]> rtime.felk.cvut.cz Git - linux-imx.git/blob - net/sunrpc/sched.c
69049179c280c059a4c8da1acf7203241a92d7aa
[linux-imx.git] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #include "sunrpc.h"
26
27 #ifdef RPC_DEBUG
28 #define RPCDBG_FACILITY         RPCDBG_SCHED
29 #endif
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
33
34 /*
35  * RPC slabs and memory pools
36  */
37 #define RPC_BUFFER_MAXSIZE      (2048)
38 #define RPC_BUFFER_POOLSIZE     (8)
39 #define RPC_TASK_POOLSIZE       (8)
40 static struct kmem_cache        *rpc_task_slabp __read_mostly;
41 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
42 static mempool_t        *rpc_task_mempool __read_mostly;
43 static mempool_t        *rpc_buffer_mempool __read_mostly;
44
45 static void                     rpc_async_schedule(struct work_struct *);
46 static void                      rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(unsigned long ptr);
48
49 /*
50  * RPC tasks sit here while waiting for conditions to improve.
51  */
52 static struct rpc_wait_queue delay_queue;
53
54 /*
55  * rpciod-related stuff
56  */
57 struct workqueue_struct *rpciod_workqueue;
58
59 /*
60  * Disable the timer for a given RPC task. Should be called with
61  * queue->lock and bh_disabled in order to avoid races within
62  * rpc_run_timer().
63  */
64 static void
65 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
66 {
67         if (task->tk_timeout == 0)
68                 return;
69         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
70         task->tk_timeout = 0;
71         list_del(&task->u.tk_wait.timer_list);
72         if (list_empty(&queue->timer_list.list))
73                 del_timer(&queue->timer_list.timer);
74 }
75
76 static void
77 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
78 {
79         queue->timer_list.expires = expires;
80         mod_timer(&queue->timer_list.timer, expires);
81 }
82
83 /*
84  * Set up a timer for the current task.
85  */
86 static void
87 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
88 {
89         if (!task->tk_timeout)
90                 return;
91
92         dprintk("RPC: %5u setting alarm for %lu ms\n",
93                         task->tk_pid, task->tk_timeout * 1000 / HZ);
94
95         task->u.tk_wait.expires = jiffies + task->tk_timeout;
96         if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
97                 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
98         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
99 }
100
101 /*
102  * Add new request to a priority queue.
103  */
104 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
105                 struct rpc_task *task,
106                 unsigned char queue_priority)
107 {
108         struct list_head *q;
109         struct rpc_task *t;
110
111         INIT_LIST_HEAD(&task->u.tk_wait.links);
112         q = &queue->tasks[queue_priority];
113         if (unlikely(queue_priority > queue->maxpriority))
114                 q = &queue->tasks[queue->maxpriority];
115         list_for_each_entry(t, q, u.tk_wait.list) {
116                 if (t->tk_owner == task->tk_owner) {
117                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
118                         return;
119                 }
120         }
121         list_add_tail(&task->u.tk_wait.list, q);
122 }
123
124 /*
125  * Add new request to wait queue.
126  *
127  * Swapper tasks always get inserted at the head of the queue.
128  * This should avoid many nasty memory deadlocks and hopefully
129  * improve overall performance.
130  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
131  */
132 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
133                 struct rpc_task *task,
134                 unsigned char queue_priority)
135 {
136         WARN_ON_ONCE(RPC_IS_QUEUED(task));
137         if (RPC_IS_QUEUED(task))
138                 return;
139
140         if (RPC_IS_PRIORITY(queue))
141                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
142         else if (RPC_IS_SWAPPER(task))
143                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
144         else
145                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
146         task->tk_waitqueue = queue;
147         queue->qlen++;
148         rpc_set_queued(task);
149
150         dprintk("RPC: %5u added to queue %p \"%s\"\n",
151                         task->tk_pid, queue, rpc_qname(queue));
152 }
153
154 /*
155  * Remove request from a priority queue.
