]> rtime.felk.cvut.cz Git - linux-imx.git/blob - drivers/firewire/core-device.c
68109e9bb04e4395bdbeadc02e0edfa9229074a8
[linux-imx.git] / drivers / firewire / core-device.c
1 /*
2  * Device probing and sysfs code.
3  *
4  * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/bug.h>
22 #include <linux/ctype.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/idr.h>
29 #include <linux/jiffies.h>
30 #include <linux/kobject.h>
31 #include <linux/list.h>
32 #include <linux/mod_devicetable.h>
33 #include <linux/module.h>
34 #include <linux/mutex.h>
35 #include <linux/rwsem.h>
36 #include <linux/slab.h>
37 #include <linux/spinlock.h>
38 #include <linux/string.h>
39 #include <linux/workqueue.h>
40
41 #include <linux/atomic.h>
42 #include <asm/byteorder.h>
43
44 #include "core.h"
45
46 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
47 {
48         ci->p = p + 1;
49         ci->end = ci->p + (p[0] >> 16);
50 }
51 EXPORT_SYMBOL(fw_csr_iterator_init);
52
53 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
54 {
55         *key = *ci->p >> 24;
56         *value = *ci->p & 0xffffff;
57
58         return ci->p++ < ci->end;
59 }
60 EXPORT_SYMBOL(fw_csr_iterator_next);
61
62 static const u32 *search_leaf(const u32 *directory, int search_key)
63 {
64         struct fw_csr_iterator ci;
65         int last_key = 0, key, value;
66
67         fw_csr_iterator_init(&ci, directory);
68         while (fw_csr_iterator_next(&ci, &key, &value)) {
69                 if (last_key == search_key &&
70                     key == (CSR_DESCRIPTOR | CSR_LEAF))
71                         return ci.p - 1 + value;
72
73                 last_key = key;
74         }
75
76         return NULL;
77 }
78
79 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
80 {
81         unsigned int quadlets, i;
82         char c;
83
84         if (!size || !buf)
85                 return -EINVAL;
86
87         quadlets = min(block[0] >> 16, 256U);
88         if (quadlets < 2)
89                 return -ENODATA;
90
91         if (block[1] != 0 || block[2] != 0)
92                 /* unknown language/character set */
93                 return -ENODATA;
94
95         block += 3;
96         quadlets -= 2;
97         for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
98                 c = block[i / 4] >> (24 - 8 * (i % 4));
99                 if (c == '\0')
100                         break;
101                 buf[i] = c;
102         }
103         buf[i] = '\0';
104
105         return i;
106 }
107
108 /**
109  * fw_csr_string() - reads a string from the configuration ROM
110  * @directory:  e.g. root directory or unit directory
111  * @key:        the key of the preceding directory entry
112  * @buf:        where to put the string
113  * @size:       size of @buf, in bytes
114  *
115  * The string is taken from a minimal ASCII text descriptor leaf after
116  * the immediate entry with @key.  The string is zero-terminated.
117  * Returns strlen(buf) or a negative error code.
118  */
119 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
120 {
121         const u32 *leaf = search_leaf(directory, key);
122         if (!leaf)
123                 return -ENOENT;
124
125         return textual_leaf_to_string(leaf, buf, size);
126 }
127 EXPORT_SYMBOL(fw_csr_string);
128
129 static void get_ids(const u32 *directory, int *id)
130 {
131         struct fw_csr_iterator ci;
132         int key, value;
133
134         fw_csr_iterator_init(&ci, directory);
135         while (fw_csr_iterator_next(&ci, &key, &value)) {
136                 switch (key) {
137                 case CSR_VENDOR:        id[0] = value; break;
138                 case CSR_MODEL:         id[1] = value; break;
139                 case CSR_SPECIFIER_ID:  id[2] = value; break;
140                 case CSR_VERSION:       id[3] = value; break;
141                 }
142         }
143 }
144
145 static void get_modalias_ids(struct fw_unit *unit, int *id)
146 {
147         get_ids(&fw_parent_device(unit)->config_rom[5], id);
148         get_ids(unit->directory, id);
149 }
150
151 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
152 {
153         int match = 0;
154
155         if (id[0] == id_table->vendor_id)
156                 match |= IEEE1394_MATCH_VENDOR_ID;
157         if (id[1] == id_table->model_id)
158                 match |= IEEE1394_MATCH_MODEL_ID;
159         if (id[2] == id_table->specifier_id)
160                 match |= IEEE1394_MATCH_SPECIFIER_ID;
161         if (id[3] == id_table->version)
162                 match |= IEEE1394_MATCH_VERSION;
163
164         return (match & id_table->match_flags) == id_table->match_flags;
165 }
166
167 static bool is_fw_unit(struct device *dev);
168
169 static int fw_unit_match(struct device *dev, struct device_driver *drv)
170 {
171         const struct ieee1394_device_id *id_table =
172                         container_of(drv, struct fw_driver, driver)->id_table;
173         int id[] = {0, 0, 0, 0};
174
175         /* We only allow binding to fw_units. */
176         if (!is_fw_unit(dev))
177                 return 0;
178
179         get_modalias_ids(fw_unit(dev), id);
180
181         for (; id_table->match_flags != 0; id_table++)
182                 if (match_ids(id_table, id))
183                         return 1;
184
185         return 0;
186 }
187
188 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
189 {
190         int id[] = {0, 0, 0, 0};
191
192         get_modalias_ids(unit, id);
193
194         return snprintf(buffer, buffer_size,
195                         "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
