]> rtime.felk.cvut.cz Git - linux-imx.git/blob - drivers/gpu/drm/i915/intel_pm.c
22e3af68b1368eb0603fff980f01fdeae322d246
[linux-imx.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 #define FORCEWAKE_ACK_TIMEOUT_MS 2
35
36 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
37  * framebuffer contents in-memory, aiming at reducing the required bandwidth
38  * during in-memory transfers and, therefore, reduce the power packet.
39  *
40  * The benefits of FBC are mostly visible with solid backgrounds and
41  * variation-less patterns.
42  *
43  * FBC-related functionality can be enabled by the means of the
44  * i915.i915_enable_fbc parameter
45  */
46
47 static bool intel_crtc_active(struct drm_crtc *crtc)
48 {
49         /* Be paranoid as we can arrive here with only partial
50          * state retrieved from the hardware during setup.
51          */
52         return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
53 }
54
55 static void i8xx_disable_fbc(struct drm_device *dev)
56 {
57         struct drm_i915_private *dev_priv = dev->dev_private;
58         u32 fbc_ctl;
59
60         /* Disable compression */
61         fbc_ctl = I915_READ(FBC_CONTROL);
62         if ((fbc_ctl & FBC_CTL_EN) == 0)
63                 return;
64
65         fbc_ctl &= ~FBC_CTL_EN;
66         I915_WRITE(FBC_CONTROL, fbc_ctl);
67
68         /* Wait for compressing bit to clear */
69         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
70                 DRM_DEBUG_KMS("FBC idle timed out\n");
71                 return;
72         }
73
74         DRM_DEBUG_KMS("disabled FBC\n");
75 }
76
77 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
78 {
79         struct drm_device *dev = crtc->dev;
80         struct drm_i915_private *dev_priv = dev->dev_private;
81         struct drm_framebuffer *fb = crtc->fb;
82         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
83         struct drm_i915_gem_object *obj = intel_fb->obj;
84         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
85         int cfb_pitch;
86         int plane, i;
87         u32 fbc_ctl, fbc_ctl2;
88
89         cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
90         if (fb->pitches[0] < cfb_pitch)
91                 cfb_pitch = fb->pitches[0];
92
93         /* FBC_CTL wants 64B units */
94         cfb_pitch = (cfb_pitch / 64) - 1;
95         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
96
97         /* Clear old tags */
98         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
99                 I915_WRITE(FBC_TAG + (i * 4), 0);
100
101         /* Set it up... */
102         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
103         fbc_ctl2 |= plane;
104         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
105         I915_WRITE(FBC_FENCE_OFF, crtc->y);
106
107         /* enable it... */
108         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
109         if (IS_I945GM(dev))
110                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
111         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
112         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
113         fbc_ctl |= obj->fence_reg;
114         I915_WRITE(FBC_CONTROL, fbc_ctl);
115
116         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
117                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
118 }
119
120 static bool i8xx_fbc_enabled(struct drm_device *dev)
121 {
122         struct drm_i915_private *dev_priv = dev->dev_private;
123
124         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
125 }
126
127 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
128 {
129         struct drm_device *dev = crtc->dev;
130         struct drm_i915_private *dev_priv = dev->dev_private;
131         struct drm_framebuffer *fb = crtc->fb;
132         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
133         struct drm_i915_gem_object *obj = intel_fb->obj;
134         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
135         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
136         unsigned long stall_watermark = 200;
137         u32 dpfc_ctl;
138
139         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
140         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
141         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
142
143         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
144                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
145                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
146         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
147
148         /* enable it... */
149         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
150
151         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
152 }
153
154 static void g4x_disable_fbc(struct drm_device *dev)
155 {
156         struct drm_i915_private *dev_priv = dev->dev_private;
157         u32 dpfc_ctl;
158
159         /* Disable compression */
160         dpfc_ctl = I915_READ(DPFC_CONTROL);
161         if (dpfc_ctl & DPFC_CTL_EN) {
162                 dpfc_ctl &= ~DPFC_CTL_EN;
163                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
164
165                 DRM_DEBUG_KMS("disabled FBC\n");
166         }
167 }
168
169 static bool g4x_fbc_enabled(struct drm_device *dev)
170 {
171         struct drm_i915_private *dev_priv = dev->dev_private;
172
173         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
174 }
175
176 static void sandybridge_blit_fbc_update(struct drm_device *dev)
177 {
178         struct drm_i915_private *dev_priv = dev->dev_private;
179         u32 blt_ecoskpd;
180
181         /* Make sure blitter notifies FBC of writes */
182         gen6_gt_force_wake_get(dev_priv);
183         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
184         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
185                 GEN6_BLITTER_LOCK_SHIFT;
186         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
187         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
188         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
189         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
190                          GEN6_BLITTER_LOCK_SHIFT);
191         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
192         POSTING_READ(GEN6_BLITTER_ECOSKPD);
193         gen6_gt_force_wake_put(dev_priv);
194 }
195
196 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
197 {
198         struct drm_device *dev = crtc->dev;
199         struct drm_i915_private *dev_priv = dev->dev_private;
200         struct drm_framebuffer *fb = crtc->fb;
201         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
202         struct drm_i915_gem_object *obj = intel_fb->obj;
203         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
204         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
205         unsigned long stall_watermark = 200;
206         u32 dpfc_ctl;
207
208         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
209         dpfc_ctl &= DPFC_RESERVED;
210         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
211         /* Set persistent mode for front-buffer rendering, ala X. */
212         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
213         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
214         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
215
216         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
217                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
218                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
219         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
220         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
221         /* enable it... */
222         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
223
224         if (IS_GEN6(dev)) {
225                 I915_WRITE(SNB_DPFC_CTL_SA,
226                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
227                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
228                 sandybridge_blit_fbc_update(dev);
229         }
230
231         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
232 }
233
234 static void ironlake_disable_fbc(struct drm_device *dev)
235 {
236         struct drm_i915_private *dev_priv = dev->dev_private;
237         u32 dpfc_ctl;
238
239         /* Disable compression */
240         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
241         if (dpfc_ctl & DPFC_CTL_EN) {
242                 dpfc_ctl &= ~DPFC_CTL_EN;
243                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
244
245                 DRM_DEBUG_KMS("disabled FBC\n");
246         }
247 }
248
249 static bool ironlake_fbc_enabled(struct drm_device *dev)
250 {
251         struct drm_i915_private *dev_priv = dev->dev_private;
252
253         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
254 }
255
256 bool intel_fbc_enabled(struct drm_device *dev)
257 {
258         struct drm_i915_private *dev_priv = dev->dev_private;
259
260         if (!dev_priv->display.fbc_enabled)
261                 return false;
262
263         return dev_priv->display.fbc_enabled(dev);
264 }
265
266 static void intel_fbc_work_fn(struct work_struct *__work)
267 {
268         struct intel_fbc_work *work =
269                 container_of(to_delayed_work(__work),
270                              struct intel_fbc_work, work);
271         struct drm_device *dev = work->crtc->dev;
272         struct drm_i915_private *dev_priv = dev->dev_private;
273
274         mutex_lock(&dev->struct_mutex);
275         if (work == dev_priv->fbc_work) {
276                 /* Double check that we haven't switched fb without cancelling
277                  * the prior work.
278                  */
279                 if (work->crtc->fb == work->fb) {
280                         dev_priv->display.enable_fbc(work->crtc,
281                                                      work->interval);
282
283                         dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
284                         dev_priv->cfb_fb = work->crtc->fb->base.id;
285                         dev_priv->cfb_y = work->crtc->y;
286                 }
287
288                 dev_priv->fbc_work = NULL;
289         }
290         mutex_unlock(&dev->struct_mutex);
291
292         kfree(work);
293 }
294
295 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
296 {
297         if (dev_priv->fbc_work == NULL)
298                 return;
299
300         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
301
302         /* Synchronisation is provided by struct_mutex and checking of
303          * dev_priv->fbc_work, so we can perform the cancellation
304          * entirely asynchronously.
305          */
306         if (cancel_delayed_work(&dev_priv->fbc_work->work))
307                 /* tasklet was killed before being run, clean up */
308                 kfree(dev_priv->fbc_work);
309
310         /* Mark the work as no longer wanted so that if it does
311          * wake-up (because the work was already running and waiting
312          * for our mutex), it will discover that is no longer
313          * necessary to run.
314          */
315         dev_priv->fbc_work = NULL;
316 }
317
318 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
319 {
320         struct intel_fbc_work *work;
321         struct drm_device *dev = crtc->dev;
322         struct drm_i915_private *dev_priv = dev->dev_private;
323
324         if (!dev_priv->display.enable_fbc)
325                 return;
326
327         intel_cancel_fbc_work(dev_priv);
328
329         work = kzalloc(sizeof *work, GFP_KERNEL);
330         if (work == NULL) {
331                 dev_priv->display.enable_fbc(crtc, interval);
332                 return;
333         }
334
335         work->crtc = crtc;
336         work->fb = crtc->fb;
337         work->interval = interval;
338         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
339
340         dev_priv->fbc_work = work;
341
342         DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
343
344         /* Delay the actual enabling to let pageflipping cease and the
345          * display to settle before starting the compression. Note that
346          * this delay also serves a second purpose: it allows for a
347          * vblank to pass after disabling the FBC before we attempt
348          * to modify the control registers.
349          *
350          * A more complicated solution would involve tracking vblanks
351          * following the termination of the page-flipping sequence
352          * and indeed performing the enable as a co-routine and not
353          * waiting synchronously upon the vblank.
354          */
355         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
356 }
357
358 void intel_disable_fbc(struct drm_device *dev)
359 {
360         struct drm_i915_private *dev_priv = dev->dev_private;
361
362         intel_cancel_fbc_work(dev_priv);
363
364         if (!dev_priv->display.disable_fbc)
365                 return;
366
367         dev_priv->display.disable_fbc(dev);
368         dev_priv->cfb_plane = -1;
369 }
370
371 /**
372  * intel_update_fbc - enable/disable FBC as needed
373  * @dev: the drm_device
374  *
375  * Set up the framebuffer compression hardware at mode set time.  We
376  * enable it if possible:
377  *   - plane A only (on pre-965)
378  *   - no pixel mulitply/line duplication
379  *   - no alpha buffer discard
380  *   - no dual wide
381  *   - framebuffer <= 2048 in width, 1536 in height
382  *
383  * We can't assume that any compression will take place (worst case),
384  * so the compressed buffer has to be the same size as the uncompressed
385  * one.  It also must reside (along with the line length buffer) in
386  * stolen memory.
387  *
388  * We need to enable/disable FBC on a global basis.
389  */
390 void intel_update_fbc(struct drm_device *dev)
391 {
392         struct drm_i915_private *dev_priv = dev->dev_private;
393         struct drm_crtc *crtc = NULL, *tmp_crtc;
394         struct intel_crtc *intel_crtc;
395         struct drm_framebuffer *fb;
396         struct intel_framebuffer *intel_fb;
397         struct drm_i915_gem_object *obj;
398         int enable_fbc;
399
400         if (!i915_powersave)
401                 return;
402
403         if (!I915_HAS_FBC(dev))
404                 return;
405
406         /*
407          * If FBC is already on, we just have to verify that we can
408          * keep it that way...
409          * Need to disable if:
410          *   - more than one pipe is active
411          *   - changing FBC params (stride, fence, mode)
412          *   - new fb is too large to fit in compressed buffer
413          *   - going to an unsupported config (interlace, pixel multiply, etc.)
414          */
415         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
416                 if (intel_crtc_active(tmp_crtc) &&
417                     !to_intel_crtc(tmp_crtc)->primary_disabled) {
418                         if (crtc) {
419                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
420                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
421                                 goto out_disable;
422                         }
423                         crtc = tmp_crtc;
424                 }
425         }
426
427         if (!crtc || crtc->fb == NULL) {
428                 DRM_DEBUG_KMS("no output, disabling\n");
429                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
430                 goto out_disable;
431         }
432
433         intel_crtc = to_intel_crtc(crtc);
434         fb = crtc->fb;
435         intel_fb = to_intel_framebuffer(fb);
436         obj = intel_fb->obj;
437
438         enable_fbc = i915_enable_fbc;
439         if (enable_fbc < 0) {
440                 DRM_DEBUG_KMS("fbc set to per-chip default\n");
441                 enable_fbc = 1;
442                 if (INTEL_INFO(dev)->gen <= 6)
443                         enable_fbc = 0;
444         }
445         if (!enable_fbc) {
446                 DRM_DEBUG_KMS("fbc disabled per module param\n");
447                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
448                 goto out_disable;
449         }
450         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
451             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
452                 DRM_DEBUG_KMS("mode incompatible with compression, "
453                               "disabling\n");
454                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
455                 goto out_disable;
456         }
457         if ((crtc->mode.hdisplay > 2048) ||
458             (crtc->mode.vdisplay > 1536)) {
459                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
460                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
461                 goto out_disable;
462         }
463         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
464                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
465                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
466                 goto out_disable;
467         }
468
469         /* The use of a CPU fence is mandatory in order to detect writes
470          * by the CPU to the scanout and trigger updates to the FBC.
471          */
472         if (obj->tiling_mode != I915_TILING_X ||
473             obj->fence_reg == I915_FENCE_REG_NONE) {
474                 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
475                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
476                 goto out_disable;
477         }
478
479         /* If the kernel debugger is active, always disable compression */
480         if (in_dbg_master())
481                 goto out_disable;
482
483         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
484                 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
485                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
486                 goto out_disable;
487         }
488
489         /* If the scanout has not changed, don't modify the FBC settings.
490          * Note that we make the fundamental assumption that the fb->obj
491          * cannot be unpinned (and have its GTT offset and fence revoked)
492          * without first being decoupled from the scanout and FBC disabled.
493          */
494         if (dev_priv->cfb_plane == intel_crtc->plane &&
495             dev_priv->cfb_fb == fb->base.id &&
496             dev_priv->cfb_y == crtc->y)
497                 return;
498
499         if (intel_fbc_enabled(dev)) {
500                 /* We update FBC along two paths, after changing fb/crtc
501                  * configuration (modeswitching) and after page-flipping
502                  * finishes. For the latter, we know that not only did
503                  * we disable the FBC at the start of the page-flip
504                  * sequence, but also more than one vblank has passed.
505                  *
506                  * For the former case of modeswitching, it is possible
507                  * to switch between two FBC valid configurations
508                  * instantaneously so we do need to disable the FBC
509                  * before we can modify its control registers. We also
510                  * have to wait for the next vblank for that to take
511                  * effect. However, since we delay enabling FBC we can
512                  * assume that a vblank has passed since disabling and
513                  * that we can safely alter the registers in the deferred
514                  * callback.
515                  *
516                  * In the scenario that we go from a valid to invalid
517                  * and then back to valid FBC configuration we have
518                  * no strict enforcement that a vblank occurred since
519                  * disabling the FBC. However, along all current pipe
520                  * disabling paths we do need to wait for a vblank at
521                  * some point. And we wait before enabling FBC anyway.
522                  */
523                 DRM_DEBUG_KMS("disabling active FBC for update\n");
524                 intel_disable_fbc(dev);
525         }
526
527         intel_enable_fbc(crtc, 500);
528         return;
529
530 out_disable:
531         /* Multiple disables should be harmless */
532         if (intel_fbc_enabled(dev)) {
533                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
534                 intel_disable_fbc(dev);
535         }
536         i915_gem_stolen_cleanup_compression(dev);
537 }
538
539 static void i915_pineview_get_mem_freq(struct drm_device *dev)
540 {
541         drm_i915_private_t *dev_priv = dev->dev_private;
542         u32 tmp;
543
544         tmp = I915_READ(CLKCFG);
545
546         switch (tmp & CLKCFG_FSB_MASK) {
547         case CLKCFG_FSB_533:
548                 dev_priv->fsb_freq = 533; /* 133*4 */
549                 break;
550         case CLKCFG_FSB_800:
551                 dev_priv->fsb_freq = 800; /* 200*4 */
552                 break;
553         case CLKCFG_FSB_667:
554                 dev_priv->fsb_freq =  667; /* 167*4 */
555                 break;
556         case CLKCFG_FSB_400:
557                 dev_priv->fsb_freq = 400; /* 100*4 */
558                 break;
559         }
560
561         switch (tmp & CLKCFG_MEM_MASK) {
562         case CLKCFG_MEM_533:
563                 dev_priv->mem_freq = 533;
564                 break;
565         case CLKCFG_MEM_667:
566                 dev_priv->mem_freq = 667;
567                 break;
568         case CLKCFG_MEM_800:
569                 dev_priv->mem_freq = 800;
570                 break;
571         }
572
573         /* detect pineview DDR3 setting */
574         tmp = I915_READ(CSHRDDR3CTL);
575         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
576 }
577
578 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
579 {
580         drm_i915_private_t *dev_priv = dev->dev_private;
581         u16 ddrpll, csipll;
582
583         ddrpll = I915_READ16(DDRMPLL1);
584         csipll = I915_READ16(CSIPLL0);
585
586         switch (ddrpll & 0xff) {
587         case 0xc:
588                 dev_priv->mem_freq = 800;
589                 break;
590         case 0x10:
591                 dev_priv->mem_freq = 1066;
592                 break;
593         case 0x14:
594                 dev_priv->mem_freq = 1333;
595                 break;
596         case 0x18:
597                 dev_priv->mem_freq = 1600;
598                 break;
599         default:
600                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
601                                  ddrpll & 0xff);
602                 dev_priv->mem_freq = 0;
603                 break;
604         }
605
606         dev_priv->ips.r_t = dev_priv->mem_freq;
607
608         switch (csipll & 0x3ff) {
609         case 0x00c:
610                 dev_priv->fsb_freq = 3200;
611                 break;
612         case 0x00e:
613                 dev_priv->fsb_freq = 3733;
614                 break;
615         case 0x010:
616                 dev_priv->fsb_freq = 4266;
617                 break;
618         case 0x012:
619                 dev_priv->fsb_freq = 4800;
620                 break;
621         case 0x014:
622                 dev_priv->fsb_freq = 5333;
623                 break;
624         case 0x016:
625                 dev_priv->fsb_freq = 5866;
626                 break;
627         case 0x018:
628                 dev_priv->fsb_freq = 6400;
629                 break;
630         default:
631                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
632                                  csipll & 0x3ff);
633                 dev_priv->fsb_freq = 0;
634                 break;
635         }
636
637         if (dev_priv->fsb_freq == 3200) {
638                 dev_priv->ips.c_m = 0;
639         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
640                 dev_priv->ips.c_m = 1;
641         } else {
642                 dev_priv->ips.c_m = 2;
643         }
644 }
645
646 static const struct cxsr_latency cxsr_latency_table[] = {
647         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
648         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
649         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
650         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
651         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
652
653         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
654         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
655         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
656         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
657         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
658
659         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
660         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
661         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
662         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
663         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
664
665         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
666         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
667         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
668         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
669         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
670
671         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
672         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
673         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
674         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
675         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
676
677         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
678         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
679         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
680         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
681         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
682 };
683
684 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
685                                                          int is_ddr3,
686                                                          int fsb,
687                                                          int mem)
688 {
689         const struct cxsr_latency *latency;
690         int i;
691
692         if (fsb == 0 || mem == 0)
693                 return NULL;
694
695         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
696                 latency = &cxsr_latency_table[i];
697                 if (is_desktop == latency->is_desktop &&
698                     is_ddr3 == latency->is_ddr3 &&
699                     fsb == latency->fsb_freq && mem == latency->mem_freq)
700                         return latency;
701         }
702
703         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
704
705         return NULL;
706 }
707
708 static void pineview_disable_cxsr(struct drm_device *dev)
709 {
710         struct drm_i915_private *dev_priv = dev->dev_private;
711
712         /* deactivate cxsr */
713         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
714 }
715
716 /*
717  * Latency for FIFO fetches is dependent on several factors:
718  *   - memory configuration (speed, channels)
719  *   - chipset
720  *   - current MCH state
721  * It can be fairly high in some situations, so here we assume a fairly
722  * pessimal value.  It's a tradeoff between extra memory fetches (if we
723  * set this value too high, the FIFO will fetch frequently to stay full)
724  * and power consumption (set it too low to save power and we might see
725  * FIFO underruns and display "flicker").
