
Usable Simulink Embedded Coder Target for Linux

Michal Sojka, Pavel Píša
Czech Technical University in Prague

Technická 2, 121 35 Praha 6, Czech Republic
{sojkam1,pisa}@fel.cvut.cz

Abstract

Matlab/Simulink is a commercial tool used by many engineers and researchers worldwide to design and
develop various systems, usually containing a lot of mathematical computations. Initially, Simulink was
intended for performing simulations of dynamic systems (hence the name), but nowadays it also allows to
create their prototypes or even final implementations. The system (for example a motor controller) is first
designed in a graphical way in the form of a data-flow graph and then the Embedded Coder tool (a part of
Simulink) is used to generate the C code directly from the graphical model.

Simulink Embedded Coder already contains support for several popular embedded boards running Linux
such as Raspberry Pi or BeagleBoard but for unknown reason, this support can only be installed on Windows
hosts. Moreover, the code generated for these targets has problems with precise timing when run on Linux
with real-time (preempt_rt) patches.

In this paper we describe a custom developed Embedded Coder target ert_linux that does not suffer
from the above mentioned shortcomings and is freely available for use. We also describe a few applications
developed with this target, for example a simple motor controller with the Raspberry Pi that can be used
for education. The other applications show that ert_linux-based solutions can be used even for more
demanding applications with sampling frequencies around 20 kHz.

1 Introduction

Matlab/Simulink is a commercial tool used by many
engineers and researchers worldwide to design and
develop various systems, usually containing a lot of
mathematical computations. Initially, Simulink was
intended for performing simulations of dynamic sys-
tems (hence the name), but nowadays it also allows
to create their prototypes or even final implementa-
tions. The system (for example a motor controller)
is first designed in a graphical way in the form of
a data-flow graph (such as in Figure 4) and then
the Embedded Coder [1] (a part of Simulink) is used
to generate the C code directly from the graphical
model. The code is then compiled and optionally
also downloaded to the target device where it is run,
all at just one click.

Simulink Embedded Coder already contains sup-
port for several popular embedded boards running
Linux such as Raspberry Pi or BeagleBoard but for
unknown reason, this support can only be installed
on Windows hosts. Support for Linux targets on
Linux hosts is very problematic. According to Mat-

lab documentation (and other sources [2]), this com-
bination seems to be only supported via integration
with Eclipse IDE [3]. Eclipse is essentially used to
compile the code and download the resulting binary
to the target. While using Eclipse might be bene-
ficial for some users, there is a simpler and faster
way how to achieve the same without the need for
gigabytes of memory required by Eclipse: using the
make tool. Given that Simulink already uses GNU
Make for other targets, it is not clear to us why it
is not possible to use it for Linux targets instead of
Eclipse. Moreover, the code generated for Linux tar-
gets does not work well with preempt_rt patches [4]
that extend Linux with hard real-time capabilities.

In this paper we describe a custom developed
Embedded Coder target that does not suffer from the
above mentioned shortcomings and is freely available
for use. The structure of the paper is as follows: The
next section introduces the Embedded Coder tool
and explains in more detail the problems with the
available Linux targets. Section 3 then describes our
ert_linux target, while Section 4 mentions some
applications developed with the target. Finally, we
conclude in Section 5.

1

2 Embedded Coder in a nut-
shell

In this section, we explain the basics of the Embed-
ded Coder and related tools.

We start our description with the tool called
Simulink Coder, formerly known as Real-Time Work-
shop (hence the RTW acronym). It is a tool for
translating Simulink models to C code. Embedded
Coder is an extension to the Simulink Coder. The
principle of operation (described below) is the same
but Embedded Coder produces more optimized code
and offers additional features such as traceability re-
ports to support development according to several
safety standards.

