]> rtime.felk.cvut.cz Git - linux-imx.git/blob - fs/btrfs/disk-io.c
127b23e8323b5ad6480ff792589ec63c07c483a3
[linux-imx.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50
51 #ifdef CONFIG_X86
52 #include <asm/cpufeature.h>
53 #endif
54
55 static struct extent_io_ops btree_extent_io_ops;
56 static void end_workqueue_fn(struct btrfs_work *work);
57 static void free_fs_root(struct btrfs_root *root);
58 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
59                                     int read_only);
60 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
61                                              struct btrfs_root *root);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64                                       struct btrfs_root *root);
65 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
67 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
68                                         struct extent_io_tree *dirty_pages,
69                                         int mark);
70 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
71                                        struct extent_io_tree *pinned_extents);
72
73 /*
74  * end_io_wq structs are used to do processing in task context when an IO is
75  * complete.  This is used during reads to verify checksums, and it is used
76  * by writes to insert metadata for new file extents after IO is complete.
77  */
78 struct end_io_wq {
79         struct bio *bio;
80         bio_end_io_t *end_io;
81         void *private;
82         struct btrfs_fs_info *info;
83         int error;
84         int metadata;
85         struct list_head list;
86         struct btrfs_work work;
87 };
88
89 /*
90  * async submit bios are used to offload expensive checksumming
91  * onto the worker threads.  They checksum file and metadata bios
92  * just before they are sent down the IO stack.
93  */
94 struct async_submit_bio {
95         struct inode *inode;
96         struct bio *bio;
97         struct list_head list;
98         extent_submit_bio_hook_t *submit_bio_start;
99         extent_submit_bio_hook_t *submit_bio_done;
100         int rw;
101         int mirror_num;
102         unsigned long bio_flags;
103         /*
104          * bio_offset is optional, can be used if the pages in the bio
105          * can't tell us where in the file the bio should go
106          */
107         u64 bio_offset;
108         struct btrfs_work work;
109         int error;
110 };
111
112 /*
113  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
114  * eb, the lockdep key is determined by the btrfs_root it belongs to and
115  * the level the eb occupies in the tree.
116  *
117  * Different roots are used for different purposes and may nest inside each
118  * other and they require separate keysets.  As lockdep keys should be
119  * static, assign keysets according to the purpose of the root as indicated
120  * by btrfs_root->objectid.  This ensures that all special purpose roots
121  * have separate keysets.
122  *
123  * Lock-nesting across peer nodes is always done with the immediate parent
124  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
125  * subclass to avoid triggering lockdep warning in such cases.
126  *
127  * The key is set by the readpage_end_io_hook after the buffer has passed
128  * csum validation but before the pages are unlocked.  It is also set by
129  * btrfs_init_new_buffer on freshly allocated blocks.
130  *
131  * We also add a check to make sure the highest level of the tree is the
132  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
133  * needs update as well.
134  */
135 #ifdef CONFIG_DEBUG_LOCK_ALLOC
136 # if BTRFS_MAX_LEVEL != 8
137 #  error
138 # endif
139
140 static struct btrfs_lockdep_keyset {
141         u64                     id;             /* root objectid */
142         const char              *name_stem;     /* lock name stem */
143         char                    names[BTRFS_MAX_LEVEL + 1][20];
144         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
145 } btrfs_lockdep_keysets[] = {
146         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
147         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
148         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
149         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
150         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
151         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
152         { .id = BTRFS_ORPHAN_OBJECTID,          .name_stem = "orphan"   },
153         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
154         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
155         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
156         { .id = 0,                              .name_stem = "tree"     },
157 };
158
159 void __init btrfs_init_lockdep(void)
160 {
161         int i, j;
162
163         /* initialize lockdep class names */
164         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
165                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
166
167                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
168                         snprintf(ks->names[j], sizeof(ks->names[j]),
169                                  "btrfs-%s-%02d", ks->name_stem, j);
170         }
171 }
172
173 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
174                                     int level)
175 {
176         struct btrfs_lockdep_keyset *ks;
177
178         BUG_ON(level >= ARRAY_SIZE(ks->keys));
179
180         /* find the matching keyset, id 0 is the default entry */
181         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
182                 if (ks->id == objectid)
183                         break;
184
185         lockdep_set_class_and_name(&eb->lock,
186                                    &ks->keys[level], ks->names[level]);
187 }
188
189 #endif
190
191 /*
192  * extents on the btree inode are pretty simple, there's one extent
193  * that covers the entire device
194  */
195 static struct extent_map *btree_get_extent(struct inode *inode,
196                 struct page *page, size_t pg_offset, u64 start, u64 len,
197                 int create)
198 {
199         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
200         struct extent_map *em;
201         int ret;
202
203         read_lock(&em_tree->lock);
204         em = lookup_extent_mapping(em_tree, start, len);
205         if (em) {
206                 em->bdev =
207                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
208                 read_unlock(&em_tree->lock);
209                 goto out;
210         }
211         read_unlock(&em_tree->lock);
212
213         em = alloc_extent_map();
214         if (!em) {
215                 em = ERR_PTR(-ENOMEM);
216                 goto out;
217         }
218         em->start = 0;
219         em->len = (u64)-1;
220         em->block_len = (u64)-1;
221         em->block_start = 0;
222         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
223
224         write_lock(&em_tree->lock);
225         ret = add_extent_mapping(em_tree, em);
226         if (ret == -EEXIST) {
227                 free_extent_map(em);
228                 em = lookup_extent_mapping(em_tree, start, len);
229                 if (!em)
230                         em = ERR_PTR(-EIO);
231         } else if (ret) {
232                 free_extent_map(em);
233                 em = ERR_PTR(ret);
234         }
235         write_unlock(&em_tree->lock);
236
237 out:
238         return em;
239 }
240
241 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
242 {
243         return crc32c(seed, data, len);
244 }
245
246 void btrfs_csum_final(u32 crc, char *result)
247 {
248         put_unaligned_le32(~crc, result);
249 }
250
251 /*
252  * compute the csum for a btree block, and either verify it or write it
253  * into the csum field of the block.
254  */
255 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
256                            int verify)
257 {
258         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
259         char *result = NULL;
260         unsigned long len;
261         unsigned long cur_len;
262         unsigned long offset = BTRFS_CSUM_SIZE;
263         char *kaddr;
264         unsigned long map_start;
265         unsigned long map_len;
266         int err;
267         u32 crc = ~(u32)0;
268         unsigned long inline_result;
269
270         len = buf->len - offset;
271         while (len > 0) {
272                 err = map_private_extent_buffer(buf, offset, 32,
273                                         &kaddr, &map_start, &map_len);
274                 if (err)
275                         return 1;
276                 cur_len = min(len, map_len - (offset - map_start));
277                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
278                                       crc, cur_len);
279                 len -= cur_len;
280                 offset += cur_len;
281         }
282         if (csum_size > sizeof(inline_result)) {
283                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
284                 if (!result)
285                         return 1;
286         } else {
287                 result = (char *)&inline_result;
288         }
289
290         btrfs_csum_final(crc, result);
291
292         if (verify) {
293                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
294                         u32 val;
295                         u32 found = 0;
296                         memcpy(&found, result, csum_size);
297
298                         read_extent_buffer(buf, &val, 0, csum_size);
299                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
300                                        "failed on %llu wanted %X found %X "
301                                        "level %d\n",
302                                        root->fs_info->sb->s_id,
303                                        (unsigned long long)buf->start, val, found,
304                                        btrfs_header_level(buf));
305                         if (result != (char *)&inline_result)
306                                 kfree(result);
307                         return 1;
308                 }
309         } else {
310                 write_extent_buffer(buf, result, 0, csum_size);
311         }
312         if (result != (char *)&inline_result)
313                 kfree(result);
314         return 0;
315 }
316
317 /*
318  * we can't consider a given block up to date unless the transid of the
319  * block matches the transid in the parent node's pointer.  This is how we
320  * detect blocks that either didn't get written at all or got written
321  * in the wrong place.
322  */
323 static int verify_parent_transid(struct extent_io_tree *io_tree,
324                                  struct extent_buffer *eb, u64 parent_transid,
325                                  int atomic)
326 {
327         struct extent_state *cached_state = NULL;
328         int ret;
329
330         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331                 return 0;
332
333         if (atomic)
334                 return -EAGAIN;
335
336         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
337                          0, &cached_state);
338         if (extent_buffer_uptodate(eb) &&
339             btrfs_header_generation(eb) == parent_transid) {
340                 ret = 0;
341                 goto out;
342         }
343         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
344                        "found %llu\n",
345                        (unsigned long long)eb->start,
346                        (unsigned long long)parent_transid,
347                        (unsigned long long)btrfs_header_generation(eb));
348         ret = 1;
349         clear_extent_buffer_uptodate(eb);
350 out:
351         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
352                              &cached_state, GFP_NOFS);
353         return ret;
354 }
355
356 /*
357  * helper to read a given tree block, doing retries as required when
358  * the checksums don't match and we have alternate mirrors to try.
359  */
360 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
361                                           struct extent_buffer *eb,
362                                           u64 start, u64 parent_transid)
363 {
364         struct extent_io_tree *io_tree;
365         int failed = 0;
366         int ret;
367         int num_copies = 0;
368         int mirror_num = 0;
369         int failed_mirror = 0;
370
371         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
372         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
373         while (1) {
374                 ret = read_extent_buffer_pages(io_tree, eb, start,
375                                                WAIT_COMPLETE,
376                                                btree_get_extent, mirror_num);
377                 if (!ret) {
378                         if (!verify_parent_transid(io_tree, eb,
379                                                    parent_transid, 0))
380                                 break;
381                         else
382                                 ret = -EIO;
383                 }
384
385                 /*
386                  * This buffer's crc is fine, but its contents are corrupted, so
387                  * there is no reason to read the other copies, they won't be
388                  * any less wrong.
389                  */
390                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
391                         break;
392
393                 num_copies = btrfs_num_copies(root->fs_info,
394                                               eb->start, eb->len);
395                 if (num_copies == 1)
396                         break;
397
398                 if (!failed_mirror) {
399                         failed = 1;
400                         failed_mirror = eb->read_mirror;
401                 }
402
403                 mirror_num++;
404                 if (mirror_num == failed_mirror)
405                         mirror_num++;
406
407                 if (mirror_num > num_copies)
408                         break;
409         }
410
411         if (failed && !ret && failed_mirror)
412                 repair_eb_io_failure(root, eb, failed_mirror);
413
414         return ret;
415 }
416
417 /*
418  * checksum a dirty tree block before IO.  This has extra checks to make sure
419  * we only fill in the checksum field in the first page of a multi-page block
420  */
421
422 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
423 {
424         struct extent_io_tree *tree;
425         u64 start = page_offset(page);
426         u64 found_start;
427         struct extent_buffer *eb;
428
429         tree = &BTRFS_I(page->mapping->host)->io_tree;
430
431         eb = (struct extent_buffer *)page->private;
432         if (page != eb->pages[0])
433                 return 0;
434         found_start = btrfs_header_bytenr(eb);
435         if (found_start != start) {
436                 WARN_ON(1);
437                 return 0;
438         }
439         if (!PageUptodate(page)) {
440                 WARN_ON(1);
441                 return 0;
442         }
443         csum_tree_block(root, eb, 0);
444         return 0;
445 }
446
447 static int check_tree_block_fsid(struct btrfs_root *root,
448                                  struct extent_buffer *eb)
449 {
450         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
451         u8 fsid[BTRFS_UUID_SIZE];
452         int ret = 1;
453
454         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
455                            BTRFS_FSID_SIZE);
456         while (fs_devices) {
457                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
458                         ret = 0;
459                         break;
460                 }
461                 fs_devices = fs_devices->seed;
462         }
463         return ret;
464 }
465
466 #define CORRUPT(reason, eb, root, slot)                         \
467         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
468                "root=%llu, slot=%d\n", reason,                  \
469                (unsigned long long)btrfs_header_bytenr(eb),     \
470                (unsigned long long)root->objectid, slot)
471
472 static noinline int check_leaf(struct btrfs_root *root,
473                                struct extent_buffer *leaf)
474 {
475         struct btrfs_key key;
476         struct btrfs_key leaf_key;
477         u32 nritems = btrfs_header_nritems(leaf);
478         int slot;
479
480         if (nritems == 0)
481                 return 0;
482
483         /* Check the 0 item */
484         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
485             BTRFS_LEAF_DATA_SIZE(root)) {
486                 CORRUPT("invalid item offset size pair", leaf, root, 0);
487                 return -EIO;
488         }
489
490         /*
491          * Check to make sure each items keys are in the correct order and their
492          * offsets make sense.  We only have to loop through nritems-1 because
493          * we check the current slot against the next slot, which verifies the
494          * next slot's offset+size makes sense and that the current's slot
495          * offset is correct.
496          */
497         for (slot = 0; slot < nritems - 1; slot++) {
498                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
499                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
500
501                 /* Make sure the keys are in the right order */
502                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
503                         CORRUPT("bad key order", leaf, root, slot);
504                         return -EIO;
505                 }
506
507                 /*
508                  * Make sure the offset and ends are right, remember that the
509                  * item data starts at the end of the leaf and grows towards the
510                  * front.
511                  */
512                 if (btrfs_item_offset_nr(leaf, slot) !=
513                         btrfs_item_end_nr(leaf, slot + 1)) {
514                         CORRUPT("slot offset bad", leaf, root, slot);
515                         return -EIO;
516                 }
517
518                 /*
519                  * Check to make sure that we don't point outside of the leaf,
520                  * just incase all the items are consistent to eachother, but
521                  * all point outside of the leaf.
522                  */
523                 if (btrfs_item_end_nr(leaf, slot) >
524                     BTRFS_LEAF_DATA_SIZE(root)) {
525                         CORRUPT("slot end outside of leaf", leaf, root, slot);
526                         return -EIO;
527                 }
528         }
529
530         return 0;
531 }
532
533 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
534                                        struct page *page, int max_walk)
535 {
536         struct extent_buffer *eb;
537         u64 start = page_offset(page);
538         u64 target = start;
539         u64 min_start;
540
541         if (start < max_walk)
542                 min_start = 0;
543         else
544                 min_start = start - max_walk;
545
546         while (start >= min_start) {
547                 eb = find_extent_buffer(tree, start, 0);
548                 if (eb) {
549                         /*
550                          * we found an extent buffer and it contains our page
551                          * horray!
