]> rtime.felk.cvut.cz Git - linux-imx.git/blob - fs/btrfs/ctree.c
9eb646529edce20c4987cf17a7c13b0210320617
[linux-imx.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/module.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23
24 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
25                       *root, struct btrfs_path *path, int level);
26 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
27                       *root, struct btrfs_key *ins_key,
28                       struct btrfs_path *path, int data_size);
29 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
30                           *root, struct buffer_head *dst, struct buffer_head
31                           *src);
32 static int balance_node_right(struct btrfs_trans_handle *trans, struct
33                               btrfs_root *root, struct buffer_head *dst_buf,
34                               struct buffer_head *src_buf);
35 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
36                    struct btrfs_path *path, int level, int slot);
37
38 inline void btrfs_init_path(struct btrfs_path *p)
39 {
40         memset(p, 0, sizeof(*p));
41 }
42
43 struct btrfs_path *btrfs_alloc_path(void)
44 {
45         struct btrfs_path *path;
46         path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
47         if (path)
48                 btrfs_init_path(path);
49         return path;
50 }
51
52 void btrfs_free_path(struct btrfs_path *p)
53 {
54         btrfs_release_path(NULL, p);
55         kmem_cache_free(btrfs_path_cachep, p);
56 }
57
58 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
59 {
60         int i;
61         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
62                 if (!p->nodes[i])
63                         break;
64                 btrfs_block_release(root, p->nodes[i]);
65         }
66         memset(p, 0, sizeof(*p));
67 }
68
69 static int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
70                            *root, struct buffer_head *buf, struct buffer_head
71                            *parent, int parent_slot, struct buffer_head
72                            **cow_ret)
73 {
74         struct buffer_head *cow;
75         struct btrfs_node *cow_node;
76         int ret;
77
78         WARN_ON(!buffer_uptodate(buf));
79         if (trans->transaction != root->fs_info->running_transaction) {
80                 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
81                        root->fs_info->running_transaction->transid);
82                 WARN_ON(1);
83         }
84         if (trans->transid != root->fs_info->generation) {
85                 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
86                        root->fs_info->generation);
87                 WARN_ON(1);
88         }
89         if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
90                                     trans->transid) {
91                 *cow_ret = buf;
92                 return 0;
93         }
94         cow = btrfs_alloc_free_block(trans, root, buf->b_blocknr);
95         if (IS_ERR(cow))
96                 return PTR_ERR(cow);
97         cow_node = btrfs_buffer_node(cow);
98         if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
99                 WARN_ON(1);
100         memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
101         btrfs_set_header_blocknr(&cow_node->header, bh_blocknr(cow));
102         btrfs_set_header_generation(&cow_node->header, trans->transid);
103         btrfs_set_header_owner(&cow_node->header, root->root_key.objectid);
104         ret = btrfs_inc_ref(trans, root, buf);
105         if (ret)
106                 return ret;
107         if (buf == root->node) {
108                 root->node = cow;
109                 get_bh(cow);
110                 if (buf != root->commit_root) {
111                         btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
112                 }
113                 btrfs_block_release(root, buf);
114         } else {
115                 btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
116                                         bh_blocknr(cow));
117                 btrfs_mark_buffer_dirty(parent);
118                 btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
119         }
120         btrfs_block_release(root, buf);
121         btrfs_mark_buffer_dirty(cow);
122         *cow_ret = cow;
123         return 0;
124 }
125
126 /*
127  * The leaf data grows from end-to-front in the node.
128  * this returns the address of the start of the last item,
129  * which is the stop of the leaf data stack
130  */
131 static inline unsigned int leaf_data_end(struct btrfs_root *root,
132                                          struct btrfs_leaf *leaf)
133 {
134         u32 nr = btrfs_header_nritems(&leaf->header);
135         if (nr == 0)
136                 return BTRFS_LEAF_DATA_SIZE(root);
137         return btrfs_item_offset(leaf->items + nr - 1);
138 }
139
140 /*
141  * compare two keys in a memcmp fashion
142  */
143 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
144 {
145         struct btrfs_key k1;
146
147         btrfs_disk_key_to_cpu(&k1, disk);
148
149         if (k1.objectid > k2->objectid)
150                 return 1;
151         if (k1.objectid < k2->objectid)
152                 return -1;
153         if (k1.flags > k2->flags)
154                 return 1;
155         if (k1.flags < k2->flags)
156                 return -1;
157         if (k1.offset > k2->offset)
158                 return 1;
159         if (k1.offset < k2->offset)
160                 return -1;
161         return 0;
162 }
163
164 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
165                       int level)
166 {
167         struct btrfs_node *parent = NULL;
168         struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
169         int parent_slot;
170         int slot;
171         struct btrfs_key cpukey;
172         u32 nritems = btrfs_header_nritems(&node->header);
173
174         if (path->nodes[level + 1])
175                 parent = btrfs_buffer_node(path->nodes[level + 1]);
176         parent_slot = path->slots[level + 1];
177         slot = path->slots[level];
178         BUG_ON(nritems == 0);
179         if (parent) {
180                 struct btrfs_disk_key *parent_key;
181                 parent_key = &parent->ptrs[parent_slot].key;
182                 BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
183                               sizeof(struct btrfs_disk_key)));
184                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
185                        btrfs_header_blocknr(&node->header));
186         }
187         BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
188         if (slot != 0) {
189                 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot - 1].key);
190                 BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) <= 0);
191         }
192         if (slot < nritems - 1) {
193                 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot + 1].key);
194                 BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) >= 0);
195         }
196         return 0;
197 }
198
199 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
200                       int level)
201 {
202         struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
203         struct btrfs_node *parent = NULL;
204         int parent_slot;
205         int slot = path->slots[0];
206         struct btrfs_key cpukey;
207
208         u32 nritems = btrfs_header_nritems(&leaf->header);
209
210         if (path->nodes[level + 1])
211                 parent = btrfs_buffer_node(path->nodes[level + 1]);
212         parent_slot = path->slots[level + 1];
213         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
214
215         if (nritems == 0)
216                 return 0;
217
218         if (parent) {
219                 struct btrfs_disk_key *parent_key;
220                 parent_key = &parent->ptrs[parent_slot].key;
221                 BUG_ON(memcmp(parent_key, &leaf->items[0].key,
222                        sizeof(struct btrfs_disk_key)));
223                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
224                        btrfs_header_blocknr(&leaf->header));
225         }
226         if (slot != 0) {
227                 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot - 1].key);
228                 BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) <= 0);
229                 BUG_ON(btrfs_item_offset(leaf->items + slot - 1) !=
230                         btrfs_item_end(leaf->items + slot));
231         }
232         if (slot < nritems - 1) {
233                 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot + 1].key);
234                 BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) >= 0);
235                 BUG_ON(btrfs_item_offset(leaf->items + slot) !=
236                         btrfs_item_end(leaf->items + slot + 1));
237         }
238         BUG_ON(btrfs_item_offset(leaf->items) +
239                btrfs_item_size(leaf->items) != BTRFS_LEAF_DATA_SIZE(root));
240         return 0;
241 }
242
243 static int check_block(struct btrfs_root *root, struct btrfs_path *path,
244                         int level)
245 {
246         struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
247         if (memcmp(node->header.fsid, root->fs_info->disk_super->fsid,
248                    sizeof(node->header.fsid)))
249                 BUG();
250         if (level == 0)
251                 return check_leaf(root, path, level);
252         return check_node(root, path, level);
253 }
254
255 /*
256  * search for key in the array p.  items p are item_size apart
257  * and there are 'max' items in p
258  * the slot in the array is returned via slot, and it points to
259  * the place where you would insert key if it is not found in
260  * the array.
