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Why is DRAM slow?

Types of RAM

Static RAM (SRAM)

Fast but expensive

6 transistors per bit

Dynamic RAM (DRAM)

Capacitor – (Dis)Charging is not instantaneous

Reading discharges capacitor (write after read)

Compromise: capacity/size/power consumption
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Why is DRAM slow?

DRAM in the computer

Intel’s P55 platform
Source: ArsTechnica

CPU contains a memory

controller (MC)

MC talks to DRAM chips via

“Memory Bus”, using a

protocol

Details on next slides
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Why is DRAM slow?

How DRAM chips work?

Addressing individual cells is

impractical (many wires)

Chip is organized in rows and columns

(and banks), address is multiplexed

In the chip, row and column

multiplexers (green and pink rectangles) select the

lines according to address bits

R/W operations happen in many chips

in parallel to work with the whole data

word (64 bits)

Writing: New value is put on Data
signal after row and column address
were selected (see next slide)

It takes some time to charge the

capacitors

(one bit)
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Why is DRAM slow?

SDRAM communication protocol

Access protocol is synchronous

– there is a clock signal

SDRAM (Synchronous DRAM)

CLK provided by memory
controller (FSB frequency – typ.
800–1600 MHz)

Double/Quad-pumped

Max. speed: 64 bit × 8 × 200MHz = 12.8GB/s

Not reachable in reality

DRAM technology requires tRCD and CL delays (they cannot be

shortened)

Data sent in bursts

Size of the burst corresponds to cache-line size

Sending just one word would be very inefficient due to tRCD and CL

delays
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Why is DRAM slow?

Timing parameters of standard DDR4 modules

Standard

name

Memory

clock

(MHz)

I/O bus

clock

(MHz)

Data

rate

(MT/s)

Module

name

Peak

transfer

rate

(MB/s)

Timings,

CL-tRCD-

tRP

CAS

latency

(ns)

DDR4-1600J*

DDR4-1600K

DDR4-1600L

200 800 1600
PC4-

12800
12800

10-10-10

11-11-11

12-12-12

12.5

13.75

15

DDR4-1866L*

DDR4-1866M

DDR4-1866N

233.33 933.33 1866.67
PC4-

14900
14933.33

12-12-12

13-13-13

14-14-14

12.857

13.929

15

DDR4-2133N*

DDR4-2133P

DDR4-2133R

266.67 1066.67 2133.33
PC4-

17000
17066.67

14-14-14

15-15-15

16-16-16

13.125

14.063

15

DDR4-2400P*

DDR4-2400R

DDR4-2400U

300 1200 2400
PC4-

19200
19200

15-15-15

16-16-16

18-18-18

12.5

13.33

15

Source: Wikipedia
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Caches » Architecture
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Caches » Architecture

CPU caches – big picture

All loads/stores go through cache

CPU↔ Cache: fast connection

Cache↔Main memory: FSB bus

It is an advantage to have separate

caches for instructions and data
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Caches » Architecture

Cache terminology

Spatial locality: accessed memory objects are close to each other

Code: inner loops

Data: structures (reading of one field is often followed by reads of other fields)

Temporal locality: The same data will be used multiple times in a short
period of time

Code: loops

Data: e.g. digital filter coefficients are accessed every sampling period

Cache hit: memory request is serviced from the cache, without going to

higher level memory

Cache miss: opposite of cache hit (request must go to slow main memory)
Multiple possible sources:

cold miss, capacity miss, conflict miss

true sharing miss, false sharing miss

Cache line eviction: cache line is removed from the cache to make space for

new data

Cache replacement policy: Least recently used (LRU), pseudo LRU,

random, ...
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Caches » Architecture » Cache associativity

Cache associativity

Direct-mapped cache

simple

Fully associative cache

ideal

Set associative cache

compromise
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Caches » Architecture » Cache associativity

Direct-mapped cache

Address:

Tag Cache Line Offset

T S O

31 0

Memory

Cache lines

{
typ. 64 B

Tag

0
0

0

0

1

1

0 B

512 B

1 KiB

!!!
sizeof(int)

Each memory location

has just one cache line

associated with it

Memory locations at

multiples of cache size

always collide!

