]> rtime.felk.cvut.cz Git - linux-imx.git/blob - fs/btrfs/disk-io.c
9b7020197c71821314d4a0c044086cadcb64cd28
[linux-imx.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <asm/unaligned.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51
52 #ifdef CONFIG_X86
53 #include <asm/cpufeature.h>
54 #endif
55
56 static struct extent_io_ops btree_extent_io_ops;
57 static void end_workqueue_fn(struct btrfs_work *work);
58 static void free_fs_root(struct btrfs_root *root);
59 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
60                                     int read_only);
61 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
62                                              struct btrfs_root *root);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65                                       struct btrfs_root *root);
66 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69                                         struct extent_io_tree *dirty_pages,
70                                         int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72                                        struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77  * end_io_wq structs are used to do processing in task context when an IO is
78  * complete.  This is used during reads to verify checksums, and it is used
79  * by writes to insert metadata for new file extents after IO is complete.
80  */
81 struct end_io_wq {
82         struct bio *bio;
83         bio_end_io_t *end_io;
84         void *private;
85         struct btrfs_fs_info *info;
86         int error;
87         int metadata;
88         struct list_head list;
89         struct btrfs_work work;
90 };
91
92 /*
93  * async submit bios are used to offload expensive checksumming
94  * onto the worker threads.  They checksum file and metadata bios
95  * just before they are sent down the IO stack.
96  */
97 struct async_submit_bio {
98         struct inode *inode;
99         struct bio *bio;
100         struct list_head list;
101         extent_submit_bio_hook_t *submit_bio_start;
102         extent_submit_bio_hook_t *submit_bio_done;
103         int rw;
104         int mirror_num;
105         unsigned long bio_flags;
106         /*
107          * bio_offset is optional, can be used if the pages in the bio
108          * can't tell us where in the file the bio should go
109          */
110         u64 bio_offset;
111         struct btrfs_work work;
112         int error;
113 };
114
115 /*
116  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
117  * eb, the lockdep key is determined by the btrfs_root it belongs to and
118  * the level the eb occupies in the tree.
119  *
120  * Different roots are used for different purposes and may nest inside each
121  * other and they require separate keysets.  As lockdep keys should be
122  * static, assign keysets according to the purpose of the root as indicated
123  * by btrfs_root->objectid.  This ensures that all special purpose roots
124  * have separate keysets.
125  *
126  * Lock-nesting across peer nodes is always done with the immediate parent
127  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
128  * subclass to avoid triggering lockdep warning in such cases.
129  *
130  * The key is set by the readpage_end_io_hook after the buffer has passed
131  * csum validation but before the pages are unlocked.  It is also set by
132  * btrfs_init_new_buffer on freshly allocated blocks.
133  *
134  * We also add a check to make sure the highest level of the tree is the
135  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
136  * needs update as well.
137  */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 #  error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144         u64                     id;             /* root objectid */
145         const char              *name_stem;     /* lock name stem */
146         char                    names[BTRFS_MAX_LEVEL + 1][20];
147         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
150         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
151         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
152         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
153         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
154         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
155         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
156         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
157         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
158         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
159         { .id = 0,                              .name_stem = "tree"     },
160 };
161
162 void __init btrfs_init_lockdep(void)
163 {
164         int i, j;
165
166         /* initialize lockdep class names */
167         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
168                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
169
170                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
171                         snprintf(ks->names[j], sizeof(ks->names[j]),
172                                  "btrfs-%s-%02d", ks->name_stem, j);
173         }
174 }
175
176 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
177                                     int level)
178 {
179         struct btrfs_lockdep_keyset *ks;
180
181         BUG_ON(level >= ARRAY_SIZE(ks->keys));
182
183         /* find the matching keyset, id 0 is the default entry */
184         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
185                 if (ks->id == objectid)
186                         break;
187
188         lockdep_set_class_and_name(&eb->lock,
189                                    &ks->keys[level], ks->names[level]);
190 }
191
192 #endif
193
194 /*
195  * extents on the btree inode are pretty simple, there's one extent
196  * that covers the entire device
197  */
198 static struct extent_map *btree_get_extent(struct inode *inode,
199                 struct page *page, size_t pg_offset, u64 start, u64 len,
200                 int create)
201 {
202         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
203         struct extent_map *em;
204         int ret;
205
206         read_lock(&em_tree->lock);
207         em = lookup_extent_mapping(em_tree, start, len);
208         if (em) {
209                 em->bdev =
210                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
211                 read_unlock(&em_tree->lock);
212                 goto out;
213         }
214         read_unlock(&em_tree->lock);
215
216         em = alloc_extent_map();
217         if (!em) {
218                 em = ERR_PTR(-ENOMEM);
219                 goto out;
220         }
221         em->start = 0;
222         em->len = (u64)-1;
223         em->block_len = (u64)-1;
224         em->block_start = 0;
225         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
226
227         write_lock(&em_tree->lock);
228         ret = add_extent_mapping(em_tree, em, 0);
229         if (ret == -EEXIST) {
230                 free_extent_map(em);
231                 em = lookup_extent_mapping(em_tree, start, len);
232                 if (!em)
233                         em = ERR_PTR(-EIO);
234         } else if (ret) {
235                 free_extent_map(em);
236                 em = ERR_PTR(ret);
237         }
238         write_unlock(&em_tree->lock);
239
240 out:
241         return em;
242 }
243
244 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
245 {
246         return crc32c(seed, data, len);
247 }
248
249 void btrfs_csum_final(u32 crc, char *result)
250 {
251         put_unaligned_le32(~crc, result);
252 }
253
254 /*
255  * compute the csum for a btree block, and either verify it or write it
256  * into the csum field of the block.
257  */
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259                            int verify)
260 {
261         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262         char *result = NULL;
263         unsigned long len;
264         unsigned long cur_len;
265         unsigned long offset = BTRFS_CSUM_SIZE;
266         char *kaddr;
267         unsigned long map_start;
268         unsigned long map_len;
269         int err;
270         u32 crc = ~(u32)0;
271         unsigned long inline_result;
272
273         len = buf->len - offset;
274         while (len > 0) {
275                 err = map_private_extent_buffer(buf, offset, 32,
276                                         &kaddr, &map_start, &map_len);
277                 if (err)
278                         return 1;
279                 cur_len = min(len, map_len - (offset - map_start));
280                 crc = btrfs_csum_data(kaddr + offset - map_start,
281                                       crc, cur_len);
282                 len -= cur_len;
283                 offset += cur_len;
284         }
285         if (csum_size > sizeof(inline_result)) {
286                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287                 if (!result)
288                         return 1;
289         } else {
290                 result = (char *)&inline_result;
291         }
292
293         btrfs_csum_final(crc, result);
294
295         if (verify) {
296                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297                         u32 val;
298                         u32 found = 0;
299                         memcpy(&found, result, csum_size);
300
301                         read_extent_buffer(buf, &val, 0, csum_size);
302                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303                                        "failed on %llu wanted %X found %X "
304                                        "level %d\n",
305                                        root->fs_info->sb->s_id,
306                                        (unsigned long long)buf->start, val, found,
307                                        btrfs_header_level(buf));
308                         if (result != (char *)&inline_result)
309                                 kfree(result);
310                         return 1;
311                 }
312         } else {
313                 write_extent_buffer(buf, result, 0, csum_size);
314         }
315         if (result != (char *)&inline_result)
316                 kfree(result);
317         return 0;
318 }
319
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327                                  struct extent_buffer *eb, u64 parent_transid,
328                                  int atomic)
329 {
330         struct extent_state *cached_state = NULL;
331         int ret;
332
333         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334                 return 0;
335
336         if (atomic)
337                 return -EAGAIN;
338
339         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340                          0, &cached_state);
341         if (extent_buffer_uptodate(eb) &&
342             btrfs_header_generation(eb) == parent_transid) {
343                 ret = 0;
344                 goto out;
345         }
346         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347                        "found %llu\n",
348                        (unsigned long long)eb->start,
349                        (unsigned long long)parent_transid,
350                        (unsigned long long)btrfs_header_generation(eb));
351         ret = 1;
352         clear_extent_buffer_uptodate(eb);
353 out:
354         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355                              &cached_state, GFP_NOFS);
356         return ret;
357 }
358
359 /*
360  * Return 0 if the superblock checksum type matches the checksum value of that
361  * algorithm. Pass the raw disk superblock data.
362  */
363 static int btrfs_check_super_csum(char *raw_disk_sb)
364 {
365         struct btrfs_super_block *disk_sb =
366                 (struct btrfs_super_block *)raw_disk_sb;
367         u16 csum_type = btrfs_super_csum_type(disk_sb);
368         int ret = 0;
369
370         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
371                 u32 crc = ~(u32)0;
372                 const int csum_size = sizeof(crc);
373                 char result[csum_size];
374
375                 /*
376                  * The super_block structure does not span the whole
377                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
378                  * is filled with zeros and is included in the checkum.
379                  */
380                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
381                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382                 btrfs_csum_final(crc, result);
383
384                 if (memcmp(raw_disk_sb, result, csum_size))
385                         ret = 1;
386
387                 if (ret && btrfs_super_generation(disk_sb) < 10) {
388                         printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
389                         ret = 0;
390                 }
391         }
392
393         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
394                 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
395                                 csum_type);
396                 ret = 1;
397         }
398
399         return ret;
400 }
401
402 /*
403  * helper to read a given tree block, doing retries as required when
404  * the checksums don't match and we have alternate mirrors to try.
405  */
406 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
407                                           struct extent_buffer *eb,
408                                           u64 start, u64 parent_transid)
409 {
410         struct extent_io_tree *io_tree;
411         int failed = 0;
412         int ret;
413         int num_copies = 0;
414         int mirror_num = 0;
415         int failed_mirror = 0;
416
417         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
418         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
419         while (1) {
420                 ret = read_extent_buffer_pages(io_tree, eb, start,
421                                                WAIT_COMPLETE,
422                                                btree_get_extent, mirror_num);
423                 if (!ret) {
424                         if (!verify_parent_transid(io_tree, eb,
425                                                    parent_transid, 0))
426                                 break;
427                         else
428                                 ret = -EIO;
429                 }
430
431                 /*
432                  * This buffer's crc is fine, but its contents are corrupted, so
433                  * there is no reason to read the other copies, they won't be
434                  * any less wrong.
435                  */
436                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
437                         break;
438
439                 num_copies = btrfs_num_copies(root->fs_info,
440                                               eb->start, eb->len);
441                 if (num_copies == 1)
442                         break;
443
444                 if (!failed_mirror) {
445                         failed = 1;
446                         failed_mirror = eb->read_mirror;
447                 }
448
449                 mirror_num++;
450                 if (mirror_num == failed_mirror)
451                         mirror_num++;
452
453                 if (mirror_num > num_copies)
454                         break;
455         }
456
457         if (failed && !ret && failed_mirror)
458                 repair_eb_io_failure(root, eb, failed_mirror);
459
460         return ret;
461 }
462
463 /*
464  * checksum a dirty tree block before IO.  This has extra checks to make sure
465  * we only fill in the checksum field in the first page of a multi-page block
466  */
467
468 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
469 {
470         struct extent_io_tree *tree;
471         u64 start = page_offset(page);
472         u64 found_start;
473         struct extent_buffer *eb;
474
475         tree = &BTRFS_I(page->mapping->host)->io_tree;
476
477         eb = (struct extent_buffer *)page->private;
478         if (page != eb->pages[0])
479                 return 0;
480         found_start = btrfs_header_bytenr(eb);
481         if (found_start != start) {
482                 WARN_ON(1);
483                 return 0;
484         }
485         if (!PageUptodate(page)) {
486                 WARN_ON(1);
487                 return 0;
488         }
489         csum_tree_block(root, eb, 0);
490         return 0;
491 }
492
493 static int check_tree_block_fsid(struct btrfs_root *root,
494                                  struct extent_buffer *eb)
495 {
496         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
497         u8 fsid[BTRFS_UUID_SIZE];
498         int ret = 1;
499
500         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
501                            BTRFS_FSID_SIZE);
502         while (fs_devices) {
503                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
504                         ret = 0;
505                         break;
506                 }
507                 fs_devices = fs_devices->seed;
508         }
509         return ret;
510 }
511
512 #define CORRUPT(reason, eb, root, slot)                         \
513         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
514                "root=%llu, slot=%d\n", reason,                  \
515                (unsigned long long)btrfs_header_bytenr(eb),     \
516                (unsigned long long)root->objectid, slot)
517
518 static noinline int check_leaf(struct btrfs_root *root,
519                                struct extent_buffer *leaf)
520 {
521         struct btrfs_key key;
522         struct btrfs_key leaf_key;
523         u32 nritems = btrfs_header_nritems(leaf);
524         int slot;
525
526         if (nritems == 0)
527                 return 0;
528
529         /* Check the 0 item */
530         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
531             BTRFS_LEAF_DATA_SIZE(root)) {
532                 CORRUPT("invalid item offset size pair", leaf, root, 0);
533                 return -EIO;
534         }
535
536         /*
537          * Check to make sure each items keys are in the correct order and their
538          * offsets make sense.  We only have to loop through nritems-1 because
539          * we check the current slot against the next slot, which verifies the
540          * next slot's offset+size makes sense and that the current's slot
541          * offset is correct.
542          */
543         for (slot = 0; slot < nritems - 1; slot++) {
544                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
545                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
546
547                 /* Make sure the keys are in the right order */
548                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
549                         CORRUPT("bad key order", leaf, root, slot);
550                         return -EIO;
551                 }
552
553                 /*
554                  * Make sure the offset and ends are right, remember that the
555                  * item data starts at the end of the leaf and grows towards the
556                  * front.
557                  */
558                 if (btrfs_item_offset_nr(leaf, slot) !=
559                         btrfs_item_end_nr(leaf, slot + 1)) {
560                         CORRUPT("slot offset bad", leaf, root, slot);
561                         return -EIO;
562                 }
563
564                 /*
565                  * Check to make sure that we don't point outside of the leaf,
566                  * just incase all the items are consistent to eachother, but
567                  * all point outside of the leaf.
568                  */
569                 if (btrfs_item_end_nr(leaf, slot) >
570                     BTRFS_LEAF_DATA_SIZE(root)) {
571                         CORRUPT("slot end outside of leaf", leaf, root, slot);
572                         return -EIO;
573                 }
574         }
575
576         return 0;
577 }
578
579 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
580                                struct extent_state *state, int mirror)
581 {
582         struct extent_io_tree *tree;
583         u64 found_start;
584         int found_level;
585         struct extent_buffer *eb;
586         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
587         int ret = 0;
588         int reads_done;
589
590         if (!page->private)
591                 goto out;
592
593         tree = &BTRFS_I(page->mapping->host)->io_tree;
594         eb = (struct extent_buffer *)page->private;
595
596         /* the pending IO might have been the only thing that kept this buffer
597          * in memory.  Make sure we have a ref for all this other checks
598          */
599         extent_buffer_get(eb);
600
601         reads_done = atomic_dec_and_test(&eb->io_pages);
602         if (!reads_done)
603                 goto err;
604
605         eb->read_mirror = mirror;
606         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
607                 ret = -EIO;
608                 goto err;
609         }
610
611         found_start = btrfs_header_bytenr(eb);
612         if (found_start != eb->start) {
613                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
614                                "%llu %llu\n",
615                                (unsigned long long)found_start,
616                                (unsigned long long)eb->start);
617                 ret = -EIO;
618                 goto err;
619         }
620         if (check_tree_block_fsid(root, eb)) {
621                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
622                                (unsigned long long)eb->start);
623                 ret = -EIO;
624                 goto err;
625         }
626         found_level = btrfs_header_level(eb);
627         if (found_level >= BTRFS_MAX_LEVEL) {
628                 btrfs_info(root->fs_info, "bad tree block level %d\n",
629                            (int)btrfs_header_level(eb));
630                 ret = -EIO;
631                 goto err;
632         }
633
634         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
635                                        eb, found_level);
636
637         ret = csum_tree_block(root, eb, 1);
638         if (ret) {
639                 ret = -EIO;
640                 goto err;
641         }
642
643         /*
644          * If this is a leaf block and it is corrupt, set the corrupt bit so
645          * that we don't try and read the other copies of this block, just
646          * return -EIO.