261  *
262  * slot may point to max if the key is bigger than all of the keys
263  */
264 static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
265                        int max, int *slot)
266 {
267         int low = 0;
268         int high = max;
269         int mid;
270         int ret;
271         struct btrfs_disk_key *tmp;
272
273         while(low < high) {
274                 mid = (low + high) / 2;
275                 tmp = (struct btrfs_disk_key *)(p + mid * item_size);
276                 ret = comp_keys(tmp, key);
277
278                 if (ret < 0)
279                         low = mid + 1;
280                 else if (ret > 0)
281                         high = mid;
282                 else {
283                         *slot = mid;
284                         return 0;
285                 }
286         }
287         *slot = low;
288         return 1;
289 }
290
291 /*
292  * simple bin_search frontend that does the right thing for
293  * leaves vs nodes
294  */
295 static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
296 {
297         if (btrfs_is_leaf(c)) {
298                 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
299                 return generic_bin_search((void *)l->items,
300                                           sizeof(struct btrfs_item),
301                                           key, btrfs_header_nritems(&c->header),
302                                           slot);
303         } else {
304                 return generic_bin_search((void *)c->ptrs,
305                                           sizeof(struct btrfs_key_ptr),
306                                           key, btrfs_header_nritems(&c->header),
307                                           slot);
308         }
309         return -1;
310 }
311
312 static struct buffer_head *read_node_slot(struct btrfs_root *root,
313                                    struct buffer_head *parent_buf,
314                                    int slot)
315 {
316         struct btrfs_node *node = btrfs_buffer_node(parent_buf);
317         if (slot < 0)
318                 return NULL;
319         if (slot >= btrfs_header_nritems(&node->header))
320                 return NULL;
321         return read_tree_block(root, btrfs_node_blockptr(node, slot));
322 }
323
324 static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
325                          *root, struct btrfs_path *path, int level)
326 {
327         struct buffer_head *right_buf;
328         struct buffer_head *mid_buf;
329         struct buffer_head *left_buf;
330         struct buffer_head *parent_buf = NULL;
331         struct btrfs_node *right = NULL;
332         struct btrfs_node *mid;
333         struct btrfs_node *left = NULL;
334         struct btrfs_node *parent = NULL;
335         int ret = 0;
336         int wret;
337         int pslot;
338         int orig_slot = path->slots[level];
339         int err_on_enospc = 0;
340         u64 orig_ptr;
341
342         if (level == 0)
343                 return 0;
344
345         mid_buf = path->nodes[level];
346         mid = btrfs_buffer_node(mid_buf);
347         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
348
349         if (level < BTRFS_MAX_LEVEL - 1)
350                 parent_buf = path->nodes[level + 1];
351         pslot = path->slots[level + 1];
352
353         /*
354          * deal with the case where there is only one pointer in the root
355          * by promoting the node below to a root
356          */
357         if (!parent_buf) {
358                 struct buffer_head *child;
359                 u64 blocknr = bh_blocknr(mid_buf);
360
361                 if (btrfs_header_nritems(&mid->header) != 1)
362                         return 0;
363
364                 /* promote the child to a root */
365                 child = read_node_slot(root, mid_buf, 0);
366                 BUG_ON(!child);
367                 root->node = child;
368                 path->nodes[level] = NULL;
369                 clean_tree_block(trans, root, mid_buf);
370                 wait_on_buffer(mid_buf);
371                 /* once for the path */
372                 btrfs_block_release(root, mid_buf);
373                 /* once for the root ptr */
374                 btrfs_block_release(root, mid_buf);
375                 return btrfs_free_extent(trans, root, blocknr, 1, 1);
376         }
377         parent = btrfs_buffer_node(parent_buf);
378
379         if (btrfs_header_nritems(&mid->header) >
380             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
381                 return 0;
382
383         if (btrfs_header_nritems(&mid->header) < 2)
384                 err_on_enospc = 1;
385
386         left_buf = read_node_slot(root, parent_buf, pslot - 1);
387         right_buf = read_node_slot(root, parent_buf, pslot + 1);
388
389         /* first, try to make some room in the middle buffer */
390         if (left_buf) {
391                 wret = btrfs_cow_block(trans, root, left_buf,
392                                        parent_buf, pslot - 1, &left_buf);
393                 if (wret) {
394                         ret = wret;
395                         goto enospc;
396                 }
397                 left = btrfs_buffer_node(left_buf);
398                 orig_slot += btrfs_header_nritems(&left->header);
399                 wret = push_node_left(trans, root, left_buf, mid_buf);
400                 if (wret < 0)
401                         ret = wret;
402                 if (btrfs_header_nritems(&mid->header) < 2)
403                         err_on_enospc = 1;
404         }
405
406         /*
407          * then try to empty the right most buffer into the middle
408          */
409         if (right_buf) {
410                 wret = btrfs_cow_block(trans, root, right_buf,
411                                        parent_buf, pslot + 1, &right_buf);
412                 if (wret) {
413                         ret = wret;
414                         goto enospc;
415                 }
416
417                 right = btrfs_buffer_node(right_buf);
418                 wret = push_node_left(trans, root, mid_buf, right_buf);
419                 if (wret < 0 && wret != -ENOSPC)
420                         ret = wret;
421                 if (btrfs_header_nritems(&right->header) == 0) {
422                         u64 blocknr = bh_blocknr(right_buf);
423                         clean_tree_block(trans, root, right_buf);
424                         wait_on_buffer(right_buf);
425                         btrfs_block_release(root, right_buf);
426                         right_buf = NULL;
427                         right = NULL;
428                         wret = del_ptr(trans, root, path, level + 1, pslot +
429                                        1);
430                         if (wret)
431                                 ret = wret;
432                         wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
433                         if (wret)
434                                 ret = wret;
435                 } else {
436                         btrfs_memcpy(root, parent,
437                                      &parent->ptrs[pslot + 1].key,
438                                      &right->ptrs[0].key,
439                                      sizeof(struct btrfs_disk_key));
440                         btrfs_mark_buffer_dirty(parent_buf);
441                 }
442         }
443         if (btrfs_header_nritems(&mid->header) == 1) {
444                 /*
445                  * we're not allowed to leave a node with one item in the
446                  * tree during a delete.  A deletion from lower in the tree
447                  * could try to delete the only pointer in this node.
448                  * So, pull some keys from the left.
449                  * There has to be a left pointer at this point because
450                  * otherwise we would have pulled some pointers from the
451                  * right
452                  */
453                 BUG_ON(!left_buf);
454                 wret = balance_node_right(trans, root, mid_buf, left_buf);
455                 if (wret < 0) {
456                         ret = wret;
457                         goto enospc;
458                 }
459                 BUG_ON(wret == 1);
460         }
461         if (btrfs_header_nritems(&mid->header) == 0) {
462                 /* we've managed to empty the middle node, drop it */
463                 u64 blocknr = bh_blocknr(mid_buf);
464                 clean_tree_block(trans, root, mid_buf);
465                 wait_on_buffer(mid_buf);
466                 btrfs_block_release(root, mid_buf);
467                 mid_buf = NULL;
468                 mid = NULL;
469                 wret = del_ptr(trans, root, path, level + 1, pslot);
470                 if (wret)
471                         ret = wret;
472                 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
473                 if (wret)
474                         ret = wret;
475         } else {
476                 /* update the parent key to reflect our changes */
477                 btrfs_memcpy(root, parent,
478                              &parent->ptrs[pslot].key, &mid->ptrs[0].key,
479                              sizeof(struct btrfs_disk_key));
480                 btrfs_mark_buffer_dirty(parent_buf);
481         }
482
483         /* update the path */
484         if (left_buf) {
485                 if (btrfs_header_nritems(&left->header) > orig_slot) {
486                         get_bh(left_buf);
487                         path->nodes[level] = left_buf;
488                         path->slots[level + 1] -= 1;
489                         path->slots[level] = orig_slot;
490                         if (mid_buf)
491                                 btrfs_block_release(root, mid_buf);
492                 } else {
493                         orig_slot -= btrfs_header_nritems(&left->header);
494                         path->slots[level] = orig_slot;
495                 }
496         }
497         /* double check we haven't messed things up */
498         check_block(root, path, level);
499         if (orig_ptr !=
500             btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
501                                 path->slots[level]))
502                 BUG();
503 enospc:
504         if (right_buf)
505                 btrfs_block_release(root, right_buf);
506         if (left_buf)
507                 btrfs_block_release(root, left_buf);
508         return ret;
509 }
510
511 /* returns zero if the push worked, non-zero otherwise */
512 static int push_nodes_for_insert(struct btrfs_trans_handle *trans,
513                                 struct btrfs_root *root,
514                                 struct btrfs_path *path, int level)
515 {
516         struct buffer_head *right_buf;
517         struct buffer_head *mid_buf;
518         struct buffer_head *left_buf;
519         struct buffer_head *parent_buf = NULL;
520         struct btrfs_node *right = NULL;
521         struct btrfs_node *mid;
522         struct btrfs_node *left = NULL;
523         struct btrfs_node *parent = NULL;
524         int ret = 0;
525         int wret;
526         int pslot;
527         int orig_slot = path->slots[level];
528         u64 orig_ptr;
529
