]> rtime.felk.cvut.cz Git - linux-imx.git/blob - security/security.c
c3ceb754e7056bc7f946160f89df832f9c95da3a
[linux-imx.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/security.h>
20 #include <linux/integrity.h>
21 #include <linux/ima.h>
22 #include <linux/evm.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mman.h>
25 #include <linux/mount.h>
26 #include <linux/personality.h>
27 #include <linux/backing-dev.h>
28 #include <net/flow.h>
29
30 #define MAX_LSM_EVM_XATTR       2
31
32 /* Boot-time LSM user choice */
33 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
34         CONFIG_DEFAULT_SECURITY;
35
36 static struct security_operations *security_ops;
37 static struct security_operations default_security_ops = {
38         .name   = "default",
39 };
40
41 static inline int __init verify(struct security_operations *ops)
42 {
43         /* verify the security_operations structure exists */
44         if (!ops)
45                 return -EINVAL;
46         security_fixup_ops(ops);
47         return 0;
48 }
49
50 static void __init do_security_initcalls(void)
51 {
52         initcall_t *call;
53         call = __security_initcall_start;
54         while (call < __security_initcall_end) {
55                 (*call) ();
56                 call++;
57         }
58 }
59
60 /**
61  * security_init - initializes the security framework
62  *
63  * This should be called early in the kernel initialization sequence.
64  */
65 int __init security_init(void)
66 {
67         printk(KERN_INFO "Security Framework initialized\n");
68
69         security_fixup_ops(&default_security_ops);
70         security_ops = &default_security_ops;
71         do_security_initcalls();
72
73         return 0;
74 }
75
76 void reset_security_ops(void)
77 {
78         security_ops = &default_security_ops;
79 }
80
81 /* Save user chosen LSM */
82 static int __init choose_lsm(char *str)
83 {
84         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
85         return 1;
86 }
87 __setup("security=", choose_lsm);
88
89 /**
90  * security_module_enable - Load given security module on boot ?
91  * @ops: a pointer to the struct security_operations that is to be checked.
92  *
93  * Each LSM must pass this method before registering its own operations
94  * to avoid security registration races. This method may also be used
95  * to check if your LSM is currently loaded during kernel initialization.
96  *
97  * Return true if:
98  *      -The passed LSM is the one chosen by user at boot time,
99  *      -or the passed LSM is configured as the default and the user did not
100  *       choose an alternate LSM at boot time.
101  * Otherwise, return false.
102  */
103 int __init security_module_enable(struct security_operations *ops)
104 {
105         return !strcmp(ops->name, chosen_lsm);
106 }
107
108 /**
109  * register_security - registers a security framework with the kernel
110  * @ops: a pointer to the struct security_options that is to be registered
111  *
112  * This function allows a security module to register itself with the
113  * kernel security subsystem.  Some rudimentary checking is done on the @ops
114  * value passed to this function. You'll need to check first if your LSM
115  * is allowed to register its @ops by calling security_module_enable(@ops).
116  *
117  * If there is already a security module registered with the kernel,
118  * an error will be returned.  Otherwise %0 is returned on success.
119  */
120 int __init register_security(struct security_operations *ops)
121 {
122         if (verify(ops)) {
123                 printk(KERN_DEBUG "%s could not verify "
124                        "security_operations structure.\n", __func__);
125                 return -EINVAL;
126         }
127
128         if (security_ops != &default_security_ops)
129                 return -EAGAIN;
130
131         security_ops = ops;
132
133         return 0;
134 }
135
136 /* Security operations */
137
138 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
139 {
140 #ifdef CONFIG_SECURITY_YAMA_STACKED
141         int rc;
142         rc = yama_ptrace_access_check(child, mode);
143         if (rc)
144                 return rc;
145 #endif
146         return security_ops->ptrace_access_check(child, mode);
147 }
148
149 int security_ptrace_traceme(struct task_struct *parent)
150 {
151 #ifdef CONFIG_SECURITY_YAMA_STACKED
152         int rc;
153         rc = yama_ptrace_traceme(parent);
154         if (rc)
155                 return rc;
156 #endif
157         return security_ops->ptrace_traceme(parent);
158 }
159
160 int security_capget(struct task_struct *target,
161                      kernel_cap_t *effective,
162                      kernel_cap_t *inheritable,
163                      kernel_cap_t *permitted)
164 {
165         return security_ops->capget(target, effective, inheritable, permitted);
166 }
167
168 int security_capset(struct cred *new, const struct cred *old,
169                     const kernel_cap_t *effective,
170                     const kernel_cap_t *inheritable,
171                     const kernel_cap_t *permitted)
172 {
173         return security_ops->capset(new, old,
174                                     effective, inheritable, permitted);
175 }
176
177 int security_capable(const struct cred *cred, struct user_namespace *ns,
178                      int cap)
179 {
180         return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
181 }
182
183 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
184                              int cap)
185 {
186         return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
187 }
188