156  */
157 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
158 {
159         struct rpc_task *t;
160
161         if (!list_empty(&task->u.tk_wait.links)) {
162                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
163                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
164                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
165         }
166 }
167
168 /*
169  * Remove request from queue.
170  * Note: must be called with spin lock held.
171  */
172 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
173 {
174         __rpc_disable_timer(queue, task);
175         if (RPC_IS_PRIORITY(queue))
176                 __rpc_remove_wait_queue_priority(task);
177         list_del(&task->u.tk_wait.list);
178         queue->qlen--;
179         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
180                         task->tk_pid, queue, rpc_qname(queue));
181 }
182
183 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
184 {
185         queue->priority = priority;
186         queue->count = 1 << (priority * 2);
187 }
188
189 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
190 {
191         queue->owner = pid;
192         queue->nr = RPC_BATCH_COUNT;
193 }
194
195 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
196 {
197         rpc_set_waitqueue_priority(queue, queue->maxpriority);
198         rpc_set_waitqueue_owner(queue, 0);
199 }
200
201 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
202 {
203         int i;
204
205         spin_lock_init(&queue->lock);
206         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
207                 INIT_LIST_HEAD(&queue->tasks[i]);
208         queue->maxpriority = nr_queues - 1;
209         rpc_reset_waitqueue_priority(queue);
210         queue->qlen = 0;
211         setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
212         INIT_LIST_HEAD(&queue->timer_list.list);
213         rpc_assign_waitqueue_name(queue, qname);
214 }
215
216 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
217 {
218         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
219 }
220 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
221
222 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
223 {
224         __rpc_init_priority_wait_queue(queue, qname, 1);
225 }
226 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
227
228 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
229 {
230         del_timer_sync(&queue->timer_list.timer);
231 }
232 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
233
234 static int rpc_wait_bit_killable(void *word)
235 {
236         if (fatal_signal_pending(current))
237                 return -ERESTARTSYS;
238         freezable_schedule();
239         return 0;
240 }
241
242 #ifdef RPC_DEBUG
243 static void rpc_task_set_debuginfo(struct rpc_task *task)
244 {
245         static atomic_t rpc_pid;
246
247         task->tk_pid = atomic_inc_return(&rpc_pid);
248 }
249 #else
250 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
251 {
252 }
253 #endif
254
255 static void rpc_set_active(struct rpc_task *task)
256 {
257         trace_rpc_task_begin(task->tk_client, task, NULL);
258
259         rpc_task_set_debuginfo(task);
260         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
261 }
262
263 /*
264  * Mark an RPC call as having completed by clearing the 'active' bit
265  * and then waking up all tasks that were sleeping.
266  */
267 static int rpc_complete_task(struct rpc_task *task)
268 {
269         void *m = &task->tk_runstate;
270         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
271         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
272         unsigned long flags;
273         int ret;
274
275         trace_rpc_task_complete(task->tk_client, task, NULL);
276
277         spin_lock_irqsave(&wq->lock, flags);
278         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
279         ret = atomic_dec_and_test(&task->tk_count);
280         if (waitqueue_active(wq))
281                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
282         spin_unlock_irqrestore(&wq->lock, flags);
283         return ret;
284 }
285
286 /*
287  * Allow callers to wait for completion of an RPC call
288  *
289  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
290  * to enforce taking of the wq->lock and hence avoid races with
291  * rpc_complete_task().
292  */
293 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
294 {
295         if (action == NULL)
296                 action = rpc_wait_bit_killable;
297         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
298                         action, TASK_KILLABLE);
299 }
300 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
301
302 /*
303  * Make an RPC task runnable.
304  *
305  * Note: If the task is ASYNC, and is being made runnable after sitting on an
306  * rpc_wait_queue, this must be called with the queue spinlock held to protect
307  * the wait queue operation.
