
Embedded Coder®

User’s Guide

R2013a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Embedded Coder® User’s Guide

© COPYRIGHT 2011–2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
April 2011 Online only New for Version 6.0 (Release 2011a)
September 2011 Online only New for Version 6.1 (Release 2011b)
March 2012 Online only New for Version 6.2 (Release 2012a)
September 2012 Online only New for Version 6.3 (Release 2012b)
March 2013 Online only New for Version 6.4 (Release 2013a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs tool
with the search phrase ‘‘Incorrect Code Generation’’ to obtain a report of known bugs that
produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies between
the actual behavior of a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

http://www.mathworks.com/support/bugreports/

Contents

Bug Reports

1
Check Bug Reports for Issues and Fixes 1-2

Model Architecture and Design

Modeling Environment

2
Set Up Your Modeling Environment 2-2

Application Objectives

3

Guidelines and Standards

4
What Are the Standards and Guidelines? 4-2

MAAB Guidelines . 4-4

MISRA C Guidelines . 4-5

IEC 61508 Standard . 4-7

v

Apply Simulink and Embedded Coder to the IEC 61508
Standard . 4-7

Check for IEC 61508 Standard Compliance Using the Model
Advisor . 4-7

Validate Traceability . 4-8

ISO 26262 Standard . 4-9
Apply Simulink and Embedded Coder to the ISO 26262
Standard . 4-9

Check for ISO 26262 Standard Compliance Using the Model
Advisor . 4-9

Validate Traceability . 4-10

DO-178C Standard . 4-11
Apply Simulink and Embedded Coder to the DO-178C
Standard . 4-11

Check for Standard Compliance Using the Model
Advisor . 4-11

Validate Traceability . 4-12

Patterns for C Code

5
About Modeling Patterns . 5-3

Prepare a Model for Code Generation 5-4
Configure a Signal . 5-4
Configure Input and Output Ports . 5-4
Initialize States . 5-5
Set Up Configuration Parameters for Code Generation . . . 5-5
Set Up an Example Model With a Stateflow Chart 5-6
Set Up an Example Model With a MATLAB Function
Block . 5-7

Data Declaration . 5-9
C Construct . 5-9
Declare a Variable for a Block Parameter Using a Data
Object . 5-9

C Construct . 5-11

vi Contents

Declare a Variable for a Signal using a Data Object 5-11

Data Type Conversion . 5-13
C Construct . 5-13
Modeling Patterns . 5-13
Modeling Pattern for Data Type Conversion — Simulink
Block . 5-13

Modeling Pattern for Data Type Conversion — Stateflow
Chart . 5-14

Modeling Pattern for Data Type Conversion — MATLAB
Function Block . 5-15

Other Type Conversions in Modeling 5-16

Type Qualifiers . 5-17
Modeling Patterns for Type Qualifiers 5-17
Using a Tunable Parameter in the Base Workspace 5-17
Use a Data Object of the Const Custom Storage Class . . . 5-18

Relational and Logical Operators 5-20
Modeling Patterns for Relational and Logical Operators . . 5-20
Modeling Pattern for Relational or Logical Operators —
Simulink Blocks . 5-20

Modeling Pattern for Relational and Logical Operators
—Stateflow Chart . 5-21

Modeling Pattern for Relational and Logical Operators —
MATLAB Function Block . 5-22

Bitwise Operations . 5-24
Simulink Bitwise-Operator Block . 5-24
Stateflow Chart . 5-25
MATLAB Function Block . 5-26

If-Else . 5-28
C Construct . 5-28
Modeling Patterns . 5-28
Modeling Pattern for If-Else: Switch block 5-29
Modeling Pattern for If-Else: Stateflow Chart 5-31
Modeling Pattern for If-Else: MATLAB Function Block . . 5-33

Switch . 5-35
C Construct . 5-35

vii

Modeling Patterns . 5-35
Modeling Pattern for Switch: Switch Case block 5-36
Modeling Pattern for Switch: MATLAB Function block . . . 5-39
Convert If-Elseif-Else to Switch statement 5-40

For Loop . 5-41
C Construct . 5-41
Modeling Patterns: . 5-41
Modeling Pattern for For Loop: For-Iterator Subsystem
block . 5-42

Modeling Pattern for For Loop: Stateflow Chart 5-45
Modeling Pattern for For Loop: MATLAB Function
block . 5-48

While Loop . 5-50
C Construct . 5-50
Modeling Patterns . 5-50
Modeling Pattern for While Loop: While Iterator Subsystem
block . 5-51

Modeling Pattern for While Loop: Stateflow Chart 5-55
Modeling Pattern for While Loop: MATLAB Function
Block . 5-58

Do While Loop . 5-62
C Construct . 5-62
Modeling Patterns . 5-62
Modeling Pattern for Do While Loop: While Iterator
Subsystem block . 5-63

Modeling Pattern for Do While Loop: Stateflow Chart 5-66

Function Call . 5-69
C Construct . 5-69
Procedure . 5-69
Results . 5-70

Function Prototyping . 5-71
C Construct . 5-71
Modeling Patterns . 5-71
Function Call Using Graphical Functions 5-71
Control Function Prototype of the model_step Function . . 5-73

viii Contents

External C Functions . 5-75
C Construct . 5-75
Modeling Patterns . 5-75
Use the Legacy Code Tool to Create S-functions 5-75
Use a Stateflow Chart to Make Calls to C Functions 5-78
Using a MATLAB Function Block to Make Calls to C
Functions . 5-79

Macro Definitions (#define) . 5-82
C Construct . 5-82
Modeling Patterns . 5-82
Use a ’Define’ Custom Storage Class 5-82
Use a Custom Header File . 5-83

Conditional Inclusions (#if / #endif) 5-85

Typedef . 5-86
C Construct . 5-86
Procedure . 5-86
Results . 5-87

Structures for Parameters . 5-88
C Construct . 5-88
Procedure . 5-88
Results . 5-89

Structures for Signals . 5-91
C Construct . 5-91
Modeling Patterns . 5-91
Structure for Signals Using a ’Struct’ Custom Storage
Class . 5-91

Structure for Signals Using a Simulink Non-Virtual Bus
Object . 5-93

Nested Structures . 5-95
C Construct . 5-95
Procedure . 5-95
Results . 5-97

Bitfields . 5-99
C Construct . 5-99

ix

Procedure . 5-99
Results . 5-100

Arrays for Parameters . 5-101
C Construct . 5-101
Procedure . 5-101
Results . 5-102

Arrays for Signals . 5-103
C Construct . 5-103
Procedure . 5-103
Results . 5-104

Pointers for Signals . 5-105
C Construct . 5-105
Procedure . 5-105
Results . 5-105

Pointers Using Simulink Data Objects 5-106
C Construct . 5-106
Procedure . 5-106
Results . 5-106

Variant Systems

6
About Variant Systems . 6-2

Why Generate Code for Variant Systems? 6-3

Generate Preprocessor Conditionals for Variant
Systems . 6-4
Define Variant Controls . 6-4
Configure Model for Generating Preprocessor Conditional
Directives . 6-6

Build Your Model . 6-6

x Contents

Review Code Variants in Code Generation Report 6-7

Generate Code for Model Variants 6-8

Generate Code for Variant Subsystems 6-10
Open the Example Model . 6-10
Define the Variant Controls . 6-10
Make Each Child Subsystem an Atomic Subsystem 6-11
Configure Model for Generating Preprocessor Conditional
Directives . 6-11

View the Generated Code . 6-12

Restrictions on Variant Subsystem Code Generation . . 6-14

Special Considerations for Generating Preprocessor
Conditionals . 6-16

Limitations on Generating Code for Variants 6-17

Generated Code Components Not Compiled
Conditionally . 6-18

Scheduling Considerations

7
Use Discrete and Continuous Time 7-2
Support for Discrete and Continuous Time Blocks 7-2
Support for Continuous Solvers . 7-2
Support for Stop Time . 7-3

Optimize Multirate Multitasking Operation on RTOS
Targets . 7-4
Overview . 7-4
Use rtmStepTask . 7-5
Scheduling Code for Multirate Multitasking on
VxWorks . 7-5

Suppress Redundant Scheduling Calls 7-6

xi

Data, Function, and File Definition

Data Types

8
Apply User-Defined Data Types . 8-2
Define User Data Types . 8-2
Select User-Defined Data Types . 8-4

Specify Persistence Level for Signals and
Parameters . 8-7

Buses . 8-11
About Buses and Code Generation . 8-11
Set Bus Diagnostics . 8-12
Optimize Virtual and Nonvirtual Buses 8-12
Use Single-Rate and Multi-Rate Buses 8-15
Set Bus Signal Initial Values . 8-20
Use Buses with Atomic Subsystems 8-25

Rename Built-In Data Types . 8-30

Generate Code Including User-Defined Data Types . . . 8-32
About User-Defined Data Types . 8-32
Specify Location of User-Defined Type Definitions 8-33
Apply User-Defined Data Types . 8-34
Create Data Types for mpt Data Objects 8-35
Register mpt User Object Types . 8-39

Data Type Replacement . 8-44
Replace Data Types . 8-44
Replace Built-In Data Type Names 8-46
Programmatically Replace Built-In Data Type Names . . . 8-51
Replace boolean with an Integer Data Type 8-52
Data Type Replacement Limitations 8-54

Data Definition and Declaration Management 8-55
Overview of Data Dictionary . 8-55
Create Simulink and mpt Data Objects 8-56
Create a Data Dictionary for a Model 8-70

xii Contents

Define Global Data Objects in Separate File 8-77
Define Global Data Objects in Separate Files 8-79
Save and Load Data Objects . 8-79
Apply Naming Rules to Identifiers Globally 8-79

Module Packaging Tool (MPT) Data Objects

9
MPT Data Object Properties . 9-2

Custom Storage Classes

10
Introduction to Custom Storage Classes 10-2
Custom Storage Class Memory Sections 10-3
Register Custom Storage Classes . 10-3
Custom Storage Class Examples . 10-4

Resources for Defining Custom Storage Classes 10-5

Simulink Package Custom Storage Classes 10-6

Design Custom Storage Classes and Memory
Sections . 10-8
Create Packages for Custom Storage Class Definitions . . . 10-8
Use Custom Storage Class Designer 10-8
Edit Custom Storage Class Properties 10-16
Use Custom Storage Class References 10-23
Create and Edit Memory Section Definitions 10-28
Use Memory Section References . 10-31

Apply Custom Storage Classes . 10-34
About Applying Custom Storage Classes 10-34
Apply Custom Storage Classes to Parameters 10-35
Apply Custom Storage Classes to Signals 10-36

xiii

Custom Storage Classes Using Signal Objects 10-37
Custom Storage Classes Using Embedded Signal
Objects . 10-39

Specify Custom Storage Classes Using GUI 10-46
Specify Custom Storages Classes Using API 10-48

Generate Code with Custom Storage Classes 10-53
Code Generation Prerequisites . 10-53
Code Generation With Custom Storage Classes 10-53

Define Advanced Custom Storage Classes Types 10-57
Introduction . 10-57
Create Your Own Parameter and Signal Classes 10-57
Create Custom Attributes Classes for Custom Storage
Classes . 10-57

Write TLC Code for Custom Storage Classes 10-58
Register Custom Storage Class Definitions 10-58

GetSet Custom Storage Classes . 10-61
About GetSet Custom Storage Class 10-61
GetSet Custom Storage Class Properties 10-61
Apply the GetSet Custom Storage . 10-62
GetSet Custom Storage Class Restrictions 10-62
Increase Code Efficiency With GetSet CSC 10-63

Custom Storage Class Implementation 10-65

Custom Storage Class Limitations 10-67

User Package Registration

11
About Data Object Wizard and User Packages 11-2

Register User Packages Using sl_customization.m 11-3

xiv Contents

User Package Customization Using
sl_customization.m . 11-5

Function and Class Interfaces

12
Function Prototype Control . 12-2
About Function Prototype Control . 12-2
Configure Function Prototypes Using Graphical
Interfaces . 12-3

Sample Procedure for Configuring Function Prototypes . . 12-11
Configure Function Prototypes Programmatically 12-16
Sample Script for Configuring Function Prototypes 12-20
Verify Generated Code for Customized Functions 12-21
Function Prototype Control Limitations 12-21

C++ Encapsulation Interface Control 12-24
About C++ Encapsulation Interface Control 12-24
Simple Use of C++ Encapsulation Control 12-25
Configure C++ Encapsulation Interfaces Using Graphical
Interfaces . 12-33

Configure C++ Encapsulation Interfaces
Programmatically . 12-43

Configure the Step Method for a Model Class 12-46
C++ Encapsulation Interface Control Limitations 12-47

Atomic Subsystem Code . 12-49
About Nonvirtual Subsystem Code Generation 12-49
Configure Subsystem for Generating Modular Function
Code . 12-50

Modular Function Code for Nonvirtual Subsystems 12-55
Nonvirtual Subsystem Modular Function Code
Limitations . 12-60

xv

Memory Sections

13
About Memory Sections . 13-2
What Are Memory Sections? . 13-2

Requirements for Defining Memory Sections 13-3

Define Memory Sections . 13-5
Edit Memory Section Properties . 13-5
Specify the Memory Section Name . 13-6
Specify a Qualifier for Custom Storage Class Data
Definitions . 13-7

Specify Comment and Pragma Text 13-7
Surround Individual Definitions with Pragmas 13-7
Include Identifier Names in Pragmas 13-8

Configure Memory Sections . 13-9

Declare Constant Data as Volatile 13-10

Apply Memory Sections . 13-13
Assign Memory Sections to Custom Storage Classes 13-13
Apply Memory Sections to Model-Level Functions and
Internal Data . 13-15

Apply Memory Sections to Atomic Subsystems 13-17

Generated Code with Memory Sections 13-21
Sample ERT-Based Model with Subsystem 13-21

Model-Level Data Structures . 13-23
Model-Level Functions . 13-23
Subsystem Function . 13-24

Memory Section Limitation . 13-26

xvi Contents

Code Generation

Configuration

14
Application Objectives . 14-2

High-Level Code Generation Objectives 14-3

Determine Model Configuration for Specified
Objectives . 14-5

Check and Configure Model for Code Generation
Objectives . 14-6

Check and Configure Model for Code Generation
Objectives Using Configuration Parameters Dialog
Box . 14-10

Configure Code Generation Objectives
Programmatically . 14-13

Check Objectives in Referenced Models 14-14

Check Model During Code Generation 14-15

Create Custom Objectives . 14-17
Specify Parameters in Custom Objectives 14-17
Specify Checks in Custom Objectives 14-18
Determine Checks and Parameters in Existing
Objectives . 14-19

How to Create Custom Objectives . 14-20

Target . 14-24
About Target Selection . 14-24
Select an ERT Target . 14-25
Customize an ERT Target . 14-26
Configure Support for Numeric Data 14-26

xvii

Configure Support for Time Values 14-27
Support for Non-inlined S-Functions 14-27
Configure Model Function Generation and Argument
Passing . 14-28

Set Up Support for Code Reuse . 14-29
Configure Code Replacement Libraries 14-31

Configuration Variations . 14-32
About Model Configuration for Code Generation 14-32

Wizard . 14-33
Block Library . 14-33
Add a Configuration Wizard Block . 14-35
Use Configuration Wizard Blocks . 14-37
Create a Custom Configuration Wizard Block 14-37

Code Appearance

15
Add Custom Comments to Generated Code 15-2

Add Custom Comments for Signal or Parameter
Identifiers . 15-4

Add Global Comments . 15-6
Use a Simulink DocBlock to Add a Comment 15-6
Use a Simulink Annotation to Add a Comment 15-9
Use a Stateflow Note to Add a Comment 15-9
Use Sorted Notes to Add Comments 15-10

Customize Generated Identifier Naming Rules 15-12

Identifier Format Control . 15-14

Control Name Mangling in Generated Identifiers 15-18
Minimize Name Mangling . 15-18

xviii Contents

Avoid Identifier Name Collisions with Referenced
Models . 15-20

Maintain Traceability for Generated Identifiers 15-21

Exceptions to Identifier Formatting Conventions 15-22

Identifier Format Control Parameters Limitations . . . 15-23

Specify Simulink Data Object Naming Rules 15-25

Control Code Style . 15-26

Customize Code Organization and Format 15-28
Custom File Processing Overview . 15-28
Custom File Processing Components 15-29
Custom File Processing User Interface Options 15-30
Code Generation Template (CGT) Files 15-31
Use Custom File Processing (CFP) Templates 15-35
Custom File Processing (CFP) Template Structure 15-36
Change the Organization of a Generated File 15-37
Generate Source and Header Files with a Custom File
Processing (CFP) Template . 15-39

Comparison of a Template and Its Generated File 15-48
Code Template API Summary . 15-51
Generate Custom File and Function Banners 15-55
Template Symbols and Rules . 15-63

Code Annotation for Justifying Polyspace Checks 15-72

Manage Placement of Data Definitions and
Declarations . 15-74
Overview of Data Placement . 15-74
Priority and Usage . 15-75
Ownership Settings . 15-81
Memory Section Settings . 15-81
Data Placement Rules . 15-81
Settings for a Data Object . 15-82
Data Placement Rules and Results 15-91

xix

Specify Delimiter for #Includes . 15-101

Source Code Generation

16
Generating Code Using Embedded Coder 16-2

Generate Code Modules . 16-8
Introduction . 16-8
Generated Code Modules . 16-8
User-Written Code Modules . 16-11
Customize Generated Code Modules 16-11

Generate Reentrant Code from MATLAB Code 16-14
What Is Reentrant Code? . 16-14
When to Generate Reentrant Code 16-14
Generate Reentrant Code . 16-15
Generated Code API . 16-16
Call Reentrant Code in a Single-Thread Environment 16-16
Call Reentrant Code in a Multithreaded Environment . . . 16-17
Call Reentrant Code with No Persistent or Global Data
(UNIX Only) . 16-18

Call Reentrant Code — Multithreaded with Persistent Data
(Windows Only) . 16-24

Call Reentrant Code — Multithreaded with Persistent Data
(UNIX Only) . 16-30

Code Generation for AUTOSAR Software
Components

17
Overview of AUTOSAR Support . 17-2

Simulink Modeling Patterns for AUTOSAR 17-3
About Simulink Modeling Patterns for AUTOSAR 17-3

xx Contents

AUTOSAR Software Components . 17-3
AUTOSAR Communication . 17-9
Calibration Parameters . 17-15
Inter-Runnable Variables . 17-16
Data Types . 17-17
Per-Instance Memory . 17-27
AUTOSAR Terminology . 17-28

Workflows for AUTOSAR . 17-31

Import an AUTOSAR Software Component 17-34

Create an AUTOSAR Software Component in
Simulink . 17-38

Prepare a Model for AUTOSAR Code Generation 17-43
Configure the AUTOSAR Interface 17-43
Configure Single Runnables for DataReceivedEvents 17-57
Configure Ports for Basic Software and Error Status
Receivers . 17-60

Configure Client-Server Communication 17-61
Configure Multiple Runnables . 17-69
Configure Calibration Parameters . 17-77
Use Data Store Memory Blocks to Specify Per-Instance
Memory . 17-79

Modify and Validate an Existing AUTOSAR Interface . . . 17-80

Generate AUTOSAR Code and Description Files 17-82
Select an AUTOSAR Schema . 17-82
Specify Maximum SHORT-NAME Length 17-83
Configure AUTOSAR Compiler Abstraction Macros 17-83
Root-Level Matrix I/O . 17-85
Export AUTOSAR Software Component 17-85

Configure AUTOSAR Options Programmatically 17-88

Verify AUTOSAR Code with SIL and PIL 17-89
Overview . 17-89
Use the SIL and PIL Simulation Modes 17-89
Use a SIL or PIL Block for AUTOSAR Verification 17-90

xxi

Limitations and Tips . 17-92
Cannot Import Internal Behavior . 17-92
Cannot Copy Subsystem Blocks Without Losing Interface
Information . 17-93

Source of Initial Output Value for Function-Call Subsystem
Outport . 17-93

Error If No Default Configuration . 17-93
The Generate Code Only Check Box 17-93
Specify Sample Time Independent Server Operation
Model . 17-93

Invoke AUTOSAR Server Operation Block in Referenced
Model . 17-94

Cannot Save Importer Objects in MAT-Files 17-94
Use the Merge Block for Inter-Runnable Variables 17-94
Use Goto and From Blocks Within Wrapper Subsystems . . 17-96
Postfix in Generated File Names . 17-96
AUTOSAR Compiler Abstraction Macros 17-97
Intrinsic Fixed-Point Types for Model Configured as
Server . 17-98

Server Operation Model with Tunable Parameters 17-99
Relative File Paths in Code Descriptors 17-99

Sample Workflows and Further Reading 17-100
AUTOSAR Examples . 17-100
Further Reading . 17-100

Report Generation

18
HTML Code Generation Report Extensions 18-2

Traceability in Code Generation Report 18-4

Model Web View in Code Generation Report 18-6
About Model Web View . 18-6
Generate HTML Code Generation Report with Model Web
View . 18-7

Model Web View Limitations . 18-9

xxii Contents

Analyze the Generated Code Interface 18-11
Code Interface Report Overview . 18-11
Generating a Code Interface Report 18-12
Navigating Code Interface Report Subsections 18-15
Interpreting the Entry Point Functions Subsection 18-16
Interpreting the Inports and Outports Subsections 18-19
Interpreting the Interface Parameters Subsection 18-20
Interpreting the Data Stores Subsection 18-22
Code Interface Report Limitations . 18-23

Static Code Metrics . 18-25
About Static Code Metrics . 18-25
Static Code Metrics Analysis . 18-26

Generate a Static Code Metrics Report for a Simulink
Model . 18-28

Generate a Static Code Metrics Report for MATLAB
Code . 18-32
In a MATLAB Coder Project . 18-32
At the Command Line . 18-34

Analyze Code Replacements in the Generated Code . . 18-35

Generate HTML Report After Build Process 18-37

Deployment

Desktops

19
Shared Object Libraries . 19-2
About Host-Based Shared Libraries 19-2
Generate Shared Library Version of Model Code 19-3
Create Application Code to Use Shared Library 19-3
Host-Based Shared Library Limitations 19-8

xxiii

Non-Real-Time Operating System Integration 19-9

Real-Time and Embedded Systems

20
Standalone Programs (No Operating System) 20-2
About Standalone Program Execution 20-2
Generate a Standalone Program . 20-2
Standalone Program Components . 20-3
Main Program . 20-3
rt_OneStep and Scheduling Considerations 20-5
Static Main Program Module . 20-12
Rate Grouping Compliance and Compatibility Issues 20-16

Operating System Integration . 20-22

Processor Support Packages . 20-23

Import Custom Code into Model

21
Generate S-Function Wrappers . 21-2
About S-Function Wrapper Generation 21-2
Create a SIL Block . 21-3
S-Function Wrapper Generation Limitations 21-3

Export Code Generated from Model to External
Application

22
Export Function-Call Subsystems 22-2
Exporting Function-Call Subsystems 22-2

xxiv Contents

Requirements for Exporting Function-Call Subsystems . . 22-3
Techniques for Exporting Function-Call Subsystems 22-6
Optimize Exported Function-Call Subsystems 22-8
Export Functions That Depend on Elapsed Time 22-8
Function-Call Subsystem Export . 22-9
Function-Call Subsystems Export Limitations 22-12

Control Generation of Function Prototypes 22-14

C++ Encapsulation Interface Control 22-16

Code Replacement

23
Introduction to Code Replacement Libraries 23-2
Overview of Code Replacement Libraries 23-2
Code Replacement Libraries General Workflow 23-10
Code Replacement Libraries Quick-Start Example 23-11

Create Code Replacement Tables 23-18
Overview of Code Replacement Table Creation 23-18
Create Table Entries . 23-22
Map Math Functions to Target-Specific
Implementations . 23-30

Map memcpy Function to Target-Specific
Implementations . 23-37

Map Nonfinite Utility Functions to Target-Specific
Implementations . 23-42

Map Scalar Operators to Target-Specific
Implementations . 23-47

Map Nonscalar Operators to Target-Specific
Implementations . 23-52

Map Fixed-Point Operators to Target-Specific
Implementations . 23-82

Remap Operator Outputs to Implementation Function
Inputs . 23-118

Configure Data Alignment for Function
Implementations . 23-120

xxv

Refine Matching and Replacement Using Custom
Entries . 23-133

Replace Math Functions Based on Computation Method . . 23-150
Map Semaphore or Mutex Operations to Target-Specific
Implementations . 23-152

Specify Build Information for Code Replacements 23-161
Add Code Replacement Library Reserved Identifiers 23-165

Manage CRTs with the Code Replacement Tool 23-168
Code Replacement Tool . 23-168
Create Code Replacement Table for a Sample Model 23-169
Create Code Replacement Table for a Sample MATLAB
Coder Project . 23-176

Create and Modify Code Replacement Tables 23-183
Validate Code Replacement Tables and Table Entries 23-189
Generate a Code Replacement Registration File 23-189

Examine and Validate Code Replacement Tables 23-191
Overview of Code Replacement Table Validation 23-191
Invoke the Table Definition File . 23-191
Use Code Replacement Viewer to Examine Tables 23-192
Use Code Replacement Viewer to Examine CRLs 23-193
Trace Code Replacements Generated Using Your CRL . . . 23-195
Determine Why Code Replacement Functions Not Used . . 23-198

Register Code Replacement Libraries 23-203
Overview of CRL Registration . 23-203
Register CRL with Simulink Software
(sl_customization) . 23-204

Register CRL with MATLAB Coder Software
(rtwTargetInfo) . 23-208

Register Multiple CRLs . 23-210

Custom Code Substitution for MATLAB Functions
Using Code Replacement Libraries 23-212

Replace MATLAB Function with Custom Code 23-213
At the Command Line Using the codegen Function 23-213
Specify a Code Replacement Function in a MATLAB Coder
Project . 23-217

xxvi Contents

Enable the Code Replacements Report 23-219
In a MATLAB Coder Project . 23-219
At the Command Line . 23-219
See Also . 23-220

Viewing Code Replacements in the Generated Code . . 23-221
See Also . 23-222

Replace MATLAB Function Block Code with Custom
Code . 23-223

Code Replacement Library Limitations 23-229

Performance

Configuration

24
Configure Code Optimizations . 24-2

Set Hardware Implementation Parameters 24-5

Use External Mode with the ERT Target 24-6
Memory Management . 24-6
Generation of Pure Integer Code with External Mode 24-7

Data Copy Reduction

25
Use Virtualized Output Ports Optimization 25-2

Control Signal Storage . 25-4

xxvii

Execution Speed

26
Remove Initialization Code . 26-2

Generate Pure Integer Code If Possible 26-4

Disable MAT-File Logging . 26-5

Simplify Multiply Operations In Array Indexing 26-6
Generated Code Results . 26-6

Memory Usage

27
Optimize Generated Code Using Specified Minimum
and Maximum Values . 27-2
How to Configure Your Model . 27-2
How to Enable Optimization . 27-3
Optimize Generated Code Using Specified Minimum and
Maximum Values . 27-4

Limitations . 27-6

Reduce Global Variables in Nonreusable Subsystem
Functions . 27-8
Generate void-void Function . 27-8
Generate Function with Arguments 27-9

Verification

Code Tracing

28
About Code Tracing . 28-2

xxviii Contents

Format of Traceability Tags . 28-3
Examples of Tagged Code . 28-3

Trace Code to Model Objects Using Hyperlinks 28-4

Trace Model Objects to Generated Code 28-6

Reload Existing Traceability Information 28-8

Customize Traceability Reports . 28-10

Generate a Traceability Matrix . 28-12

Traceability Limitations . 28-13

Component Verification

29
Component Verification in the Target Environment . . 29-2

Goals of Component Verification . 29-3

Maximizing Code Portability and Configurability 29-4

Simplifying Code Integration and Maximizing Code
Efficiency . 29-5

Running Component Tests . 29-7

xxix

Component Verification With a Real-Time
Target Environment

30
About Real-Time Software Component Verification . . . 30-2

Real-Time Software Component Testing 30-4

Numerical Equivalence Checking

31
About SIL and PIL Simulations . 31-2
Overview . 31-2
What are SIL and PIL Simulations? 31-2
Why Use SIL and PIL . 31-3

How SIL and PIL Simulations Work 31-6

Comparison of SIL and PIL Simulation 31-7

Choose a SIL or PIL Approach . 31-9
About Choosing a SIL or PIL Simulation 31-9
When to Use Top-Model SIL or PIL 31-9
When to Use Model Block SIL or PIL 31-9
When to Use the SIL or PIL Block . 31-13

Configure a SIL or PIL Simulation 31-15
Top-Model SIL or PIL Simulation . 31-15
Model Block SIL or PIL Simulation 31-17
Use a SIL or PIL Block . 31-19
Verify a SIL or PIL Configuration . 31-20

Top Model Simulation Using SIL or PIL 31-23

Referenced Model Simulation Using SIL or PIL 31-24
Verify Internal Signals of a Component 31-24

xxx Contents

Simulation Mode Override Behavior in Model Reference
Hierarchy . 31-25

Code Interfaces for SIL and PIL . 31-28
Code Interface for Top-Model SIL or PIL 31-28
Code Interface for Model Block SIL or PIL 31-29

Configure Hardware Implementation Settings for
SIL . 31-30
Choose Hardware Implementation Options 31-30
Portable Word Sizes . 31-30
Emulation Hardware . 31-34
Embedded hardware configured for host 31-35

Debugging During SIL Simulations 31-36

Programming PIL Support Using Third-Party Tools . . 31-39

Create a Connectivity Configuration for a Target 31-40
What Is a PIL Connectivity Configuration? 31-40
Overview of the Target Connectivity API 31-41
Create a Connectivity API Implementation 31-46
Register a Connectivity API Implementation 31-47
Synchronize Host and Target . 31-47
Specify Hardware Timer . 31-48
Examples of the Target Connectivity API 31-51

View Test Harness in Code Generation Report 31-53

SIL and PIL Simulation Support and Limitations 31-55
About SIL and PIL Simulation Support and Limitations . . 31-56
Code Source Support . 31-57
Block Support . 31-60
Configuration Parameters Support 31-62
I/O Support . 31-70
Hardware Implementation Support 31-82
Other Feature Support . 31-84

Programmatic Code Generation Verification 31-85
Code Generation Verification API Overview 31-85

xxxi

Verify Numerical Equivalence with CGV 31-85
Verify Numerical Equivalence Between Two Modes of
Execution of a Model . 31-86

Plot Output Signals . 31-93

Code Coverage

32
Code Coverage in SIL and PIL Simulations 32-2
Configure SIL and PIL Code Coverage 32-2
View Code Coverage Information at the End of SIL or PIL
Simulations . 32-4

Configure Code Coverage Programmatically 32-7

Code Coverage for PIL . 32-9
PIL Support for LDRA Testbed . 32-9
PIL Support for BullseyeCoverage . 32-10

Code Coverage Summary and Annotations 32-11
LDRA Testbed Coverage . 32-11
BullseyeCoverage Information . 32-14

Code Coverage Tool Support . 32-17

Tips and Limitations . 32-18
Compiler and Platform Support for SIL 32-18
Right-Click Subsystem Build Unsupported for Code
Coverage . 32-18

BullseyeCoverage License Wait . 32-18
Current Working Folder Cannot be UNC Path 32-18
Characters in matlabroot and File Path 32-18
Header Files with Identical Names 32-19
Code Coverage for Source Files in Shared Utility
Folders . 32-19

BullseyeCoverage Behavior with Inline Macros 32-19
SIL and PIL Simulations with Open LDRA Testbed 32-20
PIL Zero Coverage LDRA Testbed Annotations 32-20

xxxii Contents

Modify Legacy Code . 32-20

Code Execution Profiling

33
About Code Execution Profiling . 33-2

Configure Code Execution Profiling 33-3

Execution Profiling for Atomic Subsystems and Model
Reference Hierarchies . 33-5

View and Compare Code Execution Times 33-7

Analyze Code Execution Data . 33-14

Tips and Limitations . 33-16
Triggered Model Block . 33-16
Outliers in Execution Time Profiles 33-16
Use of Hardware-Specific Timer . 33-16

Embedded IDEs and Embedded Targets

Getting Started with Embedded Targets

34
Add Support for Hardware and Software 34-2

Start Support Package Installer . 34-3

Open or Reopen Support Package Examples 34-5

Install a Support Package on Multiple Computers 34-7

xxxiii

Project and Build Configurations for Embedded
Targets

35
Model Setup . 35-2
Block Selection . 35-2
Configure Target Hardware Resources 35-3
Configuration Parameters . 35-5
Model Reference . 35-14

IDE Projects . 35-16
Support for Third Party Products . 35-16
Third Party Product Setup . 35-16
Code Generation and Build . 35-18
Automation of IDE Tasks and Processes 35-19

Makefiles for Software Build Tool Chains 35-21
What is the XMakefile Feature . 35-21
Using Makefiles to Generate and Build Software 35-25
Making an XMakefile Configuration Operational 35-28
Creating a New XMakefile Configuration 35-28
XMakefile User Configuration dialog 35-34

Verification and Profiling Code Generated for
Embedded Targets

36
Processor-in-the-Loop (PIL) Simulation 36-2
Overview . 36-2
PIL Approaches . 36-3
Communications . 36-8
Running Your PIL Application to Perform Simulation and
Verification . 36-14

Performing a Model Block PIL Simulation via SCI Using
Makefiles . 36-14

Definitions . 36-18
PIL Issues and Limitations . 36-19

xxxiv Contents

Execution Profiling for Embedded Targets 36-21
What Is Execution Profiling? . 36-21
Feature Support . 36-21
Execution Profiling during Standalone Execution 36-22
Execution Profiling during PIL Simulation 36-25

Stack Profiling for Embedded Targets 36-28
Feature Support . 36-28
What is Stack Profiling? . 36-28
Profiling System Stack Use . 36-30

Processor-Specific Optimizations for Embedded
Targets

37
Code Replacement Library (CRL) 37-2
About Code Replacement Libraries and Optimization 37-2
Using a Processor-Specific Code Replacement Library to
Optimize Code . 37-4

Process of Determining Optimization Effects Using
Real-Time Profiling Capability . 37-4

Reviewing Processor-Specific Code Replacement Library
Changes in Generated Code . 37-5

Creating Your Own Code Replacement Library 37-8
Reviewing Code Replacement Library Operators and
Functions . 37-8

Tips and Limitations . 37-10

Working with Analog Devices VisualDSP++ IDE

38
Install Support for Analog Devices DSPs 38-2

Getting Started . 38-4
Overview . 38-4
Software Structure and Components 38-5

xxxv

Software Requirements . 38-7
Installation and Configuration . 38-7

IDE Automation Interface . 38-9
Getting Started with IDE Automation Interface 38-9
Constructing Objects . 38-24
Properties and Property Values . 38-25
adivdsp Object Properties . 38-28

IDE Project Generator . 38-32
Introducing IDE Project Generator 38-32
Generate an IDE Project . 38-33
Model Reference . 38-36

Reported Limitations and Tips . 38-40
Reported Issues . 38-40

Working with Eclipse IDE

39
Installing Third-Party Software for Eclipse 39-2
Tested Software Versions . 39-2
Installing Oracle Java Runtime Environment (JRE) 39-3
Installing Eclipse IDE for C/C++ Developers 39-5
Verifying the GNU Tool Chain on Linux Host 39-6
Installing the GNU Tool Chain on Windows 39-7

Configuring Your MathWorks Software to Work with
Eclipse . 39-10
Additional Configuration Steps to Run Your Executable on
a Remote Embedded Linux Target 39-13

Troubleshooting with Eclipse IDE 39-15
Profiling for ARM® Processors Running Embedded Linux
Operating System . 39-15

SIGSEGV Segmentation Fault for GDB 39-16
GDB Stops on Each Semaphore Post 39-16
Build Errors . 39-16

xxxvi Contents

Profiling Not Available for Intel x86/Pentium and AMD
K5/K6/Athlon Processors Running Windows or Linux
Operating Systems . 39-17

Eclipse Message: “Can’t find a source file” 39-17
Eclipse Message: “Cannot access memory at address” 39-18
Some Versions of Eclipse CDT Do Not Catch GCC
Errors . 39-18

Working with Green Hills MULTI IDE

40
Install Support for Green Hills MULTI IDE 40-2

Getting Started . 40-4
Overview . 40-4
Software Structure and Components 40-5

IDE Automation Interface . 40-12
Getting Started with IDE Automation Interface 40-12
Constructing Objects . 40-28
Properties and Property Values . 40-29
ghsmulti Object Properties . 40-32

IDE Project Generator . 40-35
Introducing IDE Project Generator 40-35
Generate an IDE Project . 40-36
Model Reference . 40-40

Breakpoints and PIL . 40-44

Working with Linux Target

41
Disambiguation . 41-2

xxxvii

Preparing Models to Run on Linux Target 41-3

Scheduler . 41-4
Base Rate . 41-4
Running Target Applications on Multicore Processors 41-4
Avoiding Lock-Up in Free-Running, Multirate, Multitasking
Models . 41-11

Build on BeagleBoard Hardware . 41-13
Overview . 41-13
Configure the Windows Host . 41-13
Configure the BeagleBoard Hardware 41-13
Configure MATLAB Software . 41-14

Build on Linux Host and Run on BeagleBoard
Hardware . 41-15
Overview . 41-15
Prerequisites . 41-15
Set up your environment for Linux-ARM Code
Generation . 41-15

Generate Code for Linux-ARM . 41-18
External Mode Simulation . 41-18

Working with Texas Instruments Code
Composer Studio 3.3 IDE

42
Code Composer Studio . 42-2
Using Code Composer Studio with Embedded Coder
Software . 42-2

Default Project Configuration . 42-2

Getting Started . 42-4
Overview . 42-4
Verifying Your Code Composer Studio Installation 42-7

IDE Automation Interface . 42-9
Getting Started with IDE Automation Interface 42-9

xxxviii Contents

Getting Started with RTDX . 42-27
Constructing ticcs Objects . 42-48
ticcs Properties and Property Values 42-49
Overloaded Functions for ticcs Objects 42-50
ticcs Object Properties . 42-50

IDE Project Generator . 42-58
Introducing IDE Project Generator 42-58
IDE Project Generator and Board Selection 42-58
Generate an IDE Project . 42-60
Model Reference . 42-64

Exporting Filter Coefficients from FDATool 42-69
About FDATool . 42-69
Preparing to Export Filter Coefficients to Code Composer
Studio Projects . 42-70

Exporting Filter Coefficients to Your Code Composer Studio
Project . 42-74

Preventing Memory Corruption When You Export
Coefficients to Processor Memory 42-80

Using Makefiles with Code Composer Studio 3.x 42-87
Introduction . 42-87
Set Up XMakefile for CCSv3 . 42-87
Prepare Your Model for CCSv3 and Makefiles 42-89
Create Target Configuration File in CCSv3 42-89
Load and Run the Embedded Software 42-90

Reported Limitations and Tips . 42-92
Example Programs Do Not Run Well with Incorrect GEL
Files . 42-93

Changing Values of Local Variables Does Not Work 42-93
Code Composer Studio Cannot Find a File After You Halt a
Program . 42-94

C54x XPC Register Can Be Modified Only Through the PC
Register . 42-95

Working with More Than One Installed Version of Code
Composer Studio . 42-96

Changing CCS Versions During a MATLAB Session 42-96
MATLAB Hangs When Code Composer Studio Cannot Find
a Board . 42-96

Using Mapped Drives . 42-98

xxxix

Uninstalling Code Composer Studio 3.3 Prevents Embedded
Coder From Connecting . 42-98

PostCodeGenCommand Commands Do Not Apply to IDE
Projects . 42-98

Working with Texas Instruments Code
Composer Studio 4 & 5 IDE

43
Code Composer Studio . 43-2
Feature Support . 43-2

Getting Started . 43-3
Verifying Your Code Composer Studio Installation 43-3
Learning About Makefiles . 43-3

Using Makefiles with Code Composer Studio 4 & 5 43-4
Introduction . 43-4
Set Up XMakefile for CCSv4/5 . 43-4
Prepare Your Model for CCSv4/5 and Makefiles 43-6
Create Target Configuration File in CCSv4/5 43-6
Configure Windows Path for TI Debug Server Scripting
(DSS) . 43-7

Load and Run the Embedded Software Using DSS 43-7

Reported Limitations and Tips . 43-10
Example Programs Do Not Run well with Incorrect GEL
Files . 43-10

PostCodeGenCommand Commands Do Not Apply to IDE
Projects . 43-10

xl Contents

Working with Texas Instruments C2000
Processors

44
Setting Up and Configuring . 44-3
Feature Support for Code Composer Studio 44-3
Installing and Configuring Software 44-3
Verifying the Configuration . 44-4

Data Type Support . 44-6

Scheduling and Timing . 44-7
Overview . 44-7
Timer-Based Interrupt Processing . 44-7
Asynchronous Scheduling . 44-8

Sharing General Purpose Timers between C281x
Peripherals . 44-13
Sharing General Purpose Timers between CAP and
eCAN . 44-14

Sharing General Purpose Timers between CAP and SPI . . 44-18

Overview of Creating Models for C2000 Processors . . . 44-22
Accessing the Embedded Coder Block Library 44-22
Building Your Model . 44-22

Using the c2000lib Blockset . 44-24
Introduction . 44-24
Hardware Setup . 44-24
Starting the c2000lib Library . 44-25
Setting Up the Model . 44-25
Adding Blocks to the Model . 44-26
Generating Code from the Model . 44-28

Configuring Timing Parameters for CAN Blocks 44-30
The CAN Blocks . 44-30
Setting Timing Parameters . 44-30
Parameter Tuning and Signal Logging 44-36

ADC-PWM Synchronization via ADC Interrupt 44-49

xli

Run the model using CCSv3 . 44-51
Run the model using CCSv4 . 44-51
Run the model using CCSv5 . 44-52

Configuring Acquisition Window Width for ADC
Blocks . 44-54
What Is an Acquisition Window? . 44-54
Configuring ADC Parameters for Acquisition Window
Width . 44-56

Real-Time Data Exchange via RTDX™ 44-61

SPI-Based Control of PWM Duty Cycle 44-63

HIL Verification of IIR Filter via SCI 44-67

CAN-Based Control of PWM Duty Cycle 44-74

CAN Calibration Protocol and External Mode 44-77

Using the I2C Bus to Access a Connected EEPROM . . . 44-85

Using the IQmath Library . 44-90
About the IQmath Library . 44-90
Fixed-Point Numbers . 44-91
Building Models . 44-96

Programming Flash Memory . 44-99
Introduction . 44-99
Installing TI Flash APIs . 44-100
Configuring the DSP Board Bootloader 44-100
Configuring the Software for Automatic Flash
Programming . 44-101

Selectively Erase, Program, or Verify Specific Flash
Sectors . 44-101

Placing Additional Code or Data on Unused Flash
Sectors . 44-102

Configuring LIN Communications 44-105

xlii Contents

Overview . 44-105
Configuring Your Model . 44-105

Tips and Limitations . 44-108
Texas Instruments C28x DMC Blocks Require CRL 44-108

Working with Texas Instruments C6000
Processors

45
Getting Started . 45-2
Feature Support for Code Composer Studio 45-2
Overview . 45-2
Using This Guide . 45-3
Configuration Information . 45-4
Setting Up and Configuring . 45-4

Targeting C6000 DSP Hardware . 45-8
Introduction to Targeting . 45-8
C6000 and Code Composer Studio IDE 45-9
Targeting — Single Rate Application 45-12
Schedulers and Timing . 45-19
Model Reference and Embedded Coder Software 45-29
Targeting Supported Boards . 45-33
Simulink Models and Targeting . 45-38
Targeting — A More Complex Application 45-38
Targeting Your C6713 DSK and Other Hardware 45-44
Creating Code Composer Studio Projects Without
Building . 45-47

Targeting Custom Hardware . 45-49
Using Embedded Coder Software . 45-62

Targeting with DSP/BIOS Options 45-64
Introducing DSP/BIOS . 45-64
DSP/BIOS and Targeting Your C6000 DSP 45-65
Code Generation with DSP/BIOS . 45-68
Profiling Generated Code . 45-72
Generating Code for C64x+ Processors or Boards 45-85

xliii

Using the C62x and C64x DSP Libraries 45-89
About the C62x and C64x DSP Libraries 45-89
Fixed-Point Numbers . 45-91
Building Models . 45-96

Configuring Timing Parameters for CAN Blocks 45-98
Setting Timing Parameters . 45-98

Hardware Issues . 45-102
Configuring the D.signT DSK-91C111 to Use TCP/IP and
UDP . 45-102

Requirements for the DM642 EVM 45-102
Installing and Configuring the Avnet Board Support
Library . 45-105

Continuing Issues with Embedded Coder Software 45-107

Working with Wind River VxWorks RTOS

46
Overview of Support for Wind River VxWorks
Target . 46-2

Building and Running Embedded Software on VxWorks
Target . 46-4
Install and Set Up the Wind River Development
Environment . 46-4

Setting VxWorks Environment Variables and Starting
MATLAB . 46-5

Setting Up XMakefile for VxWorks Target 46-6
Customizing XMakefile to Automatically Download and
Build Your Software . 46-7

Prepare Your Model for VxWorks Target and Makefiles . . 46-8
Build Your Embedded Software . 46-8

Working with Other Processors . 46-9

Schedulers . 46-10
Running Target Applications on Multicore Processors 46-10

xliv Contents

Work with Xilinx Zynq Platform

47
Install Support for Xilinx Zynq Platform 47-2

Open Block Library for Xilinx Zynq Platform 47-5

Build and Run Executable on Xilinx Zynq Platform . . . 47-7
Set the model Configuration Parameters 47-7
Set up the XMakefile User Configuration 47-10
Build and Run the Executable . 47-11
Troubleshooting a Connection Error 47-13

Stop or Restart Executable Running on Xilinx Zynq
Platform . 47-14

Tune and Monitor Executable Running on Xilinx Zynq
Platform . 47-15
Overview of Using External Mode . 47-15
Configure Simulink Model for External Mode 47-16
Run Executable on Zynq Platform . 47-18
Stop External Mode . 47-20

Set up Xilinx Zynq Platform and Software 47-22

Get IP Address of Xilinx Zynq Platform 47-25

Open Serial Command-line Session with Xilinx Zynq
Platform . 47-27

Index

xlv

xlvi Contents

1

Bug Reports

1 Bug Reports

Check Bug Reports for Issues and Fixes
Software is inherently complex and is not free of errors. The output of a code
generator might contain bugs, some of which are not detected by a compiler.
MathWorks reports critical known bugs brought to its attention on its Bug
Report system at http://www.mathworks.com/support/bugreports/. Use the
Saved Searches and Watched Bugs tool with the search phrase “Incorrect
Code Generation” to obtain a report of known bugs that produce code that
might compile and execute, but still produce wrong answers. Enter the search
phrase "Simulation And Code Generation Mismatch" to obtain a report of
known bugs where the output of the simulation differs from the output of the
generated code.

The bug reports are an integral part of the documentation for each release.
Examine periodically all bug reports for a release, as such reports may
identify inconsistencies between the actual behavior of a release you are using
and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and
validation strategy to identify potential bugs in your design, code, and tools.

1-2

http://www.mathworks.com/support/bugreports/

Model Architecture and Design

• Chapter 2, “Modeling Environment”

• Chapter 3, “Application Objectives”

• Chapter 4, “Guidelines and Standards”

• Chapter 5, “Patterns for C Code”

• Chapter 6, “Variant Systems”

• Chapter 7, “Scheduling Considerations”

2

Modeling Environment

2 Modeling Environment

Set Up Your Modeling Environment
When developing a system, use a combination of products to model each
system component based on the domain to which it applies.

The following table guides you to information and examples that pertain to
use of the Embedded Coder® product to meet goals for specific domains.

Goals Related Product
Information

Examples

Generate a
software design
description

“Code Generation”
in the Simulink®

Report Generator™
documentation

rtwdemo_codegenrpt

Trace model
requirements to
generated code

“Requirements
Traceability” in the
Simulink Verification
and Validation™
documentation

rtwdemo_requirements

Implement
application
on fixed-point
processors

“Data Types and
Scaling” and
“Fixed-Point Code
Generation” in
the Fixed-Point
Designer™
documentation

rtwdemo_fixpt1
rtwdemo_fuelsys_fxp_publish
rtwdemo_dspanc_fixpt

Use an
integrated
development
environment
(IDE) to
integrate an
application on a
target processor
automatically

“Program Building,
Interaction, and
Debugging” topics
in the Embedded
Coder documentation

“Program Building,
Interaction, and
Debugging” and
Desktop Targets
topics in the

In rtwdemos, select one
of the following folders:
Desktop IDEs, Desktop
Targets, Embedded IDEs, or
Embedded Targets

2-2

Set Up Your Modeling Environment

Goals Related Product
Information

Examples

Simulink Coder™
documentation

2-3

2 Modeling Environment

2-4

3

Application Objectives

The first step in applying Embedded Coder configuration options to the
application development process is to consider how your application objectives,
particularly with respect to efficiency, traceability, and safety, map to code
generation options in a model configuration set.

Parameters that you set in the Solver, Data Import/Export, Diagnostics,
and Code Generation panes of the Configuration Parameters dialog box
affect the behavior of a model in simulation and the code generated for the
model.

Consider questions such as the following:

• What settings might help you debug your application?

• What is the highest objective for your application — efficiency, traceability,
extra safety precaution, debugging, or some other criteria?

• What is the second highest objective?

• Can the objective at the start of the project differ from the objective
required for the end result? What tradeoffs can you make?

After you answer these questions:

1 Define your objectives in the configuration set. For more information, see
“High-Level Code Generation Objectives” on page 14-3.

2 Use the Code Generation Advisor to identify parameter values that are not
configured for the objectives that you selected. For more information, see
“Determine Model Configuration for Specified Objectives” on page 14-5.

3 Application Objectives

3-2

4

Guidelines and Standards

• “What Are the Standards and Guidelines?” on page 4-2

• “MAAB Guidelines” on page 4-4

• “MISRA C Guidelines” on page 4-5

• “IEC 61508 Standard” on page 4-7

• “ISO 26262 Standard” on page 4-9

• “DO-178C Standard” on page 4-11

4 Guidelines and Standards

What Are the Standards and Guidelines?
If your application has mission-critical development and certification goals,
your models or subsystems and the code generated for them might need
to comply with one or more of the standards and guidelines listed in the
following table.

Standard or Guidelines Organization For More Information, See...

Guidelines: Use of
MATLAB®, Simulink, and
Stateflow® software for
control algorithm modeling
– MathWorks® Automotive
Advisory Board (MAAB)
Guidelines

MAAB • Control Algorithm Modeling
Guidelines Using MATLAB,
Simulink, and Stateflow
Software: PDF, Word

• Develop Models and Code
That Comply with “MAAB
Guidelines” on page 4-4

Guidelines: Use of the C
Language in Critical Systems
(MISRA C®1)

Motor Industry Software
Reliability Association
(MISRA)

• MISRA C Web site

• Technical Solution 1-1IFP0W
on the MathWorks Web site

• Develop Models and Code
That Comply with “MISRA C
Guidelines” on page 4-5

Standard: AUTomotive
Open System ARchitecture
(AUTOSAR)

AUTOSAR Development
Partnership

• Publications and specifications
available from the AUTOSAR
Web site

• Technical Solution 1-2WFS27
on the MathWorks Web site

• “Overview of AUTOSAR
Support” on page 17-2

1. MISRA® and MISRA C® are registered trademarks of MISRA® Ltd., held on behalf of
the MISRA® Consortium.

4-2

http://www.mathworks.com/automotive/standards/docs/MAAB_Style_Guideline_Version3p00_pdf.zip
http://www.mathworks.com/automotive/standards/docs/MAAB_Style_Guideline_Version3p00_pdf.zip
http://www.mathworks.com/automotive/standards/docs/MAAB_Style_Guideline_Version3p00_pdf.zip
http://www.mathworks.com/industries/auto/maab.html
http://www.mathworks.com/automotive/standards/docs/MAAB_Style_Guideline_Version3p00_pdf.zip
http://www.mathworks.com/automotive/standards/docs/MAAB_Style_Guideline_Version3p00_doc.zip
http://www.misra.org.uk/
http://www.misra.org.uk/
http://www.misra.org.uk/
http://www.misra-c.com/
http://www.mathworks.com/support/solutions/data/1-1IFP0W.html
http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.mathworks.com/support/solutions/data/1-2WFS27.html?solution=1-2WFS27

What Are the Standards and Guidelines?

Standard or Guidelines Organization For More Information, See...

Standard: IEC 61508,
Functional safety of
electrical/electronic/
programmable electronic
safety-related systems

International
Electrotechnical Commission

• IEC functional safety zone
Web site

• Model-Based Design for IEC
61508 (Excerpts) — For
the complete document, see
Technical Solution 1-32COJP
on the MathWorks Web site.

• Develop Models and Code
That Comply with “IEC 61508
Standard” on page 4-7

Standard: ISO 26262, Road
Vehicles - Functional Safety

International Organization
for Standardization

• ISO 26262 Support in
MATLAB and Simulink

• Develop Models and Code
That Comply with “ISO 26262
Standard” on page 4-9

Standard: DO-178C,
Software Considerations
in Airborne Systems and
Equipment Certification

Radio Technical Commission
for Aeronautics (RTCA)

• Develop Models and Code
That Comply with “DO-178C
Standard” on page 4-11

For information on whether Simulink Coder technology is certified or qualified
and whether safety-critical software has been developed with MathWorks
tools, see Embedded Coder — Code Certification with MathWorks Tools.

4-3

http://www.iec.ch/
http://www.iec.ch/
http://www.iec.ch/zone/fsafety/
http://www.iec.ch/zone/fsafety/
http://www.mathworks.com/products/embedded-coder/technicalliterature.html
http://www.mathworks.com/products/embedded-coder/technicalliterature.html
http://www.mathworks.com/support/solutions/data/1-32COJP.html?solution=1-32COJP
http://www.iso.org/iso/home.html
http://www.iso.org/iso/home.html
http://www.mathworks.com/automotive/standards/iso-26262.html
http://www.mathworks.com/automotive/standards/iso-26262.html
http://www.rtca.org/aboutrtca.asp
http://www.rtca.org/aboutrtca.asp
http://www.mathworks.com/products/embedded-coder/technicalliterature.html

4 Guidelines and Standards

MAAB Guidelines
The MathWorks Automotive Advisory Board (MAAB) involves major
automotive OEMs and suppliers in the process of evolving MathWorks
controls, simulation, and code generation products, including Simulink,
Stateflow, and Simulink Coder. An important result of the MAAB has been
the “MAAB Control Algorithm Modeling” guidelines..

If you have a Simulink Verification and Validation product license, you can
check that your Simulink model or subsystem, and the code that you generate
from it, complies with MAAB guidelines. To check your model or subsystem,
open the Simulink Model Advisor. Navigate to By Product > Simulink
Verification and Validation > Modeling Standards > MathWorks
Automotive Advisory Board Checks and run the MathWorks Automotive
Advisory Board checks.

For more information on using the Model Advisor, see “Consult the Model
Advisor” in the Simulink documentation.

4-4

http://www.mathworks.com/products/simverification/

MISRA C® Guidelines

MISRA C Guidelines
The Motor Industry Software Reliability Association (MISRA2) has
established “Guidelines for the Use of the C Language in Critical Systems”
(MISRA C). For general information about MISRA C, see www.misra-c.com.

In 1998, MIRA Ltd. published MISRA C (MISRA C:1998) to provide a
restricted subset of a standardized, structured language that met Safety
Integrity Level (SIL) 2 and higher. A major update based on feedback was
published in 2004 (MISRA C:2004), followed by a minor update in 2007
known as Technical Corrigendum (TC1). In 2007, MISRA also published the
MISRA AC AGC standard, “MISRA AC AGC: Guidelines for the Application
of MISRA-C:2004 in the Context of Automatic Code Generation.” MISRA
AC AGC does not change MISRA C:2004 rules, rather it modifies the
adherence recommendation. For more information about MISRA C, see
www.misra-c.com.

Embedded Coder and Simulink offer capabilities to minimize the potential
for MISRA C rule violations, especially rules deemed applicable by MISRA
AC AGC.

To configure a model or subsystem so that the code generator is most likely to
produce MISRA C:2004 compliant code, use the Code Generation Advisor. For
more information, refer to:

• “High-Level Code Generation Objectives” on page 14-3

• “Determine Model Configuration for Specified Objectives” on page 14-5

The Model Advisor also checks that you developed your model or subsystem
to increase the likelihood of generating MISRA C:2004 compliant code. To
check your model or subsystem:

1 Open the Model Advisor.

2 Navigate to By Product > Embedded Coder.

3 Run the following checks:

2. MISRA® and MISRA C® are registered trademarks of MIRA Ltd., held on behalf of the
MISRA® Consortium.

4-5

http://www.misra-c.com
http://www.misra-c.com

4 Guidelines and Standards

• “Check for blocks not recommended for MISRA-C:2004 compliance”

• “Check configuration parameters for MISRA-C:2004 compliance”

For more information about using the Model Advisor, see “Consult the Model
Advisor” in the Simulink documentation.

For information about using Embedded Coder software within MISRA C
guidelines, see Technical Solution 1-1IFP0W on the MathWorks Web site.

4-6

http://www.mathworks.com/support/solutions/data/1-1IFP0W.html

IEC 61508 Standard

IEC 61508 Standard

In this section...

“Apply Simulink and Embedded Coder to the IEC 61508 Standard” on
page 4-7

“Check for IEC 61508 Standard Compliance Using the Model Advisor” on
page 4-7

“Validate Traceability” on page 4-12

Apply Simulink and Embedded Coder to the IEC
61508 Standard
Applying Model-Based Design to a safety-critical system requires extra
consideration and rigor so that the system adheres to defined safety
standards. IEC 61508, Functional safety of electrical/electronic/programmable
electronic safety related systems, is such a standard. Because the standard
was published when most software was coded by hand, the standard needs
to be mapped to Model-Based Design technologies. Model-Based Design for
IEC 61508 (Excerpts) provides a sampling of information available from a
document that offers recommendations on how to apply Simulink, Simulink
Coder, and third-party products for Model-Based Design to IEC 61508
measures and techniques. For the complete version of Model-Based Design
for IEC 61508, see Technical Solution 1-32COJP on the MathWorks Web site.

MathWorks provides an IEC Certification Kit product that you can
use to certify MathWorks code generation and verification tools for
projects based on the IEC 61508 standard. For more information, see
http://www.mathworks.com/products/iec-61508/.

Check for IEC 61508 Standard Compliance Using the
Model Advisor
If you have a Simulink Verification and Validation product license, you
can check that your Simulink model or subsystem and the code that you
generate from it complies with selected aspects of the IEC 61508 standard by
running the Simulink Model Advisor. Navigate to By Product > Simulink
Verification and Validation > Modeling Standards > IEC 61508 and

4-7

http://www.mathworks.com/products/embedded-coder/technicalliterature.html
http://www.mathworks.com/products/embedded-coder/technicalliterature.html
http://www.mathworks.com/support/solutions/data/1-32COJP.html?solution=1-32COJP
http://www.mathworks.com/products/iec-61508/
http://www.mathworks.com/products/simverification/

4 Guidelines and Standards

ISO 26262 Checks or By Task > Modeling Standards for IEC 61508 and
run the “IEC 61508 and ISO 26262 Checks”.

For more information on using the Model Advisor, see “Consult the Model
Advisor” in the Simulink documentation.

Validate Traceability
Typically, applications that require certification require some level of
traceability between requirements, models, and corresponding code.

To... Use...

Associate requirements
documents with objects in
Simulink models

The “Requirements Traceability” that
is available if you have a Simulink
Verification and Validation license.

Trace model blocks and
subsystems to generated
code

The Model-to-code traceability option
when generating an HTML report during
the code generation or build process.

Trace generated code to model
blocks and subsystems

The Code-to-model traceability option
when generating an HTML report during
the code generation or build process.

4-8

ISO 26262 Standard

ISO 26262 Standard

In this section...

“Apply Simulink and Embedded Coder to the ISO 26262 Standard” on
page 4-9

“Check for ISO 26262 Standard Compliance Using the Model Advisor” on
page 4-9

“Validate Traceability” on page 4-12

Apply Simulink and Embedded Coder to the ISO
26262 Standard
Applying Model-Based Design to a safety-critical system requires extra
consideration and rigor so that the system adheres to defined functional
safety standards. ISO 26262, Road Vehicles - Functional Safety, is such a
standard. For further information about MathWorks support for ISO 26262,
see ISO 26262 Support in MATLAB and Simulink.

MathWorks provides an IEC Certification Kit product that you can
use to qualify MathWorks code generation and verification tools for
projects based on the ISO 26262 standard. For more information, see
http://www.mathworks.com/products/iso–26262/.

Check for ISO 26262 Standard Compliance Using the
Model Advisor
If you have a Simulink Verification and Validation product license, you
can check that your Simulink model or subsystem and the code that you
generate from it complies with selected aspects of the ISO 26262 standard by
running the Simulink Model Advisor. Navigate to By Product > Simulink
Verification and Validation > Modeling Standards > IEC 61508 and
ISO 26262 Checks or By Task > Modeling Standards for ISO 26262 and
run the “IEC 61508 and ISO 26262 Checks”.

For more information on using the Model Advisor, see “Consult the Model
Advisor” in the Simulink documentation.

4-9

http://www.mathworks.com/automotive/standards/iso-26262.html
http://www.mathworks.com/products/iec-61508/
http://www.mathworks.com/products/simverification/

4 Guidelines and Standards

Validate Traceability
Typically, applications that require certification require some level of
traceability between requirements, models, and corresponding code.

To... Use...

Associate requirements
documents with objects in
Simulink models

The “Requirements Traceability” that
is available if you have a Simulink
Verification and Validation license.

Trace model blocks and
subsystems to generated
code

The Model-to-code traceability option
when generating an HTML report during
the code generation or build process.

Trace generated code to model
blocks and subsystems

The Code-to-model traceability option
when generating an HTML report during
the code generation or build process.

4-10

DO-178C Standard

DO-178C Standard

In this section...

“Apply Simulink and Embedded Coder to the DO-178C Standard” on page
4-11

“Check for Standard Compliance Using the Model Advisor” on page 4-11

“Validate Traceability” on page 4-12

Apply Simulink and Embedded Coder to the DO-178C
Standard
Applying Model-Based Design to a high-integrity system requires extra
consideration and rigor so that the system adheres to defined safety
standards. DO-178C Software Considerations in Airborne Systems
and Equipment Certification is such a standard. A supplement to
DO-178C, DO-331, provides guidance on the use of Model-Based Design
technologies. MathWorks provides a DO Qualification Kit product that
you can use to qualify MathWorks verification tools for projects based on
the DO-178C, DO-331, and related standards. For more information, see
http://www.mathworks.com/products/do-178/.