552                          */
553                         if (eb->start <= target &&
554                             eb->start + eb->len > target)
555                                 return eb;
556
557                         /* we found an extent buffer that wasn't for us */
558                         free_extent_buffer(eb);
559                         return NULL;
560                 }
561                 if (start == 0)
562                         break;
563                 start -= PAGE_CACHE_SIZE;
564         }
565         return NULL;
566 }
567
568 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
569                                struct extent_state *state, int mirror)
570 {
571         struct extent_io_tree *tree;
572         u64 found_start;
573         int found_level;
574         struct extent_buffer *eb;
575         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
576         int ret = 0;
577         int reads_done;
578
579         if (!page->private)
580                 goto out;
581
582         tree = &BTRFS_I(page->mapping->host)->io_tree;
583         eb = (struct extent_buffer *)page->private;
584
585         /* the pending IO might have been the only thing that kept this buffer
586          * in memory.  Make sure we have a ref for all this other checks
587          */
588         extent_buffer_get(eb);
589
590         reads_done = atomic_dec_and_test(&eb->io_pages);
591         if (!reads_done)
592                 goto err;
593
594         eb->read_mirror = mirror;
595         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
596                 ret = -EIO;
597                 goto err;
598         }
599
600         found_start = btrfs_header_bytenr(eb);
601         if (found_start != eb->start) {
602                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
603                                "%llu %llu\n",
604                                (unsigned long long)found_start,
605                                (unsigned long long)eb->start);
606                 ret = -EIO;
607                 goto err;
608         }
609         if (check_tree_block_fsid(root, eb)) {
610                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
611                                (unsigned long long)eb->start);
612                 ret = -EIO;
613                 goto err;
614         }
615         found_level = btrfs_header_level(eb);
616
617         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
618                                        eb, found_level);
619
620         ret = csum_tree_block(root, eb, 1);
621         if (ret) {
622                 ret = -EIO;
623                 goto err;
624         }
625
626         /*
627          * If this is a leaf block and it is corrupt, set the corrupt bit so
628          * that we don't try and read the other copies of this block, just
629          * return -EIO.
630          */
631         if (found_level == 0 && check_leaf(root, eb)) {
632                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
633                 ret = -EIO;
634         }
635
636         if (!ret)
637                 set_extent_buffer_uptodate(eb);
638 err:
639         if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
640                 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
641                 btree_readahead_hook(root, eb, eb->start, ret);
642         }
643
644         if (ret) {
645                 /*
646                  * our io error hook is going to dec the io pages
647                  * again, we have to make sure it has something
648                  * to decrement
649                  */
650                 atomic_inc(&eb->io_pages);
651                 clear_extent_buffer_uptodate(eb);
652         }
653         free_extent_buffer(eb);
654 out:
655         return ret;
656 }
657
658 static int btree_io_failed_hook(struct page *page, int failed_mirror)
659 {
660         struct extent_buffer *eb;
661         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
662
663         eb = (struct extent_buffer *)page->private;
664         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
665         eb->read_mirror = failed_mirror;
666         atomic_dec(&eb->io_pages);
667         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
668                 btree_readahead_hook(root, eb, eb->start, -EIO);
669         return -EIO;    /* we fixed nothing */
670 }
671
672 static void end_workqueue_bio(struct bio *bio, int err)
673 {
674         struct end_io_wq *end_io_wq = bio->bi_private;
675         struct btrfs_fs_info *fs_info;
676
677         fs_info = end_io_wq->info;
678         end_io_wq->error = err;
679         end_io_wq->work.func = end_workqueue_fn;
680         end_io_wq->work.flags = 0;
681
682         if (bio->bi_rw & REQ_WRITE) {
683                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
684                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
685                                            &end_io_wq->work);
686                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
687                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
688                                            &end_io_wq->work);
689                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
690                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
691                                            &end_io_wq->work);
692                 else
693                         btrfs_queue_worker(&fs_info->endio_write_workers,
694                                            &end_io_wq->work);
695         } else {
696                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
697                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
698                                            &end_io_wq->work);
699                 else if (end_io_wq->metadata)
700                         btrfs_queue_worker(&fs_info->endio_meta_workers,
701                                            &end_io_wq->work);
702                 else
703                         btrfs_queue_worker(&fs_info->endio_workers,
704                                            &end_io_wq->work);
705         }
706 }
707
708 /*
709  * For the metadata arg you want
710  *
711  * 0 - if data
712  * 1 - if normal metadta
713  * 2 - if writing to the free space cache area
714  * 3 - raid parity work
715  */
716 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
717                         int metadata)
718 {
719         struct end_io_wq *end_io_wq;
720         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
721         if (!end_io_wq)
722                 return -ENOMEM;
723
724         end_io_wq->private = bio->bi_private;
725         end_io_wq->end_io = bio->bi_end_io;
726         end_io_wq->info = info;
727         end_io_wq->error = 0;
728         end_io_wq->bio = bio;
729         end_io_wq->metadata = metadata;
730
731         bio->bi_private = end_io_wq;
732         bio->bi_end_io = end_workqueue_bio;
733         return 0;
734 }
735
736 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
737 {
738         unsigned long limit = min_t(unsigned long,
739                                     info->workers.max_workers,
740                                     info->fs_devices->open_devices);
741         return 256 * limit;
742 }
743
744 static void run_one_async_start(struct btrfs_work *work)
745 {
746         struct async_submit_bio *async;
747         int ret;
748
749         async = container_of(work, struct  async_submit_bio, work);
750         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
751                                       async->mirror_num, async->bio_flags,
752                                       async->bio_offset);
753         if (ret)
754                 async->error = ret;
755 }
756
757 static void run_one_async_done(struct btrfs_work *work)
758 {
759         struct btrfs_fs_info *fs_info;
760         struct async_submit_bio *async;
761         int limit;
762
763         async = container_of(work, struct  async_submit_bio, work);
764         fs_info = BTRFS_I(async->inode)->root->fs_info;
765
766         limit = btrfs_async_submit_limit(fs_info);
767         limit = limit * 2 / 3;
768
769         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
770             waitqueue_active(&fs_info->async_submit_wait))
771                 wake_up(&fs_info->async_submit_wait);
772
773         /* If an error occured we just want to clean up the bio and move on */
774         if (async->error) {
775                 bio_endio(async->bio, async->error);
776                 return;
777         }
778
779         async->submit_bio_done(async->inode, async->rw, async->bio,
780                                async->mirror_num, async->bio_flags,
781                                async->bio_offset);
782 }
783
784 static void run_one_async_free(struct btrfs_work *work)
785 {
786         struct async_submit_bio *async;
787
788         async = container_of(work, struct  async_submit_bio, work);
789         kfree(async);
790 }
791
792 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
793                         int rw, struct bio *bio, int mirror_num,
794                         unsigned long bio_flags,
795                         u64 bio_offset,
796                         extent_submit_bio_hook_t *submit_bio_start,
797                         extent_submit_bio_hook_t *submit_bio_done)
798 {
799         struct async_submit_bio *async;
800
801         async = kmalloc(sizeof(*async), GFP_NOFS);
802         if (!async)
803                 return -ENOMEM;
804
805         async->inode = inode;
806         async->rw = rw;
807         async->bio = bio;
808         async->mirror_num = mirror_num;
809         async->submit_bio_start = submit_bio_start;
810         async->submit_bio_done = submit_bio_done;
811
812         async->work.func = run_one_async_start;
813         async->work.ordered_func = run_one_async_done;
814         async->work.ordered_free = run_one_async_free;
815
816         async->work.flags = 0;
817         async->bio_flags = bio_flags;
818         async->bio_offset = bio_offset;
819
820         async->error = 0;
821
822         atomic_inc(&fs_info->nr_async_submits);
823
824         if (rw & REQ_SYNC)
825                 btrfs_set_work_high_prio(&async->work);
826
827         btrfs_queue_worker(&fs_info->workers, &async->work);
828
829         while (atomic_read(&fs_info->async_submit_draining) &&
830               atomic_read(&fs_info->nr_async_submits)) {
831                 wait_event(fs_info->async_submit_wait,
832                            (atomic_read(&fs_info->nr_async_submits) == 0));
833         }
834
835         return 0;
836 }
837
838 static int btree_csum_one_bio(struct bio *bio)
839 {
840         struct bio_vec *bvec = bio->bi_io_vec;
841         int bio_index = 0;
842         struct btrfs_root *root;
843         int ret = 0;
844
845         WARN_ON(bio->bi_vcnt <= 0);
846         while (bio_index < bio->bi_vcnt) {
847                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
848                 ret = csum_dirty_buffer(root, bvec->bv_page);
849                 if (ret)
850                         break;
851                 bio_index++;
852                 bvec++;
853         }
854         return ret;
855 }
856
857 static int __btree_submit_bio_start(struct inode *inode, int rw,
858                                     struct bio *bio, int mirror_num,
859                                     unsigned long bio_flags,
860                                     u64 bio_offset)
861 {
862         /*
863          * when we're called for a write, we're already in the async
864          * submission context.  Just jump into btrfs_map_bio
865          */
866         return btree_csum_one_bio(bio);
867 }
868
869 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
870                                  int mirror_num, unsigned long bio_flags,
871                                  u64 bio_offset)
872 {
873         int ret;
874
875         /*
876          * when we're called for a write, we're already in the async
877          * submission context.  Just jump into btrfs_map_bio
878          */
879         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
880         if (ret)
881                 bio_endio(bio, ret);
882         return ret;
883 }
884
885 static int check_async_write(struct inode *inode, unsigned long bio_flags)
886 {
887         if (bio_flags & EXTENT_BIO_TREE_LOG)
888                 return 0;
889 #ifdef CONFIG_X86
890         if (cpu_has_xmm4_2)
891                 return 0;
892 #endif
893         return 1;
894 }
895
896 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
897                                  int mirror_num, unsigned long bio_flags,
898                                  u64 bio_offset)
899 {
900         int async = check_async_write(inode, bio_flags);
901         int ret;
902
903         if (!(rw & REQ_WRITE)) {
904                 /*
905                  * called for a read, do the setup so that checksum validation
906                  * can happen in the async kernel threads
907                  */
908                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
909                                           bio, 1);
910                 if (ret)
911                         goto out_w_error;
912                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
913                                     mirror_num, 0);
914         } else if (!async) {
915                 ret = btree_csum_one_bio(bio);
916                 if (ret)
917                         goto out_w_error;
918                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
919                                     mirror_num, 0);
920         } else {
921                 /*
922                  * kthread helpers are used to submit writes so that
923                  * checksumming can happen in parallel across all CPUs
924                  */
925                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
926                                           inode, rw, bio, mirror_num, 0,
927                                           bio_offset,
928                                           __btree_submit_bio_start,
929                                           __btree_submit_bio_done);
930         }
931
932         if (ret) {
933 out_w_error:
934                 bio_endio(bio, ret);
935         }
936         return ret;
937 }
938
939 #ifdef CONFIG_MIGRATION
940 static int btree_migratepage(struct address_space *mapping,
941                         struct page *newpage, struct page *page,
942                         enum migrate_mode mode)
943 {
944         /*
945          * we can't safely write a btree page from here,
946          * we haven't done the locking hook
947          */
948         if (PageDirty(page))
949                 return -EAGAIN;
950         /*
951          * Buffers may be managed in a filesystem specific way.
952          * We must have no buffers or drop them.
953          */
954         if (page_has_private(page) &&
955             !try_to_release_page(page, GFP_KERNEL))
956                 return -EAGAIN;
957         return migrate_page(mapping, newpage, page, mode);
958 }
959 #endif
960
961
962 static int btree_writepages(struct address_space *mapping,
963                             struct writeback_control *wbc)
964 {
965         struct extent_io_tree *tree;
966         struct btrfs_fs_info *fs_info;
967         int ret;
968
969         tree = &BTRFS_I(mapping->host)->io_tree;
970         if (wbc->sync_mode == WB_SYNC_NONE) {
971
972                 if (wbc->for_kupdate)
973                         return 0;
974
975                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
976                 /* this is a bit racy, but that's ok */
977                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
978                                              BTRFS_DIRTY_METADATA_THRESH);
979                 if (ret < 0)
980                         return 0;
981         }
982         return btree_write_cache_pages(mapping, wbc);
983 }
984
985 static int btree_readpage(struct file *file, struct page *page)
986 {
987         struct extent_io_tree *tree;
988         tree = &BTRFS_I(page->mapping->host)->io_tree;
989         return extent_read_full_page(tree, page, btree_get_extent, 0);
990 }
991
992 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
993 {
994         if (PageWriteback(page) || PageDirty(page))
995                 return 0;
996         /*
997          * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
998          * slab allocation from alloc_extent_state down the callchain where
999          * it'd hit a BUG_ON as those flags are not allowed.