308  */
309 static void rpc_make_runnable(struct rpc_task *task)
310 {
311         rpc_clear_queued(task);
312         if (rpc_test_and_set_running(task))
313                 return;
314         if (RPC_IS_ASYNC(task)) {
315                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
316                 queue_work(rpciod_workqueue, &task->u.tk_work);
317         } else
318                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
319 }
320
321 /*
322  * Prepare for sleeping on a wait queue.
323  * By always appending tasks to the list we ensure FIFO behavior.
324  * NB: An RPC task will only receive interrupt-driven events as long
325  * as it's on a wait queue.
326  */
327 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
328                 struct rpc_task *task,
329                 rpc_action action,
330                 unsigned char queue_priority)
331 {
332         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
333                         task->tk_pid, rpc_qname(q), jiffies);
334
335         trace_rpc_task_sleep(task->tk_client, task, q);
336
337         __rpc_add_wait_queue(q, task, queue_priority);
338
339         WARN_ON_ONCE(task->tk_callback != NULL);
340         task->tk_callback = action;
341         __rpc_add_timer(q, task);
342 }
343
344 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
345                                 rpc_action action)
346 {
347         /* We shouldn't ever put an inactive task to sleep */
348         WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
349         if (!RPC_IS_ACTIVATED(task)) {
350                 task->tk_status = -EIO;
351                 rpc_put_task_async(task);
352                 return;
353         }
354
355         /*
356          * Protect the queue operations.
357          */
358         spin_lock_bh(&q->lock);
359         __rpc_sleep_on_priority(q, task, action, task->tk_priority);
360         spin_unlock_bh(&q->lock);
361 }
362 EXPORT_SYMBOL_GPL(rpc_sleep_on);
363
364 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
365                 rpc_action action, int priority)
366 {
367         /* We shouldn't ever put an inactive task to sleep */
368         WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
369         if (!RPC_IS_ACTIVATED(task)) {
370                 task->tk_status = -EIO;
371                 rpc_put_task_async(task);
372                 return;
373         }
374
375         /*
376          * Protect the queue operations.
377          */
378         spin_lock_bh(&q->lock);
379         __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
380         spin_unlock_bh(&q->lock);
381 }
382
383 /**
384  * __rpc_do_wake_up_task - wake up a single rpc_task
385  * @queue: wait queue
386  * @task: task to be woken up
387  *
388  * Caller must hold queue->lock, and have cleared the task queued flag.
389  */
390 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
391 {
392         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
393                         task->tk_pid, jiffies);
394
395         /* Has the task been executed yet? If not, we cannot wake it up! */
396         if (!RPC_IS_ACTIVATED(task)) {
397                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
398                 return;
399         }
400
401         trace_rpc_task_wakeup(task->tk_client, task, queue);
402
403         __rpc_remove_wait_queue(queue, task);
404
405         rpc_make_runnable(task);
406
407         dprintk("RPC:       __rpc_wake_up_task done\n");
408 }
409
410 /*
411  * Wake up a queued task while the queue lock is being held
412  */
413 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
414 {
415         if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
416                 __rpc_do_wake_up_task(queue, task);
417 }
418
419 /*
420  * Tests whether rpc queue is empty
421  */
422 int rpc_queue_empty(struct rpc_wait_queue *queue)
423 {
424         int res;
425
426         spin_lock_bh(&queue->lock);
427         res = queue->qlen;
428         spin_unlock_bh(&queue->lock);
429         return res == 0;
430 }
431 EXPORT_SYMBOL_GPL(rpc_queue_empty);
432
433 /*
434  * Wake up a task on a specific queue
435  */
436 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
437 {
438         spin_lock_bh(&queue->lock);
439         rpc_wake_up_task_queue_locked(queue, task);
440         spin_unlock_bh(&queue->lock);
441 }
442 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
443
444 /*
445  * Wake up the next task on a priority queue.
446  */
447 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
448 {
449         struct list_head *q;
450         struct rpc_task *task;
451
452         /*
453          * Service a batch of tasks from a single owner.
