,j = 1 then (3) are redundant, and (4) ensures

that the start time ti of job i precedes tj ; if ui,j = 0, tj precedes ti. Finally, (5) and

(6) are domain constraints. Previous authors as [3], [7], [1] and [2] have shown that

the SPIJ and its variations are NP-complete for various processing times, preemption

or non-preemption and graph classes. The following section describes the Heuristic

applied to solve the SPIJ.

3.1.1 SPIJ Heuristic

To efficiently find good solutions, a greedy randomized search procedure (GRASP)

was implemented. GRASP is an iterative algorithm proposed by Feo and Resende [6]

that basically consists of two phases, greedy construction and local search. The greedy

construction phase builds a feasible solution s, whereas the local search investigates

the neighborhood of s, searching for better solutions. The main phases of the heuristic

are described in the following.

1: procedure Grasp-Scheduling() .
2: jobs = Production variables (relaxed PFPSP);
3: for i=1 do MaxIteration
4: Solution = GreedyRandomizedConstruction(Seed);
5: Solution = LocalSearch(Solution);
6: Solution = UpdateSolution(Solution, BestSolution);
7: end for
8: Return BestSolution;
9: end procedure

At each iteration of procedure GreedyRandomizedConstruction, the algorithm con-

siders the jobs extracted from planning not yet scheduled, as the list of candidate

elements. A greedy solution for the SPIJ is constructed as follows: Select randomly a

job i from list of candidate elements at random. Next, define the lowest start time for

the job, keeping already scheduled jobs that conflict with i without overlapping. Once

all jobs are scheduled, a feasible solution for the SPIJ is provided.

The local search consists in exchanging the order of jobs found in the greedy con-

struction phase. Two neighborhoods are explored. The first consists of exchanging the

first and the last job of the sequence, then the second and the penultimate, etc. The

second neighborhood explores exchanges between job pairs, i.e., the first and the sec-

ond are exchanged with the last and the penultimate, following the same sequence of

the first neighborhood.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 779 -

4 Computational Experiments

As previously stated, the experiments are conducted considering the values obtained

by solving only the production planning, were jobs and their processing times are

extracted. Instances with 10,20, 50 and 100 jobs are analysed. The conflicts between

jobs were generated based on analysis of a real case of a port terminal of iron ore

(results are depict in Table 2).

The experiments were conducted using a computer with a 6-core Intel(R) Core(TM)

i7 980 processor and 24 GB physical memory, running version 12.5 of the Cplex solver.

For all instances, a time limit of 1 hour was set. The first and second columns of the

table 2 contain the instance number and the number of jobs. Column Cplex provides the

upper bound obtained with the CPLEX branch-and-cut algorithm. The GAP column

provides the integrality gap (the value of objective function for the integer solution

and its linear relaxation) obtained with the solver, t(s)1 and t(s)2 are the elapsed

computational time to obtain the optimal or the best solution using the Cplex solver

and the SPIJ heuristic respectively, expressed in seconds. Finally, the column SPIJ

Heuristic provides the best solution obtained with the heuristic.

Table 2 Instances based on PFPSP problem

Instance Jobs Cplex GAP t(s)1 SPIJ Heuristic t(s)2

1 10 23,19 0 0,08 23,48 3
2 10 26,95 0 0,76 27 2
3 10 15,89 0 0,35 15,89 2
4 10 17,37 0 0,15 17,37 6
5 10 18,17 0 0,26 18,17 4

6 20 12,05 0 0,89 13,37 32
7 20 15,34 0 0,19 16,61 12
8 20 13,26 0 0,56 13,95 18
9 20 16,91 0 0,77 17,86 17
10 20 14,07 0 10,78 16,94 248

11 50 15,15 0 20,78 15,58 350
12 50 26,69 9,10% 1h 31,96 227
13 50 50,43 27,87% 1h 62,37 424
14 50 40,51 2,47% 1h 53,88 208
15 50 41,21 9,10% 1h 42,36 586

16 100 30,29 41,38% 1h 29,43 3233
17 100 98,73 76,41% 1h 85,9 3564
18 100 67,2 65,00% 1h 55,64 2856
19 100 45,14 41,72% 1h 45,96 2575
20 100 86,48 67,66% 1h 85,28 2860

The optimization package managed to get optimal solutions for all instances with

10 and 20 jobs in Table 2. For instances with 50 jobs, the solver can find the optimal

solution for only one instance (number 11). From 100 jobs, the solver appears to be

ineffective and the gaps are all greater than 40%. Regarding the heuristic approach, it

was possible to find the optimal solution for three instances (numbers 3, 4 and 5). In

addition, for instances with 100 jobs, the heuristic found better solutions in less time.

The exception was for instance number 19, where the makespan found by the solver

was slightly lower (45.14 solver and 45.96 heuristic).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 780 -

5 Conclusions

We consider in this work an integrated problem of planning and scheduling. We in-

vestigated the scheduling subproblem, which was named in this article as scheduling

problem with incompatible jobs (SPIJ). We propose a mathematical programming for-

mulation and a GRASP heuristic. Future works includes adaptation of these methods,

as well as new methods. Efforts are also concentrated in an approach to deal in an

integrated manner with the PFPSP problem.

Acknowledgements This research is supported by the following institutions: VALE, FAPEMIG
and CNPq.

References

1. Mohamed Bendraouche and Mourad Boudhar. Scheduling jobs on identical machines with
agreement graph. Computers & Operations Research, 39(2):382 – 390, 2012.

2. I. Blchliger and N. Zufferey. Multi-coloring and job-scheduling with assignment and incom-
patibility costs. Annals of Operations Research, 211(1):83–101, 2013.

3. Hans L. Bodlaender, Klaus Jansen, and Gerhard J. Woeginger. Scheduling with incompat-
ible jobs. Discrete Applied Mathematics, 55(3):219 – 232, 1994.

4. Damiao R. C. and R. Morabito. Scheduling of production and logistics operations of steam
production systems in food industries”. J Oper Res Soc, 65(12):1896–1904, Dec 2014.

5. Victor C. B. Camargo, Leandro Mattiolli, and Franklina M. B. Toledo. A knapsack problem
as a tool to solve the production planning problem in small foundries. Comput. Oper. Res.,
39(1):86–92, January 2012.

6. Thomas A Feo and Mauricio G.C Resende. A probabilistic heuristic for a computationally
difficult set covering problem. Operations Research Letters, 8(2):67 – 71, 1989.

7. Rajiv Gandhi, MagnsM. Halldrsson, Guy Kortsarz, and Hadas Shachnai. Improved bounds
for sum multicoloring and scheduling dependent jobs with minsum criteria. In Giuseppe
Persiano and Roberto Solis-Oba, editors, Approximation and Online Algorithms, volume
3351 of Lecture Notes in Computer Science, pages 68–82. Springer Berlin Heidelberg, 2005.

8. G. R. Mateus, M. G. Ravetti, M. C. Souza, and T. M. Valeriano. Capacitated lot sizing
and sequence dependent setup scheduling: an iterative approach for integration. Journal of
Scheduling, 13(3):245–259, 2010.

9. T. Robenek, N. Umang, and M. Bierlaire. A branch-and-price algorithm to solve the inte-
grated berth allocation and yard assignment problem in bulk ports. European Journal of
Operational Research, 235(2):399 – 411, 2014.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 781 -

MISTA 2015

Scheduling preventive railway maintenance activities with
resource constraints

Rita Macedo · Rachid Benmansour · Dragan

Urošević · Abdelhakim Artiba · and Nenad

Mladenović

1 Introduction

In this paper, we focus on the scheduling of preventive railway maintenance activities.

The objective is to keep the railway infrastructure in good operating conditions at low

costs, also taking into account the limited available resources in what concerns crew

members. Equipments degrade with usage and age and a good preventive maintenance

program can greatly reduce their unreliability in the sense that expectable failures can

be anticipated. We propose a mixed integer programming formulation for the problem

of scheduling preventive railway maintenance activities and a Variable Neighborhood

Search (VNS) algorithm to solve large instances of the problem.

2 Problem description

There is a set of maintenance activities to perform during a planning horizon com-

posed of |T | periods. We consider two different kinds of maintenance activities: routine

works with smaller durations and projects with larger durations. Routine works, such

as inspections, cleaning operations and small repairs, are conducted on periodic ba-

sis, whereas projects are considered to be conducted once within the horizon (ballast

Rita Macedo
Institut de Recherche Technologique Railenium, F-59300 Famars, France
E-mail: rita.macedo@railenium.eu

Rachid Benmansour
University of Valenciennes and Hainaut Cambrésis, France
E-mail: Rachid.Benmansour@univ-valenciennes.fr

Dragan Urosevic
Mathematical Institute, Serbian Academy of Science and Arts, Belgrade, Yugoslavia
E-mail: draganu@turing.mi.sanu.ac.rs

Abdelhakim Artiba
University of Valenciennes and Hainaut Cambrésis, France
E-mail: abdelhakim.artiba@univ-valenciennes.fr

Nenad Mladenović
University of Valenciennes and Hainaut Cambrésis, France
E-mail: nenad.mladenovic@univ-valenciennes.fr

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 782 -

cleaning, rail grinding, etc.). More formally, the maintenance activities to be performed

belong to one of two different sets: routine maintenance activities (R) or projects (P).

The set of all activities is therefore defined as A = R ∪ P . Routine maintenance ac-

tivities are performed at a single period and are cyclic. Each activity a ∈ R has a

defined frequency Fa =
⌊
|T |
La

⌋
, where La denotes the duration of the interval between

two consecutive repetitions of activity a. Projects are performed only once but have a

duration Dp that is typically larger than one period. Each project p ∈ P must begin

at a period belonging to a defined interval Tp and its activities continue to be per-

formed during the Dp − 1 subsequent periods. Whenever at least one activity is being

performed at a period t ∈ T , the rail link must be closed and the system incurs into a

holding cost ct. This cost is independent of the number of activities being performed.

This means that it is interesting to try to combine activities to be allocated to the

same periods. However, there are some activities that are incompatible. A given set

C = {(a1, a2)| activities a1, a2 ∈ A can be performed at the same period} defines the

compatible activities, i.e. the pairs of activities that can be performed at a same period.

This problem was first described by Budai et al. [1]. We further consider an additional

cost αt in the problem. It is related to the fact that performing activities implies hav-

ing a sufficiently large number of crew members and equipments. It is defined that the

capacity of the company in what concerns these two resources is of performing at most

θ activities at the same period. Each additional activity incurs into a penalization that

may represent additional costs of outsourcing, paying extra hours to workers, renting

additional machines, among others.

3 Mathematical formulation

Let xat , ypt , mt be binary variables defining respectively whether activity a ∈ A is

performed at period t ∈ T or not, whether project p ∈ P is started at period t or

not and whether there is any activity being performed at instant t ∈ T or not. The

difference between the sum of allocated activities at a given period t ∈ T and the

maximum desirable number of activities θ is represented by the integer variable δt.

This problem can be modeled with the following MIP formulation with assignment

and positional date variables.

min
∑
t∈T

ctmt +
∑
t∈T

αtδt (1)

s.t.

La∑
t=1

xat = 1 ∀a ∈ R (2)

xat = xat+qLa ∀a ∈ R, t ∈ {1, . . . , La}, 1 ≤ q ≤ Fa − 1 (3)∑
t∈Tp

ypt = 1 ∀p ∈ P, (4)

xps ≥ ypt ∀p ∈ P, t ∈ Tp, s = t, . . . , t+Dp − 1, (5)

xmt + xnt ≤ 1 ∀t ∈ T, (m,n) /∈ C, (6)

mt ≥ xat ∀t ∈ T,∀a ∈ A, (7)

δt ≥
∑
a∈A

xat − θ ∀t ∈ T, (8)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 783 -

δt ≥ 0 ∀t ∈ T, (9)

xat , y
p
t ,mt ∈ {0, 1} ∀t ∈ T,∀a ∈ A, p ∈ P (10)

The objective function (1) minimizes the total operational costs, which comprise the

track occupancy costs and the penalization costs of assigning more than θ activities

to the same period. The unit penalization cost of period t is denoted by αt. Every

cyclic routine maintenance activity a ∈ R must be performed at regular intervals of La

periods (constraints (2) and (3)), and every project must begin at a period within its

beginning interval Tp and continue through the Dp−1 subsequent periods (constraints

(4) and (5)). Constraints (6) ensure that only compatible activities are performed at

the same period and constraints (7) guarantee that a track occupancy cost will be taken

into account for every period with at least one allocated activity. Finally, constraints

(8) and (9) define the number of activities that surpass θ for every time period.

4 Variable Neighborhood Search algorithm

We propose a Variable Neighborhood Search (VNS) [3] for this problem. A solution S

is represented by S = {sa|a ∈ A}, where 1 ≤ sa ≤ La, ∀a ∈ R, and sa ∈ Ta, ∀a ∈ P .

A solution may be infeasible if there is any pair of incompatible activities being per-

formed in the same period. Thus, the objective function for a solution S is defined as

f(S) =
∑

t∈T ctmt(S) +
∑

t∈T αtδt + Pf ×NbConf(S), where mt(S) is equal to 1 if

there is any activity being performed at period t and equal to 0 otherwise, and where

Pf is a penalty factor and NbConf(S) is the number of pairs of conflicts in solution

S. We define two different neighborhood structures within the solution space and start

with an initial random solution. The local search implemented corresponds to a Vari-

able Neighborhood Descent (VND) algorithm [2]. The two neighborhood structures

are based on the removal of respectively one or two activities of the solution and their

optimal reinsertion with a dynamic programming method. We conducted computa-

tional experiments on a set of 30 instances adapted from [1], with 15, 20 or 25 routine

activities and a number of projects between 0 and 2. The results of VNS were com-

pared with the ones obtained by solving model (1)-(10) with CPLEX. Both methods

were run within a time limit of 1800 seconds. CPLEX solved 60% of the instances to

optimality, within the time limit. For those instances, VNS always found the optimal

solution. CPLEX did not prove the optimality of the solutions of 12 instances. For 6

of them, VNS found the same solution and for the other 6 it found better solutions.

CPLEX took an average computational time of 1047.7 seconds, while VNS only took

on average 1.2 seconds to reach the best found solutions.

References

1. Budai G, Huisman D, Dekker R (2006) Scheduling preventive railway maintenance

activities. Journal of the Operational Research Society 57(9):1035–1044

2. Hansen P, Mladenović N, Pérez JAM (2010) Variable neighbourhood search: meth-

ods and applications. Annals of Operations Research 175(1):367–407

3. Mladenović N, Hansen P (1997) Variable neighborhood search. Computers & Op-

erations Research 24(11):1097–1100

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 784 -

MISTA 2015

Stability and Flexibility of Crew and Aircraft Schedules

Lucian Ionescu · Natalia Kliewer

1 Introduction

One main task in airline scheduling is the assignment of crews and aircraft for oper-

ating flights. Traditionally, the goal is to minimize the planned costs. However, airline

operations frequently has to deal with disruptions like bad weather conditions, late pas-

sengers or technical issues which may lead to expensive recovery actions. This problem

is addressed by robust resource scheduling when both planned cost effiency and ro-

bustness of schedules are considered as competing objectives. In the following we refer

to this as robust efficiency.

The robustness can be improved by increasing the degree of stability or flexibil-

ity. Stability describes the ability of a system to work properly without changes and

adjustments in case of disruptions. In our context, a resource schedule is stable if it

remains feasible under changing operational environments. The main instrument for

increasing stability is the incorporation of buffer times between tasks. In contrast, flex-

ibility means the ability to be adapted to changing environments by manageable and

mostly cost-neutral actions, e.g. swap opportunities for resources. In particular, a high

degree of flexibility implies that feasibility can be restored at low cost in operations.

In this study we examine the potential of simultaneously considering stability and

flexibility in resource scheduling. Therefore, different strategies for increasing the ro-

bustness are put in contrast with each other. Besides evaluating of the trade-off between

cost-efficiency and robustness, the main question is if stability and flexbility also affect

each other.

2 Framework for Robust Crew and Aircraft Scheduling

The presented study is based on an aircraft and crew scheduling framework, illustrated

in Figure 1. For a given flight schedule, crew and aircraft schedules are generated in

a Branch&Price&Cut approach concerning certain robustness indicators. The consid-

eration of planned cost efficiency is determined by the cost structure for crews and

Department of Information Systems, Freie Universität Berlin, Garystr. 21, 14195 Berlin, Ger-
many
E-mail: lucian.ionescu@fu-berlin.de · E-mail: natalia.kliewer@fu-berlin.de

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 785 -

aircraft usage. However, robustness has to be taken into account by considering de-

lay occurrences and resulting propagation effects, see e.g. [Yen and Birge (2006)] and

[Dück et al (2012)] for details. In this context we distinguish between primary and

secondary delays. Primary delays are a result of exogenous disruptions that cannot

be avoided by scheduling decisions. In succession, insufficient buffer times may cause

propagation of delays on consecutive flights which is called secondary delay. Opera-

tional recovery may imply high additional costs and it is therefore desirable to already

consider delay tolerance during scheduling.

In a previous study, primary delay prediction based on historical data has been

assessed, see [Ionescu et al (2015)]. The resulting models and findings can be used

as groundwork for a delay generator, enabling both resource scheduling and delay

propagation simulation closer to reality.

Based on this, the evaluation of schedule robustness can be performed by an event-

based simulation. Whenever delay occurs, it is either absorbed by buffer times or prop-

agated to subsequent flights. However, this approach only considers the stability. The

additional consideration of flexibility asks for recovery strategies in order to adapt the

schedule to certain delay scenarios. The implemented recovery strategies are oriented

towards [Shebalov and Klabjan (2006)] and [Ionescu and Kliewer (2011)].

Resource
Schedules

Simulation
Robust

Scheduling

Propagation
Model

Robustness
Measures

Recovery

Robust

Scheduling

Strategies

Flight
Schedule

Delay Analysis Primary Delays

Evaluation of Robust Scheduling Strategies

Fig. 1 Framework for Evaluating Robust Scheduling Strategies

The measurement of schedule robustness targets at the consideration of operat-

ing costs instead of planned cost. A practicable way to measure the robustness is the

on-time performance (OTP) of flights in a simulation environment. The on-time per-

formance can be described as the percentage of flights arriving or departing on-time

for a given delay tolerance threshold, e.g. 15 minutes. However, exogenous primary

delay cannot be influenced by scheduling decisions. Therefore, the relevant figure to

consider is the secondary delay propagated due to insufficient buffer times between

flights connected by the same resource. In consequence, a schedule A is more robust

than schedule B if the amount of propagated secondary delay is less in A than in B.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 786 -

3 Evaluating the Trade-off between Stability and Flexibility

In this study, the presented framework is used for evaluating the mutual impacts of

stability and flexibility. Separate stable and flexible scheduling approaches provided by

[Dück et al (2012)] and [Ionescu and Kliewer (2011)] are used as starting point. They

are compared to each other concerning the robust efficiency of generated schedules, i.e.

planned costs and on-time performance. Afterwards, stability and flexibility are put

into relation within various advanced scheduling strategies.

As a first result, we evaluate to what extent an increasing degree of stability leads

to a changing degree of flexibility and vice versa. Subsequently, it is evaluated if pareto-

optimal resource schedules with the highest possible degree of both stability and flex-

ibility can be generated that lead to a better trade-off between cost efficiency and

robustness. The results give an insight on the potential of robust efficiency in resource

scheduling.

Acknowledgements This research was supported by a grant from the German Research
Foundation (DFG, Grant No. KL2152/3-1).

References

[Dück et al (2012)] Dück V, Ionescu L, Kliewer N, Suhl L, (2012) Increasing stability of crew
and aircraft schedules. Transportation research part C: emerging technologies 20(1):47–61

[Ionescu and Kliewer (2011)] Ionescu L, Kliewer N, (2011) Increasing flexibility of airline crew
schedules. Procedia-Social and Behavioral Sciences 20:1019–1028

[Ionescu et al (2015)] Ionescu L, Gwiggner C, Kliewer N, (2015) Data analysis of delays in
airline resoure networks. Submitted to: BISE – Business & Information Systems Engineering

[Shebalov and Klabjan (2006)] Shebalov S, Klabjan D, (2006) Robust airline crew pairing:
Move-up crews. Transportation Science 40(3):300–312

[Yen and Birge (2006)] Yen JW, Birge JR, (2006) A stochastic programming approach to the
airline crew scheduling problem. Transportation Science 40(1):3–14

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 787 -

MISTA 2015

Scheduling Complex Job-Shops
using Batch Oblivious Disjunctive Graphs

A Scheduling Approach for the Diffusion and Cleaning Area
in Semiconductor Manufacturing

Sebastian Knopp · Stéphane Dauzère-Pérès ·
Claude Yugma

1 Introduction and Problem Description

In a competitive economical setting, semiconductor manufacturing is the core pro-

cess in the production of today’s everyday electronic devices. In this work, we cope

with a scheduling problem arising in the diffusion and cleaning area of semiconductor

manufacturing facilities. We are given a complex job-shop environment with batching

machines. For each job in a given set, a fixed sequence of operations (route) must be

performed on given machines. Each operation belongs to a family which specifies the

machines that are qualified for its processing. Processing durations depend on selected

machines. Some machines are capable of batching: They can process multiple opera-

tions of the same family at the same time as long as machine capacity restrictions are

observed (p-batching). To each job is associated a ready date and a due date. We are

interested in a combination of several objectives such as the total weighted tardiness

or the number of processed operations in a given planning horizon.

Existing solution approaches for complex job-shop problems with batching ma-

chines rely on an adapted disjunctive graph representation where dedicated nodes rep-

resent batching decisions. We propose a novel approach where the graph is oblivious

to batches: Batching decisions are taken dynamically during graph traversal and no

dedicated batch nodes are introduced. This procedure cooperates with an overlying

heuristic that alters ordering and assignment decisions. We show that for any given

regular criterion, there exists a conjunctive graph such that our dynamic batching al-

gorithm yields an optimal schedule. We see two advantages in this approach. First,

batching decisions automatically adapt to assignment and ordering decisions. Second,

the reduced graph complexity eases implementation efforts and facilitates the integra-

tion of more complex routing structures as presented in Knopp et al. (2014). We apply

this dynamic batch evaluation algorithm within a heuristic based on the idea of greedy

randomized adaptive search procedures (GRASP, see Feo and Resende (1995)).

Sebastian Knopp · Stéphane Dauzère-Pérès · Claude Yugma
École des Mines de Saint-Étienne, CMP Georges Charpak
Department of Manufacturing Sciences and Logistics
CNRS UMR 6158 LIMOS, F-13541, Gardanne, France
E-mail: {sebastian.knopp, dauzere-peres, yugma}@emse.fr

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 788 -

2 Related Work

The problem considered in this work is NP-hard since it is a generalization of both

the NP-hard classical job-shop scheduling problem as well as the NP-hard single-

machine scheduling problem with TWT objective (see Garey et al. (1976)). Conse-

quently, heuristic methods are more appropriate when designing solution approaches

for instances of industrial dimensions. An overview of existing approaches for schedul-

ing in semiconductor manufacturing can be found in Mönch et al. (2011). Methods for

scheduling problems with batching are reviewed in Mathirajan and Sivakumar (2006).

Starting with the work of Ovacik and Uzsoy (1997), several approaches for com-

plex job-shop scheduling problems are based on adoptions of the shifting bottleneck

heuristic of Adams et al. (1988). This heuristic decomposes the problem into multi-

ple parallel-machine scheduling problems and subsequently applies appropriate sub-

problem solution procedures. For this setting, Ovacik and Uzsoy (1997) introduce a

disjunctive graph representation that represents batches using dedicated nodes. This

representation was also used in Mason and Oey (2003) and Mönch and Rose (2004),

where the authors show that a modified shifting bottleneck heuristic outperforms clas-

sical dispatching rules. Results were improved in Mönch et al. (2007) by using a genetic

algorithm in the subproblem solution procedure. Recently, Bilyk et al. (2014) propose

an improved method to solve the underlying parallel-machine scheduling subproblem.

A different approach is presented in Yugma et al. (2012). A more global optimization

technique is proposed by introducing moves which operate on the whole graph. As well

as in the aforementioned work, dedicated nodes are introduced to represent batches.

In the present work, we propose a novel approach to take batching decisions: Instead

of adding auxiliary nodes, we dynamically compute batches during a traversal of the

graph.

3 Batch Oblivious Disjunctive Graphs

To represent schedules, we use a known disjunctive graph model for flexible job-shops

(see Dauzère-Pérès and Paulli (1997)). In a disjunctive graph, nodes represent opera-

tions and arcs represent dependencies induced by either the route of a job or the or-

dering of operations on machines. A disjunctive graph models all possible assignments

of operations to machines and sequences of operations of the machines. By replacing

each disjunctive arc by a conjunctive arc while satisfying some feasibility constraints,

a conjunctive graph is constructed which corresponds to a given assignment of each

operation to a machine and a given sequence of all operations on the machines. All

redundant arcs are removed.

In a conjunctive graph G = (V,A), for each job and each machine, there is a unique

edge disjoint path from an artificial start node 0 to an artificial end node ∗. For each

node v ∈ V , let us denote by pv its processing duration, by r(v) ∈ V its route predeces-

sor, and by m(v) ∈ V its machine predecessor. In the case without batching, start dates

can be computed by traversing the nodes of the graph in topological order. Topological

orderings can be computed in linear time (see Kahn (1962)). The start date sv of a

node v ∈ V depends only on its direct predecessors and can be computed inductively

as sv := max(sr(v) + pr(v), sm(v) + pm(v)). The topological ordering guarantees that

sr(v) and sm(v) are computed before v is visited. For the artificial start node 0, s0 is

set to zero.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 789 -

Now, we modify the computation of start dates to include batching. Still, we tra-

verse the nodes of the graph using an (arbitrary) topological ordering. Our procedure

preserves all ordering and assignment decisions inherent in the given conjunctive graph.

Nodes are called compatible if they are associated to operations of the same family.

Such nodes can be combined in the same batch. All operations of the same batch

must start at the same time. Consider a node v ∈ V visited during the traversal. If

sr(v) + pr(v) ≤ sm(v), we set sv := sm(v) to combine v and m(v) in the same batch.

Conceptually, this can be seen as changing the duration of the arc between v and m(v)

to zero and introducing a zero weighted arc between m(v) and v. In the other case,

where sr(v)+pr(v) > sm(v), v is not included in the same batch as m(v). This inclusion

would not be tractable in a one-pass graph traversal since a modification of the already

computed value sm(v) would trigger the need to propagate the change to prior batch

predecessor nodes as well as reachable successor nodes. Note that capacity constraints

can be checked in a straightforward way: The current capacity usage is tracked for each

node and batches are not extended if the capacity is exceeded.

Algorithm 1 A batching algorithm for a given conjunctive graph G

computeStartDates (G)
s0 ← 0
for v ∈ computeTopologicalOrdering(G \ {0})

i f isCompatible(v,m(v)) and isCapacitySufficient(v) and sr(v) + pr(v) ≤ sm(v)

sv ← sm(v)

else
sv ← max(sr(v) + pr(v), sm(v) + pm(v))

Algorithm 1 provides the pseudo-code for our dynamic graph evaluation algorithm.

Its greedy strategy yields a well defined schedule. Batching decisions taken by the

algorithm are not necessarily optimal. However, we can rely on the existence of a

conjunctive graph for which our batching algorithm yields an optimal schedule. This

is shown in Theorem 1. Let us recall that an optimization criterion is called regular if

it is an increasing function of the completion times of jobs.

Theorem 1 For any given regular criterion, there exists a conjunctive graph G such

that Algorithm 1 yields an optimal schedule.

Proof Consider a feasible schedule that is optimal with respect to the given regular

criterion. Its operation start dates sv are given. We construct a conjunctive graph that

defines the order of operations on machines as follows:

a) The graph respects all machine assignment decisions of the optimal schedule.

b) Ordering decisions on the machines respect the start dates of the optimal schedule:

If sv < sw for v, w ∈ V , then v is ordered before w.

c) Nodes v, w ∈ V that are part of the same batch (i.e., sv = sw) are ordered as

follows: If sr(v) + pr(v) < sr(w) + pr(w), then v is ordered before w.

d) For two nodes v, w ∈ V of the same batch with sr(v) + pr(v) = sr(w) + pr(w), their

relative order can be arbitrarily decided.

Since those rules are derived from a feasible schedule, this graph is constructed without

any cycles. Property c) guarantees that, for all adjacent nodes v,m(v) ∈ V of the same

batch, sr(v) + pr(v) ≤ sm(v) holds. This ensures that these nodes are combined in the

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 790 -

same batch by Algorithm 1. Now consider two operations with sr(v) + pr(v) ≤ sm(v)

that are not part of the same batch in the given optimal schedule. Our algorithm

combines them in the same batch and thus yields a different schedule. However, since

no operations are postponed and the objective function is regular, the resulting schedule

is optimal as well. �

4 Heuristic Algorithms

In the following, we provide an overview of our solution methods based on the intro-

duced batch oblivious disjunctive graph modeling. We utilize a heuristic based on the

idea of greedy randomized adaptive search procedures (GRASP, see Feo and Resende

(1995)). Initial solutions are created using a starting heuristic comparable to the ones

described in Yugma et al. (2012) and Knopp et al. (2014): Jobs are successively inserted

in the order of their ratio between due date and weight, and the best insertion position

for each operation is selected. The randomization is achieved by disturbing the ordering

of job insertions. Multiple initial solutions can be constructed in parallel. To improve

constructed solutions, we use a simulated annealing heuristic. Therein, we utilize moves

based on insertions and removals of nodes in the conjunctive graph which treat rese-

quencings and reassignments of operations in a uniform way (see Dauzère-Pérès and

Paulli (1997)).

Although the graph is unaware of batches, we still can use results of the batching

algorithm to determine moves. We compare two strategies. A first strategy modifies

batches explicitly by introducing the following moves (cf. Yugma et al. (2012)):

– Swap two random nodes belonging to batches of the same family,

– Move simultaneously all nodes of a random batch to a randomly chosen position,

– Randomly move a single node (potentially changes machine assignment).

In each iteration, one type of moves is randomly selected and a corresponding move

is generated. A second strategy performs only simple moves and fills up batches dy-

namically by reassigning and resequencing operations during graph traversals. The

computation of batches is performed after each move and the objective function value

can be derived from the obtained start dates.

5 Results and Conclusion

We implemented our algorithms in C++ and conducted preliminary numerical ex-

periments on an Intel Xeon E5-2620 2.1 GHz machine using academic and industrial

instances. To assess the performance of our approach, we utilize test instance from a

less general parallel machine scheduling problem of Mönch et al. (2005). We observe

that the second strategy which uses a simple move together with dynamic resequenc-

ings and reassignments outperforms the first strategy of batch aware moves. Table 1

provides first results in terms of average values for total weighted tardiness. The re-

sults verify the applicability of our approach. Since the used test instances stem from

a less general parallel machine scheduling problem, an important future step would be

a systematic assessment of our approach using job-shop based instances. Initial exper-

iments using industrial data show that job-shop instances with batching of industrial

dimensions can be handled.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 791 -

#Machines Batch size
Time (s) m=3 m=4 m=5 B=4 B=8

Our approach 120 410 302 227 384 242
Mönch et al. (2005) 27 216 412 300 231 389 240
Yugma et al. (2012) 178 411 278 206 367 229

Table 1 Average total weighted tardiness values for instances of Mönch et al. (2005)

A major advantage of our approach is its simplicity: Avoiding the complexity of

additional batching nodes enables the inclusion of further constraints. We see this as

a promising direction towards the inclusion of complex properties appearing in real-

world problems. In particular, we aim to combine this approach with the more complex

routing structures presented in Knopp et al. (2014).

Acknowledgements This work is supported by the ENIAC European Project INTEGRATE.

References

Adams, J., E. Balas, and D. Zawack (1988). The shifting bottleneck procedure for job

shop scheduling. Management science 34 (3), 391–401.

Bilyk, A., L. Mönch, and C. Almeder (2014). Scheduling jobs with ready times and

precedence constraints on parallel batch machines using metaheuristics. Computers

& Industrial Engineering (0), –.

Dauzère-Pérès, S. and J. Paulli (1997). An integrated approach for modeling and

solving the general multiprocessor job-shop scheduling problem using tabu search.

Annals of Operations Research 70, 281–306.

Feo, T. A. and M. G. Resende (1995). Greedy randomized adaptive search procedures.

Journal of global optimization 6 (2), 109–133.

Garey, M. R., D. S. Johnson, and R. Sethi (1976). The complexity of flowshop and

jobshop scheduling. Mathematics of operations research 1 (2), 117–129.

Kahn, A. B. (1962). Topological sorting of large networks. Communications of the

ACM 5 (11), 558–562.

Knopp, S., S. Dauzère-Pérès, and C. Yugma (2014). Flexible Job-Shop Scheduling with

Extended Route Flexibility for Semiconductor Manufacturing. In Proceedings of the

2014 Winter Simulation Conference (WSC), pp. 2478–2489. IEEE Press.

Mason, S. J. and K. Oey (2003). Scheduling complex job shops using disjunctive graphs:

a cycle elimination procedure. International journal of production research 41 (5),

981–994.

Mathirajan, M. and A. Sivakumar (2006). A literature review, classification and simple

meta-analysis on scheduling of batch processors in semiconductor. The International

Journal of Advanced Manufacturing Technology 29 (9-10), 990–1001.

Mönch, L., H. Balasubramanian, J. W. Fowler, and M. E. Pfund (2005). Heuristic

scheduling of jobs on parallel batch machines with incompatible job families and

unequal ready times. Computers & Operations Research 32 (11), 2731 – 2750.

Mönch, L., J. W. Fowler, S. Dauzère-Pérès, S. J. Mason, and O. Rose (2011). A survey

of problems, solution techniques, and future challenges in scheduling semiconductor

manufacturing operations. Journal of Scheduling 14 (6), 583–599.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 792 -

Mönch, L. and O. Rose (2004). Shifting-Bottleneck-Heuristik für komplexe Produktion-

ssysteme: Softwaretechnische Realisierung und Leistungsbewertung. Quantitative

Methoden in ERP und SCM, DSOR Beiträge zur Wirtschaftsinformatik 2, 145–159.

Mönch, L., R. Schabacker, D. Pabst, and J. W. Fowler (2007). Genetic algorithm-

based subproblem solution procedures for a modified shifting bottleneck heuristic

for complex job shops. European Journal of Operational Research 177 (3), 2100–

2118.

Ovacik, I. M. and R. Uzsoy (1997). Decomposition methods for complex factory schedul-

ing problems. Kluwer Academic Publishers Boston.

Yugma, C., S. Dauzère-Pérès, C. Artigues, A. Derreumaux, and O. Sibille (2012). A

batching and scheduling algorithm for the diffusion area in semiconductor manufac-

turing. International Journal of Production Research 50 (8), 2118–2132.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 793 -

MISTA 2015

The Intermittent Traveling Salesman Problem

San Pham · Patrick De Causmaecker

1 Introduction

This article introduces the Intermittent Traveling Salesman Problem (ITSP) - a new

variant of the Traveling Salesman Problem (TSP). The ITSP arises from a practical

polishing/drilling application where the temperature of the workpiece is taken into

account. Consider a device, such as a laser, visiting a number of spots on a work piece.

The aim of the visit is to machine the work piece at this particular spot. The machining

causes the piece to heat up locally. Consequently, machining cannot go on for ever and

at some point in time the device has to leave the spot, to come back to continue only

after a certain timelap. The objective of the problem is to find the minimum time to

process all spots, several of which have to be visited a number of times. Since TSP is the

special case where all spots have to be visited exactly once, this problem is NP-hard.

In the next sections, we propose two Mixed Integer Programming(MIP) models

for the ITSP. An outline of branch-and-bound algorithms for those models is also

mentioned.

2 MIP model

Consider a graph G = (V,E) with n nodes. Each arc (i, j) ∈ E associates with a time

duration cij > 0. Each node has a processing time pi >= 0. To simplify the model, we

assume that in the beginning of the process, the temperature of each node is 0. The

node’s temperature increases during its serving time linearly, i.e. one degree per time

unit. When not being visited, the workpiece will cool down with the rate of one degree

per time unit. The maximum temperature allowed is B.

We construct the graph G′ = (V ′, E′) as follow: Each node i ∈ V is split into

ki = dpi/Be nodes. We call this set Ki. The processing time of each node pji = B for

San Pham
KU Leuven, KULAK
E-mail: san.pham@kuleuven-kulak.be

Patrick De Causmaecker
KU Leuven, KULAK
E-mail: patrick.decausmaecker@kuleuven-kulak.be

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 794 -

j = 1..ki−1 and pki
i = (pi mod B). Clearly, the set Ki for node i with pi ≤ B includes

one element only. For each arc (i, j) ∈ E′, cij = cth with (t, h) ∈ E, i ∈ Kt and j ∈ Kh.

It is easy to see that cij = 0 if t = h. To simplify the model, we create two virtual nodes

S and T denoting the departing depot and returning depot, cSi = ciT = 0 ∀i ∈ V ′.
To solve the problem, we need to find a Hamiltonian cycle for G′ which respects

the temperature constraints: the difference between the starting time of nodes i and j

belonging to the same set Kt must be larger than or equal to B. As one can realize,

those time constraints are similar to the ones in TSP with time window (TSPTW)

(Desrochers et al. [4]). Therefore, based on the models of the classical TSPTW, we

propose two models for the ITSP.

In both two models, the arc variables xij are included to denote that node j is

visited right after node i. The first model is based on the standard model of TSPTW

(Desrochers and Laporte [3]) which involes node variables si denoting the start time

of node i. The link between x and s variables is ensured by a generalization of Miller-

Tucker-Zemlin inequalites

si + cij + pi ≤M ∗ (1− xij) + sj ∀i ∈ V ′, j ∈ V ′ \ {S} (1)

where M is a large number. To satisfy the temperature constraints, the difference

between the starting time of the nodes belonging to the same set must be larger than

or equal to B.

si − sj ≥ B ∀i, j from the same set Kt, i > j (2)

Note that after processing a node, the devide can wait for a while before moving

to the next one. The condition i > j is used to break the symmetry structure.

The objective of the problem is to mimimize the visiting time of the returning

depot. The complete model is represented as below:

min sT (3)

subject to (1), (2) and ∑
j∈V ′

xij = 1 ∀i ∈ V ′ (4)

∑
i∈V ′

xij = 1 ∀j ∈ V ′ (5)

xTS = 1 (6)

In the second model, adopting the idea of Van Eijl [5] we introduce a set of variables

yij denoting the visiting time of node i before visiting j. yij = 0 if xij = 0. The link

between xij and yij is provided through the inequalities:

∑
i∈V ′

(yij + (pi + cij) ∗ xij) ≤
∑
k

yjk ∀j ∈ V ′ \ {S} (7)

yij <= M ∗ xij ∀i, j ∈ V ′ (8)

The objective function of the second model is also to minimize the visiting time of

the node T :

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 795 -

min yTS (9)

respects to (4), (5), (6) from model 1, the linking constraint (7), (8) plus the

temperature constraints below:

∑
k∈V ′

yik −
∑
h∈V ′

yjh ≥ B ∀i, j from the same set Kt, i > j (10)

3 Branch-and-cut algorithm

Each of the two above models has its own strength and weakness. In this work, we

try to draw comparisons between them by performing the branch-and-cut algorithm

on each model.

There are several factors motivating a branch-and-cut algorithm: the branching

rules, the exploring order, the quality of cutting planes... In this paper, we use the

branch-and-cut framework of the Gurobi solver [6] where all of the above factors are

taken care of by the solver. To strengthen the search, in addition to default cuts of

Gurobi, user-defined cutting planes are added. Since most of the cutting planes for the

TSPTW presented in [1] are still valid for our model, we take advantage of them into

our algorithm. The detailed cutting planes and experimental results will be presented

in the final paper.

Acknowledgements Work supported by the Belgian Science Policy Office (BELSPO) in the
Interuniversity Attraction Pole COMEX. (http://comex.ulb.ac.be), Research Foundation Flan-
ders (FWO) and the Marie Curie ITN STEEP (Grant Agreement no. 316560, http://www.steep-
itn.eu/steep/index.aspx). We would like to thank Prof. Frits Spieksma for his suggestion on
simplifying the problem.

References

1. Ascheuer, Norbert, Matteo Fischetti, and Martin Grötschel. ”Solving the asymmetric trav-
elling salesman problem with time windows by branch-and-cut.” Mathematical Programming
90.3 (2001): 475-506.

2. Desrochers, Martin, and Gilbert Laporte. ”Improvements and extensions to the Miller-
Tucker-Zemlin subtour elimination constraints.” Operations Research Letters 10.1 (1991):
27-36.

3. Desrochers, M., and Lenstra, J.K. Karel and Savelsbergh, M.W.P. and Soumis, F. ”Ver-
hicle Routing with Time Windows: Optimization and Approximation”, in Vehicle Routing:
Methods and Studies, Golden, B.L. and Assad, A.A., Elsevier Science Publishers B.V. 1988.
65-84.

4. Van Eijl, C. A. A polyhedral approach to the delivery man problem, Memorandum COSOT
95, Eindhoven University of Technology, 1995.

5. Gurobi Optimization, Inc., ”Gurobi Optimizer Reference Manual”, 2015,
http://www.gurobi.com

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 796 -

MISTA 2015

Single machine scheduling: finding the Pareto Set for jobs
with equal processing times with respect to criteria Lmax and
Cmax.

Alexander Lazarev · Dmitry Arkhipov · Frank

Werner

1 Introduction

In this paper, the special case of the classical NP-hard scheduling problem 1|rj |Lmax is

considered. There is a single machine and a set of jobs N = {1, 2, . . . , n} to be executed

with identical processing times pj = p for all jobs j ∈ N . We define a schedule (or sequence)

π as the execution sequence K1(π),K2(π), . . . ,Kn(π), where

K1(π) ∪K2(π) ∪ · · · ∪Kn(π) ≡ N.

The equality Ki(π) = j means that job j ∈ N is executed under the ordinal number i in

the schedule π. The execution of the job Ki(π) = j starts at time

Rj(π) = max{CKi−1
(π), rKi(π)}

(where CK0
(π) = 0) and finishes at time

Rj(π) + p = Cj(π),

where Cj(π) is the completion time of the job j ∈ N . Let us denote the lateness of job j

under the schedule π as

Lj(π) = Cj(π)− dj .

The maximum completion time and the maximum lateness are denoted as Cmax and

Lmax, respectively. Let us call the schedule π allowable for the set N if all jobs according

to the schedule π execute without preemptions and intersections. We denote the set of all

Alexander Lazarev
V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow, Russian
Federation;
Lomonosov Moscow State University, Moscow, Russian Federation;
Moscow Institute of Physics and Technology, Dolgoprudny,
Russian Federation;
National Research University Higher School of Economics,Moscow, Russian Federation
E-mail: jobmath@mail.ru

Dmitry Arkhipov
V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow, Russian
Federation
E-mail: miptrafter@gmail.com

Frank Werner
Faculty of Mathematics, Institute of Mathematical Optimization, Otto-von-Guericke University
Magdeburg, Germany
E-mail: frank.werner@ovgu.de

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 797 -

allowable schedules as Π. The goal is to find a feasible schedule π ∈ Π, which satisfies the

following optimization criterion:

min
π∈Π

max
j∈N

Lj(π).

2 The auxiliary problem

Let us formulate an auxiliary problem. We consider the same set of jobs N = {1, 2, . . . , n}
and a bound on the maximum lateness y. The goal is to construct a schedule satisfying the

following optimization criterion:

min
π∈Π

max
j∈N

Cj(π)|Lmax(π) < y.

For each set of due dates d1, . . . , dn and the bound on the lateness y, deadlines Dj can be

calculated by the following formula:

Dj = dj + y.

An allowable schedule satisfying this restriction is called feasible. To construct the

solution of the auxiliary problem, we consider the approach presented in [3]. Next, we

briefly recall the main idea from this paper.

The auxiliary algorithm works as follows. While the completion times of all jobs are

lower than its deadlines, schedule the jobs according to the algorithm, presented in [4]. If

for any job X ∈ N , the inequality

CX ≥ DX
holds, then execute the special procedure CRISIS(X). This procedure finds the job A,

which is already scheduled with the latest completion time, but for which

DA > DX

holds. This job is called Pull(X) and all jobs which are already scheduled after Pull(X)

and X constitute the restricted set S(A,X]. We define rS(A,X] to be the earliest time when

the jobs of S(A,X] can start their execution. The procedure CRISIS(X) reschedules the

jobs of the set {A} ∪ S(A,X]. The procedure fails when a job Pull(X) for a crisis job

X does not exist. After a successful execution of the procedure CRISIS(X), Schrage’s

algorithm [4] is used to schedule the jobs. Such a scheduling is repeated until any call of

the procedure CRISIS() fails or all jobs from the set N have been successfully scheduled.

3 Solution of the main problem

Next, we consider the main problem 1|rj , pj = p|Lmax. We also present an algorithm to

obtain the Pareto set of schedules with respect to the criteria Lmax and Cmax. First, we

introduce a procedure CHECK(π,N, y) which constructs the schedule π∗ as follows.

CHECK(π,N, y)

1. Set the lateness bound y and a time t = min
i∈N

ri.

2. Set the deadlines Di := di + y.

3. If all jobs from the set N have been scheduled, go to step 7.

4. While t is not in the interval [rS(A,X], DX) for any restricted set S(A,X] from the

schedule π that has not yet been completely performed, execute the jobs under π∗

according to Schrage’s algorithm.

5. Otherwise, execute only the jobs from the set S(A,X] under the schedule π, and then

go to step 3.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 798 -

6. If in steps 4-5 any job Y experiences a crisis, run the procedure CRISIS(Y).

7. return(π∗).

Lemma 1 Let π and π′ be the schedules constructed by the auxiliary algorithm for the

bounds y and y′, respectively, and

π∗ = CHECK(π,N, y).

If y < y′, then
π∗ = π′.

holds.

Next, we describe the main algorithm M to obtain the Pareto set with respect to the

criteria Lmax and Cmax.

MAIN ALGORITHM (Algorithm M)

1. Set the bound y0 := +∞.

2. Construct the schedule π1 according to the auxiliary algorithm,

and add it to Φ, i.e.: Φ := {π1};
set the counter k := 1;

set the bound y1 := Lmax(π1).

3. Construct the schedule πk+1 = CHECK(πk, N, yk).

a) If the schedule CHECK(πk, N, y) exists, then:

add πk+1 to the set Φ, i.e.: Φ := Φ ∪ πk;

set yk = Lmax(πk);

increase the counter k, i.e.: k := k + 1;

repeat step 3.

b) Otherwise, return(Φ).

At last, we formulate and prove some important lemmas and a theorem, which show that

algorithm M finds the Pareto set Φ in O(n2 logn) operations.

Lemma 2 If any job becomes a crisis job for the second time, then the algorithm stops.

Theorem 1 After the execution of Algorithm M , the Pareto set of schedules Φ according

to the criteria Lmax and Cmax has been constructed, where the schedules Φ1 and Φ|Φ| are
optimal according to criteria Lmax and Cmax respectively. For this set

|Φ| ≤ n+ 1

holds.

Lemma 3 The complexity of Algorithm M is O(n2 logn).

4 Metric analysis

The metric ρ for the instances of problem 1|rj |Lmax was introduced in [5]. We estimate a

metric distance ρp(A) between an arbitrary instance A which holds pA1 ≤ · · · ≤ pAn and a

set of polynomial solvable instances with the identical processing times of jobs as:

ρp(A) ≤
[(n−1)/2]∑
i=1

pAn−i+1 − p
A
i .

The prove that estimated bound is tight and present a polynomial algorithm to find the

instance B for an arbitrary instance A which satisfy

ρ(A,B) = ρp(A).

The results of numerical experiments are also presented.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 799 -

References

1. Kravchenko, S.A. and Werner, F.: Parallel Machine Problems with Equal Processing Times.
Journal of Scheduling. Vol. 14, No. 5, 2011, 435 - 444.

2. Garey, M.R.; Johnson, D.S.; Simons, B.B. and Tarjan, R.E.: Scheduling unit-time tasks with
arbitrary release times and deadlines. SIAM J. COMPUT. Vol. 10, No. 2, May 1981, 256 - 269.

3. Simons, B.B.: A fast algorithm for single processor scheduling. In 19th Annual Symposium on
Foundations of Computer Science (Ann Arbor, Mich., 1978), 246-252.

4. Schrage, L.: Solving Resource-Constrained Network Problems by Implicit Enumeration: Non
Preemptive Case. Operations Research. Vol. 18 Issue 2, 1970, 263 - 278.

5. Lazarev, A.A.: The Pareto-optimal set of the NP-hard problem of minimization of the maximum
lateness for a single machine. Journal of Computer and Systems Sciences International. M.:
SP MAIK Nauka/Interperiodica. 2006. 45, No. 6. . 943-949.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 800 -

Yi Tan
University of Hagen
E-mail: Yi.Tan@fernuni-hagen.de

Lars Mönch
University of Hagen
E-mail: Lars.Moench@fernuni-hagen.de

John W. Fowler
Arizona State University
E-mail: John.Fowler@asu.edu

MISTA 2015

Scheduling Jobs in a Two-Stage Flexible Flow Shop with Batch Processing
Machines

Yi Tan • Lars Mönch • John Fowler

1 Introduction and Problem Setting

Scheduling problems for flexible flow shops with batch processing machines arise in semicon-
ductor manufacturing [5]. A batch is defined as a set of jobs that can be processed together at
the same time on a single machine. It is reasonable to study two-stage flexible flow shops with
batching because two consecutive batch processes of oxidation and nitration, respectively, oc-
cur in current wafer fabs. We assume that each job j belongs to family ss F,,jf 1 at
stage s where sF is the number of incompatible families at stage s . Only jobs of the same fa-
mily can be batched together. The common processing time of all jobs of family f at stage s
is given by fsp . Each job j has a due date jd , a ready time jr , and a weight jw . The
completion time of the operation of job j at stage s is denoted by jsC . We assume that stage
s contains sm identical parallel machines with a maximum batch size of sB . The
performance measure total weighted tardiness (TWT) is the summation of the weighted
tardiness jjTw over all jobs n,,j 1 , where 0max: 2 ,dCT jjj . Using the

 || notation from scheduling theory, the researched problem can be represented as fol-
lows:

 TWTrcompatiblep-batch,inFF j |,|2 , (1)
where we denote by 2FF a two-stage flexible flow shop with identical parallel machines at
each stage. Problem (1) is NP-hard since it contains the NP-hard problem TWT||1 as a special
case. We know from [2,6] that the shifting bottleneck heuristic does not work well for flow
shops. A two-machine flow shop scheduling problem for the mean flow time criterion is dis-
cussed in [3]. The machine at the first stage is a batch processing machine. There is a buffer
with limited capacity between the two machines. A differential evolution algorithm is used to
batch jobs at the first stage. A two-stage flexible flow shop with a limited waiting time

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 801 -

constraint and batching machines at the first stage is discussed in [7]. A mixed integer pro-
gramming formulation and a heuristic is proposed for the makespan objective. The diffusion
area in a wafer fab is modeled in [9] as a flexible job shop where all machines are batching
machines. A combined objective is considered. A sampling procedure and a simulated
annealing scheme are proposed that are based on a disjunctive graph representation. However,
in the present paper, we consider the TWT performance measure which is different from [9]. A
two-machine flow shop problem is discussed in [8]. In the present paper, we extend this
approach to a flexible flow shop setting. In addition, the number of machines at each stage is
also a design factor in our computational experiments.

2 Decomposition Heuristic

The decomposition approach is based on the idea that the scheduling subproblems at the two
stages can be decoupled and solved independently from each other if appropriate due dates and
ready times can be determined for the first and the second stage, respectively. We propose an
iterative scheme to come up with internal due dates and ready times. Therefore, the due date of
operation j at the first stage is denoted by 1

1jd , where 1l is an iteration counter. The ready

times of the operations at the second stage are denoted for iteration l by 1
2jr . The slack of job

j is given by jjfjfjj rppd 12 12
: . We add half of this slack to the earliest start time

of the second stage to obtain the first stage due date for iteration 1 , i.e.

 jjfjj prd 21: 1
1
1 1

 , while the following update scheme is used for the due dates in
iteration 2l :

 1

2
1

22
1

21 2
1: l

j
l
jjfj

l
j

l
j wwpdrd . (2)

Here, 1
2
l

jw is the waiting time of job j observed at the second stage in iteration 1l and

 20,, are parameters. After the first stage subproblem is solved in iteration l , we know

the completions times of the jobs at this stage that are denoted by l
jC 1 . We then set

 l
j

l
j Cr 12 : (3)

for the ready times of the jobs at the second stage in iteration l . We show that the update
scheme given by (2) and (3) can be interpreted as a specific instance of an iterative simulation
procedure where the evaluation of the schedule in a given iteration is carried out by a simple
deterministic forward simulation. This means that starting from an initial guess of the internal
due dates and ready times, we iterate to improve these values. Typically, not more than 20
iterations are required. Each of the resulting subproblems of the form

TWTrcompatiblep-batch,inP j |,| is either solved by the Time Window Decomposition
(TWD) heuristic based on Batched Apparent Tardiness Cost (BATC) dispatching proposed in
[4] or by the variable neighborhood search (VNS) scheme described in [1]. The VNS scheme
is based on five neighborhood structures that work on the final solution representation, i.e.
batches assigned to machines and the corresponding sequences of batches. The local search
procedure within the VNS scheme balances the workload on the machines, moves batches
across machines, swaps jobs between batches, and swaps batches across machines. The two
heuristics are called iterTWD and iterVNS , where iter is the number of iterations.

3 Computational Results

We generate problem instances according to the following design. In each instance, 60 jobs per
first stage family are considered. There are eight machines across the two stages. Three fami-

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 802 -

lies are used at the first stage. At the second stage, each first stage family will become either
one or two families with equal probability. The processing times are integers that are selected
with a given probability [4]. The maximum batch size of the two stages is 42,Bs . Ready

times of the form

n

j

n

j
jfjfj pmBpmBa,U~r

1 1
222111 21

110 are used,

where 750250 .,.a is a parameter. The due dates are chosen by the expression

 21 21
: jfjfjj ppFFrd , where 3111 .,.FF . We use 10,U~w j . The workload of

stage s is measured by

n

j
sjfssss s

pmBmWL
1

1 . Starting from the total number of ma-

chines m , we consider all possible pairs 11 mm,m . A balanced workload is given by the

machine pair 221121 21
minarg: mWLmWLm,m m,m . If possible, we consider the two

additional pairs 11 21 m,m and 11 21 m,m that mimic the situation that the first or the
second stage is the bottleneck. The three different configurations are denoted by

21 BN,BN,BL , respectively. Overall, we consider 16 factor combinations, each of them with
three independent problem instances. An instance is represented by a specific job set. We de-
termine the ratio of the TWT value obtained by 20VNS and the TWT value obtained by

 1TWD for the same configuration. The average over all corresponding instances is shown in
Table 1. The shown VNS computing time refers to a single pair , . The computing time of

 1TWD is negligible.

Table 1: Computational Results for Problem (1)

 TWT of 20VNS relative to TWT of 1TWD Computing Time (s)
Configuration 1BN BL 2BN 1BN BL 2BN
Factor/Level
 21 B,B
(2, 2) 0.792 (1.047) 0.680 (0.376) 0.826 (1.062) 448 453 478
(2, 4) 0.761 (0.468) 0.801 (0.511) 0.855 (1.522) 437 450 479
(4, 2) 0.935 (1.734) 0.735 (0.432) 0.713 (0.445) 413 467 450
(4, 4) 0.808 (0.952) 0.721 (0.539) 0.793 (0.920) 443 429 448

a
0.25 0.928 (1.085) 0.851 (0.581) 0.867 (1.025) 488 512 540
0.75 0.720 (1.015) 0.617 (0.349) 0.728 (0.952) 383 388 388
FF
1.1 0.882 (1.190) 0.796 (0.509) 0.812 (0.917) 436 450 466
1.3 0.766 (0.911) 0.672 (0.421) 0.782 (1.059) 435 450 461

Overall 0.824 (1.050) 0.734 (0.465) 0.797 (0.988) 435 450 464

We solve each instance for the three configurations using 1TWD and 20VNS . We consider
different pairs , from an appropriate grid. The smallest TWT value for the grid points
and each instance and configuration is considered. To make the three configurations com-
parable, we present the ratio of the TWT value obtained from 20VNS and the average TWT
value obtained by 1TWD for the three configurations in Table 1 in brackets. We can see from

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 803 -

Table 1 that 20VNS clearly outperforms 1TWD . The BL configuration leads often to the
smallest TWT values among the three configurations and is therefore a favorable setting. In fu-
ture work, we are interested in carrying out more detailed computational experiments and in
designing a VNS scheme for problem (1) that does not rely on decomposition.

References

1. Bilyk, A., Mönch, L., Almeder, C. Scheduling with ready time and precedence
constraints on parallel batch machines using metaheuristics. Computers & Industrial
Engineering, 78, 175-185 (2014)

2. Demirkol, E., Uzsoy, R. Decomposition methods for reentrant flow shops with sequence-
dependent setup times. Journal of Scheduling, 3, 155-177 (2000)

3. Fu, Q., Sivakumar, A. I., Li, K. Optimizing of flow-shop scheduling with batch processor
and limited buffer. International Journal of Production Research, 50(8), 2267-2285,
(2012)

4. Mönch L., Balasubramanian, H., Fowler, J., Pfund, M. Heuristic scheduling of jobs on
parallel batch machines with incompatible job families and unequal ready times.
Computers & Operations Research, 32(11), 2731-2750 (2005)

5. Mönch, L., Fowler, J. W., Dauzère-Pérès, S., Mason, S. J., Rose, O. Scheduling
semiconductor manufacturing operations: problems, solution techniques, and future
challenges. Journal of Scheduling, 14(6), 583-595 (2011)

6. Mukherjee, S., Chatterjee, A. K. Applying machine-based decomposition in 2-machine
Flow Shops. European Journal of Operational Research, 169, 723-741 (2006)

7. Su, L. H. A hybrid two-stage flow shop with limited waiting time constraints. Computers
& Industrial Engineering, 44 (3), 409–424 (2003)

8. Tan, Y., Mönch, L., Fowler, J. W. A decomposition heuristic for a two-machine flow
shop with batch processing. Proceedings of the 2014 Winter Simulation Conference
(2014)

9. Yugma, C., Dauzère-Pérès, S., Artigues, C., Derreumaux, A., Sibille, O. A batching and
scheduling algorithm for the diffussion area in semiconductor manufacturing.
International Journal of Production Research, 50(8), 2118-2132 (2012)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 804 -

Seda Sucu

Department of Management Science, University of Strathclyde

E-mail: seda.sucu@strath.ac.uk

Alexander Leggate

Department of Management Science, University of Strathclyde

E-mail: alexander.leggate@ strath.ac.uk

Kerem Akartunalı

Department of Management Science, University of Strathclyde

E-mail: kerem.akartunali@strath.ac.uk

Robert Van Der Meer

Department of Management Science, University of Strathclyde

E-mail: robert.van-der-meer@ strath.ac.uk

MISTA 2015

Modeling Uncertainty in Vessel Crew Scheduling

 Seda Sucu • Alexander Leggate • Kerem Akartunalı • Robert Van Der Meer

1 Introduction

 Crew scheduling is an extensive and important subject for scheduling problems in

optimization. It is concerned with the assignment of crew members to create work timetables

(schedules) for an organization depending on the requirements and aims of the organization.

There are several factors that have to be taken into consideration to decide the assignment of

crew members. Apart from the required number of staff and required skills of employees,

assignments should conform to the rules and regulations of the specific sector.