196                         id[0], id[1], id[2], id[3]);
197 }
198
199 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
200 {
201         struct fw_unit *unit = fw_unit(dev);
202         char modalias[64];
203
204         get_modalias(unit, modalias, sizeof(modalias));
205
206         if (add_uevent_var(env, "MODALIAS=%s", modalias))
207                 return -ENOMEM;
208
209         return 0;
210 }
211
212 struct bus_type fw_bus_type = {
213         .name = "firewire",
214         .match = fw_unit_match,
215 };
216 EXPORT_SYMBOL(fw_bus_type);
217
218 int fw_device_enable_phys_dma(struct fw_device *device)
219 {
220         int generation = device->generation;
221
222         /* device->node_id, accessed below, must not be older than generation */
223         smp_rmb();
224
225         return device->card->driver->enable_phys_dma(device->card,
226                                                      device->node_id,
227                                                      generation);
228 }
229 EXPORT_SYMBOL(fw_device_enable_phys_dma);
230
231 struct config_rom_attribute {
232         struct device_attribute attr;
233         u32 key;
234 };
235
236 static ssize_t show_immediate(struct device *dev,
237                               struct device_attribute *dattr, char *buf)
238 {
239         struct config_rom_attribute *attr =
240                 container_of(dattr, struct config_rom_attribute, attr);
241         struct fw_csr_iterator ci;
242         const u32 *dir;
243         int key, value, ret = -ENOENT;
244
245         down_read(&fw_device_rwsem);
246
247         if (is_fw_unit(dev))
248                 dir = fw_unit(dev)->directory;
249         else
250                 dir = fw_device(dev)->config_rom + 5;
251
252         fw_csr_iterator_init(&ci, dir);
253         while (fw_csr_iterator_next(&ci, &key, &value))
254                 if (attr->key == key) {
255                         ret = snprintf(buf, buf ? PAGE_SIZE : 0,
256                                        "0x%06x\n", value);
257                         break;
258                 }
259
260         up_read(&fw_device_rwsem);
261
262         return ret;
263 }
264
265 #define IMMEDIATE_ATTR(name, key)                               \
266         { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
267
268 static ssize_t show_text_leaf(struct device *dev,
269                               struct device_attribute *dattr, char *buf)
270 {
271         struct config_rom_attribute *attr =
272                 container_of(dattr, struct config_rom_attribute, attr);
273         const u32 *dir;
274         size_t bufsize;
275         char dummy_buf[2];
276         int ret;
277
278         down_read(&fw_device_rwsem);
279
280         if (is_fw_unit(dev))
281                 dir = fw_unit(dev)->directory;
282         else
283                 dir = fw_device(dev)->config_rom + 5;
284
285         if (buf) {
286                 bufsize = PAGE_SIZE - 1;
287         } else {
288                 buf = dummy_buf;
289                 bufsize = 1;
290         }
291
292         ret = fw_csr_string(dir, attr->key, buf, bufsize);
293
294         if (ret >= 0) {
295                 /* Strip trailing whitespace and add newline. */
296                 while (ret > 0 && isspace(buf[ret - 1]))
297                         ret--;
298                 strcpy(buf + ret, "\n");
299                 ret++;
300         }
301
302         up_read(&fw_device_rwsem);
303
304         return ret;
305 }
306
307 #define TEXT_LEAF_ATTR(name, key)                               \
308         { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
309
310 static struct config_rom_attribute config_rom_attributes[] = {
311         IMMEDIATE_ATTR(vendor, CSR_VENDOR),
312         IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
313         IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
314         IMMEDIATE_ATTR(version, CSR_VERSION),
315         IMMEDIATE_ATTR(model, CSR_MODEL),
316         TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
317         TEXT_LEAF_ATTR(model_name, CSR_MODEL),
318         TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
319 };
320
321 static void init_fw_attribute_group(struct device *dev,
322                                     struct device_attribute *attrs,
323                                     struct fw_attribute_group *group)
324 {
325         struct device_attribute *attr;
326         int i, j;
327
328         for (j = 0; attrs[j].attr.name != NULL; j++)
329                 group->attrs[j] = &attrs[j].attr;
330
331         for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
332                 attr = &config_rom_attributes[i].attr;
333                 if (attr->show(dev, attr, NULL) < 0)
334                         continue;
335                 group->attrs[j++] = &attr->attr;
336         }
337
338         group->attrs[j] = NULL;
339         group->groups[0] = &group->group;
340         group->groups[1] = NULL;
341         group->group.attrs = group->attrs;
342         dev->groups = (const struct attribute_group **) group->groups;
343 }
344
345 static ssize_t modalias_show(struct device *dev,
346                              struct device_attribute *attr, char *buf)
347 {
348         struct fw_unit *unit = fw_unit(dev);
349         int length;
350
351         length = get_modalias(unit, buf, PAGE_SIZE);
352         strcpy(buf + length, "\n");
353
354         return length + 1;
355 }
356
357 static ssize_t rom_index_show(struct device *dev,
358                               struct device_attribute *attr, char *buf)
359 {