454          */
455         q = &queue->tasks[queue->priority];
456         if (!list_empty(q)) {
457                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
458                 if (queue->owner == task->tk_owner) {
459                         if (--queue->nr)
460                                 goto out;
461                         list_move_tail(&task->u.tk_wait.list, q);
462                 }
463                 /*
464                  * Check if we need to switch queues.
465                  */
466                 if (--queue->count)
467                         goto new_owner;
468         }
469
470         /*
471          * Service the next queue.
472          */
473         do {
474                 if (q == &queue->tasks[0])
475                         q = &queue->tasks[queue->maxpriority];
476                 else
477                         q = q - 1;
478                 if (!list_empty(q)) {
479                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
480                         goto new_queue;
481                 }
482         } while (q != &queue->tasks[queue->priority]);
483
484         rpc_reset_waitqueue_priority(queue);
485         return NULL;
486
487 new_queue:
488         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
489 new_owner:
490         rpc_set_waitqueue_owner(queue, task->tk_owner);
491 out:
492         return task;
493 }
494
495 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
496 {
497         if (RPC_IS_PRIORITY(queue))
498                 return __rpc_find_next_queued_priority(queue);
499         if (!list_empty(&queue->tasks[0]))
500                 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
501         return NULL;
502 }
503
504 /*
505  * Wake up the first task on the wait queue.
506  */
507 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
508                 bool (*func)(struct rpc_task *, void *), void *data)
509 {
510         struct rpc_task *task = NULL;
511
512         dprintk("RPC:       wake_up_first(%p \"%s\")\n",
513                         queue, rpc_qname(queue));
514         spin_lock_bh(&queue->lock);
515         task = __rpc_find_next_queued(queue);
516         if (task != NULL) {
517                 if (func(task, data))
518                         rpc_wake_up_task_queue_locked(queue, task);
519                 else
520                         task = NULL;
521         }
522         spin_unlock_bh(&queue->lock);
523
524         return task;
525 }
526 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
527
528 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
529 {
530         return true;
531 }
532
533 /*
534  * Wake up the next task on the wait queue.
535 */
536 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
537 {
538         return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
539 }
540 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
541
542 /**
543  * rpc_wake_up - wake up all rpc_tasks
544  * @queue: rpc_wait_queue on which the tasks are sleeping
545  *
546  * Grabs queue->lock
547  */
548 void rpc_wake_up(struct rpc_wait_queue *queue)
549 {
550         struct list_head *head;
551
552         spin_lock_bh(&queue->lock);
553         head = &queue->tasks[queue->maxpriority];
554         for (;;) {
555                 while (!list_empty(head)) {
556                         struct rpc_task *task;
557                         task = list_first_entry(head,
558                                         struct rpc_task,
559                                         u.tk_wait.list);
560                         rpc_wake_up_task_queue_locked(queue, task);
561                 }
562                 if (head == &queue->tasks[0])
563                         break;
564                 head--;
565         }
566         spin_unlock_bh(&queue->lock);
567 }
568 EXPORT_SYMBOL_GPL(rpc_wake_up);
569
570 /**
571  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
572  * @queue: rpc_wait_queue on which the tasks are sleeping
573  * @status: status value to set
574  *
575  * Grabs queue->lock
576  */
577 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
578 {
579         struct list_head *head;
580
581         spin_lock_bh(&queue->lock);
582         head = &queue->tasks[queue->maxpriority];
583         for (;;) {
584                 while (!list_empty(head)) {
585                         struct rpc_task *task;
586                         task = list_first_entry(head,
587                                         struct rpc_task,
588                                         u.tk_wait.list);
589                         task->tk_status = status;
590                         rpc_wake_up_task_queue_locked(queue, task);