Here at multiples of

8×64 bytes.

Besides the data, cache

stores the tag
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Caches » Architecture » Cache associativity

Problem: Self-evicting of code

Memory

Cache lines

{
64 B

outer_func()

inner_func()

void outer_func() {
for (int i = 0; i < 1000; i++)

inner_func();
}
void inner_func() {
// do something

}

Two cache misses every

iteration (instruction

fetches)!

Solution: Improve code

layout by putting related

(and hot) functions

together.

__attribute__((hot)) void outer_func();
__attribute__((hot)) void inner_func();
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Caches » Architecture » Cache associativity

Set associative caches

Memory Cache

{
64 B

Way 0 Way 1 {
S
e
ts

0 B

512 B

1 KiB

0
0

0
0
0

0
01

1

1

1

1
1
1

2
2
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Address: Tag Cache Set Offset

T S O

31 0

Majority of today’s hardware

Typically 8–16 ways

Two-way set associative cache has approx. the same

performance as direct-mapped cache of double size.

Cache can be seen as hardware hash-table with limited

bucket size (limit = the number of ways)

Cache replacement policy – determines which way is evicted

on conflict misses

Examples: Least recently used (LRU), Pseudo LRU, random, …

https://gitlab.fel.cvut.cz/B192_B4M36ESW/lectures/issues/new?issue[title]=Lecture memory-access, slide 16 (Set associative caches)&issue[description]=Insert your question/comment here.


Caches » Architecture » Cache associativity

Self-evicting code and set associative caches

Does the problem of self evicting code exist with set associative

caches?

Yes, but it is less likely to occur.

Why?
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Caches » Architecture » Cache write policies

Cache write policies

Goal: Avoid useless eviction of cached data.

Write-back “Common” case. Written data is cached for later reuse.
Write-through Written data bypass the cache and therefore never evicts

other data from the cache. Useful when you know the data
will not be needed soon.
#include <emmintrin.h>
void _mm_stream_si32(int *p, int a);
void _mm_stream_si128(int *p, __m128i a);
void _mm_stream_pd(double *p, __m128d a);
#include <xmmintrin.h>
void _mm_stream_pi(__m64 *p, __m64 a);
void _mm_stream_ps(float *p, __m128 a);
#include <ammintrin.h>
void _mm_stream_sd(double *p, __m128d a);
void _mm_stream_ss(float *p, __m128 a);

Write-Combining All writes to the cache line are combined together and

written at once. This avoids one memory read, because

when the cache line is fully overwritten, there is no point in

reading the old value. Write combining is often used for

frame buffer memory (e.g. filling the screen with a color).
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Caches » Memory performance characteristics

Outline

1 Why is DRAM slow?

2 Caches

Architecture
Cache associativity

Cache write policies

Memory performance characteristics

Data structures and dynamic memory allocations

Matrix multiplications

3 Caches & memory in multi-processor systems

True and false sharing

NUMA

4 Conclusion

feedback 19 / 50

https://gitlab.fel.cvut.cz/B192_B4M36ESW/lectures/issues/new?issue[title]=Lecture memory-access, slide 19 (Outline)&issue[description]=Insert your question/comment here.


Caches » Memory performance characteristics

Sequential access
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Intel Core i7-2600
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#define REP 1000000
char A[65536*1024];
for (rep = 0; rep < REP; rep++)

for (i = 0; i < WSS; i += 64)
A[i]++;
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Caches » Memory performance characteristics

Random access
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char A[65536*1024];
WSS = (1<<N);
mask = (1<<N) - 1;
for (rep = 0; rep < REP; rep++) {

addr = ((rep + 523)*253573) & mask;
A[addr]++;

}

https://gitlab.fel.cvut.cz/B192_B4M36ESW/lectures/issues/new?issue[title]=Lecture memory-access, slide 21 (Random access)&issue[description]=Insert your question/comment here.


