
Costa Rica Institute of Technology
Czech Technical University in Prague

Code generation for automotive rapid
prototyping platform using Matlab/Simulink

Authors:
Carlos Jenkins
Michal Sojka

Version: 0.1-66-g0058037-dirty

March 7, 2014

Contents

1 Introduction 7

1.1 Background . 7

1.2 Technologies involved . 7

1.3 Objectives . 8

1.4 Benefits . 8

1.5 Final outcome . 8

1.6 Document layout . 9

2 Project setup 10

2.1 Development environment . 10

2.1.1 Operating system . 10

2.1.2 Version Control System . 10

2.1.3 TI Code Composer Studio . 11

2.1.4 Matlab/Simulink . 12

2.1.5 GtkTerm . 12

2.1.6 Doxygen . 12

2.1.7 Nested . 13

2.1.8 LMC1 . 13

2.2 Hardware reference . 15

2.2.1 Connectors pinout . 16

2.2.2 Modules description . 17

Logic IO . 17

Power Output . 18

Communication . 19

Data storage/logging . 20

1

2.2.3 Development wiring . 21

2.2.4 Test wiring . 22

2.3 Project repository . 24

3 C Support Library 25

3.1 Description . 25

3.1.1 Architecture . 27

3.1.2 RPP Layer Modules . 28

3.1.3 OS interchangeable layer . 30

3.1.4 API development guidelines . 32

3.1.5 Further improvements . 32

3.2 Subdirectory content description . 33

3.3 Test Suite . 35

3.3.1 AIN test description . 36

3.3.2 AOUT test description . 36

3.3.3 DIN test description . 36

3.3.4 HBR test description . 37

3.3.5 LOUT test description . 37

3.3.6 MOUT test description . 37

3.3.7 SCI test description . 38

3.3.8 SDR test description . 38

3.4 Static libraries . 39

3.5 HelloWorld application . 41

3.6 API generation . 49

3.7 API Reference . 49

3.7.1 DIN API Reference . 50

2

3.7.2 LOUT API Reference . 50

3.7.3 ADC API Reference . 50

3.7.4 DAC API Reference . 51

3.7.5 HBR API Reference . 51

3.7.6 MOUT API Reference . 52

3.7.7 HOUT API Reference . 52

3.7.8 CAN API Reference . 52

3.7.9 LIN API Reference . 52

3.7.10 FR API Reference . 52

3.7.11 SCI API Reference . 53

3.7.12 ETH API Reference . 53

3.7.13 SDC API Reference . 53

3.7.14 SDR API Reference . 54

4 Simulink Coder Target 55

4.1 Description . 55

4.1.1 Code generation process . 56

4.2 Subdirectory content description . 57

4.3 Installation procedure . 60

4.4 Usage . 60

4.5 Target Reference . 61

4.5.1 Simulink model options . 61

4.5.2 RPP Target options . 63

5 Simulink Block Library 64

5.1 Description . 64

5.1.1 C MEX S-Functions . 65

3

5.1.2 Target Language Compiler files . 69

5.2 Subdirectory content description . 71

5.3 Block Library Reference . 73

5.3.1 DIN Digital Input block . 74

5.3.2 LOUT Digital Output block . 75

5.3.3 ADC Analog Input block . 76

5.3.4 DAC Analog Output block . 77

5.3.5 HBR H-Bridge Control block . 78

5.3.6 MOUT Power Output block . 79

5.3.7 SCIR Serial Comm. Interface Receive . 80

5.3.8 SCIS Serial Comm. Interface Send . 81

5.3.9 SCIC Serial Comm. Interface Configure . 82

5.3.10 SDRW SD-RAM Write . 83

6 Simulink Demos Library 84

6.1 Description . 84

6.2 Subdirectory content description . 84

6.3 Demos Reference . 85

6.3.1 Analog pass-through . 85

6.3.2 Analog sinewave . 86

6.3.3 Digital pass-through . 87

6.3.4 Echo char . 88

6.3.5 H-bridge analog control . 89

6.3.6 H-bridge digital control . 90

6.3.7 H-bridge sine wave control . 91

6.3.8 Hello world . 92

4

6.3.9 LED blink . 93

6.3.10 LED blink all . 94

6.3.11 Log analog input . 95

6.3.12 Power toggle . 96

7 Glossary 97

8 References 99

9 Appendix A: Notes on FreeRTOS memory management 100

10 Appendix B: Known operating-system dependent files 102

5

List of Figures

1 LMC1 GUI application. 14

2 The RPP board (signal connector missing). 15

3 The RPP connectors pinout. 16

4 RPP Wiring for Development. 21

5 RPP Wiring for Testing. 23

6 Dependency graph of the ADC driver before refactoring. 25

7 Dependency graph of the ADC driver after refactoring. 26

8 The RPP library layers. 27

9 The RPP layer modules. 29

10 TLC code generation process. 56

11 Simulation cycle of a S-Function. 66

12 Simulink RPP Block Library. 73

13 Analog Passthrough Simulink demo for RPP. 85

14 Analog Sinewave Simulink demo for RPP. 86

15 Digital Pass-through Simulink demo for RPP. 87

16 Echo Character Simulink demo for RPP. 88

17 H-Bridge Analog Control Simulink demo for RPP. 89

18 H-Bridge Digital Control Simulink demo for RPP. 90

19 H-Bridge Sinewave Control Simulink demo for RPP. 91

20 Hello World Simulink demo for RPP. 92

21 LED Blink Simulink demo for RPP. 93

22 LED Blink All Simulink demo for RPP. 94

23 Log Analog Input Simulink demo for RPP. 95

24 Power Toggle Simulink demo for RPP. 96

6

1 Introduction

This document describes the final results of the project “Code generation for automotive rapid prototyping
platform using Matlab/Simulink”.

1.1 Background

Back in the beginning of 2012 a leading automotive company requested the Czech Technical University
to develop a Engine Control Unit (ECU) for automotive applications. Real-Time Systems group at the
Department of Control Engineering from the Faculty of Electrical Engineering developed a hardware and
Software platform to the needs of this industry. The hardware uses Texas Instruments TMS570LS3137 CPU
and is built with automotive standards and interfaces in mind. It uses a real-time operating system and was
directly programmed in C.

Nevertheless, in accordance to company policies the Software developed for the engine control unit must
be designed in a safe and auditable way. The company has the policy to implement the Software for their
system using Model-Based Design:

Model-Based Design (MBD) is a mathematical and visual method of addressing problems
associated with designing complex control, signal processing and communication systems. It
is used in many motion control, industrial equipment, aerospace, and automotive applications.
Model-based design is a methodology applied in designing embedded software.

In order to meet this requirement an interaction layer between the platform and the Software the com-
pany uses, Matlab/Simulink, must be implemented. This document describes the implementation of this
interaction system.

1.2 Technologies involved

1. Matlab/Simulink data flow graphical programming language tool for modeling, simulating and analyz-
ing multidomain dynamic systems.

2. Standard ANSI C programming.

3. FreeRTOS real-time operating system.

4. Texas Instruments TI Code Generation Tools (CGT).

5. RPP in-house automotive hardware board using Texas Instruments TMS570LS3137 CPU.

7

1.3 Objectives

Main objectives of this project are:

1. Allow C code generation from Matlab/Simulink models for custom made hardware platform.

2. Implement model blocks for some of the peripheral units of the board for use in Simulink programming.

At the time of this writing the objectives of this project are considered successfully achieved.

1.4 Benefits

Expected benefits of this project are:

1. Enabling faster implementation and rapid-prototyping of Software components through the use of
model-based programming.

2. Enabling better and clearer visualization of Software implementations for the hardware board through
models.

3. Improve auditability of Software system for automotive applications.

At the time of this writing the benefits of this project are considered enabled.

1.5 Final outcome

The main products generated for this project are:

• C Support Library:
Define the API to communicate with the board. Include drivers and operating system.

• Simulink Coder Target:
Allows Simulink model’s code generation, compilation and download for the board.

• Simulink Block Library:
Set of blocks that allows Simulink models to use board IO and communication peripherals.

• Simulink Demos Library:
Collection of examples of control applications in form of Simulink models.

Each of this product is described deeply in the following sections.

8

1.6 Document layout

The general layout of this document is as follows:

• Project description, objectives and outcome. This section.

• Software and Hardware setup for development, repository layout and programming standards.

• A section for each of the four products delivered, with:
– Implementation fundamentals.

– Repository branch description.

– Product specific aspects.

– Reference documentation.

• Glossary.

• References.

• Appendices.

9

2 Project setup

This sections describes the Software and Hardware aspects required to undertake development for this project.
It considers:

• Software development environment.

• Hardware reference documentation and wiring for development.

• Repository’s general layout.

2.1 Development environment

This section describes the Software environment setup for development.

2.1.1 Operating system

This project was developed on a GNU/Linux operating system. For development it is recommended to use
a Debian based operating system for development as most of the tools are easily available from repositories.

Relevant OS information on which this project was developed:

• Ubuntu 12.04.2 LTS AMD64.

• Kernel 3.2.0-48-generic.

• GCC version 4.6.3.

No test for cross-platform interoperability was performed on the code developed. Although care was taken
to try to provide platform independent code and tools there is elements known to be Linux dependent. For
a list of this elements refer to Appendix B: Known operating-system dependent files.

2.1.2 Version Control System

The version control system used for this project is git. The repository of this project contains all the
files produced during development, including documentation, references, code and graphics. Also, the GUI
application giggle was used to easily review changes. To install both execute on a terminal:

1 sudo apt -get install git giggle

10

2.1.3 TI Code Composer Studio

Code Composer Studio (CCS) is the official Integrated Development Environment (IDE) for developing
applications for Texas Instruments embedded processors. CCS is multiplatform Software based on Eclipse
Open Source IDE.

The version used in this project is the 5.3.0. Download and install CCS for Linux from:

http://processors.wiki.ti.com/index.php/Category:Code Composer Studio v5

CCS download requires a valid MyTI account. Tedious. CCS download is about 1.5GB. Once downloaded
extract the content of the tar.gz archiver and run css setup <version>.bin script as root. Installation
must done as root in order to install driver set.

After installation the application can be executed with:

1 cd <ccs >/ ccsv5/ eclipse /
2 ./ ccstudio

If the application fails to start on 64bits systems is because CCS5 is a 32bits application a thus requires
32bits libraries:

1 sudo apt -get install libgtk2 .0 -0: i386 libxtst6 :i386

If the application crashes with a segmentation fault edit file:

1 nano <ccs >/ ccsv5/ eclipse / plugins /com.ti. ccstudio .branding_ <version >/
plugin_customization .ini

And change key org.eclipse.ui/showIntro to false.

Choose “FREE License - for use with XDS100 JTAG Emulators” on the licensing options. Code download
for the board is uses that particular hardware. See Development wiring for more details on this hardware.

CCS include Texas Instruments Code Generation Tools (CGT) (compiler, linker, etc). Simulink code
generation requires the CGT to be available in the system, and thus, even if no library development will be
done or the IDE is not going to be used CCS is still required.
See <repo>/rpp/rpp/README.txt file for more information.

You can find documentation for CGT compiler in <repo>/ref/armcl.pdf and for CGT archiver in
<repo>/ref/armar.pdf.

11

http://processors.wiki.ti.com/index.php/Category:Code_Composer_Studio_v5

2.1.4 Matlab/Simulink

Matlab/Simulink version used is R2012b for Linux 64 bits. For in-house development the CVUT should
provide a network licensing server descriptor file.

2.1.5 GtkTerm

Most of the interaction with the board for development is done through a RS-232 serial connection. The
terminal Software used for communication is called GtkTerm.

The default configuration for the board serial communication module is 9600-8-N-1. Note that the RPP
Library test suite is setup to 115200-8-N-1.

To install GtkTerm execute:

1 sudo apt -get install gtkterm

2.1.6 Doxygen

Doxygen is the name of the documentation generator used to generate the RPP API documentation based
on the source code files. The generated API include dependency graphs and thus it also requires Graphviz,
a graph drawing tool. To install both execute:

1 sudo apt -get install doxygen graphviz

See API generation on how to use Doxygen to generate the API Reference documentation.

12

2.1.7 Nested

Nested is the documentation editor used to create the document you’re reading. It features a plain text version
control friendly simple to read non-cluttered format, WYSIWYM paradigm, divide and conquer document
creation approach, a nested (non-linear) document tree and content/presentation separation scheme and thus
documents can be published to LaTeX, PDF or HTML. Nested is a tool created by the author of this report.