189 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
190 {
191         return security_ops->quotactl(cmds, type, id, sb);
192 }
193
194 int security_quota_on(struct dentry *dentry)
195 {
196         return security_ops->quota_on(dentry);
197 }
198
199 int security_syslog(int type)
200 {
201         return security_ops->syslog(type);
202 }
203
204 int security_settime(const struct timespec *ts, const struct timezone *tz)
205 {
206         return security_ops->settime(ts, tz);
207 }
208
209 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
210 {
211         return security_ops->vm_enough_memory(mm, pages);
212 }
213
214 int security_bprm_set_creds(struct linux_binprm *bprm)
215 {
216         return security_ops->bprm_set_creds(bprm);
217 }
218
219 int security_bprm_check(struct linux_binprm *bprm)
220 {
221         int ret;
222
223         ret = security_ops->bprm_check_security(bprm);
224         if (ret)
225                 return ret;
226         return ima_bprm_check(bprm);
227 }
228
229 void security_bprm_committing_creds(struct linux_binprm *bprm)
230 {
231         security_ops->bprm_committing_creds(bprm);
232 }
233
234 void security_bprm_committed_creds(struct linux_binprm *bprm)
235 {
236         security_ops->bprm_committed_creds(bprm);
237 }
238
239 int security_bprm_secureexec(struct linux_binprm *bprm)
240 {
241         return security_ops->bprm_secureexec(bprm);
242 }
243
244 int security_sb_alloc(struct super_block *sb)
245 {
246         return security_ops->sb_alloc_security(sb);
247 }
248
249 void security_sb_free(struct super_block *sb)
250 {
251         security_ops->sb_free_security(sb);
252 }
253
254 int security_sb_copy_data(char *orig, char *copy)
255 {
256         return security_ops->sb_copy_data(orig, copy);
257 }
258 EXPORT_SYMBOL(security_sb_copy_data);
259
260 int security_sb_remount(struct super_block *sb, void *data)
261 {
262         return security_ops->sb_remount(sb, data);
263 }
264
265 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
266 {
267         return security_ops->sb_kern_mount(sb, flags, data);
268 }
269
270 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
271 {
272         return security_ops->sb_show_options(m, sb);
273 }
274
275 int security_sb_statfs(struct dentry *dentry)
276 {
277         return security_ops->sb_statfs(dentry);
278 }
279
280 int security_sb_mount(const char *dev_name, struct path *path,
281                        const char *type, unsigned long flags, void *data)
282 {
283         return security_ops->sb_mount(dev_name, path, type, flags, data);
284 }
285
286 int security_sb_umount(struct vfsmount *mnt, int flags)
287 {
288         return security_ops->sb_umount(mnt, flags);
289 }
290
291 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
292 {
293         return security_ops->sb_pivotroot(old_path, new_path);
294 }
295
296 int security_sb_set_mnt_opts(struct super_block *sb,
297                                 struct security_mnt_opts *opts)
298 {
299         return security_ops->sb_set_mnt_opts(sb, opts);
300 }
301 EXPORT_SYMBOL(security_sb_set_mnt_opts);
302
303 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
304                                 struct super_block *newsb)
305 {
306         return security_ops->sb_clone_mnt_opts(oldsb, newsb);
307 }
308 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
309
310 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
311 {
312         return security_ops->sb_parse_opts_str(options, opts);
313 }
314 EXPORT_SYMBOL(security_sb_parse_opts_str);
315
316 int security_inode_alloc(struct inode *inode)
317 {
318         inode->i_security = NULL;
319         return security_ops->inode_alloc_security(inode);
320 }
321
322 void security_inode_free(struct inode *inode)
323 {
324         integrity_inode_free(inode);
325         security_ops->inode_free_security(inode);
326 }
327
328 int security_dentry_init_security(struct dentry *dentry, int mode,
329                                         struct qstr *name, void **ctx,
330                                         u32 *ctxlen)
331 {
332         return security_ops->dentry_init_security(dentry, mode, name,
333                                                         ctx, ctxlen);
334 }
335 EXPORT_SYMBOL(security_dentry_init_security);
336
337 int security_inode_init_security(struct inode *inode, struct inode *dir,
338                                  const struct qstr *qstr,
339                                  const initxattrs initxattrs, void *fs_data)
340 {
341         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
342         struct xattr *lsm_xattr, *evm_xattr, *xattr;
343         int ret;
344
345         if (unlikely(IS_PRIVATE(inode)))
346                 return 0;
347
348         memset(new_xattrs, 0, sizeof new_xattrs);
349         if (!initxattrs)
350                 return security_ops->inode_init_security(inode, dir, qstr,
351                                                          NULL, NULL, NULL);
352         lsm_xattr = new_xattrs;
353         ret = security_ops->inode_init_security(inode, dir, qstr,
354                                                 &lsm_xattr->name,
355                                                 &lsm_xattr->value,
356                                                 &lsm_xattr->value_len);
357         if (ret)
358                 goto out;
359
360         evm_xattr = lsm_xattr + 1;
361         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
362         if (ret)
363                 goto out;
364         ret = initxattrs(inode, new_xattrs, fs_data);
365 out:
366         for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
367                 kfree(xattr->name);