The basic input of most crew scheduling problems is the set of crew members and the set

of tasks that should be carried out according to the definition of tasks and skill levels of

employees. The common features of these problems are that the tasks should be completed in

the defined time window, in an actual task environment by taking into consideration the legal

and contractual requirements. According to these characteristics, the solution method searches

for the best allocation of staff members in general.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 805 -

In this study we aim to evaluate reasonable solution methods for a cost minimization

problem based on changes in the scheduling of vessel crews. The focus of this study will be

based on crew scheduling in transportation settings specific to the maritime industry. The crew

cost for this transportation cost problem depends on different variables. The cost includes the

salary of the crew members, accommodation and food expenses and movement cost of crew

members. Movement cost is calculated with respect to the travel expenses from a gateway city

near their home to the departure port of the ship, airfare, visa expenses, hotel, meals, and crew

members return expenses after their duty. As a result, crew cost is a comparatively significant

cost factor for shipping companies [8].

Apart from the importance of the crew costs, crew scheduling problems are inherently

intractable problems due to having binary problems with linear constraints [6]. This feature

makes them attractive as optimization problems. To obtain an optimal solution with a solver in

a reasonable time is not generally possible for problems of a realistic size. Common constraint

in staff scheduling problems assigning staffs to the operations while preventing overlaps and

being sure all of the operations are covered. Due to this constraint, most of the crew scheduling

problems is known to be NP-Hard problems [7]; as the size of the problem becomes larger, the

complexity level of this kind of problems also increases. Even though crew scheduling

problems in the transportation industry have a significant place in the scheduling literature,

maritime crew scheduling problems are not as popular as airline settings. There are several

reasons to explain the lack of studies for crew scheduling problems in vessels. These reasons

can be explained by the long planning time horizons in maritime context, lower visibility of the

shipping industry compared to rail, road and air, and the higher level of uncertainty and the

greater need for recovery schedules [3].

In our study, instead of scheduling the crew members from scratch, we are more

interested in how the current schedule could be recovered in the face of environmental

uncertainty. Since crew schedules in vessels tend to be affected by environmental factors, such

schedules need to be adjusted or updated. This feature changes the basis of the study to the

field of recovery scheduling problems. Barnhart et. al. [1] give a place to the recovery problem

in their study by presenting a crew recovery model developed by Lettovsky et. al. [11]. In this

model, the cost of adjusted pairings, reserve crew, deadheaded crews and cancellation are

aimed to be minimized. However, there are not too many studies for the recovery problem:

some heuristic search algorithms, dynamic programming algorithm, and column generation

methods play a role in the existing literature [1]. A good survey paper is provided by [4] which

include recent disruption management (recovery) methods in the airline industry. The authors

give comprehensive information about the recovery problem in an airline setting with respect

to different objective functions for the different resources of the disruptions. Guo [9] has a

different approach to the recovery problem. His study is aimed at minimizing the changes in

the current schedule. The problem is formulated as a set partitioning problem and he used both

a column generation approach and a hybrid of a genetic algorithm with a local search.

In relation to the above studies, it is hard to have a completely deterministic data set and

construct a model without making strong assumptions. Since we aim to obtain practical results

for a real life problem, we want to explore the source of uncertainty in this problem setting and

to look for contributions from robust optimization. Berstimas and Sim [2] addressed data

uncertainty for discrete optimization and proposed a robust integer programming problem of

moderately larger size and an algorithm for robust network flows that deals with robust

counterpart by solving a polynomial number of nominal minimum cost flow problems in a

modified network. Ehrgott and Ryan [5] discussed solution method for bi-criteria optimization

problem in airline crew scheduling with maximizing robustness of crew schedules and

minimizing cost; although, the improved the robustness cost minimization is not supported at

the same time. Therefore, their method provides robust schedules with a small increase in cost.

Weare and Fagerholt [10] study on a real life supply vessel planning problem to minimize

installation costs. They gave a deterministic mathematical model for their problem.

Afterwards, they suggested some robust approaches by adding slack to the voyages and

schedules for the uncertain weather conditions impact on the installations. Considering these

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 806 -

robustness approaches, they suggested an algorithm which is combination of optimization and

simulation methods and they showed that for the actual sized problems at least %3 savings are

possible. Their problem has some similarities with our problem in terms of the final schedule.

They obtain schedules for vessels while we construct schedules for crew members.

In this section, the motivation behind this study and a small part of the literature review is

given. In the following sections, the problem will be described and possible findings will be

discussed.

2 Vessel Crew Scheduling Problem Description

Different types of operation modes are available in a maritime transportation system. The

variety between operation types causes variation in the regulations, rules, length of planning

horizons and the working conditions of the crew. Apart from the operation settings, the policy

of the company has a significant effect on the decision process for the crew schedules. Liner,

tramp and industrial shipping are the three main types of maritime operations. Liner shipping

carries goods or people on a pre-determined route; while tramp shipping involves cargo

transportation to meet supplies and demands on a route that is not necessarily pre-determined.

Industrial shipping has similarities with tramp shipping in terms of cargo transportation; but a

difference is that in industrial shipping vessel owners carry their own cargo. In addition to

these three settings, offshore supply vessels support the branch of the maritime industry

concerned with constructions, installations, remote control of vehicles. In this study, we

assume to be working with offshore supply vessels that have a default crew schedule. In this

case, there are regular rotations and crew assignment for defined routes. The schedules are

constructed for these routine rotations by considering several rules and regulations that are

based on special requirements relating to their company policy, work and safety regulations in

vessels. This does not mean that these schedules are resistant to the disruption factors.

Off-shore supply vessels largely have long planning horizons which can affect the

resilience of a constructed schedule. The need of back-up schedules for vessel crews is based

on the need for a long planning horizon. The length of this planning horizon may vary between

three to six months and accordingly the staff duty periods are also long: generally about four

weeks. Since the schedules for this kind of long periods are organized in advance, the need for

change in the current schedule becomes inevitable. To achieve a robust recovery schedule after

any changes in a reasonable solution time with minimum cost is the main concern of this

study. Crew change cost can vary according to the contract type of crew members, their

countries of origin and the locations of vessels. Some of the employees are contracted, while

some others are agency crew. If contracted employees are not sufficient, agency members can

be assigned to any operation. The crew’s working conditions are important in formulating the

constraints. All crew members need to rest by meeting the minimum rest and maximum

working time conditions and they are not allowed to work consecutively for more than a

particular number of weeks (generally 10 weeks). This number also changes according to the

contract of each employee. Other basic constraints are related to the skill level of employees.

Not all duties have the same skill level requirement and, similarly, not all crew members have

the same skill level. Accordingly, employees should only be assigned to the tasks for which

they are eligible. In addition to these as essential constraints of crew scheduling problems, all

tasks should be covered and crew members cannot be assigned more than one task in the same

time period involving the objective function minimizing crew change cost.

3 Solution Approaches

To solve this problem, we have first of all proposed an integer programming model and

heuristic method by assuming all the parameters are known and certain. Both solution methods

are applied to a real life sized problem with generated data. The IP model has a long solution

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 807 -

time with Xpress-Ive Fico Solver, which is hardly applicable and not practical for showing

resistance to sudden changes.

In the heuristic method, we start with a feasible initial solution and do neighborhood

search with forward- backward extension or swaps between the assigned crew members by

taking into consideration all of the constraints through randomly listed employees; and we

apply the changes if there is any improvement in terms of minimizing cost. If there are no

improvements, we look for the second minimum solution, and keep these changes. After that

point another random list is generated and these steps are recurred until the iteration or time

limit is exceeded. Since we have a time and iteration limit, this method is efficient in finding

alternative solutions in practically applicable solution times. This method is also tested in

Xpress-Ive. To obtain more efficient results in terms of the optimality gap, this heuristic is

being coded in C++. Our studies for improvements of this heuristic are still continuing.

Since working with uncertain parameter sets is another concern in this study, we are now

also planning to work with robust optimization methods. Transportation costs for crew

members can hardly be assumed to be fully deterministic based on the timing of sudden

changes. This situation leads to uncertain factors in the objective function minimizing crew

change cost. We are thus aiming to define the parameter of transportation cost with intervals

instead of exact values, and then to minimize the crew change cost in the worst possible case

with these given intervals to have more robust solutions for crew schedules in vessels.

References

1. C. Barnhart, A. M. Cohn , E. Johnson, D. Klabjan, G. L. Nemhauser, P. H. Vanc ,

Airline Crew Scheduling: Handbook of transportation science, 517-560, Springer,

US, (2003).

2. D. Bertsimas, M. Sim, Robust discrete optimization and network flows,

Mathematical Programming, 98: 49–71, (2003).

3. M. Christiansen, K. Fagerholt, B. Nygreen and D. Ronen, Maritime Transportation,

In: Barnhart, C. Laporte, G. (Eds.), Handbook in OR and MS, 4: 189-284, (2007).

4. J. Clausen, A. Larsen, J. Larsen, N.J. Rezanova, Disruption management in the

airline industry concepts, models and methods, Computers and Operations Research,

37 (5):809-821, (2010).

5. M. Ehrgott and D. M. Ryan, Constructing robust crew schedules with bicriteria

optimization, Journal of Multi-Criteria Decision Analysis, 11: 139–150, (2002).

6. L. S. Franz, J. L. Miller, Scheduling medical residents to rotations: solving the large-

scale multi period staff assignment problem, Operations Research, 41(2), 269-279,

(1993).

7. M. R. Garey, D. S. Johnson, Computers and Intractability: A guide to NP-

completeness, W.H. Freeman, San Francisco (1979).

8. R. E. Giachetti, P. Damodaran, S. Mestry and C. Prada, Optimization-based decision

supportsystem for crew scheduling in the cruise industry, Computers and Industrial

Engineering, 64(1): 500-510, (2013).

9. Y. Guo, A decision support framework for the airline crew schedule disruption

management with strategy mapping, In Operations Research Proceedings, 158-165,

(2004).

10. E. E. Halvorsen-Weare, K. Fagerholt, Robust supply vessel planning, In Network

Optimization, Springer Berlin Heidelberg, 559-573, (2011).

11. L. Lettovsky, E. L. Johnson, G. L. Nemhauser, Airline crew recovery, Transportation

Science, 34(4), 337-348, (2000).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 808 -

MISTA 2015

Multimode Time-Constrained Scheduling Problems with

Generalized Temporal Constraints and Labor Skills

Tamara Borreguero Sanchidrián · Christian

Artigues · Álvaro Garćıa Sánchez · Miguel

Ortega Mier · Pierre Lopez

1 Introduction

Scheduling problems have been the subject of continuous research since the early days of

operations research. They are NP-hard optimization problems and, in practice, among

the most intractable classical ones. Henceforth, most of research works on scheduling are

focused on one of the most difficult problems that is the Resource Constrained Project

Scheduling Problem (RCPSP), which consists in scheduling several tasks subject to

resource and precedence constraints [1]. Brucker et al. [2] provided a classification for

this kind of problems together with an overview on existing solution methods. There

have been a wide range of studies on both heuristic and metaheuristic methods for

solving the RCPSP, as well as different Mixed-Integer Linear Programming (MILP)

models [3], [4], [5], [6], [7]. Recently, Koné et al. [8] proposed the use of event-based

formulations that, despite a poor LP relaxation have the advantage to be able to tackle

instances having large time horizons. However, the event-based formulations proposed

Tamara Borreguero Sanchidrián
Airbus Defence & Space; Industrial Engineering and Logistics Reserach Group, ETSII, Poly-
tecnic University of Madrid
E-mail: Tamara.borreguero@airbus.com

Christian Artigues
CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France Univ de Toulouse, LAAS,
F-31400 Toulouse, France
E-mail: artigues@laas.fr

Álvaro Garćıa Sánchez
Industrial Engineering and Logistics Reserach Group, ETSII, Polytecnic University of Madrid.
Jos Gutierrez Abascal 2 (28006) Madrid
E-mail: alvaro.garcia@upm.es

Miguel Ortega Mier
Industrial Engineering and Logistics Reserach Group, ETSII, Polytecnic University of Madrid.
Jos Gutierrez Abascal 2 (28006) Madrid
E-mail: miguel.ortega.mier@upm.es

Pierre Lopez
CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France Univ de Toulouse, LAAS,
F-31400 Toulouse, France
E-mail: pierre.lopez@lass.fr

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 809 -

by Koné et al. are suitable for the standard RCPSP, which includes some assumptions

that are too restrictive for many applications [5]. Therefore, it is of great interest to

improve this kind of formulations so that they can be used on more practical contexts.

Furthermore, the RCPSP focuses on minimizing the project makespan given a set of

available resources. Although this is appropriate for many real problems there are other

wide range of cases where the main objective is to minimize the resource consumption.

This is the case in industries, such as aircraft or ships manufacturing, where the

total makespan is usually fixed by the expected production rate or the client demand

[9]. It can also be applied to the field of project scheduling, where the makespan is fixed

and the objective is to engage a minimum number of resources. Those problems are

Time-Constrained Scheduling Problems (TCSP), which have been very little treated in

the literature. Although Möhring introduced them in 1984 [10], few recent references

address this type of problems: [11], [12], [13] and [9]. Neither of them provide with an

exact method for this problem and, moreover, the first two address some very specific

mono-mode cases.

In this work we have solved a TCSP related to the scheduling of tasks to be done on

a platform from an aircraft final assembly line. It is a multimode TCSP with generalized

temporal constraints and several labor skills. Actually, our contribution can be stated

as follows. First, on the modeling side, it includes the allowance of multiple modes per

task, not only linked to the number of workers but also to their skill. Furthermore, it

uses general temporal constraints, including some that are not commonly addressed

for neither the TCSP nor the RCPSP. Moreover, we have developed two MILP event-

based formulations that provide us with an exact MILP formulation for the TCSP.

Finally, we are currently working on the use of constraint programming to solve the

problem, in order to be able to compare the performance of both types of paradigms

and, ultimately, to hybridize them.

2 Problem Statement

Aeronautical assembly lines consist of a series of platforms where different works are

executed. Each product has to go through all the platforms. At the same time, the line

is synchronized, which means that the time that each product remains on a platform is

always the same and equal to the rate at which the assembly line produces its output.

Each platform has a fixed makespan and a number of tasks to be performed. The

scheduling decision consists on establishing the order in which the tasks will be done

along with the resources allocated to each of them, given the line takt time (pace of

production) and a set of workers per platform.

In accordance with the classification α |β | γ introduced by Brucker et al. [2], the

scheduling of the tasks from an aeronautical platform is denoted by:

MPSm, σ, ρ | temp |
∑

ck max rkt, with:

– α = MPSm, σ, ρ. Each activity can be processed in several alternative modes and

there exists a set of renewable resources available for each time period during the

project execution: the number of operators (each of them belonging to a profile) and

the space in each of the platform’s working areas. Also, each mode for an activity

defines a combination of operator profile, number of operators and durations. All

the operators assigned to an activity must be from the same profile and the range

of possible numbers of allocated operators per task is independent of the chosen

profile.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 810 -

– β = temp. There are precedence constraints (task w′ cannot start until task w has

been completed), non-parallel (also called disjunctive) constraints (tasks w and

w′ cannot be in progress at the same time, but there is no predefined precedence

relation between them), and maximal time lags between tasks (task w′ must start

within a maximal time after w has been completed). All the temporal constraints

are independent from the mode in which a task is executed.

– γ =
∑

ck max rkt. The objective function is to minimize the resource investment,

which is in this case equivalent to the minimization of the labor cost of the assembly,

as the operators once assigned to a platform stay working on it for all the takt time.

3 Solving Techniques: Two MILP Formulations and CP

Different MILP formulations have been proposed to solve the RCPSP. The first ones

were Discrete time formulations, proposed by Pritsker et al. [14]. Afterwards, Contin-

uous time formulations were proposed by Alvarez-Valdés and Tamarit (Forbidden sets

formulations, [15]) and Artigues et al. (Flow-based continuous time formulations, [16]).

More recently, Event-based formulations were developed by Koné et al. in 2011 [8] from

a model introduced by Zapata et al. [17]. They provided different methods (including

MILP exact methods and a heuristic) and concluded that event-based formulations

outperformed the previous MILP models and performed even better than the heuristic

for some highly cumulative instances, as it is our case.

However, Koné et al.’s event-based formulations are suitable for the standard

RCPSP, which includes some assumptions that are too restrictive for many appli-

cations [5], including ours. Extension of previously existing event-based models to our

problem is not straightforward. The main variables xwe, ywe and zwe (related to start,

finish, or in-process for activity w at event e, respectively) have been modified with

two new sub-indices in order to deal with the multiple modes per task. As well as this,

the original formulations included only general precedence constraints. Thus, new con-

straints and variables have been added in order to take into account the maximal time

lags and non-parallel constraints. Finally, the objective function has been modified to

tackle with the time constraint approach.

For the performance analysis, we have created a new set of instances of up to

11 tasks each, due to the uncommon structure of the problem with respect to the

previous existing instance libraries. Throughout the computational results we have

solved the instances up to optimality with both event-based formulations and compared

the performance of each of them. The results of these comparisons are consistent with

the ones reported by Koné et al. for the single mode RCPSP with only precedence

constraints [8]: one of the formulations (so-called On/Off) outperforms the other on

most of the instances. Finally, we have identified the number of events as one of the

major factors that have an impact on the instance hardness (see Figure 1).

Our next step is to improve these results by incorporating alternative approaches

in our method. In particular, Constraint Programming (CP) has been proven to be an

efficient method on several combinatorial optimization problems, especially scheduling

problems. Therefore, our current works are on the proposition of a global scheduling

constraint, and associated filtering techniques, to solve the RCPSP under study. CP

solution scheme encompasses also constraint propagation techniques that can be used

as pre-processing to calculate the relevant number of events; this issue would lead

to major performance improvements. A promising research direction is to propose a

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 811 -

6 7 8 9 10 11 12 13
0

40
0

80
0

12
00

Nb_Events

S
ol

ut
io

n_
tim

e

Set1−8−11.5
Set1−8−15
Set2−8−31.5
Set2−8−33
Set2−8−34.75
Set3−8−14
Set4−8−13

Fig. 1 Solution time of event-based formulations vs. number of events

hybrigd MILP/CP large neighborhood search heuristic, as the one proposed for the

MISTA challenge 2013 on the multi-mode RCPSP [18].

References

1. W. Herroelen, B. D. Reyck, E. Demeulemeester, Resource-constrained project scheduling:
A survey of recent developments, Computers & Operations Research 25 (4) (1998) 279 –
302.

2. P. Brucker, A. Drexl, R. Möhring, K. Neumann, E. Pesch, Resource-constrained project
scheduling: Notation, classification, models, and methods, European Journal of Opera-
tional Research 112 (1) (1999) 3 – 41.

3. P. Brucker, S. Knust, Complex Scheduling, GOR-Publications, Springer, 2011.
4. C. Artigues, S. Demassey, E. Néron, Resource-Constrained Project Scheduling: Models,

Algorithms, Extensions and Applications, Wiley, 2010. doi:10.1002/9780470611227.
5. S. Hartmann, D. Briskorn, A survey of variants and extensions of the resource-constrained

project scheduling problem, European Journal of Operational Research 207 (1) (2010) 1
– 14.

6. H. Wang, T. Li, D. Lin, Efficient genetic algorithm for resource-constrained project
scheduling problem, Transactions of Tianjin University 16 (5) (2010) 376–382.

7. N. Nouri, S. Krichen, T. Ladhari, P. Fatimah, A discrete artificial bee colony algo-
rithm for resource-constrained project scheduling problem, in: 5th International Con-
ference on Modeling, Simulation and Applied Optimization (ICMSAO), 2013, pp. 1–6.
doi:10.1109/ICMSAO.2013.6552557.

8. O. Koné, C. Artigues, P. Lopez, M. Mongeau, Event-based MILP models for resource-
constrained project scheduling problems, Computers & Operations Research 38 (1) (2011)
3 – 13.

9. N. M. Najid, M. Arroub, An efficient algorithm for the multi-mode resource constrained
project scheduling problem with resource flexibility, International Journal of Mathematics
in Operational Research 2 (2010) 748–761.

10. R. H. Möhring, Minimizing costs of resource requirements in project networks subject to
a fixed completion time, Operations Research 32 (1) (1984) pp. 89–120.

11. T. A. Guldemond, J. L. Hurink, J. J. Paulus, J. M. J. Schutten, Time-constrained project
scheduling, J. Scheduling 11 (2008) 137–148.

12. J. L. Hurink, A. L. Kok, J. J. Paulus, J. M. J. Schutten, Time-constrained project schedul-
ing with adjacent resources, Computers & Operations Research 38 (1) (2011) 310 – 319.

13. U. Dorndorf, E. Pesch, T. Phan-Huy, A time-oriented branch-and-bound
algorithm for resource-constrained project scheduling with generalised
precedence constraints, Management Science 46 (10) (2000) 1365–1384.
arXiv:http://pubsonline.informs.org/doi/pdf/10.1287/mnsc.46.10.1365.12272,

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 812 -

doi:10.1287/mnsc.46.10.1365.12272.
URL http://pubsonline.informs.org/doi/abs/10.1287/mnsc.46.10.1365.12272

14. A. A. B. Pritsker, L. J. Watters, P. M. Wolfe, Multiproject scheduling with limited re-
sources: A zero-one programming approach, Management Science 16 (1) (1969) pp. 93–108.

15. R. Alvarez-Valdes, J. M. Tamarit, The project scheduling polyhedron: Dimension, facets
and lifting theorems, European Journal of Operational Research 67 (1993) 204–220.

16. C. Artigues, P. Michelon, S. Reusser, Insertion techniques for static and dynamic resource-
constrained project scheduling, European Journal of Operational Research 149 (2) (2003)
249 – 267.

17. J. C. Zapata, B. M. Hodge, G. V. Reklaitis, The multimode resource constrained multi-
project scheduling problem: alternative formulations, AIChE Journal 54(8) (2008) 2101 –
19.

18. C. Artigues, E. Hébrard, MIP relaxation and large neighborhood search for a multi-mode
resource-constrained multi-project scheduling problem, in: 6 th Multidisciplinary Inter-
national Conference on Scheduling: Theory and Applications (MISTA), Ghent, Belgium,
2013, pp. 814–819.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 813 -

MISTA 2015

Multiprocessor Scheduling with Inserted Idle Time to
Minimize the Maximum Lateness

N.S. Grigoreva

1 Introduction

The problem of minimizing the maximum lateness while scheduling tasks to parallel

identical processors is a classical combinatorial optimization problem. Following the

3-field classification scheme proposed by Graham et al. [1], this problem is denoted by

P |rj |Lmax. This problem relates to the scheduling problem [2], it has many applica-

tions, and it is NP -hard [3]. A lot of research in scheduling has concentrated on the

construction of nondelay schedule. A nondelay schedule has been defined by Baker[4]

as a feasible schedule in which no processor is kept idle at a time when it could begin

processing a task. An inserted idle time schedule (IIT) has been defined by J.Kanet

and V.Sridharam [5] as a feasible schedule in which a processor is kept idle at a time

when it could begin processing a task. J.Kanet and V.Sridharam [5] reviewed the lit-

erature with problem setting where IIT scheduling may be required. Most of papers

considered problem with single processor. In [6] we considered scheduling with inserted

idle time for m parallel identical processors and proposed branch and bound algorithm

for multiprocessor scheduling problem with precedence-constrained tasks. The goal of

this paper is to propose IIT schedule for P |rj |Lmax problem. We propose an approxi-

mate IIT algorithm named EDD/IIT (earliest due date/ inserted idle time) and branch

and bound algorithm, which produces a feasible IIT(inserted idle time) schedule for

a fixed maximum lateness L. The algorithm may be used in a binary search mode to

find the smallest maximum lateness. A new method for evaluating partial solutions,

selecting the next task and new ways of reducing the exhaustive search was designed.

To illustrate the effectiveness of this approach we tested it on randomly generated set

of tasks.

We consider a system of tasks U = {u1u2, . . . , un}. Each task is characterized by its

execution time t(ui), its release time d(ui) and its due dates D(ui). Release time d(ui)

- the time at which the task is ready for processing and due dates D(ui) specifies the

time limit by which should be completed. Set of tasks is performed on parallel identical

processors. Any task can run on any processor and each processor can perform no more

than one task at a time. Task preemption is not allowed.

N.S. Grigoreva
Department of Mathematics and Mechanics, St.Petersburg State University, Russia
E-mail: n.s.grig@gmail.com

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 814 -

A schedule for a task set U is the mapping of each task ui ∈ U to a start time

τ(ui) and a processor num(ui). Maximum lateness of schedule S is the quantity

Lmax = max{τ(ui) + t(ui)−D(ui)|ui ∈ U}.

First, we propose an approximate IIT algorithm named EDD/IIT (earliest due

date/ inserted idle time). Then by combining the EDD/IIT algorithm and B&B

method this paper presents BB/IIT algorithm which can find optimal solutions for

multiprocessor scheduling problem.

2 Approximate algorithm EDD/IIT

For each task ui, we know the earliest starting time r(ui) and the latest start time

vmax(ui) = D(ui)− t(ui), which is a priority of task. Let k tasks have been put in the

schedule and partial schedule Sk have been constructed.

Let be timek[i] the time of the termination of the processor i after completion all

its tasks. The approximate schedule is constructed by EDD/IIT algorithm as follows:

1. Determine the processor l0 such as tmin(l0) = min{timek[i]|i ∈ 1..m}.
2. Select the task u0, such as vmax(u0) = min{vmax(ui)|ui /∈ Sk}.
3. If idle(u0) = r(u0) − tmin(l0) > 0 then choose a task u∗ /∈ Sk, which can be

executed during the idle time of the processor l0 without increasing the start time

of the task u0, namely vmax(u
∗) = min{vmax(ui)|r(ui) + t(ui) ≤ r(u0), ui /∈ Sk}.

4. If the task u∗ is found, then we assign to the processor l0 the task u∗, otherwise
the task u0.

3 Branch and bound method for constructing a feasible schedule

The branch and bound algorithm produces a feasible IIT(inserted idle time) sched-

ule for a fixed maximum lateness L. In order to optimize over L we must iterate

the scheduling process over possible values of L. We recalculate due dates D(ui) as

D∗(ui) = D(ui) + L, makespan TS = max{D∗(ui)|ui ∈ N} and the latest start times

vmax(ui) = D∗(ui)− t(ui).

In order to describe the branch and bound method, it is necessary to determine the

set of tasks that we need to add to a partial solution, the order in which task will be

chosen from this set and the rules that will be used for eliminating partial solutions.

Let I be the total idle time of processors in the feasible schedule S of length TS
for m processors, then I = m · TS −

∑n
i=1 t(ui). For a partial solution σk we know

idle(ui)— idle time of processor before start the task ui.

At each level k will be allocated a set of tasks Uk, which we call the the ready tasks.

These are tasks that need to add to a partial solution σk−1, so check all the possible

continuation of the partial solutions.

Definition 1 Task u /∈ σk is called the ready task at the level k, if r(u) satisfies the

inequality r(u)− tmin(k) ≤ I −
∑k

i=1 idle(ui).

The main way of reducing of the exhaustive search will be the earliest possible

identification unfeasible solutions.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 815 -

Definition 2 Let the task ucr /∈ σk is such as vmax(ucr) = min{vmax(u)|u /∈ σk}.
The task ucr /∈ σk is called the delayed task for σk, if vmax(ucr) < tmin(k).

Obviously if delayed task ucr for a partial solution σk exists, then a partial solution σk
is unfeasible. Below we formulated the rules, which allow deleting a lot of unfeasible

partial solutions.

Lemma 1 Let delayed task ucr for a partial solution σk = σk−1 ∪ uk exists, then

1. for any task u, such as max{tmin(k−1), r(u)}+t(u) > vmax(ucr) a partial solution

σk−1 ∪ u is unfeasible;

2. if tmin(k − 1) + t(ucr) > vmax(uk), then the partial solution σk−1 is unfeasible.

Another method for determining unfeasible partial solutions bases on a comparison

of resource requirements of tasks and total processing power. In this case, we propose to

modify the algorithm for determining the interval of concentration [7] for the complete

schedule and to apply this algorithm to a partial schedule σk.

4 Computation results and Conclusions

To test the approximate EDD/IIT algorithm and BB/IIT algorithm, we conducted

computational experiment. The quality of the solutions we estimated average ratio of

the solution value over the lower bound of the maximum lateness LB. To illustrate

the effectiveness of our algorithms we tested random generated problems of up to 200

tasks. We solved these problems with time limit of 60 seconds.

The solution generated with EDD/IIT are on average only 8,1 percent away from

the optimal value and this deviation is never more than 11 %. We compared different

rules of deleting infeasible partial solutions and received that condition of lemma 1

allows deleting about 43 percent unfeasible solutions. Optimal solutions were obtained

for 63% of the cases tested by BB/IIT . The average percentage deviation from lower

bound varies between 0.5 and 6.1 %.

In this work, we proposed a new branch and bound method for solving the mul-

tiprocessor scheduling problem of maximum lateness minimization. We also presented

a new approximate IIT (inserted idle time) algorithm. We found that the problem

could be solved within reasonable time for moderate-size systems. Results of our ex-

periment indicated that BB/IIT consistently produces high-quality solutions on the

larger randomly generated set tasks.

References

1. J. R.L.Graham, E.L.Lawner and R. Kan. Optimization and approximation in deterministic
sequencing and scheduling: A survey, Ann. of Disc. Math. 5 (10), pp. 287-326, (1979).

2. P. Brucker. Scheduling Algorithms, (1997).
3. J. Ullman. NP-complete scheduling problems J. Comp. Sys. Sci. 171, pp.394-394, (1975).
4. K.R.Baker. Introduction to Sequencing. John Wiley & Son, New York(1974).
5. J. Kanet and V. Sridharan. Scheduling with inserted idle time:problem taxonomy and lit-

erature review, Oper.Res 48 (1), pp.99-110, (2000).
6. N.S.Grigoreva. Branch and bound method for scheduling precedence constrained tasks on

parallel identical processors, in Lecture Notes in Engineering and Computer Science: Proc.
of The World Congress on Engineering 2014, WCE 2014, 2-4 July, 2014 , London, U.K.,
pp. 832–836.

7. E.Fernandez and B.Bussell. Bounds the number of processor and time for multiprocessor
optimal schedules, IEEE Tran. on Comp. 4 (11), pp. 745-751 (1973).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 816 -

Raphael Herding
University of Hagen
E-mail: Raphael.Herding@fernuni-hagen.de

Lars Mönch
University of Hagen
E-mail: Lars.Moench@fernuni-hagen.de

MISTA 2015

Using Adaptive Large Neighborhood Search to Solve Parallel Machine
Scheduling Problems with Dedications and Unequal Ready Times of the
Jobs

Raphael Herding • Lars Mönch

1 Introduction and Problem Setting

Scheduling problems for parallel machines are important building blocks for flexible flow shop
and job shop scheduling problems when decomposition techniques are applied. Applications of
such scheduling problems can be found in wafer fabs that can be modeled as complex job
shops with many machine groups [4]. A machine group can contain up to 60 machines in
parallel. Each job can often be processed only on a subset of these machines due to quality
reasons, i.e., we have machine dedications. We discuss a scheduling problem for identical
parallel machines with unequal ready times of the jobs and machine dedications. The perfor-
mance measure is the total weighted tardiness (TWT). It is the summation of the weighted
tardiness jjTw over all jobs n,,j 1 , where 0max: ,dCT jjj . Here, jw is the weight
of job j , jC is the completion time, jp the processing time, and jd the due date. Using the

 || notation, the researched problem can be represented as follows:
 TWTr,MP jj || , (1)

where P refers to identical parallel machines and jr is the ready time of job j . The notation

jM indicates that job j can be processed only on a subset of all machines m,,1 . Problem
(1) is NP-hard since it contains the NP-hard problem TWT||1 as a special case. In the present
paper, we compare adaptive large neighborhood search (ALNS) with a list scheduling heuristic
based on the Apparent Tardiness Cost (ATC) dispatching rule and with a genetic algorithm
(GA) that incorporates problem-specific dominance rules. LNS approaches are among the best
performing heuristics for vehicle routing problems (VRPs) [7]. Similar to VRPs, parallel
machine scheduling problems are partition problems. Therefore, we expect an excellent
performance of ALNS. There are only a few papers that deal with LNS approaches in machine
scheduling. The papers [5,9] study flexible job shop problems, while parallel machine
scheduling problems are considered in [1,8]. However, the objectives and constraints in these
papers are different from the ones used in problem (1).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 817 -

2 Genetic Algorithm and a Simple Reference Heuristic

The GA uses a job-based representation that assigns one of the machines from the set jM to
each job j . The resulting single machine scheduling problems have to be solved in order to
compute the fitness of a chromosome. Therefore, we apply the Combined Priority Rule for
Total Weighted Tardiness (CPRTWT) together with heuristics based on dominance properties
that improve the sequence of jobs on each single machine as described in [2].

It is well known that the ATC rule provides high-quality solutions for scheduling problems
with TWT objective. Whenever a machine becomes available the next job is selected
according to the ATC index

p
t,rpd

exp
p
w

tI jjj

j

j
j

max
: , (2)

from the set of jobs that are not already scheduled where is a look-ahead parameter, and p
is the average processing time of the jobs to be scheduled. The quantity t refers to the point of
time when the decision is made. The performance of the ATC rule strongly depends on the
choice of . Therefore, we select from the grid 50110 ,,k,k. .

3 ALNS and LNS Approaches
The ALNS framework is proposed in [6,7]. A set of destroy and repair methods compete in
each iteration to improve the current solution. We use the following destroy methods to tailor
ALNS to problem (1):
1. Random destroy k,xrd : k jobs are randomly removed from a feasible schedule x .
2. Worst destroy k,xwd : Starting from a feasible schedule x , each job is considered.

The TWT value of the schedule with and without the corresponding job is compared. The
job that leads to the largest TWT reduction is marked for removal. This procedure is
repeated nk times for all unmarked jobs. The k marked jobs are removed from x .

3. Cluster destroy 21 q,q,xcd : Starting from a feasible schedule x , the jobs that are at
the positions 21 qpq on the machines are removed. This method is based on the
intuition that jobs that are clustered based on their positions are exchangeable without a
major TWT increase because their ready times are similar.

The following repair methods are applied:
1. Dispatching rule-based repair S,d,x~drr : The Scardk : jobs of the set S to be

inserted into the partial schedule x~ are sequenced according to the dispatching rule d .
Then the job of S with the largest priority index is inserted at a feasible position in x~
that leads to the smallest increase in TWT, while respecting the machine dedication.
This procedure is repeated until all the k jobs are inserted. We use the ATC, WSPT,
EDD, and COVERT dispatching rule as sequencing rules.

2. Random repair ,S,x~rr : One of the Scardk : jobs of the set S to be inserted
into the partial schedule x~ is randomly chosen and inserted into the schedule at a
randomly selected position taking into account the machine dedications. This step is
repeated k times. The entire procedure is independently repeated times. The best
solution is chosen.

3. Position-based repair S,x~pr : We start by choosing Scardk : positions on the
machines. The machines are sorted in non-increasing order of the number of selected
positions on them. Starting from the last position on the first machine of the sorted list,
all jobs from S that can be processed on this machine will be tested for the TWT

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 818 -

increase caused by inserting the job at the corresponding position. The job with the
smallest TWT increase will be inserted in x~ . This procedure is repeated until all
positions are covered. When jobs from S cannot be inserted at open positions due to
machine dedications then these remaining jobs will be inserted using random repair.

The random destroy method removes around on third of all jobs, while the worst destroy me-
thod removes only one fifth of all jobs. The cluster destroy removes the last fourth of the jobs
on each machine. A weight is assigned to each destroy and repair method. It controls how
often a method is attempted during the search. These weights are used by a roulette wheel
method to choose destroy and repair methods for each single iteration. We consider also a LNS
approach for comparison reasons. The LNS scheme applies random destroy and ATC-based
repair.

4 Computational Results
We generate problem instances with machine dedications according to a design similar to the
one in [3]. We consider a first set of 27 small-size instances with two machines and ten jobs
where we know the optimal TWT values from complete enumeration. It turns out that GA,
LNS, and ALNS are all able to find optimal solutions when 5 minutes of computing time per
problem instance are available. ALNS is the quickest algorithm that needs only 30 seconds per
problem instance to determine optimal solutions. A second set of 162 medium- and large-size
problem instances with up to 90 jobs on up to six machines is used to assess the performance
of the different heuristics. The corresponding computational results depending on the available
computing time per problem instance can be found in Table 1. We show the TWT values of the
corresponding metaheuristic relative to the TWT values obtained by list scheduling using the
ATC dispatching rule.

Table 1: Computational Results for Problem (1)

Time 1 min 2 min 5 min
Compare ALNS LNS GA ALNS LNS GA ALNS LNS GA

m
3 0.319 0.351 0.597 0.314 0.344 0.572 0.310 0.338 0.554
6 0.507 0.530 0.655 0.499 0.521 0.610 0.492 0.513 0.589
n
30 0.605 0.605 0.728 0.605 0.605 0.728 0.604 0.604 0.728
60 0.365 0.384 0.581 0.362 0.379 0.562 0.359 0.375 0.561
90 0.340 0.380 0.611 0.332 0.370 0.569 0.326 0.361 0.537

0.25 0.404 0.414 0.646 0.401 0.410 0.612 0.395 0.407 0.591
0.50 0.333 0.365 0.582 0.323 0.356 0.557 0.321 0.350 0.539
0.75 0.368 0.464 0.575 0.361 0.445 0.539 0.357 0.427 0.530

0.25 0.411 0.435 0.652 0.406 0.427 0.627 0.402 0.424 0.601
0.50 0.328 0.365 0.573 0.319 0.359 0.533 0.314 0.347 0.525
1.00 0.289 0.325 0.471 0.281 0.312 0.428 0.278 0.301 0.419

We can see from Table 1 that the GA is outperformed by LNS, while ALNS provides better
solutions than LNS. The advantage of ALNS over the two other metaheuristics can be
observed even for the smallest amount of computing time. The GA as a population-based
approach clearly needs more computing time, but it is not competitive with the remaining
metaheuristics even for a computing time of five minutes per problem instance. A small
number of machines, a large number of jobs, moderate-spread ready times indicated by

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 819 -

moderate values of , and wide due dates represented by large values of lead to the largest
TWT improvements compared to list scheduling.

In future work, we are interested in carrying out more detailed computational experiments
and in designing mixed integer programming-based repair methods.

References

1. Gacias, B, Artigues, C., Lopez, P. Parallel machine scheduling with precedence
constraints and setup times. Computers & Operations Research, 37(12) 2141–2151
(2010)

2. Jouglet, A., Savourey, D., Carlier, J., Baptiste, P. Dominance-based heuristics for one-
machine total cost scheduling problems. European Journal of Operational Research, 184,
879-899 (2008).

3. Mönch L., Balasubramanian, H., Fowler, J., Pfund, M., Heuristic scheduling of jobs on
parallel batch machines with incompatible job families and unequal ready times.
Computers & Operations Research, 32(11), 2731-2750 (2005)

4. Mönch, L., Fowler, J. W., Dauzère-Pérès, S., Mason, S. J., Rose, O. Scheduling
semiconductor manufacturing operations: problems, solution techniques, and future
challenges. Journal of Scheduling, 14(6), 583-595 (2011)

5. Pacino, D., Van Hentenryck, P. Large neighborhood search and adaptive randomized
decompositions for flexible job shop scheduling. Proceedings of the Twenty-second
International Conference on Artificial Intelligence, 1999-2003 (2011)

6. Pisinger, D., Ropke, S. Large neighborhood search. Handbook of Metaheuristics,
Springer, Gendreau, M., Potvin, J.-Y. (eds.), 399-420 (2010)

7. Ropke, S., Pisinger, D. A general heuristic for vehicle routing problems. Computers &
Operations Research, 34(8), 2403-2435 (2007)

8. Wang, P., Reinelt, G., Tan, Y. Self-adaptive large neighborhood search algorithm for
parallel machine scheduling. Journal of Systems Engineering and Electronics, 23(2), 208-
2015 (2012)

9. Yuan, Y., Xu, H. An integrated search heuristic for large-scale flexible job shop
scheduling problems. Computers & Operations Research, 40(12), 2864-2877 (2013)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 820 -

MISTA 2015

On Task Scheduling Policies for Work-Stealing Schedulers

Steven Adriaensen · Yasmin Fathy · Ann Nowé

1 Background

Parallel computing architectures are becoming more and more mainstream. To take

advantage of their parallel processing capabilities, a computation must be divided in a

set of interdependent tasks that can be executed in parallel [7]. Such computation can

be represented by a Directed Acyclic Graph (DAG), where vertices are the instructions

and edges represent execution order dependencies. Instructions that do not depend

on each other can be executed in parallel. In this article we consider the fork-join

model of computation. Here, fork instructions generate a new (sub)task that can be

processed independently (out-degree of 2). Join instructions cause a task to wait for the

completion of another (in-degree of 2). All other instructions have an in/out-degree of

at most 1 and make up the task. Typically a computation can be divided in many more

tasks than there are processing units. This gives rise to the task scheduling problem:

Which tasks are to be executed by which processor, and in which order?

Work-stealing [2] is a state-of-the-art dynamic, distributed scheduling algorithm.

Here, each worker maintains its own local work-pool. One of the workers starts pro-

cessing the root task. When a fork is encountered, it places one of the tasks in its pool

and continues to process the other. If a task stalls (join) or is completed (out-degree

0) the worker will start working on another task from its own pool, or, if it is empty, it

will steal work from another worker’s pool. Many work-stealing implementations exist

[1,5,4], ranging from libraries to runtimes of parallel programming languages. These

systems make different design decisions that impact their performance in subtle ways,

causing them to perform well in some settings, and poorly in others.

Steven Adriaensen
Vrije Universiteit Brussel
E-mail: steven.adriaensen@vub.ac.be

Yasmin Fathy
University of Surrey
E-mail: Y.Fathy@surrey.ac.uk

Ann Nowé
Vrije Universiteit Brussel
E-mail: ann.nowe@vub.ac.be

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 821 -

In this abstract we’ll discuss one of these design decisions, i.e. the scheduling policy

used. In Section 2 we discuss the choice of scheduling policy, in particular the impact of

the structure of computation thereon. Section 3 describes an existing adaptive schedul-

ing policy and its weaknesses. Finally, Section 4 reports our ongoing research attempts

towards more general scheduling policies.

2 Choice of Scheduling Policy

When executing a fork the system is faced with a choice, i.e. continue the current or

execute the spawned task? The choice a system makes is determined by its schedul-

ing policy. Here, most systems either always continue the current (help-first [5]) or

always execute the spawned task (work-first [1]), i.e. use a pure policy.1 Some systems

implement a mixed policy known as SLAW [4] (see Section 3).

Using help-first, a fork is implemented as a call to the scheduler, which creates

and stores an object for the spawned task in the work-pool. Using work-first, a fork

is implemented as an ordinary function call, which only returns after the subtask

is completed. To steal a continuation, the thief modifies the runtime stack (which

holds the continuation) of its victim. Using help-first, steals are more efficient, but

the overhead is higher than using work-first. Usually only a fraction of the tasks is

stolen and therefore work-first implementations tend to be more efficient on average.

Furthermore, minimizing overhead is essential to allow fine task granularity [1]. Work-

first also has desirable theoretical properties: Let S1 be the space required by a serial

execution, then a parallel execution on P processors using work-first requires at most

S1P space, which is existentially optimal to within a constant factor [2].

One might wonder, if work-first is more efficient on average and has attractive the-

oretical properties, why do (the majority of the) systems use help-first? An important

reason is that it is easier to implement as a library (without compiler support). Also

in some systems ordinary function calls are expensive [6]. In addition, using work-first,

recursive forks can cause the runtime stack to overflow and for particular computation

structures it fails to distribute work efficiently if the residual parallelism2 R is low [3].

Consider the extreme, yet common, example of an iterative parallel loop which forks P

sequential body computations (R ≈ 1). To exploit the parallelism of this computation,

each worker should process a single body. Using help-first, the first worker executes

the loop task, generating P body tasks and each worker steals one of them in parallel.

Using work-first, the first worker starts processing the first body and the loop task

is handed from worker to worker sequentially. Here, help-first clearly distributes work

more efficiently. Also, as mentioned before, help-first induces a lower cost on stealing.

It is therefore tempting to conclude that help-first performs better when R is low,

while work-first performs better when R is high (as in [3]). However, we’ll argue this

not to be true in general. Consider a recursive parallel loop, reversing the argumenta-

tion above, work-first will distribute the body tasks much more quickly than help-first.

In general, you can mirror any fork-join computation where help-first generates work

more quickly3 than work-first. Rather, if R is low and peer workers are idle, we want

to execute the sub-computation with the highest parallelism first.

1 In literature, the help/work-first policies are also known as child/continuation-stealing.
2 R = T1

P∗T∞
, where Tn is the minimal execution time on n processors

3 The same holds for memory consumption

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 822 -

3 SLAW

As discussed in previous section, what scheduling policy performs best depends on

factors unknown before execution. SLAW is to date, the only policy that dynamically

adapts its scheduling policy to avoid stack-overflows (help-first at threshold depth),

keep memory consumption within theoretical bounds (work-first when # active tasks

exceeds threshold) and efficiently distribute tasks. The latter is achieved by switching

policy periodically from help-first to work-first if the number of times the worker was

victimized (stolen from) is smaller than the number of tasks generated during last

period (i.e. enough work is available). Here, [4] makes the overgeneralizing assump-

tion that work-first is more time/memory efficient and help-first generates work more

quickly. When this assumption does not hold, SLAW can be shown to perform poorly,

consistently making the wrong choice. Another downside of SLAW is that the choice

of the period introduces a tradeoff between the increase in overhead due to frequent

policy switching on the one hand, and the adaptiveness of the system on the other.

4 Ongoing Research

We’re currently looking into alternative scheduling policies to overcome the weaknesses

of SLAW (see Section 3). One mixed policy that shows promise is Anti-Imitation (AI).

Using AI the first worker starts using a random pure policy, when stealing a task, the

stealer anti-imitates its victim, using the opposite policy. Independently of the random

choice of the initial worker, AI manages to distribute work quickly for a wider range of

computations than SLAW. Note that any (iterative or recursive) parallel loop task is

stolen at most once before generating all body tasks. As policy switching occurs only

when stealing a task, it doesn’t increase the overhead (unlike SLAW). AI, however, has

weaknesses of its own. When one of the pure policies is more time efficient, on average

half of the active workers will be using the slower policy (i.e. be slower). Also, memory

efficiency and potential stack-overflows are still concerns that need to be addressed.

Acknowledgements
Steven Adriaensen is funded by a Ph.D grant of the Research Foundation Flanders (FWO).

References

1. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou, Y.: Cilk:
An efficient multithreaded runtime system, vol. 30. ACM (1995)

2. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing.
Journal of the ACM (JACM) 46(5), 720–748 (1999)

3. Guo, Y., Barik, R., Raman, R., Sarkar, V.: Work-first and help-first scheduling policies
for async-finish task parallelism. In: Parallel & Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on, pp. 1–12. IEEE (2009)

4. Guo, Y., Zhao, J., Cave, V., Sarkar, V.: Slaw: A scalable locality-aware adaptive work-
stealing scheduler. In: Parallel & Distributed Processing (IPDPS), 2010 IEEE International
Symposium on, pp. 1–12. IEEE (2010)

5. Lea, D.: A java fork/join framework. In: Proceedings of the ACM 2000 conference on Java
Grande, pp. 36–43. ACM (2000)

6. Robison, A.: A primer on scheduling fork-join parallelism with work stealing. Tech. Rep.
ISO/IEC JTC 1/SC 22/WG 21, The C++ Standards Committee (2014)

7. Sutter, H.: The free lunch is over: A fundamental turn toward concurrency in software. Dr.
Dobbs journal 30(3), 202–210 (2005)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 823 -

Appendix

In this section we present and discuss some motivating, preliminary results. All re-

sults were obtained in simulation, using a cost model valided by using it to accurately

reproduce prior experiments (more specifically those in [3,4]).

Generalized Loop Benchmark

In this experiment we consider the Generalized Loop Benchmark (GLB), the pseudo-

code of which is given in Figure 1. This computation consists of 2 types of tasks:

Loop Task: Performs no work, but splits itself up into a Loop and Body task.

Body Task: Performs the actual work,4 but spawns no further tasks.

A parameter pleft determines the probability that the loop task is computed in the

current thread, rather than the spawned thread. For pleft values 0 and 1, GLB reduces

to a recursive and iterative parallel loop respectively. In our experiments the # body

tasks (n) is taken equal to the number of processing units (P = 64), such that R = 1.

While rather artificial, this benchmark was chosen as it clearly illustrates the prop-

erties of help and work-first w.r.t. work-distribution, discussed in Section 2.

procedure loop(i,n)
if i < n then

with probability pleft do
Fork body(i)
loop(i+1, n)

otherwise
Fork loop(i+1, n)
body(i)

Join
else

body(i)
end if

end procedure 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

P
left

S
pe

ed
up

Speedup on Generalized Loop Benchmark (64 way SMP)

work−first
help−first
SLAW
AI

Fig. 1 Code and results for the Generalized Loop Benchmark (GLB)

Observations

Figure 1 shows the Speedup T1
TP

obtained for GLB, on a 64 way SMP machine, averaged

over 1000 runs, using the work-first, help-first, SLAW and AI policies.

We observe that help-first outperforms work-first if and only if pleft > 0.5, which

corresponds exacty to the case where the expected parallelism of the current thread is

higher than that of the spawned thread. As R is low, SLAW will always use help-first

on this benchmark, failing to distribute work efficiently when pleft < 0.5. AI on the

other hand manages to distribute work reasonably efficiently for all pleft, with near

oracle performance for pleft → 0, 1. Its speedup w.r.t. SLAW ranges from 0.8 to 3.6.

4 In our experiments, as dummy work, a body task computes a single iteration of the suc-

cessive over-relaxation (SOR) benchmark on 1
P

th
of a 2000x2000 matrix.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 824 -

MISTA 2015

Flow Formulation-based Model for the Curriculum-based
Course Timetabling Problem

Niels-Christian Fink Bagger · Simon

Kristiansen · Matias Sørensen · Thomas R.

Stidsen

Abstract In this work we will present a new mixed integer programming formula-

tion for the curriculum-based course timetabling problem. We show that the model

contains an underlying network model by dividing the problem into two models and

then connecting the two models back into one model using a maximum flow problem.

This decreases the number of integer variables significantly and improves the perfor-

mance compared to the basic formulation. It also shows competitiveness with other

approaches based on mixed integer programming from the literature and improves the

currently best known lower bound on one data instance in the benchmark data set

from the second international timetabling competition.

1 Introduction

Each semester universities face the problem of generating high quality course timeta-

bles. A timetable determines when and where a course should take place. The problem

of focus in this work is the Curriculum-based Course Timetabling (CCT) Problem from

track 3 of the second international timetabling competition (ITC2007) as described by

Gaspero et al (2007), in which weekly lectures for multiple courses have to be sched-

uled and assigned to rooms. A week is divided into days and each day is divided into

time slots. A day and time slot combination is referred to as a period. The schedule

and room assignment must fulfil some specific hard constraints; all lectures must be

scheduled and in different periods, one teacher cannot give two lectures in the same

period and a room cannot accommodate two lectures in the same period. Furthermore

Niels-Christian Fink Bagger
Department of Management Engineering, Technical University of Denmark
E-mail: nbag@dtu.dk

Simon Kristiansen
Better Sports ApS

Matias Sørensen
MaCom A/S

Thomas R. Stidsen
Department of Management Engineering, Technical University of Denmark

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 825 -

some courses are grouped into curricula and for each curriculum the courses within

cannot be scheduled in the same periods.

Besides the hard constraints there are also soft constraints for which it is wanted to

minimize the violation of these. For every lecture it is wanted to be able to accommodate

a seat for each student attending. This is denoted as the RoomCapacity constraint and

when a lecture is scheduled in a room the number of students above the capacity is

the counted violation. Each course has a wish for the minimum number of days to

spread the lectures across. This is denoted as the MinimumWorkingDays constraint

and each day below this number in which lectures are not scheduled is counted as

one violation. It is wanted to schedule lectures from the same curriculum in adjacent

periods. Two periods are considered to be adjacent if they belong to the same day

and are in consecutive time slots. If a lecture from a curriculum is scheduled in a

period and no lecture from the same curriculum is scheduled in an adjacent period,

the lecture is denoted as being secluded. Every time there is a secluded lecture this

counts as one violation of the CurriculumCompactness constraint. Each course should

not be assigned to too many different rooms during the week. This is denoted as the

RoomStability constraint and every room except the first that the course is scheduled

in is counted as one violation.

The objective is to find a solution which fulfils all the hard constraints and min-

imizes a weighted sum of the violations of the soft constraints. The problem will be

solved using integer programming and the formulation of the model will be given in

Section 2.

2 Mixed Integer Programming Formulation

The problem has been considered using mixed integer programming models before in

the literature, see e.g. Burke et al (2010, 2012); Lach and Lübbecke (2012); Cacchiani

et al (2013); Hao and Benlic (2011). For an great survey refer to Bettinelli et al (2015).

A very common way to formulate the model is to use three-indexed binary variables.

Here we will give the formulation similar to the three-indexed formulations from Burke

et al (2012) and Lach and Lübbecke (2012). Let C be the set of courses, P be the

set of periods and R be the set of rooms. Furthermore there are days D, curricula Q,

lecturers L, the periods Pd ⊆ P that belongs to day d ∈ D, the courses Cq ⊆ C which

are part of curriculum q ∈ Q and the courses Cl ⊆ C which are all being taught by

lecturer l ∈ L. For each period p ∈ P we will denote the adjacent periods as p− 1 and

p+ 1 for the periods belonging to the same day as p in the time slot right before and

the time slot right after p respectively. When p corresponds to the first (last) time slot

on the day, then the period p− 1 (p+ 1) is undefined and we will define any variable

associated with it to always take the value zero.

Let Lc be the number of lectures to be scheduled for course c ∈ C, Cr be the

capacity of room r ∈ R, Sc be the number of students attending course c ∈ C and let

Fc,p be one if it is allowed to schedule a lecture from course c ∈ C in period p ∈ P
and zero otherwise. Lastly Mc is the minimum number of days that it is preferred to

schedule lectures for course c ∈ C in.

Let xc,p,r be a binary variable deciding whether to schedule a lecture from course

c ∈ C in period p ∈ P and room r ∈ R or not. tc,d is a non-negative variable taking value

1 if course c ∈ C has at least one lecture at day d ∈ D, and 0 otherwise. wc is a non-

negative variable denoting the number of days below the given minimum that course c ∈

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 826 -

C has lectures. zc,r is a non-negative variable taking value 1 if course c ∈ C is occupying

room r ∈ R at least once during the week, and 0 otherwise. κc is a non-negative variable

counting the number of times that course c ∈ C is changing room. sq,p is a non-negative

variable taking value 1 if curriculum q ∈ Q has a secluded lecture in period p ∈ P .

Let WRC , WCC , WWD and WRS be the weights of the constraints RoomCapacity,

CurriculumCompactness, MinimumWorkingDays and RoomStability respectively. The

formulation is given in Model 1.

min WRC
∑

c∈C,p∈P,r∈R
(Sc − Cr)+ · xc,p,r +WCC

∑
q∈Q,p∈P

sq,p

+WWD
∑
c∈C

wc +WRS
∑
c∈C

pc (1a)

s. t.
∑

p∈P,r∈R
xc,p,r = Lc ∀c ∈ C (1b)

∑
r∈R

xc,p,r ≤ Fc,p ∀c ∈ C, p ∈ P (1c)

∑
c∈C

xc,p,r ≤ 1 ∀p ∈ P, r ∈ R (1d)

∑
c∈Cq,r∈R

xc,p,r ≤ 1 ∀q ∈ Q, p ∈ P (1e)

∑
c∈Cl,r∈R

xc,p,r ≤ 1 ∀l ∈ L, p ∈ P (1f)

tc,d −
∑

p∈Pd,r∈R
xc,p,r ≤ 0 ∀c ∈ C, d ∈ D (1g)

wc +
∑
d∈D

tc,d ≥Mc ∀c ∈ C (1h)

∑
p∈P

xc,p,r − Lc · zc,r ≤ 0 ∀c ∈ C, r ∈ R (1i)

∑
r∈R

zc,r − κc ≤ 1 ∀c ∈ C (1j)

∑
c∈Cq,r∈R

(xc,p,r − xc,p−1,r − xc,p+1,r) ≤ sq,p ∀q ∈ Q, p ∈ P (1k)

xc,p,r ∈ B ∀c ∈ C, p ∈ P, r ∈ R (1l)

zc,r ∈ B ∀c ∈ C, r ∈ R (1m)

0 ≤ tc,d ≤ 1 ∀c ∈ C, d ∈ D (1n)

wc ≥ 0 ∀c ∈ C (1o)

κc ≥ 0 ∀c ∈ C (1p)

sq,p ≥ 0 ∀q ∈ Q, p ∈ P (1q)

Model 1 A three-index formulation of the CCT problem.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 827 -

The objective function (1a) consists of the weighted sum of the soft constraint

violations and the weights are set according to Gaspero et al (2007):

WRC = 1 (1)

WCC = 2 (2)

WWD = 5 (3)

WRS = 1 (4)

The constraints (1b) ensures that all lectures of the courses are scheduled. Constraints

(1c) ensures that each lecture of a course is scheduled in different periods and only

in periods where the course is available. Constraints (1d) make sure that at most one

lecture is scheduled in a room in any period. (1e) and (1f) ensures that courses from the

same curriculum or taught by the same lecturer is not scheduled in the same periods.

The constraints (1g) and (1h) computes which days that the course have been scheduled

for lectures and by how much the minimum working days is violated. Constraints (1i)

and (1j) calculates which rooms the courses puts into use and how many different

rooms they are scheduled in. Lastly the constraints (1k) computes the periods where

the curricula have secluded lectures.

2.1 Maximum Flow-based Formulation

The mixed integer programming formulation that we will present here is inspired by the

formulation proposed by Lach and Lübbecke (2008, 2012) that consists of decomposing

the model into two stages; stage I which is assigning time slots to the courses and stage

II which is allocating rooms to the courses based on the assigned time slots from stage

I. Instead of solving the two stages separately as Lach and Lübbecke (2008, 2012) we

will combine the two stages into one model by using a flow network. This creates new

models with a much lower number of integer variables compared to Model 1 at the cost

of introducing three-indexed continuous variables. However due to the huge reduction

in integer variables (and non-zeros in the constraint matrix) we expect these flow-based

models to perform better than Model 1.

At first we will consider only assigning the courses to time slots, i.e. ignore the

existence of rooms. This will only account for the MinimumWorkingDays and the

CurriculumCompactness soft constraints. Let xc,t be a binary variable deciding whether

to assign course c ∈ C to time slot t ∈ T or not. tc,d, wc and sq,t are defined in the

same way as for Model 1. The formulation of assigning the courses to time slots is given

in Model 2. The description of the objective and constraints follows that of Model 1.

The next step is to consider the room assignment part of the problem. Let zc,r be

a binary variable taking value one if course c ∈ C is allowed to be scheduled in room

r ∈ R and zero otherwise. Let κc be a non-negative variable counting the number of

times that course c ∈ C is changing room and let the integer variable yc,r identify the

number of times that course c ∈ C is assigned to room r ∈ R. The formulation is given

in Model 3.

