]> rtime.felk.cvut.cz Git - linux-imx.git/blob - fs/btrfs/super.c
41d81bee583dae436a8b5c70cc761685d79290ee
[linux-imx.git] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "compat.h"
46 #include "delayed-inode.h"
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "export.h"
55 #include "compression.h"
56 #include "rcu-string.h"
57 #include "dev-replace.h"
58 #include "free-space-cache.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/btrfs.h>
62
63 static const struct super_operations btrfs_super_ops;
64 static struct file_system_type btrfs_fs_type;
65
66 static const char *btrfs_decode_error(int errno)
67 {
68         char *errstr = "unknown";
69
70         switch (errno) {
71         case -EIO:
72                 errstr = "IO failure";
73                 break;
74         case -ENOMEM:
75                 errstr = "Out of memory";
76                 break;
77         case -EROFS:
78                 errstr = "Readonly filesystem";
79                 break;
80         case -EEXIST:
81                 errstr = "Object already exists";
82                 break;
83         case -ENOSPC:
84                 errstr = "No space left";
85                 break;
86         case -ENOENT:
87                 errstr = "No such entry";
88                 break;
89         }
90
91         return errstr;
92 }
93
94 static void save_error_info(struct btrfs_fs_info *fs_info)
95 {
96         /*
97          * today we only save the error info into ram.  Long term we'll
98          * also send it down to the disk
99          */
100         set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
101 }
102
103 /* btrfs handle error by forcing the filesystem readonly */
104 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
105 {
106         struct super_block *sb = fs_info->sb;
107
108         if (sb->s_flags & MS_RDONLY)
109                 return;
110
111         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
112                 sb->s_flags |= MS_RDONLY;
113                 btrfs_info(fs_info, "forced readonly");
114                 /*
115                  * Note that a running device replace operation is not
116                  * canceled here although there is no way to update
117                  * the progress. It would add the risk of a deadlock,
118                  * therefore the canceling is ommited. The only penalty
119                  * is that some I/O remains active until the procedure
120                  * completes. The next time when the filesystem is
121                  * mounted writeable again, the device replace
122                  * operation continues.
123                  */
124         }
125 }
126
127 #ifdef CONFIG_PRINTK
128 /*
129  * __btrfs_std_error decodes expected errors from the caller and
130  * invokes the approciate error response.
131  */
132 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
133                        unsigned int line, int errno, const char *fmt, ...)
134 {
135         struct super_block *sb = fs_info->sb;
136         const char *errstr;
137
138         /*
139          * Special case: if the error is EROFS, and we're already
140          * under MS_RDONLY, then it is safe here.
141          */
142         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
143                 return;
144
145         errstr = btrfs_decode_error(errno);
146         if (fmt) {
147                 struct va_format vaf;
148                 va_list args;
149
150                 va_start(args, fmt);
151                 vaf.fmt = fmt;
152                 vaf.va = &args;
153
154                 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s (%pV)\n",
155                         sb->s_id, function, line, errno, errstr, &vaf);
156                 va_end(args);
157         } else {
158                 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s\n",
159                         sb->s_id, function, line, errno, errstr);
160         }
161
162         /* Don't go through full error handling during mount */
163         save_error_info(fs_info);
164         if (sb->s_flags & MS_BORN)
165                 btrfs_handle_error(fs_info);
166 }
167
168 static const char * const logtypes[] = {
169         "emergency",
170         "alert",
171         "critical",
172         "error",
173         "warning",
174         "notice",
175         "info",
176         "debug",
177 };
178
179 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
180 {
181         struct super_block *sb = fs_info->sb;
182         char lvl[4];
183         struct va_format vaf;
184         va_list args;
185         const char *type = logtypes[4];
186         int kern_level;
187
188         va_start(args, fmt);
189
190         kern_level = printk_get_level(fmt);
191         if (kern_level) {
192                 size_t size = printk_skip_level(fmt) - fmt;
193                 memcpy(lvl, fmt,  size);
194                 lvl[size] = '\0';
195                 fmt += size;
196                 type = logtypes[kern_level - '0'];
197         } else
198                 *lvl = '\0';
199
200         vaf.fmt = fmt;
201         vaf.va = &args;
202
203         printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
204
205         va_end(args);
206 }
207
208 #else
209
210 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
211                        unsigned int line, int errno, const char *fmt, ...)
212 {
213         struct super_block *sb = fs_info->sb;
214
215         /*
216          * Special case: if the error is EROFS, and we're already
217          * under MS_RDONLY, then it is safe here.
218          */
219         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
220                 return;
221
222         /* Don't go through full error handling during mount */
223         if (sb->s_flags & MS_BORN) {
224                 save_error_info(fs_info);
225                 btrfs_handle_error(fs_info);
226         }
227 }
228 #endif
229
230 /*
231  * We only mark the transaction aborted and then set the file system read-only.
232  * This will prevent new transactions from starting or trying to join this
233  * one.
234  *
235  * This means that error recovery at the call site is limited to freeing
236  * any local memory allocations and passing the error code up without
237  * further cleanup. The transaction should complete as it normally would
238  * in the call path but will return -EIO.
239  *
240  * We'll complete the cleanup in btrfs_end_transaction and
241  * btrfs_commit_transaction.
242  */
243 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
244                                struct btrfs_root *root, const char *function,
245                                unsigned int line, int errno)
246 {
247         /*
248          * Report first abort since mount
249          */
250         if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
251                                 &root->fs_info->fs_state)) {
252                 WARN(1, KERN_DEBUG "btrfs: Transaction aborted (error %d)\n",
253                                 errno);
254         }
255         trans->aborted = errno;
256         /* Nothing used. The other threads that have joined this
257          * transaction may be able to continue. */
258         if (!trans->blocks_used) {
259                 const char *errstr;
260
261                 errstr = btrfs_decode_error(errno);
262                 btrfs_warn(root->fs_info,
263                            "%s:%d: Aborting unused transaction(%s).",
264                            function, line, errstr);
265                 return;
266         }
267         ACCESS_ONCE(trans->transaction->aborted) = errno;
268         __btrfs_std_error(root->fs_info, function, line, errno, NULL);
269 }
270 /*
271  * __btrfs_panic decodes unexpected, fatal errors from the caller,
272  * issues an alert, and either panics or BUGs, depending on mount options.
273  */
274 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
275                    unsigned int line, int errno, const char *fmt, ...)
276 {
277         char *s_id = "<unknown>";
278         const char *errstr;
279         struct va_format vaf = { .fmt = fmt };
280         va_list args;
281
282         if (fs_info)
283                 s_id = fs_info->sb->s_id;
284
285         va_start(args, fmt);
286         vaf.va = &args;
287
288         errstr = btrfs_decode_error(errno);
289         if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
290                 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
291                         s_id, function, line, &vaf, errno, errstr);
292
293         printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
294                s_id, function, line, &vaf, errno, errstr);
295         va_end(args);
296         /* Caller calls BUG() */
297 }
298
299 static void btrfs_put_super(struct super_block *sb)
300 {
301         (void)close_ctree(btrfs_sb(sb)->tree_root);
302         /* FIXME: need to fix VFS to return error? */
303         /* AV: return it _where_?  ->put_super() can be triggered by any number
304          * of async events, up to and including delivery of SIGKILL to the
305          * last process that kept it busy.  Or segfault in the aforementioned
306          * process...  Whom would you report that to?