1000          */
1001         gfp_flags &= ~GFP_SLAB_BUG_MASK;
1002
1003         return try_release_extent_buffer(page, gfp_flags);
1004 }
1005
1006 static void btree_invalidatepage(struct page *page, unsigned long offset)
1007 {
1008         struct extent_io_tree *tree;
1009         tree = &BTRFS_I(page->mapping->host)->io_tree;
1010         extent_invalidatepage(tree, page, offset);
1011         btree_releasepage(page, GFP_NOFS);
1012         if (PagePrivate(page)) {
1013                 printk(KERN_WARNING "btrfs warning page private not zero "
1014                        "on page %llu\n", (unsigned long long)page_offset(page));
1015                 ClearPagePrivate(page);
1016                 set_page_private(page, 0);
1017                 page_cache_release(page);
1018         }
1019 }
1020
1021 static int btree_set_page_dirty(struct page *page)
1022 {
1023 #ifdef DEBUG
1024         struct extent_buffer *eb;
1025
1026         BUG_ON(!PagePrivate(page));
1027         eb = (struct extent_buffer *)page->private;
1028         BUG_ON(!eb);
1029         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1030         BUG_ON(!atomic_read(&eb->refs));
1031         btrfs_assert_tree_locked(eb);
1032 #endif
1033         return __set_page_dirty_nobuffers(page);
1034 }
1035
1036 static const struct address_space_operations btree_aops = {
1037         .readpage       = btree_readpage,
1038         .writepages     = btree_writepages,
1039         .releasepage    = btree_releasepage,
1040         .invalidatepage = btree_invalidatepage,
1041 #ifdef CONFIG_MIGRATION
1042         .migratepage    = btree_migratepage,
1043 #endif
1044         .set_page_dirty = btree_set_page_dirty,
1045 };
1046
1047 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1048                          u64 parent_transid)
1049 {
1050         struct extent_buffer *buf = NULL;
1051         struct inode *btree_inode = root->fs_info->btree_inode;
1052         int ret = 0;
1053
1054         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1055         if (!buf)
1056                 return 0;
1057         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1058                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1059         free_extent_buffer(buf);
1060         return ret;
1061 }
1062
1063 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1064                          int mirror_num, struct extent_buffer **eb)
1065 {
1066         struct extent_buffer *buf = NULL;
1067         struct inode *btree_inode = root->fs_info->btree_inode;
1068         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1069         int ret;
1070
1071         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1072         if (!buf)
1073                 return 0;
1074
1075         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1076
1077         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1078                                        btree_get_extent, mirror_num);
1079         if (ret) {
1080                 free_extent_buffer(buf);
1081                 return ret;
1082         }
1083
1084         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1085                 free_extent_buffer(buf);
1086                 return -EIO;
1087         } else if (extent_buffer_uptodate(buf)) {
1088                 *eb = buf;
1089         } else {
1090                 free_extent_buffer(buf);
1091         }
1092         return 0;
1093 }
1094
1095 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1096                                             u64 bytenr, u32 blocksize)
1097 {
1098         struct inode *btree_inode = root->fs_info->btree_inode;
1099         struct extent_buffer *eb;
1100         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1101                                 bytenr, blocksize);
1102         return eb;
1103 }
1104
1105 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1106                                                  u64 bytenr, u32 blocksize)
1107 {
1108         struct inode *btree_inode = root->fs_info->btree_inode;
1109         struct extent_buffer *eb;
1110
1111         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1112                                  bytenr, blocksize);
1113         return eb;
1114 }
1115
1116
1117 int btrfs_write_tree_block(struct extent_buffer *buf)
1118 {
1119         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1120                                         buf->start + buf->len - 1);
1121 }
1122
1123 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1124 {
1125         return filemap_fdatawait_range(buf->pages[0]->mapping,
1126                                        buf->start, buf->start + buf->len - 1);
1127 }
1128
1129 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1130                                       u32 blocksize, u64 parent_transid)
1131 {
1132         struct extent_buffer *buf = NULL;
1133         int ret;
1134
1135         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1136         if (!buf)
1137                 return NULL;
1138
1139         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1140         return buf;
1141
1142 }
1143
1144 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1145                       struct extent_buffer *buf)
1146 {
1147         struct btrfs_fs_info *fs_info = root->fs_info;
1148
1149         if (btrfs_header_generation(buf) ==
1150             fs_info->running_transaction->transid) {
1151                 btrfs_assert_tree_locked(buf);
1152
1153                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1154                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1155                                              -buf->len,
1156                                              fs_info->dirty_metadata_batch);
1157                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1158                         btrfs_set_lock_blocking(buf);
1159                         clear_extent_buffer_dirty(buf);
1160                 }
1161         }
1162 }
1163
1164 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1165                          u32 stripesize, struct btrfs_root *root,
1166                          struct btrfs_fs_info *fs_info,
1167                          u64 objectid)
1168 {
1169         root->node = NULL;
1170         root->commit_root = NULL;
1171         root->sectorsize = sectorsize;
1172         root->nodesize = nodesize;
1173         root->leafsize = leafsize;
1174         root->stripesize = stripesize;
1175         root->ref_cows = 0;
1176         root->track_dirty = 0;
1177         root->in_radix = 0;
1178         root->orphan_item_inserted = 0;
1179         root->orphan_cleanup_state = 0;
1180
1181         root->objectid = objectid;
1182         root->last_trans = 0;
1183         root->highest_objectid = 0;
1184         root->name = NULL;
1185         root->inode_tree = RB_ROOT;
1186         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1187         root->block_rsv = NULL;
1188         root->orphan_block_rsv = NULL;
1189
1190         INIT_LIST_HEAD(&root->dirty_list);
1191         INIT_LIST_HEAD(&root->root_list);
1192         INIT_LIST_HEAD(&root->logged_list[0]);
1193         INIT_LIST_HEAD(&root->logged_list[1]);
1194         spin_lock_init(&root->orphan_lock);
1195         spin_lock_init(&root->inode_lock);
1196         spin_lock_init(&root->accounting_lock);
1197         spin_lock_init(&root->log_extents_lock[0]);
1198         spin_lock_init(&root->log_extents_lock[1]);
1199         mutex_init(&root->objectid_mutex);
1200         mutex_init(&root->log_mutex);
1201         init_waitqueue_head(&root->log_writer_wait);
1202         init_waitqueue_head(&root->log_commit_wait[0]);
1203         init_waitqueue_head(&root->log_commit_wait[1]);
1204         atomic_set(&root->log_commit[0], 0);
1205         atomic_set(&root->log_commit[1], 0);
1206         atomic_set(&root->log_writers, 0);
1207         atomic_set(&root->log_batch, 0);
1208         atomic_set(&root->orphan_inodes, 0);
1209         root->log_transid = 0;
1210         root->last_log_commit = 0;
1211         extent_io_tree_init(&root->dirty_log_pages,
1212                              fs_info->btree_inode->i_mapping);
1213
1214         memset(&root->root_key, 0, sizeof(root->root_key));
1215         memset(&root->root_item, 0, sizeof(root->root_item));
1216         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1217         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1218         root->defrag_trans_start = fs_info->generation;
1219         init_completion(&root->kobj_unregister);
1220         root->defrag_running = 0;
1221         root->root_key.objectid = objectid;
1222         root->anon_dev = 0;
1223
1224         spin_lock_init(&root->root_item_lock);
1225 }
1226
1227 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1228                                             struct btrfs_fs_info *fs_info,
1229                                             u64 objectid,
1230                                             struct btrfs_root *root)
1231 {
1232         int ret;
1233         u32 blocksize;
1234         u64 generation;
1235
1236         __setup_root(tree_root->nodesize, tree_root->leafsize,
1237                      tree_root->sectorsize, tree_root->stripesize,
1238                      root, fs_info, objectid);
1239         ret = btrfs_find_last_root(tree_root, objectid,
1240                                    &root->root_item, &root->root_key);
1241         if (ret > 0)
1242                 return -ENOENT;
1243         else if (ret < 0)
1244                 return ret;
1245
1246         generation = btrfs_root_generation(&root->root_item);
1247         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1248         root->commit_root = NULL;
1249         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1250                                      blocksize, generation);
1251         if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1252                 free_extent_buffer(root->node);
1253                 root->node = NULL;
1254                 return -EIO;
1255         }
1256         root->commit_root = btrfs_root_node(root);
1257         return 0;
1258 }
1259
1260 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1261 {
1262         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1263         if (root)
1264                 root->fs_info = fs_info;
1265         return root;
1266 }
1267
1268 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1269                                      struct btrfs_fs_info *fs_info,
1270                                      u64 objectid)
1271 {
1272         struct extent_buffer *leaf;
1273         struct btrfs_root *tree_root = fs_info->tree_root;
1274         struct btrfs_root *root;
1275         struct btrfs_key key;
1276         int ret = 0;
1277         u64 bytenr;
1278
1279         root = btrfs_alloc_root(fs_info);
1280         if (!root)
1281                 return ERR_PTR(-ENOMEM);
1282
1283         __setup_root(tree_root->nodesize, tree_root->leafsize,
1284                      tree_root->sectorsize, tree_root->stripesize,
1285                      root, fs_info, objectid);
1286         root->root_key.objectid = objectid;
1287         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1288         root->root_key.offset = 0;
1289
1290         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1291                                       0, objectid, NULL, 0, 0, 0);
1292         if (IS_ERR(leaf)) {
1293                 ret = PTR_ERR(leaf);
1294                 goto fail;
1295         }
1296
1297         bytenr = leaf->start;
1298         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1299         btrfs_set_header_bytenr(leaf, leaf->start);
1300         btrfs_set_header_generation(leaf, trans->transid);
1301         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1302         btrfs_set_header_owner(leaf, objectid);
1303         root->node = leaf;
1304
1305         write_extent_buffer(leaf, fs_info->fsid,
1306                             (unsigned long)btrfs_header_fsid(leaf),
1307                             BTRFS_FSID_SIZE);
1308         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1309                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1310                             BTRFS_UUID_SIZE);
1311         btrfs_mark_buffer_dirty(leaf);
1312
1313         root->commit_root = btrfs_root_node(root);
1314         root->track_dirty = 1;
1315
1316
1317         root->root_item.flags = 0;
1318         root->root_item.byte_limit = 0;
1319         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1320         btrfs_set_root_generation(&root->root_item, trans->transid);
1321         btrfs_set_root_level(&root->root_item, 0);
1322         btrfs_set_root_refs(&root->root_item, 1);
1323         btrfs_set_root_used(&root->root_item, leaf->len);
1324         btrfs_set_root_last_snapshot(&root->root_item, 0);
1325         btrfs_set_root_dirid(&root->root_item, 0);
1326         root->root_item.drop_level = 0;
1327
1328         key.objectid = objectid;
1329         key.type = BTRFS_ROOT_ITEM_KEY;
1330         key.offset = 0;
1331         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1332         if (ret)
1333                 goto fail;
1334
1335         btrfs_tree_unlock(leaf);
1336
1337 fail:
1338         if (ret)
1339                 return ERR_PTR(ret);
1340
1341         return root;
1342 }
1343
1344 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1345                                          struct btrfs_fs_info *fs_info)
1346 {
1347         struct btrfs_root *root;
1348         struct btrfs_root *tree_root = fs_info->tree_root;
1349         struct extent_buffer *leaf;
1350
1351         root = btrfs_alloc_root(fs_info);
1352         if (!root)
1353                 return ERR_PTR(-ENOMEM);
1354
1355         __setup_root(tree_root->nodesize, tree_root->leafsize,
1356                      tree_root->sectorsize, tree_root->stripesize,
1357                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1358
1359         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1360         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1361         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1362         /*
1363          * log trees do not get reference counted because they go away
1364          * before a real commit is actually done.  They do store pointers
1365          * to file data extents, and those reference counts still get
1366          * updated (along with back refs to the log tree).
1367          */
1368         root->ref_cows = 0;
1369
1370         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1371                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1372                                       0, 0, 0);
1373         if (IS_ERR(leaf)) {
1374                 kfree(root);
1375                 return ERR_CAST(leaf);
1376         }
1377
1378         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1379         btrfs_set_header_bytenr(leaf, leaf->start);
1380         btrfs_set_header_generation(leaf, trans->transid);
1381         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1382         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1383         root->node = leaf;
1384
1385         write_extent_buffer(root->node, root->fs_info->fsid,
1386                             (unsigned long)btrfs_header_fsid(root->node),
1387                             BTRFS_FSID_SIZE);
1388         btrfs_mark_buffer_dirty(root->node);
1389         btrfs_tree_unlock(root->node);
1390         return root;
1391 }
1392
1393 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1394                              struct btrfs_fs_info *fs_info)
1395 {
1396         struct btrfs_root *log_root;
1397
1398         log_root = alloc_log_tree(trans, fs_info);
1399         if (IS_ERR(log_root))
1400                 return PTR_ERR(log_root);
1401         WARN_ON(fs_info->log_root_tree);
1402         fs_info->log_root_tree = log_root;
1403         return 0;
1404 }
1405
1406 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1407                        struct btrfs_root *root)
1408 {
1409         struct btrfs_root *log_root;
1410         struct btrfs_inode_item *inode_item;
1411
1412         log_root = alloc_log_tree(trans, root->fs_info);
1413         if (IS_ERR(log_root))
1414                 return PTR_ERR(log_root);
1415
1416         log_root->last_trans = trans->transid;
1417         log_root->root_key.offset = root->root_key.objectid;
1418
1419         inode_item = &log_root->root_item.inode;
1420         inode_item->generation = cpu_to_le64(1);
1421         inode_item->size = cpu_to_le64(3);
1422         inode_item->nlink = cpu_to_le32(1);
1423         inode_item->nbytes = cpu_to_le64(root->leafsize);
1424         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1425
1426         btrfs_set_root_node(&log_root->root_item, log_root->node);
1427
1428         WARN_ON(root->log_root);
1429         root->log_root = log_root;
1430         root->log_transid = 0;
1431         root->last_log_commit = 0;
1432         return 0;
1433 }
1434
1435 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1436                                                struct btrfs_key *location)
1437 {
1438         struct btrfs_root *root;
1439         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1440         struct btrfs_path *path;
1441         struct extent_buffer *l;
1442         u64 generation;
1443         u32 blocksize;
1444         int ret = 0;
1445         int slot;
1446
1447         root = btrfs_alloc_root(fs_info);
1448         if (!root)
1449                 return ERR_PTR(-ENOMEM);
1450         if (location->offset == (u64)-1) {
1451                 ret = find_and_setup_root(tree_root, fs_info,
1452                                           location->objectid, root);
1453                 if (ret) {
1454                         kfree(root);
1455                         return ERR_PTR(ret);
1456                 }
1457                 goto out;
1458         }
1459
1460         __setup_root(tree_root->nodesize, tree_root->leafsize,
1461                      tree_root->sectorsize, tree_root->stripesize,
1462                      root, fs_info, location->objectid);
1463
1464         path = btrfs_alloc_path();
1465         if (!path) {
1466                 kfree(root);
1467                 return ERR_PTR(-ENOMEM);
1468         }
1469         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1470         if (ret == 0) {
1471                 l = path->nodes[0];
1472                 slot = path->slots[0];
1473                 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1474                 memcpy(&root->root_key, location, sizeof(*location));
1475         }
1476         btrfs_free_path(path);
1477         if (ret) {
1478                 kfree(root);
1479                 if (ret > 0)
1480                         ret = -ENOENT;
1481                 return ERR_PTR(ret);
1482         }
1483
1484         generation = btrfs_root_generation(&root->root_item);
1485         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1486         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1487                                      blocksize, generation);
1488         root->commit_root = btrfs_root_node(root);
1489         BUG_ON(!root->node); /* -ENOMEM */
1490 out:
1491         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1492                 root->ref_cows = 1;
1493                 btrfs_check_and_init_root_item(&root->root_item);
1494         }
1495
1496         return root;
1497 }
1498
1499 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1500                                               struct btrfs_key *location)
1501 {
1502         struct btrfs_root *root;
1503         int ret;
1504
1505         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1506                 return fs_info->tree_root;
1507         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1508                 return fs_info->extent_root;
1509         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1510                 return fs_info->chunk_root;
1511         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1512                 return fs_info->dev_root;
1513         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1514                 return fs_info->csum_root;
1515         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1516                 return fs_info->quota_root ? fs_info->quota_root :
1517                                              ERR_PTR(-ENOENT);
1518 again:
1519         spin_lock(&fs_info->fs_roots_radix_lock);
1520         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1521                                  (unsigned long)location->objectid);
1522         spin_unlock(&fs_info->fs_roots_radix_lock);
1523         if (root)
1524                 return root;
1525
1526         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1527         if (IS_ERR(root))
1528                 return root;
1529
1530         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1531         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1532                                         GFP_NOFS);
1533         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1534                 ret = -ENOMEM;
1535                 goto fail;
1536         }
1537
1538         btrfs_init_free_ino_ctl(root);
1539         mutex_init(&root->fs_commit_mutex);
1540         spin_lock_init(&root->cache_lock);
1541         init_waitqueue_head(&root->cache_wait);
1542
1543         ret = get_anon_bdev(&root->anon_dev);
1544         if (ret)
1545                 goto fail;
1546
1547         if (btrfs_root_refs(&root->root_item) == 0) {
1548                 ret = -ENOENT;
1549                 goto fail;
1550         }
1551
1552         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1553         if (ret < 0)
1554                 goto fail;
1555         if (ret == 0)
1556                 root->orphan_item_inserted = 1;
1557
1558         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1559         if (ret)
1560                 goto fail;
1561
1562         spin_lock(&fs_info->fs_roots_radix_lock);
1563         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1564                                 (unsigned long)root->root_key.objectid,
1565                                 root);
1566         if (ret == 0)
1567                 root->in_radix = 1;
1568
1569         spin_unlock(&fs_info->fs_roots_radix_lock);
1570         radix_tree_preload_end();
1571         if (ret) {
1572                 if (ret == -EEXIST) {
1573                         free_fs_root(root);
1574                         goto again;
1575                 }
1576                 goto fail;
1577         }
1578
1579         ret = btrfs_find_dead_roots(fs_info->tree_root,
1580                                     root->root_key.objectid);
1581         WARN_ON(ret);
1582         return root;
1583 fail:
1584         free_fs_root(root);
1585         return ERR_PTR(ret);
1586 }
1587
1588 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1589 {
1590         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1591         int ret = 0;
1592         struct btrfs_device *device;
1593         struct backing_dev_info *bdi;
1594
1595         rcu_read_lock();
1596         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1597                 if (!device->bdev)
1598                         continue;
1599                 bdi = blk_get_backing_dev_info(device->bdev);
1600                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1601                         ret = 1;
1602                         break;
1603                 }
1604         }
1605         rcu_read_unlock();
1606         return ret;
1607 }
1608
1609 /*
1610  * If this fails, caller must call bdi_destroy() to get rid of the
1611  * bdi again.