Constraints (3d) in Model 3 ensures that for some course c ∈ C and some room

r ∈ R, zc,r is set to one if yc,r > 0. Constraints (3c) ensures that the total number of

times that a course c ∈ C is occupying some rooms is equal to the number of lectures

to be taught.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 828 -

min WCC
∑

q∈Q,p∈P
sq,p +WWD

∑
c∈C

wc (2a)

s. t.
∑
p∈P

xc,p = Lc ∀c ∈ C (2b)

xc,p ≤ Fc,p ∀c ∈ C, p ∈ P (2c)∑
c∈Cq

xc,p ≤ 1 ∀q ∈ Q, p ∈ P (2d)

∑
c∈Cl

xc,p ≤ 1 ∀l ∈ L, p ∈ P (2e)

∑
c∈Cq

(xc,p − xc,p−1 − xc,p+1) ≤ sq,p ∀q ∈ Q, p ∈ P (2f)

tc,d −
∑
t∈Td

xc,t ≤ 0 ∀c ∈ C, d ∈ D (2g)

wc +
∑
d∈D

tc,d ≥Mc ∀c ∈ C (2h)

xc,p ∈ B ∀c ∈ C, p ∈ P (2i)

sq,p ≥ 0 ∀q ∈ Q, p ∈ P (2j)

0 ≤ tc,d ≤ 1 ∀c ∈ C, d ∈ D (2k)

wc ≥ 0 ∀c ∈ C (2l)

Model 2 The formulation for assigning only the time slots.

min WRC
∑

c∈C,r∈R
(Sc − Cr) yc,r +WRS

∑
c∈C

pc (3a)

s. t.
∑
r∈R

zc,r − pc ≤ 1 ∀c ∈ C (3b)

∑
r∈R

yc,r = Lc ∀c ∈ C (3c)

yc,r − Lc · zc,r ≤ 0 ∀c ∈ C, r ∈ R (3d)

yc,r ∈ N ∀c ∈ C, r ∈ R (3e)

zc,r ∈ B ∀c ∈ C, r ∈ R (3f)

pc ≥ 0 ∀c ∈ C (3g)

Model 3 The formulation ignoring the time aspects and considering only the room stability
and the room capacity violations.

If a solution x to Model 2 and a solution y to Model 3 is given then a new problem

emerges; is the combined solution feasible, i.e. is there a feasible mapping from the

assigned rooms in y to the assigned periods in x such that no room is occupied by two

courses in the same period and no course is teaching two lectures in the same period.

As a first attempt on the flow problem to use for the connection between Model 2 and

Model 3 it is tempting to create a graph mapping the course-room assignment y into

room-period pairs. For each course c ∈ C and each room r ∈ R create a node (c, r)

and for each room r ∈ R and period p ∈ P create a node (r, p). For each course c ∈ C,

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 829 -

room r ∈ R and period p ∈ P create an arc from (c, r) to (r, p). Create a source node

(u) and a sink node (v) and for each c ∈ C and r ∈ R create an arc from node (u) to

node (c, r) and for every r ∈ R and every p ∈ P create an arc from node (r, p) to node

(v).

The capacity on the arc (r, p) → (v) for some r ∈ R and some p ∈ P is one and

always going to be unchanged. The remaining capacities are set based to some solution

(x, y) for Model 2 and Model 3. For each course c ∈ C and room r ∈ R the capacity of

the arc (u)→ (c, r) is set to yc,r and for each c ∈ C, r ∈ R and p ∈ P the capacity of

the arc (c, r)→ (r, t) is set to xc,p. An example of the graph is illustrated in Fig. 1.

u

c2, r1

c1, r1

c1, r2

c2, r2

r1, p1

r1, p2

r2, p1

r2, p2

v

y c
1
,r
1

y c2,
r1

y
c
1 ,r

2

y
c
2 ,r

2

xc1,p1

x
c
1 ,p

2

x c
2
,p

1

xc2,p2

xc1,p1

x
c
1 ,p

2

x c
2
,p

1

xc2,p2

1

1

1

1

Fig. 1 Illustration of an attempt of the maximum flow graph of an instance with two courses,
two rooms and two periods.

For each c ∈ C, r ∈ R and p ∈ P the amount of flow on the arc (c, r)→ (r, p) in the

graph in Fig. 1 corresponds to the number of times course c is assigned to room r in

period p. Due to the capacities on the arcs at most one amount of flow can go through

a node corresponding to a room and period pair (r, p), i.e. at most one course can be

assigned to a room r ∈ R in period p ∈ P . If the maximum flow in this graph is equal

to the total sum of lectures of all courses then the solution (x, y) would be identified

as being feasible. However, this is not always true. As an example consider an instance

with three courses c1 with one lecture, c2 with two lectures and c3 with one lecture,

two periods p1 and p2, and two rooms r1 and r2. Consider a solution (x, y) assumed

to be feasible for Model 2 and Model 3 where course c1 has been assigned one lecture

to room r1 and assigned to period p1, course c2 has been assigned one lecture to room

r1 and one lecture to room r2 and has been assigned both period p1 and p2, course c3
has been assigned to room r2 and period p1. The example is illustrated in Fig. 2 where

only the arcs with positive capacities are illustrated.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 830 -

u

c2, r1

c1, r1

c2, r2

c3, r2

r1, p1

r1, p2

r2, p1

r2, p2

v

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 2 Illustration of an example of the graph from Fig. 1 with three courses (c1, c2 and c3),
two periods (p1 and p2) and two rooms (r1 and r2). The capacities on the arcs illustrates the
room assignments and the period assignments. This graph incorrectly deems the assignments
feasible.

In Fig. 2 it can be seen that to get all lectures assigned the flow on the arcs from (u)

must all equal the respective capacity. To get the flow out of node (c1, r1) it will have to

be send to node (r1, p1) and to get the flow out of node (c3, r2) it will have to be send

to node (r2, p1). This means that both of the rooms are occupied in period p1. Since

course c2 has two lectures and there are only two periods then clearly the assignment

is infeasible since the course cannot be assigned a room in period p1. However it is

possible to send all the flow through the graph. This is done by sending the flow that

comes into node (c2, r1) further on to node (r1, p2) and sending the flow from node

(c2, r2) to node (r2, p2). By this flow the course c2 has been assigned two lectures in

the same period in two different rooms which is an infeasible assignment for Model 1.

However, since the value of the maximum flow is equal to the total number of lectures

then this graph is incorrectly stating that the assignments are feasible. Therefore the

graph needs to be extended to only allow one unit of flow for each course-period pair.

For every room r ∈ R and period p ∈ P remove the arc (r, p)→ (v) and split the node

(r, p) into two nodes (r, p)1 and (r, p)2 and add an arc from (r, p)1 to (r, p)2 with a

capacity of one. For every course c ∈ C and period p ∈ P create a node (c, p), add

an arc to node (v) with a capacity of xc,p and then for every room r ∈ R add an arc

from node (r, p)2 to node (c, p) with capacity 1. The graph, denoted Gmf, is illustrated

in Fig. 3 where the nodes denoted (r, p)1 are to the left in the graph and the nodes

denoted (r, p)2 are to the right.

Let the following non-negative variables be defined:

fuc,r : The amount of flow on the arc (u)→ (c, r).

f1c,p,r : The amount of flow on the arc (c, r)→ (r, p)1.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 831 -

u

c2, r1

c1, r1

c1, r2

c2, r2

r1, p1

r1, p2

r2, p1

r2, p2

r1, p1

r2, p1

r1, p2

r2, p2

c1, p1

c2, p1

c1, p2

c2, p2

v

y c
1
,r
1

y c2,
r1

y
c
1 ,r

2

y
c
2 ,r

2

xc1,p1

41x
c
1 ,p

24
2

x c
2
,p
1

43
xc2,p2

44

xc1,p1

45

x
c
1 ,p

2

4
6

x c
2
,p
1

47

xc2,p2

48

1

1

1

1

1

41

14
3

1

47

1
45

1

42

14
4

1
46

1

48

x
c
2 ,p

1

x
c
1 ,p

1

xc1
,p2

x c
2
,p
2

Fig. 3 Illustration of the maximum flow graph of an instance with two courses, two rooms
and two periods.

fr,p : The amount of flow on the arc (r, p)1 → (r, p)2.

f2c,p,r : The amount of flow on the arc (r, p)2 → (c, p).

fvc,p : The amount of flow on the arc (c, p)→ (v).

For a course c ∈ C, room r ∈ R and period p ∈ P the variable f1c,p,r is indicating

whether course c has a lecture scheduled in period p and room r, but so is the variable

f2c,p,r. This means that, for the graph to be correct, if there exists an integer feasible

flow f where the total amount of flow is equal to
∑
c∈C Lc then there has to exist a

flow f ′ with the same total amount of flow (it is possible that f ′ is the same flow as f)

where f1c,p,r = f2c,p,r for every triple (c, p, r). This is illustrated in the graph by marking

the pair of arcs with the symbol ∆i. If two arcs have the same ∆i symbol then the flow

on these two arcs must be equal. This is not taken care of in the standard formulation

of the maximum flow problem, but this is not an issue by applying Proposition 1.

Proposition 1 Let the total amount of flow (the value) of f be denoted v(f) and

let A be the set of feasible period-room assignments. Consider the (possibly fractional)

maximum flow fmax in Gmf for a given period-room assignment pair (x, y). Then we

have the following:

v (fmax) ≥
∑
c∈C

Lc ⇐⇒ (x, y) ∈ A

To prove Proposition 1 we will first show that (x, y) ∈ A =⇒ v (fmax) ≥
∑
c∈C Lc.

Next we will show that v (fmax) ≥
∑
c∈C Lc =⇒ (x, y) ∈ A by using Proposition 2.

Proposition 2 Consider some period-room assignment pair (x, y) and let F
(
Gmf

)
denote all feasible integer flows in Gmf given this assignment. If there exists a flow

f ∈ F
(
Gmf

)
where v(f) ≥

∑
c∈C Lc then there exists a flow f ′ ∈ F

(
Gmf

)
where

v(f ′) = v(f) and f1c,p,r = f2c,p,r ∀c ∈ C, p ∈ P, r ∈ R

The proof of Proposition 2 is given in Appendix A.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 832 -

Proof (Proof of (x, y) ∈ A =⇒ v (fmax) ≥
∑
c∈C Lc from Proposition 1) Assume

that (x, y) ∈ A and consider some feasible solution for this assignment. Let the variable

fc,p,r take value one if course c ∈ C is assigned to period t ∈ T and room r ∈ R in the

considered solution. Since we are considering a feasible solution and it is based on the

assignment (x, y) then the following conditions must be met:∑
p∈P

fc,p,r = yc,r ∀c ∈ C, r ∈ R (5)

∑
c∈C

fc,p,r ≤ 1 ∀p ∈ P, r ∈ R (6)

∑
r∈R

fc,p,r = xc,p ∀c ∈ C, p ∈ P (7)

We will create a flow f ′ on the graph Gmf in the following way: Note that for each

course c ∈ C, period p ∈ P and room r ∈ R there is a unique path (u) → (c, r) →
(r, p)1 → (r, p)2 → (c, p) → (v) corresponding to the variable fc,p,r and if fc,p,r = 1

then we will send one unit of flow on this path, otherwise not. Since we are only

considering paths then the node balance constraints must all hold for this flow. Since∑
p∈P fc,p,r = yc,r for some course c ∈ C and room r ∈ R then the total flow on

the arc (u) → (c, r) is equal to yc,r which is the capacity on that arc so the capacity

cannot be exceeded. Since
∑
c∈C fc,p,r ≤ 1 for some room r ∈ R and period p ∈ P

then the total amount of flow on the arc (r, p)1 → (r, p)2 cannot exceed one which is

the capacity on that arc so the flow is also feasible for this arc. This also means that the

flow on the arc (r, p)2 → (c, p) cannot exceed one for some course c ∈ C, period p ∈ P
and room r ∈ R which is the capacity on this arc. Lastly since

∑
r∈R fc,p,r = xc,p

for some c ∈ C and p ∈ P then the total flow going through the arc (c, p) → (v)

must be equal to xc,p which is the capacity on that arc. Furthermore this also means

that the flow on the arc (c, r) → (r, p)1 can at most be xc,p which is the capacity on

that arc. This concludes that the flow we created must be a feasible flow for Gmf with

respect to (x, y). Since
∑
r∈R fc,p,r = xc,p for every course c ∈ C and period p ∈ P

and
∑
p∈P xc,p = Lc then

∑
c∈C,p∈P,r∈R fc,p,r =

∑
c Lc and since each fc,p,r variable

corresponds to a path then the total amount of flow v(f ′) must be equal to
∑
c∈C Lc.

Since f ′ is a feasible flow then the maximum flow f must have at least the same total

amount of flow in Gmf, so we have v(f) ≥ Lc.

Proof (Proof of v (fmax) ≥
∑
c∈C Lc =⇒ (x, y) ∈ A from Proposition 1) The inte-

grality requirements of the maximum flow problem can be removed from the mathe-

matical model since all capacities are integral (Ahuja et al, 1993, Theorem 6.5). By

using (Ahuja et al, 1993, Theorem 6.5) then there must exist a maximum flow f with

integer values and if v(f) ≥
∑
c∈C Lc then Proposition 2 shows that there must exist

an integer maximum flow where f1c,p,r = f2c,p,r for every triple (c, p, r). This means

that the f1c,p,r variables and the f2c,p,r variables describe a feasible assignment based

on the solution pair (x, y) implying that (x, y) ∈ A.

The LP formulation of the maximum flow model as a feasibility problem, i.e. re-

placing the objective with a constraint that the value of the flow must be at least the

number of lectures, is given in Model 4. We have substituted any occurrence of the

flow variables f1c,p,r and f2c,p,r in Model 4, since we are only interested in a solution

where the two variables are equal, with the non-negative variable fc,p,r.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 833 -

∑
c∈C,r∈R

fuc,r ≥
∑
c∈C

Lc (4a)

fuc,r −
∑
p∈P

fc,p,r = 0 ∀c ∈ C, r ∈ R (4b)

∑
c∈C

fc,p,r − fr,p = 0 ∀p ∈ P, r ∈ R (4c)

fr,p −
∑
c∈C

fc,p,r = 0 ∀p ∈ P, r ∈ R (4d)

∑
r∈R

fc,p,r − fvc,p = 0 ∀c ∈ C, p ∈ P (4e)

0 ≤ fuc,r ≤ yc,r ∀c ∈ C, r ∈ R (4f)

0 ≤ fc,p,r ≤ 1 ∀c ∈ C, p ∈ P, r ∈ R (4g)

0 ≤ fr,p ≤ 1 ∀p ∈ P, r ∈ R (4h)

0 ≤ fvc,p ≤ xc,p ∀c ∈ C, p ∈ P (4i)

Model 4 The feasibility flow problem.

Any solution to Model 4 can only fulfil constraint (4a) if the flow send out of the

source node on each arc is equal to the capacity so the variable fuc,r can be replaced

with the value yc,r in Model 4 which means that constraints (4a) and (4b) are replaced

by: ∑
p∈P

fc,p,r = yc,r ∀c ∈ C, r ∈ R

Constraints (4c) and (4d) and the variable bounds (4h) can be replaced by the

constraints: ∑
c∈C

fc,p,r ≤ 1 ∀p ∈ P, r ∈ R

Finally the constraints (4e) and variable bounds (4g) and (4i) can be replaced by

the constraints: ∑
r∈R

fc,p,r ≤ xc,p ∀c ∈ C, p ∈ P

These latter mentioned substitutions together with Model 2 and Model 3 can then

be combined into Model 5.

It is not guaranteed that the fc,p,r variables are integers in the solution obtained

from Model 5. If the solution returned by the model contains fractional values for the

fc,p,r variables then a polynomial algorithm to find an integer feasible solution can be

applied. Such an algorithm is given in Algorithm 1 in Appendix A.

3 Computational Results

We have tested the model on the 21 data sets from the ITC2007 competition track

3 described in Gaspero et al (2007). Along the competition a benchmarking tool was

provided. The benchmarking tool calculates the amount of time that the algorithms

where allowed to run in the competition. This amount of time is usually referred to as

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 834 -

min WRC
∑
c,r

(Sc − Cr)+ · yc,r +WCC
∑

q∈Q,p∈P
sq,p

+WWD
∑
c∈C

wc +WRS
∑
c∈C

κc (5a)

s. t. (2b) — (2l) (5b)

(3b) — (3g) (5c)∑
p∈P

fc,p,r = yc,r ∀c ∈ C, r ∈ R (5d)

∑
r∈R

fc,p,r ≤ xc,p ∀c ∈ C, p ∈ P (5e)

∑
c∈C

fc,p,r ≤ 1 ∀p ∈ P, r ∈ R (5f)

fc,p,r ≥ 0 ∀c ∈ C, p ∈ P, r ∈ R (5g)

Model 5 The combined formulation connecting the period assignments and room assignments
using the maximum flow model.

one CPU time unit. We ran the tests in Windows 8.1 on an 3.07GHz Intel R© CoreTM

i7 CPU with 12GB memory. Running the benchmarking tool returned 260 seconds as

one CPU unit. All tests has been limited to a single thread.

As mentioned it may be needed to run some flow algorithms on the solutions

returned by Model 5. The running times of these algorithms are just a matter of

milliseconds even for the largest datasets and so we have neglected these algorithms

from the time limits. Furthermore for all our tests the final solutions did not contain

any fractional variables so the algorithms were never put to use. If Fc,p = 0 for some

course c ∈ C and period p ∈ P then we do not add the variables xc,p, {fc,p,r}r∈R and

{xc,p,r}r∈R to the models. This makes the constraints (1c) and (2c) redundant since

every course is taught by exactly one lecturer and constraints (1f) and (2e) ensures

that each lecturer has at most one lecture scheduled in any period. Furthermore we

replace the constraints (1e), (1f), (2d) and (2e) by clique inequalities. This is done by

creating a graph where each node corresponds to a course. An edge is connecting two

courses if they are in the same curriculum or taught be the same lecturer. We then

enumerate all the maximal cliques by running the BronKerbosch algorithm Bron and

Kerbosch (1973). Let Γ be the set of cliques and let Cγ be the set of courses in the

clique γ ∈ Γ . Then for each clique γ ∈ Γ and period p ∈ P we add the following

constraints to both the basic model and the maximum flow-based formulation:

∑
c∈Cγ ,r∈R

xc,p,r ≤ 1 ∀γ ∈ Γ, p ∈ P

∑
c∈Cγ

xc,p ≤ 1 ∀γ ∈ Γ, p ∈ P

Enumerating all the maximal cliques takes less than a second even for the largest data

instances we have tested so we have neglected these enumerations from the time limits

when solving the models.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 835 -

In Table 1 the statistics of the basic model and the maximum flow-based formu-

lation can be seen. For each of the 21 data sets the number of continuous variables,

integer variables, constraints and non-zeros is reported.

Table 1: The statistics of the different models of the 21 test instances

from ITC2007 track 3; the basic formulation (Basic) and the maximum

flow-based formulation (MF). For each data instance and formulation the

number of continuous variables (Cont.), the number of integer variables

(Int.), the number of rows in the model (Rows) and the number of non-

zeros (Non-Zeros) is reported. The number in parenthesis denotes how

many of the integer variables that are binary (Bin.).

Cont. Int. (Bin.) Rows Non-Zeros

Basic 630 5580 (5580) 2670 61620
comp01

MF 5712 1207 (1027) 2794 29544

Basic 2324 34112 (34112) 9593 672958
comp02

MF 26916 4161 (2849) 10032 134643

Basic 2204 29952 (29952) 8628 593908
comp03

MF 24892 3722 (2570) 8973 123222

Basic 1978 36972 (36972) 8104 528387
comp04

MF 30400 4423 (3001) 8833 141108

Basic 5436 17982 (17982) 14256 868140
comp05

MF 15993 2145 (1659) 11927 98302

Basic 2506 50544 (50544) 12333 940504
comp06

MF 39730 5956 (4012) 13223 194715

Basic 2842 68120 (68120) 15368 1220537
comp07

MF 55002 7848 (5228) 16825 264695

Basic 2127 40248 (40248) 8186 511003
comp08

MF 32223 4768 (3220) 8897 146461

Basic 2407 35568 (35568) 8851 604293
comp09

MF 29317 4231 (2863) 9413 137921

Basic 2480 53820 (53820) 13665 1036975
comp10

MF 41738 6321 (4251) 14593 206834

Basic 795 6900 (6900) 3855 88395
comp11

MF 7075 1556 (1406) 3910 40313

Basic 6104 35816 (35816) 22712 1666356
comp12

MF 25904 3736 (2768) 19368 165972

Basic 2224 40508 (40508) 8114 553425
comp13

MF 32282 4698 (3140) 8937 147523

Basic 2095 37570 (30570) 9875 699435
comp14

MF 29958 4529 (3084) 10514 148453

Basic 2204 29952 (29950) 8628 593908
comp15

MF 24892 3722 (2570) 8973 123222

Basic 2531 56160 (56160) 12599 1013091
comp16

MF 46171 6502 (4342) 13783 220565

Continued on next page

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 836 -

Table 1 – Continued from previous page

Cont. Int. (Bin.) Rows Non-Zeros

Basic 2443 43758 (43758) 11050 778699
comp17

MF 35202 5293 (3610) 11836 171848

Basic 2248 15651 (15651) 7290 304912
comp18

MF 12130 1944 (1521) 6147 62416

Basic 2168 30784 (30784) 7926 490106
comp19

MF 24168 3743 (2559) 8306 115114

Basic 2797 59774 (59774) 14067 1103445
comp20

MF 47143 6932 (4633) 15180 228938

Basic 2608 43992 (43992) 11919 952542
comp21

MF 36574 5271 (3579) 12777 182969

Average x12.5 x0.1 (x0.1) x1.0 x0.2

Min x2.9 x0.1 (x0.1) x0.8 x0.1Change

Max x19.4 x0.2 (x0.2) x1.1 x0.5

It can be seen in Table 1 that the maximum flow-based formulation increases the

number of continuous variables on average more that 12 times. However the number of

integer variables and non-zeroes in the model is on average a tenth and a fifth respec-

tively compared to the basic model which is why we expect the maximum flow-based

formulation to perform better. The model has been solved using the .NET framework

provided by Gurobi Optimization (2015) version 6.0.0. The bounds obtained by the

maximum flow-based formulation is compared on the first 14 data sets with the fol-

lowing four approaches from the literature:

LL12 An approach based on solving the problem in two stages proposed by

Lach and Lübbecke (2012); first assigning the courses into periods and

then assigning the first stage assignments into rooms.

BMPR10 A approach based on considering a subset of soft constraints proposed by

Burke et al (2010).

HB11 An approach based on partitioning the courses into subsets proposed by

Hao and Benlic (2011).

CCRT13 An approach based on splitting the objective into parts proposed by Cac-

chiani et al (2013).

In Table 2 the lower bounds for the latter mentioned four approaches and the

maximum flow-based formulation is reported when running the approaches for one

CPU unit (1 T), ten CPU units (10 T) and forty CPU units (40 T). It can be seen that

the proposed formulation is able to compete with most of the approaches, except for

the proposed method by Cacchiani et al (2013) which seems to perform better on most

instances. However the maximum-flow based formulation appears to generate a much

better bound on two of the instances; comp05 and comp12. Referring back to Table 1

these are the two only of the first fourteen instances where the formulation actually

reduces instead of increasing the number of rows in the model. Furthermore consider

Table 5. In this table the number of courses and the number of unavailable time slots

are illustrated for each instance. Here it can be seen that the number of unavailable

time slots per course is much higher for the two before mentioned instances than for

the other of the first fourteen data sets. This can explain why the number of rows is

reduced since we did not include the variables of the unavailable periods and so many

rows where not added as they were empty.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 837 -

Since Lach and Lübbecke (2012) and Burke et al (2010) obtain both lower and

upper bound these are also compared with the bounds obtained by the maximum flow-

based formulation. The results are given in Table 3. Here it can be seen that Burke

et al (2010) obtains better lower bounds in most cases for one CPU unit, however for

longer running times the maximum flow formulation generates better lower bound on

more instances than the other two. As for the upper bounds Lach and Lübbecke (2012)

yields better result in more cases than our proposed approach for the short (1 T) and

middle (10 T) running time whereas for the long (40 T) running time they yield better

upper bounds on an equal amount fo instances making it hard to claim one approach

as outperforming the other.

In Table 4 the results of both the basic formulation in Model 1 and the maximum

flow based formulation is given. Here it can be seen that the maximum flow formulation

clearly outperforms the basic formulation and a new lower bound compared to the best

known bound is obtained in one of the instances. This makes the model very interesting

as some of the other approaches from the literature based in the basic formulation might

also benefit from this reformulation.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 838 -

LL12 BMPR10 HB11 CCRT13 MF

Instance 1 T 10 T 40 T 1 T 10 T 40 T 1 T 10 T 40 T 1 T 10 T 40 T 1 T 10 T 40 T

comp01 4 4 4 0 4 5 4 4 4 5 5 5 5 5 5
comp02 0 8 11 0 0 1 10 12 12 0 16 16 0 0 10
comp03 0 0 25 25 33 33 26 34 36 24 52 52 26 35 36
comp04 22 28 28 35 35 35 35 35 35 35 35 35 23 35 35
comp05 92 25 108 119 111 114 19 69 80 6 6 166 119 171 179
comp06 7 10 10 13 15 16 12 12 16 0 11 11 13 13 16
comp07 0 2 6 6 6 6 5 6 6 0 6 6 0 6 6
comp08 30 34 37 37 37 37 37 37 37 37 37 37 27 37 37
comp09 37 41 46 68 65 66 39 67 67 92 92 92 45 71 76
comp10 2 4 4 3 4 4 4 4 4 0 2 2 3 4 4
comp11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
comp12 29 32 53 101 95 95 43 78 84 0 0 100 85 115 138
comp13 33 39 41 52 52 54 46 53 55 57 57 57 38 54 56
comp14 40 41 46 41 42 42 41 43 43 32 48 48 41 42 46

Best 1 2 4 8 6 7 7 5 6 6 10 10 6 8 9
0 0 0 2 1 0 2 0 0 2 5 5 0 2 2

Table 2 Comparison of the lower bounds obtained for the different model formulations; Lach and Lübbecke (2012) (LL12), Burke et al (2010) (BMPR10),
Hao and Benlic (2011) (HB11), Cacchiani et al (2013) (CCRT13) and the maximum flow based formulation (MF). For each formulation the lower bound
is given for one CPU time unit (1 T), ten CPU time units (10 T) and forty CPU time units (40 T). The numbers reported in bold font are the values
where the specific models obtained a value which is at least as good as the other formulations. The numbers underlined are the values where the specific
models obtained a value which is the better that for the other formulations.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 839 -

LL12 BMPR10 MF

1 T 10 T 40 T 1 T 10 T 40 T 1 T 10 T 40 T

Instance LB UB LB UB LB UB LB UB LB UB LB UB LB UB LB UB LB UB

comp01 4 12 4 12 4 12 0 168 4 10 5 9 5 5 5 5 5 5
comp02 0 239 8 93 11 46 0 114 0 101 1 63 0 253 0 74 10 54
comp03 0 194 0 86 25 66 25 158 33 144 33 123 26 228 35 115 36 84
comp04 22 44 28 41 28 38 35 153 35 36 35 36 23 123 35 38 35 35
comp05 92 965 25 468 108 368 119 1447 111 649 114 629 119 515 171 505 179 377
comp06 7 395 10 79 10 51 13 277 15 317 16 46 13 897 13 298 16 71
comp07 0 525 2 28 6 25 6 - 6 857 6 45 0 1095 6 215 6 58
comp08 30 78 34 48 37 44 37 173 37 53 37 41 27 195 37 44 37 40
comp09 37 115 41 106 46 99 68 112 65 115 66 105 45 213 71 127 76 99
comp10 2 235 4 44 4 16 3 70 4 49 4 23 3 994 4 311 4 44
comp11 0 7 0 7 0 7 0 288 0 12 0 12 0 0 0 0 0 0
comp12 29 1122 32 657 53 548 101 - 95 889 95 785 85 1844 115 507 138 485
comp13 33 98 39 67 41 66 52 556 52 92 54 67 38 461 54 102 56 65
comp14 40 113 41 54 46 53 41 123 42 72 42 55 41 180 42 84 46 58

Best 2 6 3 8 6 7 12 5 7 1 7 1 8 3 12 5 13 7
0 6 1 8 1 6 6 5 1 1 0 1 2 3 6 5 5 6

Table 3 Comparison of the bounds obtained by Lach and Lübbecke (2012) (LL12), Burke et al (2010) (BMPR10) and the maximum flow based
formulation (MF). For each approach the lower bound is given for one CPU time unit (1 T), ten CPU time units (10 T) and forty CPU time units
(40 T). The numbers reported in bold font are the values where the approach obtained a value which is at least as good as the other approaches. The
numbers underlined are the values where the specific approaches obtained a value which is better than the other approaches.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 840 -

Basic MF

Best Known 1 T 10 T 40 T 1 T 10 T 40 T

Instance LB UB LB UB LB UB LB UB LB UB LB UB LB UB
comp01 5 5 5 5 5 5 5 5 5 5 5 5 5 5
comp02 16 24 0 308 2 139 5 71 0 253 0 74 10 54
comp03 52 64 25 1415 28 181 28 109 26 228 35 115 36 84
comp04 35 35 22 182 35 59 35 35 23 123 35 38 35 35
comp05 211 284 117 537 141 484 149 387 119 515 171 505 179 377
comp06 27 27 12 1403 12 135 14 124 13 897 13 298 16 71
comp07 6 6 0 354 6 315 6 119 0 1095 6 215 6 58
comp08 37 37 20 177 37 65 37 61 27 195 37 44 37 40
comp09 96 96 37 272 65 167 68 159 45 213 71 127 76 99
comp10 4 4 0 256 4 94 4 56 3 994 4 311 4 44
comp11 0 0 0 0 0 0 0 0 0 0 0 0 0 0
comp12 100 298 59 1363 69 717 106 581 85 1844 115 507 138 485
comp13 59 59 28 280 50 130 53 117 38 461 54 102 56 65
comp14 51 51 39 305 42 112 42 96 41 180 42 84 46 58
comp15 52 64 25 1415 28 181 28 109 26 228 35 115 36 84
comp16 18 18 8 329 8 103 11 101 7 400 12 74 13 58
comp17 56 56 24 335 30 268 39 155 33 450 42 122 43 105
comp18 61 61 14 168 22 165 26 103 20 145 26 88 29 83
comp19 57 57 30 205 49 143 52 138 36 210 53 62 57 57
comp20 4 4 0 1169 0 120 0 103 0 1215 0 972 0 103
comp21 74 74 15 847 31 258 49 186 32 527 54 142 57 122

Best 6 11 9 6 7 4 20 12 20 17 21 21
2 2 6 2 7 3 2 2 7 2 8 4

Table 4 Comparison of the bounds obtained for the basic model (Basic) and the maximum flow-based formulation (MF). For each formulation the
bounds are given for one CPU time unit (1 T), ten CPU time units (10 T) and forty CPU time units (40 T). The numbers reported in bold font are
the values where the specific models obtained a value which is at least as good as the other formulations. The numbers underlined are the values where
the specific models obtained a value which is as least as good as the best known bounds reported by Scheduling and Timetabling Research Group at the
University of Udine (2015).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 841 -

Instance |C| |U | |U |/|C|
comp01 30 53 1.8
comp02 82 513 6.3
comp03 72 382 5.3
comp04 79 396 5.0
comp05 54 771 14.3
comp06 108 632 5.9
comp07 131 667 5.1
comp08 86 478 5.6
comp09 76 405 5.3
comp10 115 694 6.0
comp11 30 94 3.1
comp12 88 1368 15.5
comp13 82 468 5.7
comp14 85 486 5.7

Table 5 Illustrating the statistics of the data sets regarding the unavailable periods. For each
instance the number of courses (|C|), the total number of unavailable periods (|U |) and the
average number of unavailable periods per course (|U |/|C|) is reported.

4 Conclusion

A mixed integer programming model for the curriculum-based course timetabling prob-

lem has been proposed with an underlying flow network. It has been shown that the

formulation decreases the number of integer variables significantly and provides better

results than a traditional three-index formulation. It is also competitive with most of

the other mixed integer programming based approaches from the literature and im-

proves one currently best known lower bound on the benchmarking instances from

the second international timetabling competition. Some of the approaches from the

literature are based on the original three-indexed model and it is believed that these

approaches can also benefit from the proposed model.

Acknowledgements The authors would like to thank professor Stephan Røpke, Depart-
ment of Management Engineering, Technical University of Denmark, and professor Carsten
Thomassen, Department of Applied Mathematics and Computer Science, Technical University
of Denmark for fruitful discussions on the proof in Appendix A.

A Proof of Proposition 2

For the proof of Proposition 2 we will be considering the graph Gmf as described in Section 2.1
and a given solution pair (x, y) to Model 2 and Model 3 where

∑
p∈P xc,p =

∑
r∈R yc,r =

Lc ∀c ∈ C due to constraints (2b) and (3c). Furthermore we will assume that Lc ≤ |P | ∀c ∈ C.
This is a fair assumption to make as the problem is otherwise infeasible. Before the proposition
is proved it will be restated here for the sake of completeness.

Proposition 3 (Restatement of Proposition2)
Consider some period-room assignment pair (x, y) and let F

(
Gmf

)
denote all feasible

integer flows in Gmf given this assignment. If there exists a flow f ∈ F
(
Gmf

)
where v(f) ≥∑

c∈C Lc then there exists a flow f ′ ∈ F
(
Gmf

)
where v(f ′) = v(f) and f1c,p,r = f2c,p,r ∀c ∈

C, p ∈ P, r ∈ R

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 842 -

Algorithm 1: EqualPairMaxFlow

Input: The graph Gmf

Output: An integer maximum flow f where f1c,t,r = f2c,t,r ∀c ∈ C, t ∈ T , r ∈ R if

v(f) ≥
∑

c∈C Lc, otherwise nil

Initialize f as the maximum flow in Gmf

if v(f) <
∑

c∈C Lc then
return nil

// Iterate over all (c, p, r)-triples to repair any violations
foreach c ∈ C do

foreach p ∈ P do
foreach r ∈ R do

/* Change the flow f by setting f2c,p,r to the same value as f1c,p,r
*/

f2c,p,r ← f1c,p,r

return f

To prove Proposition 2 we will show that Algorithm 1 is correct.
Algorithm 1 starts off by finding a maximum flow f which has integer values. This can be

done by some polynomial algorithm, e.g. the Labeling algorithm (Ahuja et al, 1993, proof of
Theorem 6.5). If v(f) <

∑
c Lc then the algorithm returns nil to indicate that the assignment

(x, y) is infeasible which has been proved in Section 2.1 to be the case. If v(f) ≥
∑

c Lc then
the algorithm iterates over every triple (c, p, r) and then set the value of the variable f2c,p,r to

the same value as the variable f1c,p,r. When the algorithm is done then clearly the flow still

maintains integer values and f1c,p,r = f2c,p,r for every triple (c, p, r). What needs to be shown to
prove that Algorithm 1 is correct is that the value of the flow is unchanged, the node balancing
constraints are not violated and the capacities are not exceeded, i.e. that the the flow after
the change remains a feasible flow.

Assuming that Algorithm 1 is correct we can prove Proposition 2.

Proof (Proof of Proposition 2) As Algorithm 1 is correct then Proposition 2 must be true
since if v(f) <

∑
c∈C Lc the algorithm returns that the assignment (x, y) is infeasible and if

v(f) ≥
∑

c∈C Lc the algorithm will return an integer maximum flow f where f1c,p,r = f2c,p,r
∀c ∈ C, p ∈ P , r ∈ R.

To prove that Algorithm 1 is correct we will first show that when considering an integer
feasible flow f where v(f) ≥

∑
c∈C Lc, if there is a violation then it is possible to redirect

the flow such that the total number of violations is decreased by at least two as stated in
Proposition 4. This means that if we have k violations for the flow f then applying this
redirection technique at most k/2 times will remove all such violations where k must be less
than or equal to |C| · |P | · |R|.

Proposition 4 Consider a flow f ∈ F
(
Gmf

)
where v(f) ≥

∑
c∈C Lc. If there exists violations

of some course-period-room triples (c, p, r), i.e. that f1c,p,r 6= f2c,p,r, then it is possible to

redirect the flow to another flow f ′ ∈ F
(
Gmf

)
where v(f ′) = v(f) such that the total number

of violations is decreased by at least two.

Proof (Proof of Proposition 4) Consider a flow f ∈ F (Gmf) where v(f) ≥
∑

c∈C Lc. Assume

that there exists violations of some course-period-room triples (c, p, r), i.e. that f1c,p,r 6= f2c,p,r.
Since we know that

∑
p∈P xc,p = Lc for every course c ∈ C then for every period p ∈ P where

xc,p = 1 there must be at least one unit of flow on the arc (c, p) → (v) otherwise all the flow
from the source cannot get to the sink. Let there be a course-period-room triple (c1, p1, r1)
such that f1c1,p1,r1 6= f2c1,p1,r1 . Since the capacity on the arc (c1, r1) → (r1, p1)1 is xc1,p1
which is a binary value and the capacity on the arc (r1, p1)2 → (c1, p1) is one then two cases
can occur:

Case 1 f1c1,p1,r1 = 0 ∧ f2c1,p1,r1 = 1

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 843 -

u c2, r1

c1, r1 r1, p1 r1, p1 c1, p1

c2, p1 v

f1
c1,p1,r1

f
1
c 2
,p

1
,r

1

f2
c1,p1,r1

f 2
c
2 ,p

1 ,r
1

Fig. 4 Illustration of Case 1. The dashed arcs means that there is no flow. The lightly gray
arcs correspond to where it is unknown whether there is any flow and the solid black arcs are
where there must be at least one unit of flow.

Case 2 f1c1,p1,r1 = 1 ∧ f2c1,p1,r1 = 0

Consider first Case 1. This case is illustrated in Fig. 4.
Since f2c1,p1,r1 = 1 this means that fr1,p1 = 1 since this is the only way flow can enter

the node (r1, p1)2 meaning that node (r1, p1)1 must be sending out one unit of flow. Since
(r1, p1)1 is sending out one unit of flow then it must mean that f1c2,p1,r1 = 1 for some course

c2 ∈ C. Furthermore since the capacity on the arc (r1, p1)1 → (r1, p1)2 is one and this is the
only arc entering (r1, p1)2 then it cannot send any units of flow to node (c2, p1). This means
that Case 1 must contain a triple (c2, p1, r1) for which Case 2 applies. So we can prove the
claim for both cases by only considering Case 2.

Consider now Case 2. Since f1c1,p1,r1 = 1 then there must be a unit of flow on the arc from

(r1, p1)2 to (c2, p1) for some course c2 ∈ C. This is illustrated in Fig. 5.

u c2, r1

c1, r1 r1, p1 r1, p1 c1, p1

c2, p1 v

f1
c1,p1,r1

f2
c1,p1,r1

f 2
c
2 ,p

1 ,r
1f

1
c 2
,p

1
,r

1

Fig. 5 Illustration of Case 2. The interpretation of the arcs corresponds to Fig. 4.

Due to the construction of the graph the capacity on the arc (c1, p1)→ (v) is equal to the
capacity on the arc (c1, r1) → (r1, p1)1 and must therefore be one since f1c1,p1,r1 = 1. This

means that we could redirect the flow on the subpath (r1, p1)2 → (c2, p1)→ (v) to the subpath
(r1, p1)2 → (c1, p1)→ (v) if there is no flow on the arc (c1, p1)→ (v) and maintain an integer
feasible flow where the total amount of flow is unchanged. However as latter mentioned the
flow on the arc (c1, p1)→ (v) must be one, i.e. fvc1,p1 = 1, since xc1,p1 = 1 which means that

node (c1, p1) must receive one unit of flow from node (r2, p1)2 for some room r2 ∈ R. This
case is illustrated in Fig. 6.

Consider the four nodes (r1, p1)2, (c1, p1), (r2, p1)2 and (c2, p1) in Fig. 6. As mentioned
earlier the capacity on the arc (r1, p1)2 → (c1, p1) must be one. The capacity on the arc
(r2, p1)2 → (c2, p1) is set to xc2,p1 which is also the capacity on the arc (r1, p1)2 → (c2, p1)
which must be one since there is one unit of flow on the arc (r1, p1)2 → (c2, p1). So swapping
the flow on the arc (r1, p1)2 → (c2, p1) with the arc (r1, p1)2 → (c1, p1) and swapping the
flow on the arcs (r2, p1)2 → (c1, p1) and (r2, p1)2 → (c2, p1) will maintain an integer feasible
flow with an unchanged amount of flow where the Case 2 violation is removed from the triple
(c1, p1, r1) and the Case 1 violation is removed from the triple (c2, p1, r1). This swap does

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 844 -

u c2, r1

c1, r1

c3, r2

r1, p1

r2, p1

r1, p1

r2, p1

c1, p1

c2, p1 v

f
2
c 1
,p

1
,r 2

f2
c2,p1,r2

Fig. 6 Illustration of Case 2. The interpretation of the arcs corresponds to Fig. 4.

not introduce new violations when c1 6= c3 and so we are done. However if c1 = c3 then one
violation is introduced for the triple (c1, p1, r2) and one for the triple (c2, p1, r2) meaning that
making the swaps does not change the number of violations. So we need to show that when
c1 = c3 it is possible to find another place in the graph to make the swap and repair at least
two violations.

Since we know that there is flow from the source to the nodes (c1, r1) and (c1, r2) then we
know that

∑
r∈R yc1,r ≥ 2 meaning that

∑
p∈P xc1,p ≥ 2, i.e. that c1 is teaching at least two

lectures. This means that there must exist another period p2 ∈ P : p1 6= p2 where xc1,p2 = 1.
As xc1,p2 = 1 implies that there is at least one unit of flow on the arc (c1, t2)→ (v) then there
must be one unit of flow on the path (u) → (c4, r3) → (r3, p2)1 → (r3, p2)2 → (c1, p2) → (v)
for some c4 ∈ C and r3 ∈ R as illustrated in Fig. 7.

u c1, r2

c1, r1 r1, p1

r2, p1

r1, p1

r2, p1

c1, p1

c2, p1

c4, r3 r3, t2 r3, p2 c1, p2

v

Fig. 7 Illustration of Case 2 where c1 = c3. The interpretation of the arcs corresponds to
Fig. 4.

Suppose that c1 = c4. Then
∑

r∈R yc1,r ≥ 3 and there must be some other period that
c1 is assigned to and we can consider that period as p2 instead. So we must be able to find
a period p2 ∈ T and a course c4 ∈ C such that p1 6= p2 and c1 6= c4 where there is flow on
the path (u)→ (c4, r3)→ (r3, p2)1 → (r3, p2)2 → (c1, p2)→ (v) for some r3 ∈ R. This means
that for the triple (c1, p2, r3) there is a Case 1 violation and for the triple (c4, p2, r3) there is

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 845 -

a Case 2 violation. This is exactly the same cases as for the triples (c2, p1, r1) and (c1, p1, r1)
and so there must exist a course c5 ∈ C and a room r4 ∈ R where there is one unit of flow
on the path (u) → (c5, r4) → (r4, p2)1 → (r4, p2)2 → (c4, p2) → (v). This means that we
have two cases; either c4 6= c5 and we can swap the flow on the arcs (r3, p2)2 → (c1, p2) and
(r3, p2)2 → (c4, p2) and swap the flow on the arcs (r4, p2)2 → (c4, p2) and (r4, p2)2 → (c1, p2)
or c4 = c5 and we can find a path (u) → (c6, r5) → (r5, p3)1 → (r5, p3)2 → (c4, p3) → (v)
where there is one unit of flow and where c6 6= c4 and p3 6= p2 in the same way as we found
c4 and p2. This is illustrated in Fig. 8.

u c4, r3

c1, r2

c1, r1

c4, r4

c6, r5

r1, p1

r2, p1

r1, p1

r2, p1

c2, p1

c1, p1

r3, p2

r4, p2

r5, p3

r3, p2

r4, p2

r5, p3

c1, p2

c4, p2

c4, p3

v

Fig. 8 Illustration of Case 2 after a couple of iterations. The interpretation of the arcs corre-
sponds to Fig. 4.

It may be the case that c6 = c1. However this indicates that the course c1 is teaching
at least one more lecture than previously thought when we found the period p2, so we can
backtrack to the point where we found p2 and then find another period instead of p2 which
we have not yet considered for c1. This means that whenever we are considering a violating
pair we must be able to either redirect the flow for that pair or find a new violating pair which
involves a new course which we either have not yet considered before or it is a course we have
been considering before and then we can backtrack to this course and consider a new period
which we have not considered before for that course. Clearly all the operations can be made in
polynomial asymptotic time but it needs to be shown that the total number of backtracking
operations is finitely bounded to ensure that the algorithm is finite. So if the total number of
backtrack operations is finite then eventually the algorithm will end up with some pair where
the flow can be redirected and decrease the number of violations.

Let T (m,n) be the total number of backtrack operations that our algorithm performs
where m = |P | and n = |C|. The number of times that we backtrack to the first course in
our algorithm can at most be the number of lectures taught by the course since we consider

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 846 -

a new period not considered for the course before whenever we backtrack. Since the number
of lectures is linearly bounded by m then we can at most backtrack O(m) times to the first
course. Every time we backtrack to the first course we have been backtracking T (m,n − 1)
times to the remaining courses meaning that we have the following recursive relation:

T (m,n) = O(m) · T (m,n− 1)

Consider when n = 2. We can backtrack to the first course O(m) times but we can never
backtrack to the second course since there are no other courses to backtrack from and so we
have the base case:

T (m, 2) = O(m)

We will now show that the recursion leads to a finite number of total backtracking operations
by making a guess of the asymptotic bound:

T (m,n) = O
(
mn−1

)
It is easy to see that it holds for the base case so we can assume that it holds for T (m,n− 1)
and then we have:

T (m,n− 1) = O
(
mn−2

)
T (m,n) = O(m) ·O

(
mn−2

)
= O

(
mn−1

)
It has now been shown by induction that the algorithm is making a finite number of back-
tracking operations which concludes the proof of Proposition 4.

Before proving the correctness of Algorithm 1 it should be noted that since
∑

r∈R yc,r = Lc

∀c ∈ C then the total capacity on the outgoing arcs of the source is
∑

c∈C Lc. This means
that for the maximum flow f it must always hold that v(f) ≤

∑
c∈C Lc. Furthermore since

all capacities in the graph Gmf are integers then there must be a maximum flow taking integer
values (Ahuja et al, 1993, Theorem 6.5).

Proof (Proof that Algorithm 1 is correct) The proof of Proposition 4 implies that if we have a
feasible integer flow f ∈ Gmf where v(f) ≥

∑
c∈C Lc and if for some triple (c, p, r) we have that

f1c,p,r 6= f2c,p,r then there must exist some courses c1 ∈ C, c2 ∈ C, c3 ∈ C, some rooms r1 ∈ R,
r2 ∈ R and a period p1 ∈ P where c1 6= c3 (it is possible that c2 = c3) and the following
holds; f1c1,p1,r1 = 1, f1c1,p1,r2 = 0, f1c2,p1,r1 = 0, f1c3,p1,r2 = 1, f2c1,p1,r1 = 0, f2c1,p1,r2 = 1,

f2c2,p1,r1 = 1 and f2c2,p1,r2 = 0. Swapping the values of f2c1,p1,r1 and f2c1,p1,r2 and swapping

the values of f2c2,p1,r1 and f2c2,p1,r2 will remain an integer feasible flow with the same total
amount of flow and a decrease in the number of violations by at least two. So a simple algorithm
is to search for these courses, these rooms and this period where the swap can be done, do the
swap and then iterate. This can be implemented to run in polynomial asymptotic time instead
of the exponential asymptotic time given in the proof of Proposition 4. However, since the
swaps are only done on the f2c,p,r variables and never on the f1c,p,r variables then this means

that the values of the f1c,p,r variables must be feasible values for the f2c,p,r and so a much
simpler algorithm can be constructed by the following steps:

Step 1 Find an integer maximum flow f . This can be done by some polynomial maximum
flow algorithm, e.g. the Labeling Algorithm (Ahuja et al, 1993, proof of Theorem
6.5, section 6.5)

Step 2 If v(f) <
∑

c∈C Lc then return nil, i.e. that it is infeasible, which is correct as
it has been proved that the assignment pair (x, y) cannot be feasible in this case,
otherwise go to Step 3.

Step 3 Iterate over all triples (c, p, r) and set the value of the variable f2c,p,r equal to the

value of the f1c,p,r variable and return this new flow.

Note that these steps is exactly the description of Algorithm 1 and so the algorithm must be
correct.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 847 -

References

Ahuja RK, Magnanti TL, Orlin JB (1993) Network Flows: Theory, Algorithms, and Applica-
tions. Prentice-Hall, Inc., Upper Saddle River, NJ, USA

Bettinelli A, Cacchiani V, Roberti R, Toth P (2015) An overview of curriculum-based course
timetabling. TOP pp 1–37

Bron C, Kerbosch J (1973) Algorithm 457: Finding all cliques of an undi-
rected graph. Commun ACM 16(9):575–577, DOI 10.1145/362342.362367, URL
http://doi.acm.org/10.1145/362342.362367

Burke E, Marecek J, Parkes A, Rudová H (2010) Decomposition, reformulation, and diving in
university course timetabling. Computers & Operations Research 37(3):582–597

Burke EK, Marec J, Parkes AJ, Rudova H (2012) A branch-and-cut procedure for the udine
course timetabling problem. Annals of Operations Research 194(1):71–87

Cacchiani V, Caprara A, Roberti R, Toth P (2013) A new lower bound for curriculum-based
course timetabling. Computers & Operations Research 40(10):2466 – 2477

Gaspero LD, Schaerf A, McCollum B (2007) The second international timetabling competition
(itc-2007): Curriculum-based course timetabling (track 3). Tech. rep., School of Electronics,
Electrical Engineering and Computer Science, Queens University SARC Building, Belfast,
United Kingdom

Gurobi Optimization I (2015) Gurobi optimizer reference manual. URL
http://www.gurobi.com

Hao JK, Benlic U (2011) Lower bounds for the itc-2007 curriculum-based course timetabling
problem. European Journal of Operational Research 212(3):464 – 472

Lach G, Lübbecke M (2008) Optimal university course timetables and the partial transver-
sal polytope. In: McGeoch C (ed) Experimental Algorithms, Lecture Notes in Computer
Science, vol 5038, Springer Berlin / Heidelberg, pp 235–248

Lach G, Lübbecke M (2012) Curriculum based course timetabling: new solutions to udine
benchmark instances. Annals of Operations Research 194:255–272

Scheduling, Timetabling Research Group at the University of Udine I (2015) Curriculum-based
course timetabling. http://tabu.diegm.uniud.it/ctt/index.php

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 848 -

MISTA 2015

Appointment scheduling in hospitals

Sequencing and scheduling using timeaggregation

Sarah Kirchner · Marco Lübbecke

1 Introduction

In Germany as well as in many other countries, hospital services provided for admit-

ted patients are settled using diagnosis-related groups (DRGs). That is, patients are

grouped according to their diagnosis, received services and demographic characteris-

tics into a DRG. The hospital receives a fixed reimbursement dependent on this DRG

(Institut für das Entgeltsystem im Krankenhaus , InEK). In the german DRG-system,

there is a lower and an upper trim point for the length of stay of a patient with a given

DRG. If the length of a patients stay is longer than the upper trim point the reim-

bursement is increased by a not cost-covering amount. This payment scheme provides

incentives for hospitals to aim for a short hospitalization of admitted patients.

Almost all patients receive more than one medical service during their hospital stay

and there may be dependencies between these services. To facilitate the requirements of

these multiple dependent services, coordinated appointment calendars for the different

resources of a hospital are needed. At the moment, it is common practice that med-

ical staff at a resource sequentially assigns appointment times to incoming requests,

disregarding all other services the patient may need and often without considering the

impact the decision has on the length of the patients stay.

Additional to the admitted patients, many hospital units also provide ambulatory

services to patients. Often they also need to consider walk-in patients that arrive at

the hospital without prior notice.

The majority of contributions in literature about appointment scheduling only con-

siders a single resource such as an operating theater (Hulshof et al, 2012). Gartner and

Kolisch (2014) propose an integer programming model to schedule admitted patients.

They aggregate the problem and decide for every appointment request only the day

on which the appointment is scheduled. The sequencing decision on a resource is not

considered.

Sarah Kirchner
RWTH Aachen University
E-mail: kirchner@or.rwth-aachen.de

Marco Lübbecke
RWTH Aachen University
E-mail: marco.luebbecke@rwth-aachen.de

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 849 -

Together with the software company Inform and the university hospital in Aachen,

it is our goal to develop tools to support hospital staff in the decision making process,

taking into account all patient groups in a hospital.

2 Problem Description

As already mentioned there are several scarce resources in a hospital. These resources

can be devices like an MRT machine, rooms or persons, having regular opening hours.

There are different patient groups in the hospital, which need to be treated differently

in the appointment scheduling process. Admitted patients typically stay in the hospital

for more than one night. Often their treatment plan is not exactly known on their arrival

and services are requested during their hospital stay. These requests do not need to be

answered immediately and can be batched for some time to allow for a better informed

scheduling decision. Outpatients on the contrary often request one or more service via

phone prior to their arrival. All of these requests should – if possible – be carried out

during the same day as outpatients do not stay in the hospital overnight. Furthermore,

these requests need to be answered immediately and cannot be batched. Additionally

walk-in patients request services that need to be scheduled on the same day. These

requests also need to be answered immediately. It may be possible to process a request

on more than one resource. Therefore a date, time and resource need to be determined

for every request. The objective is to minimize the average length of stay of all patients.

As a hospital is a highly dynamic environment in which new patients arrive and

new appointments are made over time, the appointment scheduling problem has to

be solved frequently and decisions made in the past have to be considered in future

scheduling iterations.

The different requirements for response times to requests call for different solution

algorithms.

3 Solution Methods

We propose to batch requests for admitted patients if possible and compute a solu-

tion for these requests during the night, when most resources are closed and only few

appointment requests are made. We assume that accurate information about the ex-

act execution time for a request is only needed on the day of execution itself. Before

that, it is sufficient to know the day (or week for requests in the far future) the re-

quest is scheduled to be processed. A time-indexed IP formulation for the problem is

proposed in which timeslots are aggregated for the time after the next day. The aggre-

gated decisions are considered in the next solving iteration for consistency. We consider

the sequencing decisions on resources for the next working day and make aggregated

decisions only for the time after that.

For the requests of ambulant and walk-in patients we propose a greedy heuristic

since a fast response is needed and therefore IP-based approaches do not seem to fit.

Additionally a wait-and-see heuristic is used to fill idle time on the resources during a

day.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 850 -

References

Gartner D, Kolisch R (2014) Scheduling the hospital-wide flow of elective patients.

European Journal of Operational Research 233(3):689 – 699

Hulshof PJ, Kortbeek N, Boucherie RJ, Hans EW, Bakker PJ (2012) Taxonomic clas-

sification of planning decisions in health care: a structured review of the state of the

art in or/ms. Health systems 1(2):129–175

Institut für das Entgeltsystem im Krankenhaus (InEK) (2014) G-DRG German

Diagnosis Related Groups, Version 2015, Definitionshandbuch. http://www.g-

drg.de/cms/G-DRG-System 2015/Definitionshandbuch

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 851 -

MISTA 2015

Resource Failure Recovery in Production Scheduling

Roman Barták · Marek Vlk

1 Introduction

In real-life scheduling, manufacturing systems face uncertainty due to unexpected
events occurring on the shop floor. Machines break down, operations take longer than
anticipated, personnel do not perform as expected, urgent orders arrive, others are can-
celled, etc. These disturbances render the ongoing schedule infeasible. In such cases, a
simple approach is to collect the data from the shop floor when the disruption occurs
and to generate a new schedule from scratch. Gathering the information and com-
plete rescheduling involve excessive amount of time which may lead to a failure of
the scheduling mechanism. Moreover, the recovered schedule may deviate prohibitively
from the ongoing schedule.

This paper describes two algorithms for updating a schedule in response to a re-
source failure. The first method takes the activities that were to be processed on a
broken down machine, reallocates them, and then it keeps repairing violated con-
straints until it gets a feasible schedule. The second method deallocates a subset of
activities and then it allocates them back through Conflict-directed Backjumping with
Backmarking.

2 Related Works

The field of rescheduling (predictive-reactive scheduling) has been addressed in a num-
ber of works, as surveyed for instance in [11], [14], and [9]. Most of the related works
suggest generally usable approaches regardless of the particular scheduling model. Nev-
ertheless, it is not always possible to straightforwardly use the presented methods for
a selected class of scheduling problems, as it requires significant adjustments to make
it applicable. In addition, if it is desired to achieve better results in terms of the speed
of procedures and the modification distance of a schedule, it is suitable to tailor an
algorithm for the particular class of problems.

Roman Barták, Marek Vlk
Charles University in Prague, Faculty of Mathematics and Physics
Malostranské nám. 25, 118 00 Praha 1, Czech Republic
E-mail: {bartak, vlk}@ktiml.mff.cuni.cz

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 852 -

The fundamental inspiration for our methods comes from heuristic-based approaches,
which do not guarantee to find an optimal solution, but respond in a short time. The
simplest schedule repair technique is the right shift rescheduling [1]. This technique
shifts the operations globally to the right on the time axis in order to cope with dis-
ruptions. When it arises from machine breakdown, the method introduces gaps in the
schedule, during which the machines are idle. It is obvious that this approach results
in schedules of bad quality, and can be used only for environments involving minor
disruptions.

The shortcomings of total rescheduling and right shift rescheduling gave rise to
another approach: affected operation rescheduling, also referred to as partial schedule
repair [13]. The idea of this algorithm is to reschedule only the operations directly and
indirectly affected by the disruption in order to minimize the deviation from the initial
schedule.

The Repair-DTP algorithm proposed in [12] tackles a problem very similar to ours,
however, it is designed to correct violated constraints in manually edited schedules. The
model involves precedence constraints and synchronization constraints, but excludes
minimum and maximum time lags. Nonetheless, in order to reduce the search space, the
Repair-DTP algorithm employs Simple Temporal Networks (STN) [7] and Incremental
Full Path Consistency (IFPC) algorithm [10], which incrementally maintains the All
Pairs Shortest Path (APSP) property. If a feasible correction exists, the algorithm tries
to find the most similar schedule to the initial one through only shifting activities in
time. Since the Repair-DTP algorithm does not try changes in resource selection, it
cannot be used to deal with machine failure. Moreover, the main shortcoming of the
algorithm is searching through disjunctions, introduced by hierarchical nature of the
model and by resource unarity. This leads to excessive (exponentially growing) amount
of temporal networks that are inspected, which requires unacceptable amount of time.

In the methods proposed further, apart from STN and IFPC algorithm, some
widely used search techniques from the field of Constraint Satisfaction [6] are em-
ployed, namely Conflict-directed Backjumping with Backmarking [8].

3 Problem Definition

The scheduling model is taken from the FlowOpt system [4], which contains a tool
for designing and editing manufacturing workflows. Workflows in the FlowOpt model
match up the structure of Nested Temporal Networks with Alternatives [3].

A scheduling problem consists of activities that are required to be processed. The
time distance between two distinct activities may be limited by a simple temporal
constraint [7]. Each such constraint can be written as a triplet (Ai, Aj , wij), and the
semantics is such that Start(Aj)−Start(Ai) ≤ wij , where Start(Ai), Start(Aj) denote
the start times of activities, and wij ∈ Z. Note that the minimal time distance between
the two activities is obtained through adding a reverse constraint (Aj , Ai, wji), which
means Start(Ai)−Start(Aj) ≤ wji, and hence Start(Aj)−Start(Ai) ≥ −wji. There-
fore, in what follows we understand temporal constraints as constraints determining
the maximal distance between start times of two distinct activities.

Activities are processed on resources. All resources are unary, which means that
each resource may perform no more than one activity at a time, i.e., activities on a
resource may not overlap. This limitation is referred to as a resource constraint. To

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 853 -

make a schedule feasible, each activity requires exactly one resource from its associated
resource group to be selected.

The problem we actually tackle is that we are given a particular instance of the
scheduling problem along with a feasible schedule, and also with a resource that can
no longer be used. The aim is to find as fast as possible a feasible schedule that is as
similar to the ongoing schedule as possible. In order to simplify the description of the
algorithms, let us assume that a resource fails at the beginning of the time horizon,
i.e., right before the schedule execution begins.