To install Nested first install dependencies:

1 sudo apt -get install python2 .7 python -gtk2 python - webkit python - gtkspellcheck
texlive - publishers texlive texlive -latex -extra rubber iso -codes subversion

Then get the latest revision from the stable repository:

1 svn checkout svn :// svn.code.sf.net/p/ nestededitor /code/trunk nested

Run Nested with:

1 cd nested / nested /
2 ./ nested

Nested sources for this document can be found on the repository under <repo>/doc/reports/report/.

2.1.8 LMC1

The LMC1 is a simple script developed for this project written in Python 3 using Gtk+ 3.0 Python dynamic
bindings PyGObject. This script, based on Michal Horn’s command line script, allows to set or clear the
outputs of the test board.

This script includes both a GUI and command line tool. If no parameters are given to the script the GUI
version is launched:

13

Figure 1: LMC1 GUI application.

To run the LMC1 application first install dependencies:

1 apt -get install python3 python3 -gi python3 - serial

To launch LMC1 GUI version double click file:

<repo>/rpp/lib/apps/lmc1/lmc1.py

To launch LMC1 command line version type:

<repo>/rpp/lib/apps/lmc1/lmc1.py --help

14

2.2 Hardware reference

This section provides reference documentation for the RPP board:

• Connectors pinout.

• Modules capabilities and features.

• Wiring configuration for development and testing.

Please note that although this is a hardware reference documentation this is from a Software development
perspective and NOT Hardware development perspective. For full hardware details please refer to schematics
and related documentation.

Figure 2: The RPP board (signal connector missing).

15

2.2.1 Connectors pinout

C
O
M
M
U
N
IC
A
T
IO
N

P
O
W
E
R

S
IG
N
A
L

D
A
C
3

D
A
C
1

A
D
C
1
2

A
D
C
1
1

A
D
C
1
0

A
D
C
9

A
D
C
8

A
D
C
7

A
D
C
6

A
D
C
5

A
D
C
4

A
D
C
3

A
D
C
2

A
D
C
1
H

G
N
D

D
A
C
2

A
D
C
1
2

A
D
C
1
1

A
D
C
1
0

A
D
C
9

A
D
C
8

A
D
C
7

A
D
C
6

A
D
C
5

A
D
C
4

A
D
C
3

A
D
C
2

A
D
C
1
L

L
O
U
T
1

L
O
U
T
2

L
O
U
T
3

L
O
U
T
4

G
N
D

D
I
N
8

D
I
N
9

D
I
N
1
0

D
I
N
1
1

D
I
N
1
2

D
I
N
1
3

D
I
N
1
4

D
I
N
1
5

G
N
D

L
O
U
T
5

L
O
U
T
6

L
O
U
T
7

L
O
U
T
8

1
2
V

D
I
N
0

D
I
N
1

D
I
N
2

D
I
N
3

D
I
N
4

D
I
N
5

D
I
N
6

D
I
N
7

D
A
C
4

G
N
D

F
R
1
-

F
R
1
+

G
N
D

C
A
N
3
+

C
A
N
2
+

C
A
N
1
+

P
W
R

G
N
D

F
R
2
-

F
R
2
+

G
N
D

C
A
N
3
-

C
A
N
2
-

C
A
N
1
-

P
W
R

G
N
D

L
I
N
2

L
I
N
1

G
N
D

G
N
D

G
N
D

G
N
D

P
W
R

G
N
D

H
O
U
T
6

H
O
U
T
5

H
O
U
T
4

H
O
U
T
3

H
O
U
T
2

H
O
U
T
1

P
W
R

G
N
D

H
B
R
2

H
B
R
1

G
N
D

G
N
D

G
N
D

G
N
D

P
W
R

G
N
D

M
O
U
T
6

M
O
U
T
5

M
O
U
T
4

M
O
U
T
3

M
O
U
T
2

M
O
U
T
1

P
W
R

S
D
-
C
A
R
D

E
T
H
E
R
N
E
T

C
P
U

S
C
I

J
T
A
G

1 1

Figure 3: The RPP connectors pinout.

16

2.2.2 Modules description

This section enumerates the capabilities of the hardware modules from Software perspective.

Logic IO

Digital Inputs (DIN)

• 16 pins available on Signal Connector.

• Pins 8-15 status can be read via GPIO using configurable threshold.
Pins 8-11 use variable threshold B and pins 12-15 use variable threshold A.

• Variable threshold is a DAC chip MCP4922.

• All pins are read at once via SPI (fixed threshold) using chip MC33972.

• 0-7 are programmable pins and ca be set to pull-up or pull-down. 8-15 are pull-down only.

• All pins can be set to be active or tri-stated.

• All pins can be set to trigger interrupt.

• On-line diagnostic of broken wire.

Digital Outputs (LOUT)

• 8 pins available on Signal Connector.

• Pins for logic output only, up to 100mA.

• All pins are set at once using a chip through SPI.

Analog Input (ADC)

• 12 channels available.

• Differential inputs, thus 24 pins available on Signal Connector.

• Range for 0-20 volts.

• 12 bits resolution.

• Using CPU ADC.

17

Analog Output (DAC)

• 4 pins available on Signal Connector.

• Output range is 0-12 volts.

• Using 2 x MCP4922 DACs controlled using SPI.

• Resolution is 12 bits. But because of amplification and voltage reference not all range is used.

Power Output

H-Bridge (HBR)

• 1 port (2 pins) available on Power Connector.

• Communication is done through SPI.

• H-Bridge can be enabled or disabled.

• Current direction can be set.

• PWM control with 1% resolution change of the duty cycle.

• Port can drive load up to 10A.

Power Output (MOUT)

• 6 pins available on Power Connector.

• Pins can drive a load up to 2A. Push/Pull.

• Pins are set using 6 CPU output GPIOs. Diagnostic are read using 6 externally pulled-up open-drain
input GPIOs.

• On-line diagnostics. Driver chip will pull-down the corresponding diagnostic pin on the CPU.

High-Power Output (HOUT)

• 6 pins available on Power Connector.

• Pins can be set ON/OFF.

• Pins can drive a load up to 10A with PWM.

• System can read analog values of current flowing (IFBK).

• System can read diagnostics values (DIAG). Detection of a fault condition.

18

Communication

CAN bus (CAN)

• 3 ports available (CAN uses differential signaling) thus 6 pins are available on Communication connector.

• High speed.

• Recover from error.

• Detection of network errors.

Local Interconnect Network (LIN)

• 2 ports/pins available on Communication Connector.

• Only first port can be used when using the SCI. Second port us shared with SCI.

FlexRay (FR)

• 2 ports available. FlexRay uses differential signaling thus 4 pins are available on Communication
Connector.

Serial Comm. Interface (SCI)

• 1 port available inside the box on SCI connector (4 pins).

• Variable baud rate. Tested on 9600 and 115200.

• RS232 standard compatible.

Ethernet (ETH)

• 1 port available. Standard Ethernet connector available inside box.

19

Data storage/logging

External Memory SD-RAM (SDR)

• 64MB (currently installed) external RAM used for logging. Maximal supported capacity is 256MB.

• Memory test routine available with test Software.

SD Card (SDC)

• Standard SD-Card connector or microSD connector available inside box.

• Communication done using SPI.

20

2.2.3 Development wiring

For development, the RPP board needs to be wired as follow:

• Power input: supply around 13 volts on any PWR pin (Power and Communication connectors) and
connect GND to power supply’s GND. See Connectors pinout.

• Serial communication: board serial interface connected to a RS-232 port on the host computer
(/dev/ttySX) or to a USB converter (/dev/ttyUSBX).

• Debug and code download: XDS100v2 JTAG Emulator connected to RPP board JTAG connector,
which in turn is connected through USB to the host computer (/dev/ttyUSBX). See below on details
for configuring the XDS100v2 on Linux.

Image of the wiring:

Figure 4: RPP Wiring for Development.

Setup XDS100v2 on Linux:

By default the device (if nothing more connected then /dev/ttyUSB0) is added with permissions 664 and
root as user and group. To access the device write access for current user is required. To do so create a new
udev rule file:

1 sudo nano /etc/udev/rules.d/45-pes -rpp.rules

21

And add line:

1 SUBSYSTEM ==" usb", ATTR{ idVendor }=="0403" , ATTR{ idProduct }==" a6d0", MODE ="0660" ,
GROUP =" plugdev "

Then reload udev rules with:

1 sudo udevadm control --reload -rules

To check device properties like idVendor or idProduct issue the following command:

1 udevadm info -a -p $(udevadm info -q path -n /dev/ ttyUSB0)

2.2.4 Test wiring

Wiring for test differ from testing objectives. It test performed for this project no communication test, besides
SCI, was performed. The following describes how to wire each of the modules tested:

• DIN:
Connect all DIN pins to one LMC1 board outputs.

• LOUT:
Connect all LOUT pins to one LMC1 board inputs.

• ADC:
Connect all low pins to GND and leave all high pins floating. Allow to hook a potentiometer to each
pin.

• DAC:
Connect all 4 pins to different channels on a oscilloscope.

• HBR:
Connect a motor to the H-bridge pins.

• MOUT:
Connect all 6 pins to a LMC1 board inputs. Another option is to connect a motor to one of the outputs.

• SCI:
Connect the SCI to a host computer. See Development wiring.

• SDR:
No particular wiring is required for testing the SD-RAM.

It is recommended to setup a power bus using regulated 12volts from Signal Connector. Power the LMC1
boards and the potentiometer with this bus. The LCM1 controller board should be connected to the host
computer through a RS-232 port or a USB converter.

22

Figure 5: RPP Wiring for Testing.

23

2.3 Project repository

This git repository holds all the work done on this project.

To get the repository run the following commands:

1 git clone ssh :// git@rtime .felk.cvut.cz/ jenkicar /rpp - simulink .git
2 cd rpp - simulink
3 git submodule update --init

This is a private repository, you require your SSH private key to be authorized. For access please consult
the Real-Time Systems Group, Department of Control Engineering, Faculty of Electrical Engineering, Czech
Technical University in Prague. For details about this git server refer to:

http://rtime.felk.cvut.cz/hw/index.php/Git repository on this server

The general layout of the repository is:

.
|__ doc - Documentation created for this project.
|__ refs - Official reference documentation.
__ rpp

|__ blocks - Simulink Block Set.
|__ demos - Simulink Demos Library.
|__ lib - C support Library and API.
__ rpp - Simulink Coder Target.

A detailed description of the content of each subfolder under rpp/ can be found in the section Subdirectory
content description on each dedicated section for the products developed.

In this document, the root folder on this repository is used as reference for file location and is referred
with the token <repo>.

24

http://rtime.felk.cvut.cz/hw/index.php/Git_repository_on_this_server

3 C Support Library

The RPP C Support Library define the API to communicate with the board. It include drivers and operating
system. This section documents the implementation of this library.

3.1 Description

The RPP Library is the support library used by Simulink models. It is designed from the board user
perspective and exposes a simplified high-level API to handle the board’s peripheral modules in a safe
manner.

The library as a concept and as a functional unit was introduced by this project. At the beginning of
this project the RPP board had just one application developed for. This application intended for board
testing allows the user to issue low-level commands to control and test the peripherals of the board. This
application was created using a combination of custom code, contributed drivers and generated code from TI
tool HalCoGen. Library functionality, like drivers and hardware access, and application logic, like command
processor and test routines, was largely merged in a single layer, 166 source code files long highly coupled
application. In order to develop independent applications for the RPP board, as it was expected to be each
Simulink model, the library logic needed to be separated from the application logic. This work implied a
heavy refactoring on the testing application in order extract from it the library functionality. Because the
application files were highly coupled in a single layer the refactoring and testing of the library implied roughly
70% of the work done on this project.

Figure 6: Dependency graph of the ADC driver before refactoring.

The above graph shows the dependencies of the ADC driver before the refactoring. Please note the
dependency on cmdproc io tisci.h and cmdproc.h, both application level modules. Also, note the indirect
dependency on the Operating System is being resolved through the application modules.

25

Figure 7: Dependency graph of the ADC driver after refactoring.

The above graph shows the current dependencies for the ADC driver in the RPP Library. Please note that
it dependents only on the system layer low-level driver and that the Operating System indirect dependency
is resolved through the library foundations base.h.

Some other relevant changes introduced with the refactoring are:

• ADC driver was completely rewritten.

• MOUT driver was implemented.

• DIN driver was slightly modified and extended.

• DAC driver was slightly modified.

• HBR driver was largely modified (in particular watchdog functionality).

• SCI driver was refactored and extended.

• SDR driver was implemented.