368                 kfree(xattr->value);
369         }
370         return (ret == -EOPNOTSUPP) ? 0 : ret;
371 }
372 EXPORT_SYMBOL(security_inode_init_security);
373
374 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
375                                      const struct qstr *qstr, char **name,
376                                      void **value, size_t *len)
377 {
378         if (unlikely(IS_PRIVATE(inode)))
379                 return -EOPNOTSUPP;
380         return security_ops->inode_init_security(inode, dir, qstr, name, value,
381                                                  len);
382 }
383 EXPORT_SYMBOL(security_old_inode_init_security);
384
385 #ifdef CONFIG_SECURITY_PATH
386 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
387                         unsigned int dev)
388 {
389         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
390                 return 0;
391         return security_ops->path_mknod(dir, dentry, mode, dev);
392 }
393 EXPORT_SYMBOL(security_path_mknod);
394
395 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
396 {
397         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
398                 return 0;
399         return security_ops->path_mkdir(dir, dentry, mode);
400 }
401 EXPORT_SYMBOL(security_path_mkdir);
402
403 int security_path_rmdir(struct path *dir, struct dentry *dentry)
404 {
405         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
406                 return 0;
407         return security_ops->path_rmdir(dir, dentry);
408 }
409
410 int security_path_unlink(struct path *dir, struct dentry *dentry)
411 {
412         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
413                 return 0;
414         return security_ops->path_unlink(dir, dentry);
415 }
416 EXPORT_SYMBOL(security_path_unlink);
417
418 int security_path_symlink(struct path *dir, struct dentry *dentry,
419                           const char *old_name)
420 {
421         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
422                 return 0;
423         return security_ops->path_symlink(dir, dentry, old_name);
424 }
425
426 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
427                        struct dentry *new_dentry)
428 {
429         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
430                 return 0;
431         return security_ops->path_link(old_dentry, new_dir, new_dentry);
432 }
433
434 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
435                          struct path *new_dir, struct dentry *new_dentry)
436 {
437         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
438                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
439                 return 0;
440         return security_ops->path_rename(old_dir, old_dentry, new_dir,
441                                          new_dentry);
442 }
443 EXPORT_SYMBOL(security_path_rename);
444
445 int security_path_truncate(struct path *path)
446 {
447         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
448                 return 0;
449         return security_ops->path_truncate(path);
450 }
451
452 int security_path_chmod(struct path *path, umode_t mode)
453 {
454         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
455                 return 0;
456         return security_ops->path_chmod(path, mode);
457 }
458
459 int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
460 {
461         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
462                 return 0;
463         return security_ops->path_chown(path, uid, gid);
464 }
465
466 int security_path_chroot(struct path *path)
467 {
468         return security_ops->path_chroot(path);
469 }
470 #endif
471
472 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
473 {
474         if (unlikely(IS_PRIVATE(dir)))
475                 return 0;
476         return security_ops->inode_create(dir, dentry, mode);
477 }
478 EXPORT_SYMBOL_GPL(security_inode_create);
479
480 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
481                          struct dentry *new_dentry)
482 {
483         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
484                 return 0;
485         return security_ops->inode_link(old_dentry, dir, new_dentry);
486 }
487
488 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
489 {
490         if (unlikely(IS_PRIVATE(dentry->d_inode)))
491                 return 0;
492         return security_ops->inode_unlink(dir, dentry);
493 }
494
495 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
496                             const char *old_name)
497 {
498         if (unlikely(IS_PRIVATE(dir)))
499                 return 0;
500         return security_ops->inode_symlink(dir, dentry, old_name);
501 }
502
503 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
504 {
505         if (unlikely(IS_PRIVATE(dir)))
506                 return 0;
507         return security_ops->inode_mkdir(dir, dentry, mode);
508 }
509 EXPORT_SYMBOL_GPL(security_inode_mkdir);
510
511 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
512 {
513         if (unlikely(IS_PRIVATE(dentry->d_inode)))
514                 return 0;
515         return security_ops->inode_rmdir(dir, dentry);
516 }
517
518 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
519 {
520         if (unlikely(IS_PRIVATE(dir)))
521                 return 0;
522         return security_ops->inode_mknod(dir, dentry, mode, dev);
523 }
524
525 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
526                            struct inode *new_dir, struct dentry *new_dentry)
527 {
528         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