591                 }
592                 if (head == &queue->tasks[0])
593                         break;
594                 head--;
595         }
596         spin_unlock_bh(&queue->lock);
597 }
598 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
599
600 static void __rpc_queue_timer_fn(unsigned long ptr)
601 {
602         struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
603         struct rpc_task *task, *n;
604         unsigned long expires, now, timeo;
605
606         spin_lock(&queue->lock);
607         expires = now = jiffies;
608         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
609                 timeo = task->u.tk_wait.expires;
610                 if (time_after_eq(now, timeo)) {
611                         dprintk("RPC: %5u timeout\n", task->tk_pid);
612                         task->tk_status = -ETIMEDOUT;
613                         rpc_wake_up_task_queue_locked(queue, task);
614                         continue;
615                 }
616                 if (expires == now || time_after(expires, timeo))
617                         expires = timeo;
618         }
619         if (!list_empty(&queue->timer_list.list))
620                 rpc_set_queue_timer(queue, expires);
621         spin_unlock(&queue->lock);
622 }
623
624 static void __rpc_atrun(struct rpc_task *task)
625 {
626         task->tk_status = 0;
627 }
628
629 /*
630  * Run a task at a later time
631  */
632 void rpc_delay(struct rpc_task *task, unsigned long delay)
633 {
634         task->tk_timeout = delay;
635         rpc_sleep_on(&delay_queue, task, __rpc_atrun);
636 }
637 EXPORT_SYMBOL_GPL(rpc_delay);
638
639 /*
640  * Helper to call task->tk_ops->rpc_call_prepare
641  */
642 void rpc_prepare_task(struct rpc_task *task)
643 {
644         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
645 }
646
647 static void
648 rpc_init_task_statistics(struct rpc_task *task)
649 {
650         /* Initialize retry counters */
651         task->tk_garb_retry = 2;
652         task->tk_cred_retry = 2;
653         task->tk_rebind_retry = 2;
654
655         /* starting timestamp */
656         task->tk_start = ktime_get();
657 }
658
659 static void
660 rpc_reset_task_statistics(struct rpc_task *task)
661 {
662         task->tk_timeouts = 0;
663         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
664
665         rpc_init_task_statistics(task);
666 }
667
668 /*
669  * Helper that calls task->tk_ops->rpc_call_done if it exists
670  */
671 void rpc_exit_task(struct rpc_task *task)
672 {
673         task->tk_action = NULL;
674         if (task->tk_ops->rpc_call_done != NULL) {
675                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
676                 if (task->tk_action != NULL) {
677                         WARN_ON(RPC_ASSASSINATED(task));
678                         /* Always release the RPC slot and buffer memory */
679                         xprt_release(task);
680                         rpc_reset_task_statistics(task);
681                 }
682         }
683 }
684
685 void rpc_exit(struct rpc_task *task, int status)
686 {
687         task->tk_status = status;
688         task->tk_action = rpc_exit_task;
689         if (RPC_IS_QUEUED(task))
690                 rpc_wake_up_queued_task(task->tk_waitqueue, task);
691 }
692 EXPORT_SYMBOL_GPL(rpc_exit);
693
694 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
695 {
696         if (ops->rpc_release != NULL)
697                 ops->rpc_release(calldata);
698 }
699
700 /*
701  * This is the RPC `scheduler' (or rather, the finite state machine).
702  */
703 static void __rpc_execute(struct rpc_task *task)
704 {
705         struct rpc_wait_queue *queue;
706         int task_is_async = RPC_IS_ASYNC(task);
707         int status = 0;
708
709         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
710                         task->tk_pid, task->tk_flags);
711
712         WARN_ON_ONCE(RPC_IS_QUEUED(task));
713         if (RPC_IS_QUEUED(task))
714                 return;
715
716         for (;;) {
717                 void (*do_action)(struct rpc_task *);
718
719                 /*
720                  * Execute any pending callback first.
721                  */
722                 do_action = task->tk_callback;
723                 task->tk_callback = NULL;
724                 if (do_action == NULL) {
725                         /*
726                          * Perform the next FSM step.
727                          * tk_action may be NULL if the task has been killed.
728                          * In particular, note that rpc_killall_tasks may
729                          * do this at any time, so beware when dereferencing.