307          */
308 }
309
310 enum {
311         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
312         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
313         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
314         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
315         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
316         Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
317         Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
318         Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
319         Opt_check_integrity, Opt_check_integrity_including_extent_data,
320         Opt_check_integrity_print_mask, Opt_fatal_errors,
321         Opt_err,
322 };
323
324 static match_table_t tokens = {
325         {Opt_degraded, "degraded"},
326         {Opt_subvol, "subvol=%s"},
327         {Opt_subvolid, "subvolid=%d"},
328         {Opt_device, "device=%s"},
329         {Opt_nodatasum, "nodatasum"},
330         {Opt_nodatacow, "nodatacow"},
331         {Opt_nobarrier, "nobarrier"},
332         {Opt_max_inline, "max_inline=%s"},
333         {Opt_alloc_start, "alloc_start=%s"},
334         {Opt_thread_pool, "thread_pool=%d"},
335         {Opt_compress, "compress"},
336         {Opt_compress_type, "compress=%s"},
337         {Opt_compress_force, "compress-force"},
338         {Opt_compress_force_type, "compress-force=%s"},
339         {Opt_ssd, "ssd"},
340         {Opt_ssd_spread, "ssd_spread"},
341         {Opt_nossd, "nossd"},
342         {Opt_noacl, "noacl"},
343         {Opt_notreelog, "notreelog"},
344         {Opt_flushoncommit, "flushoncommit"},
345         {Opt_ratio, "metadata_ratio=%d"},
346         {Opt_discard, "discard"},
347         {Opt_space_cache, "space_cache"},
348         {Opt_clear_cache, "clear_cache"},
349         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
350         {Opt_enospc_debug, "enospc_debug"},
351         {Opt_subvolrootid, "subvolrootid=%d"},
352         {Opt_defrag, "autodefrag"},
353         {Opt_inode_cache, "inode_cache"},
354         {Opt_no_space_cache, "nospace_cache"},
355         {Opt_recovery, "recovery"},
356         {Opt_skip_balance, "skip_balance"},
357         {Opt_check_integrity, "check_int"},
358         {Opt_check_integrity_including_extent_data, "check_int_data"},
359         {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
360         {Opt_fatal_errors, "fatal_errors=%s"},
361         {Opt_err, NULL},
362 };
363
364 /*
365  * Regular mount options parser.  Everything that is needed only when
366  * reading in a new superblock is parsed here.
367  * XXX JDM: This needs to be cleaned up for remount.
368  */
369 int btrfs_parse_options(struct btrfs_root *root, char *options)
370 {
371         struct btrfs_fs_info *info = root->fs_info;
372         substring_t args[MAX_OPT_ARGS];
373         char *p, *num, *orig = NULL;
374         u64 cache_gen;
375         int intarg;
376         int ret = 0;
377         char *compress_type;
378         bool compress_force = false;
379
380         cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
381         if (cache_gen)
382                 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
383
384         if (!options)
385                 goto out;
386
387         /*
388          * strsep changes the string, duplicate it because parse_options
389          * gets called twice
390          */
391         options = kstrdup(options, GFP_NOFS);
392         if (!options)
393                 return -ENOMEM;
394
395         orig = options;
396
397         while ((p = strsep(&options, ",")) != NULL) {
398                 int token;
399                 if (!*p)
400                         continue;
401
402                 token = match_token(p, tokens, args);
403                 switch (token) {
404                 case Opt_degraded:
405                         printk(KERN_INFO "btrfs: allowing degraded mounts\n");
406                         btrfs_set_opt(info->mount_opt, DEGRADED);
407                         break;
408                 case Opt_subvol:
409                 case Opt_subvolid:
410                 case Opt_subvolrootid:
411                 case Opt_device:
412                         /*
413                          * These are parsed by btrfs_parse_early_options
414                          * and can be happily ignored here.
415                          */
416                         break;
417                 case Opt_nodatasum:
418                         printk(KERN_INFO "btrfs: setting nodatasum\n");
419                         btrfs_set_opt(info->mount_opt, NODATASUM);
420                         break;
421                 case Opt_nodatacow:
422                         if (!btrfs_test_opt(root, COMPRESS) ||
423                                 !btrfs_test_opt(root, FORCE_COMPRESS)) {
424                                         printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n");
425                         } else {
426                                 printk(KERN_INFO "btrfs: setting nodatacow\n");
427                         }
428                         info->compress_type = BTRFS_COMPRESS_NONE;
429                         btrfs_clear_opt(info->mount_opt, COMPRESS);
430                         btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
431                         btrfs_set_opt(info->mount_opt, NODATACOW);
432                         btrfs_set_opt(info->mount_opt, NODATASUM);
433                         break;
434                 case Opt_compress_force:
435                 case Opt_compress_force_type:
436                         compress_force = true;
437                         /* Fallthrough */
438                 case Opt_compress:
439                 case Opt_compress_type:
440                         if (token == Opt_compress ||
441                             token == Opt_compress_force ||
442                             strcmp(args[0].from, "zlib") == 0) {
443                                 compress_type = "zlib";
444                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
445                                 btrfs_set_opt(info->mount_opt, COMPRESS);
446                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
447                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
448                         } else if (strcmp(args[0].from, "lzo") == 0) {
449                                 compress_type = "lzo";
450                                 info->compress_type = BTRFS_COMPRESS_LZO;
451                                 btrfs_set_opt(info->mount_opt, COMPRESS);
452                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
453                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
454                                 btrfs_set_fs_incompat(info, COMPRESS_LZO);
455                         } else if (strncmp(args[0].from, "no", 2) == 0) {
456                                 compress_type = "no";
457                                 info->compress_type = BTRFS_COMPRESS_NONE;
458                                 btrfs_clear_opt(info->mount_opt, COMPRESS);
459                                 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
460                                 compress_force = false;
461                         } else {
462                                 ret = -EINVAL;
463                                 goto out;
464                         }
465
466                         if (compress_force) {
467                                 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
468                                 pr_info("btrfs: force %s compression\n",
469                                         compress_type);
470                         } else
471                                 pr_info("btrfs: use %s compression\n",
472                                         compress_type);
473                         break;
474                 case Opt_ssd:
475                         printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
476                         btrfs_set_opt(info->mount_opt, SSD);
477                         break;
478                 case Opt_ssd_spread:
479                         printk(KERN_INFO "btrfs: use spread ssd "
480                                "allocation scheme\n");
481                         btrfs_set_opt(info->mount_opt, SSD);
482                         btrfs_set_opt(info->mount_opt, SSD_SPREAD);
483                         break;
484                 case Opt_nossd:
485                         printk(KERN_INFO "btrfs: not using ssd allocation "
486                                "scheme\n");
487                         btrfs_set_opt(info->mount_opt, NOSSD);
488                         btrfs_clear_opt(info->mount_opt, SSD);
489                         btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
490                         break;
491                 case Opt_nobarrier:
492                         printk(KERN_INFO "btrfs: turning off barriers\n");
493                         btrfs_set_opt(info->mount_opt, NOBARRIER);
494                         break;
495                 case Opt_thread_pool:
496                         intarg = 0;
497                         match_int(&args[0], &intarg);
498                         if (intarg)
499                                 info->thread_pool_size = intarg;
500                         break;
501                 case Opt_max_inline:
502                         num = match_strdup(&args[0]);
503                         if (num) {
504                                 info->max_inline = memparse(num, NULL);
505                                 kfree(num);
506
507                                 if (info->max_inline) {
508                                         info->max_inline = max_t(u64,
509                                                 info->max_inline,
510                                                 root->sectorsize);
511                                 }
512                                 printk(KERN_INFO "btrfs: max_inline at %llu\n",
513                                         (unsigned long long)info->max_inline);
514                         }
515                         break;
516                 case Opt_alloc_start:
517                         num = match_strdup(&args[0]);
518                         if (num) {
519                                 mutex_lock(&info->chunk_mutex);
520                                 info->alloc_start = memparse(num, NULL);
521                                 mutex_unlock(&info->chunk_mutex);
522                                 kfree(num);
523                                 printk(KERN_INFO
524                                         "btrfs: allocations start at %llu\n",
525                                         (unsigned long long)info->alloc_start);
526                         }
527                         break;
528                 case Opt_noacl:
529                         root->fs_info->sb->s_flags &= ~MS_POSIXACL;
530                         break;
531                 case Opt_notreelog:
532                         printk(KERN_INFO "btrfs: disabling tree log\n");
533                         btrfs_set_opt(info->mount_opt, NOTREELOG);
534                         break;
535                 case Opt_flushoncommit:
536                         printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
537                         btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
538                         break;
539                 case Opt_ratio:
540                         intarg = 0;
541                         match_int(&args[0], &intarg);
542                         if (intarg) {
543                                 info->metadata_ratio = intarg;
544                                 printk(KERN_INFO "btrfs: metadata ratio %d\n",
545                                        info->metadata_ratio);
546                         }
547                         break;
548                 case Opt_discard:
549                         btrfs_set_opt(info->mount_opt, DISCARD);
550                         break;
551                 case Opt_space_cache:
552                         btrfs_set_opt(info->mount_opt, SPACE_CACHE);
553                         break;
554                 case Opt_no_space_cache:
555                         printk(KERN_INFO "btrfs: disabling disk space caching\n");
556                         btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
557                         break;
558                 case Opt_inode_cache:
559                         printk(KERN_INFO "btrfs: enabling inode map caching\n");
560                         btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
561                         break;
562                 case Opt_clear_cache:
563                         printk(KERN_INFO "btrfs: force clearing of disk cache\n");
564                         btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
565                         break;
566                 case Opt_user_subvol_rm_allowed:
567                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
568                         break;
569                 case Opt_enospc_debug:
570                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
571                         break;
572                 case Opt_defrag:
573                         printk(KERN_INFO "btrfs: enabling auto defrag\n");
574                         btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
575                         break;
576                 case Opt_recovery:
577                         printk(KERN_INFO "btrfs: enabling auto recovery\n");
578                         btrfs_set_opt(info->mount_opt, RECOVERY);
579                         break;
580                 case Opt_skip_balance:
581                         btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
582                         break;
583 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
584                 case Opt_check_integrity_including_extent_data:
585                         printk(KERN_INFO "btrfs: enabling check integrity"
586                                " including extent data\n");
587                         btrfs_set_opt(info->mount_opt,
588                                       CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
589                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
590                         break;
591                 case Opt_check_integrity:
592                         printk(KERN_INFO "btrfs: enabling check integrity\n");
593                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
594                         break;
595                 case Opt_check_integrity_print_mask:
596                         intarg = 0;
597                         match_int(&args[0], &intarg);
598                         if (intarg) {
599                                 info->check_integrity_print_mask = intarg;
600                                 printk(KERN_INFO "btrfs:"
601                                        " check_integrity_print_mask 0x%x\n",
602                                        info->check_integrity_print_mask);
603                         }
604                         break;
605 #else
606                 case Opt_check_integrity_including_extent_data:
607                 case Opt_check_integrity:
608                 case Opt_check_integrity_print_mask:
609                         printk(KERN_ERR "btrfs: support for check_integrity*"
610                                " not compiled in!\n");
611                         ret = -EINVAL;
612                         goto out;
613 #endif
614                 case Opt_fatal_errors:
615                         if (strcmp(args[0].from, "panic") == 0)
616                                 btrfs_set_opt(info->mount_opt,
617                                               PANIC_ON_FATAL_ERROR);
618                         else if (strcmp(args[0].from, "bug") == 0)
619                                 btrfs_clear_opt(info->mount_opt,
620                                               PANIC_ON_FATAL_ERROR);
621                         else {
622                                 ret = -EINVAL;
623                                 goto out;
624                         }
625                         break;
626                 case Opt_err:
627                         printk(KERN_INFO "btrfs: unrecognized mount option "
628                                "'%s'\n", p);
629                         ret = -EINVAL;
630                         goto out;
631                 default:
632                         break;
633                 }
634         }
635 out:
636         if (!ret && btrfs_test_opt(root, SPACE_CACHE))
637                 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
638         kfree(orig);
639         return ret;
640 }
641
642 /*
643  * Parse mount options that are required early in the mount process.
644  *
645  * All other options will be parsed on much later in the mount process and
646  * only when we need to allocate a new super block.
647  */
648 static int btrfs_parse_early_options(const char *options, fmode_t flags,
649                 void *holder, char **subvol_name, u64 *subvol_objectid,
650                 struct btrfs_fs_devices **fs_devices)
651 {
652         substring_t args[MAX_OPT_ARGS];
653         char *device_name, *opts, *orig, *p;
654         int error = 0;
655         int intarg;
656
657         if (!options)
658                 return 0;
659
660         /*
661          * strsep changes the string, duplicate it because parse_options
662          * gets called twice
663          */
664         opts = kstrdup(options, GFP_KERNEL);
665         if (!opts)
666                 return -ENOMEM;
667         orig = opts;
668
669         while ((p = strsep(&opts, ",")) != NULL) {
670                 int token;
671                 if (!*p)
672                         continue;
673
674                 token = match_token(p, tokens, args);
675                 switch (token) {
676                 case Opt_subvol:
677                         kfree(*subvol_name);
678                         *subvol_name = match_strdup(&args[0]);
679                         break;
680                 case Opt_subvolid:
681                         intarg = 0;
682                         error = match_int(&args[0], &intarg);
683                         if (!error) {
684                                 /* we want the original fs_tree */
685                                 if (!intarg)
686                                         *subvol_objectid =
687                                                 BTRFS_FS_TREE_OBJECTID;
688                                 else
689                                         *subvol_objectid = intarg;
690                         }
691                         break;
692                 case Opt_subvolrootid:
693                         printk(KERN_WARNING
694                                 "btrfs: 'subvolrootid' mount option is deprecated and has no effect\n");
695                         break;
696                 case Opt_device:
697                         device_name = match_strdup(&args[0]);
698                         if (!device_name) {
699                                 error = -ENOMEM;
700                                 goto out;
701                         }
702                         error = btrfs_scan_one_device(device_name,
703                                         flags, holder, fs_devices);
704                         kfree(device_name);
705                         if (error)
706                                 goto out;
707                         break;
708                 default:
709                         break;
710                 }
711         }
712
713 out:
714         kfree(orig);
715         return error;
716 }
717
718 static struct dentry *get_default_root(struct super_block *sb,
719                                        u64 subvol_objectid)
720 {
721         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
722         struct btrfs_root *root = fs_info->tree_root;
723         struct btrfs_root *new_root;
724         struct btrfs_dir_item *di;
725         struct btrfs_path *path;
726         struct btrfs_key location;
727         struct inode *inode;
728         u64 dir_id;
729         int new = 0;
730
731         /*
732          * We have a specific subvol we want to mount, just setup location and
733          * go look up the root.