647          */
648         if (found_level == 0 && check_leaf(root, eb)) {
649                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
650                 ret = -EIO;
651         }
652
653         if (!ret)
654                 set_extent_buffer_uptodate(eb);
655 err:
656         if (reads_done &&
657             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
658                 btree_readahead_hook(root, eb, eb->start, ret);
659
660         if (ret) {
661                 /*
662                  * our io error hook is going to dec the io pages
663                  * again, we have to make sure it has something
664                  * to decrement
665                  */
666                 atomic_inc(&eb->io_pages);
667                 clear_extent_buffer_uptodate(eb);
668         }
669         free_extent_buffer(eb);
670 out:
671         return ret;
672 }
673
674 static int btree_io_failed_hook(struct page *page, int failed_mirror)
675 {
676         struct extent_buffer *eb;
677         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
678
679         eb = (struct extent_buffer *)page->private;
680         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
681         eb->read_mirror = failed_mirror;
682         atomic_dec(&eb->io_pages);
683         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
684                 btree_readahead_hook(root, eb, eb->start, -EIO);
685         return -EIO;    /* we fixed nothing */
686 }
687
688 static void end_workqueue_bio(struct bio *bio, int err)
689 {
690         struct end_io_wq *end_io_wq = bio->bi_private;
691         struct btrfs_fs_info *fs_info;
692
693         fs_info = end_io_wq->info;
694         end_io_wq->error = err;
695         end_io_wq->work.func = end_workqueue_fn;
696         end_io_wq->work.flags = 0;
697
698         if (bio->bi_rw & REQ_WRITE) {
699                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
700                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
701                                            &end_io_wq->work);
702                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
703                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
704                                            &end_io_wq->work);
705                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
706                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
707                                            &end_io_wq->work);
708                 else
709                         btrfs_queue_worker(&fs_info->endio_write_workers,
710                                            &end_io_wq->work);
711         } else {
712                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
713                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
714                                            &end_io_wq->work);
715                 else if (end_io_wq->metadata)
716                         btrfs_queue_worker(&fs_info->endio_meta_workers,
717                                            &end_io_wq->work);
718                 else
719                         btrfs_queue_worker(&fs_info->endio_workers,
720                                            &end_io_wq->work);
721         }
722 }
723
724 /*
725  * For the metadata arg you want
726  *
727  * 0 - if data
728  * 1 - if normal metadta
729  * 2 - if writing to the free space cache area
730  * 3 - raid parity work
731  */
732 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
733                         int metadata)
734 {
735         struct end_io_wq *end_io_wq;
736         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
737         if (!end_io_wq)
738                 return -ENOMEM;
739
740         end_io_wq->private = bio->bi_private;
741         end_io_wq->end_io = bio->bi_end_io;
742         end_io_wq->info = info;
743         end_io_wq->error = 0;
744         end_io_wq->bio = bio;
745         end_io_wq->metadata = metadata;
746
747         bio->bi_private = end_io_wq;
748         bio->bi_end_io = end_workqueue_bio;
749         return 0;
750 }
751
752 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
753 {
754         unsigned long limit = min_t(unsigned long,
755                                     info->workers.max_workers,
756                                     info->fs_devices->open_devices);
757         return 256 * limit;
758 }
759
760 static void run_one_async_start(struct btrfs_work *work)
761 {
762         struct async_submit_bio *async;
763         int ret;
764
765         async = container_of(work, struct  async_submit_bio, work);
766         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
767                                       async->mirror_num, async->bio_flags,
768                                       async->bio_offset);
769         if (ret)
770                 async->error = ret;
771 }
772
773 static void run_one_async_done(struct btrfs_work *work)
774 {
775         struct btrfs_fs_info *fs_info;
776         struct async_submit_bio *async;
777         int limit;
778
779         async = container_of(work, struct  async_submit_bio, work);
780         fs_info = BTRFS_I(async->inode)->root->fs_info;
781
782         limit = btrfs_async_submit_limit(fs_info);
783         limit = limit * 2 / 3;
784
785         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
786             waitqueue_active(&fs_info->async_submit_wait))
787                 wake_up(&fs_info->async_submit_wait);
788
789         /* If an error occured we just want to clean up the bio and move on */
790         if (async->error) {
791                 bio_endio(async->bio, async->error);
792                 return;
793         }
794
795         async->submit_bio_done(async->inode, async->rw, async->bio,
796                                async->mirror_num, async->bio_flags,
797                                async->bio_offset);
798 }
799
800 static void run_one_async_free(struct btrfs_work *work)
801 {
802         struct async_submit_bio *async;
803
804         async = container_of(work, struct  async_submit_bio, work);
805         kfree(async);
806 }
807
808 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
809                         int rw, struct bio *bio, int mirror_num,
810                         unsigned long bio_flags,
811                         u64 bio_offset,
812                         extent_submit_bio_hook_t *submit_bio_start,
813                         extent_submit_bio_hook_t *submit_bio_done)
814 {
815         struct async_submit_bio *async;
816
817         async = kmalloc(sizeof(*async), GFP_NOFS);
818         if (!async)
819                 return -ENOMEM;
820
821         async->inode = inode;
822         async->rw = rw;
823         async->bio = bio;
824         async->mirror_num = mirror_num;
825         async->submit_bio_start = submit_bio_start;
826         async->submit_bio_done = submit_bio_done;
827
828         async->work.func = run_one_async_start;
829         async->work.ordered_func = run_one_async_done;
830         async->work.ordered_free = run_one_async_free;
831
832         async->work.flags = 0;
833         async->bio_flags = bio_flags;
834         async->bio_offset = bio_offset;
835
836         async->error = 0;
837
838         atomic_inc(&fs_info->nr_async_submits);
839
840         if (rw & REQ_SYNC)
841                 btrfs_set_work_high_prio(&async->work);
842
843         btrfs_queue_worker(&fs_info->workers, &async->work);
844
845         while (atomic_read(&fs_info->async_submit_draining) &&
846               atomic_read(&fs_info->nr_async_submits)) {
847                 wait_event(fs_info->async_submit_wait,
848                            (atomic_read(&fs_info->nr_async_submits) == 0));
849         }
850
851         return 0;
852 }
853
854 static int btree_csum_one_bio(struct bio *bio)
855 {
856         struct bio_vec *bvec = bio->bi_io_vec;
857         int bio_index = 0;
858         struct btrfs_root *root;
859         int ret = 0;
860
861         WARN_ON(bio->bi_vcnt <= 0);
862         while (bio_index < bio->bi_vcnt) {
863                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
864                 ret = csum_dirty_buffer(root, bvec->bv_page);
865                 if (ret)
866                         break;
867                 bio_index++;
868                 bvec++;
869         }
870         return ret;
871 }
872
873 static int __btree_submit_bio_start(struct inode *inode, int rw,
874                                     struct bio *bio, int mirror_num,
875                                     unsigned long bio_flags,
876                                     u64 bio_offset)
877 {
878         /*
879          * when we're called for a write, we're already in the async
880          * submission context.  Just jump into btrfs_map_bio
881          */
882         return btree_csum_one_bio(bio);
883 }
884
885 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
886                                  int mirror_num, unsigned long bio_flags,
887                                  u64 bio_offset)
888 {
889         int ret;
890
891         /*
892          * when we're called for a write, we're already in the async
893          * submission context.  Just jump into btrfs_map_bio
894          */
895         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
896         if (ret)
897                 bio_endio(bio, ret);
898         return ret;
899 }
900
901 static int check_async_write(struct inode *inode, unsigned long bio_flags)
902 {
903         if (bio_flags & EXTENT_BIO_TREE_LOG)
904                 return 0;
905 #ifdef CONFIG_X86
906         if (cpu_has_xmm4_2)
907                 return 0;
908 #endif
909         return 1;
910 }
911
912 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
913                                  int mirror_num, unsigned long bio_flags,
914                                  u64 bio_offset)
915 {
916         int async = check_async_write(inode, bio_flags);
917         int ret;
918
919         if (!(rw & REQ_WRITE)) {
920                 /*
921                  * called for a read, do the setup so that checksum validation
922                  * can happen in the async kernel threads
923                  */
924                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
925                                           bio, 1);
926                 if (ret)
927                         goto out_w_error;
928                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
929                                     mirror_num, 0);
930         } else if (!async) {
931                 ret = btree_csum_one_bio(bio);
932                 if (ret)
933                         goto out_w_error;
934                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
935                                     mirror_num, 0);
936         } else {
937                 /*
938                  * kthread helpers are used to submit writes so that
939                  * checksumming can happen in parallel across all CPUs
940                  */
941                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
942                                           inode, rw, bio, mirror_num, 0,
943                                           bio_offset,
944                                           __btree_submit_bio_start,
945                                           __btree_submit_bio_done);
946         }
947
948         if (ret) {
949 out_w_error:
950                 bio_endio(bio, ret);
951         }
952         return ret;
953 }
954
955 #ifdef CONFIG_MIGRATION
956 static int btree_migratepage(struct address_space *mapping,
957                         struct page *newpage, struct page *page,
958                         enum migrate_mode mode)
959 {
960         /*
961          * we can't safely write a btree page from here,
962          * we haven't done the locking hook
963          */
964         if (PageDirty(page))
965                 return -EAGAIN;
966         /*
967          * Buffers may be managed in a filesystem specific way.
968          * We must have no buffers or drop them.
969          */
970         if (page_has_private(page) &&
971             !try_to_release_page(page, GFP_KERNEL))
972                 return -EAGAIN;
973         return migrate_page(mapping, newpage, page, mode);
974 }
975 #endif
976
977
978 static int btree_writepages(struct address_space *mapping,
979                             struct writeback_control *wbc)
980 {
981         struct extent_io_tree *tree;
982         struct btrfs_fs_info *fs_info;
983         int ret;
984
985         tree = &BTRFS_I(mapping->host)->io_tree;
986         if (wbc->sync_mode == WB_SYNC_NONE) {
987
988                 if (wbc->for_kupdate)
989                         return 0;
990
991                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
992                 /* this is a bit racy, but that's ok */
993                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
994                                              BTRFS_DIRTY_METADATA_THRESH);
995                 if (ret < 0)
996                         return 0;
997         }
998         return btree_write_cache_pages(mapping, wbc);
999 }
1000
1001 static int btree_readpage(struct file *file, struct page *page)
1002 {
1003         struct extent_io_tree *tree;
1004         tree = &BTRFS_I(page->mapping->host)->io_tree;
1005         return extent_read_full_page(tree, page, btree_get_extent, 0);
1006 }
1007
1008 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1009 {
1010         if (PageWriteback(page) || PageDirty(page))
1011                 return 0;
1012
1013         return try_release_extent_buffer(page);
1014 }
1015
1016 static void btree_invalidatepage(struct page *page, unsigned long offset)
1017 {
1018         struct extent_io_tree *tree;
1019         tree = &BTRFS_I(page->mapping->host)->io_tree;
1020         extent_invalidatepage(tree, page, offset);
1021         btree_releasepage(page, GFP_NOFS);
1022         if (PagePrivate(page)) {
1023                 printk(KERN_WARNING "btrfs warning page private not zero "
1024                        "on page %llu\n", (unsigned long long)page_offset(page));
1025                 ClearPagePrivate(page);
1026                 set_page_private(page, 0);
1027                 page_cache_release(page);
1028         }
1029 }
1030
1031 static int btree_set_page_dirty(struct page *page)
1032 {
1033 #ifdef DEBUG
1034         struct extent_buffer *eb;
1035
1036         BUG_ON(!PagePrivate(page));
1037         eb = (struct extent_buffer *)page->private;
1038         BUG_ON(!eb);
1039         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1040         BUG_ON(!atomic_read(&eb->refs));
1041         btrfs_assert_tree_locked(eb);
1042 #endif
1043         return __set_page_dirty_nobuffers(page);
1044 }
1045
1046 static const struct address_space_operations btree_aops = {
1047         .readpage       = btree_readpage,
1048         .writepages     = btree_writepages,
1049         .releasepage    = btree_releasepage,
1050         .invalidatepage = btree_invalidatepage,
1051 #ifdef CONFIG_MIGRATION
1052         .migratepage    = btree_migratepage,
1053 #endif
1054         .set_page_dirty = btree_set_page_dirty,
1055 };
1056
1057 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1058                          u64 parent_transid)
1059 {
1060         struct extent_buffer *buf = NULL;
1061         struct inode *btree_inode = root->fs_info->btree_inode;
1062         int ret = 0;
1063
1064         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1065         if (!buf)
1066                 return 0;
1067         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1068                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1069         free_extent_buffer(buf);
1070         return ret;
1071 }
1072
1073 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1074                          int mirror_num, struct extent_buffer **eb)
1075 {
1076         struct extent_buffer *buf = NULL;
1077         struct inode *btree_inode = root->fs_info->btree_inode;
1078         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1079         int ret;
1080
1081         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1082         if (!buf)
1083                 return 0;
1084
1085         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1086
1087         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1088                                        btree_get_extent, mirror_num);
1089         if (ret) {
1090                 free_extent_buffer(buf);
1091                 return ret;
1092         }
1093
1094         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1095                 free_extent_buffer(buf);
1096                 return -EIO;
1097         } else if (extent_buffer_uptodate(buf)) {
1098                 *eb = buf;
1099         } else {
1100                 free_extent_buffer(buf);
1101         }
1102         return 0;
1103 }
1104
1105 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1106                                             u64 bytenr, u32 blocksize)
1107 {
1108         struct inode *btree_inode = root->fs_info->btree_inode;
1109         struct extent_buffer *eb;
1110         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1111                                 bytenr, blocksize);
1112         return eb;
1113 }
1114
1115 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1116                                                  u64 bytenr, u32 blocksize)
1117 {
1118         struct inode *btree_inode = root->fs_info->btree_inode;
1119         struct extent_buffer *eb;
1120
1121         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1122                                  bytenr, blocksize);
1123         return eb;
1124 }
1125
1126
1127 int btrfs_write_tree_block(struct extent_buffer *buf)
1128 {
1129         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1130                                         buf->start + buf->len - 1);
1131 }
1132
1133 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1134 {
1135         return filemap_fdatawait_range(buf->pages[0]->mapping,
1136                                        buf->start, buf->start + buf->len - 1);
1137 }
1138
1139 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1140                                       u32 blocksize, u64 parent_transid)
1141 {
1142         struct extent_buffer *buf = NULL;
1143         int ret;
1144
1145         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1146         if (!buf)
1147                 return NULL;
1148
1149         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1150         return buf;
1151
1152 }
1153
1154 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1155                       struct extent_buffer *buf)