The principle of Embedded Coder’s operation is
as follows. A Simulink model is first transformed to
a so called .rtw file, which is a structured descrip-
tion of the model and it contains all the information
necessary for code generation. This file is consumed
by the Target Language Compiler (TLC), which pro-
duces C or C++ code. The TLC has a (weird)
programming language, in which one can specify
how the individual blocks in the Simulink model get
translated to the target language. In essence, each
Simulink block has a corresponding “TLC template”
and these templates are combined together to form
the resulting code. Similarly, the structure of the
main program (the main() function etc.) is also
determined by a template. After all code is gener-
ated, it gets compiled. This is typically accomplished
by generating a Makefile from another template and
calling the make utility. The code generation process
can be extended by custom hooks executed at dif-
ferent phases of the process. For example, a hook
can be used to download the produced binary to the
target system and run it there.

All the templates and hooks described above are
together called a code generation target or just target
in short. The targets for the Embedded Coder are
denoted as ERT (Embedded Real-Time), whereas
targets for the plain Simulink Coder are known as
GRT (Generic Real-Time). When the user wants to
generate the code from a Simulink model, the most
important configuration option is the target selec-
tion.

2.1 What’s wrong with MathWorks
Linux targets

Simulink already contains several code generation
targets. Some of them can be used out of the box

Figure 1: ert_linux in action – robot control sys-
tem

(e.g. the VxWorks OS target), others can be down-
loaded and installed on request. As it was already
mentioned in the introduction, all Linux targets can
only be installed on Windows hosts, or they have to
be used via Eclipse IDE.

Besides the above, the code generated for the
Linux targets uses POSIX timers. The problem with
POSIX timers is that their current implementation
under PREEMPT_RT Linux [4] (Linux with patches
that turn it into a real-time OS) cannot guarantee
real-time properties. POSIX timers use signals to
notify the thread about timer expiration. Due to
implementation details, the notification has to be de-
ferred to the softirq [5]. This basically means that
the notification code runs at random (very likely non-
real-time) priority [6], because most often it will be
run in the context of ksoftirqd. The result is that
although the thread that controls the timing of the
Simulink model execution has real-time priority, the
execution can be delayed as if the thread ran at non-
real-time priority.

These shortcomings led us to the development of
a new code generation target, which is described in
the next section.

3 Welcome to ert_linux

The ert_linux target [7] is a code generation tar-
get for Embedded Coder tailored specifically for pre-
empt_rt versions of Linux. Compared to Math-
Works provided targets, it is easily usable on Linux
hosts and uses clock_nanosleep rather than POSIX
timers to provide better real-time performance under

2

Infineon TriBoard running a motor control algorithm
PC

Motor & fault simulation

M
F

62
4

I/
O

 c
ar

d

PC
Linux, CAN
CAN attacks

Linux, preempt_rt

PC
Infoneon Device
Access Server (DAS)

CAN bus

In
te

rf
ac

e
bo

ar
d

USB
(serial line,
JTAG, ...)

Figure 2: PMSM simulation block diagram

preempt_rt. The target supports the so called ex-
ternal mode, which allows the Simulink GUI to com-
municate with the generated application running on
the target system via TCP in order to visualize data
from the target or to tune certain parameters dur-
ing run-time. Figure 1 shows an example of external
mode in action.

In order to simplify porting to different Simulink
versions, we tried to reuse as much existing TLC code
as possible. Therefore, ert_linux consist only of
the main program template, Makefile template and
a few necessary boilerplate scripts.

For the target to be useful, it is also necessary
to support I/Os. In this area, we cannot really com-
pete with MathWorks targets, which typically sup-
port most of the peripherals of the target platform.
Currently supported IO options are outlined below:

MF624 data acquisition card MF624 [8] is a
PCI-based IO card. Simulink blocks using the UIO
driver from the mainline Linux can be obtained from
our Git repository1. The available blocks are: analog
inputs/outputs, digital inputs/outputs, rotary en-
coder (IRC) inputs and PWM inputs/outputs.

CAN bus communication is supported via
Linux PF_CAN (a.k.a. SocketCAN) subsystem.
The Simulink blocks are compatible with standard
simulink CAN Pack/Unpack blocks and can be
downloaded from another Git repository2.

Raspberry Pi The Raspberry Pi is a credit-card
sized computer [9] that is well supported by standard
Simulink, but with all the limitations described in
Section 2.1. We developed a few IO blocks that are
described in more detail in Section 4.2.