360         struct fw_device *device = fw_device(dev->parent);
361         struct fw_unit *unit = fw_unit(dev);
362
363         return snprintf(buf, PAGE_SIZE, "%d\n",
364                         (int)(unit->directory - device->config_rom));
365 }
366
367 static struct device_attribute fw_unit_attributes[] = {
368         __ATTR_RO(modalias),
369         __ATTR_RO(rom_index),
370         __ATTR_NULL,
371 };
372
373 static ssize_t config_rom_show(struct device *dev,
374                                struct device_attribute *attr, char *buf)
375 {
376         struct fw_device *device = fw_device(dev);
377         size_t length;
378
379         down_read(&fw_device_rwsem);
380         length = device->config_rom_length * 4;
381         memcpy(buf, device->config_rom, length);
382         up_read(&fw_device_rwsem);
383
384         return length;
385 }
386
387 static ssize_t guid_show(struct device *dev,
388                          struct device_attribute *attr, char *buf)
389 {
390         struct fw_device *device = fw_device(dev);
391         int ret;
392
393         down_read(&fw_device_rwsem);
394         ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
395                        device->config_rom[3], device->config_rom[4]);
396         up_read(&fw_device_rwsem);
397
398         return ret;
399 }
400
401 static int units_sprintf(char *buf, const u32 *directory)
402 {
403         struct fw_csr_iterator ci;
404         int key, value;
405         int specifier_id = 0;
406         int version = 0;
407
408         fw_csr_iterator_init(&ci, directory);
409         while (fw_csr_iterator_next(&ci, &key, &value)) {
410                 switch (key) {
411                 case CSR_SPECIFIER_ID:
412                         specifier_id = value;
413                         break;
414                 case CSR_VERSION:
415                         version = value;
416                         break;
417                 }
418         }
419
420         return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
421 }
422
423 static ssize_t units_show(struct device *dev,
424                           struct device_attribute *attr, char *buf)
425 {
426         struct fw_device *device = fw_device(dev);
427         struct fw_csr_iterator ci;
428         int key, value, i = 0;
429
430         down_read(&fw_device_rwsem);
431         fw_csr_iterator_init(&ci, &device->config_rom[5]);
432         while (fw_csr_iterator_next(&ci, &key, &value)) {
433                 if (key != (CSR_UNIT | CSR_DIRECTORY))
434                         continue;
435                 i += units_sprintf(&buf[i], ci.p + value - 1);
436                 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
437                         break;
438         }
439         up_read(&fw_device_rwsem);
440
441         if (i)
442                 buf[i - 1] = '\n';
443
444         return i;
445 }
446
447 static struct device_attribute fw_device_attributes[] = {
448         __ATTR_RO(config_rom),
449         __ATTR_RO(guid),
450         __ATTR_RO(units),
451         __ATTR_NULL,
452 };
453
454 static int read_rom(struct fw_device *device,
455                     int generation, int index, u32 *data)
456 {
457         u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
458         int i, rcode;
459
460         /* device->node_id, accessed below, must not be older than generation */
461         smp_rmb();
462
463         for (i = 10; i < 100; i += 10) {
464                 rcode = fw_run_transaction(device->card,
465                                 TCODE_READ_QUADLET_REQUEST, device->node_id,
466                                 generation, device->max_speed, offset, data, 4);
467                 if (rcode != RCODE_BUSY)
468                         break;
469                 msleep(i);
470         }
471         be32_to_cpus(data);
472
473         return rcode;
474 }
475
476 #define MAX_CONFIG_ROM_SIZE 256
477
478 /*
479  * Read the bus info block, perform a speed probe, and read all of the rest of
480  * the config ROM.  We do all this with a cached bus generation.  If the bus
481  * generation changes under us, read_config_rom will fail and get retried.
482  * It's better to start all over in this case because the node from which we
483  * are reading the ROM may have changed the ROM during the reset.
484  */
485 static int read_config_rom(struct fw_device *device, int generation)
486 {
487         struct fw_card *card = device->card;
488         const u32 *old_rom, *new_rom;
489         u32 *rom, *stack;
490         u32 sp, key;
491         int i, end, length, ret = -1;
492
493         rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
494                       sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
495         if (rom == NULL)
496                 return -ENOMEM;
497
498         stack = &rom[MAX_CONFIG_ROM_SIZE];
499         memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
500
501         device->max_speed = SCODE_100;
502
503         /* First read the bus info block. */
504         for (i = 0; i < 5; i++) {
505                 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
506                         goto out;
507                 /*
508                  * As per IEEE1212 7.2, during power-up, devices can
509                  * reply with a 0 for the first quadlet of the config
510                  * rom to indicate that they are booting (for example,
511                  * if the firmware is on the disk of a external
512                  * harddisk).  In that case we just fail, and the
513                  * retry mechanism will try again later.