1156 {
1157         struct btrfs_fs_info *fs_info = root->fs_info;
1158
1159         if (btrfs_header_generation(buf) ==
1160             fs_info->running_transaction->transid) {
1161                 btrfs_assert_tree_locked(buf);
1162
1163                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1164                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1165                                              -buf->len,
1166                                              fs_info->dirty_metadata_batch);
1167                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1168                         btrfs_set_lock_blocking(buf);
1169                         clear_extent_buffer_dirty(buf);
1170                 }
1171         }
1172 }
1173
1174 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1175                          u32 stripesize, struct btrfs_root *root,
1176                          struct btrfs_fs_info *fs_info,
1177                          u64 objectid)
1178 {
1179         root->node = NULL;
1180         root->commit_root = NULL;
1181         root->sectorsize = sectorsize;
1182         root->nodesize = nodesize;
1183         root->leafsize = leafsize;
1184         root->stripesize = stripesize;
1185         root->ref_cows = 0;
1186         root->track_dirty = 0;
1187         root->in_radix = 0;
1188         root->orphan_item_inserted = 0;
1189         root->orphan_cleanup_state = 0;
1190
1191         root->objectid = objectid;
1192         root->last_trans = 0;
1193         root->highest_objectid = 0;
1194         root->nr_delalloc_inodes = 0;
1195         root->nr_ordered_extents = 0;
1196         root->name = NULL;
1197         root->inode_tree = RB_ROOT;
1198         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1199         root->block_rsv = NULL;
1200         root->orphan_block_rsv = NULL;
1201
1202         INIT_LIST_HEAD(&root->dirty_list);
1203         INIT_LIST_HEAD(&root->root_list);
1204         INIT_LIST_HEAD(&root->delalloc_inodes);
1205         INIT_LIST_HEAD(&root->delalloc_root);
1206         INIT_LIST_HEAD(&root->ordered_extents);
1207         INIT_LIST_HEAD(&root->ordered_root);
1208         INIT_LIST_HEAD(&root->logged_list[0]);
1209         INIT_LIST_HEAD(&root->logged_list[1]);
1210         spin_lock_init(&root->orphan_lock);
1211         spin_lock_init(&root->inode_lock);
1212         spin_lock_init(&root->delalloc_lock);
1213         spin_lock_init(&root->ordered_extent_lock);
1214         spin_lock_init(&root->accounting_lock);
1215         spin_lock_init(&root->log_extents_lock[0]);
1216         spin_lock_init(&root->log_extents_lock[1]);
1217         mutex_init(&root->objectid_mutex);
1218         mutex_init(&root->log_mutex);
1219         init_waitqueue_head(&root->log_writer_wait);
1220         init_waitqueue_head(&root->log_commit_wait[0]);
1221         init_waitqueue_head(&root->log_commit_wait[1]);
1222         atomic_set(&root->log_commit[0], 0);
1223         atomic_set(&root->log_commit[1], 0);
1224         atomic_set(&root->log_writers, 0);
1225         atomic_set(&root->log_batch, 0);
1226         atomic_set(&root->orphan_inodes, 0);
1227         atomic_set(&root->refs, 1);
1228         root->log_transid = 0;
1229         root->last_log_commit = 0;
1230         extent_io_tree_init(&root->dirty_log_pages,
1231                              fs_info->btree_inode->i_mapping);
1232
1233         memset(&root->root_key, 0, sizeof(root->root_key));
1234         memset(&root->root_item, 0, sizeof(root->root_item));
1235         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1236         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1237         root->defrag_trans_start = fs_info->generation;
1238         init_completion(&root->kobj_unregister);
1239         root->defrag_running = 0;
1240         root->root_key.objectid = objectid;
1241         root->anon_dev = 0;
1242
1243         spin_lock_init(&root->root_item_lock);
1244 }
1245
1246 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1247 {
1248         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1249         if (root)
1250                 root->fs_info = fs_info;
1251         return root;
1252 }
1253
1254 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1255                                      struct btrfs_fs_info *fs_info,
1256                                      u64 objectid)
1257 {
1258         struct extent_buffer *leaf;
1259         struct btrfs_root *tree_root = fs_info->tree_root;
1260         struct btrfs_root *root;
1261         struct btrfs_key key;
1262         int ret = 0;
1263         u64 bytenr;
1264         uuid_le uuid;
1265
1266         root = btrfs_alloc_root(fs_info);
1267         if (!root)
1268                 return ERR_PTR(-ENOMEM);
1269
1270         __setup_root(tree_root->nodesize, tree_root->leafsize,
1271                      tree_root->sectorsize, tree_root->stripesize,
1272                      root, fs_info, objectid);
1273         root->root_key.objectid = objectid;
1274         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1275         root->root_key.offset = 0;
1276
1277         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1278                                       0, objectid, NULL, 0, 0, 0);
1279         if (IS_ERR(leaf)) {
1280                 ret = PTR_ERR(leaf);
1281                 leaf = NULL;
1282                 goto fail;
1283         }
1284
1285         bytenr = leaf->start;
1286         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1287         btrfs_set_header_bytenr(leaf, leaf->start);
1288         btrfs_set_header_generation(leaf, trans->transid);
1289         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1290         btrfs_set_header_owner(leaf, objectid);
1291         root->node = leaf;
1292
1293         write_extent_buffer(leaf, fs_info->fsid,
1294                             (unsigned long)btrfs_header_fsid(leaf),
1295                             BTRFS_FSID_SIZE);
1296         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1297                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1298                             BTRFS_UUID_SIZE);
1299         btrfs_mark_buffer_dirty(leaf);
1300
1301         root->commit_root = btrfs_root_node(root);
1302         root->track_dirty = 1;
1303
1304
1305         root->root_item.flags = 0;
1306         root->root_item.byte_limit = 0;
1307         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1308         btrfs_set_root_generation(&root->root_item, trans->transid);
1309         btrfs_set_root_level(&root->root_item, 0);
1310         btrfs_set_root_refs(&root->root_item, 1);
1311         btrfs_set_root_used(&root->root_item, leaf->len);
1312         btrfs_set_root_last_snapshot(&root->root_item, 0);
1313         btrfs_set_root_dirid(&root->root_item, 0);
1314         uuid_le_gen(&uuid);
1315         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1316         root->root_item.drop_level = 0;
1317
1318         key.objectid = objectid;
1319         key.type = BTRFS_ROOT_ITEM_KEY;
1320         key.offset = 0;
1321         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1322         if (ret)
1323                 goto fail;
1324
1325         btrfs_tree_unlock(leaf);
1326
1327         return root;
1328
1329 fail:
1330         if (leaf) {
1331                 btrfs_tree_unlock(leaf);
1332                 free_extent_buffer(leaf);
1333         }
1334         kfree(root);
1335
1336         return ERR_PTR(ret);
1337 }
1338
1339 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1340                                          struct btrfs_fs_info *fs_info)
1341 {
1342         struct btrfs_root *root;
1343         struct btrfs_root *tree_root = fs_info->tree_root;
1344         struct extent_buffer *leaf;
1345
1346         root = btrfs_alloc_root(fs_info);
1347         if (!root)
1348                 return ERR_PTR(-ENOMEM);
1349
1350         __setup_root(tree_root->nodesize, tree_root->leafsize,
1351                      tree_root->sectorsize, tree_root->stripesize,
1352                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1353
1354         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1355         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1356         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1357         /*
1358          * log trees do not get reference counted because they go away
1359          * before a real commit is actually done.  They do store pointers
1360          * to file data extents, and those reference counts still get
1361          * updated (along with back refs to the log tree).
1362          */
1363         root->ref_cows = 0;
1364
1365         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1366                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1367                                       0, 0, 0);
1368         if (IS_ERR(leaf)) {
1369                 kfree(root);
1370                 return ERR_CAST(leaf);
1371         }
1372
1373         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1374         btrfs_set_header_bytenr(leaf, leaf->start);
1375         btrfs_set_header_generation(leaf, trans->transid);
1376         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1377         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1378         root->node = leaf;
1379
1380         write_extent_buffer(root->node, root->fs_info->fsid,
1381                             (unsigned long)btrfs_header_fsid(root->node),
1382                             BTRFS_FSID_SIZE);
1383         btrfs_mark_buffer_dirty(root->node);
1384         btrfs_tree_unlock(root->node);
1385         return root;
1386 }
1387
1388 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1389                              struct btrfs_fs_info *fs_info)
1390 {
1391         struct btrfs_root *log_root;
1392
1393         log_root = alloc_log_tree(trans, fs_info);
1394         if (IS_ERR(log_root))
1395                 return PTR_ERR(log_root);
1396         WARN_ON(fs_info->log_root_tree);
1397         fs_info->log_root_tree = log_root;
1398         return 0;
1399 }
1400
1401 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1402                        struct btrfs_root *root)
1403 {
1404         struct btrfs_root *log_root;
1405         struct btrfs_inode_item *inode_item;
1406
1407         log_root = alloc_log_tree(trans, root->fs_info);
1408         if (IS_ERR(log_root))
1409                 return PTR_ERR(log_root);
1410
1411         log_root->last_trans = trans->transid;
1412         log_root->root_key.offset = root->root_key.objectid;
1413
1414         inode_item = &log_root->root_item.inode;
1415         inode_item->generation = cpu_to_le64(1);
1416         inode_item->size = cpu_to_le64(3);
1417         inode_item->nlink = cpu_to_le32(1);
1418         inode_item->nbytes = cpu_to_le64(root->leafsize);
1419         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1420
1421         btrfs_set_root_node(&log_root->root_item, log_root->node);
1422
1423         WARN_ON(root->log_root);
1424         root->log_root = log_root;
1425         root->log_transid = 0;
1426         root->last_log_commit = 0;
1427         return 0;
1428 }
1429
1430 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1431                                         struct btrfs_key *key)
1432 {
1433         struct btrfs_root *root;
1434         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1435         struct btrfs_path *path;
1436         u64 generation;
1437         u32 blocksize;
1438         int ret;
1439
1440         path = btrfs_alloc_path();
1441         if (!path)
1442                 return ERR_PTR(-ENOMEM);
1443
1444         root = btrfs_alloc_root(fs_info);
1445         if (!root) {
1446                 ret = -ENOMEM;
1447                 goto alloc_fail;
1448         }
1449
1450         __setup_root(tree_root->nodesize, tree_root->leafsize,
1451                      tree_root->sectorsize, tree_root->stripesize,
1452                      root, fs_info, key->objectid);
1453
1454         ret = btrfs_find_root(tree_root, key, path,
1455                               &root->root_item, &root->root_key);
1456         if (ret) {
1457                 if (ret > 0)
1458                         ret = -ENOENT;
1459                 goto find_fail;
1460         }
1461
1462         generation = btrfs_root_generation(&root->root_item);
1463         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1464         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1465                                      blocksize, generation);
1466         if (!root->node) {
1467                 ret = -ENOMEM;
1468                 goto find_fail;
1469         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1470                 ret = -EIO;
1471                 goto read_fail;
1472         }
1473         root->commit_root = btrfs_root_node(root);
1474 out:
1475         btrfs_free_path(path);
1476         return root;
1477
1478 read_fail:
1479         free_extent_buffer(root->node);
1480 find_fail:
1481         kfree(root);
1482 alloc_fail:
1483         root = ERR_PTR(ret);
1484         goto out;
1485 }
1486
1487 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1488                                       struct btrfs_key *location)
1489 {
1490         struct btrfs_root *root;
1491
1492         root = btrfs_read_tree_root(tree_root, location);
1493         if (IS_ERR(root))
1494                 return root;
1495
1496         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1497                 root->ref_cows = 1;
1498                 btrfs_check_and_init_root_item(&root->root_item);
1499         }
1500
1501         return root;
1502 }
1503
1504 int btrfs_init_fs_root(struct btrfs_root *root)
1505 {
1506         int ret;
1507
1508         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1509         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1510                                         GFP_NOFS);
1511         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1512                 ret = -ENOMEM;
1513                 goto fail;
1514         }
1515
1516         btrfs_init_free_ino_ctl(root);
1517         mutex_init(&root->fs_commit_mutex);
1518         spin_lock_init(&root->cache_lock);
1519         init_waitqueue_head(&root->cache_wait);
1520
1521         ret = get_anon_bdev(&root->anon_dev);
1522         if (ret)
1523                 goto fail;
1524         return 0;
1525 fail:
1526         kfree(root->free_ino_ctl);
1527         kfree(root->free_ino_pinned);
1528         return ret;
1529 }
1530
1531 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1532                                         u64 root_id)
1533 {
1534         struct btrfs_root *root;
1535
1536         spin_lock(&fs_info->fs_roots_radix_lock);
1537         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1538                                  (unsigned long)root_id);
1539         spin_unlock(&fs_info->fs_roots_radix_lock);
1540         return root;
1541 }
1542
1543 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1544                          struct btrfs_root *root)
1545 {
1546         int ret;
1547
1548         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1549         if (ret)
1550                 return ret;
1551
1552         spin_lock(&fs_info->fs_roots_radix_lock);
1553         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1554                                 (unsigned long)root->root_key.objectid,
1555                                 root);
1556         if (ret == 0)
1557                 root->in_radix = 1;
1558         spin_unlock(&fs_info->fs_roots_radix_lock);
1559         radix_tree_preload_end();
1560
1561         return ret;
1562 }
1563
1564 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1565                                               struct btrfs_key *location)
1566 {
1567         struct btrfs_root *root;
1568         int ret;
1569
1570         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1571                 return fs_info->tree_root;
1572         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1573                 return fs_info->extent_root;
1574         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1575                 return fs_info->chunk_root;
1576         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1577                 return fs_info->dev_root;
1578         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1579                 return fs_info->csum_root;
1580         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1581                 return fs_info->quota_root ? fs_info->quota_root :
1582                                              ERR_PTR(-ENOENT);
1583 again:
1584         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1585         if (root)
1586                 return root;
1587
1588         root = btrfs_read_fs_root(fs_info->tree_root, location);
1589         if (IS_ERR(root))
1590                 return root;
1591
1592         if (btrfs_root_refs(&root->root_item) == 0) {
1593                 ret = -ENOENT;
1594                 goto fail;
1595         }
1596
1597         ret = btrfs_init_fs_root(root);
1598         if (ret)
1599                 goto fail;
1600
1601         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1602         if (ret < 0)
1603                 goto fail;
1604         if (ret == 0)
1605                 root->orphan_item_inserted = 1;
1606
1607         ret = btrfs_insert_fs_root(fs_info, root);
1608         if (ret) {
1609                 if (ret == -EEXIST) {
1610                         free_fs_root(root);
1611                         goto again;
1612                 }
1613                 goto fail;
1614         }
1615         return root;
1616 fail:
1617         free_fs_root(root);
1618         return ERR_PTR(ret);
1619 }
1620
1621 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1622 {
1623         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1624         int ret = 0;
1625         struct btrfs_device *device;
1626         struct backing_dev_info *bdi;
1627
1628         rcu_read_lock();
1629         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1630                 if (!device->bdev)
1631                         continue;
1632                 bdi = blk_get_backing_dev_info(device->bdev);
1633                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1634                         ret = 1;
1635                         break;
1636                 }
1637         }
1638         rcu_read_unlock();
1639         return ret;
1640 }
1641
1642 /*
1643  * If this fails, caller must call bdi_destroy() to get rid of the
1644  * bdi again.