Also, once the library functionality could be isolated, the resulting API was too low-level to be used by
applications, in consequence one of the contributions of this projects was the implementation of a high-level
API on top of this low level API: the RPP Layer.

26

3.1.1 Architecture

The RPP library was structured into 5 layers with the following guidelines:

• Top-down dependency only. No lower layer depends on anything from upper layers.

• 1-1 layer dependency only. The top layer depends exclusively on the bottom layer, not on any lower
level layer (except for a couple of exceptions).

• Each layer should provide a unified layer interface (rpp.h, drv.h, hal.h, sys.h and os.h), so top
layers depends on that layer interface and not on individual elements from that layer.

Figure 8: The RPP library layers.

As a consequence of this division the source code files and interface files are now placed on private
directories so the previous prefix based inclusion drv din.h is replaced by drv/din.h. With this organization
user applications only needs to include the top layer interface file (rpp/rpp.h) to be able to use the library
API.

Please note the sublayer uLut, which is used only by the SPI driver in order to use thread safe queue
mechanisms. Because the FreeRTOS already provides thread safe queues and in order to match the order
parts of the system it would be advisable to drop this dependency in the future.

27

3.1.2 RPP Layer Modules

The RPP Layer was structured into 14 different modules from 4 different categories that match the hardware
modules on the board:

Category Description MNEMONIC
Logic IO Digital Input [DIN]

Digital (Logic) Output [LOUT]
Analog Input [ADC]
Analog Output [DAC]

Power output H-Bridge output [HBR]
Power output (12V, 2A) [MOUT]
High-Power output (12V, 10A) [HOUT]

Communication CAN Bus [CAN]
LIN (Local Interconnect Network) [LIN]
FlexRay [FR]
Serial Communication Interface [SCI]
Ethernet [ETH]

Logging SD Card [SDC]
SD-RAM [SDR]

Please note the mnemonic of each module, as they are constantly used on the Software and documentation.
Also note that only the following modules were implemented as part of this project:

• DIN.

• LOUT.

• ADC.

• DAC.

• HBR.

• MOUT.

• SCI.

• SDR.

Modules for which there is a low-level API available on the library but no high-level module was imple-
mented:

• CAN.

• LIN.

• FR.

Modules that are not yet available on the library at all:

• ETH (in the works).

• SDC.

• HOUT (partial).

The following graphic shows the library modules and the connectors on the hardware they map to.

28

DIN

0-7 prog.
8-15 var. thr.

16 x IN

ADC

0-20V
12 x ADC

DAC

0-12V
4 x DAC

ETH
Ethernet

LOUT

100mA
8 x OUT

SDR

64MB
SD-RAM

SDC
SD-CARD

MOUT

2A push/pull
6 x OUT

HOUT

10A PWM
High side

6 x OUT

HBR

10A PWM
H-Bridge

POWER
SUPPLY

12V 5V
3.3V 1.2V

CPU

TMS570LS3137

RTC

LIN
2 x LIN

FR

Redundant
1 x FlexRay

CAN
3 x CAN

S
IG

N
A

L
C

O
N

N
E
C

T
O

R

P
O

W
E
R

 C
O

N
N

E
C

T
O

R
C

O
M

M
U

N
IC

A
T
IO

N
 C

O
N

N
E
C

T
O

R

ETHERNET
CONNECTOR

* Only in-box accessible.

10

17

24

5

8

8

2

6

4

5

9

* Only in-box accessible.

SCI
1 x UART

SCI
CONNECTOR

Figure 9: The RPP layer modules.

29

3.1.3 OS interchangeable layer

The OS Layer is composed by the FreeRTOS source code files. Because the FreeRTOS exposes an stable
API the OS layer can be changed in order to upgrade the Operating System or use a different port of the
OS, without changing the upper layers source code. The OS Layers currently available for the RPP Library
at <repo>/rpp/lib/os/ at the time of this writing are:

• Version 6.0.4 using POSIX port. This layer is the one that should be used when compiling a program
for x86(64) simulation. The port uses the pthread library and because of this the port is not true real
time and this is considered a simulator.

• Version 7.0.2 using HalCoGen port for TMS570. This layer is the one currently supported and tested.
It was originally included in the testing application and was generated by an older version of TI code
generation tool HalCoGen.

• Version 7.4.0 using HalCoGen port for TMS570. This layer was extracted from a newly generated
project using a newer version of HalCoGen. This layer is untested but should work out of the box.

• Version 7.4.2 using ARM Cortex R4 official port for CCS. This layer was created from vanilla FreeRTOS
7.4.2 release. It is tested but non-working. Ticks are proved to be executed in time but applications
using this kernel runs at full-speed. The reason if this is currently unknown.

The general layout of all the layers are as following:

• Common source code (kernel):

src/os/croutine.c (Optional)
src/os/list.c
src/os/queue.c
src/os/tasks.c
src/os/timers.c (Optional)

Originally found in vanilla distribution in: <FreeRTOSRoot>/FreeRTOS/Source

• Common interface files:

include/os/croutine.h
include/os/FreeRTOS.h
include/os/list.h
include/os/mpu_wrappers.h
include/os/portable.h (with minor editions)
include/os/projdefs.h
include/os/queue.h
include/os/semphr.h
include/os/StackMacros.h
include/os/task.h
include/os/timers.h

Originally found in vanilla distribution in: <FreeRTOSRoot>/FreeRTOS/Source/include

30

• Memory management file:

src/os/heap.c (One of 4 version available, see Appendix A).

Originally found in vanilla distribution in: <FreeRTOSRoot>/FreeRTOS/Source/portable/MemMang

• Port specific files:

src/os/port.c
src/os/portASM.asm
include/os/portmacro.h
include/os/FreeRTOSConfig.h

This depend of the port. In the case of the 7.4.2 TMS570 / ARM Cortex R4 for CCS port:

– First three files can be found in vanilla distribution in
<FreeRTOSRoot>/FreeRTOS/Source/portable/CCS/ARM Cortex-R4.

– Last file in <FreeRTOSRoot>/FreeRTOS/Demo/CORTEX R4 RM48 TMS570 CCS5.

In general, the following changes were applied to the source code base of all kernels:

• Replaced include directives to adapt to RPP library standard:

#include " with #include "os/

• Line ending character set to UNIX ’\n’ and tabs replaced by 4 spaces.

31

3.1.4 API development guidelines

The following are the development guidelines used for developing the RPP API:

• User documentation should be placed in header files, not in source code, and should be Doxygen
formatted using autobrief. Documentation for each function present is mandatory.

• Function declarations on the headers files is for public functions only. Do not declare local/static/private
functions on the header.

• Documentation on source code files should be non-doxygen formatted and intended for developers, not
users. Documentation here is optional and at the discretion of the developer.

• Always use standard data types for IO when possible. Use custom structs as very last resort.

• Use prefix based functions names to avoid clash. The prefix is of the form [layer] [module] , for
example rpp din update() for the update function of the DIN module in the RPP Layer.

• To be very careful about symbol export. Because it is used as a static library the modules should not
export any symbol that is not intended to be used (function) or extern’ed (variable) from application.
As a rule of thumb declare all global variables as static.

• Only the RPP Layer symbols are available to user applications. All information related to lower layers
is hidden for the application. This is accomplished by conditionally including the layers elements on
the implementations files only and never on the interface files. Never expose any other layer to the
application or the the whole system below that layer will be exposed. In other words, never #include
"foo/foo.h" in any RPP Layer interface file.

• Any module is conditionally included by using rppCONFIG INCLUDE {MNEMONIC} directive on the RppConfig.h
configuration file.

3.1.5 Further improvements

The following are recommendations for future improvements of the library:

• General code revision to remove local-only methods and variables from being exported.

• General code revision and refactoring to normalize the functions naming scheme. Normalize DRV and
HAL to use prefix based scheme, not all the functions and exported variables do. Refactor the SYS
layer, most of it generated by HalCoGen and that uses thisNamingScheme to use library standards (see
RPP API programming standards).

• Simplify doxygen documentation on the SYS layer, because is clunky, doesn’t add any value and is
repetitive. Move it to the header files.

• Remove error throwing from wrong parameter input in the DRV layer and assume a correct param-
eter and continue safe approach. Move all error throwing and validation to the RPP layer (already
implemented).

Recommendations for changes on the electrical diagrams:

• Change name of GPIO MOUT1 EN to MOUT1 DIAG.

• Change name of GPIO MOUT1 IN to MOUT1 EN.

The current names are misleading.

32

3.2 Subdirectory content description

→ librpp.a and rpp-lib.lib

Version controlled RPP static libraries.

The first one is for POSIX simulation, the second one for Simulink models and other ARM/TMS570
applications. This files are placed here by the projects apps/rpp-lib posix and apps/rpp-lib when built.

→ apps/

Applications related to the RPP library.

This include the CCS studio project for generation of the static library and the test suite. See Static
libraries, Test Suite and Base application for more information.

→ os/

OS layers directory.

See OS interchangeable layer for more information.

→ rpp/

Main directory for the RPP Library.

→ rpp/doc/

Documentation directory for the RPP Library. See API generation for more information.

→ rpp/TMS570LS3137.ccxml

Descriptor for code download.

This file is used by all the projects including the Simulink RPP Target for code download. It is configured
to use the Texas Instruments XDS100v2 USB Emulator. See Development wiring for information about this
hardware.

→ rpp/TMS570LS313xFlashLnk.cmd

CGT Linker command file.

This file is used by all applications linking for the board, including the Simulink models, static library and
test suite. It includes instructions for the CGT Linker on where to place sections and size of some sections.

→ rpp/include/{layer} and rpp/src/{layer}

Interface files and implementations files for given {layer}. See below for details on the RPP Layer.

33

→ rpp/include/rpp/rpp.h

Main library header file.

To use this library just include this file and this file only. Also, before using any library function please
call rpp init() function for hardware initialization.

→ rpp/include/rpp/RppConfig.h

Library configuration file.

Please refer to the API documentation and header file comments for specific documentation for each
configuration parameter.

→ rpp/include/rpp/rpp {mnemonic}.h

Header file for {mnemonic} module.

This files includes function definitions, pin definitions, etc, specific to {mnemonic} module. The inclusion
of this header can be configured in RppConfig.h using rppCONFIG INCLUDE {MNEMONIC} directive. See API
development guidelines.

→ rpp/src/rpp/rpp {mnemonic}.c

Module implementation.

Implementation of rpp {mnemonic}.h’s functions on top of the DRV library. See API development
guidelines.

→ rpp/src/rpp/rpp.c

Implementation of library-wide functions.

34

3.3 Test Suite

The rpp-test-suite is a RPP application developed as part of this project that includes a series of test
tasks or test commands to verify the correct behavior and functionality of the RPP layer modules. There is
one command per module, and the command use the same mnemonic that the module.

This test suite can be found in <repo>/rpp/lib/apps/rpp-test-suite for the ARM version and in
<repo>/rpp/lib/apps/rpp-test-suite posix for the simulated version.

The application enables a command processor using the SCI at 115200-8-N-1:

RPP Library Test Suite.
===
[Type a module to test or ’help’]
--> help
Available commands:

help - Display this help.
ain - Test Analog Input.
aout - Test Analog Output (DAC).
can - Test CAN communication.
din - Test Digital Inputs.
eth - Test Ethernet communication.
fr - Test FlexRay communication.
hbr - Test H-Bridge.
hout - Test High Power Output.
lin - Test LIN communication.
lout - Test Digital Outputs.
mout - Test Power Outputs.
sci - Test Serial Communication Interface.
sdc - Test SD-Card.
sdr - Test SD-RAM.

Current modules with tests implemented are:

• ADC.

• DAC.

• DIN.

• HBR.

• LOUT.

• MOUT.

• SCI. (the test-suite itself)

• SDR.

A note of warning: tests spawn OS tasks at the beginning of the test and deletes them at the end.
Because current memory memory management implementation cannot free memory the test suite will fill all
the memory and tests will be unable to start. In this case just reset the board. See Appendix A: Notes on
FreeRTOS memory management for more information.

35

3.3.1 AIN test description

This test will read all the analog inputs at a rate of 100 times per second and print the result.

--> ain
Analog Inputs Test [1-12]:
===

1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 0 0 0 0

Status: PASSED for channels 1-5. 6-12 remain untested but they should work.

3.3.2 AOUT test description

This test will generate a 10Hz sinus wave on all the analog outputs with a sampling rate of 1kHz. The sinus
wave of each analog output channel is sifted by (1/4)pi.

--> aout
Analog Output Test at 10 Hz:
===
Samples: 7331

Status: PASSED.