514                  */
515                 if (i == 0 && rom[i] == 0)
516                         goto out;
517         }
518
519         device->max_speed = device->node->max_speed;
520
521         /*
522          * Determine the speed of
523          *   - devices with link speed less than PHY speed,
524          *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
525          *   - all devices if there are 1394b repeaters.
526          * Note, we cannot use the bus info block's link_spd as starting point
527          * because some buggy firmwares set it lower than necessary and because
528          * 1394-1995 nodes do not have the field.
529          */
530         if ((rom[2] & 0x7) < device->max_speed ||
531             device->max_speed == SCODE_BETA ||
532             card->beta_repeaters_present) {
533                 u32 dummy;
534
535                 /* for S1600 and S3200 */
536                 if (device->max_speed == SCODE_BETA)
537                         device->max_speed = card->link_speed;
538
539                 while (device->max_speed > SCODE_100) {
540                         if (read_rom(device, generation, 0, &dummy) ==
541                             RCODE_COMPLETE)
542                                 break;
543                         device->max_speed--;
544                 }
545         }
546
547         /*
548          * Now parse the config rom.  The config rom is a recursive
549          * directory structure so we parse it using a stack of
550          * references to the blocks that make up the structure.  We
551          * push a reference to the root directory on the stack to
552          * start things off.
553          */
554         length = i;
555         sp = 0;
556         stack[sp++] = 0xc0000005;
557         while (sp > 0) {
558                 /*
559                  * Pop the next block reference of the stack.  The
560                  * lower 24 bits is the offset into the config rom,
561                  * the upper 8 bits are the type of the reference the
562                  * block.
563                  */
564                 key = stack[--sp];
565                 i = key & 0xffffff;
566                 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE))
567                         goto out;
568
569                 /* Read header quadlet for the block to get the length. */
570                 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
571                         goto out;
572                 end = i + (rom[i] >> 16) + 1;
573                 if (end > MAX_CONFIG_ROM_SIZE) {
574                         /*
575                          * This block extends outside the config ROM which is
576                          * a firmware bug.  Ignore this whole block, i.e.
577                          * simply set a fake block length of 0.
578                          */
579                         fw_err(card, "skipped invalid ROM block %x at %llx\n",
580                                rom[i],
581                                i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
582                         rom[i] = 0;
583                         end = i;
584                 }
585                 i++;
586
587                 /*
588                  * Now read in the block.  If this is a directory
589                  * block, check the entries as we read them to see if
590                  * it references another block, and push it in that case.
591                  */
592                 for (; i < end; i++) {
593                         if (read_rom(device, generation, i, &rom[i]) !=
594                             RCODE_COMPLETE)
595                                 goto out;
596
597                         if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
598                                 continue;
599                         /*
600                          * Offset points outside the ROM.  May be a firmware
601                          * bug or an Extended ROM entry (IEEE 1212-2001 clause
602                          * 7.7.18).  Simply overwrite this pointer here by a
603                          * fake immediate entry so that later iterators over
604                          * the ROM don't have to check offsets all the time.
605                          */
606                         if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
607                                 fw_err(card,
608                                        "skipped unsupported ROM entry %x at %llx\n",
609                                        rom[i],
610                                        i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
611                                 rom[i] = 0;
612                                 continue;
613                         }
614                         stack[sp++] = i + rom[i];
615                 }
616                 if (length < i)
617                         length = i;
618         }
619
620         old_rom = device->config_rom;
621         new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
622         if (new_rom == NULL)
623                 goto out;
624
625         down_write(&fw_device_rwsem);
626         device->config_rom = new_rom;
627         device->config_rom_length = length;
628         up_write(&fw_device_rwsem);
629
630         kfree(old_rom);
631         ret = 0;
632         device->max_rec = rom[2] >> 12 & 0xf;
633         device->cmc     = rom[2] >> 30 & 1;
634         device->irmc    = rom[2] >> 31 & 1;
635  out:
636         kfree(rom);
637
638         return ret;
639 }
640
641 static void fw_unit_release(struct device *dev)
642 {
643         struct fw_unit *unit = fw_unit(dev);
644
645         fw_device_put(fw_parent_device(unit));
646         kfree(unit);
647 }
648
649 static struct device_type fw_unit_type = {
650         .uevent         = fw_unit_uevent,
651         .release        = fw_unit_release,
652 };
653
654 static bool is_fw_unit(struct device *dev)
655 {
656         return dev->type == &fw_unit_type;
657 }
658
659 static void create_units(struct fw_device *device)
660 {
661         struct fw_csr_iterator ci;
662         struct fw_unit *unit;
663         int key, value, i;
664
665         i = 0;
666         fw_csr_iterator_init(&ci, &device->config_rom[5]);
667         while (fw_csr_iterator_next(&ci, &key, &value)) {
668                 if (key != (CSR_UNIT | CSR_DIRECTORY))
669                         continue;
670
671                 /*
672                  * Get the address of the unit directory and try to
673                  * match the drivers id_tables against it.