1612  */
1613 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1614 {
1615         int err;
1616
1617         bdi->capabilities = BDI_CAP_MAP_COPY;
1618         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1619         if (err)
1620                 return err;
1621
1622         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1623         bdi->congested_fn       = btrfs_congested_fn;
1624         bdi->congested_data     = info;
1625         return 0;
1626 }
1627
1628 /*
1629  * called by the kthread helper functions to finally call the bio end_io
1630  * functions.  This is where read checksum verification actually happens
1631  */
1632 static void end_workqueue_fn(struct btrfs_work *work)
1633 {
1634         struct bio *bio;
1635         struct end_io_wq *end_io_wq;
1636         struct btrfs_fs_info *fs_info;
1637         int error;
1638
1639         end_io_wq = container_of(work, struct end_io_wq, work);
1640         bio = end_io_wq->bio;
1641         fs_info = end_io_wq->info;
1642
1643         error = end_io_wq->error;
1644         bio->bi_private = end_io_wq->private;
1645         bio->bi_end_io = end_io_wq->end_io;
1646         kfree(end_io_wq);
1647         bio_endio(bio, error);
1648 }
1649
1650 static int cleaner_kthread(void *arg)
1651 {
1652         struct btrfs_root *root = arg;
1653
1654         do {
1655                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1656                     mutex_trylock(&root->fs_info->cleaner_mutex)) {
1657                         btrfs_run_delayed_iputs(root);
1658                         btrfs_clean_old_snapshots(root);
1659                         mutex_unlock(&root->fs_info->cleaner_mutex);
1660                         btrfs_run_defrag_inodes(root->fs_info);
1661                 }
1662
1663                 if (!try_to_freeze()) {
1664                         set_current_state(TASK_INTERRUPTIBLE);
1665                         if (!kthread_should_stop())
1666                                 schedule();
1667                         __set_current_state(TASK_RUNNING);
1668                 }
1669         } while (!kthread_should_stop());
1670         return 0;
1671 }
1672
1673 static int transaction_kthread(void *arg)
1674 {
1675         struct btrfs_root *root = arg;
1676         struct btrfs_trans_handle *trans;
1677         struct btrfs_transaction *cur;
1678         u64 transid;
1679         unsigned long now;
1680         unsigned long delay;
1681         bool cannot_commit;
1682
1683         do {
1684                 cannot_commit = false;
1685                 delay = HZ * 30;
1686                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1687
1688                 spin_lock(&root->fs_info->trans_lock);
1689                 cur = root->fs_info->running_transaction;
1690                 if (!cur) {
1691                         spin_unlock(&root->fs_info->trans_lock);
1692                         goto sleep;
1693                 }
1694
1695                 now = get_seconds();
1696                 if (!cur->blocked &&
1697                     (now < cur->start_time || now - cur->start_time < 30)) {
1698                         spin_unlock(&root->fs_info->trans_lock);
1699                         delay = HZ * 5;
1700                         goto sleep;
1701                 }
1702                 transid = cur->transid;
1703                 spin_unlock(&root->fs_info->trans_lock);
1704
1705                 /* If the file system is aborted, this will always fail. */
1706                 trans = btrfs_attach_transaction(root);
1707                 if (IS_ERR(trans)) {
1708                         if (PTR_ERR(trans) != -ENOENT)
1709                                 cannot_commit = true;
1710                         goto sleep;
1711                 }
1712                 if (transid == trans->transid) {
1713                         btrfs_commit_transaction(trans, root);
1714                 } else {
1715                         btrfs_end_transaction(trans, root);
1716                 }
1717 sleep:
1718                 wake_up_process(root->fs_info->cleaner_kthread);
1719                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1720
1721                 if (!try_to_freeze()) {
1722                         set_current_state(TASK_INTERRUPTIBLE);
1723                         if (!kthread_should_stop() &&
1724                             (!btrfs_transaction_blocked(root->fs_info) ||
1725                              cannot_commit))
1726                                 schedule_timeout(delay);
1727                         __set_current_state(TASK_RUNNING);
1728                 }
1729         } while (!kthread_should_stop());
1730         return 0;
1731 }
1732
1733 /*
1734  * this will find the highest generation in the array of
1735  * root backups.  The index of the highest array is returned,
1736  * or -1 if we can't find anything.
1737  *
1738  * We check to make sure the array is valid by comparing the
1739  * generation of the latest  root in the array with the generation
1740  * in the super block.  If they don't match we pitch it.
1741  */
1742 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1743 {
1744         u64 cur;
1745         int newest_index = -1;
1746         struct btrfs_root_backup *root_backup;
1747         int i;
1748
1749         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1750                 root_backup = info->super_copy->super_roots + i;
1751                 cur = btrfs_backup_tree_root_gen(root_backup);
1752                 if (cur == newest_gen)
1753                         newest_index = i;
1754         }
1755
1756         /* check to see if we actually wrapped around */
1757         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1758                 root_backup = info->super_copy->super_roots;
1759                 cur = btrfs_backup_tree_root_gen(root_backup);
1760                 if (cur == newest_gen)
1761                         newest_index = 0;
1762         }
1763         return newest_index;
1764 }
1765
1766
1767 /*
1768  * find the oldest backup so we know where to store new entries
1769  * in the backup array.  This will set the backup_root_index
1770  * field in the fs_info struct
1771  */
1772 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1773                                      u64 newest_gen)
1774 {
1775         int newest_index = -1;
1776
1777         newest_index = find_newest_super_backup(info, newest_gen);
1778         /* if there was garbage in there, just move along */
1779         if (newest_index == -1) {
1780                 info->backup_root_index = 0;
1781         } else {
1782                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1783         }
1784 }
1785
1786 /*
1787  * copy all the root pointers into the super backup array.
1788  * this will bump the backup pointer by one when it is
1789  * done
1790  */
1791 static void backup_super_roots(struct btrfs_fs_info *info)
1792 {
1793         int next_backup;
1794         struct btrfs_root_backup *root_backup;
1795         int last_backup;
1796
1797         next_backup = info->backup_root_index;
1798         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1799                 BTRFS_NUM_BACKUP_ROOTS;
1800
1801         /*
1802          * just overwrite the last backup if we're at the same generation
1803          * this happens only at umount
1804          */
1805         root_backup = info->super_for_commit->super_roots + last_backup;
1806         if (btrfs_backup_tree_root_gen(root_backup) ==
1807             btrfs_header_generation(info->tree_root->node))
1808                 next_backup = last_backup;
1809
1810         root_backup = info->super_for_commit->super_roots + next_backup;
1811
1812         /*
1813          * make sure all of our padding and empty slots get zero filled
1814          * regardless of which ones we use today
1815          */
1816         memset(root_backup, 0, sizeof(*root_backup));
1817
1818         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1819
1820         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1821         btrfs_set_backup_tree_root_gen(root_backup,
1822                                btrfs_header_generation(info->tree_root->node));
1823
1824         btrfs_set_backup_tree_root_level(root_backup,
1825                                btrfs_header_level(info->tree_root->node));
1826
1827         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1828         btrfs_set_backup_chunk_root_gen(root_backup,
1829                                btrfs_header_generation(info->chunk_root->node));
1830         btrfs_set_backup_chunk_root_level(root_backup,
1831                                btrfs_header_level(info->chunk_root->node));
1832
1833         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1834         btrfs_set_backup_extent_root_gen(root_backup,
1835                                btrfs_header_generation(info->extent_root->node));
1836         btrfs_set_backup_extent_root_level(root_backup,
1837                                btrfs_header_level(info->extent_root->node));
1838
1839         /*
1840          * we might commit during log recovery, which happens before we set
1841          * the fs_root.  Make sure it is valid before we fill it in.
1842          */
1843         if (info->fs_root && info->fs_root->node) {
1844                 btrfs_set_backup_fs_root(root_backup,
1845                                          info->fs_root->node->start);
1846                 btrfs_set_backup_fs_root_gen(root_backup,
1847                                btrfs_header_generation(info->fs_root->node));
1848                 btrfs_set_backup_fs_root_level(root_backup,
1849                                btrfs_header_level(info->fs_root->node));
1850         }
1851
1852         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1853         btrfs_set_backup_dev_root_gen(root_backup,
1854                                btrfs_header_generation(info->dev_root->node));
1855         btrfs_set_backup_dev_root_level(root_backup,
1856                                        btrfs_header_level(info->dev_root->node));
1857
1858         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1859         btrfs_set_backup_csum_root_gen(root_backup,
1860                                btrfs_header_generation(info->csum_root->node));
1861         btrfs_set_backup_csum_root_level(root_backup,
1862                                btrfs_header_level(info->csum_root->node));
1863
1864         btrfs_set_backup_total_bytes(root_backup,
1865                              btrfs_super_total_bytes(info->super_copy));
1866         btrfs_set_backup_bytes_used(root_backup,
1867                              btrfs_super_bytes_used(info->super_copy));
1868         btrfs_set_backup_num_devices(root_backup,
1869                              btrfs_super_num_devices(info->super_copy));
1870
1871         /*
1872          * if we don't copy this out to the super_copy, it won't get remembered
1873          * for the next commit
1874          */
1875         memcpy(&info->super_copy->super_roots,
1876                &info->super_for_commit->super_roots,
1877                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1878 }
1879
1880 /*
1881  * this copies info out of the root backup array and back into
1882  * the in-memory super block.  It is meant to help iterate through
1883  * the array, so you send it the number of backups you've already
1884  * tried and the last backup index you used.
1885  *
1886  * this returns -1 when it has tried all the backups
1887  */
1888 static noinline int next_root_backup(struct btrfs_fs_info *info,
1889                                      struct btrfs_super_block *super,
1890                                      int *num_backups_tried, int *backup_index)
1891 {
1892         struct btrfs_root_backup *root_backup;
1893         int newest = *backup_index;
1894
1895         if (*num_backups_tried == 0) {
1896                 u64 gen = btrfs_super_generation(super);
1897
1898                 newest = find_newest_super_backup(info, gen);
1899                 if (newest == -1)
1900                         return -1;
1901
1902                 *backup_index = newest;
1903                 *num_backups_tried = 1;
1904         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1905                 /* we've tried all the backups, all done */
1906                 return -1;
1907         } else {
1908                 /* jump to the next oldest backup */
1909                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1910                         BTRFS_NUM_BACKUP_ROOTS;
1911                 *backup_index = newest;
1912                 *num_backups_tried += 1;
1913         }
1914         root_backup = super->super_roots + newest;
1915
1916         btrfs_set_super_generation(super,
1917                                    btrfs_backup_tree_root_gen(root_backup));
1918         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1919         btrfs_set_super_root_level(super,
1920                                    btrfs_backup_tree_root_level(root_backup));
1921         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1922
1923         /*
1924          * fixme: the total bytes and num_devices need to match or we should
1925          * need a fsck
1926          */
1927         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1928         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1929         return 0;
1930 }
1931
1932 /* helper to cleanup tree roots */
1933 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1934 {
1935         free_extent_buffer(info->tree_root->node);
1936         free_extent_buffer(info->tree_root->commit_root);
1937         free_extent_buffer(info->dev_root->node);
1938         free_extent_buffer(info->dev_root->commit_root);
1939         free_extent_buffer(info->extent_root->node);
1940         free_extent_buffer(info->extent_root->commit_root);
1941         free_extent_buffer(info->csum_root->node);
1942         free_extent_buffer(info->csum_root->commit_root);
1943         if (info->quota_root) {
1944                 free_extent_buffer(info->quota_root->node);
1945                 free_extent_buffer(info->quota_root->commit_root);
1946         }
1947
1948         info->tree_root->node = NULL;
1949         info->tree_root->commit_root = NULL;
1950         info->dev_root->node = NULL;
1951         info->dev_root->commit_root = NULL;
1952         info->extent_root->node = NULL;
1953         info->extent_root->commit_root = NULL;
1954         info->csum_root->node = NULL;
1955         info->csum_root->commit_root = NULL;
1956         if (info->quota_root) {
1957                 info->quota_root->node = NULL;
1958                 info->quota_root->commit_root = NULL;
1959         }
1960
1961         if (chunk_root) {
1962                 free_extent_buffer(info->chunk_root->node);
1963                 free_extent_buffer(info->chunk_root->commit_root);
1964                 info->chunk_root->node = NULL;
1965                 info->chunk_root->commit_root = NULL;
1966         }
1967 }
1968
1969
1970 int open_ctree(struct super_block *sb,
1971                struct btrfs_fs_devices *fs_devices,
1972                char *options)
1973 {
1974         u32 sectorsize;
1975         u32 nodesize;
1976         u32 leafsize;
1977         u32 blocksize;
1978         u32 stripesize;
1979         u64 generation;
1980         u64 features;
1981         struct btrfs_key location;
1982         struct buffer_head *bh;
1983         struct btrfs_super_block *disk_super;
1984         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1985         struct btrfs_root *tree_root;
1986         struct btrfs_root *extent_root;
1987         struct btrfs_root *csum_root;
1988         struct btrfs_root *chunk_root;
1989         struct btrfs_root *dev_root;
1990         struct btrfs_root *quota_root;
1991         struct btrfs_root *log_tree_root;
1992         int ret;
1993         int err = -EINVAL;
1994         int num_backups_tried = 0;
1995         int backup_index = 0;
1996
1997         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1998         extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1999         csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2000         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2001         dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
2002         quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
2003
2004         if (!tree_root || !extent_root || !csum_root ||
2005             !chunk_root || !dev_root || !quota_root) {
2006                 err = -ENOMEM;
2007                 goto fail;
2008         }
2009
2010         ret = init_srcu_struct(&fs_info->subvol_srcu);
2011         if (ret) {
2012                 err = ret;
2013                 goto fail;
2014         }
2015
2016         ret = setup_bdi(fs_info, &fs_info->bdi);
2017         if (ret) {
2018                 err = ret;
2019                 goto fail_srcu;
2020         }
2021
2022         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2023         if (ret) {
2024                 err = ret;
2025                 goto fail_bdi;
2026         }
2027         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2028                                         (1 + ilog2(nr_cpu_ids));
2029
2030         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2031         if (ret) {
2032                 err = ret;
2033                 goto fail_dirty_metadata_bytes;
2034         }
2035
2036         fs_info->btree_inode = new_inode(sb);
2037         if (!fs_info->btree_inode) {
2038                 err = -ENOMEM;
2039                 goto fail_delalloc_bytes;
2040         }
2041
2042         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2043
2044         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2045         INIT_LIST_HEAD(&fs_info->trans_list);
2046         INIT_LIST_HEAD(&fs_info->dead_roots);
2047         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2048         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2049         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2050         spin_lock_init(&fs_info->delalloc_lock);
2051         spin_lock_init(&fs_info->trans_lock);
2052         spin_lock_init(&fs_info->fs_roots_radix_lock);
2053         spin_lock_init(&fs_info->delayed_iput_lock);
2054         spin_lock_init(&fs_info->defrag_inodes_lock);
2055         spin_lock_init(&fs_info->free_chunk_lock);
2056         spin_lock_init(&fs_info->tree_mod_seq_lock);
2057         rwlock_init(&fs_info->tree_mod_log_lock);
2058         mutex_init(&fs_info->reloc_mutex);
2059         seqlock_init(&fs_info->profiles_lock);
2060
2061         init_completion(&fs_info->kobj_unregister);
2062         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2063         INIT_LIST_HEAD(&fs_info->space_info);
2064         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2065         btrfs_mapping_init(&fs_info->mapping_tree);
2066         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2067                              BTRFS_BLOCK_RSV_GLOBAL);
2068         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2069                              BTRFS_BLOCK_RSV_DELALLOC);
2070         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2071         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2072         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2073         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2074                              BTRFS_BLOCK_RSV_DELOPS);
2075         atomic_set(&fs_info->nr_async_submits, 0);
2076         atomic_set(&fs_info->async_delalloc_pages, 0);
2077         atomic_set(&fs_info->async_submit_draining, 0);
2078         atomic_set(&fs_info->nr_async_bios, 0);
2079         atomic_set(&fs_info->defrag_running, 0);
2080         atomic_set(&fs_info->tree_mod_seq, 0);
2081         fs_info->sb = sb;
2082         fs_info->max_inline = 8192 * 1024;
2083         fs_info->metadata_ratio = 0;
2084         fs_info->defrag_inodes = RB_ROOT;
2085         fs_info->trans_no_join = 0;
2086         fs_info->free_chunk_space = 0;
2087         fs_info->tree_mod_log = RB_ROOT;
2088
2089         /* readahead state */
2090         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2091         spin_lock_init(&fs_info->reada_lock);
2092
2093         fs_info->thread_pool_size = min_t(unsigned long,
2094                                           num_online_cpus() + 2, 8);
2095
2096         INIT_LIST_HEAD(&fs_info->ordered_extents);
2097         spin_lock_init(&fs_info->ordered_extent_lock);
2098         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2099                                         GFP_NOFS);
2100         if (!fs_info->delayed_root) {
2101                 err = -ENOMEM;
2102                 goto fail_iput;
2103         }
2104         btrfs_init_delayed_root(fs_info->delayed_root);
2105
2106         mutex_init(&fs_info->scrub_lock);
2107         atomic_set(&fs_info->scrubs_running, 0);
2108         atomic_set(&fs_info->scrub_pause_req, 0);
2109         atomic_set(&fs_info->scrubs_paused, 0);
2110         atomic_set(&fs_info->scrub_cancel_req, 0);
2111         init_waitqueue_head(&fs_info->scrub_pause_wait);
2112         init_rwsem(&fs_info->scrub_super_lock);
2113         fs_info->scrub_workers_refcnt = 0;
2114 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2115         fs_info->check_integrity_print_mask = 0;
2116 #endif
2117
2118         spin_lock_init(&fs_info->balance_lock);
2119         mutex_init(&fs_info->balance_mutex);
2120         atomic_set(&fs_info->balance_running, 0);
2121         atomic_set(&fs_info->balance_pause_req, 0);
2122         atomic_set(&fs_info->balance_cancel_req, 0);
2123         fs_info->balance_ctl = NULL;
2124         init_waitqueue_head(&fs_info->balance_wait_q);
2125
2126         sb->s_blocksize = 4096;
2127         sb->s_blocksize_bits = blksize_bits(4096);
2128         sb->s_bdi = &fs_info->bdi;
2129
2130         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2131         set_nlink(fs_info->btree_inode, 1);
2132         /*
2133          * we set the i_size on the btree inode to the max possible int.