Caches » Memory performance characteristics

Translation Lookaside Buffer (TLB)

Caches translation of virtual to physical address

On TLB miss, page walk has to be performed (2 to 5 levels)

Intel i7-2600 has 512 L2 TLBs ⇒ 512×4 kB = 2 MB
Improvement: use so called huge pages (1 page = 2 MB, PS=1)

Linux: in some cases automatically or explicitly via hugetlbfs

Figure 4-8. Linear-Address Translation to a 4-KByte Page using IA-32e Paging

Directory Ptr

PTE

Linear Address (Virtual address)

Page Table

PDPTE

CR3

39 38

Pointer Table

9
9

40

12
9

40

4-KByte Page

Offset

Physical Addr

PDE with PS=0

Table

011122021

Directory

30 29

Page-Directory-

Page-Directory

PML4

47

9

PML4E

40

40

40
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Caches » Memory performance characteristics

Cache-related preemption delay

When a thread is preempted by another thread, the preempting

thread likely evicts some data from the cache.

After preemption ends, the preempted thread continues executing

and experiences a lot of cache misses!

Certain (older) architectures has to flush TLBs when switching
address spaces (processes).

Modern architectures allow tagging TLBs with address space

identifier (ASID, PCID, …)

High-performance software tries to limit preemptions.

Beware – limiting preemption increases response time!
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Caches » Data structures and dynamic memory allocations
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Caches » Data structures and dynamic memory allocations

Data structures and cache friendliness

Arrays + sequential access – nice

Dynamically allocated linked lists – depends on memory allocator

(probably like random access – bad)

Search trees – random access

For most data structures/algorithms, cache-optimized variants exist.

These are more tricky than textbook examples.
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Caches » Data structures and dynamic memory allocations

Dynamic memory allocator (malloc(), new)

Memory allocators try to maintain spacial and temporal locality

Spatial locality is hard to achieve when heap is fragmented

after many new/delete operations

Temporal locality – when memory is freed/deleted, subsequent

allocation tries to use that memory because it is cache-hot.

This is based on heuristics. If those heuristics fail for your workload,

you should think about writing special allocator for your workload.
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Caches » Matrix multiplications
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Caches » Matrix multiplications

Example of cache-optimized algorithm

1 C = A · B A = [aij ], i , j = 1 . . .N

2 cij =
∑N

k=1 aik · bkj
3 Cache-optimized version is 10× faster than naive implementation
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Caches » Matrix multiplications

Matrix multiplication – naive implementation

Matrix multiplication: Naive

A  mem:9   cache hit:4  

×

B  mem:9   cache hit:0  

=

C  mem:9   cache hit:8  

Totals: mem:27      cache hits:12  ≅44%

A  

B  

C  

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)

for (k = 0; k < N; ++k)
C[i][j] += A[i][k] * B[k][j];

One matrix element: double (8B)

Cache line size: 16B

Fully associative caches

L2 cache: 128B, L1 cache: 32B
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Caches » Matrix multiplications

Implementation with transposition

Matrix multiplication: B transposed

A  mem:9   cache hit:4  

×

B  mem:9   cache hit:4  

=

C  mem:9   cache hit:8  

Totals: mem:27      cache hits:16  ≅59%

A  

B  

C  

double B[N][N];
for (i = 0; i < N; ++i)

for (j = 0; j < N; ++j)
B[i][j] = Bsrc[j][i];

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)

for (k = 0; k < N; ++k)
C[i][j] += A[i][k] * B[j][k];

Performance (execution time): naive: 100%, transposed: 23,4%
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Caches » Matrix multiplications

Tiled implementation

Matrix multiplication: Tiled, B transposed

A  mem:128 cache hit:112

×

B  mem:128 cache hit:112

=

C  mem:128 cache hit:120

Totals: mem:384     cache hits:344 ≅89%

A  

B  

C  

for (k1 = 0; k1 < N; k += tile)
for (j1 = 0; j1 < N; j += tile)

for (i1 = 0; i1 < N; i += tile)
for (i = i1; i < i1 + tile; ++i)

for (j = j1; j < j1 + tile; ++j)
for (k = k1; k < k1 + tile; ++k)
C[i][j] += A[i][k] * B[j][k];

Each “tile” fits into the cache

Performance: 17.3% of naive

implementation (9.5% with

vectorized (SIMD) operations)
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Caches » Matrix multiplications