529             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
530                 return 0;
531         return security_ops->inode_rename(old_dir, old_dentry,
532                                            new_dir, new_dentry);
533 }
534
535 int security_inode_readlink(struct dentry *dentry)
536 {
537         if (unlikely(IS_PRIVATE(dentry->d_inode)))
538                 return 0;
539         return security_ops->inode_readlink(dentry);
540 }
541
542 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
543 {
544         if (unlikely(IS_PRIVATE(dentry->d_inode)))
545                 return 0;
546         return security_ops->inode_follow_link(dentry, nd);
547 }
548
549 int security_inode_permission(struct inode *inode, int mask)
550 {
551         if (unlikely(IS_PRIVATE(inode)))
552                 return 0;
553         return security_ops->inode_permission(inode, mask);
554 }
555
556 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
557 {
558         int ret;
559
560         if (unlikely(IS_PRIVATE(dentry->d_inode)))
561                 return 0;
562         ret = security_ops->inode_setattr(dentry, attr);
563         if (ret)
564                 return ret;
565         return evm_inode_setattr(dentry, attr);
566 }
567 EXPORT_SYMBOL_GPL(security_inode_setattr);
568
569 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
570 {
571         if (unlikely(IS_PRIVATE(dentry->d_inode)))
572                 return 0;
573         return security_ops->inode_getattr(mnt, dentry);
574 }
575
576 int security_inode_setxattr(struct dentry *dentry, const char *name,
577                             const void *value, size_t size, int flags)
578 {
579         int ret;
580
581         if (unlikely(IS_PRIVATE(dentry->d_inode)))
582                 return 0;
583         ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
584         if (ret)
585                 return ret;
586         ret = ima_inode_setxattr(dentry, name, value, size);
587         if (ret)
588                 return ret;
589         return evm_inode_setxattr(dentry, name, value, size);
590 }
591
592 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
593                                   const void *value, size_t size, int flags)
594 {
595         if (unlikely(IS_PRIVATE(dentry->d_inode)))
596                 return;
597         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
598         evm_inode_post_setxattr(dentry, name, value, size);
599 }
600
601 int security_inode_getxattr(struct dentry *dentry, const char *name)
602 {
603         if (unlikely(IS_PRIVATE(dentry->d_inode)))
604                 return 0;
605         return security_ops->inode_getxattr(dentry, name);
606 }
607
608 int security_inode_listxattr(struct dentry *dentry)
609 {
610         if (unlikely(IS_PRIVATE(dentry->d_inode)))
611                 return 0;
612         return security_ops->inode_listxattr(dentry);
613 }
614
615 int security_inode_removexattr(struct dentry *dentry, const char *name)
616 {
617         int ret;
618
619         if (unlikely(IS_PRIVATE(dentry->d_inode)))
620                 return 0;
621         ret = security_ops->inode_removexattr(dentry, name);
622         if (ret)
623                 return ret;
624         ret = ima_inode_removexattr(dentry, name);
625         if (ret)
626                 return ret;
627         return evm_inode_removexattr(dentry, name);
628 }
629
630 int security_inode_need_killpriv(struct dentry *dentry)
631 {
632         return security_ops->inode_need_killpriv(dentry);
633 }
634
635 int security_inode_killpriv(struct dentry *dentry)
636 {
637         return security_ops->inode_killpriv(dentry);
638 }
639
640 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
641 {
642         if (unlikely(IS_PRIVATE(inode)))
643                 return -EOPNOTSUPP;
644         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
645 }
646
647 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
648 {
649         if (unlikely(IS_PRIVATE(inode)))
650                 return -EOPNOTSUPP;
651         return security_ops->inode_setsecurity(inode, name, value, size, flags);
652 }
653
654 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
655 {
656         if (unlikely(IS_PRIVATE(inode)))
657                 return 0;
658         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
659 }
660
661 void security_inode_getsecid(const struct inode *inode, u32 *secid)
662 {
663         security_ops->inode_getsecid(inode, secid);
664 }
665
666 int security_file_permission(struct file *file, int mask)
667 {
668         int ret;
669
670         ret = security_ops->file_permission(file, mask);
671         if (ret)
672                 return ret;
673
674         return fsnotify_perm(file, mask);
675 }
676
677 int security_file_alloc(struct file *file)
678 {
679         return security_ops->file_alloc_security(file);
680 }
681
682 void security_file_free(struct file *file)
683 {
684         security_ops->file_free_security(file);
685 }
686
687 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
688 {
689         return security_ops->file_ioctl(file, cmd, arg);
690 }
691
692 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
693 {
694         /*
695          * Does we have PROT_READ and does the application expect
696          * it to imply PROT_EXEC?  If not, nothing to talk about...
697          */
698         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
699                 return prot;
700         if (!(current->personality & READ_IMPLIES_EXEC))
701                 return prot;
702         /*
703          * if that's an anonymous mapping, let it.