726  *
727  * A value of 5us seems to be a good balance; safe for very low end
728  * platforms but not overly aggressive on lower latency configs.
729  */
730 static const int latency_ns = 5000;
731
732 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
733 {
734         struct drm_i915_private *dev_priv = dev->dev_private;
735         uint32_t dsparb = I915_READ(DSPARB);
736         int size;
737
738         size = dsparb & 0x7f;
739         if (plane)
740                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
741
742         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
743                       plane ? "B" : "A", size);
744
745         return size;
746 }
747
748 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
749 {
750         struct drm_i915_private *dev_priv = dev->dev_private;
751         uint32_t dsparb = I915_READ(DSPARB);
752         int size;
753
754         size = dsparb & 0x1ff;
755         if (plane)
756                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
757         size >>= 1; /* Convert to cachelines */
758
759         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
760                       plane ? "B" : "A", size);
761
762         return size;
763 }
764
765 static int i845_get_fifo_size(struct drm_device *dev, int plane)
766 {
767         struct drm_i915_private *dev_priv = dev->dev_private;
768         uint32_t dsparb = I915_READ(DSPARB);
769         int size;
770
771         size = dsparb & 0x7f;
772         size >>= 2; /* Convert to cachelines */
773
774         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
775                       plane ? "B" : "A",
776                       size);
777
778         return size;
779 }
780
781 static int i830_get_fifo_size(struct drm_device *dev, int plane)
782 {
783         struct drm_i915_private *dev_priv = dev->dev_private;
784         uint32_t dsparb = I915_READ(DSPARB);
785         int size;
786
787         size = dsparb & 0x7f;
788         size >>= 1; /* Convert to cachelines */
789
790         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
791                       plane ? "B" : "A", size);
792
793         return size;
794 }
795
796 /* Pineview has different values for various configs */
797 static const struct intel_watermark_params pineview_display_wm = {
798         PINEVIEW_DISPLAY_FIFO,
799         PINEVIEW_MAX_WM,
800         PINEVIEW_DFT_WM,
801         PINEVIEW_GUARD_WM,
802         PINEVIEW_FIFO_LINE_SIZE
803 };
804 static const struct intel_watermark_params pineview_display_hplloff_wm = {
805         PINEVIEW_DISPLAY_FIFO,
806         PINEVIEW_MAX_WM,
807         PINEVIEW_DFT_HPLLOFF_WM,
808         PINEVIEW_GUARD_WM,
809         PINEVIEW_FIFO_LINE_SIZE
810 };
811 static const struct intel_watermark_params pineview_cursor_wm = {
812         PINEVIEW_CURSOR_FIFO,
813         PINEVIEW_CURSOR_MAX_WM,
814         PINEVIEW_CURSOR_DFT_WM,
815         PINEVIEW_CURSOR_GUARD_WM,
816         PINEVIEW_FIFO_LINE_SIZE,
817 };
818 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
819         PINEVIEW_CURSOR_FIFO,
820         PINEVIEW_CURSOR_MAX_WM,
821         PINEVIEW_CURSOR_DFT_WM,
822         PINEVIEW_CURSOR_GUARD_WM,
823         PINEVIEW_FIFO_LINE_SIZE
824 };
825 static const struct intel_watermark_params g4x_wm_info = {
826         G4X_FIFO_SIZE,
827         G4X_MAX_WM,
828         G4X_MAX_WM,
829         2,
830         G4X_FIFO_LINE_SIZE,
831 };
832 static const struct intel_watermark_params g4x_cursor_wm_info = {
833         I965_CURSOR_FIFO,
834         I965_CURSOR_MAX_WM,
835         I965_CURSOR_DFT_WM,
836         2,
837         G4X_FIFO_LINE_SIZE,
838 };
839 static const struct intel_watermark_params valleyview_wm_info = {
840         VALLEYVIEW_FIFO_SIZE,
841         VALLEYVIEW_MAX_WM,
842         VALLEYVIEW_MAX_WM,
843         2,
844         G4X_FIFO_LINE_SIZE,
845 };
846 static const struct intel_watermark_params valleyview_cursor_wm_info = {
847         I965_CURSOR_FIFO,
848         VALLEYVIEW_CURSOR_MAX_WM,
849         I965_CURSOR_DFT_WM,
850         2,
851         G4X_FIFO_LINE_SIZE,
852 };
853 static const struct intel_watermark_params i965_cursor_wm_info = {
854         I965_CURSOR_FIFO,
855         I965_CURSOR_MAX_WM,
856         I965_CURSOR_DFT_WM,
857         2,
858         I915_FIFO_LINE_SIZE,
859 };
860 static const struct intel_watermark_params i945_wm_info = {
861         I945_FIFO_SIZE,
862         I915_MAX_WM,
863         1,
864         2,
865         I915_FIFO_LINE_SIZE
866 };
867 static const struct intel_watermark_params i915_wm_info = {
868         I915_FIFO_SIZE,
869         I915_MAX_WM,
870         1,
871         2,
872         I915_FIFO_LINE_SIZE
873 };
874 static const struct intel_watermark_params i855_wm_info = {
875         I855GM_FIFO_SIZE,
876         I915_MAX_WM,
877         1,
878         2,
879         I830_FIFO_LINE_SIZE
880 };
881 static const struct intel_watermark_params i830_wm_info = {
882         I830_FIFO_SIZE,
883         I915_MAX_WM,
884         1,
885         2,
886         I830_FIFO_LINE_SIZE
887 };
888
889 static const struct intel_watermark_params ironlake_display_wm_info = {
890         ILK_DISPLAY_FIFO,
891         ILK_DISPLAY_MAXWM,
892         ILK_DISPLAY_DFTWM,
893         2,
894         ILK_FIFO_LINE_SIZE
895 };
896 static const struct intel_watermark_params ironlake_cursor_wm_info = {
897         ILK_CURSOR_FIFO,
898         ILK_CURSOR_MAXWM,
899         ILK_CURSOR_DFTWM,
900         2,
901         ILK_FIFO_LINE_SIZE
902 };
903 static const struct intel_watermark_params ironlake_display_srwm_info = {
904         ILK_DISPLAY_SR_FIFO,
905         ILK_DISPLAY_MAX_SRWM,
906         ILK_DISPLAY_DFT_SRWM,
907         2,
908         ILK_FIFO_LINE_SIZE
909 };
910 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
911         ILK_CURSOR_SR_FIFO,
912         ILK_CURSOR_MAX_SRWM,
913         ILK_CURSOR_DFT_SRWM,
914         2,
915         ILK_FIFO_LINE_SIZE
916 };
917
918 static const struct intel_watermark_params sandybridge_display_wm_info = {
919         SNB_DISPLAY_FIFO,
920         SNB_DISPLAY_MAXWM,
921         SNB_DISPLAY_DFTWM,
922         2,
923         SNB_FIFO_LINE_SIZE
924 };
925 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
926         SNB_CURSOR_FIFO,
927         SNB_CURSOR_MAXWM,
928         SNB_CURSOR_DFTWM,
929         2,
930         SNB_FIFO_LINE_SIZE
931 };
932 static const struct intel_watermark_params sandybridge_display_srwm_info = {
933         SNB_DISPLAY_SR_FIFO,
934         SNB_DISPLAY_MAX_SRWM,
935         SNB_DISPLAY_DFT_SRWM,
936         2,
937         SNB_FIFO_LINE_SIZE
938 };
939 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
940         SNB_CURSOR_SR_FIFO,
941         SNB_CURSOR_MAX_SRWM,
942         SNB_CURSOR_DFT_SRWM,
943         2,
944         SNB_FIFO_LINE_SIZE
945 };
946
947
948 /**
949  * intel_calculate_wm - calculate watermark level
950  * @clock_in_khz: pixel clock
951  * @wm: chip FIFO params
952  * @pixel_size: display pixel size
953  * @latency_ns: memory latency for the platform
954  *
955  * Calculate the watermark level (the level at which the display plane will
956  * start fetching from memory again).  Each chip has a different display
957  * FIFO size and allocation, so the caller needs to figure that out and pass
958  * in the correct intel_watermark_params structure.
959  *
960  * As the pixel clock runs, the FIFO will be drained at a rate that depends
961  * on the pixel size.  When it reaches the watermark level, it'll start
962  * fetching FIFO line sized based chunks from memory until the FIFO fills
963  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
964  * will occur, and a display engine hang could result.
965  */
966 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
967                                         const struct intel_watermark_params *wm,
968                                         int fifo_size,
969                                         int pixel_size,
970                                         unsigned long latency_ns)
971 {
972         long entries_required, wm_size;
973
974         /*
975          * Note: we need to make sure we don't overflow for various clock &
976          * latency values.
977          * clocks go from a few thousand to several hundred thousand.
978          * latency is usually a few thousand
979          */
980         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
981                 1000;
982         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
983
984         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
985
986         wm_size = fifo_size - (entries_required + wm->guard_size);
987
988         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
989
990         /* Don't promote wm_size to unsigned... */
991         if (wm_size > (long)wm->max_wm)
992                 wm_size = wm->max_wm;
993         if (wm_size <= 0)
994                 wm_size = wm->default_wm;
995         return wm_size;
996 }
997
998 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
999 {
1000         struct drm_crtc *crtc, *enabled = NULL;
1001
1002         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1003                 if (intel_crtc_active(crtc)) {
1004                         if (enabled)
1005                                 return NULL;
1006                         enabled = crtc;
1007                 }
1008         }
1009
1010         return enabled;
1011 }
1012
1013 static void pineview_update_wm(struct drm_device *dev)
1014 {
1015         struct drm_i915_private *dev_priv = dev->dev_private;
1016         struct drm_crtc *crtc;
1017         const struct cxsr_latency *latency;
1018         u32 reg;
1019         unsigned long wm;
1020
1021         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1022                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1023         if (!latency) {
1024                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1025                 pineview_disable_cxsr(dev);
1026                 return;
1027         }
1028
1029         crtc = single_enabled_crtc(dev);
1030         if (crtc) {
1031                 int clock = crtc->mode.clock;
1032                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1033
1034                 /* Display SR */
1035                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1036                                         pineview_display_wm.fifo_size,
1037                                         pixel_size, latency->display_sr);
1038                 reg = I915_READ(DSPFW1);
1039                 reg &= ~DSPFW_SR_MASK;
1040                 reg |= wm << DSPFW_SR_SHIFT;
1041                 I915_WRITE(DSPFW1, reg);
1042                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1043
1044                 /* cursor SR */
1045                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1046                                         pineview_display_wm.fifo_size,
1047                                         pixel_size, latency->cursor_sr);
1048                 reg = I915_READ(DSPFW3);
1049                 reg &= ~DSPFW_CURSOR_SR_MASK;
1050                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1051                 I915_WRITE(DSPFW3, reg);
1052
1053                 /* Display HPLL off SR */
1054                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1055                                         pineview_display_hplloff_wm.fifo_size,
1056                                         pixel_size, latency->display_hpll_disable);
1057                 reg = I915_READ(DSPFW3);
1058                 reg &= ~DSPFW_HPLL_SR_MASK;
1059                 reg |= wm & DSPFW_HPLL_SR_MASK;
1060                 I915_WRITE(DSPFW3, reg);
1061
1062                 /* cursor HPLL off SR */
1063                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1064                                         pineview_display_hplloff_wm.fifo_size,
1065                                         pixel_size, latency->cursor_hpll_disable);
1066                 reg = I915_READ(DSPFW3);
1067                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1068                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1069                 I915_WRITE(DSPFW3, reg);
1070                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1071
1072                 /* activate cxsr */
1073                 I915_WRITE(DSPFW3,
1074                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1075                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1076         } else {
1077                 pineview_disable_cxsr(dev);
1078                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1079         }
1080 }
1081
1082 static bool g4x_compute_wm0(struct drm_device *dev,
1083                             int plane,
1084                             const struct intel_watermark_params *display,
1085                             int display_latency_ns,
1086                             const struct intel_watermark_params *cursor,
1087                             int cursor_latency_ns,
1088                             int *plane_wm,
1089                             int *cursor_wm)
1090 {
1091         struct drm_crtc *crtc;
1092         int htotal, hdisplay, clock, pixel_size;
1093         int line_time_us, line_count;
1094         int entries, tlb_miss;
1095
1096         crtc = intel_get_crtc_for_plane(dev, plane);
1097         if (!intel_crtc_active(crtc)) {
1098                 *cursor_wm = cursor->guard_size;
1099                 *plane_wm = display->guard_size;
1100                 return false;
1101         }
1102
1103         htotal = crtc->mode.htotal;
1104         hdisplay = crtc->mode.hdisplay;
1105         clock = crtc->mode.clock;
1106         pixel_size = crtc->fb->bits_per_pixel / 8;
1107
1108         /* Use the small buffer method to calculate plane watermark */
1109         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1110         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1111         if (tlb_miss > 0)
1112                 entries += tlb_miss;
1113         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1114         *plane_wm = entries + display->guard_size;
1115         if (*plane_wm > (int)display->max_wm)
1116                 *plane_wm = display->max_wm;
1117
1118         /* Use the large buffer method to calculate cursor watermark */
1119         line_time_us = ((htotal * 1000) / clock);
1120         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1121         entries = line_count * 64 * pixel_size;
1122         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1123         if (tlb_miss > 0)
1124                 entries += tlb_miss;
1125         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1126         *cursor_wm = entries + cursor->guard_size;
1127         if (*cursor_wm > (int)cursor->max_wm)
1128                 *cursor_wm = (int)cursor->max_wm;
1129
1130         return true;
1131 }
1132
1133 /*
1134  * Check the wm result.
1135  *
1136  * If any calculated watermark values is larger than the maximum value that
1137  * can be programmed into the associated watermark register, that watermark
1138  * must be disabled.
1139  */
1140 static bool g4x_check_srwm(struct drm_device *dev,
1141                            int display_wm, int cursor_wm,
1142                            const struct intel_watermark_params *display,
1143                            const struct intel_watermark_params *cursor)
1144 {
1145         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1146                       display_wm, cursor_wm);
1147
1148         if (display_wm > display->max_wm) {
1149                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1150                               display_wm, display->max_wm);
1151                 return false;
1152         }
1153
1154         if (cursor_wm > cursor->max_wm) {
1155                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1156                               cursor_wm, cursor->max_wm);
1157                 return false;
1158         }
1159
1160         if (!(display_wm || cursor_wm)) {
1161                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1162                 return false;
1163         }
1164
1165         return true;
1166 }
1167
1168 static bool g4x_compute_srwm(struct drm_device *dev,
1169                              int plane,
1170                              int latency_ns,
1171                              const struct intel_watermark_params *display,
1172                              const struct intel_watermark_params *cursor,
1173                              int *display_wm, int *cursor_wm)
1174 {
1175         struct drm_crtc *crtc;
1176         int hdisplay, htotal, pixel_size, clock;
1177         unsigned long line_time_us;
1178         int line_count, line_size;
1179         int small, large;
1180         int entries;
1181
1182         if (!latency_ns) {
1183                 *display_wm = *cursor_wm = 0;
1184                 return false;
1185         }
1186
1187         crtc = intel_get_crtc_for_plane(dev, plane);
1188         hdisplay = crtc->mode.hdisplay;
1189         htotal = crtc->mode.htotal;
1190         clock = crtc->mode.clock;
1191         pixel_size = crtc->fb->bits_per_pixel / 8;
1192
1193         line_time_us = (htotal * 1000) / clock;
1194         line_count = (latency_ns / line_time_us + 1000) / 1000;
1195         line_size = hdisplay * pixel_size;
1196
1197         /* Use the minimum of the small and large buffer method for primary */
1198         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1199         large = line_count * line_size;
1200
1201         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1202         *display_wm = entries + display->guard_size;
1203
1204         /* calculate the self-refresh watermark for display cursor */
1205         entries = line_count * pixel_size * 64;
1206         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1207         *cursor_wm = entries + cursor->guard_size;
1208
1209         return g4x_check_srwm(dev,
1210                               *display_wm, *cursor_wm,
1211                               display, cursor);
1212 }
1213
1214 static bool vlv_compute_drain_latency(struct drm_device *dev,
1215                                      int plane,
1216                                      int *plane_prec_mult,
1217                                      int *plane_dl,
1218                                      int *cursor_prec_mult,
1219                                      int *cursor_dl)
1220 {
1221         struct drm_crtc *crtc;
1222         int clock, pixel_size;
1223         int entries;
1224
1225         crtc = intel_get_crtc_for_plane(dev, plane);
1226         if (!intel_crtc_active(crtc))
1227                 return false;
1228
1229         clock = crtc->mode.clock;       /* VESA DOT Clock */
1230         pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1231
1232         entries = (clock / 1000) * pixel_size;
1233         *plane_prec_mult = (entries > 256) ?
1234                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1235         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1236                                                      pixel_size);
1237
1238         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1239         *cursor_prec_mult = (entries > 256) ?
1240                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1241         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1242
1243         return true;
1244 }
1245
1246 /*
1247  * Update drain latency registers of memory arbiter
1248  *
1249  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1250  * to be programmed. Each plane has a drain latency multiplier and a drain
1251  * latency value.