530         if (level == 0)
531                 return 1;
532
533         mid_buf = path->nodes[level];
534         mid = btrfs_buffer_node(mid_buf);
535         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
536
537         if (level < BTRFS_MAX_LEVEL - 1)
538                 parent_buf = path->nodes[level + 1];
539         pslot = path->slots[level + 1];
540
541         if (!parent_buf)
542                 return 1;
543         parent = btrfs_buffer_node(parent_buf);
544
545         left_buf = read_node_slot(root, parent_buf, pslot - 1);
546
547         /* first, try to make some room in the middle buffer */
548         if (left_buf) {
549                 u32 left_nr;
550                 left = btrfs_buffer_node(left_buf);
551                 left_nr = btrfs_header_nritems(&left->header);
552                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
553                         wret = 1;
554                 } else {
555                         ret = btrfs_cow_block(trans, root, left_buf, parent_buf,
556                                               pslot - 1, &left_buf);
557                         if (ret)
558                                 wret = 1;
559                         else {
560                                 left = btrfs_buffer_node(left_buf);
561                                 wret = push_node_left(trans, root,
562                                                       left_buf, mid_buf);
563                         }
564                 }
565                 if (wret < 0)
566                         ret = wret;
567                 if (wret == 0) {
568                         orig_slot += left_nr;
569                         btrfs_memcpy(root, parent,
570                                      &parent->ptrs[pslot].key,
571                                      &mid->ptrs[0].key,
572                                      sizeof(struct btrfs_disk_key));
573                         btrfs_mark_buffer_dirty(parent_buf);
574                         if (btrfs_header_nritems(&left->header) > orig_slot) {
575                                 path->nodes[level] = left_buf;
576                                 path->slots[level + 1] -= 1;
577                                 path->slots[level] = orig_slot;
578                                 btrfs_block_release(root, mid_buf);
579                         } else {
580                                 orig_slot -=
581                                         btrfs_header_nritems(&left->header);
582                                 path->slots[level] = orig_slot;
583                                 btrfs_block_release(root, left_buf);
584                         }
585                         check_node(root, path, level);
586                         return 0;
587                 }
588                 btrfs_block_release(root, left_buf);
589         }
590         right_buf = read_node_slot(root, parent_buf, pslot + 1);
591
592         /*
593          * then try to empty the right most buffer into the middle
594          */
595         if (right_buf) {
596                 u32 right_nr;
597                 right = btrfs_buffer_node(right_buf);
598                 right_nr = btrfs_header_nritems(&right->header);
599                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
600                         wret = 1;
601                 } else {
602                         ret = btrfs_cow_block(trans, root, right_buf,
603                                               parent_buf, pslot + 1,
604                                               &right_buf);
605                         if (ret)
606                                 wret = 1;
607                         else {
608                                 right = btrfs_buffer_node(right_buf);
609                                 wret = balance_node_right(trans, root,
610                                                           right_buf, mid_buf);
611                         }
612                 }
613                 if (wret < 0)
614                         ret = wret;
615                 if (wret == 0) {
616                         btrfs_memcpy(root, parent,
617                                      &parent->ptrs[pslot + 1].key,
618                                      &right->ptrs[0].key,
619                                      sizeof(struct btrfs_disk_key));
620                         btrfs_mark_buffer_dirty(parent_buf);
621                         if (btrfs_header_nritems(&mid->header) <= orig_slot) {
622                                 path->nodes[level] = right_buf;
623                                 path->slots[level + 1] += 1;
624                                 path->slots[level] = orig_slot -
625                                         btrfs_header_nritems(&mid->header);
626                                 btrfs_block_release(root, mid_buf);
627                         } else {
628                                 btrfs_block_release(root, right_buf);
629                         }
630                         check_node(root, path, level);
631                         return 0;
632                 }
633                 btrfs_block_release(root, right_buf);
634         }
635         check_node(root, path, level);
636         return 1;
637 }
638
639 /*
640  * look for key in the tree.  path is filled in with nodes along the way
641  * if key is found, we return zero and you can find the item in the leaf
642  * level of the path (level 0)
643  *
644  * If the key isn't found, the path points to the slot where it should
645  * be inserted, and 1 is returned.  If there are other errors during the
646  * search a negative error number is returned.
647  *
648  * if ins_len > 0, nodes and leaves will be split as we walk down the
649  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
650  * possible)
651  */
652 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
653                       *root, struct btrfs_key *key, struct btrfs_path *p, int
654                       ins_len, int cow)
655 {
656         struct buffer_head *b;
657         struct buffer_head *cow_buf;
658         struct btrfs_node *c;
659         int slot;
660         int ret;
661         int level;
662
663         WARN_ON(p->nodes[0] != NULL);
664         WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
665 again:
666         b = root->node;
667         get_bh(b);
668         while (b) {
669                 c = btrfs_buffer_node(b);
670                 level = btrfs_header_level(&c->header);
671                 if (cow) {
672                         int wret;
673                         wret = btrfs_cow_block(trans, root, b,
674                                                p->nodes[level + 1],
675                                                p->slots[level + 1],
676                                                &cow_buf);
677                         if (wret) {
678                                 btrfs_block_release(root, cow_buf);
679                                 return wret;
680                         }
681                         b = cow_buf;
682                         c = btrfs_buffer_node(b);
683                 }
684                 BUG_ON(!cow && ins_len);
685                 if (level != btrfs_header_level(&c->header))
686                         WARN_ON(1);
687                 level = btrfs_header_level(&c->header);
688                 p->nodes[level] = b;
689                 ret = check_block(root, p, level);
690                 if (ret)
691                         return -1;
692                 ret = bin_search(c, key, &slot);
693                 if (!btrfs_is_leaf(c)) {
694                         if (ret && slot > 0)
695                                 slot -= 1;
696                         p->slots[level] = slot;
697                         if (ins_len > 0 && btrfs_header_nritems(&c->header) >=
698                             BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
699                                 int sret = split_node(trans, root, p, level);
700                                 BUG_ON(sret > 0);
701                                 if (sret)
702                                         return sret;
703                                 b = p->nodes[level];
704                                 c = btrfs_buffer_node(b);
705                                 slot = p->slots[level];
706                         } else if (ins_len < 0) {
707                                 int sret = balance_level(trans, root, p,
708                                                          level);
709                                 if (sret)
710                                         return sret;
711                                 b = p->nodes[level];
712                                 if (!b)
713                                         goto again;
714                                 c = btrfs_buffer_node(b);
715                                 slot = p->slots[level];
716                                 BUG_ON(btrfs_header_nritems(&c->header) == 1);
717                         }
718                         b = read_tree_block(root, btrfs_node_blockptr(c, slot));
719                 } else {
720                         struct btrfs_leaf *l = (struct btrfs_leaf *)c;
721                         p->slots[level] = slot;
722                         if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
723                             sizeof(struct btrfs_item) + ins_len) {
724                                 int sret = split_leaf(trans, root, key,
725                                                       p, ins_len);
726                                 BUG_ON(sret > 0);
727                                 if (sret)
728                                         return sret;
729                         }
730                         return ret;
731                 }
732         }
733         return 1;
734 }
735
736 /*
737  * adjust the pointers going up the tree, starting at level
738  * making sure the right key of each node is points to 'key'.
739  * This is used after shifting pointers to the left, so it stops
740  * fixing up pointers when a given leaf/node is not in slot 0 of the
741  * higher levels
742  *
743  * If this fails to write a tree block, it returns -1, but continues
744  * fixing up the blocks in ram so the tree is consistent.
745  */
746 static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
747                           *root, struct btrfs_path *path, struct btrfs_disk_key
748                           *key, int level)
749 {
750         int i;
751         int ret = 0;
752         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
753                 struct btrfs_node *t;
754                 int tslot = path->slots[i];
755                 if (!path->nodes[i])
756                         break;
757                 t = btrfs_buffer_node(path->nodes[i]);
758                 btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
759                 btrfs_mark_buffer_dirty(path->nodes[i]);
760                 if (tslot != 0)
761                         break;
762         }
763         return ret;
764 }
765
766 /*
767  * try to push data from one node into the next node left in the
768  * tree.
769  *
770  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
771  * error, and > 0 if there was no room in the left hand block.