For information about Model-Based Design and MathWorks
support of aerospace and defense industry standards, see
http://www.mathworks.com/aerospace-defense/ .

Check for Standard Compliance Using the Model
Advisor
If you have a Simulink Verification and Validation product license, you
can check that your Simulink model or subsystem and the code that you
generate from it complies with selected aspects of the DO-178C standard by
running the Simulink Model Advisor. Navigate to By Product > Simulink
Verification and Validation > Modeling Standards > DO-178C/DO-331
Checks or By Task > Modeling Standards for DO-178C/DO-331 and run
the DO-178C/DO-331 checks.

4-11

http://www.mathworks.com/products/do-178/
http://www.mathworks.com/aerospace-defense/
http://www.mathworks.com/products/simverification/

4 Guidelines and Standards

For more information on using the Model Advisor, see “Consult the Model
Advisor” in the Simulink documentation.

Validate Traceability
Typically, applications that require certification require some level of
traceability between requirements, models, and corresponding code.

To... Use...

Associate requirements
documents with objects in
Simulink models

The “Requirements Traceability” that
is available if you have a Simulink
Verification and Validation license.

Trace model blocks and
subsystems to generated
code

The Model-to-code traceability option
when generating an HTML report during
the code generation or build process.

Trace generated code to model
blocks and subsystems

The Code-to-model traceability option
when generating an HTML report during
the code generation or build process.

4-12

5

Patterns for C Code

• “About Modeling Patterns” on page 5-3

• “Prepare a Model for Code Generation” on page 5-4

• “Data Declaration” on page 5-9

• “Data Type Conversion” on page 5-13

• “Type Qualifiers” on page 5-17

• “Relational and Logical Operators” on page 5-20

• “Bitwise Operations” on page 5-24

• “If-Else” on page 5-28

• “Switch” on page 5-35

• “For Loop” on page 5-41

• “While Loop” on page 5-50

• “Do While Loop” on page 5-62

• “Function Call” on page 5-69

• “Function Prototyping” on page 5-71

• “External C Functions” on page 5-75

• “Macro Definitions (#define)” on page 5-82

• “Conditional Inclusions (#if / #endif)” on page 5-85

• “Typedef” on page 5-86

• “Structures for Parameters” on page 5-88

• “Structures for Signals” on page 5-91

• “Nested Structures” on page 5-95

5 Patterns for C Code

• “Bitfields” on page 5-99

• “Arrays for Parameters” on page 5-101

• “Arrays for Signals” on page 5-103

• “Pointers for Signals” on page 5-105

• “Pointers Using Simulink Data Objects” on page 5-106

5-2

About Modeling Patterns

About Modeling Patterns
Several standard methods are available for setting up a model to generate
specific C constructs in your code. For preparing your model for code
generation, some of these methods include: configuring signals and ports,
initializing states, and setting up configuration parameters for code
generation. Depending on the components of your model, some of these
methods are optional. Methods for configuring a model to generate specific C
constructs are organized by category, for example, the Control Flow category
includes constructs if-else, switch, for, and while. Refer to the name of
a construct to see how you should configure blocks and parameters in your
model. Different modeling methodologies are available, such as Simulink
blocks, Stateflow charts, and MATLAB Function blocks, to implement a
C construct.

Model examples have the following naming conventions:

Model Components Naming Convention

Inputs u1, u2, u3, and so on

Outputs y1, y2, y3, and so on

Parameters p1, p2, p3, and so on

States x1, x2, x3, and so on

Input ports are named to reflect the signal names that they propagate.

5-3

5 Patterns for C Code

Prepare a Model for Code Generation

In this section...

“Configure a Signal” on page 5-4

“Configure Input and Output Ports” on page 5-4

“Initialize States” on page 5-5

“Set Up Configuration Parameters for Code Generation” on page 5-5

“Set Up an Example Model With a Stateflow Chart” on page 5-6

“Set Up an Example Model With a MATLAB Function Block” on page 5-7

Configure a Signal

1 Create a model in Simulink. For more information, see “Modeling Basics”.

2 Right-click a signal line. Select Properties. For more information about
the Signal Properties dialog box, see “Signal Properties”.

3 Enter a signal name for the Signal name parameter.

4 On the same Signal Properties dialog box, select the Code Generation
tab. Use the drop down menu for the Storage class parameter to specify a
storage class. Examples in this chapter use Exported Global.

Note Alternatively, on the Signal Properties dialog box, select Signal
name must resolve to Simulink signal object. Then create a signal
data object in the base workspace with the same name as the signal. See
“Create Simulink and mpt Data Objects” on page 8-56 for more information
on creating data objects in the base workspace. (Examples use mpt.Signal
and specify the Storage class as ExportedGlobal.

Configure Input and Output Ports

1 In your model,

5-4

Prepare a Model for Code Generation

Double-click an Inport or Outport block. A Block Parameters dialog box
opens.

2 Select the Signal Attributes tab.

3 Specify the Port dimensions and Data type. Examples leave the default
value for Port dimensions as 1 (for inherited) and Data type as
Inherit: auto.

Initialize States

1 Double-click a block.

2 In the Block Parameters dialog box, select the Main tab.

3 Specify the Initial conditions and Sample time. For more information,
see “Specify Sample Time”.

4 Select the State Attributes pane. Specify the state name. See “States”.

5 You can also use the Data Object Wizard for creating data objects. A part of
this process initializes states. See “Create Data Objects with Data Object
Wizard” on page 8-57.

Set Up Configuration Parameters for Code Generation

1 Open the Configuration Parameter dialog box by selecting
Simulation > Model Configuration parameters. You can also use the
keyboard shortcut Ctrl+E.

2 Open the Solver pane and select

• Solver type: Fixed-Step

• Solver: discrete (no continuous states)

3 Open the Optimization > Signals and Parameters pane, and select
the Inline parameters parameter.

4 Open the Code Generation pane, and specify ert.tlc as the System
Target File.

5-5

5 Patterns for C Code

5 Clear Generate makefile.

6 Select Generate code only.

7 Enable the HTML report generation by opening the Code Generation >
Report pane and selecting Create code generation report, Launch
report automatically, and Code-to-model. Enabling the HTML report
generation is optional.

8 Click Apply and then OK to exit.

Set Up an Example Model With a Stateflow Chart

Follow this general procedure to create a simple model containing a Stateflow
chart.

1 From the Stateflow > Chart library, add a Stateflow chart to your model .

2 Add Inport blocks and Outport blocks according to the example model.

3 Open the Stateflow Editor by performing one of the following:

• Double-click the Stateflow chart.

• Press Ctrl+R.

4 Select Chart > Add Inputs & Outputs > Data Input from Simulink to
add the inputs to the chart. A Data dialog box opens for each input.

5 Specify the Name (u1, u2, ...) and the Type (Inherit: Same as
Simulink) for each input, unless specified differently in the example. Click
OK.

5-6

Prepare a Model for Code Generation

Click Apply and close each dialog box.

6 Select Chart > Add Inputs & Outputs > Data Output from Simulink
to add the outputs to the chart. A Data dialog opens for each output.

7 Specify the Name (y1, y2, ...) and Type (Inherit: Same as
Simulink) for each output, unless specified differently in the example.
Click OK.

8 Click Apply and close each dialog box.

9 In the Stateflow Editor, create the Stateflow diagram specific to the
example.

10 The inputs and outputs appear on the chart in your model.

11 Connect the Inport and Outport blocks to the Stateflow Chart.

12 Configure the input and output signals; see “Configure a Signal” on page
5-4.

Set Up an Example Model With a MATLAB Function
Block

1 Add the number of Inport and Outport blocks according to a C construct
example included in this chapter.

2 From the Simulink User-defined Functions library drag a MATLAB
Function block into the model.

3 Double-click the block. The MATLAB Function Block Editor opens. Edit
the function to implement your application.

5-7

5 Patterns for C Code

4 Click File > Save and close the MATLAB Function Block Editor.

5 Connect the Inport and Outport blocks to the MATLAB Function block. See
“Configure a Signal” on page 5-4.

6 Save your model.

5-8

Data Declaration

Data Declaration

C Construct

int32 p1 = 3;

Declare a Variable for a Block Parameter Using a
Data Object
You can specify certain block parameters as a variable. If you define the
variable as a data object, the variable is global. Where the variable is declared
in the generated code depends on the custom storage class that you choose
(and whether you select Inline Parameters on the Optimization > Signals
and Parameters pane). If you choose Inline Parameters, then the data
object name is used in the generated code. If you did not choose Inline
Parameters, the generated code creates a global structure that stores all of
the parameters. For more information on how to create a data object, see
“Apply User-Defined Data Types” on page 8-2.

Block Parameter

Constant Value

Gain Value

For Iterator Iteration Limit

There are several methods for configuring data objects:

• For a model with many parameters, use the Data Object Wizard, which
analyzes your model and finds the unresolved data objects and data types.
You can then create the data objects in the Data Object Wizard. The
procedure for using the Data Object Wizard for a parameter is similar to
the procedure for a signal. For an example, see “Declare a Variable for a
Signal using a Data Object” on page 5-11.

• To add, delete, edit, and configure data objects, use the base workspace in
the Model Explorer.

• To create and configure data objects, use the MATLAB command line.

5-9

5 Patterns for C Code

The following example demonstrates how to create a data object using the
Model Explorer. The declaration statement in the generated code is as follows:

int Kp = 3;

1 Create a model containing a Constant block and a Gain block.

2 Press Ctrl+E to open the Configuration Parameters dialog box.

3 On the Optimization > Signals and Parameters pane of the
Configuration Parameter dialog box, select Inline parameters.

4 Click Apply and OK. The Configuration Parameter dialog box closes.

5 In your model, double-click the Constant block. The Block Parameters
dialog box opens.

6 In the Value field, enter a variable name. In this example, the variable
name is p1.

7 In your model, double-click the Gain block. The Block Parameters dialog
box opens.

8 In the Value field, enter a variable name. In this example, the variable
name is p2.

9 Press Ctrl+H to open the Model Explorer. On the Model Hierarchy pane,
select the base workspace.

10 To add two MPT parameter objects, in the menu bar, select Add > MPT
Parameter in the menu bar twice. On the Contents of: Base Workspace
pane, you see the parameters.

11 Double-click each mpt.Parameter object and change their names to p1
and p2.

12 Click the p1 parameter. The data object parameters are displayed in the
right pane of the Model Explorer.

13 In the Value field, enter 3 for p1. For the Data type, select int32.
Because you chose an MPT parameter, the Storage Class is already set
to Global(Custom).

5-10

Data Declaration

14 In the Value field, enter 5 for p2. For the Data type, select int32.

15 Press Ctrl+B to generate code.

In the model.c file you see:

int32 p1 = 3;
int32 p2 = 5;

Note Depending on the storage class, the global variable is represented
differently in the generated code. For more information, see “Parameter
Objects”.

C Construct

int p1 = 3;

Declare a Variable for a Signal using a Data Object

1 Create a model and label the signals.

2 Ppen the Data Object Wizard. In the Simulink Editor, select
Code > Data Objects > Data Object Wizard. If you are not familiar
with creating Simulink Data Objects using the wizard, refer to “Data
Object Wizard” .

3 Click Find. The list of unresolved parameters and objects populates the
Data Object Wizard. You can do mass edits for identical data objects.

4 Select the signals individually or select all signals by clicking Check All.

5 From the parameter Choose package for selected data objects
drop-down list, select the mpt package. Click Apply Package. When you
open the Model Explorer the data objects appear in the base workspace.

6 In the base workspace, click the p1 data object . The data object parameters
appear in the right pane of the Model Explorer.

7 From the Data type drop-down list, select int16.

5-11

5 Patterns for C Code

8 You can also specify the storage class. The data object is an mpt.Parameter
object, therefore the Storage Class is automatically set to Global (Custom).

Note The Storage class alters the data object implementation in the
generated code. For more information, see “Signal Objects”.

5-12

Data Type Conversion

Data Type Conversion

C Construct

y1 = (double)u1;

Modeling Patterns

• “Modeling Pattern for Data Type Conversion — Simulink Block” on page
5-13

• “Modeling Pattern for Data Type Conversion — Stateflow Chart” on page
5-14

• “Modeling Pattern for Data Type Conversion — MATLAB Function Block”
on page 5-15

Modeling Pattern for Data Type Conversion —
Simulink Block
One method to create a data type conversion is to use a Data Type Conversion
block from the Simulink > Commonly Used Blocks library.

ex_data_type_SL

1 From the Commonly Used Blocks library, drag a Data Type Conversion
block into your model and connect to the Inport and Outport blocks.

2 Double-click on the Data Type Conversion block to open the Block
Parameters dialog box.

3 Select the Output data type parameter as double.

4 Press Ctrl+B to build the model and generate code.

The generated code appears in ex_data_type_SL.c, as follows:

5-13

5 Patterns for C Code

int32_T u1;
real_T y1;

void ex_data_type_SL_step(void)
{
y1 = (real_T)u1;

}

The Embedded Coder type definition for double is real_T.

Modeling Pattern for Data Type Conversion —
Stateflow Chart

Stateflow Chart Type Conversion

Procedure
1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on
page 5-6 . This example contains one Inport block and one Outport block.

2 Name the example model ex_data_type_SF.

3 Double-click the Inport block and select the Signal Attributes tab. Specify
the Data Type as int32 from the drop down menu.

4 Double-click the Outport block and select the Signal Attributes tab.
Specify the Data Type as Inherit: auto from the drop down menu.

5 Press Ctrl+B to build the model and generate code.

Results
The generated code appears in ex_data_type_SF.c, as follows:

5-14

Data Type Conversion

int32_T u1;

real_T y1;

void ex_data_type_SF_step(void)

{

y1 = (real_T)u1;

}

Modeling Pattern for Data Type Conversion —
MATLAB Function Block

Procedure

1 Follow the steps for “Set Up an Example Model With a MATLAB Function
Block” on page 5-7 . This example model contains one Inport block and
one Outport block.

2 Name the model ex_data_type_ML_Func.

3 In the MATLAB Function Block Editor enter the function, as follows:

function y1 = typeconv(u1)
y1 = double(u1);
end

4 Press Ctrl+B to build the model and generate code.

Results
The generated code appears in ex_data_type_ML_func.c, where real32_T is
a float and real_T is a double. Type conversion occurs across assignments.

real32_T u1;

real_T y1;

void ex_data_type_ML_func_step(void)

{

y1 = u1;

}

5-15

5 Patterns for C Code

Other Type Conversions in Modeling
Type conversions can also occur on the output of blocks where the output
variable is specified as a different data type. For example, in the Gain block,
you can select the Inherit via internal rule parameter to control the
output signal data type. Another example of type conversion can occur at
the boundary of a Stateflow chart. You can specify the output variable as
a different data type.

5-16

Type Qualifiers

Type Qualifiers

Modeling Patterns for Type Qualifiers

• “Using a Tunable Parameter in the Base Workspace” on page 5-17

• “Use a Data Object of the Const Custom Storage Class” on page 5-18

Using a Tunable Parameter in the Base Workspace
A tunable parameter is a block parameter whose value can be changed
at runtime. The storage class property of a parameter specifies how the
parameter is declared in the generated code.

ex_type_qual

Procedure

1 Create a model containing a Constant block and an Outport block.

2 Double-click the Constant block. In the Constant value field, enter the
parameter name p1 .

3 In the base workspace, create a MATLAB variable for p1 and specify its
Value as 9.8 and its Data type as double.

4 Press Ctrl+E to open the Configuration Parameters dialog box and select
the Optimization > Signals and Parameters pane.

5 Select the Inline parameters parameter, which activates the Configure
button.

6 Click the Configure button to open the Model Parameter Configuration
dialog box.

7 To declare a tunable parameter, from the Source list, select the variable
p1.

5-17

5 Patterns for C Code

8 Click the Add to table button to add p1 to the Global (tunable)
parameters section.

9 Click the Storage Class and select Exported Global.

10 Click the Storage Type Qualifier arrow and select const.

11 Click Apply to save the changes.

12 Press Ctrl+B to build the model and generate code.

Results
The generated code appears in ex_type_qual.c as follows:

/* Exported block parameters */

const real_T p1 = 9.8; /* Variable: p1

* Referenced by: '<Root>/Constant'

*/

Use a Data Object of the Const Custom Storage Class
One way to create a type qualifier in the generated code is to create a
data object and specify a custom storage class. Use the previous model,
ex_type_qual, for this example. Specify p1 differently as follows:

Procedure

1 Press Ctrl+H to open the Model Explorer. On the Model Hierarchy pane,
select the base workspace.

2 In the menu bar, select Add > MPT Parameter to add an MPT parameter
object. The parameter is displayed in the Contents of: Base Workspace
pane.

3 Double-click the mpt.Parameter object and change the Name to p1.

4 Click the p1 parameter which displays the data object parameters on the
right pane of the Model Explorer.

5 In the Value field, enter 9.8 for p1. Specify the Data type as auto for
64–bit double.

5-18

Type Qualifiers

6 You can use the different type qualifiers by selecting a custom storage
class from the Storage class list. For this example, select ConstVolatile
(custom).

7 In the Configuration Parameters dialog box, on the
Optimization > Signals and Parameters pane, select the
Inline parameters.

8 Press Ctrl+B to build the model and generate code.

Results
The generated code produces the type qualifier in ex_type_qual.c:

const volatile real_T p1 = 9.8;

5-19

5 Patterns for C Code

Relational and Logical Operators

Modeling Patterns for Relational and Logical
Operators

• “Modeling Pattern for Relational or Logical Operators — Simulink Blocks”
on page 5-20

• “Modeling Pattern for Relational and Logical Operators —Stateflow Chart”
on page 5-21

• “Modeling Pattern for Relational and Logical Operators — MATLAB
Function Block” on page 5-22

Modeling Pattern for Relational or Logical Operators
— Simulink Blocks

ex_logical_SL

Procedure

1 From the Logic and Bit Operations library, drag a Logical Operator
block into your model.

2 Double-click the block to configure the logical operation. Set the Operator
field to OR.

3 Name the blocks, as shown in the model ex_logical_SL.

4 Connect the blocks and name the signals, as shown in the model
ex_logical_SL.

5 Press Ctrl+B to build the model and generate code.

5-20

Relational and Logical Operators

Note You can use the above procedure to implement relational operators by
replacing the Logical Operator block with a Relational Operator block.

Results
Code implementing the logical operator OR is in the ex_logical_SL_step
function in ex_logical_SL.c:

/* Exported block signals */
boolean_T u1; /* '<Root>/u1' */
boolean_T u2; /* '<Root>/u2' */
boolean_T y1; /* '<Root>/Logical Operator'*/

/* Logic: '<Root>/Logical Operator' incorporates:
* Inport: '<Root>/u1'
* Inport: '<Root>/u2'
*/
y1 = (u1 || u2);

Modeling Pattern for Relational and Logical
Operators —Stateflow Chart

ex_logical_SF/Logical Operator Stateflow® Chart

Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on
page 5-6. This example model contains two Inport blocks and one Outport
block.

5-21

5 Patterns for C Code

2 Name the example model ex_logical_SF.

3 In the Stateflow Editor, specify the Data Type for y1 as Boolean.

4 In the Stateflow Editor, create the Stateflow diagram as shown. The
relational or logical operation actions are on the transition from one junction
to another. Relational statements specify conditions to conditionally allow
a transition. In that case, the statement would be within square brackets.

5 Press Ctrl+B to build the model and generate code.

Results
Code implementing the logical operator OR is in the ex_logical_SF_step
function in ex_logical_SF.c:

boolean_T u1; /* '<Root>/u1' */
boolean_T u2; /* '<Root>/u2' */
boolean_T y1; /* '<Root>/Chart' */

void ex_logical_SF_step(void)
{

y1 = (u1 || u2);
}

Modeling Pattern for Relational and Logical
Operators — MATLAB Function Block
This example demonstrates the MATLAB Function block method for
incorporating operators into the generated code using a relational operator.

Procedure

1 Follow the steps for “Set Up an Example Model With a MATLAB Function
Block” on page 5-7 . This example model contains two Inport blocks and
one Outport block.

2 Name the example model ex_rel_operator_ML.

3 In the MATLAB Function Block Editor enter the function, as follows:

5-22

Relational and Logical Operators

function y1 = fcn(u1, u2)
y1 = u1 > u2;
end

4 Press Ctrl+B to build the model and generate code.

Results
Code implementing the relational operator ’>’ is in the
ex_rel_operator_ML_step function in ex_rel_operator_ML.c:

real_T u1; /* '<Root>/u1' */
real_T u2; /* '<Root>/u2' */
boolean_T y; /* '<Root>/MATLAB Function' */

void ex_rel_operator_ML_step(void)
{

y = (u1 > u2);
}

5-23

5 Patterns for C Code

Bitwise Operations

Simulink Bitwise-Operator Block

ex_bit_logic_SL

Procedure

1 Drag a Bitwise Operator block from the Logic and Bit Operations
library into your model.

2 Double-click the block to open the Block Parameters dialog.

3 Select the type of Operator. In this example, select AND.

4 In order to perform Bitwise operations with a bit-mask, select Use bit
mask.

Note If another input uses Bitwise operations, clear the Use bit mask
parameter and enter the number of input ports.

5 In the Bit Mask field, enter a decimal number. Use bin2dec or hex2dec to
convert from binary or hexadecimal. In this example, enter hex2dec('D9').

6 Name the blocks, as shown in, model ex_bit_logic_SL.

7 Connect the blocks and name the signals, as shown in, model
ex_bit_logic_SL.

5-24

Bitwise Operations

8 Press Ctrl+B to build the model and generate code.

Results
Code implementing the logical operator OR is in the ex_bit_logic_SL_step
function in ex_bit_logic_SL.c:

uint8_T u1;
uint8_T y1;

void ex_bit_logic_SL_step(void)
{

y1 = (uint8_T)(u1 & 217);
}

Stateflow Chart

ex_bit_logic_SF/Bit_Logic Stateflow Chart

Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on
page 5-6. This example contains one Inport block and one Outport block.

2 Name the example model ex_bit_logic_SF.

3 From the Stateflow Editor, selectTools > Explore to open the Model
Explorer.

4 In the Model Explorer, on the right pane, select Enable C-bit operations.

5 In the Stateflow Editor, create the Stateflow diagram,
ex_bit_logic_SF/Bit_Logic.

5-25

5 Patterns for C Code

6 Press Ctrl+B to build the model and generate code.

Results
Code implementing the logical operator OR is in the ex_bit_logic_SF_step
function in ex_bit_logic_SF.c:

uint8_T u1;
uint8_T y1;

void bit_logic_SF_step(void)
{

y1 = (uint8_T)(u1 & 0xD9);
}

MATLAB Function Block
In this example, to demonstrate theMATLAB Function block method for
implementing bitwise logic into the generated code, use the bitwise OR, ’|’.

Procedure

1 Follow the steps for “Set Up an Example Model With a MATLAB Function
Block” on page 5-7. This example model contains two Inport blocks and
one Outport block.

2 Name your model ex_bit_logic_ML.

3 In the MATLAB Function Block Editor enter the function, as follows:

function y1 = fcn(u1, u2)

y1 = bitor(u1, u2);
end

4 Press Ctrl+B to build the model and generate code.

Results
Code implementing the bitwise operator OR is in the ex_bit_logic_ML_step
function in ex_bit_logic_ML.c:

5-26

Bitwise Operations

uint8_T u1;
uint8_T u2;
uint8_T y1;

void ex_bit_logic_ML_step(void)
{
y1 = (uint8_T)(u1 | u2);

}

5-27

5 Patterns for C Code

If-Else

C Construct

if (u1 > u2)
{

y1 = u1;
}
else
{

y1 = u2;
}

Modeling Patterns

• “Modeling Pattern for If-Else: Switch block” on page 5-29

• “Modeling Pattern for If-Else: Stateflow Chart” on page 5-31

• “Modeling Pattern for If-Else: MATLAB Function Block” on page 5-33

5-28

If-Else

Modeling Pattern for If-Else: Switch block
One method to create an if-else statement is to use a Switch block from the
Simulink > Signal Routing library.

Model ex_if_else_SL

Procedure

1 Drag the Switch block from the Simulink>Signal Routing library into
your model.

2 Connect the data inputs and outputs to the block.

3 Drag a Relational Operator block from the Logic & Bit Operations library
into your model.

4 Connect the signals that are used in the if-expression to the Relational
Operator block. The order of connection determines the placement of each
signal in the if-expression.

5 Configure the Relational Operator block to be a greater than operator.

6 Connect the controlling input to the middle input port of the Switch block.

7 Double-click the Switch block and set Criteria for passing first input to
u2~=0. The software selects u1 if u2 is TRUE; otherwise u2 passes.

5-29

5 Patterns for C Code

8 Enter Ctrl+B to build the model and generate code.

Results
The generated code includes the following ex_if_else_SL_step function
in the file ex_if_else_SL.c:

/* External inputs (root inport signals with auto storage) */

ExternalInputs U;

/* External outputs (root outports fed by signals with auto storage) */

ExternalOutputs Y;

/* Model step function */

void ex_if_else_SL_step(void)

{

/* Switch: '<Root>/Switch' incorporates:

* Inport: '<Root>/u1'

* Inport: '<Root>/u2'

* Outport: '<Root>/y1'

* RelationalOperator: '<Root>/Relational Operator'

*/

if (U.u1 > U.u2) {

Y.y1 = U.u1;

} else {

Y.y1 = U.u2;

}

}

5-30

If-Else

Modeling Pattern for If-Else: Stateflow Chart

ex_if_else_SF/Chart

Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on
page 5-6. This example model contains two Inport blocks and one Outport
block.

2 Name your model ex_if_else_SF.

3 When configuring your Stateflow chart, select Chart > Add
Patterns > Decision > If-Else. The Stateflow Pattern dialog opens. Fill
in the fields as follows:

Description If-Else (optional)

If condition u1 > u2

If action y1 = u1

Else action y1 = u2

4 Press Ctrl+B to build the model and generate code.

Results
The generated code includes the following ex_if_else_SF_step function in
the file If_Else_SF.c:

5-31

5 Patterns for C Code

/* External inputs (root inport signals with auto storage) */

ExternalInputs U;

/* External outputs (root outports fed by signals with auto storage) */

ExternalOutputs Y;

/* Model step function */

void ex_if_else_SF_step(void)

{

/* Stateflow: '<Root>/Chart' incorporates:

* Inport: '<Root>/u1'

* Inport: '<Root>/u2'

* Outport: '<Root>/y1'

*/

/* Gateway: Chart */

/* During: Chart */

/* Transition: '<S1>:14' */

/* If-Else */

if (U.u1 > U.u2) {

/* Transition: '<S1>:13' */

/* Transition: '<S1>:12' */

Y.y1 = U.u1;

/* Transition: '<S1>:11' */

} else {

/* Transition: '<S1>:10' */

Y.y1 = U.u2;

}

/* Transition: '<S1>:9' */

}

5-32

If-Else

Modeling Pattern for If-Else: MATLAB Function Block

Procedure

1 Follow the steps for “Set Up an Example Model With a MATLAB Function
Block” on page 5-7. This example model contains two Inport blocks and
one Outport block.

2 Name your model ex_if_else_ML.

3 In the MATLAB Function Block Editor enter the function, as follows:

function y1 = fcn(u1, u2)
if u1 > u2;

y1 = u1;
else y1 = u2;
end

4 Press Ctrl+B to build the model and generate code.

Results
The generated code includes the following ex_if_else_ML_step function
in the file ex_if_else_ML.c:

/* External inputs (root inport signals with auto storage) */

ExternalInputs U;

/* External outputs (root outports fed by signals with auto storage) */

ExternalOutputs Y;

/* Model step function */

void ex_if_else_ML_step(void)

{

/* MATLAB Function Block: '<Root>/MATLAB Function' incorporates:

* Inport: '<Root>/u1'

* Inport: '<Root>/u2'

* Outport: '<Root>/y1'

*/

/* MATLAB Function 'MATLAB Function': '<S1>:1' */

5-33

5 Patterns for C Code

if (U.u1 > U.u2) {

/* '<S1>:1:4' */

/* '<S1>:1:5' */

Y.y1 = U.u1;

} else {

/* '<S1>:1:6' */

Y.y1 = U.u2;

}

}

5-34

Switch

Switch

C Construct

switch (u1)
{
case 2:

y1 = u2;
break;

case 3:
y1 = u3;
break;

default:
y1 = u4;
break;

}

Modeling Patterns

• “Modeling Pattern for Switch: Switch Case block” on page 5-36

• “Modeling Pattern for Switch: MATLAB Function block” on page 5-39

• “Convert If-Elseif-Else to Switch statement” on page 5-40

5-35

5 Patterns for C Code

Modeling Pattern for Switch: Switch Case block
One method for creating a switch statement is to use a Switch Case block
from the Simulink > Ports and Subsystems library.

Model ex_switch_SL

Procedure

1 Drag a Switch Case block from the Simulink > Ports and Subsystems
library into your model.

2 Double-click the block. In the Block Parameters dialog box, fill in the Case
Conditions parameter. In this example, the two cases are: {2,3}.

3 Select the Show default case parameter. The default case is optional in
a switch statement.

4 Connect the condition input u1 to the input port of the Switch block.

5 Drag Switch Case Action Subsystem blocks from the Simulink>Ports and
Subsystems library to correspond with the number of cases.

5-36

Switch

6 Configure the Switch Case Action Subsystem subsystems.

7 Drag a Merge block from the Simulink > Signal Routing library to
merge the outputs.

8 The Switch Case block takes an integer input, therefore, the input signal
u1 is type cast to an int32.

9 Enter Ctrl+B to build the model and generate code.

Results
The generated code includes the following ex_switch_SL_step function in the
file ex_switch_SL.c:

/* Exported block signals */

int32_T u1; /* '<Root>/u1' */

/* External inputs (root inport signals with auto storage) */

ExternalInputs U;

/* External outputs (root outports fed by signals with auto storage) */

ExternalOutputs Y;

/* Model step function */

void ex_switch_SL_step(void)

{

/* SwitchCase: '<Root>/Switch Case' incorporates:

* ActionPort: '<S1>/Action Port'

* ActionPort: '<S2>/Action Port'

* ActionPort: '<S3>/Action Port'

* Inport: '<Root>/u1'

* SubSystem: '<Root>/Switch Case Action Subsystem'

* SubSystem: '<Root>/Switch Case Action Subsystem1'

* SubSystem: '<Root>/Switch Case Action Subsystem2'

*/

switch (u1) {

case 2:

/* Inport: '<S1>/u2' incorporates:

* Inport: '<Root>/u2'

* Outport: '<Root>/y1'

5-37

5 Patterns for C Code

*/

Y.y1 = U.u2;

break;

case 3:

/* Inport: '<S2>/u3' incorporates:

* Inport: '<Root>/u3'

* Outport: '<Root>/y1'

*/

Y.y1 = U.u3;

break;

default:

/* Inport: '<S3>/u4' incorporates:

* Inport: '<Root>/u4'

* Outport: '<Root>/y1'

*/

Y.y1 = U.u4;

break;

}

}

5-38

Switch

Modeling Pattern for Switch: MATLAB Function block

Procedure

1 Follow the steps for “Set Up an Example Model With a MATLAB Function
Block” on page 5-7. This example model contains four Inport blocks and
one Outport block.

2 Name your model ex_switch_ML.

3 In the MATLAB Function Block Editor enter the function, as follows:

function y1 = fcn(u1, u2, u3, u4)

switch u1
case 2

y1 = u2;
case 3

y1 = u3;
otherwise

y1 = u4;
end

4 Press Ctrl+B to build the model and generate code.

Results
The generated code includes the following ex_switch_ML_step function in the
file ex_switch_ML.c:

/* External inputs (root inport signals with auto storage) */

ExternalInputs U;

/* External outputs (root outports fed by signals with auto storage) */

ExternalOutputs Y;

/* Model step function */

void ex_switch_ML_step(void)

{

/* MATLAB Function Block: '<Root>/MATLAB Function' incorporates:

5-39

5 Patterns for C Code

* Inport: '<Root>/u1'

* Inport: '<Root>/u2'

* Inport: '<Root>/u3'

* Inport: '<Root>/u4'

* Outport: '<Root>/y1'

*/

/* MATLAB Function 'MATLAB Function': '<S1>:1' */

/* '<S1>:1:4' */

switch (U.u1) {

case 2:

/* '<S1>:1:6' */

Y.y1 = U.u2;

break;

case 3:

/* '<S1>:1:8' */

Y.y1 = U.u3;

break;

default:

/* '<S1>:1:10' */

Y.y1 = U.u4;

break;

}

}

Convert If-Elseif-Else to Switch statement
If a MATLAB Function block or a Stateflow chart uses if-elseif-else
decision logic, you can convert it to a switch statement by using a
configuration parameter. In the Configuration Parameters dialog box, on
the Code Generation > Code Style pane, select the “Convert if-elseif-else
patterns to switch-case statements” parameter. For more information, see
“Converting If-Elseif-Else Code to Switch-Case Statements” in the Simulink
documentation. For more information on this conversion using a Stateflow
chart, see “Convert If-Elseif-Else Code to Switch-Case Statements” and
“Example of Converting Code to Switch-Case Statements” in the Stateflow
documentation.

5-40

For Loop

For Loop

C Construct

y1 = 0;
for(inx = 0; inx <10; inx++)
{

y1 = u1[inx] + y1;
}

Modeling Patterns:

• “Modeling Pattern for For Loop: For-Iterator Subsystem block” on page 5-42

• “Modeling Pattern for For Loop: Stateflow Chart” on page 5-45

• “Modeling Pattern for For Loop: MATLAB Function block” on page 5-48

5-41

5 Patterns for C Code

Modeling Pattern for For Loop: For-Iterator
Subsystem block
One method for creating a for loop is to use a For Iterator Subsystem block
from the Simulink > Ports and Subsystems library.

Model ex_for_loop_SL

For Iterator Subsystem

Procedure

1 Drag a For Iterator Subsystem block from the Simulink > Ports and
Subsystems library into your model.

2 Connect the data inputs and outputs to the For Iterator Subsystem block.

3 Open the Inport block.

5-42

For Loop

4 In the Block Parameters dialog box, select the Signal Attributes pane and
set the Port dimensions parameter to 10.

5 Double-click the For Iterator Subsystem block to open the subsystem.

6 Drag an Index Vector block from the Signal-Routing library into the
subsystem.

7 Open the For Iterator block. In the Block Parameters dialog box set the
Index-mode parameter to Zero-based and the Iteration limit parameter
to 10.

8 Connect the controlling input to the topmost input port of the Index Vector
block, and the other input to the second port.

9 Drag an Add block from theMath Operations library into the subsystem.

10 Drag a Unit Delay block from Commonly Used Blocks library into the
subsystem.

11 Double-click the Unit Delay block and set the Initial Conditions
parameter to 0. This parameter initializes the state to zero.

12 Connect the blocks as shown in the model diagram.

13 Save the subsystem and the model.

14 Enter Ctrl+B to build the model and generate code.

Results
The generated code includes the following ex_for_loop_SL_step function in
the file ex_for_loop_SL.c:

/* External inputs (root inport signals with auto storage) */

ExternalInputs U;

/* External outputs (root outports fed by signals with auto storage) */

ExternalOutputs Y;

/* Model step function */

void ex_for_loop_SL_step(void)

5-43

5 Patterns for C Code

{

int32_T s1_iter;

int32_T rtb_y1;

/* Outputs for iterator SubSystem: '<Root>/For Iterator Subsystem' incorporates:

* ForIterator: '<S1>/For Iterator'

*/

for (s1_iter = 0; s1_iter < 10; s1_iter++) {

/* Sum: '<S1>/Add' incorporates:

* Inport: '<Root>/u1'

* MultiPortSwitch: '<S1>/Index Vector'

* UnitDelay: '<S1>/Unit Delay'

*/

rtb_y1 = U.u1[s1_iter] + DWork.UnitDelay_DSTATE;

/* Update for UnitDelay: '<S1>/Unit Delay' */

DWork.UnitDelay_DSTATE = rtb_y1;

}

/* end of Outputs for SubSystem: '<Root>/For Iterator Subsystem' */

/* Outport: '<Root>/y1' */

Y.y1 = rtb_y1;

}

5-44

For Loop

Modeling Pattern for For Loop: Stateflow Chart

Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on
page 5-6. This example model contains one Inport block and one Outport
block.

2 Name the model ex_for_loop_SF.

3 Enter Ctrl+R to open the Model Explorer.

4 In the Model Explorer, select the output variable, u1, and in the right pane,
select the General tab and set the Initial Value to 0.

5 In the Stateflow Editor, select Chart > Add Patterns > Loop > For.
The Stateflow Pattern dialog opens.

6 Fill in the fields in the Stateflow Pattern dialog box as follows:

Description For Loop (optional)

Initializer expression inx = 0

Loop test expression inx < 10

5-45

5 Patterns for C Code

Counting expression inx++

For loop body y1 = u1[inx] + y1

The Stateflow diagram is shown.

7 Press Ctrl+B to build the model and generate code.

Results
The generated code includes the following ex_for_loop_SF_step function in
the file ex_for_loop_SF.c:

/* Block signals (auto storage) */

BlockIO B;

/* External inputs (root inport signals with auto storage) */

ExternalInputs U;

/* External outputs (root outports fed by signals with auto storage) */

ExternalOutputs Y;

/* Model step function */

void ex_for_loop_SF_step(void)

{

int32_T sf_inx;

/* Stateflow: '<Root>/Chart' incorporates:

* Inport: '<Root>/u1'

*/

/* Gateway: Chart */

/* During: Chart */

/* Transition: '<S1>:24' */

/* For Loop */

/* Transition: '<S1>:25' */

for (sf_inx = 0; sf_inx < 10; sf_inx++) {

/* Transition: '<S1>:22' */

/* Transition: '<S1>:23' */

B.y1 = U.u1[sf_inx] + B.y1;

/* Transition: '<S1>:21' */

5-46

For Loop

}

/* Transition: '<S1>:20' */

/* Outport: '<Root>/y1' */

Y.y1 = B.y1;

}

5-47

5 Patterns for C Code

Modeling Pattern for For Loop: MATLAB Function
block

Procedure

1 Follow the directions for “Set Up an Example Model With a MATLAB
Function Block” on page 5-7. This example model contains one Inport block
and one Outport block.

2 Name your model ex_for_loop_ML.

3 In the MATLAB Function Block Editor enter the function, as follows:

function y1 = fcn(u1)

y1 = 0;

for inx=1:10
y1 = u1(inx) + y1 ;

end

4 Press Ctrl+B to build the model and generate code.

Results
The generated code includes the following ex_for_loop_ML_step function in
the file ex_for_loop_ML.c:

/* Exported block signals */

real_T u1[10]; /* '<Root>/u1' */

real_T y1; /* '<Root>/MATLAB Function' */

/* Model step function */

void ex_for_loop_ML_step(void)

{

int32_T inx;

/* MATLAB Function Block: '<Root>/MATLAB Function' incorporates:

* Inport: '<Root>/u1'

*/

5-48

For Loop

/* MATLAB Function 'MATLAB Function': '<S1>:1' */

/* '<S1>:1:3' */

y1 = 0.0;

for (inx = 0; inx < 10; inx++) {

/* '<S1>:1:5' */

/* '<S1>:1:6' */

y1 = u1[inx] + y1;

}

}

5-49

5 Patterns for C Code

While Loop

C Construct

while(flag && (num_iter <= 100)
{

flag = func ();
num_iter ++;

}

Modeling Patterns

• “Modeling Pattern for While Loop: While Iterator Subsystem block” on
page 5-51

• “Modeling Pattern for While Loop: Stateflow Chart” on page 5-55

• “Modeling Pattern for While Loop: MATLAB Function Block” on page 5-58

5-50

While Loop

Modeling Pattern for While Loop: While Iterator
Subsystem block
One method for creating a while loop is to use a While Iterator Subsystem
block from the Simulink > Ports and Subsystems library.

Model ex_while_loop_SL

ex_while_loop_SL/While Iterator Subsystem

Procedure

1 Drag a While Iterator Subsystem block from the Simulink > Ports and
Subsystems library into the model.

2 Drag a Constant block from the Simulink > Commonly Used Blocks
library into the model. In this case, set the Initial Condition to 1 and the
Data Type to Boolean. You do not have to set the initial condition to
FALSE. The initial condition can be dependent on the input to the block.

5-51

5 Patterns for C Code

3 Connect the Constant block to the While Iterator Subsystem block.

4 Double-click the While Iterator Subsystem block to open the subsystem.

5 Place a Subsystem block next to the While Iterator block.

6 Right-click the subsystem and select Block Parameters (Subsystem).
The Block Parameters dialog box opens.

7 Select the Treat as atomic unit parameter to configure the subsystem to
generate a function. This enables parameters on the Code Generation
tab.

8 Select the Code Generation tab. From the Function packaging list,
select the option, Nonreusable function.

9 From the Function name options list, select the option, User
specified. The Function name parameter is displayed.

10 Specify the name as func.

11 Click Apply.

12 Double-click the func subsystem block. In this example, function func()
has an output flag set to 0 or 1 depending on the result of the algorithm in
func(). Create the func() algorithm as shown in the following diagram:

func

13 Double-click the While Iterator block to set the Maximum number of
iterations to 100.

5-52

While Loop

14 Connect blocks as shown in the model and subsystem diagrams.

Results
The generated code includes the following ex_while_loop_SL_step function
in the file ex_while_loop_SL.c:

/* Exported block signals */

boolean_T IC; /* '<Root>/Initial Condition SET to TRUE' */

boolean_T flag; /* '<S2>/Relational Operator' */

/* Block states (auto storage) */

D_Work DWork;

/* Start for atomic system: '<S1>/func() Is a function that updates the flag' */

void func_Start(void)

{

/* Start for RandomNumber: '<S2>/Random Number' */

DWork.RandSeed = 1144108930U;

DWork.NextOutput = rt_NormalRand(&DWork.RandSeed) * 1.7320508075688772E+000;

}

/* Output and update for atomic system:

* '<S1>/func() Is a function that updates the flag' */

void func(void)

{

/* RelationalOperator: '<S2>/Relational Operator' incorporates:

* Constant: '<S2>/Constant1'

* RandomNumber: '<S2>/Random Number'

*/

flag = (DWork.NextOutput > 1.0);

/* Update for RandomNumber: '<S2>/Random Number' */

DWork.NextOutput = rt_NormalRand(&DWork.RandSeed) * 1.7320508075688772E+000;

}

/* Model step function */

void ex_while_loop_SL_step(void)

{

int32_T s1_iter;

5-53

5 Patterns for C Code

boolean_T loopCond;

/* Outputs for iterator SubSystem:

* '<Root>/While Iterator Subsystem' incorporates:

* WhileIterator: '<S1>/While Iterator'

*/

s1_iter = 1;

loopCond = IC;

while (loopCond && (s1_iter <= 100)) {

/* Outputs for atomic SubSystem:

* '<S1>/func() Is a function that updates the flag' */

func();

/* end of Outputs for SubSystem:

* '<S1>/func() Is a function that updates the flag' */

loopCond = flag;

s1_iter++;

}

/* end of Outputs for SubSystem: '<Root>/While Iterator Subsystem' */

}

5-54

While Loop

Modeling Pattern for While Loop: Stateflow Chart

Model ex_while_loop_SF

ex_while_loop_SF/Chart Executes the desired while-loop

Procedure

1 Add a Stateflow Chart to your model from the Stateflow > Chart library.

2 Double-click the chart.

3 Add the input, flag, and output, func, to the chart and specify their data
type.

5-55

5 Patterns for C Code

4 Connect the data input and output to the Stateflow chart as shown in the
model diagram.

5 In the Model Explorer, select the output variable, then, in the right pane,
select the General tab and set the Initial Value to 0.

6 Select Chart > Add Patterns > Loop > While. The Stateflow Pattern
dialog opens.

7 Fill in the fields for the Stateflow Pattern dialog box as follows:

Description While Loop (optional)

While condition (flag) && (num_iter<=100)

Do action func; num_iter++;

8 Place a Subsystem block in your model.

9 Right-click the subsystem and select Block Parameters (Subsystem).
The Block Parameters dialog box opens.

10 Select the Treat as atomic unit parameter to configure the subsystem to
generate a function. This enables parameters on the Code Generation
tab.

11 Select the Code Generation tab. From the Function packaging list,
select the option, Nonreusable function.

12 From the Function name options list, select the option, User specified.
The Function name parameter is displayed.

13 Specify the name as func.

14 Click Apply to apply the changes.

15 Double-click the func subsystem block. In this example, function func
has an output flag set to 0 or 1 depending on the result of the algorithm
in func(). The Trigger block parameter Trigger type is function-call.
Create the func() algorithm, as shown in the following diagram:

5-56

While Loop

ex_while_loop_SF/func A function that updates the flag

16 Save and close the subsystem.

17 Connect blocks to the Stateflow chart as shown in the model diagram for
ex_while_loop_SF.

18 Save your model.

Results
The generated code includes the following ex_while_loop_SF_step function
in the file ex_while_loop_SF.c:

/* Exported block signals */

int32_T num_iter; /* '<Root>/Chart Executes the desired while-loop' */

boolean_T flag; /* '<S2>/Relational Operator' */

/* Block states (auto storage) */

D_Work DWork;

/* Model step function */

void ex_while_loop_SF_step(void)

{

/* Stateflow: '<Root>/Chart Executes the desired

* while-loop' incorporates:

* SubSystem: '<Root>/func() A function that

* updates the flag'

*/

/* Gateway: Chart

Executes the desired while-loop */

/* During: Chart

Executes the desired while-loop */

5-57

5 Patterns for C Code

/* Transition: '<S1>:2' */

num_iter = 1;

while (flag && (num_iter <= 100)) {

/* Transition: '<S1>:3' */

/* Transition: '<S1>:4' */

/* Event: '<S1>:12' */

func();

num_iter = num_iter + 1;

/* Transition: '<S1>:5' */

}

/* Transition: '<S1>:1' */

}

Modeling Pattern for While Loop: MATLAB Function
Block

Model ex_while_loop_ML

Procedure

1 In the Simulink Library Browser, click Simulink > User Defined
Functions, and drag a MATLAB Function block into your model.

2 Double-click the MATLAB Function block. The MATLAB Function Block
Editor opens.

5-58

While Loop

3 In the MATLAB Function Block Editor enter the function, as follows:

function fcn(func_flag)

flag = true;
num_iter = 1;

while(flag && (num_iter<=100))
func;
flag = func_flag;
num_iter = num_iter + 1;

end

4 Click Save and close the MATLAB Function Block Editor.

5 Place a Subsystem block in your model, right-click the subsystem and
select Block Parameters (Subsystem). The Block Parameters dialog
box opens.

6 Select the Treat as atomic unit parameter to configure the subsystem to
generate a function. This enables parameters on the Code Generation
tab.

7 Select the Code Generation tab. From the Function packaging list,
select the option, Nonreusable function.

8 From the Function name options list, select the option, User specified.
The Function name parameter is displayed.

9 Specify the name as func.

10 Click Apply.

11 Double-click the func() subsystem block. In this example, function func()
has an output flag set to 0 or 1 depending on the result of the algorithm
in func(). The Trigger block parameter Trigger type is function-call.
Create the func() algorithm, as shown in the following diagram:

5-59

5 Patterns for C Code

12 Save and close the subsystem.

13 Connect the MATLAB Function block to the func() subsystem.

14 Save your model.

Results
The generated code includes the following while_loop_ML_step function in
the file while_loop_EML.c. In some cases an equivalent for loop might be
generated instead of a while loop.

/* Exported block signals */

boolean_T func_flag; /* '<S2>/Relational Operator' */

/* Block states (auto storage) */

D_Work DWork;

/* Model step function */

void while_loop_ML_step(void)

{

boolean_T func_flag_0;

boolean_T flag;

int32_T num_iter;

/* MATLAB Function Block: '<Root>/MATLAB Function Executes

* the desired While-Loop' incorporates:

* SubSystem: '<Root>/func() updates the "flag"'

*/

func_flag_0 = func_flag;

/* MATLAB Function 'MATLAB Function

5-60

While Loop

* Executes the desired While-Loop': '<S1>:1' */

/* '<S1>:1:3' */

flag = TRUE;

/* '<S1>:1:4' */

num_iter = 1;

while (flag && (num_iter <= 100);

num_iter++) {

/* '<S1>:1:6' */

/* '<S1>:1:7' */

func();

/* '<S1>:1:8' */

flag = func_flag_0;

/* '<S1>:1:9' */

num_iter++;

}

}

5-61

5 Patterns for C Code

Do While Loop

C Construct

num_iter = 1;
do {

flag = func();
num_iter++;
}

while (flag && num_iter <= 100)

Modeling Patterns

• “Modeling Pattern for Do While Loop: While Iterator Subsystem block”
on page 5-63

• “Modeling Pattern for Do While Loop: Stateflow Chart” on page 5-66

5-62

Do While Loop

Modeling Pattern for Do While Loop: While Iterator
Subsystem block
One method for creating a while loop is to use a While Iterator Subsystem
block from the Simulink > Ports and Subsystems library.

ex_do_while_loop_SL

ex_do_while_loop_SL/While Iterator Subsystem

Procedure

1 Drag a While Iterator Subsystem block from the Simulink > Ports and
Subsystems library into the model.

2 Double-click the While Iterator Subsystem block to open the subsystem.

3 Place a Subsystem block next to the While Iterator block.

4 Right-click the subsystem and select Block Parameters (Subsystem).
The Block Parameters dialog box opens.

5-63

5 Patterns for C Code

5 Select the Treat as atomic unit parameter to configure the subsystem to
generate a function. This enables parameters on the Code Generation
tab.

6 Select the Code Generation tab. From the Function packaging list,
select the option, Nonreusable function.

7 From the Function name options list, select the option, User
specified. The Function name parameter is displayed.

8 Specify the name as func.

9 Click Apply.

10 Double-click the func subsystem block. In this example, function func has
an output flag set to 0 or 1 depending on the result of the algorithm in
func. Create the func algorithm as shown in the following diagram:

ex_do_while_loop_SL/While Iterator Subsystem/func

11 Double-click the While Iterator block. This opens the Block Parameters
dialog.

12 Set the Maximum number of iterations to 100.

13 Specify the While loop type as do-while.

14 Connect blocks as shown in the model and subsystem diagrams.

15 Enter Ctrl+B to generate code.

5-64

Do While Loop

Results

void func(void)

{

flag = (DWork.NextOutput > (real_T)P.Constant1_Value);

DWork.NextOutput =

rt_NormalRand(&DWork.RandSeed) * P.RandomNumber_StdDev +

P.RandomNumber_Mean;

}

void ex_do_while_loop_SL_step(void)

{

int32_T s1_iter;

s1_iter = 1;

do {

func();

s1_iter++;

} while (flag && (s1_iter <= 100));

}

5-65

5 Patterns for C Code

Modeling Pattern for Do While Loop: Stateflow Chart

ex_do_while_loop_SF

ex_do_while_loop_SF/Chart

1 Add a Stateflow Chart to your model from the Stateflow > Chart library.

2 Double-click the chart to open it.

3 Add the inputs and outputs to the chart and specify their data type.

4 Connect the data input and output to the Stateflow chart.

5 In the Model Explorer, select the output variable, then, in the right pane,
select the General tab and set the Initial Value to 0.

5-66

Do While Loop

6 Select Chart > Add Patterns > Loop > While. The Stateflow Pattern
dialog opens.

7 Fill in the fields for the Stateflow Pattern dialog box as follows:

Description While Loop (optional)

While condition (flag) && (num_iter<=100)

Do action func; num_iter++;

8 Place a Subsystem block in your model.

9 Right-click the subsystem and select Block Parameters (Subsystem).
The Block Parameters dialog box opens.

10 Select the Treat as atomic unit parameter to configure the subsystem to
generate a function. This enables parameters on the Code Generation
tab.

11 Select the Code Generation tab. From the Function packaging list,
select the option, Nonreusable function.

12 From the Function name options list, select the option, User specified.
The Function name parameter is displayed.

13 Specify the name as func.

14 Click Apply to apply the changes.

15 Double-click the func subsystem block. In this example, function func
has an output flag set to 0 or 1 depending on the result of the algorithm
in func. The Trigger block parameter Trigger type is function-call.
Create the func algorithm, as shown in the following diagram:

5-67

5 Patterns for C Code

ex_do_while_loop_SF/func Updates the flag

16 Save and close the subsystem.

17 Connect blocks to the Stateflow chart as shown in the model diagram for
ex_do_while_loop_SF.

18 Save your model.

Results

void ex_do_while_loop_SF_step(void)

{

int32_T sf_num_iter;

num_iter = 1;

do {

func();

num_iter++;

} while (flag && (sf_num_iter <= 100));

}

5-68

Function Call

Function Call
To generate a function call, add a subsystem, which implements the
operations that you want.

C Construct

void add_function(void)
{

y1 = u1 + u2;
}

ex_function_call

Procedure

1 Create a model containing a subsystem. In this example, the subsystem
has two inputs and returns one output.

2 Double-click the subsystem. Create Add_Subsystem, as shown.

ex_function_call/Add_Subsystem

3 Right-click the subsystem and select Block Parameters (Subsystem) to
open the Subsystem Parameters dialog box.

4 Select the Treat as atomic unit parameter. This enables parameters on
the Code Generation tab.

5-69

5 Patterns for C Code

Select the Code Generation tab. For the Function packaging
parameter, from the drop-down list, select Nonreusable function.

5 For the Function name options parameter, from the drop-down list,
select User specified.

6 In the Function name field, enter the subsystem name, add_function.

7 Click Apply and OK.

8 Press Ctrl+B to build and generate code.

Results
In ex_function_call.c, the function is called from ex_function_call_step:

void ex_function_call_step(void)

{

add_function();

}

The function prototype is externed through the subsystem file,
add_function.h.

extern void add_function(void);

The function definition is in the subsystem file add_function.c:

void add_function(void)

{

function_call_Y.y1 = u1 + u2;

}

5-70

Function Prototyping

Function Prototyping

C Construct

double add_function(double u1, double u2)
{

return u1 + u2;
}

Modeling Patterns

• “Function Call Using Graphical Functions” on page 5-71

• “Control Function Prototype of the model_step Function” on page 5-73

Function Call Using Graphical Functions

Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on
page 5-6. This example model contains two Inport blocks and one Outport
block.

2 Name the example model ex_func_SF.

3

In the Stateflow Editor, create a graphical function by clicking the fx
button and placing a graphical function into the Stateflow chart.

4 Edit the graphical function signature to: output = add_function(u1,
u2).

5 Add the transition action, as shown in the following diagram.

5-71

5 Patterns for C Code

ex_func_SF/Chart
In the Stateflow chart is an example of a simple transition that calls
add_function.

6 Open the Model Explorer. From the Model Hierarchy tree, select
ex_func_SF > Chart > f()add_function. On the right pane, specify the
Function Inline Option as Function.

7 From the Model Hierarchy tree, click Chart and on the right pane select
the Export Chart Level Functions (Make Global) parameter. This
makes the function available globally to the entire model.

8 Press Ctrl+B to build the model and generate code.

Results
ex_func_SF.c contains the generated code:

extern real_T add_function(real_T sf_in1, real_T sf_in2)

{

return sf_in1 + sf_in2;

}

.

.

.

void ex_func_SF_step(void)

{

5-72

Function Prototyping

ex_func_SF_B.y1 = add_function(u1, u2);

ex_func_SF_Y.y1 = ex_func_SF_B.y1;

}

Control Function Prototype of the model_step Function

ex_control_step_function

Procedure

1 Create the model, ex_control_step_function. See “Configure a Signal”
on page 5-4 and “Configure Input and Output Ports” on page 5-4, for more
information.

2 Press Ctrl+E to open the Configuration Parameters dialog box.

3 On the Code Generation > Interface pane, click Configure Model
Functions to open the Model Interface dialog box.

4 Specify the Function specification parameter as Model specific C
prototypes.

5 Click Get Default Configuration to update the Configure model
initialize and step functions section and list the input and output
arguments.

6 To configure the function output argument to pass a pointer, in the Step
function arguments table, specify the Category for the Outport as a
Pointer. In addition, you can specify the step function arguments order
and type qualifiers.

7 To validate your changes, click Validate.

5-73

5 Patterns for C Code

8 Press Ctrl+B to build the model and generate code.

Results
ex_control_step_function.c contains the generated code:

void ex_control_step_function_custom(real_T arg_u1, real_T arg_u2, ...

real_T *arg_y1)

{

(*arg_y1) = arg_u1 + arg_u2;

}

5-74

External C Functions

External C Functions

C Construct

extern double add(double, double);

#include "add.h"
double add(double u1, double u2)
{

double y1;
y1 = u1 + u2;
return (y1);

}

Modeling Patterns
There are several methods for integrating legacy C functions into the
generated code. These methods either create an S-function or make a call to
an external C function. For more information on S-functions, see “Insert
S-Function Code”.

• “Use the Legacy Code Tool to Create S-functions” on page 5-75

• “Use a Stateflow Chart to Make Calls to C Functions” on page 5-78

• “Using a MATLAB Function Block to Make Calls to C Functions” on page
5-79

Use the Legacy Code Tool to Create S-functions
This method uses the Legacy Code Tool to create an S-function and generate
a TLC file. The code generation software uses the TLC file to generate code
from this S-function. The advantage of using the Legacy Code Tool is that
the generated code is fully inlined and does not need wrapper functions to
access the custom code.

5-75

5 Patterns for C Code

Procedure

1 Create a C header file named add.h that contains the function signature:

extern double add(double, double);

2 Create a C source file named add.c that contains the function body:

double add(double u1, double u2)
{

double y1;
y1 = u1 + u2;
return (y1);

}

3 To build an S-function for use in both simulation and code generation, Run
the following script or execute each of these commands at the MATLAB
command line:

%% Initialize legacy code tool data structure
def = legacy_code('initialize');

%% Specify Source File
def.SourceFiles = {'add.c'};

%% Specify Header File
def.HeaderFiles = {'add.h'};

%% Specify the Name of the generated S-function
def.SFunctionName = 'add_function';

%% Create a c-mex file for S-function
legacy_code('sfcn_cmex_generate', def);

%% Define function signature and target the Output method
def.OutputFcnSpec = ['double y1 = add(double u1, double u2)'];

%% Compile/Mex and generate a block that can be used in simulation
legacy_code('generate_for_sim', def);

%% Create a TLC file for Code Generation

5-76

External C Functions

legacy_code('sfcn_tlc_generate', def);

%% Create a Masked S-function Block
legacy_code('slblock_generate', def);

The output of this script produces:

• A new model containing the S-function block

• A TLC file named add_function.tlc.

• A C source file named add_function.c.

• A mexw32 dll file named add_function.mexw32

4 Add inport blocks and an outport block and make the connections, as
shown in the model.

ex_function_call_lct

5 Name and save your model. In this example, the model is named
ex_function_call_lct.

6 Press Ctrl+B to build the model and generate code.

Results
The following code is generated in ex_function_call_lct.c:

real_T u1;

real_T u2;

real_T y1;

void ex_function_call_lct_step(void)

{

y1 = add(u1, u2);

}

The user-specified header file, add.h, is included in ex_function_call_lct.h:

5-77

5 Patterns for C Code

#include "add.h"

Use a Stateflow Chart to Make Calls to C Functions

Procedure

1 Create a C header file named add.h that contains the example function
signature.

2 Create a C source file named add.c that contains the function body.

3 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on
page 5-6. This example model contains two Inport blocks and one Outport
block.

4 Name the example model ex_exfunction_call_SF.

5 Double-click the Stateflow chart and edit the chart as shown. Place the call
to the add function within a transition action.

ex_exfunction_call_SF/Chart

6 On the Stateflow Editor, select Simulation > Model Configuration
Parameters.

7 On the Configuration Parameters dialog box, select Simulation Target >
Custom Code. In the Include custom C code in generated section, on
the left pane, select Header file and in the Header file field, enter the
#include statement:

#include "add.h"

5-78

External C Functions

8 In the Include list of additional section, select Source files and in the
Source files field, enter add.c.

9 Press Ctrl+B to build the model and generate code.

Results
ex_exfunction_call_SF.c contains the following code in the step function:

real_T u1;

real_T u2;

real_T y1;

void exfunction_call_SF_step(void)

{

y1 = (real_T)add(u1, u2);

}

ex_exfunction_call_SF.h contains the include statement for add.h:

#include "add.h"

Using a MATLAB Function Block to Make Calls to C
Functions

Procedure

1 Create a C header file named add.h that contains the example function
signature.

2 Create a C source file named add.c that contains the function body.

3 In the Simulink Library Browser, click Simulink > User Defined
Functions, and drag a MATLAB Function block into your model.

4 Double-click the MATLAB Function block. The MATLAB Function Block
Editor opens.

5 Edit the function to include the statement:

function y1 = add_function(u1, u2)

5-79

5 Patterns for C Code

%Set the class and size of output
y1 = u1;

%Call external C function
y1 = coder.ceval('add',u1,u2);

end

6 Open the Configuration Parameters dialog box, and select Simulation
Target > Custom Code.

7 In the Include custom C code in generated section, on the left pane,
select Header file and in the Header file field, enter the statement, :

#include "add.h"

8 In the Include list of additional section, select Source files and in the
Source files field, enter add.c.

9 Add two Inport blocks and one Outport block to the model and connect to
the MATLAB Function block.

10 Configure the signals: u1, u2, and y1, as described in “Configure a Signal”
on page 5-4.

11 Save the model as ex_exfunction_call_ML.

12 Press Ctrl+B to build the model and generate code.

Results
ex_exfunction_call_ML.c contains the following code:

real_T u1;

real_T u2;

real_T y1;

void ex_exfunction_call_ML_step(void)

{

y1 = add(u1, u2);

}

5-80

External C Functions

ex_exfunction_call_ML.h contains the #include statement for add.h:

#include "add.h"

5-81

5 Patterns for C Code

Macro Definitions (#define)

C Construct

#define p_1 9.8;

Modeling Patterns
“Use a ’Define’ Custom Storage Class” on page 5-82

“Use a Custom Header File” on page 5-83

Use a ’Define’ Custom Storage Class

Procedure

1 Create a model containing a Gain block.

2 Press Ctrl+E to open the Configuration Parameters dialog box.

3 In the Configuration Parameter dialog box, on theOptimization > Signals
and Parameters pane, select Inline parameters.

4 Click Apply and OK.

5 In your model, double-click the Gain block. The Block Parameters dialog
box opens.

6 In the Value field, enter a variable name. In this example, the variable
name is p1.

7 Press Ctrl+H to open the Model Explorer. On the Model Hierarchy pane,
select the Base Workspace.

5-82

Macro Definitions (#define)

8 To add an MPT parameter object, in the menu bar, select Add > MPT
Parameter. The parameter appears in the Contents of: Base
Workspace pane.