1252  */
1253
1254 static void vlv_update_drain_latency(struct drm_device *dev)
1255 {
1256         struct drm_i915_private *dev_priv = dev->dev_private;
1257         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1258         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1259         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1260                                                         either 16 or 32 */
1261
1262         /* For plane A, Cursor A */
1263         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1264                                       &cursor_prec_mult, &cursora_dl)) {
1265                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1266                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1267                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1268                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1269
1270                 I915_WRITE(VLV_DDL1, cursora_prec |
1271                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1272                                 planea_prec | planea_dl);
1273         }
1274
1275         /* For plane B, Cursor B */
1276         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1277                                       &cursor_prec_mult, &cursorb_dl)) {
1278                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1279                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1280                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1281                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1282
1283                 I915_WRITE(VLV_DDL2, cursorb_prec |
1284                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1285                                 planeb_prec | planeb_dl);
1286         }
1287 }
1288
1289 #define single_plane_enabled(mask) is_power_of_2(mask)
1290
1291 static void valleyview_update_wm(struct drm_device *dev)
1292 {
1293         static const int sr_latency_ns = 12000;
1294         struct drm_i915_private *dev_priv = dev->dev_private;
1295         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1296         int plane_sr, cursor_sr;
1297         int ignore_plane_sr, ignore_cursor_sr;
1298         unsigned int enabled = 0;
1299
1300         vlv_update_drain_latency(dev);
1301
1302         if (g4x_compute_wm0(dev, 0,
1303                             &valleyview_wm_info, latency_ns,
1304                             &valleyview_cursor_wm_info, latency_ns,
1305                             &planea_wm, &cursora_wm))
1306                 enabled |= 1;
1307
1308         if (g4x_compute_wm0(dev, 1,
1309                             &valleyview_wm_info, latency_ns,
1310                             &valleyview_cursor_wm_info, latency_ns,
1311                             &planeb_wm, &cursorb_wm))
1312                 enabled |= 2;
1313
1314         if (single_plane_enabled(enabled) &&
1315             g4x_compute_srwm(dev, ffs(enabled) - 1,
1316                              sr_latency_ns,
1317                              &valleyview_wm_info,
1318                              &valleyview_cursor_wm_info,
1319                              &plane_sr, &ignore_cursor_sr) &&
1320             g4x_compute_srwm(dev, ffs(enabled) - 1,
1321                              2*sr_latency_ns,
1322                              &valleyview_wm_info,
1323                              &valleyview_cursor_wm_info,
1324                              &ignore_plane_sr, &cursor_sr)) {
1325                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1326         } else {
1327                 I915_WRITE(FW_BLC_SELF_VLV,
1328                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1329                 plane_sr = cursor_sr = 0;
1330         }
1331
1332         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1333                       planea_wm, cursora_wm,
1334                       planeb_wm, cursorb_wm,
1335                       plane_sr, cursor_sr);
1336
1337         I915_WRITE(DSPFW1,
1338                    (plane_sr << DSPFW_SR_SHIFT) |
1339                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1340                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1341                    planea_wm);
1342         I915_WRITE(DSPFW2,
1343                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1344                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1345         I915_WRITE(DSPFW3,
1346                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1347                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1348 }
1349
1350 static void g4x_update_wm(struct drm_device *dev)
1351 {
1352         static const int sr_latency_ns = 12000;
1353         struct drm_i915_private *dev_priv = dev->dev_private;
1354         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1355         int plane_sr, cursor_sr;
1356         unsigned int enabled = 0;
1357
1358         if (g4x_compute_wm0(dev, 0,
1359                             &g4x_wm_info, latency_ns,
1360                             &g4x_cursor_wm_info, latency_ns,
1361                             &planea_wm, &cursora_wm))
1362                 enabled |= 1;
1363
1364         if (g4x_compute_wm0(dev, 1,
1365                             &g4x_wm_info, latency_ns,
1366                             &g4x_cursor_wm_info, latency_ns,
1367                             &planeb_wm, &cursorb_wm))
1368                 enabled |= 2;
1369
1370         if (single_plane_enabled(enabled) &&
1371             g4x_compute_srwm(dev, ffs(enabled) - 1,
1372                              sr_latency_ns,
1373                              &g4x_wm_info,
1374                              &g4x_cursor_wm_info,
1375                              &plane_sr, &cursor_sr)) {
1376                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1377         } else {
1378                 I915_WRITE(FW_BLC_SELF,
1379                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1380                 plane_sr = cursor_sr = 0;
1381         }
1382
1383         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1384                       planea_wm, cursora_wm,
1385                       planeb_wm, cursorb_wm,
1386                       plane_sr, cursor_sr);
1387
1388         I915_WRITE(DSPFW1,
1389                    (plane_sr << DSPFW_SR_SHIFT) |
1390                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1391                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1392                    planea_wm);
1393         I915_WRITE(DSPFW2,
1394                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1395                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1396         /* HPLL off in SR has some issues on G4x... disable it */
1397         I915_WRITE(DSPFW3,
1398                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1399                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1400 }
1401
1402 static void i965_update_wm(struct drm_device *dev)
1403 {
1404         struct drm_i915_private *dev_priv = dev->dev_private;
1405         struct drm_crtc *crtc;
1406         int srwm = 1;
1407         int cursor_sr = 16;
1408
1409         /* Calc sr entries for one plane configs */
1410         crtc = single_enabled_crtc(dev);
1411         if (crtc) {
1412                 /* self-refresh has much higher latency */
1413                 static const int sr_latency_ns = 12000;
1414                 int clock = crtc->mode.clock;
1415                 int htotal = crtc->mode.htotal;
1416                 int hdisplay = crtc->mode.hdisplay;
1417                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1418                 unsigned long line_time_us;
1419                 int entries;
1420
1421                 line_time_us = ((htotal * 1000) / clock);
1422
1423                 /* Use ns/us then divide to preserve precision */
1424                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1425                         pixel_size * hdisplay;
1426                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1427                 srwm = I965_FIFO_SIZE - entries;
1428                 if (srwm < 0)
1429                         srwm = 1;
1430                 srwm &= 0x1ff;
1431                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1432                               entries, srwm);
1433
1434                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1435                         pixel_size * 64;
1436                 entries = DIV_ROUND_UP(entries,
1437                                           i965_cursor_wm_info.cacheline_size);
1438                 cursor_sr = i965_cursor_wm_info.fifo_size -
1439                         (entries + i965_cursor_wm_info.guard_size);
1440
1441                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1442                         cursor_sr = i965_cursor_wm_info.max_wm;
1443
1444                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1445                               "cursor %d\n", srwm, cursor_sr);
1446
1447                 if (IS_CRESTLINE(dev))
1448                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1449         } else {
1450                 /* Turn off self refresh if both pipes are enabled */
1451                 if (IS_CRESTLINE(dev))
1452                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1453                                    & ~FW_BLC_SELF_EN);
1454         }
1455
1456         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1457                       srwm);
1458
1459         /* 965 has limitations... */
1460         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1461                    (8 << 16) | (8 << 8) | (8 << 0));
1462         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1463         /* update cursor SR watermark */
1464         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1465 }
1466
1467 static void i9xx_update_wm(struct drm_device *dev)
1468 {
1469         struct drm_i915_private *dev_priv = dev->dev_private;
1470         const struct intel_watermark_params *wm_info;
1471         uint32_t fwater_lo;
1472         uint32_t fwater_hi;
1473         int cwm, srwm = 1;
1474         int fifo_size;
1475         int planea_wm, planeb_wm;
1476         struct drm_crtc *crtc, *enabled = NULL;
1477
1478         if (IS_I945GM(dev))
1479                 wm_info = &i945_wm_info;
1480         else if (!IS_GEN2(dev))
1481                 wm_info = &i915_wm_info;
1482         else
1483                 wm_info = &i855_wm_info;
1484
1485         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1486         crtc = intel_get_crtc_for_plane(dev, 0);
1487         if (intel_crtc_active(crtc)) {
1488                 int cpp = crtc->fb->bits_per_pixel / 8;
1489                 if (IS_GEN2(dev))
1490                         cpp = 4;
1491
1492                 planea_wm = intel_calculate_wm(crtc->mode.clock,
1493                                                wm_info, fifo_size, cpp,
1494                                                latency_ns);
1495                 enabled = crtc;
1496         } else
1497                 planea_wm = fifo_size - wm_info->guard_size;
1498
1499         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1500         crtc = intel_get_crtc_for_plane(dev, 1);
1501         if (intel_crtc_active(crtc)) {
1502                 int cpp = crtc->fb->bits_per_pixel / 8;
1503                 if (IS_GEN2(dev))
1504                         cpp = 4;
1505
1506                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1507                                                wm_info, fifo_size, cpp,
1508                                                latency_ns);
1509                 if (enabled == NULL)
1510                         enabled = crtc;
1511                 else
1512                         enabled = NULL;
1513         } else
1514                 planeb_wm = fifo_size - wm_info->guard_size;
1515
1516         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1517
1518         /*
1519          * Overlay gets an aggressive default since video jitter is bad.
1520          */
1521         cwm = 2;
1522
1523         /* Play safe and disable self-refresh before adjusting watermarks. */
1524         if (IS_I945G(dev) || IS_I945GM(dev))
1525                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1526         else if (IS_I915GM(dev))
1527                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1528
1529         /* Calc sr entries for one plane configs */
1530         if (HAS_FW_BLC(dev) && enabled) {
1531                 /* self-refresh has much higher latency */
1532                 static const int sr_latency_ns = 6000;
1533                 int clock = enabled->mode.clock;
1534                 int htotal = enabled->mode.htotal;
1535                 int hdisplay = enabled->mode.hdisplay;
1536                 int pixel_size = enabled->fb->bits_per_pixel / 8;
1537                 unsigned long line_time_us;
1538                 int entries;
1539
1540                 line_time_us = (htotal * 1000) / clock;
1541
1542                 /* Use ns/us then divide to preserve precision */
1543                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1544                         pixel_size * hdisplay;
1545                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1546                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1547                 srwm = wm_info->fifo_size - entries;
1548                 if (srwm < 0)
1549                         srwm = 1;
1550
1551                 if (IS_I945G(dev) || IS_I945GM(dev))
1552                         I915_WRITE(FW_BLC_SELF,
1553                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1554                 else if (IS_I915GM(dev))
1555                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1556         }
1557
1558         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1559                       planea_wm, planeb_wm, cwm, srwm);
1560
1561         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1562         fwater_hi = (cwm & 0x1f);
1563
1564         /* Set request length to 8 cachelines per fetch */
1565         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1566         fwater_hi = fwater_hi | (1 << 8);
1567
1568         I915_WRITE(FW_BLC, fwater_lo);
1569         I915_WRITE(FW_BLC2, fwater_hi);
1570
1571         if (HAS_FW_BLC(dev)) {
1572                 if (enabled) {
1573                         if (IS_I945G(dev) || IS_I945GM(dev))
1574                                 I915_WRITE(FW_BLC_SELF,
1575                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1576                         else if (IS_I915GM(dev))
1577                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1578                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1579                 } else
1580                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1581         }
1582 }
1583
1584 static void i830_update_wm(struct drm_device *dev)
1585 {
1586         struct drm_i915_private *dev_priv = dev->dev_private;
1587         struct drm_crtc *crtc;
1588         uint32_t fwater_lo;
1589         int planea_wm;
1590
1591         crtc = single_enabled_crtc(dev);
1592         if (crtc == NULL)
1593                 return;
1594
1595         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1596                                        dev_priv->display.get_fifo_size(dev, 0),
1597                                        4, latency_ns);
1598         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1599         fwater_lo |= (3<<8) | planea_wm;
1600
1601         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1602
1603         I915_WRITE(FW_BLC, fwater_lo);
1604 }
1605
1606 #define ILK_LP0_PLANE_LATENCY           700
1607 #define ILK_LP0_CURSOR_LATENCY          1300
1608
1609 /*
1610  * Check the wm result.
1611  *
1612  * If any calculated watermark values is larger than the maximum value that
1613  * can be programmed into the associated watermark register, that watermark
1614  * must be disabled.
1615  */
1616 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1617                                 int fbc_wm, int display_wm, int cursor_wm,
1618                                 const struct intel_watermark_params *display,
1619                                 const struct intel_watermark_params *cursor)
1620 {
1621         struct drm_i915_private *dev_priv = dev->dev_private;
1622
1623         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1624                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1625
1626         if (fbc_wm > SNB_FBC_MAX_SRWM) {
1627                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1628                               fbc_wm, SNB_FBC_MAX_SRWM, level);
1629
1630                 /* fbc has it's own way to disable FBC WM */
1631                 I915_WRITE(DISP_ARB_CTL,
1632                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1633                 return false;
1634         }
1635
1636         if (display_wm > display->max_wm) {
1637                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1638                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
1639                 return false;
1640         }
1641
1642         if (cursor_wm > cursor->max_wm) {
1643                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1644                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1645                 return false;
1646         }
1647
1648         if (!(fbc_wm || display_wm || cursor_wm)) {
1649                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1650                 return false;
1651         }
1652
1653         return true;
1654 }
1655
1656 /*
1657  * Compute watermark values of WM[1-3],
1658  */
1659 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1660                                   int latency_ns,
1661                                   const struct intel_watermark_params *display,
1662                                   const struct intel_watermark_params *cursor,
1663                                   int *fbc_wm, int *display_wm, int *cursor_wm)
1664 {
1665         struct drm_crtc *crtc;
1666         unsigned long line_time_us;
1667         int hdisplay, htotal, pixel_size, clock;
1668         int line_count, line_size;
1669         int small, large;
1670         int entries;
1671
1672         if (!latency_ns) {
1673                 *fbc_wm = *display_wm = *cursor_wm = 0;
1674                 return false;
1675         }
1676
1677         crtc = intel_get_crtc_for_plane(dev, plane);
1678         hdisplay = crtc->mode.hdisplay;
1679         htotal = crtc->mode.htotal;
1680         clock = crtc->mode.clock;
1681         pixel_size = crtc->fb->bits_per_pixel / 8;
1682
1683         line_time_us = (htotal * 1000) / clock;
1684         line_count = (latency_ns / line_time_us + 1000) / 1000;
1685         line_size = hdisplay * pixel_size;
1686
1687         /* Use the minimum of the small and large buffer method for primary */
1688         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1689         large = line_count * line_size;
1690
1691         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1692         *display_wm = entries + display->guard_size;
1693
1694         /*
1695          * Spec says:
1696          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1697          */
1698         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1699
1700         /* calculate the self-refresh watermark for display cursor */
1701         entries = line_count * pixel_size * 64;
1702         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1703         *cursor_wm = entries + cursor->guard_size;
1704
1705         return ironlake_check_srwm(dev, level,
1706                                    *fbc_wm, *display_wm, *cursor_wm,
1707                                    display, cursor);
1708 }
1709
1710 static void ironlake_update_wm(struct drm_device *dev)
1711 {
1712         struct drm_i915_private *dev_priv = dev->dev_private;
1713         int fbc_wm, plane_wm, cursor_wm;
1714         unsigned int enabled;
1715
1716         enabled = 0;
1717         if (g4x_compute_wm0(dev, 0,
1718                             &ironlake_display_wm_info,
1719                             ILK_LP0_PLANE_LATENCY,
1720                             &ironlake_cursor_wm_info,
1721                             ILK_LP0_CURSOR_LATENCY,
1722                             &plane_wm, &cursor_wm)) {
1723                 I915_WRITE(WM0_PIPEA_ILK,
1724                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1725                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1726                               " plane %d, " "cursor: %d\n",
1727                               plane_wm, cursor_wm);
1728                 enabled |= 1;
1729         }
1730
1731         if (g4x_compute_wm0(dev, 1,
1732                             &ironlake_display_wm_info,
1733                             ILK_LP0_PLANE_LATENCY,
1734                             &ironlake_cursor_wm_info,
1735                             ILK_LP0_CURSOR_LATENCY,
1736                             &plane_wm, &cursor_wm)) {
1737                 I915_WRITE(WM0_PIPEB_ILK,
1738                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1739                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1740                               " plane %d, cursor: %d\n",
1741                               plane_wm, cursor_wm);
1742                 enabled |= 2;
1743         }
1744
1745         /*
1746          * Calculate and update the self-refresh watermark only when one
1747          * display plane is used.
1748          */
1749         I915_WRITE(WM3_LP_ILK, 0);
1750         I915_WRITE(WM2_LP_ILK, 0);
1751         I915_WRITE(WM1_LP_ILK, 0);
1752
1753         if (!single_plane_enabled(enabled))
1754                 return;
1755         enabled = ffs(enabled) - 1;
1756
1757         /* WM1 */
1758         if (!ironlake_compute_srwm(dev, 1, enabled,
1759                                    ILK_READ_WM1_LATENCY() * 500,
1760                                    &ironlake_display_srwm_info,
1761                                    &ironlake_cursor_srwm_info,
1762                                    &fbc_wm, &plane_wm, &cursor_wm))
1763                 return;
1764
1765         I915_WRITE(WM1_LP_ILK,
1766                    WM1_LP_SR_EN |
1767                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1768                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1769                    (plane_wm << WM1_LP_SR_SHIFT) |
1770                    cursor_wm);
1771
1772         /* WM2 */
1773         if (!ironlake_compute_srwm(dev, 2, enabled,
1774                                    ILK_READ_WM2_LATENCY() * 500,
1775                                    &ironlake_display_srwm_info,
1776                                    &ironlake_cursor_srwm_info,
1777                                    &fbc_wm, &plane_wm, &cursor_wm))
1778                 return;
1779
1780         I915_WRITE(WM2_LP_ILK,
1781                    WM2_LP_EN |
1782                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1783                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1784                    (plane_wm << WM1_LP_SR_SHIFT) |
1785                    cursor_wm);
1786
1787         /*
1788          * WM3 is unsupported on ILK, probably because we don't have latency
1789          * data for that power state
1790          */
1791 }
1792
1793 static void sandybridge_update_wm(struct drm_device *dev)
1794 {
1795         struct drm_i915_private *dev_priv = dev->dev_private;
1796         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1797         u32 val;
1798         int fbc_wm, plane_wm, cursor_wm;
1799         unsigned int enabled;
1800
1801         enabled = 0;
1802         if (g4x_compute_wm0(dev, 0,
1803                             &sandybridge_display_wm_info, latency,
1804                             &sandybridge_cursor_wm_info, latency,
1805                             &plane_wm, &cursor_wm)) {
1806                 val = I915_READ(WM0_PIPEA_ILK);
1807                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1808                 I915_WRITE(WM0_PIPEA_ILK, val |
1809                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1810                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1811                               " plane %d, " "cursor: %d\n",
1812                               plane_wm, cursor_wm);
1813                 enabled |= 1;
1814         }
1815
1816         if (g4x_compute_wm0(dev, 1,
1817                             &sandybridge_display_wm_info, latency,
1818                             &sandybridge_cursor_wm_info, latency,
1819                             &plane_wm, &cursor_wm)) {
1820                 val = I915_READ(WM0_PIPEB_ILK);
1821                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1822                 I915_WRITE(WM0_PIPEB_ILK, val |
1823                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1824                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1825                               " plane %d, cursor: %d\n",
1826                               plane_wm, cursor_wm);
1827                 enabled |= 2;
1828         }
1829
1830         /*
1831          * Calculate and update the self-refresh watermark only when one
1832          * display plane is used.
1833          *
1834          * SNB support 3 levels of watermark.
1835          *
1836          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1837          * and disabled in the descending order
1838          *
1839          */
1840         I915_WRITE(WM3_LP_ILK, 0);
1841         I915_WRITE(WM2_LP_ILK, 0);
1842         I915_WRITE(WM1_LP_ILK, 0);
1843
1844         if (!single_plane_enabled(enabled) ||
1845             dev_priv->sprite_scaling_enabled)
1846                 return;
1847         enabled = ffs(enabled) - 1;
1848
1849         /* WM1 */
1850         if (!ironlake_compute_srwm(dev, 1, enabled,
1851                                    SNB_READ_WM1_LATENCY() * 500,
1852                                    &sandybridge_display_srwm_info,
1853                                    &sandybridge_cursor_srwm_info,
1854                                    &fbc_wm, &plane_wm, &cursor_wm))
1855                 return;
1856
1857         I915_WRITE(WM1_LP_ILK,
1858                    WM1_LP_SR_EN |
1859                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1860                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1861                    (plane_wm << WM1_LP_SR_SHIFT) |
1862                    cursor_wm);
1863
1864         /* WM2 */
1865         if (!ironlake_compute_srwm(dev, 2, enabled,
1866                                    SNB_READ_WM2_LATENCY() * 500,
1867                                    &sandybridge_display_srwm_info,
1868                                    &sandybridge_cursor_srwm_info,
1869                                    &fbc_wm, &plane_wm, &cursor_wm))
1870                 return;
1871
1872         I915_WRITE(WM2_LP_ILK,
1873                    WM2_LP_EN |
1874                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1875                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1876                    (plane_wm << WM1_LP_SR_SHIFT) |
1877                    cursor_wm);
1878
1879         /* WM3 */
1880         if (!ironlake_compute_srwm(dev, 3, enabled,
1881                                    SNB_READ_WM3_LATENCY() * 500,
1882                                    &sandybridge_display_srwm_info,
1883                                    &sandybridge_cursor_srwm_info,
1884                                    &fbc_wm, &plane_wm, &cursor_wm))
1885                 return;
1886
1887         I915_WRITE(WM3_LP_ILK,
1888                    WM3_LP_EN |
1889                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1890                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1891                    (plane_wm << WM1_LP_SR_SHIFT) |
1892                    cursor_wm);
1893 }
1894
1895 static void ivybridge_update_wm(struct drm_device *dev)
1896 {
1897         struct drm_i915_private *dev_priv = dev->dev_private;
1898         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1899         u32 val;
1900         int fbc_wm, plane_wm, cursor_wm;
1901         int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1902         unsigned int enabled;
1903
1904         enabled = 0;
1905         if (g4x_compute_wm0(dev, 0,
1906                             &sandybridge_display_wm_info, latency,
1907                             &sandybridge_cursor_wm_info, latency,
1908                             &plane_wm, &cursor_wm)) {
1909                 val = I915_READ(WM0_PIPEA_ILK);
1910                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1911                 I915_WRITE(WM0_PIPEA_ILK, val |
1912                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1913                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1914                               " plane %d, " "cursor: %d\n",
1915                               plane_wm, cursor_wm);
1916                 enabled |= 1;
1917         }
1918
1919         if (g4x_compute_wm0(dev, 1,
1920                             &sandybridge_display_wm_info, latency,
1921                             &sandybridge_cursor_wm_info, latency,
1922                             &plane_wm, &cursor_wm)) {
1923                 val = I915_READ(WM0_PIPEB_ILK);
1924                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1925                 I915_WRITE(WM0_PIPEB_ILK, val |
1926                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1927                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1928                               " plane %d, cursor: %d\n",
1929                               plane_wm, cursor_wm);
1930                 enabled |= 2;
1931         }
1932
1933         if (g4x_compute_wm0(dev, 2,
1934                             &sandybridge_display_wm_info, latency,
1935                             &sandybridge_cursor_wm_info, latency,
1936                             &plane_wm, &cursor_wm)) {
1937                 val = I915_READ(WM0_PIPEC_IVB);
1938                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1939                 I915_WRITE(WM0_PIPEC_IVB, val |
1940                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1941                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1942                               " plane %d, cursor: %d\n",
1943                               plane_wm, cursor_wm);
1944                 enabled |= 3;
1945         }
1946
1947         /*
1948          * Calculate and update the self-refresh watermark only when one
1949          * display plane is used.