674                  */
675                 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
676                 if (unit == NULL) {
677                         fw_err(device->card, "out of memory for unit\n");
678                         continue;
679                 }
680
681                 unit->directory = ci.p + value - 1;
682                 unit->device.bus = &fw_bus_type;
683                 unit->device.type = &fw_unit_type;
684                 unit->device.parent = &device->device;
685                 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
686
687                 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
688                                 ARRAY_SIZE(fw_unit_attributes) +
689                                 ARRAY_SIZE(config_rom_attributes));
690                 init_fw_attribute_group(&unit->device,
691                                         fw_unit_attributes,
692                                         &unit->attribute_group);
693
694                 if (device_register(&unit->device) < 0)
695                         goto skip_unit;
696
697                 fw_device_get(device);
698                 continue;
699
700         skip_unit:
701                 kfree(unit);
702         }
703 }
704
705 static int shutdown_unit(struct device *device, void *data)
706 {
707         device_unregister(device);
708
709         return 0;
710 }
711
712 /*
713  * fw_device_rwsem acts as dual purpose mutex:
714  *   - serializes accesses to fw_device_idr,
715  *   - serializes accesses to fw_device.config_rom/.config_rom_length and
716  *     fw_unit.directory, unless those accesses happen at safe occasions
717  */
718 DECLARE_RWSEM(fw_device_rwsem);
719
720 DEFINE_IDR(fw_device_idr);
721 int fw_cdev_major;
722
723 struct fw_device *fw_device_get_by_devt(dev_t devt)
724 {
725         struct fw_device *device;
726
727         down_read(&fw_device_rwsem);
728         device = idr_find(&fw_device_idr, MINOR(devt));
729         if (device)
730                 fw_device_get(device);
731         up_read(&fw_device_rwsem);
732
733         return device;
734 }
735
736 struct workqueue_struct *fw_workqueue;
737 EXPORT_SYMBOL(fw_workqueue);
738
739 static void fw_schedule_device_work(struct fw_device *device,
740                                     unsigned long delay)
741 {
742         queue_delayed_work(fw_workqueue, &device->work, delay);
743 }
744
745 /*
746  * These defines control the retry behavior for reading the config
747  * rom.  It shouldn't be necessary to tweak these; if the device
748  * doesn't respond to a config rom read within 10 seconds, it's not
749  * going to respond at all.  As for the initial delay, a lot of
750  * devices will be able to respond within half a second after bus
751  * reset.  On the other hand, it's not really worth being more
752  * aggressive than that, since it scales pretty well; if 10 devices
753  * are plugged in, they're all getting read within one second.
754  */
755
756 #define MAX_RETRIES     10
757 #define RETRY_DELAY     (3 * HZ)
758 #define INITIAL_DELAY   (HZ / 2)
759 #define SHUTDOWN_DELAY  (2 * HZ)
760
761 static void fw_device_shutdown(struct work_struct *work)
762 {
763         struct fw_device *device =
764                 container_of(work, struct fw_device, work.work);
765         int minor = MINOR(device->device.devt);
766
767         if (time_before64(get_jiffies_64(),
768                           device->card->reset_jiffies + SHUTDOWN_DELAY)
769             && !list_empty(&device->card->link)) {
770                 fw_schedule_device_work(device, SHUTDOWN_DELAY);
771                 return;
772         }
773
774         if (atomic_cmpxchg(&device->state,
775                            FW_DEVICE_GONE,
776                            FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
777                 return;
778
779         fw_device_cdev_remove(device);
780         device_for_each_child(&device->device, NULL, shutdown_unit);
781         device_unregister(&device->device);
782
783         down_write(&fw_device_rwsem);
784         idr_remove(&fw_device_idr, minor);
785         up_write(&fw_device_rwsem);
786
787         fw_device_put(device);
788 }
789
790 static void fw_device_release(struct device *dev)
791 {
792         struct fw_device *device = fw_device(dev);
793         struct fw_card *card = device->card;
794         unsigned long flags;
795
796         /*
797          * Take the card lock so we don't set this to NULL while a
798          * FW_NODE_UPDATED callback is being handled or while the
799          * bus manager work looks at this node.