9 Double-click the mpt.Parameter object and change its name to p1.

10 Click the p1 parameter. The data object parameters are displayed in the
right pane of the Model Explorer.

11 In the Value field, enter 9.8. In the Code generation options section,
click the Storage Class drop-down list and select Define(Custom).

12 Press Ctrl+B to generate code.

Results
The generated code includes the inlined parameter, p1, in
ex_define_data_object.c:

/* Model step function */
void ex_define_data_object_step(void)
{

rtY.y1 = p1 * rtU.u1;

}

Use a Custom Header File

Procedure

1 Follow steps 1 through 10 of “Use a ’Define’ Custom Storage Class” on
page 5-82.

2 In the Simulink.Parameter dialog box for p1, in the Value field, enter
9.8. In the Code generation options section, click the Storage Class
drop-down list and select ImportFromFile(Custom).

3 In the Header file parameter, enter the name of the header file, in this
example, external_params.h.

4 Click Apply and OK.

5-83

5 Patterns for C Code

5 Create the C header file, external_params.h that contains the #define
statement:

#ifndef _EXTERNAL_PARAMS
#define _EXTERNAL_PARAMS

#define p1 9.8

#endif

/* EOF */

6 Press Ctrl+B to generate code.

Results
The generated code includes the inlined parameter, p1, in
ex_define_data_object.c:

/* Model step function */
void ex_define_data_object_step(void)
{

ex_define_data_object_Y.Out1 = p1 * ex_define_data_object_U.In1;

}

5-84

Conditional Inclusions (#if / #endif)

Conditional Inclusions (#if / #endif)
You can generate preprocessor conditional directives in your code by
implementing variant blocks (Model Variants block or Variant Subsystem
block) in your model. In the generated code, preprocessor conditional
directives select a section of code to execute at compile time. To implement
variants in your model, see “Working with Variant Systems”. To generate
code for variants, see “Generate Preprocessor Conditionals for Variant
Systems” on page 6-4.

5-85

5 Patterns for C Code

Typedef
To generate a typedef definition, use a Simulink.AliasType data object.

C Construct
typedef double float_64;

Procedure
1 Create the ex_get_typedef model with a Gain block.

2 In the Gain block parameter dialog box, select the Parameter Attributes
tab, and specify the Parameter data type as double.

3 Right-click the u1 signal and select Properties. In the Signal Properties
dialog box, select Signal name must resolve to Simulink signal object.

4 Right-click the y1 signal and select Properties. In the Signal Properties
dialog box, select the Code Generation tab, and specify the Storage
class parameter as ExportedGlobal.

5 Create a new alias type by using a Simulink.AliasType data object. At
the MATLAB command line, enter:

float_64 = Simulink.AliasType;

6 In the base workspace, double-click float_64. The Simulink.AliasType
dialog box opens.

7 Specify the Base type parameter as double. Click Apply and OK.

8 Create a data object for the u1 signal. In the base workspace, select
Add > Simulink Signal, and name it u1. Specify theData type parameter
as float_64 and the Storage class parameter as Global(custom).

5-86

Typedef

Note You can also specify an output data type for Simulink blocks using
the new alias type.

9 Click Apply and OK.

10 Press Ctrl+B to generate code.

Note An alternative method for defining a typedef is to import the alias
type from a custom header file. If you want to import all of the typedefs from
a C header file, using this alternative method is useful.

Results
The generated code includes the typedef definition, which is declared within
#ifndef and #endif statements in the ex_get_typedef_types.h file.

#ifndef _DEFINED_TYPEDEF_FOR_float_64_
#define _DEFINED_TYPEDEF_FOR_float_64_

typedef real_T float_64;
typedef creal_T cfloat_64;

#endif

Note real_T is the Embedded Coder typedef for double .

The generated code also includes the declaration of the Simulink data objects
of the alias type in ex_get_typedef.c.

float_64 y1;
float_64 u1;

5-87

5 Patterns for C Code

Structures for Parameters
To generate a structure containing parameters, use a mpt.Parameter object
with a Struct (custom) storage class.

C Construct
typdef struct {

double p1;
double p2;
double p3;

} my_struct_type;

my_struct_type my_struct={1.0,2.0,3.0};

Procedure
1 Create the ex_struct_param model with three Constant blocks and three
Outport blocks.

2 Create a data object for each parameter, p1, p2, and p3. At the MATLAB
command line, enter:

p1 = mpt.Parameter;
p2 = mpt.Parameter;
p3 = mpt.Parameter;

3 In the base workspace, double-click one of the parameter data objects to
open the mpt.Parameter dialog box.

5-88

Structures for Parameters

4 Specify a Value parameter for each parameter object.

5 Specify the Storage class parameter as Struct (Custom) for each
parameter object.

6 In the Custom Attributes section, specify the Struct name as my_struct.
Click Apply and OK.

7 Press Ctrl+E to open the Configuration Parameters dialog box.

8 Open the Optimization > Signals and Parameters pane, and select
the Inline parameters parameter.

9 Click Apply and OK.

10 Press Ctrl+B to generate code.

Results
The generated code includes the typedef definition for a structure, which is
declared in the ex_struct_param_types.h file.

/* Type definition for custom storage class: Struct */
typedef struct my_struct_tag {

real_T p1;
real_T p2;
real_T p3;

} my_struct_type;

The generated code also includes the declaration of my_struct in
ex_struct_param.c.

/* Definition for custom storage class: Struct */
my_struct_type my_struct = {

/* p1 */
1.0,

/* p2 */
2.0,

/* p3 */
3.0

5-89

5 Patterns for C Code

};

5-90

Structures for Signals

Structures for Signals
To generate a structure containing parameters, use a mpt.Signal object with
a Struct (custom) storage class or a Simulink non-virtual bus object.

C Construct
typedef struct {

double u1;
double u2;
double u3;

} my_signals;

Modeling Patterns
“Structure for Signals Using a ’Struct’ Custom Storage Class” on page 5-91

“Structure for Signals Using a Simulink Non-Virtual Bus Object” on page 5-93

Structure for Signals Using a ’Struct’ Custom Storage
Class

Procedure

1 Create the ex_signal_struct_csc model using the blocks shown and
follow the steps to configure the signals and model.

5-91

5 Patterns for C Code

2 Double-click a Gain block to open the block parameter dialog box. Set the
values of the Gain blocks as shown in the model diagram.

3 Right-click the u1 signal and select Properties. In the Signal Properties
dialog box, select Signal name must resolve to Simulink signal object.
Repeat for signals u2 and u3.

4 At the MATLAB command line, create a mpt.Signal data object for each
input signal.

u1 = mpt.Signal;
u2 = mpt.Signal;
u3 = mpt.Signal;

Note You can also create a data object in the Model Explorer base
workspace, by selecting Add > MPT Signal.

5 In the base workspace, configure each of the data objects, u1, u2, and u3.
Double-click a data object, to open the mpt.Signal parameter dialog box.

6 Specify the Data type parameter as auto and the Storage class
parameter as Struct (custom).

7 Click Apply and OK.

8 Press Ctrl+B to generate code.

Results
The generated code includes the typedef definition for a structure, which is
declared in the ex_signal_struct_csc_types.h file.

/* Type definition for custom storage class: Struct */
typedef struct my_signal_struct_tag {

real_T u1;
real_T u2;
real_T u3;

} my_signal_struct_type;

5-92

Structures for Signals

The generated code also includes the declaration of my_signal_struct in
ex_signal_struct_csc.c.

/* Definition for custom storage class: Struct */
my_signal_struct_type my_signals;

Structure for Signals Using a Simulink Non-Virtual
Bus Object

Procedure
1 Create the ex_signal_struct_bus model using the blocks shown and
follow the steps to configure the bus object and model.

2 Add the Inport blocks, an Outport block, and a Bus Creator block to your
diagram.

3 Double-click the Bus Creator block to open the block parameter dialog box.

4 Specify the Number of inputs parameter as 3. Click Apply.

5 In your model diagram, connect the three Inport blocks to the three inports
of the Bus Creator block. Also, connect the outport of the Bus Creator
block to the Outport block.

6 Label the signals as shown in the model diagram.

7 In the Bus Creator block parameter dialog box, Signals in bus now
displays the signals connected to the Bus Creator block.

5-93

5 Patterns for C Code

8 Create a bus object named MySignals that includes signals u1,u2, and u3.
For more information on creating bus objects, see “Manage Bus Objects
with the Bus Editor”. Once the bus object, MySignals, is created, it appears
in the base workspace.

9 In the Bus Creator block parameter dialog box, select the Output as
nonvirtual bus parameter, which specifies that bus signals must be
grouped into a structure in the generated code.

10 Click Apply and OK.

11 Press Ctrl+B to generate code.

Results
The generated code includes the typedef definition for a structure, which is
declared in the signal_struct_bus_types.h file.

typedef struct {
real_T u1;
real_T u2;
real_T u3;

} MySignals;

5-94

Nested Structures

Nested Structures
One way to create nested structures of signals in the generated code is by
using multiple non-virtual bus objects. When nesting bus objects, all of the
bus objects must either be non-virtual, or all of them must be virtual.

C Construct
typedef struct {

double u1;
double u2;
double u3;

} my_signals123;

typedef struct {
double u4;
double u5;
double u6;

} my_signals456;

typedef struct {
my_signals123 y1;
my_signals456 y2;

} nested_signals;

Procedure

1 Create the ex_nested_structure model using the blocks shown and follow
the steps to configure the bus objects and model.

5-95

5 Patterns for C Code

2 For each bus in the model, follow the instructions for “Structure for Signals
Using a Simulink Non-Virtual Bus Object” on page 5-93, creating bus
objects My_Signals_123 and My_Signals_456.

3 Drag a Bus Creator block into your model. Configure the Bus Creator block
so that it takes in signals from different buses.

4 Double-click the Bus Creator block to open the block parameter dialog box.

5 Specify the Number of inputs parameter as 2. Click Apply.

6 In your model diagram, connect the two bus outports to the inports of the
new Bus Creator block.

7 Label the signals as shown in the model diagram.

8 In the Bus Creator block parameter dialog box, Signals in bus now
displays the signals, y1 and y2, connected to the Bus Creator block.

9 Create a bus object named Nested_Signals that includes signals y1 and
y2, where the DataType for y1 is My_Signals_123 and the DataType
for y2 is My_Signals_456.

5-96

Nested Structures

For more information on creating bus objects, see “Manage Bus Objects
with the Bus Editor”. Once the bus object, Nested_Signals, is created,
it appears in the base workspace.

10 In the Bus Creator block parameter dialog box, select the Output as
nonvirtual bus parameter, which specifies that bus signals must be
grouped into a structure in the generated code.

11 Click Apply and OK.

12 Press Ctrl+B to generate code.

Results
The generated code includes the typedef definitions for structures, which are
declared in the ex_nested_structure_types.h file.

#ifndef _DEFINED_TYPEDEF_FOR_My_Signals_123_
#define _DEFINED_TYPEDEF_FOR_My_Signals_123_

typedef struct {
real_T u1;
real_T u2;
real_T u3;

} My_Signals_123;

5-97

5 Patterns for C Code

#endif

#ifndef _DEFINED_TYPEDEF_FOR_My_Signals_456_
#define _DEFINED_TYPEDEF_FOR_My_Signals_456_

typedef struct {
real_T u4;
real_T u5;
real_T u6;

} My_Signals_456;

#endif

#ifndef _DEFINED_TYPEDEF_FOR_Nested_Signals_
#define _DEFINED_TYPEDEF_FOR_Nested_Signals_

typedef struct {
My_Signals_123 y1;
My_Signals_456 y2;

} Nested_Signals;

#endif

5-98

Bitfields

Bitfields
One way to create bitfields in the generated code is by using a mpt.Parameter
object with Bitfield (Custom) storage class.

C Construct
typedef struct {

unsigned int p1 : 1;
unsigned int p2 : 2;
unsigned int p3 : 3;

} my_struct_type

Procedure
1 Using the model, ex_struct_param, in “Structures for Parameters” on page
5-88, rename the model as ex_struct_bitfield_CSC.

2 Create a data object for each parameter, p1, p2, and p3. At the MATLAB
command line, enter:

p1 = mpt.Parameter;
p2 = mpt.Parameter;
p3 = mpt.Parameter;

3 In the base workspace, double-click one of the parameter data objects to
open the mpt.Parameter dialog box.

4 Specify the Value parameter for each parameter object.

5 Specify the Storage class parameter as Bitfield (Custom) for each
parameter object.

6 In the Custom Attributes section, specify the Struct name as my_struct.
Click Apply and OK.

7 Specify the data objects for each parameter.

5-99

5 Patterns for C Code

8 Press Ctrl+E to open the Configuration Parameters dialog box.

9 Open the Optimization > Signals and Parameters pane, and select
the Inline parameters parameter.

10 Click Apply and OK.

11 Press Ctrl+B to generate code.

Results
The generated code of the model, ex_struct_bitfield_CSC, includes
the typedef definition for a Bitfield, which is declared in the
ex_struct_bitfield_CSC_types.h file.

/* Type definition for custom storage class: BitField */
typedef struct my_struct_tag {

uint_T p1 : 1;
uint_T p2 : 1;
uint_T p3 : 1;

} my_struct_type;

5-100

Arrays for Parameters

Arrays for Parameters
To create an array in the generated code, you can use a constant parameter in
the base workspace, or a mpt.Parameter.

C Construct

int params[5]= {1,2,3,4,5};

Procedure

1 Create a model, ex_array_params, containing the Constant blocks and
Outport blocks and label the blocks as shown in the model diagram.

2 Double-click the Constant1 block and give the Constant value the name
of a parameter, params1.

3 Double-click the Constant2 block and give the Constant value the name
of a parameter, params2.

4 To create the parameters in the base workspace, at the MATLAB command
line, enter:

params1 = [1,2,3,4,5];
params2 = mpt.Parameter;

5 In the base workspace, double-click params2 to open the mpt.Parameter
dialog box.

6 In the Value field, specify the array, [1 2 3 4 5].

7 Press Ctrl+E to open the Configuration Parameters dialog box.

5-101

5 Patterns for C Code

8 Open the Optimization > Signals and Parameters pane, and select
the Inline parameters parameter.

9 Click Apply and OK.

10 Press Ctrl+B to generate code.

Results
The generated code includes the array, params2, in the ex_array_params.c
file:

int16_T params2[5] = { 1, 2, 3, 4, 5 } ;

The data object, params1, is defined in the array_params_data.c file:

/* Constant parameters (auto storage) */
const ConstParam_array_params array_params_ConstP = {

/* Computed Parameter: Constant1_Value
* Referenced by: '/Constant1'
*/

{ 1, 2, 3, 4, 5 }
};

where ConstParam_array_params is a structure containing the array and
defined in the array_params.h file.

typedef struct {
/* Computed Parameter: Constant1_Value
* Referenced by: '/Constant1'
*/
int16_T Constant1_Value[5];

} ConstParam_array_params;

5-102

Arrays for Signals

Arrays for Signals
To create an array in the generated code for signal data, you can specify a
signal as ExportedGlobal, or use a mpt.Signal object.

C Construct

int u1[5];
int y1[5];

Procedure

1 Create the ex_array_signals model using the blocks shown and follow the
steps to configure the signals and model.

2 Double-click the Inport block to open the Inport block parameter dialog box.

3 Select the Signal Attributes tab and specify the Port dimensions
parameter as 5, for an array of length 5.

4 Click OK.

5 Right-click the u1 signal line and select Properties.

6 Select the Code Generation tab and specify the Storage Class parameter
as ExportedGlobal.

7 Repeat steps 5 and 6 for signal y1.

8 Press Ctrl+B to generate code.

Note Alternatively, you can use Simulink data objects (mpt.Signal) to
specify the storage class and dimensions for the signals, u1 and y1.

5-103

5 Patterns for C Code

Results
The generated code includes arrays for u1 and y1 in the ex_array_signals.c
file:

int16_T u1[5];
int16_T y1[5];

In this case, a for loop is generated to carry out the gain operations on
elements of the input signal.

int32_T i;
for (i = 0; i < 5; i++) {

y1[i] = (int16_T)(5 * u1[i]);
}

However, if the dimension of the array is less than a threshold value (typically
5), code generation might not include a for loop for array operations.

5-104

Pointers for Signals

Pointers for Signals
To create a pointer in the generated code, you can configure a signal to
use the ImportedExternPointer storage class or use an mpt.Signal (or
mpt.Parameter for parameters) object with an ImportedExternPointer
storage class.

C Construct
extern double *u1;

Procedure
This is a quick method to obtain pointers in the generated code. You cannot
control the data type, which is decided by the model compilation process.

1 Create the ex_pointer_signal model using the blocks shown and follow
the steps to configure the signals and model.

2 Label the signal to be imported as a pointer, in this example, u1.

3 Right-click the u1 signal line and select Properties.

4 Select the Code Generation tab and specify the Storage Class parameter
as ImportedExternPointer.

5 Click OK.

6 Press Ctrl+B to generate code.

Results
The generated code includes the extern declaration for the pointer in the
ex_pointer_signal_private.h file.

extern real_T *u1;

5-105

5 Patterns for C Code

Pointers Using Simulink Data Objects
You can control the data type of a signal or parameter by using a Simulink
data object to generate a pointer.

C Construct
extern double *u1;

Procedure
You can use this procedure for either a signal or parameter. To create a
pointer for a parameter, use an mpt.Parameter instead of an mpt.Signal
data object described in step 3.

1 Create the ex_pointer_signal_data_object model using the blocks
shown and follow the steps to configure the signals and model.

2 Label the signal to be imported as a pointer, in this example, u1.

3 At the MATLAB command line, create a data object for signal u1.

u1 = mpt.Signal;

4 In the base workspace, double-click u1 to open the mpt.Signal dialog box.

5 Specify the Storage class parameter as ImportedExternPointer.

6 Click Apply and OK.

7 Press Ctrl+B to generate code.

Results
The generated code includes the extern declaration for the pointer in the
ex_pointer_signal_data_object_private.h file.

extern real_T *u1;

5-106

Pointers Using Simulink Data Objects

The ex_pointer_signal_data_object_private.h file imports the pointer
into the generated code. To compile the code, you must declare and define the
pointer in the main program.

5-107

5 Patterns for C Code

5-108

6

Variant Systems

• “About Variant Systems” on page 6-2

• “Why Generate Code for Variant Systems?” on page 6-3

• “Generate Preprocessor Conditionals for Variant Systems” on page 6-4

• “Review Code Variants in Code Generation Report” on page 6-7

• “Generate Code for Model Variants” on page 6-8

• “Generate Code for Variant Subsystems” on page 6-10

• “Restrictions on Variant Subsystem Code Generation” on page 6-14

• “Special Considerations for Generating Preprocessor Conditionals” on page
6-16

• “Limitations on Generating Code for Variants” on page 6-17

• “Generated Code Components Not Compiled Conditionally” on page 6-18

6 Variant Systems

About Variant Systems
The Embedded Coder software generates code from a Simulink model
containing one or more Model Variants blocks or Variant Subsystem blocks.
To learn how to create a model containing variant blocks, see “Variant
Systems”.

By default, the Simulink Coder software generates code for the active variant.
The Embedded Coder software can generate code for different variant choices
as well as the active variant. If you want to generate code for variants, you
must set the following conditions:

• Select Generate preprocessor conditionals.

• Deselect Override variant conditions and use the following variant.

• Select Model Configuration Parameters > Optimization > Signals
and Parameters > Inline Parameters .

Code generated for variants is surrounded by C preprocessor conditionals,
#if, #elif, and #endif. Therefore, the active variant is selected at compile
time and the preprocessor conditionals determine which sections of the code
to execute.

To construct model reference variants and generate preprocessor directives in
the generated code, see the example rtwdemo_preprocessor_script.

To construct variant subsystems and generate preprocessor directives in the
generated code, see the example rtwdemo_preprocessor_subsys_script.

6-2

Why Generate Code for Variant Systems?

Why Generate Code for Variant Systems?
When you implement variants in the generated code, you can:

• Reuse generated code from a set of application models that share
functionality with minor variations.

• Share generated code with a third party that activates one of the variants
in the code.

• Validate the supported variants for a model and then choose to activate one
variant for a particular application, without regenerating and re-validate
the code.

6-3

6 Variant Systems

Generate Preprocessor Conditionals for Variant Systems

Define Variant Controls
To learn about variant controls, see “How Variant Controls Work” in the
Simulink documentation. Perform the following steps to define variant
control for generating code.

1 Open the Model Explorer and click the Base Workspace.

2 A variant control can be a condition expression, a Simulink.Variant object
specifying a condition expression or a Simulink.Parameter object. In the
Model Explorer, select Add and choose Simulink Parameter. Specify a
name for the new parameter.

3 On the Simulink.Parameter property dialog box, specify the Value and
Data type.

4 Specify the Storage class parameter by choosing one of the following:

• ImportedDefine(Custom) custom storage class.

• CompilerFlag(Custom) custom storage class.

• A user-defined storage class is created using the Custom Storage Class
Designer. Your storage class must have the Data initialization
parameter set to Macro and the Data scope parameter set to Imported.
See “Use Custom Storage Class Designer” on page 10-8 for more
information.

5 Specify the value of the variant control. If the storage class is either
ImportedDefine(Custom) or a user-defined custom storage class, do the
following:

a Specify the Header File parameter as an external header file in the
Custom Attributes section of the Simulink.Parameter property dialog
box.

b Supply the values of the variant controls in the external header file.

6-4

Generate Preprocessor Conditionals for Variant Systems

Note The generated code refers to a variant control as a user-defined
macro. The generated code does not contain the value of the macro.
The value of the variant control determines the active variant in the
compiled code.

If the variant control is a CompilerFlag custom storage class
the value of the variant control is set at compile time. On the
Code Generation > General pane of the Model Configuration
Parameters dialog box, add a makefile option to the “Make command”
parameter. For example, for variant control, VSSMODE, enter make_rtw
OPTS="-DVSSMODE=1" in the Make command field.

Note If you want to modify the value of the variant control after
generating the makefile, use a makefile option when compiling your code.
For example, at a command line outside of MATLAB, enter:

makecommand -f model.mk OPTS="-DVSSMODE=1"

6 Follow the instructions for to implement variant objects for code generation.
Check that only one variant object is active in the generated code by
implementing the condition expressions of the variant objects such that
only one evaluates to true. The generated code includes a test of the
variant objects to determine that there is only one active variant. If this
test fails, your code will not compile.

Note You can define the variant controls using Simulink.Parameter
object of enumerated type. This provides meaningful names and improves
the readability of the conditions. The generated code includes preprocessor
conditionals to check that the variant condition contains valid values of
the enumerated type.

6-5

6 Variant Systems

Configure Model for Generating Preprocessor
Conditional Directives
In order to generate preprocessor conditional directives configure your model
as follows:

1 On the Code Generation pane of the Configuration Parameter dialog box,
set the System target file field as ert.tlc.

2 On the Code Generation pane of the Configuration Parameter dialog box,
select the Create code generation report field.

3 On the Optimization > Signals and Parameters pane of the
Configuration Parameters dialog box, select Inline parameters.

4 On the Code Generation pane of the Configuration Parameter dialog box,
clear “Ignore custom storage classes”. In order to generate preprocessor
conditionals, you must use custom storage classes.

5 On the Interface pane of the Configuration Parameter dialog box,
select the Use Local Settings option of the Generate preprocessor
conditionals parameter. This parameter is a global setting for the parent
model. This setting enables the Generate preprocessor conditionals
parameter located in the Model Variants block parameters dialog box or
Variant Subsystem parameters dialog box. See “Generate preprocessor
conditionals” for more information.

6 Open the Model Variants block parameters dialog box or the Variant
Subsystem block parameter dialog box, depending on your application.
Select the Generate preprocessor conditionals parameter. If the block
parameters dialog box was already open, close and reopen the dialog box to
see the enabled Generate preprocessor conditionals parameter.

7 Clear the parameter, Override variant conditions and use following
variant.

Build Your Model
After configuring your model to generate code, build your model.

6-6

Review Code Variants in Code Generation Report

Review Code Variants in Code Generation Report
The Code Variants Report displays a list of the variant objects in alphabetical
order and their condition. The report also lists the model blocks that have
Variants, and the referenced models that use them. In the Contents section
of the code generation report, click the link to the Code Variants Report:

6-7

6 Variant Systems

Generate Code for Model Variants
To open a model for generating preprocessor conditionals, enter
rtwdemo_preprocessor.

After building the model, look at the variants in the generated code.
rtwdemo_preprocessor_types.h includes the following:

• Call to external header file, rtwdemo_preprocessor_macros.h, which
contains the macro definition for the variant control variable, VSSMODE.

/* Includes for objects with custom storage classes. */

#include "rtwdemo_importedmacros.h"

• Preprocessor directives defining the variant objects, LINEAR and NONLINEAR.
The values of these macros depend on the value of the variant control
variable, VSSMODE. The condition expression associated with each macro,
LINEAR and NONLINEAR, determine the active variant.

/* Model Code Variants */

#ifndef LINEAR

#define LINEAR (VSSMODE == 0)

#endif

#ifndef NONLINEAR

#define NONLINEAR (VSSMODE == 1)

#endif

• Check that exactly one variant is active at a time:

/* Exactly one variant for '<Root>/Left Controller' should be active */

#if (LINEAR) + (NONLINEAR) != 1

#error Exactly one variant for '<Root>/Left Controller' should be active

#endif

Calls to the step and initialization functions are conditionally compiled as
shown in a portion of the step function, rtwdemo_preprocessor_step:

#if LINEAR

/* ModelReference: '<Root>/Left Controller' */

6-8

Generate Code for Model Variants

rtwdemo_linl(&rtb_Add, &rtb_LeftController_vmerge_1,

&(rtwdemo_preprocessor_DWork.LeftController_1_DWORK1.rtdw));

#elif NONLINEAR

/* ModelReference: '<Root>/Left Controller' */

rtwdemo_nlinl(&rtb_Add, &rtb_LeftController_vmerge_1,

&(rtwdemo_preprocessor_DWork.LeftController_2_DWORK1.rtdw));

#endif

and

#if LINEAR

/* ModelReference: '<Root>/Right Controller' */

rtwdemo_linr(&trb_Add, &rtb_RightController_vmerge,

&(rtwdemo_preprocessor_DWork.RightController_1_DWORK1.rtdw));

#elif NONLINEAR

/* ModelReference: '<Root>/Right Controller' */

rtwdemo_nlinr(&rtb_Add, &rtb_RightController_vmerge_1,

&(rtwdemo_preprocessor_DWork.RightController_2_DWORK1.rtdw));

#endif /* LINEAR */

6-9

6 Variant Systems

Generate Code for Variant Subsystems

Open the Example Model
Open model AutoSSVar, which contains a variant subsystem.

Define the Variant Controls
Variant Controls can be a condition expression or Simulink.Variant object
specifying a condition expression or a Simulink.Parameter object. To
recreate the variant controls specifically for code generation:

1 Open the Model Explorer and click the Base Workspace.

2 In the Model Explorer, remove the current variant control variables, EMIS
and FUEL, and recreate them as Simulink.Parameter objects. Select Add
and Simulink Parameter to create two variant control variables, EMIS
and FUEL.

3 In the Simulink.Parameter property dialog box, specify the Value as 1
and the Data type as int8 for both EMIS and FUEL.

4 Specify the Storage class parameter for both EMIS and FUEL as
ImportedDefine(Custom).

5 Specify the Header File parameter as an external header file,
AutoSSVar_variables.h, in the Custom Attributes section of the
Simulink.Parameter property dialog box. You must specify the header file
since the storage class is ImportedDefine(Custom).

6 Add the values of the variant control variables in the external header file
AutoSSVar_variables.h as follows:

#define FUEL 1
#define EMIS 1

6-10

Generate Code for Variant Subsystems

Note The generated code refers to a variant control variable as a
user-defined macro. The generated code does not contain the value of the
macro. The value of the variant control variable determines the active
variant in the compiled code.

7 Check that only one variant is active in the generated code by implementing
the condition expressions of the variant controls such that only one
evaluates to true. The generated code includes a test of the variant
controls to determine that there is only one active variant. If this test fails,
your code does not compile.

Make Each Child Subsystem an Atomic Subsystem

1 Double-click the Variant Subsystem block, Engine, to display the child
subsystems.

2 For each child subsystem, right-click the subsystem and select Subsystem
Parameters from the list. The block parameters dialog box opens.

3 To specify each child subsystem as an atomic subsystem, in the block
parameters dialog box, select the Treat as atomic unit parameter.

Configure Model for Generating Preprocessor
Conditional Directives
In order to generate preprocessor conditional directives configure your model
as follows:

1 On the Code Generation pane of the Configuration Parameter
dialog box, specify the System target file parameter as ert.tlc and
clear “Ignore custom storage classes”. In order to generate preprocessor
conditionals, you must use custom storage classes.

2 On the Optimization > Signals and ParametersMATLAB pane of the
Configuration Parameters dialog box, select Inline parameters.

6-11

6 Variant Systems

3 On the Code Generation > Interface pane of the Configuration
Parameter dialog box, select the Enable All option of the Generate
preprocessor conditionals parameter. This parameter is a global setting
for the parent model and enables generating preprocessor conditionals for
variants in the model. For more information, see “Generate preprocessor
conditionals”.

4 On the Code Generation > Report pane of the Configuration Parameter
dialog box, select Create code generation report.

View the Generated Code
The generated code contains child subsystems of the Variant Subsystem block
protected by C preprocessor conditionals. In this case, the selection of the
active variant (subsystem) is deferred until the generated code is compiled.
Only one variant object, which is encoded in C macros, must evaluate to true.

After building the model, look at the variants in the generated code.
AutoSSVar_types.h includes the following:

• Call to external header file, AutoSSVar_variables.h, which contains the
macro definitions for the variant control variables, FUEL and EMIS.

/* Includes for objects with custom storage classes. */

#include "AutoSSVar_variables.h"

• Preprocessor directives defining the variant objects. The values of these
macros depend on the value of the variant control variables, FUEL and
EMIS. The condition expression associated with each macro determine the
active variant.

/* Model Code Variants */

#ifndef DE

#define DE ((FUEL == 2) && (EMIS == 2))

#endif

#ifndef DU

#define DU ((FUEL == 2) && (EMIS == 1))

#endif

#ifndef GE

6-12

Generate Code for Variant Subsystems

#define GE ((FUEL == 1) && (EMIS == 2))

#endif

#ifndef GU

#define GU ((FUEL == 1) && (EMIS == 1))

#endif

• Check that exactly one variant is active at a time:

/* Exactly one variant for '<Root>/Engine' should be active */
#if (GU) + (GE) + (DU) + (DE) != 1
#error Exactly one variant for '<Root>/Engine' should be active
#endif

Calls to the step and initialization functions are conditionally compiled as
shown in a portion of the step function, AutoSSVar_step, in AutoSSVar.c:

#if DE

rtb_VariantMergeForOutportOut1 = 2.2 * AutoSSVar_U.In1;

#elif DU

rtb_VariantMergeForOutportOut1 = 2.1 * AutoSSVar_U.In1;

#elif GE

rtb_VariantMergeForOutportOut1 = 1.2 * AutoSSVar_U.In1;

#elif GU

rtb_VariantMergeForOutportOut1 = 1.1 * AutoSSVar_U.In1;

#endif /* DE */

6-13

6 Variant Systems

Restrictions on Variant Subsystem Code Generation
To generate preprocessor conditionals, the types of blocks that you can
place within the child subsystems of a Variant Subsystem block are limited.
Connections are not allowed in the Variant Subsystem block diagram.
However, during the code generation process, one VariantMerge block is
placed at the input of each Outport block within the Variant Subsystem block
diagram. All of the child subsystems connect to each of the VariantMerge
blocks.

In the figure below, the code generation process makes the following
connections and adds VariantMerge blocks to the sldemo_variant_subsystems
model.

When compared to a generic Merge block the VariantMerge block can have
only one parameter which is the number of Inputs. The VariantMerge block is
used for code generation in variant subsystems internally, and is not available
externally to be used in models. The number of inputs for VariantMerge is
determined and wired as shown in the figure below.

6-14

Restrictions on Variant Subsystem Code Generation

The child subsystems of the Variant Subsystem block must be atomic
subsystems. Select Treat as atomic unit parameter in the Subsystem
block parameters dialog, to make the subsystems atomic. The VariantMerge
blocks are inserted at the outport of the subsystems if more than one child
subsystems are present. If the source block of a VariantMerge block input
is non-virtual, an error message will be displayed during code generation.
You must make the source block contiguous, by inserting Signal Conversion
blocks inside the variant choices. The VariantMerge block does not support
variable dimensions through it, so you cannot have child subsystems with
different output signal dimensions.

6-15

6 Variant Systems

Special Considerations for Generating Preprocessor
Conditionals

When you select the Generate preprocessor conditionals parameter,
consider the following:

• The code generation process checks that the inports and outports of a
Variant Subsystem block or a Model Variants block must be identical
(same port numbers and names) to the corresponding inports and outports
of its variants. The build process for simulation does not make this check.
Therefore, if your variant block contains mismatched inports or outports,
the code generation process issues an error.

• The code generation process checks that there is at least one active variant
by using the variant control values stored in the base workspace. If you are
generating preprocessor conditionals and using an external header file for
the values of the variant controls, the code generator issues an error if the
values in the base workspace do not indicate an active variant.

• If you comment out child subsystems listed in the Variant Choices table
in the Variant Subsystem block parameter dialog box, the code generator
does not generate code for the commented out subsystems.

6-16

Limitations on Generating Code for Variants

Limitations on Generating Code for Variants
When you are generating code for Model Variants blocks and Variant
Subsystem blocks, the blocks cannot have:

• Continuous states or mass matrices

• Function call ports

• Outports with constant sample time

• The Model Variants block and its referenced models must have the same
number of inports and outports.

• The Variant Subsystem block and its active child subsystems must have
the same number of inports and outports.

• All of the port numbers and names for each active child subsystem in a
Variant Subsystem block must also match.

6-17

6 Variant Systems

Generated Code Components Not Compiled Conditionally
The following components in the generated code are not compiled
conditionally. This is true even if they are referenced only by code for variant
subsystems or models that are conditionally compiled.

• rtModel data structure fields

• #include’s of utility files

• Global non-constant parameter structure fields; when the configuration
parameter Optimization > Signals and Parameters > Parameter
structure is set to NonHierarchical

• Global constant parameter structure fields that are referenced by multiple
subsystems activated by different variants

• Parameters that are configured to use an imported, exported, or custom
code generation storage class, and are referenced by multiple subsystems
that are activated by different variants

• Parameters that are configured to use an imported, exported, or custom
code generation storage class, and are used by variant model blocks

6-18

7

Scheduling Considerations

• “Use Discrete and Continuous Time” on page 7-2

• “Optimize Multirate Multitasking Operation on RTOS Targets” on page 7-4

7 Scheduling Considerations

Use Discrete and Continuous Time

In this section...

“Support for Discrete and Continuous Time Blocks” on page 7-2

“Support for Continuous Solvers” on page 7-2

“Support for Stop Time” on page 7-3

Support for Discrete and Continuous Time Blocks
The ERT target supports code generation for discrete and continuous time
blocks. If the Support continuous time option is selected, you can use these
blocks in your models, without restriction.

Note that use of certain blocks is not recommended for production code
generation for embedded systems. The Simulink Block Data Type Support
table summarizes characteristics of blocks in the Simulink and Fixed-Point
Designer block libraries, including whether or not they are recommended for
use in production code generation. To view this table, execute the following
command and see the “Code Generation Support” column of the table that
appears:

showblockdatatypetable

Support for Continuous Solvers
The ERT target supports continuous solvers. In the Solver options dialog,
you can select an available solver in the Solver menu. (Note that the solver
Type must be fixed-step for use with the ERT target.)

Note Custom targets must be modified to support continuous time. The
required modifications are described in “Custom Targets” in the Simulink
Coder documentation.

7-2

Use Discrete and Continuous Time

Support for Stop Time
The ERT target supports the stop time for a model. When generating
host-based executables, the stop time value is honored if one of the following
is true:

• Classic call interface is selected on the Interface pane

• External mode is selected in the Data exchange subpane of the
Interface pane

• MAT-file logging is selected on the Interface pane

Otherwise, the executable runs indefinitely.

Note The ERT target provides both generated and static examples of
the ert_main.c file. The ert_main.c file controls the overall model code
execution by calling the model_step function and optionally checking the
ErrorStatus/StopRequested flags to terminate execution. For a custom
target, if you provide your own custom static main.c, you should consider
including support for checking these flags.

7-3

7 Scheduling Considerations

Optimize Multirate Multitasking Operation on RTOS
Targets

In this section...

“Overview” on page 7-4

“Use rtmStepTask” on page 7-5

“Scheduling Code for Multirate Multitasking on VxWorks” on page 7-5

“Suppress Redundant Scheduling Calls” on page 7-6

Overview
Using the rtmStepTask macro, targets that employ the task management
mechanisms of an RTOS can eliminate certain redundant scheduling calls
during the execution of tasks in a multirate, multitasking model, thereby
improving performance of the generated code.

To understand the optimization that is available for an RTOS target, consider
how the ERT target schedules tasks for bareboard targets (where RTOS is
not present). The ERT target maintains scheduling counters and event flags
for each subrate task. The scheduling counters are implemented within the
real-time model (rtM) data structure as arrays, indexed on task identifier
(tid).

The scheduling counters are updated by the base-rate task. The counters
are clock rate dividers that count up the sample period associated with each
subrate task. When a given subrate counter reaches a value that indicates it
has a hit, the sample period for that rate has elapsed and the counter is reset
to zero. When this occurs, the subrate task must be scheduled for execution.

The event flags indicate whether or not a given task is scheduled for execution.
For a multirate, multitasking model, the event flags are maintained by code
in the main program for the model. For each task, the code maintains a task
counter. When the counter reaches 0, indicating that the task’s sample period
has elapsed, the event flag for that task is set.

On each time step, the counters and event flags are updated and the base-rate
task executes. Then, the scheduling flags are checked in tid order, and tasks

7-4

Optimize Multirate Multitasking Operation on RTOS Targets

whose event flag is set is executed. Therefore, tasks are executed in order of
priority.

For bareboard targets that cannot rely on an external RTOS, the event
flags are mandatory to allow overlapping task preemption. However, an
RTOS target uses the operating system itself to manage overlapping task
preemption, making the maintenance of the event flags redundant.

Use rtmStepTask
The rtmStepTask macro is defined in model.h and its syntax is as follows:

boolean task_ready = rtmStepTask(rtm, idx);

The arguments are:

• rtm: pointer to the real-time model structure (rtM)

• idx: task identifier (tid) of the task whose scheduling counter is to be
tested

rtmStepTask returns TRUE if the task’s scheduling counter equals zero,
indicating that the task should be scheduled for execution on the current time
step. Otherwise, it returns FALSE.

If your target supports the Generate an example main program
parameter, you can generate calls to rtmStepTask using the TLC function
RTMTaskRunsThisBaseStep.

Scheduling Code for Multirate Multitasking on
VxWorks
The following task scheduling code, from ertmainlib.tlc, is designed for
multirate multitasking operation on a Wind River® Systems VxWorks®

target. The example uses the TLC function RTMTaskRunsThisBaseStep to
generate calls to the rtmStepTask macro. A loop iterates over each subrate
task, and rtmStepTask is called for each task. If rtmStepTask returns TRUE,
the VxWorks semGive function is called, and the VxWorks RTOS schedules
the task to run.

%assign ifarg = RTMTaskRunsThisBaseStep("i")

7-5

7 Scheduling Considerations

for (i = 1; i < %<FcnNumST>; i++) {

if (%<ifarg>) {

semGive(taskSemList[i]);

if (semTake(taskSemList[i],NO_WAIT) != ERROR) {

logMsg("Rate for SubRate task %d is too fast.\n",i,0,0,0,0,0);

semGive(taskSemList[i]);

}

}

}

Suppress Redundant Scheduling Calls
Redundant scheduling calls are still generated by default for backward
compatibility. To change this setting and suppress them, add the following
TLC variable definition to your system target file before the %include
"codegenentry.tlc" statement:

%assign SuppressSetEventsForThisBaseRateFcn = 1

7-6

Data, Function, and File
Definition

• Chapter 8, “Data Types”

• Chapter 9, “Module Packaging Tool (MPT) Data Objects”

• Chapter 10, “Custom Storage Classes”

• Chapter 11, “User Package Registration”

• Chapter 12, “Function and Class Interfaces”

• Chapter 13, “Memory Sections”

8

Data Types

• “Apply User-Defined Data Types” on page 8-2

• “Specify Persistence Level for Signals and Parameters” on page 8-7

• “Buses” on page 8-11

• “Rename Built-In Data Types” on page 8-30

• “Generate Code Including User-Defined Data Types” on page 8-32

• “Data Type Replacement” on page 8-44

• “Data Definition and Declaration Management” on page 8-55

8 Data Types

Apply User-Defined Data Types

In this section...

“Define User Data Types” on page 8-2

“Select User-Defined Data Types” on page 8-4

Define User Data Types
You can use user-defined data types for Simulink signals and parameters and
their corresponding identifiers in generated code. This is true whether or not
a signal or parameter has a Simulink data object associated with it.

Before you can select a user-defined data type for a signal or parameter, you
must:

1 Create a user data type (alias), as explained in the description of
Simulink.AliasType in the Simulink documentation. For the example in
“Select User-Defined Data Types” on page 8-4 that shows how to select user
data types for signals and parameters, create the alias data type f32.

2 Register the user data type so that it is associated with the corresponding
MathWorks C/C++ data type, as explained in “Create Data Types for mpt
Data Objects” on page 8-35.

Note Dialog boxes that contain the data type field display user-defined
data types for both mpt as well as Simulink data objects. Modifications you
make to sl_customization.m in order to display user-defined data types
are still supported.

For the example, register the data type f32 so that it is associated
with type real32_T. The call to function addUserDataType in the
sl_customization.m file you use for the registration must specify:

• f32 as the user data type

• real32_T as the built-in data type

8-2

Apply User-Defined Data Types

• <userdata_types.h> as the user header file that is to include the user
data type definition

For example,

function sl_customization(cm)

hObj = cm.slDataObjectCustomizer;

addUserDataType(hObj, 'f32', 'real32_T', '<userdata_types.h>');

end

3 If you have not already done so, add the directory containing the
sl_customization.m file that you created or modified in step 1 to the
MATLAB search path.

4 Open a model. The example uses the following model.

5 Create a data dictionary for the model, as explained in “Create Simulink
and mpt Data Objects” on page 8-56, to associate signals and parameters
with data objects. For the example, the Model Explorer display must
appear as shown below. The three data objects that appear, sig1, sig2,
and g, and the registered user data type, f32, appear in the middle pane.
The "T" indicates that f32 is an alias data type.

8-3

8 Data Types

For the selection procedure and to continue with the example, continue to
“Select User-Defined Data Types” on page 8-4.

Select User-Defined Data Types
After completing the preparation explained in “Define User Data Types” on
page 8-2, you can use the user-defined data types for Simulink signals and
parameters and for their corresponding identifiers in the generated code. You
can use user-defined data types with signals and parameters whether or not
they have Simulink objects associated with them.

1 For an mpt object that is associated with a signal or parameter in your
model, in the Data type field, select the user data type that you want.
For example, select f32, for sig1.

This selects f32 for the sig1 data object in the data dictionary, but does
not select f32 for the corresponding labeled signal in the model. Therefore,
the two may be in conflict. If you try to update the model, you could get
an error message.

To continue with the example, type f32 into the Data type field for sig1.

2 Select the model and double-click the signal or parameter source block.
(The source block of a model signal or parameter controls the signal’s or
parameter’s data type.) For example, in the example model the Sum block

8-4

Apply User-Defined Data Types

is the source block for sig1. Double-click the Sum block. The Function
Block Parameters dialog box opens.

3 Select the Signal Attributes tab.

4 In the Output data type or Parameter data type field, type the name
of the user data type that you specified for the data object in step 1, and
click Apply. The user data type of the signal in the model and that of
the signal object are now the same.

Alternatively, you can use dictionary-driven data typing. In the
Output data type field, specify object.DataType, where object is the
case-sensitive object name. For example, you can specify sig1.DataType
instead of f32.

8-5

8 Data Types

The advantage of using the alternative is that subsequent user data type
changes for the object in the dictionary automatically change the user data
type of the corresponding model signal or parameter.

5 Repeat steps 1 through 4 for each remaining model signal and parameter
that has a corresponding signal object for which you selected a user data
type.

6 Save the model and corresponding data objects in the MATLAB base
workspace in a .mat file for reuse later. Generated code for sig1 in the
example model (with default MPF settings) would appear as follows:

In sampleUserDT.c f32 sig1;

In sampleUserDT_types.h #include <userdata_types.h>

8-6

Specify Persistence Level for Signals and Parameters

Specify Persistence Level for Signals and Parameters
With this procedure, you can control the persistence level of signal and
parameter objects associated with a model. Persistence level allows you to
make intermediate variables or parameters global during initial development.
At the later stages of development, you can use this procedure to remove these
signals and parameters for efficiency. Notice the Persistence Level field on
the Model Explorer, as illustrated in the figure below. For descriptions of the
properties on the Model Explorer, see Parameter and Signal Property Values
on page 9-3.

Notice also the Signal display level and Parameter tune level fields on
the Code Placement pane of the Configuration Parameters dialog box, as
illustrated in the next figure.

8-7

8 Data Types

The Signal display level field allows you to specify whether or not the code
generator defines a signal data object as global data in the generated code.
The number you specify in this field is relative to the number you specify in
the Persistence level field. The Signal display level number is for mpt
(module packaging tool) signal data objects in the model. The Persistence
level number is for a particular mpt signal data object. If the data object’s
Persistence level is equal to or less than the Signal display level, the
signal appears in the generated code as global data with the properties
(custom attributes) specified in “Create mpt Data Objects with Data Object
Wizard” on page 8-63. For example, this would occur if Persistence level
is 2 and Signal display level is 5.

Otherwise, the code generator automatically determines how the particular
signal data object appears in the generated code. Depending on the settings
on the Optimization pane of the Configuration Parameters dialog box, the
signal data object could appear in the code as local data without the custom
attributes you specified for that data object. Or, based on expression folding,
the code generator could remove the data object so that it does not appear in
the code. For more information, see “Code Optimization Basics”.

8-8

Specify Persistence Level for Signals and Parameters

The Parameter tune level field allows you to specify whether or not the
code generator declares a parameter data object as tunable global data in the
generated code.

The number you specify in this field is relative to the number you specify in
the Persistence level field. The Parameter tune level number is for mpt
parameter data objects in the model. The Persistence level number is for a
particular mpt parameter data object. If the data object’s Persistence level
is equal to or less than the Parameter tune level, the parameter appears
in the generated code with the properties (custom attributes) specified in
“Create mpt Data Objects with Data Object Wizard” on page 8-63, and thus
is tunable. For example, this would occur if Persistence level is 2 and
Parameter tune level is 5.

Otherwise, the parameter is inlined in the generated code, and the code
generation settings determine its exact form.

Note that, in the initial stages of development, you might be more concerned
about debugging than code size. Or, you might want one or more particular
data objects to appear in the code so that you can analyze intermediate
calculations of an equation. In this case, you might want to specify the
Parameter tune level (Signal display level for signals) to be higher than
Persistence level for some mpt parameter (or signal) data objects. This
results in larger code size, because the code generator defines the parameter
(or signal) data objects as global data, which have the custom properties
you specified. As you approach production code generation, however, you
might have more concern about reducing the size of the code and less need
for debugging or intermediate analyses. In this stage of the tradeoff, you
could make the Parameter tune level (Signal display level for signals)
greater than Persistence level for one or more data objects, generate code
and observe the results. Repeat until satisfied.

1 With the model open, in the Configuration Parameters dialog box, click
Code Generation > Code Placement.

2 Type the desired number in the Signal display level or Parameter tune
level field, and click Apply.

3 In the Model Explorer, type the desired number in the Persistence field
for the selected signal or parameter, and click Apply.

8-9

8 Data Types

4 Save the model and generate code.

8-10

Buses

Buses

In this section...

“About Buses and Code Generation” on page 8-11

“Set Bus Diagnostics” on page 8-12

“Optimize Virtual and Nonvirtual Buses” on page 8-12

“Use Single-Rate and Multi-Rate Buses” on page 8-15

“Set Bus Signal Initial Values” on page 8-20

“Use Buses with Atomic Subsystems” on page 8-25

About Buses and Code Generation
When you use buses in a model for which you intend to generate code:

• Setting diagnostic configuration parameters can add to the ease of
development.

• The bus implementation techniques used can influence the speed, size, and
clarity of that code.

• Some bus implementation techniques that can be useful are not
immediately obvious.

This chapter contains guidelines that you can use to improve the results when
you work with buses. The guidelines describe techniques for:

• Simplifying the layout of the model

• Increasing the efficiency of generated code

• Defining data structures for function/subsystem interfaces

• Defining data structures that match existing data structures in external C
code

Some trade-offs inevitably exist among speed, size, and clarity. For example,
the code for nonvirtual buses is easier to read because the buses appear in
the code as structures, but the code for virtual buses is faster because virtual

8-11

8 Data Types

buses do not require copying signal data. The applicability of some guidelines
can therefore depend on where you are in the application development process.

This chapter focuses on optimizations that are useful for final production
code. Before you read this chapter, read “Composite Signals”. This topic
assumes that you understand the concepts and procedures described in that
one, including the blocks used for creating and manipulating buses.

Set Bus Diagnostics
Simulink provides diagnostics that you can use to optimize bus
usage. Set the following values on the Configuration Parameters
> Diagnostics > Connectivity pane:

Bus signal treated as vector is enabled only when Mux blocks used to
create bus signals is set to error. Setting Mux blocks used to create
bus signals to None disables both diagnostics. Temporarily disabling
the two mux and bus diagnostics allows you to debug other bus problems
before addressing mux and bus mixtures. You can then enable the last two
diagnostics and use them to eliminate such mixtures. When you build existing
models, the diagnostic settings should be as shown. See “Avoid Mux/Bus
Mixtures” for more information.

Optimize Virtual and Nonvirtual Buses

• “Use Virtual Buses Wherever Possible” on page 8-13

• “Avoid Nonlocal Nested Buses in Nonvirtual Buses” on page 8-14

8-12

Buses

Use Virtual Buses Wherever Possible
Virtual buses are graphical conveniences that do not affect generated code. As
a result, the code generation engine is able to fully optimize the signals in the
bus. You should therefore use virtual rather than nonvirtual buses wherever
possible. You can convert between virtual and nonvirtual buses using Signal
Conversion blocks. In many cases, Simulink automatically converts a virtual
bus to a nonvirtual bus when required. For example, a virtual bus input
to a Model block becomes a nonvirtual bus without the need for explicit
conversion. See for more information.

When are Virtual and Nonvirtual Buses Required?. In some cases,
Simulink requires the use of nonvirtual buses:

• For non-auto storage classes

• Inports and Outports of Model blocks

• To generate a specific structure from the bus

• Root level Inport or Outport blocks when the bus has mixed data types

In one case, Simulink requires the use of virtual buses:

• Only virtual buses can be used for bundling function call signals.

8-13

8 Data Types

Avoid Nonlocal Nested Buses in Nonvirtual Buses
Buses can contain subordinate buses. The storage class of a subordinate bus
should be auto, which results in a local signal. Setting a subordinate bus to a
non-auto storage class has two undesirable results:

• Allocation of redundant memory (memory for the subordinate bus object
and memory for the final bus object)

• Additional copy operations (first copying to the subordinate bus and then
copying from the subordinate bus to the final bus)

In the following example, the final bus is created from local scoped subordinate
elements. The resulting assignment operations are relatively efficient:

8-14

Buses

By contrast in the next example the subordinate elements Sub_Bus_1 and
Sub_Bus_2 are global in scope. First the assignment to the subordinate bus
occurs (lines 54 – 59) then the copy of the subordinate bus to the main bus
(lines 60 – 61). In most cases, this is not an efficient implementation:

Use Single-Rate and Multi-Rate Buses

• “Introduction” on page 8-16

• “Techniques for Combining Multiple Rates” on page 8-16

• “Larger Buses and Multiple Rates” on page 8-18

8-15

8 Data Types

• “Specify Sample Time Rates” on page 8-20

Introduction
Nonvirtual buses do not support multiple rates. Virtual buses support
multiple rates as long as the bus does not cross a root level inport or outport.
The best techniques for optimizing a bus that contains signals that initially
have different rates can depend on the type of the bus and the number of
signals.

Techniques for Combining Multiple Rates
The simplest bus contains only two signals. The next figure shows two
examples of two-element buses. The first example shows a virtual bus created
from two signals that have different rates. The second example shows a
nonvirtual bus created from the same two signals. The Sample Time Legend
shows the different signal rates:

8-16

Buses

The signals with different rates in the first example can be combined into
a virtual bus, because virtual buses support multiple rates. However, a
multirate virtual bus cannot connect to a root-level output port. The bus
therefore passes through a Rate Transition block that converts it to a
single-rate bus, then connects to the Outport. This technique is preferable
only for virtual buses that contain one or two signals. See “Larger Buses
and Multiple Rates” on page 8-18.

The signals with different rates in the second example cannot initially be
combined into a nonvirtual bus, because nonvirtual buses do not support
multiple rates. One of the signals therefore passes through a Rate Transition
block, which converts it to have the same rate as the other signal, then
connects to the Bus Creator block. The signals can then combine into a
single-rate nonvirtual bus, which can connect to the root-level outport without
further conversion.

8-17

8 Data Types

Larger Buses and Multiple Rates
When you create a multirate virtual bus that contains more than two signals,
you can convert the bus to single-rate by applying a Rate Transition block to
the output of the Bus Creator block. Use a Rate Transition block on each
input signal to give full control over the output rate. As the next figure shows,
when a single Rate Transition block is used, the block sets the signals to
the fastest rate (D1):

8-18

Buses

Note that the preferred techniques for a virtual bus with more than two
signals, and the required technique for a nonvirtual bus with one or more
signals, are the same. Note also that, in the preceding figure, the blocks that
perform rate transition are not actual Rate Transition blocks, but other blocks
that can change the signal rate as part of some other operation. The identity
of the blocks that perform rate transition is not as significant; what matters is
that the signal rates match when required.

8-19

8 Data Types

Specify Sample Time Rates
The sample time for buses should be specified through the signals that
define the bus. If the sample times do not match, use Rate Transition (or
equivalent) blocks to create a uniform rate, as shown in the previous figures.
The signal rates should not be set by specifying Sample Time values in a
Bus Creator block’s bus object. Instead, set the sample time for each signal
before inputting it to the Bus Creator, and set each Sample Time in the
corresponding bus object to -1, which indicates the value is inherited.

Set Bus Signal Initial Values

• “Introduction” on page 8-20

• “Initialize Bus Signals in Simulink” on page 8-20

• “Bus Initialization in Stateflow” on page 8-21

• “Create a Bus of Constants” on page 8-24

Introduction
Unlike scalar and vector signals, buses do not provide a direct way to initialize
signals. This section describes techniques for initializing bus signals using
Simulink, Stateflow, and MATLAB functions.

Initialize Bus Signals in Simulink
In Simulink, you can set initial values on a bus by using a set of conditionally
executed subsystems, such as Function-Call subsystems, and a Merge block,
as shown in this example:

8-20

Buses

Both subsystems (InitBus and StandardUpdate) create a bus signal of type
CounterBus. However, the assignment to the variable GlobalCounter is
controlled by the Merge block. See “Function-Call Subsystems” for more
information.

This technique is limited because the StandardUpdate subsystem does not
use the initial values from the InitBus subsystem. If the calculations depend
on past information from the bus, consider using Stateflow or MATLAB
functions to initialize bus signals.

Bus Initialization in Stateflow
Stateflow and MATLAB functions allow for conditional execution internally.
In the following example, the init and update code are Functions in
the Stateflow diagram. This technique simplifies the presentation in the
generated code:

8-21

8 Data Types

In the generated code, you can see that the UpdateCnt function uses the past
value of GlobalCounter.cnt:

8-22

Buses

The previous example used Stateflow Graphical functions to initialize and
update the buses. Alternatively, you can use MATLAB functions or Simulink
subsystems embedded in a Stateflow diagram. The next figure illustrates
this technique:

The Simulink subsystems are the same as those used in the earlier
Simulink-only example.

8-23

8 Data Types

Create a Bus of Constants
The code for specifying a bus of constant values will appear in either the
Init or the Step function of the model. The code location depends on the
configuration of the bus. In most cases the code appears in the Step function.
However if the following conditions hold the code will be placed in the Init
function:

• The bus is a virtual bus

• The signals in the bus have the same data type

• The signals in the bus are constants

In the next figure, only the bus named Bus_2 meets the requirements:

The code for Bus_2 therefore appears in the Init function. The code for the
other buses appears in the Step function:

8-24

Buses

To avoid repeatedly updating a bus of constants, place the bus code into a
function-call subsystem, as described in “Initialize Bus Signals in Simulink”
on page 8-20. When you use this technique, make sure the function-call
subsystem is called at the start of execution. See “Function-Call Subsystems”
for more information.

Use Buses with Atomic Subsystems

• “Extract Nonvirtual Bus Signals from Atomic Subsystems” on page 8-26

• “Virtual Bus Signals Crossing Atomic Boundaries” on page 8-27

• “Atomic Subsystems and Buses of Constants” on page 8-29

8-25

8 Data Types

Extract Nonvirtual Bus Signals from Atomic Subsystems
Selecting signals from a nonvirtual bus can result in unnecessary data copies
when those signals cross an atomic boundary. In the following example the
same code, a simple multiplication of two elements in a vector, is executed
three times:

8-26

Buses

In the second instance when the bus signals are selected outside of the atomic
subsystem an unnecessary copy of the bus data is created.

Although this example shows only signals with global scope, both global and
local signals show the same behavior: the selection of the signals outside of the
model results in an unnecessary copy, while the internal selection does not.

Virtual Bus Signals Crossing Atomic Boundaries
Virtual buses that cross atomic boundaries can result in the creation of
unnecessary data copies. The following example shows the data copy that
occurs when a virtual bus crosses an atomic boundary:

8-27

8 Data Types

Lines 25–26 show the signals being selected out of the bus before they are
used in the function on lines 19–20. By comparison the nonvirtual bus does
not require the use of temporary variables.

8-28

Buses

Atomic Subsystems and Buses of Constants
If the bus passed into an atomic subsystem consists exclusively of constants,
using a virtual bus is more efficient, because Simulink is able to inline the
constant values into the code:

8-29

8 Data Types

Rename Built-In Data Types
You can replace built-in data type names with user-defined replacement data
type names in the generated code for a model.

To configure replacement data types,

1 In the Model Editor, set the simulation mode of the open model. From
the Simulation menu, select Normal, Software-in-the-loop (SIL), or
Processor-in-the-loop (PIL).

2 In the Configuration Parameters dialog box, click Code
Generation > Data Type Replacement > Replace data type names
in the generated code. A Data type names table appears. The table
lists each Simulink built-in data type name with its corresponding code
generation data type name.

3 Fill in fields in the third column with your replacement data types. Each
replacement data type should be the name of a Simulink.AliasType object

8-30

Rename Built-In Data Types

that exists in the base workspace. Replacements may be specified or not for
each individual built-in type.

For each replacement data type you enter, the BaseType property of the
associated Simulink.AliasType object must be consistent with the built-in
data type it replaces.

• For double, single, int32, int16, int8, uint32, uint16, and uint8, the
replacement data type’s BaseType must match the built-in data type.

• For boolean, the replacement data type’s BaseType must be either an
8-bit integer or an integer of the size displayed for Number of bits:
int on the Hardware Implementation pane of the Configuration
Parameters dialog box.

• For int, uint, and char, the replacement data type’s size must match
the size displayed for Number of bits: int or Number of bits: char on
the Hardware Implementation pane of the Configuration Parameters
dialog box.

An error occurs, if

• A replacement data type specification is inconsistent.

• The Simulink.AliasType object has the Data scope parameter set
to Exported.

8-31

8 Data Types

Generate Code Including User-Defined Data Types

In this section...

“About User-Defined Data Types” on page 8-32

“Specify Location of User-Defined Type Definitions” on page 8-33

“Apply User-Defined Data Types” on page 8-34

“Create Data Types for mpt Data Objects” on page 8-35

“Register mpt User Object Types” on page 8-39

About User-Defined Data Types
The Embedded Coder software supports use of user-defined data type objects
in code generation. These include objects of the following classes:

• Simulink.AliasType

• Simulink.Bus

• Simulink.NumericType

For information on the properties and usage of these data object classes,
see Simulink.AliasType, Simulink.Bus, and Simulink.NumericType. For
general information on creating and using data objects, see the “Data Objects”
section of the Simulink documentation

In code generation, you can use user-defined data objects to

• Map your own data type definitions to Simulink built-in data types, and
specify that your data types are to be used in generated code.

• Optionally, generate #include directives specifying your own header files,
containing your data type definitions. This technique lets you use legacy
data types in generated code.

In general, code generated from user-defined data objects conforms to the
properties and attributes of the objects as defined for use in simulation.
When generating code from user-defined data objects, the name of the object
is the name of the data type that is used in the generated code. Exception:

8-32

Generate Code Including User-Defined Data Types

for Simulink.NumericType objects whose IsAlias property is false, the
name of the functionally equivalent built-in or fixed-point Simulink data
type is used instead.

Note The names of data types defined using Simulink.AliasType objects
are preserved in the generated code only for installations with a Embedded
Coder license.

Specify Location of User-Defined Type Definitions
When a model uses Simulink.DataType and Simulink.Bus objects,
the generated code includes corresponding typedef definitions. Both
Simulink.DataType and Simulink.Bus objects have a HeaderFile property
that controls the location of the object’s typedef. Setting a HeaderFile is
optional and specific to code generation only.

Omit a HeaderFile Value
If the HeaderFile property for a Simulink.DataType or Simulink.Bus object
is left empty, a generated typedef for the object appears in the generated file
model_types.h.