772  */
773 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
774                           *root, struct buffer_head *dst_buf, struct
775                           buffer_head *src_buf)
776 {
777         struct btrfs_node *src = btrfs_buffer_node(src_buf);
778         struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
779         int push_items = 0;
780         int src_nritems;
781         int dst_nritems;
782         int ret = 0;
783
784         src_nritems = btrfs_header_nritems(&src->header);
785         dst_nritems = btrfs_header_nritems(&dst->header);
786         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
787
788         if (push_items <= 0) {
789                 return 1;
790         }
791
792         if (src_nritems < push_items)
793                 push_items = src_nritems;
794
795         btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
796                      push_items * sizeof(struct btrfs_key_ptr));
797         if (push_items < src_nritems) {
798                 btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
799                         (src_nritems - push_items) *
800                         sizeof(struct btrfs_key_ptr));
801         }
802         btrfs_set_header_nritems(&src->header, src_nritems - push_items);
803         btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
804         btrfs_mark_buffer_dirty(src_buf);
805         btrfs_mark_buffer_dirty(dst_buf);
806         return ret;
807 }
808
809 /*
810  * try to push data from one node into the next node right in the
811  * tree.
812  *
813  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
814  * error, and > 0 if there was no room in the right hand block.
815  *
816  * this will  only push up to 1/2 the contents of the left node over
817  */
818 static int balance_node_right(struct btrfs_trans_handle *trans, struct
819                               btrfs_root *root, struct buffer_head *dst_buf,
820                               struct buffer_head *src_buf)
821 {
822         struct btrfs_node *src = btrfs_buffer_node(src_buf);
823         struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
824         int push_items = 0;
825         int max_push;
826         int src_nritems;
827         int dst_nritems;
828         int ret = 0;
829
830         src_nritems = btrfs_header_nritems(&src->header);
831         dst_nritems = btrfs_header_nritems(&dst->header);
832         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
833         if (push_items <= 0) {
834                 return 1;
835         }
836
837         max_push = src_nritems / 2 + 1;
838         /* don't try to empty the node */
839         if (max_push > src_nritems)
840                 return 1;
841         if (max_push < push_items)
842                 push_items = max_push;
843
844         btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
845                       dst_nritems * sizeof(struct btrfs_key_ptr));
846
847         btrfs_memcpy(root, dst, dst->ptrs,
848                      src->ptrs + src_nritems - push_items,
849                      push_items * sizeof(struct btrfs_key_ptr));
850
851         btrfs_set_header_nritems(&src->header, src_nritems - push_items);
852         btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
853
854         btrfs_mark_buffer_dirty(src_buf);
855         btrfs_mark_buffer_dirty(dst_buf);
856         return ret;
857 }
858
859 /*
860  * helper function to insert a new root level in the tree.
861  * A new node is allocated, and a single item is inserted to
862  * point to the existing root
863  *
864  * returns zero on success or < 0 on failure.
865  */
866 static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
867                            *root, struct btrfs_path *path, int level)
868 {
869         struct buffer_head *t;
870         struct btrfs_node *lower;
871         struct btrfs_node *c;
872         struct btrfs_disk_key *lower_key;
873
874         BUG_ON(path->nodes[level]);
875         BUG_ON(path->nodes[level-1] != root->node);
876
877         t = btrfs_alloc_free_block(trans, root, root->node->b_blocknr);
878         if (IS_ERR(t))
879                 return PTR_ERR(t);
880         c = btrfs_buffer_node(t);
881         memset(c, 0, root->blocksize);
882         btrfs_set_header_nritems(&c->header, 1);
883         btrfs_set_header_level(&c->header, level);
884         btrfs_set_header_blocknr(&c->header, bh_blocknr(t));
885         btrfs_set_header_generation(&c->header, trans->transid);
886         btrfs_set_header_owner(&c->header, root->root_key.objectid);
887         lower = btrfs_buffer_node(path->nodes[level-1]);
888         memcpy(c->header.fsid, root->fs_info->disk_super->fsid,
889                sizeof(c->header.fsid));
890         if (btrfs_is_leaf(lower))
891                 lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
892         else
893                 lower_key = &lower->ptrs[0].key;
894         btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
895                      sizeof(struct btrfs_disk_key));
896         btrfs_set_node_blockptr(c, 0, bh_blocknr(path->nodes[level - 1]));
897
898         btrfs_mark_buffer_dirty(t);
899
900         /* the super has an extra ref to root->node */
901         btrfs_block_release(root, root->node);
902         root->node = t;
903         get_bh(t);
904         path->nodes[level] = t;
905         path->slots[level] = 0;
906         return 0;
907 }
908
909 /*
910  * worker function to insert a single pointer in a node.
911  * the node should have enough room for the pointer already
912  *
913  * slot and level indicate where you want the key to go, and
914  * blocknr is the block the key points to.
915  *
916  * returns zero on success and < 0 on any error
917  */
918 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
919                       *root, struct btrfs_path *path, struct btrfs_disk_key
920                       *key, u64 blocknr, int slot, int level)
921 {
922         struct btrfs_node *lower;
923         int nritems;
924
925         BUG_ON(!path->nodes[level]);
926         lower = btrfs_buffer_node(path->nodes[level]);
927         nritems = btrfs_header_nritems(&lower->header);
928         if (slot > nritems)
929                 BUG();
930         if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
931                 BUG();
932         if (slot != nritems) {
933                 btrfs_memmove(root, lower, lower->ptrs + slot + 1,
934                               lower->ptrs + slot,
935                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
936         }
937         btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
938                      key, sizeof(struct btrfs_disk_key));
939         btrfs_set_node_blockptr(lower, slot, blocknr);
940         btrfs_set_header_nritems(&lower->header, nritems + 1);
941         btrfs_mark_buffer_dirty(path->nodes[level]);
942         check_node(root, path, level);
943         return 0;
944 }
945
946 /*
947  * split the node at the specified level in path in two.
948  * The path is corrected to point to the appropriate node after the split
949  *
950  * Before splitting this tries to make some room in the node by pushing
951  * left and right, if either one works, it returns right away.
952  *
953  * returns 0 on success and < 0 on failure
954  */
955 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
956                       *root, struct btrfs_path *path, int level)
957 {
958         struct buffer_head *t;
959         struct btrfs_node *c;
960         struct buffer_head *split_buffer;
961         struct btrfs_node *split;
962         int mid;
963         int ret;
964         int wret;
965         u32 c_nritems;
966
967         t = path->nodes[level];
968         c = btrfs_buffer_node(t);
969         if (t == root->node) {
970                 /* trying to split the root, lets make a new one */
971                 ret = insert_new_root(trans, root, path, level + 1);
972                 if (ret)
973                         return ret;
974         } else {
975                 ret = push_nodes_for_insert(trans, root, path, level);
976                 t = path->nodes[level];
977                 c = btrfs_buffer_node(t);
978                 if (!ret &&
979                     btrfs_header_nritems(&c->header) <
980                     BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
981                         return 0;
982                 if (ret < 0)
983                         return ret;
984         }
985
986         c_nritems = btrfs_header_nritems(&c->header);
987         split_buffer = btrfs_alloc_free_block(trans, root, t->b_blocknr);
988         if (IS_ERR(split_buffer))
989                 return PTR_ERR(split_buffer);
990
991         split = btrfs_buffer_node(split_buffer);
992         btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
993         btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
994         btrfs_set_header_blocknr(&split->header, bh_blocknr(split_buffer));
995         btrfs_set_header_generation(&split->header, trans->transid);
996         btrfs_set_header_owner(&split->header, root->root_key.objectid);
997         memcpy(split->header.fsid, root->fs_info->disk_super->fsid,
998                sizeof(split->header.fsid));
999         mid = (c_nritems + 1) / 2;
1000         btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
1001                      (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
1002         btrfs_set_header_nritems(&split->header, c_nritems - mid);
1003         btrfs_set_header_nritems(&c->header, mid);
1004         ret = 0;
1005
1006         btrfs_mark_buffer_dirty(t);
1007         btrfs_mark_buffer_dirty(split_buffer);
1008         wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
1009                           bh_blocknr(split_buffer), path->slots[level + 1] + 1,
1010                           level + 1);
1011         if (wret)
1012                 ret = wret;
1013
1014         if (path->slots[level] >= mid) {
1015                 path->slots[level] -= mid;
1016                 btrfs_block_release(root, t);
1017                 path->nodes[level] = split_buffer;
1018                 path->slots[level + 1] += 1;
1019         } else {
1020                 btrfs_block_release(root, split_buffer);
1021         }
1022         return ret;
1023 }
1024
1025 /*
1026  * how many bytes are required to store the items in a leaf.  start
1027  * and nr indicate which items in the leaf to check.  This totals up the
1028  * space used both by the item structs and the item data
1029  */
1030 static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
1031 {
1032         int data_len;
1033         int nritems = btrfs_header_nritems(&l->header);
1034         int end = min(nritems, start + nr) - 1;
1035
1036         if (!nr)
1037                 return 0;
1038         data_len = btrfs_item_end(l->items + start);
1039         data_len = data_len - btrfs_item_offset(l->items + end);
1040         data_len += sizeof(struct btrfs_item) * nr;
1041         WARN_ON(data_len < 0);
1042         return data_len;
1043 }
1044
1045 /*
1046  * The space between the end of the leaf items and
1047  * the start of the leaf data.  IOW, how much room
1048  * the leaf has left for both items and data
1049  */
1050 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
1051 {
1052         int nritems = btrfs_header_nritems(&leaf->header);
1053         return BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
1054 }
1055
1056 /*
1057  * push some data in the path leaf to the right, trying to free up at
1058  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
1059  *
1060  * returns 1 if the push failed because the other node didn't have enough
1061  * room, 0 if everything worked out and < 0 if there were major errors.