1645  */
1646 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1647 {
1648         int err;
1649
1650         bdi->capabilities = BDI_CAP_MAP_COPY;
1651         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1652         if (err)
1653                 return err;
1654
1655         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1656         bdi->congested_fn       = btrfs_congested_fn;
1657         bdi->congested_data     = info;
1658         return 0;
1659 }
1660
1661 /*
1662  * called by the kthread helper functions to finally call the bio end_io
1663  * functions.  This is where read checksum verification actually happens
1664  */
1665 static void end_workqueue_fn(struct btrfs_work *work)
1666 {
1667         struct bio *bio;
1668         struct end_io_wq *end_io_wq;
1669         struct btrfs_fs_info *fs_info;
1670         int error;
1671
1672         end_io_wq = container_of(work, struct end_io_wq, work);
1673         bio = end_io_wq->bio;
1674         fs_info = end_io_wq->info;
1675
1676         error = end_io_wq->error;
1677         bio->bi_private = end_io_wq->private;
1678         bio->bi_end_io = end_io_wq->end_io;
1679         kfree(end_io_wq);
1680         bio_endio(bio, error);
1681 }
1682
1683 static int cleaner_kthread(void *arg)
1684 {
1685         struct btrfs_root *root = arg;
1686         int again;
1687
1688         do {
1689                 again = 0;
1690
1691                 /* Make the cleaner go to sleep early. */
1692                 if (btrfs_need_cleaner_sleep(root))
1693                         goto sleep;
1694
1695                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1696                         goto sleep;
1697
1698                 /*
1699                  * Avoid the problem that we change the status of the fs
1700                  * during the above check and trylock.
1701                  */
1702                 if (btrfs_need_cleaner_sleep(root)) {
1703                         mutex_unlock(&root->fs_info->cleaner_mutex);
1704                         goto sleep;
1705                 }
1706
1707                 btrfs_run_delayed_iputs(root);
1708                 again = btrfs_clean_one_deleted_snapshot(root);
1709                 mutex_unlock(&root->fs_info->cleaner_mutex);
1710
1711                 /*
1712                  * The defragger has dealt with the R/O remount and umount,
1713                  * needn't do anything special here.
1714                  */
1715                 btrfs_run_defrag_inodes(root->fs_info);
1716 sleep:
1717                 if (!try_to_freeze() && !again) {
1718                         set_current_state(TASK_INTERRUPTIBLE);
1719                         if (!kthread_should_stop())
1720                                 schedule();
1721                         __set_current_state(TASK_RUNNING);
1722                 }
1723         } while (!kthread_should_stop());
1724         return 0;
1725 }
1726
1727 static int transaction_kthread(void *arg)
1728 {
1729         struct btrfs_root *root = arg;
1730         struct btrfs_trans_handle *trans;
1731         struct btrfs_transaction *cur;
1732         u64 transid;
1733         unsigned long now;
1734         unsigned long delay;
1735         bool cannot_commit;
1736
1737         do {
1738                 cannot_commit = false;
1739                 delay = HZ * 30;
1740                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1741
1742                 spin_lock(&root->fs_info->trans_lock);
1743                 cur = root->fs_info->running_transaction;
1744                 if (!cur) {
1745                         spin_unlock(&root->fs_info->trans_lock);
1746                         goto sleep;
1747                 }
1748
1749                 now = get_seconds();
1750                 if (cur->state < TRANS_STATE_BLOCKED &&
1751                     (now < cur->start_time || now - cur->start_time < 30)) {
1752                         spin_unlock(&root->fs_info->trans_lock);
1753                         delay = HZ * 5;
1754                         goto sleep;
1755                 }
1756                 transid = cur->transid;
1757                 spin_unlock(&root->fs_info->trans_lock);
1758
1759                 /* If the file system is aborted, this will always fail. */
1760                 trans = btrfs_attach_transaction(root);
1761                 if (IS_ERR(trans)) {
1762                         if (PTR_ERR(trans) != -ENOENT)
1763                                 cannot_commit = true;
1764                         goto sleep;
1765                 }
1766                 if (transid == trans->transid) {
1767                         btrfs_commit_transaction(trans, root);
1768                 } else {
1769                         btrfs_end_transaction(trans, root);
1770                 }
1771 sleep:
1772                 wake_up_process(root->fs_info->cleaner_kthread);
1773                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1774
1775                 if (!try_to_freeze()) {
1776                         set_current_state(TASK_INTERRUPTIBLE);
1777                         if (!kthread_should_stop() &&
1778                             (!btrfs_transaction_blocked(root->fs_info) ||
1779                              cannot_commit))
1780                                 schedule_timeout(delay);
1781                         __set_current_state(TASK_RUNNING);
1782                 }
1783         } while (!kthread_should_stop());
1784         return 0;
1785 }
1786
1787 /*
1788  * this will find the highest generation in the array of
1789  * root backups.  The index of the highest array is returned,
1790  * or -1 if we can't find anything.
1791  *
1792  * We check to make sure the array is valid by comparing the
1793  * generation of the latest  root in the array with the generation
1794  * in the super block.  If they don't match we pitch it.
1795  */
1796 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1797 {
1798         u64 cur;
1799         int newest_index = -1;
1800         struct btrfs_root_backup *root_backup;
1801         int i;
1802
1803         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1804                 root_backup = info->super_copy->super_roots + i;
1805                 cur = btrfs_backup_tree_root_gen(root_backup);
1806                 if (cur == newest_gen)
1807                         newest_index = i;
1808         }
1809
1810         /* check to see if we actually wrapped around */
1811         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1812                 root_backup = info->super_copy->super_roots;
1813                 cur = btrfs_backup_tree_root_gen(root_backup);
1814                 if (cur == newest_gen)
1815                         newest_index = 0;
1816         }
1817         return newest_index;
1818 }
1819
1820
1821 /*
1822  * find the oldest backup so we know where to store new entries
1823  * in the backup array.  This will set the backup_root_index
1824  * field in the fs_info struct
1825  */
1826 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1827                                      u64 newest_gen)
1828 {
1829         int newest_index = -1;
1830
1831         newest_index = find_newest_super_backup(info, newest_gen);
1832         /* if there was garbage in there, just move along */
1833         if (newest_index == -1) {
1834                 info->backup_root_index = 0;
1835         } else {
1836                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1837         }
1838 }
1839
1840 /*
1841  * copy all the root pointers into the super backup array.
1842  * this will bump the backup pointer by one when it is
1843  * done
1844  */
1845 static void backup_super_roots(struct btrfs_fs_info *info)
1846 {
1847         int next_backup;
1848         struct btrfs_root_backup *root_backup;
1849         int last_backup;
1850
1851         next_backup = info->backup_root_index;
1852         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1853                 BTRFS_NUM_BACKUP_ROOTS;
1854
1855         /*
1856          * just overwrite the last backup if we're at the same generation
1857          * this happens only at umount
1858          */
1859         root_backup = info->super_for_commit->super_roots + last_backup;
1860         if (btrfs_backup_tree_root_gen(root_backup) ==
1861             btrfs_header_generation(info->tree_root->node))
1862                 next_backup = last_backup;
1863
1864         root_backup = info->super_for_commit->super_roots + next_backup;
1865
1866         /*
1867          * make sure all of our padding and empty slots get zero filled
1868          * regardless of which ones we use today
1869          */
1870         memset(root_backup, 0, sizeof(*root_backup));
1871
1872         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1873
1874         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1875         btrfs_set_backup_tree_root_gen(root_backup,
1876                                btrfs_header_generation(info->tree_root->node));
1877
1878         btrfs_set_backup_tree_root_level(root_backup,
1879                                btrfs_header_level(info->tree_root->node));
1880
1881         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1882         btrfs_set_backup_chunk_root_gen(root_backup,
1883                                btrfs_header_generation(info->chunk_root->node));
1884         btrfs_set_backup_chunk_root_level(root_backup,
1885                                btrfs_header_level(info->chunk_root->node));
1886
1887         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1888         btrfs_set_backup_extent_root_gen(root_backup,
1889                                btrfs_header_generation(info->extent_root->node));
1890         btrfs_set_backup_extent_root_level(root_backup,
1891                                btrfs_header_level(info->extent_root->node));
1892
1893         /*
1894          * we might commit during log recovery, which happens before we set
1895          * the fs_root.  Make sure it is valid before we fill it in.
1896          */
1897         if (info->fs_root && info->fs_root->node) {
1898                 btrfs_set_backup_fs_root(root_backup,
1899                                          info->fs_root->node->start);
1900                 btrfs_set_backup_fs_root_gen(root_backup,
1901                                btrfs_header_generation(info->fs_root->node));
1902                 btrfs_set_backup_fs_root_level(root_backup,
1903                                btrfs_header_level(info->fs_root->node));
1904         }
1905
1906         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1907         btrfs_set_backup_dev_root_gen(root_backup,
1908                                btrfs_header_generation(info->dev_root->node));
1909         btrfs_set_backup_dev_root_level(root_backup,
1910                                        btrfs_header_level(info->dev_root->node));
1911
1912         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1913         btrfs_set_backup_csum_root_gen(root_backup,
1914                                btrfs_header_generation(info->csum_root->node));
1915         btrfs_set_backup_csum_root_level(root_backup,
1916                                btrfs_header_level(info->csum_root->node));
1917
1918         btrfs_set_backup_total_bytes(root_backup,
1919                              btrfs_super_total_bytes(info->super_copy));
1920         btrfs_set_backup_bytes_used(root_backup,
1921                              btrfs_super_bytes_used(info->super_copy));
1922         btrfs_set_backup_num_devices(root_backup,
1923                              btrfs_super_num_devices(info->super_copy));
1924
1925         /*
1926          * if we don't copy this out to the super_copy, it won't get remembered
1927          * for the next commit
1928          */
1929         memcpy(&info->super_copy->super_roots,
1930                &info->super_for_commit->super_roots,
1931                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1932 }
1933
1934 /*
1935  * this copies info out of the root backup array and back into
1936  * the in-memory super block.  It is meant to help iterate through
1937  * the array, so you send it the number of backups you've already
1938  * tried and the last backup index you used.
1939  *
1940  * this returns -1 when it has tried all the backups
1941  */
1942 static noinline int next_root_backup(struct btrfs_fs_info *info,
1943                                      struct btrfs_super_block *super,
1944                                      int *num_backups_tried, int *backup_index)
1945 {
1946         struct btrfs_root_backup *root_backup;
1947         int newest = *backup_index;
1948
1949         if (*num_backups_tried == 0) {
1950                 u64 gen = btrfs_super_generation(super);
1951
1952                 newest = find_newest_super_backup(info, gen);
1953                 if (newest == -1)
1954                         return -1;
1955
1956                 *backup_index = newest;
1957                 *num_backups_tried = 1;
1958         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1959                 /* we've tried all the backups, all done */
1960                 return -1;
1961         } else {
1962                 /* jump to the next oldest backup */
1963                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1964                         BTRFS_NUM_BACKUP_ROOTS;
1965                 *backup_index = newest;
1966                 *num_backups_tried += 1;
1967         }
1968         root_backup = super->super_roots + newest;
1969
1970         btrfs_set_super_generation(super,
1971                                    btrfs_backup_tree_root_gen(root_backup));
1972         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1973         btrfs_set_super_root_level(super,
1974                                    btrfs_backup_tree_root_level(root_backup));
1975         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1976
1977         /*
1978          * fixme: the total bytes and num_devices need to match or we should
1979          * need a fsck
1980          */
1981         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1982         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1983         return 0;
1984 }
1985
1986 /* helper to cleanup workers */
1987 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1988 {
1989         btrfs_stop_workers(&fs_info->generic_worker);
1990         btrfs_stop_workers(&fs_info->fixup_workers);
1991         btrfs_stop_workers(&fs_info->delalloc_workers);
1992         btrfs_stop_workers(&fs_info->workers);
1993         btrfs_stop_workers(&fs_info->endio_workers);
1994         btrfs_stop_workers(&fs_info->endio_meta_workers);
1995         btrfs_stop_workers(&fs_info->endio_raid56_workers);
1996         btrfs_stop_workers(&fs_info->rmw_workers);
1997         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1998         btrfs_stop_workers(&fs_info->endio_write_workers);
1999         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2000         btrfs_stop_workers(&fs_info->submit_workers);
2001         btrfs_stop_workers(&fs_info->delayed_workers);
2002         btrfs_stop_workers(&fs_info->caching_workers);
2003         btrfs_stop_workers(&fs_info->readahead_workers);
2004         btrfs_stop_workers(&fs_info->flush_workers);
2005         btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2006 }
2007
2008 /* helper to cleanup tree roots */
2009 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2010 {
2011         free_extent_buffer(info->tree_root->node);
2012         free_extent_buffer(info->tree_root->commit_root);
2013         info->tree_root->node = NULL;
2014         info->tree_root->commit_root = NULL;
2015
2016         if (info->dev_root) {
2017                 free_extent_buffer(info->dev_root->node);
2018                 free_extent_buffer(info->dev_root->commit_root);
2019                 info->dev_root->node = NULL;
2020                 info->dev_root->commit_root = NULL;
2021         }
2022         if (info->extent_root) {
2023                 free_extent_buffer(info->extent_root->node);
2024                 free_extent_buffer(info->extent_root->commit_root);
2025                 info->extent_root->node = NULL;
2026                 info->extent_root->commit_root = NULL;
2027         }
2028         if (info->csum_root) {
2029                 free_extent_buffer(info->csum_root->node);
2030                 free_extent_buffer(info->csum_root->commit_root);
2031                 info->csum_root->node = NULL;
2032                 info->csum_root->commit_root = NULL;
2033         }
2034         if (info->quota_root) {
2035                 free_extent_buffer(info->quota_root->node);
2036                 free_extent_buffer(info->quota_root->commit_root);
2037                 info->quota_root->node = NULL;
2038                 info->quota_root->commit_root = NULL;
2039         }
2040         if (chunk_root) {
2041                 free_extent_buffer(info->chunk_root->node);
2042                 free_extent_buffer(info->chunk_root->commit_root);
2043                 info->chunk_root->node = NULL;
2044                 info->chunk_root->commit_root = NULL;
2045         }
2046 }
2047
2048 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2049 {
2050         int ret;
2051         struct btrfs_root *gang[8];
2052         int i;
2053
2054         while (!list_empty(&fs_info->dead_roots)) {
2055                 gang[0] = list_entry(fs_info->dead_roots.next,
2056                                      struct btrfs_root, root_list);
2057                 list_del(&gang[0]->root_list);
2058
2059                 if (gang[0]->in_radix) {
2060                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2061                 } else {
2062                         free_extent_buffer(gang[0]->node);
2063                         free_extent_buffer(gang[0]->commit_root);
2064                         btrfs_put_fs_root(gang[0]);
2065                 }
2066         }
2067
2068         while (1) {
2069                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2070                                              (void **)gang, 0,
2071                                              ARRAY_SIZE(gang));
2072                 if (!ret)
2073                         break;
2074                 for (i = 0; i < ret; i++)
2075                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2076         }
2077 }
2078
2079 int open_ctree(struct super_block *sb,
2080                struct btrfs_fs_devices *fs_devices,
2081                char *options)
2082 {
2083         u32 sectorsize;
2084         u32 nodesize;
2085         u32 leafsize;
2086         u32 blocksize;
2087         u32 stripesize;
2088         u64 generation;
2089         u64 features;
2090         struct btrfs_key location;
2091         struct buffer_head *bh;
2092         struct btrfs_super_block *disk_super;
2093         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2094         struct btrfs_root *tree_root;
2095         struct btrfs_root *extent_root;
2096         struct btrfs_root *csum_root;
2097         struct btrfs_root *chunk_root;
2098         struct btrfs_root *dev_root;
2099         struct btrfs_root *quota_root;
2100         struct btrfs_root *log_tree_root;
2101         int ret;
2102         int err = -EINVAL;
2103         int num_backups_tried = 0;
2104         int backup_index = 0;
2105
2106         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2107         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2108         if (!tree_root || !chunk_root) {
2109                 err = -ENOMEM;