734          */
735         if (subvol_objectid) {
736                 location.objectid = subvol_objectid;
737                 location.type = BTRFS_ROOT_ITEM_KEY;
738                 location.offset = (u64)-1;
739                 goto find_root;
740         }
741
742         path = btrfs_alloc_path();
743         if (!path)
744                 return ERR_PTR(-ENOMEM);
745         path->leave_spinning = 1;
746
747         /*
748          * Find the "default" dir item which points to the root item that we
749          * will mount by default if we haven't been given a specific subvolume
750          * to mount.
751          */
752         dir_id = btrfs_super_root_dir(fs_info->super_copy);
753         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
754         if (IS_ERR(di)) {
755                 btrfs_free_path(path);
756                 return ERR_CAST(di);
757         }
758         if (!di) {
759                 /*
760                  * Ok the default dir item isn't there.  This is weird since
761                  * it's always been there, but don't freak out, just try and
762                  * mount to root most subvolume.
763                  */
764                 btrfs_free_path(path);
765                 dir_id = BTRFS_FIRST_FREE_OBJECTID;
766                 new_root = fs_info->fs_root;
767                 goto setup_root;
768         }
769
770         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
771         btrfs_free_path(path);
772
773 find_root:
774         new_root = btrfs_read_fs_root_no_name(fs_info, &location);
775         if (IS_ERR(new_root))
776                 return ERR_CAST(new_root);
777
778         dir_id = btrfs_root_dirid(&new_root->root_item);
779 setup_root:
780         location.objectid = dir_id;
781         location.type = BTRFS_INODE_ITEM_KEY;
782         location.offset = 0;
783
784         inode = btrfs_iget(sb, &location, new_root, &new);
785         if (IS_ERR(inode))
786                 return ERR_CAST(inode);
787
788         /*
789          * If we're just mounting the root most subvol put the inode and return
790          * a reference to the dentry.  We will have already gotten a reference
791          * to the inode in btrfs_fill_super so we're good to go.
792          */
793         if (!new && sb->s_root->d_inode == inode) {
794                 iput(inode);
795                 return dget(sb->s_root);
796         }
797
798         return d_obtain_alias(inode);
799 }
800
801 static int btrfs_fill_super(struct super_block *sb,
802                             struct btrfs_fs_devices *fs_devices,
803                             void *data, int silent)
804 {
805         struct inode *inode;
806         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
807         struct btrfs_key key;
808         int err;
809
810         sb->s_maxbytes = MAX_LFS_FILESIZE;
811         sb->s_magic = BTRFS_SUPER_MAGIC;
812         sb->s_op = &btrfs_super_ops;
813         sb->s_d_op = &btrfs_dentry_operations;
814         sb->s_export_op = &btrfs_export_ops;
815         sb->s_xattr = btrfs_xattr_handlers;
816         sb->s_time_gran = 1;
817 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
818         sb->s_flags |= MS_POSIXACL;
819 #endif
820         sb->s_flags |= MS_I_VERSION;
821         err = open_ctree(sb, fs_devices, (char *)data);
822         if (err) {
823                 printk("btrfs: open_ctree failed\n");
824                 return err;
825         }
826
827         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
828         key.type = BTRFS_INODE_ITEM_KEY;
829         key.offset = 0;
830         inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
831         if (IS_ERR(inode)) {
832                 err = PTR_ERR(inode);
833                 goto fail_close;
834         }
835
836         sb->s_root = d_make_root(inode);
837         if (!sb->s_root) {
838                 err = -ENOMEM;
839                 goto fail_close;
840         }
841
842         save_mount_options(sb, data);
843         cleancache_init_fs(sb);
844         sb->s_flags |= MS_ACTIVE;
845         return 0;
846
847 fail_close:
848         close_ctree(fs_info->tree_root);
849         return err;
850 }
851
852 int btrfs_sync_fs(struct super_block *sb, int wait)
853 {
854         struct btrfs_trans_handle *trans;
855         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
856         struct btrfs_root *root = fs_info->tree_root;
857
858         trace_btrfs_sync_fs(wait);
859
860         if (!wait) {
861                 filemap_flush(fs_info->btree_inode->i_mapping);
862                 return 0;
863         }
864
865         btrfs_wait_all_ordered_extents(fs_info, 0);
866
867         trans = btrfs_attach_transaction_barrier(root);
868         if (IS_ERR(trans)) {
869                 /* no transaction, don't bother */
870                 if (PTR_ERR(trans) == -ENOENT)
871                         return 0;
872                 return PTR_ERR(trans);
873         }
874         return btrfs_commit_transaction(trans, root);
875 }
876
877 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
878 {
879         struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
880         struct btrfs_root *root = info->tree_root;
881         char *compress_type;
882
883         if (btrfs_test_opt(root, DEGRADED))
884                 seq_puts(seq, ",degraded");
885         if (btrfs_test_opt(root, NODATASUM))
886                 seq_puts(seq, ",nodatasum");
887         if (btrfs_test_opt(root, NODATACOW))
888                 seq_puts(seq, ",nodatacow");
889         if (btrfs_test_opt(root, NOBARRIER))
890                 seq_puts(seq, ",nobarrier");
891         if (info->max_inline != 8192 * 1024)
892                 seq_printf(seq, ",max_inline=%llu",
893                            (unsigned long long)info->max_inline);
894         if (info->alloc_start != 0)
895                 seq_printf(seq, ",alloc_start=%llu",
896                            (unsigned long long)info->alloc_start);
897         if (info->thread_pool_size !=  min_t(unsigned long,
898                                              num_online_cpus() + 2, 8))
899                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
900         if (btrfs_test_opt(root, COMPRESS)) {
901                 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
902                         compress_type = "zlib";
903                 else
904                         compress_type = "lzo";
905                 if (btrfs_test_opt(root, FORCE_COMPRESS))
906                         seq_printf(seq, ",compress-force=%s", compress_type);
907                 else
908                         seq_printf(seq, ",compress=%s", compress_type);
909         }
910         if (btrfs_test_opt(root, NOSSD))
911                 seq_puts(seq, ",nossd");