The methods proposed in related literature cannot be straightforwardly used for
the model we deal with because of the presence of simple temporal constraints that
are more restrictive than frequently used precedence constraints.

4 Right Shift Affected

Right Shift Affected is a greedy algorithm aimed at changing allocation of as few activ-
ities as possible. The idea is to reallocate activities from the failed resource and then
keep reallocating activities that violate some constraint until the schedule is feasible.

The algorithm works as follows. First, it goes through all activities in the model
and checks whether the activity is allocated to the failed resource. If so, the activity
is reallocated (seeking for an available resource after the original start time of the
activity), and the activity is added to the set A. Now, none of the activities uses
the failed resource and the set A contains activities that have been reallocated and
therefore must be checked for temporal constraint violation.

Next, the algorithm takes an activity from the set A and proceeds to repair all
violated temporal constraints associated with the activity in question. It repairs the
constraints through moving activities to the right, so that if another activity is moved,
it is added into the set A because it must be then checked for temporal constraint
violation. If the activity does no longer violate any temporal constraint, the algorithm
proceeds to another one from A.

Activities are reallocated as follows. Suppose the algorithm wants to repair a tem-
poral constraint in such a way that an activity A should be reallocated to a time point
t. Then activity A is allocated in such a way that it does not violate any resource con-
straint, which is achieved through seeking a time point t∗ (greater than or equal to time
point t) where activity A can be allocated without violating the resource constraints.
Since the activities are always allocated in such a way that no resource constraints are
violated, the routine checks only temporal constraints.

Violated temporal constraints are repaired as follows. When a temporal constraint
Start(Aj)− Start(Ai) ≤ wij is violated, then the algorithm moves the activity Ai to
the right starting from the minimal time point satisfying the constraint (= Start(Aj)−
wij). When the algorithm picks an activity to be repaired, then it iterates over all tem-
poral constraints associated with the activity being repaired until the activity satisfies
all associated constraints.

As far as the order of taking activities from A is concerned, the best heuristic with
respect to all conceivable performance measures turned out to be picking the rightmost
activity, i.e., the activity with the maximum start time. The explanation is that shifting
the rightmost activities rightwards makes free space for shifting the activities allocated
more on the left, which would otherwise have to creep over one another.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 854 -

5 STN-recovery

STN-recovery is a bit more sophisticated algorithm to tackle the resource failure. This
algorithm anticipates that moving a large number of activities by a short time is prefer-
able to moving activities a lot in time. The basic idea is to deallocate some set of already
scheduled activities and then to allocate them back again.

The point of the algorithm is to allocate connected components one after another
using Conflict-directed Backjumping with Backmarking (CBJBM) [8]. The allocation
of an activity is carried out such that the start time of the activity is continuously
incremented until an available resource at that time is found, or until the maximal
possible value of the start time (which is determined with respect to the already allo-
cated activities) is exceeded. In the former case the algorithm proceeds to allocate the
next activity, in the latter case the algorithm goes back to reallocate some previous
activity.

The Simple Temporal Network (STN) [7] is built from the temporal constraints in
the model and the STN with the All Pairs Shortest Path property (APSP) is computed
first — before the schedule execution begins. Recall that the APSP property gives
consistent maximal distances between the start times of all pairs of activities.

STN-recovery itself consists of the following six steps.

1. Find activities allocated to the failed resource and change their resource selection
to an available resource, picking the resource with the lowest usage, while keeping
the start times of the activities unchanged. Now some activities allocated on the
same resource may overlap.

2. For each resource (to which some activity has been added in step 1) shift the
activities that overlap (to the right) so as they do not overlap, and add them
into the set A. Include in A also activities that were not actually shifted but are
allocated on the right of those shifted activities on the same resource.

3. For the sake of pruning the search space of the forthcoming allocation search, add
STN constraints between the global predecessor and each activity in A so as to
enforce that they can only start at the time they are currently allocated or later.
Update the STN via Incremental Full Path Consistency [10] to preserve the APSP
property.

4. For each activity A in A, acquire the connected component the activity A be-
longs to, and for all activities in all acquired connected components compute their
MinStart values that is the maximum of (i) the current start time of the activity
and (ii) its minimal distance from the global predecessor resulting from the STN.

5. Deallocate (retract from resources) all activities in all connected components ac-
quired in step 4.

6. Take the leftmost (according to the MinStart values) non-allocated component C

and allocate all activities in C starting with its leftmost activity through CBJBM.
The activities within a connected component are allocated in the increasing order
of their MinStart values. Repeat this step until all connected components are
allocated.

6 Experimental Results

We performed experiments with randomly generated problems composed of 6 resources
in each of two resource groups. Each connected component consists of 5 activities and

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 855 -

0

200

400

600

800

1000

1200

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

1
3
1

1
3
6

1
4
1

1
4
6

1
5
1

1
5
6

1
6
1

1
6
6

1
7
1

1
7
6

1
8
1

1
8
6

1
9
1

1
9
6

2
0
1

sh
if

te
d

 a
ct

iv
it

ie
s

components

RSA

STN1

STN0

(a) Comparison for Right Shift Affected and
STN-recovery.

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

sh
if

te
d

 a
ct

iv
it

ie
s

components

RSA

STN1

STN0

MIP1f2

MIP0f2

(b) Comparison including MIP models.

Fig. 1: Modification distance: the number of shifted activities.

up to 10 temporal constraints (some may be redundant). The values of x-axes in the
following figures are the number of connected components in the model. Having more
resources in a group than the number of activities in a component ensures recoverability
from a resource failure.

To justify the claims from the introduction, the comparison also includes what
we refer to as STN0 that is the sixth (last) step of STN-recovery itself and thus
corresponds to the rescheduling from scratch. The entire STN-recovery algorithm as
described is referred to as STN1.

Further, we modelled the rescheduling problem as a Mixed Integer Program (MIP).
Having n activities and m resources, the model involves variables shri and shli for shifts
of activities to the right and to the left respectively, and binary variables rij indicating
that activity i is scheduled to resource j. This is referred to as MIP0. Further, recall
that the first five steps of the STN-recovery algorithm obtain and unschedule a set of
activities that are to be allocated in the sixth step, while the other activities remain
untouched. Suppose that each activity that is to remain untouched is fixed. This model
is referred to as MIP1.

The experiments were conducted using the mosek optimizer [2] with the following
settings. If an optimal solution is not found in 10 seconds, the engine outputs the first
integer feasible solution found. The algorithms were running on Intel(R) Core(TM)
i7-2600K CPU @ 3.40GHz, 3701 Mhz, kernels: 4, logical processors: 8; RAM: 8,00 GB.
Since the MIP models terminated only for problems containing a small number of
activities, we include one figure with and one figure without the MIP models.

The results confirm the hypotheses that the Right Shift Affected algorithm is far
better when minimizing the number of shifted activities (Figure 1), whereas the STN-
recovery algorithm is significantly better in minimizing the biggest shift of an activity
(Figure 2). As far as the total sum of shifts is concerned, STN-recovery outperforms
the Right Shift Affected, but the difference is not that big.

Right Shift Affected is somewhat faster than STN-recovery (Figure 3), however,
STN-recovery has the following advantage. The algorithm always allocates the leftmost
connected component that has not been allocated yet, therefore, when the algorithm is
allocating the connected component with the leftmost activity that has the MinStart

value t, the schedule is not going to be modified before the time point t. This allows

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 856 -

0

100

200

300

400

500

600

700

800

900

1000

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

1
3
1

1
3
6

1
4
1

1
4
6

1
5
1

1
5
6

1
6
1

1
6
6

1
7
1

1
7
6

1
8
1

1
8
6

1
9
1

1
9
6

2
0
1

th
e

 b
ig

ge
st

 s
h

if
t

components

RSA

STN1

STN0

(a) Comparison for Right Shift Affected and
STN-recovery.

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

th
e

 b
ig

ge
st

 s
h

if
t

components

RSA

STN1

STN0

MIP1f3

MIP0f3

(b) Comparison including MIP models.

Fig. 2: Modification distance: the biggest shift of an activity.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

1
3
1

1
3
6

1
4
1

1
4
6

1
5
1

1
5
6

1
6
1

1
6
6

1
7
1

1
7
6

1
8
1

1
8
6

1
9
1

1
9
6

2
0
1

ru
n

 t
im

e
 [

m
s]

components

RSA

STN1

STN0

(a) Comparison for Right Shift Affected and
STN-recovery.

0,01

0,1

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ru
n

 t
im

e
 [

m
s]

components

RSA

STN1

STN0

MIP1f1

MIP0f1

(b) Comparison including MIP models (log-
arithmic scale).

Fig. 3: Run times for the algorithms in milliseconds.

the system to keep executing the ongoing schedule even if it has not been completely
recovered yet.

7 Conclusion and Future Goals

This paper described two different methods to handle a resource failure, i.e., a dis-
ruption when a resource suddenly cannot be used anymore by any activity. The first
method is suitable when it is desired to move as few activities as possible; however, the
question whether the algorithm always ends is still open. The second method is useful
when the intention is to shift activities by a short time distance, regardless of the num-
ber of moved activities. The main shortcoming is that if there is no feasible recovery of
the ongoing schedule, neither of the methods is able to quickly and securely report it.
In real-life environments, however, the schedule recoverability from the breakdown of
any particular machine is often known (for instance the minimum required number of
available resources of each resource group may be obvious) or can be computed before
the schedule execution begins.

This work also compared the suggested algorithms to the Mixed Integer Program-
ming models. Solving the models using the mosek optimizer turned out to be uncom-

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 857 -

petitive with the two suggested algorithms. A more detailed description of the methods
and the MIP models may be found in [5].

Our further task is to propose a new technique, which, in response to unforeseen
events, will not only modify the allocation of already scheduled activities, but will be
able to replace some activities in the original schedule by a set of other (not scheduled)
activities by searching through alternative branches, i.e., to replan some (ideally the
smallest necessary) subset of the schedule.

Acknowledgements This research is partially supported by SVV project number 260 224
and by the Czech Science Foundation under the project P103-15-19877S.

References

1. Abumaizar, R.J., Svestka, J.A.: Rescheduling job shops under random disruptions. Inter-
national Journal of Production Research 35(7), 2065–2082 (1997)

2. Andersen, E.D., Andersen, K.D.: The mosek interior point optimizer for linear program-
ming: an implementation of the homogeneous algorithm. In: High performance optimiza-
tion, pp. 197–232. Springer (2000)

3. Barták, R., Čepek, O.: Nested temporal networks with alternatives. In: AAAI Workshop
on Spatial and Temporal Reasoning, Technical Report WS-07-12, AAAI Press, pp. 1–8
(2007)

4. Barták, R., Jaška, M., Novák, L., Rovenský, V., Skalický, T., Cully, M., Sheahan, C.,
Thanh-Tung, D.: Flowopt: Bridging the gap between optimization technology and manu-
facturing planners. In: Luc De Raedt et al. (Eds.): Proceedings of 20th European Confer-
ence on Artificial Intelligence (ECAI 2012), pp. 1003–1004. IOS Press (2012)

5. Barták, R., Vlk, M.: Machine breakdown recovery in production scheduling with simple
temporal constraints. Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes
in Computer Science) (2015). To appear

6. Brailsford, S.C., Potts, C.N., Smith, B.M.: Constraint satisfaction problems: Algorithms
and applications. European Journal of Operational Research 119(3), 557–581 (1999)

7. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial intelligence 49(1),
61–95 (1991)

8. Kondrak, G., Van Beek, P.: A theoretical evaluation of selected backtracking algorithms.
Artificial Intelligence 89(1), 365–387 (1997)

9. Ouelhadj, D., Petrovic, S.: A survey of dynamic scheduling in manufacturing systems.
Journal of Scheduling 12(4), 417–431 (2009)

10. Planken, L.R.: New algorithms for the simple temporal problem. Ph.D. thesis, TU Delft,
Delft University of Technology (2008)

11. Raheja, A.S., Subramaniam, V.: Reactive recovery of job shop schedules – a review. In-
ternational Journal of Advanced Manufacturing Technology 19, 756–763 (2002)

12. Skalický, T.: Interactive scheduling and visualisation. Master’s thesis, Charles University
in Prague (2011)

13. Smith, S.F.: Reactive scheduling systems. In: D. Brown and W. Scherer (eds.), Intelligent
scheduling systems, pp. 155–192. Springer US (1995)

14. Vieira, G., Herrmann, J., Lin, E.: Rescheduling manufacturing systems: a framework of
strategies, policies, and methods. Journal of Scheduling 6, 39–62 (2003)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 858 -

MISTA 2015

Primal Heuristics for the Vehicle Routing Problem with
Synchronized Visits

Sohaib Afifi · Aziz Moukrim

Abstract The aim of the paper is to solve exactly a new variant of the vehicle routing

problem with time windows which includes synchronization visits. A new formulation

is proposed and solved using boosting methods. We propose some dedicated primal

heuristics and node feasibility checks. The results compared to a previous formulation

and to a standard solver show the efficiency of this type of combination.

1 Introduction

This paper provides a new solution method for a particular variant of the vehicle routing

problem (VRP). The problem is called VRP with synchronized visits (VRPTWSyn). In

addition to the time windows constraints, we consider that for some customers, we need

more than one visit, e.g., two visits from two different vehicles are required to complete

the service. Visits associated with a particular customer need to be synchronized, i.e.

having the same start time.

VRPTWSyn was first studied by Bredström and Rönnqvist [5] considering an ap-

plication in home-care services for elders. The authors proposed a mathematical formu-

lation and studied the role of the synchronization constraints. As a continuity, the same

authors proposed in [4] a branch-and-price algorithm. A meta-heuristic approach based

on a simulated annealing schema with some dedicated local searches has been proposed

by Afifi et al. [1]. Later, Labadie et al. [7], in a preliminary work, proposed an iterative

local search algorithm and presented some results on the small and medium sized in-

stances. Rousseau et al. [9] considered a dynamic case of the problem and proposed a

heuristic method with a constraint programming component. General perspectives of

temporal constraints for vehicle routing can also be found in the survey [6] and for the

home health care service in [8].

Sohaib Afifi · Aziz Moukrim
Sorbonne universités, Université de Technologie de Compiègne, CNRS, laboratoire Heudiasyc
UMR 7253, CS 60 319, 57 avenue de Landshut 60 203 Compiègne cedex
E-mail: {sohaib.afifi, aziz.moukrim}@hds.utc.fr

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 859 -

2 The method

The formulation presented in Bredström and Rönnqvist [5] uses O(mn2) binary vari-

ables and O(mn2) constraints, where n is the number of customers and m the number

of vehicles. In this paper, we propose and use a new linear formulation for VRPTWSyn

adapted from the one presented in Bard et al. [3]. It uses O(n2) binary variables and

O(n2) constraints.

Beside the use of the light formulation, our aim in this work is to boost its execu-

tion by keeping the Branch-and-bound tree small and by discovering feasible solutions

earlier in the process. Primal heuristics are a very important aspect for MIPs. We

developed and tested a number of heuristics dedicated to our problem and discussed

their integration into the branch-and-bound process. We count three types of primal

heuristics: start heuristics, diving heuristics and improvement heuristics. Most of them

explore the components developed and presented in [1].

Start heuristics aim at finding a feasible solution before the beginning of the tree

exploration, usually at the presolving stage or at the root node. It uses the construction

operator described in [1] and is run only at the beginning of the process.

Diving heuristics aim at finding a feasible solution early in the Branch-and-Bound-

process without the need to branch on all the variables following the quickly go-down

strategy. One can simply change the feasibility graph according to the fixed variables at

the current node and then run the construction algorithm on the new reduced problem

defined by this graph.

Improvement heuristics are algorithms that aim to form a new feasible solution of

better objective value out of the current incumbent. This counts four neighborhoods

which are randomly executed in some nodes, TwoOpt*, OrOpt, Move and Exchange [1].

Another strategy is to keep the Branch-and-bound tree small by checking the fea-

sibility of the current node using dedicated checkers which explore the problem specifi-

cations. In this path, we used the energetic reasoning and the clique methods proposed

in [2] for the VRPTW. At every node a new problem is created considering the local

constraints defined at the current node. Then either energetic reasoning or maximum

clique are checked so the number of tours needed to serve all the visits respecting the

current constraints should not exceed the maximum number of vehicles.

3 Experimentation

The experimentations are done on the standard instances of Bredström and Rönnqvist

[5]. The benchmark, which was generated to simulate the scheduling problem in home-

care services, comprises 10 data sets. Each contains three types of instances based on

the size of the time windows. We implemented the branch-and-cut algorithm in C++

using the framework SCIP with IBM Ilog Cplex 12.6 as underlying LP solver. The

program is compiled with GNU GCC in a Linux environment.

The heuristics presented here are able to generate feasible solutions quickly. They

reduce the calculation time while keep improving the quality of the solutions. In the

other hand, the feasibility check used can predict infeasibility in earlier stages and

hence reducing the time used to improve the dual bound. Figure 1 shows an example

on an average size instance and how introducing these techniques reduced considerably

the cpu time on both sides, primal and dual solutions.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 860 -

0 600 1200 1800 2400 3000 3600
6

6.5

7

7.5

8

8.5

9

SCIP NO SCIP Heur

CPU (seconds)

Pr
im

al
 /

D
ua

l

7.5

7.7

Optimal solution

Fig. 1 Development of the primal and dual bound, if MIP processes instance 6M, with default
settings (continued line) and with our heuristics (dashed).

Acknowledgements This work was partially supported by the National Agency for Research,
under TCDU project, reference ANR-14-CE22-0017 and was carried out in the framework
of the Labex MS2T, which was funded by the French Government, through the program
“Investments for the future” managed by the National Agency for Research (Reference ANR-
11-IDEX-0004-02).

References

1. Afifi S, Dang DC, Moukrim A (2013) A simulated annealing algorithm for the vehicle

routing problem with time windows and synchronization constraints. In: Proc. of

LION-7, Lecture Notes in Computer Science, vol 7997, pp 259–265

2. Afifi S, Guibadj RN, Moukrim A (2014) New lower bounds on the number of vehicles

for the vehicle routing problem with time windows. In: CPAIOR 2014, Cork, Ireland,

Springer, Lecture Notes in Computer Science, vol 8451, pp 422–437

3. Bard J, Kontoravdis G, Yu G (2002) A branch-and-cut procedure for the vehicle

routing problem with time windows. Transportation Science 36(2):250–269

4. Bredström D, Rönnqvist M (2007) A branch and price algorithm for the combined

vehicle routing and scheduling problem with synchronization constraints. NHH Dept

of Finance and Management Science Discussion Paper

5. Bredström D, Rönnqvist M (2008) Combined vehicle routing and scheduling with

temporal precedence and synchronization constraints. European Journal of Opera-

tional Research 191(1):19–31

6. Drexl M (2012) Synchronization in vehicle routing-a survey of vrps with multiple

synchronization constraints. Transportation Science 46(3):297–316

7. Labadie N, Prins C, Yang Y (2014) Iterated local search for a vehicle routing problem

with synchronization constraints pp 257–263

8. Mankowska DS, Meisel F, Bierwirth C (2014) The home health care routing and

scheduling problem with interdependent services. Health care management science

17(1):15–30

9. Rousseau LM, Gendreau M, Pesant G (2013) The synchronized dynamic vehi-

cle dispatching problem. INFOR: Information Systems and Operational Research

51(2):76–83

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 861 -

MISTA 2015

Comparison of EATTS and XHSTT - Towards a Unified
Description Language for Timetabling Problems

M. Müller · J. Ostler · P. Wilke

Abstract Researchers and users of timetabling algorithms would like to benchmark
the different approaches and implementations. One approach is the usage of the same
dataset or specification of the problem presuming that such a uniform description
exists.

Here we compare two specification languages, EATTS and XHSTT, capable to
describe all aspects of a timetabling problem, including input data, constraints and
solutions. In addition we will show that the set of problems which can be specified by
EATTS includes those which can be specified by XHSTT but not vice versa.

It would be quite useful if a single standardized description language would be
established so we request comments on which directions further developments should
go.

1 Introduction

Timetabling problems belong to the most popular classes of optimization problems
and therefore, different approaches have been published which consist of descriptions
of the problem and possible solution strategies. It is obvious that in order to com-
pare such solution strategies and/or particular solutions, it is essential to use the same
database. Since diverse approaches use different and probably incompatible descrip-
tion languages, the use of either transformations between the languages or a unified
description mechanism becomes necessary.

In this work, two already existing ways of specification will be discussed and com-
pared to each other. Furthermore, a transformation between both specification formats
will be proposed with emphasis on the most significant issues encountered during this
transformation’s modelling.

Multi Criteria Optimisation Group
Pattern Recognition Lab
Computer Science Dept.
University Erlangen-Nuernberg, Martensstrasse 3, 91058 Erlangen, Germany
E-mail: Peter.Wilke@FAU.DE

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 862 -

2 Related Work

Timetabling problems originate from different (real world) situations, which result in di-
verse types of problem (e.g. nurse rostering, school time tabling, staff absence planning).
Therefore, description languages for such frameworks develop individually and with
emphasis on specific aspects of the problems. A specification language can either be
designed to describe one specific type of timetabling problem, for which it is optimized.
Or it can be designed to be as general as possible, and can thus be used to describe
timetabling problems of almost any kind. XHSTT [Post et al(2010)Post, Kingston et al,
Post et al(2014)Post, Kingston et al] is an example for the former case, specialized in
high school timetabling. The timetabling framework EATTS [Ostler and Wilke(2010)],
in contrast, represents the general approach.

3 Comparison of the Approaches

The main difference between EATTS and XHSTT is the specification of planning events
and their handling during the making and change of assignments in the optimization
phase.

3.1 XHSTT –Approach of the University of Twente

XHSTT distinguishes between two different types of planning events: those that are
defined in the specification as events that are to be planned (called instance events)
and those that are part of the solution (called solution events). Each instance event
consists of a duration and of various slots (event resources) for resources that are
required for this event; these event resources can be fixed references, i.e. pointers to
existing resources, or formal descriptions of required resources which are of a given
type and are to fulfil a given role within the event

In order to satisfy the instance event, a solver needs to generate one or more solution
events. Each solution event, which corresponds to a given instance event, should be
assigned resources according to the resource lists given in this enclosing instance event.
In other words, the XHSTT approach requires the solver to create new events during
the optimization phase.

Another property of this framework worth being mentioned is the discrete character
of the defined time slots. By default, each time slot has the canonical duration of
1 time unit. In case that longer planning periods are required they are specified by
the slot’s membership in a corresponding resource group (called time group) which
contains all the time slot resources of this period.

3.2 EATTS – Approach of the University of Erlangen

In the EATTS framework, the same format is used for problem specification (input)
and solution specification (output) of problems. Whilst he specification of required
resources is analogous to the one of XHSTT, events and times are handled differently.
Each event which is subject to assignments in a solution or during the optimisation
phase has to be defined in the specification, and no further events can be created after

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 863 -

Fig. 1 Event Declaration XHSTT versus EATTS

the start of the optimisation. Each splitting of an event is implemented by assigning a
set of (not necessarily consecutive) time slot resources to this event instead of creating
new solution events with their own assigned times and resources.

In contrast to XHSTT, time slots in EATTS are defined by a discrete start time
and duration.

Fig. 1 shows the two different ways how a high school timetabling event is specified.
In both cases 2 different teachers are able to give Math for class 10A with length 3 time
slots. In addition EATTS allows to specify a list of available and suitable resources (like
rooms), while in XHSTT suitable resources are identified by constraints.

3.3 Comparison

The differences in both approaches cause problems to a possible computational trans-
formation of specification files between them. They also have a non-negligible impact
on the way a solver computes solutions as well as on the solution space itself. The most
apparent advantage of the XHSTT format over EATTS is a direct consequence of the
fact that EATTS does not allow its events to have different assignments for different
time slots, but rather one single assignment for the whole event. This also implies that
the assigned resources of any event with duration greater than one will be busy during
all the time slots assigned to that event. In contrast, XHSTT’s instance events pro-
duce solution events, with each having its own resources assigned to the resource slots
specified in the instance event. This results in an increased flexibility for the overall
possible assignments of resources to all existing events, and in an extended solution
space for XHSTT.

A further observation made during the design of the transformation is that it can
make a significant difference for the solver and the solution space, whether specific
solution properties are guaranteed by the optimisation framework or controlled by
constraints. Assume, for example, a teacher who does not wish to work on Wednesdays
- for whatever reason. An optimisation framework can then either use an (explicit)
constraint which returns a non-zero cost in case this teacher is assigned to events
taking place on Wednesday, or not make such assignments at all. In the latter case,
the (implicit) constraint will always be satisfied, but no solutions can be created which
violate it but maybe show better overall fitness values or lead the optimisation strategy
to better solutions.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 864 -

4 Transformation of Specifications - Semantic hierarchy

Now we focus on the semantic power of both approaches. We will proof that:

L(XHSTT) ⊂ L(EATTS)

E.g. all descriptions given in the language L(XHSTT) generated by XHSTT can
also be expressed in EATTS. As XHSTT is tailored to specify high school timetabling
problems the set of describable problems is smaller than that of EATTS, i.e.:

L(XHSTT) 6= L(EATTS)

In order to obtain a viable computational transformation between the two formats,
a parser was designed and implemented, which is able to read specification file of the
XHSTT format and generate files of the EATTS format, such that the semantic is
preserved. This parser processes XML files and generates an internal attributed syntax
tree (the data structure used by EATTS). The parser was implemented using the
recursive descendent approach. Before the start of the parsing, a semantic analyser
checks the XML file for possible inconsistencies.

The transformation consists of the following tasks:

1. reading in the time slots, resources and resource types,
2. converting the discrete atomic time slots to a continuous representation,
3. grouping time slots and resources,
4. reading in and preprocessing the instance events (see below),
5. grouping the events,
6. reading in the constraints.

Due to the different concepts to represent events internally, some additional prepro-
cessing steps are necessary. In detail for each instance event in the XHSTT specification:

1. read in the instance event’s duration d and required resources,
2. calculate the number n of atomic time units to represent d,
3. generate n event data structures in the EATTS framework while preserving the

information about their origin.

These n events represent potential solution events in the sense of XHSTT. While
the necessary data structures for the administration of events were already available in
EATTS, additional procedures had to be implemented in order to provide the solution
event character. For example, consider an instance event of duration 2 time units,
requiring 1 teacher as its resource. The parser then generates 2 EATTS-events and
stores them in EATTS. As soon as the solver wants to assign a time slot to the instance
event, the control mechanisms picks one of the 2 generated events, assigns the time
and releases the event for assignment of teacher resources.

5 Current State of the Work, possible Enhancements, and future Work

As of today, the parser successfully transforms timetabling problems from the XHSTT
format to both EATTS internal representations and specification files. It is not re-
stricted to specific problem instances, but is able to parse any problem file complying
the XML documentation given by the Univ. Twente [Post(2015)].

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 865 -

Work in progress is the use of the above mentioned control mechanisms, which
assert the event handling according to XHSTT. Tests executed so far indicate that the
handling of events works as expected and accordingly to XHSTT.

An interesting topic for future work is the difference in the handling of specific
constraints, as explained in sec. 3.3. It could be worth investigating the impact of
implicit or explicit execution of constraints regarding runtime behaviour and solution
quality.

Furthermore, it would be desirable to compare solutions of both approaches with
each other. Therefore it is necessary to transform solutions to a unified format.

Acknowledgements Special thanks goes to the research group at the Centre for Telematics
and Information Technology at the University of Twente.

References

Ostler and Wilke(2010). Ostler J, Wilke P (2010) The Erlangen Advanced Timetabling Sys-
tem (EATTS) Unified XML File Format for the Specification of Timetabling Systems.
In: Proceedings of the 8th International Conference on the Practice and Theory of Au-
tomated Timetabling, Patat 2010 - Queen’s University Belfast, pp 447–464, URL http:
//www.cs.qub.ac.uk/~b.mccollum/patat10/Proceedings_patat10.pdf

Post(2015). Post G (2015) Benchmarking project for (High) School Timetabling. URL http:
//www.utwente.nl/ctit/hstt/

Post et al(2010)Post, Kingston et al. Post G, Kingston JH, et al (2010) An XML Format for
Benchmarks in High School Timetabling II. In: Proceedings of the 8th International Con-
ference on the Practice and Theory of Automated Timetabling, Patat 2010 - Queen’s
University Belfast, pp 347–352, URL http://www.cs.qub.ac.uk/~b.mccollum/patat10/
Proceedings_patat10.pdf

Post et al(2014)Post, Kingston et al. Post G, Kingston JH, et al (2014) XHSTT: an XML
Archive for High School Timetabling Problems in Different Countries. In: Annals of Oper-
ations Research, pp 295–301

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 866 -

http://www.cs.qub.ac.uk/~b.mccollum/patat10/Proceedings_patat10.pdf
http://www.cs.qub.ac.uk/~b.mccollum/patat10/Proceedings_patat10.pdf
http://www.utwente.nl/ctit/hstt/
http://www.utwente.nl/ctit/hstt/
http://www.cs.qub.ac.uk/~b.mccollum/patat10/Proceedings_patat10.pdf
http://www.cs.qub.ac.uk/~b.mccollum/patat10/Proceedings_patat10.pdf

MISTA 2015

Mixed-criticality scheduling with known probabilities

Yasmina Seddik · Zdenek Hanzalek

1 Introduction

We consider n jobs J1, . . . , Jn to be processed on a single machine. For i = 1, . . . , n,

job Ji has a release date ri ≥ 0 and a criticality level Li ∈ N∗: the greater is Li, the

more critical is Ji. Job Ji has Li possible processing times 0 < pi,1 < . . . < pi,Li
,

as well as a deadline d̃i ≥ ri + pi,Li
. Moreover, each job Ji has a weight wi > 0. All

the parameters are integer. The actual processing time of job Ji is uncertain (it takes

one of the values pi,1, . . . , pi,Li
) and is only known at runtime: we denote it by pi. If

pi = pi,j we say that j is the execution level of Ji, j ∈ {1, . . . , Li}.
Notice that the criticality level of a job is known in advance, while its execution

level is only known at runtime. The execution level of a job is smaller than or equal to

its criticality level.

In the following, we represent mixed-criticality jobs by “F-shapes” as in Figure 1.

Jj

pj,1

pj,2

pj,3

Level 1

Level 2

Level 3

Fig. 1 Representation of a mixed-criticality job with criticality level 3

Yasmina Seddik
Czech Technical University, Prague, Czech Republic
E-mail: yasmina.seddik@fel.cvut.cz

Zdenek Hanzalek
Czech Technical University, Prague, Czech Republic
E-mail: hanzalek@fel.cvut.cz

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 867 -

A schedule S is defined as a vector (s1, . . . , sn) where si is the starting time of job

Ji in S. We define a feasible schedule S = (s1, . . . , sn) as a schedule that satisfies the

following conditions (cf. Figure 2):

1. Release dates and deadlines constraints are fulfilled: ∀i ∈ {1, . . . , n}: si ≥ ri and

si + pi,Li
≤ d̃i;

2. At each level of criticality, jobs do not overlap. Equivalently, jobs do not overlap at

their highest common level: ∀i, j ∈ {1, . . . , n} s.t. si < sj , we have: si + pi,k ≤ sj ,

with k = min(Li, Lj).

J1

J2

J3 J4

r1 r2r3

d̃4

d̃3
d̃1d̃2

J5

J6

r4 r5 r6

J7

r7

d̃5

d̃6

d̃7

1

2

3

4

5

Fig. 2 A feasible schedule

At runtime, jobs with lower criticality levels can be rejected (i.e. not executed) to

allow the execution of more critical jobs. For instance, on the example of Figure 2, if

job J5 is executed until time d̃5, then J6 is not executed. At runtime, each job Ji starts

its execution at its starting time si if and only if the machine is idle at time si. If a

job Ji is started, it is completed, whatever is its processing time at runtime.

We assume that probabilities of execution levels are known for every job, i.e. the

probability of job Ji to be executed for pi,j time units, given that job Ji is not rejected,

i = 1, . . . , n, j = 1, . . . , Li. Given a feasible schedule S = (s1, . . . , sn), we denote by Pi

the probability that job Ji is processed (not rejected). The objective function (defined

in the next paragraph) of the considered problem is a function of values P1, . . . , Pn. The

value of Pi, i = 1, . . . , n, depends on the jobs covering Ji in S, where the “coverage” is

defined as follows. Given a feasible schedule S = (s1, . . . , sn) and two jobs Ji, Jj in S,

we say that job Ji covers job Jj iff si < sj < si + pi,Li
. On the example of Figure 2,

job J1 covers jobs J2, J3, J4, J5; job J2 covers J3 and J4; and job J5 covers J6. Notice

that a job that is not covered has Pi = 1.

In order to maximize the average weighted probability to execute the jobs, our aim

is to compute a feasible schedule that maximizes the following criterion:
∑n

i=1 wiPi.

In the classical three-field notation of Graham et al. [5], we denote this problem by

1|ri, d̃i,mc,mu|
∑n

i=1 wiPi (where mc stands for mixed-criticality and mu for match-

up, see Section 2). Notice that the considered optimization criterion is non-regular, i.e.

left-shifted schedules are not dominant.

2 Application and related work

Mixed-criticality framework was first introduced by Vestal [7], to schedule functionali-

ties with different criticalities, on embedded systems. Each job Ji has a criticality level

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 868 -

Li ∈ N. The greater is Li the more critical is Ji. For each job, several estimations of

its processing time are considered, one for each level of criticality: each job Ji has Li

different processing time estimations. Optimistic estimations reflect the average, more

realistic, behavior of the jobs. Pessimistic (and thus safer) estimations represent worst

case executions. In order to achieve the tradeoff between safety guarantees and effi-

cient resource usage, the multiple processing time estimations of a job are taken into

account, following the current criticality level of the system. Initially, the criticality

level of the system is 1. As soon as some job is executed for longer than its processing

time estimation corresponding to the current level of the system, the criticality of the

system increases by one unit. When the criticality level of the system is equal to some

value l, the execution of all the jobs with criticality level at least equal to l must be

guaranteed, while jobs with a lower criticality level can be rejected, in order to execute

higher criticality jobs.

Most of the previous works on mixed-criticality [3] consider systems where jobs are

scheduled in an event-triggered manner, i.e. fixed priority or EDF policies are applied

online by the operating system scheduler. In such a context, for safety reasons, if the

system switches to a higher criticality level, it does not switch back again to a lower

level. For instance, if the system switches to criticality level 2, then no jobs with criti-

cality level 1 are executed any more. This can lead to an important waste of resources,

especially when the criticality level of the system is raised at the beginning. We consider

here a different framework, where arrival times (release dates) and deadlines of the jobs

are known in advance. We adopt the task model from Hanzalek et al. [6] that, following

the idea of match-up scheduling [1,2], allows switching back to a lower criticality level,

to improve the efficiency of resource usage. A practical application of such a model

is scheduling of messages in automotive embedded systems. Jobs are nonpreemptive,

since the particular structure of messages does not allow resuming their sending af-

ter interruption. European standards define four criticality levels, corresponding (from

highest to lowest criticality) to chassis, engine, driver’s assistance and infotainment

components. While Hanzalek et al. [6] minimize the makespan criterion, in this work

we optimize instead a new criterion, related to jobs execution probabilities.

3 Complexity and algorithms

Problem 1|ri, d̃i,mc,mu|
∑n

i=1 wiPi is strongly NP-hard. Indeed, even the problem

1|ri, d̃i,mc,mu|feasibility of finding a feasible sequence is strongly NP-hard, since it

is a generalization of the strongly NP-hard problem ”Sequencing with release times and

deadlines” [4]. We show that the special case 1|ri, d̃i,mc,mu, ord|
∑n

i=1 wiPi where the

jobs sequence order is given is weakly NP-hard. Indeed, we show that even the prob-

lem 1|d̃i = d̃,mc, 2lev,mu, ord|
∑n

i=1 wiPi with given jobs sequence order, with two

criticality levels, no release dates and a common deadline is NP-hard (reduction of

Knapsack problem). Moreover, we provide a pseudopolynomial time algorithm (dy-

namic programming) for 1|ri, d̃i,mc,mu, ord|
∑n

i=1 wiPi.

Finally, for problem 1|ri, d̃i,mc,mu|
∑n

i=1 wiPi we propose a dedicated Branch

and Bound algorithm. During the search, a node can be pruned for two reasons: it

does not lead to any feasible sequence, or it does not lead to an optimal schedule

(w.r.t.
∑n

i=1 wiPi). The first pruning rule consists in applying elimination rules to

each criticality level separately, as each criticality level corresponds to a scheduling

problem with known processing times. The second pruning rule relies on an upper

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 869 -

bound on the payoff of a jobs sequence, which is a new dedicated bound for this

problem. Each node of the search tree represents a (partial) sequence of jobs. Each

node is obtained by appending an unsequenced job at the end of the jobs sequence

of its parent node. At each leaf node (i.e. representing a complete sequence of the

jobs), a corresponding optimal schedule is computed by solving a Mixed Integer Linear

Program for the problem with given jobs sequence order. Experiments on randomly

generated instances show that the algorithm solves most instances with up to 90 jobs

in a reasonable time.

4 Conclusion

We considered a mixed-criticality scheduling problem with a new, non-regular, crite-

rion. The problem is known to be strongly NP-hard, even in its feasibility version. We

studied the problem where the sequence of jobs is given and showed that it is weakly

NP-hard, by providing a pseudopolynomial time algorithm and by showing that the

problem with given jobs order, with two criticality levels, no release dates and a com-

mon deadline is already NP-hard. Finally, we designed a dedicated upper bound for

the general problem (no given jobs sequence order) as well as a MILP formulation for

the special case with fixed sequence of jobs; which were used in the implementation of

a Branch and Bound algorithm for the general problem.

Further work includes designing heuristic algorithms to solve larger instances. This

could be done by exploiting the branch and bound structure to explore feasible se-

quences, while evaluating sequences at leaf-nodes with a heuristic algorithm instead of

a MILP.

Acknowledgements The authors would like to thank Andrei Furtuna, student at Czech
Technical University, for his implementation of the Branch and Bound algorithm. This work
was supported by the Ministry of Education of the Czech Republic under the project ”Support
for improving R & D teams and the development of intersectoral mobility at CTU in Prague”
number CZ.1.07/2.3.00/30.0034.

References

1. M Selim Akturk and Elif Gorgulu. Match-up scheduling under a machine breakdown.
European journal of operational research, 112(1):81–97, 1999.

2. James C Bean, John R Birge, John Mittenthal, and Charles E Noon. Matchup scheduling
with multiple resources, release dates and disruptions. Operations Research, 39(3):470–483,
1991.

3. Alan Burns and Rob Davis. Mixed criticality systems: A review. Technical report, Technical
report, University of York, 2014.

4. Michael R Garey and David S Johnson. Computers and Intractability: a guide to NP-
completeness. WH Freeman New York, 1979.

5. Ronald L Graham, Eugene L Lawler, Jan Karel Lenstra, and AHG Kan. Optimization
and approximation in deterministic sequencing and scheduling: a survey. Annals of discrete
mathematics, 5:287–326, 1979.

6. Zdenek Hanzalek, Tomas Tunys, and Premysl Sucha. Non-preemptive mixed-criticality
match-up scheduling problem. Technical report, Technical report, submitted to Journal of
Scheduling, 2014.

7. Steve Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of
execution time assurance. In Real-Time Systems Symposium, 2007. RTSS 2007. 28th IEEE
International, pages 239–243. IEEE, 2007.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 870 -

MISTA 2015

Student Scheduling Problem At Université de
Technologie de Compiègne

Taha Arbaoui · Abdelhadi Azouni ·
Jean-Paul Boufflet · Aziz Moukrim

Abstract Students at Université de Technologie de Compiègne (UTC) are allowed
to design their curriculum by selecting courses from large course pools. There are
today six engineering degrees (high-level master). The assignment is performed using
a heuristic designed some years ago. The number of students, courses and curricula
increased over the years and this heuristic reached its limit. Time-consuming manual
post-processing is required to obtain the individual planning for each student not
assigned by the heuristic. We propose a MIP model to maximize the number of
assigned students while managing limited resources. Optimal solutions are achieved
for each instance and are strictly better than those computed by the heuristic. We
investigated the impact of clique inequalities on computing times.

1 Introduction

University timetabling problems are faced by universities each year. Course and
exam timetabling are the most encountered problems in the literature. According to
institutions, the Student Scheduling Problem (SSP) is either explicitly or implicitly
included in the design of course timetabling. We refer the reader to Schaerf [6] for
detailed review on course and exam timetabling.

Despite the fact that SSP covers a large variety of real situations, the core problem
is to assign the maximum number of students to sections of their chosen courses
while having for each assigned student an individual timetable that is conflict-free.
Secondary objectives such as balancing the number of students in the sections of
courses may also be encountered.

SSP is not as widely discussed as course and exam timetabling problems. Laporte
and Desroches [3] provided a mathematical model that considers a number of hard
and soft constraints. The constraints were grouped according to the population con-
cerned i.e. students, university, teachers, etc. Cheng et al. [1] referred to their SSP
problem as part of solving the American high school timetabling problem. The goal is

Taha Arbaoui, Abdelhadi Azouni, Jean-Paul Boufflet, Aziz Moukrim
Sorbonne universités, Université de Technologie de Compiègne, CNRS, laboratoire Heudiasyc
UMR 7253, CS 60319, 57 avenue de Landshut 60203 Compiègne cedex France
E-mail: {taha.arbaoui,azouniab,jean-paul.boufflet,aziz.moukrim}@utc.fr

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 871 -

to respect the list of student preferences while having a conflict-free timetable. They
demonstrated that SSP is an NP-hard problem and presented a multi-commodity
flow formulation. Van den Broek et al. [8] presented the SSP at the TU Eindhoven
and provided two problem formulations. They presented complexity results for vari-
ants of the problem. For further solving approaches and discussions on SSP, we refer
the reader to [2,5,7].

2 Problem description

An academic year at Université de Technologie de Compiègne (UTC) is split into
two semesters. There are five engineering degrees decomposed into a two-year cycle
called “fundamental studies” followed by a three-year cycle called “major studies”.
There exists a master program with four majors and fourteen specializations. Eight
departments share the same premises. Every semester, a set of timetables of about
three hundred Units of Value (UV) is built and there are in average two thousand
and five hundred students. A UV is composed of activities and for each activity
there is a set of sections to be scheduled either weekly or fortnightly. Each section
corresponds to events in the timetable and an event is usually a time slot, a room and
a teacher. There are a thousand and four hundred sections in average. Timetables
are built based on enrollment forecasts while taking into account constraints related
to teachers and rooms. The choice of UVs from different curricula is allowed.

The set of timetables are made available for students at each beginning of semester.
Each student chooses at most seven UVs and has to check that at least a conflict-free
timetable exists using the set of timetables. Enrollments being known, timetables are
updated, few sections are created and some others are cancelled according to actual
enrollments and resource availabilities. Updates of the timetables being performed,
we have no guarantee that all students can be scheduled. Today, the heuristic cannot
find a schedule for all students. This heuristic operates in two steps. First a greedy
algorithm tries to schedule a maximum number of students but some students are
left unassigned. Second a hill climbing based stage is performed to improve the solu-
tion. Our goal is to optimally schedule a maximum number of students to one section
for each activity of the chosen UVs while optimizing the usage of certain resources
simultaneously required by some sections.

3 Mathematical Model

We denote S the set of students. The set of different activities is denoted A, and,
for a student s, As is the set of activities of chosen UVs. K and Ka denote the set
of sections and the set of sections for an activity a respectively. The set of couples
of sections [k, k′] for which k and k′ require a same disjunctive resource is denoted
F . Decision Boolean variables Ts = 1 when student s is assigned into one section for
each activity from As, Ysa = 1 if student s is assigned to a section of activity a, and
Zsak = 1 when student s is assigned to section k of activity a. Parameter pk is the
capacity of section k (i.e the maximum number of students one can assign to section
k). For a student s enrolled in two sections, they are in conflict if student s cannot
be assigned to both simultaneously. mkk′ = 1 if sections k and k′ are in conflict,

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 872 -

0 otherwise. Values mkk′ are entries of the adjacency matrix of the general conflict
graph between sections.

We propose the following formulation to maximize the number of students sched-
uled into one section for each activity of chosen UVs:

Maximize: ∑
s∈S

Ts (1)

subject to:
∀s ∈ S |As|Ts ≤

∑
a∈As

Ysa (2)

∀s ∈ S ∀a ∈ As Ysa =
∑

k∈Ka

Zsak (3)

∀a ∈ A ∀k ∈ Ka

∑
s∈S

Zsak ≤ pk (4)

∀s ∈ S
∀a ∈ As

∀k ∈ Ka

∑

a′∈As

k′∈Ka′
k′ 6=k

mkk′ Zsa′k′ + (
∑

a′∈As

k′∈Ka′
k′ 6=k

mkk′)Zsak ≤
∑

a′∈As

k′∈Ka′
k′ 6=k

mkk′ (5)

∀[k, k′] ∈ F let a, a′such that:
k ∈ Ka, k′ ∈ Ka′ ∀s ∈ Sa

} ∑
s′∈Sa′

Zs′a′k′ + pk′ Zsak ≤ pk′ (6)

Ts, Ysa, Zsak ∈ {0, 1} (7)

Equations (2) set Ts = 1 if student s is assigned into a unique section for each
chosen activity. Equations (3) link the decision variables Ysa and Zsak. Section ca-
pacities are enforced using Equations (4). Conflicts between two sections k and k′

are enforced using Equations (5). Resource disjunction between sections is managed
using Equations (6). The model succeeds to attain optimal solutions on ten real in-
stances of our university while managing disjunctive resources whereas the heuristic
cannot deal with. The results are strictly better than those obtained by the heuristic.

To speed up the solving process we investigated the impact of clique inequalities
on computation times. When there is a large number of cliques, we focus on maximal
cliques. Unfortunately, since we may also have a large number of maximal cliques,
adding all the maximal clique inequalities may slow down the solving process. We
studied on our problem the impact of clique inequalities by fixing a threshold on the
clique sizes to be considered.

4 Investigating the impact of clique valid inequality

A clique in the general conflict graph may correspond to many students. So, we use
the induced conflict graph relative to a student s to build Cs: the set of maximal
cliques for sections ∪a∈As Ka and we propose:

∀s ∈ S ∀c ∈ Cs

∑
k∈c, k∈Ka

Zsak ≤ 1 (8)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 873 -

Fig. 1 Impact of clique valid inequalities

Each clique c is a set of sections that cannot be allocated to the same student
at the same time. Tests were done using CPLEX 12.5 IBM (2012) MIP solver with
a single thread, gcc 4.4.7, on a machine with an Intel core i7 950@3.07GHz and
24GB of RAM under linux fedora core 19. We used [4] to compute each Cs and it
takes few seconds for all students. For some instances there are more than 50 000
maximal cliques, so we studied the impact of using maximal clique sizes greater than
or equal to a threshold. Figure 1 shows the impact on computing times of adding
all the maximal cliques larger than or equal to a threshold. A bar corresponds to
the total computing time for the instances reported in seconds. Bar “No” stands for
no clique inequalities. The other bars show the results obtained when using all the
maximal cliques greater than or equal to 3, 5, 7, 9 and 11 respectively. The best
results are achieved by adding all the maximal clique inequalities where clique sizes
are larger than or equal to 3. We are investigating pretreatments to avoid infeasible
configurations of sections for a student so as to reduce the number of cliques.

5 Conclusion

The Student Scheduling Problem at our university is a consequence of the large
choice of courses allowed. Each semester a heuristic is used to solve the problem.
We proposed a MIP formulation which permits to optimally assign students and to
manage limited resources. This formulation is reinforced by clique valid inequalities
extracted from the students’ conflict graph between sections. We are investigating
pretreatments to avoid infeasible configurations of sections for students to reduce
the number of cliques. Detailed results will be presented and commented on.

Acknowledgment

This work was carried out in the framework of the Labex MS2T, which was funded by
the French Government, through the program “Investments for the future” managed
by the National Agency for Research (Reference ANR-11-IDEX-0004-02). We would
also like to thank la Direction des Systèmes d’informations (DSI) and la Direction
à la Formation et à la Pédagogie (DFP) in Université de Technologie de Compiègne
(UTC) for their collaboration in this work.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 874 -

References

1. E. Cheng, S. Kruk, and M. Lipman. Flow formulations for the student scheduling problem.
In Practice and Theory of Automated Timetabling IV, volume 2740, pages 299–309. 2003.

2. R. Feldman and M. C. Golumbic. Constraint satisfiability algorithms for interactive stu-
dent scheduling. In Proceedings of the 11th international joint conference on Artificial
intelligence, volume 2, pages 1010–1016, 1989.

3. G. Laporte and S. Desroches. The problem of assigning students to course sections in a
large engineering school. Computers & operations research, 13(4):387–394, 1986.

4. P. R. Österg̊ard. A fast algorithm for the maximum clique problem. Discrete Applied
Mathematics, 120(1):197–207, 2002.

5. G. Sabin and G. Winter. The impact of automated timetabling on universities-a case study.
Journal of the operational Research Society, 37(7):689–693, 1986.

6. A. Schaerf. A survey of automated timetabling. Artificial intelligence review, 13(2):87–127,
1999.

7. A. Tripathy. Computerised decision aid for timetabling—a case analysis. Discrete applied
mathematics, 35(3):313–323, 1992.

8. J. Van den Broek, C. Hurkens, and G. Woeginger. Timetabling problems at the TU eind-
hoven. European Journal of Operational Research, 196(3):877–885, 2009.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 875 -

Vahid Eghbal Akhlaghi

Middle East Technical University, Department of Industrial Engineering, Ankara, Turkey

E-mail: vahid.akhlaghi@metu.edu.tr

Hakan Gultekin

TOBB University of Economics and Technology, Department of Industrial Engineering,

Ankara, Turkey

E-mail: hgultekin@etu.edu.tr

Betul Coban

TOBB University of Economics and Technology, Department of Industrial Engineering,

Ankara, Turkey

E-mail: bcoban@etu.edu.tr

MISTA 2015

Shortest k-unit Cycle in a Multiple Part-Type Robotic Cell

Vahid Eghbal Akhlaghi • Hakan Gultekin • Betul Coban

1 Introduction

Many diverse industries use robotic cells. The cells consist of an input device, a series of

processing stages, an output device, and robots for material handling within the cell. If the

robotic cell produces different types of parts, we refer to it as a multiple part-type cell (in contrast

to single part-type cells) [1]. The amount of time needed to produce a Minimal Part Set (MPS)

is called the cycle time. A cycle in which k parts are produced is called a k-unit cycle. Brauner

et al. [2] prove that 1-unit cycles are not necessarily optimal for m-machine robotic cells

producing single parts when m ≥ 4 and Hall et al. [3] prove the same result is valid for multiple

part type production even with m=2. The problem is then to find the shortest multi-unit cyclic

schedule for the robot and the part sequence for the MPS that jointly minimize the cycle time in

a multiple part-type robotic cell. They solved this problem for m=2 and m=3. Sriskandarajah et

al. [4] proved this problem to be NP-hard for arbitrary m. Nevertheless, there is neither an exact

mathematical model nor a heuristic algorithm in the literature, so far.

Gultekin et al. [5] propose new lower bounds for the 1 and 2-unit robot move cycles in

flexible robotic cells for the flow-shop type robot move cycles. It is proved by Hurink and Knust

[6] that a single gripper robot job shop scheduling problem is NP-hard. They use a Tabu Search

(TS) algorithm, in the form of an extended TSP, to solve the single-machine scheduling problem.

Their results illustrate that the TS algorithm finds a good solution in a short amount of time.

Geismar et al. [7] propose that developing effective heuristics might be a fruitful approach to the

multiple part-types robotic cell scheduling problem.

2 Problem Definition and Mathematical Model

A typical simple robotic cell contains M processing machines: M1, M2,... , Mm. Robot

activity Ai, defined by Crama and Van de Klundert [8], consists of; unloading a part from Mi,

traveling from Mi to Mi+1 and loading the part onto Mi+1.
There are several pickup criteria in robotic cells. This study concentrates on free pickup

criterion. Then the only restriction says that a part, which its processing time on Mi is completed,

cannot be loaded onto Mi+1 for its next processing unless Mi+1 is unoccupied. The robot’s travel

time between adjacent machines Mi−1 and Mi, equals δ, and it is additive. That is, the travel time

between any two machines Mi, Mj is |i − j|δ. In a k-unit cycle, the robot takes k parts in total,

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 876 -

mailto:vahid.akhlaghi@metu.edu.tr
mailto:hgultekin@etu.edu.tr
mailto:bcoban@etu.edu.tr

from the input device. Whenever all the robot activities are repeated exactly k times and the

robot returns to its initial state of the cycle, the k-unit cycle is completed and exactly k parts are

produced. The necessary time to produce k parts in this way is called k-unit cycle time. In the

mathematical model, we assign each robot activity to a specific position p.

Notations:

Sets

n index of product

m index of machine

p index of position

i index of activity

l index of repetition

Parameters:

Pm
n Processing time of product n on

machine m

ε Loading/Unloading time of machine

δ Travel time between consecutive

machines

Variables

xj𝑙
p

 Binary variable: 1 if repetition l of

activity Aj is assigned to position p

 zj𝑙
n Binary variable: 1 if repetition l of

activity Aj transport part n

yj𝑙pn Binary variable: 1 if product n is

assigned to position p in repetition l of

activity Aj

CT Cycle time

Tp Starting time of the activity assigned to

position p

In the proposed model, after assigning the activities to a given number of machines and finding

the starting time of the last robot activity, the minimum cycle time is achieved.

Objective min CT

s.t.

∑ xjl
p

= 1
n(m+1)
p=1 , ∀j ∈ {0, … , m}, ∀l ∈ {1, … , n} (1)

∑ ∑ xjl
p

= 1m
j=0

n
l=1 ∀p ∈ {1, … , n(m + 1)} (2)

∑ ∑ xjl
p

= n
n(m+1)
p=0

n
l=1 ∀j ∈ {0, … , m} (3)

∑ xjl
pn

l=1 ≤ 1 ∀j ∈ {0, … , m}, ∀p ∈ {1, … , n(m + 1)} (4)

∑ zjl
n = 1n

l=1 ∀j ∈ {0, … , m}, ∀n ∈ {1, … , n} (5)

yjlpn ≥ xj l
p

+ zjl
n − 1 ∀p ∈ {1, … , n(m + 1)}, ∀j ∈ {0, … , m}, ∀n, l ∈ {1, … , n} (6)

xj l
p

≥ yjlpn ∀p ∈ {1, … , n(m + 1)}, ∀j ∈ {0, … , m}, ∀n, l ∈ {1, … , n} (7)

zjl
n ≥ yjlpn ∀p ∈ {1, … , n(m + 1)}, ∀j ∈ {0, … , m}, ∀n, l ∈ {1, … , n} (8)

Tp ≥ Tr + 2 ε + δ + ∑ ∑ ∑ yjlpn
n
n=1

m
j=0

n
l=1 Pj

n + M(∑ xj l
pn

l=1 + ∑ x(j−1)l
rn

l=1 − 2)

 ∀p, r ∈ {1, … , n(m + 1)}: p > 𝑟, ∀j ∈ {1, … , m} (9)

CT + Tp ≥ Tr + 2 ε + δ + ∑ ∑ ∑ yjlpn
n
n=1

m
j=0

n
l=1 Pj

n + M(∑ xj l
pn

l=1 + ∑ x(j−1)l
rn

l=1 − 2)

 ∀p, r ∈ {1, … , n(m + 1)}: p < 𝑟, ∀j ∈ {1, … , m} (10)

Tp+1 ≥ Tp + 2 ε + δ + δ|j1 − (j + 1)| + M(∑ xj l
pn

l=1 + ∑ xj1 l
p+1n

l=1 − 2)

 ∀p ∈ {1, … , (n(m + 1) − 1)}, ∀j, j1 ∈ {0, … , m}: j ≠ j1 (11)

CT ≥ Tn(m+1) + 2 ε + ∑m
j=0 ∑ δ(j + 2)xj l

n(m+1)n
l=1

 ∀n ∈ {0, … , m}, ∀m ∈ {1, … , m}, ∀p ∈ {1, … , n(m + 1)} (12)
T0 = 0 (13)

∑ pxj l
pn(m+1)

p=1 ≤ ∑ pxj l1
pn(m+1)

p=1 ∀j ∈ {0, … , m}, ∀l, l1 ∈ {1, … , n} (14)

∑ ∑ x(j−1)l1
p1r

p1=p
n
l1=1 ≥ 1 − M(2 − xj l

p
+ xj (l+1)

r)

 ∀p, r ∈ {1, … , n(m + 1)}: r > 𝑝, ∀𝑗 ∈ {1, … , m}, ∀l ∈ {1, … , n} (15)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 877 -

∑ ∑ x(j+1)l1
p1

r

p1=p

n

l1=1

≥ 1 − M (2 − xj l
p

+ xj (l+1)
r)

 ∀p, r ∈ {1, … , n(m + 1)}: r > 𝑝, ∀𝑗 ∈ {0, … , (m − 1)}, ∀l ∈ {1, … , n} (16)

Since this problem is NP-Hard [6], we proposed a heuristic approach using Tabu Search (TS)

plus Genetic Algorithm (GA), which cooperatively find approximate optimal solutions.

3 The Proposed Heuristic Approach

The algorithm consists of two parts, the first a GA that generates a variety of part sequences

and the second, a TS that tries to find the best robot sequence. A simple and well-known single

point crossover is applied in our GA as the crossover operator. Besides, a simple swap for two

randomly selected numbers is considered as the mutation operator. On the other hand, the

developed TS generates the corresponding robot sequences by changing the position of a robot

activity to another feasible position in the sequence. We found an upper bound for the furthest

feasible move. In each iteration, the objective function value for each of these feasible and non-

tabu moves are calculated. If the value is superior to the incumbent objective function value,

then it will be determined as the new incumbent. Any selected move will be removed from the

tabu list after three iterations.

The proposed algorithm is coded in C++. We made a computational study by an experiment

design on problem parameters. The initial tests on the algorithm show that it finds high quality

solutions in reasonable CPU times.

Acknowledgement

This research is based on the support of The Scientific and Technological Research Council of

Turkey (TUBITAK) under grant number 213M435.

References

1. Dawande, M., Geismar, H., Sethi, S., and Sriskandarajah, C., “SEQUENCING AND

SCHEDULING IN ROBOTIC CELLS: RECENT DEVELOPMENTS,” J. Scheduling, vol. 8, no. 5,

pp. 387–426, 2005.

2. Brauner, N., and Finke, G., “CYCLES AND PERMUTATIONS IN ROBOTIC CELLS,”

Mathematical and Computer Modeling, 34, 565–591, 2001.

3. Hall, N.G., Kamoun, H., and Sriskandarajah, C., “SCHEDULING IN ROBOTIC CELLS:

classification, two and three machine cells,” Operations Research, 45, 421–439, 1997.

4. Sriskandarajah, C., Hall, N.G., Kamoun, H., and Wan, H., “Scheduling large robotic

cells without buffers,” Annals of Operations Research, 76, 287–321, 1998.

5. Gultekin H, Akturk MS, and Karasan OE. “SCHEDULING IN A THREE-MACHINE ROBOTIC

FLEXIBLE MANUFACTURING CELL,” Computers and Operations Research; 34:24, 63–77,

2007.

6. Hurink, J. and Knust, S., “A TABU SEARCH ALGORITHM FOR SCHEDULING A SINGLE

ROBOT IN A JOB-SHOP ENVIRONMENT,ʺ Discrete Applied Mathematics, Vol.119, 181-

203, 2002.