2110                 goto fail;
2111         }
2112
2113         ret = init_srcu_struct(&fs_info->subvol_srcu);
2114         if (ret) {
2115                 err = ret;
2116                 goto fail;
2117         }
2118
2119         ret = setup_bdi(fs_info, &fs_info->bdi);
2120         if (ret) {
2121                 err = ret;
2122                 goto fail_srcu;
2123         }
2124
2125         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2126         if (ret) {
2127                 err = ret;
2128                 goto fail_bdi;
2129         }
2130         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2131                                         (1 + ilog2(nr_cpu_ids));
2132
2133         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2134         if (ret) {
2135                 err = ret;
2136                 goto fail_dirty_metadata_bytes;
2137         }
2138
2139         fs_info->btree_inode = new_inode(sb);
2140         if (!fs_info->btree_inode) {
2141                 err = -ENOMEM;
2142                 goto fail_delalloc_bytes;
2143         }
2144
2145         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2146
2147         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2148         INIT_LIST_HEAD(&fs_info->trans_list);
2149         INIT_LIST_HEAD(&fs_info->dead_roots);
2150         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2151         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2152         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2153         spin_lock_init(&fs_info->delalloc_root_lock);
2154         spin_lock_init(&fs_info->trans_lock);
2155         spin_lock_init(&fs_info->fs_roots_radix_lock);
2156         spin_lock_init(&fs_info->delayed_iput_lock);
2157         spin_lock_init(&fs_info->defrag_inodes_lock);
2158         spin_lock_init(&fs_info->free_chunk_lock);
2159         spin_lock_init(&fs_info->tree_mod_seq_lock);
2160         spin_lock_init(&fs_info->super_lock);
2161         rwlock_init(&fs_info->tree_mod_log_lock);
2162         mutex_init(&fs_info->reloc_mutex);
2163         seqlock_init(&fs_info->profiles_lock);
2164
2165         init_completion(&fs_info->kobj_unregister);
2166         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2167         INIT_LIST_HEAD(&fs_info->space_info);
2168         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2169         btrfs_mapping_init(&fs_info->mapping_tree);
2170         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2171                              BTRFS_BLOCK_RSV_GLOBAL);
2172         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2173                              BTRFS_BLOCK_RSV_DELALLOC);
2174         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2175         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2176         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2177         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2178                              BTRFS_BLOCK_RSV_DELOPS);
2179         atomic_set(&fs_info->nr_async_submits, 0);
2180         atomic_set(&fs_info->async_delalloc_pages, 0);
2181         atomic_set(&fs_info->async_submit_draining, 0);
2182         atomic_set(&fs_info->nr_async_bios, 0);
2183         atomic_set(&fs_info->defrag_running, 0);
2184         atomic64_set(&fs_info->tree_mod_seq, 0);
2185         fs_info->sb = sb;
2186         fs_info->max_inline = 8192 * 1024;
2187         fs_info->metadata_ratio = 0;
2188         fs_info->defrag_inodes = RB_ROOT;
2189         fs_info->free_chunk_space = 0;
2190         fs_info->tree_mod_log = RB_ROOT;
2191
2192         /* readahead state */
2193         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2194         spin_lock_init(&fs_info->reada_lock);
2195
2196         fs_info->thread_pool_size = min_t(unsigned long,
2197                                           num_online_cpus() + 2, 8);
2198
2199         INIT_LIST_HEAD(&fs_info->ordered_roots);
2200         spin_lock_init(&fs_info->ordered_root_lock);
2201         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2202                                         GFP_NOFS);
2203         if (!fs_info->delayed_root) {
2204                 err = -ENOMEM;
2205                 goto fail_iput;
2206         }
2207         btrfs_init_delayed_root(fs_info->delayed_root);
2208
2209         mutex_init(&fs_info->scrub_lock);
2210         atomic_set(&fs_info->scrubs_running, 0);
2211         atomic_set(&fs_info->scrub_pause_req, 0);
2212         atomic_set(&fs_info->scrubs_paused, 0);
2213         atomic_set(&fs_info->scrub_cancel_req, 0);
2214         init_waitqueue_head(&fs_info->scrub_pause_wait);
2215         init_rwsem(&fs_info->scrub_super_lock);
2216         fs_info->scrub_workers_refcnt = 0;
2217 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2218         fs_info->check_integrity_print_mask = 0;
2219 #endif
2220
2221         spin_lock_init(&fs_info->balance_lock);
2222         mutex_init(&fs_info->balance_mutex);
2223         atomic_set(&fs_info->balance_running, 0);
2224         atomic_set(&fs_info->balance_pause_req, 0);
2225         atomic_set(&fs_info->balance_cancel_req, 0);
2226         fs_info->balance_ctl = NULL;
2227         init_waitqueue_head(&fs_info->balance_wait_q);
2228
2229         sb->s_blocksize = 4096;
2230         sb->s_blocksize_bits = blksize_bits(4096);
2231         sb->s_bdi = &fs_info->bdi;
2232
2233         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2234         set_nlink(fs_info->btree_inode, 1);
2235         /*
2236          * we set the i_size on the btree inode to the max possible int.
2237          * the real end of the address space is determined by all of
2238          * the devices in the system
2239          */
2240         fs_info->btree_inode->i_size = OFFSET_MAX;
2241         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2242         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2243
2244         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2245         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2246                              fs_info->btree_inode->i_mapping);
2247         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2248         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2249
2250         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2251
2252         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2253         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2254                sizeof(struct btrfs_key));
2255         set_bit(BTRFS_INODE_DUMMY,
2256                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2257         insert_inode_hash(fs_info->btree_inode);
2258
2259         spin_lock_init(&fs_info->block_group_cache_lock);
2260         fs_info->block_group_cache_tree = RB_ROOT;
2261         fs_info->first_logical_byte = (u64)-1;
2262
2263         extent_io_tree_init(&fs_info->freed_extents[0],
2264                              fs_info->btree_inode->i_mapping);
2265         extent_io_tree_init(&fs_info->freed_extents[1],
2266                              fs_info->btree_inode->i_mapping);
2267         fs_info->pinned_extents = &fs_info->freed_extents[0];
2268         fs_info->do_barriers = 1;
2269
2270
2271         mutex_init(&fs_info->ordered_operations_mutex);
2272         mutex_init(&fs_info->tree_log_mutex);
2273         mutex_init(&fs_info->chunk_mutex);
2274         mutex_init(&fs_info->transaction_kthread_mutex);
2275         mutex_init(&fs_info->cleaner_mutex);
2276         mutex_init(&fs_info->volume_mutex);
2277         init_rwsem(&fs_info->extent_commit_sem);
2278         init_rwsem(&fs_info->cleanup_work_sem);
2279         init_rwsem(&fs_info->subvol_sem);
2280         fs_info->dev_replace.lock_owner = 0;
2281         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2282         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2283         mutex_init(&fs_info->dev_replace.lock_management_lock);
2284         mutex_init(&fs_info->dev_replace.lock);
2285
2286         spin_lock_init(&fs_info->qgroup_lock);
2287         mutex_init(&fs_info->qgroup_ioctl_lock);
2288         fs_info->qgroup_tree = RB_ROOT;
2289         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2290         fs_info->qgroup_seq = 1;
2291         fs_info->quota_enabled = 0;
2292         fs_info->pending_quota_state = 0;
2293         fs_info->qgroup_ulist = NULL;
2294         mutex_init(&fs_info->qgroup_rescan_lock);
2295
2296         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2297         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2298
2299         init_waitqueue_head(&fs_info->transaction_throttle);
2300         init_waitqueue_head(&fs_info->transaction_wait);
2301         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2302         init_waitqueue_head(&fs_info->async_submit_wait);
2303
2304         ret = btrfs_alloc_stripe_hash_table(fs_info);
2305         if (ret) {
2306                 err = ret;
2307                 goto fail_alloc;
2308         }
2309
2310         __setup_root(4096, 4096, 4096, 4096, tree_root,
2311                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2312
2313         invalidate_bdev(fs_devices->latest_bdev);
2314
2315         /*
2316          * Read super block and check the signature bytes only
2317          */
2318         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2319         if (!bh) {
2320                 err = -EINVAL;
2321                 goto fail_alloc;
2322         }
2323
2324         /*
2325          * We want to check superblock checksum, the type is stored inside.
2326          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2327          */
2328         if (btrfs_check_super_csum(bh->b_data)) {
2329                 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2330                 err = -EINVAL;
2331                 goto fail_alloc;
2332         }
2333
2334         /*
2335          * super_copy is zeroed at allocation time and we never touch the
2336          * following bytes up to INFO_SIZE, the checksum is calculated from
2337          * the whole block of INFO_SIZE
2338          */
2339         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2340         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2341                sizeof(*fs_info->super_for_commit));
2342         brelse(bh);
2343
2344         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2345
2346         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2347         if (ret) {
2348                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2349                 err = -EINVAL;
2350                 goto fail_alloc;
2351         }
2352
2353         disk_super = fs_info->super_copy;
2354         if (!btrfs_super_root(disk_super))
2355                 goto fail_alloc;
2356
2357         /* check FS state, whether FS is broken. */
2358         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2359                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2360
2361         /*
2362          * run through our array of backup supers and setup
2363          * our ring pointer to the oldest one
2364          */
2365         generation = btrfs_super_generation(disk_super);
2366         find_oldest_super_backup(fs_info, generation);
2367
2368         /*
2369          * In the long term, we'll store the compression type in the super
2370          * block, and it'll be used for per file compression control.
2371          */
2372         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2373
2374         ret = btrfs_parse_options(tree_root, options);
2375         if (ret) {
2376                 err = ret;
2377                 goto fail_alloc;
2378         }
2379
2380         features = btrfs_super_incompat_flags(disk_super) &
2381                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2382         if (features) {
2383                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2384                        "unsupported optional features (%Lx).\n",
2385                        (unsigned long long)features);
2386                 err = -EINVAL;
2387                 goto fail_alloc;
2388         }
2389
2390         if (btrfs_super_leafsize(disk_super) !=
2391             btrfs_super_nodesize(disk_super)) {
2392                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2393                        "blocksizes don't match.  node %d leaf %d\n",
2394                        btrfs_super_nodesize(disk_super),
2395                        btrfs_super_leafsize(disk_super));
2396                 err = -EINVAL;
2397                 goto fail_alloc;
2398         }
2399         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2400                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2401                        "blocksize (%d) was too large\n",
2402                        btrfs_super_leafsize(disk_super));
2403                 err = -EINVAL;
2404                 goto fail_alloc;
2405         }
2406
2407         features = btrfs_super_incompat_flags(disk_super);
2408         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2409         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2410                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2411
2412         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2413                 printk(KERN_ERR "btrfs: has skinny extents\n");
2414
2415         /*
2416          * flag our filesystem as having big metadata blocks if
2417          * they are bigger than the page size
2418          */
2419         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2420                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2421                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2422                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2423         }
2424
2425         nodesize = btrfs_super_nodesize(disk_super);
2426         leafsize = btrfs_super_leafsize(disk_super);
2427         sectorsize = btrfs_super_sectorsize(disk_super);
2428         stripesize = btrfs_super_stripesize(disk_super);
2429         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2430         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2431
2432         /*
2433          * mixed block groups end up with duplicate but slightly offset
2434          * extent buffers for the same range.  It leads to corruptions
2435          */
2436         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2437             (sectorsize != leafsize)) {
2438                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2439                                 "are not allowed for mixed block groups on %s\n",
2440                                 sb->s_id);
2441                 goto fail_alloc;
2442         }
2443
2444         /*
2445          * Needn't use the lock because there is no other task which will
2446          * update the flag.
2447          */
2448         btrfs_set_super_incompat_flags(disk_super, features);
2449
2450         features = btrfs_super_compat_ro_flags(disk_super) &
2451                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2452         if (!(sb->s_flags & MS_RDONLY) && features) {
2453                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2454                        "unsupported option features (%Lx).\n",
2455                        (unsigned long long)features);
2456                 err = -EINVAL;
2457                 goto fail_alloc;
2458         }
2459
2460         btrfs_init_workers(&fs_info->generic_worker,
2461                            "genwork", 1, NULL);
2462
2463         btrfs_init_workers(&fs_info->workers, "worker",
2464                            fs_info->thread_pool_size,
2465                            &fs_info->generic_worker);
2466
2467         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2468                            fs_info->thread_pool_size,
2469                            &fs_info->generic_worker);
2470
2471         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2472                            fs_info->thread_pool_size,
2473                            &fs_info->generic_worker);
2474
2475         btrfs_init_workers(&fs_info->submit_workers, "submit",
2476                            min_t(u64, fs_devices->num_devices,
2477                            fs_info->thread_pool_size),
2478                            &fs_info->generic_worker);
2479
2480         btrfs_init_workers(&fs_info->caching_workers, "cache",
2481                            2, &fs_info->generic_worker);
2482
2483         /* a higher idle thresh on the submit workers makes it much more
2484          * likely that bios will be send down in a sane order to the
2485          * devices
2486          */
2487         fs_info->submit_workers.idle_thresh = 64;
2488
2489         fs_info->workers.idle_thresh = 16;
2490         fs_info->workers.ordered = 1;
2491
2492         fs_info->delalloc_workers.idle_thresh = 2;
2493         fs_info->delalloc_workers.ordered = 1;
2494
2495         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2496                            &fs_info->generic_worker);
2497         btrfs_init_workers(&fs_info->endio_workers, "endio",
2498                            fs_info->thread_pool_size,
2499                            &fs_info->generic_worker);
2500         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2501                            fs_info->thread_pool_size,
2502                            &fs_info->generic_worker);
2503         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2504                            "endio-meta-write", fs_info->thread_pool_size,
2505                            &fs_info->generic_worker);
2506         btrfs_init_workers(&fs_info->endio_raid56_workers,
2507                            "endio-raid56", fs_info->thread_pool_size,
2508                            &fs_info->generic_worker);
2509         btrfs_init_workers(&fs_info->rmw_workers,
2510                            "rmw", fs_info->thread_pool_size,
2511                            &fs_info->generic_worker);
2512         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2513                            fs_info->thread_pool_size,
2514                            &fs_info->generic_worker);
2515         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2516                            1, &fs_info->generic_worker);
2517         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2518                            fs_info->thread_pool_size,
2519                            &fs_info->generic_worker);
2520         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2521                            fs_info->thread_pool_size,
2522                            &fs_info->generic_worker);
2523         btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2524                            &fs_info->generic_worker);
2525
2526         /*
2527          * endios are largely parallel and should have a very
2528          * low idle thresh
2529          */
2530         fs_info->endio_workers.idle_thresh = 4;
2531         fs_info->endio_meta_workers.idle_thresh = 4;
2532         fs_info->endio_raid56_workers.idle_thresh = 4;
2533         fs_info->rmw_workers.idle_thresh = 2;
2534
2535         fs_info->endio_write_workers.idle_thresh = 2;
2536         fs_info->endio_meta_write_workers.idle_thresh = 2;
2537         fs_info->readahead_workers.idle_thresh = 2;
2538
2539         /*
2540          * btrfs_start_workers can really only fail because of ENOMEM so just
2541          * return -ENOMEM if any of these fail.