1950          *
1951          * SNB support 3 levels of watermark.
1952          *
1953          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1954          * and disabled in the descending order
1955          *
1956          */
1957         I915_WRITE(WM3_LP_ILK, 0);
1958         I915_WRITE(WM2_LP_ILK, 0);
1959         I915_WRITE(WM1_LP_ILK, 0);
1960
1961         if (!single_plane_enabled(enabled) ||
1962             dev_priv->sprite_scaling_enabled)
1963                 return;
1964         enabled = ffs(enabled) - 1;
1965
1966         /* WM1 */
1967         if (!ironlake_compute_srwm(dev, 1, enabled,
1968                                    SNB_READ_WM1_LATENCY() * 500,
1969                                    &sandybridge_display_srwm_info,
1970                                    &sandybridge_cursor_srwm_info,
1971                                    &fbc_wm, &plane_wm, &cursor_wm))
1972                 return;
1973
1974         I915_WRITE(WM1_LP_ILK,
1975                    WM1_LP_SR_EN |
1976                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1977                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1978                    (plane_wm << WM1_LP_SR_SHIFT) |
1979                    cursor_wm);
1980
1981         /* WM2 */
1982         if (!ironlake_compute_srwm(dev, 2, enabled,
1983                                    SNB_READ_WM2_LATENCY() * 500,
1984                                    &sandybridge_display_srwm_info,
1985                                    &sandybridge_cursor_srwm_info,
1986                                    &fbc_wm, &plane_wm, &cursor_wm))
1987                 return;
1988
1989         I915_WRITE(WM2_LP_ILK,
1990                    WM2_LP_EN |
1991                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1992                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1993                    (plane_wm << WM1_LP_SR_SHIFT) |
1994                    cursor_wm);
1995
1996         /* WM3, note we have to correct the cursor latency */
1997         if (!ironlake_compute_srwm(dev, 3, enabled,
1998                                    SNB_READ_WM3_LATENCY() * 500,
1999                                    &sandybridge_display_srwm_info,
2000                                    &sandybridge_cursor_srwm_info,
2001                                    &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2002             !ironlake_compute_srwm(dev, 3, enabled,
2003                                    2 * SNB_READ_WM3_LATENCY() * 500,
2004                                    &sandybridge_display_srwm_info,
2005                                    &sandybridge_cursor_srwm_info,
2006                                    &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2007                 return;
2008
2009         I915_WRITE(WM3_LP_ILK,
2010                    WM3_LP_EN |
2011                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2012                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2013                    (plane_wm << WM1_LP_SR_SHIFT) |
2014                    cursor_wm);
2015 }
2016
2017 static void
2018 haswell_update_linetime_wm(struct drm_device *dev, int pipe,
2019                                  struct drm_display_mode *mode)
2020 {
2021         struct drm_i915_private *dev_priv = dev->dev_private;
2022         u32 temp;
2023
2024         temp = I915_READ(PIPE_WM_LINETIME(pipe));
2025         temp &= ~PIPE_WM_LINETIME_MASK;
2026
2027         /* The WM are computed with base on how long it takes to fill a single
2028          * row at the given clock rate, multiplied by 8.
2029          * */
2030         temp |= PIPE_WM_LINETIME_TIME(
2031                 ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
2032
2033         /* IPS watermarks are only used by pipe A, and are ignored by
2034          * pipes B and C.  They are calculated similarly to the common
2035          * linetime values, except that we are using CD clock frequency
2036          * in MHz instead of pixel rate for the division.
2037          *
2038          * This is a placeholder for the IPS watermark calculation code.
2039          */
2040
2041         I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
2042 }
2043
2044 static bool
2045 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2046                               uint32_t sprite_width, int pixel_size,
2047                               const struct intel_watermark_params *display,
2048                               int display_latency_ns, int *sprite_wm)
2049 {
2050         struct drm_crtc *crtc;
2051         int clock;
2052         int entries, tlb_miss;
2053
2054         crtc = intel_get_crtc_for_plane(dev, plane);
2055         if (!intel_crtc_active(crtc)) {
2056                 *sprite_wm = display->guard_size;
2057                 return false;
2058         }
2059
2060         clock = crtc->mode.clock;
2061
2062         /* Use the small buffer method to calculate the sprite watermark */
2063         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2064         tlb_miss = display->fifo_size*display->cacheline_size -
2065                 sprite_width * 8;
2066         if (tlb_miss > 0)
2067                 entries += tlb_miss;
2068         entries = DIV_ROUND_UP(entries, display->cacheline_size);
2069         *sprite_wm = entries + display->guard_size;
2070         if (*sprite_wm > (int)display->max_wm)
2071                 *sprite_wm = display->max_wm;
2072
2073         return true;
2074 }
2075
2076 static bool
2077 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2078                                 uint32_t sprite_width, int pixel_size,
2079                                 const struct intel_watermark_params *display,
2080                                 int latency_ns, int *sprite_wm)
2081 {
2082         struct drm_crtc *crtc;
2083         unsigned long line_time_us;
2084         int clock;
2085         int line_count, line_size;
2086         int small, large;
2087         int entries;
2088
2089         if (!latency_ns) {
2090                 *sprite_wm = 0;
2091                 return false;
2092         }
2093
2094         crtc = intel_get_crtc_for_plane(dev, plane);
2095         clock = crtc->mode.clock;
2096         if (!clock) {
2097                 *sprite_wm = 0;
2098                 return false;
2099         }
2100
2101         line_time_us = (sprite_width * 1000) / clock;
2102         if (!line_time_us) {
2103                 *sprite_wm = 0;
2104                 return false;
2105         }
2106
2107         line_count = (latency_ns / line_time_us + 1000) / 1000;
2108         line_size = sprite_width * pixel_size;
2109
2110         /* Use the minimum of the small and large buffer method for primary */
2111         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2112         large = line_count * line_size;
2113
2114         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2115         *sprite_wm = entries + display->guard_size;
2116
2117         return *sprite_wm > 0x3ff ? false : true;
2118 }
2119
2120 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2121                                          uint32_t sprite_width, int pixel_size)
2122 {
2123         struct drm_i915_private *dev_priv = dev->dev_private;
2124         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
2125         u32 val;
2126         int sprite_wm, reg;
2127         int ret;
2128
2129         switch (pipe) {
2130         case 0:
2131                 reg = WM0_PIPEA_ILK;
2132                 break;
2133         case 1:
2134                 reg = WM0_PIPEB_ILK;
2135                 break;
2136         case 2:
2137                 reg = WM0_PIPEC_IVB;
2138                 break;
2139         default:
2140                 return; /* bad pipe */
2141         }
2142
2143         ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2144                                             &sandybridge_display_wm_info,
2145                                             latency, &sprite_wm);
2146         if (!ret) {
2147                 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
2148                               pipe_name(pipe));
2149                 return;
2150         }
2151
2152         val = I915_READ(reg);
2153         val &= ~WM0_PIPE_SPRITE_MASK;
2154         I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2155         DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
2156
2157
2158         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2159                                               pixel_size,
2160                                               &sandybridge_display_srwm_info,
2161                                               SNB_READ_WM1_LATENCY() * 500,
2162                                               &sprite_wm);
2163         if (!ret) {
2164                 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
2165                               pipe_name(pipe));
2166                 return;
2167         }
2168         I915_WRITE(WM1S_LP_ILK, sprite_wm);
2169
2170         /* Only IVB has two more LP watermarks for sprite */
2171         if (!IS_IVYBRIDGE(dev))
2172                 return;
2173
2174         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2175                                               pixel_size,
2176                                               &sandybridge_display_srwm_info,
2177                                               SNB_READ_WM2_LATENCY() * 500,
2178                                               &sprite_wm);
2179         if (!ret) {
2180                 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
2181                               pipe_name(pipe));
2182                 return;
2183         }
2184         I915_WRITE(WM2S_LP_IVB, sprite_wm);
2185
2186         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2187                                               pixel_size,
2188                                               &sandybridge_display_srwm_info,
2189                                               SNB_READ_WM3_LATENCY() * 500,
2190                                               &sprite_wm);
2191         if (!ret) {
2192                 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
2193                               pipe_name(pipe));
2194                 return;
2195         }
2196         I915_WRITE(WM3S_LP_IVB, sprite_wm);
2197 }
2198
2199 /**
2200  * intel_update_watermarks - update FIFO watermark values based on current modes
2201  *
2202  * Calculate watermark values for the various WM regs based on current mode
2203  * and plane configuration.
2204  *
2205  * There are several cases to deal with here:
2206  *   - normal (i.e. non-self-refresh)
2207  *   - self-refresh (SR) mode
2208  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2209  *   - lines are small relative to FIFO size (buffer can hold more than 2
2210  *     lines), so need to account for TLB latency
2211  *
2212  *   The normal calculation is:
2213  *     watermark = dotclock * bytes per pixel * latency
2214  *   where latency is platform & configuration dependent (we assume pessimal
2215  *   values here).
2216  *
2217  *   The SR calculation is:
2218  *     watermark = (trunc(latency/line time)+1) * surface width *
2219  *       bytes per pixel
2220  *   where
2221  *     line time = htotal / dotclock
2222  *     surface width = hdisplay for normal plane and 64 for cursor
2223  *   and latency is assumed to be high, as above.
2224  *
2225  * The final value programmed to the register should always be rounded up,
2226  * and include an extra 2 entries to account for clock crossings.
2227  *
2228  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2229  * to set the non-SR watermarks to 8.
2230  */
2231 void intel_update_watermarks(struct drm_device *dev)
2232 {
2233         struct drm_i915_private *dev_priv = dev->dev_private;
2234
2235         if (dev_priv->display.update_wm)
2236                 dev_priv->display.update_wm(dev);
2237 }
2238
2239 void intel_update_linetime_watermarks(struct drm_device *dev,
2240                 int pipe, struct drm_display_mode *mode)
2241 {
2242         struct drm_i915_private *dev_priv = dev->dev_private;
2243
2244         if (dev_priv->display.update_linetime_wm)
2245                 dev_priv->display.update_linetime_wm(dev, pipe, mode);
2246 }
2247
2248 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2249                                     uint32_t sprite_width, int pixel_size)
2250 {
2251         struct drm_i915_private *dev_priv = dev->dev_private;
2252
2253         if (dev_priv->display.update_sprite_wm)
2254                 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2255                                                    pixel_size);
2256 }
2257
2258 static struct drm_i915_gem_object *
2259 intel_alloc_context_page(struct drm_device *dev)
2260 {
2261         struct drm_i915_gem_object *ctx;
2262         int ret;
2263
2264         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2265
2266         ctx = i915_gem_alloc_object(dev, 4096);
2267         if (!ctx) {
2268                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2269                 return NULL;
2270         }
2271
2272         ret = i915_gem_object_pin(ctx, 4096, true, false);
2273         if (ret) {
2274                 DRM_ERROR("failed to pin power context: %d\n", ret);
2275                 goto err_unref;
2276         }
2277
2278         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2279         if (ret) {
2280                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2281                 goto err_unpin;
2282         }
2283
2284         return ctx;
2285
2286 err_unpin:
2287         i915_gem_object_unpin(ctx);
2288 err_unref:
2289         drm_gem_object_unreference(&ctx->base);
2290         return NULL;
2291 }
2292
2293 /**
2294  * Lock protecting IPS related data structures
2295  */
2296 DEFINE_SPINLOCK(mchdev_lock);
2297
2298 /* Global for IPS driver to get at the current i915 device. Protected by
2299  * mchdev_lock. */
2300 static struct drm_i915_private *i915_mch_dev;
2301
2302 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2303 {
2304         struct drm_i915_private *dev_priv = dev->dev_private;
2305         u16 rgvswctl;
2306
2307         assert_spin_locked(&mchdev_lock);
2308
2309         rgvswctl = I915_READ16(MEMSWCTL);
2310         if (rgvswctl & MEMCTL_CMD_STS) {
2311                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2312                 return false; /* still busy with another command */
2313         }
2314
2315         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2316                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2317         I915_WRITE16(MEMSWCTL, rgvswctl);
2318         POSTING_READ16(MEMSWCTL);
2319
2320         rgvswctl |= MEMCTL_CMD_STS;
2321         I915_WRITE16(MEMSWCTL, rgvswctl);
2322
2323         return true;
2324 }
2325
2326 static void ironlake_enable_drps(struct drm_device *dev)
2327 {
2328         struct drm_i915_private *dev_priv = dev->dev_private;
2329         u32 rgvmodectl = I915_READ(MEMMODECTL);
2330         u8 fmax, fmin, fstart, vstart;
2331
2332         spin_lock_irq(&mchdev_lock);
2333
2334         /* Enable temp reporting */
2335         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2336         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2337
2338         /* 100ms RC evaluation intervals */
2339         I915_WRITE(RCUPEI, 100000);
2340         I915_WRITE(RCDNEI, 100000);
2341
2342         /* Set max/min thresholds to 90ms and 80ms respectively */
2343         I915_WRITE(RCBMAXAVG, 90000);
2344         I915_WRITE(RCBMINAVG, 80000);
2345
2346         I915_WRITE(MEMIHYST, 1);
2347
2348         /* Set up min, max, and cur for interrupt handling */
2349         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2350         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2351         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2352                 MEMMODE_FSTART_SHIFT;
2353
2354         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2355                 PXVFREQ_PX_SHIFT;
2356
2357         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2358         dev_priv->ips.fstart = fstart;
2359
2360         dev_priv->ips.max_delay = fstart;
2361         dev_priv->ips.min_delay = fmin;
2362         dev_priv->ips.cur_delay = fstart;
2363
2364         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2365                          fmax, fmin, fstart);
2366
2367         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2368
2369         /*
2370          * Interrupts will be enabled in ironlake_irq_postinstall
2371          */
2372
2373         I915_WRITE(VIDSTART, vstart);
2374         POSTING_READ(VIDSTART);
2375
2376         rgvmodectl |= MEMMODE_SWMODE_EN;
2377         I915_WRITE(MEMMODECTL, rgvmodectl);
2378
2379         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2380                 DRM_ERROR("stuck trying to change perf mode\n");
2381         mdelay(1);
2382
2383         ironlake_set_drps(dev, fstart);
2384
2385         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2386                 I915_READ(0x112e0);
2387         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2388         dev_priv->ips.last_count2 = I915_READ(0x112f4);
2389         getrawmonotonic(&dev_priv->ips.last_time2);
2390
2391         spin_unlock_irq(&mchdev_lock);
2392 }
2393
2394 static void ironlake_disable_drps(struct drm_device *dev)
2395 {
2396         struct drm_i915_private *dev_priv = dev->dev_private;
2397         u16 rgvswctl;
2398
2399         spin_lock_irq(&mchdev_lock);
2400
2401         rgvswctl = I915_READ16(MEMSWCTL);
2402
2403         /* Ack interrupts, disable EFC interrupt */
2404         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2405         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2406         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2407         I915_WRITE(DEIIR, DE_PCU_EVENT);
2408         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2409
2410         /* Go back to the starting frequency */
2411         ironlake_set_drps(dev, dev_priv->ips.fstart);
2412         mdelay(1);
2413         rgvswctl |= MEMCTL_CMD_STS;
2414         I915_WRITE(MEMSWCTL, rgvswctl);
2415         mdelay(1);
2416
2417         spin_unlock_irq(&mchdev_lock);
2418 }
2419
2420 /* There's a funny hw issue where the hw returns all 0 when reading from
2421  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2422  * ourselves, instead of doing a rmw cycle (which might result in us clearing
2423  * all limits and the gpu stuck at whatever frequency it is at atm).
2424  */
2425 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2426 {
2427         u32 limits;
2428
2429         limits = 0;
2430
2431         if (*val >= dev_priv->rps.max_delay)
2432                 *val = dev_priv->rps.max_delay;
2433         limits |= dev_priv->rps.max_delay << 24;
2434
2435         /* Only set the down limit when we've reached the lowest level to avoid
2436          * getting more interrupts, otherwise leave this clear. This prevents a
2437          * race in the hw when coming out of rc6: There's a tiny window where
2438          * the hw runs at the minimal clock before selecting the desired
2439          * frequency, if the down threshold expires in that window we will not
2440          * receive a down interrupt. */
2441         if (*val <= dev_priv->rps.min_delay) {
2442                 *val = dev_priv->rps.min_delay;
2443                 limits |= dev_priv->rps.min_delay << 16;
2444         }
2445
2446         return limits;
2447 }
2448
2449 void gen6_set_rps(struct drm_device *dev, u8 val)
2450 {
2451         struct drm_i915_private *dev_priv = dev->dev_private;
2452         u32 limits = gen6_rps_limits(dev_priv, &val);
2453
2454         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2455         WARN_ON(val > dev_priv->rps.max_delay);
2456         WARN_ON(val < dev_priv->rps.min_delay);
2457
2458         if (val == dev_priv->rps.cur_delay)
2459                 return;
2460
2461         if (IS_HASWELL(dev))
2462                 I915_WRITE(GEN6_RPNSWREQ,
2463                            HSW_FREQUENCY(val));
2464         else
2465                 I915_WRITE(GEN6_RPNSWREQ,
2466                            GEN6_FREQUENCY(val) |
2467                            GEN6_OFFSET(0) |
2468                            GEN6_AGGRESSIVE_TURBO);
2469
2470         /* Make sure we continue to get interrupts
2471          * until we hit the minimum or maximum frequencies.