Example. For a Simulink.NumericType object named myfloat with
a Category of double and without HeaderFile property specified,
model_types.h in the generated code contains:

typedef real_T myfloat;

Specify a HeaderFile Value
If the HeaderFile property for a Simulink.DataType or Simulink.Bus object
is set to a string value,

• The string must be the name of a header file that contains a typedef for
the object.

• The generated file model_types.h contains a #include that gives the
header file name.

8-33

8 Data Types

You can use this technique to include legacy or other externally created
typedefs in generated code. When the generated code compiles, the specified
header file must be accessible on the build process include path.

HeaderFile Property Syntax. The HeaderFile property should include the
desired preprocessor delimiter ("" or '<>'), as in the following examples.

This example:

myfloat.HeaderFile = '<legacy_types.h>'

generates the directive:

#include <legacy_types.h>

This example:

myfloat.HeaderFile = '"legacy_types.h>"'

generates the directive:

#include "legacy_types.h"

Apply User-Defined Data Types
To specify and use user-defined data types for code generation:

1 Create a user-defined data object and configure its properties, as described
in the “Data Objects” section of the Simulink documentation.

2 If you specified the HeaderFile property, copy the header file to the
specified directory.

3 Set the output data type of selected blocks in your model to the user-defined
data object. To do this, set the Data type parameter of the block to
Specify with dialog. Then, enter the object name in the Output data
type parameter.

4 The specified output data type propagates through the model and variables
of the user-defined type are declared as required in the generated code.

8-34

Generate Code Including User-Defined Data Types

Create Data Types for mpt Data Objects

• “User Data Types for mpt Data Objects” on page 8-35

• “Register User Data Types Using sl_customization.m” on page 8-36

• “User Data Type Customization Using sl_customization.m” on page 8-38

Note The capabilities described in this section apply only to mpt data objects.

User Data Types for mpt Data Objects
By default, MathWorks data types (such as real32_T and uint8_T) are used to
define data in the generated code. If you prefer using your company-standard
data types (such as DBL and U8), you can define user data types. To use
this feature, you must register and create your data types so that the code
generator can associate them with the corresponding MathWorks C/C++ data
types. Then, the code generator will use your user data types in the generated
code instead of the MathWorks C/C++ data types.

Code generation software automatically associates the MathWorks C/C++
data types with the equivalent ANSI®3 C/C++ data types. If you want to use
only the default MathWorks C/C++ data types, you do not need to register
and create your own data types.

To register user data types, use the Simulink customization file
sl_customization.m. This file is a mechanism that allows you to use
MATLAB code to perform customizations of the standard Simulink user
interface. The Simulink software reads the sl_customization.m file, if
present on the MATLAB path, when it starts and the customizations specified
in the file are applied to the Simulink session. For more information on the
sl_customization.m customization file, see “Registering Customizations”.

Once you have registered your user data types using sl_customization.m,
you must create the Simulink.AliasType objects corresponding to your
user data types. If your model references a user data type either directly
(for example, in the output data type of a block) or indirectly (for example,

3. ANSI® is a registered trademark of the American National Standards Institute, Inc.

8-35

8 Data Types

a Simulink.Signal object data type is set to the user data type), you must
create the corresponding Simulink.AliasType object before updating
the model, running a simulation, or generating code. To create the
Simulink.AliasType objects, you can:

• Invoke the MATLAB function ec_create_type_obj to programmatically
create the required Simulink.AliasType objects

• Create Simulink.AliasType objects one at a time by selecting
Add > Simulink.AliasType in the Model Explorer

• Create Simulink.AliasType objects one at a time by entering the MATLAB
command userdatatype = Simulink.AliasType, where userdatatype is
a user data type registered in sl_customization.m

Register User Data Types Using sl_customization.m
To register user data type customizations, you create an instance of
sl_customization.m and include it on the MATLAB path of the Simulink
installation that you want to customize. The sl_customization function
accepts one argument: a handle to a customization manager object. For
example,

function sl_customization(cm)

As a starting point for your customizations, the sl_customization function
must first get the default (factory) customizations, using the following
assignment statement:

hObj = cm.slDataObjectCustomizer;

You then invoke methods to register your customizations. The customization
manager object includes the following methods for registering Simulink user
data type customizations:

• addUserDataType(hObj, userName, builtinName, userHeader)

addUserDataType(hObj, userName, builtinName)

addUserDataType(hObj, userName, aliasTypeObj)

addUserDataType(hObj, userName, numericTypeObj)

addUserDataType(hObj, userName, fixdtString)

8-36

Generate Code Including User-Defined Data Types

Registers the specified user-defined data type and adds it to the top of the
data type list, as displayed in the Data type pull-down list in the Model
Explorer.

- userName — Name of the user data type

- builtinName — MathWorks C/C++ data type to which userName is
mapped

- userHeader— Name of the user header file that includes the definition
of the user data type

- aliasTypeObj, numericTypeObj, or fixdtString —
Simulink.AliasType, Simulink.NumericType, or fixdt to
which userName is mapped

Note If a Simulink.AliasType or Simulink.NumericType object of the
same name as your registered user data type is already defined in the base
workspace, the definitions of the existing object and the registered user
data type must be consistent or a consistency warning will be displayed.

• moveUserDataTypeToTop(hObj, userName)

Moves the specified user-defined data type to the top of the data type list,
as displayed in the Data type pull-down list in the Model Explorer.

• moveUserDataTypeToEnd(hObj, userName)

Moves the specified user-defined data type to the end of the data type list,
as displayed in the Data type pull-down list in the Model Explorer.

• removeUserDataType(hObj, userName)

Removes the specified user-defined data type from the data type list.

Your instance of the sl_customization function should use these methods to
register user data types for your Simulink installation.

The Simulink software reads the sl_customization.m file when it starts. If
you subsequently change the file, to use the changes you must restart your
Simulink session or enter the following command at the MATLAB command
line:

8-37

8 Data Types

sl_refresh_customizations

User Data Type Customization Using sl_customization.m
The sl_customization.m file shown in sl_customization.m for User Data
Type Customizations on page 8-38 uses the following methods:

• addUserDataType to register the user-defined data types MyInt16,
MyInt32, MyBool, and fixdt(1,8)

• moveUserDataTypeToTop to move MyBool to the top of the data type list, as
displayed in the Data type pull-down list in the Model Explorer

• removeUserDataType to remove the built-in data types boolean and
double from the data type list

sl_customization.m for User Data Type Customizations

function sl_customization(cm)
% Register user customizations

% Get default (factory) customizations
hObj = cm.slDataObjectCustomizer;

% Add custom types
hObj.addUserDataType('MyInt16', 'int16_T', '<mytypes.h>');
hObj.addUserDataType('MyInt32', 'int32_T', '<mytypes.h>');
hObj.addUserDataType('MyBool','boolean_T');
hObj.addUserDataType('fixdt(1,8)');

% Make MyBool first in the list
hObj.moveUserDataTypeToTop('MyBool');

% Remove built-in boolean and double from the list
hObj.removeUserDataType('boolean');
hObj.removeUserDataType('double');

end

If you include the above file on the MATLAB path of the Simulink installation
that you want to customize, the specified customizations will appear in Model
Explorer. For example, you could view the customizations as follows:

8-38

Generate Code Including User-Defined Data Types

1 Start a MATLAB session.

2 Open Model Explorer, for example, by entering the MATLAB command
daexplr.

3 Select Base Workspace.

4 Add an mpt signal, for example, by selecting Add > MPT Signal.

5 In the right-hand pane display for the added mpt signal, examine the
Data type drop-down list, noting the impact of the changes specified in
sl_customization.m for User Data Type Customizations on page 8-38.

Register mpt User Object Types

• “Introduction” on page 8-40

• “Register mpt User Object Types Using sl_customization.m” on page 8-40

8-39

8 Data Types

• “mpt User Object Type Customization Using sl_customization.m” on page
8-42

Introduction
Embedded Coder software allows you to create custom mpt object types and
specify properties and property values to be associated with them (see “Create
mpt Data Objects with Data Object Wizard” on page 8-63). Once created, a
user object type can be applied to data objects displayed in Model Explorer.
When you apply a user object type to a data object, by selecting a type name
in the User object type pull-down list in Model Explorer, the data object is
automatically populated with the properties and property values that you
specified for the user object type.

To register mpt user object type customizations, use the Simulink
customization file sl_customization.m. This file is a mechanism that allows
you to use MATLAB code to perform customizations of the standard Simulink
user interface. The Simulink software reads the sl_customization.m file, if
present on the MATLAB path, when it starts and the customizations specified
in the file are applied to the Simulink session. For more information on the
sl_customization.m customization file, see “Registering Customizations”.

Register mpt User Object Types Using sl_customization.m
To register mpt user object type customizations, you create an instance of
sl_customization.m and include it on the MATLAB path of the Simulink
installation that you want to customize. The sl_customization function
accepts one argument: a handle to a customization manager object. For
example,

function sl_customization(cm)

As a starting point for your customizations, the sl_customization function
must first get the default (factory) customizations, using the following
assignment statement:

hObj = cm.slDataObjectCustomizer;

You then invoke methods to register your customizations. The customization
manager object includes the following methods for registering mpt user object
type customizations:

8-40

Generate Code Including User-Defined Data Types

• addMPTObjectType(hObj, objectTypeName, classtype, propName1,
propValue1, propName2, propValue2, ...)

addMPTObjectType(hObj, objectTypeName, classtype, {propName1,
propName2, ...}, {propValue1, propValue2, ...})

Registers the specified user object type, along with specified values for
object properties, and adds the object type to the top of the user object
type list, as displayed in the User object type pull-down list in the Model
Explorer.

- objectTypeName — Name of the user object type

- classType — Class to which the user object type applies: 'Signal',
'Parameter', or 'Both'

- propName— Name of a property of an mpt or mpt-derived data object to
be populated with a corresponding propValue when the registered user
object type is selected

- propValue— Specifies the value for a corresponding propName

• moveMPTObjectTypeToTop(hObj, objectTypeName)

Moves the specified user object type to the top of the user object type list, as
displayed in the User object type pull-down list in the Model Explorer.

• moveMPTObjectTypeToEnd(hObj, objectTypeName)

Moves the specified user object type to the end of the user object type list,
as displayed in the User object type pull-down list in the Model Explorer.

• removeMPTObjectType(hObj, objectTypeName)

Removes the specified user object type from the user object type list.

Your instance of the sl_customization function should use these methods to
register mpt object type customizations for your Simulink installation.

The Simulink software reads the sl_customization.m file when it starts. If
you subsequently change the file, to use the changes, you must restart your
MATLAB session.

8-41

8 Data Types

mpt User Object Type Customization Using sl_customization.m
The sl_customization.m file shown in sl_customization.m for mpt Object
Type Customizations on page 8-42 uses the addMPTObjectType method to
register the user signal types EngineType and FuelType for mpt objects.

sl_customization.m for mpt Object Type Customizations

function sl_customization(cm)
% Register user customizations

% Get default (factory) customizations
hObj = cm.slDataObjectCustomizer;

% Add commonly used signal types
hObj.addMPTObjectType(...

'EngineType','Signal',...
'DataType', 'uint8',...
'Min', 0,...
'Max', 255,...
'DocUnits','m/sec');

hObj.addMPTObjectType(...
'FuelType','Signal',...
'DataType', 'int16',...
'Min', -12,...
'Max', 3000,...
'DocUnits','mg/hr');

end

If you include the above file on the MATLAB path of the Simulink installation
that you want to customize, the specified customizations will appear in Model
Explorer. For example, you could view the customizations as follows:

1 Start a MATLAB session.

2 Open Model Explorer, for example, by entering the MATLAB command
daexplr.

3 Select Base Workspace.

8-42

Generate Code Including User-Defined Data Types

4 Add an mpt signal, for example, by selecting Add > MPT Signal.

5 In the right-hand pane display for the added mpt signal, examine the User
object type drop-down list, noting the impact of the changes specified in
sl_customization.m for mpt Object Type Customizations on page 8-42.

6 From the User object type drop-down list, select one of the registered user
signal types, for example, FuelType, and verify that the displayed settings
are consistent with the arguments specified to the addMPTObjectType
method in sl_customization.m.

8-43

8 Data Types

Data Type Replacement

In this section...

“Replace Data Types” on page 8-44

“Replace Built-In Data Type Names” on page 8-46

“Programmatically Replace Built-In Data Type Names” on page 8-51

“Replace boolean with an Integer Data Type” on page 8-52

“Data Type Replacement Limitations” on page 8-54

Replace Data Types
You can replace built-in data type names with user-defined replacement data
type names in the generated code for a model.

To configure replacement data types,

1 In the Model Editor, set the simulation mode of the open model. From
the Simulation menu, select Normal, Software-in-the-loop (SIL), or
Processor-in-the-loop (PIL).

2 In the Configuration Parameters dialog box, click Code
Generation > Data Type Replacement > Replace data type names
in the generated code. A Data type names table appears. The table
lists each Simulink built-in data type name with its corresponding code
generation data type name.

8-44

Data Type Replacement

3 Fill in fields in the third column with your replacement data types. Each
replacement data type should be the name of a Simulink.AliasType object
that exists in the base workspace. Replacements may be specified or not for
each individual built-in type.

For each replacement data type you enter, the BaseType property of the
associated Simulink.AliasType object must be consistent with the built-in
data type it replaces.

• For double, single, int32, int16, int8, uint32, uint16, and uint8, the
replacement data type’s BaseType must match the built-in data type.

• For boolean, the replacement data type’s BaseType must be either an
8-bit integer or an integer of the size displayed for Number of bits:
int on the Hardware Implementation pane of the Configuration
Parameters dialog box.

• For int, uint, and char, the replacement data type’s size must match
the size displayed for Number of bits: int or Number of bits: char on
the Hardware Implementation pane of the Configuration Parameters
dialog box.

8-45

8 Data Types

An error occurs, if

• A replacement data type specification is inconsistent.

• The Simulink.AliasType object has the Data scope parameter set
to Exported.

Replace Built-In Data Type Names
If your application requires you to replace built-in data type names with
user-defined replacement data type names in the generated code, you can
do so from the Code Generation > Data Type Replacement pane of the
Configuration Parameters dialog box.

This pane is available for ERT target based Simulink models. In addition
to providing a mechanism for mapping built-in data types to user-defined
replacement data types, this feature:

• Performs consistency checks so that your specified data type replacements
are consistent with your model’s data types.

• Allows many-to-one data type replacement, the ability to map multiple
built-in data types to one replacement data type in generated code. For
example, built-in data types uint8 and boolean could both be replaced in
your generated code by a data type U8 that you have previously defined.

Note For limitations that apply, see “Data Type Replacement Limitations”
on page 8-54.

If you select Replace data type names in the generated code, the Data
type names table is displayed.

The table Data type names lists each Simulink built-in data type name
along with its code generation data type name. Selectively fill in fields in the
third column with your replacement data types. Each replacement data type
should be the name of a Simulink.AliasType object that exists in the base
workspace. Replacements may be specified or not for each individual built-in
type. For each replacement data type entered, the BaseType property of the
associated Simulink.AliasType object must be consistent with the built-in
data type it replaces.

8-46

Data Type Replacement

• For double, single, int32, int16, int8, uint32, uint16, uint8, the
replacement data type’s BaseType must match the built-in data type.

• For boolean, the replacement data type’s BaseType must be either an 8-bit
integer or an integer of the size displayed for Number of bits: int on
the Hardware Implementation pane of the Configuration Parameters
dialog box.

• For int, uint, and char, the replacement data type’s size must match
the size displayed for Number of bits: int or Number of bits: char on
the Hardware Implementation pane of the Configuration Parameters
dialog box.

An error occurs if a replacement data type specification is inconsistent.

Note It is not recommended to use data type replacement to work around
data type checking. You should not intentionally replace a data type with a
type that has inconsistent characteristics, such as replacing real_T with
a type name that maps to a single-precision data type (inconsistent size).
Remapping to inconsistent types might introduce significant numerical
differences, relative to simulation results, and erroneous behavior. Examples
of inconsistencies include:

• Floating-point precision differences, due to the floating-point number
representation and arithmetic unit on the target processor using a smaller
number of bits.

• Literal values and tolerances, calculated and used during simulation and
incorporated into generated code, being inconsistent with the actual data
types used on the target system.

• Algorithm convergence and run-time library behavior observed during
simulation not being representative of the target system.

For example, suppose that you have previously defined the following
replacement data types, which exist as Simulink.AliasType objects in the
base workspace:

8-47

8 Data Types

User-Defined Name Description

FLOAT64 64-bit floating point

FLOAT32 32-bit floating point

S32 32-bit integer

S16 16-bit integer

S8 8-bit integer

U32 Unsigned 32-bit integer

U16 Unsigned 16-bit integer

U8 Unsigned 8-bit integer

CHAR Character data

You can fill in the Data Type Replacement pane with a one-to-one
replacement mapping, as follows:

8-48

Data Type Replacement

You can also apply a many-to-one data type replacement mapping. For
example, in the following display:

• int32 and int are replaced with user type S32

• uint32 and uint are replaced with user type U32

• uint8 and boolean are replaced with user type U8

Note Many-to-one data type replacement does not support the char (char_T)
built-in data type. Use char only in one-to-one data type replacements.

The user-defined replacement types you specify will appear in your model’s
generated code in place of the corresponding built-in data types. For example,
if you specify user-defined data type FLOAT64 to replace built-in data type
real_T (double), then the original generated code shown in Generated
Code with real_T Built-In Data Type on page 8-51 will become the modified

8-49

8 Data Types

generated code shown in Generated Code with FLOAT64 Replacement Data
Type on page 8-51.

8-50

Data Type Replacement

Generated Code with real_T Built-In Data Type

...
/* Model initialize function */
void sinwave_initialize(void)
{
...

{real_T *dwork_ptr = (real_T *) &sinwave_DWork.lastSin;
...
}
...

Generated Code with FLOAT64 Replacement Data Type

...
/* Model initialize function */
void sinwave_initialize(void)
{
...

{FLOAT64 *dwork_ptr = (FLOAT64 *) &sinwave_DWork.lastSin;
...
}
...

Programmatically Replace Built-In Data Type Names
To replace the built-in data type names for your model, modify the
ReplacementTypes property, which is managed as a structure. The following
lines of example code show how you can modify the ReplacementTypes
property to replace the built-in data type names int8, uint8, and boolean
with user-defined data type names my_T_S8, my_T_U8, and my_T_BOOL,
respectively.

model = bdroot;
cs = getActiveConfigSet(model);
set_param(cs,'EnableUserReplacementTypes','on');

struc = get_param(cs,'ReplacementTypes');
struc.int8 = 'my_T_S8';
struc.uint8 = 'my_T_U8';
struc.boolean = 'my_T_BOOL';

8-51

8 Data Types

set_param(cs,'ReplacementTypes',struc);

Replace boolean with an Integer Data Type
Using data type replacement, you can replace the boolean built-in data type
with an integer type in the generated code. The integer type might improve
the performance of the generated code on your production hardware:

• int8

• uint8

• intn

where n is 8, 16, or 32, matching the integer word size for the production
hardware (for example, int32 for 32-bit hardware).

For example, to map boolean to the int32 data type, perform the following
steps.

1 Define a Simulink.AliasType object with a base type of int32:

mybool = Simulink.AliasType;
mybool.BaseType = 'int32';

2 Open an ERT-based model. In the Data Type Replacement pane of the
Configuration Parameters dialog box, map boolean (boolean_T) to the
replacement data type mybool.

8-52

Data Type Replacement

In the resulting generated code, boolean is replaced with mybool. For
example, rtwtypes.h contains:

/* Generic type definitions ... */

...

typedef int boolean_T;

...

/* Define RTW replacement data types. */

typedef boolean_T mybool; /* User defined replacement datatype for boolean_T */

Boolean data in the generated code is declared with mybool. For example,
given a model with a Boolean output Out1, an Out1 declaration such as

boolean_T Out1; /* '<Root>/Out1' */

instead is generated in model.h as

mybool Out1; /* '<Root>/Out1' */

8-53

8 Data Types

Data Type Replacement Limitations

• Data type replacements are ignored during code generation for a
model unless the simulation mode of the model is set to Normal,
Software-in-the-Loop (SIL), or Processor-in-the-Loop (PIL). Set
the simulation mode from the Simulation menu in the Model Editor.

• Data type replacement does not support multiple levels of mapping. Each
replacement data type name maps directly to one or more built-in data
types.

• Data type replacement is not supported for simulation target code
generation for referenced models.

• Data type replacement is not supported if the Classic call interface
option is selected for your model.

• Data type replacement occurs during code generation for .c, .cpp, and .h
files generated in build directories (including top and referenced model
build directories) and in the _sharedutils directory. Exceptions are as
follows:

rtwtypes.h
model_sf.c or .cpp (ERT S-function wrapper)
model_dt.h (C header file supporting external mode)
model_capi.c or .cpp
model_capi.h

• Data type replacement is not supported for complex data types.

• Many-to-one data type replacement is not supported for the char built-in
data type. Attempting to use char as part of a many-to-one mapping to a
user-defined data type introduces a violation of the MISRA C specification.
Specifically, if char (char_T) and either int8 (int8_T) or uint8 (uint8_T)
are mapped to the same user replacement type, the result is a MISRA C
violation. Additionally, if you try to generate C++ code, invalid implicit
type casts are made and compile-time errors may result. Use char only in
one-to-one data type replacements.

• For ERT S-functions, you can replace the boolean built-in data type with
only an 8–bit integer, int8 or uint8.

8-54

Data Definition and Declaration Management

Data Definition and Declaration Management

In this section...

“Overview of Data Dictionary” on page 8-55

“Create Simulink and mpt Data Objects” on page 8-56

“Create a Data Dictionary for a Model” on page 8-70

“Define Global Data Objects in Separate File” on page 8-77

“Define Global Data Objects in Separate Files” on page 8-79

“Save and Load Data Objects” on page 8-79

“Apply Naming Rules to Identifiers Globally” on page 8-79

Overview of Data Dictionary
A data dictionary contains the parameters and signals that the source code
uses, and a description of their properties. The data dictionary that is
created for Simulink and Stateflow models is called the code generation data
dictionary. (You can use the data dictionary for simulation. This does not
require that you have a Embedded Coder license.) The dictionary is the total
number of data objects that appear in the middle pane of the Model Explorer.
These data objects also appear in the MATLAB workspace. The procedure
described in this chapter allows you to create or edit the dictionary. The
procedure allows you to control property values for each data object. This, in
turn, determines how each parameter and signal is defined and declared
in the automatically generated code.

The values of data object properties are used to determine where the code
generator places a parameter or signal in the generated file. This is because
some property values are associated with different template symbols. The
location of a symbol in a template determines where the associated parameter
or signal is located in the generated file. For details about templates and
symbols, see “Customize Code Organization and Format” on page 15-28.

It is helpful to define terms you will see when managing the dictionary,
especially when you view them using the Model Explorer. The Simulink
software uses a hierarchy of terms that are drawn from object-oriented

8-55

8 Data Types

programming. For details, see “Data Objects” in the Simulink documentation.
The sketch below summarizes this hierarchy.

�������

�	�

 �	�

������������

��
���������

���
������������	����

� ����� ������ � �

�� �� ��

Simulink or mpt is the package. Parameter and Signal are two classes in each
of these packages. Each class has a number of properties associated with it.
Sometimes properties are called attributes. Data objects (the parameters
and signals) are the instances of a package.class that make up the data
dictionary. Parameter data objects have a set of properties. Signal data
objects have a different set of properties than that for parameters. For each
data object, each property in the set has its own property value that must be
specified in the dictionary.

Create Simulink and mpt Data Objects

• “Ways to Create Data Objects” on page 8-56

• “Create Data Objects with Data Object Wizard” on page 8-57

• “Create mpt Data Objects with Data Object Wizard” on page 8-63

• “Simulink and mpt Data Object Comparison” on page 8-64

• “Create Data Objects from External Data Dictionary” on page 8-68

Ways to Create Data Objects
The Embedded Coder software provides the mpt (module packaging tool) data
object, which contains the properties of Simulink data objects plus properties

8-56

Data Definition and Declaration Management

that provide additional control over module packaging. For a comparison of
the properties of Simulink and mpt data objects, see “Simulink and mpt Data
Object Comparison” on page 8-64.

There are different ways of creating Simulink and mpt data objects for a
data dictionary.

• One-by-one, either using the MATLAB command line or using the Model
Explorer Add menu and selecting Simulink Parameter, Simulink
Signal, MPT Parameter, or MPT Signal. For more information, see
“Data Objects” in the Simulink documentation.

• Together, invoking Data Object Wizard for an existing model. For more
information and examples, see “Data Object Wizard” in the Simulink
documentation and “Create mpt Data Objects with Data Object Wizard”
on page 8-63.

• Creating data objects based on an external data dictionary. You can do this
manually item by item, or together using a script. For more information,
see “Create Data Objects from External Data Dictionary” on page 8-68.

The following sections illustrate how to create Simulink and mpt data objects
and compares their properties as data types.

Create Data Objects with Data Object Wizard
You can use Data Object Wizard to create data objects for your model (see
“Data Object Wizard” in the Simulink documentation).

Data Object Wizard is especially useful for creating multiple data objects for

• Existing models that do not currently use data objects.

• Existing models to which you have added signals or parameters and
therefore you need to create more data objects.

Create Data Objects. This procedure creates Simulink data objects using
Data Object Wizard.

1 Open the model whose data objects you want to be in the data
dictionary. For example, open rtwdemo_mpf (which is located in
toolbox/rtw/rtwdemos).

8-57

8 Data Types

2 Open Data Object Wizard by entering dataobjectwizard at the MATLAB
command line or by selecting Data Object Wizard from the Tools menu
of your model. The Data Object Wizard dialog box appears:

The Model name field displays the name of the model. You could specify
a different model by editing the field or by selecting the model using the
adjacent Browse button. When the Model name field is nonempty, the
Find button is enabled.

3 In the Find options pane, select the desired check boxes. For descriptions
of each check box, see “Data Object Wizard” in the Simulink documentation.
Be sure to check the Alias types option. This finds user-registered
data types in the sl_customization.m file plus data type replacements
specified for the model in the Data Type Replacement pane of the
Configuration Parameters dialog box. The Data Object Wizard can create
Simulink.AliasType objects from these.

8-58

Data Definition and Declaration Management

4 Click the Find button. The model’s potential data objects appear that
are not yet in the code generation data dictionary, as shown below. This
includes the model’s signals (root inputs, root outputs, and block outputs),
discrete states, data stores, and parameters, depending on:

• The check boxes you selected in the previous step

• The constraint mentioned in the note above

Data Object Wizard finds only those signals, parameters, data stores, and
states whose storage class is set to Auto. The Wizard lists each data store
and discrete state that it finds as a signal class.

5 Click Select All. Notice in the Choose package for selected data
objects field that Simulink, the default, is selected. Therefore, the data
objects are associated with the Simulink package, as shown below.

6 Click Create. The data objects are added to the MATLAB workspace, and
they disappear from Data Object Wizard.

7 Click Cancel. The Data Object Wizard dialog box disappears.

8-59

8 Data Types

Now you can set property values for the data objects.

Set Property Values for Data Objects. Most of the property values of data
objects are supplied by defaults. A few are from the model. Note that for
Simulink data objects, the default storage class is Auto.

1 Type daexplr on the MATLAB command line, and press Enter. The Model
Explorer appears.

2 In the Model Hierarchy (left) pane, select Base Workspace. The Simulink
data objects in the code generation data dictionary appear in the Contents
(middle) pane, as shown below.

If the objects that you see do not appear in the order shown, click the
Name column header in the middle pane to sort the objects in ascending
order by name.

8-60

Data Definition and Declaration Management

3 To see the properties of a Simulink data object, select a data object in the
middle pane. The right pane displays the property names for that object.
These property names also appear as column headings in the middle pane.
For example, if you select signal data object A in the middle pane, the
Model Explorer looks like this:

8-61

8 Data Types

4 You can change the values specified for the properties of the selected
object. For example, with A selected, change its StorageClass property
from Auto to Default (Custom), then click Apply. The property changes
as shown below:

You can use Control-Right-Click to select multiple objects in the center pane,
then edit a property value. The wizard applies the new value to the selected
objects. For descriptions of object properties and their values, see Parameter
and Signal Property Values on page 9-3.

Generate and Inspect Code. Data objects for the model are in the code
generation data dictionary. You have specified property values for each data
object’s properties. Now you generate and inspect the source code, to see if it
needs correction or modification. If it does, you can change property values
and regenerate the code until it is what you want.

1 In the Configuration Parameters dialog box, click Code Generation in
the left pane.

2 In the Report pane, select the Create code generation report check box.

8-62

Data Definition and Declaration Management

Note When you select the Create code generation report check box,
the code generation software automatically selects two check boxes on the
pane: Launch report automatically and Code-to-model. For large
models, you may find that HTML report generation (step 4 below) takes
longer than you want. In this case, consider clearing the Code-to-model
check box (and the Model-to-code check box if selected). The report will
be generated faster.

3 In the Code Generation pane, select the Generate code only check box.
The Build button changes to Generate code.

Note The generate code process generates the .c/.cpp and .h files. The
build process adds compiling and linking to generate the executable. For
details on build, see “How Executable Programs Are Built From Models” in
the Simulink Coder documentation.

4 Click the Generate code button. After a moment, the HTML code
generation report appears, listing the generated files on the left pane.

5 Select and review files in the HTML code generation report. See
“Traceability in Code Generation Report” on page 18-4 for more information.

Create mpt Data Objects with Data Object Wizard
Create mpt data objects using Data Object Wizard the same way you did for
Simulink data objects, as explained in “Create Data Objects with Data Object
Wizard” on page 8-57, except select mpt as the package instead of Simulink.

Set the property values for the mpt data objects the same way you set them for
Simulink data objects, as explained in “Set Property Values for Data Objects”
on page 8-60, with the following exceptions:

• Accept the default custom storage class for mpt data objects,
Global(Custom)

• For data objects A and F1, type mydefinitionfile in the Definition file
field on the Model Explorer.

8-63

8 Data Types

Then generate and inspect the code.

Note The Alias field is related to “Apply Naming Rules to Identifiers
Globally” on page 8-79.

Simulink and mpt Data Object Comparison
The mpt data object contains the properties of Simulink data objects plus
properties that provide additional control over module packaging. The
differences between Simulink and mpt data objects can be illustrated by
comparing

• “Signal and Parameter Properties” on page 8-65

• “Configuration Parameters” on page 8-66

• “Generated Code” on page 8-67

Key differences include the following:

• Different custom storage classes displayed in the Model Explorer for mpt
data objects provide more control over the appearance of the generated code.

• Additional custom attributes (owner, definition file, persistence level,
memory section) for mpt data objects provide more control over data
packaging in the generated code.

• On the Comments pane of the Configuration Parameters dialog box,
the Custom comments (MPT objects only) option allows you to add a
comment just above a signal or parameter’s identifier in the generated code.

• On the Code Placement pane of the Configuration Parameters dialog box,
in the Global data placement (MPT data objects only) subpane:

- The Signal display level parameter allows you to specify whether or
not the code generator declares a signal data object as global data

- The Parameter tune level parameter allows you to specify whether
or not the code generator declares a parameter data object as tunable
global data

8-64

Data Definition and Declaration Management

Signal and Parameter Properties. The properties that appear in Model
Explorer when mpt is the package include the properties that appear when
Simulink is the package plus additional properties. Notice this by comparing
the next two figures. (For descriptions of properties in Model Explorer, see
Parameter and Signal Property Values on page 9-3.)

8-65

8 Data Types

Configuration Parameters. The following configuration parameters
relate to module packaging features. These parameters are available in the
Configuration Parameters dialog box and Model Explorer when the system
target file selected for a Simulink model is ert.tlc (or a system target file
derived from an ert.tlc):

• Custom comments (MPT objects only) option on the Code
Generation > Comments pane

• In the Global data placement (MPT data objects only) subpane on the
Code Generation > Code Placement pane:

- Signal display level parameter

- Parameter tune level parameter

8-66

Data Definition and Declaration Management

Generated Code. In the example used in “Set Property Values for Data
Objects” on page 8-60, you selected Default (Custom) in the Storage class
field for signal A and parameter F1. You selected the default Auto in the
Storage class field for the remaining data objects. But for the mpt data
objects you used the default Global (Custom) in the Storage class field.
When you generated code, these selections resulted in the definitions and
declarations shown in the table below.

Simulink Data Object with
Auto Storage Class

Simulink Data Object with
Default (Custom) Storage
Class

mpt Data Object with
Global (Custom) Storage
Class and Definition File
Named mydefinitionfile

In rtwdemo_mpf.c:

/* For signal A */
ExternalInputs rtU;

/* For parameter F1 */
if(rtU.A * 2.0 > 10.0) {...

In rtwdemo_mpf.h:

/* For signal A */
typedef struct {

real_T A;
} ExternalInputs;

extern ExternalInputs rtU;

In global.c:

real_T A;
real_T F1 = 2.0;

In global.h:

extern real_T A;
extern real_T F1;

In mydefinitionfile.c:

real_T A;
real_T F1 = 2.0;

In global.h:

extern real_T A;
extern real_T F1;

The results shown in the second and third columns of the preceding table
require the following configuration parameter adjustments on the Code
Generation > Code Placement pane:

• Set Data definition to Data defined in single separate source
file.

• Set Data definition filename to global.c

• Set Data declaration to Data declared in single separate source
file.

8-67

8 Data Types

• Set Data definition filename to global.h

See the left column of the table, which shows generated code for Simulink
signal and parameter data objects, whose Storage class field is Auto. The
input A is defined as part of the structure rtU as shown above. In the case
of the Simulink parameter data object F1, since the StorageClass was set
to auto, the code generator chose to include the literal value of F1 in the
generated code. F1 is a constant in the Stateflow diagram whose value is
initialized as 2.0:

if(rtU.A * 2.0 > 10.0) { ...

For more details, see “Introduction to Custom Storage Classes” on page 10-2
and “Summary of Signal Storage Class Options” in the Simulink Coder
documentation.

See the middle column of the table. The Simulink data objects whose Storage
class is not Auto are defined in a definition statement in the global source
file (global.c) and declared in a declaration statement in the global header
file (global.h).

In the right column, Simulink data objects whose Storage class is not Auto
are defined in mydefinitionfile, as you specified. The declarations for those
objects are in the global header file.

Create Data Objects from External Data Dictionary
This procedure creates data objects based on an external data dictionary (such
as a Microsoft® Excel® file). You can do this manually or automatically.

8-68

Data Definition and Declaration Management

Create Data Objects Manually. You can create data objects (and their
properties) one-by-one, based on an external data dictionary, as follows:

1 Open the external file that contains the data (such as a spreadsheet or
database file).

2 Determine the data in this file that correspond to the parameters and
signals in the model. In the code generation data dictionary, parameters
in the external file belong to the Simulink parameter class and signals
belong to the Simulink signal class.

3 On the MATLAB command line, type daexplr and press Enter. The Model
Explorer appears.

4 On theModel Hierarchy (left) pane, expand Simulink Root, and select
Base Workspace.

5 On the Add menu, selectMPT Parameter or Simulink Parameter. The
default name Param appears in the Contents of (middle) pane.

6 Double-click Param and rename this data object as desired.

7 Repeat steps 5 and 6 for each additional data item in the external file that
belongs to the mpt.Parameter class or Simulink.Parameter class.

Now you will add data items in the external file that belong to the
mpt.Signal class or Simulink.Signal class.

8 On the Add menu, selectMPT Signal or Simulink Signal. The default
name Sig appears in the Contents of pane.

9 Double-click Sig and rename the data object as desired.

10 Repeat steps 8 and 9 for each additional data item in the external file that
belongs to the mpt.Signal class or Simulink.Signal class.

External data items for the mpt.Parameter or Simulink.Parameter
class, and the mpt.Signal or Simulink.Signal class now appear in the
Contents of pane and in the MATLAB workspace. Therefore, they have
been created in the code generation data dictionary.

8-69

8 Data Types

Note The property values for these data objects are supplied by default.

Create Data Objects Automatically. You can create data objects (and their
properties) based on an external data dictionary by creating and running a
.m file. This file contains the same MATLAB commands you could use for
creating data objects one-by-one on the command line, as explained in “Data
Objects” in the Simulink documentation. But instead of using the command
line, you place the MATLAB commands in the .m file for the desired data in
the external file:

1 Create a new .m file.

2 Place information in the file that describes the data in the external file
that you want to be data objects. For example, the following information
creates two mpt data objects with the indicated properties. The first is for a
parameter and the second is for a signal:

% Parameters
mptParCon = mpt.Parameter;
mptParCon.CoderInfo.CustomStorageClass ='Const';
mptParCon.value = 3;
% Signals
mptSigGlb = mpt.Signal;
mptSigGlb.DataType = 'int8';

3 Run the .m file. The data objects appear in the MATLAB workspace.

Note If you want to import data from an external data dictionary, you can
write functions that read the information, convert these to data objects, and
load them into the MATLAB workspace. Among available MATLAB functions
that you can use for this process are xmlread, xmlwrite, xlsread, xlswrite,
csvread, csvwrite, dlmread, and dlmwrite.

Create a Data Dictionary for a Model
In this procedure, you create a data dictionary for a model using Data
Object Wizard, inspect the data dictionary, and generate code. Definitions

8-70

Data Definition and Declaration Management

for the data objects in the dictionary are generated into the model source
file (model.c).

Use Data Object Wizard

1 Open the model rtwdemo_mpf by clicking the link or by typing rtwdemo_mpf
in the MATLAB Command Window.

In this model,

• A, B, and C are input signals, and L and Final are output signals.

• Subsystem1 receives inputs A and E and contains constants G1 and G2.
Signal E is an output from Data Store Read1.

• Subsystem2 receives inputs C and D. Signal D is an output from Data
Store Read2. There is a constant in Subsystem2 named G3. Also, this
subsystem has a Unit Delay block whose state name is SS.

8-71

8 Data Types

2 Double-click the Stateflow chart and notice it has constants F1, Gain1,
and Gain2, as shown below:

3 Change to a work folder that is not on an installation path and save the
model in that work folder. The code generation software does not allow you
to generate code from an installation folder.

4 Double-click the Invoke Data Object Wizard button on the model. Or,
type dataobjectwizard('rtwdemo_mpf') in the MATLAB Command
Window. Data Object Wizard opens and rtwdemo_mpf appears in the
Model name field, as shown below.

8-72

Data Definition and Declaration Management

5 Click Find on Data Object Wizard. After a moment, the model’s parameters
and signals appear in Data Object Wizard. These "data objects" make up
the data dictionary.

6 Click Select All.

7 In the Choose package for selected objects field, select mpt. For an
explanation of “package,” see “Overview of Data Dictionary” on page 8-55.

8-73

8 Data Types

8 Click Apply Package. Data Object Wizard associates the selected data
objects with the mpt package, as shown below.

8-74

Data Definition and Declaration Management

9 Click Create. Data Object Wizard creates a data dictionary, consisting of
data objects for the selected parameters and signals. Data Object Wizard
removes the objects from its object view. Also, the objects are added to the
MATLAB workspace, as shown below.

10 Close Data Object Wizard.

Inspect the Data Dictionary
You can verify that each data object you selected in Data Object Wizard is
in the data dictionary, using the Model Explorer:

1 If you have not already done so, complete the steps in “Use Data Object
Wizard” on page 8-71 .

2 Open the Model Explorer.

3 In the left pane, select Base Workspace. Notice that data objects that you
placed in the data dictionary appear in the middle pane.

8-75

8 Data Types

4 In the middle pane, select data objects one at a time, and notice their
property values in the right pane. The figure below shows this for signal A.
The data objects have default property values. Note that for an mpt data
object, the default in the Storage class field is Global (Custom). For
descriptions of the properties on the Model Explorer, see “Set Property
Values for Data Objects” on page 8-60.

Generate and Inspect Code

1 If you have not already done so, complete the steps in “Use Data Object
Wizard” on page 8-71 and “Inspect the Data Dictionary” on page 8-75.

2 In the left pane of the Model Explorer, expand the rtwdemo_mpf node.

3 In the left pane, click Configuration (Active).

4 In the center pane, click Code Generation. The active configuration
parameters appear in the right pane.

5 In the Report tab, select Create code generation report

8-76

Data Definition and Declaration Management

6 Select the General tab. Select Generate code only, and then click
Generate code. After a few moments, the names of the generated files are
listed on the Code Generation Report on the left pane.

7 Open and inspect the content of the model source file rtwdemo_mpf.c. The
following data objects in the data dictionary are initialized in this file.

real_T F1 = 2.0;
real_T G1 = 6.0;
real_T G2 = -2.6;
real_T G3 = 9.0;
real_T Gain1 = 5.0;
real_T Gain2 = -3.0;

Define Global Data Objects in Separate File
The previous procedure placed the model’s data objects in the model source
file. Now you place global data objects in a file separate from the model source
file:

1 Configure the model’s generated code to include Simulink data
objects (signal and parameter) in a separate definition file. Set
Diagnostics > Data Validity > Signal resolution to Explicit and
implicit.

8-77

8 Data Types

2 Specify that data be defined in a separate file. Set Code
Generation > Code Placement > Data definition to Data defined in
single separate source file. Accept the default for Data definition
filename, global.c

3 Specify that data be declared in a separate file. Set Data declaration
to Data declared in a single separate header file and accept the
default for Data declaration filename, global.h. Then, click Apply.

4 Click Generate code. Notice that the code generation report lists
global.c and global.h files.

5 Inspect the code generation report. Notice that

• The data objects formerly initialized in rtwdemo_mpf.c now are
initialized in global.c.

• The file rtwdemo_mpf.c includes rtwdemo_mpf.h.

• The file rtwdemo_mpf.h includes global.h.

8-78

Data Definition and Declaration Management

Define Global Data Objects in Separate Files
The previous procedure placed global data objects in a separate definition file.
You named that file global.c. (You named the corresponding declaration
file global.h.) MPF allows you to override this and place a specific data
object in its own definition file. In the following procedure, you move the
Final signal to a file called finalsig.c, and keep the other data objects
defined in global.c:

1 In the Model Explorer, display the base workspace and select the Final
signal object. The mpt.Signal properties appear in the right pane.

2 In the Code generation options section, type finalsig.h in the Header
file text box, type finalsig.c in the Definition file text box, and click
Apply.

3 On the Code Generation > General pane, click Generate code.
The code generation report still lists global.c and global.h, but adds
finalsig.c and finalsig.h.

4 Open the files to inspect them. Notice that the Final signal is defined in
finalsig.c. Other data objects in the dictionary are defined in global.c.

Save and Load Data Objects
In a .mat file, you can save the set of data objects (and their properties) that
you have created and load this information for later use or exchange it with
another user. You can save data objects in the workspace.

Apply Naming Rules to Identifiers Globally

• “Overview” on page 8-80

• “Change Names of Identifiers” on page 8-81

• “Specify Data Object Naming Rules” on page 8-84

• “Define Rules That Change Signal Names” on page 8-85

• “Define Rules That Change Parameter Names” on page 8-85

• “Define Rules That Change #defines” on page 8-86

8-79

8 Data Types

Note The capabilities described in this section apply only to mpt data objects.

Overview
Signal and parameter names appear on a Simulink model. The same names
appear as data objects on the Model Explorer. By default, these names are
replicated exactly in the generated code. For example, "Speed" on the model
(and workspace) appears as the identifier "Speed" in the code, by default. But
you can change how they appear in the code. For example, if desired, you can
change "Speed" to SPEED or speed. Or, you can choose to use a different name
altogether in the generated code, like MPH. The only restriction is that you
follow ANSI C4/C++ rules for naming identifiers.

There are two ways of changing how a signal name or parameter name is
represented in the generated code. You can do this globally, by following
the procedure in this section. This procedure makes selections on the
Configuration Parameters dialog box to change the names when code
generation occurs, according to the same rule. Or, you can change the names
individually by following the steps described in “Set Property Values for Data
Objects” on page 8-60. The relevant field in that procedure is Alias on the
Model Explorer.

If the Alias field is empty, the naming rule that you select on the
Configuration Parameters dialog box applies across data objects. But if you
do specify a name in the Alias field, this overrides the naming rule for that
data object. The table below illustrates these cases. The table assumes that
you selected Force lower case as the naming rule. But with the information
provided, you can determine how the naming rules work for an mpt data
object or a Simulink data object (Force upper case, Force lower case, or
Custom M-function).

4. ANSI® is a registered trademark of the American National Standards Institute, Inc.

8-80

Data Definition and Declaration Management

Naming Rules and Alias Override (Global Change of Force Lower Case Rule)

Name of Data
Object in Model

Name in Alias
Field Package Result in Generated Code

A Simulink or mpt a

A D Simulink or mpt D

Change Names of Identifiers
This procedure changes the names of signal identifiers so that they are spelled
with lowercase letters. A in the definition statement located in global.c is
changed to a. The one exception is the Final signal in the finalsig.c file.
You change this identifier name to Final_Signal. The names of the rest of
the identifiers in the generated files remain the same:

1 Open the Code Generation > Symbols pane of the Configuration
Parameters dialog.

2 In the Simulink data object naming rules section, set Signal naming
to Force lower case, and click Apply.

8-81

8 Data Types

3 Display the base workspace and select Final.

4 In the right pane, type Final_Signal in the Alias text box, then click
Apply.

5

8-82

Data Definition and Declaration Management

6 On the Code Generation > General pane, click Generate code . Now,
the signal identifiers in global.c and global.h appear with lowercase
letters.

real_T F1 = 0.0;
real_T G1 = 1.0;
real_T G2 = 1.0;
real_T G3 = 1.0;
real_T Gain1 = 0.0;
real_T Gain2 = 0.0;
real_T a;
real_T b;
real_T c;
real_T d;
real_T ds;
real_T e;
real_T l;
real_T ss;

The statement defining the Final signal in finalsig.c looks like this:

real T Final_Signal;

The statement declaring this identifier in finalsig.h looks like this:

8-83

8 Data Types

extern real_T Final_Signal;

Specify Data Object Naming Rules
You specify Simulink data object naming rules on the Code
Generation > Symbols pane of the Configuration Parameters dialog box.
To access that pane,

1 Open an ERT-based model.

2 Open the Configuration Parameters dialog box from the Simulation menu
or Model Explorer.

3 Open the Code Generation > Symbols pane. See the subpane Simulink
data object naming rules.

Notice the preconfigured settings on this pane. Proceed to “Create Data Types
for mpt Data Objects” on page 8-35. Otherwise, follow the procedures below,
as desired, to change signal names, parameter names, or parameter names
that you want to use in a #define preprocessor directive. “Code Generation

8-84

Data Definition and Declaration Management

Pane: Symbols” in the Simulink Coder documentation describes the fields on
this pane and their possible settings for these procedures.

• “Define Rules That Change Signal Names” on page 8-85

• “Define Rules That Change Parameter Names” on page 8-85

• “Define Rules That Change #defines” on page 8-86

Define Rules That Change Signal Names
This procedure allows you to change a model’s signal names, using the same
rule. The new names will appear as identifiers in the generated code:

1 In the Signal naming menu, click the desired selection. (“Signal naming”
explains the possible selections.) The default is None. If you selected
Custom M-function, go to the next step. Otherwise, click Apply and then
generate and inspect code.

2 Write a MATLAB function that changes occurrences of signal names in the
model to appear the way you want as identifiers in the generated code. (An
example is shown in “Define Rules That Change Parameter Names” on
page 8-85.)

3 Save the function as a .m file in a folder on the MATLAB path.

4 In the M-function field under Signal naming, type the name of the file
you saved in the previous step.

5 Click Apply and then generate and inspect code.

Define Rules That Change Parameter Names
This procedure allows you to change a model’s parameter names, using the
same rule. The new names will appear as identifiers in the generated code:

1 In the Parameter naming field, click the desired selection. (“Parameter
naming” explains the possible selections.) The default is None. If you
selected Custom M-function, go to the next step. Otherwise, click Apply,
and proceed to “Define Rules That Change Signal Names” on page 8-85.

8-85

8 Data Types

2 Write a MATLAB function that changes occurrences of parameter names in
the model to appear the way you want as identifiers in the generated code.
For example, the code below changes parameter names to make their first
letter uppercase, and their remaining letters lowercase.

function
revisedName = initial_caps_only(name, object)
% INITIAL_CAPS_ONLY: User-defined naming rule causing each
% identifier in the generated code to have initial cap(s).
%
% name: name as spelled in model.
% object: the object of name; includes name's properties.
%
% revisedName: manipulated name returned to MPT for the
code.
%
%
:
revisedName = [upper(name(1)),lower(name(2:end))];
:

3 Save the function as a .m file in a folder on the MATLAB path.

4 In theM-function field under Parameter naming, type the name of the
file you saved in the previous step.

5 Click Apply and then define rules applicable to signal names.

Define Rules That Change #defines
This procedure allows you to change a model’s parameter names whose
storage class you selected as Define in “Create mpt Data Objects with Data
Object Wizard” on page 8-63, using the same rule. The new names will appear
as identifiers in the generated code:

1 In #define naming, click the desired selection. (“#define naming” explains
the possible selections.) The default is None. If you select Custom
M-function, go to the next step. Otherwise, click Apply and proceed to
“Define Rules That Change Parameter Names” on page 8-85.

8-86

Data Definition and Declaration Management

2 Write a MATLAB function that changes occurrences of the parameter name
whose storage class you specified as Define in “Create mpt Data Objects
with Data Object Wizard” on page 8-63 so that it appears the way you want
as an identifier in the generated code. (An example is shown below.)

3 Save the function as a .m file in a folder on the MATLAB path.

4 In the M-function field under #define naming, type the name of the
file you saved in the previous step.

5 Click Apply and then define rules that change parameter names.

8-87

8 Data Types

8-88

9

Module Packaging Tool
(MPT) Data Objects

9 Module Packaging Tool (MPT) Data Objects

MPT Data Object Properties
The following table describes the properties and property values for
mpt.Parameter and mpt.Signal data objects that appear in the Model
Explorer.

Note You can create mpt.Signal and mpt.Parameter objects in the base
MATLAB or model workspace. However, if you create the object in a model
workspace, the object’s storage class must be set to auto.

The figure below shows an example of the Model Explorer. When you select an
mpt.Parameter or mpt.Signal data object in the middle pane, its properties
and property values display in the rightmost pane.

In the Properties column, the table lists the properties in the order in which
they appear on the Model Explorer.

9-2

MPT Data Object Properties

Parameter and Signal Property Values

Class:
Parameter,
Signal, or
Both Property

Available
Property Values
(* Indicates
Default) Description

Both User object
type

*auto Prenamed and predefined property
sets that are registered in the
sl_customization.m file. (See
“Register mpt User Object Types” on
page 8-39.) This field is active when a
user object type is registered.

Select auto if this field is available but
you do not want to apply the properties
of a user object type to a selected data
object. The fields on the Model Explorer
are populated with default values.

Listed user object
type name

Select a user object type name to
apply the properties and values that
you associated with this name in the
sl_customization.m file. The fields on
the Model Explorer are automatically
populated with those values.

Parameter Value *0 The data type and numeric value of
the data object. For example, int8(5).
The numeric value is used as an initial
parameter value in the generated code.

Both Data type Used to specify the data type for an
mpt.Signal data object, but not for an
mpt.Parameter data object. The data
type for an mpt.Parameter data object
is specified in the Value field above.
See “Data Types” in the Simulink
documentation.

Both Units *null Units of measurement of the signal or
parameter. (Enter text in this field.)

9-3

9 Module Packaging Tool (MPT) Data Objects

Parameter and Signal Property Values (Continued)

Class:
Parameter,
Signal, or
Both Property

Available
Property Values
(* Indicates
Default) Description

Both Dimensions *-1 The dimension of the signal or
parameter. For a parameter, the
dimension is derived from its value.

Both Complexity *auto

real

complex

Complexity specifies whether the signal
or parameter is a real or complex
number. Select auto for the code
generator to decide. For a parameter,
the complexity is derived from its value.

Signal Sample time *-1 Model or block execution rate.

Signal Sample mode *auto Determines how the signal propagates
through the model. Select auto for the
code generator to decide.

Sample based The signal propagates through the
model one sample at a time.

Frame based The signal propagates through the
model in batches of samples.

Both Minimum *0.0 The minimum value to which the
parameter or signal is expected to be
bound.

Number within the
minimum range
of the parameter
or signal. (Based
on the data type
and resolution of
the parameter or
signal.)

9-4

MPT Data Object Properties

Parameter and Signal Property Values (Continued)

Class:
Parameter,
Signal, or
Both Property

Available
Property Values
(* Indicates
Default) Description

Both Maximum *0.0 Maximum value to which the parameter
or signal is expected to be bound. (Enter
information using a dialog box.)

Code
generation
options

Storage class Note that an auto selection for a storage
class tells the build process to decide
how to declare and store the selected
parameter or signal.

Both Default
(Custom)

Code generation decides how to declare
the data object.

Both Global
(Custom)

Global (Custom) is
the default storage
class for mpt data
objects.

Specifies that a code generator not
place a qualifier in the data object’s
declaration.

Both Memory
section

*Default Memory section allows you to
specify storage directives for the data
object. Default specifies that the code
generator not place a type qualifier and
pragma statement with the data object’s
declaration.

Parameter MemConst Places the const type qualifier in the
declaration.

Both MemVolatile Places the volatile type qualifier in
the declaration.

Parameter MemConstVolatile Places the const volatile type
qualifier in the declaration.

9-5

9 Module Packaging Tool (MPT) Data Objects

Parameter and Signal Property Values (Continued)

Class:
Parameter,
Signal, or
Both Property

Available
Property Values
(* Indicates
Default) Description

Both Header file Name of the file used to import or export
the data object. This file contains the
declaration (extern) to the data object.

Also, you can specify this header
filename between the double-quotation
or angle-bracket delimiter. You can
specify the delimiter with or without
the .h extension. For example, specify
"object.h" or "object". For the
selected data object, this overrides
the general delimiter selection in the
#include file delimiter field on the
Configuration Parameters dialog box.

Both Owner *Blank The name of the module that owns this
signal or parameter. This is used to help
determine the ownership of a definition.
For details, see “Ownership Settings”
on page 15-81 and the table “Ownership
Settings” on page 15-91.

Both Definition file *Blank Name of the file that defines the data
object.

Valid string

9-6

MPT Data Object Properties

Parameter and Signal Property Values (Continued)

Class:
Parameter,
Signal, or
Both Property

Available
Property Values
(* Indicates
Default) Description

Both Persistence
level

The number you specify is relative to
Signal display level or Parameter
tune level on the Code Placement
pane of the Configuration Parameters
dialog box. For a signal, allows you
to specify whether or not the code
generator declares the data object as
global data. For a parameter, allows
you to specify whether or not the code
generator declares the data object
as tunable global data. See Signal
display level and Parameter tune
level in “Code Generation Pane: Code
Placement”.

Both Bitfield
(Custom)

Embeds Boolean data in a named bit
field.

Struct name Name of the struct into which the
object’s data will be packed.

Parameter Const (Custom) Places the const type qualifier in the
declaration.

Parameter Header file See above.

Parameter Owner See above.

Parameter Definition file See above.

Parameter Persistence
level

See above.

Both Volatile
(Custom)

Places the volatile type qualifier in
the declaration.

Both Header file See above.

9-7

9 Module Packaging Tool (MPT) Data Objects

Parameter and Signal Property Values (Continued)

Class:
Parameter,
Signal, or
Both Property

Available
Property Values
(* Indicates
Default) Description

Both Owner See above.

Both Definition file See above.

Both Persistence
level

See above.

Parameter ConstVolatile
(Custom)

Places the const volatile type
qualifier in declaration.

Parameter Header file See above.

Parameter Owner See above.

Parameter Definition file See above.

Parameter Persistence
level

See above.

Parameter Define
(Custom)

Represents parameters with a #define
macro.

Parameter Header file See above.

Both ExportToFile
(Custom)

Generates global variable definition,
and generates a user-specified header
(.h) file that contains the declaration
(extern) to that variable.

Both Memory
section

See above.

Both Header file See above.

Both Definition file See above.

9-8

MPT Data Object Properties

Parameter and Signal Property Values (Continued)

Class:
Parameter,
Signal, or
Both Property

Available
Property Values
(* Indicates
Default) Description

Both ImportFromFile
(Custom)

Includes predefined header files
containing global variable declarations,
and places the #include in a
corresponding file. Assumes external
code defines (allocates memory) for the
global variable.

Both Data access *Direct Allows you to specify whether the
identifier that corresponds to the
selected data object stores data of a data
type (Direct) or stores the address of
the data (a pointer).

Both Pointer If you select Pointer, the code generator
places * before the identifier in the
generated code.

Header file See above.

Both Struct
(Custom)

Embeds data in a named struct to
encapsulate sets of data.

Both Struct name See above.

Signal GetSet
(Custom)

Reads (gets) and writes (sets) data using
functions.

Signal Header file See above.

Signal Get function Specify the Get function.

Signal Set function Specify the Set function.

9-9

9 Module Packaging Tool (MPT) Data Objects

Parameter and Signal Property Values (Continued)

Class:
Parameter,
Signal, or
Both Property

Available
Property Values
(* Indicates
Default) Description

Both Alias *null As explained in detail in “Apply Naming
Rules to Identifiers Globally” on page
8-79, for a Simulink or mpt data
object (identifier), specifying a name
in the Alias field overrides the global
naming rule selection you make on the
Configuration Parameters dialog box.

Valid ANSI5 C/C++
variable name

Both Description *null Text description of the parameter or
signal. Appears as a comment beside
the signal or parameter’s identifier in
the generated code.

String

5. ANSI® is a registered trademark of the American National Standards Institute, Inc.

9-10

MPT Data Object Properties

Examples of Property Value Changes on Generated Code

What I noticed when
inspecting the .c/.cpp file

Change I made to property
value settings

What I noticed after
regenerating and
reinspecting the file

Example 1:
Parameter data objects can
be declared or defined as
constants. I know that
the data object GAIN is a
parameter. I want this to
be declared or defined in the
.c file as a variable. But I
notice that GAIN is declared as
a constant by the statement
const real_T GAIN = 5.0;.
Also, this statement is in the
constant section of the file.

In the Model Explorer, I clicked
the data object GAIN. I noticed
that the property value for its
Memory section property is set
at MemConst. I changed this to
Default.

I notice two differences. One
is that now GAIN is declared
as a variable with the
statement real_T GAIN =
5.0;. The second difference
is that the declaration now
is located in the MemConst
memory section in the .c or
.cpp file.

Example 2:
I notice again the declaration
of GAIN in the .c file mentioned
in Example 1. It appears as
real_T GAIN = 5.0;. But
I have changed my mind. I
want data object GAIN to be
#define.

I changed the Storage class
selection to Define (Custom).

GAIN is not declared in
the .c file as a MemConst
parameter. Rather, it is
defined as a #define macro
by the code #define GAIN
5.0, and this is located
near the top of the .c file
with the other preprocessor
directives.

9-11

9 Module Packaging Tool (MPT) Data Objects

Examples of Property Value Changes on Generated Code (Continued)

What I noticed when
inspecting the .c/.cpp file

Change I made to property
value settings

What I noticed after
regenerating and
reinspecting the file

Example 3:
I changed my mind again
after doing Example 2. I
do want GAIN defined using
the #define preprocessor
directive. But I do not want
to include the #define in this
file. I know it exists in another
file and I want to reference
that file.

On the Model Explorer, I
notice that the property value
for the Header file property
is blank. I changed this to
filename.h. (I chose the ANSI
C/C++ double quote mechanism
for the #include, but could
have chosen the angle bracket
mechanism.) Also, I must make
the user-defined filename.h
available to the compiler, placing
it either in the system path or
local directory.

#define GAIN 5.0 is not
present in this .c file.
Instead, the #include
filename.h code appears as
a preprocessor directive at
the top of the file.

Example 4:
I have one more change I
want to make. Let us say that
we have declared the data
object data_in, and that its
declaration statement in the
.c file reads
real_T data_in = 0.0;. I
want to replace this statement
with an alias in the .c file.

In the Model Explorer, I selected
the data object data_in. I
noticed that the Alias field
is blank. I changed this to
data_in_alias, which I know
is a valid ANSI C/C++ variable
name.

The identifier
data_in_alias now appears
in the .c file everywhere
data_in appeared.

9-12

10

Custom Storage Classes

• “Introduction to Custom Storage Classes” on page 10-2

• “Resources for Defining Custom Storage Classes” on page 10-5

• “Simulink Package Custom Storage Classes” on page 10-6

• “Design Custom Storage Classes and Memory Sections” on page 10-8

• “Apply Custom Storage Classes” on page 10-34

• “Generate Code with Custom Storage Classes” on page 10-53

• “Define Advanced Custom Storage Classes Types” on page 10-57

• “GetSet Custom Storage Classes” on page 10-61

• “Custom Storage Class Implementation” on page 10-65

• “Custom Storage Class Limitations” on page 10-67

10 Custom Storage Classes

Introduction to Custom Storage Classes

In this section...

“Custom Storage Class Memory Sections” on page 10-3

“Register Custom Storage Classes” on page 10-3

“Custom Storage Class Examples” on page 10-4

During the build process, the storage class specification of a signal, tunable
parameter, block state, or data object specifies how that entity is declared,
stored, and represented in generated code. Note that in the context of the
build process, the term “storage class” is not synonymous with the term
“storage class specifier”, as used in the C language.

The Simulink Coder software defines four built-in storage classes
for use with targets: Auto, ExportedGlobal, ImportedExtern, and
ImportedExternPointer. These storage classes provide limited control over
the form of the code generated for references to the data. For example,
data of storage class Auto is typically declared and accessed as an element
of a structure, while data of storage class ExportedGlobal is declared and
accessed as unstructured global variables. For information about built-in
storage classes, see “Signals” in the Simulink Coder documentation.

If the built-in storage classes do not provide data representation required by
your application, you can define custom storage classes (CSCs). Embedded
Coder (CSCs) extend the built-in storage classes provided by the Simulink
Coder software. CSCs can provide application-specific control over the
constructs required to represent data in an embedded algorithm. For example,
you can use CSCs to:

• Define structures for storage of parameter or signal data.

• Conserve memory by storing Boolean data in bit fields.

• Integrate generated code with legacy software whose interfaces cannot
be modified.

• Generate data structures and definitions that comply with your
organization’s software engineering guidelines for safety-critical code.

10-2

Introduction to Custom Storage Classes

Custom storage classes affect only code generated for ERT targets. When
Configuration Parameters > Code Generation > Target Selection >
System target file specifies a GRT target, the names of custom storage
classes sometimes appear in dialog boxes, but selecting a CSC is functionally
the same as selecting Auto. See “Targets and Code Formats” for information
about ERT and GRT targets.