7. Geismar, N., Dawande, M., and Sriskandarajah, C., “PRODUCTIVITY IMPROVEMENT

FROM USING MACHINE BUFFERS IN DUAL-GRIPPER CLUSTER TOOLS,” [J]. IEEE

Transactions on Automation Science and Engineering, 1(8):29-41, 2011.

8. Crama, Y., and Van de Klundert, J., “CYCLIC SCHEDULING OF IDENTICAL PARTS IN A

ROBOTIC CELL,” Operations Research, 6, 952–965, 1997.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 878 -

MISTA 2015

A branch-and-reduce exact algorithm for the single
machine total tardiness problem

Federico Della Croce · Michele Garraffa ·
Lei Shang · Vincent T’kindt

1 Introduction

We consider the one-machine total tardiness 1||
∑

Tj problem where a jobset N =

{1, 2, . . . , n} of n jobs must be scheduled on a single machine. For each job j, we define

a processing time pj and a due date dj . The problem calls for arranging the jobset in

a sequence S = (1, 2, . . . , n) so as to minimize T (N,S) =
∑n

j=1 Tj =
∑n

j=1 max{Cj −
dj , 0}, where Cj =

∑j
i=1 pi.

The 1||
∑

Tj problem is NP-hard in the ordinary sense [2]. It has been extensively

studied in the literature and many exact procedures ([1,5,6,8]) have been proposed.

The current state-of-the-art exact method of [8] dates back to 2001 and solves to opti-

mality problems with up to 500 jobs. All these procedures are search tree approaches.

On the other hand, also dynamic programming algorithms were considered. In [5] a

pseudo-polynomial dynamic programming algorithm was proposed running with com-

plexity O(n4
∑

pi). The design of exact methods for NP-hard combinatorial optimiza-

tion problems has always been a challenging issue. Here, we study their application

in the context of worst-case analysis and look for best results in terms of exponential

time complexity as a function of the number of variables (in our case jobs). In this con-

text, classical search tree algorithms are more commonly defined as branch-and-reduce

algorithms as typically a branch in the search tree induces the generation of two or

more subproblems each with a reduced number of variables with respect to the original

problem. Consider now a combinatorial optimization problem that can be represented

by means of n variables/jobs. Let T (·) be a super-polynomial and p(·) be a polyno-

mial, both on integers. In what follows, using notations in [10], for an integer n, we

express running-time bounds of the form p(n) ·T (n) as O∗(T (n)), the asterisk meaning

that we ignore polynomial factors. We denote by T (n) the worst case time required to

exactly solve the considered combinatorial optimization problem with n jobs. Notice

F. Della Croce
D.A.I., Politecnico di Torino, Italy
E-mail: federico.dellacroce@polito.it

M. Garraffa
D.A.I., Politecnico di Torino, Italy
E-mail: michele.garraffa@polito.it

L. Shang
Université F. Rabelais de Tours, France
E-mail: lei.shang@etu.univ-tours.fr

V. T’kindt
Université F. Rabelais de Tours, France
E-mail: tkindt@univ-tours.fr

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 879 -

that, in this context, the dynamic programming of [5] cannot be considered due to the

pseudopolynomial time complexity being function of
∑

pi). On the other hand, the

standard technique of doing dynamic programming across the subsets [10] is applica-

ble also to the total tardiness model and runs with complexity O∗(2n) but requires

also O∗(2n) space, that is it requires both exponential time and space. To the authors

knowledge, there is currently no available exact algorithm for the total tardiness prob-

lem running in O∗(cn) (c being some constant) and polynomial space. In this work

we propose a branch-and-reduce exact exponential algorithm requiring O∗((1 +
√

2)n)

time and polynomial space.

We recall (see, for instance, [4]) that, if it is possible to bound above T (n) by a

recurrence expression of the type T (n) ≤
∑

T (n − ri) + O(p(n)), we have
∑

T (n −
ri) + O(p(n)) = O∗(α(r1, r2, . . .)

n) where α(r1, r2, . . .) is the largest zero of the func-

tion f(x) = 1−
∑

x−ri .

2 Main result

We make use of the following notation. Given the jobsetN = {1, 2, . . . , n}, let (1, 2, . . . , n)

be an SPT sequence (where i < j whenever pi = pj and di ≤ dj). Let also ([1], [2], . . . , [n])

be an EDD sequence (where [i] < [j] whenever di = dj and pi ≤ pj). As the cost func-

tion is a regular performance measure, we know that in the optimal solution the jobs

are processed with no interruption starting from time zero. Let p(B) =
∑

k∈B pk.

Let Bj and Aj be the sets of jobs that precede and follow job j in an optimal sequence.

Correspondingly, Cj = p(Bj) + pj = p(N −Aj).

The main known theoretical properties are the following.

Property 1 [3] Consider two jobs i and j, i < j. Then, i → j if di ≤ max{dj , Cj},
else j → i if di + pi > Cj .

Property 2 [5] Let job n in SPT correspond to job [k] in EDD. Then, job n can be set

only in position h ≥ k and the jobs preceding and following k are uniquely determined

as Bn = {[1], [2], . . . , [k − 1], [k + 1], . . . , [h]} and An = {[h+ 1], . . . , [n]}.

Property 3 [5–7] Let Cn(h) =
∑h

j=1 p[j] be the completion time of job n when set

in position h ≥ k. Then, job n ([k]) cannot be set in such position if:

(a) Cn(h) ≥ d[h+1], h < n;

(b) Cn(h) < d[r] + p[r], for some r = k + 1, . . . , h.

Property 4 [7] For any pair of adjacent positions i, i+ 1 that can be assigned to job

n, at least one of them is eliminated by Property 3.

Similar decomposition and elimination properties hold when the smallest due date job

[1] is considered (see [1]).

Consider the following branch and reduce exact algorithm TTBR (Total Tardiness

Branch and Reduce) that works as follows.

1. Iteratively branch on the largest processing time job n and assign it to all possible

positions (1, ..., n) with n potential branches and correspondingly decompose the

problem of each single branch according to Property 2, where all positions (and

corresponding branches) satisfying Property 3 are eliminated.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 880 -

2. If all the leaves of the search tree have been reached, STOP: the best found solution

is the optimal one.

Proposition 1 Algorithm TTBR runs in O∗((1 +
√

2)n) ≈ O∗(2.4142n) time and

polynomial space.

Proof Whenever job n is assigned to position k, two subproblems with size k − 1

and n − k are generated. Hence, in the worst case, 2n − 4 subproblems are generated

considering each size k = 2, ..., n− 1 . This induces to a recursion of the type T (n) ≤
2T (n−1)+2T (n−2)+...+2T (2)+O(p(n)) ≤ 2

∑n−1
i=1 T (n−i)+O(p(n)) corresponding

to T (n) = O∗(3n). Besides, due to Property 4, for each pair of adjacent positions i, i+1,

at least one of them must be discarded. The worst case occurs then by keeping the

subproblems of sizes n − 1, n − 3, n − 5 and so on and considering n to be odd. This

induces to a recursion of the type T (n) ≤ 2T (n−1) + 2T (n−3) + ...+ 2T (4) + 2T (2) +

O(p(n)) ≤ 2
∑n−1

2
i=1 T (n − 2i + 1) + O(p(n)) that corresponds to O∗((1 +

√
2)n) ≈

O∗(2.4142n). ut

Algorithm TTBR can be significantly improved by exploring the fact the for any

given subset of k jobs assigned to the first (last) k positions of the sequence it is suffi-

cient to retain only the dominant one. For k sufficiently small, a limited case analysis

allows to discard further branches and correspondingly improve the time complexity

still requiring polynomial space. The improved approach will be presented at the Con-

ference. The proposed approach can be extended to every single machine scheduling

problem that has a decomposition property similar to the Property 2: in that case, an

exact exponential algorithm requiring no more than O(3n) time and polynomial space

can be immediately derived along the lines of Algorithm TTBR.

References

1. F. Della Croce, R. Tadei, P. Baracco and A. Grosso (1998), “A new decomposition approach
for the single machine total tardiness scheduling problem”, Journal of the Operational Re-
search Society 49, 1101–1106.

2. J. Du and J. Y. T. Leung (1990), “Minimizing total tardiness on one machine is NP–hard”,
Mathematics of Operations Research 15, 483–495.

3. H. Emmons (1969), “One-machine sequencing to minimize certain functions of job tardi-
ness”, Operations Research 17, 701–715.

4. Eppstein D., Improved algorithms for 3-coloring, 3-edge-coloring, and constraint satisfac-
tion. In Proc. Symposium on Discrete Algorithms, SODA01, 329-337 (2001).

5. E. L. Lawler (1977), “A pseudopolynomial algorithm for sequencing jobs to minimize total
tardiness”, Annals of Discrete Mathematics 1, 331–342.

6. C. N. Potts and L. N. Van Wassenhove (1982), “A decomposition algorithm for the single
machine total tardiness problem”, Operations Research Letters 5, 177–181.

7. W. Szwarc (1993), “Single machine total tardiness problem revisited”, Y. Ijiri (ed.), Cre-
ative and Innovative Approaches to the Science of Management, Quorum Books, Westport,
Connecticut (USA), 407–419.

8. W. Szwarc, A. Grosso and F. Della Croce (2001), “Algorithmic paradoxes of the single
machine total tardiness problem”, Journal of Scheduling 4, 93–104.

9. W. Szwarc and S. Mukhopadhyay (1996), “Decomposition of the single machine total tar-
diness problem”, Operations Research Letters 19, 243–250.

10. Woeginger, G. J., Exact algorithms for NP-hard problems: a survey. In M. Juenger, G.
Reinelt, and G. Rinaldi, (eds.) Combinatorial Optimization - Eureka! You shrink!, volume
2570 of Lecture Notes in Computer Science, 185-207, Springer-Verlag, 2003.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 881 -

MISTA 2015

Maintenance planning in a stochastic job shop

Marjan van den Akker · Han Hoogeveen ·
Jonathan Lukkien

1 Introduction

The job shop scheduling problem is widely used to model practical production schedul-

ing problems in a make-to-order setting. This problem is defined as follows. There are

m machines, denoted by M1, . . . ,Mm, which must process a set of n jobs, denoted by

J1, . . . , Jn. Each machine Mi (i = 1, . . . ,m) has capacity one, that is, it can handle at

most one job at a time; moreover, each machine is assumed to be continuously available

from time zero onward. Each job Jj (j = 1, . . . , n) consists of a chain of operations,

which implies that the kth operation of Jj cannot start before the (k−1)st operation of

Jj has been completed. For each operation, we know which machine Mi must execute

it and how much time this requires. The goal is to minimize the makespan, which is

defined as the time at which the last job has been completed.

The job shop problem is known to be NP-hard in the strong sense; it is also known

to be very hard from a computational point of view: enumerative algorithms have

difficulties solving problems with more than 20 jobs and 20 machines in a reasonable

amount of time. Therefore, many researchers have studied local search methods, like

for example tabu search based algorithms ([6] and [5]), simulated annealing based

algorithms ([7]), simulated annealing in combination with using commonalities ([3])

and hybrid genetic algorithms ([2] and [4]); all of these studies report that good results

are obtained.

In practice, however, the standard assumption that the input is deterministic often

does not hold. Van den Akker et al. ([1]) have studied the stochastic variant, in which

the processing time of an operation is a stochastic variable with a known distribution.

The goal is then to find a schedule, i.e. the order of the operations on the machines,

Marjan van den Akker
Utrecht University
E-mail: j.m.vandenakker@uu.nl

Han Hoogeveen
Utrecht University
E-mail: j.a.hoogeveen@uu.nl

Jonathan Lukkien
Utrecht University
E-mail: j.f.lukkien@gmail.com

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 882 -

with minimum expected makespan; here it is not allowed to make adjustments to the

schedule during its execution when the realizations of the processing times become

known. In our work, we consider this stochastic variant of the problem, but we as-

sume that we have to plan maintenance on a given machine as well. This maintenance

must start between a given earliest and a latest possible start time. If the maintenance

operation has not been started at the latest possible start time, then it is forced to

start at this time; if some operation is executed by the machine at this time, then

the operation is removed, and it gets restarted to be executed from scratch as soon as

the maintenance operation has been finished (the so-called preemptive repeat model).

The goal is to find a schedule with minimum expected makespan. Again, we are not

allowed to make adjustments to the order of the operations with the exception of the

maintenance operation, which is planned during the execution of the schedule on basis

of the current knowledge of the processing times.

Our contribution. We show how the local search algorithm for the stochastic job

shop by [1] can be adapted to include maintenance. Our approach can be easily ad-

justed to deal with multiple maintenance operations and with maintenance operations

of stochastic length. Similarly, our approach can be applied when rescheduling of oper-

ations during execution is allowed, but extensive replanning may lead to an excessive

run time.

2 Solution approach

The core of our local search algorithm is the same as the one by van den Akker et al.

([1]) (in fact, we used the code of this program as our basis). This algorithm is based

on Simulated Annealing with two neighborhoods: a swap of two consecutive operations

on the longest path and a left shift operation. In each iteration, we compare the new

and incumbent solution in a series of five simulation experiments; to hedge against bad

luck, we keep a pool of promising solutions. Finally, we evaluate the quality of each of

these solutions by running a series of 1000 discrete-event simulations to determine the

expected makespan. The planning of the maintenance takes place within the simulation;

it is not part of the local search.

The characteristics of the maintenance operation depend on the instance, but in

general are as follows. The maintenance has to be done on exactly one given machine;

for this we choose either the machine with largest or with smallest load. The mainte-

nance requires a given amount of time that is either equal to once or twice the average

processing time of the operations. The width of the interval during which we can per-

form the maintenance is chosen to be either two, three, or four times the length of

maintenance operation.

Now we come to how to plan the start time of the maintenance within the simulation

of a given schedule. Suppose that we have arrived at a possible start time of the

maintenance, that is, the corresponding machine that must be maintained has just

finished an operation and the current time-point falls within the possible maintenance

interval, or we have arrived at the earliest possible time for maintenance and the

machine is currently idle. We consider three different possible decision rules, from

simple to more involved.

1. Random choice: at each such decision point there is a 50% chance to start mainte-

nance. This is independent of the situation on the machines.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 883 -

2. One-operation-lookahead: here we take the current situation of the schedule into

consideration. First of all, we look at the status of the next operation that the

machine must execute. This operation can be either available for processing, its job

predecessor can currently be executed, or its job predecessor may have not started

yet. In this latter case, we simply start the maintenance, as it is probably not

worthwhile to let the machine idle that long when waiting for the next operation to

become available. In the other two cases, we look at the next possibility for starting

the maintenance. To that end, we compute the expected completion time of the

next operation to be scheduled on the maintenance machine; if the probability that

this time falls within the maintenance interval is large enough, then we currently

postpone maintenance and execute the next operation first, which may introduce

idle time.

3. Full look-ahead. In the one-operation-lookahead, we only take the current situation

into account and check if there is time to postpone maintenance. In general, it is

reasonable to postpone maintenance for as long as possible, but machine idle time

should be avoided as well. To make a good choice, we simulate the future in the

full look-ahead, that is, we apply a simulation within a simulation. On basis of this

inner simulation, we decide whether to postpone the maintenance.

3 Computational experiments

In our computational experiments we want to find out the effect of including main-

tenance. To that end, we compare the schedules for the situations with and without

maintenance and check by how much the makespan increases. Obviously, it is easiest

to squeeze in the maintenance in the schedule when it affects the machine with the

smallest load, and when the interval for performing maintenance is big. In our pre-

liminary experiments, the one-operation-lookahead and the full-look-ahead seem to be

comparable and consistently outperform the random choice rule.

References

1. J.M. van den Akker, C.H.M. van Blokland, and J.A. Hoogeveen (2013). Finding
robust solutions for the stochastic job shop scheduling problem by including simulation in
local search. In V. Bonifaci, C. Demetrescu, and A. Marchetti-Spaccamela (Eds.). Symposium
on Experimental Algorithms SEA 2013, Lecture Notes on Computer Science 7933, pp. 402–
413.

2. J.F. Gonçalves, J.J. de Magalhães Mendes, and M.G.C. Resende (2005). A hybrid
genetic algorithm for the job shop scheduling problem. European Journal of Operational
Research 167, 77-95.

3. M.L. Kammer, J.M. van den Akker, J.A. Hoogeveen (2011). Identifying and exploiting
commonalities for the job-shop scheduling problem. Computers and Operations Research,
38, pp. 1556–1561.

4. A. Moraglio, H. ten Eikelder, and R. Tadei (2005). Genetic Local Search for Job Shop
Scheduling Problem, Technical Report CSM-435, University of Essex, UK.

5. E. Nowicki and C. Smutnicki (1996). A fast taboo search algorithm for the job shop
problem. Management Science 42, 797-813.

6. E.D. Taillard (1994). Parallel taboo search techniques for the job shop scheduling prob-
lem. ORSA Journal on Computing 6, 108-117.

7. T. Yamada and R. Nakano (1996). Job-shop scheduling by simulated annealing combined
with deterministic local search. I.H. Osman and J.P. Kelly (Eds.). Meta-heuristics: theory
and applications. Kluwer academic publishers MA, USA, pp. 237-248.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 884 -

MISTA 2015

Budgeted Internet Shopping Optimization Problem
(B-ISOP)

Jakub Marszaªkowski

1 Introduction

With growing importance of the Internet in busi-

ness, science, but also everyday life, new applica-

tions of operations research emerged. One of the

most popular of these areas is related with the In-

ternet advertising, where the �rst paper suppos-

edly was [1] and recently it proliferated in many

topics concerning ads scheduling, optimizing, pack-

ing, targeting, etc. Another growing group of re-

search papers is tailoring new 2D packing algo-

rithms for optimization of web pages, whose all

elements are obviously rectangles. This includes a

pursue for better layouts of web pages (e.g. [8,10])

or just better usability of certain elements, like tag

clouds (the newest survey is o�ered by [11]).

Internet changed a lot in the way we are shop-

ping. The abundance of online shops not only im-

proved the competition for the lowest prices, but

also made sales of many niche products possible.

More so, all these o�ers can be searched or even

crawled and scrapped into some databases, then

serving for example as a price comparator sites. A

new way how such comparators could work, Inter-

net Shopping Optimization Problem (ISOP) was

proposed in [5] and then extended in [2,4,3]. The

idea is that instead of comparing prices of single

products, user creates a list of the items he wants

to buy, and algorithm using database chooses for

him the cheapest solution, considering both prices

of items in numerous shops, but also delivery costs.

This is not possible in current generation of price

comparators, where for every product cheapest of-

Jakub Marszaªkowski
Institute of Computing Science
Poznan University of Technology
ul. Piotrowo 2
60-965 Poznan, Poland
E-mail: jakub.marszalkowski@cs.put.poznan.pl

Table 1 Summary of notation.

M set of products
N set of shops
m number of products
n number of shops
i product indicator
j shop indicator
dj delivery price of all products from shop j
yj indicator variable for shop j

pij cost of product i in shop j

xij indicator variable for product i in shop j
vi user perceived value of product i
P budget, limit of total cost

ferer would be chosen, in worst case causing pay-

ment of delivery costs for each item to be separate.

This paper relies on ISOP as proposed in [5],

however a somehow reversed version of the prob-

lem is considered. The customer still has a list

of products he wants to buy, but is limited with

a budget, i.e. an amount of money he can spend

in total, including costs of products and delivery

costs. With that, the customer will not be able to

buy all of the items, but wants to maximize the

total perceived value of products he will get. This

perceived value can represent one of the following

concepts: user preferences or priorities, ratings of

the products, basic monetary value of the prod-

ucts, etc...

2 Mathematical formulation

The Budgeted Internet Shopping Optimization Prob-

lem (B-ISOP) can be formulated as follows. The

customer wants to buy a set M of m products

where for every product i user assigns its perceived
value vi. The customer is limited by a budget P .
In a database there is gathered information on set

N of n shops: for each shop j its standard deliv-

ery price is dj and for each product i available in

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 885 -

shop j its cost in this shop is pij . The objective

is to maximize the value of products the customer

can buy from the shops within the limitation of his

budget. This can be stated as:

max
m∑
i=1

n∑
j=1

xijvi

s.t.

m∑
i=1

n∑
j=1

pijxij +
n∑

j=1

djyj ≤ P,

Additional constraints are required that every prod-

uct is chosen at most once and that if any product

is selected from a shop j, this shops delivery cost

will be paid. Finally, indicators are binary.

n∑
j=1

xij ≤ 1, i = 1, . . . ,m,

0 ≤ xij ≤ yj , i = 1, . . . ,m, j = 1, . . . , n,

xij ∈ {0, 1}, yj ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n.

The proposed problem is NP-hard as it will be

demonstrated by proving NP-completeness of its

decision counterpart - problem B1.

Problem B1: Is it possible to buy a set M ′ ⊂ M
of m′ products with value of at least V within the

budget P?

Proof B1 is in NP because NDTM can guess set

M ′ in time O(m∗n) and verify it on time O(2mn+
2n). Now a reduction of problem B1 from Binary

Knapsack Problem (BKP) will be demonstrated,

de�ned as follows. There is a set of items with

weights wk and costs ck. Is it possible to �ll a knap-
sack with items of total weight not exceeding W

and sum of costs being at least C?

max
l∑

k=1

zkck

s.t.

l∑
k=1

wkzk ≤W,

xl ∈ {0, 1}, l = 1, . . . , k.

Given an instance of BKP, following instance

of B1 can be constructed. There is only one shop.

Prices of products are equal to the weights of knap-

sack items pi1 = wk, k = i, i = 1, . . . ,m and sim-

ilarly values are equal to costs vi = ck. Delivery
price d1 = 0. The budget equals knapsack size

P = W and the required value of items equals sum

of costs V = C. This simple reduction is polyno-

mial in size of the problem. BKP has a solution if

and only if there exists a solution for constructed

instance of the problem B1, and the selected set

of items M ′ will be the solution for BKP as well.

This proves that the problem B1 is NP-complete

and thus B-ISOP is NP-hard.

3 Special case: maximize only the number

of products

Special case of the problem can be considered as

follows. The customer is not specifying values of

the products, but rather willing to maximize the

number of the products he receives. This can be

achieved by using vi = 1 for i = 1, . . . ,m in previ-

ous formulation of the B-ISOP. For this version of

the problem the earlier proof of NP-Hardness with

reduction from BKP will not hold, because BKP

where the costs of all the items are equal is polyno-

mially solvable. A new proof will be constructed by

proving NP-Completeness of the decision problem

B2.

Problem B2: Is it possible to buy a set M ′′ ⊂ M
of products with cardinality m′′ at least V ′?

Proof B2 is in NP exactly in the same way as B1.

Reduction of the problem B2 can be performed

from Maximum Coverage (MC) problem [7], de-

�ned as: Given a number k and a collection of sets

S = S1, S2, . . . , Sm �nd a subset S′ ⊆ S of sets,

such that
∣∣∣S′
∣∣∣ ≤ k and the number of covered ele-

ments
∣∣⋃

Sl∈S′ Sl

∣∣ being at least g.

With any instance of MC instance of B2 can be

constructed. Shops represent the subsets Mj = Sl,

with prices of all products pij set in a following

way. If element i is part of the set Sl price of ac-

cording product is equal to zero pil = 0. If the set

Sl does not contain element i the price of accord-
ing product pil is a big number. All delivery prices

are equal to one pj = 1, i = 1, . . . ,m,. The bud-

get represents the given limit of sets P = k and

the required number of products represents a re-

quired number of covered elements V ′ = g. Values
of the products equal to one vi = 1 for i = 1, . . . ,m

were assumed previously as distinction of this spe-

cial case. The reduction can be performed in time

O(m∗n) so it is polynomial again. The constructed

instance of the problem B2 solves the MC. This

proves that the problem B2 is NP-complete and

thus the special case is NP-hard as well.

4 Relation to other problems

The proof provided in previous section shows that

the proposed B-ISOP problem is a generalization

of the Binary Knapsack Problem. Although there

might seem to be some similarities, the problem is

not a generalization of the Multiple Choice Knap-

sack Problem [12]. The di�erence is that there not

only the cost of the item (here value) changes be-

tween classes, but also its weight (here price). Fur-

ther, B-ISOP is a generalization of the Maximum

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 886 -

Coverage problem and some of the MC generaliza-

tions. This includes the Weighted Maximum Cov-

erage (WMC) [7] where the elements have weights

(here perceived value) and the Budgeted Maxi-

mum Coverage (BMC) [9] where the elements have

weights and the sets have costs (here delivery price).

All the above versions of MC do not have costs of

the elements, which causes an algorithmic di�er-

ence: with inclusion of a set (here shop) to a so-

lution, all its elements are automatically included.

This supposedly renders the approximation algo-

rithms provided for those problems not usable for

B-ISOP. One more general version of MC problem

named Generalized Maximum Coverage (GMC)

[6] was also identi�ed, where the value of an el-

ement di�ers from set to set.

Although the motivation for B-ISOP comes from

a �eld of shopping optimization, the BMC and

GMC problems were proposed with other moti-

vations. For BMC examples of facilities location

problems are proposed, while GMC is described as

having important applications in wireless OFDMA

scheduling. This sets proposed B-ISOP formula-

tion in wider context and shows that work on this

problem might o�er results also for areas of oper-

ations research other than shopping optimization.

5 Summary and future work

In this paper formulation of new optimization prob-

lem was introduced. As the problem can be well

placed in context of related problems to the best

of authors knowledge such formulation was not de-

scribed ever before. The main contributions of this

paper are a mathematical model of the problem

and proofs of NP-hardness of both B-ISOP and its

special case with maximization of just the number

of products.

Future work on the problem might be twofold.

Firstly, it can focus on algorithms for the described

problem. This would include at least: an analysis of

usability of greedy approximation algorithm pro-

vided by [6] for more general problem GMC, a pro-

posal of heuristic (e.g. metaheuristic) algorithms.

This would require also an approach giving opti-

mal solutions at least to asses an optimality gap of

the other algorithms on smaller instances. The pro-

posed ILP model should allow for use of an exist-

ing solver software. Secondly, the model presented

as every mathematical model is some simpli�ca-

tion of the reality. It could be extended to capture

more real world situations, e.g. from on-line shop-

ping or cloud brokering areas. Some ideas to catch

up are already proposed in the Internet shopping

optimization research like with price-sensitive dis-

counts [3,2] or dual discounting functions [4].

Areas of possible application of the presented

problem are not limited to Internet shopping opti-

mization. Similar problems can be already found in

cloud brokerage, where user wants to buy the best

set of cloud resources. Possibly in not so far future

this might also prove useful on markets of energy,

where the user wants to buy electricity from dif-

ferent sources, even valuating green energy more

than dirty one.

Acknowledgements Jakub Marszalkowski acknowledges
support by the FNR (Luxembourg) and NCBiR (Poland),
through IShOP project, INTER/POLLUX/13/6466384.

References

1. Adler, M., Gibbons, P.B., Matias, Y.: Scheduling space-
sharing for internet advertising. Journal of Scheduling
5(2), 103�119 (2002)

2. Blazewicz, J., Bouvry, P., Kovalyov, M., Musial, J.: Er-
ratum to: Internet shopping with price-sensitive dis-
counts. 4OR 12(4), 403�406 (2014)

3. Blazewicz, J., Bouvry, P., Kovalyov, M., Musial, J.: In-
ternet shopping with price sensitive discounts. 4OR
12(1), 35�48 (2014)

4. Blazewicz, J., Cheriere, N., Dutot, P.F., Musial, J.,
Trystram, D.: Novel dual discounting functions for
the internet shopping optimization problem: new al-
gorithms. Journal of Scheduling pp. 1�11 (2014)

5. B�AZEWICZ, J., Kovalyov, M.Y., MUSIA�, J., WO-
JCIECHOWSKI, A.: Internet shopping optimization
problem. Int. J. Appl. Math. Comput. Sci 20(2), 385�
390 (2010)

6. Cohen, R., Katzir, L.: The generalized maximum cov-
erage problem. Information Processing Letters 108(1),
15�22 (2008)

7. Hochbaum, D.S.: Approximation algorithms for np-
hard problems. SIGACT News 28(2), 40�52 (1997)

8. Hurst, N., Marriott, K.: Satis�cing scrolls: a shortcut to
satisfactory layout. In: Proceeding of the eighth ACM
symposium on Document engineering, DocEng '08, pp.
131�140. ACM, New York, NY, USA (2008)

9. Khuller, S., Moss, A., Naor, J.S.: The budgeted maxi-
mum coverage problem. Information Processing Letters
70(1), 39�45 (1999)

10. Marszaªkowski, J., Drozdowski, M.: Optimization of
column width in website layout for advertisement �t.
European Journal of Operational Research 226(3),
592�601 (2013)

11. Marszaªkowski, J., Rusiecki, �., Drozdowski, M.,
Naro»ny, H.: Toward building aesthetic, useful and
readable tag clouds for websites. In: Proceedings of
the 11th International Conference on e-Business (ICE-
B-2014), pp. 230�235 (2014)

12. Sinha, P., Zoltners, A.A.: The multiple-choice knapsack
problem. Operations Research 27(3), 503�515 (1979)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 887 -

MISTA 2015

Packing-based approaches for a discrete malleable task
scheduling problem

Roland Braune

1 Introduction

The subject of this work is a multi-capacitated scheduling problem inspired by a real-world
scenario. Tasks involve processing of a predefined number of materials, where each material
requires the same amount of time to be processed. Resource capacities are considered in an
aggregate form, inducing a “big-bucket” scheduling model where a resource may process
multiple tasks at the same time. More specifically, we are dealing with discretely divisible,
renewable resources. Consequently, the actual resource consumption of a task at a time
period t is an integer multiple of the processing time (resource units) required to handle one
single material. The resulting size of a task may therefore vary over time, being only bounded
from above by the respective resource’s maximum capacity. However, task preemption is not
allowed, meaning that, once started, a task has to be scheduled without interruption until it
is finished. This in turn implies that at least one material has to be in process at every time
instant of its scheduled time window.

The objective is to minimize a weighted form of resource idle time. It is not sufficient to
just keep the resource utilization as high as possible, as commonly achieved by makespan
minimization, it is rather the time instant at which idle time occurs that matters. In the
corresponding real-world scenario, high resource utilization in earlier time periods is of
crucial importance, mainly due to rolling horizon planning concerns. Figure 1 shows the
difference between the “standard” and “weighted” idle time perspective. Each rectangle
corresponds to one material and materials that belong to the same task are shaded in the
same color and share the same task index (the number before the dot). The capacity of the
resource is denoted by bt , where t represents the (discrete) time index. Note that the pure
total idle time is equal to 22 in both cases. However, Figure 1b depicts the preferred situation,
where idle time is “shifted” to the right. Unlike other idle time or utilization related criteria,
such as work continuity or resource leveling (cf., e.g., [7]), the above described objective
apparently has not yet been subject to any kind of investigations in the context of multi-
capacitated scheduling.

Roland Braune
Department of Business Administration,
Faculty of Business Economics and Statistics, University of Vienna,
1090 Vienna, Austria E-mail: roland.braune@univie.ac.at

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 888 -

2.1

8

bt

t

3.1

1.1

1 2 3

1.2

3.2

4 5

1.3 1.4

2.2

2.3

3.3

(a) Unweighted idle time

2.1
8

bt

t

3.1

1.1

1 2 3

1.2
3.2

4 5

1.3 1.4

2.2

2.3

3.3

(b) Idle time depending on the time index

Fig. 1: Resource idle time seen from different points of view.

When looking at the capacity allocation scheme on a single resource only, it is easy to
identify relationships to malleable task scheduling on a multiprocessor resource [5]. How-
ever, the classic notion of this problem assumes task preemptability and a continuous time
line (cf., e.g., [2]). To the best of our knowledge, purely discrete variants have not been
discussed in the literature so far. The recently proposed energy scheduling problem [1] also
bears close resemblance to the described setting and can be considered as a generalization.

2 Modeling Approach and Complexity Analysis

A more formal description of the scheduling problem outlined in Section 1 can be given as
follows: Let A denote the set of tasks to be processed on a single multiprocessor resource.
For each task i, we are given the number of materials mci to be processed, and the number
of resource units ρi required for processing one single material.

Let bt denote the available capacity of a single multiprocessor resource at time t and let
acit be the resource amount allocated by task j on that resource at time t. Note that for each
task i and time index t, acit mod ρi = 0 has to hold (cf. Section 1). The desired idle time
minimization effect, as indicated in Figure 1, can be achieved by weighting idle time with
a function g(t), strictly decreasing in t. We chose a straightforward linear scheme, based on
the length T of the planning horizon, that is, g(t) := T − t +1. Then the objective function
can be written as

T

∑
t=1

(bt −∑
i∈A

acit) · (T − t +1) (1)

Clearly, each task can be seen as a chain of rigid unit time task “slices” (cf. the notion
of evolving tasks [5]), coupled by minimum and maximum time lags with fixed values of
0 and 1, respectively. Each slice of a task i has unit processing time and requires exactly ρi
resource units.

By adopting the slice-based perspective, it is possible to transform (1) to an expression
containing a constant part and a sum of products of slice completion times and required
resource amounts ρi, which corresponds to the classic weighted completion time objective.

In fact, the overall problem, denoted as P henceforth, can finally be considered as a mul-
tiprocessor scheduling problem with rigid unit-time tasks, chains with minimum and max-
imum time lags (constant, task independent), weights equal to the task sizes, and weighted
completion time objective. In common three-field notation, this problem can be written as
P | chains(l);sizei; pi = 1;wi = sizei | ∑wiCi.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 889 -

As far as complexity is concerned, the combination of constant time lags and weights
equal to the task sizes does not allow for a straightforward reduction from an existing multi-
processor scheduling problem. However, the NP-hardness proof for P | sizei; pi = 1 |∑Ci (cf.
[6]) can easily be extended by size-dependent weights. Consequently, problem P | sizei; pi =
1;wi = sizei | ∑wiCi, briefly denoted as P ′, is shown to be NP-hard in the strong sense.
Since problem P ′ is a relaxation and thus a special case of the original problem P , strong
NP-hardness can also be deduced for the latter.

3 Lower Bounds and Exact Solution Methods

Problem P ′ (P | sizei; pi = 1;wi = sizei | ∑wiCi) and clearly also the original version P
with precedence constraints can be mapped to a bin packing problem with linear usage costs
(cf., e.g., [3]). This problem involves packing n items, each corresponding to a single (unit-
time) task slice, into m bins, one for each time index of the original scheduling problem. For
each item i ∈ {1, . . . ,n} and each bin j ∈ {1, . . . ,m}, a binary variable xi j indicates whether
the item is assigned to the respective bin (xi j = 1) or not. The bin capacities C j are all set
equal to the number of available parallel processors (P). We can then formulate the (relaxed)
problem as

min
m

∑
j=1

j ·
n

∑
i=1

xi j ·wi

s.t.
n

∑
i=1

xi j ·wi ≤C j, ∀1 ≤ j ≤ m, (2)

m

∑
j=1

xi j = 1, ∀1 ≤ i ≤ n, (3)

xi j ∈ {0,1}, ∀1 ≤ i ≤ n, ∀1 ≤ j ≤ m, (4)

where constraints (2) ensure that bin capacities are not exceeded while constraints (3) require
that each item is assigned to exactly one bin. The incorporation of precedence constraints
is straightforward and omitted here due to space limitations. Note that due to the absence
of fixed costs, the variant that we consider is not a generalization of the classic bin packing
problem.

At first, we propose various lower bounds for that kind of bin packing problem. The fo-
cus is primarily on the relaxed version without precedence constraints. The idea of Martello
and Toth’s lower bound L2 [8] is transferred and extended to this problem. Furthermore, we
analyze the performance of three different Lagrangean relaxation schemes, based on assign-
ment and capacity constraints, in that specific context. Specifically, we show that the well
known Lagrangean relaxation for the RCPSP, initially proposed by Christofides et al. [4], is
applicable to the original problem setting with precedence constraints.

The lower bounds are then embedded into a straightforward, item-based branch-and-
bound algorithm to solve both problem variants to optimality. Apart from that, we propose
extensions to the constraint propagation techniques introduced by Cambazard et al. [3] for
linear usage cost bin packing.

Besides randomly generated problems of varying size, our final computational exper-
iments also involve instances extracted from a real-world scenario where the objective at
hand is in fact one of the optimization criteria of immediate relevance to the decision maker.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 890 -

References

1. Artigues, C., Lopez, P., Haı̈t, A.: The energy scheduling problem: Industrial case-study and constraint
propagation techniques. International Journal of Production Economics 143(1), 13–23 (2013)

2. Blazewicz, J., Kovalyov, M., Machowiak, M., Trystram, D., Weglarz, J.: Preemptable malleable task
scheduling problem. IEEE Transactions on Computers 55(4), 486–490 (2006)

3. Cambazard, H., Mehta, D., O’Sullivan, B., Simonis, H.: Bin packing with linear usage costs an application
to energy management in data centres. In: C. Schulte (ed.) Principles and Practice of Constraint Program-
ming, Lecture Notes in Computer Science, vol. 8124, pp. 47–62. Springer Berlin Heidelberg (2013)

4. Christofides, N., Alvarez-Valdes, R., Tamarit, J.M.: Project scheduling with resource constraints: A branch
and bound approach. European Journal of Operational Research 29, 262–273 (1987)

5. Drozdowski, M.: Scheduling for Parallel Processing. Computer Communications and Networks. Springer
Verlag London (2009)

6. Drozdowski, M., Dell’Olmo, P.: Scheduling multiprocessor tasks for mean flow time criterion. Computers
& Operations Research 27(6), 571–585 (2000)

7. Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-constrained project
scheduling problem. European Journal of Operational Research 207(1), 1–14 (2010)

8. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. John Wiley and
Sons, New York (1990)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 891 -

MISTA 2015

Multi-level Benders Decomposition for Multi-modal
Outpatient Scheduling in Hospitals

Atle Riise · Leonardo Lamorgese · Carlo

Mannino

1 Introduction

Most hospitals have laboratories and clinics that perform examinations or surgical

procedures on outpatients. We consider the scheduling of patient appointments in such

clinics. This scheduling is typically more complex than appointment scheduling in, say,

primary care clinics. It often involves the scheduling of a large number of patients over

a horizon of several weeks or months. Each activity may require several constrained

renewable resources such as a doctor, a room, and some equipment. Some resources

may have setup times. The clinic usually has several resources of each type available

on each day, and so a suitable combination of resources (a mode) must be chosen for

each appointment, in addition to the start time. Activity durations depends on the

procedure, age, and medical condition of the patient, and often also on the chosen

mode.

There is a substantial literature on outpatient appointment scheduling in health

care; see e.g. the reviews in [7] and [12]. However, this literature mostly concerns

simpler, single resource problems [1], where the goal is an optimal design of time blocks

into which future patients can be scheduled. Typical research questions include the

optimal choice block start times, the number of patients in each block, the estimation of

service durations, the choice of scheduling heuristics to apply, etc. Often, all patients are

assumed to require the same service time, or they may be grouped based on expected

service time. In contrast, the problems class that we study in this paper typically arise

in hospital out-patient clinics that provide more complex services for elective patients,

requiring more resources and individual service times, as described above. Indeed, these

problems are more similar to inpatient surgery scheduling. In particular, they resemble

Atle Riise
SINTEF ICT, Dept. of applied mathematics, and University of Oslo
E-mail: atle.riise@sintef.no

Leonardo Lamorgese
SINTEF ICT, Dept. of applied mathematics
E-mail: Leonardo.Lamorgese@sintef.no

Carlo Mannino
SINTEF ICT, Dept. of applied mathematics, and University of Oslo
E-mail: carlo.mannino@sintef.no

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 892 -

surgery admission planning, with the added challenge of assigning not only a day,

but also a start time, to each patient. There are several recent surveys of the surgery

scheduling literature, including the comprehensive overview in [6], which was updated

in 2013 [9], as well as [20,11,16]. Using the taxonomy in [9], we see that very few papers

consider the scheduling of outpatients, while also including choices of both start time

and resources (operating rooms) [17,21,5,4].

The approach presented in this paper is inspired by the Logic-Based Benders’

Decomposition (LBBD) scheme introduced in [13,15]. Over the past 15 years, different

authors have successfully applied LBBD to a variety of hard discrete optimization

problems such as general planning and scheduling [18,14,2], location-allocation [10],

transport scheduling [8,19,23], bin packing [22], sports scheduling [24] and more. Most

authors resort to a two stage approach like in LBBD or the classic Benders’, with some

exceptions (e.g.[3]).

In this paper, we present a three-level LBBD algorithm for the multi-model ap-

pointment scheduling problems. We are not aware of any previous work that apply

logic based Bender’s decomposition to this kind of scheduling problems. A case study

based on real world data from a Norwegian hospital provides empirical evidence for

the efficiency of the proposed algorithm, and for its superior performance compared to

a corresponding two-level LBBD algorithm. We offer some insight into why this is so,

and finally indicate some directions for future research.

2 A three-level Logic Based Benders Decomposition algorithm

The multi-modal appointment scheduling problems that we consider lend themselves

naturally to LBBD. Firstly, the most important objective typically is waiting time,

relative to priority based due dates.

Fig. 1 The 3-level logic based bender’s decom-
position for a set of appointments, N . The d’s
enumerate the days.

This objective depends only on the

day at which each patient is scheduled,

and it is therefore naturally to formu-

late our master problem based on the

allocation of patients to days (Prob-

lem I). Often, as in our case study,

the remaining sub problem is a feasi-

bility problem. Furthermore, the prob-

lem has a clear periodic (daily) struc-

ture, where the schedule on each day is

independent of the schedules for other

days. The original problem, which may

be very large due to the long planning

horizon, can therefore be decomposed

into a set of much smaller problems,

one for each day. These daily sub prob-

lems constitute the slave problems in

our first decomposition. However, we

show that, while effective, this decom-

position is not in itself enough to tackle

real life problem instances, which may contain several hundred patients. We therefore

apply a second decomposition of each daily sub problem into a master mode problem

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 893 -

(Problem II), where the mode for each appointment is chosen, and a slave scheduling

problem (Problem III). The scheduling problem determines if there exists a feasible

start time for each activity, given the mode choices as they are fixed in the master

solution. See Fig. 1 for an illustration of the relationship between these problems.

3 Case study

We present computational results from a case study at the gastroenterology laboratory

at the University Hospital of North Norway, a fairly typical Norwegian hospital outpa-

tient clinic. Based on real resource and patient data from both daily and monthly (bulk)

planning situations, we show that the three-level LBBD algorithm is vastly superior to

the corresponding two-level version. Indeed, while the two-level algorithm cannot solve

the monthly scheduling problems within the one hour time-out, the proposed three-

level LBBD algorithm solves them to optimality within 5 minutes. We discuss how the

various aspects of our decomposition contributes to this increased performance.

Acknowledgements This work has been supported by the Research Council of Norway,
under grant no. 219335/O30.

References

1. Batun, S., Begen, M.A.: Optimization in healthcare delivery modeling: Methods and ap-
plications, pp. 75–119. Springer (2013)

2. Beck, J.C.: Checking-up on branch-and-check, pp. 84–98. Springer (2010)
3. Benini, L., Lombardi, M., Mantovani, M., Milano, M., Ruggiero, M.: Multi-stage benders

decomposition for optimizing multicore architectures. In: M. Perron, M. Trick (eds.) Fifth
International Conference on Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Oprimization Problems, pp. 36–50 (2008)

4. Cardoen, B., Demeulemeester, E., Beliën, J.: Optimizing a multiple objective surgical
case sequencing problem. International Journal of Production Economics 119(2), 354–366
(2009). 0925-5273

5. Cardoen, B., Demeulemeester, E., Beliën, J.: Sequencing surgical cases in a day-care envi-
ronment: An exact branch-and-price approach. Computers & Operations Research 36(9),
2660–2669 (2009). 0305-0548

6. Cardoen, B., Demeulemeester, E., Beliën, J.: Operating room planning and scheduling:
A literature review. European Journal of Operational Research 201(3), 921–932 (2010).
0377-2217

7. Cayirli, T., Veral, E.: Outpatient scheduling in health care: A review of literature. Pro-
duction and Operations Management 12(4), 519–549 (2003)

8. Correia, I., Captivo, M.: Bounds for the single source modular capacitated plant location
problem. Computers & Operations Research 33, 2991–3003 (2006)

9. Demeulemeester, E., Beliën, J., Cardoen, B., Samudra, M.: Operating Room Planning and
Scheduling, International Series in Operations Research & Management Science, vol. 184,
book section 5, pp. 121–152. Springer New York (2013)

10. Fazel-Zarandi, M., Beck, J.: Using logic-based benders decomposition to solve the capacity
and distance constrained plant location problem. INFORMS Journal on Computing 24,
399–415 (2012)

11. Guerriero, F., Guido, R.: Operational research in the management of the operating theatre:
a survey. Health Care Management Science 14(1), 89–114 (2011)

12. Gupta, D., Denton, B.: Appointment scheduling in health care: Challenges and opportu-
nities. IIE Transactions 40(9), 800–819 (2008)

13. Hooker, J.N.: Logic-based Methods for Optimization. Wiley (2000)
14. Hooker, J.N.: Planning and scheduling by logic-based benders decomposition. Operations

Research 55(3), 588–602 (2007)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 894 -

15. Hooker, J.N., Ottosson, G.: Logic-based benders decomposition. Mathematical Program-
ming 96(1), 33–60 (2003)

16. Hulshof, P.J.H., Kortbeek, N., Boucherie, R.J., Hans, E.W., Bakker, P.J.M.: Taxonomic
classification of planning decisions in health care: a structured review of the state of the
art in or/ms. HS 1(2), 129–175 (2012)

17. Huschka, T.R.: Bi-criteria evaluation of an outpatient procedure center via simulation. In:
Simulation Conference, 2007 Winter, pp. 1510–1518 (2007)

18. Jain, V., Grossmann, I.: Algorithms for hybrid milp/cp models for a class of optimization
problems. INFORMS Journal on Computing 13, 258–276 (2001)

19. Lamorgese, L., Mannino, C.: Optimal train dispatching by benders’-like decomposition.
Transportation Science to appear (2015)

20. May, J.H., Spangler, W.E., Strum, D.P., Vargas, L.G.: The surgical scheduling problem:
Current research and future opportunities. Production and Operations Management 20(3),
392–405 (2011)

21. Pham, D.N., Klinkert, A.: Surgical case scheduling as a generalized job shop scheduling
problem. European Journal of Operational Research 185(3), 1011–1025 (2008). 0377-2217

22. Pisinger, D., Sigurd, M.: Using decomposition techniques and constraint programming
for solving the two-dimensional bin-packing problem. INFORMS Journal on Computing
19(1), 36–51 (2009)

23. Raidl, G., Baumhauer, T., b., H.: Speeding up logic-based benders’ decomposition by a
metaheuristic for a bi-level capacitated vehicle routing problem. In: Springer (ed.) Hybrid
Metaheuristics (2014)

24. Rasmussen, R., Trick, M.: A benders approach for the constrained minimum break prob-
lem. European Journal of Operational Research 177(1), 198–213 (2007)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 895 -

MISTA 2015

Variable Neighborhood Search for a Rich Production

Planning Problem

Michael Schilde · Karl Schneeberger · Karl

F. Doerner

1 Introduction and problem description

We present a solution approach based on variable neighborhood search (VNS, [4]) for a

real-world inspired rich production planning problem for dairy products. Our method

can be used by practitioners to perform the detailed planning for daily production as

well as to determine the consequences of possible future developments (e.g., increasing

demand for existing products, introduction of new products, or installing additional

equipment). Especially the latter is a task that currently is often based on rough

estimates and gut instincts. Our approach covers the three main problem components

(lot-sizing, sequencing, and scheduling) and all aggregate levels simultaneously and

thus provides practically feasible solutions.

The underlying problem covers the production of several final products on a set of

heterogeneous filling machines. Each final product consists of one or more components

that need to be made available in filling tanks before the filling machines can start

filling them into bins (e.g., yoghurt cups, PET bottles, etc.). These components are

produced by mixing blended milk with different ingredients in a mixer, followed by

a certain soaking time in a mixing tank. After this, the product is denoted as base

mass and needs to be heated in a heater, fermented in a fermentation tank, chilled in

a cooler and stored in a filling tank for the filling machine. If the next aggregate is not

ready, the product can remain inside each of the tanks for a limited amount of time.

Some products do not require to be processed on every aggregate level and can thus

skip one or more of them.

Each aggregate is connected to a set of ingoing and outgoing product pipes that are

used to transfer products between aggregates. Each pipe can be connected to several

aggregates on both ends, but a transfer between two aggregates always blocks the pipe

M. Schilde (�) · K. Schneeberger · K.F. Doerner
University of Vienna, Department of Business Administration,
Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
E-mail: michael.schilde@univie.ac.at

K.F. Doerner
University of Vienna,
Christian-Doppler-Laboratory for Efficient Intermodal Transport Operations,
Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 896 -

for all other aggregates during this time. Each used pipe and aggregate also causes

a certain amount of product loss when being cleaned after processing a product. A

cleaning in place (CIP) pipe and a sterilization in place (SIP) pipe are attached to each

aggregate. Each CIP/SIP-pipe can be connected to more than one aggregate, but only

one of these aggregates can be serviced (cleaned or sterilized) at a time. Furthermore,

a cleaning interval can be given for each aggregate to specify how much time may pass

between two cleaning procedures, without causing an additional intermittent cleaning.

The requirement for and the duration of a setup, a cleaning, and a sterilization are

sequence-dependent. There are product-dependent limits on the time between finishing

fermentation and starting to cool the product, and on the maximum time any product

may spend inside a tank. Each aggregate is assigned a certain processing speed for each

product it can process and each tank has a minimum and a maximum capacity.

Gellert et al. [2] studied a related problem with respect to the cleaning intervals as

well as the cleaning and sterilization of aggregates, but they only considered the filling

lines, assuming that they are the most limiting factor for the entire production system.

Their approach will lead to practically infeasible solutions if the aggregate levels before

the filling lines can not provide the required base mass in time due to resource conflicts.

The main novelty of our approach is the fact that we consider the complete, realisti-

cally sized, multi-stage production system including all resource blocking constraints,

whereas the mentioned authors focus solely on the filling lines. For an overview of

the recent literature covering perishability issues in production see Amorim et al. [1].

Lütke-Entrup et al. [3] presented a mathematical model formulation covering some of

the aspects included in our problem setting, but by far not all of them. In another work,

we extended their position based model to match our problem setting and developed a

fix&optimize based solution approach for very small test cases [5]. This work is based

on the same problem definition.

2 Solution approach

Our solution approach consists of an adaptive VNS and a new heuristic to generate

an initial feasible solution for the problem. The initial solution is generated by first

grouping the final products by base mass (as several products may require the same

base mass). Within each group, the products are sorted using a 3-opt procedure, such

that the required time for setup and CIP/SIP within the group is minimized. Then, the

product groups are assigned to filling machines based on a load balancing constraint

and sequenced in a way that again the total time needed for setup and CIP/SIP

between the groups on each machine is minimized. After that, the production lots for

the remaining aggregate levels, transfer pipes, and CIP/SIP pipes are created for each

of the product groups. On each aggregate level, the algorithm again aims for similar

loads on all aggregates. After creating the production lots on all aggregate levels, a

tailored sequencing and scheduling algorithm is used to determine a feasible timing for

this solution.

The VNS-based improvement method aims to eliminate potential resource con-

flicts on the different aggregate levels and pipes. Therefore the method uses a move

neighborhood operator and a swap neighborhood operator to change the assignment

of production lots to aggregates or pipes. The move operator assigns one or more pro-

duction lots to a different aggregate. Hereby the lots to be moved are selected based

on how much the remaining lots on this aggregate would benefit from removing the

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 897 -

corresponding lot (e.g., because the lot prevents another lot from starting earlier or

blocks a required CIP or SIP pipe). The aggregates to which the lots are moved are

selected pseudo-randomly based on the same criterion (aggregates with lower impact

are preferred). The swap operator works just as the move operator, but exchanges two

or more lots between two or more aggregates based on the described criterion. The

number of lots to be moved/swapped defines the neighborhood size of the operators.

The selection of the neighborhood operators and their sizes is performed on a random

basis. Initially, all operators and sizes have the same probability of being selected. After

each iteration, the probabilities are adapted depending on the obtained solution (i.e., if

an operator/size combination finds an improving solution, the chance of being selected

is increased, otherwise it is decreased).

3 Test instances and solutions

Our solution approach was evaluated using real-world test instances from a large Euro-

pean dairy producing company. These instances each contain demand information for

101 different final products during one week as well as information about 41 aggregates,

178 product pipes, 5 CIP pipes, and 6 SIP pipes. The results obtained using our solu-

tion method show, that we are able to find solutions of similar quality as the ones used

in practice within 15 minutes of calculation time even without applying the improve-

ment method. Compared to the fix&optimize based solution approach we developed

for this problem setting, our metaheuristic solution approach is competitive for very

small instances (larger instances cannot be solved using the fix&optimize method).

By applying the metaheuristic, the results can be improved even further (depend-

ing on the calculation time granted to the search algorithm). The solutions used in

practice are manually created and thus creating them can take several working days.

Furthermore the risk of planning errors (e.g., missing production volume or overlooked

conflicts on the product pipes, CIP or SIP pipes) can be drastically reduced by using an

automated method. We are thus confident that our method will be a viable alternative

when used as a planning support tool in practice.

Acknowledgements Financial support from the Austrian Research Promotion Agency (FFG,
Bridge) under Grant #838560 is gratefully acknowledged.

References

1. P. Amorim, C.H. Antunes, and B. Almada-Lobo. Multi-objective lot-sizing and scheduling
dealing with perishability issues. Industrial & Engineering Chemistry Research, 50:3371–
3381, 2011.

2. T. Gellert, W. Höhn, and R.H. Möhring. Sequencing and scheduling for filling lines in dairy
production. Optimization Letters, 5:491–504, 2011.

3. M. Lütke-Entrup, H.-O. Günther, P. van Beek, M. Grunow, and T. Seiler. Mixed integer
linear programming approaches to shelf life integrated planning and scheduling in yogurt
production. International Journal of Production Research, 43:5071–5100, 2005.

4. N. Mladenović and P. Hansen. Variable Neighborhood Search. Computers and Operations
Research, 24(11):1097–1100, 1997.

5. K. Schneeberger, M. Schilde, and K. F. Doerner. Solving a rich position-based model
for dairy products with a fix&optimize based solution approach. Technical Report
UNIVIE-PLIS-2015-01, University of Vienna, Department of Business Administration,
Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria, January 2015.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 898 -

MISTA 2015

Scheduling of jobs in the continuous casting stage of steel
production

Oliver Herr · Asvin Goel

Extended Abstract

In this contribution we study a problem motivated by a practical problem arising in

the continuous casting stage of steel production. In the practical problem, a continuous

caster is fed with ladles of liquid steel. Each ladle contains a certain steel grade and

has orders allocated to it that determine a due date. Whenever two ladles of different

steel grade are processed consecutively, a setup process is required. However, no setup

is required when the steel grade is not changed. The liquid steel is produced from

hot iron supplied by the blast furnace with a constant rate. The sequence of ladles,

including setups between ladles of different steel grades, is not allowed to consume

more hot metal then supplied by the blast furnace.

The problem studied in this contribution is a variant of a single machine family

scheduling problem with the goal of minimizing total tardiness, see e.g. Gupta and

Chantaravarapan (2008) and Schaller (2007). In the problem, each job has a given

processing time, a due date, and belongs to a given family. The machine can only

process one job at a time and each job must be processed without preemption. A

setup task has to be conducted between jobs belonging to different families and during

this setup the machine cannot process any job. Furthermore, each jobs requires a

certain amount of a common resource that is supplied at a constant rate. Each job

consumes a given amount of the resource at a constant rate. At any time, the cumulative

consumption must not exceed the cumulative supply. Therefore, jobs may have to wait

due to an insufficient availability of the resource.

As illustrated in Figure 1, the fundamental difference of this problem to the case

without resource constraints is, that it may be necessary that the machine is idle

because the required resource for the next job is net yet available, whereas in the case

without resource constraints the machine is only idle for the time of the setups that

may be required. In the case without resource constraints the optimal duration of any

Oliver Herr
Jacobs University, Bremen, Germany
E-mail: o.herr@jacobs-university.de

Asvin Goel
Kühne Logistics University, Hamburg, Germany
E-mail: asvin.goel@the-klu.org

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 899 -

subsequence of jobs is always the sum of all processing times and the required setups.

With resource constraints, however, the optimal duration may be larger because the

machine has to wait for the resource required.

time

quantity

cumulative supply

cumulative demand

︸ ︷︷ ︸
setup

︸ ︷︷ ︸
waiting time

job 1

job 2

Fig. 1 Additional waiting time may be required because of the resource constraint.

Due to operational requirements in continuous casting, waiting times must only be

scheduled when a setup is conducted. Therefore, a complete subsequence of jobs with

the same steel grade may be delayed because of the resource constraint or an additional

setup has to be conducted, possibly of larger duration than the required waiting time.

In this contribution we present a formulation of the problem as a mixed integer

program. As solving the problem using a general purpose MIP-solver is in general

too time consuming for problem instances with larger numbers of jobs, we present a

heuristic approach based on different operators modifying the sequence of jobs. The

approach iteratively selects a neighbourhood operator to obtain a new sequence of jobs.

In order to reduce the number of decisions to be made when applying the operators we

focus our solution representation on the sequence of jobs without explicitly considering

where in the current solution a setup is conducted. In order to evaluate a sequence

of jobs, however, the exact timing of setups and their duration has to be determined.

Central to our approach is a labelling method for determining where setups have to be

conducted - and for how long - in order to minimize total tardiness for any sequence

of jobs.

Our approach is evaluated on artificially generated instances having similar char-

acteristics as the real-life problem that motivated this research. Computational experi-

ments are conducted comparing the performance of our approach with a state-of-the-art

commercial mixed integer programming solver. These experiments demonstrate that

the proposed solution approach finds optimal or near optimal solutions for most of

the small sized instances with less than 15 jobs. For instances with 15 jobs or more,

the commercial mixed integer programming solver was not able to optimally solve the

instances within a run time limit of one hour. For these larger instances our approach

outperforms the commercial solver both in terms of solution quality of the best found

solution as well as the time required to find this solution. The run time required by our

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 900 -

heuristic only grows moderately so that good solutions can be obtained within only a

few minutes for instances with a problem size of practical relevance.

References

J. N. D. Gupta and S. Chantaravarapan. Single machine group scheduling with family

setups to minimize total tardiness. International Journal of Production Research,

46(6):1707–1722, 2008. ISSN 0020-7543. doi: 10.1080/00207540601009976. URL

http://www.tandfonline.com/doi/abs/10.1080/00207540601009976.

J. E. Schaller. Scheduling on a single machine with family setups to minimize to-

tal tardiness. International Journal of Production Economics, 105(2):329–344, Feb.

2007.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 901 -

Hari Balasubramanian

University of Massachusetts, Amherst

E-mail: hbalasubraman@ecs.umass.edu

John Fowler

Arizona State University

E-mail: john.fowler@asu.edu

Ahmet Keha

Arizona State University (now at Exxon Mobil Research and Engineering Company)

E-mail: ahmet.keha@asu.edu

MISTA 2015

The polynomial solvability of a bicriteria linear combination on parallel

identical machines with release dates

Hari Balasubramanian • John Fowler• Ahmet Keha

1 Introduction

Certain deterministic NP-hard scheduling problems in the parallel machine environment

have been proved to polynomially solvable when the processing times are assumed to be equal.

 and are NP hard, but and are

polynomially solvable by a linear programming based algorithm proposed in Brucker and

Kravchenko [3]. Further, the equal processing time assumption is well suited to many multi-

resource non-preemptive scheduling problems in practice. For example, even though

appointment durations tend to be stochastic, during the booking process office based medical

practices offer equal length appointment to patients who call in at different times of the day.