704          */
705         if (!file)
706                 return prot | PROT_EXEC;
707         /*
708          * ditto if it's not on noexec mount, except that on !MMU we need
709          * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
710          */
711         if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
712 #ifndef CONFIG_MMU
713                 unsigned long caps = 0;
714                 struct address_space *mapping = file->f_mapping;
715                 if (mapping && mapping->backing_dev_info)
716                         caps = mapping->backing_dev_info->capabilities;
717                 if (!(caps & BDI_CAP_EXEC_MAP))
718                         return prot;
719 #endif
720                 return prot | PROT_EXEC;
721         }
722         /* anything on noexec mount won't get PROT_EXEC */
723         return prot;
724 }
725
726 int security_mmap_file(struct file *file, unsigned long prot,
727                         unsigned long flags)
728 {
729         int ret;
730         ret = security_ops->mmap_file(file, prot,
731                                         mmap_prot(file, prot), flags);
732         if (ret)
733                 return ret;
734         return ima_file_mmap(file, prot);
735 }
736
737 int security_mmap_addr(unsigned long addr)
738 {
739         return security_ops->mmap_addr(addr);
740 }
741
742 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
743                             unsigned long prot)
744 {
745         return security_ops->file_mprotect(vma, reqprot, prot);
746 }
747
748 int security_file_lock(struct file *file, unsigned int cmd)
749 {
750         return security_ops->file_lock(file, cmd);
751 }
752
753 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
754 {
755         return security_ops->file_fcntl(file, cmd, arg);
756 }
757
758 int security_file_set_fowner(struct file *file)
759 {
760         return security_ops->file_set_fowner(file);
761 }
762
763 int security_file_send_sigiotask(struct task_struct *tsk,
764                                   struct fown_struct *fown, int sig)
765 {
766         return security_ops->file_send_sigiotask(tsk, fown, sig);
767 }
768
769 int security_file_receive(struct file *file)
770 {
771         return security_ops->file_receive(file);
772 }
773
774 int security_file_open(struct file *file, const struct cred *cred)
775 {
776         int ret;
777
778         ret = security_ops->file_open(file, cred);
779         if (ret)
780                 return ret;
781
782         return fsnotify_perm(file, MAY_OPEN);
783 }
784
785 int security_task_create(unsigned long clone_flags)
786 {
787         return security_ops->task_create(clone_flags);
788 }
789
790 void security_task_free(struct task_struct *task)
791 {
792 #ifdef CONFIG_SECURITY_YAMA_STACKED
793         yama_task_free(task);
794 #endif
795         security_ops->task_free(task);
796 }
797
798 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
799 {
800         return security_ops->cred_alloc_blank(cred, gfp);
801 }
802
803 void security_cred_free(struct cred *cred)
804 {
805         security_ops->cred_free(cred);
806 }
807
808 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
809 {
810         return security_ops->cred_prepare(new, old, gfp);
811 }
812
813 void security_transfer_creds(struct cred *new, const struct cred *old)
814 {
815         security_ops->cred_transfer(new, old);
816 }
817
818 int security_kernel_act_as(struct cred *new, u32 secid)
819 {
820         return security_ops->kernel_act_as(new, secid);
821 }
822
823 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
824 {
825         return security_ops->kernel_create_files_as(new, inode);
826 }
827
828 int security_kernel_module_request(char *kmod_name)
829 {
830         return security_ops->kernel_module_request(kmod_name);
831 }
832
833 int security_kernel_module_from_file(struct file *file)
834 {
835         int ret;
836
837         ret = security_ops->kernel_module_from_file(file);
838         if (ret)
839                 return ret;
840         return ima_module_check(file);
841 }
842
843 int security_task_fix_setuid(struct cred *new, const struct cred *old,
844                              int flags)
845 {
846         return security_ops->task_fix_setuid(new, old, flags);
847 }
848
849 int security_task_setpgid(struct task_struct *p, pid_t pgid)
850 {
851         return security_ops->task_setpgid(p, pgid);
852 }
853
854 int security_task_getpgid(struct task_struct *p)
855 {
856         return security_ops->task_getpgid(p);
857 }
858
859 int security_task_getsid(struct task_struct *p)
860 {
861         return security_ops->task_getsid(p);
862 }
863
864 void security_task_getsecid(struct task_struct *p, u32 *secid)
865 {
866         security_ops->task_getsecid(p, secid);
867 }
868 EXPORT_SYMBOL(security_task_getsecid);
869
870 int security_task_setnice(struct task_struct *p, int nice)
871 {
872         return security_ops->task_setnice(p, nice);
873 }
874
875 int security_task_setioprio(struct task_struct *p, int ioprio)
876 {
877         return security_ops->task_setioprio(p, ioprio);
878 }
879
880 int security_task_getioprio(struct task_struct *p)
881 {
882         return security_ops->task_getioprio(p);
883 }
884
885 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
886                 struct rlimit *new_rlim)
887 {
888         return security_ops->task_setrlimit(p, resource, new_rlim);
889 }
890
891 int security_task_setscheduler(struct task_struct *p)
892 {
893         return security_ops->task_setscheduler(p);