1https://rtime.felk.cvut.cz/gitweb/mf624-
simulink.git

2https://rtime.felk.cvut.cz/gitweb/socketcan-
simulink.git

4 The ert_linux target in
practice

The ert_linux has been successfully used in sev-
eral applications. These are briefly described in this
section.

4.1 PMSM motor simulator

For Michal Kreč master thesis [10, 11] we needed
to simulate a permanent magnet synchronous mo-
tor (PMSM) in order to evaluate properties of its
control software that runs on an a microcontroller.
The control software runs with sampling frequency
of 20 kHz, so it was essential to run the motor simu-
lation at the same frequency. The motor simulation
was created in Simulink, compiled with ert_linux
and ran on an ordinary PC with preempt_rt Linux.
This allowed us to achieve the needed sampling fre-
quency without any problems. The block diagram of
the resulting test bed can be seen in Figure 2.

One interesting property of this application is
that the used I/O card (MF624) is able to read the
PWM signals directly, without the need of low-pass
filters and ADC converters.

4.2 Motor control with Raspberry Pi

In the real-time programming course taught at our
university, one task for the students is to write a
controller of a DC motor connected to an “indus-
trial” PowerPC MPC5200-based board running Vx-
Works [12]. We were interested, whether it is pos-
sible to control the same motor with preempt_rt
Linux and Raspberry Pi (RPi) – a popular low
cost embedded board [9]. The initial implementa-
tion was done by Radek Mečiar in his bachelor the-
sis [13, in Czech]. Later, we improved it and used
Simulink with ert_linux to implement the control
algorithm. This is described in the following para-
graphs.

3

https://rtime.felk.cvut.cz/gitweb/mf624-simulink.git
https://rtime.felk.cvut.cz/gitweb/mf624-simulink.git
https://rtime.felk.cvut.cz/gitweb/socketcan-simulink.git
https://rtime.felk.cvut.cz/gitweb/socketcan-simulink.git

PWM

GPIOsR
a
sp

b
e
rr

y
 P

i
–

P
1

CHB

CHA

IRC

HI DRV

LO DRV

IN

HI DRV

LO DRV

IN

DC
MOTOR

Motor Power Supply

DIR

Figure 3: Connection of a DC motor to the Rasp-
berry Pi

Hardware Since the RPi (and its BCM2835 SoC)
is not intended for motion control applications, there
is no hardware support for incremental encoder in-
puts (IRC) and the RPi connector has only one pulse
width modulation (PWM) output. We wanted to
have the interface hardware as simple as possible so
we ended up with the connection shown in Figure 3.
In order to be able to rotate the motor in both direc-
tions, we demultiplex the one available PWM signal
by using four NOR gates (SN74HCT02) and use an
additional GPIO output (DIR) to control the direc-
tion. The incremental encoder signals are connected
directly to the RPi and processed only in software.

IRC processing The IRC signal processing is the
most demanding part of our solution since the fre-
quency of the IRC signal can go up to 21 kHz, when
maximal voltage is applied to the motor. To achieve
reasonable performance, a kernel driver has been im-
plemented for this purpose [13]. It uses four GPIO
pins – two for each IRC channel. One of these two
pins is configured to generate interrupts for rising
edges and the other for falling edges. Motor position
is derived from the order of interrupts and applica-
tions can read it via /dev/irc0.

This solution has an interesting property that
it works even when the processing of one (or few
more) interrupt(s) is delayed due to other activities
in the system. In preempt_rt, the interrupt handlers
run in dedicated threads, which can be preempted
by threads with higher priority. Thanks to the fact
that the scheduler run queue is a FIFO queue, the
IRQ threads are activated in the same order as the
original interrupts and our position calculation works
even in the case of a delay. The alternative approach,
where the position is calculated from the actual IRC
signal levels read in the interrupt handler would fail,
because the level read in a delayed handler might be
different from the level at the time when the corre-
sponding IRQ was generated.