In a recent review focused on equal processing time problems, Kravchenko and Werner

[1] noted that problems involving both deadlines and weights, and

 , still remain open. In a paper that reports new results for preemptive

scheduling problems in the same environment, Prot et al. [2] report that
 also remains open.

We tackle the bicriteria linear combination , , in the

 non-preemptive setting. Note that this is an objective function that includes

both weighted completion time as well as total tardiness. We demonstrate that the LP-based

algorithm Brucker and Kravchenko [3] can be used to solve the bicriteria linear combination,

as long as:

 , where (1)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 902 -

In other words, is the smallest difference in weights for any pair of jobs for which a

clear dominance cannot be established. A dominance between a pair of jobs cannot be

established when the weight of one job is greater than the other but its due date is later.

Without loss of generality we can assume that the weights are integral, so the lowest value that

 can take is 1. Therefore the transformation will always work for . Therefore,

when the weights for both total weighted completion time and total tardiness are equal, the

bicriteria linear combination is polynomially solvable. If , then bicriteria linear

combination is solvable for . Thus, the larger the value of , the wider is the range

of values for which polynomial solvability of the bicriteria linear combination in the

 setting is possible. In light of the fact that and

 are open problems, our bicriteria result provides an intriguing middle

ground.

What drives this special condition on ? To explain this, we provide an outline of the

linear programming based algorithm proposed in Brucker and Kravchenko [3].

2 LP Based Algorithm

Brucker and Kravchenko [3] use a linear programming algorithm to solve

 and . We use the same algorithm to demonstrate the polynomial

solvability for the bicriteria linear combination involving total weighted completion time and

total tardiness. The LP formulation can be described as follows. Since processing times are

equal, the number of time intervals in which the jobs can be scheduled can be pre-calculated.

For a non-decreasing objective function, the jobs can either start on their own release date or

after other jobs have completed. This means that , where k is an integer,

describes all possible start times. Therefore, there are O() possible start times and as many

intervals. The main decision variable in the linear program, assigns a portion of job j’s total

processing time p to interval i. Constraints ensure that: (1) the sum total of job j assigned

across all intervals adds to p; (2) no more than m jobs are scheduled simultaneously; and (3) no

portion of a job’s processing time is assigned before the job’s release date. The objective

function to be minimized is the bicriteria linear combination. Note that the optimal solution to

this linear program may not be feasible, since the processing time of a job may be assigned to

multiple intervals. In Brucker and Kravchenko (2008) the LP optimal solution x
*
 for

 is transformed to a new solution x
**

which, in turn, is used to assign jobs feasibly and

optimally to n “marked” intervals (these marked intervals, determined in a separate algorithm,

identify where the jobs will be scheduled).

Similarly, to ensure that , can be feasibly and

optimally solved, the transformation from x
*
 to x

**
 as described in Brucker and Kravchenko

(2008) has to be achieved. In particular, the original LP solution x
*
 may have a pair of “mixed

jobs” as shown in Figure 1 below. In other words, there may exist two jobs say Jf and Jg and

four intervals If1, Ig1, If2, and Ig2 (which are located in that order in time) such that the variables

xf,f1, xf,f2, xg,g1are all non-zero. Such a pair of jobs are called mixed jobs. To eliminate mixed

jobs in the schedule, an amount min (xg,g1, xf,f2) is transferred/exchanged between the intervals

g1 and f2. Figure 1 shows the transformation when xg,g1 < xf,f2.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 903 -

An important condition is that these transformations to eliminate mixed jobs should leave

the objective function unchanged.

We show that that for minimizing , the objective

function remains unchanged under this transformation for all

 . This condition

becomes relevant when neither of the jobs, Jf and Jg, dominates the other: i.e. when the weight

of one job is greater than the other, but the due date is later. The rest of the steps to prove

feasibility and optimality are identical to Brucker and Kravchenko (2008). For a full and more

comprehensive derivation and implications which are not discussed in this abstract, please see

the working paper we have posted online [4].

References

1. Kravchenko, S. A., & Werner, F. (2011). Parallel machine problems with equal

processing times: a survey. Journal of Scheduling, 14(5), 435-444.

2. Prot, D., Bellenguez-Morineau, O., & Lahlou, C. (2013). New complexity results for

parallel identical machine scheduling problems with preemption, release dates and

regular criteria. European Journal of Operational Research, 231(2), 282-287.

3. Brucker, Peter, and Svetlana A. Kravchenko. "Scheduling jobs with equal processing

times and time windows on identical parallel machines." Journal of Scheduling 11.4

(2008): 229-237.

4. Balasubramanian, H., Fowler, J., and Keha, A.. "The polynomial solvability of selected

bicriteria scheduling problems on parallel machines with equal length jobs and release

dates" Working paper: http://people.umass.edu/hbalasub/BalasubramanianetalJOS.pdf

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 904 -

MISTA 2015

LAHC applied to The Multi-Mode Resource-Constrained
Multi-Project Scheduling Problem

Janniele A. Soares · Haroldo G. Santos ·
Davi D. Baltar · Túlio A. M. Toffolo

1 Introduction

The Project Scheduling Problem (PSP) consists in to schedule jobs over time in such

a way that precedence relations are satisfied and resource consumption limits are re-

spected [5]. In this paper a comprehensive variation of the PSP is considered: the

Multi-Mode Resource Constrained Multi-Project Scheduling Problem (MMRCMPSP).

In this problem jobs can be processed in different modes, with varying execution speeds

and consuming different amounts of resources. The objective function also considers

project delays.

As a generalization of the PSP, the MMRCMPSP is NP-Hard and can be used to

model many problems in several areas, such as project management in information tech-

nology companies, scheduling instructions to processor architecture, civil engineering,

ingot production scheduling, among others. Even the generation of an initial feasible

solution for the MMRCMPSP is also NP-Hard, a feasible selection of modes most be

selected, which corresponds to solving the multi-dimensional knapsack problem.

The model of MMRCMPSP [6] has a set P projects, where each p inP consists of

a set Jp = 1, ..., |Jp| jobs. Each project p has a start time, where jobs can be initiated.

The beginning and the end of a project are delimited by fictitious jobs.

Furthermore, the MMRCMPSP comprises a set of constraints, related with the

precedence between jobs J and the consumption of resources. These resources, can be

renewables R, in way local or global (shared with another projects), and non-renewable

K, may to deplete throughout each project p ∈ P . Each job j ∈ J can be performed

in a certain mode m ∈ M , it determines the time taken for the execution djm and

the amount of renewable and non-renewable resources consumed, respectively vrjm
and ukjm. This consumption can not exceed the amount available of renewable qr
and non-renewable ok resources. All relations of precedence Pred and Predj must be

guaranteed.

The objective function adopted in this paper, refers to the default in MISTA 2013

Challenge [1], having two components: the TPD, main goal, which is the sum of the

J. A. Soares
1 · H. G. Santos

2 · D. D. Baltar
3 · T. A. M. Toffolo

4 · 1,3 Computing and
Information Systems Department, Federal University of Ouro Preto, Brazil · 2,4 Comput-
ing Department, Federal University of Ouro Preto, Brazil · E-mail: janniele@decsi.ufop.br,
haroldo@iceb.ufop.br, davibaltarx@gmail.com,tulio@toffolo.com.br

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 905 -

delays of the projects in relation to the duration of the critical path and the TMS,

secondary objective, which is the difference between the maximum completion time of

a project and the beginning minimum time of a project.

In this work, we propose and evaluate computationally a solver based in the Late

Acceptance Hill-Climbing (LAHC) [4] metaheuristic. The techniques implemented con-

sider as input specific instances of multi-projects available on the MISTA2013 Challenge

site, these instances are composed of specific projects from PSPLib.

2 Solution Approach

Our approach, differently from most approaches used in the MISTA 2013 competition,

always navigates in the search space of feasible solutions. The generation of different

feasible mode sets is accomplished by the solution of a series of multi-dimensional

knapsack problems and the use of indirect solution representations. After building an

initial solution pool, several LAHC threads start local search around those solutions.

To increase diversity, we first build a pool of different mode sets which satisfy the

consumption of non-renewable resources. Since the selection of processing modes also

determines the duration of jobs, a greedy strategy to prioritize the selection of fast

processing modes is employed. One must observe, however, that it does not guarantees

a smaller TPD, because renewable resources constraints can delay the starting time of

jobs.

The binary program to built this initial set of modes considers: J jobs with respec-

tive processing times pjm and N non renewable resources. Each job has a set Mj of

possible modes and the non-renewable resource n consumption of job j in mode m is

denoted as rjmn. Thus, the binary program is solved to select which mode m job j will

be allocated, considering its respective decision variables xjm and resource availability

qn for each non renewable resource. Which corresponds to the NP-Hard problem of the

0-1 multidimensional knapsack problem.

The local search procedures which will be described later operate over an indirect

solution representation: a solution is stored in a (Γ,Π) ordered pair of vectors where

Γj ∈ Mj indicates the selected mode for job j and Πj ∈ {1, . . . , |J |} indicates the de-

sired position for job j in the sequence of allocations. Γ always respects non-renewable

resources consumption. As most of the processing time of this algorithm is spent in the

local search phase, the ability to quickly decode a (Γ,Π) pair is a fundamental aspect

in the performance of the algorithm.

We implemented all optimizations proposed in [2], such as prefix detection and

early exploration of resource insufficiency. Differently from [2] we do not guarantee a

valid topological sort in Π. This speeds up the generation of valid movements, since

some validations may be disabled but the cost saved is moved to the decoding phase.

To transform the sorting in Π into a valid topological sorting, at each new allocation

one has to check the available job with highest priority (smallest desired position),

which yields an O(n2) algorithm to decode Π. Fortunately we devised a simple heap

to speed up this to O(n logn). Initially, all jobs are inserted into the heap with priority

|S−
j | × |J |+Πj .

The complete neighborhood structure N (s) is composed by fourteen types of move-

ments: Change One Mode (COMS), Change Two Modes (CTMS), Change Three

Modes (CTRMS), Change Four Modes (CFMS), Invert Subsequence (INVS), Shift

Jobs (SJS), Swap Jobs (SWJS), Compact Project (CP), Shift Project (SPS), Swap

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 906 -

Two Projects (SWPS), Mutation One Extreme (MOE), Move Projects (MP), Swap

Jobs FILS (SJF), Insert Jobs FILS (IJF).

The Late Acceptance Hill-Climbing (LAHC) is a new metaheuristic proposed by

[3], which consists of an adaptation of the classic Hill-Climbing method. To accept or

not a new candidate, its cost is compared with some cost previous belonging the list.

It stores a list c of size l with values of cost, this size is the number of the previous

iterations i. The list c is initialized to the cost of the initial solution s received as

a parameter. At each iteration i, a candidate solution s’ is generated and its cost is

compared to a virtual position in the c. The solution s’ is accepted if their cost is

smaller than the contents of the virtual position on c, or is smaller than the cost of

current solution s. If accepted, the solution s will be updated, if even better than the

best solution found so far s*, it will also be updated. Subsequently the contents of the

virtual position of c will be updated with the new cost of s

To prevent stagnation and increase diversification, we store how many movements

were performed for each job j. Whenever number 1000 of non-improvement iterations

is reached, diversification is activated and a series of diversification movements is per-

formed. The selection of these movements uses an adapted objective function which

incentives the selection of movements involving jobs which were not commonly selected

in previous iterations.

3 Computational Experiments

All algorithms were coded in C++ and the binary programming models were solved

by CPLEX 12.6. The code was compiled with GCC 4.7.1 using flag -O3. All tests ran

on a computer with an Intel(R) Core(TM) i7-4960X CPU @ 3.60GHz processor and

32 Gb of RAM, running OpenSUSE Linux 13.2. The developed method ran in parallel

using 4 threads.

Table 1 shows the best results found by the proposed approach, as well the average

and standard deviation, after 10 runs within 300 seconds of runtime, with 4 threads

with l size of 500. The last column of the table represents the gap obtained by dividing

the cost of the best known solution B for the cost of the best solution obtained C

by approach. Instances were the obtained results were better or equal than the best

results known in the literature are emphasized. It is important to emphasize that the

results presented by the technical report [2] were obtained in 2500 different executions

for each instance, while the results presented by MISTA2013 Challenge were obtained

with only 10 different executions, the same as the results of the present work.

4 Conclusions

In this work we presented the application of LAHC metaheuristic for MMRCMPSP.

Integer programming is used to build an initial feasible solution. The LAHC algorithm

was enhanced to perform informed diversification using long term memory. Efficient al-

gorithms to decode indirect solution representations were also implemented. Our solver

was able to improve two best known solutions for instances used in the MISTA 2013

Challenge and provided solutions very close to the best known ones for the remaining

instances.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 907 -

Table 1 Best and average results after 10 runs of the algorithm sided with [1] and [2]

Inst.
Best Avg. Std.Dev. Mista Report [2]

B/C
TPD TMS TPD TMS TPD TMS TPD TMS TPD TMS

A-1 1 23 1.00 23.00 0 0 1 23 1 23 1.00
A-2 2 41 2.27 41.13 0 0 2 41 2 41 1.00
A-3 0 50 0 50 0 0 0 50 0 50 1.00
A-4 65 42 67.50 43.10 0.81 1.58 65 42 65 42 1.00
A-5 157 105 169.00 109.40 6.03 2.06 153 105 150 103 0.96
A-6 145 96 159.00 99.60 9.26 3.38 147 96 133 99 0.92
A-7 608 195 630.90 206.80 11.63 5.74 596 196 590 190 0.97
A-8 286 152 308.90 155.20 10.99 1.99 302 155 272 148 0.95
A-9 207 126 220.50 129.50 6.25 2.91 223 119 197 122 0.95
A-10 896 312 943.10 320.70 18.45 3.66 969 314 836 303 0.93
B-1 352 125 366.70 130.80 6.96 2.68 349 127 294 118 0.84
B-2 444 167 460.90 168.70 8.09 2.41 434 160 431 158 0.97
B-3 557 213 579.30 213.10 10.87 0.83 545 210 526 200 0.94
B-4 1276 281 1355.70 291.10 31.37 4.64 1274 289 1252 275 0.98
B-5 845 250 871.90 257.40 16.06 4.20 820 254 807 245 0.96
B-6 911 226 938.20 229.60 12.22 3.17 912 227 905 225 0.99
B-7 807 233 863.00 240.50 23.49 4.15 792 228 782 225 0.97
B-8 2974 541 3081.20 545.60 54.66 4.36 3176 533 3048 523 1.02
B-9 4630 851 4730.30 852.30 52.19 7.24 4192 746 4062 738 0.88
B-10 3050 448 3106.90 450.20 34.59 5.33 3249 456 3140 436 1.03
X-1 393 143 426.50 148.50 13.38 4.10 392 142 386 137 0.98
X-2 367 166 394.20 171.40 12.16 2.94 349 163 345 158 0.94
X-3 325 191 342.30 193.50 10.59 2.50 324 192 310 187 0.95
X-4 915 208 958.10 211.90 21.16 3.39 955 213 907 201 0.99
X-5 1786 377 1862.80 382.50 36.02 5.20 1768 374 1727 362 0.97
X-6 700 234 745.00 239.50 23.86 3.56 719 232 690 226 0.99
X-7 861 236 902.20 236.80 15.65 5.90 861 237 831 220 0.97
X-8 1218 286 1277.50 292.40 25.46 2.97 1233 283 1201 279 0.99
X-9 3475 706 3520.90 697.60 27.89 7.79 3268 643 3155 632 0.91
X-10 1652 399 1695.90 396.90 18.29 4.81 1600 381 1573 383 0.95

Acknowledgements The authors thank CNPq and FAPEMIG for supporting this research.

References

1. Wauters, T. Kinable, J. Smet, P. Vancroonenburg, W. Berghe, G.V. and Ver-

stichel, J. : Mista 2013 challenge (2013). URL http://allserv.kahosl.be/

mista2013challenge/. Access date: 2 jan. 2015

2. Asta, S., Karapetyan, D., Kheiri, A., Ozcan, E., Parkes, A.J.: Combining Monte-

Carlo and Hyper-heuristic methods for the Multi-mode Resource-constrained Multi-

project Scheduling Problem, technical report. Tech. rep., University of Nottingham,

School of Computer Science (2013)

3. Burke, E., Bykov, Y.: A late acceptance strategy in hill-climbing for exam

timetabling problems. PATAT 08 Proceedings of the 7th International Conference

on the Practice and Theory of Automated Timetabling (2008)

4. Burke, E., Bykov, Y.: The Late Acceptance Hill-Climbing Heuristic. Tech. rep.,

University of Nottingham, School of Computer Science (2012)

5. Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-

constrained project scheduling: An update. European Journal of Operational Re-

search 174(1), 23 – 37 (2006)

6. Wauters, T., Kinable, J., Smet, P., Vancroonenburg, W., Berghe, G.V., Verstichel,

J.: The multi-mode resource-constrained multi-project scheduling problem. Journal

of Scheduling (2014)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 908 -

http://allserv.kahosl.be/mista2013challenge/
http://allserv.kahosl.be/mista2013challenge/

MISTA 2015

Automated Design of the Developmental Approach for Solving the
Examination Timetabling Problem

Nelishia Pillay

Keywords: hyper-heuristics, automated design, timetabling

1 Introduction

The design of optimization techniques for timetabling and scheduling problems can be time
consuming requiring several man hours. The research presented forms part of a larger initiative
investigating the automated design of timetabling and scheduling systems using hyper-
heuristics [3]. As an initial attempt, the developmental approach, which was created to solve
the examination timetabling problem [2], is automatically designed using an evolutionary
algorithm hyper-heuristic (EAHDA). The following sections present the developmental
approach, the EAHDA, results and discussion and the conclusion and future work respectively.

2 Developmental Approach (DA)

The developmental approach was initially applied to the Toronto benchmark set and later
placed as one of the finalists for the examination timetabling track for the second international
timetabling competition (ITC2007). This approach takes an analogy from cell biology to
develop an organism, representing a solution to the problem, by mimicking the processes of
cell creation, cell interaction and cell migration. Figure 1 depicts the manually designed
algorithm for the developmental approach for timetabling [6]. In the context of examination
timetabling each organism represents a timetable and each cell a period in the timetable. The
algorithm begins by sorting the examinations according saturation degree [9] with the highest
cost used to break ties. The highest cost heuristic is the sum of the soft constraint cost over the
feasible periods the examination can be scheduled in. An examination with a higher highest
cost is given priority. If the organism has at least two cells, cell migration is firstly performed.
Cell migration essentially changes the position of a cell in the organism. As in nature, this
process is stimulus driven and in this context the stimulus is a reduction in soft constraint cost.
The developmental approach employs two migration operators, migrate and migraten. The
migrate operator changes the position of two randomly selected cells while migraten changes
the position of an existing cell to a position not as yet allocated to a cell. The algorithm then
performs cell interaction which moves an examination to a new cell while still maintaining
feasibility and resulting in a reduction in soft constraint cost. All three operators are attempted
for 50 iterations and if an improvement in soft constraint cost is not found no change is made.
In later work chaos was incorporated into the developmental approach to better emulate the
process of development in nature [7]. Noise operators were used for this purpose. Each noise
operator introduces randomness by generating random numbers for i iterations. The

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 909 -

developmental approach is used to create p organisms and the fittest organism is returned as a
solution. A value of 250 has generally been used for p.

3 Evolutionary Algorithm Hyper-Heuristic for Developmental Approach Design
(EAHDA)

This section describes the evolutionary algorithm hyper-heuristic employed to design the
development approach algorithm. The evolutionary algorithm implements the generational
algorithm. Each chromosome represents the developmental approach algorithm and is a string
comprised of numbers representing the different biological processes: 0 (cell allocation), 1
(migrate), 2 (migraten), 3 (cell interaction), 4 (invoke noise for i iterations, 10 <= i <= 50).
The length of each chromosome is a parameter value (max_len) and the best value to use is
problem dependent. If max_len is set to a value of 5, an example of a chromosome is 10223.
This chromosome represents an algorithm that performs migrate followed by cell allocation,
migraten twice and finally cell interaction. If the organism does not have at least two cells,
migrate, migraten and cell interaction has no effect. The fitness of a chromosome is calculated
by using it solve the problem, in this case constructing an examination timetable. Suppose that
03210 is a chromosome. Then the processes of cell allocation, cell interaction, migraten,
migrate and cell interaction are performed iteratively in this order until all the examinations are
scheduled. The fitness is the hard constraint cost plus one multiplied by the soft constraint cost.
Tournament selection is used to select parents to create offspring for the next generation.
Mutation and crossover are used to create offspring for each generation. Mutation replaces the
number at the mutation point with a randomly selected number in the range 0 to 4. Crossover
crosses over two parents at the crossover point to produce two offspring.

4 Results and Discussion

The EAHDA was applied to the Toronto benchmark set [9]. The hard constraint for the
benchmark set is that no student must be scheduled to sit more than one examination at the
same time, i.e. there must be no clashes. The soft constraint cost is a measure of the spread of
examinations. The parameter values for the evolutionary algorithm are depicted in Table 1.

Sort examinations to be scheduled in list
Create a cell and allocate a randomly selected position
Allocate the first examination in list to the cell
while (there are still examinations to schedule)
begin
 if(there are at least two cells in the organism)
 perform cell migration
 for 1 to no_of_cells
 begin
 if (a feasible cell exists for the examination)
 Allocate the exam to the cell with minimum soft constraint cost
 else if (maximum number of cells has not been reached)
 Perform cell creation
 else
 Allocate the examination to a randomly selected cell
 endfor
 Perform cell interaction
 Update low-level heuristics for the examinations in list
 Resort list
endwhile
end
 Figure 1. Developmental approach algorithm

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 910 -

These parameter values were determined by performing trial runs using three problem
instances, namely, hec-s-92, sta-f-83 and ute-s-92. The algorithms were implemented in Java
and simulations were run using a multi-core architecture. Two systems were used for this.
There first is an HP workstation with 512 gigabytes of RAM, running Windows 8 and the
second a Linux Sun cluster made available by the national center of high performance
computing. Fifty cores were used for all experiments.

Table 1: Evolutionary algorithm parameter values
Population size 300
Maximum number of generations 50
Tournament size 4
Initial maximum length (max_len) 15
Mutation application rate 90%
Crossover application rate 10%

Each algorithm evolved by the EAHDA was used to create just one organism and not a

population of p organisms as in previous applications of the developmental approach. Due to
the stochastic nature of evolutionary algorithms and the developmental approach ten runs, each
with a different random number generator seed, were performed for each problem instance.
The algorithms evolved by the EAHDA were able to produce feasible solutions for all ten runs.
The minimum soft constraint cost, average soft constraint cost and average runtimes over the
ten runs is tabulated in Table 2 for each problem instance. The table also lists the evolved
algorithm producing the minimum soft constraint cost over the ten runs for each problem
instance. The runtimes of EAHDA vary from 16 minutes for smaller problem instances to 13
hours for the larger data sets. However, if you consider the number of man hours usually
needed to develop the algorithm, try different operators, and the time taken to perform
simulations to test the different algorithm configurations, this is not much.

Table 2: Toronto benchmarks

Table 3 compares the performance of algorithms evolved by EAHDA to the standard

developmental approach algorithm [6] and the later variation using noise operators. The best
soft constraint cost obtained is highlighted in bold. It is evident from Table 3 that the DA
algorithms evolved by EAHDA have performed better than the previous versions of EAHDA,
despite creating only one organism instead of a population of organisms as in the case of the
standard DA and DANO. These algorithms have produced better results than the DA for all
problem instances and DANO for eleven of the twelve problem instances.

Problem Minimum
Soft Constraint
Cost

Average
Soft
Constraint
Cost

Average
Runtime

Developmental Approach
Algorithm Producing
Minimum Cost

car-f-92 3.98 4.01 11 hrs 113023311324433
car-s-91 4 4.48 9 hrs 244332123021211
ear-f-83 34 34.3 2 hrs 313443312230113
hec-s-92 10.64 10.71 16 mins 103211144113342
kfu-s-93 13.53 13.63 8 hrs 240312142421423
lse-f-91 10.29 10.35 6 hrs 20 mins 123441032111313
rye-s-93 8.85 8.95 13 hrs 221140421114423
sta-f-83 157.12 157.16 33 mins 211410230330134
tre-s-92 8.01 8.10 3 hrs 031413131011132
uta-s-92 3.17 3.19 12 hrs 201332123331343
ute-s-92 25.64 25.85 48 mins 141001221421143
yor-f-83 36.86 37.15 1 hr 12 mins 320411213323114

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 911 -

Table 3: Performance comparison with previous DA versions

The performance of the evolved algorithms were also empirically compared to

approaches producing the best results for the Toronto benchmark set, recent approaches
applied to this benchmark set, and recent hyper-heuristics used to solve the set of problems.
Table 4 lists the soft constraint costs of the EAHDA and the following approaches: (1)
sequential construction method with backtracking applied [5]; (2) honey bee optimization
[10]; (3) adaptive decomposition and ordering approach [1]; selection perturbative hyper-
heuristic [4]; (5) selection constructive hyper-heuristic in [8]; (6) selection constructive hyper-
heuristic [11]; (7) generation perturbative hyper-heuristic in [12].

Table 4: Performance comparison with state-of-the-art and recent approaches

These methods are described in section 2. As can be seen from Table 4 the algorithms

evolved by EAHDA have performed comparatively to the state-of-the-art, recent and hyper-
heuristics approaches, used to solve the Toronto benchmark set of problems. In order to get an
idea of how well these approaches have performed over the set of problems the average cost
over the problem instances has been calculated for each approach. Here again the algorithms
evolved by EAHDA have performed well obtaining the second best average.

5 Conclusion and Future Work

The research presented in this paper examines the use of hyper-heuristics to design the
developmental approach for solving the examination timetabling problem. The soft constraint
costs of the timetables produced were found to be comparable to that produced by state-of-the-
art, recent and hyper-heuristic approaches used to solve the Toronto benchmark set of
problems. The evolved algorithms were found to be disposable, with a different algorithm
producing the best result on each run for a problem instance. Given the success that EAHDA

Problem EAHDA DA [6] DANO [7]
car-f-92 3.98 4.1 3.99
car-s-91 4 4.8 4.8
ear-f-83 34 34.97 34.14
hec-s-92 10.64 10.99 10.66
kfu-s-93 13.53 13.89 13.55
lse-f-91 10.29 10.6 10.29
rye-s-93 8.85 9.08 8.94
sta-f-83 157.12 157.22 157.12
tre-s-92 8.01 8.26 8.05
uta-s-92 3.17 3.24 3.22
ute-s-92 25.64 26.23 25.82
yor-f-83 36.86 38.38 36.52

Problem EAHDA (1) (2) (3) (4) (5) (6) (7)
car-f-92 3.98 6.0 3.9 4.74 4.31 4.22 4.7 4
car-s-91 4 6.6 4.79 5.17 5.37 4.95 5.14 4.62
ear-f-83 34 29.3 34.69 40.91 35.79 35.95 37.86 34.71
hec-s-92 10.64 9.2 10.66 12.26 11.19 11.27 11.90 10.68
kfu-s-93 13.53 13.8 13 15.85 14.51 14.12 15.3 13
lse-f-91 10.29 9.6 10 12.58 10.92 10.76 12.33 10.11
rye-s-93 8.85 6.8 10.97 10.11 - 9.23 10.71 10.79
sta-f-83 157.12 158.2 157.04 158.12 157.18 157.69 160.12 158.02
tre-s-92 8.01 9.4 7.87 9.3 8.49 8.43 8.23 7.9
uta-s-92 3.17 3.5 3.10 3.65 3.44 3.33 3.88 3.12
ute-s-92 25.64 24.4 25.94 27.71 26.7 26.95 32.67 26
yor-f-83 36.86 36.2 36.15 43.98 39.47 39.63 40.53 36.2
Average 26.34 26.08 26.51 28.70 28.85 27.21 28.61 26.60

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 912 -

has had with the Toronto benchmark set, the EAHDA is currently being tested on benchmark
set of the second international timetabling competition (ITC 2007). Future work will also
examine including additional operators such as cell depletion and cell division.

Acknowledgements This work is based on the research supported in part by the National
Research Foundation of South Africa for the Grant CSUR13091742778. Any opinion, finding
and conclusion or recommendation expressed in this material is that of the author(s) and the
NRF does not accept any liability in this regard.

References

1. Abdul-Rahman, S., Burke, E. K., Bargiela, A., McCollum, B. and Ozcan, E., A
Constructive Approach to Examination Timetabling Based on Adaptive Decomposition
and Ordering, Annals of Operations Research, Vol. 218, 3-21 (2014).

2. Banzhaf, W., Pillay, N., Why Complex Systems Engineering Needs Biological
Development, Complexity, Vol. 13, No. 2, 12-21 (2007).

3. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R., Hyper-
heuristics: A Survey of the State of the Art. Journal of the Operational Research Society,
64, 1695-1724 (2013).

4. Burke, E.K., Qu, R., Soghier, A. Adaptive Selection of Heuristics for Improving Exam
Timetables, Annals of Operations Research, Vol. 218, 129-145 (2014).

5. Caramia, M., Del Olomo, P. and Italiano, G. F., Novel Local-Search-Based Approaches to
University Examination Timetabling, INFORMS Journal of Computing, Vol. 20, No. 1,
86-99 (2008).

6. Pillay, N., The Revised Developmental Approach for the Uncapacitated Examination
Timetabling Problem, in Proceedings of SAICSIT 2009, 187-192 (2009).

7. Pillay, N., A Study of Noise Operators in the Developmental Approach for the
Examination Timetabling Problem, in Proceedings of the 2011 IEEE Conference on
Intelligent Computing and Intelligent Systems (ICIS 2011), November 2011, Vol. 3, 534-
538, Guangzhou, China, IEEE Press (2011).

8. Pillay, N., Evolving Hyper-Heuristics for the Uncapacitated Examination Timetabling
Problem, Journal of the Operational Research Society, 63, 47-58 (2012).

9. Qu, R., Burke, E.K., McCollum, B., Merlot, L.T.G., Lee, S.Y., A Survey of Search
Methodologies and Automated System Development for Examination Timetabling,
Journal of Scheduling, 12(1), 55–89 (2009).

10. Sabar, N.R., Ayob, M., Kendall, G. and Qu, R., A Honey-Bee Optimization Algorithm for
Educational Timetabling Problems, European Journal of Operational Research, Vol. 216,
Issue 3, 533-543 (2012).

11. Sabar, N. R., Ayob, M., Qu, R. and Kendall, G., A Graph Colouring Hyper-Heuristic for
Examination Timetabling Problems, Applied Intelligence, Vol. 37(1), 1-11 (2012).

12. Sabar, N. R. Ayob, M, Kendall, G. and Qu, R., Grammatical Evolution Hyper-Heuristic
for Combinatorial Optimization Problems, IEEE Transactions on Evolutionary
Computation, 17(6), 840-861(2013).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 913 -

MISTA 2015

Scheduling Time Variant Jobs on a Time Variant Resource

Geir Horn

In remembrance of Professor Robert Dobinson (1943-2004)

1 Introduction

Classical scheduling originated in manufacturing disciplines and considers the problem of
assigning a set of n jobs ontommachines. The job j is assumed to have a known processing
time on machine i. It should be noted that classical scheduling only implicitly considers the
resources provided by the machine, i.e. the capacity of the machine is reflected in the time
it takes to complete the job on that machine. The situation considered here is different in
that the machine provides time variant resources, and the scheduling problem is to start
the time variant jobs according to the resource availability on the machine. The jobs are
continuous and once a job has started it will have to run to completion,i.e. the problem
is a nonpremptive single-machine scheduling problem. In contrast to classical scheduling
problems, the machine may start two or more jobs with overlapping execution periods if the
machine’s resources allow this. Initially, we will consider the relaxed form of the problem
where it is possible to acquire additional resources for the machine to run the jobs, albeit
at significantly higher cost than in its standard configuration. This will guarantee that the
problem has a solution, and transform the problem to find the schedule that minimises the
cost of the additional resources. The core results are presented in this extended abstract with
proofs to be found in the full paper.

The problem at hand is motivated from energy related problems and the introduction
of renewable energy sources whose energy production depend on weather conditions. The
scheduling of electrical appliances is normally referred to as demand side management
(DSM) [2] within the context of the next generation “smart” energy systems [3]. Consider
for example the electricity produced by a photovoltaic panel whose electricity production
depends on various factors like the solar radiation at the particular time of the year and the
amount of clouds. We would like to use this resource to run electrical appliances with time
variate energy consumption. If a cloud passes after after an appliance has started, we have
to compensate for the reduced energy production by buying electricity from the grid. The
goal is to minimise this external transaction. However, despite this practical motivation, we
believe that the problem is generally applicable as a new class of scheduling problems.

Dr. Geir Horn
University of Oslo, P.O. Box 1080 Blindern, 0316 Oslo, Norway
E-mail: Geir.Horn@mn.uio.no

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 914 -

2 Geir Horn

2 Basic Concepts

The schedule is fundamentally a vector s ∈ Rn that assigns a start time sj to each of the n
jobs. Each job has a duration ∆j . Since the jobs are nonpremptive, the continuous interval
for which a job j consumes resources is referred to as the job’s consumption interval and it
is denoted Ij = [sj , sj +∆j] ⊂ R.

One or more other jobs can be started within a job’s consumption interval. Thus, in
the extreme, all consumption intervals will overlap and there will be only one consumption
period. In the general case, however, there will be several disjoint consumption periods
where one or more jobs are executed in each period. Formally, a given schedule s will
partition the job index set, J = {1, . . . , n}, into disjoint index sets Pk|s such that⋃

k

Pk|s = J

Each of these consumption periods correspond to a consumption interval Ik|s being the
union of the consumption intervals of the jobs in the consumption period.

Each job considered here is a continuous function whose value represent the amount
of resources consumed by the job at a given time, i.e. J0

j (t) for t ∈ [0,∆j]. With no loss
of generality, we assume that the resource consumption is cumulative, and the amount of
resources consumed between two time stamps 0 ≤ t1 ≤ t2 ≤ ∆i will be J0

j (t2)−J
0
j (t1) ≥

0. It should be noted in passing that this is in particular useful for applications when the job
consumes energy, as many energy meters report only the cumulative energy consumption.

Assigning a start time sj to a job will have the effect of shifting its resource consumption
in time. There will obviously not be any resources consumed before the job starts, and no
further resources consumed when the job finishes. Hence, the job’s cumulative resource
consumption given the schedule s is

Jj (t|s) =

0 t < sj

J0
j (t− sj) sj ≤ t ≤ sj +∆j

J0
j (∆j) sj +∆j < t

(1)

Based on this, it is straight forward to define the total resource consumption in a con-
sumption period as the sum of the resource demands of the jobs scheduled for that interval.
Hence,

JIk|s(t) =
∑

j∈Pk|s

Jj (t|s) (2)

In order to schedule the jobs according to the available resources, i.e. assigning a start
time to each job, it is necessary to have some knowledge of the resource provisioning. The
resource availability is therefore also assumed to be known as a continuous and cumulative
function,R(t). Again, this implies that the function is convex with the property thatR(t1) ≤
R(t2) if t1 ≤ t2.

3 The Scheduling Problem

The forgoing discussion indicates that the problem is fundamentally to find a schedule such
that the total resource demands of the jobs in a consumption interval as given by (2) remains
below the total resources available over the same consumption interval. It is sufficient to

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 915 -

Scheduling Time Variant Jobs on a Time Variant Resource 3

look at one consumption interval at the time since a job can only belong to one consumption
period for any given schedule.

It is therefore natural to assume that a feasible schedule s satisfies

JIk|s(t)−
[
R (t)−R

(
min Ik|s

)]
≤ 0 for all t (3)

The last term in the bracket reflects the fact that the resource function R(t) is cumulative,
and only the resources available over the consumption interval can be used to execute the
jobs scheduled for this interval. It is therefore necessary to subtract the cumulative amount
of resources made available up to the start of the consumption interval, implying that the
expression in the bracket is zero at the beginning of the consumption interval.

The assumption (3) is an absolute requirement if it is not possible to change the provi-
sioning of resources. It is a goal in situations where additional resources can be obtained,
albeit possibly at a high cost. One such example is the aforementioned energy scheduling
where the resources may represent the energy produced by renewable sources like a wind
mill, but where it is still possible, albeit undesirable, to buy electricity from the grid.

One could therefore face situations where assumption (3) momentarily does not hold. In
these cases it would be desirable for the total resource consumption over the entire interval
not to exceed the available resources over the interval. In other words, one would integrate
assumption (3) over the whole consumption interval:∫ max Ik|s

min Ik|s

[
JIk|s(t)−

[
R (t)−R

(
min Ik|s

)]]
dt ≤ 0 (4)

The scheduling problem is therefore a non-linear mathematical programming prob-
lem [1] aiming at minimising the resource consumption:

min
s

∑
k

∫ max Ik|s

min Ik|s

[
JIk|s(t)−

[
R (t)−R

(
min Ik|s

)]]
dt (5)

subject to any constraints on the starting time for each job.
It is important to note that despite the fact that the value of the integral (4) only depends

on the consumption interval for which it is evaluated, the actual schedule s is common to all
consumption intervals, and the schedule s defines the partitioning of the job set. The prob-
lem is therefore not separable, i.e. one cannot interchange the sum and the minimisation
to solve the problem as a sum of smaller minimisation problems. Even though the optimi-
sation problem cannot be separated, the functional form (5) can be significantly simplified
rendering the problem tractable for numerical solution.

4 Simplifications

Lemma 1 (Job consumption and resources) The resource consumption of the jobs sched-
uled in a consumption interval can be considered independent from the resources available
over the same interval.

Lemma 2 (Independent job consumptions) The different jobs in a consumption interval
can be considered independently.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 916 -

4 Geir Horn

These results allows a simplification of the minimisation problem to be solved to find
the best schedule, with the surprising result that the objective function is independent from
the jobs’ temporal resource consumption. Only the total resource consumption of each job
matters, and the temporal availability of resources.

Theorem 1 (Objective function) The minimisation problem (5) is independent of the jobs’
temporal consumption of resources, and the non-linear mathematical programme can be
written as

min
s

[∑
k

∑
j∈Pk|s

J0
j (∆j)

[
max Ik|s − (sj +∆j)

]
+
∑
k

(
R
(
min Ik|s

) [
max Ik|s −min Ik|s

]
−
∫ max Ik|s

min Ik|s

R(t) dt

)] (6)

and solved subject to any constraints on the start times.

5 Conclusion

In many situations there is a need to schedule time variant jobs on a time variant resource.
This topic has received little attention in the scheduling communities. It has been shown in
this paper that the problem is independent of the temporal resource consumption by the jobs,
and that the schedule found my non-linear mathematical programming will depend only on
the temporal resource availability.

Acknowledgements

This paper is dedicated to late Prof. Robert Dobinson from CERN in gratitude for our friend-
ship and lengthy discussions on how to approach the problem of matching distributions of
stochastic variables.

The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant number 608806 CoSSMic.

References

1. David G. Luenberger, Yinyu Ye: Linear and Nonlinear Programming, 3rd edn. Springer (2008)
2. Linas Gelazanskas, Kelum A. A. Gamage: Demand side management in smart grid: A review and propos-

als for future direction. Sustainable Cities and Society 11, 22–30 (2014). DOI 10.1016/j.scs.2013.11.001
3. Xi Fang, Satyajayant Misra, Guoliang Xue, Dejun Yang: Smart grid — the new and improved power grid:

A survey. IEEE Communications Surveys Tutorials 14(4), 944–980 (2012). DOI 10.1109/SURV.2011.
101911.00087

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 917 -

MISTA 2015

Time-based Decomposition Strategies for the Traveling
Umpire Problem

Túlio A. M. Toffolo · Tony Wauters ·
Greet Vanden Berghe

1 Introduction

The Traveling Umpire Problem (TUP) is an optimization problem introduced by Trick

et al. (2012) that considers assigning n umpires (or referees) to games in a double

round robin tournament. The tournament schedule is given beforehand, and consists

of 4n − 2 rounds in which the 2n teams play twice against each other; once in their

home venue and once away. The objective is to minimize the total travel distance of

the n umpires. In order to ensure fairness in the schedule, five hard constraints are

imposed:

a) every game in the tournament must be officiated by one umpire;

b) every umpire must work in every round;

c) every umpire must visit the home of every team at least once;

d) every umpire must not visit the same venue more than once in any q1 consecutive

rounds;

e) every umpire must not officiate a game with the same team more than once in any

q2 consecutive rounds (this constraint is similar to the previous one, but also takes

the ‘away team’ into consideration);

The values for q1 and q2 range from 0 to n and 0 to bn2 c, respectively.

In this abstract, we present a brief overview of two time-based decomposition algo-

rithms to the TUP. We consider a simple decomposition scheme within two strategies:

(i) embedded in a parallel branch-and-bound framework and (ii) as part of a con-

structive heuristic. The first strategy, coupled with a matching propagation technique,

resulted in stronger lower bounds than any previous ones. This enabled optimally solv-

ing all instances with up to 14 teams and, in a few occasions, instances with 16 teams.

The second strategy aims at larger instances, containing 18 to 32 teams. New best

solutions were obtained during preliminary experiments.

Túlio A. M. Toffolo
a,b · Tony Wauters

a · Greet Vanden Berghe
a

Emails: {tulio.toffolo, tony.wauters, greet.vandenberghe}@cs.kuleuven.be
a KU Leuven, Department of Computer Science, CODeS & iMinds-ITEC - Belgium
b Federal University of Ouro Preto, Department of Computing - Brazil

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 918 -

2 Parallel branch-and-bound approach

The first approach to the TUP consists of a parallel decomposition-based branch-and-

bound algorithm. Starting from the first or from the last round, the algorithm assigns

games to umpires, one at a time and round after round, until all games are assigned.

Whenever multiple games can be assigned to one umpire in one round, the assignment

incurring the smallest increase in the travel distance is chosen. In case of ties, the

lexicographic order of games is considered. When no valid assignment can be found for

an umpire in a certain round, the procedure backtracks and selects the game with the

second smallest travel distance. If the resulting solution is feasible, its total distance

is used as an upper bound. Both top-bottom (from the first to the last round) and

bottom-up (from the last to the first round) strategies are executed in parallel.

In order to speed up the branch-and-bound, the assignments of the first or last

rounds are fixed beforehand (Yildiz, 2008) and some additional pruning rules are taken

into account. A simple local search procedure (Wauters et al., 2014) is also applied to

the solutions obtained by the branch-and-bound.

In order to provide strong lower bounds, a time-based decomposition algorithm is

considered. The problem is initially decomposed into 4n+2 subproblems, such that each

subproblem deals with exactly one round. These initial subproblems consist of finding

the trip that each umpire will make to officiate a game in each round. Subproblems can

be easily solved with an assignment algorithm, and their solutions provide an initial

lower bound. To strengthen the bounds, the decomposition is changed by iteratively

incrementing the size of the subproblems. Subproblems with multiple rounds are harder

to solve and are tackled by recursively applying the same branch-and-bound, taking

advantage of the previously calculated lower bounds.

The subproblems are independent and can be solved in parallel. This enables ap-

proaching instances with 18 teams, despite the exponential time complexity of the

algorithm.

3 Constructive heuristic approach

The branch-and-bound approach cannot handle instances with more than 18 teams.

We introduce a time-based decomposition approach within a constructive algorithm.

Initially, the problem is decomposed into m subproblems considering the time horizon

(rounds). The value of m is a critical parameter of the algorithm, and varies according

to the size of the instance. The m subproblems are solved sequentially, each taking

into account the solution of the previous subproblems. If a feasible solution is obtained

after solving the m subproblems, local search is applied. Otherwise, if infeasibility is

detected while solving one of the subproblems, the procedure backtracks and a different

solution of the previous subproblem is selected.

The main challenge in this approach is to avoid backtracking. Different objective

functions for the subproblems are considered in order to minimize the backtracking

fraction of the algorithm. The main idea is to penalize solutions that are likely to cause

infeasibilities. This allows early detection of infeasilibites and therefore considerably

speeds up the algorithm.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 919 -

4 Experiments and results

The algorithms were coded in Java 8 and experiments were executed on an Intel(R)

Xeon(R) CPU E5-2650 v2 @ 2.60GHz computer with 16 processors running Ubuntu

Linux 12.04 LTS. The benchmark instances from Michael Trick’s website1 were con-

sidered.

The parallel branch-and-bound algorithm was shown to be very powerful. Optimal

solutions for all the instances with 14 teams and for some instances with 16 teams were

quickly obtained. Nevertheless, the algorithm did not perform well when dealing with

larger instances.

The time-based constructive heuristic, on the other hand, obtained good results

on larger instances. During preliminary experiments, improving solutions over the best

known were produced in less than 3 hours of runtime (Table 1). Complete test results

will be presented at the conference.

Table 1: Preliminary results obtained with the heuristic

Objective Total Time
umps26 5, 5 354134 352011 1457.60 s
umps28 5, 5 398101 396478 3255.30 s
umps30 5, 5 450919 449824 3159.20 s
umps32 5, 5 502890 501108 7851.10 s

Constructive HeuristicInstance Best knownq2q1,

Acknowledgements Work supported by the Belgian Science Policy Office (BELSPO) in the
Interuniversity Attraction Pole COMEX (http://comex.ulb.ac.be).

References

de Oliveira L, de Souza CC, Yunes T (2014) Improved bounds for the traveling umpire

problem: A stronger formulation and a relax-and-fix heuristic. European Journal of

Operational Research 236(2):592 – 600

Trick MA, Yildiz H, Yunes T (2012) Scheduling major league baseball umpires and the

traveling umpire problem. Interfaces 42(3):232 – 244

Wauters T, Van Malderen S, Vanden Berghe G (2014) Decomposition and local search

based methods for the traveling umpire problem. European Journal of Operational

Research 238(3):886 – 898

Yildiz H (2008) Methodologies and applications for scheduling, routing & related prob-

lems. PhD thesis, Carnegie Mellon University

1 http://mat.gsia.cmu.edu/TUP/

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 920 -

MISTA 2015

Heuristics and Algorithms for Data Center Optimization

Per-Olov Östberg · Barry McCollum

1 Introduction

Infrastructure-as-a-Service (IaaS) cloud computing is characterized by automated pro-

visioning of compute resources through self-service APIs. For leveraging of economy of

scale effects, cloud compute resources are typically aggregated in large-scale data cen-

ters highly optimized for cost and energy efficiency. However, while cloud computing

has revitalized the data center paradigm and found substantial commercial success,

the average resource utilization of data center resources remains comparatively low [1]

and much recent work has been directed towards cloud data center infrastructure op-

timization.

Due to the wide applicability of cloud-based resource provisioning models, Cloud

applications span a very wide range of software applications including, e.g., monolithic

legacy applications, scientific simulation and data processing applications, distributed

tiered applications, and cloud native applications. Due to this heterogeneity, data center

infrastructure optimization is a complex task that requires modeling of cloud applica-

tions and their behavior as well as consideration of multiple factors such as application

composition, deployment configuration, and workload behavior patterns. The approach

to data center infrastructure optimization taken here emphasizes the task of controlling

the deployment (placement, scheduling, and horizontal elasticity of applications), as

well as capacity as resource assignments (vertical elasticity) of cloud applications and

components so that a) infrastructure resources maintain acceptable levels of resource

utilization while b) meeting application performance and quality of service (QoS) re-

quirements.

In particular, we address a current need for improvement of the predictability and

resilience of cloud data center management tools. As the field of cloud computing tran-

sitions into deployment of more mission critical systems such as power and telecommu-

nications infrastructure in heterogeneous data center environments, greater emphasis

Per-Olov Östberg
Dept. of Computing Science, Ume̊a University, Sweden
E-mail: p-o@cs.umu.se

Barry McCollum
School of EEECS, Queens University of Belfast, United Kingdom
E-mail: b.mccollum@qub.ac.uk

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 921 -

must be placed on application Quality of Service (QoS), stability and predictability

of platforms, and development of more advanced control and optimization of infras-

tructures. Towards this end, we define application and component models designed to

capture the behavior or cloud applications in data centers, and investigate design and

formulation of heuristics-based optimization techniques for cloud data center optimiza-

tion.

In this paper we perform an analysis of the different types of data center resource

management mechanisms in current use, investigate how optimization and scheduling

techniques can be used to improve the effiency of these, and propose a set of heuristics-

based optimization techniques for cloud data center resource management optimization.

The main contributions of the paper are identification and linking of opportunities for

infrastructure optimization, definition of heuristics functions that can be used as cost

and evaluation functions in cloud infrastructure optimization, and formulation of a set

of algorithms that make up the foundation of the optimization engine in the CACTOS

toolkit [2].

2 Cloud Resource Management

In this work we take the perspective of an IaaS cloud provider, and consider the joint

problems of cost, energy, and operations optimization for cloud data centers. We assume

that the data center infrastructure incorporates some form of virtualization, where the

virtualization provides a level of indirection between applications (including application

components) and physical resources, and model the optimization actions we can take

on this indirection.

To simultaneously capture application behavior and the impact application com-

ponent load places on infrastructure resources, we here combine two types of models

that interlinked model the main interactions of applications and resources in cloud

data centers: application models and component models. To give perspective on why

this type and level of modeling is used, we here give a brief introduction to the type

of infrastructure optimization that is targeted in this work, as well as an overview of

each type of model, before going into detail about the heuristics.

2.1 Terminology

In this work we use the following topological definitions: A cloud application is a dis-

tributed software system where one or more application components (software services

or subsystems) are deployed in a cloud data center. Components are typically (but

not necessarily) deployed in virtual hosts using some form of virtualization technology,

e.g., hardware supported virtualization (virtual machines), process groups, or software

containers, which in turn are mapped onto physical data center (hardware) resources

using some kind of deployment constraints. Deployment constraints constitute rules for

the scheduling and placement of virtual hosts on physical resources, and can include,

e.g., affinity or anti-affinity constraints that regulate whether or not components can

be co-hosted on the same physical resource, or constraints specifying limitations on the

amount of hardware resources that can be assigned to components.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 922 -

2.2 The Role of Virtualization

Many current cloud offerings are based on virtualization techniques such as virtual ma-

chines (VMs), process containers, or platform-specific virtualization techniques such as

Microsoft .Net Common Language Runtimes or Java Virtual Machines. While all these

by definition provide a degree of separation between the code of an application and

the physical execution host, we note that fundamental differences in capabilities and

technical performance may impact cloud resource management strategies. For exam-

ple, VMs such as KVM or Xen are designed to provide full operating system isolation

and are often capable of being migrated in runtime (so called live migration). Process

containers such as Docker are on the other hand designed to be more lightweight and

faster to instantiate using image differentiation techniques.

The field of virtualization technology is very fast evolving and as virtualization lies

at the core of cloud data centers, development of new technolgies can have a disrup-

tive effect on established trade-offs in data center performance. For example, develop-

ment of subsecond VM cloning has made VMs a more attractive type of technology

in data processing systems for malleable applications. To keep our work indepent of

technology-based trade-offs, we here consider virtualization mainly as a source of a

level of indirection between applications and resources, and aim to construct parame-

terizable methods where heuristics can be updated over time to reflect changes brought

on by technology developments.

For simplicity in terminology, we here use the term virtual host to denote a vir-

tualization technology providing a level of indirection between an application and the

physical host the application is executing on, regardless of what type of virtualization

technology is used to realize this indirection.

2.3 Application Model

Cloud applications are typically made up by distributed systems that are deployed in

data centers as sets of components (or subsystems) hosted in virtual hosts. Commonly,

these systems are deployed using deployment tools that describe the makeup and in-

terrelationships between components, often modeled as component graphs in cloud

deployment descriptors. To capture the structural relationship between cloud appli-

cation components, we define a cloud application model that defines communication

links between components. As illustrated in Figure 1, this model describes component

relationships in a graph format, and aims to capture how load propagates between

different components in an application.

2.4 Component Model

In addition to modelling application structure, the quantiative aspects of load prop-

agation must also be taken into account in data center optimization. Coarse-grained

scheduling and initial placement of (virtual hosts of) components can be done using

deployment information, e.g., virtual machine sizes and component classifications. For

adaptive control and prediction of resource use however, more fine-grained modeling

of the translation between incoming request patterns and internal as well as outgoing

load is needed. Towards this end we define a simple component models designed to

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 923 -

Application Components

Physical Resources

x g1(x) g2(x)

Fig. 1 Application model. Applications are modeled as connected graphs of components in
the virtual layer, and mapped to physical compute resources in the physical layer.

quantify the relationships between incoming request patterns and a) internal load in

the dimensions of CPU, RAM, I/O, and storage; and b) outgoing request patterns

(illustrated as f(x) and g(x) respectively in Figure 2).

In this modeling we further make the observation that for each of these modeled

entities there are significant differences between different types of applications in their

load patterns. There are for example some applications that are load-wise driven di-

rectly by external requests, e.g., web servers where the needed resource capacity directly

correlates to the type and amount of incoming requests (web servers are mostly idle

when not processing HTTP requests), and other types of applications that are pri-

marily driven by internal load factors, e.g., batch-oriented data processing applications

with high data to compute ratios (i.e. that receive a few requests and then spend large

amounts of time and resources performing computations that are not directly corre-

lated to the incoming request patterns in any externally visible way). For this reason we

also further decompose our component model to encompass the notion of foreground

(load directly driven by incoming requests) and background (load not driven directly

by incoming requests) load.

f(x)
x g(x)

Fig. 2 Component model. Load impact and propagation functions detail how component
requests result in internal virtual host load, as well as how requests are propagated to other
components.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 924 -

2.5 Optimization Problem

From a high level infrastructure provider perspective, cloud resource management can

be seen as a complex dynamic assignment problem with a producer-consumer dynamic

where demand exceeds supply. The challenge of the optimization then becomes to

determine what amount of physical resource capacity (e.g., CPU, RAM, I/O, storage,

network, etc.) is needed where (i.e. in what virtual host), and to control the scheduling,

placement, and hardware resource allocations of virtual hosts to optimize the infras-

tructure efficiency. We address this optimization problem using a heuristics-based ap-

proach: we design heuristics functions that capture the behavior and impact of cloud

applications and components for use as cost and evaluation functions, we formulate

high-level objective functions to be used as guiding policies in automated infrastruc-

ture optimizations, and develop optimization algorithms that address scheduling and

placement from a joint robustness-optimality perspective. Further information about

the perspective of cloud infrastructure optimization used in this work is available in [2].

2.6 Resource Management Actions

Key to data center optimization is resource management efficiency. In our approach

we structure resource management actions in four categories; placement, migration,

vertical elasticity, and horizontal elasticity; and outline the high-level policies we map

towards these actions. The main focus of this paper lies on the first two, but brief

descriptions of the elasticity aspects are included for completeness.

2.6.1 Placement (Scheduling)

Scheduling, or placement as it is commonly called in the cloud domain, here refers to the

initial assignment of virtual hosts to physical resources. As such, scheduling is an action

that can have great impact on the efficiency of a data center, and is typically performed

in accordance with a high-level policy that determines the objecive function of the

placement. Illustrative examples of scheduling policies include, e.g., load balancing

(spreading workloads more or less evenly over resources), consolidation (compacting

as many workloads onto as few resources as possible), or energy efficiency (minimizing

the energy footprint of the resources used to host the workloads).

As many traditional scheduling problems, cloud placement can be modeled as a

parameterized bin packing problem with heuristics functions that capture costs and

effectiveness of different scheduling actions. A key consideration here is the execu-

tion timeframe of the optimizations: Direct modeling of fitting functions (e.g., coarse-

grained models that capture the CPU and RAM requirements of virtual hosts) allows

formulation of fast greedy algorithms or even search-based methods for first or best fit

algorithms that can be used for on-demand optimization of placement. More advanced

models can employ, e.g., mixed integer-linear or constraint programming methods to

find higher quality solution in continuous (e.g. over night) optimizations. Common to

all of these approaches is that they require heuristics to model and evaluate different

scheduling actions in optimization.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 925 -

2.6.2 Migration (Rescheduling)

A key difference between cloud environments and traditional cluster environments is

that some types of virtual hosts, e.g., virtual machines, are capable of being migrated.

This can be done during runtime (live migration) or using a suspend-transfer-resume

semantic (cold migration), and can have great impact on the efficiency of a data cen-

ter. To illustrate how, consider another key difference between traditional cluster en-

vironment jobs and cloud services: the execution lifetime. Cluster jobs are typically

scheduled using a batch scheduler and have well-define lifetimes. Cloud services on the

other hand are typically deployed in virtual hosts that remain active until shut down

(i.e. do not have traditional scheduling deadlines or even lifetimes that are known at

the time of scheduling). Due to this, the ability of being able to migrate workloads

within data centers can be greatly useful to allow placement decisions to be revisited

to, e.g., use rescheduling to adapt to changed circumstances or data center events such

as maintenance or hardware failures.

Migration does not come without a cost however. Cold migration incurs service

interruption and a live migrated virtual host typically consumes hardware resources at

both the source and destination physical resource during the migration. Both will also

place a substantial (yet predictable) load on the network links between the resources.

To be able to effectively use migration in data center optimization requires models

that accurately capture the performance penalties and costs (in terms of resource

capacity such as CPU, network bandwidth, and memory consumption) involved in the

migration. This modeling is done based on knowledge of the migration technology used.

For example in pre-copy live migration the virtual host memory pages are transfered to

the destination host in advance, leaving the active (dirtied) pages to be retransmitted

until only a core set remains and the process is quickly paused on the source and

resumed on the destination (after the core set have been transfered). Similarly, if a

post-copy live migration approach is used the control and core memory set is transfered

and the process is resumed at the destination directly, and the remaining memory is

pulled in (in order) as needed.

As a number of recontextualization issues (e.g., network connection management)

also need to be handled, and the internal state of the virtual host depends on what

the virtual host is currently doing, migration is at its most effective when properly

scheduled (e.g., during a period of less activity). Effective scheduling of migration

requires heuristics that accurately capture not only the direct costs of the migrations,

but also the risks involved.

2.6.3 Vertical Elasticity

In addition to placement and migration, which essentally determine where a virtual

host resides, cloud environments also typically provide dynamic control of how much

hardware capacity a virtual host is assigned (vertical elasticity, from scaling up or

down virtual hosts). Optimization of vertical elasticity is commonly done to facilitate

overbooking of resources (i.e. fitting extra virtual hosts on a resource) by careful mon-

itoring of application QoS metrics and the activity levels of (and interference between)

the co-located virtual hosts. The term vertical elasticity is also sometimes used to de-

note the ability to change the size of the virtual hosts (e.g., changing the number of

virtual CPUs in a virtual machine, rather than how many physical CPUs that can be

used by the virtual CPUs).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 926 -

2.6.4 Horizontal Elasticity

Finally, cloud environments also commonly entail a concept known as horizontal elas-

ticity (from scaling out or in), which refers to the ability of adaptively changing the

number of components or virtual hosts for a specific part of an application. This is a

very powerful means of scaling a cloud application and requires whitebox knowledge

of the application internals to, e.g., know to get an extra instance of a database server

when the transaction load is too high on the existing instances. In this work we pri-

marily target scheduling and rescheduling of virtual hosts, are thus focus on placement

and migration of virtual hosts.

3 Conclusion

This abstract has outlined the various potential models and background issues that

should be taken into consideration during the processes of scheduling and optimisation

in cloud data centers. The intention of the work is to employ heuristics gleaned from

real work environments and incorporate this knowledge within a meta/hyper heuristic

framework to help dynamically schedule and reschedule resource within the allocation

process. A classification of approaches taken within the literature will be presented

for discussion at the conference along with an overview of the optimisation framework

being developed within the CACTOS project i.e. CactoOPT.

The overall intention of this work is to raise awareness of cloud scheduling and

optimsiation within the scheduling community which will help inform on ’best of breed’

approaches and how these approaches can contribute to this increasingly important

area. Importantly this is a real world application area that presents an opportunity for

the scheduling community to become involved and trial techniques on large scale data

sets. The intention is to use the conference as a starting point from which to build

a body of work including an online repository of real world datasets and compilation

of approaches and results. The authors are also interested in establishing a series of

competitions which has proven to be successful in furthering the research in other areas

involving optimising resource allocation i.e. Timetabling.