800          */
801         spin_lock_irqsave(&card->lock, flags);
802         device->node->data = NULL;
803         spin_unlock_irqrestore(&card->lock, flags);
804
805         fw_node_put(device->node);
806         kfree(device->config_rom);
807         kfree(device);
808         fw_card_put(card);
809 }
810
811 static struct device_type fw_device_type = {
812         .release = fw_device_release,
813 };
814
815 static bool is_fw_device(struct device *dev)
816 {
817         return dev->type == &fw_device_type;
818 }
819
820 static int update_unit(struct device *dev, void *data)
821 {
822         struct fw_unit *unit = fw_unit(dev);
823         struct fw_driver *driver = (struct fw_driver *)dev->driver;
824
825         if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
826                 device_lock(dev);
827                 driver->update(unit);
828                 device_unlock(dev);
829         }
830
831         return 0;
832 }
833
834 static void fw_device_update(struct work_struct *work)
835 {
836         struct fw_device *device =
837                 container_of(work, struct fw_device, work.work);
838
839         fw_device_cdev_update(device);
840         device_for_each_child(&device->device, NULL, update_unit);
841 }
842
843 /*
844  * If a device was pending for deletion because its node went away but its
845  * bus info block and root directory header matches that of a newly discovered
846  * device, revive the existing fw_device.
847  * The newly allocated fw_device becomes obsolete instead.
848  */
849 static int lookup_existing_device(struct device *dev, void *data)
850 {
851         struct fw_device *old = fw_device(dev);
852         struct fw_device *new = data;
853         struct fw_card *card = new->card;
854         int match = 0;
855
856         if (!is_fw_device(dev))
857                 return 0;
858
859         down_read(&fw_device_rwsem); /* serialize config_rom access */
860         spin_lock_irq(&card->lock);  /* serialize node access */
861
862         if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
863             atomic_cmpxchg(&old->state,
864                            FW_DEVICE_GONE,
865                            FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
866                 struct fw_node *current_node = new->node;
867                 struct fw_node *obsolete_node = old->node;
868
869                 new->node = obsolete_node;
870                 new->node->data = new;
871                 old->node = current_node;
872                 old->node->data = old;
873
874                 old->max_speed = new->max_speed;
875                 old->node_id = current_node->node_id;
876                 smp_wmb();  /* update node_id before generation */
877                 old->generation = card->generation;
878                 old->config_rom_retries = 0;
879                 fw_notice(card, "rediscovered device %s\n", dev_name(dev));
880
881                 PREPARE_DELAYED_WORK(&old->work, fw_device_update);
882                 fw_schedule_device_work(old, 0);
883
884                 if (current_node == card->root_node)
885                         fw_schedule_bm_work(card, 0);
886
887                 match = 1;
888         }
889
890         spin_unlock_irq(&card->lock);
891         up_read(&fw_device_rwsem);
892
893         return match;
894 }
895
896 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
897
898 static void set_broadcast_channel(struct fw_device *device, int generation)
899 {
900         struct fw_card *card = device->card;
901         __be32 data;
902         int rcode;
903
904         if (!card->broadcast_channel_allocated)
905                 return;
906
907         /*
908          * The Broadcast_Channel Valid bit is required by nodes which want to
909          * transmit on this channel.  Such transmissions are practically
910          * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
911          * to be IRM capable and have a max_rec of 8 or more.  We use this fact
912          * to narrow down to which nodes we send Broadcast_Channel updates.
913          */
914         if (!device->irmc || device->max_rec < 8)
915                 return;
916
917         /*
918          * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
919          * Perform a read test first.
920          */
921         if (device->bc_implemented == BC_UNKNOWN) {
922                 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
923                                 device->node_id, generation, device->max_speed,
924                                 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
925                                 &data, 4);
926                 switch (rcode) {
927                 case RCODE_COMPLETE:
928                         if (data & cpu_to_be32(1 << 31)) {
929                                 device->bc_implemented = BC_IMPLEMENTED;
930                                 break;
931                         }
932                         /* else fall through to case address error */
933                 case RCODE_ADDRESS_ERROR:
934                         device->bc_implemented = BC_UNIMPLEMENTED;
935                 }
936         }
937
938         if (device->bc_implemented == BC_IMPLEMENTED) {
939                 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
940                                    BROADCAST_CHANNEL_VALID);
941                 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
942                                 device->node_id, generation, device->max_speed,
943                                 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
944                                 &data, 4);
945         }
946 }
947
948 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
949 {
950         if (is_fw_device(dev))
951                 set_broadcast_channel(fw_device(dev), (long)gen);
952
953         return 0;
954 }
955
956 static void fw_device_init(struct work_struct *work)
957 {
958         struct fw_device *device =
959                 container_of(work, struct fw_device, work.work);
960         struct fw_card *card = device->card;
961         struct device *revived_dev;
962         int minor, ret;
963
964         /*
965          * All failure paths here set node->data to NULL, so that we
966          * don't try to do device_for_each_child() on a kfree()'d
967          * device.