2134          * the real end of the address space is determined by all of
2135          * the devices in the system
2136          */
2137         fs_info->btree_inode->i_size = OFFSET_MAX;
2138         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2139         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2140
2141         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2142         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2143                              fs_info->btree_inode->i_mapping);
2144         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2145         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2146
2147         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2148
2149         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2150         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2151                sizeof(struct btrfs_key));
2152         set_bit(BTRFS_INODE_DUMMY,
2153                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2154         insert_inode_hash(fs_info->btree_inode);
2155
2156         spin_lock_init(&fs_info->block_group_cache_lock);
2157         fs_info->block_group_cache_tree = RB_ROOT;
2158         fs_info->first_logical_byte = (u64)-1;
2159
2160         extent_io_tree_init(&fs_info->freed_extents[0],
2161                              fs_info->btree_inode->i_mapping);
2162         extent_io_tree_init(&fs_info->freed_extents[1],
2163                              fs_info->btree_inode->i_mapping);
2164         fs_info->pinned_extents = &fs_info->freed_extents[0];
2165         fs_info->do_barriers = 1;
2166
2167
2168         mutex_init(&fs_info->ordered_operations_mutex);
2169         mutex_init(&fs_info->tree_log_mutex);
2170         mutex_init(&fs_info->chunk_mutex);
2171         mutex_init(&fs_info->transaction_kthread_mutex);
2172         mutex_init(&fs_info->cleaner_mutex);
2173         mutex_init(&fs_info->volume_mutex);
2174         init_rwsem(&fs_info->extent_commit_sem);
2175         init_rwsem(&fs_info->cleanup_work_sem);
2176         init_rwsem(&fs_info->subvol_sem);
2177         fs_info->dev_replace.lock_owner = 0;
2178         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2179         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2180         mutex_init(&fs_info->dev_replace.lock_management_lock);
2181         mutex_init(&fs_info->dev_replace.lock);
2182
2183         spin_lock_init(&fs_info->qgroup_lock);
2184         fs_info->qgroup_tree = RB_ROOT;
2185         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2186         fs_info->qgroup_seq = 1;
2187         fs_info->quota_enabled = 0;
2188         fs_info->pending_quota_state = 0;
2189
2190         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2191         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2192
2193         init_waitqueue_head(&fs_info->transaction_throttle);
2194         init_waitqueue_head(&fs_info->transaction_wait);
2195         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2196         init_waitqueue_head(&fs_info->async_submit_wait);
2197
2198         ret = btrfs_alloc_stripe_hash_table(fs_info);
2199         if (ret) {
2200                 err = ret;
2201                 goto fail_alloc;
2202         }
2203
2204         __setup_root(4096, 4096, 4096, 4096, tree_root,
2205                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2206
2207         invalidate_bdev(fs_devices->latest_bdev);
2208         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2209         if (!bh) {
2210                 err = -EINVAL;
2211                 goto fail_alloc;
2212         }
2213
2214         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2215         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2216                sizeof(*fs_info->super_for_commit));
2217         brelse(bh);
2218
2219         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2220
2221         disk_super = fs_info->super_copy;
2222         if (!btrfs_super_root(disk_super))
2223                 goto fail_alloc;
2224
2225         /* check FS state, whether FS is broken. */
2226         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2227                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2228
2229         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2230         if (ret) {
2231                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2232                 err = ret;
2233                 goto fail_alloc;
2234         }
2235
2236         /*
2237          * run through our array of backup supers and setup
2238          * our ring pointer to the oldest one
2239          */
2240         generation = btrfs_super_generation(disk_super);
2241         find_oldest_super_backup(fs_info, generation);
2242
2243         /*
2244          * In the long term, we'll store the compression type in the super
2245          * block, and it'll be used for per file compression control.
2246          */
2247         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2248
2249         ret = btrfs_parse_options(tree_root, options);
2250         if (ret) {
2251                 err = ret;
2252                 goto fail_alloc;
2253         }
2254
2255         features = btrfs_super_incompat_flags(disk_super) &
2256                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2257         if (features) {
2258                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2259                        "unsupported optional features (%Lx).\n",
2260                        (unsigned long long)features);
2261                 err = -EINVAL;
2262                 goto fail_alloc;
2263         }
2264
2265         if (btrfs_super_leafsize(disk_super) !=
2266             btrfs_super_nodesize(disk_super)) {
2267                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2268                        "blocksizes don't match.  node %d leaf %d\n",
2269                        btrfs_super_nodesize(disk_super),
2270                        btrfs_super_leafsize(disk_super));
2271                 err = -EINVAL;
2272                 goto fail_alloc;
2273         }
2274         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2275                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2276                        "blocksize (%d) was too large\n",
2277                        btrfs_super_leafsize(disk_super));
2278                 err = -EINVAL;
2279                 goto fail_alloc;
2280         }
2281
2282         features = btrfs_super_incompat_flags(disk_super);
2283         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2284         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2285                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2286
2287         /*
2288          * flag our filesystem as having big metadata blocks if
2289          * they are bigger than the page size
2290          */
2291         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2292                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2293                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2294                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2295         }
2296
2297         nodesize = btrfs_super_nodesize(disk_super);
2298         leafsize = btrfs_super_leafsize(disk_super);
2299         sectorsize = btrfs_super_sectorsize(disk_super);
2300         stripesize = btrfs_super_stripesize(disk_super);
2301         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2302         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2303
2304         /*
2305          * mixed block groups end up with duplicate but slightly offset
2306          * extent buffers for the same range.  It leads to corruptions
2307          */
2308         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2309             (sectorsize != leafsize)) {
2310                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2311                                 "are not allowed for mixed block groups on %s\n",
2312                                 sb->s_id);
2313                 goto fail_alloc;
2314         }
2315
2316         btrfs_set_super_incompat_flags(disk_super, features);
2317
2318         features = btrfs_super_compat_ro_flags(disk_super) &
2319                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2320         if (!(sb->s_flags & MS_RDONLY) && features) {
2321                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2322                        "unsupported option features (%Lx).\n",
2323                        (unsigned long long)features);
2324                 err = -EINVAL;
2325                 goto fail_alloc;
2326         }
2327
2328         btrfs_init_workers(&fs_info->generic_worker,
2329                            "genwork", 1, NULL);
2330
2331         btrfs_init_workers(&fs_info->workers, "worker",
2332                            fs_info->thread_pool_size,
2333                            &fs_info->generic_worker);
2334
2335         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2336                            fs_info->thread_pool_size,
2337                            &fs_info->generic_worker);
2338
2339         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2340                            fs_info->thread_pool_size,
2341                            &fs_info->generic_worker);
2342
2343         btrfs_init_workers(&fs_info->submit_workers, "submit",
2344                            min_t(u64, fs_devices->num_devices,
2345                            fs_info->thread_pool_size),
2346                            &fs_info->generic_worker);
2347
2348         btrfs_init_workers(&fs_info->caching_workers, "cache",
2349                            2, &fs_info->generic_worker);
2350
2351         /* a higher idle thresh on the submit workers makes it much more
2352          * likely that bios will be send down in a sane order to the
2353          * devices
2354          */
2355         fs_info->submit_workers.idle_thresh = 64;
2356
2357         fs_info->workers.idle_thresh = 16;
2358         fs_info->workers.ordered = 1;
2359
2360         fs_info->delalloc_workers.idle_thresh = 2;
2361         fs_info->delalloc_workers.ordered = 1;
2362
2363         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2364                            &fs_info->generic_worker);
2365         btrfs_init_workers(&fs_info->endio_workers, "endio",
2366                            fs_info->thread_pool_size,
2367                            &fs_info->generic_worker);
2368         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2369                            fs_info->thread_pool_size,
2370                            &fs_info->generic_worker);
2371         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2372                            "endio-meta-write", fs_info->thread_pool_size,
2373                            &fs_info->generic_worker);
2374         btrfs_init_workers(&fs_info->endio_raid56_workers,
2375                            "endio-raid56", fs_info->thread_pool_size,
2376                            &fs_info->generic_worker);
2377         btrfs_init_workers(&fs_info->rmw_workers,
2378                            "rmw", fs_info->thread_pool_size,
2379                            &fs_info->generic_worker);
2380         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2381                            fs_info->thread_pool_size,
2382                            &fs_info->generic_worker);
2383         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2384                            1, &fs_info->generic_worker);
2385         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2386                            fs_info->thread_pool_size,
2387                            &fs_info->generic_worker);
2388         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2389                            fs_info->thread_pool_size,
2390                            &fs_info->generic_worker);
2391
2392         /*
2393          * endios are largely parallel and should have a very
2394          * low idle thresh
2395          */
2396         fs_info->endio_workers.idle_thresh = 4;
2397         fs_info->endio_meta_workers.idle_thresh = 4;
2398         fs_info->endio_raid56_workers.idle_thresh = 4;
2399         fs_info->rmw_workers.idle_thresh = 2;
2400
2401         fs_info->endio_write_workers.idle_thresh = 2;
2402         fs_info->endio_meta_write_workers.idle_thresh = 2;
2403         fs_info->readahead_workers.idle_thresh = 2;
2404
2405         /*
2406          * btrfs_start_workers can really only fail because of ENOMEM so just
2407          * return -ENOMEM if any of these fail.