912         if (btrfs_test_opt(root, SSD_SPREAD))
913                 seq_puts(seq, ",ssd_spread");
914         else if (btrfs_test_opt(root, SSD))
915                 seq_puts(seq, ",ssd");
916         if (btrfs_test_opt(root, NOTREELOG))
917                 seq_puts(seq, ",notreelog");
918         if (btrfs_test_opt(root, FLUSHONCOMMIT))
919                 seq_puts(seq, ",flushoncommit");
920         if (btrfs_test_opt(root, DISCARD))
921                 seq_puts(seq, ",discard");
922         if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
923                 seq_puts(seq, ",noacl");
924         if (btrfs_test_opt(root, SPACE_CACHE))
925                 seq_puts(seq, ",space_cache");
926         else
927                 seq_puts(seq, ",nospace_cache");
928         if (btrfs_test_opt(root, CLEAR_CACHE))
929                 seq_puts(seq, ",clear_cache");
930         if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
931                 seq_puts(seq, ",user_subvol_rm_allowed");
932         if (btrfs_test_opt(root, ENOSPC_DEBUG))
933                 seq_puts(seq, ",enospc_debug");
934         if (btrfs_test_opt(root, AUTO_DEFRAG))
935                 seq_puts(seq, ",autodefrag");
936         if (btrfs_test_opt(root, INODE_MAP_CACHE))
937                 seq_puts(seq, ",inode_cache");
938         if (btrfs_test_opt(root, SKIP_BALANCE))
939                 seq_puts(seq, ",skip_balance");
940         if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
941                 seq_puts(seq, ",fatal_errors=panic");
942         return 0;
943 }
944
945 static int btrfs_test_super(struct super_block *s, void *data)
946 {
947         struct btrfs_fs_info *p = data;
948         struct btrfs_fs_info *fs_info = btrfs_sb(s);
949
950         return fs_info->fs_devices == p->fs_devices;
951 }
952
953 static int btrfs_set_super(struct super_block *s, void *data)
954 {
955         int err = set_anon_super(s, data);
956         if (!err)
957                 s->s_fs_info = data;
958         return err;
959 }
960
961 /*
962  * subvolumes are identified by ino 256
963  */
964 static inline int is_subvolume_inode(struct inode *inode)
965 {
966         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
967                 return 1;
968         return 0;
969 }
970
971 /*
972  * This will strip out the subvol=%s argument for an argument string and add
973  * subvolid=0 to make sure we get the actual tree root for path walking to the
974  * subvol we want.
975  */
976 static char *setup_root_args(char *args)
977 {
978         unsigned len = strlen(args) + 2 + 1;
979         char *src, *dst, *buf;
980
981         /*
982          * We need the same args as before, but with this substitution:
983          * s!subvol=[^,]+!subvolid=0!
984          *
985          * Since the replacement string is up to 2 bytes longer than the
986          * original, allocate strlen(args) + 2 + 1 bytes.
987          */
988
989         src = strstr(args, "subvol=");
990         /* This shouldn't happen, but just in case.. */
991         if (!src)
992                 return NULL;
993
994         buf = dst = kmalloc(len, GFP_NOFS);
995         if (!buf)
996                 return NULL;
997
998         /*
999          * If the subvol= arg is not at the start of the string,
1000          * copy whatever precedes it into buf.
1001          */
1002         if (src != args) {
1003                 *src++ = '\0';
1004                 strcpy(buf, args);
1005                 dst += strlen(args);
1006         }
1007
1008         strcpy(dst, "subvolid=0");
1009         dst += strlen("subvolid=0");
1010
1011         /*
1012          * If there is a "," after the original subvol=... string,
1013          * copy that suffix into our buffer.  Otherwise, we're done.
1014          */
1015         src = strchr(src, ',');
1016         if (src)
1017                 strcpy(dst, src);
1018
1019         return buf;
1020 }
1021
1022 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1023                                    const char *device_name, char *data)
1024 {
1025         struct dentry *root;
1026         struct vfsmount *mnt;
1027         char *newargs;
1028
1029         newargs = setup_root_args(data);
1030         if (!newargs)
1031                 return ERR_PTR(-ENOMEM);
1032         mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1033                              newargs);
1034         kfree(newargs);
1035         if (IS_ERR(mnt))
1036                 return ERR_CAST(mnt);
1037
1038         root = mount_subtree(mnt, subvol_name);
1039
1040         if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1041                 struct super_block *s = root->d_sb;
1042                 dput(root);
1043                 root = ERR_PTR(-EINVAL);
1044                 deactivate_locked_super(s);
1045                 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1046                                 subvol_name);
1047         }
1048
1049         return root;
1050 }
1051
1052 /*
1053  * Find a superblock for the given device / mount point.
1054  *
1055  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1056  *        for multiple device setup.  Make sure to keep it in sync.
1057  */
1058 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1059                 const char *device_name, void *data)
1060 {
1061         struct block_device *bdev = NULL;
1062         struct super_block *s;
1063         struct dentry *root;
1064         struct btrfs_fs_devices *fs_devices = NULL;
1065         struct btrfs_fs_info *fs_info = NULL;
1066         fmode_t mode = FMODE_READ;
1067         char *subvol_name = NULL;
1068         u64 subvol_objectid = 0;
1069         int error = 0;
1070
1071         if (!(flags & MS_RDONLY))
1072                 mode |= FMODE_WRITE;
1073
1074         error = btrfs_parse_early_options(data, mode, fs_type,
1075                                           &subvol_name, &subvol_objectid,
1076                                           &fs_devices);
1077         if (error) {
1078                 kfree(subvol_name);
1079                 return ERR_PTR(error);
1080         }
1081
1082         if (subvol_name) {
1083                 root = mount_subvol(subvol_name, flags, device_name, data);
1084                 kfree(subvol_name);
1085                 return root;
1086         }
1087
1088         error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1089         if (error)
1090                 return ERR_PTR(error);
1091
1092         /*
1093          * Setup a dummy root and fs_info for test/set super.  This is because
1094          * we don't actually fill this stuff out until open_ctree, but we need
1095          * it for searching for existing supers, so this lets us do that and
1096          * then open_ctree will properly initialize everything later.