Even better performance could be probably

sfIRCInput

IRC0

int32 0

IRC-display

Convert

IRC int32 to Real

double

IRC-scope

-0.01

Manual
PWM

double

sfPWMwDirOutput

PWMwDirManual
PWM

Control

double
 Opt. PSD
 Controller

w
 RSTs
r
red I

u

I
 P

Subsys PSD

double

0

Position
Request

double

0

 RESET

double

Active
Output
Range

double
-K-

Anti
Windup

double

Position

double

Convert

To int

uint8

0.05976

PWM-display

Pos

Trajectory

double

PWM

Figure 4: Simulink model of the motor controller for
Raspberry Pi

achieved by processing the IRC signals in ARM’s fast
interrupt requests (FIQ), but this solutions would
not be portable to other architectures.

Simulink model Simulink model of the motor
controller is depicted in Figure 4. The IRC0
and PWMwDir blocks are so called C MEX S-
functions. The former reads the motor position from
/dev/irc0, the latter controls the PWM and DIR
signals by directly accessing the GPIO registers via
mmap()ed /dev/mem. The actual motor control is
performed by a proportional-sum-derivative (PSD)
controller enhanced with an anti-windup technique.
Setpoint w is generated either manually or by a sim-
ple trajectory generator. Sampling period of the
whole model was set to 1ms. The source code of
the S-functions as well as the model are available
from our Github repository3.

The ert_linux target was configured to use an
ARM C cross-compiler. The generated binary was
copied to the target RPi board by the scp command
and ran there. Simulink external mode was used to
tune certain model parameters on-line as well as to
see the actual signal values in the scope windows.

Performance evaluation The Linux kernel used
for our experiments was the official Raspberry
Pi rpi-3.12.y Linux kernel version 3.12.28 patched
with Steven Rostedt’s stable preempt_rt patch
(patch-3.12.26-rt40) and with Junjiro R. Okajima’s
aufs3.12.x 20140512. The latencies measured by

3https://github.com/ppisa/rpi-rt-control

4

https://github.com/ppisa/rpi-rt-control

Figure 5: Experimental robot with parallel kinematic
structure

the cyclictest tool when the system was loaded
by TCP communication and SD card accesses are
as follows. The maximal latency was 170µs, aver-
age about 40µs. When graphical desktop was run
the maximal latencies increased to 280µs (probably
caused by contention on the system bus generated
by the VideoCore GPU).

System load caused by running an unoptimized
(-O0) model was about 2%. The USB connected
Ethernet controller (a part of RPi) generated load
of about 10%. The highest load was generated by
the software IRC signal processing – up to 95%, i.e.
the limit for RT tasks. This happened during fast
motor rotation (e.g. when maximal input voltage
was applied) and the interrupt frequency was 8 kHz
per each channel (32 kHz in total). As can be seen,
processing of the IRC signal at full speed (21 kHz) is
above capabilities of the Linux kernel on this hard-
ware. As mentioned above, the use of FIQ (or raw
interrupts) could help here. For lower speeds, our
simple solution works flawlessly and can be used as
a great tool for control education and experiments.

4.3 Parallel kinematic robot control

The ert_linux target was also used to control an
experimental robot with parallel kinematic structure
shown in Figure 5. The robot has more actuators (4)
than degrees of freedom (3), which brings some bene-
fits such as higher stiffness, but more complex control
algorithms are required. The robot was developed
at Adaptive Systems Department of Institute of In-
formation Theory and Automation Academy of Sci-
ences of the Czech Republic. The robot is equipped
with four DC motors and four incremental encoders

N Signal MF624
4× Motor position IRC input (with index)
4× Homing mark Digital input
4× Motor voltage PWM output
4× Motor direction Digital output
4× Current sensor ADC converter
3× Buttons Digital input
2× LED indicators Digital output

Table 1: Interface between the MF624 IO card and
the robot

(IRC). We used the MF624 IO card to control the
robot from Simulink. The interface between the
robot and Simulink is summarized in Table 1.

The MF624 card is equipped only with four pulse
width modulation (PWM) outputs so we used the
same concept to control motor direction as in the
Raspberry Pi case.