2408          */
2409         ret = btrfs_start_workers(&fs_info->workers);
2410         ret |= btrfs_start_workers(&fs_info->generic_worker);
2411         ret |= btrfs_start_workers(&fs_info->submit_workers);
2412         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2413         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2414         ret |= btrfs_start_workers(&fs_info->endio_workers);
2415         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2416         ret |= btrfs_start_workers(&fs_info->rmw_workers);
2417         ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2418         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2419         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2420         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2421         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2422         ret |= btrfs_start_workers(&fs_info->caching_workers);
2423         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2424         ret |= btrfs_start_workers(&fs_info->flush_workers);
2425         if (ret) {
2426                 err = -ENOMEM;
2427                 goto fail_sb_buffer;
2428         }
2429
2430         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2431         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2432                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2433
2434         tree_root->nodesize = nodesize;
2435         tree_root->leafsize = leafsize;
2436         tree_root->sectorsize = sectorsize;
2437         tree_root->stripesize = stripesize;
2438
2439         sb->s_blocksize = sectorsize;
2440         sb->s_blocksize_bits = blksize_bits(sectorsize);
2441
2442         if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2443                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2444                 goto fail_sb_buffer;
2445         }
2446
2447         if (sectorsize != PAGE_SIZE) {
2448                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2449                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2450                 goto fail_sb_buffer;
2451         }
2452
2453         mutex_lock(&fs_info->chunk_mutex);
2454         ret = btrfs_read_sys_array(tree_root);
2455         mutex_unlock(&fs_info->chunk_mutex);
2456         if (ret) {
2457                 printk(KERN_WARNING "btrfs: failed to read the system "
2458                        "array on %s\n", sb->s_id);
2459                 goto fail_sb_buffer;
2460         }
2461
2462         blocksize = btrfs_level_size(tree_root,
2463                                      btrfs_super_chunk_root_level(disk_super));
2464         generation = btrfs_super_chunk_root_generation(disk_super);
2465
2466         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2467                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2468
2469         chunk_root->node = read_tree_block(chunk_root,
2470                                            btrfs_super_chunk_root(disk_super),
2471                                            blocksize, generation);
2472         BUG_ON(!chunk_root->node); /* -ENOMEM */
2473         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2474                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2475                        sb->s_id);
2476                 goto fail_tree_roots;
2477         }
2478         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2479         chunk_root->commit_root = btrfs_root_node(chunk_root);
2480
2481         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2482            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2483            BTRFS_UUID_SIZE);
2484
2485         ret = btrfs_read_chunk_tree(chunk_root);
2486         if (ret) {
2487                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2488                        sb->s_id);
2489                 goto fail_tree_roots;
2490         }
2491
2492         /*
2493          * keep the device that is marked to be the target device for the
2494          * dev_replace procedure
2495          */
2496         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2497
2498         if (!fs_devices->latest_bdev) {
2499                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2500                        sb->s_id);
2501                 goto fail_tree_roots;
2502         }
2503
2504 retry_root_backup:
2505         blocksize = btrfs_level_size(tree_root,
2506                                      btrfs_super_root_level(disk_super));
2507         generation = btrfs_super_generation(disk_super);
2508
2509         tree_root->node = read_tree_block(tree_root,
2510                                           btrfs_super_root(disk_super),
2511                                           blocksize, generation);
2512         if (!tree_root->node ||
2513             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2514                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2515                        sb->s_id);
2516
2517                 goto recovery_tree_root;
2518         }
2519
2520         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2521         tree_root->commit_root = btrfs_root_node(tree_root);
2522
2523         ret = find_and_setup_root(tree_root, fs_info,
2524                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2525         if (ret)
2526                 goto recovery_tree_root;
2527         extent_root->track_dirty = 1;
2528
2529         ret = find_and_setup_root(tree_root, fs_info,
2530                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
2531         if (ret)
2532                 goto recovery_tree_root;
2533         dev_root->track_dirty = 1;
2534
2535         ret = find_and_setup_root(tree_root, fs_info,
2536                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
2537         if (ret)
2538                 goto recovery_tree_root;
2539         csum_root->track_dirty = 1;
2540
2541         ret = find_and_setup_root(tree_root, fs_info,
2542                                   BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2543         if (ret) {
2544                 kfree(quota_root);
2545                 quota_root = fs_info->quota_root = NULL;
2546         } else {
2547                 quota_root->track_dirty = 1;
2548                 fs_info->quota_enabled = 1;
2549                 fs_info->pending_quota_state = 1;
2550         }
2551
2552         fs_info->generation = generation;
2553         fs_info->last_trans_committed = generation;
2554
2555         ret = btrfs_recover_balance(fs_info);
2556         if (ret) {
2557                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2558                 goto fail_block_groups;
2559         }
2560
2561         ret = btrfs_init_dev_stats(fs_info);
2562         if (ret) {
2563                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2564                        ret);
2565                 goto fail_block_groups;
2566         }
2567
2568         ret = btrfs_init_dev_replace(fs_info);
2569         if (ret) {
2570                 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2571                 goto fail_block_groups;
2572         }
2573
2574         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2575
2576         ret = btrfs_init_space_info(fs_info);
2577         if (ret) {
2578                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2579                 goto fail_block_groups;
2580         }
2581
2582         ret = btrfs_read_block_groups(extent_root);
2583         if (ret) {
2584                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2585                 goto fail_block_groups;
2586         }
2587         fs_info->num_tolerated_disk_barrier_failures =
2588                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2589         if (fs_info->fs_devices->missing_devices >
2590              fs_info->num_tolerated_disk_barrier_failures &&
2591             !(sb->s_flags & MS_RDONLY)) {
2592                 printk(KERN_WARNING
2593                        "Btrfs: too many missing devices, writeable mount is not allowed\n");
2594                 goto fail_block_groups;
2595         }
2596
2597         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2598                                                "btrfs-cleaner");
2599         if (IS_ERR(fs_info->cleaner_kthread))
2600                 goto fail_block_groups;
2601
2602         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2603                                                    tree_root,
2604                                                    "btrfs-transaction");
2605         if (IS_ERR(fs_info->transaction_kthread))
2606                 goto fail_cleaner;
2607
2608         if (!btrfs_test_opt(tree_root, SSD) &&
2609             !btrfs_test_opt(tree_root, NOSSD) &&
2610             !fs_info->fs_devices->rotating) {
2611                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2612                        "mode\n");
2613                 btrfs_set_opt(fs_info->mount_opt, SSD);
2614         }
2615
2616 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2617         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2618                 ret = btrfsic_mount(tree_root, fs_devices,
2619                                     btrfs_test_opt(tree_root,
2620                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2621                                     1 : 0,
2622                                     fs_info->check_integrity_print_mask);
2623                 if (ret)
2624                         printk(KERN_WARNING "btrfs: failed to initialize"
2625                                " integrity check module %s\n", sb->s_id);
2626         }
2627 #endif
2628         ret = btrfs_read_qgroup_config(fs_info);
2629         if (ret)
2630                 goto fail_trans_kthread;
2631
2632         /* do not make disk changes in broken FS */
2633         if (btrfs_super_log_root(disk_super) != 0) {
2634                 u64 bytenr = btrfs_super_log_root(disk_super);
2635
2636                 if (fs_devices->rw_devices == 0) {
2637                         printk(KERN_WARNING "Btrfs log replay required "
2638                                "on RO media\n");
2639                         err = -EIO;
2640                         goto fail_qgroup;
2641                 }
2642                 blocksize =
2643                      btrfs_level_size(tree_root,
2644                                       btrfs_super_log_root_level(disk_super));
2645
2646                 log_tree_root = btrfs_alloc_root(fs_info);
2647                 if (!log_tree_root) {
2648                         err = -ENOMEM;
2649                         goto fail_qgroup;
2650                 }
2651
2652                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2653                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2654
2655                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2656                                                       blocksize,
2657                                                       generation + 1);
2658                 /* returns with log_tree_root freed on success */
2659                 ret = btrfs_recover_log_trees(log_tree_root);
2660                 if (ret) {
2661                         btrfs_error(tree_root->fs_info, ret,
2662                                     "Failed to recover log tree");
2663                         free_extent_buffer(log_tree_root->node);
2664                         kfree(log_tree_root);
2665                         goto fail_trans_kthread;
2666                 }
2667
2668                 if (sb->s_flags & MS_RDONLY) {
2669                         ret = btrfs_commit_super(tree_root);
2670                         if (ret)
2671                                 goto fail_trans_kthread;
2672                 }
2673         }
2674
2675         ret = btrfs_find_orphan_roots(tree_root);
2676         if (ret)
2677                 goto fail_trans_kthread;
2678
2679         if (!(sb->s_flags & MS_RDONLY)) {
2680                 ret = btrfs_cleanup_fs_roots(fs_info);
2681                 if (ret)
2682                         goto fail_trans_kthread;
2683
2684                 ret = btrfs_recover_relocation(tree_root);
2685                 if (ret < 0) {
2686                         printk(KERN_WARNING
2687                                "btrfs: failed to recover relocation\n");
2688                         err = -EINVAL;
2689                         goto fail_qgroup;
2690                 }
2691         }
2692
2693         location.objectid = BTRFS_FS_TREE_OBJECTID;
2694         location.type = BTRFS_ROOT_ITEM_KEY;
2695         location.offset = (u64)-1;
2696
2697         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2698         if (!fs_info->fs_root)
2699                 goto fail_qgroup;
2700         if (IS_ERR(fs_info->fs_root)) {
2701                 err = PTR_ERR(fs_info->fs_root);
2702                 goto fail_qgroup;
2703         }
2704
2705         if (sb->s_flags & MS_RDONLY)
2706                 return 0;
2707
2708         down_read(&fs_info->cleanup_work_sem);
2709         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2710             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2711                 up_read(&fs_info->cleanup_work_sem);
2712                 close_ctree(tree_root);
2713                 return ret;
2714         }
2715         up_read(&fs_info->cleanup_work_sem);
2716
2717         ret = btrfs_resume_balance_async(fs_info);
2718         if (ret) {
2719                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2720                 close_ctree(tree_root);
2721                 return ret;
2722         }
2723
2724         ret = btrfs_resume_dev_replace_async(fs_info);
2725         if (ret) {
2726                 pr_warn("btrfs: failed to resume dev_replace\n");
2727                 close_ctree(tree_root);
2728                 return ret;
2729         }
2730
2731         return 0;
2732
2733 fail_qgroup:
2734         btrfs_free_qgroup_config(fs_info);
2735 fail_trans_kthread:
2736         kthread_stop(fs_info->transaction_kthread);
2737 fail_cleaner:
2738         kthread_stop(fs_info->cleaner_kthread);
2739
2740         /*
2741          * make sure we're done with the btree inode before we stop our
2742          * kthreads
2743          */
2744         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2745
2746 fail_block_groups:
2747         btrfs_free_block_groups(fs_info);
2748
2749 fail_tree_roots:
2750         free_root_pointers(fs_info, 1);
2751         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2752
2753 fail_sb_buffer:
2754         btrfs_stop_workers(&fs_info->generic_worker);
2755         btrfs_stop_workers(&fs_info->readahead_workers);
2756         btrfs_stop_workers(&fs_info->fixup_workers);
2757         btrfs_stop_workers(&fs_info->delalloc_workers);
2758         btrfs_stop_workers(&fs_info->workers);
2759         btrfs_stop_workers(&fs_info->endio_workers);
2760         btrfs_stop_workers(&fs_info->endio_meta_workers);
2761         btrfs_stop_workers(&fs_info->endio_raid56_workers);
2762         btrfs_stop_workers(&fs_info->rmw_workers);
2763         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2764         btrfs_stop_workers(&fs_info->endio_write_workers);
2765         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2766         btrfs_stop_workers(&fs_info->submit_workers);
2767         btrfs_stop_workers(&fs_info->delayed_workers);
2768         btrfs_stop_workers(&fs_info->caching_workers);
2769         btrfs_stop_workers(&fs_info->flush_workers);
2770 fail_alloc:
2771 fail_iput:
2772         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2773
2774         iput(fs_info->btree_inode);
2775 fail_delalloc_bytes:
2776         percpu_counter_destroy(&fs_info->delalloc_bytes);
2777 fail_dirty_metadata_bytes:
2778         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2779 fail_bdi:
2780         bdi_destroy(&fs_info->bdi);
2781 fail_srcu:
2782         cleanup_srcu_struct(&fs_info->subvol_srcu);
2783 fail:
2784         btrfs_free_stripe_hash_table(fs_info);
2785         btrfs_close_devices(fs_info->fs_devices);
2786         return err;
2787
2788 recovery_tree_root:
2789         if (!btrfs_test_opt(tree_root, RECOVERY))
2790                 goto fail_tree_roots;
2791
2792         free_root_pointers(fs_info, 0);
2793
2794         /* don't use the log in recovery mode, it won't be valid */
2795         btrfs_set_super_log_root(disk_super, 0);
2796
2797         /* we can't trust the free space cache either */
2798         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2799
2800         ret = next_root_backup(fs_info, fs_info->super_copy,
2801                                &num_backups_tried, &backup_index);
2802         if (ret == -1)
2803                 goto fail_block_groups;
2804         goto retry_root_backup;
2805 }
2806
2807 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2808 {
2809         if (uptodate) {
2810                 set_buffer_uptodate(bh);
2811         } else {
2812                 struct btrfs_device *device = (struct btrfs_device *)
2813                         bh->b_private;
2814
2815                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2816                                           "I/O error on %s\n",
2817                                           rcu_str_deref(device->name));
2818                 /* note, we dont' set_buffer_write_io_error because we have
2819                  * our own ways of dealing with the IO errors
2820                  */
2821                 clear_buffer_uptodate(bh);
2822                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2823         }
2824         unlock_buffer(bh);
2825         put_bh(bh);
2826 }
2827
2828 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2829 {
2830         struct buffer_head *bh;
2831         struct buffer_head *latest = NULL;
2832         struct btrfs_super_block *super;
2833         int i;
2834         u64 transid = 0;
2835         u64 bytenr;
2836
2837         /* we would like to check all the supers, but that would make
2838          * a btrfs mount succeed after a mkfs from a different FS.
2839          * So, we need to add a special mount option to scan for
2840          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2841          */
2842         for (i = 0; i < 1; i++) {
2843                 bytenr = btrfs_sb_offset(i);
2844                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2845                         break;
2846                 bh = __bread(bdev, bytenr / 4096, 4096);
2847                 if (!bh)
2848                         continue;
2849
2850                 super = (struct btrfs_super_block *)bh->b_data;
2851                 if (btrfs_super_bytenr(super) != bytenr ||
2852                     super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2853                         brelse(bh);
2854                         continue;
2855                 }
2856
2857                 if (!latest || btrfs_super_generation(super) > transid) {
2858                         brelse(latest);
2859                         latest = bh;
2860                         transid = btrfs_super_generation(super);
2861                 } else {
2862                         brelse(bh);
2863                 }
2864         }
2865         return latest;
2866 }
2867
2868 /*
2869  * this should be called twice, once with wait == 0 and
2870  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2871  * we write are pinned.
2872  *
2873  * They are released when wait == 1 is done.
2874  * max_mirrors must be the same for both runs, and it indicates how
2875  * many supers on this one device should be written.
2876  *
2877  * max_mirrors == 0 means to write them all.
2878  */
2879 static int write_dev_supers(struct btrfs_device *device,
2880                             struct btrfs_super_block *sb,
2881                             int do_barriers, int wait, int max_mirrors)
2882 {
2883         struct buffer_head *bh;
2884         int i;
2885         int ret;
2886         int errors = 0;
2887         u32 crc;
2888         u64 bytenr;
2889
2890         if (max_mirrors == 0)
2891                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2892
2893         for (i = 0; i < max_mirrors; i++) {
2894                 bytenr = btrfs_sb_offset(i);
2895                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2896                         break;
2897
2898                 if (wait) {
2899                         bh = __find_get_block(device->bdev, bytenr / 4096,
2900                                               BTRFS_SUPER_INFO_SIZE);
2901                         BUG_ON(!bh);
2902                         wait_on_buffer(bh);
2903                         if (!buffer_uptodate(bh))
2904                                 errors++;
2905
2906                         /* drop our reference */
2907                         brelse(bh);
2908
2909                         /* drop the reference from the wait == 0 run */
2910                         brelse(bh);
2911                         continue;
2912                 } else {
2913                         btrfs_set_super_bytenr(sb, bytenr);
2914
2915                         crc = ~(u32)0;
2916                         crc = btrfs_csum_data(NULL, (char *)sb +
2917                                               BTRFS_CSUM_SIZE, crc,
2918                                               BTRFS_SUPER_INFO_SIZE -
2919                                               BTRFS_CSUM_SIZE);
2920                         btrfs_csum_final(crc, sb->csum);
2921
2922                         /*
2923                          * one reference for us, and we leave it for the
2924                          * caller
2925                          */
2926                         bh = __getblk(device->bdev, bytenr / 4096,
2927                                       BTRFS_SUPER_INFO_SIZE);
2928                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2929
2930                         /* one reference for submit_bh */
2931                         get_bh(bh);
2932
2933                         set_buffer_uptodate(bh);
2934                         lock_buffer(bh);
2935                         bh->b_end_io = btrfs_end_buffer_write_sync;
2936                         bh->b_private = device;
2937                 }
2938
2939                 /*
2940                  * we fua the first super.  The others we allow
2941                  * to go down lazy.
2942                  */
2943                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2944                 if (ret)
2945                         errors++;
2946         }
2947         return errors < i ? 0 : -1;
2948 }
2949
2950 /*
2951  * endio for the write_dev_flush, this will wake anyone waiting
2952  * for the barrier when it is done
2953  */
2954 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2955 {
2956         if (err) {
2957                 if (err == -EOPNOTSUPP)
2958                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2959                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2960         }
2961         if (bio->bi_private)
2962                 complete(bio->bi_private);
2963         bio_put(bio);
2964 }
2965
2966 /*
2967  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2968  * sent down.  With wait == 1, it waits for the previous flush.