1097          */
1098         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1099         if (!fs_info)
1100                 return ERR_PTR(-ENOMEM);
1101
1102         fs_info->fs_devices = fs_devices;
1103
1104         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1105         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1106         if (!fs_info->super_copy || !fs_info->super_for_commit) {
1107                 error = -ENOMEM;
1108                 goto error_fs_info;
1109         }
1110
1111         error = btrfs_open_devices(fs_devices, mode, fs_type);
1112         if (error)
1113                 goto error_fs_info;
1114
1115         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1116                 error = -EACCES;
1117                 goto error_close_devices;
1118         }
1119
1120         bdev = fs_devices->latest_bdev;
1121         s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1122                  fs_info);
1123         if (IS_ERR(s)) {
1124                 error = PTR_ERR(s);
1125                 goto error_close_devices;
1126         }
1127
1128         if (s->s_root) {
1129                 btrfs_close_devices(fs_devices);
1130                 free_fs_info(fs_info);
1131                 if ((flags ^ s->s_flags) & MS_RDONLY)
1132                         error = -EBUSY;
1133         } else {
1134                 char b[BDEVNAME_SIZE];
1135
1136                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1137                 btrfs_sb(s)->bdev_holder = fs_type;
1138                 error = btrfs_fill_super(s, fs_devices, data,
1139                                          flags & MS_SILENT ? 1 : 0);
1140         }
1141
1142         root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1143         if (IS_ERR(root))
1144                 deactivate_locked_super(s);
1145
1146         return root;
1147
1148 error_close_devices:
1149         btrfs_close_devices(fs_devices);
1150 error_fs_info:
1151         free_fs_info(fs_info);
1152         return ERR_PTR(error);
1153 }
1154
1155 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1156 {
1157         spin_lock_irq(&workers->lock);
1158         workers->max_workers = new_limit;
1159         spin_unlock_irq(&workers->lock);
1160 }
1161
1162 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1163                                      int new_pool_size, int old_pool_size)
1164 {
1165         if (new_pool_size == old_pool_size)
1166                 return;
1167
1168         fs_info->thread_pool_size = new_pool_size;
1169
1170         printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1171                old_pool_size, new_pool_size);
1172
1173         btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1174         btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1175         btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1176         btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1177         btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1178         btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1179         btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1180         btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1181         btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1182         btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1183         btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1184         btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1185         btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1186         btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers,
1187                               new_pool_size);
1188 }
1189
1190 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1191 {
1192         set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1193 }
1194
1195 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1196                                        unsigned long old_opts, int flags)
1197 {
1198         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1199             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1200              (flags & MS_RDONLY))) {
1201                 /* wait for any defraggers to finish */
1202                 wait_event(fs_info->transaction_wait,
1203                            (atomic_read(&fs_info->defrag_running) == 0));
1204                 if (flags & MS_RDONLY)
1205                         sync_filesystem(fs_info->sb);
1206         }
1207 }
1208
1209 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1210                                          unsigned long old_opts)
1211 {
1212         /*
1213          * We need cleanup all defragable inodes if the autodefragment is
1214          * close or the fs is R/O.
1215          */
1216         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1217             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1218              (fs_info->sb->s_flags & MS_RDONLY))) {
1219                 btrfs_cleanup_defrag_inodes(fs_info);
1220         }
1221
1222         clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1223 }
1224
1225 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1226 {
1227         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1228         struct btrfs_root *root = fs_info->tree_root;
1229         unsigned old_flags = sb->s_flags;
1230         unsigned long old_opts = fs_info->mount_opt;
1231         unsigned long old_compress_type = fs_info->compress_type;
1232         u64 old_max_inline = fs_info->max_inline;
1233         u64 old_alloc_start = fs_info->alloc_start;
1234         int old_thread_pool_size = fs_info->thread_pool_size;
1235         unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1236         int ret;
1237
1238         btrfs_remount_prepare(fs_info);
1239
1240         ret = btrfs_parse_options(root, data);
1241         if (ret) {
1242                 ret = -EINVAL;
1243                 goto restore;
1244         }
1245
1246         btrfs_remount_begin(fs_info, old_opts, *flags);
1247         btrfs_resize_thread_pool(fs_info,
1248                 fs_info->thread_pool_size, old_thread_pool_size);
1249
1250         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1251                 goto out;
1252
1253         if (*flags & MS_RDONLY) {
1254                 /*
1255                  * this also happens on 'umount -rf' or on shutdown, when
1256                  * the filesystem is busy.
1257                  */
1258                 sb->s_flags |= MS_RDONLY;
1259
1260                 btrfs_dev_replace_suspend_for_unmount(fs_info);
1261                 btrfs_scrub_cancel(fs_info);
1262                 btrfs_pause_balance(fs_info);
1263
1264                 ret = btrfs_commit_super(root);
1265                 if (ret)
1266                         goto restore;
1267         } else {
1268                 if (fs_info->fs_devices->rw_devices == 0) {
1269                         ret = -EACCES;
1270                         goto restore;
1271                 }
1272
1273                 if (fs_info->fs_devices->missing_devices >
1274                      fs_info->num_tolerated_disk_barrier_failures &&
1275                     !(*flags & MS_RDONLY)) {
1276                         printk(KERN_WARNING
1277                                "Btrfs: too many missing devices, writeable remount is not allowed\n");
1278                         ret = -EACCES;
1279                         goto restore;
1280                 }
1281
1282                 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1283                         ret = -EINVAL;
1284                         goto restore;
1285                 }
1286
1287                 ret = btrfs_cleanup_fs_roots(fs_info);
1288                 if (ret)
1289                         goto restore;
1290
1291                 /* recover relocation */
1292                 ret = btrfs_recover_relocation(root);
1293                 if (ret)
1294                         goto restore;
1295
1296                 ret = btrfs_resume_balance_async(fs_info);
1297                 if (ret)
1298                         goto restore;
1299
1300                 ret = btrfs_resume_dev_replace_async(fs_info);
1301                 if (ret) {
1302                         pr_warn("btrfs: failed to resume dev_replace\n");
1303                         goto restore;
1304                 }
1305                 sb->s_flags &= ~MS_RDONLY;
1306         }
1307 out:
1308         btrfs_remount_cleanup(fs_info, old_opts);
1309         return 0;
1310
1311 restore:
1312         /* We've hit an error - don't reset MS_RDONLY */
1313         if (sb->s_flags & MS_RDONLY)
1314                 old_flags |= MS_RDONLY;
1315         sb->s_flags = old_flags;
1316         fs_info->mount_opt = old_opts;
1317         fs_info->compress_type = old_compress_type;
1318         fs_info->max_inline = old_max_inline;
1319         mutex_lock(&fs_info->chunk_mutex);
1320         fs_info->alloc_start = old_alloc_start;
1321         mutex_unlock(&fs_info->chunk_mutex);
1322         btrfs_resize_thread_pool(fs_info,
1323                 old_thread_pool_size, fs_info->thread_pool_size);
1324         fs_info->metadata_ratio = old_metadata_ratio;
1325         btrfs_remount_cleanup(fs_info, old_opts);
1326         return ret;
1327 }
1328
1329 /* Used to sort the devices by max_avail(descending sort) */
1330 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1331                                        const void *dev_info2)
1332 {
1333         if (((struct btrfs_device_info *)dev_info1)->max_avail >
1334             ((struct btrfs_device_info *)dev_info2)->max_avail)
1335                 return -1;
1336         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1337                  ((struct btrfs_device_info *)dev_info2)->max_avail)
1338                 return 1;
1339         else
1340         return 0;
1341 }
1342
1343 /*
1344  * sort the devices by max_avail, in which max free extent size of each device
1345  * is stored.(Descending Sort)
1346  */
1347 static inline void btrfs_descending_sort_devices(
1348                                         struct btrfs_device_info *devices,
1349                                         size_t nr_devices)
1350 {
1351         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1352              btrfs_cmp_device_free_bytes, NULL);
1353 }
1354
1355 /*
1356  * The helper to calc the free space on the devices that can be used to store
1357  * file data.
