Deadline-driven scheduling

Michal Sojka

Czech Technical University in Prague,
FEE and CIIRC

November 22, 2023

Some slides are derived from lectures by Steve Goddard and James H. Anderson

1/30

Classification of scheduling algorithms

(used in real-time systems)

Scheduling algorithms

Off-line scheduling
(static, clock-driven)

On-line scheduling
(dynamic)

Static-priority scheduling
(VxWorks, SCHED_FIFO)

Deadline-driven
scheduling
(EDF, ..)

N

General purpose OS
scheduling
(fair, interactive, ...)

2/30

Note

Terminology

Deadline-driven scheduling is also referred to as dynamic-priority
scheduling.

m Why dynamic priority?

m Historical name coming from implementations on top of fixed-priority
schedulers.

m The term “Deadline driven scheduling” better reflects the nature of the
algorithms.

m Differences against fixed-priority scheduling:

m Different jobs of the same tasks can have assigned different “priority”.
m Infinite number of “priorities”

3/30

Outline

Earliest Deadline First (EDF) and its optimality
LRT, LLF and optimality

Utilization-based schedulability test

EDF variants

Comparison of EDF with FPS

@ Multiprocessor Scheduling

4/30

Earliest Deadline First (EDF) and its optimality

Outline

Earliest Deadline First (EDF) and its optimality

5/30

Earliest Deadline First (EDF) and its optimality

Earliest Deadline First (EDF) scheduling

m Scheduler selects a job with earliest deadline
(the job with earliest deadline has the “highest priority”)
m From the programmers point of view (when dealing with CPU
scheduling):
m On task creation, one specifies relative deadline (or period if D= T)
rather than the priority.
m Job completion has to be explicitly announced to the scheduler.
m Scheduler is able to detect deadline misses and react appropriately (e.g.
notify the application).

6/30

Earliest Deadline First (EDF) and its optimality

EDF optimality

Theorem (Liu, Layland)

When preemption is allowed and jobs do not contend for resources, the
EDF algorithm can produce a feasible schedule of a set T of independent

jobs with arbitrary release times and deadlines on a processor if and only if
T has feasible schedules.

Notes:
m Applies even if tasks are not periodic.

m If periodic, a task's relative deadline can be less than its period, equal
to its period, or greater than its period.

m Stronger claim that RM/DM optimality.

7/30

Earliest Deadline First (EDF) and its optimality

Proof

m We show that any feasible schedule of jobs 7 can be systematically
transformed to EDF schedule.

m Assume that parts of two jobs J; a Ji are scheduled in non-EDF order:
I T

! r1

s Dy D;

m This can be easily resolved by swapping the jobs:

A A7 I 73 I

Note that this operation cannot cause deadline miss.

8/30

Earliest Deadline First (EDF) and its optimality

Proof (continued)

m By repeating this step, we get rid of all EDF order violations.

m Resulting schedule may still not be valid EDF schedule, because it can
contain “gaps” even when some jobs were ready:

A A7 s I 3 I

m These gaps can be easily eliminated by shifting the schedule ahead of
time:

I I I Y T

9/30

LRT, LLF and optimality

Outline

LRT, LLF and optimality

10/30

LRT, LLF and optimality

Latest Release Time (LRT) algorithm

m It is sufficient when jobs finish right at the deadline.
m We will run them at the latest time possible to not miss deadline.

m EDF with time going backward = the same optimality claim holds.

J,.3(0,6] J..2(5.8]
—»

i | x| |

¥

11/30

LRT, LLF and optimality

Least Laxity First (LLF) scheduling

Sometimes called “least slack time first” or “minimum laxity first” (Liu).

Definition (slack, laxity)

At any time t the slack (or laxity) of a job with deadline at D is equal
D — t — x, where x is the remaining portion of the job.

deadline

}

laxity: 4 4 4 3 3 3 3 2 2 1 0

LLF scheduling: The job with the smallest laxity has highest priority at
all times.

12/30

LRT, LLF and optimality

LLF optimality

When preemption is allowed and jobs do not contend for resources, the
LLF algorithm can produce a feasible schedule of a set J of independent
jobs with arbitrary release time times and deadlines on a processor if and
only if J has feasible schedules.

m The proof is similar to that of EDF.

13/30

LRT, LLF and optimality

Quiz

Which algorithm would be preferable in practice for CPU scheduling?
EDF (earliest deadline first)
B LLF (least laxity first)

14/30

Utilization-based schedulability test

Outline

Utilization-based schedulability test

15/30

Utilization-based schedulability test

Utilization-based schedulability test for (preemptive) EDF

CZ: Test rozvrhnutelnosti pro EDF zaloZeny na zatizenf{

Theorem (Liu, Layland)

A system T of independent, preemptable, periodic tasks with relative
deadlines equal to their periods can be feasibly scheduled (under EDF) on
one processor if and only if its total utilization U is at most one.

Proof: Implication in one direction is trivial: If U > 1, then it is obvious
that some task has to miss its deadline. Let's focus on the opposite
direction.

16/30

Utilization-based schedulability test

Proof

m We want to show that U <1 = 7T is schedulable.

= We will prove equivalent statement (contrapositive)
T is not schedulable = U > 1.

m Assume that 7 is not schedulable. Let 7; is the first job to miss the
deadline.