2969  *
2970  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2971  * capable
2972  */
2973 static int write_dev_flush(struct btrfs_device *device, int wait)
2974 {
2975         struct bio *bio;
2976         int ret = 0;
2977
2978         if (device->nobarriers)
2979                 return 0;
2980
2981         if (wait) {
2982                 bio = device->flush_bio;
2983                 if (!bio)
2984                         return 0;
2985
2986                 wait_for_completion(&device->flush_wait);
2987
2988                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2989                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2990                                       rcu_str_deref(device->name));
2991                         device->nobarriers = 1;
2992                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
2993                         ret = -EIO;
2994                         btrfs_dev_stat_inc_and_print(device,
2995                                 BTRFS_DEV_STAT_FLUSH_ERRS);
2996                 }
2997
2998                 /* drop the reference from the wait == 0 run */
2999                 bio_put(bio);
3000                 device->flush_bio = NULL;
3001
3002                 return ret;
3003         }
3004
3005         /*
3006          * one reference for us, and we leave it for the
3007          * caller
3008          */
3009         device->flush_bio = NULL;
3010         bio = bio_alloc(GFP_NOFS, 0);
3011         if (!bio)
3012                 return -ENOMEM;
3013
3014         bio->bi_end_io = btrfs_end_empty_barrier;
3015         bio->bi_bdev = device->bdev;
3016         init_completion(&device->flush_wait);
3017         bio->bi_private = &device->flush_wait;
3018         device->flush_bio = bio;
3019
3020         bio_get(bio);
3021         btrfsic_submit_bio(WRITE_FLUSH, bio);
3022
3023         return 0;
3024 }
3025
3026 /*
3027  * send an empty flush down to each device in parallel,
3028  * then wait for them
3029  */
3030 static int barrier_all_devices(struct btrfs_fs_info *info)
3031 {
3032         struct list_head *head;
3033         struct btrfs_device *dev;
3034         int errors_send = 0;
3035         int errors_wait = 0;
3036         int ret;
3037
3038         /* send down all the barriers */
3039         head = &info->fs_devices->devices;
3040         list_for_each_entry_rcu(dev, head, dev_list) {
3041                 if (!dev->bdev) {
3042                         errors_send++;
3043                         continue;
3044                 }
3045                 if (!dev->in_fs_metadata || !dev->writeable)
3046                         continue;
3047
3048                 ret = write_dev_flush(dev, 0);
3049                 if (ret)
3050                         errors_send++;
3051         }
3052
3053         /* wait for all the barriers */
3054         list_for_each_entry_rcu(dev, head, dev_list) {
3055                 if (!dev->bdev) {
3056                         errors_wait++;
3057                         continue;
3058                 }
3059                 if (!dev->in_fs_metadata || !dev->writeable)
3060                         continue;
3061
3062                 ret = write_dev_flush(dev, 1);
3063                 if (ret)
3064                         errors_wait++;
3065         }
3066         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3067             errors_wait > info->num_tolerated_disk_barrier_failures)
3068                 return -EIO;
3069         return 0;
3070 }
3071
3072 int btrfs_calc_num_tolerated_disk_barrier_failures(
3073         struct btrfs_fs_info *fs_info)
3074 {
3075         struct btrfs_ioctl_space_info space;
3076         struct btrfs_space_info *sinfo;
3077         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3078                        BTRFS_BLOCK_GROUP_SYSTEM,
3079                        BTRFS_BLOCK_GROUP_METADATA,
3080                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3081         int num_types = 4;
3082         int i;
3083         int c;
3084         int num_tolerated_disk_barrier_failures =
3085                 (int)fs_info->fs_devices->num_devices;
3086
3087         for (i = 0; i < num_types; i++) {
3088                 struct btrfs_space_info *tmp;
3089
3090                 sinfo = NULL;
3091                 rcu_read_lock();
3092                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3093                         if (tmp->flags == types[i]) {
3094                                 sinfo = tmp;
3095                                 break;
3096                         }
3097                 }
3098                 rcu_read_unlock();
3099
3100                 if (!sinfo)
3101                         continue;
3102
3103                 down_read(&sinfo->groups_sem);
3104                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3105                         if (!list_empty(&sinfo->block_groups[c])) {
3106                                 u64 flags;
3107
3108                                 btrfs_get_block_group_info(
3109                                         &sinfo->block_groups[c], &space);
3110                                 if (space.total_bytes == 0 ||
3111                                     space.used_bytes == 0)
3112                                         continue;
3113                                 flags = space.flags;
3114                                 /*
3115                                  * return
3116                                  * 0: if dup, single or RAID0 is configured for
3117                                  *    any of metadata, system or data, else
3118                                  * 1: if RAID5 is configured, or if RAID1 or
3119                                  *    RAID10 is configured and only two mirrors
3120                                  *    are used, else
3121                                  * 2: if RAID6 is configured, else
3122                                  * num_mirrors - 1: if RAID1 or RAID10 is
3123                                  *                  configured and more than
3124                                  *                  2 mirrors are used.
3125                                  */
3126                                 if (num_tolerated_disk_barrier_failures > 0 &&
3127                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3128                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3129                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3130                                       == 0)))
3131                                         num_tolerated_disk_barrier_failures = 0;
3132                                 else if (num_tolerated_disk_barrier_failures > 1) {
3133                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3134                                             BTRFS_BLOCK_GROUP_RAID5 |
3135                                             BTRFS_BLOCK_GROUP_RAID10)) {
3136                                                 num_tolerated_disk_barrier_failures = 1;
3137                                         } else if (flags &
3138                                                    BTRFS_BLOCK_GROUP_RAID5) {
3139                                                 num_tolerated_disk_barrier_failures = 2;
3140                                         }
3141                                 }
3142                         }
3143                 }
3144                 up_read(&sinfo->groups_sem);
3145         }
3146
3147         return num_tolerated_disk_barrier_failures;
3148 }
3149
3150 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3151 {
3152         struct list_head *head;
3153         struct btrfs_device *dev;
3154         struct btrfs_super_block *sb;
3155         struct btrfs_dev_item *dev_item;
3156         int ret;
3157         int do_barriers;
3158         int max_errors;
3159         int total_errors = 0;
3160         u64 flags;
3161
3162         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3163         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3164         backup_super_roots(root->fs_info);
3165
3166         sb = root->fs_info->super_for_commit;
3167         dev_item = &sb->dev_item;
3168
3169         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3170         head = &root->fs_info->fs_devices->devices;
3171
3172         if (do_barriers) {
3173                 ret = barrier_all_devices(root->fs_info);
3174                 if (ret) {
3175                         mutex_unlock(
3176                                 &root->fs_info->fs_devices->device_list_mutex);
3177                         btrfs_error(root->fs_info, ret,
3178                                     "errors while submitting device barriers.");
3179                         return ret;
3180                 }
3181         }
3182
3183         list_for_each_entry_rcu(dev, head, dev_list) {
3184                 if (!dev->bdev) {
3185                         total_errors++;
3186                         continue;
3187                 }
3188                 if (!dev->in_fs_metadata || !dev->writeable)
3189                         continue;
3190
3191                 btrfs_set_stack_device_generation(dev_item, 0);
3192                 btrfs_set_stack_device_type(dev_item, dev->type);
3193                 btrfs_set_stack_device_id(dev_item, dev->devid);
3194                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3195                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3196                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3197                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3198                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3199                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3200                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3201
3202                 flags = btrfs_super_flags(sb);
3203                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3204
3205                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3206                 if (ret)
3207                         total_errors++;
3208         }
3209         if (total_errors > max_errors) {
3210                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3211                        total_errors);
3212
3213                 /* This shouldn't happen. FUA is masked off if unsupported */
3214                 BUG();
3215         }
3216
3217         total_errors = 0;
3218         list_for_each_entry_rcu(dev, head, dev_list) {
3219                 if (!dev->bdev)
3220                         continue;
3221                 if (!dev->in_fs_metadata || !dev->writeable)
3222                         continue;
3223
3224                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3225                 if (ret)
3226                         total_errors++;
3227         }
3228         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3229         if (total_errors > max_errors) {
3230                 btrfs_error(root->fs_info, -EIO,
3231                             "%d errors while writing supers", total_errors);
3232                 return -EIO;
3233         }
3234         return 0;
3235 }
3236
3237 int write_ctree_super(struct btrfs_trans_handle *trans,
3238                       struct btrfs_root *root, int max_mirrors)
3239 {
3240         int ret;
3241
3242         ret = write_all_supers(root, max_mirrors);
3243         return ret;
3244 }
3245
3246 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3247 {
3248         spin_lock(&fs_info->fs_roots_radix_lock);
3249         radix_tree_delete(&fs_info->fs_roots_radix,
3250                           (unsigned long)root->root_key.objectid);
3251         spin_unlock(&fs_info->fs_roots_radix_lock);
3252
3253         if (btrfs_root_refs(&root->root_item) == 0)
3254                 synchronize_srcu(&fs_info->subvol_srcu);
3255
3256         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3257                 btrfs_free_log(NULL, root);
3258                 btrfs_free_log_root_tree(NULL, fs_info);
3259         }
3260
3261         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3262         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3263         free_fs_root(root);
3264 }
3265
3266 static void free_fs_root(struct btrfs_root *root)
3267 {
3268         iput(root->cache_inode);
3269         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3270         if (root->anon_dev)
3271                 free_anon_bdev(root->anon_dev);
3272         free_extent_buffer(root->node);
3273         free_extent_buffer(root->commit_root);
3274         kfree(root->free_ino_ctl);
3275         kfree(root->free_ino_pinned);
3276         kfree(root->name);
3277         kfree(root);
3278 }
3279
3280 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3281 {
3282         int ret;
3283         struct btrfs_root *gang[8];
3284         int i;
3285
3286         while (!list_empty(&fs_info->dead_roots)) {
3287                 gang[0] = list_entry(fs_info->dead_roots.next,
3288                                      struct btrfs_root, root_list);
3289                 list_del(&gang[0]->root_list);
3290
3291                 if (gang[0]->in_radix) {
3292                         btrfs_free_fs_root(fs_info, gang[0]);
3293                 } else {
3294                         free_extent_buffer(gang[0]->node);
3295                         free_extent_buffer(gang[0]->commit_root);
3296                         kfree(gang[0]);
3297                 }
3298         }
3299
3300         while (1) {
3301                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3302                                              (void **)gang, 0,
3303                                              ARRAY_SIZE(gang));
3304                 if (!ret)
3305                         break;
3306                 for (i = 0; i < ret; i++)
3307                         btrfs_free_fs_root(fs_info, gang[i]);
3308         }
3309 }
3310
3311 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3312 {
3313         u64 root_objectid = 0;
3314         struct btrfs_root *gang[8];
3315         int i;
3316         int ret;
3317
3318         while (1) {
3319                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3320                                              (void **)gang, root_objectid,
3321                                              ARRAY_SIZE(gang));
3322                 if (!ret)
3323                         break;
3324
3325                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3326                 for (i = 0; i < ret; i++) {
3327                         int err;
3328
3329                         root_objectid = gang[i]->root_key.objectid;
3330                         err = btrfs_orphan_cleanup(gang[i]);
3331                         if (err)
3332                                 return err;
3333                 }
3334                 root_objectid++;
3335         }
3336         return 0;
3337 }
3338
3339 int btrfs_commit_super(struct btrfs_root *root)
3340 {
3341         struct btrfs_trans_handle *trans;
3342         int ret;
3343
3344         mutex_lock(&root->fs_info->cleaner_mutex);
3345         btrfs_run_delayed_iputs(root);
3346         btrfs_clean_old_snapshots(root);
3347         mutex_unlock(&root->fs_info->cleaner_mutex);
3348
3349         /* wait until ongoing cleanup work done */
3350         down_write(&root->fs_info->cleanup_work_sem);
3351         up_write(&root->fs_info->cleanup_work_sem);
3352
3353         trans = btrfs_join_transaction(root);
3354         if (IS_ERR(trans))
3355                 return PTR_ERR(trans);
3356         ret = btrfs_commit_transaction(trans, root);
3357         if (ret)
3358                 return ret;
3359         /* run commit again to drop the original snapshot */
3360         trans = btrfs_join_transaction(root);
3361         if (IS_ERR(trans))
3362                 return PTR_ERR(trans);
3363         ret = btrfs_commit_transaction(trans, root);
3364         if (ret)
3365                 return ret;
3366         ret = btrfs_write_and_wait_transaction(NULL, root);
3367         if (ret) {
3368                 btrfs_error(root->fs_info, ret,
3369                             "Failed to sync btree inode to disk.");
3370                 return ret;
3371         }
3372
3373         ret = write_ctree_super(NULL, root, 0);
3374         return ret;
3375 }
3376
3377 int close_ctree(struct btrfs_root *root)
3378 {
3379         struct btrfs_fs_info *fs_info = root->fs_info;
3380         int ret;
3381
3382         fs_info->closing = 1;
3383         smp_mb();
3384
3385         /* pause restriper - we want to resume on mount */
3386         btrfs_pause_balance(fs_info);
3387
3388         btrfs_dev_replace_suspend_for_unmount(fs_info);
3389
3390         btrfs_scrub_cancel(fs_info);
3391
3392         /* wait for any defraggers to finish */
3393         wait_event(fs_info->transaction_wait,
3394                    (atomic_read(&fs_info->defrag_running) == 0));
3395
3396         /* clear out the rbtree of defraggable inodes */
3397         btrfs_cleanup_defrag_inodes(fs_info);
3398
3399         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3400                 ret = btrfs_commit_super(root);
3401                 if (ret)
3402                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3403         }
3404
3405         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3406                 btrfs_error_commit_super(root);
3407
3408         btrfs_put_block_group_cache(fs_info);
3409
3410         kthread_stop(fs_info->transaction_kthread);
3411         kthread_stop(fs_info->cleaner_kthread);
3412
3413         fs_info->closing = 2;
3414         smp_mb();
3415
3416         btrfs_free_qgroup_config(root->fs_info);
3417
3418         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3419                 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3420                        percpu_counter_sum(&fs_info->delalloc_bytes));
3421         }
3422
3423         free_extent_buffer(fs_info->extent_root->node);
3424         free_extent_buffer(fs_info->extent_root->commit_root);
3425         free_extent_buffer(fs_info->tree_root->node);
3426         free_extent_buffer(fs_info->tree_root->commit_root);
3427         free_extent_buffer(fs_info->chunk_root->node);
3428         free_extent_buffer(fs_info->chunk_root->commit_root);
3429         free_extent_buffer(fs_info->dev_root->node);
3430         free_extent_buffer(fs_info->dev_root->commit_root);
3431         free_extent_buffer(fs_info->csum_root->node);
3432         free_extent_buffer(fs_info->csum_root->commit_root);
3433         if (fs_info->quota_root) {
3434                 free_extent_buffer(fs_info->quota_root->node);
3435                 free_extent_buffer(fs_info->quota_root->commit_root);
3436         }
3437
3438         btrfs_free_block_groups(fs_info);
3439
3440         del_fs_roots(fs_info);
3441
3442         iput(fs_info->btree_inode);
3443
3444         btrfs_stop_workers(&fs_info->generic_worker);
3445         btrfs_stop_workers(&fs_info->fixup_workers);
3446         btrfs_stop_workers(&fs_info->delalloc_workers);
3447         btrfs_stop_workers(&fs_info->workers);
3448         btrfs_stop_workers(&fs_info->endio_workers);
3449         btrfs_stop_workers(&fs_info->endio_meta_workers);
3450         btrfs_stop_workers(&fs_info->endio_raid56_workers);