1358  */
1359 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1360 {
1361         struct btrfs_fs_info *fs_info = root->fs_info;
1362         struct btrfs_device_info *devices_info;
1363         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1364         struct btrfs_device *device;
1365         u64 skip_space;
1366         u64 type;
1367         u64 avail_space;
1368         u64 used_space;
1369         u64 min_stripe_size;
1370         int min_stripes = 1, num_stripes = 1;
1371         int i = 0, nr_devices;
1372         int ret;
1373
1374         nr_devices = fs_info->fs_devices->open_devices;
1375         BUG_ON(!nr_devices);
1376
1377         devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1378                                GFP_NOFS);
1379         if (!devices_info)
1380                 return -ENOMEM;
1381
1382         /* calc min stripe number for data space alloction */
1383         type = btrfs_get_alloc_profile(root, 1);
1384         if (type & BTRFS_BLOCK_GROUP_RAID0) {
1385                 min_stripes = 2;
1386                 num_stripes = nr_devices;
1387         } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1388                 min_stripes = 2;
1389                 num_stripes = 2;
1390         } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1391                 min_stripes = 4;
1392                 num_stripes = 4;
1393         }
1394
1395         if (type & BTRFS_BLOCK_GROUP_DUP)
1396                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1397         else
1398                 min_stripe_size = BTRFS_STRIPE_LEN;
1399
1400         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1401                 if (!device->in_fs_metadata || !device->bdev ||
1402                     device->is_tgtdev_for_dev_replace)
1403                         continue;
1404
1405                 avail_space = device->total_bytes - device->bytes_used;
1406
1407                 /* align with stripe_len */
1408                 do_div(avail_space, BTRFS_STRIPE_LEN);
1409                 avail_space *= BTRFS_STRIPE_LEN;
1410
1411                 /*
1412                  * In order to avoid overwritting the superblock on the drive,
1413                  * btrfs starts at an offset of at least 1MB when doing chunk
1414                  * allocation.
1415                  */
1416                 skip_space = 1024 * 1024;
1417
1418                 /* user can set the offset in fs_info->alloc_start. */
1419                 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1420                     device->total_bytes)
1421                         skip_space = max(fs_info->alloc_start, skip_space);
1422
1423                 /*
1424                  * btrfs can not use the free space in [0, skip_space - 1],
1425                  * we must subtract it from the total. In order to implement
1426                  * it, we account the used space in this range first.
1427                  */
1428                 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1429                                                      &used_space);
1430                 if (ret) {
1431                         kfree(devices_info);
1432                         return ret;
1433                 }
1434
1435                 /* calc the free space in [0, skip_space - 1] */
1436                 skip_space -= used_space;
1437
1438                 /*
1439                  * we can use the free space in [0, skip_space - 1], subtract
1440                  * it from the total.
1441                  */
1442                 if (avail_space && avail_space >= skip_space)
1443                         avail_space -= skip_space;
1444                 else
1445                         avail_space = 0;
1446
1447                 if (avail_space < min_stripe_size)
1448                         continue;
1449
1450                 devices_info[i].dev = device;
1451                 devices_info[i].max_avail = avail_space;
1452
1453                 i++;
1454         }
1455
1456         nr_devices = i;
1457
1458         btrfs_descending_sort_devices(devices_info, nr_devices);
1459
1460         i = nr_devices - 1;
1461         avail_space = 0;
1462         while (nr_devices >= min_stripes) {
1463                 if (num_stripes > nr_devices)
1464                         num_stripes = nr_devices;
1465
1466                 if (devices_info[i].max_avail >= min_stripe_size) {
1467                         int j;
1468                         u64 alloc_size;
1469
1470                         avail_space += devices_info[i].max_avail * num_stripes;
1471                         alloc_size = devices_info[i].max_avail;
1472                         for (j = i + 1 - num_stripes; j <= i; j++)
1473                                 devices_info[j].max_avail -= alloc_size;
1474                 }
1475                 i--;
1476                 nr_devices--;
1477         }
1478
1479         kfree(devices_info);
1480         *free_bytes = avail_space;
1481         return 0;
1482 }
1483
1484 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1485 {
1486         struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1487         struct btrfs_super_block *disk_super = fs_info->super_copy;
1488         struct list_head *head = &fs_info->space_info;
1489         struct btrfs_space_info *found;
1490         u64 total_used = 0;
1491         u64 total_free_data = 0;
1492         int bits = dentry->d_sb->s_blocksize_bits;
1493         __be32 *fsid = (__be32 *)fs_info->fsid;
1494         int ret;
1495
1496         /* holding chunk_muext to avoid allocating new chunks */
1497         mutex_lock(&fs_info->chunk_mutex);
1498         rcu_read_lock();
1499         list_for_each_entry_rcu(found, head, list) {
1500                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1501                         total_free_data += found->disk_total - found->disk_used;
1502                         total_free_data -=
1503                                 btrfs_account_ro_block_groups_free_space(found);
1504                 }
1505
1506                 total_used += found->disk_used;
1507         }
1508         rcu_read_unlock();
1509
1510         buf->f_namelen = BTRFS_NAME_LEN;
1511         buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1512         buf->f_bfree = buf->f_blocks - (total_used >> bits);
1513         buf->f_bsize = dentry->d_sb->s_blocksize;
1514         buf->f_type = BTRFS_SUPER_MAGIC;
1515         buf->f_bavail = total_free_data;
1516         ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1517         if (ret) {
1518                 mutex_unlock(&fs_info->chunk_mutex);
1519                 return ret;
1520         }
1521         buf->f_bavail += total_free_data;
1522         buf->f_bavail = buf->f_bavail >> bits;
1523         mutex_unlock(&fs_info->chunk_mutex);
1524
1525         /* We treat it as constant endianness (it doesn't matter _which_)
1526            because we want the fsid to come out the same whether mounted
1527            on a big-endian or little-endian host */
1528         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1529         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1530         /* Mask in the root object ID too, to disambiguate subvols */
1531         buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1532         buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1533
1534         return 0;
1535 }
1536
1537 static void btrfs_kill_super(struct super_block *sb)
1538 {
1539         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1540         kill_anon_super(sb);
1541         free_fs_info(fs_info);
1542 }
1543
1544 static struct file_system_type btrfs_fs_type = {
1545         .owner          = THIS_MODULE,
1546         .name           = "btrfs",
1547         .mount          = btrfs_mount,