1062  */
1063 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
1064                            *root, struct btrfs_path *path, int data_size)
1065 {
1066         struct buffer_head *left_buf = path->nodes[0];
1067         struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
1068         struct btrfs_leaf *right;
1069         struct buffer_head *right_buf;
1070         struct buffer_head *upper;
1071         struct btrfs_node *upper_node;
1072         int slot;
1073         int i;
1074         int free_space;
1075         int push_space = 0;
1076         int push_items = 0;
1077         struct btrfs_item *item;
1078         u32 left_nritems;
1079         u32 right_nritems;
1080         int ret;
1081
1082         slot = path->slots[1];
1083         if (!path->nodes[1]) {
1084                 return 1;
1085         }
1086         upper = path->nodes[1];
1087         upper_node = btrfs_buffer_node(upper);
1088         if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
1089                 return 1;
1090         }
1091         right_buf = read_tree_block(root,
1092                     btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
1093         right = btrfs_buffer_leaf(right_buf);
1094         free_space = btrfs_leaf_free_space(root, right);
1095         if (free_space < data_size + sizeof(struct btrfs_item)) {
1096                 btrfs_block_release(root, right_buf);
1097                 return 1;
1098         }
1099         /* cow and double check */
1100         ret = btrfs_cow_block(trans, root, right_buf, upper,
1101                               slot + 1, &right_buf);
1102         if (ret) {
1103                 btrfs_block_release(root, right_buf);
1104                 return 1;
1105         }
1106         right = btrfs_buffer_leaf(right_buf);
1107         free_space = btrfs_leaf_free_space(root, right);
1108         if (free_space < data_size + sizeof(struct btrfs_item)) {
1109                 btrfs_block_release(root, right_buf);
1110                 return 1;
1111         }
1112
1113         left_nritems = btrfs_header_nritems(&left->header);
1114         if (left_nritems == 0) {
1115                 btrfs_block_release(root, right_buf);
1116                 return 1;
1117         }
1118         for (i = left_nritems - 1; i >= 1; i--) {
1119                 item = left->items + i;
1120                 if (path->slots[0] == i)
1121                         push_space += data_size + sizeof(*item);
1122                 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1123                     free_space)
1124                         break;
1125                 push_items++;
1126                 push_space += btrfs_item_size(item) + sizeof(*item);
1127         }
1128         if (push_items == 0) {
1129                 btrfs_block_release(root, right_buf);
1130                 return 1;
1131         }
1132         if (push_items == left_nritems)
1133                 WARN_ON(1);
1134         right_nritems = btrfs_header_nritems(&right->header);
1135         /* push left to right */
1136         push_space = btrfs_item_end(left->items + left_nritems - push_items);
1137         push_space -= leaf_data_end(root, left);
1138         /* make room in the right data area */
1139         btrfs_memmove(root, right, btrfs_leaf_data(right) +
1140                       leaf_data_end(root, right) - push_space,
1141                       btrfs_leaf_data(right) +
1142                       leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
1143                       leaf_data_end(root, right));
1144         /* copy from the left data area */
1145         btrfs_memcpy(root, right, btrfs_leaf_data(right) +
1146                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
1147                      btrfs_leaf_data(left) + leaf_data_end(root, left),
1148                      push_space);
1149         btrfs_memmove(root, right, right->items + push_items, right->items,
1150                 right_nritems * sizeof(struct btrfs_item));
1151         /* copy the items from left to right */
1152         btrfs_memcpy(root, right, right->items, left->items +
1153                      left_nritems - push_items,
1154                      push_items * sizeof(struct btrfs_item));
1155
1156         /* update the item pointers */
1157         right_nritems += push_items;
1158         btrfs_set_header_nritems(&right->header, right_nritems);
1159         push_space = BTRFS_LEAF_DATA_SIZE(root);
1160         for (i = 0; i < right_nritems; i++) {
1161                 btrfs_set_item_offset(right->items + i, push_space -
1162                                       btrfs_item_size(right->items + i));
1163                 push_space = btrfs_item_offset(right->items + i);
1164         }
1165         left_nritems -= push_items;
1166         btrfs_set_header_nritems(&left->header, left_nritems);
1167
1168         btrfs_mark_buffer_dirty(left_buf);
1169         btrfs_mark_buffer_dirty(right_buf);
1170
1171         btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
1172                 &right->items[0].key, sizeof(struct btrfs_disk_key));
1173         btrfs_mark_buffer_dirty(upper);
1174
1175         /* then fixup the leaf pointer in the path */
1176         if (path->slots[0] >= left_nritems) {
1177                 path->slots[0] -= left_nritems;
1178                 btrfs_block_release(root, path->nodes[0]);
1179                 path->nodes[0] = right_buf;
1180                 path->slots[1] += 1;
1181         } else {
1182                 btrfs_block_release(root, right_buf);
1183         }
1184         if (path->nodes[1])
1185                 check_node(root, path, 1);
1186         return 0;
1187 }
1188 /*
1189  * push some data in the path leaf to the left, trying to free up at
1190  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
1191  */
1192 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
1193                           *root, struct btrfs_path *path, int data_size)
1194 {
1195         struct buffer_head *right_buf = path->nodes[0];
1196         struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
1197         struct buffer_head *t;
1198         struct btrfs_leaf *left;
1199         int slot;
1200         int i;
1201         int free_space;
1202         int push_space = 0;
1203         int push_items = 0;
1204         struct btrfs_item *item;
1205         u32 old_left_nritems;
1206         int ret = 0;
1207         int wret;
1208
1209         slot = path->slots[1];
1210         if (slot == 0) {
1211                 return 1;
1212         }
1213         if (!path->nodes[1]) {
1214                 return 1;
1215         }
1216         t = read_tree_block(root,
1217             btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
1218         left = btrfs_buffer_leaf(t);
1219         free_space = btrfs_leaf_free_space(root, left);
1220         if (free_space < data_size + sizeof(struct btrfs_item)) {
1221                 btrfs_block_release(root, t);
1222                 return 1;
1223         }
1224
1225         /* cow and double check */
1226         ret = btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
1227         if (ret) {
1228                 /* we hit -ENOSPC, but it isn't fatal here */
1229                 return 1;
1230         }
1231         left = btrfs_buffer_leaf(t);
1232         free_space = btrfs_leaf_free_space(root, left);
1233         if (free_space < data_size + sizeof(struct btrfs_item)) {
1234                 btrfs_block_release(root, t);
1235                 return 1;
1236         }
1237
1238         if (btrfs_header_nritems(&right->header) == 0) {
1239                 btrfs_block_release(root, t);
1240                 return 1;
1241         }
1242
1243         for (i = 0; i < btrfs_header_nritems(&right->header) - 1; i++) {
1244                 item = right->items + i;
1245                 if (path->slots[0] == i)
1246                         push_space += data_size + sizeof(*item);
1247                 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1248                     free_space)
1249                         break;
1250                 push_items++;
1251                 push_space += btrfs_item_size(item) + sizeof(*item);
1252         }
1253         if (push_items == 0) {
1254                 btrfs_block_release(root, t);
1255                 return 1;
1256         }
1257         if (push_items == btrfs_header_nritems(&right->header))
1258                 WARN_ON(1);
1259         /* push data from right to left */
1260         btrfs_memcpy(root, left, left->items +
1261                      btrfs_header_nritems(&left->header),
1262                      right->items, push_items * sizeof(struct btrfs_item));
1263         push_space = BTRFS_LEAF_DATA_SIZE(root) -
1264                      btrfs_item_offset(right->items + push_items -1);
1265         btrfs_memcpy(root, left, btrfs_leaf_data(left) +
1266                      leaf_data_end(root, left) - push_space,
1267                      btrfs_leaf_data(right) +
1268                      btrfs_item_offset(right->items + push_items - 1),
1269                      push_space);
1270         old_left_nritems = btrfs_header_nritems(&left->header);
1271         BUG_ON(old_left_nritems < 0);
1272
1273         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
1274                 u32 ioff = btrfs_item_offset(left->items + i);