3.3.3 DIN test description

This test will read all 16 + 8 digital inputs at a rate of 100 times per second, using both low speed SPI chip
and variable threshold high-speed inputs.

--> din
Digital Inputs Test [1-16]:
===
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A B C D E F G H
0 0

Status:

• Low speed fixed threshold [1-16]: PASSED.

• High speed variable threshold [A-H]: PASSED.

36

3.3.4 HBR test description

This test will generate a sinus wave to control the H-Bridge of one period per 20 seconds (0.05Hz) at a
sampling rate of 20Hz.

--> hbr
H-Bridge Test at 0.05 Hz:
===
Samples: 72

Status: PASSED.

3.3.5 LOUT test description

This test will show in the digital outputs the value in binary of a counter, incrementing the counter once per
second. The counter is 8 bits, the same as the outputs, so 255 seconds are required for an overflow/restart
of the counting.

--> lout
Digital Output Test:
===
Counter: 40

Status: PASSED.

3.3.6 MOUT test description

This test will toggle the power outputs one by one per second, then wait 10 seconds in that state while
constantly verifying the diagnostics.

--> mout
Power Output Test:
===
1 2 3 4 5 6
1: OK 1: OK 1: OK 1: OK 1: OK 1: OK

Status: PASSED.

37

3.3.7 SCI test description

A more comprehensive test is not implemented. The very use of this test-suite implies the correct function
of the SCI module. Nevertheless, as a future improvement, a test that will verify run-time baud rate changes
and test some other RPP SCI functions is desirable.

--> sci
You’re using the SCI, reading this and typing this command.
Press any key to continue...

Status: PASSED.

3.3.8 SDR test description

This test will launch a noise generator task that will log noise and then start the library included SD-RAM
logging command processor, allowing the user to see and handle the log on the SD-RAM.

--> sdr
Log control: 1024kB available.
===
--> log
[1239864] This is the noise generator at iteration 1 putting some noise value 279735017.
[1240779] This is the noise generator at iteration 2 putting some noise value 1943579783.

--> available
1023 kB of 1024 kB available.

--> clear
Done.

--> exit

Status: PASSED.

38

3.4 Static libraries

The RPP Library can be compiled as a static library for ARM using TI CGT and for x86(64) using GCC.
CCS project rpp-lib and Eclipse CDT project rpp-lib posix in <repo>/rpp/lib/apps/ allow to generate
the static libraries. After compilation, as part of the build process, both projects will automatically update
the version-controlled static libraries in <repo>/rpp/lib/:

• rpp-lib.lib, static library for ARM using TI naming scheme.

• librpp.a, static library for x86(64) using standard Linux naming scheme.

Because compilation of the libraries in Eclipse IDE can be error prone, there is a Makefile that allows
to compile the libraries (and test suites) from the command line:

1 cd <repo >/ rpp/lib
2 make

Note that this Makefile still requires the Code Composer Studio to be installed.

One future improvement would be the creation of a Makefile for each compilation scheme that does not
depend on CCS managed build system. For ARM manual compilation or makefile creation using Texas CGT
see the target tools.mk file under the Simulink RPP Target folder. The relevant aspects for compiling and
linking an application using the static libraries are:

ARM compilation using CCS for the RPP board:

• Include headers files of the OS for which the library was compiled against. At the time of this writing
the OS is FreeRTOS 7.0.2. See OS interchangeable layer section above.

• Include header files for the RPP library.

• Add library rpp-lib.lib to the linker libraries. The RPP library MUST be looked for before Texas
Instruments support library rtsv7R4 T be v3D16 eabi.lib.

• Configure linker to retain .intvecs section from RPP Library:
--retain="rpp-lib.lib<sys intvecs.obj>(.intvecs)"

• Use the provided linker command file TMS570LS313xFlashLnk.cmd.

x86(64) compilation using GCC for Simulation:

• Include headers files of the OS for Simulation. At the time of this writing the OS is POSIX FreeRTOS
6.0.4.

• Include header files for the RPP library.

• Create a RppConfig.h override file and drop DRV layer dependency: rppCONFIG DRV 0.

• Includes must be configured in a way that the RppConfig.h taken under consideration is the override
and not the library one.

• Add library librpp.a to the linker libraries.

39

• Add pthread to the linker libraries.

As an important note, all the models compiled using Simulink will link against rpp-lib.lib. When
compiling a Simulink model, neither Simulink nor the make invoked during the build process, will update the
generated binary if the model hasn’t changed, and then if the source code hasn’t changed. Static libraries
changes are not considered for re-compilation and re-linking. If library development is being done and static
library is updated, in order for the Simulink model to generate a newly linked version of the binary the whole
code generation folder needs to be deleted in order to force code generation, compilation and linking with
the new static library.

40

3.5 HelloWorld application

In <repo>/rpp/lib/apps/ there are two RPP base applications, helloworld and helloworld posix, that
are already configured for the RPP Library. It is advised that new applications use this project as a founda-
tion.

To create a new application copy this directory and rename it. Now open files .project, .cproject
and .ccsproject (if available) and change any occurrence of the work helloworld with the name of your
project. Use lower case ASCII letters and underscores only.

Steps to configure a new CCS (ARM, using CGT) RPP application:

1. Create a new CCS project.

2. Create a normal folder include.

3. Create a source folder src.

4. Add common .gitignore to the root of that project:

1 Debug
2 Release
3 . settings /*

41

5. Add new variable RPP LIB ROOT and point to this repository branch root.

6. Add rpp-lib.lib static library to linker libraries and add RPP LIB ROOT to the library search path.

42

7. Configure linker to retain .intvecs from RPP static library.

8. Configure compiler to include local includes, OS includes for TMS570 and RPP includes, in that order. Add lwip in-
clude paths
as well

Add lwip in-
clude paths
as well

43

9. Configure compiler to allow GCC extensions.

10. Import and link (do not copy!) linker file and board upload descriptor.

Steps to configure a new GCC (x86(64)) RPP simulated application:

1. Create a new managed C project that uses Linux GCC toolchain.

2. Create a source folder src. Link all files from original CCS application to this folder.

3. Create a normal folder include. Create a folder rpp inside of it.

4. Add common .gitignore to the root of that project:

1 Debug
2 Release
3 . settings /*

44

5. Add new variable RPP LIB ROOT and point to this repository branch root.

6. Configure compiler to include local includes, CCS application includes, OS includes for POSIX and
RPP includes, in that order.

45

7. Add rpp and pthreadto linker libraries and add RPP LIB ROOT to the library search path.

8. Copy RppConfig.h from RPP Library to a new folder include/rpp and configure it drop DRV layer
dependency: rppCONFIG DRV 0.

In general any RPP application uses the layout/template:

1. Include RPP library header file.

1 # include "rpp/rpp.h"

46

2. Create one or as many FreeRTOS task function definitions as required. Those tasks should use functions
from this library.

1 void my_task (void* p)
2 {
3 static const portTickType freq_ticks = 1000 / portTICK_RATE_MS ;
4 portTickType last_wake_time = xTaskGetTickCount ();
5 while(TRUE) {
6 /* Wait until next step */
7 vTaskDelayUntil (& last_wake_time , freq_ticks);
8 rpp_sci_printf ((const char *)"Hello RPP .\r\n");
9 }

10 }

3. Create the main function that will:

• Initialize the RPP board.

• Spawn the tasks the application requires. Refer to FreeRTOS API for details.

• Start the FreeRTOS Scheduler. Refer to FreeRTOS API for details.

• Catch if idle task could not be created. +

1 void main(void)
2 {
3 /* Initialize RPP board */
4 rpp_init ();
5

6 /* Spawn tasks */
7 if(xTaskCreate (my_task , (const signed char *)" my_task ",
8 512, NULL , 0, NULL) != pdPASS) {
9 #ifdef DEBUG

10 rpp_sci_printf ((const char *)
11 "ERROR: Cannot spawn control task .\r\n"
12);
13 #endif
14 while (TRUE) { asm(" nop"); }
15 }
16

17 /* Start the FreeRTOS Scheduler */
18 vTaskStartScheduler ();
19

20 /* Catch scheduler start error */
21 #ifdef DEBUG
22 rpp_sci_printf ((const char *)
23 "ERROR: Problem allocating memory for idle task .\r\n"
24);
25 #endif
26 while(TRUE) { asm(" nop"); }
27 }

47

4. Create hook functions for FreeRTOS:

• vApplicationMallocFailedHook() allows to catch memory allocation errors.

• vApplicationStackOverflowHook() allows to catch if a task overflows it’s stack. +

1 #if configUSE_MALLOC_FAILED_HOOK == 1
2 /**
3 * FreeRTOS malloc () failed hook.
4 */
5 void vApplicationMallocFailedHook (void) {
6 #ifdef DEBUG
7 rpp_sci_printf ((const char *)
8 "ERROR: manual memory allocation failed .\r\n"
9);

10 #endif
11 }
12 #endif
13

14

15 #if configCHECK_FOR_STACK_OVERFLOW > 0
16 /**
17 * FreeRTOS stack overflow hook.
18 */
19 void vApplicationStackOverflowHook (xTaskHandle xTask ,
20 signed portCHAR * pcTaskName) {
21 #ifdef DEBUG
22 rpp_sci_printf ((const char *)
23 "ERROR: Stack overflow : \"%s\".\r\n", pcTaskName
24);
25 #endif
26 }
27 #endif

48

3.6 API generation

The RPP Layer is formatted using Doxygen documentation generator. This allows to generate a high quality
API reference. To generate the API reference do in a terminal:

1 cd <repo >/ rpp/lib/rpp/doc/api
2 make
3 xdg -open html/index.html

The files under <repo>/rpp/lib/rpp/doc/api/content are used for the API reference generation are
their name is self-explanatory:

blocks_map.html
blocks.png
cvut.png
footer.html
main_page.dox

To install Doxygen see Development environment section.

3.7 API Reference

For the complete API reference please generate the HTML version using the above section instructions. Here
is listed the index of functions of each module and their brief.

Please note that not all modules were implemented as part of this project. See RPP Layer Modules for
a list of the modules implemented.

49

3.7.1 DIN API Reference

int8 t rpp din init();
→ DIN module initialization.

int8 t rpp din ref(uint16 t refA, uint16 t refB);
→ Configure voltage reference levels for digital inputs using variable reference threshold.

int8 t rpp din setup(uint8 t pin, boolean t pull type, boolean t active, boolean t can wake);
→ Configure given pin.

int8 t rpp din get(uint8 t pin, boolean t var thr);
→ Get the current cached value of the given pin.

int8 t rpp din diag(uint8 t pin);
→ Get the diagnostic cached value for given pin.

int8 t rpp din update();
→ Read and update cached values and diagnostic values of all pins. Also commit configuration changes.

3.7.2 LOUT API Reference

int8 t rpp lout init();
→ LOUT module initialization.

int8 t rpp lout set(uint8 t pin, uint8 t val);
→ Set the output cache of given pin to given value.

int8 t rpp lout diag(uint8 t pin);
→ Get the diagnostic cached value for given pin.

int8 t rpp lout update();
→ Flush cached output values and read back diagnostic values of all pins.

3.7.3 ADC API Reference

int8 t rpp adc init();
→ ADC module initialization.

int16 t rpp adc get(uint8 t pin);
→ Get the current analog value on the given pin.

int8 t rpp adc update();
→ Read and update analog cached values.

50

3.7.4 DAC API Reference

#define RPP DAC OA 5.6
→ DAC output operational amplifier multiplication constant.

#define RPP DAC VREF 2.5
→ DAC hardware reference voltage.

int8 t rpp dac init();
→ DAC module initialization.

int8 t rpp dac setup(uint8 t pin, boolean t enabled);
→ Configure enabled/disabled state for given pin.

int8 t rpp dac set(uint8 t pin, uint16 t val);
→ Set the output cache of given pin to given value.

int8 t rpp dac set voltage(uint8 t pin, uint16 t mv);
→ Set output to given voltage.

int8 t rpp dac update();
→ Flush cached output values and configuration changes.

3.7.5 HBR API Reference

int8 t rpp hbr init();
→ HBR module initialization.

int8 t rpp hbr enable(int32 t period);
→ Enable the H-Bridge for control.

int8 t rpp hbr control(double cmd);
→ Control the H-Bridge direction, enabled/disabled and PWM.

int8 t rpp hbr disable();
→ Disable the H-Bridge.