894 }
895
896 int security_task_getscheduler(struct task_struct *p)
897 {
898         return security_ops->task_getscheduler(p);
899 }
900
901 int security_task_movememory(struct task_struct *p)
902 {
903         return security_ops->task_movememory(p);
904 }
905
906 int security_task_kill(struct task_struct *p, struct siginfo *info,
907                         int sig, u32 secid)
908 {
909         return security_ops->task_kill(p, info, sig, secid);
910 }
911
912 int security_task_wait(struct task_struct *p)
913 {
914         return security_ops->task_wait(p);
915 }
916
917 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
918                          unsigned long arg4, unsigned long arg5)
919 {
920 #ifdef CONFIG_SECURITY_YAMA_STACKED
921         int rc;
922         rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
923         if (rc != -ENOSYS)
924                 return rc;
925 #endif
926         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
927 }
928
929 void security_task_to_inode(struct task_struct *p, struct inode *inode)
930 {
931         security_ops->task_to_inode(p, inode);
932 }
933
934 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
935 {
936         return security_ops->ipc_permission(ipcp, flag);
937 }
938
939 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
940 {
941         security_ops->ipc_getsecid(ipcp, secid);
942 }
943
944 int security_msg_msg_alloc(struct msg_msg *msg)
945 {
946         return security_ops->msg_msg_alloc_security(msg);
947 }
948
949 void security_msg_msg_free(struct msg_msg *msg)
950 {
951         security_ops->msg_msg_free_security(msg);
952 }
953
954 int security_msg_queue_alloc(struct msg_queue *msq)
955 {
956         return security_ops->msg_queue_alloc_security(msq);
957 }
958
959 void security_msg_queue_free(struct msg_queue *msq)
960 {
961         security_ops->msg_queue_free_security(msq);
962 }
963
964 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
965 {
966         return security_ops->msg_queue_associate(msq, msqflg);
967 }
968
969 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
970 {
971         return security_ops->msg_queue_msgctl(msq, cmd);
972 }
973
974 int security_msg_queue_msgsnd(struct msg_queue *msq,
975                                struct msg_msg *msg, int msqflg)
976 {
977         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
978 }
979
980 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
981                                struct task_struct *target, long type, int mode)
982 {
983         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
984 }
985
986 int security_shm_alloc(struct shmid_kernel *shp)
987 {
988         return security_ops->shm_alloc_security(shp);
989 }
990
991 void security_shm_free(struct shmid_kernel *shp)
992 {
993         security_ops->shm_free_security(shp);
994 }
995
996 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
997 {
998         return security_ops->shm_associate(shp, shmflg);
999 }
1000
1001 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1002 {
1003         return security_ops->shm_shmctl(shp, cmd);
1004 }
1005
1006 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1007 {
1008         return security_ops->shm_shmat(shp, shmaddr, shmflg);
1009 }
1010
1011 int security_sem_alloc(struct sem_array *sma)
1012 {
1013         return security_ops->sem_alloc_security(sma);
1014 }
1015
1016 void security_sem_free(struct sem_array *sma)
1017 {
1018         security_ops->sem_free_security(sma);
1019 }
1020
1021 int security_sem_associate(struct sem_array *sma, int semflg)
1022 {
1023         return security_ops->sem_associate(sma, semflg);
1024 }
1025
1026 int security_sem_semctl(struct sem_array *sma, int cmd)
1027 {
1028         return security_ops->sem_semctl(sma, cmd);
1029 }
1030
1031 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1032                         unsigned nsops, int alter)
1033 {
1034         return security_ops->sem_semop(sma, sops, nsops, alter);
1035 }
1036
1037 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1038 {
1039         if (unlikely(inode && IS_PRIVATE(inode)))
1040                 return;
1041         security_ops->d_instantiate(dentry, inode);
1042 }
1043 EXPORT_SYMBOL(security_d_instantiate);
1044
1045 int security_getprocattr(struct task_struct *p, char *name, char **value)
1046 {
1047         return security_ops->getprocattr(p, name, value);
1048 }
1049
1050 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1051 {
1052         return security_ops->setprocattr(p, name, value, size);
1053 }
1054
1055 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1056 {
1057         return security_ops->netlink_send(sk, skb);
1058 }
1059
1060 int security_ismaclabel(const char *name)
1061 {
1062         return security_ops->ismaclabel(name);
1063 }
1064 EXPORT_SYMBOL(security_ismaclabel);
1065
1066 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1067 {
1068         return security_ops->secid_to_secctx(secid, secdata, seclen);
1069 }
1070 EXPORT_SYMBOL(security_secid_to_secctx);
1071
1072 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1073 {
1074         return security_ops->secctx_to_secid(secdata, seclen, secid);
1075 }
1076 EXPORT_SYMBOL(security_secctx_to_secid);
1077
1078 void security_release_secctx(char *secdata, u32 seclen)
1079 {
1080         security_ops->release_secctx(secdata, seclen);
1081 }
1082 EXPORT_SYMBOL(security_release_secctx);
1083
1084 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1085 {