730                          */
731                         do_action = task->tk_action;
732                         if (do_action == NULL)
733                                 break;
734                 }
735                 trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
736                 do_action(task);
737
738                 /*
739                  * Lockless check for whether task is sleeping or not.
740                  */
741                 if (!RPC_IS_QUEUED(task))
742                         continue;
743                 /*
744                  * The queue->lock protects against races with
745                  * rpc_make_runnable().
746                  *
747                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
748                  * rpc_task, rpc_make_runnable() can assign it to a
749                  * different workqueue. We therefore cannot assume that the
750                  * rpc_task pointer may still be dereferenced.
751                  */
752                 queue = task->tk_waitqueue;
753                 spin_lock_bh(&queue->lock);
754                 if (!RPC_IS_QUEUED(task)) {
755                         spin_unlock_bh(&queue->lock);
756                         continue;
757                 }
758                 rpc_clear_running(task);
759                 spin_unlock_bh(&queue->lock);
760                 if (task_is_async)
761                         return;
762
763                 /* sync task: sleep here */
764                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
765                 status = out_of_line_wait_on_bit(&task->tk_runstate,
766                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
767                                 TASK_KILLABLE);
768                 if (status == -ERESTARTSYS) {
769                         /*
770                          * When a sync task receives a signal, it exits with
771                          * -ERESTARTSYS. In order to catch any callbacks that
772                          * clean up after sleeping on some queue, we don't
773                          * break the loop here, but go around once more.
774                          */
775                         dprintk("RPC: %5u got signal\n", task->tk_pid);
776                         task->tk_flags |= RPC_TASK_KILLED;
777                         rpc_exit(task, -ERESTARTSYS);
778                 }
779                 rpc_set_running(task);
780                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
781         }
782
783         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
784                         task->tk_status);
785         /* Release all resources associated with the task */
786         rpc_release_task(task);
787 }
788
789 /*
790  * User-visible entry point to the scheduler.
791  *
792  * This may be called recursively if e.g. an async NFS task updates
793  * the attributes and finds that dirty pages must be flushed.
794  * NOTE: Upon exit of this function the task is guaranteed to be
795  *       released. In particular note that tk_release() will have
796  *       been called, so your task memory may have been freed.
797  */
798 void rpc_execute(struct rpc_task *task)
799 {
800         rpc_set_active(task);
801         rpc_make_runnable(task);
802         if (!RPC_IS_ASYNC(task))
803                 __rpc_execute(task);
804 }
805
806 static void rpc_async_schedule(struct work_struct *work)
807 {
808         current->flags |= PF_FSTRANS;
809         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
810         current->flags &= ~PF_FSTRANS;
811 }
812
813 /**
814  * rpc_malloc - allocate an RPC buffer
815  * @task: RPC task that will use this buffer
816  * @size: requested byte size
817  *
818  * To prevent rpciod from hanging, this allocator never sleeps,
819  * returning NULL if the request cannot be serviced immediately.
820  * The caller can arrange to sleep in a way that is safe for rpciod.
821  *
822  * Most requests are 'small' (under 2KiB) and can be serviced from a
823  * mempool, ensuring that NFS reads and writes can always proceed,
824  * and that there is good locality of reference for these buffers.
825  *
826  * In order to avoid memory starvation triggering more writebacks of
827  * NFS requests, we avoid using GFP_KERNEL.