2472          */
2473         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2474
2475         POSTING_READ(GEN6_RPNSWREQ);
2476
2477         dev_priv->rps.cur_delay = val;
2478
2479         trace_intel_gpu_freq_change(val * 50);
2480 }
2481
2482 void valleyview_set_rps(struct drm_device *dev, u8 val)
2483 {
2484         struct drm_i915_private *dev_priv = dev->dev_private;
2485         unsigned long timeout = jiffies + msecs_to_jiffies(10);
2486         u32 limits = gen6_rps_limits(dev_priv, &val);
2487         u32 pval;
2488
2489         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2490         WARN_ON(val > dev_priv->rps.max_delay);
2491         WARN_ON(val < dev_priv->rps.min_delay);
2492
2493         DRM_DEBUG_DRIVER("gpu freq request from %d to %d\n",
2494                          vlv_gpu_freq(dev_priv->mem_freq,
2495                                       dev_priv->rps.cur_delay),
2496                          vlv_gpu_freq(dev_priv->mem_freq, val));
2497
2498         if (val == dev_priv->rps.cur_delay)
2499                 return;
2500
2501         valleyview_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
2502
2503         do {
2504                 valleyview_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS, &pval);
2505                 if (time_after(jiffies, timeout)) {
2506                         DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
2507                         break;
2508                 }
2509                 udelay(10);
2510         } while (pval & 1);
2511
2512         valleyview_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS, &pval);
2513         if ((pval >> 8) != val)
2514                 DRM_DEBUG_DRIVER("punit overrode freq: %d requested, but got %d\n",
2515                           val, pval >> 8);
2516
2517         /* Make sure we continue to get interrupts
2518          * until we hit the minimum or maximum frequencies.
2519          */
2520         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2521
2522         dev_priv->rps.cur_delay = pval >> 8;
2523
2524         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
2525 }
2526
2527
2528 static void gen6_disable_rps(struct drm_device *dev)
2529 {
2530         struct drm_i915_private *dev_priv = dev->dev_private;
2531
2532         I915_WRITE(GEN6_RC_CONTROL, 0);
2533         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2534         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2535         I915_WRITE(GEN6_PMIER, 0);
2536         /* Complete PM interrupt masking here doesn't race with the rps work
2537          * item again unmasking PM interrupts because that is using a different
2538          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2539          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2540
2541         spin_lock_irq(&dev_priv->rps.lock);
2542         dev_priv->rps.pm_iir = 0;
2543         spin_unlock_irq(&dev_priv->rps.lock);
2544
2545         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2546 }
2547
2548 static void valleyview_disable_rps(struct drm_device *dev)
2549 {
2550         struct drm_i915_private *dev_priv = dev->dev_private;
2551
2552         I915_WRITE(GEN6_RC_CONTROL, 0);
2553         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2554         I915_WRITE(GEN6_PMIER, 0);
2555         /* Complete PM interrupt masking here doesn't race with the rps work
2556          * item again unmasking PM interrupts because that is using a different
2557          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2558          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2559
2560         spin_lock_irq(&dev_priv->rps.lock);
2561         dev_priv->rps.pm_iir = 0;
2562         spin_unlock_irq(&dev_priv->rps.lock);
2563
2564         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2565 }
2566
2567 int intel_enable_rc6(const struct drm_device *dev)
2568 {
2569         /* Respect the kernel parameter if it is set */
2570         if (i915_enable_rc6 >= 0)
2571                 return i915_enable_rc6;
2572
2573         /* Disable RC6 on Ironlake */
2574         if (INTEL_INFO(dev)->gen == 5)
2575                 return 0;
2576
2577         if (IS_HASWELL(dev)) {
2578                 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
2579                 return INTEL_RC6_ENABLE;
2580         }
2581
2582         /* snb/ivb have more than one rc6 state. */
2583         if (INTEL_INFO(dev)->gen == 6) {
2584                 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2585                 return INTEL_RC6_ENABLE;
2586         }
2587
2588         DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2589         return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2590 }
2591
2592 static void gen6_enable_rps(struct drm_device *dev)
2593 {
2594         struct drm_i915_private *dev_priv = dev->dev_private;
2595         struct intel_ring_buffer *ring;
2596         u32 rp_state_cap;
2597         u32 gt_perf_status;
2598         u32 rc6vids, pcu_mbox, rc6_mask = 0;
2599         u32 gtfifodbg;
2600         int rc6_mode;
2601         int i, ret;
2602
2603         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2604
2605         /* Here begins a magic sequence of register writes to enable
2606          * auto-downclocking.
2607          *
2608          * Perhaps there might be some value in exposing these to
2609          * userspace...
2610          */
2611         I915_WRITE(GEN6_RC_STATE, 0);
2612
2613         /* Clear the DBG now so we don't confuse earlier errors */
2614         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2615                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2616                 I915_WRITE(GTFIFODBG, gtfifodbg);
2617         }
2618
2619         gen6_gt_force_wake_get(dev_priv);
2620
2621         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2622         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2623
2624         /* In units of 50MHz */
2625         dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
2626         dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2627         dev_priv->rps.cur_delay = 0;
2628
2629         /* disable the counters and set deterministic thresholds */
2630         I915_WRITE(GEN6_RC_CONTROL, 0);
2631
2632         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2633         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2634         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2635         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2636         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2637
2638         for_each_ring(ring, dev_priv, i)
2639                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2640
2641         I915_WRITE(GEN6_RC_SLEEP, 0);
2642         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2643         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2644         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
2645         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2646
2647         /* Check if we are enabling RC6 */
2648         rc6_mode = intel_enable_rc6(dev_priv->dev);
2649         if (rc6_mode & INTEL_RC6_ENABLE)
2650                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2651
2652         /* We don't use those on Haswell */
2653         if (!IS_HASWELL(dev)) {
2654                 if (rc6_mode & INTEL_RC6p_ENABLE)
2655                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2656
2657                 if (rc6_mode & INTEL_RC6pp_ENABLE)
2658                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2659         }
2660
2661         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2662                         (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2663                         (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2664                         (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2665
2666         I915_WRITE(GEN6_RC_CONTROL,
2667                    rc6_mask |
2668                    GEN6_RC_CTL_EI_MODE(1) |
2669                    GEN6_RC_CTL_HW_ENABLE);
2670
2671         if (IS_HASWELL(dev)) {
2672                 I915_WRITE(GEN6_RPNSWREQ,
2673                            HSW_FREQUENCY(10));
2674                 I915_WRITE(GEN6_RC_VIDEO_FREQ,
2675                            HSW_FREQUENCY(12));
2676         } else {
2677                 I915_WRITE(GEN6_RPNSWREQ,
2678                            GEN6_FREQUENCY(10) |
2679                            GEN6_OFFSET(0) |
2680                            GEN6_AGGRESSIVE_TURBO);
2681                 I915_WRITE(GEN6_RC_VIDEO_FREQ,
2682                            GEN6_FREQUENCY(12));
2683         }
2684
2685         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2686         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2687                    dev_priv->rps.max_delay << 24 |
2688                    dev_priv->rps.min_delay << 16);
2689
2690         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2691         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2692         I915_WRITE(GEN6_RP_UP_EI, 66000);
2693         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2694
2695         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2696         I915_WRITE(GEN6_RP_CONTROL,
2697                    GEN6_RP_MEDIA_TURBO |
2698                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
2699                    GEN6_RP_MEDIA_IS_GFX |
2700                    GEN6_RP_ENABLE |
2701                    GEN6_RP_UP_BUSY_AVG |
2702                    (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2703
2704         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
2705         if (!ret && (IS_GEN6(dev) || IS_IVYBRIDGE(dev))) {
2706                 pcu_mbox = 0;
2707                 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
2708                 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
2709                         DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
2710                                          (dev_priv->rps.max_delay & 0xff) * 50,
2711                                          (pcu_mbox & 0xff) * 50);
2712                         dev_priv->rps.hw_max = pcu_mbox & 0xff;
2713                 }
2714         } else {
2715                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2716         }
2717
2718         gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2719
2720         /* requires MSI enabled */
2721         I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2722         spin_lock_irq(&dev_priv->rps.lock);
2723         WARN_ON(dev_priv->rps.pm_iir != 0);
2724         I915_WRITE(GEN6_PMIMR, 0);
2725         spin_unlock_irq(&dev_priv->rps.lock);
2726         /* enable all PM interrupts */
2727         I915_WRITE(GEN6_PMINTRMSK, 0);
2728
2729         rc6vids = 0;
2730         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
2731         if (IS_GEN6(dev) && ret) {
2732                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
2733         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
2734                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
2735                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
2736                 rc6vids &= 0xffff00;
2737                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
2738                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
2739                 if (ret)
2740                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
2741         }
2742
2743         gen6_gt_force_wake_put(dev_priv);
2744 }
2745
2746 static void gen6_update_ring_freq(struct drm_device *dev)
2747 {
2748         struct drm_i915_private *dev_priv = dev->dev_private;
2749         int min_freq = 15;
2750         unsigned int gpu_freq;
2751         unsigned int max_ia_freq, min_ring_freq;
2752         int scaling_factor = 180;
2753
2754         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2755
2756         max_ia_freq = cpufreq_quick_get_max(0);
2757         /*
2758          * Default to measured freq if none found, PCU will ensure we don't go
2759          * over
2760          */
2761         if (!max_ia_freq)
2762                 max_ia_freq = tsc_khz;
2763
2764         /* Convert from kHz to MHz */
2765         max_ia_freq /= 1000;
2766
2767         min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
2768         /* convert DDR frequency from units of 133.3MHz to bandwidth */
2769         min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
2770
2771         /*
2772          * For each potential GPU frequency, load a ring frequency we'd like
2773          * to use for memory access.  We do this by specifying the IA frequency
2774          * the PCU should use as a reference to determine the ring frequency.
2775          */
2776         for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2777              gpu_freq--) {
2778                 int diff = dev_priv->rps.max_delay - gpu_freq;
2779                 unsigned int ia_freq = 0, ring_freq = 0;
2780
2781                 if (IS_HASWELL(dev)) {
2782                         ring_freq = (gpu_freq * 5 + 3) / 4;
2783                         ring_freq = max(min_ring_freq, ring_freq);
2784                         /* leave ia_freq as the default, chosen by cpufreq */
2785                 } else {
2786                         /* On older processors, there is no separate ring
2787                          * clock domain, so in order to boost the bandwidth
2788                          * of the ring, we need to upclock the CPU (ia_freq).
2789                          *
2790                          * For GPU frequencies less than 750MHz,
2791                          * just use the lowest ring freq.
2792                          */
2793                         if (gpu_freq < min_freq)
2794                                 ia_freq = 800;
2795                         else
2796                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2797                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2798                 }
2799
2800                 sandybridge_pcode_write(dev_priv,
2801                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
2802                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
2803                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
2804                                         gpu_freq);
2805         }
2806 }
2807
2808 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
2809 {
2810         u32 val, rp0;
2811
2812         valleyview_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE, &val);
2813
2814         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
2815         /* Clamp to max */
2816         rp0 = min_t(u32, rp0, 0xea);
2817
2818         return rp0;
2819 }
2820
2821 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
2822 {
2823         u32 val, rpe;
2824
2825         valleyview_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO, &val);
2826         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
2827         valleyview_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI, &val);
2828         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
2829
2830         return rpe;
2831 }
2832
2833 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
2834 {
2835         u32 val;
2836
2837         valleyview_punit_read(dev_priv, PUNIT_REG_GPU_LFM, &val);
2838
2839         return val & 0xff;
2840 }
2841
2842 static void vlv_rps_timer_work(struct work_struct *work)
2843 {
2844         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
2845                                                     rps.vlv_work.work);
2846
2847         /*
2848          * Timer fired, we must be idle.  Drop to min voltage state.
2849          * Note: we use RPe here since it should match the
2850          * Vmin we were shooting for.  That should give us better
2851          * perf when we come back out of RC6 than if we used the
2852          * min freq available.
2853          */
2854         mutex_lock(&dev_priv->rps.hw_lock);
2855         valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
2856         mutex_unlock(&dev_priv->rps.hw_lock);
2857 }
2858
2859 static void valleyview_enable_rps(struct drm_device *dev)
2860 {
2861         struct drm_i915_private *dev_priv = dev->dev_private;
2862         struct intel_ring_buffer *ring;
2863         u32 gtfifodbg, val, rpe;
2864         int i;
2865
2866         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2867
2868         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2869                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2870                 I915_WRITE(GTFIFODBG, gtfifodbg);
2871         }
2872
2873         gen6_gt_force_wake_get(dev_priv);
2874
2875         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2876         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2877         I915_WRITE(GEN6_RP_UP_EI, 66000);
2878         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2879
2880         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2881
2882         I915_WRITE(GEN6_RP_CONTROL,
2883                    GEN6_RP_MEDIA_TURBO |
2884                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
2885                    GEN6_RP_MEDIA_IS_GFX |
2886                    GEN6_RP_ENABLE |
2887                    GEN6_RP_UP_BUSY_AVG |
2888                    GEN6_RP_DOWN_IDLE_CONT);
2889
2890         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
2891         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2892         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2893
2894         for_each_ring(ring, dev_priv, i)
2895                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2896
2897         I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
2898
2899         /* allows RC6 residency counter to work */
2900         I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
2901         I915_WRITE(GEN6_RC_CONTROL,
2902                    GEN7_RC_CTL_TO_MODE);
2903
2904         valleyview_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS, &val);
2905         switch ((val >> 6) & 3) {
2906         case 0:
2907         case 1:
2908                 dev_priv->mem_freq = 800;
2909                 break;
2910         case 2:
2911                 dev_priv->mem_freq = 1066;
2912                 break;
2913         case 3:
2914                 dev_priv->mem_freq = 1333;
2915                 break;
2916         }
2917         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
2918
2919         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
2920         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
2921
2922         DRM_DEBUG_DRIVER("current GPU freq: %d\n",
2923                          vlv_gpu_freq(dev_priv->mem_freq, (val >> 8) & 0xff));
2924         dev_priv->rps.cur_delay = (val >> 8) & 0xff;
2925
2926         dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
2927         dev_priv->rps.hw_max = dev_priv->rps.max_delay;
2928         DRM_DEBUG_DRIVER("max GPU freq: %d\n", vlv_gpu_freq(dev_priv->mem_freq,
2929                                                      dev_priv->rps.max_delay));
2930
2931         rpe = valleyview_rps_rpe_freq(dev_priv);
2932         DRM_DEBUG_DRIVER("RPe GPU freq: %d\n",
2933                          vlv_gpu_freq(dev_priv->mem_freq, rpe));
2934         dev_priv->rps.rpe_delay = rpe;
2935
2936         val = valleyview_rps_min_freq(dev_priv);
2937         DRM_DEBUG_DRIVER("min GPU freq: %d\n", vlv_gpu_freq(dev_priv->mem_freq,
2938                                                             val));
2939         dev_priv->rps.min_delay = val;
2940
2941         DRM_DEBUG_DRIVER("setting GPU freq to %d\n",
2942                          vlv_gpu_freq(dev_priv->mem_freq, rpe));
2943
2944         INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);
2945
2946         valleyview_set_rps(dev_priv->dev, rpe);
2947
2948         /* requires MSI enabled */
2949         I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2950         spin_lock_irq(&dev_priv->rps.lock);
2951         WARN_ON(dev_priv->rps.pm_iir != 0);
2952         I915_WRITE(GEN6_PMIMR, 0);
2953         spin_unlock_irq(&dev_priv->rps.lock);
2954         /* enable all PM interrupts */
2955         I915_WRITE(GEN6_PMINTRMSK, 0);
2956
2957         gen6_gt_force_wake_put(dev_priv);
2958 }
2959
2960 void ironlake_teardown_rc6(struct drm_device *dev)
2961 {
2962         struct drm_i915_private *dev_priv = dev->dev_private;
2963
2964         if (dev_priv->ips.renderctx) {
2965                 i915_gem_object_unpin(dev_priv->ips.renderctx);
2966                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
2967                 dev_priv->ips.renderctx = NULL;
2968         }
2969
2970         if (dev_priv->ips.pwrctx) {
2971                 i915_gem_object_unpin(dev_priv->ips.pwrctx);
2972                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
2973                 dev_priv->ips.pwrctx = NULL;
2974         }
2975 }
2976
2977 static void ironlake_disable_rc6(struct drm_device *dev)
2978 {
2979         struct drm_i915_private *dev_priv = dev->dev_private;
2980
2981         if (I915_READ(PWRCTXA)) {
2982                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2983                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2984                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2985                          50);
2986
2987                 I915_WRITE(PWRCTXA, 0);
2988                 POSTING_READ(PWRCTXA);
2989
2990                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2991                 POSTING_READ(RSTDBYCTL);
2992         }
2993 }
2994
2995 static int ironlake_setup_rc6(struct drm_device *dev)
2996 {
2997         struct drm_i915_private *dev_priv = dev->dev_private;
2998
2999         if (dev_priv->ips.renderctx == NULL)
3000                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3001         if (!dev_priv->ips.renderctx)
3002                 return -ENOMEM;
3003
3004         if (dev_priv->ips.pwrctx == NULL)
3005                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3006         if (!dev_priv->ips.pwrctx) {
3007                 ironlake_teardown_rc6(dev);
3008                 return -ENOMEM;
3009         }
3010
3011         return 0;
3012 }
3013
3014 static void ironlake_enable_rc6(struct drm_device *dev)
3015 {
3016         struct drm_i915_private *dev_priv = dev->dev_private;
3017         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3018         bool was_interruptible;
3019         int ret;
3020
3021         /* rc6 disabled by default due to repeated reports of hanging during
3022          * boot and resume.
3023          */
3024         if (!intel_enable_rc6(dev))
3025                 return;
3026
3027         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3028
3029         ret = ironlake_setup_rc6(dev);
3030         if (ret)
3031                 return;
3032
3033         was_interruptible = dev_priv->mm.interruptible;
3034         dev_priv->mm.interruptible = false;
3035
3036         /*
3037          * GPU can automatically power down the render unit if given a page
3038          * to save state.
3039          */
3040         ret = intel_ring_begin(ring, 6);
3041         if (ret) {
3042                 ironlake_teardown_rc6(dev);
3043                 dev_priv->mm.interruptible = was_interruptible;
3044                 return;
3045         }
3046
3047         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3048         intel_ring_emit(ring, MI_SET_CONTEXT);
3049         intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
3050                         MI_MM_SPACE_GTT |
3051                         MI_SAVE_EXT_STATE_EN |
3052                         MI_RESTORE_EXT_STATE_EN |
3053                         MI_RESTORE_INHIBIT);
3054         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3055         intel_ring_emit(ring, MI_NOOP);
3056         intel_ring_emit(ring, MI_FLUSH);
3057         intel_ring_advance(ring);
3058
3059         /*
3060          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3061          * does an implicit flush, combined with MI_FLUSH above, it should be
3062          * safe to assume that renderctx is valid
3063          */
3064         ret = intel_ring_idle(ring);
3065         dev_priv->mm.interruptible = was_interruptible;
3066         if (ret) {
3067                 DRM_ERROR("failed to enable ironlake power savings\n");
3068                 ironlake_teardown_rc6(dev);
3069                 return;
3070         }
3071
3072         I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
3073         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3074 }
3075
3076 static unsigned long intel_pxfreq(u32 vidfreq)
3077 {
3078         unsigned long freq;
3079         int div = (vidfreq & 0x3f0000) >> 16;
3080         int post = (vidfreq & 0x3000) >> 12;
3081         int pre = (vidfreq & 0x7);
3082
3083         if (!pre)
3084                 return 0;
3085
3086         freq = ((div * 133333) / ((1<<post) * pre));
3087
3088         return freq;
3089 }
3090
3091 static const struct cparams {
3092         u16 i;
3093         u16 t;
3094         u16 m;
3095         u16 c;
3096 } cparams[] = {
3097         { 1, 1333, 301, 28664 },
3098         { 1, 1066, 294, 24460 },
3099         { 1, 800, 294, 25192 },
3100         { 0, 1333, 276, 27605 },
3101         { 0, 1066, 276, 27605 },
3102         { 0, 800, 231, 23784 },
3103 };
3104
3105 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3106 {
3107         u64 total_count, diff, ret;
3108         u32 count1, count2, count3, m = 0, c = 0;
3109         unsigned long now = jiffies_to_msecs(jiffies), diff1;
3110         int i;
3111
3112         assert_spin_locked(&mchdev_lock);
3113
3114         diff1 = now - dev_priv->ips.last_time1;
3115
3116         /* Prevent division-by-zero if we are asking too fast.