Custom Storage Class Memory Sections
Every custom storage class has an associated memory section definition. A
memory section is a named collection of properties related to placement of an
object in memory; for example, in RAM, ROM, or flash memory. Memory
section properties let you specify storage directives for data objects. For
example, you can specify const declarations, or compiler-specific #pragma
statements for allocation of storage in ROM or flash memory sections.

See “Create and Edit Memory Section Definitions” on page 10-28 for details
about using the Custom Storage Class designer to define memory sections.
While memory sections are often used with data in custom storage classes,
they can also be used with various other constructs. See “Memory Sections” for
more information about using memory sections with custom storage classes,
and complete information about using memory sections with other constructs.

Register Custom Storage Classes
CSCs are associated with Simulink data class packages (such as the Simulink
package) and with classes within packages (such as the Simulink.Parameter
and Simulink.Signal classes). The custom storage classes associated
with a package are defined by a CSC registration file. For example, a
CSC registration file exists for the Simulink package. This registration
file provides predefined CSCs for use with the Simulink.Signal and
Simulink.Parameter classes, and with subclasses derived from these classes.
The predefined CSCs are used for a wide variety of applications.

If you use only predefined CSCs, you do not need to be concerned with CSC
registration files. You cannot add or change CSCs associated with built-in
packages and classes, but you can create your own packages and subclasses,
then associate CSCs with those. See “Custom Storage Class Implementation”
on page 10-65 for more information.

10-3

10 Custom Storage Classes

Custom Storage Class Examples
Three examples show Custom Storage Class capabilities:

rtwdemo_cscpredef — Shows predefined custom storage classes and
embedded signal objects

rtwdemo_importstruct — Shows custom storage classes used to access
imported data efficiently

rtwdemo_advsc — Shows how custom storage classes can support data
dictionary driven modeling

Click the links above, or type the name in the MATLAB Command Window.

10-4

Resources for Defining Custom Storage Classes

Resources for Defining Custom Storage Classes
The resources for working with custom storage class definitions are:

• Use MATLAB class syntax to create a data class in a package. You can
assign properties to the data class and add initialization code to enable
custom storage class definition. For complete instructions, see “Define Data
Classes” in Simulink documentation.

• A set of ready-to-use CSCs. These CSCs are designed to be useful in code
generation for embedded systems development. CSC functionality is
integrated into the Simulink.Signal and Simulink.Parameter classes;
you do not need to use special object classes to generate code with CSCs.

• The Custom Storage Class Designer (cscdesigner) tool, which is described
in this chapter. This tool lets you define CSCs that are tailored to your code
generation requirements. The Custom Storage Class Designer provides a
graphical user interface that you can use to implement CSCs. You can use
your CSCs in code generation immediately, without a Target Language
Compiler (TLC) or other programming. See “Design Custom Storage
Classes and Memory Sections” on page 10-8 for details.

10-5

10 Custom Storage Classes

Simulink Package Custom Storage Classes
The Simulink package includes a set of built-in custom storage classes. These
are categorized as custom storage classes, even though they are built-in,
because they:

• Extend the storage classes provided by the Simulink Coder software

• Are functionally the same as if you had defined them yourself using the
CSC Designer

You cannot change the CSCs built into the Simulink package, but you can
subclass the package and add CSCs to the subclass, following the steps in
“Resources for Defining Custom Storage Classes” on page 10-5.

Some CSCs in the Simulink package are valid for parameter objects but not
signal objects and vice versa. For example, you can assign the storage class
Const to a parameter but not to a signal, because signal data is not constant.
The next table defines the CSCs built into the Simulink package and shows
where each of the CSCs can be used.

CSC Name Purpose Signals? Parameters?

BitField Generate a struct declaration that
embeds Boolean data in named bit
fields.

Y Y

CompilerFlag Supports preprocessor conditionals
defined via compiler flag. See
“Generate Preprocessor Conditionals
for Variant Systems” on page 6-4.

N Y

Const Generate a constant declaration with
the const type qualifier.

N Y

ConstVolatile Generate declaration of volatile
constant with the const volatile
type qualifier.

N Y

10-6

Simulink® Package Custom Storage Classes

CSC Name Purpose Signals? Parameters?

Default Default is a placeholder CSC that
the code generator assigns to the
CoderInfo.CustomStorageClass
property of signal and parameter
objects when they are created.
You cannot edit the Default CSC
definition.

Y Y

Define Generate #define directive. N Y

ExportToFile Generate header (.h) file, with
user-specified name, containing
global variable declarations.

Y Y

FileScope Generate a static qualifier suffix for
a variable declaration so that the
scope of the variable is limited to the
current file.

Y Y

GetSet Supports specialized function calls
to read and write the memory
associated with a Data Store Memory
block. See “GetSet Custom Storage
Classes” on page 10-61.

Y Y

ImportedDefine Supports preprocessor conditionals
defined via legacy header file. See
“Generate Preprocessor Conditionals
for Variant Systems” on page 6-4.

N Y

ImportFromFile Generate directives to include
predefined header files containing
global variable declarations.

Y Y

Struct Generate a struct declaration
encapsulating parameter or signal
object data.

Y Y

Volatile Use volatile type qualifier in
declaration.

Y Y

10-7

10 Custom Storage Classes

Design Custom Storage Classes and Memory Sections

In this section...

“Create Packages for Custom Storage Class Definitions” on page 10-8

“Use Custom Storage Class Designer” on page 10-8

“Edit Custom Storage Class Properties” on page 10-16

“Use Custom Storage Class References” on page 10-23

“Create and Edit Memory Section Definitions” on page 10-28

“Use Memory Section References” on page 10-31

Create Packages for Custom Storage Class Definitions
Use MATLAB class syntax to create a data class in a package. You can assign
properties to the data class and add initialization code to enable custom
storage class definition. For complete instructions, see “Define Data Classes”
in the Simulink documentation.

Use Custom Storage Class Designer
The Custom Storage Class Designer (cscdesigner) is a tool for creating and
managing custom storage classes and memory sections. You can use the
Custom Storage Class Designer to:

• Load existing custom storage classes and memory sections and view and
edit their properties

• Create new custom storage classes and memory sections

• Create references to custom storage classes and memory sections defined in
other packages

• Copy and modify existing custom storage class and memory section
definitions

• Check a custom storage class and memory section definitions

• Preview pseudocode generated from custom storage class and memory
section definitions

10-8

Design Custom Storage Classes and Memory Sections

• Save custom storage class and memory section definitions

To open the Custom Storage Class Designer for a particular package, type
the following command at the MATLAB prompt:

cscdesigner ('mypkg')

When first opened, the Custom Storage Class Designer scans data class
packages on the MATLAB path to detect packages that have a CSC
registration file. A message is displayed while scanning proceeds. When the
scan is complete, the Custom Storage Class Designer window appears:

The Custom Storage Class Designer window is divided into several panels:

• Select package: Lets you select from a menu of data class packages
that have CSC definitions associated with them. See “Select Data Class
Package” on page 10-10 for details.

10-9

10 Custom Storage Classes

• Custom Storage Class / Memory Section properties: Lets you select,
view, edit, copy, verify, and perform other operations on CSC definitions or
memory section definitions. The common controls in the Custom Storage
Class / Memory Section properties panel are described in “Manipulate
Custom Storage Classes and Memory Sections” on page 10-11.

- When the Custom Storage Class tab is selected, you can select a CSC
definition or reference from a list and edit its properties. See “Edit
Custom Storage Class Properties” on page 10-16 for details.

- When the Memory Section tab is selected, you can select a memory
section definition or reference from a list and edit its properties. See
“Create and Edit Memory Section Definitions” on page 10-28 for details.

• Filename: Displays the filename and location of the current CSC
registration file, and lets you save your CSC definition to that file. See
“Save Definitions” on page 10-15 for details.

• Pseudocode preview: Displays a preview of code that is generated
from objects of the given class. The preview is pseudocode, since the
actual symbolic representation of data objects is not available until code
generation time. See “Preview Generated Code” on page 10-30 for details.

• Validation result: Displays errors encountered when the currently
selected CSC definition is validated. See “Validate Definitions Category”
on page 10-23 for details.

Select Data Class Package
A CSC or memory section definition or reference is uniquely associated with a
Simulink data class package. The link between the definition/reference and
the package is formed when a CSC registration file (csc_registration.m)
is located in the package directory.

You need not search for or edit a CSC registration file directly: the Custom
Storage Class Designer locates available CSC registration files. The Select
package menu contains names of data class packages that have a CSC
registration file on the MATLAB search path.

When you select a package, the CSCs and memory section definitions
belonging to the package are loaded into memory and their names are
displayed in the scrolling list in the Custom storage class panel. The name

10-10

Design Custom Storage Classes and Memory Sections

and location of the CSC registration file for the package is displayed in the
Filename panel.

If you select a user-defined package, by default you can use the Custom
Storage Class Designer to edit its custom storage classes and memory
sections. If you select a built-in package, you cannot edit its custom storage
classes or memory sections. See “Custom Storage Class Implementation”
on page 10-65 for more information.

Manipulate Custom Storage Classes and Memory Sections
The Custom Storage Class / Memory Section panel lets you select, view,
and (if the CSC is writable) edit CSC and memory section definitions and
references. In the next figure and the subsequent examples, the selected
package is mypkg. Instructions for creating a user-defined package like mypkg
appear in “Design Custom Storage Classes and Memory Sections” on page
10-8.

10-11

10 Custom Storage Classes

The list at the top of the panel displays the definitions/references for the
currently selected package. To select a definition/reference for viewing
and editing, click on the desired list entry. The properties of the selected
definition/reference appear in the area below the list. The number and type of
properties vary for different types of CSC and memory section definitions. See:

• “Edit Custom Storage Class Properties” on page 10-16 for information
about the properties of the predefined CSCs.

• “Create and Edit Memory Section Definitions” on page 10-28 for information
about the properties of the predefined memory section definitions.

The buttons to the right of the list perform these functions, which are common
to both custom storage classes and memory definitions:

10-12

Design Custom Storage Classes and Memory Sections

• New: Creates a new CSC or memory section with default values.

• New Reference: Creates a reference to a CSC or memory section
definition in another package. The default initially has a default name and
properties. See “Use Custom Storage Class References” on page 10-23 and
“Use Memory Section References” on page 10-31.

• Copy: Creates a copy of the selected definition / reference. The copy
initially has a default name using the convention:

definition_name_n

where definition_name is the name of the original definition, and n is an
integer indicating successive copy numbers (for example: BitField_1,
BitField_2, ...)

• Up: Moves the selected definition one position up in the list.

• Down: Moves the selected definition one position down in the list

• Remove: Removes the selected definition from the list.

• Validate: Performs a consistency check on the currently selected
definition. Errors are reported in the Validation result panel.

For example, if you click New, a new custom storage class is created with
a default name:

10-13

10 Custom Storage Classes

You can now rename the new class by typing the desired name into the Name
field, and specify other fields.

Note The class name must be a valid MATLAB variable name. See “Variable
Names”

Click Apply or OK. For example, you could set values for the new custom
storage class as follows:

10-14

Design Custom Storage Classes and Memory Sections

Save Definitions
After you have created or edited a CSC or memory section definition or
reference, you must save the changes to the CSC registration file. To do this,
click Save in the Filename panel. When you click Save, the current CSC
and memory section definitions that are in memory are validated, and the
definitions are written out.

If errors occur, they are reported in the Validation result panel. The
definitions are saved whether or not errors exist. However, you should resolve
validation errors and resave your definitions. Trying to use definitions that
were saved with validation errors can cause additional errors. Such problems
can occur even it you do not try to use the specific parts of the definition that
contain the validation errors, making the problems difficult to diagnose.

Restart MATLAB After Changing Definitions
If you add, change, or delete custom storage class or memory section
definitions for a user-defined class, and objects of that class already exist,
you must restart MATLAB to use the changed definitions and to eliminate

10-15

10 Custom Storage Classes

obsolete objects. When you save the changed definitions, a message appears
indicating that you must restart MATLAB.

Edit Custom Storage Class Properties
To view and edit the properties of a CSC, click the Custom Storage Class
tab in the Custom Storage Class / Memory Section panel. Then, select a
CSC name from the Custom storage class definitions list.

The CSC properties are divided into several categories, selected by tabs.
Selecting a class, and setting property values for that class, can change the
available tabs, properties, and values. As you change property values, the
changes in the generated code is immediately displayed in the Pseudocode
preview panel. In most cases, you can define your CSCs quickly and easily
by selecting the Pseudocode preview panel and using the Validate button
frequently.

The property categories and corresponding tabs are as follows:

General Category
Properties in the General category are common to CSCs. In the next figure
and the subsequent examples, the selected custom storage class is ByteField.
Instructions for creating a user-defined custom storage class like ByteField
appear in “Manipulate Custom Storage Classes and Memory Sections” on
page 10-11.

10-16

Design Custom Storage Classes and Memory Sections

Properties in the General category, and the possible values for each property,
are as follows:

• Name: The CSC name, selected from the Custom storage class
definitions list. The name cannot be a TLC keyword. Violating this rule
causes an error.

• Type: Specifies how objects of this class are stored. Values:

- Unstructured: Objects of this class generate unstructured storage
declarations (for example, scalar or array variables), for example:

datatype dataname[dimension];

- FlatStructure: Objects of this class are stored as members of a struct.
A Structure Attributes tab is also displayed, allowing you to specify
additional properties such as the struct name. See “Structure Attributes
Category” on page 10-21.

- Other: Used for certain data layouts, such as nested structures,
that cannot be generated using the standard Unstructured and
FlatStructure custom storage class types. If you want to generate other
types of data, you can create a new custom storage class from scratch by
writing TLC code. See “Define Advanced Custom Storage Classes Types”
on page 10-57 for more information.

• For parameters and For signals: These options let you enable a CSC
for use with only certain classes of data objects. For example, it does not
make sense to assign storage class Const to a Simulink.Signal object.
Accordingly, the For signals option for the Const class is deselected, while
the For parameters is selected.

• Memory section: Selects one of the memory sections defined in
the Memory Section panel. See “Create and Edit Memory Section
Definitions” on page 10-28.

• Data scope: Controls the scope of symbols generated for data objects of
this class. Values:

- Auto: Symbol scope is determined internally by code generation. If
possible, symbols have File scope. Otherwise, they have Exported scope.

10-17

10 Custom Storage Classes

- Exported: Symbols are exported to external code in the header file
specified by the Header File field. If a Header File is not specified,
symbols are exported to external code in model.h.

- Imported: Symbols are imported from external code in the header file
specified by the Header File field. If you do not specify a header file, an
extern directive is generated in model_private.h. For imported data, if
the Data initialization value is Macro, a header file must be specified.

- File: The scope of each symbol is the file that defines it. File scope
requires each symbol to be used in a single file. If the same symbol is
referenced in multiple files, an error occurs at code generation time.

- Instance specific: Symbol scope is defined by the Data scope field of
the CoderInfo.CustomAttributes property of each data object.

• Data initialization: Controls how storage is initialized in generated code.
Values:

- Auto: Storage initialization is determined internally by the code
generation. Parameters have Static initialization, and signals have
Dynamic initialization.

- None: Initialization code is not generated.

- Static: A static initializer of the following form is generated:

datatype dataname[dimension] = {...};

- Dynamic: Variable storage is initialized at runtime, in the
model_initialize function.

- Macro: A macro definition of the following form is generated:

#define data numeric_value

The Macro initialization option is available only for use with
unstructured parameters. It is not available when the class is configured
for generation of structured data, or for signals. If the Data scope value
is Imported, a header file must be specified.

- Instance specific: Initialization is defined by theData initialization
property of each data object.

10-18

Design Custom Storage Classes and Memory Sections

Note The code generator might include dynamic initialization code for
signals and states even if the CSC has Data initialization set to None or
Static, if the initialization is required.

• Data access: Controls whether imported symbols are declared as variables
or pointers. This field is enabled only when Data scope is set to Imported
or Instance-specific. Values:

- Direct: Symbols are declared as simple variables, such as

extern myType myVariable;

- Pointer: Symbols are declared as pointer variables, such as

extern myType *myVariable;

- Instance specific: Data access is defined by the Data access
property of each data object.

• Header file: Defines the name of a header file that contains exported or
imported variable declarations for objects of this class. Values:

- Specify: An edit field is displayed to the right of the property. This lets
you specify a header file for exported or imported storage declarations.
Specify the full filename, including the filename extension (such as .h).
Use quotes or brackets as in C code to specify the location of the header
file. Leave the edit field empty to not specify a header file.

- Instance specific: The header file for each data object is defined by
the Header file property of the object. Leave the property undefined to
not specify a header file for that object.

If the Data scope is Exported, specifying a header file is optional. If you
specify a header file name, the custom storage class generates a header file
containing the storage declarations to be exported. Otherwise, the storage
declarations are exported in model.h.

If the Data scope of the class is Imported, and Data initialization is
Macro, you must specify a header file name. A #include directive for the
header file is generated.

10-19

10 Custom Storage Classes

Comments Category

Comments. The Comments panel lets you specify comments to be generated
with definitions and declarations.

Comments must conform to the ANSI C standard (/*...*/). Use \n to specify
a new line.

Properties in the Comments tab are as follows:

• Comment rules: If Specify is selected, edit fields are displayed for
entering comments. If Default is selected, comments are generated under
control of the code generation software.

• Type comment: The comment entered in this field precedes the typedef
or struct definition for structured data.

• Declaration comment: Comment that precedes the storage declaration.

• Definition comment: Comment that precedes the storage definition.

10-20

Design Custom Storage Classes and Memory Sections

Structure Attributes Category
The Structure Attributes panel gives you detailed control over code
generation for structs (including bitfields). The Structure Attributes tab
is displayed for CSCs whose Type parameter is set to FlatStructure. The
following figure shows the Structure Attributes panel.

Structure Attributes Panel

The Structure Attributes properties are as follows:

• Struct name: If you select Instance specific, specify the struct name
when configuring each instance of the class.

If you select Specify, an edit field appears for entry of the name of the
structure to be used in the struct definition. Edit fields Type tag, Type
token, and Type name are also displayed.

• Is typedef: When this option is selected a typedef is generated for the
struct definition, for example:

typedef struct {
...

} SignalDataStruct;

Otherwise, a simple struct definition is generated.

• Bit-pack booleans: When this option is selected, signals and/or
parameters that have Boolean data type are packed into bit fields in the
generated struct.

• Type tag: Specifies a tag to be generated after the struct keyword in
the struct definition.

10-21

10 Custom Storage Classes

• Type token: Some compilers support an additional token (which is simply
another string) after the type tag. To generate such a token, enter the
string in this field.

• Type name: Specifies the string to be used in typedef definitions. This
field is visible if Is typedef is selected.

The following listing is the pseudocode preview corresponding to the
Structure Attributes properties displayed in.

Header file:

No header file is specified. By default, data is
exported with the generated model.h file.

Type definition:

/* CSC type comment generated by default */

typedef struct aToken myTag {
:

} myType;

Declaration:

/* CSC declaration comment generated by default */

extern myType MyStruct;

Definition:

/* CSC definition comment generated by default */

myType MyStruct = {...};

10-22

Design Custom Storage Classes and Memory Sections

Validate Definitions Category
To validate a CSC definition, select the definition on the Custom Storage
Class panel and click Validate. The Custom Storage Class Designer then
checks the definition for consistency. The Validation result panel displays a
errors encountered when the selected CSC definition is validated. The next
figure shows the Validation result panel with a typical error message:

Validation is also performed whenever CSC definitions are saved. In this
case, all CSC definitions are validated. (See “Save Definitions” on page 10-15.)

Use Custom Storage Class References
Packages can access and use custom storage classes that are defined in other
packages, including both user-defined packages and predefined packages
such as Simulink and mpt. Only one copy of the storage class exists, in the
package that first defined it. Other packages refer to it by pointing to it in
its original location. Changes to the class, including changes to a predefined
class in later MathWorks product releases, are immediately available in every
referencing package.

To configure a package to use a custom storage class that is defined in another
package:

1 Type cscdesigner to launch the Custom Storage Class Designer. The
relevant part of the designer window initially looks like this:

10-23

10 Custom Storage Classes

2 Select the Custom Storage Class tab.

3 Use Select Package to select the package in which you want to reference
a class or section defined in some other package. The selected package
must be writable.

4 In the Custom storage class definitions pane, select the existing
definition below which you want to insert the reference. For example:

10-24

Design Custom Storage Classes and Memory Sections

5 Click New Reference.

A new reference with a default name and properties appears below the
previously selected definition. The new reference is selected, and a
Reference tab appears that shows the reference’s initial properties. A
typical appearance is:

10-25

10 Custom Storage Classes

6 Use the Name field to enter a name for the new reference. The name
must be unique in the importing package, but can duplicate the name in
the source package. The name cannot be a TLC keyword. Violating this
rule causes an error.

7 Set Refer to custom storage class in package to specify the package
that contains the custom storage class you want to reference.

8 Set Custom storage class to reference to specify the custom storage
class to be referenced. Trying to create a circular reference generates an
error and leaves the package unchanged.

9 Click OK or Apply to save the changes to memory. See “Save Definitions”
on page 10-15 for information about saving changes permanently.

For example, the next figure shows the custom storage class ConstVolatile
imported from the Simulink package into mypkg, and given the same name
that it has in the source package. Other names could have been used without
affecting the properties of the storage class.

10-26

Design Custom Storage Classes and Memory Sections

You can use Custom Storage Class Designer capabilities to copy, reorder,
validate, and otherwise manage classes that have been added to a class by
reference. However, you cannot change the underlying definitions. You can
change a custom storage class only in the package where it was originally
defined.

Change Existing Custom Storage Class References
To change an existing CSC reference, select it in the Custom storage
class definitions pane. The Reference tab appears, showing the current
properties of the reference. Make changes, then click OK or Apply to save
the changes to memory. See “Save Definitions” on page 10-15 for information
about saving changes permanently.

10-27

10 Custom Storage Classes

Create and Edit Memory Section Definitions
Memory section definitions add comments, qualifiers, and #pragma directives
to generated symbol declarations. TheMemory Section tab lets you create,
view, edit, and verify memory section definitions. The steps for creating a
memory section definition are essentially the same as for creating a custom
storage class definition:

1 Select a writable package in the Select package field.

2 Select the Memory Section tab. In a new package, only a Default
memory section initially appears.

3 Select the existing memory section below which you want to create a new
memory section.

4 Click New.

A new memory section definition with a default name appears below the
selected memory section.

5 Set the name and other properties of the memory section.

6 Click OK or Apply.

The next figure shows mypkg with a memory section called MyMemSect:

10-28

Design Custom Storage Classes and Memory Sections

The Memory section definitions list lets you select a memory section
definition to view or edit. The available memory section definitions also
appear in the Memory section name menu in the Custom Storage Class
panel. The properties of a memory section definition are as follows:

• Memory section name: Name of the memory section (displayed in
Memory section definitions list).

10-29

10 Custom Storage Classes

• Is const: If selected, a const qualifier is added to the symbol declarations.

• Is volatile: If selected, a volatile qualifier is added to the symbol
declarations.

• Qualifier: The string entered into this field is added to the symbol
declarations as a further qualifier. Note that verification is not performed
on this qualifier.

• Memory section comment: Comment inserted before declarations
belonging to this memory section. Comments must conform to the ANSI C
standard (/*...*/). Use \n to specify a new line.

• Pragma surrounds: Specifies whether the pragma should surround All
variables or Each variable. When Pragma surrounds is set to Each
variable, the %<identifier> token is allowed in pragmas and will be
replaced by the variable or function name.

• Pre-memory section pragma: pragma directive that precedes the storage
definition of data belonging to this memory section. The directive must
begin with #pragma.

• Post-memory section pragma: pragma directive that follows the storage
definition of data belonging to this memory section. The directive must
begin with #pragma.

Preview Generated Code
If you click Validate on the Memory Section panel, the Pseudocode
preview panel displays a preview of code that is generated from objects of the
given class. The panel also displays messages (in blue) to highlight changes
as they are made. The code preview changes dynamically as you edit the class
properties. The next figure shows a code preview for the MemConstVolatile
memory section.

10-30

Design Custom Storage Classes and Memory Sections

Use Memory Section References
Packages can access and use memory sections that are defined in other
packages, including both user-defined packages and predefined packages such
as Simulink and mpt. Only one copy of the section exists, in the package
that first defined it; other packages refer to it by pointing to it in its original
location. Changes to the section, including changes to a predefined section
in later MathWorks product releases, are immediately available in every
referencing package.

To configure a package to use a memory section that is defined in another
package:

1 Type cscdesigner to launch the Custom Storage Class Designer.

2 Select the Memory Section tab.

3 Use Select Package to select the package in which you want to reference
a class or section defined in some other package.

4 In the Memory section definitions pane, select the existing definition
below which you want to insert the reference.

5 Click New Reference.

10-31

10 Custom Storage Classes

A new reference with a default name and properties appears below the
previously selected definition. The new reference is selected, and a
Reference tab appears that shows the reference’s initial properties.

6 Use the Name field to enter a name for the new reference. The name
must be unique in the importing package, but can duplicate the name in
the source package.

7 Set Refer to memory section in package to specify the package that
contains the memory section you want to reference.

8 Set Memory section to reference to specify the memory section to be
referenced. Trying to create a circular reference generates an error and
leaves the package unchanged.

9 Click OK or Apply to save the changes to memory. See “Save Definitions”
on page 10-15 for information about saving changes permanently.

For example, the next figure shows the memory section MemConstVolatile
imported from the Simulink package into mypkg, and given the same name
that it has in the source package. Other names could have been used without
affecting the properties of the memory section.

10-32

Design Custom Storage Classes and Memory Sections

You can use Custom Storage Class Designer capabilities to copy, reorder,
validate, and otherwise manage memory sections that have been added to a
class by reference. However, you cannot change the underlying definitions.
You can change a memory section only in the package where it was originally
defined.

Change Existing Memory Section References
To change an existing memory section reference, select it in the Memory
section definitions pane. The Reference tab appears, showing the current
properties of the reference. Make changes, then click OK or Apply to save
the changes to memory. See “Save Definitions” on page 10-15 for information
about saving changes permanently.

10-33

10 Custom Storage Classes

Apply Custom Storage Classes

In this section...

“About Applying Custom Storage Classes” on page 10-34

“Apply Custom Storage Classes to Parameters” on page 10-35

“Apply Custom Storage Classes to Signals” on page 10-36

“Custom Storage Classes Using Signal Objects” on page 10-37

“Custom Storage Classes Using Embedded Signal Objects” on page 10-39

“Specify Custom Storage Classes Using GUI” on page 10-46

“Specify Custom Storages Classes Using API” on page 10-48

About Applying Custom Storage Classes
You can apply a custom storage class to a parameter or a signal using the
GUI or the API.

• To apply a custom storage class to a parameter, you specify the storage
class in the Simulink.Parameter object that defines the parameter in
the base workspace.

• To apply a custom storage class to a signal, you specify the storage class
in a Simulink.Signal object that is bound to the signal. You can provide
this object in two ways:

- Create the object in the base workspace, then bind it to the signal as
described in “Symbol Resolution”. When you save the model, you must
save the object in a separate file, as with base workspace objects.

- Use the Signal Properties dialog box to embed the object in the model on
the port where the signal originates. When you save the model, Simulink
automatically saves the embedded signal object as part of the model file.

Most of the GUI techniques, and most of the API techniques, are the same for
parameter and signal objects, and for base workspace and embedded signal
objects. Only the initial steps differ, after which you apply the same GUI or
API instructions within the context that you established in the initial steps.

10-34

Apply Custom Storage Classes

The following instructions assume that you have already created packages,
custom storage classes, and memory sections, as described in “Design Custom
Storage Classes and Memory Sections” on page 10-8.

Apply Custom Storage Classes to Parameters
To apply a custom storage class to a parameter, you specify the storage class
in the Simulink.Parameter object that defines the parameter in the base
workspace. The instructions that begin in this section show you how to create
that object using the GUI or API. Later instructions show you how to specify a
custom storage class and custom attributes.

For information about using parameter objects to specify block parameter
values, see “Use Parameter Objects to Specify Parameter Values”. For
information about parameter storage in generated code, see “Parameters”.

Create Parameter Objects Using GUI

1 In the Model window, choose View > Model Explorer.

2 In the Model Hierarchy pane, select the Base Workspace.

3 Click the Add Parameter tool or choose Add > Simulink Parameter.

Simulink creates a Simulink.Parameter object in the base workspace
with the default name, Param.

4 Change the parameter name by editing it in the Contents pane. Example:
MyParam.

5 Set parameter attributes other than Code generation options in the
Dialog pane.

6 Follow the instructions in “Specify Custom Storage Classes Using GUI” on
page 10-46.

Create Parameter Objects Using API

1 In the MATLAB Command Window, enter:

10-35

10 Custom Storage Classes

ParamName=ParamClass

where ParamClass is Simulink.Parameter or a subclass of it that you
have defined.

2 Simulink creates a ParamClass object with the specified name:

MyParam =

Simulink.Parameter (handle)
Value: []

CoderInfo: [1x1 Simulink.ParamCoderInfo]
Description: ''

DataType: 'auto'
Min: []
Max: []

DocUnits: ''
Complexity: 'real'
Dimensions: [0 0]

3 Set parameter attributes other than CoderInfo, which controls custom
storage classes.

4 Follow the instructions in “Specify Custom Storages Classes Using API” on
page 10-48.

Apply Custom Storage Classes to Signals
To apply a custom storage class to a signal, you specify the storage class in a
Simulink.Signal object. This object can exist in either of two locations:

• In the MATLAB base workspace

• On the port where the signal originates

The object itself is the same in either case; only its location and some of the
techniques for managing it differ. The instructions that begin in this section
show you how to create a signal object in either location using the GUI or
API. Later instructions show you how to specify the custom storage class
and custom attributes.

10-36

Apply Custom Storage Classes

A given signal can be associated with at most one signal object. The signal can
refer to the object more than once, but every reference must resolve to exactly
the same object. A different signal object that has exactly the same properties
will not meet the requirement for uniqueness. A compile-time error occurs if a
model associates more than one signal object with a signal.

Assigning a signal to a non-Auto storage class automatically makes the signal
a test point, overriding the setting of Signal Properties > Logging and
accessibility > Test point. See “Test Points”for more information.

For information about using signal objects to specify signal attributes,
see “Using Signal Objects to Initialize Signals and Discrete States”. For
information about signal storage in generated code, see “Signals”.

Custom Storage Classes Using Signal Objects
The first step is to create the signal object in the base workspace, after which
you specify signal attributes and the custom storage class and attributes.

Create Signal Objects in Base Workspace Using GUI

1 In the Simulink Editor, select View > Model Explorer.

2 In the Model Hierarchy pane, select the Base Workspace.

3 Click the Add Signal tool or choose Add > Simulink Signal.

Simulink creates a Simulink.Signal object in the base workspace, with
a default name, Sig.

4 Change the signal name by editing it in the Contents pane. Example:
MySig.

5 Set signal attributes other than Code generation options in the Dialog
pane.

6 Give the signal the same name as the signal object, as described in “Signal
Names”.

10-37

10 Custom Storage Classes

7 Arrange for the signal to resolve to the object, as described in “Symbol
Resolution”.

8 Follow the instructions in “Specify Custom Storage Classes Using GUI” on
page 10-46.

Create Signal Objects in Base Workspace Using API

1 In the MATLAB Command Window, enter:

SignalName=SignalClass

where SignalClass is Simulink.Signal or a subclass of it that you have
defined.

2 Simulink creates a SignalClass object with the specified name:

MySig =

Simulink.Signal (handle)
CoderInfo: [1x1 Simulink.SignalCoderInfo]

Description: ''
DataType: 'auto'

Min: []
Max: []

DocUnits: ''
Dimensions: -1
Complexity: 'auto'
SampleTime: -1

SamplingMode: 'auto'
InitialValue: ''

3 Set parameter attributes other than CoderInfo, which controls custom
storage classes.

4 Give the signal the same name as the signal object, as described in “Signal
Names”.

5 Arrange for the signal to resolve to the object, as described in “Symbol
Resolution”.

10-38

Apply Custom Storage Classes

6 Follow the instructions in “Specify Custom Storages Classes Using API” on
page 10-48.

Custom Storage Classes Using Embedded Signal
Objects
You can use the GUI or the API to apply a CSC using an embedded signal
object.

• If you use the GUI, you use the Signal Properties dialog box to specify the
attributes you want. The software then creates a Simulink.Signal object
and assigns it to the output port where the signal originates.

• If you use the API, you instantiate Simulink.Signal or a subclass of it, set
the attribute values that you want, and assign the object to the output port
where the signal originates.

In either case, the generated code is the same as if you had created a base
workspace signal object that specified the same name, CSC, and custom
attributes as the embedded signal object. For more information, see “Custom
Storage Classes Using Signal Objects” on page 10-37.

The advantages of using embedded signal objects are that they do not clutter
the base workspace, and they do not need to be saved separately from the
model, as base workspace objects do. When you save a model, Simulink saves
embedded signal objects in the model file, and reloads the objects when you
later reload the model.

The disadvantage of embedded signal objects is that you can use such an
object only to specify a custom storage class, custom attributes, and an alias;
you must accept the default values for other signal attributes. You cannot
work around this restriction by providing additional information in a base
workspace signal object on the same signal, because a signal object can have
at most one associated signal object, as described in “Multiple Signal Objects”.

Create Embedded Signal Objects Using GUI

1 Give the signal a name, which must be a valid ANSI C identifier. Example:
MySig.

10-39

10 Custom Storage Classes

2 Right-click the signal and choose Properties from the context menu.

The Signal Properties dialog box opens:

3 Do not select Signal name must resolve to Simulink signal object.
Selecting it would require a base workspace signal object, which would
conflict with the embedded signal object.

4 Click the Code Generation tab.

5 The Package is initially ---None---. When a package is not specified,
only the non-custom built-in storage classes defined for both GRT and ERT
targets are available:

10-40

Apply Custom Storage Classes

Applying a storage class when the package is ---None--- sets internal
storage class attributes rather than creating an embedded signal object.
For information about built-in storage classes, see “Signals” in the Simulink
Coder documentation.

6 To apply a custom storage class, you must first specify the package where it
is defined. Initially, viewing the Package menu displays only the built-in
Simulink and mpt packages:

10-41

10 Custom Storage Classes

7 Click Refresh to load other available packages, including user-defined
packages, available on the MATLAB path. After a brief delay, a timer box
tracks the progress of the package search. After the search completes,
viewing the Package menu displays available packages:

10-42

Apply Custom Storage Classes

Once you have used Refresh in the Signal Properties dialog, Simulink
saves the information for later use, so you do not have to click Refresh
again during the current MATLAB session.

8 Select the package that contains the custom storage class you want to
apply, e.g. Simulink:

10-43

10 Custom Storage Classes

9 Follow the instructions in “Specify Custom Storage Classes Using GUI” on
page 10-46.

Delete Embedded Signal Objects Using GUI
To delete an embedded signal object with the Model Explorer, delete the name
of the signal to which the object applies, by editing the name in the graphical
model or in the Signal Properties dialog box. Simulink automatically deletes
the embedded signal object as soon as its signal does not have a name.

Create Embedded Signal Objects Using API
To provide an embedded signal object using the API, you create the object, set
its custom storage class and custom attributes, then assign the object to the
output port on which it will be embedded.

1 Name the signal if it does not already have a name. The name must be
a valid ANSI C identifier.

10-44

Apply Custom Storage Classes

2 In the MATLAB Command Window, enter:

SignalName=SignalClass

where SignalClass is Simulink.Signal or a subclass of it that you have
defined. The name of the signal object does not need to match the name
of the signal to which the object will be applied.

3 Simulink creates a SignalClass object with the specified name. Example:

MySig =

Simulink.Signal (handle)
CoderInfo: [1x1 Simulink.SignalCoderInfo]

Description: ''
DataType: 'auto'

Min: []
Max: []

DocUnits: ''
Dimensions: -1
Complexity: 'auto'
SampleTime: -1

SamplingMode: 'auto'
InitialValue: ''

4 Do not set attributes. An embedded signal object can specify only custom
storage class information.

5 Follow the instructions in “Specify Custom Storages Classes Using API”
on page 10-48. After specifying the custom storage class, be sure to assign
the signal object to its output port, as described under “Assign Embedded
Signal Objects to Output Ports” on page 10-51.

Change Embedded Signal Objects Using API
To change an embedded signal object using the API, you obtain a copy of the
object from the output port on which it is embedded, change the object, then
assign the changed object back to the port.

1 Obtain a copy of the signal object using a handle to the output port.
Example:

10-45

10 Custom Storage Classes

hps=get_param(gcb,'PortHandles')
hp=hps.Outport(1)
MySig=get_param(hp,'SignalObject')

2 Change the signal object using the techniques described in “Specify Custom
Storages Classes Using API” on page 10-48. After making the changes, be
sure to copy the signal object to its output port, as described in “Assign
Embedded Signal Objects to Output Ports” on page 10-51.

Delete Embedded Signal Objects Using API
To delete an embedded signal object with the API, obtain a handle to
the output port where the signal object is embedded, then set the port’s
SignalObject parameter to []:

hps=get_param(gcb,'PortHandles')
hp=hps.Outport(1)
set_param(hp,'SignalObject',[])

Resolve Signal Names to Simulink Signal Objects Using API
To set the name of a signal to resolve to a Simulink signal object using
the API, obtain the handle to the output port and then set the port’s
MustResolveToSignalObject property to on:

hps=get_param(gcb,'PortHandles')
hp=hps.Outport(1)
set_param(hp,'MustResolveToSignalObject', 'on')

Specify Custom Storage Classes Using GUI
The initial steps for applying a CSC with the GUI differ depending on whether
you are applying the CSC to a parameter using a base workspace object, to a
signal using a base workspace object, or to a signal using an embedded object.
The initial steps for each of these three cases appear in:

• “Create Parameter Objects Using GUI” on page 10-35

• “Create Signal Objects in Base Workspace Using GUI” on page 10-37

• “Create Embedded Signal Objects Using GUI” on page 10-39

10-46

Apply Custom Storage Classes

After the initial steps, applying a CSC with the GUI is the same for the three
cases. The following instructions show you how to finish applying a CSC
with the GUI. The instructions assume that you have completed one of the
previous sets of instructions, and that the dialog you used to execute those
instructions is still open.

The available custom storage classes and custom attributes depend on the
package that you select. The examples in this section assume that you are
using the Simulink package.

The dialog that you used to begin the process of applying a CSC with the GUI
by providing an object contains two fields: one for specifying a custom storage
class and one for optionally specifying an alias.

Storage class is Auto because that is the default storage class in the
Simulink package. Other packages may have different defaults. You can
specify an Alias whenever the Storage class is not Auto. If Storage class is
Auto, Simulink deletes aliases you try to specify, leaving the field blank. If you
specify an alias, it appears in generated code instead of the name of the object.

To specify a custom storage class and its custom attributes:

1 View the Storage Class menu, which looks like this for the Simulink
package:

10-47

10 Custom Storage Classes

Each custom storage class has (custom) suffixed to its name. The
storage classes SimulinkGlobal, ExportedGlobal, ImportedExtern, and
ImportedExternPointer are the built-in non-custom storage classes
described in “Signals” in the Simulink Coder documentation.

2 Choose the desired custom storage class from Storage class, for example,
Struct.

3 Provide values for custom attributes. Struct has only one, Struct name.
For example, set Struct name to MyStruct:

4 Click Apply.

In generated code, data whose storage is controlled by this custom storage
class specification will appear in a structure named MyStruct. See “Generate
Code with Custom Storage Classes” on page 10-53 for an example.

Specify Custom Storages Classes Using API
The initial steps for applying a CSC with the API differ depending on whether
you are applying the CSC to a parameter using a base workspace object, to a
signal using a base workspace object, or to a signal using an embedded object.
The initial steps for each of these three cases appear in:

• “Create Parameter Objects Using API” on page 10-35

• “Create Signal Objects in Base Workspace Using API” on page 10-38

• “Create Embedded Signal Objects Using API” on page 10-44

After the initial steps, applying a CSC with the API is the same for the three
cases, except for the case of an assignment for an embedded signal object. The
following instructions show you how to finish applying a CSC with the API.

10-48

Apply Custom Storage Classes

The instructions assume that you have completed one of the previous sets of
instructions, and that the resulting objects an attributes are unchanged.

The available custom storage classes and custom attributes depend on the
package that you select. The examples in this section assume that you are
using the Simulink package. The examples also assume that the object for
which you want to specify a custom storage class is named MyObj, which is a
parameter or signal object that exists in the base workspace, or a signal object
that will be assigned to an output port.

The rest of this section provides information that is specific to custom storage
classes in Embedded Coder. See “Simulink Package Custom Storage Classes”
on page 10-6 for a list of the custom storage classes that are built into the
Simulink package for use by Embedded Coder software.

CoderInfo Properties
Each Simulink parameter object or signal object defines properties called
CoderInfo properties. Code generation software uses these properties to
control storage class assignment in the generated code. The CoderInfo
properties and their default values are as follows:

StorageClass: 'Auto'

Alias: ''

CustomStorageClass: 'Default'

CustomAttributes: [1x1 SimulinkCSC.AttribClass_Simulink_Default]

For more information about CoderInfo properties, see “Signals” in the
Simulink Coder documentation.

Specify a Custom Storage Class
To specify a custom storage class using CoderInfo properties:

1 Set StorageClass to 'Custom'.

2 Set CustomStorageClass to the name of the storage class.

For example, to specify the Struct custom storage class:

MyObj.CoderInfo.StorageClass='Custom'

10-49

10 Custom Storage Classes

MyObj.CoderInfo.CustomStorageClass='Struct'

Whenever you have specified a custom storage class other than Auto, you
can specify an alias by setting the Alias attribute. If you specify an alias, it
appears in generated code instead of the name of the object.

Specify Instance-Specific Attributes
A custom storage class can have properties that define attributes that
are specific to that CSC. Such properties are called instance-specific
attributes. For example, if you specify the Struct custom storage class, you
must specify the name of the C language structure that will store the data.
That name is an instance-specific attribute of the Struct CSC.

Instance-specific attributes are stored in the CoderInfo property
CustomAttributes. This property is initially defined as follows:

SimulinkCSC.AttribClass_Simulink_Default
1x1 struct array with no fields

When you specify a custom storage class, Simulink automatically populates
CoderInfo.CustomAttributes with fields to represent instance-specific
attributes of that CSC. For example, if you set the MySig CSC to Struct, as
described in “Specify a Custom Storage Class” on page 10-49, then enter:

MyObj.CoderInfo.CustomAttributes

MATLAB displays:

SimulinkCSC.AttribClass_Simulink_Struct
StructName: ''

To specify that StructName is MyStruct, enter:

MyObj.CoderInfo.CustomAttributes.StructName='MyStruct'

MATLAB displays:

SimulinkCSC.AttribClass_Simulink_Struct
StructName: 'MyStruct'

10-50

Apply Custom Storage Classes

Class Name Instance-Specific Property Purpose

BitField CustomAttributes.StructName Name of the bitfield struct into
which the code generator packs
the object’s Boolean data.

ExportToFile CustomAttributes.HeaderFile Name of header (.h) file that
contains exported variable
declarations and export directives
for the object.

CustomAttributes.HeaderFile Name of header (.h) file to
#include in the generated code.
See “GetSet Custom Storage
Classes” on page 10-61.

CustomAttributes.GetFunctionString that specifies the name of
a function call to read data.

GetSet

CustomAttributes.SetFunctionString that specifies the name of
a function call to write data.

ImportedDefine CustomAttributes.HeaderFile The header file that defines
the values of code variant
preprocessor conditionals.
See “Generate Preprocessor
Conditionals for Variant Systems”
on page 6-4.

ImportFromFile CustomAttributes.HeaderFile Name of header (.h) file
containing global variable
declarations the code generator
imports for the object.

Struct CustomAttributes.StructName Name of the struct into which
the code generator packs the
object’s data.

Assign Embedded Signal Objects to Output Ports
If you are operating on an embedded signal object with the API, you must copy
the object to the port after providing or changing its CoderInfo properties.
For example, if MyObj is a signal object that you want to copy to the output
port, enter:

10-51

10 Custom Storage Classes

hps=get_param(gcb,'PortHandles')
hp=hps.Outport(1)
set_param(hp,'SignalObject','MyObj')

Subsequent changes to the source object in the base workspace have no effect
on the output port copy, and you can delete the source object:

clear ('MyObj')

10-52

Generate Code with Custom Storage Classes

Generate Code with Custom Storage Classes

In this section...

“Code Generation Prerequisites” on page 10-53

“Code Generation With Custom Storage Classes” on page 10-53

Code Generation Prerequisites
Before you generate code for a model that uses custom storage classes, set
model options as follows:

• If your model assigns custom storage classes to parameters, select
Configuration Parameters > Optimization > Signals and
Parameters > Inline parameters. Otherwise, the code generator ignores
CSC specifications for parameters. This requirement also applies to models
that assign built-in storage classes to parameters.

• Clear Configuration Parameters > Code Generation > Data
specification override > Ignore custom storage classes.

Otherwise, the code generator ignores CSC specifications and treats data
objects as if their Storage class were Auto.

Code Generation With Custom Storage Classes
This section presents an example of code generation with CSCs, based on
this model:

10-53

10 Custom Storage Classes

The model contains three named signals: aa, bb, and cc. Using the predefined
Struct custom storage class, the example generates code that packs these
signals into a struct named mySignals. The struct declaration is then
exported to externally written code.

To specify the struct, you provide Simulink.Signal objects that specify the
Struct custom storage class, and associate the objects with the signals as
described in “Apply Custom Storage Classes” on page 10-34. The three objects
have the same properties. This figure shows the signal object properties for aa:

The association between identically named model signals and signal objects
is formed as described in “Symbol Resolution”. In this example, the symbols
aa, bb, and cc resolve to the signal objects aa, bb, and cc, which have custom
storage class Struct. In the generated code, storage for the three signals will
be allocated within a struct named mySignals.

10-54

Generate Code with Custom Storage Classes

You can display the storage class of the signals in the block diagram by
selecting Port/Signal Display > Storage Class from the Simulink model
editor Format menu. The figure below shows the block diagram with signal
data types and signal storage classes displayed.

With the model configured as described in “Code Generation Prerequisites” on
page 10-53, and the signal objects defined and associated with the signals,
you can generate code that uses the custom storage classes to generate the
desired data structure for the signals. After code generation, the relevant
definitions and declarations are located in three files:

• model_types.h defines the following struct type for storage of the three
signals:

typedef struct MySignals_tag {
boolean_T cc;
uint8_T bb;
uint8_T aa;

} mySignals_type;

• model.c (or .cpp) defines the variable mySignals, as specified in the
object’s instance-specific StructName attribute. The variable is referenced
in the code generated for the Switch block:

/* Definition for Custom Storage Class: Struct */

mySignals_type mySignals = {
/* cc */
FALSE,

10-55

10 Custom Storage Classes

/* bb */
0,
/* aa */

0
};
...
/* Switch: '<Root>/Switch1' */

if(mySignals.cc) {
rtb_Switch1 = mySignals.aa;

} else {
rtb_Switch1 = mySignals.bb;

}

• model.h exports the mySignals Struct variable:

/* Declaration for Custom Storage Class: Struct */

extern mySignals_type mySignals;

Grouped Custom Storage Classes
A custom storage class that results in multiple data objects being referenced
with a single variable in the generated code, in the previous example, is called
a grouped custom storage class. In the Simulink package, Bitfield and
Struct (shown in the preceding example) are grouped CSCs. Data grouped by
a CSC is referred to as grouped data.

Note If you use a grouped custom storage class, you cannot specify its
properties on an instance-specific basis. This is because a grouped custom
storage class combines multiple pieces of data into a single data structure.
Data in this structure must have the same properties such as Header file,
Data scope, and Data initialization.

10-56

Define Advanced Custom Storage Classes Types

Define Advanced Custom Storage Classes Types

In this section...

“Introduction” on page 10-57

“Create Your Own Parameter and Signal Classes” on page 10-57

“Create Custom Attributes Classes for Custom Storage Classes” on page
10-57

“Write TLC Code for Custom Storage Classes” on page 10-58

“Register Custom Storage Class Definitions” on page 10-58

Introduction
Certain data layouts, such as nested structures, cannot be generated using
the standard Unstructured and FlatStructure custom storage class types.
You can define an advanced custom storage class if you want to generate
other types of data. Creating advanced CSCs requires understanding TLC
programming and using a special advanced mode of the Custom Storage Class
Designer. This sections explain how to define advanced CSC types.

Create Your Own Parameter and Signal Classes
The first step is to create your own package containing classes derived from
Simulink.Parameter or Simulink.Signal. This procedure is described in
“Define Data Classes” in the Simulink documentation.

Create Custom Attributes Classes for Custom Storage
Classes
If you have instance-specific properties that are relevant only to your CSC,
you should create a custom attributes class for the package. A custom
attributes class is a subclass of Simulink.CustomStorageClassAttributes.
The name, type, and default value properties you set for the custom attributes
class define the user view of instance-specific properties. For instructions, see
“Define Data Classes” in the Simulink documentation.

For example, the ExportToFile custom storage class requires that you set
the CoderInfo.CustomAttributes.HeaderFile property to specify a .h file

10-57

10 Custom Storage Classes

used for exporting each piece of data. See “Simulink Package Custom Storage
Classes” on page 10-6 for further information on instance-specific properties.

Note If you rename or remove custom attributes, you may need to manually
edit the csc_registration file for the associated package to remove
references to the custom attributes that you renamed or removed.

Write TLC Code for Custom Storage Classes
The next step is to write TLC code that implements code generation for data
of your new custom storage class. A template TLC file is provided for this
purpose. To create your TLC code, follow these steps:

1 Create a tlc directory inside your package’s +directory (if it does not
already exist). The naming convention to follow is

+PackageName/tlc

2 Copy TEMPLATE_v1.tlc (or another CSC template) from
matlabroot/toolbox/rtw/targets/ecoder/csc_templates into your tlc
directory to use as a starting point for defining your custom storage class.

3 Write your TLC code, following the comments in the CSC template file.
Comments describe how to specify code generation for data of your custom
storage class (for example, how data structures are to be declared, defined,
and whether they are accessed by value or by reference).

Alternatively, you can copy a custom storage class TLC file from another
existing package as a starting point for defining your custom storage class.

Register Custom Storage Class Definitions
After you have created a package for your new custom storage class and
written its associated TLC code, you must register your class definitions with
the Custom Storage Class Designer, using its advanced mode.

The advanced mode supports selection of an additional storage class Type,
designated Other. The Other type is designed to support special CSC
types that cannot be accommodated by the standard Unstructured and

10-58

Define Advanced Custom Storage Classes Types

FlatStructure custom storage class types. The Other type cannot be
assigned to a CSC except when the Custom Storage Class Designer is in
advanced mode.

To register your class definitions:

1 Launch the Custom Storage Class Designer in advanced mode by typing
the following command at the MATLAB prompt:

cscdesigner -advanced

2 Select your package and create a new custom storage class.

3 Set the Type of the custom storage class to Other. Note that when you do
this, the Other Attributes pane is displayed. This pane is visible only for
CSCs whose Type is set to Other.

If you specify a customized package, additional options, as defined by the
package, also appear on the Other Attributes pane.

4 Set the properties shown on the Other Attributes pane. The properties
are:

• Is grouped: Select this option if you intend to combine multiple data
objects of this CSC into a single variable in the generated code. (for
example, a struct).

• TLC file name: Enter the name of the TLC file corresponding to this
custom storage class. The location of the file is assumed to be in the /tlc
subdirectory for the package, so you should not enter the path to the file.

• CSC attributes class name: (optional) If you created a custom
attributes class corresponding to this custom storage class, enter the full

10-59

10 Custom Storage Classes

name of the custom attributes class. (see “Create Custom Attributes
Classes for Custom Storage Classes” on page 10-57).

5 Set the remaining properties on the General and Comments panes based
on the layout of the data that you wish to generate (as defined in your
TLC file).

10-60

GetSet Custom Storage Classes

GetSet Custom Storage Classes

In this section...

“About GetSet Custom Storage Class” on page 10-61

“GetSet Custom Storage Class Properties” on page 10-61

“Apply the GetSet Custom Storage” on page 10-62

“GetSet Custom Storage Class Restrictions” on page 10-62

“Increase Code Efficiency With GetSet CSC” on page 10-63

About GetSet Custom Storage Class
GetSet is a built-in advanced custom storage class that generates specialized
function calls to read from (get) and write to (set) the memory associated with
a Data Store Memory block that is read and written many times in a single
model. See “Data Stores” for information about data stores and the Data
Store Memory block, and for information about advanced CSCs.

The GetSet custom storage class is designed primarily for use with the state
of the Data Store Memory block. However, GetSet is capable of handling
signals other than data stores, and is supported for the outputs of most
built-in blocks provided by MathWorks. For more about the definition of the
GetSet storage class, look at its associated TLC code in the file:

matlabroot\toolbox\simulink\simulink\@Simulink\tlc\GetSet.tlc

GetSet Custom Storage Class Properties
The next table summarizes the instance-specific properties of the GetSet
storage class:

10-61

10 Custom Storage Classes

Property Description

GetFunction String that specifies the name of a function call to read
data.

SetFunction String that specifies the name of a function call to write
data.

HeaderFile
(optional)

String that specifies the name of a header (.h) file to
add as an #include in the generated code.

For example, if the GetFunction of signal X is specified as 'get_X' then the
generated code calls get_X() wherever the value of X is used. Similarly, if the
SetFunction of signal X is specified as 'set_X' then the generated code calls
set_X(value) wherever the value of X is assigned.

Apply the GetSet Custom Storage
The GetSet storage class cannot be represented by the standard
Unstructured or FlatStructure custom storage class types, so it is an
advanced CSC, as described in “Define Advanced Custom Storage Classes
Types” on page 10-57. To access the CSC definition for GetSet, you must
launch Custom Storage Class designer in advanced mode:

cscdesigner -advanced

If you omit the HeaderFile property for a GetSet data object, you must
specify a header file by an alternative means, such as the Header file
field of the Code Generation > Custom Code pane of the Configuration
Parameters dialog box. Otherwise, the generated code might not compile or
might function improperly.

For wide signals, an additional index argument is passed, so the calls to the
get and set functions are get_X(idx) and set_X(idx, value) respectively.

GetSet Custom Storage Class Restrictions

• The GetSet supports only signals of noncomplex data types.

• Some built-in blocks do not directly support GetSet.

• User-written S-functions do not directly support GetSet.

10-62

GetSet Custom Storage Classes

To use GetSet with a nonsupporting built-in block or a user-written
S-function:

1 Insert a Signal Conversion block at the outport of the block or function.

2 Select the Signal Conversion Block’s Exclude this block from ’Block
reduction’ optimization property.

3 Assign the GetSet storage class to the output of the Signal Conversion
block.

Increase Code Efficiency With GetSet CSC
The model below contains a Data Store Memory block that resolves to the
Simulink signal object X:

The following specifications configure the signal object X to use the GetSet
custom storage class:

X = Simulink.Signal;
X.CoderInfo.StorageClass = 'Custom';
X.CoderInfo.CustomStorageClass = 'GetSet';
X.CoderInfo.CustomAttributes.GetFunction = 'get_X';
X.CoderInfo.CustomAttributes.SetFunction = 'set_X';
X.CoderInfo.CustomAttributes.HeaderFile = 'user_file.h';

The GetSet CSC appears as follows in the code generated for the model:

/* Includes for objects with custom storage classes. */
#include "user_file.h"

void getset_csc_step(void)
{

/* local block i/o variables */
real_T rtb_DSRead_o;

10-63

10 Custom Storage Classes

/* DataStoreWrite: '<Root>/DSWrite' incorporates:
* Inport: '<Root>/In1'
*/

set_X(getset_csc_U.In1);

/* DataStoreRead: '<Root>/DSRead' */
rtb_DSRead_o = get_X();

/* Outport: '<Root>/Out1' */
getset_csc_Y.Out1 = rtb_DSRead_o;

}

Note that the code uses a local variable rtb_DSRead_o rather than multiple
calls to the get_X function. This technique increases code efficiency and
prevents changes to the value within a simulation step.

10-64

Custom Storage Class Implementation

Custom Storage Class Implementation
You can skip this section unless you want to ship custom storage class
definitions in an uneditable format, or you intend to bypass the Custom
Storage Class designer and work directly with files that contain custom
storage class definitions.

The file that defines a package’s custom storage classes is called a CSC
registration file. The file is named csc_registration and resides in the
+package directory that defines the package. A CSC registration file can be
a P-file (csc_registration.p) or a MATLAB file (csc_registration.m).
A built-in package defines custom storage classes in both a P-file and a
functionally equivalent MATLAB file. A user-defined package initially defines
custom storage classes only in a MATLAB file.

P-files take precedence over MATLAB files, so when MATLAB looks for a
package’s CSC registration file and finds both a P-file and a MATLAB file,
MATLAB loads the P-file and ignores the MATLAB file. The capabilities
and tools, including the Custom Storage Class Designer, then use the CSC
definitions stored in the P-file. P-files cannot be edited, so CSC Designer
editing capabilities are disabled for CSCs stored in a P-file. If a P-file does
not exist, MATLAB loads CSC definitions from the MATLAB file. MATLAB
files are editable, so CSC Designer editing capabilities are enabled for CSCs
stored in a MATLAB file.

Because CSC definitions for a built-in package exist in both a P-file and a
MATLAB file, they are uneditable. You can make the definitions editable
by deleting the P-file, but it is not recommended to modify built-in CSC
registration files or other files under matlabroot. The preferred technique is
to create packages, data classes, and custom storage classes, as described in
“Define Data Classes” in the Simulink documentation.

The CSC Designer saves CSC definitions for user-defined packages in a
MATLAB file, so the definitions are editable. You can make the definitions
uneditable by using the pcode function to create an equivalent P-file, which
will then shadow the MATLAB file. However, you should preserve the
MATLAB file if you may need to make further changes, because you cannot
modify CSC definitions that exist only in a P-file.

10-65

10 Custom Storage Classes

You can also use tools or techniques other than the Custom Storage Class
Designer to create and edit MATLAB files that define CSCs. However, that
practice is vulnerable to syntax errors and can give unexpected results. When
MATLAB finds an older P-file that shadows a newer MATLAB file, it displays
a warning in the MATLAB Command Window.

10-66

Custom Storage Class Limitations

Custom Storage Class Limitations
• Data objects cannot have a CSC and a multi-word data type.

• The Fcn block does not support parameters with custom storage class in
code generation.

• For CSCs in models that use referenced models:

- If data is assigned a grouped CSC, such as Struct or Bitfield, the
CSC’s Data scope property must be Imported and the data declaration
must be provided in a user-supplied header file. See “Grouped Custom
Storage Classes” on page 10-56 for more information about grouped
CSCs.

- If data is assigned an ungrouped CSC, such as Const, and the data’s
Data scope property is Exported, its Header file property must be
unspecified. This results in the data being exported with the standard
header file, model.h. Note that for ungrouped data, the Data scope and
Header file properties are either specified by the selected CSC, or as
one of the data object’s instance-specific properties.

10-67

10 Custom Storage Classes

10-68

11

User Package Registration

• “About Data Object Wizard and User Packages” on page 11-2

• “Register User Packages Using sl_customization.m” on page 11-3

• “User Package Customization Using sl_customization.m” on page 11-5

11 User Package Registration

About Data Object Wizard and User Packages
Data Object Wizard (DOW) can be run in connection with a Simulink model
to quickly determine which model data are not associated with data objects
and to create and associate data objects with the data. (For more information
about Data Object Wizard, see “Data Object Wizard” in the Simulink
documentation and “Create Data Objects with Data Object Wizard” on page
8-57.) If you want the wizard to use data object classes from a package other
than the standard Simulink class package to create the data objects, you
select the package from the wizard’s Choose package for selected data
objects list. You can customize the package list by adding and removing
packages and modifying the list order.

Note User-defined packages that you add to the list must contain a
Simulink.Signal subclass named Signal and a Simulink.Parameter
subclass named Parameter.

To register Data Object Wizard user package customizations, use the Simulink
customization file sl_customization.m. This file is a mechanism that allows
you to use MATLAB code to perform customizations of the standard Simulink
user interface. The Simulink software reads the sl_customization.m file, if
present on the MATLAB path, when it starts and the customizations specified
in the file are applied to the Simulink session. For more information on the
sl_customization.m customization file, see “Registering Customizations”.

11-2

Register User Packages Using sl_customization.m

Register User Packages Using sl_customization.m
To register Data Object Wizard user package customizations, you create an
instance of sl_customization.m and include it on the MATLAB path of the
Simulink installation that you want to customize. The sl_customization
function accepts one argument: a handle to a customization manager object.
For example,

function sl_customization(cm)

As a starting point for your customizations, the sl_customization function
must first get the default (factory) customizations, using the following
assignment statement:

hObj = cm.slDataObjectCustomizer;

You then invoke methods to register your customizations. The customization
manager object includes the following methods for registering DOW user
package customizations:

• addUserPackage(hObj, packageName)

addUserPackage(hObj, cellArrayOfStrings)

Adds the specified user package(s) to the top of the package list, as
displayed in the Choose package for selected data objects pull-down
list in Data Object Wizard.

• moveUserPackageToTop(hObj, packageName)

Moves the specified user package to the top of the package list, as displayed
in the Choose package for selected data objects pull-down list in Data
Object Wizard.

• moveUserPackageToEnd(hObj, packageName)

Moves the specified user package to the end of the package list, as displayed
in the Choose package for selected data objects pull-down list in Data
Object Wizard.

• removeUserPackage(hObj, packageName)

Removes the specified user package from the package list.

• setUserPackages(hObj, cellArrayOfStrings)

11-3

11 User Package Registration

Replaces the entire package list with a specified list of user packages.

Your instance of the sl_customization function should use these methods to
register DOW user package customizations for your Simulink installation.

The Simulink software reads the sl_customization.m file when it starts.
If you subsequently change the file, in order to use your changes, you
must restart your Simulink session or enter the following command at the
MATLAB command line:

sl_refresh_customizations

11-4

User Package Customization Using sl_customization.m

User Package Customization Using sl_customization.m
The sl_customization.m file shown in sl_customization.m for User Package
Customizations on page 11-5 uses the following methods:

• addUserPackage to add the user packages ECoderDemos and
SimulinkDemos (present by default in the MATLAB path) to the top of the
package list, as displayed in the Choose package for selected data
objects pull-down list in Data Object Wizard

Note PackagesECoderDemos and SimulinkDemos must contain a
Simulink.Signal subclass named Signal and a Simulink.Parameter
subclass named Parameter.