2542          */
2543         ret = btrfs_start_workers(&fs_info->workers);
2544         ret |= btrfs_start_workers(&fs_info->generic_worker);
2545         ret |= btrfs_start_workers(&fs_info->submit_workers);
2546         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2547         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2548         ret |= btrfs_start_workers(&fs_info->endio_workers);
2549         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2550         ret |= btrfs_start_workers(&fs_info->rmw_workers);
2551         ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2552         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2553         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2554         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2555         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2556         ret |= btrfs_start_workers(&fs_info->caching_workers);
2557         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2558         ret |= btrfs_start_workers(&fs_info->flush_workers);
2559         ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2560         if (ret) {
2561                 err = -ENOMEM;
2562                 goto fail_sb_buffer;
2563         }
2564
2565         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2566         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2567                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2568
2569         tree_root->nodesize = nodesize;
2570         tree_root->leafsize = leafsize;
2571         tree_root->sectorsize = sectorsize;
2572         tree_root->stripesize = stripesize;
2573
2574         sb->s_blocksize = sectorsize;
2575         sb->s_blocksize_bits = blksize_bits(sectorsize);
2576
2577         if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2578                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2579                 goto fail_sb_buffer;
2580         }
2581
2582         if (sectorsize != PAGE_SIZE) {
2583                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2584                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2585                 goto fail_sb_buffer;
2586         }
2587
2588         mutex_lock(&fs_info->chunk_mutex);
2589         ret = btrfs_read_sys_array(tree_root);
2590         mutex_unlock(&fs_info->chunk_mutex);
2591         if (ret) {
2592                 printk(KERN_WARNING "btrfs: failed to read the system "
2593                        "array on %s\n", sb->s_id);
2594                 goto fail_sb_buffer;
2595         }
2596
2597         blocksize = btrfs_level_size(tree_root,
2598                                      btrfs_super_chunk_root_level(disk_super));
2599         generation = btrfs_super_chunk_root_generation(disk_super);
2600
2601         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2602                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2603
2604         chunk_root->node = read_tree_block(chunk_root,
2605                                            btrfs_super_chunk_root(disk_super),
2606                                            blocksize, generation);
2607         if (!chunk_root->node ||
2608             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2609                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2610                        sb->s_id);
2611                 goto fail_tree_roots;
2612         }
2613         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2614         chunk_root->commit_root = btrfs_root_node(chunk_root);
2615
2616         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2617            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2618            BTRFS_UUID_SIZE);
2619
2620         ret = btrfs_read_chunk_tree(chunk_root);
2621         if (ret) {
2622                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2623                        sb->s_id);
2624                 goto fail_tree_roots;
2625         }
2626
2627         /*
2628          * keep the device that is marked to be the target device for the
2629          * dev_replace procedure
2630          */
2631         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2632
2633         if (!fs_devices->latest_bdev) {
2634                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2635                        sb->s_id);
2636                 goto fail_tree_roots;
2637         }
2638
2639 retry_root_backup:
2640         blocksize = btrfs_level_size(tree_root,
2641                                      btrfs_super_root_level(disk_super));
2642         generation = btrfs_super_generation(disk_super);
2643
2644         tree_root->node = read_tree_block(tree_root,
2645                                           btrfs_super_root(disk_super),
2646                                           blocksize, generation);
2647         if (!tree_root->node ||
2648             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2649                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2650                        sb->s_id);
2651
2652                 goto recovery_tree_root;
2653         }
2654
2655         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2656         tree_root->commit_root = btrfs_root_node(tree_root);
2657
2658         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2659         location.type = BTRFS_ROOT_ITEM_KEY;
2660         location.offset = 0;
2661
2662         extent_root = btrfs_read_tree_root(tree_root, &location);
2663         if (IS_ERR(extent_root)) {
2664                 ret = PTR_ERR(extent_root);
2665                 goto recovery_tree_root;
2666         }
2667         extent_root->track_dirty = 1;
2668         fs_info->extent_root = extent_root;
2669
2670         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2671         dev_root = btrfs_read_tree_root(tree_root, &location);
2672         if (IS_ERR(dev_root)) {
2673                 ret = PTR_ERR(dev_root);
2674                 goto recovery_tree_root;
2675         }
2676         dev_root->track_dirty = 1;
2677         fs_info->dev_root = dev_root;
2678         btrfs_init_devices_late(fs_info);
2679
2680         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2681         csum_root = btrfs_read_tree_root(tree_root, &location);
2682         if (IS_ERR(csum_root)) {
2683                 ret = PTR_ERR(csum_root);
2684                 goto recovery_tree_root;
2685         }
2686         csum_root->track_dirty = 1;
2687         fs_info->csum_root = csum_root;
2688
2689         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2690         quota_root = btrfs_read_tree_root(tree_root, &location);
2691         if (!IS_ERR(quota_root)) {
2692                 quota_root->track_dirty = 1;
2693                 fs_info->quota_enabled = 1;
2694                 fs_info->pending_quota_state = 1;
2695                 fs_info->quota_root = quota_root;
2696         }
2697
2698         fs_info->generation = generation;
2699         fs_info->last_trans_committed = generation;
2700
2701         ret = btrfs_recover_balance(fs_info);
2702         if (ret) {
2703                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2704                 goto fail_block_groups;
2705         }
2706
2707         ret = btrfs_init_dev_stats(fs_info);
2708         if (ret) {
2709                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2710                        ret);
2711                 goto fail_block_groups;
2712         }
2713
2714         ret = btrfs_init_dev_replace(fs_info);
2715         if (ret) {
2716                 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2717                 goto fail_block_groups;
2718         }
2719
2720         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2721
2722         ret = btrfs_init_space_info(fs_info);
2723         if (ret) {
2724                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2725                 goto fail_block_groups;
2726         }
2727
2728         ret = btrfs_read_block_groups(extent_root);
2729         if (ret) {
2730                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2731                 goto fail_block_groups;
2732         }
2733         fs_info->num_tolerated_disk_barrier_failures =
2734                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2735         if (fs_info->fs_devices->missing_devices >
2736              fs_info->num_tolerated_disk_barrier_failures &&
2737             !(sb->s_flags & MS_RDONLY)) {
2738                 printk(KERN_WARNING
2739                        "Btrfs: too many missing devices, writeable mount is not allowed\n");
2740                 goto fail_block_groups;
2741         }
2742
2743         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2744                                                "btrfs-cleaner");
2745         if (IS_ERR(fs_info->cleaner_kthread))
2746                 goto fail_block_groups;
2747
2748         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2749                                                    tree_root,
2750                                                    "btrfs-transaction");
2751         if (IS_ERR(fs_info->transaction_kthread))
2752                 goto fail_cleaner;
2753
2754         if (!btrfs_test_opt(tree_root, SSD) &&
2755             !btrfs_test_opt(tree_root, NOSSD) &&
2756             !fs_info->fs_devices->rotating) {
2757                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2758                        "mode\n");
2759                 btrfs_set_opt(fs_info->mount_opt, SSD);
2760         }
2761
2762 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2763         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2764                 ret = btrfsic_mount(tree_root, fs_devices,
2765                                     btrfs_test_opt(tree_root,
2766                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2767                                     1 : 0,
2768                                     fs_info->check_integrity_print_mask);
2769                 if (ret)
2770                         printk(KERN_WARNING "btrfs: failed to initialize"
2771                                " integrity check module %s\n", sb->s_id);
2772         }
2773 #endif
2774         ret = btrfs_read_qgroup_config(fs_info);
2775         if (ret)
2776                 goto fail_trans_kthread;
2777
2778         /* do not make disk changes in broken FS */
2779         if (btrfs_super_log_root(disk_super) != 0) {
2780                 u64 bytenr = btrfs_super_log_root(disk_super);
2781
2782                 if (fs_devices->rw_devices == 0) {
2783                         printk(KERN_WARNING "Btrfs log replay required "
2784                                "on RO media\n");
2785                         err = -EIO;
2786                         goto fail_qgroup;
2787                 }
2788                 blocksize =
2789                      btrfs_level_size(tree_root,
2790                                       btrfs_super_log_root_level(disk_super));
2791
2792                 log_tree_root = btrfs_alloc_root(fs_info);
2793                 if (!log_tree_root) {
2794                         err = -ENOMEM;
2795                         goto fail_qgroup;
2796                 }
2797
2798                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2799                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2800
2801                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2802                                                       blocksize,
2803                                                       generation + 1);
2804                 if (!log_tree_root->node ||
2805                     !extent_buffer_uptodate(log_tree_root->node)) {
2806                         printk(KERN_ERR "btrfs: failed to read log tree\n");
2807                         free_extent_buffer(log_tree_root->node);
2808                         kfree(log_tree_root);
2809                         goto fail_trans_kthread;
2810                 }
2811                 /* returns with log_tree_root freed on success */
2812                 ret = btrfs_recover_log_trees(log_tree_root);
2813                 if (ret) {
2814                         btrfs_error(tree_root->fs_info, ret,
2815                                     "Failed to recover log tree");
2816                         free_extent_buffer(log_tree_root->node);
2817                         kfree(log_tree_root);
2818                         goto fail_trans_kthread;
2819                 }
2820
2821                 if (sb->s_flags & MS_RDONLY) {
2822                         ret = btrfs_commit_super(tree_root);
2823                         if (ret)
2824                                 goto fail_trans_kthread;
2825                 }
2826         }
2827
2828         ret = btrfs_find_orphan_roots(tree_root);
2829         if (ret)
2830                 goto fail_trans_kthread;
2831
2832         if (!(sb->s_flags & MS_RDONLY)) {
2833                 ret = btrfs_cleanup_fs_roots(fs_info);
2834                 if (ret)
2835                         goto fail_trans_kthread;
2836
2837                 ret = btrfs_recover_relocation(tree_root);
2838                 if (ret < 0) {
2839                         printk(KERN_WARNING
2840                                "btrfs: failed to recover relocation\n");
2841                         err = -EINVAL;
2842                         goto fail_qgroup;
2843                 }
2844         }
2845
2846         location.objectid = BTRFS_FS_TREE_OBJECTID;
2847         location.type = BTRFS_ROOT_ITEM_KEY;
2848         location.offset = 0;
2849
2850         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2851         if (IS_ERR(fs_info->fs_root)) {
2852                 err = PTR_ERR(fs_info->fs_root);
2853                 goto fail_qgroup;
2854         }
2855
2856         if (sb->s_flags & MS_RDONLY)
2857                 return 0;
2858
2859         down_read(&fs_info->cleanup_work_sem);
2860         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2861             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2862                 up_read(&fs_info->cleanup_work_sem);
2863                 close_ctree(tree_root);
2864                 return ret;
2865         }
2866         up_read(&fs_info->cleanup_work_sem);
2867
2868         ret = btrfs_resume_balance_async(fs_info);
2869         if (ret) {
2870                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2871                 close_ctree(tree_root);
2872                 return ret;
2873         }
2874
2875         ret = btrfs_resume_dev_replace_async(fs_info);
2876         if (ret) {
2877                 pr_warn("btrfs: failed to resume dev_replace\n");
2878                 close_ctree(tree_root);
2879                 return ret;
2880         }
2881
2882         btrfs_qgroup_rescan_resume(fs_info);
2883
2884         return 0;
2885
2886 fail_qgroup:
2887         btrfs_free_qgroup_config(fs_info);
2888 fail_trans_kthread:
2889         kthread_stop(fs_info->transaction_kthread);
2890         btrfs_cleanup_transaction(fs_info->tree_root);
2891         del_fs_roots(fs_info);
2892 fail_cleaner:
2893         kthread_stop(fs_info->cleaner_kthread);
2894
2895         /*
2896          * make sure we're done with the btree inode before we stop our
2897          * kthreads
2898          */
2899         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2900
2901 fail_block_groups:
2902         btrfs_put_block_group_cache(fs_info);
2903         btrfs_free_block_groups(fs_info);
2904
2905 fail_tree_roots:
2906         free_root_pointers(fs_info, 1);
2907         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2908
2909 fail_sb_buffer:
2910         btrfs_stop_all_workers(fs_info);
2911 fail_alloc:
2912 fail_iput:
2913         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2914
2915         iput(fs_info->btree_inode);
2916 fail_delalloc_bytes:
2917         percpu_counter_destroy(&fs_info->delalloc_bytes);
2918 fail_dirty_metadata_bytes:
2919         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2920 fail_bdi:
2921         bdi_destroy(&fs_info->bdi);
2922 fail_srcu:
2923         cleanup_srcu_struct(&fs_info->subvol_srcu);
2924 fail:
2925         btrfs_free_stripe_hash_table(fs_info);
2926         btrfs_close_devices(fs_info->fs_devices);
2927         return err;
2928
2929 recovery_tree_root:
2930         if (!btrfs_test_opt(tree_root, RECOVERY))
2931                 goto fail_tree_roots;
2932
2933         free_root_pointers(fs_info, 0);
2934
2935         /* don't use the log in recovery mode, it won't be valid */
2936         btrfs_set_super_log_root(disk_super, 0);
2937
2938         /* we can't trust the free space cache either */
2939         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2940
2941         ret = next_root_backup(fs_info, fs_info->super_copy,
2942                                &num_backups_tried, &backup_index);
2943         if (ret == -1)
2944                 goto fail_block_groups;
2945         goto retry_root_backup;
2946 }
2947
2948 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2949 {
2950         if (uptodate) {
2951                 set_buffer_uptodate(bh);
2952         } else {
2953                 struct btrfs_device *device = (struct btrfs_device *)
2954                         bh->b_private;
2955
2956                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2957                                           "I/O error on %s\n",
2958                                           rcu_str_deref(device->name));
2959                 /* note, we dont' set_buffer_write_io_error because we have
2960                  * our own ways of dealing with the IO errors
2961                  */
2962                 clear_buffer_uptodate(bh);
2963                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2964         }
2965         unlock_buffer(bh);
2966         put_bh(bh);
2967 }
2968
2969 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2970 {
2971         struct buffer_head *bh;
2972         struct buffer_head *latest = NULL;
2973         struct btrfs_super_block *super;
2974         int i;
2975         u64 transid = 0;
2976         u64 bytenr;
2977
2978         /* we would like to check all the supers, but that would make
2979          * a btrfs mount succeed after a mkfs from a different FS.
2980          * So, we need to add a special mount option to scan for
2981          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2982          */
2983         for (i = 0; i < 1; i++) {
2984                 bytenr = btrfs_sb_offset(i);
2985                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2986                         break;
2987                 bh = __bread(bdev, bytenr / 4096, 4096);
2988                 if (!bh)
2989                         continue;
2990
2991                 super = (struct btrfs_super_block *)bh->b_data;
2992                 if (btrfs_super_bytenr(super) != bytenr ||
2993                     super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2994                         brelse(bh);
2995                         continue;
2996                 }
2997
2998                 if (!latest || btrfs_super_generation(super) > transid) {
2999                         brelse(latest);
3000                         latest = bh;
3001                         transid = btrfs_super_generation(super);
3002                 } else {
3003                         brelse(bh);
3004                 }
3005         }
3006         return latest;
3007 }
3008
3009 /*
3010  * this should be called twice, once with wait == 0 and
3011  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3012  * we write are pinned.
3013  *
3014  * They are released when wait == 1 is done.
3015  * max_mirrors must be the same for both runs, and it indicates how
3016  * many supers on this one device should be written.
3017  *
3018  * max_mirrors == 0 means to write them all.