3117          * Also, we don't get interesting results if we are polling
3118          * faster than once in 10ms, so just return the saved value
3119          * in such cases.
3120          */
3121         if (diff1 <= 10)
3122                 return dev_priv->ips.chipset_power;
3123
3124         count1 = I915_READ(DMIEC);
3125         count2 = I915_READ(DDREC);
3126         count3 = I915_READ(CSIEC);
3127
3128         total_count = count1 + count2 + count3;
3129
3130         /* FIXME: handle per-counter overflow */
3131         if (total_count < dev_priv->ips.last_count1) {
3132                 diff = ~0UL - dev_priv->ips.last_count1;
3133                 diff += total_count;
3134         } else {
3135                 diff = total_count - dev_priv->ips.last_count1;
3136         }
3137
3138         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3139                 if (cparams[i].i == dev_priv->ips.c_m &&
3140                     cparams[i].t == dev_priv->ips.r_t) {
3141                         m = cparams[i].m;
3142                         c = cparams[i].c;
3143                         break;
3144                 }
3145         }
3146
3147         diff = div_u64(diff, diff1);
3148         ret = ((m * diff) + c);
3149         ret = div_u64(ret, 10);
3150
3151         dev_priv->ips.last_count1 = total_count;
3152         dev_priv->ips.last_time1 = now;
3153
3154         dev_priv->ips.chipset_power = ret;
3155
3156         return ret;
3157 }
3158
3159 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3160 {
3161         unsigned long val;
3162
3163         if (dev_priv->info->gen != 5)
3164                 return 0;
3165
3166         spin_lock_irq(&mchdev_lock);
3167
3168         val = __i915_chipset_val(dev_priv);
3169
3170         spin_unlock_irq(&mchdev_lock);
3171
3172         return val;
3173 }
3174
3175 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3176 {
3177         unsigned long m, x, b;
3178         u32 tsfs;
3179
3180         tsfs = I915_READ(TSFS);
3181
3182         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3183         x = I915_READ8(TR1);
3184
3185         b = tsfs & TSFS_INTR_MASK;
3186
3187         return ((m * x) / 127) - b;
3188 }
3189
3190 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
3191 {
3192         static const struct v_table {
3193                 u16 vd; /* in .1 mil */
3194                 u16 vm; /* in .1 mil */
3195         } v_table[] = {
3196                 { 0, 0, },
3197                 { 375, 0, },
3198                 { 500, 0, },
3199                 { 625, 0, },
3200                 { 750, 0, },
3201                 { 875, 0, },
3202                 { 1000, 0, },
3203                 { 1125, 0, },
3204                 { 4125, 3000, },
3205                 { 4125, 3000, },
3206                 { 4125, 3000, },
3207                 { 4125, 3000, },
3208                 { 4125, 3000, },
3209                 { 4125, 3000, },
3210                 { 4125, 3000, },
3211                 { 4125, 3000, },
3212                 { 4125, 3000, },
3213                 { 4125, 3000, },
3214                 { 4125, 3000, },
3215                 { 4125, 3000, },
3216                 { 4125, 3000, },
3217                 { 4125, 3000, },
3218                 { 4125, 3000, },
3219                 { 4125, 3000, },
3220                 { 4125, 3000, },
3221                 { 4125, 3000, },
3222                 { 4125, 3000, },
3223                 { 4125, 3000, },
3224                 { 4125, 3000, },
3225                 { 4125, 3000, },
3226                 { 4125, 3000, },
3227                 { 4125, 3000, },
3228                 { 4250, 3125, },
3229                 { 4375, 3250, },
3230                 { 4500, 3375, },
3231                 { 4625, 3500, },
3232                 { 4750, 3625, },
3233                 { 4875, 3750, },
3234                 { 5000, 3875, },
3235                 { 5125, 4000, },
3236                 { 5250, 4125, },
3237                 { 5375, 4250, },
3238                 { 5500, 4375, },
3239                 { 5625, 4500, },
3240                 { 5750, 4625, },
3241                 { 5875, 4750, },
3242                 { 6000, 4875, },
3243                 { 6125, 5000, },
3244                 { 6250, 5125, },
3245                 { 6375, 5250, },
3246                 { 6500, 5375, },
3247                 { 6625, 5500, },
3248                 { 6750, 5625, },
3249                 { 6875, 5750, },
3250                 { 7000, 5875, },
3251                 { 7125, 6000, },
3252                 { 7250, 6125, },
3253                 { 7375, 6250, },
3254                 { 7500, 6375, },
3255                 { 7625, 6500, },
3256                 { 7750, 6625, },
3257                 { 7875, 6750, },
3258                 { 8000, 6875, },
3259                 { 8125, 7000, },
3260                 { 8250, 7125, },
3261                 { 8375, 7250, },
3262                 { 8500, 7375, },
3263                 { 8625, 7500, },
3264                 { 8750, 7625, },
3265                 { 8875, 7750, },
3266                 { 9000, 7875, },
3267                 { 9125, 8000, },
3268                 { 9250, 8125, },
3269                 { 9375, 8250, },
3270                 { 9500, 8375, },
3271                 { 9625, 8500, },
3272                 { 9750, 8625, },
3273                 { 9875, 8750, },
3274                 { 10000, 8875, },
3275                 { 10125, 9000, },
3276                 { 10250, 9125, },
3277                 { 10375, 9250, },
3278                 { 10500, 9375, },
3279                 { 10625, 9500, },
3280                 { 10750, 9625, },
3281                 { 10875, 9750, },
3282                 { 11000, 9875, },
3283                 { 11125, 10000, },
3284                 { 11250, 10125, },
3285                 { 11375, 10250, },
3286                 { 11500, 10375, },
3287                 { 11625, 10500, },
3288                 { 11750, 10625, },
3289                 { 11875, 10750, },
3290                 { 12000, 10875, },
3291                 { 12125, 11000, },
3292                 { 12250, 11125, },
3293                 { 12375, 11250, },
3294                 { 12500, 11375, },
3295                 { 12625, 11500, },
3296                 { 12750, 11625, },
3297                 { 12875, 11750, },
3298                 { 13000, 11875, },
3299                 { 13125, 12000, },
3300                 { 13250, 12125, },
3301                 { 13375, 12250, },
3302                 { 13500, 12375, },
3303                 { 13625, 12500, },
3304                 { 13750, 12625, },
3305                 { 13875, 12750, },
3306                 { 14000, 12875, },
3307                 { 14125, 13000, },
3308                 { 14250, 13125, },
3309                 { 14375, 13250, },
3310                 { 14500, 13375, },
3311                 { 14625, 13500, },
3312                 { 14750, 13625, },
3313                 { 14875, 13750, },
3314                 { 15000, 13875, },
3315                 { 15125, 14000, },
3316                 { 15250, 14125, },
3317                 { 15375, 14250, },
3318                 { 15500, 14375, },
3319                 { 15625, 14500, },
3320                 { 15750, 14625, },
3321                 { 15875, 14750, },
3322                 { 16000, 14875, },
3323                 { 16125, 15000, },
3324         };
3325         if (dev_priv->info->is_mobile)
3326                 return v_table[pxvid].vm;
3327         else
3328                 return v_table[pxvid].vd;
3329 }
3330
3331 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3332 {
3333         struct timespec now, diff1;
3334         u64 diff;
3335         unsigned long diffms;
3336         u32 count;
3337
3338         assert_spin_locked(&mchdev_lock);
3339
3340         getrawmonotonic(&now);
3341         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
3342
3343         /* Don't divide by 0 */
3344         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3345         if (!diffms)
3346                 return;
3347
3348         count = I915_READ(GFXEC);
3349
3350         if (count < dev_priv->ips.last_count2) {
3351                 diff = ~0UL - dev_priv->ips.last_count2;
3352                 diff += count;
3353         } else {
3354                 diff = count - dev_priv->ips.last_count2;
3355         }
3356
3357         dev_priv->ips.last_count2 = count;
3358         dev_priv->ips.last_time2 = now;
3359
3360         /* More magic constants... */
3361         diff = diff * 1181;
3362         diff = div_u64(diff, diffms * 10);
3363         dev_priv->ips.gfx_power = diff;
3364 }
3365
3366 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
3367 {
3368         if (dev_priv->info->gen != 5)
3369                 return;
3370
3371         spin_lock_irq(&mchdev_lock);
3372
3373         __i915_update_gfx_val(dev_priv);
3374
3375         spin_unlock_irq(&mchdev_lock);
3376 }
3377
3378 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
3379 {
3380         unsigned long t, corr, state1, corr2, state2;
3381         u32 pxvid, ext_v;
3382
3383         assert_spin_locked(&mchdev_lock);
3384
3385         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
3386         pxvid = (pxvid >> 24) & 0x7f;
3387         ext_v = pvid_to_extvid(dev_priv, pxvid);
3388
3389         state1 = ext_v;
3390
3391         t = i915_mch_val(dev_priv);
3392
3393         /* Revel in the empirically derived constants */
3394
3395         /* Correction factor in 1/100000 units */
3396         if (t > 80)
3397                 corr = ((t * 2349) + 135940);
3398         else if (t >= 50)
3399                 corr = ((t * 964) + 29317);
3400         else /* < 50 */
3401                 corr = ((t * 301) + 1004);
3402
3403         corr = corr * ((150142 * state1) / 10000 - 78642);
3404         corr /= 100000;
3405         corr2 = (corr * dev_priv->ips.corr);
3406
3407         state2 = (corr2 * state1) / 10000;
3408         state2 /= 100; /* convert to mW */
3409
3410         __i915_update_gfx_val(dev_priv);
3411
3412         return dev_priv->ips.gfx_power + state2;
3413 }
3414
3415 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
3416 {
3417         unsigned long val;
3418
3419         if (dev_priv->info->gen != 5)
3420                 return 0;
3421
3422         spin_lock_irq(&mchdev_lock);
3423
3424         val = __i915_gfx_val(dev_priv);
3425
3426         spin_unlock_irq(&mchdev_lock);
3427
3428         return val;
3429 }
3430
3431 /**
3432  * i915_read_mch_val - return value for IPS use
3433  *
3434  * Calculate and return a value for the IPS driver to use when deciding whether
3435  * we have thermal and power headroom to increase CPU or GPU power budget.
3436  */
3437 unsigned long i915_read_mch_val(void)
3438 {
3439         struct drm_i915_private *dev_priv;
3440         unsigned long chipset_val, graphics_val, ret = 0;
3441
3442         spin_lock_irq(&mchdev_lock);
3443         if (!i915_mch_dev)
3444                 goto out_unlock;
3445         dev_priv = i915_mch_dev;
3446
3447         chipset_val = __i915_chipset_val(dev_priv);
3448         graphics_val = __i915_gfx_val(dev_priv);
3449
3450         ret = chipset_val + graphics_val;
3451
3452 out_unlock:
3453         spin_unlock_irq(&mchdev_lock);
3454
3455         return ret;
3456 }
3457 EXPORT_SYMBOL_GPL(i915_read_mch_val);
3458
3459 /**
3460  * i915_gpu_raise - raise GPU frequency limit
3461  *
3462  * Raise the limit; IPS indicates we have thermal headroom.
3463  */
3464 bool i915_gpu_raise(void)
3465 {
3466         struct drm_i915_private *dev_priv;
3467         bool ret = true;
3468
3469         spin_lock_irq(&mchdev_lock);
3470         if (!i915_mch_dev) {
3471                 ret = false;
3472                 goto out_unlock;
3473         }
3474         dev_priv = i915_mch_dev;
3475
3476         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
3477                 dev_priv->ips.max_delay--;
3478
3479 out_unlock:
3480         spin_unlock_irq(&mchdev_lock);
3481
3482         return ret;
3483 }
3484 EXPORT_SYMBOL_GPL(i915_gpu_raise);
3485
3486 /**
3487  * i915_gpu_lower - lower GPU frequency limit
3488  *
3489  * IPS indicates we're close to a thermal limit, so throttle back the GPU
3490  * frequency maximum.
3491  */
3492 bool i915_gpu_lower(void)
3493 {
3494         struct drm_i915_private *dev_priv;
3495         bool ret = true;
3496
3497         spin_lock_irq(&mchdev_lock);
3498         if (!i915_mch_dev) {
3499                 ret = false;
3500                 goto out_unlock;
3501         }
3502         dev_priv = i915_mch_dev;
3503
3504         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
3505                 dev_priv->ips.max_delay++;
3506
3507 out_unlock:
3508         spin_unlock_irq(&mchdev_lock);
3509
3510         return ret;
3511 }
3512 EXPORT_SYMBOL_GPL(i915_gpu_lower);
3513
3514 /**
3515  * i915_gpu_busy - indicate GPU business to IPS
3516  *
3517  * Tell the IPS driver whether or not the GPU is busy.
3518  */
3519 bool i915_gpu_busy(void)
3520 {
3521         struct drm_i915_private *dev_priv;
3522         struct intel_ring_buffer *ring;
3523         bool ret = false;
3524         int i;
3525
3526         spin_lock_irq(&mchdev_lock);
3527         if (!i915_mch_dev)
3528                 goto out_unlock;
3529         dev_priv = i915_mch_dev;
3530
3531         for_each_ring(ring, dev_priv, i)
3532                 ret |= !list_empty(&ring->request_list);
3533
3534 out_unlock:
3535         spin_unlock_irq(&mchdev_lock);
3536
3537         return ret;
3538 }
3539 EXPORT_SYMBOL_GPL(i915_gpu_busy);
3540
3541 /**
3542  * i915_gpu_turbo_disable - disable graphics turbo
3543  *
3544  * Disable graphics turbo by resetting the max frequency and setting the
3545  * current frequency to the default.
3546  */
3547 bool i915_gpu_turbo_disable(void)
3548 {
3549         struct drm_i915_private *dev_priv;
3550         bool ret = true;
3551
3552         spin_lock_irq(&mchdev_lock);
3553         if (!i915_mch_dev) {
3554                 ret = false;
3555                 goto out_unlock;
3556         }
3557         dev_priv = i915_mch_dev;
3558
3559         dev_priv->ips.max_delay = dev_priv->ips.fstart;
3560
3561         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
3562                 ret = false;
3563
3564 out_unlock:
3565         spin_unlock_irq(&mchdev_lock);
3566
3567         return ret;
3568 }
3569 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3570
3571 /**
3572  * Tells the intel_ips driver that the i915 driver is now loaded, if
3573  * IPS got loaded first.
3574  *
3575  * This awkward dance is so that neither module has to depend on the
3576  * other in order for IPS to do the appropriate communication of
3577  * GPU turbo limits to i915.
3578  */
3579 static void
3580 ips_ping_for_i915_load(void)
3581 {
3582         void (*link)(void);
3583
3584         link = symbol_get(ips_link_to_i915_driver);
3585         if (link) {
3586                 link();
3587                 symbol_put(ips_link_to_i915_driver);
3588         }
3589 }
3590
3591 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3592 {
3593         /* We only register the i915 ips part with intel-ips once everything is
3594          * set up, to avoid intel-ips sneaking in and reading bogus values. */
3595         spin_lock_irq(&mchdev_lock);
3596         i915_mch_dev = dev_priv;
3597         spin_unlock_irq(&mchdev_lock);
3598
3599         ips_ping_for_i915_load();
3600 }
3601
3602 void intel_gpu_ips_teardown(void)
3603 {
3604         spin_lock_irq(&mchdev_lock);
3605         i915_mch_dev = NULL;
3606         spin_unlock_irq(&mchdev_lock);
3607 }
3608 static void intel_init_emon(struct drm_device *dev)
3609 {
3610         struct drm_i915_private *dev_priv = dev->dev_private;
3611         u32 lcfuse;
3612         u8 pxw[16];
3613         int i;
3614
3615         /* Disable to program */
3616         I915_WRITE(ECR, 0);
3617         POSTING_READ(ECR);
3618
3619         /* Program energy weights for various events */
3620         I915_WRITE(SDEW, 0x15040d00);
3621         I915_WRITE(CSIEW0, 0x007f0000);
3622         I915_WRITE(CSIEW1, 0x1e220004);
3623         I915_WRITE(CSIEW2, 0x04000004);
3624
3625         for (i = 0; i < 5; i++)
3626                 I915_WRITE(PEW + (i * 4), 0);
3627         for (i = 0; i < 3; i++)
3628                 I915_WRITE(DEW + (i * 4), 0);
3629
3630         /* Program P-state weights to account for frequency power adjustment */
3631         for (i = 0; i < 16; i++) {
3632                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3633                 unsigned long freq = intel_pxfreq(pxvidfreq);
3634                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3635                         PXVFREQ_PX_SHIFT;
3636                 unsigned long val;
3637
3638                 val = vid * vid;
3639                 val *= (freq / 1000);
3640                 val *= 255;
3641                 val /= (127*127*900);
3642                 if (val > 0xff)
3643                         DRM_ERROR("bad pxval: %ld\n", val);
3644                 pxw[i] = val;
3645         }
3646         /* Render standby states get 0 weight */
3647         pxw[14] = 0;
3648         pxw[15] = 0;
3649
3650         for (i = 0; i < 4; i++) {
3651                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3652                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3653                 I915_WRITE(PXW + (i * 4), val);
3654         }
3655
3656         /* Adjust magic regs to magic values (more experimental results) */
3657         I915_WRITE(OGW0, 0);
3658         I915_WRITE(OGW1, 0);
3659         I915_WRITE(EG0, 0x00007f00);
3660         I915_WRITE(EG1, 0x0000000e);
3661         I915_WRITE(EG2, 0x000e0000);
3662         I915_WRITE(EG3, 0x68000300);
3663         I915_WRITE(EG4, 0x42000000);
3664         I915_WRITE(EG5, 0x00140031);
3665         I915_WRITE(EG6, 0);
3666         I915_WRITE(EG7, 0);
3667
3668         for (i = 0; i < 8; i++)
3669                 I915_WRITE(PXWL + (i * 4), 0);
3670
3671         /* Enable PMON + select events */
3672         I915_WRITE(ECR, 0x80000019);
3673
3674         lcfuse = I915_READ(LCFUSE02);
3675
3676         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
3677 }
3678
3679 void intel_disable_gt_powersave(struct drm_device *dev)
3680 {
3681         struct drm_i915_private *dev_priv = dev->dev_private;
3682
3683         /* Interrupts should be disabled already to avoid re-arming. */
3684         WARN_ON(dev->irq_enabled);
3685
3686         if (IS_IRONLAKE_M(dev)) {
3687                 ironlake_disable_drps(dev);
3688                 ironlake_disable_rc6(dev);
3689         } else if (INTEL_INFO(dev)->gen >= 6) {
3690                 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
3691                 cancel_work_sync(&dev_priv->rps.work);
3692                 if (IS_VALLEYVIEW(dev))
3693                         cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
3694                 mutex_lock(&dev_priv->rps.hw_lock);
3695                 if (IS_VALLEYVIEW(dev))
3696                         valleyview_disable_rps(dev);
3697                 else
3698                         gen6_disable_rps(dev);
3699                 mutex_unlock(&dev_priv->rps.hw_lock);
3700         }
3701 }
3702
3703 static void intel_gen6_powersave_work(struct work_struct *work)
3704 {
3705         struct drm_i915_private *dev_priv =
3706                 container_of(work, struct drm_i915_private,
3707                              rps.delayed_resume_work.work);
3708         struct drm_device *dev = dev_priv->dev;
3709
3710         mutex_lock(&dev_priv->rps.hw_lock);
3711
3712         if (IS_VALLEYVIEW(dev)) {
3713                 valleyview_enable_rps(dev);
3714         } else {
3715                 gen6_enable_rps(dev);
3716                 gen6_update_ring_freq(dev);
3717         }
3718         mutex_unlock(&dev_priv->rps.hw_lock);
3719 }
3720
3721 void intel_enable_gt_powersave(struct drm_device *dev)
3722 {
3723         struct drm_i915_private *dev_priv = dev->dev_private;
3724
3725         if (IS_IRONLAKE_M(dev)) {
3726                 ironlake_enable_drps(dev);
3727                 ironlake_enable_rc6(dev);
3728                 intel_init_emon(dev);
3729         } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
3730                 /*
3731                  * PCU communication is slow and this doesn't need to be
3732                  * done at any specific time, so do this out of our fast path
3733                  * to make resume and init faster.