Acknowledgements The authors would like to ackowledge Jakub Krzywda and Ahmed Ali-
Eldin for work related to the project. This work is funded by the European Union’s Seventh
Framework Programme under grant agreement 610711 (CACTOS).

References

1. A. Vasan, A. Sivasubramaniam, V. Shimpi, T. Sivabalan, R. Subbiah, Worth their Watts?
- An Empirical Study of Datacenter Servers. High Performance Computer Architecture
(HPCA), 2010 IEEE 16th International Symposium on, pp. 1-10, 2010.

2. P-O. Östberg, H. Groenda, S. Wesner, J. Byrne, D. Nikolopoulos, C. Sheridan, J. Krzywda,
A. Ali-Eldin, J. Tordsson, E. Elmroth, C. Stier, K. Krogmann, J. Domaschka, C. Hauser, PJ.
Byrne, S. Svorobej, B. McCollum, Z. Papazachos, L. Johannessen, S. Rüth, and D. Paurevic.
The CACTOS Vision of Context-Aware Cloud Topology Optimization and Simulation. The
6th IEE International Conference on Cloud Computing Technology and Science (CloudCom
2014), pp. 26-31, 2014.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 927 -

MISTA 2015

Variable neighbourhood search for rich personnel rostering
problems

Pieter Smet · Greet Vanden Berghe

1 Introduction

Assigning shifts to employees is a problem solved daily in various organisations in

health care, logistics, manufacturing, etc. Despite the many academic advances in the

field of automated personnel rostering, this task is often still done manually. One reason

for this research-application gap is that academic models for personnel rostering often

fail to capture characteristics that cannot be neglected in practice.

The present contribution introduces a variable neighbourhood search (VNS) algo-

rithm for solving feature-rich personnel rostering problems. The general object model

introduced by Smet et al (2014) presents a flexible approach for modelling a large va-

riety of rostering problems. This model was developed as part of a research project,

and has been implemented in a commercial software system for staff scheduling.

Variable neighbourhood search is a well known metaheuristic which alternates be-

tween two phases to balance intensification and diversification (Mladenovic and Hansen,

1997). Bilgin et al (2012) applied VNS to a real world nurse rostering problem, illustrat-

ing the algorithm’s flexibility and robustness on instances with varying characteristics.

The present contribution introduces new neighbourhoods for the general model of Smet

et al (2014), and presents new best results for a benchmark dataset.

2 General object model

Through reusable components, the model addresses common, yet complex problem

characteristics which are often neglected in academic models. The model can repre-

sent problems in the class ASCNI|RVNO|PL, according to the α|β|γ notation of De

Causmaecker and Vanden Berghe (2011).

Shift types are characterised by a start and end time, a net job time and a minimum

rest time required before and after an assignment of the shift. Due to breaks, the

difference between the start and end time often does not correspond to the actual job

time. Therefore, the net job time is specified for each shift, which is used when counting

Pieter Smet, Greet Vanden Berghe
KU Leuven, Department of Computer Science, CODeS & iMinds - ITEC
E-mail: {pieter.smet, greet.vandenberghe}@cs.kuleuven.be

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 928 -

the total number of hours an employees has worked. According to the α|β|γ notation,

the number of shifts is variable (N), and they can be overlapping (O).

Employees are characterised by a set of skill types, contracts and requests. The num-

ber of skills for which an employee is qualified and the organisation’s skilling structure

can vary significantly between different application contexts. Typically, one employee

has multiple skill types, sometimes coupled with a level of experience. The general

model allows the definition of such problems, modelling the complex interactions be-

tween employees that occur, for example, in a hierarchical skilling structure. According

to the α|β|γ notation, the number of skills is variable (N), and can be defined individ-

ually (I).

Contracts consist of a number of time-related constraints and a period in which

the contract is valid. The rules making up the contract are considered soft constraints,

and determine the cost of an individual’s roster through a weighted sum of violations

(personnel objectives (P) in the α|β|γ notation). The threshold of each constraint is

defined as a range, i.e. both a minimum and maximum value are specified. The time-

related constraints are classified into three general types: counters, series and successive

series (availabilities (A) and sequences (S) in the α|β|γ notation).

– Counters restrict the number of specific roster items in a certain period, defined by

a start date and a number of days. This counter period does not need to match the

scheduling period. Seven subjects can be restricted by counters: hours worked, shift

types worked, days worked, days idle, weekends worked, weekends idle and domain.

– Series restrict consecutive occurrences of specific roster items. These constraints

are valid in the period corresponding to the period of the contract. They are defined

for five subjects: shift types worked, days worked, days idle, weekends worked and

weekends idle.

– Successive series restrict two consecutive series; if the first series appears in a

roster, it must be immediately succeeded by the second series. Similar to series, a

successive series’ period corresponds to the contract’s period. Five successions of

series are considered: days worked → days idle, days idle → days worked, shift types

worked → days idle, days idle → shift types worked and shift types worked → shift

types worked.

The time-related constraints are restricted to specific parts of the roster using

domains. A domain is defined by a day set, shift type set and skill set, each delineating

part of the problem in a different dimension. For example, the domain of the maximum

number of consecutive shift types worked constraint is a restricted shift type set to

indicate which shift types should be constrained. The domain counter constraint is

included in the model as a very general type of counter constraint, which uses domains

to identify the roster items whose occurrence is limited.

Apart from the time-related constraints, different scheduling constraints further

restrict the assignments. This class of constraints contains three types: coverage re-

quirements, collaboration preferences and training constraints. Coverage constraints

express the number of employees required for each shift on each day as a range (fluc-

tuating (V) and ranged coverage (R) in the α|β|γ notation). The model allows for a

flexible definition of these constraints through skill type requirements and an associ-

ated minimum level of experience. Collaboration preferences model situations in which

it is desirable to have a minimum or maximum number of employees from a subset

of employees to be working together. Finally, training constraints allow for expressing

guidelines regarding the training of personnel, e.g. employees who are less experienced

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 929 -

in a skill should work together with more experienced employees. These latter two

constraints are chaperoning constraints (C) in the α|β|γ notation. All scheduling con-

straints have a weight, so that their violations can also be included in the weighted

sum objective function (coverage objectives (L) in the α|β|γ notation).

Finally, the model includes elements which enable consistent constraint evaluation

at the boundaries of the scheduling period. For all counter constraints, start and end

values are defined for each employee individually. To allow consistent evaluation of the

other constraint types, assignments from other scheduling periods can also be included.

3 Solution approach

Due to the large variety of soft constraints in the model, there are many neighbourhoods

that need to be explored in order to reduce the number of constraint violations. As

standard local search algorithms provide little support for multiple neighbourhood

definitions, VNS was chosen to manage the different move operators.

In the first phase, Variable Neighbourhood Descent (VND) is used to reach lo-

cally optimal solutions. Several VND neighbourhoods are proposed which make both

small and significant changes to the current solution. These neighbourhoods include

commonly used ones, such as swapping one or multiple consecutive assignments be-

tween employees. However, due to the constraint definitions in the model, additional

neighbourhoods are required that delete assignments or make new assignments. In the

spirit of the original formulation of VNS, the order in which these neighbourhoods are

explored is linked with their complexity.

The shaking phase attempts to escape local optima by perturbing the current

solution. The neighbourhoods used in this phase make large changes to a solution, which

cannot be achieved by only applying the VND move operators. Strong perturbations are

obtained by swapping a single or all assignments between employees, and by applying

a ruin-and-recreate heuristic. These neighbourhoods are ordered in a nested structure.

A computational study is performed to determine suitable parameter settings for

the algorithm. Furthermore, the contribution and relative importance of the VND and

shaking neighbourhoods are analysed. Computational results on instances based on

real world data will be presented at the conference.

Acknowledgment: This research was carried out within the IWT 110257 project.

References

Bilgin B, De Causmaecker P, Rossie B, Vanden Berghe G (2012) Local search neigh-

bourhoods for dealing with a novel nurse rostering model. Annals of Operations

Research 194(1):33–57

De Causmaecker P, Vanden Berghe G (2011) A categorisation of nurse rostering prob-

lems. Journal of Scheduling 14(1):3–16

Mladenovic N, Hansen P (1997) Variable neighborhood search. Computers & Opera-

tions Research 24(11):1097 – 1100

Smet P, Bilgin B, De Causmaecker P, Vanden Berghe G (2014) Modelling and evalua-

tion issues in nurse rostering. Annals of Operations Research 218(1):303–326

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 930 -

Cheng-Weng Fong

Department of Computer Sciences and Mathematics, Faculty of Applied Sciences and

Computing, Tunku Abdul Rahman University College, Johor Branch Campus, 85000 Segamat,

Johor, Malaysia

E-mail: fongcw@adu.tarc.com.my

Hishammuddin Asmuni

Software Engineering Research Group, Software Engineering Department, Universiti

Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia

E-mail: hishamudin@utm.my

Way-Shen Lam

Software Engineering Research Group, Software Engineering Department, Universiti

Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia

E-mail: lwshen007@gmail.com

Barry McCollum

Department of Computer Science, Queen’s University Belfast, Belfast BT7 1NN United

Kingdom

E-mail: b.mccollum@qub.ac.uk

Paul McMullan

Department of Computer Science, Queen’s University Belfast, Belfast BT7 1NN United

Kingdom

E-mail: p.p.mcmullan@qub.ac.uk

Graham Kendall

ASAP Research Group, School of Computer Science, The University of Nottingham,

Nottingham and University of Nottingham Malaysia Campus, NG8 1BB, United Kingdom

E-mail: Graham.Kendall@nottingham.ac.uk

MISTA 2015

A Hybrid Swarm Algorithm for Post Enrollment Course Timetabling

Cheng-Weng Fong • Hishammuddin Asmuni • Way-Shen Lam• Barry McCollum• Paul

McMullan• Graham Kendall

Abstract The hybridization of metaheuristic approaches in solving optimization problems is

increasingly the subject of many research projects. An important objective of hybridizing two

or more metaheuristic approaches is to attain a balance between global exploration and local

exploitation within the overall search process. This paper presents such an approach in terms

of hybridising the population based approach Artificial Bee Colony (ABC) algorithm with a

Hill Climbing (HC) local search and applying the resultant algorithm to the post enrollment

course timetabling problem. In addition, the global best concept inspired from Particle Swarm

Optimization (PSO) is used to improve the exploration of the basic ABC algorithm. The

proposed hybrid approach is tested on Socha’s course timetabling datasets and is compared

against state-of-the-art approaches from the scientific literature. Experimental results

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 931 -

mailto:hishamudin@utm.my
mailto:b.mccollum@qub.ac.uk

demonstrate that the proposed hybrid approach outperforms the basic artificial bee colony

algorithm and is comparable to other previously presented approaches.

Keywords: Artificial bee colony algorithm, hill climbing local search, particle swarm

optimization, post enrollment-based course timetabling

1 Introduction

 University timetabling problems are complex optimization problems that have long

attracted the attention of researchers from the areas of Artificial Intelligence and Operational

Research. Various approaches have been proposed and trialed in addressing these problems.

The earlier approaches (approximately pre 1990) were based on graph coloring heuristics (i.e.

largest degree, largest enrollment, least saturation degree, largest weighted degree and largest

coloured degree). These approaches were inspired by the similarities between the tasks of

timetabling and graph colouring i.e. graph vertices represent events, colors represent time slots

and edges between vertices correspond to conflicts between events [1, 2].

In the last two decades or so, metaheuristic (single solution and population based)

approaches have been utilised in tackling university timetabling problems. Examples of single

solution based approaches that have been successfully applied are simulated annealing [3, 4],

iterative improvement [5], the great deluge algorithm [3, 6, 7] and variable neighborhood

search [8]. Examples of population based approaches include genetic algorithms [9], honey bee

mating algorithms [10] and harmony search [11]. Previous surveys and overviews regarding

the application of metaheuristics in solving university timetabling problems are available in

[12-15].

Hybridization of metaheuristic approaches have also been shown to be effective in

addressing university timetabling problems. Abdullah et al. [16] developed a hybrid approach

which combines variable neighborhood search with a genetic algorithm in addressing the

university course timetabling problem. By referring to a recent comprehensive survey paper,

Qu et al. [15] states that “There are many research directions generated by considering the

hybridization of meta-heuristic methods particularly between population-based methods and

other approaches”. Hence, this paper presents a hybrid approach comprising the combination

of Artificial Bee Colony (ABC) algorithm, Particle Swarm Optimization (PSO) and Hill

Climbing (HC) in solving the post enrollment course timetabling problem. The inclusion of

the latter two approaches is motivated by the creation of a better balance within the ABC

approach between exploration and exploitation.

This paper is structured as follows. Section 2 introduces the university course

timetabling problem. The components that employed for the hybrid algorithm are presented in

Section 3 and the proposed approach is discussed in Section 4. Simulation results are presented

in Section 5 and Section 6 provides concluding remarks and a discussion on possible future

work and approaches.

2 Problem Description

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 932 -

 The university course timetabling problem involves the allocation of courses or

lectures into a limited set of time slots (normally on a weekly basic) and rooms while

satisfying a set of predefined constraints [17]. Constraints can be categorized into two types,

i.e. hard constraint and soft constraints. Hard constraint must be satisfied (feasible solution)

under all circumstances, while violation of soft constraints should be minimized as far as

possible, and this reflects the quality of the solution produced. A timetable solution that

satisfies all soft constraints is an optimal solution. The quality of a timetable solution is

evaluated based on the closeness of the timetable solution in terms of approaching the optimal

[7].

University course timetabling can be divided into two types, i.e. post enrollment-

based and curriculum-based course timetabling problems. The former is investigated in this

paper. The main aspect that differentiates these two problems is that the post-enrollment course

timetabling focuses on students’ preferences while curriculum course timetabling concentrates

on constructing timetables providing maximum flexibility within the curriculum structure [18].

The post enrollment course timetabling problem datasets investigated in this paper were

introduced by Socha et al. [19]. This dataset includes 11 instances consisting of 5 small, 5

medium and 1 large instance.

The goal is to allocate all courses into timeslots and rooms into a weekly timetable

subject to a set of hard constraint(s) and soft constraint(s). The problem description described

here is adopted from Socha et al. [19] and the characteristics of the dataset can be seen in

TABLE 1.

 M, number of students;

 C, number of courses;

 T, a set of predefined timeslots (tn…T, where T=45, n=1…T);

 R, number of rooms (r….R, r=1,2,3…,R);

 F, a set of room features.

The goal of this problem is to allocate courses C into a number of timeslots T and

rooms R permitted such that all the stated hard constraints discussed below are satisfied:

Hard constraints

 All students are required to attend only one course at one time.

 A course must be allocated to a room that satisfies feature required for that course.

 A course must be allocated into a room that can serve students that attend for that course.

 Only one course can be scheduled into a room at any timeslot.

In addition to satisfying the hard constraints stated above, the timetable solutions

should minimize the violation on following soft constraints:

Soft constraints

 No student is requested to attend only one course in a day.

 No student is requested to attend three or more consecutive courses in a day.

 No student is requested to attend a course that scheduled in the last timeslot of a day.

The penalty cost calculation is based on the violation of each soft constraint per

student. A penalty cost of 1 will be assigned for the violation of any soft constraint per student.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 933 -

TABLE 1

Characteristics of post enrollment-based course timetabling problem

 Small Medium Large

Number of courses 100 400 400

Number of rooms 5 10 10

Number of timeslots 45 45 45

Number of features 5 10 10

Approx features per room 3 3 3

Percent feature use 70 80 90

Number of students 80 200 400

Max events per student 20 20 20

Max students per event 20 50 100

3 Hybridization Components

3.1 Artificial Bee Colony Algorithm

This section presents the idea of the ABC algorithm that was introduced by Karaboga

[20] which is inspired by the foraging behavior of honey bees when they are exploring food

sources (solutions) to collect the nectar (fitness value). Artificial bee colony has been

successfully applied in addressing various optimization problems [21-24]. There are three

phases in the ABC algorithm i.e. employed, onlooker and scout bee phases. The number of

employed bees and onlookers are the same and they cooperate in terms of improving quality of

food sources of the population in the chosen search region.

In the employed bee phase, employed bees explore for food sources in the search

region. The food source searching process is represented by neighborhood search. Each bee

searches for a neighborhood food source of the current food source and will accept that food

source if the quality is better than current food source.

In the onlooker bee phase, the onlooker will seek for a better food source than the

food sources found in employed bee phase. The food source selection is based on a probability

scheme (roulette wheel selection) where food sources with better quality of nectar will have a

higher chance of being chosen. The search process is repeated until all the onlookers perform

the search process on selected food sources.

Employed bees will turn into scout bees if they are unable to find better food sources

after an identified period. They will discard current food sources (exhausted food sources) and

look for a new food source in the search region.

3.2 Particle Swarm Optimization and Hill Climbing

Particle swarm optimization is a population-based approach that was introduced by

Kennedy and Eberhart [25]. The idea of this approach is based on the food searching behavior

of birds or fishes. In PSO, one of the solution searching process is guided by global

information [26]. Global information refers to the best solution found so far in a population

(global best concept). This concept can improve the exploration ability of the search process

since the search is focused on exploring promising search regions.

Hill climbing is a simple single solution based local search approach. During the

search, the approach evaluates the neighborhood solutions iteratively until a local optima

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 934 -

solution obtained based on greedy selection scheme. This scheme accepts only improved

solutions which often make the search process entrapped in local optima and poor resultant

solution are subsequently obtained [7]. However, this problem can be addressed by hybridizing

with other approaches. For example, a hybrid method that consists of constraint programming,

simulated annealing and HC proposed by Merlot et al. [27] has proven to be effective when

applied to the closely related examination timetabling problem.

 4 Global Best Concept Artificial Bee Colony Algorithm

Global best concept artificial bee colony (GBABC) algorithm is an approach that is

based on hybridization of the global best concept of PSO and HC local search. The pseudo

code for the proposed approach is shown in Fig. 1. This algorithm starts by generating initial

solutions using a hybrid construction approach proposed by Chiarandini et al. [28] and Landa-

Silva and Obit [29]. The hybrid construction consists of a largest degree heuristic phase

followed a by neighborhood search and tabu search phase if no feasible solution is generated

initially.

 Employed Bee Phase.

In this phase, all the employed bees explore for food sources using the global best

concept (Section 3.2). As discussed, this is with the aim of leading the search process

exploration toward promising search region rather than blindly exploring toward unknown

search regions. The global best concept is achieved by generate new offspring that inherit the

best solution found so far using haploid crossover [30]. From this process, the offspring

generated subsequently contains certain information of the best solution and will therefore

accordingly intensify the search on the best solution region. Details on the implementation of

haploid crossover is presented in author’s previous works [31].

Onlooker Bee Phase.
Rather than exploiting only the selected food source in the onlooker bee phase of the

basic ABC algorithm, HC local search (Section 3.2) is incorporated in this phase to fine-tune

(seek for local optima solution) all the food sources explored within the employed bee phase.

This is carried out with the aim of improving the exploitation ability in searching local optimal

solutions. Two neighborhood structures used to generate tentative solutions are employed as

below:

─ N1: Randomly selects a course and moves into another feasible time slot and room.

─ N2: Randomly selects two courses and swap their time slots and rooms. The feasibility

of the timetable solution is maintained at the same time.

During the execution of HC local search, N1 or N2 is used to generate neighborhood

solution. The selection of N1 or N2 is based on probability selection. Prior to the selection of

N1 or N2, a random number within the 0 to 1 range will be generated. If the random number

generated falls within the range of 0 to 0.5, N1 will be selected to generate the neighborhood

solution. Otherwise, N2 will be selected.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 935 -

Scout Bee Phase.
In scout bee phase, scout bees serve as explore colonies to search for new food sources. Hence,

the entire solutions in the population are discarded after improved (fine-tuned) by the Onlooker

bees. New set of solutions are generated randomly to replace the discarded solutions.

Fig. 1. Pseudo code for global best concept artificial bee colony algorithm

5 Experimental Results

The proposed algorithm was coded using C++ programming and simulations were

carried out on the Intel Core i7 2.2 Ghz laptop. In addition, the proposed approach was tested

against the post enrollment-based course timetabling problem (Section 2) with 30 test runs for

each instance. The experiments are carried out with 50 population size and 2000 iterations for

Initialization:

Set population size (SN), initialize the population;

Calculate fitness value of each solution, f(sol);

Identify global best solution, solBS;

Set number of iterations for ABC, NumItrABC;

Set number of iterations for HC, NumItrHC;

Improvement:

For t = 1 to NumItrABC do

 For i = 1 to SN do //Employed Bee Phase

 Incorporate information of best solution,

 solBS into soli based on global best concept

 using haploid crossover;

 End For i

 For i = 1 to SN do //Onlooker Bee Phase

 For h = 1 to NumItrHC do //HC local search

 Select solution soli and generate soli’

 by performing neighborhood search;

 If f(soli’) ≤ f(soli)

 Soli ← soli’;

 End If

 End For h;

 If f(solBS) < f(soli)

 solBS ← soli;

 End If

 End For i

 //Scout Bee Phase

 All the solutions (sol) in the population are

 abandoned and new solutions (solnew) are generat-

 ed randomly, sol ← solnew;

 Calculate fitness value for each new solutions,

 f(sol);

End For t

)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 936 -

HC local search. Note that the experiments carried out were terminated when the iteration for

artificial bee colony algorithm equaled 10000. The computational times used are different and

depend on the size of each instance. For the basic ABC algorithm and proposed approach, the

computational time for each instance took 15 minutes to 2 hours and 1 to 8 hours, respectively.

These computational times are acceptable since in real world, the timetables generation

process is carried out a few months before the actual use of the resultant timetable solution [8].

TABLE 2 illustrates the Friedman test and provides a comparison between results

obtained by the basic ABC algorithm, the proposed approach and published results from the

literature. In general, the proposed approach outperformed the basic ABC algorithm in all

instances and manages to produce competitive results with other published approaches. It can

be seen that the proposed approach is capable of producing feasible timetables for all

instances. Besides that, the proposed approach manages to obtain optimal solutions with no

soft constraints violation for all small instances and performed well on the remaining instances.

In addition, among the approaches compared with, results of medium 01 and medium 04

ranked first, followed by medium 02 and medium 05 ranked in second place, respectively.

Based on the Friedman test (ranking) conducted as shown in Table 2, it can be seen that Al-

Betar et al. [32] ranks first, followed by the approached proposed here, Shengxiang and Jat

[33], Abdullah et al. [34], Abdullah et al. [8], Landa-Silva and Obit [35] and the basic ABC

algorithm in decending order.

TABLE 2

Friedman test and result comparison

Instance Basic

ABC

(GBAB

C)

Shengxia

ng and

Jat [33]

Landa-

Silva and

Obit [35]

Abdullah

et al. [8]

Abdullah

et al.

[34]

Al-

Betar

et al.

[32]

small01 25 0 0 0 0 0 0

small02 32 0 0 1 0 0 0

small03 23 0 0 0 0 0 0

small04 15 0 0 0 0 0 0

small05 24 0 0 0 0 0 0

medium01 393 83 139 126 221 98 99

medium02 436 74 92 123 147 113 73

medium03 483 154 122 185 246 123 130

medium04 422 96 98 116 165 100 105

medium05 415 73 116 129 130 135 53

large 908 665 615 821 529 610 385

ranking 7.000 2.909 3.181 4.454 4.363 3.363 2.727

Fig. 2, 3 and 4 represent the convergence graph of ABC and the proposed approach in

searching solutions for instances small 02, medium 01 and large. It can be observed that the

slope for the proposed approach is relatively steeper than basic ABC algorithm (for all graphs).

This is due to a large improvement in term of solution quality (using HC local search) at the

early stage of the search process for the proposed approach. In addition, the convergence of the

search process associated with the proposed approach is relatively better than the basic ABC

algorithm. However, the increment of quality of solution slows down and decreases as the

increase of number of iteration for both basic and proposed approaches.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 937 -

Box plots which demonstrate the distribution of best, first quartile, average, third

quartile and worst solution qualities generated by proposed approach can be seen at Fig. 5. It

can be observed that there is a close gap for best and average values which indicates that

proposed approach is stable in searching for solutions for all instances.

TABLE 3 presents the statistical analysis (t-test) on the performance of the basic

ABC over the proposed approach at the level of significant of 0.05. The null hypothesis (H0) is

defined as there is no different between the performances of both approaches, whereas, the

alternative hypothesis (H1) is defined as the performance of proposed approach is better than

basic ABC. The p-values for all instances are smaller than 0.05 which indicates that there

exists strong evidences to support the claim on H1 and reject H0. From this experiment, it can

be concluded that the performance of the proposed approach is significantly better than basic

ABC in solving the Socha course timetabling problem.

From the experimental results, it is believe that by introducing the global best concept

in the ABC within the employed bee phase it is possible to enhance the exploration ability of

the search process and accordingly leads the search process to more promising search regions.

Furthermore, it is also believe that by hybridizing with an HC local search approach the

approach is capable of improved the local exploitation of the ABC algorithm in fine-tuning the

solutions explored within the employed bee phase to local optima points.

Fig. 2. Convergence graph of basic ABC algorithm and proposed approach for instance

small02

Fig. 3. Convergence graph of basic ABC algorithm and proposed approach for instance

medium01

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 938 -

Fig. 4. Convergence graph of basic ABC algorithm and proposed approach for instance

large

Fig. 5. Box plots of Socha course timetabling dataset

TABLE 3

Statitical Analysis for basic ABC and proposed approach on Socha dataset

Instance
Basic ABC GBABC t-test

Average Average p-value

small01 31.03 0 < 0.05

small02 36.70 0 < 0.05

small03 26.57 0 < 0.05

small04 20.83 0 < 0.05

small05 28.67 0 < 0.05

medium01 433.67 95.87 < 0.05

medium02 470.50 85.17 < 0.05

medium03 499.80 158.90 < 0.05

medium04 443.93 98.23 < 0.05

medium05 455.73 2.67 < 0.05

large 991.67 681.33 < 0.05

6 Conclusion

This paper proposes an algorithm that is based on the basic ABC algorithm to tackle

the university post enrollment-based course timetabling problem, where three types of bees are

cooperating in searching for food sources within the search region. Each bee represents a

feasible solution in the population and the search process is carried out by employed, onlooker

and scout bees. The searching behavior of the employed bee is based on the global best

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 939 -

concept that is inspired from PSO where solutions are explored around the best region. For

onlooker bees, a HC local search is used as an improvement approach to fine-tune the solutions

search region (explored by employed bee) in the population and followed by a solution

abandoned process carried out by scout bees where the solutions in the population are replaced

by new solutions. The key feature of the proposed approach is the complement of the strengths

of population-based and single solution based approaches that significantly enhanced both

exploration and exploitation abilities of the ABC algorithm. With the exploration, exploitation

and solution replacement behaviors in each cycle, the proposed algorithm has proven to be

effective in tackling Socha course timetabling problems (post enrollment-based). The proposed

approach can be applied in solving curriculum based course timetabling that was introduced as

part of the 2
nd

 International Timetabling Competition in 2007 and this is subject to future work.

References

1. D. J. Welsh and M. B. Powell, An upper bound for the chromatic number of a graph

and its application to timetabling problems, The Computer Journal, 10(1), 85-86

(1967).

2. D. Wood, A technique for colouring a graph applicable to large scale timetabling

problems, The Computer Journal, 12(4), 317-319 (1969).

3. E. K. Burke, Y. Bykov, J. Newall and S. Petrovic, A time-predefined approach to

course timetabling, Yugoslav Journal of Operations Research, 13(2), (2003).

4. J. Thompson and K. Dowsland, A robust simulated annealing based examination

timetabling system, Computers & Operations Research, 25(7), 637-648 (1998).

5. S. Abdullah, E. K. Burke and B. McCollum, Using a randomised iterative

improvement algorithm with composite neighbourhood structures for the university

course timetabling problem, Metaheuristics, 153-169, Springer, (2007).

6. B. McCollum, P. McMullan, A. J. Parkes, E. K. Burke and S. Abdullah, An extended

great deluge approach to the examination timetabling problem Dublin, (2009).

7. P. McMullan, An extended implementation of the great deluge algorithm for course

timetabling, Computer Science 7th International Conference Part I, Proceedings

ICCS 2007, Lecture Notes in Computer Science, Pages: 538 - 545 Springer, (2007).

8. S. Abdullah, E. K. Burke and B. McCollum, An investigation of variable

neighbourhood search for university course timetabling, The 2nd Multidisciplinary

International Conference on Scheduling: Theory and Applications, New York, USA,

July, pp. 413-427 (2005).

9. S. Abdullah and H. Turabieh, Generating university course timetable using genetic

algorithms and local search, IEEE Computer Society, (2008).

10. N. R. Sabar, M. Ayob, G. Kendall and R. Qu, A honey-bee mating optimization

algorithm for educational timetabling problems, European Journal of Operational

Research, 216(3), 533-543 (2012).

11. M. A. Al-Betar and A. T. Khader, A harmony search algorithm for university course

timetabling, Annals of Operations Research, 194(1), 1-29 (2012).

12. E. K. Burke, K. Jackson, J. Kingston and R. Weare, Automated university timetabling:

The state of the art, The Computer Journal, 40(565-571 (1997).

13. M. W. Carter and G. Laporte, Recent developments in practical course timetabling,

Selected Papers from the 2nd International Conference on the Practice and Theory of

Automated Timetabling, Lecture Notes in Computer Science, 3-19, Springer, Toronto,

Canada (1998).

14. R. Lewis, A survey of metaheuristic-based techniques for university timetabling

problems, OR Spectrum, 30(1), 167-190 (2008).

15. R. Qu, E. K. Burke, B. McCollum, L. T. Merlot and S. Y. Lee, A survey of search

methodologies and automated system development for examination timetabling,

Journal of Scheduling, 12(1), 55-89 (2009).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 940 -

16. S. Abdullah, E. K. Burke and B. McCollum, A hybrid evolutionary approach to the

university course timetabling problem, IEEE Congress on Evolutionary Computation,

2007, pp. 1764-1768 (2007).

17. K. Socha, M. Sampels and M. Manfrin, Ant algorithms for the university course

timetabling problem with regard to the state-of-the-art, Applications of Evolutionary

Computing, 334-345, Springer-Verlag, Essex, UK (2003).

18. S. Abdullah, H. Turabieh, B. McCollum and P. McMullan, A hybrid metaheuristic

approach to the university course timetabling problem, Journal of Heuristics, 18(1),

1-23 (2012).

19. K. Socha, J. Knowles and M. Sampels, A MAX-MIN ant system for the university

course timetabling problem, Ant Algorithm 3rd International Workshop, ANTS 2002,

Lecture Notes in Computer Science, 1-13, Springer, Brussels, Belgium (2002).

20. D. Karaboga, An idea based on honey bee swarm for numerical optimization, Erciyes

University, (2005).

21. W. Gao and S. Liu, Improved artificial bee colony algorithm for global optimization,

Information Processing Letters, 111(17), 871-882 (2011).

22. F. Kang, J. Li and Q. Xu, Structural inverse analysis by hybrid simplex artificial bee

colony algorithms, Computers & Structures, 87(13–14), 861-870 (2009).

23. M. F. Tasgetiren, Q.-K. Pan, P. N. Suganthan and A. H. L. Chen, A discrete artificial

bee colony algorithm for the total flowtime minimization in permutation flow shops,

Information Sciences, 181(16), 3459-3475 (2011).

24. G. Zhu and S. Kwong, Gbest-guided artificial bee colony algorithm for numerical

function optimization, Applied Mathematics and Computation, 217(7), pp. 3166-3173

(2010).

25. J. Kennedy and R. Eberhart, Particle swarm optimization, IEEE International

Conference on Neural Networks, 1995 Perth, WA, Australia, pp. 1942-1948 vol.4

(1995).

26. J. Kennedy and R. C. Eberhart, A discrete binary version of the particle swarm

optimization, In: Proceedings of the World Multiconference on Systemics.

Cybernetics and Informatics, IEEE Service Center, Piscatway. NJ., pp. pp. 4104-4109

(1997).

27. L. G. Merlot, N. Boland, B. Hughes and P. Stuckey, A hybrid algorithm for the

examination timetabling problem, Selected Papers from 4th International Conference

on the Practice and Theory of Automated Timetabling, Lecture Notes in Computer

Science, 207-231, Springer, Gent, Belgium (2003).

28. M. Chiarandini, M. Birattari, K. Socha and O. Rossi-Doria, An effective hybrid

algorithm for university course timetabling, Journal of Scheduling, 9(5), 403-432

(2006).

29. D. Landa-Silva and J. H. Obit, Great deluge with non-linear decay rate for solving

course timetabling problems, 4th International IEEE Conference Intelligent Systems,

2008, pp. 8-11-8-18 (2008).

30. H. A. Abbass, MBO: Marriage in honey bees optimization-A haplometrosis

polygynous swarming approach, Proceedings of the 2001 Congress on Evolutionary

Computation, Seoul, pp. 207-214 (2001).

31. F. C. Weng and H. Asmuni, An Automated Approach Based On Bee Swarm in

Tackling University Examination Timetabling Problem, International Journal of

Electrical and Computer Sciences, 13(02), 8-23 (2013).

32. M. A. Al-Betar, A. T. Khader and M. Zaman, University Course Timetabling Using a

Hybrid Harmony Search Metaheuristic Algorithm, IEEE Transactions on Systems,

Man, and Cybernetics, Part C: Applications and Reviews, 42(5), 664-681 (2012).

33. Y. Shengxiang and S. N. Jat, Genetic algorithms with suided and local search

strategies for university course timetabling, IEEE Transactions on Systems, Man, and

Cybernetics, Part C: Applications and Reviews, 41(1), 93-106 (2011).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 941 -

34. S. Abdullah, K. Shaker, B. McCollum and P. McMullan, Incorporating great deluge

with kempe chain neighbourhood structure for the enrolment-based course

timetabling problem, Rough Set and Knowledge Technology, 70-77, Springer Berlin

Heidelberg, (2010).

35. D. Landa-Silva and J. Obit, Evolutionary non-linear great deluge for university course

timetabling, Hybrid Artificial Intelligence Systems, 4th International Conference,

Proceedings HAIS 2009, Lecture Notes in Computer Science, 269-276, Springer,

Salamanca, Spain (2009).

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 942 -

MISTA 2015

An integrated simultaneous approach for pilots and
copilots re-scheduling problem

Atoosa Kasirzadeh · François Soumis

Abstract Various sources of unpredicted disturbances may affect the planned
schedules of airline crew members. These disruptions may result in delayed/canceled
flights and will affect the crew schedules. In this paper, we solve the simultane-
ous recovery problem for pilots and copilots by using an integrated approach to
re-optimize both the pairings and personalized monthly plans. We propose a set-
partitioning model for this problem. Column generation solution approach is used
to solve such problem.

1 Extended Abstract

Due to complexity and unpredicted perturbations, airline decision making proce-
dure is mainly divided into planning and recovery. Because of the very large size of
the airline planning procedure, a global single-step optimization of this problem
is very challenging and so far hardly achievable. As a result, the airline planning
procedure is frequently divided into smaller optimization problems involving flight

scheduling, fleet assignment, aircraft maintenance and routing, and crew scheduling.
Due to the very large size of the problem, crew scheduling is itself divided into
crew pairing and crew assignment. The crew pairing problem builds a minimum cost
set of pairings based on the scheduled flights such that the collective agreements
and rules are respected. The crew assignment problem combines the pairings, va-
cations, pre-assigned activities, and rest periods in order to construct and assign
a set of monthly schedules to crew members while respecting the regulations and
collective agreement rules. This problem is either solved as bidline or personal-

ized. Through bidline approach, anonymous monthly schedules are constructed

First Author
GERAD & École Polytechnique de Montréal, Department of Mathematics and Industrial En-
gineering
E-mail: atoosa.kasirzadeh@polymtl.ca

Second Author
GERAD & École Polytechnique de Montréal, Department of Mathematics and Industrial En-
gineering
E-mail: francois.soumis@polymtl.ca

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 943 -

2 Atoosa Kasirzadeh, François Soumis

and assigned to crew members. Personalized assignment problem is solved either
as rostering or seniority-based. Rostering approach aims at maximizing the global
satisfaction. Seniority-based assignment aims at prioritizing the maximization of
satisfaction of the more senior crew members. Traditionally, the crew pairing and
crew assignment problems have been solved sequentially. However, more recently
some researchers attempt in integrating the two steps.

On the day of operation, external and/or internal perturbations may occur
which result in delayed or canceled flights directly affect the planned crew sched-
ules. To adjust the planned decisions of airlines, often airline recovery steps are
treated by a sequential approach; that is, respecting the disruptions, flights are re-
scheduled, aircraft re-planning is solved, crew schedules are recovered, and finally
the passenger recovery problem is addressed.

In this study, we focus on airline crew recovery problem, as the cost of crew
members is the second largest cost of airlines (after aircraft fuels). The majority of
the mathematical methods and solution approaches for solving the crew recovery
problems are similar to the methods applied for planning purposes. However, there
are five major differences between the crew recovery and crew planning problem.
Firstly, crew recovery problem cannot be separated in two steps: crew pairing and
crew assignment. The reason is that the updated pairings have to fit well whithin
the planned monthly schedules; in other words, it is an update for the monthly
schedules. Therefore, the integration of constructing pairing and adjustment of
monthly schedules is necessary. Secondly, the pilots and the copilots are needed to
be treated simultaneously. In fact, the pairings are required to be common for pi-
lots and copilots, as much as possible, to maintain the robustness of the solution.
When the pairings are different between pilots and copilots, a flight perturba-
tion can disturb two different pairings which will disturb more flights and will
result in disturbance propagation throughout the monthly schedule. Thirdly, the
crew recovery problem is very time restrictive; that is, quick optimized solutions
should be offered in response to the unpredicted disturbances whereas crew plan-
ning problem is not very time restrictive and is solved several weeks prior to the
planning month. Fourthly, the crew planning problem is a scheduling optimization
for a planning period (frequently one month) whereas crew recovery re-optimizes
the schedules locally (within the recovery window of few days); therefore, the di-
mension of the recovery optimization problem is reduced. Fifthly, the objectives
of crew planning problem are mainly defined in terms of cost minimization and
efficient crew utilization whereas several objectives during airline recovery proce-
dure are in conflict with each other. An example of such conflicting objectives are
minimizing the delay of crew members and minimizing the cost of the recovery
operations. Because recovery problem is a fast real-time problem, its dimensions
are needed to be small to be solved in reasonable time. However, re-optimization
domain considered for crew recovery problem must be sufficiently large in order
to allow finding feasible schedules taking into account the re-scheduled tasks. The
main crew recovery concern is to cover, in a most cost efficient way, the set of given
flights while remaining as close as possible to the original crew monthly schedules.
The crew recovery process consists in applying various actions to repair at the
minimum cost, the original crew schedules while minimizing the number of flights
that cannot be operated due to lack of sufficient crew on board. Crew recovery
actions include, but are not limited to, re-scheduling already scheduled crews or
deploying limited reserve crew members.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 944 -

An integrated simultaneous approach for pilots and copilots re-scheduling problem 3

The contribution of this study lies in developing an optimization approach
for solving the integrated pairing recovery and assignment recovery problem for
pilots and copilots simultaneously. This integrated approach considers at the same
time the decisions on pairing re-optimization and recovery of monthly plans for
crew members. This approach implements both the regulations related to pairing
and monthly schedules. This recovery problem is solved for pilots and copilots
simultaneously in order to provide more robust schedules. In other words, if the
pairing of pilots and copilots are the same, the propagation of disruption to other
flights in the schedule is reduced. The re-scheduled flights are considered as input
data for our problem. To the best of our knowledge, this study introduces the first
attempt in developing a mathematical programming method for the simultaneous
recovery problem for pilots and copilots. The main contribution of this paper is to
show that this mathematical programming method is able to solve the personalized
recovery problem for test instances with up to 610 pilots and copilots quickly
enough. We solve this problem by using a column-generation solution approach.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 945 -

MISTA 2015

Multi-objective energy-aware scheduling

David Van Den Dooren ·
Thomas Sys · Tony Wauters · Greet Vanden

Berghe

1 Introduction

Scheduling determines the way in which jobs are assigned to resources. Multiple re-

sources, e.g. machines and human operators, are available for the problem under con-

sideration. Jobs and resources are defined by various characteristics and constraints,

required to match in feasible assignments. Manufacturing companies strive for good

quality schedules, in terms of operational efficiency and custom-related objectives.

Makespan and tardiness are two objectives often separately considered during single

objective optimisation. These objectives are denoted as “business objectives” and show

a latent correlation. For example, makespan optimisation may positively influence the

total tardiness of the schedule.

In the last years, energy consumption has gained considerable attention as the cost

(kWh) impacts the total production cost in energy-intensive sectors. Hence, the need

for minimising energy consumption and, consequently, energy cost increases. (Van Den

Dooren et al., 2015) define a methodology for addressing multi-machine scheduling

problems with the focus on minimising energy consumption. Experiments were con-

ducted on the ICON challenge benchmark datasets (O’Sullivan et al., 2014), providing

both real and forecasted energy cost data. The energy cost is time dependent and

is enforced by assigning a corresponding energy price to every time slot. The energy

consumption depends on resource requirements during execution of the jobs.

To take into account both energy and business objectives, a multi-objective opti-

misation approach is needed. Multi-objective approaches have been researched thor-

oughly (Varadharajan and Rajendran, 2005; Pasupathy et al., 2006). The present work

focuses on analysing the energy objective so as to determine a detailed and specific

energy modelling approach. Additionally, alternative multi-objective approaches for

combining business and energy objectives are firmly researched. The influence of both

objectives are analysed. Experiments are conducted using the MOLA (Multi-Objective

Late Acceptance) method (Vancroonenburg and Wauters, 2013).

David Van Den Dooren, Thomas Sys, Tony Wauters · Greet Vanden Berghe
KU Leuven, Department of Computer Science, CODeS & iMinds-ITEC
E-mail: {david.vandendooren,thomas.sys,tony.wauters,greet.vandenberghe}@cs.kuleuven.be

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 946 -

2 Approach

Energy cost reduction is a relatively new scheduling objective. Extensive research is

needed in order to determine the objective’s inherent characteristics. Subsequently, re-

lations with business objectives can be defined, e.g. supportive or conflicting nature

of the objectives. Previous research (Van Den Dooren et al., 2015) provided some in-

sights and a methodology concerning energy consumption modelling. Multiple schedule

characteristics influence energy consumption, e.g. machine states, electricity cost per

time period. The introduced methodology implements a LAHC (Late Acceptance Hill

Climbing, Burke and Bykov (2012)) approach with multiple neighbourhoods.

An extension to previous research is carried out by implementing the MOLA

method. MOLA consists of LAHC with Pareto dominance evaluation. The method

works as follows. New solutions are generated using neighbourhoods and are accepted

based on the Pareto dominance relation (Drugan and Thierens, 2012). Current best,

pairwise non-dominating, solutions are saved in the Pareto set. The new solution is

compared, accepted and added to the Pareto set when its objective value dominates

the objective value a few iterations ago. Thus, the dominating solution replaces the

oldest solution in the set. When the method come to a halt after having reached its stop

criteria, this method could provide the Pareto front, which defines the best solutions

for specific objective settings. Figure 1 illustrates the MOLA methodology.

01

02Pareto set

current best solution
new solution
pareto front

01() < 01()
02() < 02()

Fig. 1: MOLA methodology for a bi-objective example

3 Experimental Setup

3.1 Data

New datasets, based on the ICON benchmark sets (O’Sullivan et al., 2014), have been

generated in order to investigate the effect of an energy cost objective being optimised

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 947 -

simultaneously with business objectives. Real energy data, energy cost per time period,

is provided within the ICON benchmark sets. However, the ICON benchmark instances

contain restrictions, e.g. fixed time horizons, disabling possible business objectives.

Thus, modifications to the general time restrictions are necessary: the time horizon

is increased, and the jobs’ time characteristics are modified. These changes enable

incorporating business objectives such as makespan and tardiness. In addition to the

academic datasets, real datasets have been collected in industry in order to enlarge the

test environment and validate the developed optimisation approach.

3.2 Experiments

The experiments can be divided into three parts: objective function analysis, multi-

objective optimisation and sensitivity analysis. They are performed using the MOLA

method. The objectives are examined both individually and in combination. To this

end, the Pareto objective approach is examined first. Secondly, lexicographical and

weighted objective function tests are executed for different objective settings. A sen-

sitivity analysis is provided by defining mutual objective influences, examining vari-

ous objective settings, and comparing the aforementioned multi-objective approaches.

Finally, a suggestion on how to approach multi-objective energy-related scheduling

problems is given. The end results contain both the influence of problem specific char-

acteristics and the effect of simultaneously optimizing different objectives.

Acknowledgements SENCOM is a project co-funded by iMinds, a digital research institute
founded by the Flemish Government. Project partners are Nervia Plastics, Objective, Delta
Engineering and Sagility, with project support from IWT. Work supported by the Belgian
Science Policy Office (BELSPO) in the Interuniversity Attraction Pole COMEX.

References

Burke, E.K., Bykov, Y., 2012. The late acceptance hill-climbing heuristic. Department

of Computing Science and Mathematics University of Stirling - Technical Report

CSM-192 - ISSN 1460-9673 .

Drugan, M., Thierens, D., 2012. Stochastic pareto local search: Pareto neighbourhood

exploration and perturbation strategies. Journal of heuristics 18(5), 727–766.

O’Sullivan, B., Hurley, B., Simonis, H., Mehta, D., De Cauwer, M., 2014. ICON chal-

lenge on forecasting and scheduling. http://iconchallenge.insight-centre.org/

challenge-energy. UCC - University College Cork - ICON.

Pasupathy, T., Rajendran, C., Suresh, R.K., 2006. A multi-objective genetic algorithm

for scheduling in flow shops to minimize the makespan and total flow time of jobs.

The International Journal of Advanced Manufacturing Technology 27, 804–815.

Van Den Dooren, D., Sys, T., Wauters, T., Vanden Berghe, G., 2015. Multi-machine

energy-aware scheduling. Technical Report - KU Leuven .

Vancroonenburg, W., Wauters, T., 2013. Extending the late acceptance metaheuristic

for multi-objective optimization. MISTA .

Varadharajan, T.K., Rajendran, C., 2005. A multi-objective simulated-annealing al-

gorithm for scheduling in flowshops to minimize the makespan and total flow time

of jobs. European Journal of Operational Research 167, 772–795.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 948 -

http://iconchallenge.insight-centre.org/challenge-energy
http://iconchallenge.insight-centre.org/challenge-energy

Mehran Hojati

Edwards School of Business

University of Saskatchewan, Saskatoon, SK, Canada

E-mail: Hojati@Edwards.usask.ca

MISTA 2015

A Greedy-based Heuristic for Shift Minimization Personnel Task

Scheduling Problem

Mehran Hojati

1 Introduction

There are situations where tasks have predetermined (known) start time & duration and

require a particular type of skill. One example is the maintenance check of aircraft engines at an

airport between a landing and subsequent takeoff. These tasks have to be assigned to mechanics

who are each certified to work on only limited types of engines. Shift Minimization Personnel

Task Scheduling Problem (SMPTSP) is the assignment of predetermined tasks (with known start

time and duration) to a minimum number of heterogeneous workers with predetermined shifts.

Solving SMPTSP to optimality is NP-complete. It can be formulated as an integer linear

program (ILP) and solved to optimality for small to medium-sized problems. However, for large

problems a heuristic must be used.

Recently, there have been three articles reporting various methods to solve large-scale

SMPTSPs. Krishnamoorthy et al. [2] used lagrangian relaxation. They relaxed the task

assignment constraints and used the deviations in the objective function with lagrange

coefficients, then solved each worker’s problem independently. The iterative process seeks to

find the right lagrange coefficients such that each task is assigned to exactly one worker. Even

though their method produced good solutions for most of 137 randomly-generated problems

(with 0 to 22% optimality gap), it was unable to find a feasible solution for some of the largest

problems.

Lin and Ying [3] proposed a 3-phase algorithm that was able to solve most of

Krishnamoorthy’s test problems. In phase 1, they used a constructive heuristic assigning the

sorted tasks one by one, in phase 2 simulated annealing, and in phase 3 optimization on the

whole problem (using a commercial ILP solver).

Smet et al. [4] used a 2-phase algorithm to solve all of Krishnamoorthy’s test problems. In

phase 1, they used 3 constructive heuristics, the first two assigning the sorted tasks one by one,

and in the third selecting random sets of 10 or 15 workers at a time and solving each block using

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 949 -

a commercial ILP solver. In phase 2, they used hybrid search and optimization on the whole

problem (using a commercial ILP solver). They also introduced 10 more challenging new test

problems.

This extended abstract of the full paper [1] also addresses large SMPTSPs, but uses a

simpler method than [2].

2 ILP Formulation

Let

J = {j1, j2,…,jn} = set of tasks (jobs)

W = {w1, w2,…, wm} = set of workers

Pj = set of workers (personnel) that can perform task j

𝐾𝑡
𝑤 = a maximal clique (set) of conflicting (overlapping) tasks for worker w at time t. A

maximal clique occurs at selected task finish times, namely the first, then smallest finish

time of tasks that start after the first finish time, and so on.

𝐶𝑤 = set of all maximal cliques of worker w

yw = 1 if worker w is used, 0 otherwise

xjw = 1 if task j is assigned to worker w, 0 otherwise

𝑀𝑖𝑛 𝑍 = ∑ 𝑦𝑤

𝑤∈𝑊

𝑠. 𝑡. ∑ 𝑥𝑗𝑤 = 1 ∀𝑗 ∈ 𝐽,

𝑤∈𝑃𝑗

∑ 𝑥𝑗𝑤 ≤ 𝑦𝑤 ∀𝑤 ∈ 𝑊, 𝐾𝑡
𝑤

𝑗∈𝐾𝑡
𝑤

∈ 𝐶𝑤

𝑦𝑤 ∈ {0, 1} ∀𝑤 ∈ 𝑊,
𝑥𝑗𝑤 ∈ {0, 1} ∀𝑗 ∈ 𝐽, 𝑤 ∈ 𝑊.

3. Greedy-based Heuristic

At each iteration, the worker with maximum objective value is chosen and all its selected

tasks are assigned to him/her. Then, the process is repeated for the remaining workers and

tasks. The ILP formulation of the reduced problem for worker w is as follows:

𝑀𝑎𝑥 𝑍 = ∑ [(𝑓𝑗 − 𝑠𝑗) +
ℎ

|𝑃𝑗| − 1 + 𝜖
]

𝑥𝑗𝑤∈𝑇𝑤

 𝑥𝑗𝑤

 𝑠. 𝑡. ∑ 𝑥𝑗𝑤 ≤ 1 𝐾𝑡
𝑤

𝑗∈𝐾𝑡
𝑤

∈ 𝐶𝑤

𝑥𝑗𝑤 ∈ {0, 1} ∀𝑗 ∈ 𝐽,

where sj = start time of task j, fj = finish time of task j, Tw = set of tasks that worker w can

perform, |𝑃𝑗| = number of remaining eligible workers for task j, h = 110, and 𝜖 = 0.1. The

bonus for each task
ℎ

|𝑃𝑗|−1+𝜖
 is chosen such that as |𝑃𝑗| is reduced from above to small integers

such as 2 or 1, the bonus becomes increasing larger, thus making the task attractive to be

selected.

After the maximal cliques are determined (See Algorithm 1 of [2] for an O(|𝑇𝑤|)
algorithm for this), the above reduced ILP problem simplifies to a longest path problem in a

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 950 -

directed graph with |𝐶𝑤|+1 nodes as follows (note: this method is also mentioned on pp. 39-40

of [2]): There is a node 0; Each maximal clique, arranged chronologically, will have a node;

Each task j in 𝑇𝑤 will have an arc starting from the previous-node-to-the-first maximal clique

that contains the task and ending in the last maximal clique that contains the task. Note that

there are no negative cycles in this graph. To determine the longest path from node 0 to the

last node, a label-correcting algorithm is used where the tasks (arcs) are first sorted by their

end node (from the earliest to the latest) and the arcs are examined one at the time and the label

(value) of the ending node is updated if the distance from node 0 is larger. This algorithm also

runs in O(|𝑇𝑤|) .

To improve the efficiency of the computations, after any iteration a new objective value

(longest path) for a worker is not determined if its solution (selected tasks) does not contain a

task selected in the iteration. Even if it does, a longest path is not determined unless its current

objective value is the largest among all the remaining workers.

4. Computational Results

Two available sets of test problems for SMPTSP were used: Krishnamoorthy’s 137

problems (obtained from http://people.brunel.ac.uk/~mastjjb/jeb/info.html) and Smet’s 10

problems (obtained from http://allserv.kahosl.be/~pieter/smptsp.html). The greedy-based

heuristic was programmed in C++ and ran on a Lenovo M52 ThinkCentre desktop. The results

are summarized in the following two tables.

 Greedy-based Krishnamoorthy et al. Lin and Ying Smet et al.

No. of optimal

solutions

107 67 72 67*

Avg. optimality gap

(no. of workers)

0.6% 4.5% 1.2% 1.0%

Avg. CPU (sec) 4.1 544.3 27.6 12.3

* Avg. no. is rounded down

No. of problems

Greedy used

Krishnamoorthy et al. Lin and Ying Smet et al.

less workers 69 61 68

equal workers 51 63 55

more workers 17 13 14

Smet’s 10 test problems are more challenging. Avg. optimality gap for the greedy-based

heuristic was 7.5%. However, the average CPU time was only 0.5 second.

References

1. M. Hojati. A Greedy-based Heuristic for Shift Minimization Personnel Task Scheduling

Problem. European Journal of Operational Research, under review.

2. M. Krishnamoorthy, et al. Algorithms for large scale shift minimization personnel task

scheduling problems. European Journal of Operational Research, 219, 34-48, 2012.

3. S-W Lin and K-C Ying. Minimizing shifts for personnel task scheduling problems: a

three-phase algorithm. European Journal of Operational Research, 237, 323-334, 2014.

4. P. Smet, et al. The shift minimization personnel task scheduling problem: a new hybrid

approach and computational insights. Omega, 46, 64-73, 2014.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 951 -

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://allserv.kahosl.be/~pieter/smptsp.html

MISTA 2015

Optimisation of a Stagger Chart for Aviation Fleet Planning

Richard Weedon • Samad Ahmadi • Mike Critchley

Abstract Within the Commercial Aviation Industry, the maintenance planning process takes
into account the number of spare engines available to meet a minimum spares level (usually
contractual). This is to minimize the risk of disruption to aircraft, if engines are required to be
replaced due to unplanned events. To ensure the efficient use of the spare engines pool while
maximizing the engine time on wing between planned removals requires a forecast that is set
for the predicted life of an operator’s specific aircraft type fleet. The engines are required to be
refurbished at certain intervals which can be projected on to a forecast plan. The process of
producing this plan by implementing the engine removals is known as Stagger. The aim of this
research is to produce good quality Stagger Plans using evolutionary algorithms based upon
data from an actual forecast. This paper presents our early attempts on modelling this problem
and then solving it with Genetic Algorithms. Results show that the Stagger Plan produced by
the GA reduced the number of weeks that the spare engines level had fallen below the
minimum spare engine value when this was compared to the original forecast.

1 Introduction

 Often, Operators of aircraft have various contracts with external companies such as the
engine manufacturers to maintain their aircraft engine fleets. These fleets can consist of
hundreds of engines. The maintenance of these engines is highly regulated to ensure maximum
safety is adhered to and compliance with major air worthiness authorities. The modern
commercial jet engine consists of thousands of parts which generally have specific working
lives as determined by a time limits manual set by the manufacturer. These lives are also
affected by how the engine is operated and in what environments. The lives are measured in
hours and cycles, where a cycle in this paper is considered as a takeoff and landing. Typically
these parts are affiliated with modules of the engine. The lives of certain key parts of the
engine are typically tracked by using an engine health management system (EHM) and
documented at shop floor visits. This information can be used in addition with the dates the
engine entered into service with the operator, to predict over the life time of the fleet, a
forecast of planned engine refurbishments.

To keep the aircraft operational in order to maximize revenue requires additional spare
engines to account for unplanned events and also for engines that are required to come off
wing due to part life time expiry or another reason as highlighted by the EHM system, for
refurbishment. Typically an engine refurbishment can take between 3 – 4 months turnaround
time from removal to being installed back on wing. The duration of shop visits in the Stagger
Plan in this paper are between 15 and 16 weeks. If a part delivery of a fleet of aircraft to the
operator occurs at a similar time then this can cause engines to require refurbishment at the
same time which if not monitored can cluster and leave the spares pool empty. This could
result in aircraft being grounded due to no engine availability, resulting in loss of revenue and

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 952 -

cancelled flights. If the engine removals are staggered, then this can reduce the risk of the
number of spare engines falling below the accepted minimum value and also reduce the load
on the overhaul workshops. However removing an engine off an aircraft too early than the
planned removal date, results in parts being replaced which have an amount of useable life left.
This is usually referenced as lost days. To monitor the operator’s fleet, Forecasting and Stagger
Planning tools are used but typically involve a large amount of manual processing. This paper
is part of an ongoing research on this problem by authors and aims to introduce the Stagger
concept and propose a basic model of the problem. A solution to the Stagger problem is
developed using Evolutionary Algorithms.

2 Other studies

 The maintenance of aircraft engines is a complex and expensive process that involves
exhaustive fleet planning but also ensuring parts are ordered in advance (due to the complexity
and associated lead times of some parts) and ready for engines that are removed. Gatland et. al.
[1] discusses the problems that arise from the maintenance capacity planning of engines. They
produce a simulation that models an engine maintenance facility that investigates effects of
facility loading on turnaround time, throughput and capacity. Their paper provides further
information on factors that dictate engine removals and the duration of shop visits (turnaround
times). To reduce costs in the overhaul of engines accurate costing of the removal is an
important part of the forecast. Engine maintenance decisions are often evaluated by using a
metric commonly known as the life cycle cost (LCC).
 Painter and Beachkofski [2] explain the costing implications and subsequent engine
maintenance decision making by developing a simulator and data mining model to produce a
more accurate LCC metric. An engine generally consists of modules. These modules are often
swapped between engines to increase turnaround time at the overhaul workshop. Matching
modules with similar life remaining can increase the time on wing (TOW) and reduce costs. In
[3] a module swapping optimization simulator was developed for use with the air force but
could equally be used in civilian engines.
 A similar problem to Stagger is shown in [4] where a multi agent simulator was
developed for cost reduction of engine removal scheduling. The OPS tool used an original
removal plan forecast and readjusts the schedule by prioritizing engines that required overhaul
due to Weibull scoring, or unforeseen circumstances. The tool does not readjust the forecast
for optimization in the same way that this Stagger problem aims to provide however, it does
explain the constraints such as lost days, and minimum spares. The paper also provides some
mathematical representation of the turnaround times and the ratio of spare engines to fleet sizes
which have not been explained in detail in this Stagger research. Additionally [4] provides
information on how fleet planners/manager maintain a schedule of engine removals. Another
similar problem to Stagger is also seen in [5] but for navy ship repair scheduling. Here, the
paper mathematically models the constraints and fitness function to minimize the number of
overlapping activities to maximize availability. The schedule is for 200 weeks with 1
maintenance cycle per ship. Instead of spare engines as a constraint, in this case 2/3 of the fleet
has to be operational at any time. An evolutionary algorithm is used similarly in [5] to the
Stagger solution presented in this paper.
 There are software solutions available that claim to manage maintenance and cost
planning such as EFPAC [6]. This software does claim to have a removal plan optimizer but
does not go into detail about how this is performed. Also Clockwork Solutions [7], have a
product called Insight LCM, the LSC Group [8], provide modelling and simulation solutions
with optimized resource planning. SAS also provide various optimized solutions such as SAS
Asset Performance Analytics [9].
Finding the optimal solution for the forecast that enables the engine to be removed with
minimal lost days but maintains a minimum spare engine level can be related to timetabling
problems where events can be represented as the engine removals and periods are represented

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 953 -

as the week numbers in the forecast subject to certain constraints which are explained later in
the mathematical model shown in figure 3. There is a large amount of literature on timetabling
problems and methods of solving them. Typically the approaches to solving these problems
have been categorized into Sequential methods, cluster methods, constraint based methods,
generalized search, hybrid evolutionary algorithms, metaheuristics, multi-criteria approaches,
case based reasoning techniques, hyper-heuristics and multi-criteria approaches (for survey of
approaches see [11,12]).
 The study conducted in this paper, is to solve a Stagger problem that incorporates the
use of an evolutionary algorithm to produce a Stagger Plan.