Tiled implementation and L1 cache

Matrix multiplication: Tiled, B transposed

A  mem:126 L1 hit:110 L2 hit:0  

×

B  mem:126 L1 hit:63  L2 hit:47 

=

C  mem:126 L1 hit:110 L2 hit:8  

Totals: mem:378     L1 hits:283 ≅74%    L2 hits:55  ≅14%    cache hits:338 ≅89%

A  

B  

C  

for (k1 = 0; k1 < N; k += tile)
for (j1 = 0; j1 < N; j += tile)

for (i1 = 0; i1 < N; i += tile)
for (i = i1; i < i1 + tile; ++i)

for (j = j1; j < j1 + tile; ++j)
for (k = k1; k < k1 + tile; ++k)
C[i][j] += A[i][k] * B[j][k];

No temporal L1 cache hit in B

75% L1 hits (in total)
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Caches » Matrix multiplications

Two-level tiled implementation

Matrix multiplication: 2-level tiled, B transposed

A  mem:126 L1 hit:94  L2 hit:16 

×

B  mem:126 L1 hit:94  L2 hit:16 

=

C  mem:126 L1 hit:110 L2 hit:8  

Totals: mem:378     L1 hits:298 ≅78%    L2 hits:40  ≅10%    cache hits:338 ≅89%

A  

B  

C  

for (k2 = 0; k2 < N; k2 += tile2)
for (j2 = 0; j2 < N; j2 += tile2)

for (i2 = 0; i2 < N; i2 += tile2)
for (k1 = k2; k1 < k2 + tile2; k += tile1)

for (j1 = j2; j1 < j2 + tile2; j += tile1)
for (i1 = i2; i1 < i2 + tile2; i += tile1)

for (i = i1; i < i1 + tile1; ++i)
for (j = j1; j < j1 + tile1; ++j)

for (k = k1; k < k1 + tile1; ++k)
C[i][j] += A[i][k] * B[j][k];

79% L1 hits
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Caches » Matrix multiplications

Recursive matrix multiplication

Generalization to arbitrary number of cache levels

NN multiplication = 8 multiply-add of (N /2)(N /2) multiplications[
C11 C12
C21 C22

]
=

[
A11 A12
A21 A22

] [
B11 B12
B21 B22

]
=[

A11B11 A11B12
A21B11 A21B12

] [
A12B21 A12B22
A22B21 A22B22

]
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Caches » Matrix multiplications

Animations

https://www.youtube.com/playlist?list=PLB_
aWiiTt1af-dICxt6E7pNJWrfcqHE2g
Source code: https://github.com/wentasah/mmul-anim
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Caches & memory in multi-processor systems

Cache coherency

In symmetric multi-processor (SMP) systems, caches of the CPUs

cannot work independently from each other.

Maintaining of uniform view of memory for all processor is called

“cache coherency”

If some processor writes to a cache line, other processors have to
clean the corresponding cache line from their caches.

Remember: inter-core (inter-socket) communication is “slow”

Cache synchronization protocol: MESI(F)

A dirty cache line is not present in any other processor’s cache.

Clean copies of the same cache line can reside in arbitrarily many

caches.
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Cache coherency graphically
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True sharing

Program is slow because cache lines with shared data travel from

one CPU to another.

Typical example of true sharing: each mutex is shared between

CPUs.

When that is a problem (too much contention):

make locking more fine-grained,

or change your data structure (e.g. per-CPU data),

and/or algorithms to be more cache friendly.

std::atomic_int32_t counter;

void thread_cpu0() {
while (true)
counter++;

}

void thread_cpu1() {
while (true)

counter++;
}
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False sharing

– solution

Data accessed from different CPUs is not shared but happen to be

stored in a single cache line.

// Per-CPU counters
std::atomic_int32_t counter_cpu0;
std::atomic_int32_t counter_cpu1;

void thread_cpu0() {
while (true)
counter_cpu0++;

}

void thread_cpu1() {
while (true)

counter_cpu1++;
}

Detecting false sharing in your program:

Not visible in the source code!
Combining information from several HW performance counters can
help

That’s what Linux’s perf c2c (cache to cache) subcommand does.
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False sharing – solution

Data accessed from different CPUs is not shared but happen to be

stored in a single cache line.