• moveUserPackageToEnd to move SimulinkDemos to the end of the package
list

sl_customization.m for User Package Customizations

function sl_customization(cm)
% Register user customizations

% Get default (factory) customizations
hObj = cm.slDataObjectCustomizer;

% Add user packages
hObj.addUserPackage({'ECoderDemos', 'SimulinkDemos'});

% Move SimulinkDemos to end of list
hObj.moveUserPackageToEnd('SimulinkDemos');

end

11-5

11 User Package Registration

If you include the above file on the MATLAB path of the Simulink installation
that you want to customize, the specified customizations will appear in Data
Object Wizard. For example, you could view the customizations as follows:

1 Start a MATLAB session.

2 Launch a model, such as rtwdemo_udt.

3 Open Data Object Wizard, for example, by selecting Code > Data
Objects > Data Object Wizard in the Simulink window.

4 In the Data Object Wizard dialog box, click the Find button to generate
a list of one or more data objects.

5 Examine the Choose package for selected data objects drop-down list,
noting the impact of the changes specified in sl_customization.m for User
Package Customizations on page 11-5.

11-6

User Package Customization Using sl_customization.m

To replace the entire Data Object Wizard package list with a specified list of
user packages, you can use a method invocation similar to the following:

hObj.setUserPackages({'myPackage1', 'ECoderDemos', 'mpt'});

11-7

11 User Package Registration

11-8

12

Function and Class
Interfaces

• “Function Prototype Control” on page 12-2

• “C++ Encapsulation Interface Control” on page 12-24

• “Atomic Subsystem Code” on page 12-49

12 Function and Class Interfaces

Function Prototype Control

In this section...

“About Function Prototype Control” on page 12-2

“Configure Function Prototypes Using Graphical Interfaces” on page 12-3

“Sample Procedure for Configuring Function Prototypes” on page 12-11

“Configure Function Prototypes Programmatically” on page 12-16

“Sample Script for Configuring Function Prototypes” on page 12-20

“Verify Generated Code for Customized Functions” on page 12-21

“Function Prototype Control Limitations” on page 12-21

About Function Prototype Control
The Embedded Coder software provides a Configure Model Functions
button, located on the Code Generation > Interface pane of the
Configuration Parameters dialog box, that allows you to control the model
function prototypes that are generated for ERT-based Simulink models.

By default, the function prototype of an ERT-based model’s generated
model_step function resembles the following:

void model_step(void);

The function prototype of an ERT-based model’s generated model_initialize
function resembles the following:

void model_initialize(void);

(For more detailed information about the default calling interface for the
model_step function, see the model_step reference page.)

The Configure Model Functions button on the Interface pane provides you
flexible control over the model function prototypes that are generated for your
model. Clicking Configure Model Functions launches a Model Interface
dialog box (see “Configure Function Prototypes Using Graphical Interfaces” on
page 12-3). Based on the Function specification value you specify for your
model function (supported values include Default model initialize and

12-2

Function Prototype Control

step functions and Model specific C prototypes), you can preview and
modify the function prototypes. Once you validate and apply your changes,
you can generate code based on your function prototype modifications.

For more information about using the Configure Model Functions button
and the Model Interface dialog box, see “Sample Procedure for Configuring
Function Prototypes” on page 12-11 and the model rtwdemo_fcnprotoctrl,
which is preconfigured to demonstrate function prototype control.

Alternatively, you can use function prototype control functions to
programmatically control model function prototypes. For more information,
see “Configure Function Prototypes Programmatically” on page 12-16.

You can also control model function prototypes for nonvirtual subsystems, if
you generate subsystem code using right-click build. To launch the Model
Interface for subsystem dialog box, use the RTW.configSubsystemBuild
function.

Right-click building the subsystem generates the step and initialization
functions according to the customizations you make. For more information,
see “Configure Function Prototypes for Nonvirtual Subsystems” on page 12-8.

For limitations that apply, see “Function Prototype Control Limitations” on
page 12-21.

Configure Function Prototypes Using Graphical
Interfaces

• “Launch the Model Interface Dialog Boxes” on page 12-3

• “Default Model Initialize and Step Functions View” on page 12-4

• “Model Specific C Prototypes View” on page 12-5

• “Configure Function Prototypes for Nonvirtual Subsystems” on page 12-8

Launch the Model Interface Dialog Boxes
Clicking the Configure Model Functions button on the Interface pane of
the Configuration Parameters dialog box launches the Model Interface dialog
box. This dialog box is the starting point for configuring the model function

12-3

12 Function and Class Interfaces

prototypes that are generated during code generation for ERT-based Simulink
models. Based on the Function specification value you select for your
model function (supported values include Default model initialize and
step functions and Model specific C prototypes), you can preview and
modify the function prototype. Once you validate and apply your changes, you
can generate code based on your function prototype modifications.

To configure function prototypes for a right-click build of a nonvirtual
subsystem, invoke the RTW.configSubsystemBuild function, which launches
the Model Interface for subsystem dialog box. For more information, see
“Configure Function Prototypes for Nonvirtual Subsystems” on page 12-8

Default Model Initialize and Step Functions View
The figure below shows the Model Interface dialog box in the Default model
initialize and step functions view.

12-4

Function Prototype Control

The Default model initialize and step functions view allows you to
validate and preview the predicted default model step and initialization
function prototypes. To validate the default function prototype configuration
against your model, click the Validate button. If the validation succeeds, the
predicted step function prototype appears in the Step function preview
subpane.

Note You cannot use the Default model initialize and step functions
view to modify the function prototype configuration.

Model Specific C Prototypes View
Selecting Model specific C prototypes for the Function specification
parameter displays the Model specific C prototypes view of your model
function prototypes. This view provides controls that you can use to customize
the function names, the order of arguments, and argument attributes
including name, passing mechanism, and type qualifier for each of the model’s
root-level I/O ports.

To begin configuring your function control prototype configuration, click
the Get Default Configuration button. This activates and initializes the
function names and properties in the Configure model initialize and step
functions subpane, as shown below. If you clickGet Default Configuration
again later, only the properties of the step function arguments are reset to
default values.

12-5

12 Function and Class Interfaces

In the Configure model initialize and step functions subpane:

12-6

Function Prototype Control

Parameter Description

Step function name Name of the model_step function.

Initialize function
name

Name of the model_initialize function.

Order Order of the argument. A return argument is
listed as Return.

Port Name Name of the port.

Port Type Type of the port.

Category Specifies how an argument is passed in or out
from the customized step function, either by
copying a value (Value) or by a pointer to a
memory space (Pointer).

Argument Name Name of the argument.

Qualifier (optional) Specifies a const type qualifier for a function
argument. The available values are dependent on
the Category specified. When you change the
Category, if the specified type is not available,
the Qualifier changes to none. The possible
values are:

• none

• const (value)

• const* (value referenced by the pointer)

• const*const (value referenced by the pointer
and the pointer itself)

12-7

12 Function and Class Interfaces

Parameter Description

Tip When a model includes a referenced model,
the const type qualifier for the root input
argument of the referenced model’s specified
step function interface is set to none, and the
qualifier for the source signal in the referenced
model’s parent is set to a value other than none,
code generation honors the referenced model’s
interface specification by generating a type cast
that discards the const type qualifier from the
source signal. To override this behavior, add a
const type qualifier to the referenced model.

The Step function preview subpane provides a preview of how your step
function prototype is interpreted in generated code. The preview is updated
dynamically as you make modifications.

An argument foo whose Category is Pointer is previewed as * foo. If its
Category is Value, it is previewed as foo. Notice that argument types and
qualifiers are not represented in the Step function preview subpane.

Configure Function Prototypes for Nonvirtual Subsystems
You can control step and initialization function prototypes for nonvirtual
subsystems in ERT-based Simulink models, if you generate subsystem code
using right-click build. Function prototype control is supported for the
following types of nonvirtual blocks:

• Triggered subsystems

• Enabled subsystems

• Enabled trigger subsystems

• While subsystems

• For subsystems

• Stateflow blocks

12-8

Function Prototype Control

• MATLAB function block

To launch the Model Interface for Subsystem dialog box, open the model
containing the subsystem and invoke the RTW.configSubsystemBuild
function.

The Model Interface dialog box for modifying the model-specific C prototypes
for the rtwdemo_counter/Amplifier subsystem appears as follows:

12-9

12 Function and Class Interfaces

Right-click building the subsystem generates the step and initialization
functions according to the customizations you make.

12-10

Function Prototype Control

Sample Procedure for Configuring Function
Prototypes
The following procedure shows how to use the Configure Model Functions
button on the Code Generation > Interface pane of the Configuration
Parameters dialog box to control the model function prototypes when
generating code for your Simulink model.

1 Open a MATLAB session and launch the rtwdemo_counter model.

2 In the rtwdemo_counter Model Editor, double-click the Generate Code
Using Embedded Coder (double-click) button to generate code for an
ERT-based version of rtwdemo_counter. The code generation report for
rtwdemo_counter appears.

3 In the code generation report, click the link for rtwdemo_counter.c.

4 In the rtwdemo_counter.c code display, locate and examine the generated
code for the rtwdemo_counter_step and the rtwdemo_counter_initialize
functions:

/* Model step function */
void rtwdemo_counter_step(void)
{
...

}

/* Model initialize function */
void rtwdemo_counter_initialize(void)
{
...

}

You can close the report window after you have examined the generated
code. Optionally, you can save rtwdemo_counter.c and other generated
files to a different location for later comparison.

5 From the rtwdemo_counter model, open the Configuration Parameters
dialog box.

12-11

12 Function and Class Interfaces

6 Navigate to the Code Generation > Interface pane and click the
Configure Model Functions button. The Model Interface dialog box
appears.

7 In the initial (Default model initialize and step funtions) view of
the Model Interface dialog box, click the Validate button to validate and
preview the default function prototype for the rtwdemo_counter_step
function. The function prototype arguments under Step function
preview should correspond to the default prototype in step 4.

8 In the Model Interface dialog box, set Function specification field to
Model specific C prototypes. Making this selection switches the dialog
box from the Default model initialize and step functions view to
the Model specific C prototypes view.

12-12

Function Prototype Control

9 In the Model specific C prototypes view, click the Get Default
Configuration button to activate the Configure model initialize and
step functions subpane.

12-13

12 Function and Class Interfaces

10 In the Configure model initialize and step functions subpane, change
Initialize function name to rtwdemo_counter_cust_init.

11 In the Configure model initialize and step functions subpane, in the
row for the Input argument, change the value of Category from Value to

12-14

Function Prototype Control

Pointer and change the value of Qualifier from none to const *. The
preview reflects your changes.

12 Click the Validate button to validate the modified function prototype. The
Validation subpane displays a message that the validation succeeded.

12-15

12 Function and Class Interfaces

13 Click OK to exit the Model Interface dialog box.

14 Generate code for the model. When the build completes, the code generation
report for rtwdemo_counter appears.

15 In the code generation report, click the link for rtwdemo_counter.c.

16 Locate and examine the generated code for the rtwdemo_counter_custom
and rtwdemo_counter_cust_init functions:

/* Customized model step function */

void rtwdemo_counter_custom(const int32_T *arg_Input, int32_T *arg_Output)

{

...

}

/* Model initialize function */

void rtwdemo_counter_cust_init(void)

{

...

}

17 Verify that the generated code is consistent with the function prototype
modifications that you specified in the Model Interface dialog box.

Configure Function Prototypes Programmatically
You can use the function prototype control functions (listed in Function
Prototype Control Functions on page 12-18), to programmatically control
model function prototypes. Typical uses of these functions include:

• Create and validate a new function prototype

1 Create a model-specific C function prototype with obj =
RTW.ModelSpecificCPrototype, where obj returns a handle to a newly
created, empty function prototype.

2 Add argument configuration information for your model ports using
RTW.ModelSpecificCPrototype.addArgConf.

3 Attach the function prototype to your loaded ERT-based Simulink model
using RTW.ModelSpecificCPrototype.attachToModel.

12-16

Function Prototype Control

4 Validate the function prototype using
RTW.ModelSpecificCPrototype.runValidation.

5 If validation succeeds, save your model and then generate code using
the rtwbuild function.

• Modify and validate an existing function prototype

1 Get the handle to an existing model-specific C function prototype that
is attached to your loaded ERT-based Simulink model with obj =
RTW.getFunctionSpecification(modelName), where modelName is a
string specifying the name of a loaded ERT-based Simulink model, and
obj returns a handle to a function prototype attached to the specified
model.

You can use other function prototype control functions on the returned
handle only if the test isa(obj,'RTW.ModelSpecificCPrototype')
returns 1. If the model does not have a function prototype configuration,
the function returns []. If the function returns a handle to an object of
type RTW.FcnDefault, you cannot modify the existing function prototype.

2 Use the Get and Set functions listed in Function Prototype Control
Functions on page 12-18 to test and reset such items as the function
names, argument names, argument positions, argument categories, and
argument type qualifiers.

3 Validate the function prototype using
RTW.ModelSpecificCPrototype.runValidation.

4 If validation succeeds, save your model and then generate code using
the rtwbuild function.

• Create and validate a new function prototype, starting with default
configuration information from your Simulink model

1 Create a model-specific C function prototype using obj =
RTW.ModelSpecificCPrototype, where obj returns a handle to a newly
created, empty function prototype.

2 Attach the function prototype to your loaded ERT-based Simulink model
using RTW.ModelSpecificCPrototype.attachToModel.

3 Get default configuration information from your model using
RTW.ModelSpecificCPrototype.getDefaultConf.

12-17

12 Function and Class Interfaces

4 Use the Get and Set functions listed in Function Prototype Control
Functions on page 12-18 to test and reset such items as the function
names, argument names, argument positions, argument categories, and
argument type qualifiers.

5 Validate the function prototype using
RTW.ModelSpecificCPrototype.runValidation.

6 If validation succeeds, save your model and then generate code using
the rtwbuild function.

• Reset the model function prototype to the default ERT function
configuration Create an object of the ERT default function signature.
Reset the model function prototype and undo any custom settings, by
calling the RTW.FcnDefault method, attachToModel, as follows:

obj = RTW.FcnDefault;
obj.attachToModel(model);

model must be a loaded ERT-based model.

Note You should not use the same model-specific C function prototype
object across multiple models. If you do, changes that you make to the step
and initialization function prototypes in one model are propagated to other
models, which is usually not desirable.

Function Prototype Control Functions

Function Description

RTW.ModelSpecificCPrototype.addArgConf Add step function argument configuration
information for Simulink model port to
model-specific C function prototype

RTW.ModelSpecificCPrototype.attachToModel Attach model-specific C function prototype
to loaded ERT-based Simulink model

RTW.ModelSpecificCPrototype.getArgCategory Get step function argument category for
Simulink model port from model-specific
C function prototype

12-18

Function Prototype Control

Function Prototype Control Functions (Continued)

Function Description

RTW.ModelSpecificCPrototype.getArgName Get step function argument name for
Simulink model port from model-specific
C function prototype

RTW.ModelSpecificCPrototype.getArgPosition Get step function argument position for
Simulink model port from model-specific
C function prototype

RTW.ModelSpecificCPrototype.getArgQualifier Get step function argument type qualifier
for Simulink model port frommodel-specific
C function prototype

RTW.ModelSpecificCPrototype.getDefaultConf Get default configuration information for
model-specific C function prototype from
Simulink model to which it is attached

RTW.ModelSpecificCPrototype.getFunctionName Get function names from model-specific C
function prototype

RTW.ModelSpecificCPrototype.getNumArgs Get number of step function arguments
from model-specific C function prototype

RTW.ModelSpecificCPrototype.getPreview Get model-specific C function prototype
code previews

RTW.configSubsystemBuild Launch GUI to configure C function
prototype or C++ encapsulation interface
for right-click build of specified subsystem

RTW.getFunctionSpecification Get handle to model-specific C function
prototype object

RTW.ModelSpecificCPrototype.runValidation Validate model-specific C function
prototype against Simulink model to which
it is attached

RTW.ModelSpecificCPrototype.setArgCategory Set step function argument category for
Simulink model port in model-specific C
function prototype

12-19

12 Function and Class Interfaces

Function Prototype Control Functions (Continued)

Function Description

RTW.ModelSpecificCPrototype.setArgName Set step function argument name for
Simulink model port in model-specific C
function prototype

RTW.ModelSpecificCPrototype.setArgPosition Set step function argument position for
Simulink model port in model-specific C
function prototype

RTW.ModelSpecificCPrototype.setArgQualifier Set step function argument type qualifier
for Simulink model port in model-specific
C function prototype

RTW.ModelSpecificCPrototype.setFunctionName Set function names in model-specific C
function prototype

Sample Script for Configuring Function Prototypes
The following sample MATLAB script configures the model function
prototypes for the rtwdemo_counter model, using the Function Prototype
Control Functions on page 12-18.

%% Open the rtwdemo_counter model

rtwdemo_counter

%% Select ert.tlc as the System Target File for the model

set_param(gcs,'SystemTargetFile','ert.tlc')

%% Create a model-specific C function prototype

a=RTW.ModelSpecificCPrototype

%% Add argument configuration information for Input and Output ports

addArgConf(a,'Input','Pointer','inputArg','const *')

addArgConf(a,'Output','Pointer','outputArg','none')

%% Attach the model-specific C function prototype to the model

attachToModel(a,gcs)

%% Rename the initialization function

12-20

Function Prototype Control

setFunctionName(a,'InitFunction','init')

%% Rename the step function and change some argument attributes

setFunctionName(a,'StepFunction','step')

setArgPosition(a,'Output',1)

setArgCategory(a,'Input','Value')

setArgName(a,'Input','InputArg')

setArgQualifier(a,'Input','none')

%% Validate the function prototype against the model

[status,message]=runValidation(a)

%% if validation succeeded, generate code and build

if status

rtwbuild(gcs)

end

Verify Generated Code for Customized Functions
You can use software-in-the-loop (SIL) testing to verify the generated code
for your customized step and initialization functions. This involves creating
a SIL block with your generated code, which then can be integrated into a
Simulink model to verify that the generated code provides the same result
as the original model or nonvirtual subsystem. For more information, see
“Generate S-Function Wrappers” on page 21-2 and “About SIL and PIL
Simulations” on page 31-2.

Function Prototype Control Limitations
The following limitations apply to controlling model function prototypes:

• Function prototype control supports only step and initialization functions
generated from a Simulink model.

• Function prototype control supports only single-instance implementations.
For standalone targets, you must clear the Generate reusable code
check box (on the Interface pane of the Configuration Parameters dialog
box). For model reference targets, you must select One for the Total
number of instances allowed per top model parameter (on theModel
Referencing pane of the Configuration Parameters dialog box).

12-21

12 Function and Class Interfaces

• For model reference targets, the code generator ignores the Generate
reusable code parameter (on the Interface pane of the Configuration
Parameters dialog box).

• You must select the Single output/update function parameter (on the
Interface pane of the Configuration Parameters dialog box).

• Function prototype control does not support multitasking models. Multirate
models are supported, but you must configure the models for single-tasking.

• You must configure root-level inports and outports to use Auto storage
classes.

• Do not control function prototypes with the static ert_main.c provided by
MathWorks. Specifying a function prototype control configuration other
than the default creates a mismatch between the generated code and the
default static ert_main.c.

• The code generator removes the data structure for the root inports of the
model unless a subsystem implemented by a nonreusable function uses the
value of one or more of the inports.

• The code generator removes the data structure for the root outports of the
model except when you enable MAT-file logging, or if the sample time of
one or more of the outports is not the fundamental base rate (including
a constant rate).

• If you copy a subsystem block and paste it to create a new block in either
a new model or the same model, the function prototype control interface
information from the original subsystem block does not copy to the new
subsystem block.

• If you have a Stateflow license, for a Stateflow chart that uses a model root
inport value, or that calls a subsystem that uses a model root inport value,
you must do one of the following to generate code:

- Clear the Execute (enter) Chart At Initialization check box in the
Stateflow chart.

- Make the Stateflow function a nonreusable function.

- Insert a Signal Conversion block immediately after the root inport. On
the Signal Conversion block parameters dialog box, select the Exclude
this block from ’Block reduction’ optimization check box in the .

12-22

Function Prototype Control

• If a model root inport value connects to a Simscape™ conversion block, you
must insert a Simulink Signal Conversion block between the root inport
and the Simscape conversion block. On the Simulink Signal Conversion
block parameter dialog box, select Exclude this block from ’Block
reduction’ optimization.

12-23

12 Function and Class Interfaces

C++ Encapsulation Interface Control

In this section...

“About C++ Encapsulation Interface Control” on page 12-24

“Simple Use of C++ Encapsulation Control” on page 12-25

“Configure C++ Encapsulation Interfaces Using Graphical Interfaces” on
page 12-33

“Configure C++ Encapsulation Interfaces Programmatically” on page 12-43

“Configure the Step Method for a Model Class” on page 12-46

“C++ Encapsulation Interface Control Limitations” on page 12-47

About C++ Encapsulation Interface Control
Using the Language option, C++ (Encapsulated), on the Code Generation
pane of the Configuration Parameters dialog box, you can generate a C++
class interface to model code. The generated interface encapsulates required
model data into C++ class attributes and model entry point functions into C++
class methods. The benefits of encapsulation include:

• Greater control over access to model data

• Ability to multiply instantiate model classes

• Easier integration of model code into C++ programming environments

C++ encapsulation also works for right-click builds of nonvirtual subsystems.
(For information on requirements that apply, see “Configure C++
Encapsulation Interfaces for Nonvirtual Subsystems” on page 12-41.)

The general procedure for generating C++ encapsulation interfaces to model
code is as follows:

1 Configure your model to use an ert.tlc system target file provided by
MathWorks.

2 Select the language option C++ (Encapsulated) for your model.

12-24

C++ Encapsulation Interface Control

3 Optionally, configure related C++ encapsulation interface settings for your
model code, using either a graphical user interface (GUI) or application
programming interface (API).

4 Generate model code and examine the results.

To get started with an example, see “Simple Use of C++ Encapsulation
Control” on page 12-25. For more details about configuring C++ encapsulation
interfaces for your model code, see “Configure C++ Encapsulation Interfaces
Using Graphical Interfaces” on page 12-33 and “Configure C++ Encapsulation
Interfaces Programmatically” on page 12-43. For limitations that apply, see
“C++ Encapsulation Interface Control Limitations” on page 12-47.

Note For a example of the C++ encapsulation capability, see the model
rtwdemo_cppencap.

Simple Use of C++ Encapsulation Control
This example illustrates a simple use of the C++ (Encapsulated) option.
It uses C++ encapsulation to generate interfaces for code from an example
model, without extensive modifications to default settings.

Note For details about setting C++ encapsulation options, see the sections
that follow this example, beginning with “Configure C++ Encapsulation
Interfaces Using Graphical Interfaces” on page 12-33.

To generate C++ encapsulated interfaces for a Simulink model:

1 Open a model for which you would like to generate C++ encapsulation
interfaces. This example uses the model rtwdemo_counter.

2 Configure the model to use an ert.tlc system target file provided by
MathWorks. For example, open the Configuration Parameters dialog box, go
to the Code Generation pane, select a target value from the System target
file menu, and click Apply.

12-25

12 Function and Class Interfaces

3 Optionally, as a baseline for later code comparison, generate code from the
model using a different Language parameter setting, C++ or C. (You can set
up the build directory naming or location to distinguish your baseline build
from later builds of the same model.)

4 On the Code Generation pane of the Configuration Parameters dialog box,
select the C++ (Encapsulated) language option.

Click Apply.

Note To immediately generate the default style of encapsulated C++ code,
without exploring the related model configuration options, skip steps 5–9 and
go directly to step 10.

5 Go to the Interface pane of the Configuration Parameters dialog box and
examine the Code interface subpane.

12-26

C++ Encapsulation Interface Control

When you selected the C++ (Encapsulated) language option for your model,
C++ encapsulation interface controls replaced the default options on the Code
interface subpane. See “Configure Code Interface Options” on page 12-34 for
descriptions of these controls. You might want to modify the default settings
according to your application.

6 Click the Configure C++ Encapsulation Interface button. This action
opens the Configure C++ encapsulation interface dialog box, which allows
you to configure the step method for your generated model class. The dialog
box initially displays a view for configuring a void-void style step method
(passing no I/O arguments) for the model class. In this view, you can rename
the model class and the step method for your model.

12-27

12 Function and Class Interfaces

See “Configure Step Method for Your Model Class” on page 12-37 for
descriptions of these controls.

Note If the void-void interface style meets your needs, you can skip steps
7–9 and go directly to step 10.

7 If you want root-level model input and output to be arguments on the step
method, select the value I/O arguments step method from the Function
specification menu. The dialog box displays a view for configuring an I/O
arguments style step method for the model class.

12-28

C++ Encapsulation Interface Control

See “Configure Step Method for Your Model Class” on page 12-37 for
descriptions of these controls.

8 Click the Get Default Configuration button. This action causes a
Configure C++ encapsulation interface subpane to appear in the dialog
box. The subpane displays the initial interface configuration for your model,
which provides a starting point for further customization.

12-29

12 Function and Class Interfaces

See “Passing I/O Arguments” on page 12-39 for descriptions of these controls.

9 Perform this optional step only if you want to customize the configuration of
the I/O arguments generated for your model step method.

Note If you choose to skip this step, you should click Cancel to exit the
dialog box.

If you choose to perform this step, first you must check that the required
option Remove root level I/O zero initialization is selected on the
Optimization pane, and then navigate back to the I/O arguments step
method view of the Configure C++ encapsulation interface dialog box.

Now you can use the dialog box controls to configure I/O argument attributes.
For example, in the Configure C++ encapsulation interface subpane, in
the row for the Input argument, you can change the value of Category from
Value to Pointer and change the value of Qualifier from none to const *.
The preview updates to reflect your changes. Click the Validate button to
validate the modified interface configuration.

Continue modifying and validating until you are satisfied with the step
method configuration.

12-30

C++ Encapsulation Interface Control

Click Apply and OK.

10 Generate code for the model. When the build completes, the code generation
report for rtwdemo_counter appears. Examine the report and observe that
required model data is encapsulated into C++ class attributes and model entry
point functions are encapsulated into C++ class methods. For example, click
the link for rtwdemo_counter.h to see the class declaration for the model.

12-31

12 Function and Class Interfaces

Note

• If you configured custom I/O arguments for the model step method
(optional step 9), examine the generated code for the step method in
rtwdemo_counter.h and rtwdemo_counter.cpp. The arguments should
reflect your changes. For example, if you performed the Input argument
modifications in step 9, the input argument should appear as const
int32_T *arg_Input.

• If you saved a baseline model build (optional step 3), you can traverse and
compare the generated files in the corresponding build directories.

12-32

C++ Encapsulation Interface Control

Configure C++ Encapsulation Interfaces Using
Graphical Interfaces

• “Select the C++ (Encapsulated) Option” on page 12-33

• “Configure Code Interface Options” on page 12-34

• “Configure Step Method for Your Model Class” on page 12-37

• “Configure C++ Encapsulation Interfaces for Nonvirtual Subsystems” on
page 12-41

Select the C++ (Encapsulated) Option
To select the C++ (Encapsulated) option, in the Configuration Parameters
dialog box, on the Code Generation pane, use the Language menu:

Selecting this option:

• Disables model configuration options that C++ (Encapsulated) does
not support. For details, see “C++ Encapsulation Interface Control
Limitations” on page 12-47.

• Replaces default options on the Interface pane, in the Code interface
subpane, with C++ encapsulation interface controls, which are described in
the next section.

12-33

12 Function and Class Interfaces

Configure Code Interface Options
When you select the C++ (Encapsulated) option for your model, the C++
encapsulation interface controls shown below replace the Code interface
default options on the Interface pane.

• Block parameter visibility

Specifies whether to generate the block parameter structure as a public,
private, or protected data member of the C++ model class (private by
default).

• Internal data visibility

Specifies whether to generate internal data structures, such as Block I/O,
DWork vectors, Runtime model, Zero-crossings, and continuous states,
as public, private, or protected data members of the C++ model class
(private by default).

• Block parameter access

Specifies whether to generate access methods for block parameters for
the C++ model class (None by default). You can select noninlined access
methods (Method) or inlined access methods (Inlined method).

• Internal data access

Specifies whether to generate access methods for internal data structures,
such as Block I/O, DWork vectors, Runtime model, Zero-crossings, and
continuous states, for the C++ model class (None by default). You can select

12-34

C++ Encapsulation Interface Control

noninlined access methods (Method) or inlined access methods (Inlined
method).

• External I/O access

Specifies whether to generate access methods for root-level I/O signals
for the C++ model class (None by default). If you want to generate access
methods, you have the following options:

- Generate either noninlined or inlined access methods.

- Generate either per-signal or structure-based access methods. That is,
you can generate a series of set and get methods on a per-signal basis,
or generate just one set method that takes the address of an external
input structure as an argument and, for external outputs (if applicable),
just one get method that returns a reference to an external output
structure. The generated code for structure-based access methods has
the following general form:

class ModelClass {

...

/* Root inports set method*/

void setExternalInputs(const ExternalInputs* pExternalInputs);

/* Root outports get method*/

const ExternalOutputs & getExternalOutputs() const;

}

Note This parameter affects generated code only if you are using the
default (void-void style) step method for your model class; not if you
are explicitly passing arguments for root-level I/O signals using an I/O
arguments style step method. For more information, see “Passing No
Arguments (void-void)” on page 12-37 and “Passing I/O Arguments” on
page 12-39.

• Terminate function

Specifies whether to generate the model_terminate function (on by
default). This function contains model termination code and should be
called as part of system shutdown.

• Generate destructor

12-35

12 Function and Class Interfaces

Specifies whether to generate a destructor for the C++ model class (on
by default).

• Use operator new for referenced model object registration

For a model containing Model blocks, specifies whether generated code
should use dynamic memory allocation, during model object registration,
to instantiate objects for referenced models configured with a C++
encapsulation interface (off by default). If you select this option, during
instantiation of an object for the top model in a model reference hierarchy,
the generated code uses the operator new to instantiate objects for
referenced models.

Selecting this option frees a parent model from having to maintain
information about submodels beyond its direct children. Clearing this
option means that a parent model maintains information about its
submodels, including its direct and indirect children.

Note If you select this option, be aware that a bad_alloc exception might
be thrown, per the C++ standard, if an out-of-memory error occurs during
the use of new. You must provide code to catch and process the bad_alloc
exception in case an out-of-memory error occurs for a new call during
construction of a top model object.

• Generate preprocessor conditionals

For a model containing Model blocks, specifies whether to generate
preprocessor conditional directives globally for a model, locally for
each variant Model block, or conditionally based on the Generate
preprocessor conditionals setting in the Model Reference Parameter
dialog for each variant Model block (Use local settings by default).

• Suppress error status in real-time model data structure

Specifies whether to omit the error status field from the generated real-time
model data structure rtModel (off by default). Selecting this option reduces
memory usage.

Be aware that selecting this option can cause the code generator to omit
the rtModel data structure from generated code.

• Combine signal/state structures

12-36

C++ Encapsulation Interface Control

Specifies whether to combine global block signals and global state data into
one data structure in the generated code (off by default). Selecting this
option reduces RAM and improves readability of the generated code.

• Configure C++ Encapsulation Interface

Opens the Configure C++ encapsulation interface dialog box, which
allows you to configure the step method for your model class. For more
information, see “Configure Step Method for Your Model Class” on page
12-37.

Configure Step Method for Your Model Class
To configure the step method for your model class, on the Interface pane,
click the Configure C++ Encapsulation Interface button, which is
available when you selectC++ (Encapsulated) for your model. This action
opens the Configure C++ encapsulation interface dialog box, where you can
configure the step method for your model class in either of two styles:

• “Passing No Arguments (void-void)” on page 12-37

• “Passing I/O Arguments” on page 12-39

Note The void-void style of step method specification supports single-rate
models and multirate models, while the I/O arguments style supports
single-rate models and multirate single-tasking models.

Passing No Arguments (void-void). The Configure C++ encapsulation
interface dialog box initially displays a view for configuring a void-void style
step method for the model class.

12-37

12 Function and Class Interfaces

• Step method name

Allows you to specify a step method name other than the default, step.

• Class name

Allows you to specify a model class name other than the default,
modelModelClass.

• Step function preview

Displays a preview of the model step function prototype as currently
configured. The preview display is dynamically updated as you make
configuration changes.

• Validate

Validates your current model step function configuration. The Validation
pane displays the status and an explanation of any failure.

12-38

C++ Encapsulation Interface Control

Passing I/O Arguments. If you select I/O arguments step method
from the Function specification menu, the dialog box displays a view for
configuring an I/O arguments style step method for the model class.

Note To use the I/O arguments style step method, you must select the option
Remove root level I/O zero initialization on the Optimization pane of
the Configuration Parameters dialog box.

• Get Default Configuration

Click this button to get the initial interface configuration that provides a
starting point for further customization.

• Step function preview

12-39

12 Function and Class Interfaces

Displays a preview of the model step function prototype as currently
configured. The preview dynamically updates as you make configuration
changes.

• Validate

Validates your current model step function configuration. The Validation
pane displays the status and an explanation of any failure.

When you click Get Default Configuration, the Configure C++
encapsulation interface subpane appears in the dialog box, displaying the
initial interface configuration. For example:

• Step method name

Allows you to specify a step method name other than the default, step.

• Class name

Allows you to specify a model class name other than the default,
modelModelClass.

• Order

Displays the numerical position of each argument. Use the Up and Down
buttons to change argument order.

• Port Name

Displays the port name of each argument (not configurable using this
dialog box).

• Port Type

12-40

C++ Encapsulation Interface Control

Displays the port type, Inport or Outport, of each argument (not
configurable using this dialog box).

• Category

Displays the passing mechanism for each argument. To change the passing
mechanism for an argument, select Value, Pointer, or Reference from the
argument’s Category menu.

• Argument Name

Displays the name of each argument. To change an argument name, click
in the argument’s Argument name field, position the cursor for text
entry, and enter the new name.

• Qualifier

Displays the const type qualifier for each argument. To change the
qualifier for an argument, select an available value from the argument’s
Qualifier menu. The possible values are:

- none

- const (value)

- const* (value referenced by the pointer)

- const*const (value referenced by the pointer and the pointer itself)

- const & (value referenced by the reference)

Tip When a model includes a referenced model, the const type qualifier for
the root input argument of the referenced model’s specified step function
interface is set to none and the qualifier for the source signal in the referenced
model’s parent is set to a value other than none, code generation honors the
referenced model’s interface specification by generating a type cast that
discards the const type qualifier from the source signal. To override this
behavior, add a const type qualifier to the referenced model.

Configure C++ Encapsulation Interfaces for Nonvirtual
Subsystems
C++ encapsulation interfaces can be configured for right-click builds of
nonvirtual subsystems in Simulink models, provided that:

12-41

12 Function and Class Interfaces

• You select the system target file ert.tlc for the model.

• You select the Language parameter value C++ (Encapsulated) for the
model.

• The subsystem is convertible to a Model block using the function
Simulink.SubSystem.convertToModelReference. For referenced
model conversion requirements, see the Simulink reference page
Simulink.SubSystem.convertToModelReference.

To configure C++ encapsulation interfaces for a subsystem that meets the
requirements:

1 Open the containing model and select the subsystem block.

2 Enter the following MATLAB command:

RTW.configSubsystemBuild(gcb)

where gcb is the Simulink function gcb, returning the full block path name
of the current block.

This command opens a subsystem equivalent of the Configure C++
encapsulation interface dialog sequence that is described in detail in the
preceding section, “Configure Step Method for Your Model Class” on page
12-37. (For more information about using the MATLAB command, see
RTW.configSubsystemBuild.)

3 Use the Configure C++ encapsulation interface dialog boxes to configure
C++ encapsulation settings for the subsystem.

4 Right-click the subsystem and select C/C++ Code > Build This
Subsystem.

5 When the subsystem build completes, you can examine the C++
encapsulation interfaces in the generated files and the HTML code
generation report.

12-42

C++ Encapsulation Interface Control

Configure C++ Encapsulation Interfaces
Programmatically
If you select the Language option C++ (Encapsulated) for your model,
you can use the C++ encapsulation interface control functions (listed
in C++ Encapsulation Interface Control Functions on page 12-44) to
programmatically configure the step method for your model class.

Typical uses of these functions include:

• Create and validate a new step method interface, starting with
default configuration information from your Simulink model

1 Create a model-specific C++ encapsulation interface with obj =
RTW.ModelCPPVoidClass or obj = RTW.ModelCPPArgsClass, where
obj returns a handle to an newly created, empty C++ encapsulation
interface.

2 Attach the C++ encapsulation interface to your loaded ERT-based
Simulink model using attachToModel.

3 Get default C++ encapsulation interface configuration information from
your model using getDefaultConf.

4 Use the Get and Set functions listed in C++ Encapsulation Interface
Control Functions on page 12-44 to test or reset the model class name
and model step method name. Additionally, if you are using the I/O
arguments style step method, you can test and reset argument names,
argument positions, argument categories, and argument type qualifiers.

5 Validate the C++ encapsulation interface using runValidation. (If
validation fails, use the error message information thatrunValidation
returns to address the issues.)

6 Save your model and then generate code using the rtwbuild function.

• Modify and validate an existing step method interface for a
Simulink model

1 Get the handle to an existing model-specific C++ encapsulation interface
that is attached to your loaded ERT-based Simulink model using obj
= RTW.getEncapsulationInterfaceSpecification(modelName), where
modelName is a string specifying the name of a loaded ERT-based
Simulink model, and obj returns a handle to a C++ encapsulation

12-43

12 Function and Class Interfaces

interface attached to the specified model. If the model does not have
an attached C++ encapsulation interface configuration, the function
returns [].

2 Use the Get and Set functions listed in C++ Encapsulation Interface
Control Functions on page 12-44 to test or reset the model class name
and model step method name. Additionally, if the returned interface
uses the I/O arguments style step method, you can test and reset
argument names, argument positions, argument categories, and
argument type qualifiers.

3 Validate the C++ encapsulation interface using runValidation. (If
validation fails, use the error message information that runValidation
returns to address the issues.)

4 Save your model and then generate code using the rtwbuild function.

Note You should not use the same model-specific C++ encapsulation
interface control object across multiple models. If you do, changes that you
make to the step method configuration in one model propagate to other
models, which is usually not desirable.

C++ Encapsulation Interface Control Functions

Function Description

attachToModel Attach model-specific C++ encapsulation interface to loaded
ERT-based Simulink model

getArgCategory Get argument category for Simulink model port from
model-specific C++ encapsulation interface

getArgName Get argument name for Simulink model port from
model-specific C++ encapsulation interface

getArgPosition Get argument position for Simulink model port from
model-specific C++ encapsulation interface

getArgQualifier Get argument type qualifier for Simulink model port from
model-specific C++ encapsulation interface

12-44

C++ Encapsulation Interface Control

C++ Encapsulation Interface Control Functions (Continued)

Function Description

getClassName Get class name from model-specific C++ encapsulation
interface

getDefaultConf Get default configuration information for model-specific C++
encapsulation interface from Simulink model to which it is
attached

getNumArgs Get number of step method arguments from model-specific
C++ encapsulation interface

getStepMethodName Get step method name frommodel-specific C++ encapsulation
interface

RTW.configSubsystemBuild Open GUI to configure C function prototype or C++
encapsulation interface for right-click build of specified
subsystem

RTW.getEncapsulation-
InterfaceSpecification

Get handle to model-specific C++ encapsulation interface
control object

runValidation Validate model-specific C++ encapsulation interface against
Simulink model to which it is attached

setArgCategory Set argument category for Simulink model port in
model-specific C++ encapsulation interface

setArgName Set argument name for Simulink model port in model-specific
C++ encapsulation interface

setArgPosition Set argument position for Simulink model port in
model-specific C++ encapsulation interface

setArgQualifier Set argument type qualifier for Simulink model port in
model-specific C++ encapsulation interface

setClassName Set class name in model-specific C++ encapsulation interface

setStepMethodName Set step method name in model-specific C++ encapsulation
interface

12-45

12 Function and Class Interfaces

Configure the Step Method for a Model Class
The following sample MATLAB script configures the step method for the
rtwdemo_counter model class, using the C++ Encapsulation Interface Control
Functions on page 12-44.

%% Open the rtwdemo_counter model

rtwdemo_counter

%% Select ert.tlc as the System Target File for the model

set_param(gcs,'SystemTargetFile','ert.tlc')

%% Select C++ (Encapsulated) as the target language for the model

set_param(gcs,'TargetLang','C++ (Encapsulated)')

%% Set required option for I/O arguments style step method (cmd off = GUI on)

set_param(gcs,'ZeroExternalMemoryAtStartup','off')

%% Create a C++ encapsulated interface using an I/O arguments style step method

a=RTW.ModelCPPArgsClass

%% Attach the C++ encapsulated interface to the model

attachToModel(a,gcs)

%% Get the default C++ encapsulation interface configuration from the model

getDefaultConf(a)

%% Move the Output port argument from position 2 to position 1

setArgPosition(a,'Output',1)

%% Reset the model step method name from step to StepMethod

setStepMethodName(a,'StepMethod')

%% Change the Input port argument name, category, and qualifier

setArgName(a,'Input','inputArg')

setArgCategory(a,'Input','Pointer')

setArgQualifier(a,'Input','const *')

%% Validate the function prototype against the model

[status,message]=runValidation(a)

12-46

C++ Encapsulation Interface Control

%% if validation succeeded, generate code and build

if status

rtwbuild(gcs)

end

C++ Encapsulation Interface Control Limitations

• The C++ (Encapsulated) option does not support some Simulink model
configuration options. Selecting C++ (Encapsulated) disables the
following items in the Configuration Parameters dialog box:

- Identifier format control subpane on the Symbols pane

- Templates pane

• The Templates pane parameter File customization template is
not supported for C++ (Encapsulated) code generation.

• Selecting C++ (Encapsulated) turns on the Templates pane option
Generate an example main program but removes it from the
Configuration Parameters dialog box. If desired, you can disable it
using the command line parameter GenerateSampleERTMain.

- Code Placement pane

- Memory Sections pane

Note Selecting C++ (Encapsulated) forces on the Code Generation
pane model option Ignore custom storage classes. By design, C++
(Encapsulated) code generation treats data objects with custom storage
classes as if their storage class attribute is set to Auto.

• Among the data exchange interfaces available on the Interface pane of the
Configuration Parameters dialog box, only the C API interface is supported
for C++ (Encapsulated) code generation. If you select External mode or
ASAP2, code generation fails with a validation error.

• The I/O arguments style of step method specification supports single-rate
models and multirate single-tasking models, but not multirate multitasking
models.

12-47

12 Function and Class Interfaces

• The Code Generation > Export Functions capability does not support
C++ (Encapsulated) as the target language.

• If you have a Stateflow license, for a Stateflow chart that resides in a
root model configured to use the I/O arguments step method function
specification, and that uses a model root inport value or calls a subsystem
that uses a model root inport value, you must do one of the following to
generate code:

- Clear the Execute (enter) Chart At Initialization check box in the
Stateflow chart.

- Insert a Signal Conversion block immediately after the root inport.
On the Simulink Signal Conversion block parameter dialog box, select
Exclude this block from ’Block reduction’ optimization.

• If a model root inport value connects to a Simscape conversion block, you
must insert a Simulink Signal Conversion block between the root inport
and the Simscape conversion block. On the Simulink Signal Conversion
block parameter dialog box, select Exclude this block from ’Block
reduction’ optimization.

• When building a referenced model that is configured to generate a C++
encapsulation interface:

- You must use the I/O arguments step method style of the C++
encapsulated interface. The void-void step method style is not
supported for referenced models.

- You cannot use a C++ encapsulation interface in cases when a referenced
model cannot have a combined output/update function. Cases include a
model that

• Has multiple sample times

• Has a continuous sample time

• Saves states

12-48

Atomic Subsystem Code

Atomic Subsystem Code

In this section...

“About Nonvirtual Subsystem Code Generation” on page 12-49

“Configure Subsystem for Generating Modular Function Code” on page
12-50

“Modular Function Code for Nonvirtual Subsystems” on page 12-55

“Nonvirtual Subsystem Modular Function Code Limitations” on page 12-60

About Nonvirtual Subsystem Code Generation
The Embedded Coder software provides a Subsystem Parameters dialog box
option, Function with separate data, that allows you to generate modular
function code for nonvirtual subsystems, including atomic subsystems and
conditionally executed subsystems.

By default, the generated code for a nonvirtual subsystem does not separate a
subsystem’s internal data from the data of its parent Simulink model. This
can make it difficult to trace and test the code, particularly for nonreusable
subsystems. Also, in large models containing nonvirtual subsystems, data
structures can become large and potentially difficult to compile.

Function with separate data allows you to generate subsystem function
code in which the internal data for a nonvirtual subsystem is separated
from its parent model and is owned by the subsystem. The subsystem data
structure is declared independently from the parent model data structures. A
subsystem with separate data has its own block I/O and DWork data structure.
As a result, the generated code for the subsystem is easier to trace and test.
The data separation also tends to reduce the maximum size of global data
structures throughout the model, because they are split into multiple data
structures.

To use the Function with separate data parameter,

• Your model must use an ERT-based system target file (requires a
Embedded Coder license).

12-49

12 Function and Class Interfaces

• Your subsystem must be configured to be atomic or conditionally executed.
For more information, see “Systems and Subsystems”.

• Your subsystem must use the Nonreusable function setting for the Code
Generation > Function packaging.

To configure your subsystem for generating modular function code, you
invoke the Subsystem Parameters dialog box and make a series of selections
to display and enable the Function with separate data option. See
“Configure Subsystem for Generating Modular Function Code” on page 12-50
and “Modular Function Code for Nonvirtual Subsystems” on page 12-55 for
details. For limitations that apply, see “Nonvirtual Subsystem Modular
Function Code Limitations” on page 12-60.

For more information about generating code for atomic subsystems, see
the sections “Code Generation of Subsystems” and “Generate Code and
Executables for Individual Subsystem” in the Simulink Coder documentation.

Configure Subsystem for Generating Modular
Function Code
This section summarizes the steps to configure a nonvirtual subsystem in a
Simulink model for modular function code generation.

1 Verify that the Simulink model containing the subsystem uses an
ERT-based system target file (see the System target file parameter on
the Code Generation pane of the Configuration Parameters dialog box).

2 In your Simulink model, select the subsystem for which you want to
generate modular function code and launch the Subsystem Parameters
dialog box (for example, right-click the subsystem and select Block
Parameters (Subsystem)). The dialog box for an atomic subsystem is
shown below. (In the dialog box for a conditionally executed subsystem,
the dialog box option Treat as atomic unit is greyed out, and you can
skip Step 3.)

12-50

Atomic Subsystem Code

3 If the Subsystem Parameters dialog box option Treat as atomic unit is
available for selection but not selected, the subsystem is neither atomic nor
conditionally executed. Select the option Treat as atomic unit, which
enables Function packaging on the Code Generation tab. Select the
Code Generation tab.

12-51

12 Function and Class Interfaces

4 For the Function packaging parameter, select the value Nonreusable
function. After you make this selection, the Function with separate
data option is displayed.

12-52

Atomic Subsystem Code

Note Before you generate nonvirtual subsystem function code with
the Function with separate data option selected, you might want to
generate function code with the option deselected and save the generated
function .c and .h files in a separate directory for later comparison.

12-53

12 Function and Class Interfaces

5 Select the Function with separate data option. After you make this
selection, additional configuration parameters are displayed.

Note To control the naming of the subsystem function and the subsystem
files in the generated code, you can modify the subsystem parameters
Function name options and File name options.

6 To save your subsystem parameter settings and exit the dialog box, click
OK.

This completes the subsystem configuration for generating modular function
code. You can now generate the code for the subsystem and examine the
generated files, including the function .c and .h files named according to your
subsystem parameter specifications. For more information on generating

12-54

Atomic Subsystem Code

code for nonvirtual subsystems, see “Code Generation of Subsystems”. For
examples of generated subsystem function code, see “Modular Function Code
for Nonvirtual Subsystems” on page 12-55.

Modular Function Code for Nonvirtual Subsystems
To illustrate the selection of the Function with separate data option for a
nonvirtual subsystem, the following procedure generates atomic subsystem
function code with and without the option selected and compares the results.

1 Open MATLAB and launch the model rtwdemo_atomic using the MATLAB
command rtwdemo_atomic. Examine the Simulink model.

2 Double-click the SS1 subsystem and examine the contents. (You can close
the subsystem window when you are finished.)

3 Use the Configuration Parameters dialog box to change the model’s
System target file from GRT to ERT. For example, from the Simulink
window, select Simulation > Model Configuration Parameters. On
the Configuration Parameters dialog box, select the Code Generation
pane and specify ert.tlc for the System target file parameter. Click OK
twice to confirm the change.

12-55

12 Function and Class Interfaces

4 Create a variant of rtwdemo_atomic that illustrates function code without
data separation.

a In the Simulink view of rtwdemo_atomic, right-click the SS1 subsystem
and select Block Parameters (Subsystem). In the Subsystem
Parameters dialog box, verify that

• On the Main tab, Treat as atomic unit is selected

• On the Code Generation tab, User specified is selected for
Function name options

• On the Code Generation tab, myfun is specified for Function name

b In the Subsystem Parameters dialog box, on the Code Generation tab

i Select the value Nonreusable function for the Function packaging
parameter. After this selection, additional parameters and options
will appear.

ii Select the value Use function name for the File name options
parameter. This selection is optional but simplifies the later task of
code comparison by causing the atomic subsystem function code to be
generated into the files myfun.c and myfun.h.

Do not select the option Function with separate data. Click Apply to
apply the changes and click OK to exit the dialog box.

c Save this model variant to a personal work directory, for example,
rtwdemo_atomic1 in d:/atomic.

5 Create a variant of rtwdemo_atomic that illustrates function code with
data separation.

a In the Simulink view of rtwdemo_atomic1 (or rtwdemo_atomic with
step 3 reapplied), right-click the SS1 subsystem and select Block
Parameters (Subsystem). In the Subsystem Parameters dialog box,
verify that

• On the Main tab, Treat as atomic unit is selected

• On the Code Generation tab, Function is selected for Function
packaging

• On the Code Generation tab, User specified is selected for
Function name options

12-56

Atomic Subsystem Code

• On the Code Generation tab, myfun is specified for Function name

• On the Code Generation tab, Use function name is specified for
File name options

b In the Subsystem Parameters dialog box, on the Code Generation tab,
select the option Function with separate data. Click Apply to apply
the change and click OK to exit the dialog box.

c Save this model variant, using a different name than the first variant, to
a personal work directory, for example, rtwdemo_atomic2 in d:/atomic.

6 Generate code for each model, rtwdemo_atomic1 and rtwdemo_atomic2.

7 In the generated code directories, compare the model.c/.h and myfun.c/.h
files generated for the two models. (In this example, there are not
significant differences in the generated variants of ert_main.c,
model_private.h, model_types.h, or rtwtypes.h.)

H File Differences for Nonvirtual Subsystem Function Data
Separation
The differences between the H files generated for rtwdemo_atomic1 and
rtwdemo_atomic2 help illustrate the selection of the Function with
separate data option for nonvirtual subsystems.

1 Selecting Function with separate data causes typedefs for subsystem
data to be generated in the myfun.h file for rtwdemo_atomic2:

/* Block signals for system '<Root>/SS1' */
typedef struct {

real_T Integrator; /* '<S1>/Integrator' */
} rtB_myfun;

/* Block states (auto storage) for system '<Root>/SS1' */
typedef struct {

real_T Integrator_DSTATE; /* '<S1>/Integrator' */
} rtDW_myfun;

By contrast, for rtwdemo_atomic1, typedefs for subsystem data belong to
the model and appear in rtwdemo_atomic1.h:

/* Block signals (auto storage) */

12-57

12 Function and Class Interfaces

typedef struct {
...

real_T Integrator; /* '<S1>/Integrator' */
} BlockIO_rtwdemo_atomic1;

/* Block states (auto storage) for system '<Root>' */
typedef struct {

real_T Integrator_DSTATE; /* '<S1>/Integrator' */
} D_Work_rtwdemo_atomic1;

2 Selecting Function with separate data generates the following external
declarations in the myfun.h file for rtwdemo_atomic2:

/* Extern declarations of internal data for 'system '<Root>/SS1'' */

extern rtB_myfun rtwdemo_atomic2_myfunB;

extern rtDW_myfun rtwdemo_atomic2_myfunDW;

extern void myfun_initialize(void);

By contrast, the generated code for rtwdemo_atomic1 contains model-level
external declarations for the subsystem’s BlockIO and D_Work data, in
rtwdemo_atomic1.h:

/* Block signals (auto storage) */
extern BlockIO_rtwdemo_atomic1 rtwdemo_atomic1_B;

/* Block states (auto storage) */
extern D_Work_rtwdemo_atomic1 rtwdemo_atomic1_DWork;

C File Differences for Nonvirtual Subsystem Function Data
Separation
The differences between the C files generated for rtwdemo_atomic1 and
rtwdemo_atomic2 illustrate the selection of the Function with separate
data option for nonvirtual subsystems.

1 Selecting Function with separate data causes a separate subsystem
initialize function, myfun_initialize, to be generated in the myfun.c
file for rtwdemo_atomic2:

12-58

Atomic Subsystem Code

void myfun_initialize(void) {
{

((real_T*)&rtwdemo_atomic2_myfunB.Integrator)[0] = 0.0;
}
rtwdemo_atomic2_myfunDW.Integrator_DSTATE = 0.0;

}

The subsystem initialize function in myfun.c is invoked by the model
initialize function in rtwdemo_atomic2.c:

/* Model initialize function */

void rtwdemo_atomic2_initialize(void)
{
...

/* Initialize subsystem data */
myfun_initialize();

}

By contrast, for rtwdemo_atomic1, subsystem data is initialized by the
model initialize function in rtwdemo_atomic1.c:

/* Model initialize function */

void rtwdemo_atomic1_initialize(void)
{
...

/* block I/O */
{

...
((real_T*)&rtwdemo_atomic1_B.Integrator)[0] = 0.0;

}

/* states (dwork) */

rtwdemo_atomic1_DWork.Integrator_DSTATE = 0.0;
...
}

12-59

12 Function and Class Interfaces

2 Selecting Function with separate data generates the following
declarations in the myfun.c file for rtwdemo_atomic2:

/* Declare variables for internal data of system '<Root>/SS1' */
rtB_myfun rtwdemo_atomic2_myfunB;

rtDW_myfun rtwdemo_atomic2_myfunDW;

By contrast, the generated code for rtwdemo_atomic1 contains
model-level declarations for the subsystem’s BlockIO and D_Work data, in
rtwdemo_atomic1.c:

/* Block signals (auto storage) */
BlockIO_rtwdemo_atomic1 rtwdemo_atomic1_B;

/* Block states (auto storage) */
D_Work_rtwdemo_atomic1 rtwdemo_atomic1_DWork;

3 Selecting Function with separate data generates identifier naming that
reflects the subsystem orientation of data items. Notice the references to
subsystem data in subsystem functions such as myfun and myfun_update
or in the model’s model_step function. For example, compare this code
from myfun for rtwdemo_atomic2

/* DiscreteIntegrator: '<S1>/Integrator' */

rtwdemo_atomic2_myfunB.Integrator = rtwdemo_atomic2_myfunDW.Integrator_DSTATE;

to the corresponding code from myfun for rtwdemo_atomic1.

/* DiscreteIntegrator: '<S1>/Integrator' */

rtwdemo_atomic1_B.Integrator = rtwdemo_atomic1_DWork.Integrator_DSTATE;

Nonvirtual Subsystem Modular Function Code
Limitations
The nonvirtual subsystem option Function with separate data has the
following limitations:

• The Function with separate data option is available only in ERT-based
Simulink models (requires a Embedded Coder license).

12-60

Atomic Subsystem Code

• The nonvirtual subsystem to which the option is applied cannot have
multiple sample times or continuous sample times; that is, the subsystem
must be single-rate with a discrete sample time.

• The nonvirtual subsystem cannot contain continuous states.

• The nonvirtual subsystem cannot output function call signals.

• The nonvirtual subsystem cannot contain noninlined S-functions.

• The generated files for the nonvirtual subsystem will reference model-wide
header files, such as model.h and model_private.h.

• The Function with separate data option is incompatible with theClassic
call interface option, located on the Code Generation > Interface pane
of the Configuration Parameters dialog box. Selecting both will generate
an error.

• The Function with separate data option is incompatible with the
Generate reusable code option (Code Generation > Interface pane).
Selecting both will generate an error.

12-61

12 Function and Class Interfaces

12-62

13

Memory Sections

• “About Memory Sections” on page 13-2

• “Requirements for Defining Memory Sections” on page 13-3

• “Define Memory Sections” on page 13-5

• “Configure Memory Sections” on page 13-9

• “Declare Constant Data as Volatile” on page 13-10

• “Apply Memory Sections” on page 13-13

• “Generated Code with Memory Sections” on page 13-21

• “Model-Level Data Structures” on page 13-23

• “Memory Section Limitation” on page 13-26

13 Memory Sections

About Memory Sections

What Are Memory Sections?
The Embedded Coder software provides a memory section capability that
allows you to insert comments and pragmas and qualify constants as
volatile in generated code for

• Data in custom storage classes

• Model-level functions

• Model-level internal data

• Subsystem functions

• Subsystem internal data

Pragmas inserted into generated code can surround

• A contiguous block of function or data definitions

• Each function or data definition separately

When pragmas surround each function or data definition separately, the text
of each pragma can contain the name of the definition to which it applies.

To see an example of memory sections, type rtwdemo_memsec at the MATLAB
command line.

13-2

Requirements for Defining Memory Sections

Requirements for Defining Memory Sections
Before you can define memory sections, you must do the following:

1 Set the Simulink model’s code generation target to an embedded target
such as ert.tlc.

2 To create packages, specify package properties, or create classes, including
custom storage classes, see “Define Data Classes” in the Simulink
documentation.

See also the instructions that appear when you click the Custom Storage
Classes tab.

3 If you need to specify custom storage class properties,

a Choose View > Model Explorer in the model window.

The Model Explorer appears.

b Choose Tools > Custom Storage Class Designer in the Model
Explorer window.

A notification box appears that states Please Wait ... Finding
Packages. After a brief pause, the notification box closes and the
Custom Storage Class Designer appears.

c Select the Custom Storage Class tab. The Custom Storage Class
pane initially looks like this:

13-3

13 Memory Sections

d Use the Custom Storage Class pane to select a writable package and
specify custom storage class properties. Instructions for using this pane
appear in “Design Custom Storage Classes and Memory Sections” on
page 10-8.

13-4

Define Memory Sections

Define Memory Sections

In this section...

“Edit Memory Section Properties” on page 13-5

“Specify the Memory Section Name” on page 13-6

“Specify a Qualifier for Custom Storage Class Data Definitions” on page 13-7

“Specify Comment and Pragma Text” on page 13-7

“Surround Individual Definitions with Pragmas” on page 13-7

“Include Identifier Names in Pragmas” on page 13-8

Edit Memory Section Properties
After you have satisfied the requirements in “Requirements for Defining
Memory Sections” on page 13-3, you can define memory sections and specify
their properties. To create new memory sections or specify memory section
properties,

1 Choose View > Model Explorer in the model window.

The Model Explorer appears.

2 Choose Tools > Custom Storage Class Designer in the Model Explorer
window.

A notification box appears that states Please Wait ... Finding Packages.
After a brief pause, the notification box closes and the Custom Storage
Class Designer appears.

3 Click theMemory Section tab of the Custom Storage Class Designer. The
Memory Section pane initially looks like this:

13-5

13 Memory Sections

4 If you intend to create or change memory section definitions, use the Select
package field to select a writable package.

The rest of this section assumes that you have selected a writable package,
and describes the use of theMemory section subpane on the lower left. For
descriptions of the other subpanes, instructions for validating memory section
definitions, and other information, see “Define Memory Sections” on page 13-5.

Specify the Memory Section Name
To specify the name of a memory section, use the Name field. A memory
section name must be a legal MATLAB identifier.

13-6

Define Memory Sections

Specify a Qualifier for Custom Storage Class Data
Definitions
To specify a qualifier for custom storage class data definitions in a memory
section, enter the components of the qualifier below the Name field.

• To specify const, check Is const.

• To specify volatile, check Is volatile.

• To specify anything else (e.g., static), enter the text in the Qualifier field.

The qualifier will appear in generated code with its components in the same
left-to-right order in which their definitions appear in the dialog box. A
preview appears in the Pseudocode preview subpane on the lower right.

Note Specifying a qualifier affects only custom storage class data definitions.
The code generator omits the qualifier from other definition categories.

Specify Comment and Pragma Text
To specify a comment, prepragma, or postpragma for a memory section,
enter the comment in the text boxes on the left side of the Custom Storage
Class Designer. In the text boxes, you can type multiple lines separated by
ordinary Returns.

Surround Individual Definitions with Pragmas
If the Pragma surrounds field for a memory section specifies Each
variable, the code generator will surround each definition in a contiguous
block of definitions with the comment, prepragma, and postpragma defined
for the section.

If the Pragma surrounds field for a memory section specifies All variables,
the code generator will insert the comment and prepragma for the section
before the first definition in a contiguous block of custom storage class data
definitions, and the postpragma after the last definition in the block.

13-7

13 Memory Sections

Note Specifying All variables affects only custom storage class data
definitions. For other definition categories, the code generator surrounds each
definition separately regardless of the value of Pragma surrounds.

Include Identifier Names in Pragmas
When pragmas surround each separate definition in a contiguous block, you
can include the string %<identifier> in a pragma. The string must appear
without surrounding quotes.

• When %<identifier> appears in a prepragma, the code generator will
substitute the identifier from the subsequent function or data definition.

• When %<identifier> appears in a postpragma, the code generator will
substitute the identifier from the previous function or data definition.

You can use %<identifier> with pragmas only when pragmas to surround
each variable. The Validate phase will report an error if you violate this rule.

Note Although %<identifier> looks like a TLC variable, it is not: it is just
a keyword that directs the code generator to substitute the applicable data
definition identifier when it outputs a pragma. TLC variables cannot appear
in pragma specifications in the Memory Section pane.

13-8

Configure Memory Sections

Configure Memory Sections
You configure memory sections by using the Code Generation > Memory
Sections pane of the Configuration Parameters dialog box.

To... Select...