3019  */
3020 static int write_dev_supers(struct btrfs_device *device,
3021                             struct btrfs_super_block *sb,
3022                             int do_barriers, int wait, int max_mirrors)
3023 {
3024         struct buffer_head *bh;
3025         int i;
3026         int ret;
3027         int errors = 0;
3028         u32 crc;
3029         u64 bytenr;
3030
3031         if (max_mirrors == 0)
3032                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3033
3034         for (i = 0; i < max_mirrors; i++) {
3035                 bytenr = btrfs_sb_offset(i);
3036                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3037                         break;
3038
3039                 if (wait) {
3040                         bh = __find_get_block(device->bdev, bytenr / 4096,
3041                                               BTRFS_SUPER_INFO_SIZE);
3042                         if (!bh) {
3043                                 errors++;
3044                                 continue;
3045                         }
3046                         wait_on_buffer(bh);
3047                         if (!buffer_uptodate(bh))
3048                                 errors++;
3049
3050                         /* drop our reference */
3051                         brelse(bh);
3052
3053                         /* drop the reference from the wait == 0 run */
3054                         brelse(bh);
3055                         continue;
3056                 } else {
3057                         btrfs_set_super_bytenr(sb, bytenr);
3058
3059                         crc = ~(u32)0;
3060                         crc = btrfs_csum_data((char *)sb +
3061                                               BTRFS_CSUM_SIZE, crc,
3062                                               BTRFS_SUPER_INFO_SIZE -
3063                                               BTRFS_CSUM_SIZE);
3064                         btrfs_csum_final(crc, sb->csum);
3065
3066                         /*
3067                          * one reference for us, and we leave it for the
3068                          * caller
3069                          */
3070                         bh = __getblk(device->bdev, bytenr / 4096,
3071                                       BTRFS_SUPER_INFO_SIZE);
3072                         if (!bh) {
3073                                 printk(KERN_ERR "btrfs: couldn't get super "
3074                                        "buffer head for bytenr %Lu\n", bytenr);
3075                                 errors++;
3076                                 continue;
3077                         }
3078
3079                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3080
3081                         /* one reference for submit_bh */
3082                         get_bh(bh);
3083
3084                         set_buffer_uptodate(bh);
3085                         lock_buffer(bh);
3086                         bh->b_end_io = btrfs_end_buffer_write_sync;
3087                         bh->b_private = device;
3088                 }
3089
3090                 /*
3091                  * we fua the first super.  The others we allow
3092                  * to go down lazy.
3093                  */
3094                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3095                 if (ret)
3096                         errors++;
3097         }
3098         return errors < i ? 0 : -1;
3099 }
3100
3101 /*
3102  * endio for the write_dev_flush, this will wake anyone waiting
3103  * for the barrier when it is done
3104  */
3105 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3106 {
3107         if (err) {
3108                 if (err == -EOPNOTSUPP)
3109                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3110                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3111         }
3112         if (bio->bi_private)
3113                 complete(bio->bi_private);
3114         bio_put(bio);
3115 }
3116
3117 /*
3118  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3119  * sent down.  With wait == 1, it waits for the previous flush.
3120  *
3121  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3122  * capable
3123  */
3124 static int write_dev_flush(struct btrfs_device *device, int wait)
3125 {
3126         struct bio *bio;
3127         int ret = 0;
3128
3129         if (device->nobarriers)
3130                 return 0;
3131
3132         if (wait) {
3133                 bio = device->flush_bio;
3134                 if (!bio)
3135                         return 0;
3136
3137                 wait_for_completion(&device->flush_wait);
3138
3139                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3140                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3141                                       rcu_str_deref(device->name));
3142                         device->nobarriers = 1;
3143                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3144                         ret = -EIO;
3145                         btrfs_dev_stat_inc_and_print(device,
3146                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3147                 }
3148
3149                 /* drop the reference from the wait == 0 run */
3150                 bio_put(bio);
3151                 device->flush_bio = NULL;
3152
3153                 return ret;
3154         }
3155
3156         /*
3157          * one reference for us, and we leave it for the
3158          * caller
3159          */
3160         device->flush_bio = NULL;
3161         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3162         if (!bio)
3163                 return -ENOMEM;
3164
3165         bio->bi_end_io = btrfs_end_empty_barrier;
3166         bio->bi_bdev = device->bdev;
3167         init_completion(&device->flush_wait);
3168         bio->bi_private = &device->flush_wait;
3169         device->flush_bio = bio;
3170
3171         bio_get(bio);
3172         btrfsic_submit_bio(WRITE_FLUSH, bio);
3173
3174         return 0;
3175 }
3176
3177 /*
3178  * send an empty flush down to each device in parallel,
3179  * then wait for them
3180  */
3181 static int barrier_all_devices(struct btrfs_fs_info *info)
3182 {
3183         struct list_head *head;
3184         struct btrfs_device *dev;
3185         int errors_send = 0;
3186         int errors_wait = 0;
3187         int ret;
3188
3189         /* send down all the barriers */
3190         head = &info->fs_devices->devices;
3191         list_for_each_entry_rcu(dev, head, dev_list) {
3192                 if (!dev->bdev) {
3193                         errors_send++;
3194                         continue;
3195                 }
3196                 if (!dev->in_fs_metadata || !dev->writeable)
3197                         continue;
3198
3199                 ret = write_dev_flush(dev, 0);
3200                 if (ret)
3201                         errors_send++;
3202         }
3203
3204         /* wait for all the barriers */
3205         list_for_each_entry_rcu(dev, head, dev_list) {
3206                 if (!dev->bdev) {
3207                         errors_wait++;
3208                         continue;
3209                 }
3210                 if (!dev->in_fs_metadata || !dev->writeable)
3211                         continue;
3212
3213                 ret = write_dev_flush(dev, 1);
3214                 if (ret)
3215                         errors_wait++;
3216         }
3217         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3218             errors_wait > info->num_tolerated_disk_barrier_failures)
3219                 return -EIO;
3220         return 0;
3221 }
3222
3223 int btrfs_calc_num_tolerated_disk_barrier_failures(
3224         struct btrfs_fs_info *fs_info)
3225 {
3226         struct btrfs_ioctl_space_info space;
3227         struct btrfs_space_info *sinfo;
3228         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3229                        BTRFS_BLOCK_GROUP_SYSTEM,
3230                        BTRFS_BLOCK_GROUP_METADATA,
3231                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3232         int num_types = 4;
3233         int i;
3234         int c;
3235         int num_tolerated_disk_barrier_failures =
3236                 (int)fs_info->fs_devices->num_devices;
3237
3238         for (i = 0; i < num_types; i++) {
3239                 struct btrfs_space_info *tmp;
3240
3241                 sinfo = NULL;
3242                 rcu_read_lock();
3243                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3244                         if (tmp->flags == types[i]) {
3245                                 sinfo = tmp;
3246                                 break;
3247                         }
3248                 }
3249                 rcu_read_unlock();
3250
3251                 if (!sinfo)
3252                         continue;
3253
3254                 down_read(&sinfo->groups_sem);
3255                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3256                         if (!list_empty(&sinfo->block_groups[c])) {
3257                                 u64 flags;
3258
3259                                 btrfs_get_block_group_info(
3260                                         &sinfo->block_groups[c], &space);
3261                                 if (space.total_bytes == 0 ||
3262                                     space.used_bytes == 0)
3263                                         continue;
3264                                 flags = space.flags;
3265                                 /*
3266                                  * return
3267                                  * 0: if dup, single or RAID0 is configured for
3268                                  *    any of metadata, system or data, else
3269                                  * 1: if RAID5 is configured, or if RAID1 or
3270                                  *    RAID10 is configured and only two mirrors
3271                                  *    are used, else
3272                                  * 2: if RAID6 is configured, else
3273                                  * num_mirrors - 1: if RAID1 or RAID10 is
3274                                  *                  configured and more than
3275                                  *                  2 mirrors are used.
3276                                  */
3277                                 if (num_tolerated_disk_barrier_failures > 0 &&
3278                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3279                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3280                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3281                                       == 0)))
3282                                         num_tolerated_disk_barrier_failures = 0;
3283                                 else if (num_tolerated_disk_barrier_failures > 1) {
3284                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3285                                             BTRFS_BLOCK_GROUP_RAID5 |
3286                                             BTRFS_BLOCK_GROUP_RAID10)) {
3287                                                 num_tolerated_disk_barrier_failures = 1;
3288                                         } else if (flags &
3289                                                    BTRFS_BLOCK_GROUP_RAID6) {
3290                                                 num_tolerated_disk_barrier_failures = 2;
3291                                         }
3292                                 }
3293                         }
3294                 }
3295                 up_read(&sinfo->groups_sem);
3296         }
3297
3298         return num_tolerated_disk_barrier_failures;
3299 }
3300
3301 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3302 {
3303         struct list_head *head;
3304         struct btrfs_device *dev;
3305         struct btrfs_super_block *sb;
3306         struct btrfs_dev_item *dev_item;
3307         int ret;
3308         int do_barriers;
3309         int max_errors;
3310         int total_errors = 0;
3311         u64 flags;
3312
3313         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3314         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3315         backup_super_roots(root->fs_info);
3316
3317         sb = root->fs_info->super_for_commit;
3318         dev_item = &sb->dev_item;
3319
3320         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3321         head = &root->fs_info->fs_devices->devices;
3322
3323         if (do_barriers) {
3324                 ret = barrier_all_devices(root->fs_info);
3325                 if (ret) {
3326                         mutex_unlock(
3327                                 &root->fs_info->fs_devices->device_list_mutex);
3328                         btrfs_error(root->fs_info, ret,
3329                                     "errors while submitting device barriers.");
3330                         return ret;
3331                 }
3332         }
3333
3334         list_for_each_entry_rcu(dev, head, dev_list) {
3335                 if (!dev->bdev) {
3336                         total_errors++;
3337                         continue;
3338                 }
3339                 if (!dev->in_fs_metadata || !dev->writeable)
3340                         continue;
3341
3342                 btrfs_set_stack_device_generation(dev_item, 0);
3343                 btrfs_set_stack_device_type(dev_item, dev->type);
3344                 btrfs_set_stack_device_id(dev_item, dev->devid);
3345                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3346                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3347                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3348                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3349                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3350                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3351                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3352
3353                 flags = btrfs_super_flags(sb);
3354                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3355
3356                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3357                 if (ret)
3358                         total_errors++;
3359         }
3360         if (total_errors > max_errors) {
3361                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3362                        total_errors);
3363
3364                 /* This shouldn't happen. FUA is masked off if unsupported */
3365                 BUG();
3366         }
3367
3368         total_errors = 0;
3369         list_for_each_entry_rcu(dev, head, dev_list) {
3370                 if (!dev->bdev)
3371                         continue;
3372                 if (!dev->in_fs_metadata || !dev->writeable)
3373                         continue;
3374
3375                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3376                 if (ret)
3377                         total_errors++;
3378         }
3379         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3380         if (total_errors > max_errors) {
3381                 btrfs_error(root->fs_info, -EIO,
3382                             "%d errors while writing supers", total_errors);
3383                 return -EIO;
3384         }
3385         return 0;
3386 }
3387
3388 int write_ctree_super(struct btrfs_trans_handle *trans,
3389                       struct btrfs_root *root, int max_mirrors)
3390 {
3391         int ret;
3392
3393         ret = write_all_supers(root, max_mirrors);
3394         return ret;
3395 }
3396
3397 /* Drop a fs root from the radix tree and free it. */
3398 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3399                                   struct btrfs_root *root)
3400 {
3401         spin_lock(&fs_info->fs_roots_radix_lock);
3402         radix_tree_delete(&fs_info->fs_roots_radix,
3403                           (unsigned long)root->root_key.objectid);
3404         spin_unlock(&fs_info->fs_roots_radix_lock);
3405
3406         if (btrfs_root_refs(&root->root_item) == 0)
3407                 synchronize_srcu(&fs_info->subvol_srcu);
3408
3409         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3410                 btrfs_free_log(NULL, root);
3411                 btrfs_free_log_root_tree(NULL, fs_info);
3412         }
3413
3414         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3415         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3416         free_fs_root(root);
3417 }
3418
3419 static void free_fs_root(struct btrfs_root *root)
3420 {
3421         iput(root->cache_inode);
3422         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3423         if (root->anon_dev)
3424                 free_anon_bdev(root->anon_dev);
3425         free_extent_buffer(root->node);
3426         free_extent_buffer(root->commit_root);
3427         kfree(root->free_ino_ctl);
3428         kfree(root->free_ino_pinned);
3429         kfree(root->name);
3430         btrfs_put_fs_root(root);
3431 }
3432
3433 void btrfs_free_fs_root(struct btrfs_root *root)
3434 {
3435         free_fs_root(root);
3436 }
3437
3438 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3439 {
3440         u64 root_objectid = 0;
3441         struct btrfs_root *gang[8];
3442         int i;
3443         int ret;
3444
3445         while (1) {
3446                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3447                                              (void **)gang, root_objectid,
3448                                              ARRAY_SIZE(gang));
3449                 if (!ret)
3450                         break;
3451
3452                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3453                 for (i = 0; i < ret; i++) {
3454                         int err;
3455
3456                         root_objectid = gang[i]->root_key.objectid;
3457                         err = btrfs_orphan_cleanup(gang[i]);
3458                         if (err)
3459                                 return err;
3460                 }
3461                 root_objectid++;
3462         }
3463         return 0;
3464 }
3465
3466 int btrfs_commit_super(struct btrfs_root *root)
3467 {
3468         struct btrfs_trans_handle *trans;
3469         int ret;
3470
3471         mutex_lock(&root->fs_info->cleaner_mutex);
3472         btrfs_run_delayed_iputs(root);
3473         mutex_unlock(&root->fs_info->cleaner_mutex);
3474         wake_up_process(root->fs_info->cleaner_kthread);
3475
3476         /* wait until ongoing cleanup work done */
3477         down_write(&root->fs_info->cleanup_work_sem);
3478         up_write(&root->fs_info->cleanup_work_sem);
3479
3480         trans = btrfs_join_transaction(root);
3481         if (IS_ERR(trans))
3482                 return PTR_ERR(trans);
3483         ret = btrfs_commit_transaction(trans, root);
3484         if (ret)
3485                 return ret;
3486         /* run commit again to drop the original snapshot */
3487         trans = btrfs_join_transaction(root);
3488         if (IS_ERR(trans))
3489                 return PTR_ERR(trans);
3490         ret = btrfs_commit_transaction(trans, root);
3491         if (ret)
3492                 return ret;
3493         ret = btrfs_write_and_wait_transaction(NULL, root);
3494         if (ret) {
3495                 btrfs_error(root->fs_info, ret,
3496                             "Failed to sync btree inode to disk.");
3497                 return ret;
3498         }
3499
3500         ret = write_ctree_super(NULL, root, 0);
3501         return ret;
3502 }
3503
3504 int close_ctree(struct btrfs_root *root)
3505 {
3506         struct btrfs_fs_info *fs_info = root->fs_info;
3507         int ret;
3508
3509         fs_info->closing = 1;
3510         smp_mb();
3511
3512         /* pause restriper - we want to resume on mount */
3513         btrfs_pause_balance(fs_info);
3514
3515         btrfs_dev_replace_suspend_for_unmount(fs_info);
3516
3517         btrfs_scrub_cancel(fs_info);
3518
3519         /* wait for any defraggers to finish */
3520         wait_event(fs_info->transaction_wait,
3521                    (atomic_read(&fs_info->defrag_running) == 0));
3522
3523         /* clear out the rbtree of defraggable inodes */
3524         btrfs_cleanup_defrag_inodes(fs_info);
3525
3526         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3527                 ret = btrfs_commit_super(root);
3528                 if (ret)
3529                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3530         }
3531
3532         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3533                 btrfs_error_commit_super(root);
3534
3535         btrfs_put_block_group_cache(fs_info);
3536
3537         kthread_stop(fs_info->transaction_kthread);
3538         kthread_stop(fs_info->cleaner_kthread);
3539
3540         fs_info->closing = 2;
3541         smp_mb();
3542
3543         btrfs_free_qgroup_config(root->fs_info);
3544
3545         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3546                 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3547                        percpu_counter_sum(&fs_info->delalloc_bytes));
3548         }
3549
3550         btrfs_free_block_groups(fs_info);
3551
3552         btrfs_stop_all_workers(fs_info);
3553
3554         del_fs_roots(fs_info);
3555
3556         free_root_pointers(fs_info, 1);
3557
3558         iput(fs_info->btree_inode);
3559
3560 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3561         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3562                 btrfsic_unmount(root, fs_info->fs_devices);
3563 #endif
3564
3565         btrfs_close_devices(fs_info->fs_devices);
3566         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3567
3568         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3569         percpu_counter_destroy(&fs_info->delalloc_bytes);
3570         bdi_destroy(&fs_info->bdi);
3571         cleanup_srcu_struct(&fs_info->subvol_srcu);
3572
3573         btrfs_free_stripe_hash_table(fs_info);
3574
3575         return 0;
3576 }
3577
3578 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3579                           int atomic)
3580 {
3581         int ret;
3582         struct inode *btree_inode = buf->pages[0]->mapping->host;
3583
3584         ret = extent_buffer_uptodate(buf);
3585         if (!ret)
3586                 return ret;
3587
3588         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3589                                     parent_transid, atomic);
3590         if (ret == -EAGAIN)
3591                 return ret;
3592         return !ret;
3593 }
3594
3595 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3596 {
3597         return set_extent_buffer_uptodate(buf);
3598 }
3599
3600 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3601 {
3602         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3603         u64 transid = btrfs_header_generation(buf);
3604         int was_dirty;
3605
3606         btrfs_assert_tree_locked(buf);
3607         if (transid != root->fs_info->generation)
3608                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3609                        "found %llu running %llu\n",
3610                         (unsigned long long)buf->start,
3611                         (unsigned long long)transid,
3612                         (unsigned long long)root->fs_info->generation);
3613         was_dirty = set_extent_buffer_dirty(buf);
3614         if (!was_dirty)
3615                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3616                                      buf->len,
3617                                      root->fs_info->dirty_metadata_batch);
3618 }
3619
3620 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3621                                         int flush_delayed)
3622 {
3623         /*
3624          * looks as though older kernels can get into trouble with
3625          * this code, they end up stuck in balance_dirty_pages forever
3626          */
3627         int ret;
3628
3629         if (current->flags & PF_MEMALLOC)
3630                 return;
3631
3632         if (flush_delayed)
3633                 btrfs_balance_delayed_items(root);
3634
3635         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3636                                      BTRFS_DIRTY_METADATA_THRESH);
3637         if (ret > 0) {
3638                 balance_dirty_pages_ratelimited(
3639                                    root->fs_info->btree_inode->i_mapping);
3640         }
3641         return;
3642 }
3643
3644 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3645 {
3646         __btrfs_btree_balance_dirty(root, 1);
3647 }
3648
3649 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3650 {
3651         __btrfs_btree_balance_dirty(root, 0);
3652 }
3653
3654 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3655 {
3656         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3657         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3658 }
3659
3660 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3661                               int read_only)
3662 {
3663         /*
3664          * Placeholder for checks
3665          */
3666         return 0;
3667 }
3668
3669 static void btrfs_error_commit_super(struct btrfs_root *root)
3670 {
3671         mutex_lock(&root->fs_info->cleaner_mutex);
3672         btrfs_run_delayed_iputs(root);
3673         mutex_unlock(&root->fs_info->cleaner_mutex);
3674
3675         down_write(&root->fs_info->cleanup_work_sem);
3676         up_write(&root->fs_info->cleanup_work_sem);
3677
3678         /* cleanup FS via transaction */
3679         btrfs_cleanup_transaction(root);
3680 }
3681
3682 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3683                                              struct btrfs_root *root)
3684 {
3685         struct btrfs_inode *btrfs_inode;
3686         struct list_head splice;
3687
3688         INIT_LIST_HEAD(&splice);
3689
3690         mutex_lock(&root->fs_info->ordered_operations_mutex);
3691         spin_lock(&root->fs_info->ordered_root_lock);
3692
3693         list_splice_init(&t->ordered_operations, &splice);
3694         while (!list_empty(&splice)) {
3695                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3696                                          ordered_operations);
3697
3698                 list_del_init(&btrfs_inode->ordered_operations);
3699                 spin_unlock(&root->fs_info->ordered_root_lock);
3700
3701                 btrfs_invalidate_inodes(btrfs_inode->root);
3702
3703                 spin_lock(&root->fs_info->ordered_root_lock);
3704         }
3705
3706         spin_unlock(&root->fs_info->ordered_root_lock);
3707         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3708 }
3709
3710 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3711 {
3712         struct btrfs_ordered_extent *ordered;
3713
3714         spin_lock(&root->ordered_extent_lock);
3715         /*
3716          * This will just short circuit the ordered completion stuff which will
3717          * make sure the ordered extent gets properly cleaned up.