828  */
829 void *rpc_malloc(struct rpc_task *task, size_t size)
830 {
831         struct rpc_buffer *buf;
832         gfp_t gfp = GFP_NOWAIT;
833
834         if (RPC_IS_SWAPPER(task))
835                 gfp |= __GFP_MEMALLOC;
836
837         size += sizeof(struct rpc_buffer);
838         if (size <= RPC_BUFFER_MAXSIZE)
839                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
840         else
841                 buf = kmalloc(size, gfp);
842
843         if (!buf)
844                 return NULL;
845
846         buf->len = size;
847         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
848                         task->tk_pid, size, buf);
849         return &buf->data;
850 }
851 EXPORT_SYMBOL_GPL(rpc_malloc);
852
853 /**
854  * rpc_free - free buffer allocated via rpc_malloc
855  * @buffer: buffer to free
856  *
857  */
858 void rpc_free(void *buffer)
859 {
860         size_t size;
861         struct rpc_buffer *buf;
862
863         if (!buffer)
864                 return;
865
866         buf = container_of(buffer, struct rpc_buffer, data);
867         size = buf->len;
868
869         dprintk("RPC:       freeing buffer of size %zu at %p\n",
870                         size, buf);
871
872         if (size <= RPC_BUFFER_MAXSIZE)
873                 mempool_free(buf, rpc_buffer_mempool);
874         else
875                 kfree(buf);
876 }
877 EXPORT_SYMBOL_GPL(rpc_free);
878
879 /*
880  * Creation and deletion of RPC task structures
881  */
882 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
883 {
884         memset(task, 0, sizeof(*task));
885         atomic_set(&task->tk_count, 1);
886         task->tk_flags  = task_setup_data->flags;
887         task->tk_ops = task_setup_data->callback_ops;
888         task->tk_calldata = task_setup_data->callback_data;
889         INIT_LIST_HEAD(&task->tk_task);
890
891         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
892         task->tk_owner = current->tgid;
893
894         /* Initialize workqueue for async tasks */
895         task->tk_workqueue = task_setup_data->workqueue;
896
897         if (task->tk_ops->rpc_call_prepare != NULL)
898                 task->tk_action = rpc_prepare_task;
899
900         rpc_init_task_statistics(task);
901
902         dprintk("RPC:       new task initialized, procpid %u\n",
903                                 task_pid_nr(current));
904 }
905
906 static struct rpc_task *
907 rpc_alloc_task(void)
908 {
909         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
910 }
911
912 /*
913  * Create a new task for the specified client.
914  */
915 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
916 {
917         struct rpc_task *task = setup_data->task;
918         unsigned short flags = 0;
919
920         if (task == NULL) {
921                 task = rpc_alloc_task();
922                 if (task == NULL) {
923                         rpc_release_calldata(setup_data->callback_ops,
924                                         setup_data->callback_data);
925                         return ERR_PTR(-ENOMEM);
926                 }
927                 flags = RPC_TASK_DYNAMIC;
928         }
929
930         rpc_init_task(task, setup_data);
931         task->tk_flags |= flags;
932         dprintk("RPC:       allocated task %p\n", task);
933         return task;
934 }
935
936 static void rpc_free_task(struct rpc_task *task)
937 {
938         const struct rpc_call_ops *tk_ops = task->tk_ops;
939         void *calldata = task->tk_calldata;
940
941         if (task->tk_flags & RPC_TASK_DYNAMIC) {
942                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
943                 mempool_free(task, rpc_task_mempool);
944         }
945         rpc_release_calldata(tk_ops, calldata);
946 }
947
948 static void rpc_async_release(struct work_struct *work)
949 {
950         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
951 }
952
953 static void rpc_release_resources_task(struct rpc_task *task)
954 {
955         if (task->tk_rqstp)
956                 xprt_release(task);
957         if (task->tk_msg.rpc_cred) {
958                 put_rpccred(task->tk_msg.rpc_cred);
959                 task->tk_msg.rpc_cred = NULL;
960         }
961         rpc_task_release_client(task);
962 }
963
964 static void rpc_final_put_task(struct rpc_task *task,
965                 struct workqueue_struct *q)
966 {
967         if (q != NULL) {
968                 INIT_WORK(&task->u.tk_work, rpc_async_release);
969                 queue_work(q, &task->u.tk_work);
970         } else
971                 rpc_free_task(task);
972 }
973
974 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
975 {
976         if (atomic_dec_and_test(&task->tk_count)) {
977                 rpc_release_resources_task(task);
978                 rpc_final_put_task(task, q);
979         }
980 }
981
982 void rpc_put_task(struct rpc_task *task)
983 {
984         rpc_do_put_task(task, NULL);
985 }
986 EXPORT_SYMBOL_GPL(rpc_put_task);
987
988 void rpc_put_task_async(struct rpc_task *task)
989 {
990         rpc_do_put_task(task, task->tk_workqueue);
991 }
992 EXPORT_SYMBOL_GPL(rpc_put_task_async);
993
994 static void rpc_release_task(struct rpc_task *task)
995 {
996         dprintk("RPC: %5u release task\n", task->tk_pid);
997
998         BUG_ON (RPC_IS_QUEUED(task));
999
1000         rpc_release_resources_task(task);
1001
1002         /*
1003          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1004          * so it should be safe to use task->tk_count as a test for whether
1005          * or not any other processes still hold references to our rpc_task.