1548         .kill_sb        = btrfs_kill_super,
1549         .fs_flags       = FS_REQUIRES_DEV,
1550 };
1551 MODULE_ALIAS_FS("btrfs");
1552
1553 /*
1554  * used by btrfsctl to scan devices when no FS is mounted
1555  */
1556 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1557                                 unsigned long arg)
1558 {
1559         struct btrfs_ioctl_vol_args *vol;
1560         struct btrfs_fs_devices *fs_devices;
1561         int ret = -ENOTTY;
1562
1563         if (!capable(CAP_SYS_ADMIN))
1564                 return -EPERM;
1565
1566         vol = memdup_user((void __user *)arg, sizeof(*vol));
1567         if (IS_ERR(vol))
1568                 return PTR_ERR(vol);
1569
1570         switch (cmd) {
1571         case BTRFS_IOC_SCAN_DEV:
1572                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1573                                             &btrfs_fs_type, &fs_devices);
1574                 break;
1575         case BTRFS_IOC_DEVICES_READY:
1576                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1577                                             &btrfs_fs_type, &fs_devices);
1578                 if (ret)
1579                         break;
1580                 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1581                 break;
1582         }
1583
1584         kfree(vol);
1585         return ret;
1586 }
1587
1588 static int btrfs_freeze(struct super_block *sb)
1589 {
1590         struct btrfs_trans_handle *trans;
1591         struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1592
1593         trans = btrfs_attach_transaction_barrier(root);
1594         if (IS_ERR(trans)) {
1595                 /* no transaction, don't bother */
1596                 if (PTR_ERR(trans) == -ENOENT)
1597                         return 0;
1598                 return PTR_ERR(trans);
1599         }
1600         return btrfs_commit_transaction(trans, root);
1601 }
1602
1603 static int btrfs_unfreeze(struct super_block *sb)
1604 {
1605         return 0;
1606 }
1607
1608 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1609 {
1610         struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1611         struct btrfs_fs_devices *cur_devices;
1612         struct btrfs_device *dev, *first_dev = NULL;
1613         struct list_head *head;
1614         struct rcu_string *name;
1615
1616         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1617         cur_devices = fs_info->fs_devices;
1618         while (cur_devices) {
1619                 head = &cur_devices->devices;
1620                 list_for_each_entry(dev, head, dev_list) {
1621                         if (dev->missing)
1622                                 continue;
1623                         if (!first_dev || dev->devid < first_dev->devid)
1624                                 first_dev = dev;
1625                 }
1626                 cur_devices = cur_devices->seed;
1627         }
1628
1629         if (first_dev) {
1630                 rcu_read_lock();
1631                 name = rcu_dereference(first_dev->name);
1632                 seq_escape(m, name->str, " \t\n\\");
1633                 rcu_read_unlock();
1634         } else {
1635                 WARN_ON(1);
1636         }
1637         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1638         return 0;
1639 }
1640
1641 static const struct super_operations btrfs_super_ops = {
1642         .drop_inode     = btrfs_drop_inode,
1643         .evict_inode    = btrfs_evict_inode,
1644         .put_super      = btrfs_put_super,
1645         .sync_fs        = btrfs_sync_fs,
1646         .show_options   = btrfs_show_options,
1647         .show_devname   = btrfs_show_devname,
1648         .write_inode    = btrfs_write_inode,
1649         .alloc_inode    = btrfs_alloc_inode,
1650         .destroy_inode  = btrfs_destroy_inode,
1651         .statfs         = btrfs_statfs,
1652         .remount_fs     = btrfs_remount,
1653         .freeze_fs      = btrfs_freeze,
1654         .unfreeze_fs    = btrfs_unfreeze,
1655 };
1656
1657 static const struct file_operations btrfs_ctl_fops = {
1658         .unlocked_ioctl  = btrfs_control_ioctl,
1659         .compat_ioctl = btrfs_control_ioctl,
1660         .owner   = THIS_MODULE,
1661         .llseek = noop_llseek,
1662 };
1663
1664 static struct miscdevice btrfs_misc = {
1665         .minor          = BTRFS_MINOR,
1666         .name           = "btrfs-control",
1667         .fops           = &btrfs_ctl_fops
1668 };
1669
1670 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1671 MODULE_ALIAS("devname:btrfs-control");
1672
1673 static int btrfs_interface_init(void)
1674 {
1675         return misc_register(&btrfs_misc);
1676 }
1677
1678 static void btrfs_interface_exit(void)
1679 {
1680         if (misc_deregister(&btrfs_misc) < 0)
1681                 printk(KERN_INFO "btrfs: misc_deregister failed for control device\n");
1682 }
1683
1684 static void btrfs_print_info(void)
1685 {
1686         printk(KERN_INFO "Btrfs loaded"
1687 #ifdef CONFIG_BTRFS_DEBUG
1688                         ", debug=on"
1689 #endif
1690 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1691                         ", integrity-checker=on"
1692 #endif
1693                         "\n");
1694 }
1695
1696 static int __init init_btrfs_fs(void)
1697 {
1698         int err;
1699
1700         err = btrfs_init_sysfs();
1701         if (err)
1702                 return err;
1703
1704         btrfs_init_compress();
1705
1706         err = btrfs_init_cachep();
1707         if (err)
1708                 goto free_compress;
1709
1710         err = extent_io_init();
1711         if (err)
1712                 goto free_cachep;
1713
1714         err = extent_map_init();
1715         if (err)
1716                 goto free_extent_io;
1717
1718         err = ordered_data_init();
1719         if (err)
1720                 goto free_extent_map;
1721
1722         err = btrfs_delayed_inode_init();
1723         if (err)
1724                 goto free_ordered_data;
1725
1726         err = btrfs_auto_defrag_init();
1727         if (err)
1728                 goto free_delayed_inode;
1729
1730         err = btrfs_delayed_ref_init();
1731         if (err)
1732                 goto free_auto_defrag;
1733
1734         err = btrfs_interface_init();
1735         if (err)
1736                 goto free_delayed_ref;
1737
1738         err = register_filesystem(&btrfs_fs_type);
1739         if (err)
1740                 goto unregister_ioctl;
1741
1742         btrfs_init_lockdep();
1743
1744         btrfs_print_info();
1745         btrfs_test_free_space_cache();
1746
1747         return 0;
1748
1749 unregister_ioctl:
1750         btrfs_interface_exit();
1751 free_delayed_ref:
1752         btrfs_delayed_ref_exit();
1753 free_auto_defrag:
1754         btrfs_auto_defrag_exit();
1755 free_delayed_inode:
1756         btrfs_delayed_inode_exit();
1757 free_ordered_data:
1758         ordered_data_exit();
1759 free_extent_map:
1760         extent_map_exit();
1761 free_extent_io:
1762         extent_io_exit();
1763 free_cachep:
1764         btrfs_destroy_cachep();
1765 free_compress:
1766         btrfs_exit_compress();
1767         btrfs_exit_sysfs();
1768         return err;
1769 }
1770
1771 static void __exit exit_btrfs_fs(void)
1772 {
1773         btrfs_destroy_cachep();
1774         btrfs_delayed_ref_exit();
1775         btrfs_auto_defrag_exit();
1776         btrfs_delayed_inode_exit();
1777         ordered_data_exit();
1778         extent_map_exit();
1779         extent_io_exit();
1780         btrfs_interface_exit();
1781         unregister_filesystem(&btrfs_fs_type);
1782         btrfs_exit_sysfs();
1783         btrfs_cleanup_fs_uuids();
1784         btrfs_exit_compress();
1785 }
1786
1787 module_init(init_btrfs_fs)
1788 module_exit(exit_btrfs_fs)
1789
1790 MODULE_LICENSE("GPL");