1086         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1087 }
1088 EXPORT_SYMBOL(security_inode_notifysecctx);
1089
1090 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1091 {
1092         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1093 }
1094 EXPORT_SYMBOL(security_inode_setsecctx);
1095
1096 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1097 {
1098         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1099 }
1100 EXPORT_SYMBOL(security_inode_getsecctx);
1101
1102 #ifdef CONFIG_SECURITY_NETWORK
1103
1104 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1105 {
1106         return security_ops->unix_stream_connect(sock, other, newsk);
1107 }
1108 EXPORT_SYMBOL(security_unix_stream_connect);
1109
1110 int security_unix_may_send(struct socket *sock,  struct socket *other)
1111 {
1112         return security_ops->unix_may_send(sock, other);
1113 }
1114 EXPORT_SYMBOL(security_unix_may_send);
1115
1116 int security_socket_create(int family, int type, int protocol, int kern)
1117 {
1118         return security_ops->socket_create(family, type, protocol, kern);
1119 }
1120
1121 int security_socket_post_create(struct socket *sock, int family,
1122                                 int type, int protocol, int kern)
1123 {
1124         return security_ops->socket_post_create(sock, family, type,
1125                                                 protocol, kern);
1126 }
1127
1128 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1129 {
1130         return security_ops->socket_bind(sock, address, addrlen);
1131 }
1132
1133 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1134 {
1135         return security_ops->socket_connect(sock, address, addrlen);
1136 }
1137
1138 int security_socket_listen(struct socket *sock, int backlog)
1139 {
1140         return security_ops->socket_listen(sock, backlog);
1141 }
1142
1143 int security_socket_accept(struct socket *sock, struct socket *newsock)
1144 {
1145         return security_ops->socket_accept(sock, newsock);
1146 }
1147
1148 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1149 {
1150         return security_ops->socket_sendmsg(sock, msg, size);
1151 }
1152
1153 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1154                             int size, int flags)
1155 {
1156         return security_ops->socket_recvmsg(sock, msg, size, flags);
1157 }
1158
1159 int security_socket_getsockname(struct socket *sock)
1160 {
1161         return security_ops->socket_getsockname(sock);
1162 }
1163
1164 int security_socket_getpeername(struct socket *sock)
1165 {
1166         return security_ops->socket_getpeername(sock);
1167 }
1168
1169 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1170 {
1171         return security_ops->socket_getsockopt(sock, level, optname);
1172 }
1173
1174 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1175 {
1176         return security_ops->socket_setsockopt(sock, level, optname);
1177 }
1178
1179 int security_socket_shutdown(struct socket *sock, int how)
1180 {
1181         return security_ops->socket_shutdown(sock, how);
1182 }
1183
1184 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1185 {
1186         return security_ops->socket_sock_rcv_skb(sk, skb);
1187 }
1188 EXPORT_SYMBOL(security_sock_rcv_skb);
1189
1190 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1191                                       int __user *optlen, unsigned len)
1192 {
1193         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1194 }
1195
1196 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1197 {
1198         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1199 }
1200 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1201
1202 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1203 {
1204         return security_ops->sk_alloc_security(sk, family, priority);
1205 }
1206
1207 void security_sk_free(struct sock *sk)
1208 {
1209         security_ops->sk_free_security(sk);
1210 }
1211
1212 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1213 {
1214         security_ops->sk_clone_security(sk, newsk);
1215 }
1216 EXPORT_SYMBOL(security_sk_clone);
1217
1218 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1219 {
1220         security_ops->sk_getsecid(sk, &fl->flowi_secid);
1221 }
1222 EXPORT_SYMBOL(security_sk_classify_flow);
1223
1224 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1225 {
1226         security_ops->req_classify_flow(req, fl);
1227 }
1228 EXPORT_SYMBOL(security_req_classify_flow);
1229
1230 void security_sock_graft(struct sock *sk, struct socket *parent)
1231 {
1232         security_ops->sock_graft(sk, parent);
1233 }
1234 EXPORT_SYMBOL(security_sock_graft);
1235
1236 int security_inet_conn_request(struct sock *sk,
1237                         struct sk_buff *skb, struct request_sock *req)
1238 {
1239         return security_ops->inet_conn_request(sk, skb, req);
1240 }
1241 EXPORT_SYMBOL(security_inet_conn_request);
1242
1243 void security_inet_csk_clone(struct sock *newsk,
1244                         const struct request_sock *req)
1245 {
1246         security_ops->inet_csk_clone(newsk, req);
1247 }
1248
1249 void security_inet_conn_established(struct sock *sk,
1250                         struct sk_buff *skb)
1251 {
1252         security_ops->inet_conn_established(sk, skb);
1253 }
1254
1255 int security_secmark_relabel_packet(u32 secid)
1256 {
1257         return security_ops->secmark_relabel_packet(secid);
1258 }
1259 EXPORT_SYMBOL(security_secmark_relabel_packet);
1260
1261 void security_secmark_refcount_inc(void)
1262 {