51

3.7.6 MOUT API Reference

int8 t rpp hbr init();
→ HBR module initialization.

int8 t rpp mout init();
→ MOUT module initialization.

int8 t rpp mout set(uint8 t pin, uint8 t val);
→ Set the output of given pin to given value.

int8 t rpp mout get(uint8 t pin);
→ Get the cached value of the given pin set by rpp mout set().

int8 t rpp mout diag(uint8 t pin);
→ Reads the value on the given diagnostic pin.

3.7.7 HOUT API Reference

int8 t rpp hout init();
→ HOUT module initialization.

3.7.8 CAN API Reference

int8 t rpp can init();
→ CAN module initialization.

3.7.9 LIN API Reference

int8 t rpp lin init();
→ LIN module initialization.

3.7.10 FR API Reference

int8 t rpp fr init();
→ FR module initialization.

52

3.7.11 SCI API Reference

int8 t rpp sci init();
→ SCI module initialization.

boolean t rpp sci setup(uint32 t baud);
→ SCI module setup.

uint16 t rpp sci available();
→ Number of bytes available on input buffer.

int8 t rpp sci read(uint32 t amount, uint8 t* buffer);
→ Read n number of bytes from input buffer.

int8 t rpp sci read nb(uint32 t amount, uint8 t* buffer);
→ Read n number of bytes from input buffer if possible.

int8 t rpp sci write(uint32 t amount, uint8 t* data);
→ Write n number of bytes to the output buffer.

int8 t rpp sci write nb(uint32 t amount, uint8 t* data);
→ Write n number of bytes to the output buffer if possible.

int8 t rpp sci flush(boolean t buff);
→ Flush incomming or outgoing buffers.

int32 t rpp sci printf(const char* format, ...);
→ C style printf using RPP SCI module.

int8 t rpp sci putc(uint8 t byte);
→ C style putc (put character) using RPP SCI module.

int16 t rpp sci getc();
→ C style getc (get character) using RPP SCI module.

3.7.12 ETH API Reference

int8 t rpp eth init();
→ ETH module initialization.

3.7.13 SDC API Reference

int8 t rpp sdc init();
→ SDC module initialization.

53

3.7.14 SDR API Reference

#define RPP SDR ADDR START 0x80000000U
→ SDRAM start address on RPP board.

#define RPP SDR ADDR END 0x83FFFFFFU
→ SDRAM end address on RPP board.

int8 t rpp sdr init();
→ SDR module initialization.

int8 t rpp sdr setup(boolean t enable);
→ Configure SD-RAM logging.

uint32 t rpp sdr available();
→ Query for the amount of space free on the SD-RAM.

int32 t rpp sdr printf(const char* format, ...);
→ Store a formatted user string on the log, if logging is enabled.

int8 t rpp sdr clear();
→ Clear log.

int8 t rpp sdr show(boolean t start);
→ Start/Stop the task that sends the log to the SCI.

54

4 Simulink Coder Target

The Simulink Coder Target allows Simulink model’s code generation, compilation and download for the
board.

4.1 Description

The Simulink RPP Target provides support for C source code generation from Simulink models and compi-
lation of that code on top of the RPP library and the FreeRTOS operating system. This target uses Texas
Instruments ARM compiler (armcl) included in the Code Generation Tools available with Code Composer
Studio, and thus it depends on it for proper functioning.

This library also provides support for automatic download of the compiled binary to the RPP board.

55

4.1.1 Code generation process

Figure 10: TLC code generation process.

56

4.2 Subdirectory content description

→ rpp setup.m

RPP Target install script.

This script will, among other things, ask the user to provide the location of the armcl parent directory,
infer and save some relevant CCS paths, add paths to Matlab path and build S-Function blocks for user’s
architecture (using Matlab’s mex command line tool).

• Reference:
– <repo>/refs/rtw ug.pdf p. 1137.

→ rpp.tlc

Embedded real-time system target file for RPP.

This file is the system target file (STF), or target manifest file. Functions of the STF include:

• Making the target visible in the System Target File Browser.

• Definition of code generation options for the target (inherited and target-specific).

• Providing an entry point for the top-level control of the TLC code generation process.

• Reference:
– <repo>/refs/rtw ug.pdf p. 1129 and 1144.

→ rpp.tmf

Embedded Coder Template Makefile.

This is just standard Embedded Coder Template Makefile, provided by Matlab. It was slightly modified
to support armcl particularities and added template rules for assembler files (which were included by the
rpp lib support.m script, but is no longer the case).

• Reference:
– <repo>/refs/rtw ug.pdf p. 1130 and 1183.

→ rpp download.m

Code download utility for Simulink RPP Target.

This function is optionally executed at the end of the build process if it is successful and the user selected
Download compiled binary to RPP option on the build configuration panel. This function calls loadti.sh
script with the generated binary and using configuration for the XDS100v2 JTAG Emulators. The board
should be powered and correctly wired.
See Development wiring.

57

→ rpp file process.tlc

Code generation custom file processing template.

This file should decide which main to generate according to configuration, in particular which mode,
Single Tasking or Multitasking, is chosen. The RPP Target ignores this settings because it uses a tasking
system based on tasking features provided by FreeRTOS. In consequence is only a wrapper to the Single
Tasking main, which clearly is not for single tasking.

• Reference:
– <repo>/refs/ecoder ug.pdf p. 556.

– <repo>/refs/ecoder ref.pdf p. 1347.

→ rpp lib support.m

DEPRECATED. Simulink support for RPP library and operating system setup.

This files used to add the source code from the RPP library and operating to the build. This is no longer
required when using the static library. This is left for future reference in case new source code needs to be
included to the build.

• Reference:
– <repo>/refs/rtw ug.pdf p. 1058.

– <repo>/refs/rtw ref.pdf p. 56.

→ rpp make rtw hook.m

Build process hooks file.

This file is hook file that invoke target-specific functions or executables at specified points in the build
process. In particular, this file handle the copying of required files before the compilation stage.

• Reference:
– <repo>/refs/rtw ug.pdf p. 1066-1072 and 1131.

→ rpp select callback handler.m

RPP Target select callback handler.

This callback function is triggered whenever the user selects the target in the System Target File Browser.
Default values for Simulation and configurations parameters are set. Some options are disabled if it is not
allowed to be changed by user.

• Reference:
– <repo>/refs/rtw ug.pdf p. 1211.

58

→ rpp srmain.tlc

Custom file processing to generate a main file.

This file generated the main file for the RPP target on top of the RPP library and the FreeRTOS operating
system. The sr prefix is standard to mark Single Tasking main, which is the case. See rpp file process.m
description above for more information about this.

• Reference:
– Example in <matlab>/rtw/c/tlc/mw/bareboard srmain.tlc.

→ target tools.mk

Makefile for CCS (armcl) toolchain support.

This file set variables to CCS tools to support build for this toolchain. This file is included by rpp.tmf
before declaring the rules for source code.

• Reference:
– Include a tool specification settings comment block in rpp.tmf.

– Compiler options documentation available in armcl.pdf.

59

4.3 Installation procedure

1. Download and install CCS for Linux:

Details on how to setup CCS are available in section TI Code Composer Studio.

2. Install RPP Target:

Open Matlab and type on command window:

1 cd <repo >/ rpp/rpp/
2 rpp_setup

This will launch the RPP setup script. This script will ask the user to provide the path to the CCS
compiler root directory (the directory where armcl binary is located), normally:

<ccs>/tools/compiler/arm_5.X.X/

This script will, among other things, ask the user to provide the location of the armcl parent directory,
infer and save some relevant CCS paths, add paths to Matlab path and build S-Function blocks for
user’s architecture (using Matlab’s mex command line tool).

3. Create a new model or load a demo:

Demos are located on <repo>/rpp/demo or you can start a new model and configure target to RPP.
For new models see Target Reference section below.

4.4 Usage

1. Open or create a model you want to generate code from.

2. Make sure that the model is configured (Simulation → Model Configuration Parameters) as described
in Section 4.5.

3. From Matlab command window change the current directory to where you want your generated code
to appear, e.g.:

1 cd /tmp/my -code

The code will be generated in a subdirectory of that directory. The name of the subdirectory will be
<model> rpp, where model is the name of the Simulink model.

4. Generate the code by choosing “Code → C/C++ Code → Build Model”.

5. If Download compiled binary to RPP was selected in RPP Options pane (see Section 4.5.2), the compiled
binary will be downloaded to the to the board. After the download is finished you should reset the
board to run the downloaded code.

Note: You should quit the Code Composer Studio before downloading the generated code to the RPP
board. Otherwise the download fails.

60

4.5 Target Reference

This section describes the options required or available for running a Simulink model with the RPP Target.

4.5.1 Simulink model options

The Simulink model needs to be configured in the following way:

• Solver:
– fixed-step discrete.

– Tasking mode set to SingleTasking.

61

• Diagnostics – Sample Time:
– Disable warning source block specifies -1 sampling time. It’s ok for the source blocks to run once

per tick.

• Code generation:
– Set to rpp.tlc.

Note: Single Tasking is the only currently supported mode. If multitasking is required to be implemented
in the future create a new file rpp mrmain.tlc in <repo>/rpp/rpp/ and edit rpp file process.tlc to use
that file instead when multitasking is selected.

62

4.5.2 RPP Target options

The RPP Target include the following configuration options, all of them configurable per model under Code
Generation → RPP Options:

• C system stack size: this parameter is passed directly to the linker for the allocation of the stack.
Note that this is the stack for the application when running outside a FreeRTOS task, normally before
the scheduler has started and for system routines. Default value is 4096.

• C system heap size: this parameter is passed directly to the linker for the allocation of the heap.
See Appendix A: Notes on FreeRTOS memory management for an important information about this
parameter.

• Model step task stack size: this parameter will be passed to the xTaskCreate() that creates the
task for the model to run. In a Simulink model there is always two tasks:

– The worker task. This task is the one that executes the model step. This task requires enough
stack memory to execute the step. Take into account for example than only a single call to
rpp sci printf() requires, with current configuration, 128 bytes from the stack. This value
should be minor than the C system heap and leaving enough heap for the system tasks. See
Appendix A: Notes on FreeRTOS memory management for more information.

– The control task. This task controls when the worker task should execute and controls overruns.

• Download compiled binary to RPP: if set, this option will download the generated binary to the
board after the model is successfully built. Note that this option is unaware of the option Generate
code only in the Code Generation options panel, so it will try to upload even if only source code has
been generated, failing graciously or uploading an old binary laying around in the build directory. This
option calls the rpp download.m script, which is in turn a wrapper on the loadti.sh script. More
information on the loadti.sh script can be found in:

<css>/ccs_base/scripting/examples/loadti/readme.txt
http://processors.wiki.ti.com/index.php/Loadti

The loadti.sh script will close after the download of the generated program and in consequence the
execution of the loaded program will stop (because it works as the CCS debug server). In order to test
the loaded model a manual reset of the board is always required after a successful download.

• Print model metadata to SCI at start: if set this option will print a message to the Serial
Communication Interface when the model start execution on the board. This is very helpful to identify
the model running on the board. The message is in the form:

‘model_name’ - generated_date (TLC tlc_version)

For example:

‘hbridge_analog_control’ - Wed Jun 19 14:10:44 2013 (TLC 8.3 (Jul 20 2012))

63

5 Simulink Block Library

The Simulink Block Library is a set of blocks that allows Simulink models to use board IO and communication
peripherals.

5.1 Description

As part of this project the ideal set was defined, but not all blocks were implemented. The following table
shows the current status of the block library.

CATEGORY NAME STATUS* MNEMONIC LRH*
System blocks Configuration block X [CONF] RppConfig.h
Logic IO blocks Digital Input block T [DIN] rpp din.h

Digital Output block T [LOUT] rpp lout.h
Analog Input block T [ADC] rpp adc.h
Analog Output block T [DAC] rpp dac.h

Power output blocks H-Bridge Control block T [HBR] rpp hbr.h
Power output block T [MOUT] rpp mout.h
High-Power output block X [HOUT] rpp hout.h

Communication blocks CAN Bus receive block X [CANR] rpp can.h
CAN Bus send msg block X [CANS] - Idem -
LIN receive block X [LINR] rpp lin.h
LIN send msg block X [LINS] - Idem -
FlexRay receive block X [FRR] rpp fr.h
FlexRay send msg block X [FRS] - Idem -
SCI receive block T [SCIR] rpp sci.h
SCI send msg block T [SCIS] - Idem -
SCI configure block T [SCIC] - Idem -
Ethernet receive block X [ETHR] rpp eth.h
Ethernet send msg block X [ETHS] - Idem -

Logging/Storage blocks SD Card write block T [SDCW] rpp sdc.h
SDRAM write block X [SDRW] rpp sdr.h

Trigger blocks Overrun detected block X [TROR] - None -
Stack overflow detected block X [TRSO] - None -
Malloc Failed detected block X [TRMF] - None -

Legend:

• *LRH : Library Reference Header.