Specify the package that contains memory
sections that you want to apply

The name of a package for Package. Click
Refresh package list to refresh the list of
available packages in your configuration.

Apply memory sections to initialize/start and
terminate functions

A value for Initialize/Terminate.

Apply memory sections to step, run-time
initialization, derivative, enable, and disable
functions

A value for Execution.

Apply memory sections to constant parameters,
constant, block I/O, or zero representation

A value for Constants.

Apply memory sections to root inputs or
outputs

A value for Inputs/Outputs.

Apply memory sections to block I/O, Dwork
vectors, run-time models, zero-crossings

A value for Internal data.

Apply memory sections to parameters A value for Parameters.

The interface checks whether the specified package is on the MATLAB path
and that the selected memory sections are in the package. The results of this
validation appear in the field Validation results.

13-9

13 Memory Sections

Declare Constant Data as Volatile
In the C language, the value of data declared with the storage type qualifier,
volatile, can be read from memory and written back to memory when
changed without compiler control or detection. Examples of use include
variables for initialization at system power-up or for system clock updates.

You can add the volatile qualifier to type definitions generated in code
for model constant block I/O, constant parameters, and ground data (zero
representation).

To add the volatile qualifier to type definitions, you must configure your
model as follows:

• Enable inline parameters

• Specify an ERT target

• Set the memory section for constant data to MemVolatile or
MemConstVolatile

If you choose to add the volatile qualifier to type definitions in your
generated code, note the following:

• If constant data that is qualified with volatile is passed by pointer, the
code generator casts away the volatility. This occurs because generated
functions assume that data values do not change during execution and,
therefore, pass their arguments as const * (not const volatile *).

• If a variable must be declared const and you specify MemVolatile, the code
generator declares the variable with the const and volatile qualifiers.

• If you set Constants to MemConst or MemConstVolatile, and a variable
cannot be declared as constant data, a TLC warning appears and the code
generator does not qualify the variable with const.

Consider the following simple lookup table model.

13-10

Declare Constant Data as Volatile

1 On the Configuration Parameters dialog box, in the
Optimization > Signals and Parameters pane, select Inline
parameters.

2 In the Code Generation pane, set System target file to ert.tlc.

3 In the Code Generation > Memory Sections pane, set Package to
Simulink or mpt, and Constants to MemConstVolatile.

4 Open the Signal Properties dialog box for signal INPUT. On the Code
Generation tab, set the Package to Simulink or mpt and the Storage
class to ExportedGlobal for storing state in a global variable.

5 Generate code. You should see the volatile qualifier in the generated
files model_data.c and model.h.

model_data.c

/* Constant parameters (auto storage) */
/* ConstVolatile memory section */
const volatile ConstParam_simple_lookup simple_lookup_ConstP = {

/* Expression: [-5:5]
* Referenced by: '<Root>/Lookup Table'
*/

{ -5.0, -4.0, -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0 },

/* Expression: tanh([-5:5])
* Referenced by: '<Root>/Lookup Table'
*/

{ -0.99990920426259511, -0.999329299739067,
-0.99505475368673046, -0.9640275800758169,
-0.76159415595576485, 0.0, 0.76159415595576485,
0.9640275800758169, 0.99505475368673046,
0.999329299739067, 0.99990920426259511 }

13-11

13 Memory Sections

};

model.h

/* Real-time Model Data Structure */
struct RT_MODEL_simple_lookup {

const char_T * volatile errorStatus;
};

/* Constant parameters (auto storage) */
extern const volatile ConstParam_simple_lookup simple_lookup_ConstP;

Also note in the model.c file that a typecast is inserted in the rt_Lookup
function call, removing the volatile qualifier.

/* Lookup: '<Root>/Lookup Table' incorporates:
* Inport: '<Root>/In1'
*/

OUTPUT = rt_Lookup(((const real_T*)
&simple_lookup_ConstP.LookupTable_XData[0]), 11, INPUT, ((
const real_T*) &simple_lookup_ConstP.LookupTable_YData[0]));

13-12

Apply Memory Sections

Apply Memory Sections

In this section...

“Assign Memory Sections to Custom Storage Classes” on page 13-13

“Apply Memory Sections to Model-Level Functions and Internal Data” on
page 13-15

“Apply Memory Sections to Atomic Subsystems” on page 13-17

Assign Memory Sections to Custom Storage Classes
To assign a memory section to a custom storage class,

1 Choose View > Model Explorer in the model window.

The Model Explorer appears.

2 Choose Tools > Custom Storage Class Designer in the Model Explorer
window.

A notification box appears that states Please Wait ... Finding Packages.
After a brief pause, the notification box closes and the Custom Storage
Class Designer appears.

3 Select the Custom Storage Class tab. The Custom Storage Class pane
initially looks like this:

13-13

13 Memory Sections

4 Use the Select package field to select a writable package. The rest of this
section assumes that you have selected a writable package.

5 Select the desired custom storage class in the Custom storage class
definitions pane.

6 Select the desired memory section from theMemory section pull-down.

7 Click Apply to apply changes to the open copy of the model; Save to apply
changes and save them to disk; or OK to apply changes, save changes, and
close the Custom Storage Class Designer.

Generated code for data definitions in the specified custom storage class are
enclosed in the pragmas of the specified memory section. The pragmas can
surround contiguous blocks of definitions or each definition separately, as
described in “Surround Individual Definitions with Pragmas” on page 13-7.

13-14

Apply Memory Sections

For more information, see “Design Custom Storage Classes and Memory
Sections” on page 10-8.

Note The code generator does not generate a pragma around definitions or
declarations for data that has the following built-in storage classes:

• ExportedGlobal

• ImportedExtern

• ImportedExternPointer

The code generator treats data with these built-in storage classes like custom
storage classes without a specified memory section.

Apply Memory Sections to Model-Level Functions
and Internal Data
When using code generation software, you can apply memory sections to the
following categories of model-level functions:

Function Category Function Subcategory

Initialize/StartInitialize/Terminate functions

Terminate

Step functions

Run-time initialization

Derivative

Enable

Execution functions

Disable

When using code generation software, you can apply memory sections to the
following categories of internal data:

13-15

13 Memory Sections

Data Category Data Definition Data Purpose

model_cP Constant parameters

model_cB Constant block I/O

Constants

model_Z Zero representation

model_U Root inputsInput/Output

model_Y Root outputs

model_B Block I/O

model_D D-work vectors

model_M Run-time model

Internal data

model_Zero Zero-crossings

Parameters model_P Parameters

Memory section specifications for model-level functions and internal data
apply to the top level of the model and to its subsystems. However, these
specifications are not applicable to atomic subsystems that contain overriding
memory section specifications, as described in “Apply Memory Sections to
Atomic Subsystems” on page 13-17.

To specify memory sections for model-level functions or internal data,

1 Open the Configuration Parameters dialog box and select Code
Generation > General.

2 Specify the System target file as an ERT target, such as ert.tlc .

13-16

Apply Memory Sections

3 SelectMemory Sections. TheMemory Sections pane looks like this:

4 Initially, the Package field specifies ---None--- and the pull-down lists
only built-in packages. If you have defined packages of your own, click
Refresh package list. This action adds user-defined packages on your
search path to the package list.

5 In the Package pull-down, select the package that contains the memory
sections that you want to apply.

6 In the pull-down for each category of internal data and model-level
function, specify the memory section that you want to apply to that
category. Accepting or specifying Default omits specifying memory section
for that category.

7 Click Apply to save changes to the package and memory section selections.

Apply Memory Sections to Atomic Subsystems
For atomic subsystem whose generated code format is Function or Reusable
Function, you can specify memory sections for functions and internal data
that exist in that code format. Such specifications override model-level

13-17

13 Memory Sections

memory section specifications. Such overrides apply only to the atomic
subsystem itself, not to subsystems within it. Subsystems of an atomic
subsystem inherit memory section specifications from the containing model,
not from the containing atomic subsystem.

To specify memory sections for an atomic subsystem,

1 Right-click the subsystem in the model window.

2 Choose Subsystem Parameters from the context menu. The Function
Block Parameters: Subsystem dialog box appears.

3 Select the Treat as atomic unit checkbox. If it is not selected, you cannot
specify memory sections for the subsystem.

For an atomic system, on the Code Generation tab, you can use the
Function packaging field to control the format of the generated code.

4 Specify Function packaging as Nonreusable function or Reusable
function. Otherwise, you cannot specify memory sections for the
subsystem.

5 If the code format is Function and you want separate data, check
Function with separate data.

The Code Generation tab now shows applicable memory section options.
The available options depend on the values of Function packaging
and the Function with separate data check box. When the former is
Nonreusable function and the latter is checked, the pane looks like this:

13-18

Apply Memory Sections

6 In the pull-down for each available definition category, specify the memory
section that you want to apply to that category.

• Selecting Inherit from model inherits the corresponding selection
from the model level (not parent subsystem).

• Selecting Default specifies that the category does not have an associated
memory section, overriding model-level specifications for that category.

7 Click Apply to save changes, or OK to save changes and close the dialog
box.

13-19

13 Memory Sections

Caution If you use Build This Subsystem or Build Selected Subsystem
to generate code for an atomic subsystem that specifies memory sections,
the code generator ignores the subsystem-level specifications and uses the
model-level specifications instead. The generated code is the same as if
the atomic subsystem specified Inherit from model for every category of
definition. For information about building subsystems, see “Generate Code
and Executables for Individual Subsystem”.

It is not possible to specify the memory section for a subsystem in a library.
However, you can specify the memory section for the subsystem after you
have copied it into a Simulink model. This is because in the library it is
unknown what code generation target will be used. You can copy a library
block into many different models with different code generation targets and
different memory sections available.

13-20

Generated Code with Memory Sections

Generated Code with Memory Sections

Sample ERT-Based Model with Subsystem
The next figures show an ERT-based Simulink model that defines one
subsystem, mySubsystem, and then the contents of that subsystem.

Assume that the subsystem is atomic. On the Code Generation tab, the
Function packaging parameter is Reusable function. Memory sections
have been created and assigned as shown in the next two tables; here, data
memory sections specify Pragma surrounds to be Each variable.

Model-Level Memory Section Assignments and Definitions

Section
Assignment

Section
Name

Field Name Field Value

Prepragma #pragma IO_beginInput/Output MemSect1

Postpragma #pragma IO-end

Prepragma #pragma InData-begin(%<identifier>)Internal data MemSect2

Postpragma #pragma InData-end

Prepragma #pragma Parameters-beginParameters MemSect3

Postpragma #pragma Parameters-end

13-21

13 Memory Sections

Model-Level Memory Section Assignments and Definitions (Continued)

Section
Assignment

Section
Name

Field Name Field Value

Prepragma #pragma InitTerminate-beginInitialize/
Terminate

MemSect4

Postpragma #pragma InitTerminate-end

Prepragma #pragma ExecFunc-begin(%<identifier>)Execution
functions

MemSect5

Postpragma #pragma ExecFunc-begin(%<identifier>)

Subsystem-Level Memory Section Assignments and Definitions

Section
Assignment

Section
Name

Field Name Field Value

Prepragma #pragma DATA_SEC(%<identifier>,
"FAST_RAM")

Execution
functions

MemSect6

Postpragma

Given the preceding specifications and definitions, the code generator would
create the following code, with minor variations depending on the current
version of the Target Language Compiler.

13-22

Model-Level Data Structures

Model-Level Data Structures
#pragma IO-begin
ExternalInputs_mySample mySample_U;
#pragma IO-end

#pragma IO-begin
ExternalOutputs_mySample mySample_Y;
#pragma IO-end

#pragma InData-begin(mySample_B)
BlockIO_mySample mySample_B;
#pragma InData-end

#pragma InData-begin(mySample_DWork)
D_Work_mySample mySample_DWork;
#pragma InData-end

#pragma InData-begin(mySample_M_)
RT_MODEL_mySample mySample_M_;
#pragma InData-end

#pragma InData-begin(mySample_M)
RT_MODEL_mySample *mySample_M = &mySample_M_;
#pragma InData-end

#pragma Parameters-begin
Parameters_mySample mySample_P = {

0.0 , {2.3}
};
#pragma Parameters-end

Model-Level Functions
#pragma ExecFunc-begin(mySample_step)
void mySample_step(void)
{

real_T rtb_UnitDelay;
rtb_UnitDelay = mySample_DWork.UnitDelay_DSTATE;
mySubsystem(rtb_UnitDelay, &mySample_B.mySubsystem;,

13-23

13 Memory Sections

(rtP_mySubsystem *) &mySample_P.mySubsystem);
mySample_Y.Out1_o = mySample_B.mySubsystem.Gain;
mySample_DWork.UnitDelay_DSTATE = mySample_U.In1;

}
#pragma ExecFunc-end(mySample_step)

#pragma InitTerminate-begin
void mySample_initialize(void)
{

rtmSetErrorStatus(mySample_M, (const char_T *)0);
{

((real_T*)&mySample_B.mySubsystem.Gain)[0] = 0.0;
}
mySample_DWork.UnitDelay_DSTATE = 0.0;
mySample_U.In1 = 0.0;
mySample_Y.Out1_o = 0.0;
mySample_DWork.UnitDelay_DSTATE = mySample_P.UnitDelay_X0;

}
#pragma InitTerminate-end

Subsystem Function
Because the subsystem specifies a memory section for execution functions
that overrides that of the parent model, subsystem code looks like this:

/* File: mySubsystem.c */

#pragma DATA_SEC(mySubsystem, FAST_RAM)
void mySubsystem(real_T rtu_In1,
rtB_mySubsystem *localB,
rtP_mySubsystem *localP)
{

localB->Gain = rtu_In1 * localP->Gain_Gain;
}

If the subsystem had not defined its own memory section for execution
functions, but inherited that of the parent model, the subsystem code would
have looked like this:

/* File: mySubsystem.c */

13-24

Model-Level Data Structures

#pragma ExecFunc-begin(mySubsystem)
void mySubsystem(real_T rtu_In1,
rtB_mySubsystem *localB,
rtP_mySubsystem *localP)
{

localB->Gain = rtu_In1 * localP->Gain_Gain;
}
#pragma ExecFunc-end(mySubsystem)

13-25

13 Memory Sections

Memory Section Limitation
Memory sections cannot be applied to shared utility functions, such as lookup
table functions, data type conversion functions, and fixed-point functions. For
information about shared utilities, see “Logging” and “Supporting the Shared
Utilities Folder”.

13-26

Code Generation

• Chapter 14, “Configuration”

• Chapter 15, “Code Appearance”

• Chapter 16, “Source Code Generation”

• Chapter 17, “Code Generation for AUTOSAR Software Components”

• Chapter 18, “Report Generation”

14

Configuration

• “Application Objectives” on page 14-2

• “High-Level Code Generation Objectives” on page 14-3

• “Determine Model Configuration for Specified Objectives” on page 14-5

• “Check and Configure Model for Code Generation Objectives” on page 14-6

• “Check and Configure Model for Code Generation Objectives Using
Configuration Parameters Dialog Box” on page 14-10

• “Configure Code Generation Objectives Programmatically” on page 14-13

• “Check Objectives in Referenced Models” on page 14-14

• “Check Model During Code Generation” on page 14-15

• “Create Custom Objectives” on page 14-17

• “Target” on page 14-24

• “Configuration Variations” on page 14-32

• “Wizard” on page 14-33

14 Configuration

Application Objectives
The first step in applying Embedded Coder configuration options to the
application development process is to consider how your application objectives,
particularly with respect to efficiency, traceability, and safety, map to code
generation options in a model configuration set.

Parameters that you set in the Solver, Data Import/Export, Diagnostics,
and Code Generation panes of the Configuration Parameters dialog box
specify the behavior of a model in simulation and the code generated for the
model.

Consider questions such as the following:

• What settings might help you debug your application?

• What is the highest objective for your application — efficiency, traceability,
extra safety precaution, debugging, or some other criteria?

• What is the second highest objective?

• Can the objective at the start of the project differ from the objective
required for the end result? What tradeoffs can you make?

After you answer these questions, you must:

• Define your objectives in the configuration set. For more information, see
“High-Level Code Generation Objectives” on page 14-3.

• Use the Code Generation Advisor to identify parameter values that are not
configured for the objectives that you selected. For more information, see
“Determine Model Configuration for Specified Objectives” on page 14-5.

14-2

High-Level Code Generation Objectives

High-Level Code Generation Objectives
Depending on the type of application that your model represents, you are
likely to have specific code generation objectives. For example, safety and
traceability might be more critical than efficient use of memory. If you
have specific objectives, you can quickly configure your model to meet those
objectives by selecting and prioritizing from these code generation objectives:

• Execution efficiency (all targets) — Configure code generation settings to
achieve fast execution time.

• ROM efficiency (ERT-based targets) — Configure code generation settings
to reduce ROM usage.

• RAM efficiency (ERT-based targets) — Configure code generation settings
to reduce RAM usage.

• Traceability (ERT-based targets) — Configure code generation settings to
provide mapping between model elements and code.

• Safety precaution (ERT-based targets) — Configure code generation
settings to increase clarity, determinism, robustness, and verifiability of
the code.

• Debugging (all targets) — Configure code generation settings to debug
the code generation build process.

• MISRA-C:2004 guidelines (ERT-based targets) — Configure code
generation settings to increase compliance with MISRA-C:2004 guidelines.

Based on your objective selections and prioritization, the Code Generation
Advisor checks your model and suggests changes that you can make to
achieve your code generation objectives.

14-3

14 Configuration

Note If you select the MISRA-C:2004 guidelines code generation objective,
the Code Generation Advisor checks:

• The model configuration settings for compliance with the MISRA-C:2004
configuration setting recommendations.

• For blocks that are not supported or recommended for MISRA-C:2004
compliant code generation.

Setting code generation objectives and running the Code Generation Advisor
provides information on how to meet code generation objectives for your
model. The Code Generation Advisor does not alter the generated code.
You can use the Code Generation Advisor to make the suggested changes
to your model. The generated code is changed only after you modify your
model and regenerate code. If you use the Code Generation Advisor to set
code generation objectives and check your model, the generated code includes
comments identifying which objectives you specified, the checks the Code
Generation Advisor ran on the model, and the results of running the checks.

14-4

Determine Model Configuration for Specified Objectives

Determine Model Configuration for Specified Objectives
You can use the Code Generation Advisor to review your model and identify
the parameters that are not configured for your objective. The Code
Generation Advisor reviews a subset of model configuration parameters. It
displays the results in the Check model configuration settings against
code generation objectives check.

The Code Generation Advisor uses the information presented in
“Recommended Settings Summary” to determine the values. When there
is a conflict due to multiple objectives, the higher-priority objective takes
precedence.

You can use the Code Generation Advisor to review a model before generating
code, or as part of the code generation process. When you choose to review
a model before generating code, you specify which model, subsystem, or
referenced model the Code Generation Advisor reviews. When you choose to
review a model as part of the code generation process, the Code Generation
Advisor reviews the entire system.

14-5

14 Configuration

Check and Configure Model for Code Generation
Objectives

This example shows how to configure and check your model to meet code
generation objectives:

1 On the menu bar, select Code > C/C++ Code > Code Generation
Advisor. Alternatively:

• On the toolbar drop-down list, select Code Generation Advisor.

• Right-click a subsystem, and then select C/C++ Code > Code
Generation Advisor. Go to step 3.

2 In the System Selector window, select the model or subsystem that you
want to review, and then click OK.

3 In the Code Generation Advisor, on the Code Generation Objectives
pane, select the code generation objectives. As you select objectives, on the
left pane, the Code Generation Advisor updates the list of checks it will
run on your model. If your model is configured with an ERT-based target,
more objectives are available. For this example, the model is configured
with an ERT-based target. If your objectives are execution efficiency and
traceability, in that priority, do the following:

a In Available objectives, double-click Execution efficiency.
Execution efficiency is added to Selected objectives - prioritized.

b In Available objectives, double-click Traceability. Traceability
is added to Selected objectives - prioritized below Execution
efficiency.

14-6

Check and Configure Model for Code Generation Objectives

4 Click Run Selected Checks to run the checks listed in the left pane of the
Code Generation Advisor.

5 In the Code Generation Advisor window, review the results for Check
model configuration settings against code generation objectives by
selecting it from the left pane. The results for that check are displayed in
the right pane.

Check model configuration settings against code generation
objectives triggers a warning for either of these reasons:

• Parameters are set to values other than the value recommended for the
specified code generation objectives.

• Selected code generation objectives differ from the objectives set in the
model.

Click Modify Parameters to set:

• Parameter to the value recommended for the specified code generation
objectives.

• Code generation objectives in the model to the objectives specified in the
Code Generation Advisor.

14-7

14 Configuration

6 In the Code Generation Advisor window, review the results for the
remaining checks by selecting them from the left pane. The right pane
populates the results for the checks.

7 After reviewing the check results, you can choose to fix warnings and
failures, as described in “Fix a Warning or Failure”.

14-8

Check and Configure Model for Code Generation Objectives

Note When you specify an efficiency or safety precaution objective, the Code
Generation Advisor includes additional checks.

When you make changes to one check, the other check results could become
invalid. You must run the checks again.

14-9

14 Configuration

Check and Configure Model for Code Generation
Objectives Using Configuration Parameters Dialog Box

This example shows how to configure and check your model to meet code
generation objectives using the Configuration Parameters dialog box:

1 Open the Configuration Parameters dialog box. Select Code Generation.

2 Specify a system target file. If you specify an ERT-based target, more
objectives are available. For this example, choose an ERT-based target
such as ert.tlc.

3 Click Set objectives.

4 In the “Set Objectives — Code Generation Advisor Dialog Box”, specify
your objectives. For example, if your objectives are execution efficiency and
traceability, in that priority, do the following:

a In Available objectives, double-click Execution efficiency.
Execution efficiency is added to Selected objectives - prioritized.

b In Available objectives, double-click Traceability. Traceability
is added to Selected objectives - prioritized below Execution
efficiency.

c Click OK to accept the objectives. In the Configuration Parameters
dialog box, Code Generation > General > Prioritized objectives
is updated.

5 On the Configuration Parameters > Code Generation > General
pane, click Check model.

14-10

Check and Configure Model for Code Generation Objectives Using Configuration Parameters Dialog Box

6 In the System Selector window, select the model or subsystem that you
want to review, and then click OK. The Code Generation Advisor opens and
reviews the model or subsystem that you specified.

7 In the Code Generation Advisor window, review the results by selecting
a check from the left pane. The right pane populates the results for that
check.

14-11

14 Configuration

8 After reviewing the check results, you can choose to fix warnings and
failures, as described in “Fix a Warning or Failure”.

Note When you specify an efficiency or safety precaution objective, the Code
Generation Advisor includes additional checks. When you make changes to
one check, the other check results could become invalid and you must run
the checks again.

For more information, see “Set Objectives — Code Generation Advisor Dialog
Box”

14-12

Configure Code Generation Objectives Programmatically

Configure Code Generation Objectives Programmatically
This example shows how to configure code generation objectives by writing a
MATLAB script or entering commands at the command line.

1 Specify a system target file. If you specify an ERT-based target, more
objectives are available. For this example, specify ert.tlc. model_name is
the name or handle to the model.

set_param(model_name, 'SystemTargetFile', 'ert.tlc');

2 Specify your objectives. For example, if your objectives are execution
efficiency and traceability, in that priority, enter:

set_param(model_name, 'ObjectivePriorities',...
{'Execution efficiency', 'Traceability'});

Note When you specify a GRT-based system target file, you can specify
an objective at the command line. If you specify ROM efficiency, RAM
efficiency, Traceability, MISRA-C:2004 guidelines, or Safety
precaution, the build process changes the objective to Unspecified because
you have specified a value that is invalid when using a GRT-based target.

14-13

14 Configuration

Check Objectives in Referenced Models
When you check a model during the code generation process, you must specify
the same objectives in the top model and referenced models. If you specify
different objectives for the top model and referenced model, the build process
generates an error.

To specify different objectives for the top model and each referenced model,
review the models separately without generating code.

14-14

Check Model During Code Generation

Check Model During Code Generation
This example shows how to use the Code Generation Advisor to review a
model as part of the code generation process.

1 Specify your code generation objectives.

2 On the Configuration Parameters > Code Generation > General
pane, select one of the following from Check model before generating
code:

• On (proceed with warnings)

• On (stop for warnings)

3 If you only want to generate code, select Generate code only; otherwise
clear the check box to build an executable.

4 Apply your changes, and then click Generate code/Build. The Code
Generation Advisor starts and reviews the top model and subsystems.

If the Code Generation Advisor issues failures or warnings, and you
specified:

• On (proceed with warnings)— The Code Generation Advisor window
opens while the build process proceeds. After the build process is
complete, you can review the results.

• On (stop for warnings) — The build process halts and displays
the diagnostics viewer. To continue, you must review and resolve the
Code Generation Advisor results or change the Check model before
generating code selection.

5 In the Code Generation Advisor window, review the results by selecting
a check from the left pane. The right pane populates the results for that
check.

6 After reviewing the check results, you can choose to fix warnings and
failures as described in “Fix a Warning or Failure”.

14-15

14 Configuration

Note When you specify an efficiency or safety precaution objective, the
Code Generation Advisor includes additional checks. When you make
changes to one of these checks, the other check results could become invalid
and you must run the check again.

For more information, see “Set Objectives — Code Generation Advisor Dialog
Box”

14-16

Create Custom Objectives

Create Custom Objectives

In this section...

“Specify Parameters in Custom Objectives” on page 14-17

“Specify Checks in Custom Objectives” on page 14-18

“Determine Checks and Parameters in Existing Objectives” on page 14-19

“How to Create Custom Objectives” on page 14-20

The Code Generation Advisor reviews your model based on objectives that
you specify. If the predefined efficiency, traceability, safety precaution, and
debugging objectives do not meet your requirements, you can create custom
objectives.

You can create custom objectives by:

• Creating a new objective and adding parameters and checks to a new
objective.

• Creating a new objective based on an existing objective, then adding,
modifying, and removing the parameters and checks within the new
objective.

Specify Parameters in Custom Objectives
When you create a custom objective, you specify the values of configuration
parameters that the Code Generation Advisor reviews. You can use the
following methods:

• addParam — Add parameters and specify the values that the Code
Generation Advisor reviews in Check model configuration settings
against code generation objectives. When you add parameters that
have dependencies, the software includes the dependencies in the list of
parameter values that the Code Generation Advisor reviews.

• modifyInheritedParam — Modify inherited parameter values that the
Code Generation Advisor reviews in Check model configuration
settings against code generation objectives.

14-17

14 Configuration

• removeInheritedParam — Remove inherited parameters from a new
objective that is based on an existing objective. When a user selects
multiple objectives, if another selected objective includes this parameter,
the Code Generation Advisor reviews the parameter value in Check model
configuration settings against code generation objectives.

Specify Checks in Custom Objectives
Objectives include the Check model configuration settings against
code generation objectives check by default. When you create a custom
objective, you specify the list of additional checks that are associated with the
custom objective. You can use the following methods:

• addCheck — Add checks to the Code Generation Advisor. When a user
selects the custom objective, the Code Generation Advisor displays the
check, unless the user specifies an additional objective with a higher
priority that excludes the check.

For example, you might add a check to the Code Generation Advisor to
include a custom check in the automatic model checking process.

• excludeCheck — Exclude checks from the Code Generation Advisor.
When a user selects multiple objectives, if the user specifies an additional
objective that includes this check as a higher priority objective, the Code
Generation Advisor displays this check.

For example, you might exclude a check from the Code Generation Advisor
when a check takes a long time to process.

• removeInheritedCheck— Remove inherited checks from a new objective
that is based on an existing objective. When a user selects multiple
objectives, if another selected objective includes this check, the Code
Generation Advisor displays the check.

For example, you might remove an inherited check, rather than exclude
the check, when the check takes a long time to process, but the check is
important for another objective.

14-18

Create Custom Objectives

Determine Checks and Parameters in Existing
Objectives
When you base a new objective on an existing objective, you can determine
what checks and parameters the existing objective contains. The Code
Generation Advisor contains the list of checks in each objective.

For example, the Efficiency objective includes checks which you can see
in the Code Generation Advisor. To see the checks in the Code Generation
Advisor:

1 Open the rtwdemo_rtwecintro model.

2 Specify an ERT-based target.

3 On the model toolbar, select Code > C/C++ Code > Code Generation
Advisor.

4 In the System Selector window, select the model or subsystem that you
want to review, and then click OK.

5 In the Code Generation Advisor, on the Code Generation Objectives
pane, select the code generation objectives. As you select objectives, on the
left pane, the Code Generation Advisor updates the list of checks it will run
on your model. For this example, select Execution efficiency.

• In Available objectives, double-click Execution efficiency.
Execution efficiency is added to Selected objectives - prioritized.

In the left pane, the Code Generation Advisor lists the checks for
the Execution efficiency objective. The first check, Check model
configuration settings against code generation objectives, lists
parameters and values specified by the objective. For example, the Code
Generation Advisor displays the list of parameters and the recommended
values in the Execution efficiency objective. To see the list of parameters
and values:

1 Run Check model configuration settings against code generation
objectives.

2 Click Modify Parameters.

14-19

14 Configuration

3 Rerun the check.

In the check results, the Code Generation Advisor displays the list of
parameters and recommended values for the Execution efficiency
objective.

How to Create Custom Objectives
To create a custom objective:

1 Create an sl_customization.m file.

• Specify custom objectives in a single sl_customization.m file only, or
the software generates an error. This issue is true even if you have more
than one sl_customization.m file on your MATLAB path.

• Except for the matlabroot/work folder, do not place an
sl_customization.m file in your root MATLAB folder, or its subfolders.
Otherwise, the software ignores the customizations that the file specifies.

2 Create an sl_customization function that takes a single argument.
When the software invokes the function, the value of this argument is the
Simulink customization manager. In the function:

a Create a handle to the code generation objective, using the
ObjectiveCustomizer constructor.

14-20

Create Custom Objectives

b Register a callback function for the custom objectives, using the
ObjectiveCustomizer.addCallbackObjFcn method.

c Add a call to execute the callback function, using the
ObjectiveCustomizer.callbackFcn method.

For example:

function sl_customization(cm)

%SL_CUSTOMIZATION objective customization callback

objCustomizer = cm.ObjectiveCustomizer;

index = objCustomizer.addCallbackObjFcn(@addObjectives);

objCustomizer.callbackFcn{index}();

end

3 Create a MATLAB callback function that:

• Creates code generation objective objects using the
rtw.codegenObjectives.Objective constructor.

• Adds, modifies, and removes configuration parameters for each
objective using the addParam, modifyInheritedParam, and
removeInheritedParam methods.

• Includes and excludes checks for each objective using the addCheck,
excludeCheck, and removeInheritedCheck methods.

• Registers objectives using the register method.

The following example shows how to create an objective, Reduce RAM
Example. Reduce RAM Example includes five parameters and three checks
that the Code Generation Advisor reviews.

function addObjectives

% Create the custom objective

obj = rtw.codegenObjectives.Objective('ex_ram_1');

setObjectiveName(obj, 'Reduce RAM Example');

% Add parameters to the objective

addParam(obj, 'InlineParams', 'on');

14-21

14 Configuration

addParam(obj, 'BooleanDataType', 'on');

addParam(obj, 'OptimizeBlockIOStorage', 'on');

addParam(obj, 'EnhancedBackFolding', 'on');

addParam(obj, 'BooleansAsBitfields', 'on');

% Add additional checks to the objective

% The Code Generation Advisor automatically includes 'Check model

% configuration settings against code generation objectives' in every

% objective.

addCheck(obj, 'mathworks.design.UnconnectedLinesPorts');

addCheck(obj, 'mathworks.design.Update');

%Register the objective

register(obj);

end

The following example shows you how to create an objective, My
Traceability Example, based on the existing Traceability objective. The
custom objective modifies, removes, and adds parameters that the Code
Generation Advisor reviews. It also adds and removes checks from the
Code Generation Advisor.

function addObjectives

% Create the custom objective from an existing objective

obj = rtw.codegenObjectives.Objective('ex_my_trace_1', 'Traceability');

setObjectiveName(obj, 'My Traceability Example');

% Modify parameters in the objective

modifyInheritedParam(obj, 'GenerateTraceReportSf', 'Off');

removeInheritedParam(obj, 'ConditionallyExecuteInputs');

addParam(obj, 'MatFileLogging', 'On');

% Modify checks in the objective

addCheck(obj, 'mathworks.codegen.SWEnvironmentSpec');

removeInheritedCheck(obj, 'mathworks.codegen.CodeInstrumentation');

%Register the objective

register(obj);

14-22

Create Custom Objectives

end

4 If you previously opened the Code Generation Advisor, close the model from
which you opened the Code Generation Advisor.

5 Refresh the customization manager. At the MATLAB command line, enter
the sl_refresh_customizations command.

6 Open your model and review the new objectives.

14-23

14 Configuration

Target

In this section...

“About Target Selection” on page 14-24

“Select an ERT Target” on page 14-25

“Customize an ERT Target” on page 14-26

“Configure Support for Numeric Data” on page 14-26

“Configure Support for Time Values” on page 14-27

“Support for Non-inlined S-Functions” on page 14-27

“Configure Model Function Generation and Argument Passing” on page
14-28

“Set Up Support for Code Reuse” on page 14-29

“Configure Code Replacement Libraries” on page 14-31

About Target Selection
The first step to configuring a model for code generation is to choose and
configure a code generation target. When you select a target, other model
configuration parameters change automatically to best serve requirements
of the target. For example:

• Code interface parameters

• Build process parameters, such as the template make file

• Target hardware parameters, such as word size and byte ordering

Use the Browse button on the Code Generation pane to open the System
Target File Browser (see “Selecting a Target”. The browser lets you select
a preset target configuration consisting of a system target file, template
makefile, and make command.

If you select a target configuration by using the System Target File Browser,
your selection appears in the System target file field (target.tlc).

14-24

Target

If you are using a target configuration that does not appear in the System
Target File Browser, enter the name of your system target file in the System
target file field. Click Apply or OK to configure for that target.

“Targets and Code Formats” describes the use of the browser and includes
a complete list of available target configurations.

You also can select a system target file programmatically from MATLAB code,
as described in “Selecting a System Target File Programmatically”.

After selecting a system target, you can modify model configuration parameter
settings.

If you want to switch between different targets in a single workflow for
different code generation purposes (for example, rapid prototyping versus
product code deployment), set up different configuration sets for the same
model and switch the active configuration set for the current operation. For
more information on how to set up configuration sets and change the active
configuration set, see “Manage a Configuration Set”.

Select an ERT Target
The Browse button in the Target Selection subpane of the Code
Generation > General pane lets you select an ERT target with the System
Target File Browser. See “Targets and Code Formats” for a general discussion
of target selection.

The code generator provides variants of the ERT target including the
following:

• Default ERT target

• ERT target for generating and building a Visual C++® Solution (.sln)
file for the Visual C++ IDE

• ERT target for generating a Windows® or UNIX® host-based shared library

These targets are based on a common system target file, ert.tlc. They are
displayed in the System Target File Browser as shown in the figure below.

14-25

14 Configuration

You can use the ert_shrlib.tlc target to generate a host-based shared
library from your Simulink model. Selecting this target allows you to generate
a shared library version of your model code for your host platform, either
a Windows dynamic link library (.dll) file or a UNIX shared object (.so)
file. This feature can be used to package your source code securely for easy
distribution and shared use.

Customize an ERT Target
For information on customizing ERT targets, see “Target Development”.

Configure Support for Numeric Data
By default, ERT targets support code generation for integer, floating-point,
nonfinite, and complex numbers.

To Generate Code that
Supports...

Do...

Integer data only Deselect Support floating-point numbers. If noninteger
data or expressions are encountered during code generation, an
error message reports the offending blocks and parameters.

Floating-point data Select Support floating-point numbers.

14-26

Target

To Generate Code that
Supports...

Do...

Nonfinite values (for example,
NaN, Inf)

Select Support floating-point numbers and Support
non-finite numbers .

Complex data Select Support complex numbers .

For more information, see “Code Generation Pane: Interface”.

Configure Support for Time Values
Certain blocks require the value of absolute time (that is, the time from the
start of program execution to the present time) , elapsed time (for example,
the time elapsed between two trigger events), or continuous time. Depending
on the blocks used, you might need to adjust the configuration settings for
supported time values.

To... Select...

Generate code that creates
and maintains integer
counters for blocks that use
absolute or elapsed time
values (default)

Support absolute time. For further information on the
allocation and operation of absolute and elapsed timers, see
“Timers”. If you do not select this parameter and the model
includes block that use absolute or elapsed time values, the build
process generates an error.

Generate code for blocks
that rely on continuous time

Support continuous time. If you do not select this parameter
and the model includes continuous-time blocks, the build process
generates an error.

For more information, see “Code Generation Pane: Interface”.

Support for Non-inlined S-Functions
To generate code for noninlined S-Functions in a model, select Support
noninlined S-functions. The generation of noninlined S-functions requires
floating-point and nonfinite numbers. Thus, when you select Support
non-inlined S-functions, the ERT target automatically selects Support
floating-point numbers and Support non-finite numbers.

14-27

14 Configuration

When you select Support non-finite numbers, the build process generates
an error if the model includes a C MEX S-function that does not have a
corresponding TLC implementation (for inlining code generation).

Note that inlining S-functions is highly advantageous in production code
generation, for example in implementing device drivers. To enforce the use
of inlined S-functions for code generation, deselect Support non-inlined
S-functions.

For more information, see “Code Generation Pane: Interface”.

Configure Model Function Generation and Argument
Passing
For ERT targets, you can configure how a model’s functions are generated and
how arguments are passed to the functions.

To... Do...

Generate model function calls
that are compatible with the main
program module of the pre-R2012a
GRT target (grt_main.c or .cpp)

Select Classic call interface andMAT-file logging. In
addition, deselect Suppress error status in real-time
model data structure. Classic call interface
provides a quick way to use code generated in R2012a or
higher with a pre-R2012a GRT-based custom target by
generating wrapper function calls that interface to the
generated code.

Reduce overhead and use more local
variables by combining the output
and update functions in a single
model_step function

Select Single output/update function Errors or
unexpected behavior can occur if a Model block is
part of a cycle and “Single output/update function” is
enabled (the default). See “Model Blocks and Direct Feed
through” for details.

Generate a model_terminate
function for a model not designed to
run indefinitely

Select Terminate function required. For more
information, see the description of model_terminate.

Generate reusable, reentrant code
from a model or subsystem

Select Generate reusable code. See “Set Up Support
for Code Reuse” on page 14-29 for details.

14-28

Target

To... Do...

Statically allocate model data
structures and access them directly
in the model code

Deselect Generate reusable code. The generated code
is not reusable or reentrant. See “Entry Point Functions
and Scheduling” for information on the calling interface
generated for model functions in this case.

Suppress the generation of an error
status field in the real-time model
data structure, rtModel, for example,
if you do not need to log or monitor
error messages

Select Suppress error status in real-time model
data structure. Selecting this parameter can also cause
the rtModel structure to be omitted completely from the
generated code.

When generating code for multiple integrated models, set
this parameter the same for all of the models. Otherwise,
the integrated application might exhibit unexpected
behavior. For example, if you select the option in one
model but not in another, the error status might not be
registered by the integrated application.

Do not select this parameter if you select the MAT-file
logging option. The two options are incompatible.

Open the Model Step Functions
dialog box preview and modify
the model’s model_step function
prototype (see “Entry Point Functions
and Scheduling”)

Click Configure Step Function. Based on the
Function specification value you select for your
model_step function (supported values include
Default model-step function and Model specific C
prototype), you can preview and modify the function
prototype. Once you validate and apply your changes,
you can generate code based on your function prototype
modifications. For more information about using the
Configure Step Function button and the Model Step
Functions dialog box, see “Function Prototype Control”
on page 12-2.

For more information, see “Code Generation Pane: Interface”.

Set Up Support for Code Reuse
For ERT targets, you can configure how a model reuses code using the
Generate reusable code parameter.

14-29

14 Configuration

Pass root-level I/O as provides options that control how model inputs and
outputs at the root level of the model are passed to the model_step function.

To... Select...

Pass each root-level model input and output
argument to the model_step function
individually (the default)

Generate reusable code and Pass
root-level I/O as > Individual arguments.

Pack root-level input arguments and root-level
output arguments into separate structures that
are then passed to the model_step function

Generate reusable code and Pass
root-level I/O as > Structure reference

In some cases, selecting Generate reusable code can generate code that
compiles but is not reentrant. For example, if a signal, DWork structure, or
parameter data has a storage class other than Auto, global data structures are
generated. To handle such cases, use the Reusable code error diagnostic
parameter to choose the severity levels for diagnostics.

In some cases, the Embedded Coder software is unable to generate valid and
compilable code. For example, if the model contains one of the following,
the code generated would be invalid.

• An S-function that is not code-reuse compliant

• A subsystem triggered by a wide function call trigger

In these cases, the build terminates after reporting the problem.

For more information, see “Code Generation Pane: Interface”.

14-30

Target

Configure Code Replacement Libraries
A code replacement library (CRL) is a set of one or more code replacement
tables that define the target-specific implementations of math functions
and operators to be used in generating code for your Simulink model. The
Simulink Coder product provides default CRLs, which you can select from the
Code replacement library drop-down list on the Interface pane of the
Configuration Parameters dialog box.

CRL tables provide the basis for replacing default math functions and
operators in your model code with target-specific code. If you select a library
and then hover over the selected library with the cursor, a tool tip is displayed
that describes the CRL and lists the code replacement tables it contains.
Tables are listed in the order in which they are searched for a function or
operator match.

The Simulink Coder product allows you to view the content of CRL code
replacement tables using the Code Replacement Viewer, as described in
“Selecting and Viewing Code Replacement Libraries”. The Embedded Coder
product allows you to additionally create and register the code replacement
tables that make up a CRL, as described in “Code Replacement”.

14-31

14 Configuration

Configuration Variations

About Model Configuration for Code Generation
This chapter explains how to use the Embedded Real-Time (ERT) target code
generation options to configure models for production code generation. The
discussion also includes other options that are not specific to the ERT target,
but concern ERT code generation.

Every model contains one or more named configuration sets that specify model
parameters such as solver options, code generation options, and other choices.
A model can contain multiple configuration sets, but only one configuration
set is active at a time. A configuration set includes options that specify code
generation in general, and options that are specific to a given target, such as
the ERT target.

Configuration sets can be particularly useful in embedded systems
development. By defining multiple configuration sets in a model, you
can easily retarget code generation from that model. For example, one
configuration set might specify the default ERT target with external mode
support enabled for rapid prototyping, while another configuration set might
specify the ERT-based target for Visual C++ to generate production code for
deployment of the application. Activation of either configuration set fully
reconfigures the model for that type of code generation.

Before you work with the ERT target options, you should become familiar with

• Configuration sets and how to view and edit them in the Configuration
Parameters dialog box. For more information, see “About Model
Configurations”.

• Code generation options and the use of the System Target File Browser.
For more information, see “Configure a Model for Code Generation”.

14-32

Wizard

Wizard

In this section...

“Block Library” on page 14-33

“Add a Configuration Wizard Block” on page 14-35

“Use Configuration Wizard Blocks” on page 14-37

“Create a Custom Configuration Wizard Block” on page 14-37

Block Library
The Embedded Coder software provides a library of Configuration Wizard
blocks and scripts to help you configure and optimize code generation from
your models quickly and easily.

The library provides a Configuration Wizard block you can customize, and
four preset Configuration Wizard blocks.

Block Description

Custom MATLAB file Automatically update active
configuration parameters of parent
model using a custom file

ERT (optimized for fixed-point) Automatically update active
configuration parameters of parent
model for ERT fixed-point code
generation

ERT (optimized for floating-point) Automatically update active
configuration parameters of parent
model for ERT floating-point code
generation

14-33

14 Configuration

Block Description

GRT (debug for fixed/floating-point) Automatically update active
configuration parameters of
parent model for GRT fixed- or
floating-point code generation with
debugging enabled

GRT (optimized for
fixed/floating-point)

Automatically update active
configuration parameters of parent
model for GRT fixed- or floating-point
code generation

These are shown in the figure below.

When you add one of the preset Configuration Wizard blocks to your
model and double-click it, a predefined MATLAB file script executes and
configures parameters of the model’s active configuration set without manual
intervention. The preset blocks configure the options optimally for one of the
following cases:

• Fixed-point code generation with the ERT target

• Floating-point code generation with the ERT target

14-34

Wizard

• Fixed/floating-point code generation with TLC debugging options enabled,
with the GRT target.

• Fixed/floating-point code generation with the GRT target

The Custom block is associated with an example MATLAB file script that
you can adapt to your requirements.

You can also set up the Configuration Wizard blocks to invoke the build
process after configuring the model.

Add a Configuration Wizard Block
This section describes how to add one of the preset Configuration Wizard
blocks to a model.

The Configuration Wizard blocks are available in the Embedded Coder block
library. To use a Configuration Wizard block:

1 Open the model that you want to configure.

2 Open the Embedded Coder library by typing the command rtweclib.

3 The top level of the library is shown below.

4 Double-click the Configuration Wizards icon. The Configuration Wizards
sublibrary opens.

14-35

14 Configuration

5 Select the Configuration Wizard block you want to use and drag and
drop it into your model. In the figure below, the ERT (optimized for
fixed-point) Configuration Wizard block has been added to the model.

6 You can set up the Configuration Wizard block to invoke the build process
after executing its configuration script. If you do not want to use this
feature, skip to the next step.

If you want the Configuration Wizard block to invoke the build process,
right-click on the Configuration Wizard block in your model, and select
Mask > Mask Parameters... from the context menu. Then, select the
Invoke build process after configuration parameter.

7 Click Apply, and close the Mask Parameters dialog box.

Note You should not change the Configure the model for option, unless
you want to create a custom block and script. In that case, see “Create a
Custom Configuration Wizard Block” on page 14-37.

8 Save the model.

9 You can now use the Configuration Wizard block to configure the model, as
described in the next section.

14-36

Wizard

Use Configuration Wizard Blocks
Once you have added a Configuration Wizard block to your model, just
double-click the block. The script associated with the block automatically sets
parameters of the active configuration set that are relevant to code generation
(including selection of the target). You can verify that the options have
changed by opening the Configuration Parameters dialog box and examining
the settings.

If the Invoke build process after configuration option for the block was
selected, the script also initiates the code generation and build process.

Note You can add more than one Configuration Wizard block to your model.
This provides a quick way to switch between configurations.

Create a Custom Configuration Wizard Block
The Custom Configuration Wizard block is shipped with an associated
MATLAB file script, rtwsampleconfig.m. The script is located in the folder
matlabroot/toolbox/rtw/rtw.

Both the block and the script are intended to provide a starting point for
customization. This section describes:

• How to create a custom Configuration Wizard block linked to a custom
script.

• Operation of the example script, and programming conventions and
requirements for a customized script.

• How to run a configuration script from the MATLAB command line
(without a block).

Setting Up a Configuration Wizard Block
This section describes how to set up a custom Configuration Wizard block and
link it to a script. If you want to use the block in more than one mode, it is
advisable to create a Simulink library to contain the block.

To begin, make a copy of the example script for later customization:

14-37

14 Configuration

1 Create a folder to store your custom script. This folder should not be
anywhere inside the MATLAB folder structure (that is, it should not be
under matlabroot).

The discussion below refers to this folder as /my_wizards.

2 Add the folder to the MATLAB path. Save the path for future sessions.

3 Copy the example script
(matlabroot/toolbox/rtw/rtw/rtwsampleconfig.m) to the /my_wizards
folder you created in the previous steps. Then, rename the script as
desired. The discussion below uses the name my_configscript.m.

4 Open the example script into the MATLAB editor. Scroll to the end of the
file and enter the following line of code:

disp('Custom Configuration Wizard Script completed.');

This statement is used later as a test to verify that your custom block has
executed the script.

5 Save your script and close the MATLAB editor.

The next step is to create a Simulink library and add a custom block to it.
Do this as follows:

1 Open the Embedded Coder library and the Configuration Wizards
sublibrary, as described in “Add a Configuration Wizard Block” on page
14-35.

2 Select New > Library from the File menu of the Configuration Wizards
sublibrary window. An empty library window opens.

3 Select the Custom MATLAB file block from the Configuration Wizards
sublibrary and drag and drop it into the empty library window.

4 To distinguish your custom block from the original, edit the Custom
MATLAB file label under the block as desired.

5 Select Save as from the File menu of the new library window; save the
library to the /my_wizards folder, under your library name of choice. In

14-38

Wizard

the figure below, the library has been saved as ex_custom_button, and the
block has been labeled my_wizard MATLAB-file.

The next step is to link the custom block to the custom script:

1 Right-click on the block in your model, and select Mask > Mask
Parameters from the context menu. Notice that the Configure
the model for menu is set to Custom. When Custom is selected, the
Configuration function edit field is enabled, so that you can enter the
name of a custom script.

2 Enter the name of your custom script into the Configuration function
field. (Do not enter the .m filename extension, which is implicit.) In the
figure below, the script name my_configscript has been entered into the
Configuration function field. This establishes the linkage between the
block and script.

3 Note that by default, the Invoke build process after configuration
option is deselected. You can change the default for your custom block by
selecting this option. For now, leave this option deselected.

4 Click Apply and close the Mask Parameters dialog box.

5 Save the library.

14-39

14 Configuration

6 Close the Embedded Coder library and the Configuration Wizards
sublibrary. Leave your custom library open for use in the next step.

Now, test your block and script in a model. Do this as follows:

1 Open the vdp model by typing the command:

vdp

2 Open the Configuration Parameters dialog box and view the options by
clicking on Code Generation in the list in the left pane of the dialog box.

3 Observe that vdp is configured, by default, for the GRT target. Close the
Configuration Parameters dialog box.

4 Select your custom block from your custom library. Drag and drop the block
into the vdp model.

5 In the vdp model, double-click your custom block.

6 In the MATLAB window, you should see the test message you previously
added to your script:

Custom Configuration Wizard Script completed.

This indicates that the custom block executed the script.

7 Reopen the Configuration Parameters dialog box and view the Code
Generation pane again. You should now see that the model is configured
for the ERT target.

Before applying further edits to your custom script, proceed to the next section
to learn about the operation and conventions of Configuration Wizard scripts.

14-40

Wizard

Create a Configuration Wizard Script
You should create your custom Configuration Wizard script by copying and
modifying the example script, rtwsampleconfig.m. This section provides
guidelines for modification.

The Configuration Function. The example script implements a single
function without a return value. The function takes a single argument cs:

function rtwsampleconfig(cs)

The argument cs is a handle to a proprietary object that contains information
about the model’s active configuration set. The Simulink software obtains
this handle and passes it in to the configuration function when the user
double-clicks a Configuration Wizard block.

Your custom script should conform to this prototype. Your code should use
cs as a “black box” object that transmits information to and from the active
configuration set, using the accessor functions described below.

Access Configuration Set Parameters. To set parameters or obtain
parameter values, use the Simulink set_param and get_param functions.

Option names are passed in to set_param and get_param as strings specifying
an internal option name. The internal option name may not correspond to the
option label on the GUI (for example, the Configuration Parameters dialog
box). The example configuration accompanies each set_param and get_param
call with a comment that correlates internal option names to GUI option
labels. For example:

set_param(cs,'LifeSpan','1'); % Application lifespan (days)

To obtain the current setting of an option in the active configuration set,
call get_param. Pass in the cs object as the first argument, followed by the
internal option name. For example, the following code excerpt tests the
setting of the Create code generation report option:

if strcmp(get_param(cs, 'GenerateReport'), 'on')
...

To set an option in the active configuration set, call set_param. Pass in the
cs object as the first argument, followed by one or more parameter/value

14-41

14 Configuration

pairs that specify the internal option name and its value. For example, the
following code excerpt turns off the Support absolute time option:

set_param(cs,'SupportAbsoluteTime','off');

Select a Target. A Configuration Wizard script must select a target
configuration. The example script uses the ERT target as a default. The script
first stores string variables that correspond to the required System target
file, Template makefile, and Make command settings:

stf = 'ert.tlc';
tmf = 'ert_default_tmf';
mc = 'make_rtw';

The system target file is selected by passing the cs object and the stf string
to the switchTarget function:

switchTarget(cs,stf,[]);

The template makefile and make command options are set by set_param calls:

set_param(cs,'TemplateMakefile',tmf);
set_param(cs,'MakeCommand',mc);

To select a target, your custom script needs only to set up the string variables
stf, tmf, and mc and pass them to the calls, as above.

Obtain Target and Configuration Set Information. The following utility
functions and properties are provided so that your code can obtain information
about the current target and configuration set, with the cs object:

• isValidParam(cs, 'option'): The option argument is an internal option
name. isValidParam returns true if option is a valid option in the context
of the active configuration set.

• getPropEnabled(cs, 'option'): The option argument is an internal
option name. Returns true if this option is enabled (that is, writable).

• IsERTTarget property: Your code can detect whether or not the currently
selected target is derived from the ERT target is selected by checking the
IsERTTarget property, as follows:

isERT = strcmp(get_param(cs,'IsERTTarget'),'on');

14-42

Wizard

This information can be used to determine whether or not the script should
configure ERT-specific options, for example:

if isERT
set_param(cs,'ZeroExternalMemoryAtStartup','off');
set_param(cs,'ZeroInternalMemoryAtStartup','off');
set_param(cs,'InitFltsAndDblsToZero','off');
set_param(cs,'InlinedParameterPlacement',...

'NonHierarchical');
set_param(cs,'NoFixptDivByZeroProtection','on')

end

Invoke a Configuration Wizard Script from the MATLAB
Command Prompt
Configuration Wizard scripts can be run from the MATLAB command prompt.
(The Configuration Wizard blocks are provided as a graphical convenience,
but are not essential.)

Before invoking the script, you must open a model and instantiate a cs object
to pass in as an argument to the script. After running the script, you can
invoke the build process with the rtwbuild command. The following example
opens, configures, and builds a model.

open my_model;
cs = getActiveConfigSet ('my_model');
rtwsampleconfig(cs);
rtwbuild('my_model');

14-43

14 Configuration

14-44

15

Code Appearance

• “Add Custom Comments to Generated Code” on page 15-2

• “Add Custom Comments for Signal or Parameter Identifiers” on page 15-4

• “Add Global Comments” on page 15-6

• “Customize Generated Identifier Naming Rules” on page 15-12

• “Identifier Format Control” on page 15-14

• “Control Name Mangling in Generated Identifiers” on page 15-18

• “Avoid Identifier Name Collisions with Referenced Models” on page 15-20

• “Maintain Traceability for Generated Identifiers” on page 15-21

• “Exceptions to Identifier Formatting Conventions” on page 15-22

• “Identifier Format Control Parameters Limitations” on page 15-23

• “Specify Simulink Data Object Naming Rules” on page 15-25

• “Control Code Style” on page 15-26

• “Customize Code Organization and Format” on page 15-28

• “Code Annotation for Justifying Polyspace Checks” on page 15-72

• “Manage Placement of Data Definitions and Declarations” on page 15-74

• “Specify Delimiter for #Includes” on page 15-101

15 Code Appearance

Add Custom Comments to Generated Code
You can include auto-generated comments in the generated code as described
in “Configure Code Comments”. For ERT targets, include additional custom
comments by setting parameters on the Code Generation > Comments
pane of the Configuration Parameters dialog box. With these parameters, you
can enable or suppress generation of descriptive information in comments
for blocks and other model elements.

To... Select...

Include the text specified in the Description
field of a block’s Block Properties dialog box as
comments in the code generated for each block

Simulink block descriptions.

Add a comment that includes the block name
at the start of the code for each block

Simulink block descriptions

Include the text specified in the Description
field of a Simulink data object (such as a
signal, parameter, data type, or bus) in the
Simulink Model Explorer as comments in the
code generated for each object

Simulink data object descriptions.

Include comments just above signals and
parameter identifiers in the generated code as
specified in the MATLAB or TLC function.

Custom comments (MPT objects only).

Include the text specified in the Description
field of the Properties dialog box for a Stateflow
object as comments just above the code
generated for each object

Stateflow object descriptions .

Include requirements assigned to Simulink
blocks in the generated code comments (for
more information, see “Generate Code for
Models with Requirements Links”)

Requirements in block comments.

When you select Simulink block descriptions,

• The description text for blocks and Stateflow objects and block names
generated as comments can include international (non-US-ASCII)

15-2

Add Custom Comments to Generated Code

characters. For details on international character support, see “Support
for International (Non-US-ASCII) Characters”.

• The code generation software automatically inserts comments into the
generated code for custom blocks. Therefore, it is not required to include
block comments in the associated TLC file for a custom block.

Note If you have existing TLC files with manually inserted comments
for block descriptions, the code generation process emits these comments
instead of the automatically generated comments. Consider removing
existing block comments from your TLC files. Manually inserted comments
might be poorly formatted in the generated code and code-to-model
traceability might not work.

• For virtual blocks or blocks that have been removed due to block reduction,
comments are not generated.

For more information, see “Code Generation Pane: Comments”.

15-3

15 Code Appearance

Add Custom Comments for Signal or Parameter Identifiers
This example shows you how to add a comment just above a signal or
parameter’s identifier in the generated code. This is accomplished using

• A MATLAB or TLC function that you write and save in a .m or .tlc file

• The Custom comments (MPT objects only) check box on the Code
Generation > Comments pane of the Configuration Parameters dialog
box

• Selecting the .m or .tlc file in the Custom comments function field
on the Code Generation > Comments pane of the Configuration
Parameters dialog box.

You may include at least some or all of the property values for the data object.
Each Simulink data object (signal or parameter) has properties, as described
in Parameter and Signal Property Values on page 9-3. This example comment
contains some of the property values for the data object MAP as specified on
the Model Explorer:

/* DocUnits: PSI */
/* Owner: */
/* DefinitionFile: specialDef */
real_T MAP = 0.0;

You can type text in the Description field on the Model Explorer for a signal
or parameter data object. If you do, and if you select the Simulink data
object descriptions check box on the Comments pane of the Configuration
Parameters dialog box, this text will appear beside the signal’s or parameter’s
identifier in the generated code as a comment. This is true whether or not
you select the Custom comments (MPT objects only) check box discussed
in this procedure. For example, typing Manifold Absolute Pressure in
the Description field for the data object MAP results in the following in the
generated code:

real_T MAP = 0.0; /* Manifold Absolute Pressure */

To add a comment just above a signal or parameter’s identifier in the
generated code:

15-4

Add Custom Comments for Signal or Parameter Identifiers

1 The signal or parameter MPT object must use a custom storage class. Open
the MPT object properties dialog box and confirm that the Storage class is
a custom storage class ((Custom) suffixed to its name). The default storage
class for an MPT object is Global (Custom).

2 Write a MATLAB or TLC function that places comments in the generated
files as desired. An example .m file named rtwdemo_comments_mptfun.m is
provided in the matlab/toolbox/rtw/rtwdemos folder. This file contains
instructions.

The MATLAB function must have three arguments that correspond to
objectName, modelName, and request, respectively. The TLC function
must have three arguments that correspond to objectName, modelName,
and request, respectively. Note also, in the case of the TLC file, you can
use the library function LibGetSLDataObjectInfo to get every property
value of the data object.

3 Save the function as a .m file or a .tlc file and place it in a folder in the
MATLAB path.

4 Open the model and the Configuration Parameters dialog box.

5 Click Comments under Code Generation on the left pane. The
Comments pane appears on the right.

6 Select the Custom comments (MPT objects only) check box.

7 In the Custom comments function field, type the filename of the .m
file or .tlc file you created.

8 Click the Apply button.

9 Click Generate Code.

10 Open the generated files and inspect their content to check that the
comments are what you want.

15-5

15 Code Appearance

Add Global Comments

In this section...

“Use a Simulink DocBlock to Add a Comment” on page 15-6

“Use a Simulink Annotation to Add a Comment” on page 15-9

“Use a Stateflow Note to Add a Comment” on page 15-9

“Use Sorted Notes to Add Comments” on page 15-10

The following examples show how to add a global comment to a Simulink
model so that the comment text appears in the generated file or files where
desired. This is accomplished by specifying a template symbol name with a
Simulink DocBlock, a Simulink annotation, or a Stateflow note, or by using a
sorted-notes capability that works with Simulink annotations or Stateflow
notes (but not DocBlocks). For more information about template symbols, see
“Template Symbols and Rules” on page 15-63.

Note Template symbol names Description and ModifiedHistory,
referenced below, also are fields in the Model Properties dialog box. If you use
one of these symbol names for global comment text, and its Model Properties
field has text in it too, both will appear in the generated files.

Use a Simulink DocBlock to Add a Comment

1 With the model open, select Library Browser from the View menu.

2 Drag the DocBlock from Model-Wide Utilities in the Simulink library
onto the model.

3 After double-clicking the DocBlock and typing the desired comment in
the editor, save and close the editor.

4 Right-click the DocBlock and select Mask Parameters. The Block
Parameters dialog box appears.

5 Type one of the following into the Code generation template symbol
field, illustrated below, and then click OK: Abstract, Description,

15-6

Add Global Comments

History, ModifiedHistory, or Notes. Template symbol names are case
sensitive.

Note If you are using a DocBlock to add comments to your code during code
generation, set the Document Type as Text. If you set the Document
Type as RTF or HTML, your comments will not appear in the code.

6 In the Block Properties dialog box, Block Annotation tab, select
%<ECoderFlag> as shown in the figure below, and then click OK. The
symbol name typed in the previous step now appears under the DocBlock
on the model.

15-7

15 Code Appearance

7 Save the model. After you generate code, the code generator places the
comment in each generated file whose template has the symbol name you
typed. The code generator places the comment in the generated file at
the location that corresponds to where the symbol name is located in the
template file.

15-8

Add Global Comments

8 To add one or more other comments to the generated files, repeat steps 1
through 7 as desired.

Use a Simulink Annotation to Add a Comment

1 Double-click the unoccupied area on the model where you want to place the
comment. See “Annotate Diagrams” for details.

Note If you want the code generator to sort multiple comments for the
Notes symbol name, replace the next step with “Use Sorted Notes to Add
Comments” on page 15-10.

2 Type <S:Symbol_name> followed by the comment, where Symbol_name is one
of the following Documentation child : Abstract, Description, History,
ModifiedHistory, or Notes. For example, type <S:Description>This is
the description I want. Template symbol names are case sensitive.
(The "S" before the colon indicates "symbol.")

3 Click outside the rectangle and save the model. After you generate code,
the code generator places the comment in each generated file whose
template has the symbol name you typed. The code generator places the
comment in the generated file at the location that corresponds to where the
symbol name is located in the template file.