1275                 btrfs_set_item_offset(left->items + i, ioff -
1276                                      (BTRFS_LEAF_DATA_SIZE(root) -
1277                                       btrfs_item_offset(left->items +
1278                                                         old_left_nritems - 1)));
1279         }
1280         btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
1281
1282         /* fixup right node */
1283         push_space = btrfs_item_offset(right->items + push_items - 1) -
1284                      leaf_data_end(root, right);
1285         btrfs_memmove(root, right, btrfs_leaf_data(right) +
1286                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
1287                       btrfs_leaf_data(right) +
1288                       leaf_data_end(root, right), push_space);
1289         btrfs_memmove(root, right, right->items, right->items + push_items,
1290                 (btrfs_header_nritems(&right->header) - push_items) *
1291                 sizeof(struct btrfs_item));
1292         btrfs_set_header_nritems(&right->header,
1293                                  btrfs_header_nritems(&right->header) -
1294                                  push_items);
1295         push_space = BTRFS_LEAF_DATA_SIZE(root);
1296
1297         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1298                 btrfs_set_item_offset(right->items + i, push_space -
1299                                       btrfs_item_size(right->items + i));
1300                 push_space = btrfs_item_offset(right->items + i);
1301         }
1302
1303         btrfs_mark_buffer_dirty(t);
1304         btrfs_mark_buffer_dirty(right_buf);
1305
1306         wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
1307         if (wret)
1308                 ret = wret;
1309
1310         /* then fixup the leaf pointer in the path */
1311         if (path->slots[0] < push_items) {
1312                 path->slots[0] += old_left_nritems;
1313                 btrfs_block_release(root, path->nodes[0]);
1314                 path->nodes[0] = t;
1315                 path->slots[1] -= 1;
1316         } else {
1317                 btrfs_block_release(root, t);
1318                 path->slots[0] -= push_items;
1319         }
1320         BUG_ON(path->slots[0] < 0);
1321         if (path->nodes[1])
1322                 check_node(root, path, 1);
1323         return ret;
1324 }
1325
1326 /*
1327  * split the path's leaf in two, making sure there is at least data_size
1328  * available for the resulting leaf level of the path.
1329  *
1330  * returns 0 if all went well and < 0 on failure.
1331  */
1332 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
1333                       *root, struct btrfs_key *ins_key,
1334                       struct btrfs_path *path, int data_size)
1335 {
1336         struct buffer_head *l_buf;
1337         struct btrfs_leaf *l;
1338         u32 nritems;
1339         int mid;
1340         int slot;
1341         struct btrfs_leaf *right;
1342         struct buffer_head *right_buffer;
1343         int space_needed = data_size + sizeof(struct btrfs_item);
1344         int data_copy_size;
1345         int rt_data_off;
1346         int i;
1347         int ret = 0;
1348         int wret;
1349         int double_split = 0;
1350         struct btrfs_disk_key disk_key;
1351
1352         /* first try to make some room by pushing left and right */
1353         wret = push_leaf_left(trans, root, path, data_size);
1354         if (wret < 0)
1355                 return wret;
1356         if (wret) {
1357                 wret = push_leaf_right(trans, root, path, data_size);
1358                 if (wret < 0)
1359                         return wret;
1360         }
1361         l_buf = path->nodes[0];
1362         l = btrfs_buffer_leaf(l_buf);
1363
1364         /* did the pushes work? */
1365         if (btrfs_leaf_free_space(root, l) >=
1366             sizeof(struct btrfs_item) + data_size)
1367                 return 0;
1368
1369         if (!path->nodes[1]) {
1370                 ret = insert_new_root(trans, root, path, 1);
1371                 if (ret)
1372                         return ret;
1373         }
1374         slot = path->slots[0];
1375         nritems = btrfs_header_nritems(&l->header);
1376         mid = (nritems + 1)/ 2;
1377
1378         right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr);
1379         if (IS_ERR(right_buffer))
1380                 return PTR_ERR(right_buffer);
1381
1382         right = btrfs_buffer_leaf(right_buffer);
1383         memset(&right->header, 0, sizeof(right->header));
1384         btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1385         btrfs_set_header_generation(&right->header, trans->transid);
1386         btrfs_set_header_owner(&right->header, root->root_key.objectid);
1387         btrfs_set_header_level(&right->header, 0);
1388         memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1389                sizeof(right->header.fsid));
1390         if (mid <= slot) {
1391                 if (nritems == 1 ||
1392                     leaf_space_used(l, mid, nritems - mid) + space_needed >
1393                         BTRFS_LEAF_DATA_SIZE(root)) {
1394                         if (slot >= nritems) {
1395                                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1396                                 btrfs_set_header_nritems(&right->header, 0);
1397                                 wret = insert_ptr(trans, root, path,
1398                                                   &disk_key,
1399                                                   bh_blocknr(right_buffer),
1400                                                   path->slots[1] + 1, 1);
1401                                 if (wret)
1402                                         ret = wret;
1403                                 btrfs_block_release(root, path->nodes[0]);
1404                                 path->nodes[0] = right_buffer;
1405                                 path->slots[0] = 0;
1406                                 path->slots[1] += 1;
1407                                 return ret;
1408                         }
1409                         mid = slot;
1410                         double_split = 1;
1411                 }
1412         } else {
1413                 if (leaf_space_used(l, 0, mid + 1) + space_needed >
1414                         BTRFS_LEAF_DATA_SIZE(root)) {
1415                         if (slot == 0) {
1416                                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1417                                 btrfs_set_header_nritems(&right->header, 0);
1418                                 wret = insert_ptr(trans, root, path,
1419                                                   &disk_key,
1420                                                   bh_blocknr(right_buffer),
1421                                                   path->slots[1], 1);
1422                                 if (wret)
1423                                         ret = wret;
1424                                 btrfs_block_release(root, path->nodes[0]);
1425                                 path->nodes[0] = right_buffer;
1426                                 path->slots[0] = 0;
1427                                 if (path->slots[1] == 0) {
1428                                         wret = fixup_low_keys(trans, root,
1429                                                    path, &disk_key, 1);
1430                                         if (wret)
1431                                                 ret = wret;
1432                                 }
1433                                 return ret;
1434                         }
1435                         mid = slot;
1436                         double_split = 1;
1437                 }
1438         }
1439         btrfs_set_header_nritems(&right->header, nritems - mid);
1440         data_copy_size = btrfs_item_end(l->items + mid) -
1441                          leaf_data_end(root, l);
1442         btrfs_memcpy(root, right, right->items, l->items + mid,
1443                      (nritems - mid) * sizeof(struct btrfs_item));
1444         btrfs_memcpy(root, right,
1445                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
1446                      data_copy_size, btrfs_leaf_data(l) +
1447                      leaf_data_end(root, l), data_copy_size);
1448         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
1449                       btrfs_item_end(l->items + mid);
1450
1451         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1452                 u32 ioff = btrfs_item_offset(right->items + i);
1453                 btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
1454         }
1455
1456         btrfs_set_header_nritems(&l->header, mid);
1457         ret = 0;
1458         wret = insert_ptr(trans, root, path, &right->items[0].key,
1459                           bh_blocknr(right_buffer), path->slots[1] + 1, 1);
1460         if (wret)
1461                 ret = wret;
1462         btrfs_mark_buffer_dirty(right_buffer);
1463         btrfs_mark_buffer_dirty(l_buf);
1464         BUG_ON(path->slots[0] != slot);
1465         if (mid <= slot) {
1466                 btrfs_block_release(root, path->nodes[0]);
1467                 path->nodes[0] = right_buffer;
1468                 path->slots[0] -= mid;