• *STATUS :
– X - Unimplemented. Files non present.

– P - Unimplemented. Files present.

– W - Work in progress.

– I - Implemented.

– T - Implemented and tested.

Notes:
Each block that can detect fault condition should
have a trigger output.
High-power output provides current flow as an input
to the model.

64

5.1.1 C MEX S-Functions

All of the blocks are implemented as a C Mex S-Function coded by hand. In the this section the approach
taken is explained.

C-MEX S-Function:

• C : Implemented in C language. Other options are Fortran and Matlab language itself.

• MEX: Matlab Executable. They are compiled by Matlab GCC wrapper called MEX.

• S-Function: System Function, as opposed to standard functions, or user functions.

A C-MEX S-Function is a structured C file that includes the following mandatory callbacks:

1. mdlInitializeSizes:
Specify the number of inputs, outputs, states, parameters, and other characteristics of the C MEX
S-function.

2. mdlInitializeSampleTimes:
Specify the sample rates at which this C MEX S-function operates.

3. mdlOutputs:
Compute the signals that this block emits.

4. mdlTerminate:
Perform any actions required at termination of the simulation.

Plus many more optional callbacks. Relevant optional callbacks are:

1. mdlCheckParameters:
Check the validity of a C MEX S-function’s parameters.

2. mdlRTW:
Generate code generation data for a C MEX S-function.

3. mdlSetWorkWidths:
Specify the sizes of the work vectors and create the run-time parameters required by the C MEX
S-function.

4. mdlStart:
Initialize the state vectors of the C MEX S-function.

A complete list of callbacks can be found in:

http://www.mathworks.com/help/simulink/create-cc-s-functions.html

65

http://www.mathworks.com/help/simulink/create-cc-s-functions.html

The way a C-MEX S-Function participates in a Simulink simulation is shown by the following diagram:

Figure 11: Simulation cycle of a S-Function.

In general, a S-Function can perform calculations and inputs and outputs for simulation. Because the
blocks implemented for this project are for hardware peripherals control and IO the blocks are implemented
as pure sink or pure source. That is, the S-Function is a descriptor of the block but does not any calculation,
input or output for simulation.

The S-Functions required could be implemented in several ways:

1. Writing the S-Function.
Using this method, the user hand write a new C S-Function and associated TLC file. This method
requires the most knowledge about the structure of a C S-Function.

2. Using an S-Function Builder block.
Using this method, the user enter the characteristics of the S-function into a block dialog. This method
does not require any knowledge about writing S-Functions. However, a basic understanding of the
structure of an S-Function can make the S-Function Builder dialog box easier to use.

3. Using the Legacy Code Tool (LCT).
Using this command line method, the user define the characteristics of your S-function in a data
structure in the MATLAB workspace. This method requires the least amount of knowledge about
S-Functions.

From the above, the LCT is a tool that can be called within Matlab workshop that allows to generate
source code for S-Functions given the descriptor of a C function call. This approach is used by most of the
other targets reviewed for this project. The descriptor is a Matlab file with definitions like the following:

66

1 %% GPIO Write
2 % Populate legacy_code structure with information
3 GPIOWrite = legacy_code (’initialize ’);
4 GPIOWrite . SFunctionName = ’sfun_GPIOWrite ’;
5 GPIOWrite . HeaderFiles = {’gpiolct .h’};
6 GPIOWrite . SourceFiles = {’gpiolct .c’};
7 GPIOWrite . OutputFcnSpec = ’GPIOWrite (uint32 p1 , uint8 u1 , uint8 u2)’;
8 % Support calling from within For -Each subsystem
9 GPIOWrite . Options . supportsMultipleExecInstances = true;

The interface and implementation files specified should hold the declaration and implementation of the
OutputFcnSpec function. This tool will generate a simple S-Function that will input and output the values
required by that function. This approach was not for this project, mainly because:

• The RPP Library requires that after some actions (like setting one LOUT output) the changes are
committed to the hardware, or before some other actions (like getting the value from DIN using the
fixed threshold) the values cached are updated. And the implementation of a wrapper function that
would update or commit the changes wasn’t considered because of the efficiency impact it would have.

• Furthermore, the error handling of the function call is not considered, and for some blocks (like MOUT
and HOUT) the diagnostic handling is mandatory.

• Also, the dialog parameters of the S-Function cannot be validated otherwise than data type (cannot
validate range, for example).

• For future improvements the LCT cannot generate code for simulation, and a lot of S-Function options
cannot not be fine tuned.

• Finally, the generated code is very obscure, hard to read and to maintain in case the above functionality
had to be implemented on top of the generated code.

Similarly the hand written S-Functions shares a large amount of code like parameters scalar, data type
and range validation, standard options for this kind of blocks, unused functions, among other. Because of
this a mini framework for writing S-Functions for RPP was implemented in the form of two files that are
directly included at the beginning and end of the S-Function implementation: header.c and trailer.c.

This mini-framework reduces the amount of required code for each S-Function considerably, making easier
to maintain and adapt. Because each S-Function is a program by itself there is no need to use interface files
and the files are directly included.

67

The final form of the S-Function is a C file of around 100 lines of code with the following layout:

• Define S-Function name S FUNCTION NAME.

• Include header file header.c.

• In mdlInitializeSizes define:

– Number of dialog parameter.

– Number of input ports.
∗ Data type of each input port.

– Number of output ports.
∗ Data type of each output port.

– Standard options for driver blocks.

• In mdlCheckParameters:

– Check data type of each parameter.

– Check range, if applicable, of each parameter.

• In mdlSetWorkWidths:

– Map dialog parameter to runtime parameters.
∗ Data type of each runtime parameter.

• Define symbols for unused functions.

• Include trailer file trailer.c.

The C-MEX S-Function implemented can be compile with the following command:

1 <matlabroot >/ bin/mex sfunction_ { mnemonic }.c

As noted the standard is to always prefix S-Function with sfunction and use lower case mnemonic of
the block.

Also a script called compile blocks.m is included that allows all sfunctions *.c to be fed to the mex
compiler so all S-Functions are compiled at once. To use this script, in Matlab do:

1 cd <repo >/ rpp/ blocks /
2 compile_blocks ()

68

5.1.2 Target Language Compiler files

C code generated from a Simulink model is placed on a file called <modelname>.c along with other support
files in a folder called <modelname> <target>/. For example, the source code generated for model foobar
will be placed in current Matlab directory foobar rpp/foobar.c.

The file <modelname>.c has 3 main functions:

• void <modelname> step(void):
This function recalculates all the outputs of the blocks and should be called once per step. This is the
main working function.

• void <modelname> initialize(void):
This function is called only once before the first step is issued. Default values for blocks IOs should be
placed here.

• void <modelname> terminate(void):
This function is called when terminating the model. This should be used to free memory of revert other
operations made on the initialization function. With current implementation this function should never
be called unless an errors is detected and in most models it is empty.

In order to generate code for each one of those functions each S-Function implement a TLC file for inlining
the S-Function on the generated code. The TLC files are files that describe how to generate code for a specific
C-MEX S-Function block. They are programmed using TLC own language and include C code within TLC
instructions, just like LaTeX files include normal text in between LaTeX macros.

TLC files are located under <repo>/rpp/blocks/tlc c/ directory. For a diagram on how TLC files
work see Code generation process section.

The standard for a TLC file is to be located under the tlc c subfolder from where the S-Function is
located and to use the very exact file name as the S-Function but with the .tlc extension:

sfunction foo.c → tlc c/sfunction foo.tlc

The TLC files implemented for this project use 3 hook functions in particular (other are available, see
TLC reference documentation):

• BlockTypeSetup:
BlockTypeSetup executes once per block type before code generation begins. This function can be used
to include elements required by this block type, like includes or definitions.

• Start:
Code here will be placed in the void <modelname> initialize(void). Code placed here will execute
only once.

• Outputs:
Code here will be placed in the void <modelname> step(void) function. Should be used to get the
inputs o a block and/or to set the outputs of that block.

69

The general layout of the TLC files implemented for this project are:

• In BlockTypeSetup:
Call common function %<RppCommonBlockTypeSetup(block, system)> that will include the rpp/rpp.h
header file (can be called multiple times but header is included only once).

• Start:
Call setup routines from RPP Layer for the specific block type, like HBR enable, DIN pin setup, DAC
value initialization, SCI baud rate setup, among others.

• Outputs:
Call common IO routines from RPP Layer, like DIN read, DAC set, etc. Success of this functions is
checked and in case of failure error is reported to the block using ErrFlag.

70

5.2 Subdirectory content description

→ header.c and trailer.c

RPP framework for simple S-Functions.

This files are included at the head and tail of each S-Function file. They include refactored and com-
monly repeated structures that pollute S-Functions implementations. They include basic includes, required
definitions, macro definitions, common functions implementations and documentation on optional functions
and commented prototypes for optional model calls/hooks.

• Reference:
– See header of those files.

→ sfunction {mnemonic}.c

C-MEX S-Function implementation for {mnemonic} block.

This file implements the {mnemonic} block using C-MEX S-Function API. See the reference for informa-
tion about the S-Function API.

• Reference:
– <repo>/refs/sfunctions.pdf

→ tlc c/sfunction {mnemonic}.tlc

Target Language Compiler (TLC) file for {mnemonic} block.

This file implements the C code inlining for {mnemonic} block. See the reference for information about
the TLC API.

• Reference:
– <repo>/refs/rtw tlc.pdf

→ tlc c/common.tlc

Common TLC functions.

This file implements common TLC functions used by all the blocks.

• Reference:
– None.

71

→ slblocks.m

Simulink library control file.

This file allows a group of blocks to be integrated into the Simulink Library and Simulink Library Browser.
This file is required by Simulink in order to interpret this folder as a block library. For information about
this file see the references.

• Reference:
– <repo>/refs/rtw ug.pdf p. 1127

→ rpp lib.slx

RPP Simulink block library.

Simulink block library that includes all the blocks. This file is referenced by slblocks.m

• Reference:
– None.

→ compile blocks.m

Blocks compilation script.

This script compiles all the sfunction blocks to MEX executables. This script is called by the rpp setup()
function in order make all the blocks available to the Simulink environment or it can be called independently
when developing S-Functions.

• Reference:
– None.

72

5.3 Block Library Reference

This section describes each one of the Simulink blocks implements as part of this project:

Figure 12: Simulink RPP Block Library.

73

5.3.1 DIN Digital Input block

Inputs : 0
None

Outputs : 2
bool Digital Input
bool ErrFlag

Parameters : 2
uint8 Pin number [1-16]
bool Use variable threshold

This block allows to read the digital inputs on the RPP board. The variable threshold check change
the read mode of the pin. The ErrFlag should raise if rpp din update() or rpp din get() returns error.
rpp din update() is called just by the first DIN block in the model and thus only the first block could raise
the flag because of this. In case an errors occurs the return value will always be LOW (0). Because the
ErrFlag should never set, once set the following steps will never clear it back.

• Tested:
– Changing the pin.

– Compilation and gen-
eral use.

– Using variable thresh-
old.

• Untested:
– Faulty situation for the

ErrFlag to set.

• Not working:

RPP API functions used:

• rpp din setup().

• rpp din update().

• rpp din get().

Relevant demos:

• digital passthrough.

• hbridge digital control.

74

5.3.2 LOUT Digital Output block

Inputs : 1
bool Digital Output

Outputs : 1
bool ErrFlag

Parameters : 1
uint8 Pin number [1-8]

This block allows to write to the digital outputs on the RPP board. The ErrFlag should raise if
rpp lout set() or rpp lout update() returns error. Because the ErrFlag should never set, once set the
following steps will never clear it back. rpp lout update() is called on each block, which is not the most
efficient but guaranties consistent behavior.

Status:

• Tested:
– Changing the pin.

– Compilation and gen-
eral use.

• Untested:
– Faulty situation for the

ErrFlag to set.

• Not working:

RPP API functions used:

• rpp lout set().

• rpp lout update().

Relevant demos:

• digital passthrough.

• led blink all.

• led blink.

75

5.3.3 ADC Analog Input block

Inputs : 0
None

Outputs : 2
uint16 Analog Input
bool ErrFlag

Parameters : 1
uint8 Pin number [1-12]

This block allows to read the analog inputs on the RPP board. The ErrFlag should if raise rpp adc update()
or rpp adc get() returns error. rpp adc update() is called just by the first DIN block in the model and
thus only the first block could raise the flag because of this. In case an errors occurs the return value will
always be 0. Because the ErrFlag should never set, once set the following steps will never clear it back.