3734                  */
3735                 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
3736                                       round_jiffies_up_relative(HZ));
3737         }
3738 }
3739
3740 static void ibx_init_clock_gating(struct drm_device *dev)
3741 {
3742         struct drm_i915_private *dev_priv = dev->dev_private;
3743
3744         /*
3745          * On Ibex Peak and Cougar Point, we need to disable clock
3746          * gating for the panel power sequencer or it will fail to
3747          * start up when no ports are active.
3748          */
3749         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3750 }
3751
3752 static void ironlake_init_clock_gating(struct drm_device *dev)
3753 {
3754         struct drm_i915_private *dev_priv = dev->dev_private;
3755         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3756
3757         /* Required for FBC */
3758         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
3759                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
3760                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3761
3762         I915_WRITE(PCH_3DCGDIS0,
3763                    MARIUNIT_CLOCK_GATE_DISABLE |
3764                    SVSMUNIT_CLOCK_GATE_DISABLE);
3765         I915_WRITE(PCH_3DCGDIS1,
3766                    VFMUNIT_CLOCK_GATE_DISABLE);
3767
3768         /*
3769          * According to the spec the following bits should be set in
3770          * order to enable memory self-refresh
3771          * The bit 22/21 of 0x42004
3772          * The bit 5 of 0x42020
3773          * The bit 15 of 0x45000
3774          */
3775         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3776                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
3777                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3778         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3779         I915_WRITE(DISP_ARB_CTL,
3780                    (I915_READ(DISP_ARB_CTL) |
3781                     DISP_FBC_WM_DIS));
3782         I915_WRITE(WM3_LP_ILK, 0);
3783         I915_WRITE(WM2_LP_ILK, 0);
3784         I915_WRITE(WM1_LP_ILK, 0);
3785
3786         /*
3787          * Based on the document from hardware guys the following bits
3788          * should be set unconditionally in order to enable FBC.
3789          * The bit 22 of 0x42000
3790          * The bit 22 of 0x42004
3791          * The bit 7,8,9 of 0x42020.
3792          */
3793         if (IS_IRONLAKE_M(dev)) {
3794                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3795                            I915_READ(ILK_DISPLAY_CHICKEN1) |
3796                            ILK_FBCQ_DIS);
3797                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3798                            I915_READ(ILK_DISPLAY_CHICKEN2) |
3799                            ILK_DPARB_GATE);
3800         }
3801
3802         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3803
3804         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3805                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3806                    ILK_ELPIN_409_SELECT);
3807         I915_WRITE(_3D_CHICKEN2,
3808                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3809                    _3D_CHICKEN2_WM_READ_PIPELINED);
3810
3811         /* WaDisableRenderCachePipelinedFlush:ilk */
3812         I915_WRITE(CACHE_MODE_0,
3813                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3814
3815         ibx_init_clock_gating(dev);
3816 }
3817
3818 static void cpt_init_clock_gating(struct drm_device *dev)
3819 {
3820         struct drm_i915_private *dev_priv = dev->dev_private;
3821         int pipe;
3822         uint32_t val;
3823
3824         /*
3825          * On Ibex Peak and Cougar Point, we need to disable clock
3826          * gating for the panel power sequencer or it will fail to
3827          * start up when no ports are active.
3828          */
3829         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3830         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3831                    DPLS_EDP_PPS_FIX_DIS);
3832         /* The below fixes the weird display corruption, a few pixels shifted
3833          * downward, on (only) LVDS of some HP laptops with IVY.
3834          */
3835         for_each_pipe(pipe) {
3836                 val = I915_READ(TRANS_CHICKEN2(pipe));
3837                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
3838                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
3839                 if (dev_priv->fdi_rx_polarity_inverted)
3840                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
3841                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
3842                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
3843                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
3844                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
3845         }
3846         /* WADP0ClockGatingDisable */
3847         for_each_pipe(pipe) {
3848                 I915_WRITE(TRANS_CHICKEN1(pipe),
3849                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3850         }
3851 }
3852
3853 static void gen6_check_mch_setup(struct drm_device *dev)
3854 {
3855         struct drm_i915_private *dev_priv = dev->dev_private;
3856         uint32_t tmp;
3857
3858         tmp = I915_READ(MCH_SSKPD);
3859         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
3860                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
3861                 DRM_INFO("This can cause pipe underruns and display issues.\n");
3862                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
3863         }
3864 }
3865
3866 static void gen6_init_clock_gating(struct drm_device *dev)
3867 {
3868         struct drm_i915_private *dev_priv = dev->dev_private;
3869         int pipe;
3870         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3871
3872         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3873
3874         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3875                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3876                    ILK_ELPIN_409_SELECT);
3877
3878         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
3879         I915_WRITE(_3D_CHICKEN,
3880                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
3881
3882         /* WaSetupGtModeTdRowDispatch:snb */
3883         if (IS_SNB_GT1(dev))
3884                 I915_WRITE(GEN6_GT_MODE,
3885                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
3886
3887         I915_WRITE(WM3_LP_ILK, 0);
3888         I915_WRITE(WM2_LP_ILK, 0);
3889         I915_WRITE(WM1_LP_ILK, 0);
3890
3891         I915_WRITE(CACHE_MODE_0,
3892                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3893
3894         I915_WRITE(GEN6_UCGCTL1,
3895                    I915_READ(GEN6_UCGCTL1) |
3896                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3897                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3898
3899         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3900          * gating disable must be set.  Failure to set it results in
3901          * flickering pixels due to Z write ordering failures after
3902          * some amount of runtime in the Mesa "fire" demo, and Unigine
3903          * Sanctuary and Tropics, and apparently anything else with
3904          * alpha test or pixel discard.
3905          *
3906          * According to the spec, bit 11 (RCCUNIT) must also be set,
3907          * but we didn't debug actual testcases to find it out.
3908          *
3909          * Also apply WaDisableVDSUnitClockGating:snb and
3910          * WaDisableRCPBUnitClockGating:snb.
3911          */
3912         I915_WRITE(GEN6_UCGCTL2,
3913                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3914                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3915                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3916
3917         /* Bspec says we need to always set all mask bits. */
3918         I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
3919                    _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
3920
3921         /*
3922          * According to the spec the following bits should be
3923          * set in order to enable memory self-refresh and fbc:
3924          * The bit21 and bit22 of 0x42000
3925          * The bit21 and bit22 of 0x42004
3926          * The bit5 and bit7 of 0x42020
3927          * The bit14 of 0x70180
3928          * The bit14 of 0x71180
3929          */
3930         I915_WRITE(ILK_DISPLAY_CHICKEN1,
3931                    I915_READ(ILK_DISPLAY_CHICKEN1) |
3932                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3933         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3934                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3935                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3936         I915_WRITE(ILK_DSPCLK_GATE_D,
3937                    I915_READ(ILK_DSPCLK_GATE_D) |
3938                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
3939                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3940
3941         /* WaMbcDriverBootEnable:snb */
3942         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3943                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3944
3945         for_each_pipe(pipe) {
3946                 I915_WRITE(DSPCNTR(pipe),
3947                            I915_READ(DSPCNTR(pipe)) |
3948                            DISPPLANE_TRICKLE_FEED_DISABLE);
3949                 intel_flush_display_plane(dev_priv, pipe);
3950         }
3951
3952         /* The default value should be 0x200 according to docs, but the two
3953          * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
3954         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
3955         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3956
3957         cpt_init_clock_gating(dev);
3958
3959         gen6_check_mch_setup(dev);
3960 }
3961
3962 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3963 {
3964         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3965
3966         reg &= ~GEN7_FF_SCHED_MASK;
3967         reg |= GEN7_FF_TS_SCHED_HW;
3968         reg |= GEN7_FF_VS_SCHED_HW;
3969         reg |= GEN7_FF_DS_SCHED_HW;
3970
3971         if (IS_HASWELL(dev_priv->dev))
3972                 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
3973
3974         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3975 }
3976
3977 static void lpt_init_clock_gating(struct drm_device *dev)
3978 {
3979         struct drm_i915_private *dev_priv = dev->dev_private;
3980
3981         /*
3982          * TODO: this bit should only be enabled when really needed, then
3983          * disabled when not needed anymore in order to save power.
3984          */
3985         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
3986                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
3987                            I915_READ(SOUTH_DSPCLK_GATE_D) |
3988                            PCH_LP_PARTITION_LEVEL_DISABLE);
3989 }
3990
3991 static void lpt_suspend_hw(struct drm_device *dev)
3992 {
3993         struct drm_i915_private *dev_priv = dev->dev_private;
3994
3995         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
3996                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
3997
3998                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
3999                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4000         }
4001 }
4002
4003 static void haswell_init_clock_gating(struct drm_device *dev)
4004 {
4005         struct drm_i915_private *dev_priv = dev->dev_private;
4006         int pipe;
4007
4008         I915_WRITE(WM3_LP_ILK, 0);
4009         I915_WRITE(WM2_LP_ILK, 0);
4010         I915_WRITE(WM1_LP_ILK, 0);
4011
4012         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4013          * This implements the WaDisableRCZUnitClockGating:hsw workaround.
4014          */
4015         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4016
4017         /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
4018         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4019                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4020
4021         /* WaApplyL3ControlAndL3ChickenMode:hsw */
4022         I915_WRITE(GEN7_L3CNTLREG1,
4023                         GEN7_WA_FOR_GEN7_L3_CONTROL);
4024         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4025                         GEN7_WA_L3_CHICKEN_MODE);
4026
4027         /* This is required by WaCatErrorRejectionIssue:hsw */
4028         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4029                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4030                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4031
4032         for_each_pipe(pipe) {
4033                 I915_WRITE(DSPCNTR(pipe),
4034                            I915_READ(DSPCNTR(pipe)) |
4035                            DISPPLANE_TRICKLE_FEED_DISABLE);
4036                 intel_flush_display_plane(dev_priv, pipe);
4037         }
4038
4039         /* WaVSRefCountFullforceMissDisable:hsw */
4040         gen7_setup_fixed_func_scheduler(dev_priv);
4041
4042         /* WaDisable4x2SubspanOptimization:hsw */
4043         I915_WRITE(CACHE_MODE_1,
4044                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4045
4046         /* WaMbcDriverBootEnable:hsw */
4047         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4048                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4049
4050         /* WaSwitchSolVfFArbitrationPriority:hsw */
4051         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4052
4053         /* XXX: This is a workaround for early silicon revisions and should be
4054          * removed later.
4055          */
4056         I915_WRITE(WM_DBG,
4057                         I915_READ(WM_DBG) |
4058                         WM_DBG_DISALLOW_MULTIPLE_LP |
4059                         WM_DBG_DISALLOW_SPRITE |
4060                         WM_DBG_DISALLOW_MAXFIFO);
4061
4062         lpt_init_clock_gating(dev);
4063 }
4064
4065 static void ivybridge_init_clock_gating(struct drm_device *dev)
4066 {
4067         struct drm_i915_private *dev_priv = dev->dev_private;
4068         int pipe;
4069         uint32_t snpcr;
4070
4071         I915_WRITE(WM3_LP_ILK, 0);
4072         I915_WRITE(WM2_LP_ILK, 0);
4073         I915_WRITE(WM1_LP_ILK, 0);
4074
4075         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4076
4077         /* WaDisableEarlyCull:ivb */
4078         I915_WRITE(_3D_CHICKEN3,
4079                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4080
4081         /* WaDisableBackToBackFlipFix:ivb */
4082         I915_WRITE(IVB_CHICKEN3,
4083                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4084                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
4085
4086         /* WaDisablePSDDualDispatchEnable:ivb */
4087         if (IS_IVB_GT1(dev))
4088                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4089                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4090         else
4091                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
4092                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4093
4094         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
4095         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4096                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4097
4098         /* WaApplyL3ControlAndL3ChickenMode:ivb */
4099         I915_WRITE(GEN7_L3CNTLREG1,
4100                         GEN7_WA_FOR_GEN7_L3_CONTROL);
4101         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4102                    GEN7_WA_L3_CHICKEN_MODE);
4103         if (IS_IVB_GT1(dev))
4104                 I915_WRITE(GEN7_ROW_CHICKEN2,
4105                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4106         else
4107                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
4108                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4109
4110
4111         /* WaForceL3Serialization:ivb */
4112         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4113                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4114
4115         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4116          * gating disable must be set.  Failure to set it results in
4117          * flickering pixels due to Z write ordering failures after
4118          * some amount of runtime in the Mesa "fire" demo, and Unigine
4119          * Sanctuary and Tropics, and apparently anything else with
4120          * alpha test or pixel discard.
4121          *
4122          * According to the spec, bit 11 (RCCUNIT) must also be set,
4123          * but we didn't debug actual testcases to find it out.
4124          *
4125          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4126          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
4127          */
4128         I915_WRITE(GEN6_UCGCTL2,
4129                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4130                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4131
4132         /* This is required by WaCatErrorRejectionIssue:ivb */
4133         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4134                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4135                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4136
4137         for_each_pipe(pipe) {
4138                 I915_WRITE(DSPCNTR(pipe),
4139                            I915_READ(DSPCNTR(pipe)) |
4140                            DISPPLANE_TRICKLE_FEED_DISABLE);
4141                 intel_flush_display_plane(dev_priv, pipe);
4142         }
4143
4144         /* WaMbcDriverBootEnable:ivb */
4145         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4146                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4147
4148         /* WaVSRefCountFullforceMissDisable:ivb */
4149         gen7_setup_fixed_func_scheduler(dev_priv);
4150
4151         /* WaDisable4x2SubspanOptimization:ivb */
4152         I915_WRITE(CACHE_MODE_1,
4153                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4154
4155         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4156         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4157         snpcr |= GEN6_MBC_SNPCR_MED;
4158         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4159
4160         if (!HAS_PCH_NOP(dev))
4161                 cpt_init_clock_gating(dev);
4162
4163         gen6_check_mch_setup(dev);
4164 }
4165
4166 static void valleyview_init_clock_gating(struct drm_device *dev)
4167 {
4168         struct drm_i915_private *dev_priv = dev->dev_private;
4169         int pipe;
4170
4171         I915_WRITE(WM3_LP_ILK, 0);
4172         I915_WRITE(WM2_LP_ILK, 0);
4173         I915_WRITE(WM1_LP_ILK, 0);
4174
4175         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4176
4177         /* WaDisableEarlyCull:vlv */
4178         I915_WRITE(_3D_CHICKEN3,
4179                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4180
4181         /* WaDisableBackToBackFlipFix:vlv */
4182         I915_WRITE(IVB_CHICKEN3,
4183                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4184                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
4185
4186         /* WaDisablePSDDualDispatchEnable:vlv */
4187         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4188                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
4189                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4190
4191         /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
4192         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4193                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4194
4195         /* WaApplyL3ControlAndL3ChickenMode:vlv */
4196         I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
4197         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
4198
4199         /* WaForceL3Serialization:vlv */
4200         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4201                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4202
4203         /* WaDisableDopClockGating:vlv */
4204         I915_WRITE(GEN7_ROW_CHICKEN2,
4205                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4206
4207         /* WaForceL3Serialization:vlv */
4208         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4209                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4210
4211         /* This is required by WaCatErrorRejectionIssue:vlv */
4212         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4213                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4214                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4215
4216         /* WaMbcDriverBootEnable:vlv */
4217         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4218                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4219
4220
4221         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4222          * gating disable must be set.  Failure to set it results in
4223          * flickering pixels due to Z write ordering failures after
4224          * some amount of runtime in the Mesa "fire" demo, and Unigine
4225          * Sanctuary and Tropics, and apparently anything else with
4226          * alpha test or pixel discard.
4227          *
4228          * According to the spec, bit 11 (RCCUNIT) must also be set,
4229          * but we didn't debug actual testcases to find it out.
4230          *
4231          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4232          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
4233          *
4234          * Also apply WaDisableVDSUnitClockGating:vlv and
4235          * WaDisableRCPBUnitClockGating:vlv.
4236          */
4237         I915_WRITE(GEN6_UCGCTL2,
4238                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4239                    GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
4240                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4241                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4242                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4243
4244         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
4245
4246         for_each_pipe(pipe) {
4247                 I915_WRITE(DSPCNTR(pipe),
4248                            I915_READ(DSPCNTR(pipe)) |
4249                            DISPPLANE_TRICKLE_FEED_DISABLE);
4250                 intel_flush_display_plane(dev_priv, pipe);
4251         }
4252
4253         I915_WRITE(CACHE_MODE_1,
4254                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4255
4256         /*
4257          * WaDisableVLVClockGating_VBIIssue:vlv
4258          * Disable clock gating on th GCFG unit to prevent a delay
4259          * in the reporting of vblank events.
4260          */
4261         I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
4262
4263         /* Conservative clock gating settings for now */
4264         I915_WRITE(0x9400, 0xffffffff);
4265         I915_WRITE(0x9404, 0xffffffff);
4266         I915_WRITE(0x9408, 0xffffffff);
4267         I915_WRITE(0x940c, 0xffffffff);
4268         I915_WRITE(0x9410, 0xffffffff);
4269         I915_WRITE(0x9414, 0xffffffff);
4270         I915_WRITE(0x9418, 0xffffffff);
4271 }
4272
4273 static void g4x_init_clock_gating(struct drm_device *dev)
4274 {
4275         struct drm_i915_private *dev_priv = dev->dev_private;
4276         uint32_t dspclk_gate;
4277
4278         I915_WRITE(RENCLK_GATE_D1, 0);
4279         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4280                    GS_UNIT_CLOCK_GATE_DISABLE |
4281                    CL_UNIT_CLOCK_GATE_DISABLE);
4282         I915_WRITE(RAMCLK_GATE_D, 0);
4283         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4284                 OVRUNIT_CLOCK_GATE_DISABLE |
4285                 OVCUNIT_CLOCK_GATE_DISABLE;
4286         if (IS_GM45(dev))
4287                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4288         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4289
4290         /* WaDisableRenderCachePipelinedFlush */
4291         I915_WRITE(CACHE_MODE_0,
4292                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4293 }
4294
4295 static void crestline_init_clock_gating(struct drm_device *dev)
4296 {
4297         struct drm_i915_private *dev_priv = dev->dev_private;
4298
4299         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4300         I915_WRITE(RENCLK_GATE_D2, 0);
4301         I915_WRITE(DSPCLK_GATE_D, 0);
4302         I915_WRITE(RAMCLK_GATE_D, 0);
4303         I915_WRITE16(DEUC, 0);
4304 }
4305
4306 static void broadwater_init_clock_gating(struct drm_device *dev)
4307 {
4308         struct drm_i915_private *dev_priv = dev->dev_private;
4309
4310         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4311                    I965_RCC_CLOCK_GATE_DISABLE |
4312                    I965_RCPB_CLOCK_GATE_DISABLE |
4313                    I965_ISC_CLOCK_GATE_DISABLE |
4314                    I965_FBC_CLOCK_GATE_DISABLE);
4315         I915_WRITE(RENCLK_GATE_D2, 0);
4316 }
4317
4318 static void gen3_init_clock_gating(struct drm_device *dev)
4319 {
4320         struct drm_i915_private *dev_priv = dev->dev_private;
4321         u32 dstate = I915_READ(D_STATE);
4322
4323         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4324                 DSTATE_DOT_CLOCK_GATING;
4325         I915_WRITE(D_STATE, dstate);
4326
4327         if (IS_PINEVIEW(dev))
4328                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4329
4330         /* IIR "flip pending" means done if this bit is set */
4331         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4332 }
4333
4334 static void i85x_init_clock_gating(struct drm_device *dev)
4335 {
4336         struct drm_i915_private *dev_priv = dev->dev_private;
4337
4338         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4339 }
4340
4341 static void i830_init_clock_gating(struct drm_device *dev)
4342 {
4343         struct drm_i915_private *dev_priv = dev->dev_private;
4344
4345         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4346 }
4347
4348 void intel_init_clock_gating(struct drm_device *dev)
4349 {
4350         struct drm_i915_private *dev_priv = dev->dev_private;
4351
4352         dev_priv->display.init_clock_gating(dev);
4353 }
4354
4355 void intel_suspend_hw(struct drm_device *dev)
4356 {
4357         if (HAS_PCH_LPT(dev))
4358                 lpt_suspend_hw(dev);
4359 }
4360
4361 /**
4362  * We should only use the power well if we explicitly asked the hardware to
4363  * enable it, so check if it's enabled and also check if we've requested it to
4364  * be enabled.