968          */
969
970         if (read_config_rom(device, device->generation) < 0) {
971                 if (device->config_rom_retries < MAX_RETRIES &&
972                     atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
973                         device->config_rom_retries++;
974                         fw_schedule_device_work(device, RETRY_DELAY);
975                 } else {
976                         if (device->node->link_on)
977                                 fw_notice(card, "giving up on Config ROM for node id %x\n",
978                                           device->node_id);
979                         if (device->node == card->root_node)
980                                 fw_schedule_bm_work(card, 0);
981                         fw_device_release(&device->device);
982                 }
983                 return;
984         }
985
986         revived_dev = device_find_child(card->device,
987                                         device, lookup_existing_device);
988         if (revived_dev) {
989                 put_device(revived_dev);
990                 fw_device_release(&device->device);
991
992                 return;
993         }
994
995         device_initialize(&device->device);
996
997         fw_device_get(device);
998         down_write(&fw_device_rwsem);
999         ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
1000               idr_get_new(&fw_device_idr, device, &minor) :
1001               -ENOMEM;
1002         up_write(&fw_device_rwsem);
1003
1004         if (ret < 0)
1005                 goto error;
1006
1007         device->device.bus = &fw_bus_type;
1008         device->device.type = &fw_device_type;
1009         device->device.parent = card->device;
1010         device->device.devt = MKDEV(fw_cdev_major, minor);
1011         dev_set_name(&device->device, "fw%d", minor);
1012
1013         BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1014                         ARRAY_SIZE(fw_device_attributes) +
1015                         ARRAY_SIZE(config_rom_attributes));
1016         init_fw_attribute_group(&device->device,
1017                                 fw_device_attributes,
1018                                 &device->attribute_group);
1019
1020         if (device_add(&device->device)) {
1021                 fw_err(card, "failed to add device\n");
1022                 goto error_with_cdev;
1023         }
1024
1025         create_units(device);
1026
1027         /*
1028          * Transition the device to running state.  If it got pulled
1029          * out from under us while we did the intialization work, we
1030          * have to shut down the device again here.  Normally, though,
1031          * fw_node_event will be responsible for shutting it down when
1032          * necessary.  We have to use the atomic cmpxchg here to avoid
1033          * racing with the FW_NODE_DESTROYED case in
1034          * fw_node_event().
1035          */
1036         if (atomic_cmpxchg(&device->state,
1037                            FW_DEVICE_INITIALIZING,
1038                            FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1039                 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1040                 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1041         } else {
1042                 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1043                           dev_name(&device->device),
1044                           device->config_rom[3], device->config_rom[4],
1045                           1 << device->max_speed);
1046                 device->config_rom_retries = 0;
1047
1048                 set_broadcast_channel(device, device->generation);
1049         }
1050
1051         /*
1052          * Reschedule the IRM work if we just finished reading the
1053          * root node config rom.  If this races with a bus reset we
1054          * just end up running the IRM work a couple of extra times -
1055          * pretty harmless.
1056          */
1057         if (device->node == card->root_node)
1058                 fw_schedule_bm_work(card, 0);
1059
1060         return;
1061
1062  error_with_cdev:
1063         down_write(&fw_device_rwsem);
1064         idr_remove(&fw_device_idr, minor);
1065         up_write(&fw_device_rwsem);
1066  error:
1067         fw_device_put(device);          /* fw_device_idr's reference */
1068
1069         put_device(&device->device);    /* our reference */
1070 }
1071
1072 enum {
1073         REREAD_BIB_ERROR,
1074         REREAD_BIB_GONE,
1075         REREAD_BIB_UNCHANGED,
1076         REREAD_BIB_CHANGED,
1077 };
1078
1079 /* Reread and compare bus info block and header of root directory */
1080 static int reread_config_rom(struct fw_device *device, int generation)
1081 {
1082         u32 q;
1083         int i;
1084
1085         for (i = 0; i < 6; i++) {
1086                 if (read_rom(device, generation, i, &q) != RCODE_COMPLETE)
1087                         return REREAD_BIB_ERROR;
1088
1089                 if (i == 0 && q == 0)
1090                         return REREAD_BIB_GONE;
1091
1092                 if (q != device->config_rom[i])
1093                         return REREAD_BIB_CHANGED;
1094         }
1095
1096         return REREAD_BIB_UNCHANGED;
1097 }
1098
1099 static void fw_device_refresh(struct work_struct *work)
1100 {
1101         struct fw_device *device =
1102                 container_of(work, struct fw_device, work.work);
1103         struct fw_card *card = device->card;
1104         int node_id = device->node_id;
1105
1106         switch (reread_config_rom(device, device->generation)) {
1107         case REREAD_BIB_ERROR:
1108                 if (device->config_rom_retries < MAX_RETRIES / 2 &&
1109                     atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1110                         device->config_rom_retries++;
1111                         fw_schedule_device_work(device, RETRY_DELAY / 2);
1112
1113                         return;
1114                 }
1115                 goto give_up;
1116
1117         case REREAD_BIB_GONE:
1118                 goto gone;
1119
1120         case REREAD_BIB_UNCHANGED:
1121                 if (atomic_cmpxchg(&device->state,
1122                                    FW_DEVICE_INITIALIZING,
1123                                    FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1124                         goto gone;
1125
1126                 fw_device_update(work);
1127                 device->config_rom_retries = 0;
1128                 goto out;
1129
1130         case REREAD_BIB_CHANGED:
1131                 break;
1132         }
1133
1134         /*
1135          * Something changed.  We keep things simple and don't investigate
1136          * further.  We just destroy all previous units and create new ones.