3718          */
3719         list_for_each_entry(ordered, &root->ordered_extents,
3720                             root_extent_list)
3721                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3722         spin_unlock(&root->ordered_extent_lock);
3723 }
3724
3725 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3726 {
3727         struct btrfs_root *root;
3728         struct list_head splice;
3729
3730         INIT_LIST_HEAD(&splice);
3731
3732         spin_lock(&fs_info->ordered_root_lock);
3733         list_splice_init(&fs_info->ordered_roots, &splice);
3734         while (!list_empty(&splice)) {
3735                 root = list_first_entry(&splice, struct btrfs_root,
3736                                         ordered_root);
3737                 list_del_init(&root->ordered_root);
3738
3739                 btrfs_destroy_ordered_extents(root);
3740
3741                 cond_resched_lock(&fs_info->ordered_root_lock);
3742         }
3743         spin_unlock(&fs_info->ordered_root_lock);
3744 }
3745
3746 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3747                                struct btrfs_root *root)
3748 {
3749         struct rb_node *node;
3750         struct btrfs_delayed_ref_root *delayed_refs;
3751         struct btrfs_delayed_ref_node *ref;
3752         int ret = 0;
3753
3754         delayed_refs = &trans->delayed_refs;
3755
3756         spin_lock(&delayed_refs->lock);
3757         if (delayed_refs->num_entries == 0) {
3758                 spin_unlock(&delayed_refs->lock);
3759                 printk(KERN_INFO "delayed_refs has NO entry\n");
3760                 return ret;
3761         }
3762
3763         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3764                 struct btrfs_delayed_ref_head *head = NULL;
3765
3766                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3767                 atomic_set(&ref->refs, 1);
3768                 if (btrfs_delayed_ref_is_head(ref)) {
3769
3770                         head = btrfs_delayed_node_to_head(ref);
3771                         if (!mutex_trylock(&head->mutex)) {
3772                                 atomic_inc(&ref->refs);
3773                                 spin_unlock(&delayed_refs->lock);
3774
3775                                 /* Need to wait for the delayed ref to run */
3776                                 mutex_lock(&head->mutex);
3777                                 mutex_unlock(&head->mutex);
3778                                 btrfs_put_delayed_ref(ref);
3779
3780                                 spin_lock(&delayed_refs->lock);
3781                                 continue;
3782                         }
3783
3784                         if (head->must_insert_reserved)
3785                                 btrfs_pin_extent(root, ref->bytenr,
3786                                                  ref->num_bytes, 1);
3787                         btrfs_free_delayed_extent_op(head->extent_op);
3788                         delayed_refs->num_heads--;
3789                         if (list_empty(&head->cluster))
3790                                 delayed_refs->num_heads_ready--;
3791                         list_del_init(&head->cluster);
3792                 }
3793
3794                 ref->in_tree = 0;
3795                 rb_erase(&ref->rb_node, &delayed_refs->root);
3796                 delayed_refs->num_entries--;
3797                 if (head)
3798                         mutex_unlock(&head->mutex);
3799                 spin_unlock(&delayed_refs->lock);
3800                 btrfs_put_delayed_ref(ref);
3801
3802                 cond_resched();
3803                 spin_lock(&delayed_refs->lock);
3804         }
3805
3806         spin_unlock(&delayed_refs->lock);
3807
3808         return ret;
3809 }
3810
3811 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3812 {
3813         struct btrfs_pending_snapshot *snapshot;
3814         struct list_head splice;
3815
3816         INIT_LIST_HEAD(&splice);
3817
3818         list_splice_init(&t->pending_snapshots, &splice);
3819
3820         while (!list_empty(&splice)) {
3821                 snapshot = list_entry(splice.next,
3822                                       struct btrfs_pending_snapshot,
3823                                       list);
3824                 snapshot->error = -ECANCELED;
3825                 list_del_init(&snapshot->list);
3826         }
3827 }
3828
3829 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3830 {
3831         struct btrfs_inode *btrfs_inode;
3832         struct list_head splice;
3833
3834         INIT_LIST_HEAD(&splice);
3835
3836         spin_lock(&root->delalloc_lock);
3837         list_splice_init(&root->delalloc_inodes, &splice);
3838
3839         while (!list_empty(&splice)) {
3840                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3841                                                delalloc_inodes);
3842
3843                 list_del_init(&btrfs_inode->delalloc_inodes);
3844                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3845                           &btrfs_inode->runtime_flags);
3846                 spin_unlock(&root->delalloc_lock);
3847
3848                 btrfs_invalidate_inodes(btrfs_inode->root);
3849
3850                 spin_lock(&root->delalloc_lock);
3851         }
3852
3853         spin_unlock(&root->delalloc_lock);
3854 }
3855
3856 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3857 {
3858         struct btrfs_root *root;
3859         struct list_head splice;
3860
3861         INIT_LIST_HEAD(&splice);
3862
3863         spin_lock(&fs_info->delalloc_root_lock);
3864         list_splice_init(&fs_info->delalloc_roots, &splice);
3865         while (!list_empty(&splice)) {
3866                 root = list_first_entry(&splice, struct btrfs_root,
3867                                          delalloc_root);
3868                 list_del_init(&root->delalloc_root);
3869                 root = btrfs_grab_fs_root(root);
3870                 BUG_ON(!root);
3871                 spin_unlock(&fs_info->delalloc_root_lock);
3872
3873                 btrfs_destroy_delalloc_inodes(root);
3874                 btrfs_put_fs_root(root);
3875
3876                 spin_lock(&fs_info->delalloc_root_lock);
3877         }
3878         spin_unlock(&fs_info->delalloc_root_lock);
3879 }
3880
3881 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3882                                         struct extent_io_tree *dirty_pages,
3883                                         int mark)
3884 {
3885         int ret;
3886         struct extent_buffer *eb;
3887         u64 start = 0;
3888         u64 end;
3889
3890         while (1) {
3891                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3892                                             mark, NULL);
3893                 if (ret)
3894                         break;
3895
3896                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3897                 while (start <= end) {
3898                         eb = btrfs_find_tree_block(root, start,
3899                                                    root->leafsize);
3900                         start += root->leafsize;
3901                         if (!eb)
3902                                 continue;
3903                         wait_on_extent_buffer_writeback(eb);
3904
3905                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3906                                                &eb->bflags))
3907                                 clear_extent_buffer_dirty(eb);
3908                         free_extent_buffer_stale(eb);
3909                 }
3910         }
3911
3912         return ret;
3913 }
3914
3915 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3916                                        struct extent_io_tree *pinned_extents)
3917 {
3918         struct extent_io_tree *unpin;
3919         u64 start;
3920         u64 end;
3921         int ret;
3922         bool loop = true;
3923
3924         unpin = pinned_extents;
3925 again:
3926         while (1) {
3927                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3928                                             EXTENT_DIRTY, NULL);
3929                 if (ret)
3930                         break;
3931
3932                 /* opt_discard */
3933                 if (btrfs_test_opt(root, DISCARD))
3934                         ret = btrfs_error_discard_extent(root, start,
3935                                                          end + 1 - start,
3936                                                          NULL);
3937
3938                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3939                 btrfs_error_unpin_extent_range(root, start, end);
3940                 cond_resched();
3941         }
3942
3943         if (loop) {
3944                 if (unpin == &root->fs_info->freed_extents[0])
3945                         unpin = &root->fs_info->freed_extents[1];
3946                 else
3947                         unpin = &root->fs_info->freed_extents[0];
3948                 loop = false;
3949                 goto again;
3950         }
3951
3952         return 0;
3953 }
3954
3955 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3956                                    struct btrfs_root *root)
3957 {
3958         btrfs_destroy_delayed_refs(cur_trans, root);
3959         btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3960                                 cur_trans->dirty_pages.dirty_bytes);
3961
3962         cur_trans->state = TRANS_STATE_COMMIT_START;
3963         wake_up(&root->fs_info->transaction_blocked_wait);
3964
3965         btrfs_evict_pending_snapshots(cur_trans);
3966
3967         cur_trans->state = TRANS_STATE_UNBLOCKED;
3968         wake_up(&root->fs_info->transaction_wait);
3969
3970         btrfs_destroy_delayed_inodes(root);
3971         btrfs_assert_delayed_root_empty(root);
3972
3973         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3974                                      EXTENT_DIRTY);
3975         btrfs_destroy_pinned_extent(root,
3976                                     root->fs_info->pinned_extents);
3977
3978         cur_trans->state =TRANS_STATE_COMPLETED;
3979         wake_up(&cur_trans->commit_wait);
3980
3981         /*
3982         memset(cur_trans, 0, sizeof(*cur_trans));
3983         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3984         */
3985 }
3986
3987 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3988 {
3989         struct btrfs_transaction *t;
3990         LIST_HEAD(list);
3991
3992         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3993
3994         spin_lock(&root->fs_info->trans_lock);
3995         list_splice_init(&root->fs_info->trans_list, &list);
3996         root->fs_info->running_transaction = NULL;
3997         spin_unlock(&root->fs_info->trans_lock);
3998
3999         while (!list_empty(&list)) {
4000                 t = list_entry(list.next, struct btrfs_transaction, list);
4001
4002                 btrfs_destroy_ordered_operations(t, root);
4003
4004                 btrfs_destroy_all_ordered_extents(root->fs_info);
4005
4006                 btrfs_destroy_delayed_refs(t, root);
4007
4008                 /*
4009                  *  FIXME: cleanup wait for commit
4010                  *  We needn't acquire the lock here, because we are during
4011                  *  the umount, there is no other task which will change it.
4012                  */
4013                 t->state = TRANS_STATE_COMMIT_START;
4014                 smp_mb();
4015                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
4016                         wake_up(&root->fs_info->transaction_blocked_wait);
4017
4018                 btrfs_evict_pending_snapshots(t);
4019
4020                 t->state = TRANS_STATE_UNBLOCKED;
4021                 smp_mb();
4022                 if (waitqueue_active(&root->fs_info->transaction_wait))
4023                         wake_up(&root->fs_info->transaction_wait);
4024
4025                 btrfs_destroy_delayed_inodes(root);
4026                 btrfs_assert_delayed_root_empty(root);
4027
4028                 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4029
4030                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
4031                                              EXTENT_DIRTY);
4032
4033                 btrfs_destroy_pinned_extent(root,
4034                                             root->fs_info->pinned_extents);
4035
4036                 t->state = TRANS_STATE_COMPLETED;
4037                 smp_mb();
4038                 if (waitqueue_active(&t->commit_wait))
4039                         wake_up(&t->commit_wait);
4040
4041                 atomic_set(&t->use_count, 0);
4042                 list_del_init(&t->list);
4043                 memset(t, 0, sizeof(*t));
4044                 kmem_cache_free(btrfs_transaction_cachep, t);
4045         }
4046
4047         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4048
4049         return 0;
4050 }
4051
4052 static struct extent_io_ops btree_extent_io_ops = {
4053         .readpage_end_io_hook = btree_readpage_end_io_hook,
4054         .readpage_io_failed_hook = btree_io_failed_hook,
4055         .submit_bio_hook = btree_submit_bio_hook,
4056         /* note we're sharing with inode.c for the merge bio hook */
4057         .merge_bio_hook = btrfs_merge_bio_hook,
4058 };