The control algorithm for this robot was the most
complex application of ert_linux – see the screen-
shot in Figure 1. Even if the control algorithm for the
redundant parallel kinematic structure is based on
simple proportional-sum-derivative (PSD) control, it
requires reduction of antagonistic forces based on the
robot kinematics model [14]. This ensures that the
integral sum of small deviations caused by discrepan-
cies in the model does not cause the motors to “fight”
against each other, resulting in the overload of the
power stage. Antagonistic force reduction requires
complex iterative computation in each sampling in-
terval. Similarly, robot homing requires a complex
multi-phase procedure at the startup [15]. Because
of the lack of the Stateflow4 license, an application
specific homing block has been implemented in C
language as a C MEX S-function.

The performance of the control algorithm with
ert_linux was more than satisfactory. It ran to-
gether with Simulink on a PC with Intel i7-2600 CPU
and 64-bit Linux kernel 3.12-rt. The sampling fre-
quency of the controller was 1ms. Despite the com-
plex computations, the load caused by the control
tasks was about 20%. Their timing was neither af-
fected by a lot of scope windows (see Figure 1) nor
by loading the system with different types of loads
(multiple busy loops, parallel execution of find com-
mands, execution of other applications).

4Stateflow is a tool for designing state machines in Simulink

5

5 Conclusion

In this paper, we introduced the ert_linux – a
code generation target for Simulink with Embed-
ded Coder. We argued that our target does not
suffer from several shortcomings present in targets
distributed with Matlab/Simulink. The target was
successfully used in several applications, which are
also briefly described in the paper.

As for the future work, we would like to de-
velop Simulink blocks compatible with Comedi inter-
face [16]. This would allow using ert_linux with
many data acquisition cards without the need for de-
veloping special Simulink blocks for each of them.

Acknowledgment

This work was supported by the Grant Agency
of the Czech Republic under the Project GACR
P103/12/1994.

We would like to thank Rostislav Lisový for help-
ing us with manuscript preparation.

References

[1] MathWorks. Simulink – Embedded Coder.
[Online]. Available: http://www.mathworks.
com/products/embedded-coder/

[2] MathWorks, “Targeting embedded Linux
systems from Matlab and Simulink.” [Online].
Available: http://www.mathworks.com/
videos/targeting-embedded-linux-systems-
from-matlab-simulink-68903.html

[3] “Eclipse Luna.” [Online]. Available: https:
//www.eclipse.org/

[4] “RTwiki.” [Online]. Available: https://rt.wiki.
kernel.org/index.php/Main_Page

[5] T. Gleixner, “hrtimer: fixup hrtimer callback
changes for preempt-rt.” [Online]. Available:
https://git.kernel.org/cgit/linux/kernel/git/rt/
linux-stable-rt.git/commit/?h=v3.12-rt&id=
d630b68cc073a4f582f870b8bd82550d5dc95169

[6] T. Gleixner, “softirq: Split softirq
locks.” [Online]. Available: https:
//git.kernel.org/cgit/linux/kernel/git/rt/linux-

stable-rt.git/commit/?h=v3.12-rt&id=
ba9bf2368cb80fa329cf6513b8fd9cf8d729e00b

[7] M. Sojka, P. Píša et al., “Homepage of Linux
target for Simulink Embedded Coder.” [Online].
Available: http://lintarget.sourceforge.net/

[8] Humusoft, “MF624 data acquisition board.”
[Online]. Available: http://www.humusoft.cz/
produkty/datacq/mf624/

[9] “Raspberry Pi.” [Online]. Available: http:
//www.raspberrypi.org/

[10] M. Kreč, “Evaluation of safety and secu-
rity properties of automotive motor control
software,” Master’s thesis, Czech Techni-
cal University in Prague, 2014. [Online].
Available: http://cyber.felk.cvut.cz/research/
theses/papers/461.pdf

[11] M. Sojka, M. Krec, and Z. Hanzalek, “Case
study on combined validation of safety & secu-
rity requirements,” in Industrial Embedded Sys-
tems (SIES), 2014 9th IEEE International Sym-
posium on, June 2014, pp. 244–251.