1137          */
1138         device_for_each_child(&device->device, NULL, shutdown_unit);
1139
1140         if (read_config_rom(device, device->generation) < 0) {
1141                 if (device->config_rom_retries < MAX_RETRIES &&
1142                     atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1143                         device->config_rom_retries++;
1144                         fw_schedule_device_work(device, RETRY_DELAY);
1145
1146                         return;
1147                 }
1148                 goto give_up;
1149         }
1150
1151         fw_device_cdev_update(device);
1152         create_units(device);
1153
1154         /* Userspace may want to re-read attributes. */
1155         kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1156
1157         if (atomic_cmpxchg(&device->state,
1158                            FW_DEVICE_INITIALIZING,
1159                            FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1160                 goto gone;
1161
1162         fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1163         device->config_rom_retries = 0;
1164         goto out;
1165
1166  give_up:
1167         fw_notice(card, "giving up on refresh of device %s\n",
1168                   dev_name(&device->device));
1169  gone:
1170         atomic_set(&device->state, FW_DEVICE_GONE);
1171         PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1172         fw_schedule_device_work(device, SHUTDOWN_DELAY);
1173  out:
1174         if (node_id == card->root_node->node_id)
1175                 fw_schedule_bm_work(card, 0);
1176 }
1177
1178 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1179 {
1180         struct fw_device *device;
1181
1182         switch (event) {
1183         case FW_NODE_CREATED:
1184                 /*
1185                  * Attempt to scan the node, regardless whether its self ID has
1186                  * the L (link active) flag set or not.  Some broken devices
1187                  * send L=0 but have an up-and-running link; others send L=1
1188                  * without actually having a link.
1189                  */
1190  create:
1191                 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1192                 if (device == NULL)
1193                         break;
1194
1195                 /*
1196                  * Do minimal intialization of the device here, the
1197                  * rest will happen in fw_device_init().
1198                  *
1199                  * Attention:  A lot of things, even fw_device_get(),
1200                  * cannot be done before fw_device_init() finished!
1201                  * You can basically just check device->state and
1202                  * schedule work until then, but only while holding
1203                  * card->lock.
1204                  */
1205                 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1206                 device->card = fw_card_get(card);
1207                 device->node = fw_node_get(node);
1208                 device->node_id = node->node_id;
1209                 device->generation = card->generation;
1210                 device->is_local = node == card->local_node;
1211                 mutex_init(&device->client_list_mutex);
1212                 INIT_LIST_HEAD(&device->client_list);
1213
1214                 /*
1215                  * Set the node data to point back to this device so
1216                  * FW_NODE_UPDATED callbacks can update the node_id
1217                  * and generation for the device.
1218                  */
1219                 node->data = device;
1220
1221                 /*
1222                  * Many devices are slow to respond after bus resets,
1223                  * especially if they are bus powered and go through
1224                  * power-up after getting plugged in.  We schedule the
1225                  * first config rom scan half a second after bus reset.
1226                  */
1227                 INIT_DELAYED_WORK(&device->work, fw_device_init);
1228                 fw_schedule_device_work(device, INITIAL_DELAY);
1229                 break;
1230
1231         case FW_NODE_INITIATED_RESET:
1232         case FW_NODE_LINK_ON:
1233                 device = node->data;
1234                 if (device == NULL)
1235                         goto create;
1236
1237                 device->node_id = node->node_id;
1238                 smp_wmb();  /* update node_id before generation */
1239                 device->generation = card->generation;
1240                 if (atomic_cmpxchg(&device->state,
1241                             FW_DEVICE_RUNNING,
1242                             FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1243                         PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1244                         fw_schedule_device_work(device,
1245                                 device->is_local ? 0 : INITIAL_DELAY);
1246                 }
1247                 break;
1248
1249         case FW_NODE_UPDATED:
1250                 device = node->data;
1251                 if (device == NULL)
1252                         break;
1253
1254                 device->node_id = node->node_id;
1255                 smp_wmb();  /* update node_id before generation */
1256                 device->generation = card->generation;
1257                 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1258                         PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1259                         fw_schedule_device_work(device, 0);
1260                 }
1261                 break;
1262
1263         case FW_NODE_DESTROYED:
1264         case FW_NODE_LINK_OFF:
1265                 if (!node->data)
1266                         break;
1267
1268                 /*
1269                  * Destroy the device associated with the node.  There
1270                  * are two cases here: either the device is fully
1271                  * initialized (FW_DEVICE_RUNNING) or we're in the
1272                  * process of reading its config rom
1273                  * (FW_DEVICE_INITIALIZING).  If it is fully
1274                  * initialized we can reuse device->work to schedule a
1275                  * full fw_device_shutdown().  If not, there's work
1276                  * scheduled to read it's config rom, and we just put
1277                  * the device in shutdown state to have that code fail
1278                  * to create the device.
1279                  */
1280                 device = node->data;
1281                 if (atomic_xchg(&device->state,
1282                                 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1283                         PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1284                         fw_schedule_device_work(device,
1285                                 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1286                 }
1287                 break;
1288         }
1289 }