// Per-CPU counters, each alligned to cache line boundary
std::atomic_int32_t counter_cpu0 __attribute__((aligned(64)));
std::atomic_int32_t counter_cpu1 __attribute__((aligned(64)));

void thread_cpu0() {
while (true)
counter_cpu0++;

}

void thread_cpu1() {
while (true)

counter_cpu1++;
}

How to determine cache size?

at run time: sysconf(_SC_LEVEL1_DCACHE_LINESIZE);
at compile time:

gcc -DLEVEL1_DCACHE_LINESIZE=$(getconf LEVEL1_DCACHE_LINESIZE) ...
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Example
Code from RCU assignment

Per-thread seed all allocated by the
compiler/linker:
__thread unsigned int seed;

void gen_rnd_key(char *key, int length)
{

int len = strlen(charset);
for (int i = 0; i < length; i++) {

int r = rand_r(&seed);
key[i] = charset[r];

}
key[length] = '\0';

}

__thread also ensures that each seed variable is

located in a different cache line.

Per-thread seed all allocated by the
programmer (false sharing):
unsigned int seed[NUM_CPUS];

void gen_rnd_key(char *key, int length, int thread_idx)
{

int len = strlen(charset);
for (int i = 0; i < length; i++) {

int r = rand_r(&seed[thread_idx]);
key[i] = charset[r];

}
key[length] = '\0';

}

This version is about 40% slower on the
ritchie server when running on 32 CPUs.
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Non-Uniform Memory Access (NUMA)
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Thread migrations between cores

OSes tend to do load balancing

By default threads are automatically migrated from overloaded to

underloaded cores

Migrated threads loose their cache footprint (cache-related migration

delay)

Migrated threads loose their NUMA locality

If you do your own load balancing in the application, pin the threads
to CPUs (set their CPU affinity):

cpu_set_t cpuset;
pthread_t thread;
thread = pthread_self();
/* Set affinity mask to include only CPU 3 */
CPU_ZERO(&cpuset);
CPU_SET(1 << 3, &cpuset);
s = pthread_setaffinity_np(thread, sizeof(cpu_set_t), &cpuset);

feedback 46 / 50

https://gitlab.fel.cvut.cz/B192_B4M36ESW/lectures/issues/new?issue[title]=Lecture memory-access, slide 46 (Thread migrations between cores)&issue[description]=Insert your question/comment here.


Caches & memory in multi-processor systems » NUMA

libnuma (Linux)

#include <numa.h>

int numa_available(void);

int numa_max_possible_node(void);
int numa_num_possible_nodes();

int numa_max_node(void);
//...
int numa_preferred(void);
void numa_set_preferred(int node);
void numa_set_interleave_mask(struct bitmask *nodemask);
//...
void numa_bind(struct bitmask *nodemask);
void numa_set_localalloc(void);
void numa_set_membind(struct bitmask *nodemask);

feedback 47 / 50

https://gitlab.fel.cvut.cz/B192_B4M36ESW/lectures/issues/new?issue[title]=Lecture memory-access, slide 47 (libnuma (Linux))&issue[description]=Insert your question/comment here.


Conclusion

Outline

1 Why is DRAM slow?

2 Caches

Architecture
Cache associativity

Cache write policies

Memory performance characteristics

Data structures and dynamic memory allocations

Matrix multiplications

3 Caches & memory in multi-processor systems

True and false sharing

NUMA

4 Conclusion

feedback 48 / 50

https://gitlab.fel.cvut.cz/B192_B4M36ESW/lectures/issues/new?issue[title]=Lecture memory-access, slide 48 (Outline)&issue[description]=Insert your question/comment here.


Conclusion
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Size matters

Even though we have terabytes of memory, size and layout of the

data structures still matters.

Only few kilobytes of memory is fast, the rest is slow!

Cache optimized algorithms can be 10–100× faster than naive

implementations.

When you profiler reports a lot of cache misses and you don’t see

any shared data, check for false sharing.
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