[12] M. Sojka, “PSR course semestral work assign-
ment.” [Online]. Available: http://support.dce.
felk.cvut.cz/psr/cviceni/semestralka/

[13] R. Mečiar, “Řízení motoru s deskou
Raspberry Pi a Linuxem,” bachelor
thesis, České vysoké učení technické
v Praze, 2014. [Online]. Available:
https://support.dce.felk.cvut.cz/mediawiki/
images/1/10/Bp_2014_meciar_radek.pdf

[14] M. Valášek, V. Bauma, Z. Šika, K. Belda, and
P. Píša, “Design-by-optimization and control of
redundantly actuated parallel kinematics sliding
star,” in Eccomas – Multibody Dynamics 2003,
International Conference on Advances in Com-
putational Multibody Dynamics, vol. 1. Lisboa:
Instituto Suparior Téchnico Av. Rovisco Pais,
2003, pp. 98–104.

[15] K. Belda and P. Píša, “Homing, Calibration and
Model-Based Predictive Control for Planar Par-
allel Robots,” in UKACC International Confer-
ence on Control 2008 Proceedings. Manchester:
University of Manchester, 2008, pp. –.

[16] “Comedi – control and measurement interface.”
[Online]. Available: http://www.comedi.org/

6

http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/products/embedded-coder/
http://www.mathworks.com/videos/targeting-embedded-linux-systems-from-matlab-simulink-68903.html
http://www.mathworks.com/videos/targeting-embedded-linux-systems-from-matlab-simulink-68903.html
http://www.mathworks.com/videos/targeting-embedded-linux-systems-from-matlab-simulink-68903.html
https://www.eclipse.org/
https://www.eclipse.org/
https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page
https://git.kernel.org/cgit/linux/kernel/git/rt/linux-stable-rt.git/commit/?h=v3.12-rt&id=d630b68cc073a4f582f870b8bd82550d5dc95169
https://git.kernel.org/cgit/linux/kernel/git/rt/linux-stable-rt.git/commit/?h=v3.12-rt&id=d630b68cc073a4f582f870b8bd82550d5dc95169
https://git.kernel.org/cgit/linux/kernel/git/rt/linux-stable-rt.git/commit/?h=v3.12-rt&id=d630b68cc073a4f582f870b8bd82550d5dc95169
https://git.kernel.org/cgit/linux/kernel/git/rt/linux-stable-rt.git/commit/?h=v3.12-rt&id=ba9bf2368cb80fa329cf6513b8fd9cf8d729e00b
https://git.kernel.org/cgit/linux/kernel/git/rt/linux-stable-rt.git/commit/?h=v3.12-rt&id=ba9bf2368cb80fa329cf6513b8fd9cf8d729e00b
https://git.kernel.org/cgit/linux/kernel/git/rt/linux-stable-rt.git/commit/?h=v3.12-rt&id=ba9bf2368cb80fa329cf6513b8fd9cf8d729e00b
https://git.kernel.org/cgit/linux/kernel/git/rt/linux-stable-rt.git/commit/?h=v3.12-rt&id=ba9bf2368cb80fa329cf6513b8fd9cf8d729e00b
http://lintarget.sourceforge.net/
http://www.humusoft.cz/produkty/datacq/mf624/
http://www.humusoft.cz/produkty/datacq/mf624/
http://www.raspberrypi.org/
http://www.raspberrypi.org/
http://cyber.felk.cvut.cz/research/theses/papers/461.pdf
http://cyber.felk.cvut.cz/research/theses/papers/461.pdf
http://support.dce.felk.cvut.cz/psr/cviceni/semestralka/
http://support.dce.felk.cvut.cz/psr/cviceni/semestralka/
https://support.dce.felk.cvut.cz/mediawiki/images/1/10/Bp_2014_meciar_radek.pdf
https://support.dce.felk.cvut.cz/mediawiki/images/1/10/Bp_2014_meciar_radek.pdf
http://www.comedi.org/

	Introduction
	Embedded Coder in a nutshell
	What's wrong with MathWorks Linux targets

	Welcome to ert_linux
	The ert_linux target in practice
	PMSM motor simulator
	Motor control with Raspberry Pi
	Parallel kinematic robot control

	Conclusion