1006          */
1007         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1008                 /* Wake up anyone who may be waiting for task completion */
1009                 if (!rpc_complete_task(task))
1010                         return;
1011         } else {
1012                 if (!atomic_dec_and_test(&task->tk_count))
1013                         return;
1014         }
1015         rpc_final_put_task(task, task->tk_workqueue);
1016 }
1017
1018 int rpciod_up(void)
1019 {
1020         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1021 }
1022
1023 void rpciod_down(void)
1024 {
1025         module_put(THIS_MODULE);
1026 }
1027
1028 /*
1029  * Start up the rpciod workqueue.
1030  */
1031 static int rpciod_start(void)
1032 {
1033         struct workqueue_struct *wq;
1034
1035         /*
1036          * Create the rpciod thread and wait for it to start.
1037          */
1038         dprintk("RPC:       creating workqueue rpciod\n");
1039         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 1);
1040         rpciod_workqueue = wq;
1041         return rpciod_workqueue != NULL;
1042 }
1043
1044 static void rpciod_stop(void)
1045 {
1046         struct workqueue_struct *wq = NULL;
1047
1048         if (rpciod_workqueue == NULL)
1049                 return;
1050         dprintk("RPC:       destroying workqueue rpciod\n");
1051
1052         wq = rpciod_workqueue;
1053         rpciod_workqueue = NULL;
1054         destroy_workqueue(wq);
1055 }
1056
1057 void
1058 rpc_destroy_mempool(void)
1059 {
1060         rpciod_stop();
1061         if (rpc_buffer_mempool)
1062                 mempool_destroy(rpc_buffer_mempool);
1063         if (rpc_task_mempool)
1064                 mempool_destroy(rpc_task_mempool);
1065         if (rpc_task_slabp)
1066                 kmem_cache_destroy(rpc_task_slabp);
1067         if (rpc_buffer_slabp)
1068                 kmem_cache_destroy(rpc_buffer_slabp);
1069         rpc_destroy_wait_queue(&delay_queue);
1070 }
1071
1072 int
1073 rpc_init_mempool(void)
1074 {
1075         /*
1076          * The following is not strictly a mempool initialisation,
1077          * but there is no harm in doing it here
1078          */
1079         rpc_init_wait_queue(&delay_queue, "delayq");
1080         if (!rpciod_start())
1081                 goto err_nomem;
1082
1083         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1084                                              sizeof(struct rpc_task),
1085                                              0, SLAB_HWCACHE_ALIGN,
1086                                              NULL);
1087         if (!rpc_task_slabp)
1088                 goto err_nomem;
1089         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1090                                              RPC_BUFFER_MAXSIZE,
1091                                              0, SLAB_HWCACHE_ALIGN,
1092                                              NULL);
1093         if (!rpc_buffer_slabp)
1094                 goto err_nomem;
1095         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1096                                                     rpc_task_slabp);
1097         if (!rpc_task_mempool)
1098                 goto err_nomem;
1099         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1100                                                       rpc_buffer_slabp);
1101         if (!rpc_buffer_mempool)
1102                 goto err_nomem;
1103         return 0;
1104 err_nomem:
1105         rpc_destroy_mempool();
1106         return -ENOMEM;
1107 }