1469                 path->slots[1] += 1;
1470         } else
1471                 btrfs_block_release(root, right_buffer);
1472         BUG_ON(path->slots[0] < 0);
1473         check_node(root, path, 1);
1474
1475         if (!double_split)
1476                 return ret;
1477         right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr);
1478         if (IS_ERR(right_buffer))
1479                 return PTR_ERR(right_buffer);
1480
1481         right = btrfs_buffer_leaf(right_buffer);
1482         memset(&right->header, 0, sizeof(right->header));
1483         btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
1484         btrfs_set_header_generation(&right->header, trans->transid);
1485         btrfs_set_header_owner(&right->header, root->root_key.objectid);
1486         btrfs_set_header_level(&right->header, 0);
1487         memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
1488                sizeof(right->header.fsid));
1489         btrfs_cpu_key_to_disk(&disk_key, ins_key);
1490         btrfs_set_header_nritems(&right->header, 0);
1491         wret = insert_ptr(trans, root, path,
1492                           &disk_key,
1493                           bh_blocknr(right_buffer),
1494                           path->slots[1], 1);
1495         if (wret)
1496                 ret = wret;
1497         if (path->slots[1] == 0) {
1498                 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
1499                 if (wret)
1500                         ret = wret;
1501         }
1502         btrfs_block_release(root, path->nodes[0]);
1503         path->nodes[0] = right_buffer;
1504         path->slots[0] = 0;
1505         check_node(root, path, 1);
1506         check_leaf(root, path, 0);
1507         return ret;
1508 }
1509
1510 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
1511                         struct btrfs_root *root,
1512                         struct btrfs_path *path,
1513                         u32 new_size)
1514 {
1515         int ret = 0;
1516         int slot;
1517         int slot_orig;
1518         struct btrfs_leaf *leaf;
1519         struct buffer_head *leaf_buf;
1520         u32 nritems;
1521         unsigned int data_end;
1522         unsigned int old_data_start;
1523         unsigned int old_size;
1524         unsigned int size_diff;
1525         int i;
1526
1527         slot_orig = path->slots[0];
1528         leaf_buf = path->nodes[0];
1529         leaf = btrfs_buffer_leaf(leaf_buf);
1530
1531         nritems = btrfs_header_nritems(&leaf->header);
1532         data_end = leaf_data_end(root, leaf);
1533
1534         slot = path->slots[0];
1535         old_data_start = btrfs_item_offset(leaf->items + slot);
1536         old_size = btrfs_item_size(leaf->items + slot);
1537         BUG_ON(old_size <= new_size);
1538         size_diff = old_size - new_size;
1539
1540         BUG_ON(slot < 0);
1541         BUG_ON(slot >= nritems);
1542
1543         /*
1544          * item0..itemN ... dataN.offset..dataN.size .. data0.size
1545          */
1546         /* first correct the data pointers */
1547         for (i = slot; i < nritems; i++) {
1548                 u32 ioff = btrfs_item_offset(leaf->items + i);
1549                 btrfs_set_item_offset(leaf->items + i,
1550                                       ioff + size_diff);
1551         }
1552         /* shift the data */
1553         btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1554                       data_end + size_diff, btrfs_leaf_data(leaf) +
1555                       data_end, old_data_start + new_size - data_end);
1556         btrfs_set_item_size(leaf->items + slot, new_size);
1557         btrfs_mark_buffer_dirty(leaf_buf);
1558
1559         ret = 0;
1560         if (btrfs_leaf_free_space(root, leaf) < 0)
1561                 BUG();
1562         check_leaf(root, path, 0);
1563         return ret;
1564 }
1565
1566 int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
1567                       *root, struct btrfs_path *path, u32 data_size)
1568 {
1569         int ret = 0;
1570         int slot;
1571         int slot_orig;
1572         struct btrfs_leaf *leaf;
1573         struct buffer_head *leaf_buf;
1574         u32 nritems;
1575         unsigned int data_end;
1576         unsigned int old_data;
1577         unsigned int old_size;
1578         int i;
1579
1580         slot_orig = path->slots[0];
1581         leaf_buf = path->nodes[0];
1582         leaf = btrfs_buffer_leaf(leaf_buf);
1583
1584         nritems = btrfs_header_nritems(&leaf->header);
1585         data_end = leaf_data_end(root, leaf);
1586
1587         if (btrfs_leaf_free_space(root, leaf) < data_size)
1588                 BUG();
1589         slot = path->slots[0];
1590         old_data = btrfs_item_end(leaf->items + slot);
1591
1592         BUG_ON(slot < 0);
1593         BUG_ON(slot >= nritems);
1594
1595         /*
1596          * item0..itemN ... dataN.offset..dataN.size .. data0.size
1597          */
1598         /* first correct the data pointers */
1599         for (i = slot; i < nritems; i++) {
1600                 u32 ioff = btrfs_item_offset(leaf->items + i);
1601                 btrfs_set_item_offset(leaf->items + i,
1602                                       ioff - data_size);
1603         }
1604         /* shift the data */
1605         btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1606                       data_end - data_size, btrfs_leaf_data(leaf) +
1607                       data_end, old_data - data_end);
1608         data_end = old_data;
1609         old_size = btrfs_item_size(leaf->items + slot);
1610         btrfs_set_item_size(leaf->items + slot, old_size + data_size);
1611         btrfs_mark_buffer_dirty(leaf_buf);
1612
1613         ret = 0;
1614         if (btrfs_leaf_free_space(root, leaf) < 0)
1615                 BUG();
1616         check_leaf(root, path, 0);
1617         return ret;
1618 }
1619
1620 /*
1621  * Given a key and some data, insert an item into the tree.
1622  * This does all the path init required, making room in the tree if needed.
1623  */
1624 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1625                             *root, struct btrfs_path *path, struct btrfs_key
1626                             *cpu_key, u32 data_size)
1627 {
1628         int ret = 0;
1629         int slot;
1630         int slot_orig;
1631         struct btrfs_leaf *leaf;
1632         struct buffer_head *leaf_buf;
1633         u32 nritems;
1634         unsigned int data_end;
1635         struct btrfs_disk_key disk_key;
1636
1637         btrfs_cpu_key_to_disk(&disk_key, cpu_key);
1638
1639         /* create a root if there isn't one */
1640         if (!root->node)
1641                 BUG();
1642         ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
1643         if (ret == 0) {
1644                 return -EEXIST;
1645         }
1646         if (ret < 0)
1647                 goto out;
1648
1649         slot_orig = path->slots[0];
1650         leaf_buf = path->nodes[0];
1651         leaf = btrfs_buffer_leaf(leaf_buf);
1652
1653         nritems = btrfs_header_nritems(&leaf->header);
1654         data_end = leaf_data_end(root, leaf);
1655
1656         if (btrfs_leaf_free_space(root, leaf) <
1657             sizeof(struct btrfs_item) + data_size) {
1658                 BUG();
1659         }
1660         slot = path->slots[0];
1661         BUG_ON(slot < 0);
1662         if (slot != nritems) {
1663                 int i;
1664                 unsigned int old_data = btrfs_item_end(leaf->items + slot);
1665
1666                 /*
1667                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
1668                  */
1669                 /* first correct the data pointers */
1670                 for (i = slot; i < nritems; i++) {
1671                         u32 ioff = btrfs_item_offset(leaf->items + i);
1672                         btrfs_set_item_offset(leaf->items + i,
1673                                               ioff - data_size);
1674                 }
1675
1676                 /* shift the items */
1677                 btrfs_memmove(root, leaf, leaf->items + slot + 1,
1678                               leaf->items + slot,
1679                               (nritems - slot) * sizeof(struct btrfs_item));
1680
1681                 /* shift the data */
1682                 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1683                               data_end - data_size, btrfs_leaf_data(leaf) +
1684                               data_end, old_data - data_end);
1685                 data_end = old_data;
1686         }
1687         /* setup the item for the new data */
1688         btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
1689                      sizeof(struct btrfs_disk_key));
1690         btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
1691         btrfs_set_item_size(leaf->items + slot, data_size);
1692         btrfs_set_header_nritems(&leaf->header, nritems + 1);
1693         btrfs_mark_buffer_dirty(leaf_buf);
1694
1695         ret = 0;
1696         if (slot == 0)
1697                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
1698
1699         if (btrfs_leaf_free_space(root, leaf) < 0)
1700                 BUG();
1701         check_leaf(root, path, 0);
1702 out:
1703         return ret;
1704 }
1705
1706 /*
1707  * Given a key and some data, insert an item into the tree.