[1 f t | {1
 — |

| . 1

B *

L, L Tigel

=

L

k this is the last “idle instant™

17/30

Utilization-based schedulability test

Proof (continued)

As 7 misses the deadline, the demand placed on the processor by jobs
with deadline less than r; .1 in the interval [t_1, rix41) is greater than the
available processor time in [t_1, rj41]. Thus,

fik+1 — t_1 = available processor time in [t_1, fis+1] <

< demand placed on the processor by jobs with D < rj ;41 =

M=

(number of jobs 7; s Dj < riky1 and rjx € [t_1, rixs1]) G <

18/30

Utilization-based schedulability test

Proof (continued)

So we have

N
liky1 — t-1
lik+1r — to1 < Zf : C:,
=1 J

Canceling rj 41 — t_1 yields

dlﬁ

1< U,
This completes the proof.

19/30

EDF variants

Outline

EDF variants

20/30

EDF variants

EDF with deadlines < period

m If deadlines are less than periods then U < 1 is no longer sufficient
schedulability condition.

m This is easy to see. Consider two tasks such that, for both, C;=1 a
T; = 2. If both have deadlines at 1.0, then the system is not
schedulable, even though U = 1.

m For these kinds of systems, we work with densities instead of
utilizations.

Ck
min(Dk, Tk).
The density of the system is defined as A = Z Ok.

k=1,...,N

The density of task 7 is defined as dx =

21/30

EDF variants

EDF with deadlines < period (continued)

Theorem

System T of independent, preemptible, periodic tasks can be feasibly
scheduled on one processor if its density is at most one.

m Proof is similar to the one for the previous theorem.
= Note: This gives only sufficient condition.

m The next expression is called EDF schedulability condition.

n

Z L <1
— min(Dy, Tk)

22/30

EDF variants

Proof on non-tightness

Next example shows, why A > 1 does not imply non-feasibility.

Example

Consider tasks 71 = (2,0.6,1) and 75 = (5,2.3).
A =0.6/1+2.3/5=1.06. Yet, the tasks can be feasibly scheduled by
EDF:

=
[(%]
farat
e
LI
=a
=]
]
Sl
E

23/30

EDF variants

EDF in existing systems

m Real-Time threads® in MAC OS X are reported to use a variant of
EDF.
m SCHED_DEADLINE scheduler in Linux:
® In mainline kernel since 3.14 (January 2014)

m Developed at SSSA, Pisa, ltaly

m SCHED_DEADLINE tasks are scheduled before SCHED_FIFO tasks
(have higher priority)

m SCHED_DEADLINE tasks have guaranteed bandwidth (see scheduling
servers lecture)

"http://developer.apple.com/library/mac/#documentation/Darwin/

Conceptual/KernelProgramming/scheduler/scheduler.html
24/30

http://developer.apple.com/library/mac/#documentation/Darwin/Conceptual/KernelProgramming/scheduler/scheduler.html
http://developer.apple.com/library/mac/#documentation/Darwin/Conceptual/KernelProgramming/scheduler/scheduler.html

EDF variants

SCHED_DEADLINE example (in Linux)

void xrun_deadline(void *data) {
struct sched_ attr attr;

attr.size = sizeof(attr);
attr.sched_flags = attr.sched_nice = attr.sched_priority = 0;

/* This creates a 10ms/30ms reservation */
attr.sched_policy = SCHED_DEADLINE;

attr.sched_runtime = 10 * 1000 * 1000;

attr.sched_ period = attr.sched_deadline = 30 * 1000 * 1000;

sched_setattr(0, &attr, 0);

while (!done) { ... }
}

int main (int argc, char xxargv) {
pthread_t thread;
pthread_create(&thread, NULL, run_deadline, NULL);

as

25/30

Comparison of EDF with FPS

Outline

Comparison of EDF with FPS

26/30

Comparison of EDF with FPS

Comparison of EDF and FPS (RM)

Giorgio C. Buttazzo: Rate Monotonic vs. EDF: Judgment Day

https://support.dce.felk.cvut.cz/psr/prednasky/3/rtsj05-rmedf . pdf

Implementation: Comparable or “it depends”
Overhead: EDF typically exhibits less number of preemptions
= lower overhead
m Overrun behavior (U > 1):
m Permanent: EDF — automatic “period rescaling”,
RM — complete blocking of lower priority tasks
m Transient: Task overrun can cause deadline miss of

m EDF: arbitrary task
m RM: only lower priority task

If we don't know which task will overrun, the result is the same.

Jitter and latency: RM has no jitter only for the highest-priority task. In
overall comparison, EDF provides better results (smaller release-time jitter
a smaller input-output latency)

m Resource reservation: Simpler in case of EDF (see future lecture)

27/30

https://support.dce.felk.cvut.cz/psr/prednasky/3/rtsj05-rmedf.pdf

Multiprocessor Scheduling

Outline

@ Multiprocessor Scheduling

28/30

Multiprocessor Scheduling

Multiprocessor Scheduling

m EDF scheduling for multiple processors is not optimal.

29/30

Multiprocessor Scheduling

Multiprocessor Scheduling

EDF scheduling for multiple processors is not optimal.

So far we have talked about uni-processor scheduling.

Nowadays, multi-core CPUs are common.

Possible approaches to real-time multiprocessor scheduling:

m Partitioned scheduling — each CPU is scheduled independently of the
others (Linux, most RTOSes)

m Global scheduling — single scheduler for all CPUs

m Clustered scheduling — mixture of the above

30/30

	Earliest Deadline First (EDF) and its optimality
	LRT, LLF and optimality
	Utilization-based schedulability test
	EDF variants
	Comparison of EDF with FPS
	Multiprocessor Scheduling