3451         btrfs_stop_workers(&fs_info->rmw_workers);
3452         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3453         btrfs_stop_workers(&fs_info->endio_write_workers);
3454         btrfs_stop_workers(&fs_info->endio_freespace_worker);
3455         btrfs_stop_workers(&fs_info->submit_workers);
3456         btrfs_stop_workers(&fs_info->delayed_workers);
3457         btrfs_stop_workers(&fs_info->caching_workers);
3458         btrfs_stop_workers(&fs_info->readahead_workers);
3459         btrfs_stop_workers(&fs_info->flush_workers);
3460
3461 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3462         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3463                 btrfsic_unmount(root, fs_info->fs_devices);
3464 #endif
3465
3466         btrfs_close_devices(fs_info->fs_devices);
3467         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3468
3469         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3470         percpu_counter_destroy(&fs_info->delalloc_bytes);
3471         bdi_destroy(&fs_info->bdi);
3472         cleanup_srcu_struct(&fs_info->subvol_srcu);
3473
3474         btrfs_free_stripe_hash_table(fs_info);
3475
3476         return 0;
3477 }
3478
3479 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3480                           int atomic)
3481 {
3482         int ret;
3483         struct inode *btree_inode = buf->pages[0]->mapping->host;
3484
3485         ret = extent_buffer_uptodate(buf);
3486         if (!ret)
3487                 return ret;
3488
3489         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3490                                     parent_transid, atomic);
3491         if (ret == -EAGAIN)
3492                 return ret;
3493         return !ret;
3494 }
3495
3496 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3497 {
3498         return set_extent_buffer_uptodate(buf);
3499 }
3500
3501 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3502 {
3503         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3504         u64 transid = btrfs_header_generation(buf);
3505         int was_dirty;
3506
3507         btrfs_assert_tree_locked(buf);
3508         if (transid != root->fs_info->generation)
3509                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3510                        "found %llu running %llu\n",
3511                         (unsigned long long)buf->start,
3512                         (unsigned long long)transid,
3513                         (unsigned long long)root->fs_info->generation);
3514         was_dirty = set_extent_buffer_dirty(buf);
3515         if (!was_dirty)
3516                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3517                                      buf->len,
3518                                      root->fs_info->dirty_metadata_batch);
3519 }
3520
3521 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3522                                         int flush_delayed)
3523 {
3524         /*
3525          * looks as though older kernels can get into trouble with
3526          * this code, they end up stuck in balance_dirty_pages forever
3527          */
3528         int ret;
3529
3530         if (current->flags & PF_MEMALLOC)
3531                 return;
3532
3533         if (flush_delayed)
3534                 btrfs_balance_delayed_items(root);
3535
3536         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3537                                      BTRFS_DIRTY_METADATA_THRESH);
3538         if (ret > 0) {
3539                 balance_dirty_pages_ratelimited(
3540                                    root->fs_info->btree_inode->i_mapping);
3541         }
3542         return;
3543 }
3544
3545 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3546 {
3547         __btrfs_btree_balance_dirty(root, 1);
3548 }
3549
3550 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3551 {
3552         __btrfs_btree_balance_dirty(root, 0);
3553 }
3554
3555 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3556 {
3557         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3558         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3559 }
3560
3561 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3562                               int read_only)
3563 {
3564         if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3565                 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3566                 return -EINVAL;
3567         }
3568
3569         if (read_only)
3570                 return 0;
3571
3572         return 0;
3573 }
3574
3575 void btrfs_error_commit_super(struct btrfs_root *root)
3576 {
3577         mutex_lock(&root->fs_info->cleaner_mutex);
3578         btrfs_run_delayed_iputs(root);
3579         mutex_unlock(&root->fs_info->cleaner_mutex);
3580
3581         down_write(&root->fs_info->cleanup_work_sem);
3582         up_write(&root->fs_info->cleanup_work_sem);
3583
3584         /* cleanup FS via transaction */
3585         btrfs_cleanup_transaction(root);
3586 }
3587
3588 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3589                                              struct btrfs_root *root)
3590 {
3591         struct btrfs_inode *btrfs_inode;
3592         struct list_head splice;
3593
3594         INIT_LIST_HEAD(&splice);
3595
3596         mutex_lock(&root->fs_info->ordered_operations_mutex);
3597         spin_lock(&root->fs_info->ordered_extent_lock);
3598
3599         list_splice_init(&t->ordered_operations, &splice);
3600         while (!list_empty(&splice)) {
3601                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3602                                          ordered_operations);
3603
3604                 list_del_init(&btrfs_inode->ordered_operations);
3605
3606                 btrfs_invalidate_inodes(btrfs_inode->root);
3607         }
3608
3609         spin_unlock(&root->fs_info->ordered_extent_lock);
3610         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3611 }
3612
3613 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3614 {
3615         struct btrfs_ordered_extent *ordered;
3616
3617         spin_lock(&root->fs_info->ordered_extent_lock);
3618         /*
3619          * This will just short circuit the ordered completion stuff which will
3620          * make sure the ordered extent gets properly cleaned up.
3621          */
3622         list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3623                             root_extent_list)
3624                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3625         spin_unlock(&root->fs_info->ordered_extent_lock);
3626 }
3627
3628 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3629                                struct btrfs_root *root)
3630 {
3631         struct rb_node *node;
3632         struct btrfs_delayed_ref_root *delayed_refs;
3633         struct btrfs_delayed_ref_node *ref;
3634         int ret = 0;
3635
3636         delayed_refs = &trans->delayed_refs;
3637
3638         spin_lock(&delayed_refs->lock);
3639         if (delayed_refs->num_entries == 0) {
3640                 spin_unlock(&delayed_refs->lock);
3641                 printk(KERN_INFO "delayed_refs has NO entry\n");
3642                 return ret;
3643         }
3644
3645         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3646                 struct btrfs_delayed_ref_head *head = NULL;
3647
3648                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3649                 atomic_set(&ref->refs, 1);
3650                 if (btrfs_delayed_ref_is_head(ref)) {
3651
3652                         head = btrfs_delayed_node_to_head(ref);
3653                         if (!mutex_trylock(&head->mutex)) {
3654                                 atomic_inc(&ref->refs);
3655                                 spin_unlock(&delayed_refs->lock);
3656
3657                                 /* Need to wait for the delayed ref to run */
3658                                 mutex_lock(&head->mutex);
3659                                 mutex_unlock(&head->mutex);
3660                                 btrfs_put_delayed_ref(ref);
3661
3662                                 spin_lock(&delayed_refs->lock);
3663                                 continue;
3664                         }
3665
3666                         btrfs_free_delayed_extent_op(head->extent_op);
3667                         delayed_refs->num_heads--;
3668                         if (list_empty(&head->cluster))
3669                                 delayed_refs->num_heads_ready--;
3670                         list_del_init(&head->cluster);
3671                 }
3672
3673                 ref->in_tree = 0;
3674                 rb_erase(&ref->rb_node, &delayed_refs->root);
3675                 delayed_refs->num_entries--;
3676                 if (head)
3677                         mutex_unlock(&head->mutex);
3678                 spin_unlock(&delayed_refs->lock);
3679                 btrfs_put_delayed_ref(ref);
3680
3681                 cond_resched();
3682                 spin_lock(&delayed_refs->lock);
3683         }
3684
3685         spin_unlock(&delayed_refs->lock);
3686
3687         return ret;
3688 }
3689
3690 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3691 {
3692         struct btrfs_pending_snapshot *snapshot;
3693         struct list_head splice;
3694
3695         INIT_LIST_HEAD(&splice);
3696
3697         list_splice_init(&t->pending_snapshots, &splice);
3698
3699         while (!list_empty(&splice)) {
3700                 snapshot = list_entry(splice.next,
3701                                       struct btrfs_pending_snapshot,
3702                                       list);
3703                 snapshot->error = -ECANCELED;
3704                 list_del_init(&snapshot->list);
3705         }
3706 }
3707
3708 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3709 {
3710         struct btrfs_inode *btrfs_inode;
3711         struct list_head splice;
3712
3713         INIT_LIST_HEAD(&splice);
3714
3715         spin_lock(&root->fs_info->delalloc_lock);
3716         list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3717
3718         while (!list_empty(&splice)) {
3719                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3720                                     delalloc_inodes);
3721
3722                 list_del_init(&btrfs_inode->delalloc_inodes);
3723                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3724                           &btrfs_inode->runtime_flags);
3725
3726                 btrfs_invalidate_inodes(btrfs_inode->root);
3727         }
3728
3729         spin_unlock(&root->fs_info->delalloc_lock);
3730 }
3731
3732 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3733                                         struct extent_io_tree *dirty_pages,
3734                                         int mark)
3735 {
3736         int ret;
3737         struct page *page;
3738         struct inode *btree_inode = root->fs_info->btree_inode;
3739         struct extent_buffer *eb;
3740         u64 start = 0;
3741         u64 end;
3742         u64 offset;
3743         unsigned long index;
3744
3745         while (1) {
3746                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3747                                             mark, NULL);
3748                 if (ret)
3749                         break;
3750
3751                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3752                 while (start <= end) {
3753                         index = start >> PAGE_CACHE_SHIFT;
3754                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3755                         page = find_get_page(btree_inode->i_mapping, index);
3756                         if (!page)
3757                                 continue;
3758                         offset = page_offset(page);
3759
3760                         spin_lock(&dirty_pages->buffer_lock);
3761                         eb = radix_tree_lookup(
3762                              &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3763                                                offset >> PAGE_CACHE_SHIFT);
3764                         spin_unlock(&dirty_pages->buffer_lock);
3765                         if (eb)
3766                                 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3767                                                          &eb->bflags);
3768                         if (PageWriteback(page))
3769                                 end_page_writeback(page);
3770
3771                         lock_page(page);
3772                         if (PageDirty(page)) {
3773                                 clear_page_dirty_for_io(page);
3774                                 spin_lock_irq(&page->mapping->tree_lock);
3775                                 radix_tree_tag_clear(&page->mapping->page_tree,
3776                                                         page_index(page),
3777                                                         PAGECACHE_TAG_DIRTY);
3778                                 spin_unlock_irq(&page->mapping->tree_lock);
3779                         }
3780
3781                         unlock_page(page);
3782                         page_cache_release(page);
3783                 }
3784         }
3785
3786         return ret;
3787 }
3788
3789 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3790                                        struct extent_io_tree *pinned_extents)
3791 {
3792         struct extent_io_tree *unpin;
3793         u64 start;
3794         u64 end;
3795         int ret;
3796         bool loop = true;
3797
3798         unpin = pinned_extents;
3799 again:
3800         while (1) {
3801                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3802                                             EXTENT_DIRTY, NULL);
3803                 if (ret)
3804                         break;
3805
3806                 /* opt_discard */
3807                 if (btrfs_test_opt(root, DISCARD))
3808                         ret = btrfs_error_discard_extent(root, start,
3809                                                          end + 1 - start,
3810                                                          NULL);
3811
3812                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3813                 btrfs_error_unpin_extent_range(root, start, end);
3814                 cond_resched();
3815         }
3816
3817         if (loop) {
3818                 if (unpin == &root->fs_info->freed_extents[0])
3819                         unpin = &root->fs_info->freed_extents[1];
3820                 else
3821                         unpin = &root->fs_info->freed_extents[0];
3822                 loop = false;
3823                 goto again;
3824         }
3825
3826         return 0;
3827 }
3828
3829 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3830                                    struct btrfs_root *root)
3831 {
3832         btrfs_destroy_delayed_refs(cur_trans, root);
3833         btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3834                                 cur_trans->dirty_pages.dirty_bytes);
3835
3836         /* FIXME: cleanup wait for commit */
3837         cur_trans->in_commit = 1;
3838         cur_trans->blocked = 1;
3839         wake_up(&root->fs_info->transaction_blocked_wait);
3840
3841         btrfs_evict_pending_snapshots(cur_trans);
3842
3843         cur_trans->blocked = 0;
3844         wake_up(&root->fs_info->transaction_wait);
3845
3846         cur_trans->commit_done = 1;
3847         wake_up(&cur_trans->commit_wait);
3848
3849         btrfs_destroy_delayed_inodes(root);
3850         btrfs_assert_delayed_root_empty(root);
3851
3852         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3853                                      EXTENT_DIRTY);
3854         btrfs_destroy_pinned_extent(root,
3855                                     root->fs_info->pinned_extents);
3856
3857         /*
3858         memset(cur_trans, 0, sizeof(*cur_trans));
3859         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3860         */
3861 }
3862
3863 int btrfs_cleanup_transaction(struct btrfs_root *root)
3864 {
3865         struct btrfs_transaction *t;
3866         LIST_HEAD(list);
3867
3868         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3869
3870         spin_lock(&root->fs_info->trans_lock);
3871         list_splice_init(&root->fs_info->trans_list, &list);
3872         root->fs_info->trans_no_join = 1;
3873         spin_unlock(&root->fs_info->trans_lock);
3874
3875         while (!list_empty(&list)) {
3876                 t = list_entry(list.next, struct btrfs_transaction, list);
3877
3878                 btrfs_destroy_ordered_operations(t, root);
3879
3880                 btrfs_destroy_ordered_extents(root);
3881
3882                 btrfs_destroy_delayed_refs(t, root);
3883
3884                 btrfs_block_rsv_release(root,
3885                                         &root->fs_info->trans_block_rsv,
3886                                         t->dirty_pages.dirty_bytes);
3887
3888                 /* FIXME: cleanup wait for commit */
3889                 t->in_commit = 1;
3890                 t->blocked = 1;
3891                 smp_mb();
3892                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3893                         wake_up(&root->fs_info->transaction_blocked_wait);
3894
3895                 btrfs_evict_pending_snapshots(t);
3896
3897                 t->blocked = 0;
3898                 smp_mb();
3899                 if (waitqueue_active(&root->fs_info->transaction_wait))
3900                         wake_up(&root->fs_info->transaction_wait);
3901
3902                 t->commit_done = 1;
3903                 smp_mb();
3904                 if (waitqueue_active(&t->commit_wait))
3905                         wake_up(&t->commit_wait);
3906
3907                 btrfs_destroy_delayed_inodes(root);
3908                 btrfs_assert_delayed_root_empty(root);
3909
3910                 btrfs_destroy_delalloc_inodes(root);
3911
3912                 spin_lock(&root->fs_info->trans_lock);
3913                 root->fs_info->running_transaction = NULL;
3914                 spin_unlock(&root->fs_info->trans_lock);
3915
3916                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3917                                              EXTENT_DIRTY);
3918
3919                 btrfs_destroy_pinned_extent(root,
3920                                             root->fs_info->pinned_extents);
3921
3922                 atomic_set(&t->use_count, 0);
3923                 list_del_init(&t->list);
3924                 memset(t, 0, sizeof(*t));
3925                 kmem_cache_free(btrfs_transaction_cachep, t);
3926         }
3927
3928         spin_lock(&root->fs_info->trans_lock);
3929         root->fs_info->trans_no_join = 0;
3930         spin_unlock(&root->fs_info->trans_lock);
3931         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3932
3933         return 0;
3934 }
3935
3936 static struct extent_io_ops btree_extent_io_ops = {
3937         .readpage_end_io_hook = btree_readpage_end_io_hook,
3938         .readpage_io_failed_hook = btree_io_failed_hook,
3939         .submit_bio_hook = btree_submit_bio_hook,
3940         /* note we're sharing with inode.c for the merge bio hook */
3941         .merge_bio_hook = btrfs_merge_bio_hook,
3942 };