1708  * This does all the path init required, making room in the tree if needed.
1709  */
1710 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1711                       *root, struct btrfs_key *cpu_key, void *data, u32
1712                       data_size)
1713 {
1714         int ret = 0;
1715         struct btrfs_path *path;
1716         u8 *ptr;
1717
1718         path = btrfs_alloc_path();
1719         BUG_ON(!path);
1720         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
1721         if (!ret) {
1722                 ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
1723                                      path->slots[0], u8);
1724                 btrfs_memcpy(root, path->nodes[0]->b_data,
1725                              ptr, data, data_size);
1726                 btrfs_mark_buffer_dirty(path->nodes[0]);
1727         }
1728         btrfs_free_path(path);
1729         return ret;
1730 }
1731
1732 /*
1733  * delete the pointer from a given node.
1734  *
1735  * If the delete empties a node, the node is removed from the tree,
1736  * continuing all the way the root if required.  The root is converted into
1737  * a leaf if all the nodes are emptied.
1738  */
1739 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1740                    struct btrfs_path *path, int level, int slot)
1741 {
1742         struct btrfs_node *node;
1743         struct buffer_head *parent = path->nodes[level];
1744         u32 nritems;
1745         int ret = 0;
1746         int wret;
1747
1748         node = btrfs_buffer_node(parent);
1749         nritems = btrfs_header_nritems(&node->header);
1750         if (slot != nritems -1) {
1751                 btrfs_memmove(root, node, node->ptrs + slot,
1752                               node->ptrs + slot + 1,
1753                               sizeof(struct btrfs_key_ptr) *
1754                               (nritems - slot - 1));
1755         }
1756         nritems--;
1757         btrfs_set_header_nritems(&node->header, nritems);
1758         if (nritems == 0 && parent == root->node) {
1759                 struct btrfs_header *header = btrfs_buffer_header(root->node);
1760                 BUG_ON(btrfs_header_level(header) != 1);
1761                 /* just turn the root into a leaf and break */
1762                 btrfs_set_header_level(header, 0);
1763         } else if (slot == 0) {
1764                 wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
1765                                       level + 1);
1766                 if (wret)
1767                         ret = wret;
1768         }
1769         btrfs_mark_buffer_dirty(parent);
1770         return ret;
1771 }
1772
1773 /*
1774  * delete the item at the leaf level in path.  If that empties
1775  * the leaf, remove it from the tree
1776  */
1777 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1778                    struct btrfs_path *path)
1779 {
1780         int slot;
1781         struct btrfs_leaf *leaf;
1782         struct buffer_head *leaf_buf;
1783         int doff;
1784         int dsize;
1785         int ret = 0;
1786         int wret;
1787         u32 nritems;
1788
1789         leaf_buf = path->nodes[0];
1790         leaf = btrfs_buffer_leaf(leaf_buf);
1791         slot = path->slots[0];
1792         doff = btrfs_item_offset(leaf->items + slot);
1793         dsize = btrfs_item_size(leaf->items + slot);
1794         nritems = btrfs_header_nritems(&leaf->header);
1795
1796         if (slot != nritems - 1) {
1797                 int i;
1798                 int data_end = leaf_data_end(root, leaf);
1799                 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1800                               data_end + dsize,
1801                               btrfs_leaf_data(leaf) + data_end,
1802                               doff - data_end);
1803                 for (i = slot + 1; i < nritems; i++) {
1804                         u32 ioff = btrfs_item_offset(leaf->items + i);
1805                         btrfs_set_item_offset(leaf->items + i, ioff + dsize);
1806                 }
1807                 btrfs_memmove(root, leaf, leaf->items + slot,
1808                               leaf->items + slot + 1,
1809                               sizeof(struct btrfs_item) *
1810                               (nritems - slot - 1));
1811         }
1812         btrfs_set_header_nritems(&leaf->header, nritems - 1);
1813         nritems--;
1814         /* delete the leaf if we've emptied it */
1815         if (nritems == 0) {
1816                 if (leaf_buf == root->node) {
1817                         btrfs_set_header_level(&leaf->header, 0);
1818                 } else {
1819                         clean_tree_block(trans, root, leaf_buf);
1820                         wait_on_buffer(leaf_buf);
1821                         wret = del_ptr(trans, root, path, 1, path->slots[1]);
1822                         if (wret)
1823                                 ret = wret;
1824                         wret = btrfs_free_extent(trans, root,
1825                                                  bh_blocknr(leaf_buf), 1, 1);
1826                         if (wret)
1827                                 ret = wret;
1828                 }
1829         } else {
1830                 int used = leaf_space_used(leaf, 0, nritems);
1831                 if (slot == 0) {
1832                         wret = fixup_low_keys(trans, root, path,
1833                                               &leaf->items[0].key, 1);
1834                         if (wret)
1835                                 ret = wret;
1836                 }
1837
1838                 /* delete the leaf if it is mostly empty */
1839                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
1840                         /* push_leaf_left fixes the path.
1841                          * make sure the path still points to our leaf
1842                          * for possible call to del_ptr below
1843                          */
1844                         slot = path->slots[1];
1845                         get_bh(leaf_buf);
1846                         wret = push_leaf_left(trans, root, path, 1);
1847                         if (wret < 0 && wret != -ENOSPC)
1848                                 ret = wret;
1849                         if (path->nodes[0] == leaf_buf &&
1850                             btrfs_header_nritems(&leaf->header)) {
1851                                 wret = push_leaf_right(trans, root, path, 1);
1852                                 if (wret < 0 && wret != -ENOSPC)
1853                                         ret = wret;
1854                         }
1855                         if (btrfs_header_nritems(&leaf->header) == 0) {
1856                                 u64 blocknr = bh_blocknr(leaf_buf);
1857                                 clean_tree_block(trans, root, leaf_buf);
1858                                 wait_on_buffer(leaf_buf);
1859                                 wret = del_ptr(trans, root, path, 1, slot);
1860                                 if (wret)
1861                                         ret = wret;
1862                                 btrfs_block_release(root, leaf_buf);
1863                                 wret = btrfs_free_extent(trans, root, blocknr,
1864                                                          1, 1);
1865                                 if (wret)
1866                                         ret = wret;
1867                         } else {
1868                                 btrfs_mark_buffer_dirty(leaf_buf);
1869                                 btrfs_block_release(root, leaf_buf);
1870                         }
1871                 } else {
1872                         btrfs_mark_buffer_dirty(leaf_buf);
1873                 }
1874         }
1875         return ret;
1876 }
1877
1878 /*
1879  * walk up the tree as far as required to find the next leaf.
1880  * returns 0 if it found something or 1 if there are no greater leaves.
1881  * returns < 0 on io errors.
1882  */
1883 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
1884 {
1885         int slot;
1886         int level = 1;
1887         u64 blocknr;
1888         struct buffer_head *c;
1889         struct btrfs_node *c_node;
1890         struct buffer_head *next = NULL;
1891
1892         while(level < BTRFS_MAX_LEVEL) {
1893                 if (!path->nodes[level])
1894                         return 1;
1895                 slot = path->slots[level] + 1;
1896                 c = path->nodes[level];
1897                 c_node = btrfs_buffer_node(c);
1898                 if (slot >= btrfs_header_nritems(&c_node->header)) {
1899                         level++;
1900                         continue;
1901                 }
1902                 blocknr = btrfs_node_blockptr(c_node, slot);
1903                 if (next)
1904                         btrfs_block_release(root, next);
1905                 next = read_tree_block(root, blocknr);
1906                 break;
1907         }
1908         path->slots[level] = slot;
1909         while(1) {
1910                 level--;
1911                 c = path->nodes[level];
1912                 btrfs_block_release(root, c);
1913                 path->nodes[level] = next;
1914                 path->slots[level] = 0;
1915                 if (!level)
1916                         break;
1917                 next = read_tree_block(root,
1918                        btrfs_node_blockptr(btrfs_buffer_node(next), 0));
1919         }
1920         return 0;
1921 }