Status:

• Tested:
– Changing the pin.

– Compilation and gen-
eral use.

• Untested:
– Faulty situation for the

ErrFlag to set.

• Not working:

RPP API functions used:

• rpp adc update().

• rpp adc get().

Relevant demos:

• analog passthrough.

• hbridge analog control.

• log analog input.

76

5.3.4 DAC Analog Output block

Inputs : 1
uint16 Analog Output

Outputs : 1
bool ErrFlag

Parameters : 1
uint8 Pin number [1-4]
bool UseVoltage

This block allows to write to the analog outputs on the RPP board. The UseVoltage flag allows the user
to configure if block inputs should be interpreted as raw DAC value or millivolts. The ErrFlag should raise if
rpp dac update() or rpp dac set() (or rpp dac set voltage() depending on block configuration) returns
error. Because the ErrFlag should never set, once set the following steps will never clear it back.

rpp dac update() is called on each block but the implementation provides this to be efficient.

There is a know bug on the RPP Library, check rpp dac update() on the RPP API for details. Because of
this, the outputs of the DACs are initialized on the first step of the model and not on the model initialization.

Status:

• Tested:
– Changing the pin.

– Changing voltage/value
flag.

– Compilation and gen-
eral use.

• Untested:
– Faulty situation for the

ErrFlag to set.

• Not working:
– Initializing DACs on

model’s initialization.

RPP API functions used:

• rpp dac setup().

• rpp dac set(), or

• rpp dac set voltage().

• rpp dac update().

Relevant demos:

• analog passthrough.

• analog sinewave.

77

5.3.5 HBR H-Bridge Control block

Inputs : 1
double Control

Outputs : 1
bool ErrFlag

Parameters : 0
None

This block allows to control the H-Bridge on the RPP board. The ErrFlag should raise only if rpp hbr control()
returns error. The H-Bridge is initialized with the default frequency (˜18kHz). A future improvement could
include a parameter to set the frequency. Because the ErrFlag should never set, once set the following steps
will never clear it back.

Status:

• Tested:
– Compilation and gen-

eral use.

• Untested:
– Faulty situation for the

ErrFlag to set.

• Not working:

RPP API functions used:

• rpp hbr enable().

• rpp hbr control().

Relevant demos:

• hbridge analog control.

• hbridge digital control.

• hbridge sinewave control.

78

5.3.6 MOUT Power Output block

Inputs : 1
bool Power Output

Outputs : 1
bool ErrFlag

Parameters : 1
uint8 Pin number [1-6]

This block allows to write the power outputs (2A) on the RPP board. The ErrFlag should raise only if
rpp mout set()returns error. Note that rpp mout set() returns error only if some bad parameter or in case
it could detect a faulty condition on the pin in a very very short period of time after setting the value, see
the function API for details. If the faulty condition persist on the next step the call will successfully detect
the faulty condition and ErrFlag should set. Because the ErrFlag should never set, once set the following
steps will never clear it back.

Status:

• Tested:
– Changing the pin.

– Compilation and gen-
eral use.

• Untested:
– Faulty situation for the

ErrFlag to set.

• Not working:

RPP API functions used:

• rpp mout set().

Relevant demos:

• power toggle.

79

5.3.7 SCIR Serial Comm. Interface Receive

Inputs : 0
None

Outputs : 2
uint8 Data
bool ErrFlag

Parameters : 0
None

This block allows to receive a byte from the SCI. The ErrFlag should raise if rpp sci read nb() doesn’t
succeed. The behavior of the ErrFlag is different from others blocks in that this block will set or clear the
flag if the call fails of success at each step. Note that this block uses the non-blocking call to read the SCI
and thus will never cause an overrun.

Status:

• Tested:
– Receiving data.

– Compilation and gen-
eral use.

– Faulty situation for the
ErrFlag to set.

• Untested: • Not working:

RPP API functions used:

• rpp sci read nb().

Relevant demos:

• echo char.

80

5.3.8 SCIS Serial Comm. Interface Send

Inputs : 1
uint8 Data

Outputs : 1
bool ErrFlag

Parameters : 2
bool UsePrintf
string PrintFormat [SETTING]

This block allows to send a byte to the SCI or to print a formatted string that uses that byte. The
UsePrintf flag allows to user to select rpp sci write nb() (raw send) or rpp sci printf() (formatted
print) as the function the block should use on code generation. If UsePrintf is set the PrintFormat string
parameters SETTING is used as the format specifier. Note that this value is inserted raw between quotes on
code generation and thus there is no validation on it. User should always put any valid integer specifier for
the value on the input of the block.

The behavior of this block depends if UsePrintf is set or not. If set, the call rpp sci printf() (a blocking
call) could potentially overrun the step. Also, the ErrFlag will set only if rpp sci printf() returns an error,
and because it should never set, once set it will never clear back. On the contrary, if UsePrintf is clear, the
call rpp sci write nb() (non-blocking) is used and thus the step cannot be overrun, but because is a best-
effort call it cannot guarantee that all the data will be sent. In the case that not all data could be sent, the
ErrFlag will set, but it will clear back if the next step is able to send all it’s data (which with the current
implementation is just one byte).

A possible future improvement for this block is to allow input to be non-scalar so user can print a whole
string in one step using raw non-blocking write. This is currently possible if input configuration is adapted
in S-Function and TLC. The problem this could pose is is that for printf user should include specifiers for all
the cells in the non-scalar input, and if unknown, then printf cannot be used.

Status:

• Tested:
– Sending data.

– Compilation and gen-
eral use.

• Untested:
– Faulty situation for the

ErrFlag to set.

• Not working:

RPP API functions used:

• rpp sci write nb(), or rpp sci printf().

Relevant demos:

• echo char and hello world.

81

5.3.9 SCIC Serial Comm. Interface Configure

Inputs : 0
None

Outputs : 0
None

Parameters : 1
uint32 Baud rate

This block allows to configure the baud rate of the SCI. There should only one block of this type per
model, and this requirement is not validated, but the inclusion of several blocks is harmless and will just
produce the baud rate to be changed several times, being the final baud rate to be the one of the last executed
block. This block just executes on model initialization and not on each step.

Status:

• Tested:
– Changing baud rate.

– Compilation and gen-
eral use.

• Untested:
– Using more than one

block in a model.

• Not working:

RPP API functions used:

• rpp sci setup().

Relevant demos:

• echo char.

• hello world.

82

5.3.10 SDRW SD-RAM Write

Inputs : 1
double Data

Outputs : 1
bool ErrFlag

Parameters : 2
uint8 Block ID
string PrintFormat [SETTING]

This block allows to log a double value to the SD-RAM. User needs to provide a valid PrintFormat string
to format and register the double value on the log. The PrintFormat string should include two specifiers:

• For the block ID. Any valid integer specifier.

• For the value to log. Any valid double specifier.

Note that the value of PrintFormat is inserted raw between quotes on code generation and thus there
is no validation on it. Error to provide a valid PrintFormat could generate compilation errors on even run-
time errors (normally this generates a warning on compile time). Note that the function for logging used is
rpp sdr printf(), which is a blocking call, and can potentially overrun the step. The ErrFlag will set if
rpp sdr printf() returns an error (for example out of memory), but will clear back if the next step the call
to this function is successful.

Status:

• Tested:
– Logging data.

– Compilation and gen-
eral use.

• Untested:
– Faulty situation for the

ErrFlag to set.

• Not working:

RPP API functions used:

• rpp sdr printf().

Relevant demos:

• log analog input.

83

6 Simulink Demos Library

The Simulink RPP Demo Library is a set of Simulink models that use blocks from the Simulink RPP Block
Library and generates code using the Simulink RPP Target.

6.1 Description

This demos library is used as a test suite for the Simulink RPP Block Library but they are also intended to
show basic programs built using it. Because of this, the demos try to use more than one type of block and
more than one block per block type.

The following table shows the current status of the demos:

Name Implemented Tested
analog passthrough YES SUCCESS
analog sinewave YES SUCCESS
digital passthrough YES SUCCESS
echo char YES SUCCESS
hbridge analog control YES SUCCESS
hbridge digital control YES SUCCESS
hbridge sinewave control YES SUCCESS
hello world YES SUCCESS
led blink all YES SUCCESS
led blink YES SUCCESS
log analog input YES SUCCESS
power toggle YES SUCCESS

In the reference below you can find a complete description for each of the demos.

6.2 Subdirectory content description

→ {demo}.slx

A Simulink demo.

This subdirectory just includes all the Simulink demos described in the following section.

84

6.3 Demos Reference

This section describes the demos implemented as part of this project that uses the Simulink RRP Block
Library and generates code using the RPP Simulink Target.

6.3.1 Analog pass-through

Figure 13: Analog Passthrough Simulink demo for RPP.

Description:

This demo will read analog input 1 and write it to analog output 1.

In laboratory the minimum read value for analog input a 0 volts is 107. The maximum read at 12 volts is
2478. The map subsystem will map the input domain (ADC)[110, 2400] to the output domain (DAC)[0,
4095].

85

6.3.2 Analog sinewave

Figure 14: Analog Sinewave Simulink demo for RPP.

Description:

This demo will generate a sinewave on analog output 1. Siwave is 10Hz and sampling rate is set to
1000Hz (driven from Simulink step of 1ms, same as operating system). Amplitude is set to use DAC full
range [0-4095] which means output amplitude will be [0-12] volts.

The Software oscilloscope shown should match an external one connected to DAC 1.

Note that the driver configuration of the MCP4922 is set to unbuffered (which should eventually be
changed to buffered) and thus the last resolution millivolts are lost.

86

6.3.3 Digital pass-through

Figure 15: Digital Pass-through Simulink demo for RPP.

Description:

This demo will directly pass the digital values read on DIN [1-8] to LOUT [1-8], and thus acting as a
digital pass-through or gateway.

Also note that all the ErrFlag are aggregated on a global ErrFlag.

87

6.3.4 Echo char

Figure 16: Echo Character Simulink demo for RPP.

Description:

This demo will echo twice (print back) any character received through the Serial Communication Interface
(9600-8-N-1).

Note that the send subsystem is implemented a as triggered subsystem and will execute only if data is
received, that is, Serial Receive output is non-negative. Negative values are errors.

88

6.3.5 H-bridge analog control

Figure 17: H-Bridge Analog Control Simulink demo for RPP.

Description:

This demo will read values from the analog input, map them, and control the H-Bridge. This allows a
motor connected to the H-Bridge to be controlled with a potentiometer connected to Analog Input 1.

Setting the potentiometer to output around 6 volts will stop the motor. Less (or greater) than 6 volts
will trigger the motor in one sense (or in the other sense) and speed proportional with 1% resolution.

In laboratory the minimum read value for analog input is 107 at 0 volts. The maximum read at 12
volts is 2478. The map subsystem will map the input domain (ADC)[110, 2400] to the output domain
(HBR)[-1.0, 1.0].

89

6.3.6 H-bridge digital control

Figure 18: H-Bridge Digital Control Simulink demo for RPP.

Description:

This demo toggle the H-Bridge from stop to full speed in one direction using digital input 1. So basically
is a ON/OFF switch on DIN 1 for a motor connected on the HBR. Note the data type conversion because
the output of the DIN is a boolean and the input to the HBR is a double.

90

6.3.7 H-bridge sine wave control

Figure 19: H-Bridge Sinewave Control Simulink demo for RPP.

Description:

This demo will generate a sine wave to control the H-Bridge. Sine wave is one period per 20 seconds or
0.05Hz. Sampling rate is 20Hz or 100 samples per 1/4 of period (for 1% speed resolution change).

Note that the Software oscilloscope should is not the output of the H-Bridge, the H-Bridge will change
current sense and the duty cycle of the pulse that drive it (PWM), it does not output analog values. The
Software oscilloscope just shows what the input to the HBR block is.

91

6.3.8 Hello world

Figure 20: Hello World Simulink demo for RPP.

Description:

This demo will print "Hello Simulink" to the Serial Communication Interface (9600-8-N-1) one character
per second. The output speed is driven by the Simulink model step which is set to one second.

92

6.3.9 LED blink

Figure 21: LED Blink Simulink demo for RPP.

Description:

This the simplest demo of all that shows the basics of using the RPP target and blocks. The goal of
this demo is to show the configuration of the model (not shown on the picture above), that is, how the RPP
Simulink Coder Target is setup, general model setup and step setup.

This demo will toggle each second a LED connected on LOUT 1. The timing is set by the Simulink model
step which is set to 1 second.