1263         security_ops->secmark_refcount_inc();
1264 }
1265 EXPORT_SYMBOL(security_secmark_refcount_inc);
1266
1267 void security_secmark_refcount_dec(void)
1268 {
1269         security_ops->secmark_refcount_dec();
1270 }
1271 EXPORT_SYMBOL(security_secmark_refcount_dec);
1272
1273 int security_tun_dev_alloc_security(void **security)
1274 {
1275         return security_ops->tun_dev_alloc_security(security);
1276 }
1277 EXPORT_SYMBOL(security_tun_dev_alloc_security);
1278
1279 void security_tun_dev_free_security(void *security)
1280 {
1281         security_ops->tun_dev_free_security(security);
1282 }
1283 EXPORT_SYMBOL(security_tun_dev_free_security);
1284
1285 int security_tun_dev_create(void)
1286 {
1287         return security_ops->tun_dev_create();
1288 }
1289 EXPORT_SYMBOL(security_tun_dev_create);
1290
1291 int security_tun_dev_attach_queue(void *security)
1292 {
1293         return security_ops->tun_dev_attach_queue(security);
1294 }
1295 EXPORT_SYMBOL(security_tun_dev_attach_queue);
1296
1297 int security_tun_dev_attach(struct sock *sk, void *security)
1298 {
1299         return security_ops->tun_dev_attach(sk, security);
1300 }
1301 EXPORT_SYMBOL(security_tun_dev_attach);
1302
1303 int security_tun_dev_open(void *security)
1304 {
1305         return security_ops->tun_dev_open(security);
1306 }
1307 EXPORT_SYMBOL(security_tun_dev_open);
1308
1309 void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
1310 {
1311         security_ops->skb_owned_by(skb, sk);
1312 }
1313
1314 #endif  /* CONFIG_SECURITY_NETWORK */
1315
1316 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1317
1318 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1319 {
1320         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1321 }
1322 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1323
1324 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1325                               struct xfrm_sec_ctx **new_ctxp)
1326 {
1327         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1328 }
1329
1330 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1331 {
1332         security_ops->xfrm_policy_free_security(ctx);
1333 }
1334 EXPORT_SYMBOL(security_xfrm_policy_free);
1335
1336 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1337 {
1338         return security_ops->xfrm_policy_delete_security(ctx);
1339 }
1340
1341 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1342 {
1343         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1344 }
1345 EXPORT_SYMBOL(security_xfrm_state_alloc);
1346
1347 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1348                                       struct xfrm_sec_ctx *polsec, u32 secid)
1349 {
1350         if (!polsec)
1351                 return 0;
1352         /*
1353          * We want the context to be taken from secid which is usually
1354          * from the sock.
1355          */
1356         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1357 }
1358
1359 int security_xfrm_state_delete(struct xfrm_state *x)
1360 {
1361         return security_ops->xfrm_state_delete_security(x);
1362 }
1363 EXPORT_SYMBOL(security_xfrm_state_delete);
1364
1365 void security_xfrm_state_free(struct xfrm_state *x)
1366 {
1367         security_ops->xfrm_state_free_security(x);
1368 }
1369
1370 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1371 {
1372         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1373 }
1374
1375 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1376                                        struct xfrm_policy *xp,
1377                                        const struct flowi *fl)
1378 {
1379         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1380 }
1381
1382 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1383 {
1384         return security_ops->xfrm_decode_session(skb, secid, 1);
1385 }
1386
1387 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1388 {
1389         int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1390
1391         BUG_ON(rc);
1392 }
1393 EXPORT_SYMBOL(security_skb_classify_flow);
1394
1395 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1396
1397 #ifdef CONFIG_KEYS
1398
1399 int security_key_alloc(struct key *key, const struct cred *cred,
1400                        unsigned long flags)
1401 {
1402         return security_ops->key_alloc(key, cred, flags);
1403 }
1404
1405 void security_key_free(struct key *key)
1406 {
1407         security_ops->key_free(key);
1408 }
1409
1410 int security_key_permission(key_ref_t key_ref,
1411                             const struct cred *cred, key_perm_t perm)
1412 {
1413         return security_ops->key_permission(key_ref, cred, perm);
1414 }
1415
1416 int security_key_getsecurity(struct key *key, char **_buffer)
1417 {
1418         return security_ops->key_getsecurity(key, _buffer);
1419 }
1420
1421 #endif  /* CONFIG_KEYS */
1422
1423 #ifdef CONFIG_AUDIT
1424
1425 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1426 {
1427         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1428 }
1429
1430 int security_audit_rule_known(struct audit_krule *krule)
1431 {
1432         return security_ops->audit_rule_known(krule);
1433 }
1434
1435 void security_audit_rule_free(void *lsmrule)
1436 {
1437         security_ops->audit_rule_free(lsmrule);
1438 }
1439
1440 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1441                               struct audit_context *actx)
1442 {
1443         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1444 }
1445
1446 #endif /* CONFIG_AUDIT */