3 Forecasting and Stagger Planning Design

3.1 Problem Definition

 The main focus of this study is to identify the best sequencing of maintenance activities
based on constraints of the size of the engine spares pool and minimum contractual spares
level while minimizing total lost days on wing for the fleet. A typical dataset has been
produced for this problem that consisted of actual data that would normally be obtained from
various information systems such as EHM data and engine shop visit forecasting data. The
dataset consists of an engine number that determines the engine unique id, a start and end date
of the forecast which typically shows the perceived life of the aircraft in the operator’s fleet
(the aircraft maybe sold to another operator at the end of the forecast or mothballed). The term
mothballed is where an aircraft is kept for storage or awaiting scrap. The dataset also includes
a list of all the engine removal dates that are planned for refurbishments for each engine. These
refurbishments are classified as check & repair, first refurbishment, second refurbishment and
mature refurbishment. There are other types of shop visits which are not relevant to this
particular problem. Additionally aircraft and engine retirement dates if earlier than the end of
the forecast are also included in the dataset and their induction to the Operator’s fleet. The
Minimum spares level for the duration of the forecast is set to 2 in this particular study.

Fig. 1: A Non-Optimal Stagger Plan

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 954 -

3.2 Modelling the Stagger Problem
An example of a Stagger Plan that has not been optimized can be seen in figure 1, this

shows the engines on the far left with the weekly dates for the duration of the forecast at the top.
The 0 represents an engine that is currently available either as a spare or currently flying. The
pink colored 1 represents engines that are currently having a shop visit. A white – 1 identifies an
engine that has not been inducted into the fleet and therefore cannot be included into the
calculations. Check & Repairs are not included as a main shop visit and are subsequently not
recognized as a shop visit in the removal data used for the Stagger Plan of an individual engine.
However, a weekly total of check & repairs has been included and is part of a calculation that
affects how many engines are available as spares.

The chart in figure 1 is similar to what the final designed optimized Stagger Plan will show
with an additional calculated value – lost days. The lost days and spare engines can be seen
graphically for a Stagger forecast in figures 4, 5 and 6 in section 5. The calculations required to
produce the minimum spares level and lost days are as follows:

Spares Available = Engine Count Available – Engine Demand. (1)

Engine Count Available = Engine Count – C&R Count - Engines
in shop that week

(2)

Engine Demand = Aircraft Count × no. of engines on an
aircraft.

(3)

Engine Count = No. of engines in shop (removal) for a
particular week.

(4)

Lost Days = Original engine removal week – adjusted engine
removal week × 7.

(5)

3.3 A Genetic algorithm for the Stagger Problem
 In this paper an evolutionary algorithm is developed to produce an optimal solution for a
Stagger Plan. A chromosome was represented by a 3 dimensional array. The first dimension
contained all of the week numbers in the forecast, the second dimension was the engine serial
numbers (ESN’s) and the third dimension consisted of 9 values: ESN, start of removal week
number, end of removal week number, Number of weeks removal moved forward, week ESN
inducted into fleet, week ESN removed from fleet, Total Fleet spares Value, Lost Days and
finally a Marker that is a Boolean data type. All of the dates have been converted to week
numbers over a range from 0 to the last week of the forecast – 1.

The fitness function is required to determine the quality of each member of the population.
In this study the fitness function is actually an inequality which was developed around the
number of spare engines available each week and the number of lost days. The number of spare
engines available should never fall below the minimum value and the function should be
weighted accordingly. The lost days should be kept as minimal as possible but should not
override the spare engines available. When the child is being scored the coding checks every
week of the forecast and if the spare engines level drops below the minimum level then the
inequality shown in equation (6) is used.

 (6)

Alternatively if the spare engines level is above the minimum for the whole forecast then the
inequality in equation (7) is used:

 (7)

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 955 -

These inequalities were designed so that the lost days should achieve a higher performance
as the lost day’s approaches 0 if the minimum spare engines level is maintained for the whole
forecast. A positive fitness score would represent that the minimum spares level has been met
for the whole forecast. A negative fitness function would indicate that the minimum spares
figure has fallen below the threshold. How close the negative fitness score is to zero indicates
that the lost days are minimal.

The crossover operation consisted of copying one part of one parents array by randomly
picking an ESN and copying all of the ESN’s to the left (including the randomly picked ESN)
and then copying the remaining ESN’s to the right from another parents array to create a child.
To enable the selection of the chromosomes to represent the parents then 3 methods of selection
were developed to determine if any specific method produced an improvement to the results.
These selection methods are roulette wheel selection, elitism selection and a random selection.
The roulette wheel selection used an array to store the proportioned fitness of all the individuals
by using the formula:

Stagger Fitness / Total Population Fitness × 360

 (8)

The elitism method uses an array that orders those individuals by their fitness and the
highest scoring chromosomes are then selected as parents. Likewise for the random method a
random number generator was used to pick parents randomly in an array. The mutation operator
stage of the process was developed by calling a random number generator with the range of
numbers from 1 to 2 as shown in the pseudo code in figure 2.

Fig. 2

 If a 1 was generated then the mutation operation was implemented. At mutation, another
random number was generated from 0 to the number of engines in the forecast – 1, to pick an
engine at random. The code was developed to determine if an engine is in shop in a particular
week and whether the engine was inducted into the fleet within 26 weeks of the forecast start
week. Also if the removal date is less than the 26 weeks from the induction week then this needs
to be accounted for. The resultant figure from the above logic is sent as a range for another
random number to be generated. This random number is subtracted from the original removal
week to produce a new removal week. Finally the weakest (fitness) chromosome was erased
from the population after each chromosome is spawned.
 The software used to develop the optimized Stagger Plan was Microsoft Excel VBA 2010.
The structure of the coding involved the use of 2 and 3 dimensional arrays. As mentioned
earlier, an array was used to store the data that was imported from the worksheets which is
referenced in the Setup worksheet with the cell ranges that the data lies within. Another array
was created that produced a generic Stagger Plan with the original engine removals and the
week number of the forecast. A third dimension was used to switch between removal start and
end dates, engine induction dates, adjusted removal date, engine retired from fleet date, lost
days and fleet spare engines. This array was used as a template and was copied into each

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 956 -

chromosome at the initialize population stage of the fleet prior to mutation. At initialization of
the population stage no crossover operation was used due to no parents. To create a
chromosome a class module was used to create a collection called Staggers.
 A Stagger is a member (property) of the Staggers collection which was used to store the
chromosome. Each Stagger had a property associated with it. These include a variant type array
which was a version of Stagger Plan, a generation property to store the generation number that it
was spawned in and a name property. After each Stagger was created another array was used to
work out its fitness and store the result. This array varXScore was used to compare all the other
active chromosomes in the population to identify which one is erased. A temporary array was
used to sort the highest score in descending order, from the varXScore array when this process
was initiated.
 Once the population was initialized then subsequent generations were created using a loop
until the required number of generations was reached as set on the Setup worksheet. At the
Mutation stage, if it was selected by the random generator the mutation was set by using the
original removal date and randomly moving the removal date forward by the criteria discussed
earlier.
When the last generation was created the Stagger Plan from the chromosome with the best
fitness was exported into a worksheet called Final. The scores of all of the chromosomes can be
seen in the Score worksheet.

4 Results

4.1 Initial Tests
 The test runs were produced initially with the population set to 4 and the number of
generations set at 3. The number of parents per generation for this study was always set to 2.
These settings were used initially to test the duration of the run and whether any major
performance issues would be encountered. The table below shows the fittest chromosome from
each run for both the roulette wheel selection and elitism selection methods used for the
selection of parents:

Run 1

Min
Spares

Av.
Lost
days

Fitness
score

Id Gen. Time Crossover

-3 14.28 -0.31 6 3 00:00:36 Elitism

-3 15.04 -0.32 7 4 00:00:33 Elitism

-3 15.85 -0.34 6 3 00:00:34 Elitism

-2 15.90 -0.34 7 4 00:00:37 Roulette

-3 14.30 -0.31 5 2 00:00:36 Roulette

-3 14.35 -0.31 5 2 00:00:34 Roulette

Due to the very small population and number of generations created, there was an improvement
to the Stagger Plan. A positive fitness score would represent that the minimum spares level has
been met for the whole forecast. A negative fitness would indicate that the minimum spares
figure has fallen below the threshold. How close the negative fitness score is to zero indicates
that the lost days are minimal. In fact the average lost days for all removals in the Stagger is
around 14 days in the above table. All the parents that are created at the initialization stage
contain an average lost day’s figure > 250 which is suggesting there is a problem with the
calculation of the creation of the parents as the maximum Stagger should only be 180 days.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 957 -

However the figure settles with the next generations. Due to time constraints of this study this
problem was not investigated further. Changing the population to 20 with 10 generations did
increase the processing time from around 35 seconds to 105 seconds as shown in the table
below.

Run 2

Min
Spares

Av.
Lost
days

Fitness
score

Id Gen. Time Crossover

-1 13.89 -0.30 28 9 00:01:44 Roulette

-2 13.75 -0.29 23 4 00:01:39 Elitism

-3 14.28 -0.31 24 5 00:01:28 Roulette

-2 13.75 -0.29 23 4 00:01:40 Elitism

As can be seen in the above tables increasing the population size and the number of generations
has not improved the results too much at this point. Increasing the generations to 25 with a
population of 20 increased the processing time to approximately 225 seconds. The best fitness
achieved for these runs only improved by +0.01 and the average lost days decreased to 13.04.

Run 3

Min
Spares

Av.
Lost
days

Fitness
score

Id Gen. Time Crossover

-2 13.49 -0.29 45 26 00:03:47 Elitism

-3 13.04 -0.28 41 22 00:03:52 Roulette

It can be seen through the above tables that there is no real difference between the elitism and
roulette wheel selection methods at this stage. Increasing the generations to 75 again showed an
improvement with the fitness with respect to the lost days being reduced to 11.6 days for the
whole Stagger Plan. The processing time was 13 minutes. However the minimum spares value
is not improving for this run because the best chromosome still had – 2. The fitness function is
improving the lost days consistently with the increase in the number of generations.

4.2 Improving the Fitness Function
An amendment was made to the inequality of equation (6) to give:

 (9)

This was designed to provide more weight to the minimum spares level to ensure it would add
more bias to the spare engines rather than the lost days. Using a population of 20 and 10
generations provided the following results as shown in run 4.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 958 -

Run 4

Min
Spares

Av.
Lost
days

Fitness
score

Id Gen. Time Crossover

-2 13.52 -0.29 22 3 00:01:42 Roulette

-3 13.54 -0.29 22 3 00:01:44 Elitism

In run 5, the p represents the population size and g represents the number of generations. The
colored section represents the fitness inequality in equation (8) and the uncolored section
represents the fitness inequality in equation (7). Each of the results displayed in the above table
are those chromosomes who have the best fitness function of that particular test. Interestingly,
the elitism selection for the fitness inequality in equation (7) outperforms the roulette wheel
selection for fitness and lost days and the weekly remaining spare engines. For the revised
fitness function, the operators are similar. Comparing the spare engines remaining between the 2
fitness inequalities clearly show that the fitness inequality in equation (8) produces a better
spare engine remaining figure and appears to consistently improve the spare engine figure as the
generations are spawned.

A further elitism selection run produced a minimum spare level of 1 which was using a
population size of 10 and 40 generations. The fitness was 1.64 and the average lost days for
each week of the forecast was 16.85 days. The lost days can be seen in a plot as shown in figure
3 and the minimum spare engines can be seen in figure 4 below.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 959 -

Fig.3

Fig.4

The Stagger Plan produced above did fall below the minimum spares level of 2 however, the
total lost days across all weeks in the forecast was 8372 days. Although this figure seems high
but the lost days per engine (114 in this fleet) are 73.4. Also if the average daily cycles flown
per engine is 2.2 then the total number of cycles lost is 18418.4. The lost cycles per engine are
then 161.6. Typically an engine is taken off wing at approximately 50 cycles prior to the latest
possible removal date to provide a safety margin.

The results have shown that the evolutionary algorithm overall improved the optimization of
Stagger. The results from tables 1 to 4 show an improvement in the fitness score for lost days.
However, the minimum spares level was completely random from –1 to -3 for the majority of
the test runs above. Improving the fitness function to that of equation 8 did not improve the
fitness scores until a code change to the mutation operator was addressed. After this amendment

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 960 -

the fitness scores did improve. The elitism selection and the roulette wheel selection did not
seem to be too different for both fitness inequalities. Run 3 shows the roulette wheel selection
produced a better fitness score and lost day values where run 2 produced better elitism selection
results. The final run produced better results that were an improvement from the standard
Stagger Plan that used the forecasted removal dates with – 4 spare engines as the lowest value
of spares as shown in figure 5 below:

Fig.5

The majority of the runs above were timed to determine that the processing is consistent for
each run of similar settings and also to evaluate how much time a large population and number
of generations would take to complete, providing the system could handle the memory and
processor resources required. The times were fairly consistent with the runs. The computer that
performed the test runs was running windows 7, 32-bit operating system with 4GB ram and an
AMD Phenom II quad core processor – 3.3GHz. Typically performing a run used
approximately 25% on the CPU and increased the RAM usage by 0.06GB consistently,
providing no other applications were used in addition to Microsoft Excel. These values include
all the other system processes that are running in the background.

None of the above runs produced an optimal solution that satisfied the condition that no spare
engines would fall below the minimum value. However, if the population was increased to 100
and left for 10000 generations, then this may produce a better solution. This figure would create
a total of 10,100 members. To create a population with 10 members over 50 generations (60 in
total) involved a processing time of approximately 7 minutes which if used as a guide for
10,100 members would take 19.64 hours to generate. The best result was obtained with a
population of 50 to a 100 with 40,000,000 iterations (generations). Unfortunately using that
many generations with the existing set up would not be feasible.

5 Conclusion
In this paper the Stagger problem has been introduced with a basic solution developed that uses
an evolutionary algorithm. The Stagger problem could be expanded to cover Life Separation.
This is where some engines are taken off wing as they are delivered to the fleet and replaced
with a spare engine that has half of the life of the new engine. The engine that has been taken
off is typically stored as new for a length of time to allow a break between future removals and
subsequently reduce demand in the future as all of the engines need to be refurbished. However,
there are a limited number of spare engines for a fleet to use as can be seen in figures 7 and 8
and where a high volume of shop visits occur these spare engines may be required. This extra
feature of Stagger could be investigated in future work.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 961 -

Future work is also planned to present a Mathematical model and also more accurate and
sophisticated algorithms to find optimal solutions.

References

1. Gatland, R.; Yang, E.; Buxton, K., “Solving engine maintenance capacity problems
with simulation”, Simulation Conference, 1997, IEEE, pages 892-899, 7-10 Dec.
1997

2. Painter, M.K.; Erraguntla, M.; Hogg, G.L.; Beachkofski, B., "Using Simulation, Data
Mining, and Knowledge Discovery Techniques for Optimized Aircraft Engine Fleet
Management," Proceedings of the Winter Simulation Conference, 2006. IEEE, pages
1253,1260, 3-6 Dec. 2006

3. Yutsung W; Jaw, L.; Rendek, P.; Moses, E.; Robinson, M.; Driver, S.; Senior, K.,
"Demonstration of A Reliability Centered Maintenance (RCM) Tool to Extend
Engine's Time-On-Wing (TOW)," Aerospace Conference, 2007, IEEE, Pages 1,5, 3-
10 March 2007

4. Stranjak, A.; Dutta, P.S.; Ebden, M.;Rogers, A.;Vytelingum, P.
5. “A multi-agent simulation system for prediction and scheduling of aero engine

overhaul”, 2006, Proceedings of the International Conference on Autonomous Agents
and Multi-Agent Systems (Industrial Track), ACM DL, Industrial Track, 8-12 May
2006

6. Deris, S.; Omatu S.; Ohta H.; Kutar S.; Samat P. A.; “Ship maintenance scheduling
by genetic algorithm and constraint-based reasoning”, European Journal of
Operational Research, 1999, Volume 112, Issue 3, 1 February 1999, Pages 489-502

7. Aerdata, 2015, EFPAC Engine Maintenance Cost Planning [Online] Available from
http://www.aerdata.com/efpac-engine-management-system.html, [Accessed 14/05/15]

8. LSC Group, 2015, Modelling & Simulation [online] Available from:
http://www.lsc.co.uk/our_services/ikm__business_analysis/modelling__simulation/L
SC Group, [Accessed 03/06/2015]

9. Clockwork Solutions, 2015, Insight LCM, [online] Available from: http://clockwork-
solutions.com/products/insight-lcm/, [Accessed 03/06/2015]

10. SAS, 2015, SAS Asset Performance Analytics, [online] Available from:
http://www.sas.com/en_us/software/supply-chain/asset-performance-analytics.html,
[Accessed 03/06/2015]

11. Babaei, H, Karimpour, J. and Hadidi, A., A survey of approaches for university
course timetabling problem, Computers & Industrial Engineering, Available online 21
November 2014, ISSN 0360-8352, http://dx.doi.org/10.1016/j.cie.2014.11.010.

12. Burke, E.K. and Petrovic, P., Recent research directions in automated timetabling,
European Journal of Operational Research, Volume 140, Issue 2, 16 July 2002, Pages
266-280, ISSN 0377-2217, http://dx.doi.org/10.1016/S0377-2217(02)00069-3.

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 962 -

http://www.aerdata.com/efpac-engine-management-system.html
http://dx.doi.org/10.1016/j.cie.2014.11.010

Author Index

Abdullah S. ... 515
Ackermann H. .. 772
Adasme P. ... 16
Adriaensen S. .. 821
Afifi S. .. 859
Ahmadi S. ... 579
Akartunali K. .. 429, 805
Akhavizadegan F. ... 296
Akhlaghi V.E. ... 876
Akrotirianakis I. .. 203
Ali O. .. 622
Allaoui H. ... 325
Almakhlafi A. ... 708
Almgren T. ... 78
Aloulou M.A. ... 174
Alqudsi A. .. 515
Althaus E. ... 412
Ansarifar J. ... 296
Arbaoui T. .. 871
Arkhipov D. .. 797
Artiba A. ... 782
Artigues C... 809
Asmuni H. .. 931
Azouni A. ... 871
Bagger N-C. F. ... 825
Balasubramanian H. ... 902
Baltar D.D. ... 905
Barbosa A. .. 611
Baron O. ... 604
Barták R. ... 852
Battistutta M. .. 507
Baumann P. .. 526
Baykasoglu A. .. 656
Beck J.C.. 240
Ben Youssef B. ... 403
Benmansour R. ... 325, 782
Berman O. .. 604
Bhattacharya S. ... 63
Borreguero Sanchidrián T. ... 809
Bose S.K. .. 63
Boufflet J-P... 871
Bouyahia Z. .. 189
Brandão J.S. .. 570
Braun O. ... 325
Braune R. .. 888
Briand C. .. 236

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 963 -

Bronnikov S. ... 750
Bukata L. .. 662
Burgelman J. ... 666
Carlier J. ... 680
Carrano E.G. ... 267
Ceschia S. ... 507
Chakraborty A. ... 203
Chen B. ... 673
Choi J.Y. ... 601
Chung C. ... 687
Coban B. ... 876
Coffman E. ... 673
Critchley M. .. 579
Dauzerè-Pérès S. .. 443, 788
De Causmaecker P. ... 794
De Cesco F. .. 507
Deghdak K. ... 659, 704
Della Croce F. ... 879
Dereniowski D. ... 673
Desrosiers J. .. 652
Detienne B. ... 635
Dios M. ... 473, 764, 768
Doerner K.F... ... 896
Down D.G. ... 240
Drozdowski M. ... 146
Drwal M. .. 617
Elalouf A. ... 683, 743
Fathy Y. .. 821
Fernandes P. ... 611
Fernandez-Viagas V. .. 473, 764
Fong C-W. .. 931
Fonseca G.H.G. .. 267
Fowler J. ... 801, 902
Framinan J.M. ... 473, 764, 768
Fu L-L... 174
Fügenschuh A. .. 555
García-León A. ... 443
Garraffa M. ... 879
Gauthier J.B. ... 652
Gazdar A... 393, 403
Glazebrook K. .. 614
Glizer V.Y. ... 42
Goel A. ... 899
Gorczyca M. ... 649
Grigoreva N.S. .. 814
Grinshpoun T. ... 313
Gultekin H. ... 876
Gunawan A. .. 276
Gupta J.N.D. ... 746
Gushchina V. .. 750
Hanayama N. .. 596

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 964 -

Hanzálek Z. .. 662, 759, 867
Harbering J. .. 102
Hartmann S. .. 154
Herding R. .. 817
Herr O. .. 899
Heßler C. .. 659
Hidri L. ... 393, 403
Hojati M. .. 949
Höner J. .. 331
Hoogeveen H. ... 882
Horn G. ... 914
Horváth M. ... 677
Hübner F. .. 638
Huisman B. ... 25
Hurink J. ... 14
Hutabarat W. .. 591
Ilani H. .. 313
Ingels J. ... 669
Ionescu L. ... 785
Ishii R. .. 55
Janiak A. ... 649
Jennings P. .. 614
Jolai F. .. 296
Jozefowiez N. ... 236
Karhi S. ... 626
Kasirzadeh A. ... 943
Keha A. ... 902
Kemmoé-Tchomté S. .. 118
Kendall G. .. 931
Kirchner S... 849
Kis T. .. 677
Kliewer N. .. 785
Klöcker C. .. 360
Klos T. ... 25, 457
Knopp S. ... 788
Knowles J. .. 708
Kozik A. ... 484
Krass D. .. 604
Kristiansen S. .. 825
Krivulin N... 492
Kubiak W. .. 673
Küfer K-H... 772
Lach G. ... 260, 331, 370
Lach M. .. 260, 370
Lam W-S. ... 931
Lamorgese L. .. 892
Lamy D. .. 118
Lange J. .. 645
Lau H.C. ... 276
Lauret J. .. 699
Lazarev A. .. 750, 797

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 965 -

Leggate A. .. 805
Leithäuser N. .. 772
Lenté C. .. 755
Leung J. .. 16
Levine J. ... 429
Levner E. .. 743
Li H. ... 240
Lichtenstein M. ... 649
Liedloff M. ... 755
Lindahl M. .. 606
Lisovoy A. .. 629
Lisser A. ... 16
Lopez P. .. 809
Lu K. ... 276
Lübbecke M. ... 849
Lübbecke M.E. ... 652
Lukkien J. ... 882
Macedo R. .. 782
Maenhout B. ... 666, 669
Makatun D. ... 699
Mannino C. ... 892
Marszałkowski J. .. 146, 885
Mateus G.R. .. 776
Mathirajan M. ... 345
Mati Y... 443
Mauergauz Y. ... 134
McCollum B. .. 921, 931
McMullan P. ... 931
Menezes G.C. ... 776
Meyer A. ... 772
Mier M.O. ... 809
Mladenović N. .. 782
Mönch L. .. 801, 817
Moris M.U. ... 236
Morozov N. .. 750
Moukrim A. .. 680, 859, 871
Mountakis S. ... 25
Muguerza M. .. 236
Müller M... 862
Muttray U. .. 412
Nakagawa K. .. 55
Ngueveu S.U. ... 236
Noronha T.F. .. 570
Nourmohmmadzadeh A.. 154
Novák A. .. 759
Nowé A... 821
Ogawa M.A. ... 165
Östberg P-O. .. 921
Ostler J. ... 360, 862
Ozsoydan F.B. .. 656
Patriksson M. .. 78

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 966 -

Pattacini M. .. 591
Perez-Gonzalez P. .. 473, 764, 768
Pham S. ... 794
Pillay N. .. 909
Pimenta V. .. 218
Prajapat N. .. 591
Quesnelle J. .. 379
Quilliot A. ... 218
Rahimian E. .. 429
Ranade A. ... 102
Ravetti M.G. ... 776
Resende M.G.C. ... 570
Ribeiro C.C. .. 570
Rihm T. ... 526
Riise A. ... 892
Rodríguez V. .. 236
Rudek R. ... 484
Rudová H. ... 12, 699
Sadykov R. ... 635
Sahli A. ... 680
Sánchez A.G. .. 809
Santos H.G.. 267, 905
Schaerf A. ... 507
Schilde M. .. 896
Schmidt M. ... 102
Schneeberger K. ... 896
Schultmann F. ... 638
Seddik Y. .. 867
Shabtay D. .. 626, 629
Shaker K. .. 515
Shang L... 755, 879
Shen L... 746
Shikata Y. ... 596
Shufan E. .. 313
Singh R. .. 345
Skutella M. ... 13
Smet P... 928
Soares J.A. .. 905
Sologub A. .. 750
Sørensen M. .. 606, 825
Soumis F. .. 943
Steffy D. ... 379
Stidsen T. R. ... 606, 825
Stockwell-Alpert E. .. 687
Strömberg A-B. .. 78
Struijker Boudier I. ... 614
Šůcha P. .. 662, 759
Sucu S. .. 805
Šumbera M. .. 699
Sys T. .. 946
Tan Y. ... 801

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 967 -

Tanaka S. .. 635
Tavakkoli-Moghaddam R. .. 296
Tavares-Neto R.F. .. 165
Tchernev N. .. 118
Thörnblad K. .. 78
Tiwari A. .. 591
T'Kindt V. ... 704, 755, 879
Toffolo T.A.M. ... 905, 918
Toussaint H... 218
Tran T.T.. 240
Trautmann N. .. 541
Triki C. ... 174
Turetsky V. ... 42
Urošević D. ... 782
Václavík R. ... 759
van den Akker M. ... 882
Van Den Dooren D. .. 946
Van Der Meer R. .. 805
Van Marcke K. ... 622
Vanden Berghe G. .. 918, 928, 946
Vanhoucke M. .. 666
Velten S. ... 772
Vigo D. ... 218
Vlk M. .. 852
Volk R. ... 638
Wachtel G. .. 683
Wang J. ... 604
Wauters T. .. 918, 946
Weedon R. .. 579
Werner F. .. 797
Wilke P. .. 360, 862
Wilmer D. ... 457
Witteveen C. ... 25
Wright M. ... 614
Yadrentsev D. ... 750
Yedidsion L. ... 629
Yuan Z. ... 555
Yugma C... 788
Zhang P.Y. .. 240
Zimmermann A. ... 541
Zorn E. .. 260, 331, 370

7th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2015)
25-28 August 2015, Prague, Czech Republic

- 968 -

	000 Cover Page
	001 Preamble
	099 Plenary
	199 Papers
	200-P-003
	200-P-012
	200-P-013
	200-P-023
	200-P-027
	200-P-032
	200-P-036
	200-P-038
	200-P-041
	200-P-043
	200-P-044
	200-P-045
	200-P-062
	200-P-063
	200-P-068
	200-P-069
	200-P-086
	200-P-087
	200-P-091
	200-P-099
	200-P-100
	200-P-102
	200-P-106
	200-P-109
	200-P-110
	200-P-113
	200-P-121
	200-P-125
	200-P-131
	200-P-132
	200-P-134
	200-P-135
	200-P-138
	200-P-142
	200-P-150
	200-P-152
	200-P-158
	200-P-159
	200-P-163
	200-P-164
	200-P-171
	200-P-172
	200-P-174
	3.2 Modelling the Stagger Problem
	3.3 A Genetic algorithm for the Stagger Problem
	4 Results
	4.1 Initial Tests
	4.2 Improving the Fitness Function

	5 Conclusion

	299 Abstracts
	300-A-004
	300-A-005
	300-A-006
	300-A-007
	300-A-008
	300-A-009
	300-A-015
	300-A-017
	300-A-018
	300-A-019
	300-A-025
	300-A-033
	300-A-039
	300-A-042
	300-A-047
	300-A-051
	300-A-052
	300-A-054
	300-A-055
	300-A-056
	300-A-057
	300-A-058
	300-A-059
	300-A-060
	300-A-064
	300-A-066
	300-A-067
	300-A-070
	300-A-072
	300-A-073
	300-A-074
	300-A-076
	300-A-077
	300-A-078
	300-A-081
	300-A-083
	300-A-084
	300-A-085
	300-A-088
	300-A-090
	300-A-092
	300-A-093
	300-A-094
	300-A-095
	300-A-096
	300-A-097
	300-A-098
	300-A-101
	300-A-105
	300-A-108
	300-A-116
	300-A-118
	300-A-119
	300-A-122
	300-A-127
	300-A-130
	300-A-133
	300-A-136
	300-A-140
	300-A-144
	300-A-145
	300-A-147
	300-A-154
	300-A-162
	300-A-165
	300-A-168
	300-A-169
	300-A-173
	300-A-174
	3.2 Modelling the Stagger Problem
	3.3 A Genetic algorithm for the Stagger Problem
	4 Results
	4.1 Initial Tests
	4.2 Improving the Fitness Function

	5 Conclusion

	995 Author Index

MISTA 2015

Production Scheduling Based on Order Utility Functions

Yuri Mauergauz

Abstract This paper presents various aspects of scheduling based on the average orders utility criterion on the planning horizon. In this method the concept of production intensity as a dynamic production process parameter is used. The example is made for Pareto-optimal flexible job shop scheduling problem, when two criteria were simultaneously used: relative setup expenditure criterion and average orders utility criterion. The nature of average orders utility function variation is considered, and the concept of critical horizon is introduced. The software used allows scheduling for medium quantity of jobs. The result of software application is the set of non-dominant versions proposed to a user for making a final choice.

1 Introduction

Wide spread occurrence of Just-in-Time Production methodology in scheduling requires to apply the criteria, which explicitly consider possible deviations of contractually agreed due dates. When such approach is used, completing a job earlier or later than its due date deteriorates quality of scheduling. In scheduling theory, an optimality criterion is called regular, if completion time diminution of any job leads to criterion improvement. If a criterion may be improved by increasing planned time of certain job completion, such a criterion is called non-regular. Usually this criterion involves the sum of absolute deviations of job completion timing from due dates; however, as indicated by [1], other criteria are possible.

At the same time, various obstacles, which may exist inside or outside an enterprise, impede exact completion on delivery dates. Internal causes include machine breakdowns, operator’s absence, design changes, lack of control and so on; the external cause is usually untimely arrival of necessary materials. Besides, changes in customer requirements to composition and quantity of commodities may be possible.

Therefore in practice shop floor scheduling is a dynamic process, and its nature essentially impacts production parameters. There are three types of shop control: completely reactive control (dispatching); predictive-reacting scheduling and robust predictive-reacting scheduling.

When dispatching is applied, production schedules are not made. Released jobs are being assigned to machines as they become available, according to the rules used at the enterprise. In this case both job timeliness and job economy are determined by dispatcher’s experience.

A more up-to-date method of shop floor control involves predictive-reacting scheduling of production, which is usually implemented in two stages. At the first stage, the calculation of schedule using certain optimization criteria has to be made. At the second stage, usually already in process of completion, the schedule may be corrected, if important events emerge [14]. In such a case the corrected schedule may differ from the primary one in many respects,

Yuri Mauergauz

Sophus Group, Moscow, Russia

E-mail: prizasu@yandex.ru

and its quality may substantially worsen. In some papers, for example [4], attempts were made to estimate possible production delays and to ensure robust production process in this case.

When predictive-reacting scheduling is used, two issues arise: when to reschedule, and how to react to real-time events. Three versions of rescheduling policy are possible [14]: periodic, event driven and hybrid. In periodic and hybrid methods the concept of rolling time horizon is used [3]. A planning horizon is a time interval, which contains moments of completion of a job set, for which scheduling is made.

Duration of rescheduling period is called a planning cycle. Usually it is essentially shorter than a planning horizon. When a planning cycle decreases, the scheduling robustness increases [12], but it becomes difficult to manoeuvre resources, and more reporting is required. Therefore usually the minimal duration of planning cycle is determined by requirements to job organization in the shop. If an event arises within the cycle, which breaks the planning production process, usually the schedule is not fully revised, but the schedule is corrected as needed. After each cycle the planning horizon is shifted by the value of this planning cycle, but its value will not necessarily remain the same.

Increase of the planning horizon often makes it possible to apply so called group technology, which unites jobs of the same type, and to enlarge size of technological batches. In this case production expenses related to machine setups drop considerably. However, when the jobs of one type are united, the jobs of other types are delayed. This fact is known as “dilemma of operation planning” [13]. Solution of such problems may be only attained in multicriteria tasks. The most promising here is the research aimed at building Pareto-optimal diagrams for problem criteria.

It is evident that from the point of view of the best solution for dilemma of operation planning it is necessary to calculate Pareto-front curves on the criteria that depend of job cost and process efficiency. The criterion of relative setup expenses

[image: image1.wmf]U

 and the criterion of average orders utility

[image: image2.wmf]V

may be considered for dynamic group scheduling [8]. Average utility for the whole set of orders is calculated as the sum of utility functions for all planning jobs. The average utility is a non-regular criterion of the above meaning. This paper below demonstrates that application of average utility function makes it possible to determine the rational planning horizon for each scheduling task.

The remainder of this paper is organized as follows. In Section 2 the function of current orders utility and the function of direct expenses are determined. Section 3 is dedicated to group flexible job shop scheduling. In Section 4 the choice of rational planning horizon is considered. Section 5 contains some concluding remarks.

2 Utility functions in scheduling

The customer service level may be assessed by the current order utility function V. From the manufacturer’s point of view, the order value increases proportionately to work amount, since staff engagement increases. Besides, the more is the time reserve for completing an order, the more attractive is the order, since there is an opportunity to prepare for order execution. Eventually the order time reserve is decreasing, and the order value is diminishing. Moreover, if due date has expired, the order value becomes negative. The manufacturer’s attitude to the order changes with time, and the appropriate function is named production intensity [7]:

.

[image: image3.wmf]1

()/1

ii

i

i

wp

H

GdtG

a

=

-+

 at

[image: image4.wmf]0

i

dt

-³

 and

[image: image5.wmf][()/1]

ii

ii

wp

HtdG

G

a

=-+

 at

[image: image6.wmf]0

i

dt

-£

, (1)

where:

[image: image7.wmf]i

p

 = processing time of job i; G = plan bucket duration;

[image: image8.wmf]i

w

 = weight coefficient of job i;

[image: image9.wmf]a

 = “psychological coefficient”;

[image: image10.wmf]i

d

= due date; t = current time.

 [image: image11.png]

 Figure 1 Production intensity diagrams

On abscissa axis in Figure 1 the time reserve is measured. The reserve is equal to subtraction between due date and current time. In the positive part of the diagram (

[image: image12.wmf]i

dt

>

) the values of intensity decrease in hyperbolic mode with growth of available time reserve. When the time reserve is negative (

[image: image13.wmf]i

dt

<

) and there is delay of order completion, the production intensity linearly increases. Since production intensity is dimensionless, it has no physical sense, but it has psychological sense. Indeed, when this order parameter is rising, the concern about order execution is increasing. Two curves in Figure 1 differ in the psychological coefficient value. The higher is the

[image: image14.wmf]a

 coefficient, the more placid is the attitude to delays, and the lower is the intensity.

 [image: image15.png]

 Figure 2 Current order utility function

The production intensity concept may be used for determination of the current order utility function V (Figure 2). Assume that the current utility for an order

[image: image16.wmf]i

 is

[image: image17.wmf]ii

ii

wp

VH

G

=-

. (2)

The curve in Figure 2 for the positive value

[image: image18.wmf]0

i

dt

-³

 tends to the horizontal asymptote,

[image: image19.wmf]/

iii

VwpG

=

. (3)

In the negative part

[image: image20.wmf]0

i

dt

-£

 the curve turns into the inclined straight line with

[image: image21.wmf]i

tg

g

=

 EMBED Equation.DSMT4 [image: image22.wmf]2

ii

wp

G

a

. (4)

If the order due date reserve is positive, the manufacturer expects to gain some profit; if reserve is negative and job execution delays the manufacturer, as a rule, it incurs losses. There is a great number of papers dedicated to utility changes as a function of available gain or loss. Results of such researches may be reduced to one of two versions depicted in Figure 3.

 [image: image23.png]

 Figure 3 Possible diagrams of gain and loss utility

 a) diagrams with risk averse and risk prone areas;

 b) diagrams only with risk averse area.

On the abscissa axis in Figure 3 the gain value (anticipated profit

[image: image24.wmf]P

) is set, on the ordinate axis the gain utility is set in the positive area of the abscissa axis, and the loss utility - in the negative area. The diagram 3a was named an S-mode curve as a result of a well-known research [5] awarded with the Nobel Prize on economics in 2002. Their research proved inclination of ordinary people to risk, when loss is probable (the left part of the diagram). The left part is concave, so a sign of corresponding second derivative is positive, and there is risk proneness.

In contrast to the diagram 3a, the diagram 3b shows risk aversion both for gain or loss perspectives. It is necessary to note that the diagram 3b or Grayson-Bard utility function [6] was obtained in 1957, i.e. much earlier than the diagram 3a. Differences in results of the diagrams 3a and 3b, most probably, were caused by scope people chosen for polling and by direction of money application. In the research by Kahneman and Tversky, modest people were interrogated, money amounts were negligible, and their purpose was consumption. On the contrary, Grayson-Bard function was designed for investments by large companies.

If we compare the curve in Figure 3 and the curves in Figure 2, we can see that the order time reserve is used as gain or loss. It seems to the manufacturer that the long-term order availability represents a considerable gain, but the rate of this gain growth goes down in proportion to the duration. In this positive field the order utility curve behaves entirely like the diagrams in Figure 3. The negative field in Figure 2 is similar to the loss field in Figure 3, but in contrast to the diagrams in Figure 3 there is linear diminution of order utility function in Figure 2. Accordingly, the function second derivative is equal to zero, and risk is neutral.

Due to the additivity property of production intensity and order utility function, it is possible to compute the average utility of the whole order set during a plan bucket. The value of this parameter describes timeliness of order completion and may be used as a criterion of scheduling.

Let us assume that a certain job that corresponds to the node of the scheduling versions tree at the level

[image: image25.wmf]l

 is completed at the moment of time

[image: image26.wmf]l

C

. Let us also assume that the job k with processing time

[image: image27.wmf]k

p

 starts at the moment

[image: image28.wmf]k

t

, which is more than or equal to

[image: image29.wmf]l

C

. Then the average utility of the entire set of jobs

[image: image30.wmf]J

 from start until completion of the job k in the node at the level

[image: image31.wmf]1

l

+

 equals

[image: image32.wmf]1,

0

11

()

kkkk

l

tptp

lkl

lk

kkkk

C

VVdtVCVdt

tptp

++

+

==´+

++

òò

. (5)

Possible versions of using the formula (5) for a single machine and rules to compute the integrals it contains are described in [9]. For some parallel machines the recurrent formula (5) may be used without changes, if completion of a job on the previous level

[image: image33.wmf]l

happens before job completion on the subsequent

[image: image34.wmf]1

l

+

 level. Otherwise, instead of the formula (5) the following formula is used [10].

 .

[image: image35.wmf]1,

1,

1

lkk

m

tp

lkl

lz

C

VVVdt

C

+

+

+

=+

ò

. (6)

The bottom limit in the integral (6) is the work completion moment for the last job on the machine

[image: image36.wmf]m

. The function of negative expenses utility (loss function) may be used as the second criterion in the dilemma of operation planning. If the sequence number of planning job is

[image: image37.wmf]n

, then

[image: image38.wmf]00

1

[()]

nn

sljkll

ll

UcsctC

c

==

=+-

åå

, (7)

where: c = shift cost;

[image: image39.wmf]s

c

= hour setup cost;

[image: image40.wmf]j

c

= hour idle cost;

[image: image41.wmf]kl

t

= moment of job k start after job l completion;

[image: image42.wmf]l

s

= setup time for the next job with the sequence number l in the specific schedule version.

3 Group scheduling for job shop manufacturing

As an example of scheduling based on the proposed criteria, let us consider the task for flexible job shop manufacturing. Assume there are certain jobs arriving in any sequence to each available machine

[image: image43.wmf]M

 in one of different pools

[image: image44.wmf]O

, for processing of according type. Every job

[image: image45.wmf]i

 refers to any of

[image: image46.wmf]S

 various types, consists of

[image: image47.wmf]i

R

 operations and has to be completed on due date

[image: image48.wmf]i

d

. Setting of due dates is specific for “make-to-order” manufacturing strategy.

In accordance with the well-known three-part scheduling classification, the problem to be considered is:

[image: image49.wmf]|,,,|,

iifq

FJprecrdsUV

, (8)

where:

[image: image50.wmf]FJ

 = designation of flexible job shop manufacturing;

[image: image51.wmf]i

d

 = due date of job

[image: image52.wmf]i

;

[image: image53.wmf]i

r

 = release moment for job

[image: image54.wmf]i

;

[image: image55.wmf]fq

s

 = setup duration for job

[image: image56.wmf]q

 on machine of pool

[image: image57.wmf]f

;

[image: image58.wmf]prec

= requirement of strict sequence of operations for every job.

Let duration of each machine setup from one job to another be independent on sequence of these jobs, which is typical for machine building. There are two target functions in the formula (8), and they may both be improved only within certain limits. The Pareto compromise curve serves as such limit, because in its points the criterion

[image: image59.wmf]U

improvement (diminution) always means the criterion

[image: image60.wmf]V

 deterioration (diminution).

If job execution is multistage, the process time of job

[image: image61.wmf]i

 left before completion consists of process time on

[image: image62.wmf]i

N

 of certain

[image: image63.wmf]j

 operations

[image: image64.wmf]i

i

N

iij

ja

pp

=

=

å

,

[image: image65.wmf]iii

NRa

=-

+1, (9)

where

[image: image66.wmf]i

a

 = number of the first unfulfilled operation for job

[image: image67.wmf]i

.

Necessary release date of operation

[image: image68.wmf]j

 for job

[image: image69.wmf]i

 is determined as

[image: image70.wmf]ij

g

=

[image: image71.wmf]i

d

–

[image: image72.wmf]i

p

/E+1, (10)

where E = duration of a working day.

For solving the problem (8) it makes sense to apply the method based on the MO-Greedy approach [2]. In the greedy algorithm at each step a solution with the best corresponding criterion is selected. In a single-criterion approach a version is selected with the best value of the appropriate criterion. For multi-object greedy approach the “beam search” with the problem criteria is used. In the current case, there are two criteria: average orders utility

[image: image73.wmf]V

 and expenses

[image: image74.wmf]U

. For Pareto front determination by beam search the tree with nodes of intermediate solutions is constructed. At the same time at each step some versions of possible solutions that do not dominate each other are selected. The algorithm below is used.

Step 1 (Initial computation of utility functions)

Let us assume that the level number is

[image: image75.wmf]l

=0; the initial expense function value is

[image: image76.wmf]0

U

=0; number of nodes

[image: image77.wmf]0

Z

=1.

External cycle

Step 2 (Determination of possible operations at next levels)

 For each node

[image: image78.wmf]z

 of the constructed tree on the level

[image: image79.wmf]l

 all possible operations are

 determined, and values

[image: image80.wmf]ijz

g

 are computed by formulas (9,10).

 Intermediate cycle

 Step 3 (Determination of necessary machines at next levels)

 For each operation

[image: image81.wmf]k

, which is possible at the moment

[image: image82.wmf]lz

C

 and is not yet completed,

 the necessary machine pool is determined.

 Internal cycle

 Step 4 (Utility function computation at next levels)

 For each machine

[image: image83.wmf]m

referred to pool

[image: image84.wmf]f

 values

[image: image85.wmf]1,,,

lzkm

U

+

 and

[image: image86.wmf]1,,,

lzkm

V

+

 are

 computed using the formulas (7) and (5, 6). The moments of machine availability

 have to be taken into account for computation.

 End of internal cycle

End of intermediate cycle

 Step 5 (Determination of dominated tree nodes)

If the level

[image: image87.wmf]1

l

+

 is not last, then for domination on the level

[image: image88.wmf]1

l

+

 of the tree node

[image: image89.wmf]y

 with a job

[image: image90.wmf]i

 over the tree node

[image: image91.wmf]x

 it is sufficient to comply with the following inequations

[image: image92.wmf]1,1,

lylx

UU

++

£

,

[image: image93.wmf]1,1,

lylx

VV

++

³

 and

[image: image94.wmf]1,1,

lylx

gg

++

<

, (11)

 besides, the first or the second inequation is strong.

 Otherwise: on the last level

[image: image95.wmf]1

l

+

 domination is possible, if

[image: image96.wmf]1,1,

lylx

UU

++

£

,

[image: image97.wmf]1,1,

lylx

VV

++

³

. (12)

Step 6 (Transition to the next level or stopping)

If the level is more than the last (all operations are completed), then STOP.

Otherwise: level number increment

[image: image98.wmf]1

ll

=+

 and go to Step 2.

End of external cycle.

As it follows from (11, 12), on each level of tree construction those decisions are thrown aside that are dominated by another decision according to the problem criteria. The last condition in (11) extends the number of possible branches of the decision tree, since it is necessary for domination that the necessary release moment

[image: image99.wmf]ij

g

 of non-dominated branch is less than such a moment for dominated one.

Let us assume that according to a set of available orders the Master plan including several monthly plans is generated for the enterprise. Assume that shop floor planning is based on rolling horizon methodology, and the horizon is equal to some weeks. Then it is necessary for shop floor planning to know Master plan information, at least for two months. Assume the planning cycle is equal to a week, and its result is a shop task for the next week. Since the task for the previous week is not always completed, the shop plan for the next week consists of both the new task and uncompleted jobs of the previous week. In such a case the time reserve for such jobs becomes negative.

For example let us assume that 20 jobs of six various types have to be completed on a planning horizon in a shop. Assume that each job includes from three to five different operations, which have to be performed in any given sequence; assume also that in the shop there are 9 machines of five various pools. Table 1 contains a fragment of this task consisting 5 jobs.

 Table 1 Task fragment

		Job No.

		Due date

		Release date

		Job type

		Weight coefficient

		

		

		

		

		

		1

		-1

		0

		1

		2

		2

		1

		0

		2

		1

		3

		2

		0

		4

		1

		4

		2

		0

		3

		1

		5

		2

		0

		1

		1

As it follows from Table 1, the job 1 had to be completed one work day earlier than the scheduled start, so there is initial tardiness. Other jobs have to be completed in two days after the start. In this case it is assumed that there is enough material for all jobs at the start moment. For every job the weight coefficient may be put in, which increases job importance. For example, weight coefficient of the job 1 is equal to 2, other coefficients are equal to 1, as a rule.

The calculation result for this example gives three non-dominated versions of schedule, one of them is shown in Figure 4 as a record on MS Excel sheet. Numbers in the sequence for the each machine show the job numbers and (through fraction symbol) – the numbers of the operations, which are performed on the machine. Numbers in brackets form groups of lots with jobs of identical type, which do not require any setup, i.e. technological batch.

[image: image100.png]

 Figure 4: The planning result for one non-dominated versions

In Figure 5 the Gantt diagrams for the machines 1 and 3 are depicted. Rectangles in the diagrams correspond to working operations, gaps stand for idle time. Thick lines correspond to operations without setups as their job type is the same as the previous one.

[image: image101.png]

 Figure 5: Gantt diagrams for two machines

Let us consider some parameters of the schedule computed by the method above. Calculated coefficient of average load for engaged machines of the pool

[image: image102.wmf]f

:

[image: image103.wmf]max

()

ij

ij

f

fo

pf

K

EdMP

=

åå

. (13)

The numerator in (13) is equal to total processing time on the machines of pool

[image: image104.wmf]f

. The denominator is equal to product of the calculated time reserve in hours

[image: image105.wmf]max

Ed

, number of machines

[image: image106.wmf]f

M

of the pool

[image: image107.wmf]f

 and the normative load density

[image: image108.wmf]0

P

.

According to the scheduling results, the planning load density for every machine based on calculated machine work time is computed:

[image: image109.wmf]max,min,

()

ij

ij

m

mm

pm

P

CC

=

-

åå

. (14)

Assume coefficient of job grouping on machine

[image: image110.wmf]m

 is equal to ratio of job quantity and number of setups

[image: image111.wmf]m

m

m

n

W

o

=

. (15)

Average values for machines of pool

[image: image112.wmf]f

:

[image: image113.wmf]()

m

f

f

Pf

P

M

=

å

 and

[image: image114.wmf]()

m

f

f

Wf

W

M

=

å

. (16)

 When in Figure 6 the diagram 1 of initial calculated load and the diagram 2 of the scheduled average load density are compared, one can notice some similarity. In the diagram 3 of group coefficient there are trends similar to trends in the diagram 2, but far more noticeable. The diagram 4 of group density, which is calculated as product of the diagram 2 and the diagram 3, is close to the diagram 1 on most sections. This fact proves that this schedule automatically groups and condenses operations on the machines of the pool with large load much more intensively than on the machines with small load. Therefore, the algorithm above can automatically determine the bottlenecks of manufacturing and ensure their optimal work.

 [image: image115.png]

 Figure 6: Distribution of schedule parameters among machine pools

 1 – initial calculated coefficient of average load

 2 – planned load density

 3 – planned group coefficient

 4 – group load density

4 Choice of the rational planning horizon

Let us consider change of average orders utility function depending on planning horizon value. Assume that the order kit for a single machine consists of 40 jobs, and each job may be referred to one of 12 various types. Job numbers are sorted on due date increasing. The criterion of relative setup expenses

[image: image116.wmf]U

 and the criterion of average orders utility

[image: image117.wmf]V

may be considered as the set of criteria optimization. Assume also that all jobs may start at any time and have equal priority coefficient, and the job No. 1 is already tardy. Processing time of each job is in the interval of 1 – 3 hours, norms for setup from one job type to another one are within the limits of 0.2-0.6 hour.

 [image: image118.png]

 Figure 7: Economical schedules for various horizons

In Figure 7 the economical schedules (with small setup expenses) for different planning horizons are shown. Here the planning horizon value is determined with maximum job number for scheduling. Assume that at the start moment the machine was adjusted for jobs of type 4, which include the jobs 6, 9, 17, 38. Scheduling calculated with theory above automatically forms job groups of any type.

As it follows from Figure 7, at first, when the horizon is increasing, the economical sequence of jobs remains, new jobs gradually join the existing groups. For instance, the group including the jobs 6 and 9 of the type 4 exists until the horizon is less than 30 jobs. At the same time, the system automatically plans to execute the job 17 of the same type separately and essentially later. When the horizon becomes equal to 35, the economical sequence of jobs is partially changed. The jobs 6, 9 and 17 are planned for execution in the joint group; the jobs 2, 11 are postponed, the jobs 7, 15, 24 are planned earlier.

 [image: image119.png]

Figure 8: Dependence between average orders utility function and horizon value for single machine (overload)

In Figure 8 the dependence between the average orders utility function and the horizon value is shown. In this case the machine is overloaded, so utility function is negative as completion is often tardy. Until the horizon is equal to 30 jobs, there are utility function oscillations, after 30 jobs utility function diminishes dramatically.

[image: image120.png]

. Figure 9: Dependence between average orders utility function and horizon value for parallel

unrelated machines (low load)

In the next example let us consider scheduling for a shop including 6 parallel unrelated machines. Assume that one machine is of high productivity, three machines have middle productivity, and two machines have low productivity. Assume also that the shop may manufacture parts of 6 various types, and there are 75 orders for parts of these types at the moment of scheduling.

Economical schedules for each of parallel machines computed by the method above are similar to the schedule for a single machine. Such schedules include the groups of jobs for various job types. The diagram in Figure 9 is depicted for the case, when parallel machines have low load. In this case average orders utility function is positive, since job completion is not tardy. The utility oscillations are observed until number of jobs is less than 65. If the number is more, the orders utility function diminishes dramatically.

[image: image121.png]

Figure 10: Dependence between average orders utility function and horizon value for flexible job shop (overload)

 At last let us consider flexible job shop scheduling for the area of mechanical multistage processing of parts with any sequence of technological operations. Assume that in the shop there are 9 machines of five technological pools. Assume also that the shop gets the task for 40 jobs of six various types, and some of these jobs are in various stages of processing.

Economical schedules for each machine in the shop are similar to the schedules for the cases above. In Figure 10 the dependence between the average orders utility function and the horizon value for the shop is shown. In this Figure utility function is negative, since the shop is overloaded, and completion is often tardy. The utility oscillations are observed until number of jobs is less than 30. If the number is more, the orders utility function diminishes dramatically.

 If diagrams in Figures 8-10 are compared, one can find that in any case the orders utility function at some (critical) horizon begins to diminish dramatically. Apparently, scheduling for the horizon more than the critical one, has no sense. To find the critical horizon, it is expedient to use the decision support systems [11].

5 Conclusion

We have studied some aspects of scheduling based on the average orders utility

[image: image122.wmf]V

 criterion on the planning horizon. This criterion is non-regular as it takes into account both order tardiness and order early completion. In comparison with other known methods, this method provides automatic grouping of unique jobs on all active machines and at the same time takes into account the due date of all jobs. The method reveals the most loaded working centers automatically and provides for grouping of most jobs for these centers particularly.

For scheduling a set of Pareto-optimal solutions on planning horizon is constructed, and a user make the final decision based on this set. If a planning horizon changes, the calculated versions of the schedule change accordingly. When the horizon increases, the system at first automatically proposes schedule versions with increasing grouping of jobs to form technological batches. After the critical horizon value has been attained, the average orders utility function diminishes dramatically, and further increasing of the planning horizon is not expedient.

In dynamic scheduling the critical horizon value may be different in each planning cycle, and it is sensible to simulate production process for critical horizon determination. If deviations of the planned production process appear, they may be corrected in the schedule and have to be taken into account in the next planning cycle. Since the average orders utility function is a criterion of schedule quality for all jobs on the planning horizon, changes of this criterion by separate schedule corrections are usually not large and, accordingly, have small impact at the schedule structure as a whole.

In reality various additional constraints may arise in process of scheduling. For example, often it is needed to take into account the current device wear and tear, limited storage possibilities, general shipping terms, etc. In the nearest future it is planned to elaborate some solutions that correspond to listed problems.

References

[1] Baker K.R, Scudder G.D., Sequencing with earliness and tardiness penalties: A review, Operations Research, 38, 22-36 (1990).

[2] Canon, L.-C. and Jeannot, E., MO-Greedy: an extended beam-search approach for solving a multi-criteria scheduling problem on heterogeneous machines, IEEE Int. Symposium on Parallel and Distributed Processing Forum, 57-69 (2011).

[3] Church, L. K. and Uzsoy, R., Analysis of periodic and event-driven rescheduling policies in dynamic shops, Int. Journal of Computer Integrated Manufacturing, 5 (3), 153-163 (1992).

[4] Jorge, L.V., Wu, S. D. and Storer, R. H., “Robustness measures and robust scheduling for job shops,” IIE Transactions, 26, 5, 32-43 (1994).

[5] Kahneman, D. and Tversky, A., ‘Choices, values and frames’, American Psychologist, Vol. 39, 341–350 (1984).

[6] Keeney, R.L. and Raiffa, H., Decisions with Multiple Objectives: Preferences and Value Tradeoffs, pp.559. John Wiley & Sons, NY, (1976).

[7] Mauergauz, Y., Objectives and constraints in advanced planning problems with regard to scale of production output and plan hierarchical level, Int. Journal of Industrial and Systems Engineering, 12, 369-393 (2012).

[8] Mauergauz, Y., Cost-efficiency method for production scheduling, Proceedings of the World Congress on Engineering 2013, 1, London, 587-593 (2013).

[9] Mauergauz, Y., Dynamic Pareto-optimal group scheduling for single machine, Int. Journal of Industrial and Systems Engineering, 16, 537-559 (2014a).

[10] Mauergauz, Y., Dynamic Pareto-optimal group scheduling in parallel machine shop, Int. Journal of Industrial and Systems Engineering, 18, 199-221 (2014b).

[11] Mauergauz, Y., Decision support tool for group job-shop scheduling problems, Proc. of the 4th Int. Conf. on Simulation and Modeling Methodologies, Technologies and Applications, Vienna, 397-406 (2014c).

[12] Muhlemann, A. P., Lockett, G., and Farn, C. K., Job shop scheduling heuristics and frequency of scheduling, Int. Journal of Production Research, 20 , 227-241 (1982).

[13] Nyhuis, P. and Wiendal, H.P., Fundamentals of Production Logistics, pp.312. Springer, Berlin (2009).

[14] Vieira, G. E., Hermann, J. W. and Lin, E., Rescheduling manufacturing systems: a framework of strategies, policies and methods, Journal of Scheduling, 6 , 36-92 (2003).

_1475826476.unknown

_1475826925.unknown

_1475827099.unknown

_1475827239.unknown

_1493190652.unknown

_1493192336.unknown

_1493276375.unknown

_1493276387.unknown

_1493192353.unknown

_1493191327.unknown

_1493191344.unknown

_1493190955.unknown

_1493189441.unknown

_1493189467.unknown

_1475827279.unknown

_1475827293.unknown

_1475827254.unknown

_1475827154.unknown

_1475827200.unknown

_1475827214.unknown

_1475827186.unknown

_1475827130.unknown

_1475827146.unknown

_1475827115.unknown

_1475826985.unknown

_1475827066.unknown

_1475827080.unknown

_1475827002.unknown

_1475826954.unknown

_1475826971.unknown

_1475826940.unknown

_1475826778.unknown

_1475826858.unknown

_1475826888.unknown

_1475826907.unknown

_1475826871.unknown

_1475826808.unknown

_1475826831.unknown

_1475826794.unknown

_1475826709.unknown

_1475826742.unknown

_1475826763.unknown

_1475826727.unknown

_1475826674.unknown

_1475826690.unknown

_1475826642.unknown

_1475826615.unknown

_1475825913.unknown

_1475826287.unknown

_1475826356.unknown

_1475826425.unknown

_1475826458.unknown

_1475826393.unknown

_1475826323.unknown

_1475826338.unknown

_1475826303.unknown

_1475826199.unknown

_1475826245.unknown

_1475826265.unknown

_1475826213.unknown

_1475826107.unknown

_1475826130.unknown

_1475826183.unknown

_1475825945.unknown

_1445847071.unknown

_1446106054.unknown

_1475825666.unknown

_1475825750.unknown

_1475825814.unknown

_1475825860.unknown

_1475825874.unknown

_1475825830.unknown

_1475825775.unknown

_1475825794.unknown

_1475825699.unknown

_1475825722.unknown

_1475825682.unknown

_1475825577.unknown

_1475825633.unknown

_1450686482.unknown

_1450686591.unknown

_1450688574.unknown

_1450686110.unknown

_1450085960.unknown

_1446106004.unknown

_1446106032.unknown

_1446016696.unknown

_1446105988.unknown

_1446016269.unknown

_1426660423.unknown

_1445842859.unknown

_1445844475.unknown

_1445845185.unknown

_1445842860.unknown

_1445841629.unknown

_1445841678.unknown

_1426661064.unknown

_1426667361.unknown

_1426660424.unknown

_1426660294.unknown

_1426660331.unknown

_1426660340.unknown

_1426660312.unknown

_1418373257.unknown

_1426659714.unknown

_1377505861.unknown

_1377762460.unknown

_1395037613.unknown

_1353393869.unknown