93

6.3.10 LED blink all

Figure 22: LED Blink All Simulink demo for RPP.

Description:

This demo will toggle all LEDs connected to the LOUT port. Even outputs pins will be negated. Toggle
will happen each second. The timing is driven by Simulink model step configuration that is set to 1 second.
All blocks ErrFlags are aggregated into one global ErrFlag.

94

6.3.11 Log analog input

Figure 23: Log Analog Input Simulink demo for RPP.

Description:

This demo will log once per second the value read on the analog input 1. User can read the log using the
SCI logging integrated command processor (9600-8-N-1). Logging block ID set to 1. The timing is driven by
Simulink model step configuration that is set to 1 second.

95

6.3.12 Power toggle

Figure 24: Power Toggle Simulink demo for RPP.

Description:

This demo will toggle the power output once per second. If an error is detected on at least one of the
outputs a generic error message is printed to the serial line. The timing is driven by Simulink model step
configuration that is set to 1 second. Power outputs can drive a load up to 2A, so please take into account
required safety considerations.

96

7 Glossary

ADC Analog to Digital Converter.
Hardware circuitry that converts a continuous physical quantity (usually voltage) to a digital number
that represents the quantity’s amplitude.

AIN Analog Input.
Mnemonic to refer to or something related to the analog input (ADC) hardware module.

AOUT Analog Output.
Mnemonic to refer to or something related to the analog output (DAC) hardware module.

CAN Controller Area Network.
The CAN Bus is a vehicle bus standard designed to allow microcontrollers and devices to communicate
with each other within a vehicle without a host computer. In this project it is also used as mnemonic
to refer to or something related to the CAN hardware module.

CGT Code Generation Tools.
Name given to the tool set produced by Texas Instruments used to compile, link, optimize, assemble,
archive, among others. In this project is normally used as synonym for “Texas Instruments ARM
compiler and linker.”

DAC Digital to Analog Converter.
Hardware circuitry that converts a digital (usually binary) code to an analog signal (current, voltage,
or electric charge).

DIN Digital Input.
Mnemonic to refer to or something related to the digital input hardware module.

ECU Engine Control Unit.
A type of electronic control unit that controls a series of actuators on an internal combustion engine to
ensure the optimum running.

ETH Ethernet.
Mnemonic to refer to or something related to the Ethernet hardware module.

FR FlexRay.
FlexRay is an automotive network communications protocol developed to govern on-board automotive
computing. In this project it is also used as mnemonic to refer to or something related to the FlexRay
hardware module.

GPIO General Purpose Input/Output.
Generic pin on a chip whose behavior (including whether it is an input or output pin) can be controlled
(programmed) by the user at run time.

HBR H-Bridge.
Mnemonic to refer to or something related to the H-Bridge hardware module. A H-Bridge is an
electronic circuit that enables a voltage to be applied across a load in either direction.

HOUT High-Power Output.
Mnemonic to refer to or something related to the 10A, PWM, with current sensing, high-power output
hardware module.

97

IDE Integrated Development Environment.
An IDE is a Software application that provides comprehensive facilities to computer programmers for
software development.

LCT Legacy Code Tool.
Matlab tool that allows to generate source code for S-Functions given the descriptor of a C function
call.

LIN Local Interconnect Network.
The LIN is a serial network protocol used for communication between components in vehicles. In this
project it is also used as mnemonic to refer to or something related to the LIN hardware module.

LOUT Logic Output.
Mnemonic to refer to or something related to the digital output hardware module. It is logic output
(100mA), as opposed to power outputs (2A, 10A).

MBD Model-Based Design.
Model-Based Design (MBD) is a mathematical and visual method of addressing problems associated
with designing complex control, signal processing and communication systems.

MEX Matlab Executable.
Type of binary executable that can be called within Matlab. In this document the common term used is
‘C MEX S-Function”, which means Matlab executable written in C that implements a system function.

MOUT (Motor) Power Output.
Mnemonic to refer to or something related to the 2A push/pull power output hardware module.

PWM Pulse-width modulation.
Technique for getting analog results with digital means. Digital control is used to create a square wave,
a signal switched between on and off. This on-off pattern can simulate voltages in between full on and
off by changing the portion of the time the signal spends on versus the time that the signal spends off.
The duration of “on time” is called the pulse width or duty cycle.

RPP Rapid Prototyping Platform.
Name of the automotive hardware board. Also generic term to define something related to the board,
like the RPP Library, RPP Layer, RPP API, etc.

SCI Serial Communication Interface.
Serial Interface for communication through hardware’s UART using communication standard RS-232.
In this project it is also used as mnemonic to refer to or something related to the Serial Communication
Interface hardware module.

SDC SD-Card.
Mnemonic to refer to or something related to the SD-Card hardware module.

SDR SD-RAM.
Mnemonic to refer to or something related to the SD-RAM hardware module for logging.

TLC Target Language Compiler.
Technology and language used to generate code in Matlab/Simulink.

UART Universal Asynchronous Receiver/Transmitter.
Hardware circuitry that translates data between parallel and serial forms.

98

8 References

• Horn, M. (2013). Software obsluhuj́ıćı periferie a flexray na automobilové ŕıdićı jednotce. (Unpublished
master’s thesis, Czech Technical University in Prague, Prague, Czech Republic).

• Model-based design. (n.d.). In Wikipedia. Retrieved March 10, 2013, from
http://en.wikipedia.org/wiki/Model-based design

• (2012). ARM Assembly Language Tools. Texas Instruments.

• (2012). ARM Optimizing C/C++ Compiler. Texas Instruments.

• (2013). Embedded Coder - Reference. MathWorks.

• (2013). Embedded Coder - User’s Guide. MathWorks.

• Barry, R. (2009). Using the FreeRTOS real time kernel - A practical guide.

• (2013). Simulink Coder - Reference. MathWorks.

• (2013). Simulink - Target Language Compiler. MathWorks.

• (2013). Simulink Coder - User’s Guide. MathWorks.

• (2013). Simulink - Developing S-Functions. MathWorks.

• (2012). TMS570LS31x/21x 16/32-Bit RISC Flash Microcontroller - Technical Reference Manual. Texas
Instruments.

99

http://en.wikipedia.org/wiki/Model-based_design

9 Appendix A: Notes on FreeRTOS memory management

FreeRTOS provides 4 different (at the time of this writing) memory management implementations. On vanilla
distribution of FreeRTOS these can be found in <FreeRTOSRoot>/FreeRTOS/Source/portable/MemMang
with the names heap 1.c, heap 2.c, heap 3.c and heap 4.c. The user is supposed to choose one and rename
it to heap.c and include it in the port for the target processor. Memory management implementation of
each file is explained in depth in:

Memory Management

The above is a must read documentation. In summary:

→ heap 1.c

• Use a static allocated array for memory and thus will be placed on the .bss section.

• Subdivides the array into smaller blocks as RAM is requested.

• Memory cannot be freed.

• Array is as large as configTOTAL HEAP SIZE option in FreeRTOSConfig.h.

→ heap 2.c

• Use a static allocated array for memory and thus will be placed on the .bss section.

• Uses a best fit algorithm and allows previously allocated blocks to be freed.

• It does not however combine adjacent free blocks into a single large block.

• Array is as large as configTOTAL HEAP SIZE option in FreeRTOSConfig.h.

→ heap 3.c

• Wrapper around standard C library malloc() and free().

• Wrapper makes malloc() and free() functions thread safe.

• Memory is as large as defined in linker for C system heap.

• configTOTAL HEAP SIZE option in FreeRTOSConfig.h is ignored.

→ heap 4.c

• Use a static allocated array for memory and thus will be placed on the .bss section.

• Uses a first fit algorithm.

• It does combine adjacent free memory blocks into a single large block (it does include a coalescence
algorithm).

• Array is as large as configTOTAL HEAP SIZE option in FreeRTOSConfig.h.

100

http://www.freertos.org/a00111.html

Not all kernels available for the RPP C Library use the same implementation. This is what each kernel
is currently configured to use:

Kernel Origin Implementation
6.0.4 Posix Simulator from OpenPilot.org heap 3.c

7.0.2 TMS570 HalCoGen heap 1.c
7.4.0 TMS570 HalCoGen heap 4.c
7.4.2 TMS570 Adapted from vanilla distribution heap 4.c

The relevant implications of this are:

• If a kernel with heap 3.c is used the Simulink model C system heap size and Model step task stack size
should be tightly related and the first should be large enough to allocate system tasks and the stack
for the stepping task.

• If a kernel with heap 1.c is used the programs should not delete tasks, queues or semaphores. If the
application spawn and deletes tasks it will eventually deplete the memory available. This is the case
with the rpp-test-suite. Note that failure to allocated memory from the array will trigger the Malloc
Failed Hook Function vApplicationMallocFailedHook(), even if the implementation doesn’t use the
C system malloc() function.
Also, Model step task stack size should never be set larger than configTOTAL HEAP SIZE option in
FreeRTOSConfig.h. Currently the RPP Target doesn’t include a GUI option for setting configTOTAL HEAP SIZE
because the library is statically linked and thus memory will be of the size specified when built. The RPP
Target doesn’t check that the requested memory for the step task is less than the configTOTAL HEAP SIZE,
and if greater then the application will fail at runtime and trigger the Malloc Failed Hook Function.

101

10 Appendix B: Known operating-system dependent files

This project was developed on a GNU/Linux operating system. No test for cross-platform interoperability
was performed on the code developed. Although care was taken to try to provide platform independent code
and tools this are the elements that are know to be Linux dependent:

• LCM1 hardware control tool lmc1.py.
This tool is both GUI and command line capable, the following just affects the GUI part.
Command line should be usable under Windows systems.

Cause: Serial port search algorithm is Linux dependent and Gtk 3.0 dynamic Python bindings are not
yet available on other operating systems.

• TI CGT support file for RPP Simulink Target target tools.mk.

Cause: Use UNIX path separator /.

• Simulink RPP Target download script rpp download.m.

Cause: Use UNIX path separator /.

• Simulink RPP Target install script rpp setup.m.

Cause: Use UNIX path separator /.

• Simulink RPP Block Library block compilation script compile blocks.m.

Cause: Call Matlab MEX executable with Unix name.

• All CCS projects under <repo>/rpp/lib/apps/. Cause: Paths are configure using UNIX path sepa-
rator /.

102

	Introduction
	Background
	Technologies involved
	Objectives
	Benefits
	Final outcome
	Document layout

	Project setup
	Development environment
	Operating system
	Version Control System
	TI Code Composer Studio
	Matlab/Simulink
	GtkTerm
	Doxygen
	Nested
	LMC1

	Hardware reference
	Connectors pinout
	Modules description
	Logic IO
	Power Output
	Communication
	Data storage/logging

	Development wiring
	Test wiring

	Project repository

	C Support Library
	Description
	Architecture
	RPP Layer Modules
	OS interchangeable layer
	API development guidelines
	Further improvements

	Subdirectory content description
	Test Suite
	AIN test description
	AOUT test description
	DIN test description
	HBR test description
	LOUT test description
	MOUT test description
	SCI test description
	SDR test description

	Static libraries
	HelloWorld application
	API generation
	API Reference
	DIN API Reference
	LOUT API Reference
	ADC API Reference
	DAC API Reference
	HBR API Reference
	MOUT API Reference
	HOUT API Reference
	CAN API Reference
	LIN API Reference
	FR API Reference
	SCI API Reference
	ETH API Reference
	SDC API Reference
	SDR API Reference

	Simulink Coder Target
	Description
	Code generation process

	Subdirectory content description
	Installation procedure
	Usage
	Target Reference
	Simulink model options
	RPP Target options

	Simulink Block Library
	Description
	C MEX S-Functions
	Target Language Compiler files

	Subdirectory content description
	Block Library Reference
	DIN Digital Input block
	LOUT Digital Output block
	ADC Analog Input block
	DAC Analog Output block
	HBR H-Bridge Control block
	MOUT Power Output block
	SCIR Serial Comm. Interface Receive
	SCIS Serial Comm. Interface Send
	SCIC Serial Comm. Interface Configure
	SDRW SD-RAM Write

	Simulink Demos Library
	Description
	Subdirectory content description
	Demos Reference
	Analog pass-through
	Analog sinewave
	Digital pass-through
	Echo char
	H-bridge analog control
	H-bridge digital control
	H-bridge sine wave control
	Hello world
	LED blink
	LED blink all
	Log analog input
	Power toggle

	Glossary
	References
	Appendix A: Notes on FreeRTOS memory management
	Appendix B: Known operating-system dependent files