4365  */
4366 bool intel_display_power_enabled(struct drm_device *dev,
4367                                  enum intel_display_power_domain domain)
4368 {
4369         struct drm_i915_private *dev_priv = dev->dev_private;
4370
4371         if (!HAS_POWER_WELL(dev))
4372                 return true;
4373
4374         switch (domain) {
4375         case POWER_DOMAIN_PIPE_A:
4376         case POWER_DOMAIN_TRANSCODER_EDP:
4377                 return true;
4378         case POWER_DOMAIN_PIPE_B:
4379         case POWER_DOMAIN_PIPE_C:
4380         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
4381         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
4382         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
4383         case POWER_DOMAIN_TRANSCODER_A:
4384         case POWER_DOMAIN_TRANSCODER_B:
4385         case POWER_DOMAIN_TRANSCODER_C:
4386                 return I915_READ(HSW_PWR_WELL_DRIVER) ==
4387                        (HSW_PWR_WELL_ENABLE | HSW_PWR_WELL_STATE);
4388         default:
4389                 BUG();
4390         }
4391 }
4392
4393 void intel_set_power_well(struct drm_device *dev, bool enable)
4394 {
4395         struct drm_i915_private *dev_priv = dev->dev_private;
4396         bool is_enabled, enable_requested;
4397         uint32_t tmp;
4398
4399         if (!HAS_POWER_WELL(dev))
4400                 return;
4401
4402         if (!i915_disable_power_well && !enable)
4403                 return;
4404
4405         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
4406         is_enabled = tmp & HSW_PWR_WELL_STATE;
4407         enable_requested = tmp & HSW_PWR_WELL_ENABLE;
4408
4409         if (enable) {
4410                 if (!enable_requested)
4411                         I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
4412
4413                 if (!is_enabled) {
4414                         DRM_DEBUG_KMS("Enabling power well\n");
4415                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
4416                                       HSW_PWR_WELL_STATE), 20))
4417                                 DRM_ERROR("Timeout enabling power well\n");
4418                 }
4419         } else {
4420                 if (enable_requested) {
4421                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
4422                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
4423                 }
4424         }
4425 }
4426
4427 /*
4428  * Starting with Haswell, we have a "Power Down Well" that can be turned off
4429  * when not needed anymore. We have 4 registers that can request the power well
4430  * to be enabled, and it will only be disabled if none of the registers is
4431  * requesting it to be enabled.
4432  */
4433 void intel_init_power_well(struct drm_device *dev)
4434 {
4435         struct drm_i915_private *dev_priv = dev->dev_private;
4436
4437         if (!HAS_POWER_WELL(dev))
4438                 return;
4439
4440         /* For now, we need the power well to be always enabled. */
4441         intel_set_power_well(dev, true);
4442
4443         /* We're taking over the BIOS, so clear any requests made by it since
4444          * the driver is in charge now. */
4445         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
4446                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
4447 }
4448
4449 /* Set up chip specific power management-related functions */
4450 void intel_init_pm(struct drm_device *dev)
4451 {
4452         struct drm_i915_private *dev_priv = dev->dev_private;
4453
4454         if (I915_HAS_FBC(dev)) {
4455                 if (HAS_PCH_SPLIT(dev)) {
4456                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
4457                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
4458                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
4459                 } else if (IS_GM45(dev)) {
4460                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4461                         dev_priv->display.enable_fbc = g4x_enable_fbc;
4462                         dev_priv->display.disable_fbc = g4x_disable_fbc;
4463                 } else if (IS_CRESTLINE(dev)) {
4464                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4465                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
4466                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
4467                 }
4468                 /* 855GM needs testing */
4469         }
4470
4471         /* For cxsr */
4472         if (IS_PINEVIEW(dev))
4473                 i915_pineview_get_mem_freq(dev);
4474         else if (IS_GEN5(dev))
4475                 i915_ironlake_get_mem_freq(dev);
4476
4477         /* For FIFO watermark updates */
4478         if (HAS_PCH_SPLIT(dev)) {
4479                 if (IS_GEN5(dev)) {
4480                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
4481                                 dev_priv->display.update_wm = ironlake_update_wm;
4482                         else {
4483                                 DRM_DEBUG_KMS("Failed to get proper latency. "
4484                                               "Disable CxSR\n");
4485                                 dev_priv->display.update_wm = NULL;
4486                         }
4487                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
4488                 } else if (IS_GEN6(dev)) {
4489                         if (SNB_READ_WM0_LATENCY()) {
4490                                 dev_priv->display.update_wm = sandybridge_update_wm;
4491                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4492                         } else {
4493                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4494                                               "Disable CxSR\n");
4495                                 dev_priv->display.update_wm = NULL;
4496                         }
4497                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4498                 } else if (IS_IVYBRIDGE(dev)) {
4499                         if (SNB_READ_WM0_LATENCY()) {
4500                                 dev_priv->display.update_wm = ivybridge_update_wm;
4501                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4502                         } else {
4503                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4504                                               "Disable CxSR\n");
4505                                 dev_priv->display.update_wm = NULL;
4506                         }
4507                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4508                 } else if (IS_HASWELL(dev)) {
4509                         if (SNB_READ_WM0_LATENCY()) {
4510                                 dev_priv->display.update_wm = sandybridge_update_wm;
4511                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4512                                 dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
4513                         } else {
4514                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4515                                               "Disable CxSR\n");
4516                                 dev_priv->display.update_wm = NULL;
4517                         }
4518                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4519                 } else
4520                         dev_priv->display.update_wm = NULL;
4521         } else if (IS_VALLEYVIEW(dev)) {
4522                 dev_priv->display.update_wm = valleyview_update_wm;
4523                 dev_priv->display.init_clock_gating =
4524                         valleyview_init_clock_gating;
4525         } else if (IS_PINEVIEW(dev)) {
4526                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4527                                             dev_priv->is_ddr3,
4528                                             dev_priv->fsb_freq,
4529                                             dev_priv->mem_freq)) {
4530                         DRM_INFO("failed to find known CxSR latency "
4531                                  "(found ddr%s fsb freq %d, mem freq %d), "
4532                                  "disabling CxSR\n",
4533                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
4534                                  dev_priv->fsb_freq, dev_priv->mem_freq);
4535                         /* Disable CxSR and never update its watermark again */
4536                         pineview_disable_cxsr(dev);
4537                         dev_priv->display.update_wm = NULL;
4538                 } else
4539                         dev_priv->display.update_wm = pineview_update_wm;
4540                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4541         } else if (IS_G4X(dev)) {
4542                 dev_priv->display.update_wm = g4x_update_wm;
4543                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
4544         } else if (IS_GEN4(dev)) {
4545                 dev_priv->display.update_wm = i965_update_wm;
4546                 if (IS_CRESTLINE(dev))
4547                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
4548                 else if (IS_BROADWATER(dev))
4549                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
4550         } else if (IS_GEN3(dev)) {
4551                 dev_priv->display.update_wm = i9xx_update_wm;
4552                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4553                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4554         } else if (IS_I865G(dev)) {
4555                 dev_priv->display.update_wm = i830_update_wm;
4556                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4557                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4558         } else if (IS_I85X(dev)) {
4559                 dev_priv->display.update_wm = i9xx_update_wm;
4560                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4561                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4562         } else {
4563                 dev_priv->display.update_wm = i830_update_wm;
4564                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
4565                 if (IS_845G(dev))
4566                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
4567                 else
4568                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
4569         }
4570 }
4571
4572 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
4573 {
4574         u32 gt_thread_status_mask;
4575
4576         if (IS_HASWELL(dev_priv->dev))
4577                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
4578         else
4579                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
4580
4581         /* w/a for a sporadic read returning 0 by waiting for the GT
4582          * thread to wake up.
4583          */
4584         if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
4585                 DRM_ERROR("GT thread status wait timed out\n");
4586 }
4587
4588 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
4589 {
4590         I915_WRITE_NOTRACE(FORCEWAKE, 0);
4591         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4592 }
4593
4594 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4595 {
4596         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1) == 0,
4597                             FORCEWAKE_ACK_TIMEOUT_MS))
4598                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4599
4600         I915_WRITE_NOTRACE(FORCEWAKE, 1);
4601         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4602
4603         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1),
4604                             FORCEWAKE_ACK_TIMEOUT_MS))
4605                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4606
4607         /* WaRsForcewakeWaitTC0:snb */
4608         __gen6_gt_wait_for_thread_c0(dev_priv);
4609 }
4610
4611 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
4612 {
4613         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
4614         /* something from same cacheline, but !FORCEWAKE_MT */
4615         POSTING_READ(ECOBUS);
4616 }
4617
4618 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
4619 {
4620         u32 forcewake_ack;
4621
4622         if (IS_HASWELL(dev_priv->dev))
4623                 forcewake_ack = FORCEWAKE_ACK_HSW;
4624         else
4625                 forcewake_ack = FORCEWAKE_MT_ACK;
4626
4627         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL) == 0,
4628                             FORCEWAKE_ACK_TIMEOUT_MS))
4629                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4630
4631         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4632         /* something from same cacheline, but !FORCEWAKE_MT */
4633         POSTING_READ(ECOBUS);
4634
4635         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL),
4636                             FORCEWAKE_ACK_TIMEOUT_MS))
4637                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4638
4639         /* WaRsForcewakeWaitTC0:ivb,hsw */
4640         __gen6_gt_wait_for_thread_c0(dev_priv);
4641 }
4642
4643 /*
4644  * Generally this is called implicitly by the register read function. However,
4645  * if some sequence requires the GT to not power down then this function should
4646  * be called at the beginning of the sequence followed by a call to
4647  * gen6_gt_force_wake_put() at the end of the sequence.
4648  */
4649 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4650 {
4651         unsigned long irqflags;
4652
4653         spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4654         if (dev_priv->forcewake_count++ == 0)
4655                 dev_priv->gt.force_wake_get(dev_priv);
4656         spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4657 }
4658
4659 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4660 {
4661         u32 gtfifodbg;
4662         gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4663         if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4664              "MMIO read or write has been dropped %x\n", gtfifodbg))
4665                 I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4666 }
4667
4668 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4669 {
4670         I915_WRITE_NOTRACE(FORCEWAKE, 0);
4671         /* something from same cacheline, but !FORCEWAKE */
4672         POSTING_READ(ECOBUS);
4673         gen6_gt_check_fifodbg(dev_priv);
4674 }
4675
4676 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4677 {
4678         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4679         /* something from same cacheline, but !FORCEWAKE_MT */
4680         POSTING_READ(ECOBUS);
4681         gen6_gt_check_fifodbg(dev_priv);
4682 }
4683
4684 /*
4685  * see gen6_gt_force_wake_get()
4686  */
4687 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4688 {
4689         unsigned long irqflags;
4690
4691         spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4692         if (--dev_priv->forcewake_count == 0)
4693                 dev_priv->gt.force_wake_put(dev_priv);
4694         spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4695 }
4696
4697 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4698 {
4699         int ret = 0;
4700
4701         if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4702                 int loop = 500;
4703                 u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4704                 while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4705                         udelay(10);
4706                         fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4707                 }
4708                 if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
4709                         ++ret;
4710                 dev_priv->gt_fifo_count = fifo;
4711         }
4712         dev_priv->gt_fifo_count--;
4713
4714         return ret;
4715 }
4716
4717 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
4718 {
4719         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
4720         /* something from same cacheline, but !FORCEWAKE_VLV */
4721         POSTING_READ(FORCEWAKE_ACK_VLV);
4722 }
4723
4724 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4725 {
4726         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL) == 0,
4727                             FORCEWAKE_ACK_TIMEOUT_MS))
4728                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4729
4730         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4731         I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
4732                            _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4733
4734         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL),
4735                             FORCEWAKE_ACK_TIMEOUT_MS))
4736                 DRM_ERROR("Timed out waiting for GT to ack forcewake request.\n");
4737
4738         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_MEDIA_VLV) &
4739                              FORCEWAKE_KERNEL),
4740                             FORCEWAKE_ACK_TIMEOUT_MS))
4741                 DRM_ERROR("Timed out waiting for media to ack forcewake request.\n");
4742
4743         /* WaRsForcewakeWaitTC0:vlv */
4744         __gen6_gt_wait_for_thread_c0(dev_priv);
4745 }
4746
4747 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4748 {
4749         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4750         I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
4751                            _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4752         /* The below doubles as a POSTING_READ */
4753         gen6_gt_check_fifodbg(dev_priv);
4754 }
4755
4756 void intel_gt_reset(struct drm_device *dev)
4757 {
4758         struct drm_i915_private *dev_priv = dev->dev_private;
4759
4760         if (IS_VALLEYVIEW(dev)) {
4761                 vlv_force_wake_reset(dev_priv);
4762         } else if (INTEL_INFO(dev)->gen >= 6) {
4763                 __gen6_gt_force_wake_reset(dev_priv);
4764                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4765                         __gen6_gt_force_wake_mt_reset(dev_priv);
4766         }
4767 }
4768
4769 void intel_gt_init(struct drm_device *dev)
4770 {
4771         struct drm_i915_private *dev_priv = dev->dev_private;
4772
4773         spin_lock_init(&dev_priv->gt_lock);
4774
4775         intel_gt_reset(dev);
4776
4777         if (IS_VALLEYVIEW(dev)) {
4778                 dev_priv->gt.force_wake_get = vlv_force_wake_get;
4779                 dev_priv->gt.force_wake_put = vlv_force_wake_put;
4780         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4781                 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
4782                 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
4783         } else if (IS_GEN6(dev)) {
4784                 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4785                 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
4786         }
4787         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
4788                           intel_gen6_powersave_work);
4789 }
4790
4791 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
4792 {
4793         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4794
4795         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4796                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
4797                 return -EAGAIN;
4798         }
4799
4800         I915_WRITE(GEN6_PCODE_DATA, *val);
4801         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4802
4803         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4804                      500)) {
4805                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
4806                 return -ETIMEDOUT;
4807         }
4808
4809         *val = I915_READ(GEN6_PCODE_DATA);
4810         I915_WRITE(GEN6_PCODE_DATA, 0);
4811
4812         return 0;
4813 }
4814
4815 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
4816 {
4817         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4818
4819         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4820                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
4821                 return -EAGAIN;
4822         }
4823
4824         I915_WRITE(GEN6_PCODE_DATA, val);
4825         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4826
4827         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4828                      500)) {
4829                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
4830                 return -ETIMEDOUT;
4831         }
4832
4833         I915_WRITE(GEN6_PCODE_DATA, 0);
4834
4835         return 0;
4836 }
4837
4838 static int vlv_punit_rw(struct drm_i915_private *dev_priv, u32 port, u8 opcode,
4839                         u8 addr, u32 *val)
4840 {
4841         u32 cmd, devfn, be, bar;
4842
4843         bar = 0;
4844         be = 0xf;
4845         devfn = PCI_DEVFN(2, 0);
4846
4847         cmd = (devfn << IOSF_DEVFN_SHIFT) | (opcode << IOSF_OPCODE_SHIFT) |
4848                 (port << IOSF_PORT_SHIFT) | (be << IOSF_BYTE_ENABLES_SHIFT) |
4849                 (bar << IOSF_BAR_SHIFT);
4850
4851         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4852
4853         if (I915_READ(VLV_IOSF_DOORBELL_REQ) & IOSF_SB_BUSY) {
4854                 DRM_DEBUG_DRIVER("warning: pcode (%s) mailbox access failed\n",
4855                                  opcode == PUNIT_OPCODE_REG_READ ?
4856                                  "read" : "write");
4857                 return -EAGAIN;
4858         }
4859
4860         I915_WRITE(VLV_IOSF_ADDR, addr);
4861         if (opcode == PUNIT_OPCODE_REG_WRITE)
4862                 I915_WRITE(VLV_IOSF_DATA, *val);
4863         I915_WRITE(VLV_IOSF_DOORBELL_REQ, cmd);
4864
4865         if (wait_for((I915_READ(VLV_IOSF_DOORBELL_REQ) & IOSF_SB_BUSY) == 0,
4866                      5)) {
4867                 DRM_ERROR("timeout waiting for pcode %s (%d) to finish\n",
4868                           opcode == PUNIT_OPCODE_REG_READ ? "read" : "write",
4869                           addr);
4870                 return -ETIMEDOUT;
4871         }
4872
4873         if (opcode == PUNIT_OPCODE_REG_READ)
4874                 *val = I915_READ(VLV_IOSF_DATA);
4875         I915_WRITE(VLV_IOSF_DATA, 0);
4876
4877         return 0;
4878 }
4879
4880 int valleyview_punit_read(struct drm_i915_private *dev_priv, u8 addr, u32 *val)
4881 {
4882         return vlv_punit_rw(dev_priv, IOSF_PORT_PUNIT, PUNIT_OPCODE_REG_READ,
4883                             addr, val);
4884 }
4885
4886 int valleyview_punit_write(struct drm_i915_private *dev_priv, u8 addr, u32 val)
4887 {
4888         return vlv_punit_rw(dev_priv, IOSF_PORT_PUNIT, PUNIT_OPCODE_REG_WRITE,
4889                             addr, &val);
4890 }
4891
4892 int valleyview_nc_read(struct drm_i915_private *dev_priv, u8 addr, u32 *val)
4893 {
4894         return vlv_punit_rw(dev_priv, IOSF_PORT_NC, PUNIT_OPCODE_REG_READ,
4895                             addr, val);
4896 }
4897
4898 int vlv_gpu_freq(int ddr_freq, int val)
4899 {
4900         int mult, base;
4901
4902         switch (ddr_freq) {
4903         case 800:
4904                 mult = 20;
4905                 base = 120;
4906                 break;
4907         case 1066:
4908                 mult = 22;
4909                 base = 133;
4910                 break;
4911         case 1333:
4912                 mult = 21;
4913                 base = 125;
4914                 break;
4915         default:
4916                 return -1;
4917         }
4918
4919         return ((val - 0xbd) * mult) + base;
4920 }
4921
4922 int vlv_freq_opcode(int ddr_freq, int val)
4923 {
4924         int mult, base;
4925
4926         switch (ddr_freq) {
4927         case 800:
4928                 mult = 20;
4929                 base = 120;
4930                 break;
4931         case 1066:
4932                 mult = 22;
4933                 base = 133;
4934                 break;
4935         case 1333:
4936                 mult = 21;
4937                 base = 125;
4938                 break;
4939         default:
4940                 return -1;
4941         }
4942
4943         val /= mult;
4944         val -= base / mult;
4945         val += 0xbd;
4946
4947         if (val > 0xea)
4948                 val = 0xea;
4949
4950         return val;
4951 }
4952