4 To add one or more other comments to the generated files, repeat steps 1
through 3 as desired.

Use a Stateflow Note to Add a Comment

1 Right-click the desired unoccupied area on the Stateflow chart where you
want to place the comment. For more information, see “Add Descriptive
Comments in a Chart”.

2 Select the annotation icon from the palette.

15-9

15 Code Appearance

Note If you want the code generator to sort multiple comments for the
Notes symbol name, replace the next step with “Use Sorted Notes to Add
Comments” on page 15-10.

3 Type <S:Symbol_name> followed by the comment, where Symbol_name is one
of the following Documentation child : Abstract, Description, History,
ModifiedHistory, or Notes. For example, type <S:Description>This is
the description I want. Template symbol names are case sensitive.

4 Click outside the note and save the model. After you generate code, the
code generator places the comment in each generated file whose template
has the symbol name you typed. The code generator places the comment
in the generated file at the location that corresponds to where the symbol
name is located in the template file.

5 To add one or more other comments to the generated files, repeat steps 1
through 4 as desired.

Use Sorted Notes to Add Comments
The sorted-notes capability allows you to add automatically sorted comments
to the generated files. The code generator places these comments in each
generated file at the location that corresponds to where the Notes symbol is
located in the template file.

The sorting order the code generator uses is

• Numbers before letters

• Among numbers, 0 is first

• Among letters, uppercase are before lowercase.

You can use sorted notes with a Simulink annotation or a Stateflow note, but
not with a DocBlock:

• In the Simulink annotation or the Stateflow note, type <S:NoteY> followed
by the first comment, where Y is a number or letter.

15-10

Add Global Comments

• Repeat for as many additional comments you want, except replace Y with a
subsequent number or letter.

The figure below illustrates sorted notes on a model, and where the code
generator places each in a generated file.

Here is the relevant fragment from the generated file for the above model:

** NOTES

** Note1: This is the first comment I want
associated with the Notes symbol.
Note2: This is the second comment I want under Notes.
Noteb: This is the third comment.

**

15-11

15 Code Appearance

Customize Generated Identifier Naming Rules
For GRT and RSim targets, the code generator automatically constructs
identifiers for variables and functions in the generated code. For ERT
targets, you can customize the naming of identifiers in the generated code by
specifying parameters on the Code Generation > Symbols pane of the
Configuration Parameters dialog box.

To... Specify...

Set the maximum number of characters the
code generator can use for function, typedef,
and variable names (default 31)

An integer value for the “Maximum identifier
length” parameter. For more information, see
“Specify Identifier Length to Avoid Naming
Collisions”. If you expect your model to
generate lengthy identifiers (due to use of long
signal or parameter names, for example), or
you find that identifiers are being mangled
more than expected, you should increase the
value of this parameter. For more information,
see “Specify Identifier Length to Avoid Naming
Collisions”.

Define a macro string that specifies certain
substrings that are included within generated
identifiers for global variables, global types,
field names of global types, subsystemmethods,
subsystem method arguments, local temporary
variables, local block output variables, and
constant macros

A macro string for the Identifier format
control parameters. For more information,
see “Identifier Format Control” on page 15-14.
For exceptions and limitations, see “Exceptions
to Identifier Formatting Conventions” on
page 15-22 and “Identifier Format Control
Parameters Limitations” on page 15-23.

Set the minimum number of characters that
the code generator uses for the mangling string

An integer value for the “Minimum mangle
length” parameter. For more information,
see “Control Name Mangling in Generated
Identifiers” on page 15-18.

15-12

Customize Generated Identifier Naming Rules

To... Specify...

Control whether shortened names are used for
system-generated identifiers

Shortened for the “System-generated
identifiers” parameter. This setting provides
more space for user names, a more predictable
and consistent naming system that uses camel
case, no underscores or plurals, and consistent
abbreviations for both a type and a variable.

Control whether scalar inlined parameter
values are expressed in the generated code as
literal values or macros

The value Literals or Macros for the
“Generate scalar inlined parameter as”
parameter.

• Literals: If Inline parameters is selected,
parameters are expressed as numeric
constants.

• Macros: Parameters are expressed as
variables (with #define macros). This
setting makes code more readable.

For more information on these parameters, see “Code Generation Pane:
Symbols”.

15-13

15 Code Appearance

Identifier Format Control
You can customize generated identifiers by specifying the Identifier format
control parameters on the Code Generation > Symbols pane of the
Configuration Parameters dialog box. For each parameter, you can enter a
macro string that specifies whether, and in what order, certain substrings are
included within generated identifiers. For example, you can specify that the
root model name be inserted into each identifier using the $R token.

The macro string can include:

• Valid tokens, which are listed in Identifier Format Tokens on page 15-14.
You can use or omit tokens depending on what you want to include in the
identifier name. The mangling string token, $M, is required. For more
information, see “Control Name Mangling in Generated Identifiers” on
page 15-18. The mangling string token is subject to the use and ordering
restrictions noted in Identifier Format Control Parameter Values on page
15-16.

• Valid C or C++ language identifier characters (a-z, A-Z, _ , 0-9).

The build process generates each identifier by expanding tokens and inserting
the resultant strings into the identifier. The tokens are expanded in the
order listed in Identifier Format Tokens on page 15-14. Character strings
are inserted between tokens, directly into the identifier. Contiguous token
expansions are separated by the underscore (_) character.

Identifier Format Tokens

Token Description

$M This token is required. If necessary, the code generator inserts
a name mangling string to avoid naming collisions. The position
of the $M token in the Identifier format control parameter
specification determines the position of the name mangling
string in the generated identifiers. For example, if you use the
specification RN$M, the name mangling string is appended (if
required) to the end of the identifier. For more information,

15-14

Identifier Format Control

Identifier Format Tokens (Continued)

Token Description

see “Control Name Mangling in Generated Identifiers” on page
15-18

$F Insert method name (for example, _Update for update method).
This token is available only for subsystem methods.

$N Insert name of object (block, signal or signal object, state,
parameter or parameter object) for which identifier is being
generated.

$R Insert root model name into identifier, replacing unsupported
characters with the underscore (_) character. When you use
referenced models, this token is required in addition to $M (see
“Avoid Identifier Name Collisions with Referenced Models” on
page 15-20).

Note: This token replaces the Prefix model name to global
identifiers option in previous releases.

$H Insert tag indicating system hierarchy level. For root-level
blocks, the tag is the string root_. For blocks at the subsystem
level, the tag is of the form sN_. N is a unique system number
assigned by the Simulink software. This token is available only
for subsystem methods and field names of global types.

Note: This token replaces the Include System Hierarchy
Number in Identifiers option in previous releases.

$A Insert data type acronym (for example, i32 for long integers) to
signal and work vector identifiers. This token is available only
for local block output variables and field names of global types.

Note: This token replaces the Include data type acronym
in identifier option in previous releases.

$I Insert u if the argument is an input or y if the argument is an
output, (for example, rtu_ for an input argument and rty_ for
an output argument). This token is available only for subsystem
method arguments.

15-15

15 Code Appearance

Identifier Format Control Parameter Values on page 15-16 lists the default
macro string, the supported tokens, and the applicable restrictions for each
Identifier format control parameter.

Identifier Format Control Parameter Values

Parameter
Default
Value

Supported
Tokens Restrictions

Global
variables

rtNM $R, $N, $M $F, $H, $A, and $I are not
allowed.

Global types NR$M_T $N, $R, $M $F, $H, $A, and $I are not
allowed.

Field name of
global types

NM $N, $M, $H,
$A

$R, $F, and $I are not allowed.

Subsystem
methods

FN$M $R, $N, $M,
$F, $H

$F and $H are empty for
Stateflow functions; $A and $I
are not allowed.

Subsystem
method
arguments

rtIN$M
or
rtIN$M

$N, $M, $I $R, $F, $H, and $A are not
allowed.

Local
temporary
variables

NM $N, $M, $R $F, $H, $A, and $I are not
allowed.

Local block
output
variables

rtb_NM $N, $M, $A $R, $F, $H, and $I are not
allowed.

Constant
macros

RN$M $R, $N, $M $F, $H, $A, and $I are not
allowed.

Non-ERT based targets (such as the GRT target) implicitly use a default
RN$M specification. This default specification consists of the root model
name, followed by the name of the generating object (signal, parameter, state,
and so on), followed by a name mangling string.

15-16

Identifier Format Control

For limitations that apply to Identifier format control parameters,
see “Exceptions to Identifier Formatting Conventions” on page 15-22 and
“Identifier Format Control Parameters Limitations” on page 15-23.

15-17

15 Code Appearance

Control Name Mangling in Generated Identifiers
The position of the $M token in the Identifier format control parameter
specification determines the position of the name mangling string in the
generated identifiers. For example, if you use the specification RN$M, the
name mangling string is appended (if required) to the end of the identifier.
For more information, see “Identifier Format Control” on page 15-14.

Name Mangling String Per Object

Object Type Source of Mangling String

Block diagram Name of block diagram

Simulink block “Simulink Identifier” (SID)

Simulink
parameter

Full name of parameter owner (that is, model or block)
and parameter name

Simulink signal Signal name, full name of source block, and port
number

Stateflow objects Complete path to Stateflow block and Stateflow
computed name (unique within chart)

The length of the name mangling string is specified by the Minimum
mangle length parameter. The default value is 1, but this automatically
increases during code generation as a function of the number of collisions. To
minimize disturbance to the generated code during development, specify a
larger Minimum mangle length. A Minimum mangle length of 4 is a
conservative value. A value of 4 allows for over 1.5 million collisions for a
particular identifier before the mangle length is increased.

Minimize Name Mangling
The length of generated identifiers is limited by the Maximum identifier
length parameter. When a name collision exists, the $M token is expanded
to the minimum number of characters required to avoid the collision. Other
tokens and character strings are expanded in the order listed in Identifier
Format Tokens on page 15-14. If the Maximum identifier length is not
large enough to accommodate full expansions of the other tokens, partial
expansions are used. To avoid this outcome, it is good practice to:

15-18

Control Name Mangling in Generated Identifiers

• Avoid name collisions in general. One way to avoid name collisions is to
not use default block names (for example, Gain1, Gain2...) when there
are many blocks of the same type in the model.

• Where possible, increase theMaximum identifier length to accommodate
the length of the identifiers that you expect to generate.

• Set the Minimum mangle length parameter to reserve at least three
characters for the name mangling string. The length of the name mangling
string increases as the number of name collisions increases.

If changes to the model create more (or fewer) collisions, an existing name
mangling string increases (or decreases) in length. If the length of the
name mangling string increases, additional characters are appended to
the existing string. For example, the mangling string 'xyz' can change
to 'xyzQ'. For fewer collisions, the name mangling string 'xyz' changes
to 'xy'.

15-19

15 Code Appearance

Avoid Identifier Name Collisions with Referenced Models
Within a model that uses referenced models, collisions between the names
of the models is not allowed. When generating code from a model that uses
model referencing:

• You must include the $R token in the Identifier format control
parameter specifications (in addition to the $M token).

• The Maximum identifier length must be large enough to accommodate
full expansions of the $R and $M tokens. IfMaximum identifier length is
too small, a code generation error occurs.

When a name conflict occurs between an identifier within the scope of a
higher-level model and an identifier within the scope of a referenced model,
the identifier from the referenced model is preserved. Name mangling is
performed on the identifier from the higher-level model.

If your model contains two referenced models with the same input or output
port names, and one of the referenced models contains an atomic subsystem
with “Function packaging” set to Nonreuseable function, a name conflict
might occur and the build process produces an error.

15-20

Maintain Traceability for Generated Identifiers

Maintain Traceability for Generated Identifiers
To verify your model, you can trace back and forth between generated
identifiers and corresponding entities within the model. To maintain
traceability, it is important that incremental revisions to a model have
minimal impact on the identifier names that appear in generated code. There
are two ways to minimally impact the identifier names:

• Choose unique names for Simulink objects (blocks, signals, states, and
so on) as much as possible.

• Use name mangling when conflicts cannot be avoided.

The position of the name mangling string is specified by the placement of the
$M token in the Identifier format control parameters. Mangle characters
consist of alphanumeric characters that are unique to each object. For more
information, see “Control Name Mangling in Generated Identifiers” on page
15-18.

15-21

15 Code Appearance

Exceptions to Identifier Formatting Conventions
There are some exceptions to the identifier formatting conventions described
in “Identifier Format Control” on page 15-14.

• Type name generation: name mangling conventions do not apply to type
names (that is, typedef statements) generated for global data types. If
the $R token is included in the Identifier format control parameter
specification, the model name is included in the typedef. When generating
type definitions, the Maximum identifier length parameter is not
respected.

• Non-Auto storage classes: the Identifier format control parameters
specification does not affect objects (such as signals and parameters)
that have a storage class other than Auto (such as ImportedExtern or
ExportedGlobal).

15-22

Identifier Format Control Parameters Limitations

Identifier Format Control Parameters Limitations
The following limitations apply to the Identifier format control parameters:

• The following autogenerated identifiers currently do not fully comply with
the setting of the Maximum identifier length parameter on the Code
Generation > Symbols pane of the Configuration Parameters dialog box.

- Model methods

• The applicable format string is RF, and the longest $F is
_derivatives, which is 12 characters long. The model name can
be up to 19 characters without exceeding the default Maximum
identifier length of 31.

- Local functions generated by S-functions or by add-on products such as
DSP System Toolbox™ that rely on S-functions

- Local variables generated by S-functions or by add-on products such as
DSP System Toolbox that rely on S-functions

- DW identifiers generated by S-functions in referenced models

- Fixed-point shared utility macros or shared utility functions

- Simulink rtm macros

• Most are within the default Maximum identifier
length of 31, but some exceed the limit. Examples
are RTMSpecAccsGetStopRequestedValStoredAsPtr,
RTMSpecAccsGetErrorStatusPointer, and
RTMSpecAccsGetErrorStatusPointerPointer.

- Define protection guard macros

• Header file guards, such as _RTW_HEADER_$(filename)_h_, which
can exceed the default Maximum identifier length of 31 given a
filename such as $R_private.h.

• Include file guards, such as _$R_COMMON_INCLUDES_.

• typedef guards, such as _CSCI_$R_CHARTSTRUCT_.

• In some situations, the following identifiers potentially can conflict with
others.

- Model methods

15-23

15 Code Appearance

- Reentrant model function arguments

- Local functions generated by S-functions or by add-on products such as
DSP System Toolbox that rely on S-functions

- Local variables generated by S-functions or by add-on products such as
DSP System Toolbox that rely on S-functions

- Fixed-point shared utility macros or shared utility functions

- Include header guard macros

• The following external identifiers that are unknown to the Simulink
software might conflict with autogenerated identifiers.

- Identifiers defined in custom code

- Identifiers defined in custom header files

- Identifiers introduced through a non-ANSI C standard library

- Identifiers defined by custom TLC code

• Identifiers generated for simulation targets might exceed the Maximum
identifier length. Simulation targets include the model reference
simulation target, the accelerated simulation target, the RSim target, and
the S-function target.

• Identifiers generated using a model name and bus object data type name,
which are both long names, might exceed the Maximum identifier
length. For example, a ground value variable name is generated as
<model_name>_rtZ<bus_name>. If the model_name and bus_name are
close to the maximum identifier length, the name exceeds the maximum
identifier length.

15-24

Specify Simulink® Data Object Naming Rules

Specify Simulink Data Object Naming Rules

To Define Rules that Change the
Names of...

Specify a Naming Rule with the
...

Signals Signal naming parameter

Parameters Parameter naming parameter

Parameters that have a storage class
of Define

#define naming parameter

For more information on these parameters, see “Specify Data Object Naming
Rules” on page 8-84.

15-25

15 Code Appearance

Control Code Style
You can control the following style aspects in generated code:

• Level of parenthesization

• Whether to preserve order of operands in expressions

• Whether to preserve empty primary condition expressions in if statements

• Whether to generate code for if-elseif-else decision logic as
switch-case statements

• Whether to include the extern keyword in function declarations

• Whether to generate default cases for switch-case statements in the code
for Stateflow charts

For example, C code contains some syntactically required parentheses, and
can contain additional parentheses that change semantics by overriding
default operator precedence. C code can also contain optional parentheses
that have no functional significance, but serve only to increase the readability
of the code. Optional C parentheses vary between two stylistic extremes:

• Include the minimum parentheses required by C syntax and precedence
overrides, so that C precedence rules specify all semantics unless
overridden by parentheses.

• Include the maximum parentheses that can exist without duplication, so
that C precedence rules become irrelevant: parentheses alone completely
specify all semantics.

Understanding code with minimum parentheses can require applying
nonobvious precedence rules, but maximum parentheses can hinder code
reading by belaboring obvious precedence rules. Various parenthesization
standards exist that specify one or the other extreme, or define an
intermediate style that can be useful to human code readers.

The following example shows the three levels of parentheses control you can
set before generating code: rtwdemo_parentheses.

15-26

Control Code Style

Control style options by setting parameters on the Code Generation > Code
Style pane. For details on the parameters, see “Code Generation Pane:
Code Style”.

15-27

15 Code Appearance

Customize Code Organization and Format

In this section...

“Custom File Processing Overview” on page 15-28

“Custom File Processing Components” on page 15-29

“Custom File Processing User Interface Options” on page 15-30

“Code Generation Template (CGT) Files” on page 15-31

“Use Custom File Processing (CFP) Templates” on page 15-35

“Custom File Processing (CFP) Template Structure” on page 15-36

“Change the Organization of a Generated File” on page 15-37

“Generate Source and Header Files with a Custom File Processing (CFP)
Template” on page 15-39

“Comparison of a Template and Its Generated File” on page 15-48

“Code Template API Summary” on page 15-51

“Generate Custom File and Function Banners” on page 15-55

“Template Symbols and Rules” on page 15-63

Custom File Processing Overview
Customize generated code using code and data templates:

To... Enter or Select...

Specify a template that defines
the top-level organization and
formatting of generated source
code (.c or .cpp) files

Enter a code generation template (CGT) file for the Source
file (*.c) template parameter.

Specify a template that defines
the top-level organization and
formatting of generated header
(.h) files

Enter a CGT file for the Header file (*.h) template
parameter. This template file can be the same template
file that you specify for Source file (.c) template. If you
use the same template file, source and header files contain
identical banners. The default template is matlabroot
/toolbox/rtw/targets/ecoder/ert_code_template.cgt.

15-28

Customize Code Organization and Format

To... Enter or Select...

Specify a template that organizes
generated code into sections (such
as includes, typedefs, functions,
and more)

Enter a custom file processing (CFP) template file for the
“File customization template” parameter. A CFP template
can emit code, directives, or comments into each section. For
more information, see “Use Custom File Processing (CFP)
Templates” on page 15-35.

Generate a model-specific
example main program module

Select Generate an example main program. For more
information, see “Generate a Standalone Program” on page
20-2.

Note Place the template files that you specify on the MATLAB path.

Custom File Processing Components
Custom file processing (CFP) simplifies generation of custom source code.
You can:

• Generate a source (.c or .cpp) or header (.h) file. Using a custom file
processing template (CFP template), you can control how code emits to the
standard generated model files (for example, model.c or .cpp, model.h) or
generate files that are independent of model code.

• Organize generated code into sections (such as includes, typedefs,
functions, and more). Your CFP template can emit code (for example,
functions), directives (such as #define or #include statements), or
comments into each section.

• Generate custom file banners (comment sections) at the start and end of
generated code files and custom function banners that precede functions in
the generated code.

• Generate code to call model functions, such as model_initialize,
model_step, and so on.

• Generate code to read and write model inputs and outputs.

• Generate a main program module.

• Obtain information about the model and the generated files from the model.

15-29

15 Code Appearance

The custom file processing features are based on the following interrelated
components:

• Code generation template (CGT) files: a CGT file defines the top-level
organization and formatting of generated code. See “Code Generation
Template (CGT) Files” on page 15-31.

• The code template API: a high-level Target Language Compiler (TLC)
API that provides functions with which you can organize code into
named sections and subsections of generated source and header files.
The code template API also provides utilities that return information
about generated files, generate standard model calls, and perform other
functions. See “Code Template API Summary” on page 15-51.

• Custom file processing (CFP) templates: a CFP template is a TLC file
that manages the process of custom code generation. A CFP template
assembles code to be generated into buffers. A CFP template also calls
the code template API to emit the buffered code into specified sections of
generated source and header files. A CFP template interacts with a CGT
file, which defines the ordering of major sections of the generated code. See
“Use Custom File Processing (CFP) Templates” on page 15-35.

To use CFP templates, you must understand TLC programming, for more
information, see “Target Language Compiler”.

Custom File Processing User Interface Options
To use custom file processing features, create CGT files and CFP templates.
These files are based on default templates provided by the code generation
software. Once you have created your templates, you must integrate them
into the code generation process.

Select and edit CGT files and CFP templates, and specify their use in the
code generation process in the Code Generation > Templates pane of a
model configuration set. The following figure shows options configured for
their defaults.

The options related to custom file processing are:

• The Source file (.c) template field in the Code templates and Data
templates sections. This field specifies the name of a CGT file to use

15-30

Customize Code Organization and Format

when generating source (.c or .cpp) files. You must place this file on the
MATLAB path.

• The Header file (.h) template field in the Code templates and Data
templates sections. This field specifies the name of a CGT file to use when
generating header (.h) files. You must place this file on the MATLAB path.

By default, the template for both source and header files is
matlabroot/toolbox/rtw/targets/ecoder/ert_code_template.cgt.

• The File customization template edit field in the Custom
templates section. This field specifies the name of a CFP
template file to use when generating code files. You must place
this file on the MATLAB path. The default CFP template is
matlabroot/toolbox/rtw/targets/ecoder/example_file_process.tlc.

In each of these fields, click Browse to navigate to and select an existing CFP
template or CGT file. Click Edit to open the specified file into the MATLAB
editor where you can customize it.

Code Generation Template (CGT) Files
CGT files have the following applications:

• Generation of custom banners (comments sections) in code files. See
“Generate Custom File and Function Banners” on page 15-55.

• Generation of custom code using a CFP template requires a CGT file. To
use CFP templates, you must understand the CGT file structure. In many
cases, however, you can use the default CGT file without modifying it.

Default CGT file
The code generation software provides a default CGT file,
matlabroot/toolbox/rtw/targets/ecoder/ert_code_template.cgt. Base
your custom CGT files on the default file.

CGT File Structure
A CGT file consists of one required section and four optional sections:

15-31

15 Code Appearance

Code Insertion Section. (Required) This section contains tokens that define
an ordered partitioning of the generated code into a number of sections (such
as Includes and Defines sections). Tokens have the form of:

%<SectionName>

For example,

%<Includes>

The code generation software defines a minimal set of required tokens. These
tokens generate C or C++ source or header code. They are built-in tokens (see
“Built-In Tokens and Sections” on page 15-33). You can also define custom
tokens and custom sections.

Each token functions as a placeholder for a corresponding section of generated
code. The ordering of the tokens defines the order in which the corresponding
sections appear in the generated code. If you do not include a token, then the
corresponding section is not generated. To generate code into a given section,
explicitly call the code template API from a CFP template, as described in
“Use Custom File Processing (CFP) Templates” on page 15-35.

The CGT tokens define the high-level organization of generated code. Using
the code template API, you can partition each code section into named
subsections, as described in “Subsections” on page 15-34.

In the code insertion section, you can also insert C or C++ comments between
tokens. Such comments emit directly into the generated code.

File Banner Section. (Optional) This section contains comments and tokens
you use in generating a custom file banner.

Function Banner Section. (Optional) This section contains comments and
tokens for use in generating a custom function banner.

Shared Utility Function Banner Section. (Optional) This section contains
comments and tokens for use in generating a custom shared utility function
banner.

File Trailer Section. (Optional) This section contains comments for use in
generating a custom trailer banner.

15-32

Customize Code Organization and Format

For more information on these sections, see “Generate Custom File and
Function Banners” on page 15-55.

Built-In Tokens and Sections
The following code extract shows the required code insertion section of the
default CGT file with the required built-in tokens.

%%%

%% Code insertion section (required)

%% These are required tokens. You can insert comments and other tokens in

%% between them, but do not change their order or remove them.

%%

%<Includes>

%<Defines>

%<Types>

%<Enums>

%<Definitions>

%<Declarations>

%<Functions>

Note the following requirements for customizing a CGT file:

• Do not remove required built-in tokens.

• Built-in tokens must appear in the order shown because each successive
section has dependencies on previous sections.

• Only one token per line.

• Do not repeat tokens.

• You can add custom tokens and comments to the code insertion section as
long as you do not violate the previous requirements.

Note If you modify a CGT file and then rebuild your model, the code
generation process does not force a top model build. To regenerate the code,
see “Force Regeneration of Top Model Code”.

15-33

15 Code Appearance

The following table summarizes the built-in tokens and corresponding section
names, and describes the code sections.

Built-In CGT Tokens and Corresponding Code Sections

Token and
Section Name Description

Includes #include directives section

Defines #define directives section

Types typedef section.Typedefs can depend on a previously
defined type

Enums Enumerated types section

Definitions Data definitions (for example, double x = 3.0;)

Declarations Data declarations (for example, extern double x;)

Functions C or C++ functions

Subsections
You can define one or more named subsections for any section. Some of the
built-in sections have predefined subsections summarized in table Subsections
Defined for Built-In Sections on page 15-34.

Note Sections and subsections emit to the source or header file in the order
listed in the CGT file.

Using the custom section feature, you can define additional sections. See
“Generate a Custom Section” on page 15-46.

Subsections Defined for Built-In Sections

Section Subsections Subsection Description

Includes N/A

Defines N/A

15-34

Customize Code Organization and Format

Subsections Defined for Built-In Sections (Continued)

Section Subsections Subsection Description

Types IntrinsicTypes Intrinsic typedef section. Intrinsic types
depend only on intrinsic C or C++ types.

Types PrimitiveTypedefs Primitive typedef section. Primitive typedefs
depend only on intrinsic C or C++ types
and on typedefs previously defined in the
IntrinsicTypes section.

Types UserTop You can place any type of code in this section,
including code that has dependencies on the
previous sections.

Types Typedefs typedef section. Typedefs can depend on
previously defined types

Enums N/A

Definitions N/A

Declarations N/A

Functions C or C++ functions

Functions CompilerErrors #error directives

Functions CompilerWarnings #warning directives

Functions Documentation Documentation (comment) section

Functions UserBottom You can place any code in this section.

Use Custom File Processing (CFP) Templates
The files provided to support custom file processing are

• matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc: A TLC function
library that implements the code template API. codetemplatelib.tlc also
provides the comprehensive documentation of the API in the comments
headers preceding each function.

• matlabroot/toolbox/rtw/targets/ecoder/example_file_process.tlc:
An example custom file processing (CFP) template, which you should use

15-35

15 Code Appearance

as the starting point for creating your own CFP templates. Guidelines and
examples for creating a CFP template are provided in “Generate Source
and Header Files with a Custom File Processing (CFP) Template” on page
15-39.

• TLC files supporting generation of single-rate and multirate main program
modules (see “Customizing Main Program Module Generation” on page
15-44).

Once you have created a CFP template, you must integrate it into the code
generation process, using the File customization template edit field. See
“Custom File Processing User Interface Options” on page 15-30.

Custom File Processing (CFP) Template Structure
A custom file processing (CFP) template imposes a simple structure on the
code generation process. The template, a code generation template (CGT)
file, partitions the code generated for each file into a number of sections.
These sections are summarized in Built-In CGT Tokens and Corresponding
Code Sections on page 15-34 and Subsections Defined for Built-In Sections on
page 15-34.

Code for each section is assembled in buffers and then emitted, in the order
listed, to the file being generated.

To generate a file section, your CFP template must first assemble the code
to be generated into a buffer. Then, to emit the section, your template calls
the TLC function

LibSetSourceFileSection(fileH, section, tmpBuf)

where

• fileH is a file reference to a file being generated.

• section is the code section or subsection to which code is to be emitted.
section must be one of the section or subsection names listed in Subsections
Defined for Built-In Sections on page 15-34.

Determine the section argument as follows:

15-36

Customize Code Organization and Format

- If Subsections Defined for Built-In Sections on page 15-34 does not
define subsections for a given section, use the section name as the
section argument.

- If Subsections Defined for Built-In Sections on page 15-34 defines one or
more subsections for a given section, you can use either the section name
or a subsection name as the section argument.

- If you have defined a custom token denoting a custom section, do not call
LibSetSourceFileSection. Special API calls are provided for custom
sections (see “Generate a Custom Section” on page 15-46).

• tmpBuf is the buffer containing the code to be emitted.

There is no requirement to generate all of the available sections. Your
template need only generate the sections you require in a particular file.

Note that legality or syntax checking is not performed on the custom code
within each section.

The next section, “Generate Source and Header Files with a Custom File
Processing (CFP) Template” on page 15-39, provides typical usage examples.

Change the Organization of a Generated File
The files you generated in the previous procedures are organized
according to the general code generation template. This template has the
filename ert_code_template.cgt, and is specified by default in Code
Generation > Templates pane of the Configuration Parameters dialog box.

15-37

15 Code Appearance

The following fragment shows the rtwdemo_mpf.c file header that is
generated using this default template:

/*

* File: rtwdemo_mpf.c

*

* Code generated for Simulink model 'rtwdemo_mpf'.

*

* Model version : 1.88

* Simulink Coder version : 8.0 (R2011a) 26-Aug-2010

* TLC version : 7.6 (Sep 3 2010)

* C/C++ source code generated on : Thu Sep 09 10:10:14 2010

*

* Target selection: ert.tlc

* Embedded hardware selection: Generic->32-bit Embedded Processor

* Code generation objectives: Unspecified

* Validation result: Not run

*/

You can change the organization of generated files using code templates and
data templates. Code templates organize the files that contain functions,
primarily. Data templates organize the files that contain identifiers. In this
procedure, you organize the generated files, using the supplied MPF code
and data templates:

1 Display the active Templates configuration parameters.

2 In the Code templates section of the Templates pane, type
code_c_template.cgt into the Source file (*.c) templates text box.

3 Type code_h_template.cgt into theHeader file (*.h) templates text box.

4 In the Data templates section, type data_c_template.cgt into the
Source file (*.c) templates text box.

5 Type data_h_template.cgt into the Header file (*.h) templates text
box, and click Apply.

15-38

Customize Code Organization and Format

6 Click Generate code. Now the files are organized using the templates you
specified. For example, the rtwdemo_mpf.c file header now is organized
like this:

/**

** FILE INFORMATION:

** Filename: rtwdemo_mpf.c

** File Creation Date: 09-Sep-2010

**

** ABSTRACT:

**

**

** NOTES:

**

**

** MODEL INFORMATION:

** Model Name: rtwdemo_mpf

** Model Description: Data packaging examples

** Model Version: 1.89

** Model Author: The MathWorks Inc. - Mon Mar 01 11:23:00 2004

**

** MODIFICATION HISTORY:

** Model at Code Generation: ssulliva - Thu Sep 09 10:19:35 2010

**

** Last Saved Modification: ssulliva - Thu Sep 09 10:19:13 2010

**

**

**/

Generate Source and Header Files with a Custom File
Processing (CFP) Template
This example shows you the process of generating a simple source (.c or .cpp)
and header (.h) file using the example CFP template. Then, it examines the
template and the code generated by the template.

15-39

15 Code Appearance

The example CFP template,
matlabroot/toolbox/rtw/targets/ecoder/example_file_process.tlc,
demonstrates some of the capabilities of the code template API, including

• Generation of simple source (.c or .cpp) and header (.h) files

• Use of buffers to generate file sections for includes, functions, and so on

• Generation of includes, defines, into the standard generated files (for
example, model.h)

• Generation of a main program module

Generate Code with a CFP Template
This section sets up a CFP template and configures a model to use the
template in code generation. The template generates (in addition to the
standard model files) a source file (timestwo.c or .cpp) and a header file
(timestwo.h).

Follow the steps below to become acquainted with the use of CFP templates:

1 Copy the example CFP template,
matlabroot/toolbox/rtw/targets/ecoder/example_file_process.tlc,
to a folder outside of the MATLAB folder structure (that is, not under
matlabroot). If the folder is not on the MATLAB path or the TLC path,
then add it to the MATLAB path. It is good practice to locate the CFP
template in the same folder as your system target file, which is on the
TLC path.

2 Rename the copied example_file_process.tlc to
test_example_file_process.tlc.

3 Open test_example_file_process.tlc into the MATLAB editor.

4 Uncomment the following line:

%% %assign ERTCustomFileTest = TLC_TRUE

It now reads:

%assign ERTCustomFileTest = TLC_TRUE

15-40

Customize Code Organization and Format

If ERTCustomFileTest is not assigned as shown, the CFP template is
ignored in code generation.

5 Save your changes to the file. Keep test_example_file_process.tlc
open, so you can refer to it later.

6 Open the rtwdemo_udt model.

7 Open the Simulink Model Explorer. Select the active configuration set of
the model, and open the Code Generation pane of the active configuration
set.

8 Click the Templates tab.

9 Specify File customization template as
test_example_file_process.tlc. This is the file you previously edited
and is now the specified CFP template for your model.

10 Select the Generate code only option.

11 Click Apply.

12 Click Generate code. During code generation, notice the following
message on the MATLAB command window:

Warning: Overriding example ert_main.c!

This message is displayed because test_example_file_process.tlc
generates the main program module, overriding the default action of the
ERT target. This is explained in greater detail below.

13 The rtwdemo_udt model is configured to generate an HTML code
generation report. After code generation completes, view the report. Notice
that the Generated Files list contains the files timestwo.c, timestwo.h,
and ert_main.c. These files were generated by the CFP template. The
next section examines the template to learn how this was done.

14 Keep the model, the code generation report, and the
test_example_file_process.tlc file open so you can refer to
them in the next section.

15-41

15 Code Appearance

Analysis of the Example CFP Template and Generated Code
This section examines excerpts from test_example_file_process.tlc
and some of the code it generates. Refer to the comments in
matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc while reading the
following discussion.

Generating Code Files. Source (.c or .cpp) and header (.h) files are created
by calling LibCreateSourceFile, as in the following excerpts:

%assign cFile = LibCreateSourceFile("Source", "Custom", "timestwo")

...

%assign hFile = LibCreateSourceFile("Header", "Custom", "timestwo")

Subsequent code refers to the files by the file reference returned from
LibCreateSourceFile.

File Sections and Buffers. The code template API lets you partition the
code generated to each file into sections, tagged as Definitions, Includes,
Functions, Banner, and so on. You can append code to each section as many
times as required. This technique gives you a great deal of flexibility in the
formatting of your custom code files.

Subsections Defined for Built-In Sections on page 15-34 describes the
available file sections and their order in the generated file.

For each section of a generated file, use %openfile and %closefile to store
the text for that section in temporary buffers. Then, to write (append) the
buffer contents to a file section, call LibSetSourceFileSection, passing
in the desired section tag and file reference. For example, the following
code uses two buffers (tmwtypesBuf and tmpBuf) to generate two sections
(tagged "Includes" and "Functions") of the source file timestwo.c or .cpp
(referenced as cFile):

%openfile tmwtypesBuf

#include "tmwtypes.h"

%closefile tmwtypesBuf

%<LibSetSourceFileSection(cFile,"Includes",tmwtypesBuf)>

15-42

Customize Code Organization and Format

%openfile tmpBuf

/* Times two function */
real_T timestwofcn(real_T input) {

return (input * 2.0);
}

%closefile tmpBuf

%<LibSetSourceFileSection(cFile,"Functions",tmpBuf)>

These two sections generate the entire timestwo.c or .cpp file:

#include "tmwtypes.h"

/* Times two function */
FLOAT64 timestwofcn(FLOAT64 input)
{

return (input * 2.0);
}

Adding Code to Standard Generated Files. The timestwo.c or .cpp file
generated in the previous example was independent of the standard code
files generated from a model (for example, model.c or .cpp, model.h, and
so on). You can use similar techniques to generate custom code within the
model files. The code template API includes functions to obtain the names of
the standard models files and other model-related information. The following
excerpt calls LibGetMdlPubHdrBaseName to obtain the name for the model.h
file. It then obtains a file reference and generates a definition in the Defines
section of model.h:

%% Add a #define to the model's public header file model.h

%assign pubName = LibGetMdlPubHdrBaseName()

%assign modelH = LibCreateSourceFile("Header", "Simulink", pubName)

%openfile tmpBuf

#define ACCELERATION 9.81

15-43

15 Code Appearance

%closefile tmpBuf

%<LibSetSourceFileSection(modelH,"Defines",tmpBuf)>

Examine the generated rtwdemo_udt.h file to see the generated #define
directive.

Customizing Main Program Module Generation. Normally, the ERT
target determines whether and how to generate an ert_main.c or .cpp
module based on the settings of the Generate an example main program
and Target operating system options on the Templates pane of the
Configuration Parameters dialog box. You can use a CFP template to override
the normal behavior and generate a main program module customized for
your target environment.

To support generation of main program modules, two TLC files are provided:

• bareboard_srmain.tlc: TLC code to generate an example single-rate main
program module for a bareboard target environment. Code is generated by
a single TLC function, FcnSingleTaskingMain.

• bareboard_mrmain.tlc: TLC code to generate a multirate main program
module for a bareboard target environment. Code is generated by a single
TLC function, FcnMultiTaskingMain.

In the example CFP template file
matlabroot/toolbox/rtw/targets/ecoder/example_file_process.tlc,
the following code generates either a single- or multitasking ert_main.c or
.cpp module. The logic depends on information obtained from the code
template API calls LibIsSingleRateModel and LibIsSingleTasking:

%% Create a simple main. Files are located in MATLAB/rtw/c/tlc/mw.

%if LibIsSingleRateModel() || LibIsSingleTasking()

%include "bareboard_srmain.tlc"

%<FcnSingleTaskingMain()>

%else

%include "bareboard_mrmain.tlc"

%<FcnMultiTaskingMain()>

%endif

15-44

Customize Code Organization and Format

Note that bareboard_srmain.tlc and bareboard_mrmain.tlc use the code
template API to generate ert_main.c or .cpp.

When generating your own main program module, you disable the default
generation of ert_main.c or .cpp. The TLC variable GenerateSampleERTMain
controls generation of ert_main.c or .cpp. You can directly force
this variable to TLC_FALSE. The examples bareboard_mrmain.tlc and
bareboard_srmain.tlc use this technique, as shown in the following excerpt
from bareboard_srmain.tlc.

%if GenerateSampleERTMain
%assign CompiledModel.GenerateSampleERTMain = TLC_FALSE
%warning Overriding example ert_main.c!

%endif

Alternatively, you can implement a SelectCallback function for your target.
A SelectCallback function is a MATLAB function that is triggered during
model loading, and also when the user selects a target with the System Target
File browser. Your SelectCallback function should deselect and disable
the Generate an example main program option. This prevents the TLC
variable GenerateSampleERTMain from being set to TLC_TRUE.

See the “rtwgensettings Structure” section for information on creating a
SelectCallback function.

The following code illustrates how to deselect and disable the Generate an
example main program option in the context of a SelectCallback function.

slConfigUISetVal(hDlg, hSrc, 'GenerateSampleERTMain', 'off');
slConfigUISetEnabled(hDlg, hSrc, 'GenerateSampleERTMain',0);

Note Creation of a main program for your target environment requires some
customization; for example, in a bareboard environment you need to attach
rt_OneStep to a timer interrupt. It is expected that you will customize either
the generated code, the generating TLC code, or both. See “Guidelines for
Modifying the Main Program” on page 20-4 and “Guidelines for Modifying
rt_OneStep” on page 20-10 for further information.

15-45

15 Code Appearance

Generate a Custom Section
You can define custom tokens in a CGT file and direct generated code into an
associated built-in section. This feature gives you additional control over the
formatting of code within each built-in section. For example, you could add
subsections to built-in sections that do not already define subsections. Custom
sections must be associated with one of the built-in sections: Includes,
Defines, Types, Enums, Definitions, Declarations, or Functions. To create
custom sections, you must

• Add a custom token to the code insertion section of your CGT file.

• In your CFP file:

- Assemble code to be generated to the custom section into a buffer.

- Declare an association between the custom section and a built-in section,
with the code template API function LibAddSourceFileCustomSection.

- Emit code to the custom section with the code template API function
LibSetSourceFileCustomSection.

The following code examples illustrate the addition of a custom token,
Myincludes, to a CGT file, and the subsequent association of the custom
section Myincludes with the built-in section Includes in a CFP file.

Note If you have not already created custom CGT and
CFP files for your model, copy the default template files
matlabroot/toolbox/rtw/targets/ecoder/ert_code_template.cgt and
matlabroot/toolbox/rtw/targets/ecoder/example_file_process.tlc
to a work folder that is outside the MATLAB folder structure but on the
MATLAB or TLC path, rename them (for example, add the prefix test_ to
each file), and update the Templates pane of the Configuration Parameters
dialog box to reference them.

First, add the token Myincludes to the code insertion section of your CGT
file. For example:

%<Includes>
%<Myincludes>
%<Defines>

15-46

Customize Code Organization and Format

%<Types>
%<Enums>
%<Definitions>
%<Declarations>
%<Functions>

Next, in the CFP file, add code to generate include directives into a buffer.
For example, in your copy of the example CFP file, you could insert the
following section between the Includes section and the Create a simple
main section:

%% Add a custom section to the model's C file model.c

%openfile tmpBuf
#include "moretables1.h"
#include "moretables2.h"
%closefile tmpBuf

%<LibAddSourceFileCustomSection(modelC,"Includes","Myincludes")>
%<LibSetSourceFileCustomSection(modelC,"Myincludes",tmpBuf)>

The LibAddSourceFileCustomSection function call declares an
association between the built-in section Includes and the custom
section Myincludes. Myincludes is a subsection of Includes. The
LibSetSourceFileCustomSection function call directs the code
in the tmpBuf buffer to the Myincludes section of the generated
file. LibSetSourceFileCustomSection is syntactically identical to
LibSetSourceFileSection.

In the generated code, the include directives generated to the custom section
appear after other code directed to Includes.

#include "rtwdemo_udt.h"
#include "rtwdemo_udt_private.h"

/* #include "mytables.h" */
#include "moretables1.h"
#include "moretables2.h"

15-47

15 Code Appearance

Note The placement of the custom token in this example CGT file is
arbitrary. By locating %<Myincludes> after %<Includes>, the CGT file
specifies only that the Myincludes code appears after Includes code.

Custom Tokens
Custom tokens are automatically translated to TLC syntax as a part of
the build process. To escape a token, that is to prepare it for normal TLC
expansion, use the ’!’ character. For example, the token %<!TokenName> is
expanded to %<TokenName> by the template conversion program. You can
specify valid TLC code, including TLC function calls: %<!MyTLCFcn()>.

Comparison of a Template and Its Generated File
The next figure shows part of a user-modified MPF template and the resulting
generated code. This figure illustrates how you can use a template to

• Define what code the code generation software should add to the generated
file

• Control the location of code in the file

• Optionally insert comments in the generated file

Notice %<Includes>, for example, on the template. The term Includes is a
symbol name. A percent sign and brackets (%< >) must enclose every symbol
name. You can add the desired symbol name (within the %< > delimiter) at a
particular location in the template. This is how you control where the code
generator places an item in the generated file.

15-48

Customize Code Organization and Format

Template and Generated File

�������������
� �!�	�"�
#
�����$������
� ��%&!�
#
�����'��
��&!�(
����$���)�*����
� ��%&!&�&�!
#
�����'��
��&!�+
� ���	����&�!
#
� $�!��&�!
#

����&�!��%
�,�'�	��)�'�	��� �����
��!"&!������&�!��%�-�!�����"�$&	�
�
�
�

�
�
�

.(/

.+/

.0/

.1/

.2/

.3/

.4/

+3��������������
+4��&!�	�"��5��6"�'�7��"���'�	����85
+9��&!�	�"��5��6"�'�7��"���'�	���7��&:����85
+;
0<������$������
0(������'��
��&!�(
0+�����$���)�*����
00�����=	����
����
�.�����
������/���
01�����>���?
02
03�����,���!�	��������.�%�"�@��
&�!�	
�6&�8������
������/���
04����A?
09
0;����B��	C�&'��'�"�	���
1<����D7?
1(�����D�
�E��D7?
1+������'��
��&!�+
10
11����D�"�	�
����%�!��&�!���
12�:�&"���6"�'�7��"���'�	���7
���.:�&"/
13�F
14
19����	���	�@	����&���:��&�@	�
���
1;
2<����@7�6&��8?
2(����@7B�	*��?
2+
20������'G�HH�&!���������
G
21����!&���	��G�HH
22���
23���@7�6&��8�
�./../���>����I�J�(�/?
24
29����B�	��&�!�	*�������G�HH���
2;���@7B�	*���
�.��@7�6&��8�K
�(3�/?
3<
3(����*������G�HH���
3+���A�*���
���@7B�	*��?
30
31�����6&��8G�HH���
32�&%.��@7B�	*��/�F
33�L��	
��F
34���@7�6&��8�
�<�?
39�L
3;
4<������"����%����!&���	��G�HH���
4(����>����I�
���@7�6&��8?
4+
40����.!����"������"����M�&��"/���
41�L
�
�
�

��!�

��!�

15-49

15 Code Appearance

Mapping Template Specification to Code Generation

Generates in the file...This part of the template...

Line Description

Explanation

(1) /*#INCLUDES*/
%<Includes>

26–28 An /*#INCLUDES*/
comment, followed
by #include
statements

The code generator adds
the C/C++ comment as a
header, and then interprets the
%<Includes> template symbol
to list the required #include
statements in the file. This code
is first in this section of the file
because the template entries
are first.

(2) /*DEFINES*/
%<Defines>

30 A */DEFINES*/
comment, but no
#define statements

Next, the code generator places
the comment as a header for
#define statements, but the file
does not need #define. No code
is added.

(3) #pragma string1 31

(5) #pragma string2 42

#pragma statements While the code generator
requires %<> delimiters for
template symbols, it can also
interpret C/C++ statements in
the template without delimiters.
In this case, the generator adds
the specified statements to the
code, following the order in
which the statements appear in
the template.

(4) /#DEFINITIONS*/
%<Definitions>

32–41 /*#DEFINITIONS*/
comment, followed
by definitions

The code generator places the
comment and definitions in
the file between the #pragma
statements, according to the
order in the template. It
also inserts comments (lines
33 and 36) that are preset
in the model’s Configuration
Parameters dialog box.

15-50

Customize Code Organization and Format

Mapping Template Specification to Code Generation (Continued)

Generates in the file...This part of the template...

Line Description

Explanation

(6) %<Declarations> 43 No declarations The file needs no declarations,
so the code generator does not
generate declarations for this
file. The template does not have
a comment to provide a header.
Line 43 is left blank.

(7) %<Functions> 44–74 Functions Finally, the code generator adds
functions from the model, plus
comments that are preset in
the Configuration Parameters
dialog box. But it adds no
comments as a header for the
functions, because the template
does not have one. This code is
last because the template entry
is last.

For a list of template symbols and the rules for using them, see “Template
Symbol Groups” on page 15-64, “Template Symbols” on page 15-66, and
“Rules for Modifying or Creating a Template” on page 15-70. To set
comment options, from the Simulation menu, selectModel Configuration
Parameters. On the Configuration Parameters dialog box, select the
Code Generation > Comments pane. For details, see “Configure Code
Comments”.

Code Template API Summary
Code Template API Functions on page 15-52 summarizes
the code template API. See the source code in
matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc for detailed information
on the arguments, return values, and operation of these calls.

15-51

15 Code Appearance

Code Template API Functions

Function Description

LibGetNumSourceFiles Returns the number of created source files
(.c or .cpp and .h).

LibGetSourceFileTag Returns <filename>_h and <filename>_c
for header and source files, respectively,
where filename is the name of the model
file.

LibCreateSourceFile Creates a new C or C++ file and returns its
reference. If the file already exists, simply
returns its reference.

LibGetSourceFileFromIdx Returns a model file reference based on
its index. This is useful for a common
operation on all files, such as to set the
leading file banner of all files.

LibSetSourceFileSection Adds to the contents of a specified section
within a specified file (see also “Custom
File Processing (CFP) Template Structure”
on page 15-36).

LibIndentSourceFile Indents a file with the c_indent utility
(from within the TLC environment).

LibCallModelInitialize Returns code for calling the model’s
model_initialize function (valid for ERT
only).

LibCallModelStep Returns code for calling the model’s
model_step function (valid for ERT only).

LibCallModelTerminate Returns code for calling the model’s
model_terminate function (valid for ERT
only).

LibCallSetEventForThisBaseStep Returns code for calling the model’s set
events function (valid for ERT only).

LibWriteModelData Returns data for the model (valid for ERT
only).

15-52

Customize Code Organization and Format

Code Template API Functions (Continued)

Function Description

LibSetRTModelErrorStatus Returns the code to set the model error
status.

LibGetRTModelErrorStatus Returns the code to get the model error
status.

LibIsSingleRateModel Returns true if model is single rate and
false otherwise.

LibGetModelName Returns name of the model (without an
extension).

LibGetMdlSrcBaseName Returns the name of model’s main source
file (for example, model.c or .cpp).

LibGetMdlPubHdrBaseName Returns the name of model’s public header
file (for example, model.h).

LibGetMdlPrvHdrBaseName Returns the name of the model’s
private header file (for example,
model_private.h).

LibIsSingleTasking Returns true if the model is configured for
single-tasking execution.

LibWriteModelInput Returns the code to write to a particular
root input (that is, a model inport block).
(valid for ERT only).

LibWriteModelOutput Returns the code to write to a particular
root output (that is, a model outport block).
(valid for ERT only).

LibWriteModelInputs Returns the code to write to root inputs
(that is, all model inport blocks). (valid for
ERT only)

LibWriteModelOutputs Returns the code to write to root outputs
(that is, all model outport blocks). (valid
for ERT only).

15-53

15 Code Appearance

Code Template API Functions (Continued)

Function Description

LibNumDiscreteSampleTimes Returns the number of discrete sample
times in the model.

LibSetSourceFileCodeTemplate Set the code template to be used for
generating a specified source file.

LibSetSourceFileOutputDirectory Set the folder into which a specified source
file is to be generated.

LibAddSourceFileCustomSection Add a custom section to a source file.
The custom section must be associated
with one of the built-in (required)
sections: Includes, Defines, Types,
Enums, Definitions, Declarations, or
Functions.

LibSetSourceFileCustomSection Adds to the contents of a specified custom
section within a specified file. The custom
section must have been previously created
with LibAddSourceFileCustomSection.

LibGetSourceFileCustomSection Returns the contents of a specified custom
section within a specified file.

LibSetCodeTemplateComplianceLevel This function must be called from your
CFP template before other code template
API functions are called. Pass in 2 as the
level argument.

Note Some MathWorks TLC files pass
in 1 as the level argument. Currently,
there is no difference in handling of level 1
versus level 2 by MathWorks software.

15-54

Customize Code Organization and Format

Generate Custom File and Function Banners
Using code generation template (CGT) files, you can specify custom file
banners and function banners for the generated code files. File banners
are comment sections in the header and trailer sections of a generated file.
Function banners are comment sections for each function in the generated
code. Use these banners to add a company copyright statement, specify a
special version symbol for your configuration management system, remove
time stamps, and for many other purposes. These banners can contain
characters, which propagate to the generated code.

To specify banners, create a custom CGT file with customized banner sections.
The build process creates an executable TLC file from the CGT file. The code
generation process then invokes the TLC file.

You do not need to be familiar with TLC programming to generate custom
banners. You can modify example files that are supplied with the ERT target.

Note Prior releases supported direct use of customized TLC files as banner
templates. You specified these with the Source file (.c) banner template
and Header file (.h) banner template options of the ERT target. You can
still use a custom TLC file banner templates, however, you can now use CGT
files instead.

ERT template options on the Code Generation > Templates pane of a
configuration set, in the Code templates section, support banner generation.

The options for function and file banner generation are:

• “Code templates: Source file (*.c) template”: CGT file to use when
generating source (.c or .cpp) files. Place this file on the MATLAB path.

• “Code templates: Header file (*.h) template”: CGT file to use when
generating header (.h) files. You must place this file on the MATLAB
path. This file can be the same template specified in the Code templates:
Source file (*.c) template field, in which case identical banners are
generated in source and header files.

By default, the template for both source and header files is
matlabroot/toolbox/rtw/targets/ecoder/ert_code_template.cgt.

15-55

15 Code Appearance

• In each of these fields, click Browse to navigate to and select an existing
CGT file for use as a template. Click Edit to open the specified file into the
MATLAB editor, where you can customize it.

15-56

Customize Code Organization and Format

Create a Custom File and Function Banner Template
To customize a CGT file for custom banner generation, make a local copy of
the default code template and edit it, as follows:

1 Activate the configuration set you that want to work with.

2 Open the Code Generation pane of the active configuration set.

3 Click the Templates tab.

4 By default, the code template specified in theCode templates: Source file
(*.c) template and Code templates: Header file (*.h) template fields
is matlabroot/toolbox/rtw/targets/ecoder/ert_code_template.cgt.

5 If you want to use a different template as your starting point, click Browse
to locate and select a CGT file.

6 Click Edit button to open the CGT file into the MATLAB editor.

7 Save a local copy of the CGT file. Store the copy in a folder that is outside
of the MATLAB folder structure, but on the MATLAB path. If required,
add the folder to the MATLAB path.

8 If you intend to use the CGT file with a custom target, locate the CGT file
in a folder under your target root folder.

9 Rename your local copy of the CGT file. When you rename the CGT file,
update the associated Code templates: Source file (*.c) template or
Code templates: Header file (*.h) template field to match the new
file name.

10 Edit and customize the local copy of the CGT file for banner generation,
using the information provided in “Customize a Code Generation Template
(CGT) File for File and Function Banner Generation” on page 15-58.

11 Save your changes to the CGT file.

12 Click Apply to update the configuration set.

13 Save your model.

15-57

15 Code Appearance

14 Generate code. Examine the generated source and header files to confirm
that they contain the banners specified by the template or templates.

Customize a Code Generation Template (CGT) File for File and
Function Banner Generation
This section describes how to edit a CGT file for custom file and function
banner generation. For a description of CGT files, see “Code Generation
Template (CGT) Files” on page 15-31.

Components of the File and Function Banner Sections in the CGT file.
In a CGT file, you can modify the following sections: file banner, function
banner, shared utility function banner, and file trailer. Each section is
defined by open and close tags. The tags specific to each section are shown
in the following table.

CGT File Section Open Tag Close Tag

File Banner <FileBanner> </FileBanner>

Function Banner <FunctionBanner> </FunctionBanner>

Shared-utility Banner <SharedUtilityBanner> </SharedUtilityBanner>

File Trailer <FileTrailer> </FileTrailer>

You can customize your banners by including tokens and comments between
the open and close tag for each section. Tokens are typically TLC variables,
for example <ModelVersion>, which are replaced with values in the generated
code.

Note Including C comment indicators, ’/*’ or a ’*/’, in the contents of your
banner might introduce an error in the generated code.

An open tag includes tag attributes. Enclose the value of the attribute in
double quotes. The attributes available for an open tag are:

• width: specifies the width of the file or function banner comments in the
generated code. The default value is 80.

15-58

Customize Code Organization and Format

• style: specifies the boundary for the file or function banner comments in
the generated code.

The open tag syntax is as follows:

<OpenTag style = “style_value” width = “num_width”>

The built-in style options for the style attribute are:

• classic

/* single line comments */
/*
* multiple line comments
* second line
*/

• classic_cpp

// single line comments
//
// multiple line comments
// second line
//

• box

/**/
/* banner contents */
/**/

• box_cpp

//
// banner contents //
//

• open_box

/**
* banner contents
**/

15-59

15 Code Appearance

• open_box_cpp

//
// banner contents
//

File Banner. This section contains comments and tokens for use in
generating a custom file banner. The file banner precedes C or C++ code
generated by the model. If you omit the file banner section from the
CGT file, then no file banner emits to the generated code. The following
section is the file banner section provided with the default CGT file,
matlabroot/toolbox/rtw/targets/ecoder/ert_code_template.cgt.

%%%

%% Custom file banner section (optional)

%%

<FileBanner style="classic">

File: %<FileName>

Code generated for Simulink model %<ModelName>.

Model version : %<ModelVersion>

Simulink Coder version : %<RTWFileVersion>

TLC version : %<TLCVersion>

C/C++ source code generated on : %<SourceGeneratedOn>

%<CodeGenSettings>

</FileBanner>

Summary of Tokens for File Banner Generation

FileName Name of the generated file (for example,
"rtwdemo_udt.c").

FileType Either "source" or "header". Designates
whether generated file is a .c or .cpp file or an
.h file.

FileTag Given file names file.c or .cpp and file.h;
the file tags are "file_c" and "file_h",
respectively.

ModelName Name of generating model.

15-60

Customize Code Organization and Format

Summary of Tokens for File Banner Generation (Continued)

ModelVersion Version number of model.

RTWFileVersion Version number of model.rtw file.

RTWFileGeneratedOn Timestamp of model.rtw file.

TLCVersion Version of Target Language Compiler.

SourceGeneratedOn Timestamp of generated file.

CodeGenSettings Code generation settings for model: target
language, target selection, embedded hardware
selection, emulation hardware selection, code
generation objectives (in priority order), and
Code Generation Advisor validation result.

Function Banner. This section contains comments and tokens for
use in generating a custom function banner. The function banner
precedes C or C++ function generated during the build process. If
you omit the function banner section from the CGT file, the default
function banner emits to the generated code. The following section is
the default function banner section provided with the default CGT file,
matlabroot/toolbox/rtw/targets/ecoder/ert_code_template.cgt.

%%%

%% Custom function banner section (optional)

%% Customize function banners by using the following predefined tokens:

%% %<ModelName>, %<FunctionName>, %<FunctionDescription>, %<Arguments>,

%% %<ReturnType>, %<GeneratedFor>, %<BlockDescription>.

%%

<FunctionBanner style="classic">

%<FunctionDescription>

%<BlockDescription>

</FunctionBanner>

Summary of Tokens for Function Banner Generation

FunctionName Name of function

Arguments List of function arguments

15-61

15 Code Appearance

Summary of Tokens for Function Banner Generation (Continued)

ReturnType Return type of function

ModelName Name of generating model

FunctionDescription Short abstract about the function

GeneratedFor Full block path for the generated function

BlockDescription User input from the Block Description
parameter of the block properties dialog box.
BlockDescription contains an optional token
attribute, style. The only valid value forstyle
is content_only, which is case-sensitive and
enclosed in double quotes. Use the content_only
style when you want to include only the block
description content that you entered in the block
parameter dialog. The syntax for the token
attribute style is:

%<BlockDescription style = content_only >

Shared Utility Function Banner. The shared utility function banner section
contains comments and tokens for use in generating a custom shared utility
function banner. The shared utility function banner precedes C or C++ shared
utility function generated during the build process. If you omit the shared
utility function banner section from the CGT file, the default shared utility
function banner emits to the generated code. The following section is the
default shared utility function banner section provided with the default CGT
file, matlabroot/toolbox/rtw/targets/ecoder/ert_code_template.cgt.

%%%

%% Custom shared utility function banner section (optional)

%% Customize banners for functions generated in shared location by using the

%% following predefined tokens: %<FunctionName>, %<FunctionDescription>,

%% %<Arguments>, %<ReturnType>.

%%

<SharedUtilityBanner style="classic">

%<FunctionDescription>

</SharedUtilityBanner>

15-62

Customize Code Organization and Format

Summary of Tokens for Shared Utility Function Banner Generation

FunctionName Name of function

Arguments List of function arguments

ReturnType Return type of function

FunctionDescription Short abstract about function

File Trailer. The file trailer section contains comments for generating a
custom file trailer. The file trailer follows C or C++ code generated from the
model. If you omit the file trailer section from the CGT file, no file trailer
emits to the generated code. The following section is the default file trailer
provided in the default CGT file.

%%%

%% Custom file trailer section (optional)

%%

<FileTrailer style="classic">

File trailer for generated code.

[EOF]

</FileTrailer>

Tokens available for the file banner are available for the file trailer. See
Summary of Tokens for File Banner Generation on page 15-60.

Template Symbols and Rules

Introduction
“Template Symbol Groups” on page 15-64 and “Template Symbols” on page
15-66 describe MPF template symbols and rules for using them. The location
of a symbol in one of the supplied template files (code_c_template.cgt,
code_h_template.cgt, data_c_template.cgt, or data_h_template.cgt)
determines where the items associated with that symbol are located in the
corresponding generated file. “Template Symbol Groups” on page 15-64
identifies the symbol groups, starting with the parent (“Base”) group, followed
by the children of each parent. “Template Symbols” on page 15-66 lists the
symbols alphabetically.

15-63

15 Code Appearance

Template Symbol Groups

Symbol Group Symbol Names in This Group

Base (Parents) Declarations

Defines

Definitions

Documentation

Enums

Functions

Includes

Types

Declarations ExternalCalibrationLookup1D

ExternalCalibrationLookup2D

ExternalCalibrationScalar

ExternalVariableScalar

Defines LocalDefines

LocalMacros

Definitions FilescopeCalibrationLookup1D

FilescopeCalibrationLookup2D

FilescopeCalibrationScalar

FilescopeVariableScalar

GlobalCalibrationLookup1D

GlobalCalibrationLookup2D

GlobalCalibrationScalar

GlobalVariableScalar

15-64

Customize Code Organization and Format

Symbol Group Symbol Names in This Group

Documentation Abstract

Banner

Created

Creator

Date

Description

FileName

History

LastModifiedDate

LastModifiedBy

ModelName

ModelVersion

ModifiedBy

ModifiedComment

ModifiedDate

ModifiedHistory

Notes

ToolVersion

Functions CFunctionCode

Types This parent has no children.

15-65

15 Code Appearance

Template Symbols

Symbol Name*
Symbol
Group

Symbol
Scope

Symbol Description
(What the symbol puts in
the generated file)

Abstract Documentation N/A User-supplied description of
the model or file. Placed in
the generated file based on
the Stateflow note, Simulink
annotation, or DocBlock on the
model.**

Banner Documentation N/A Comments located near top of
the file. Contains information
that includes model and
software versions, and date
file was generated.

CFunctionCode Functions File C/C++ functions. Must be at
the bottom of the template.

Created Documentation N/A Date when model was created.
From Created on field on
Model Properties dialog box.

Creator Documentation N/A User who created model. From
Created by field on Model
Properties dialog box.

Date Documentation N/A Date file was generated.
Taken from computer clock.

Declarations Base Data declaration of a signal
or parameter. For example,
extern real_T globalvar;.

Defines Base File Required #defines of .h files.

Definitions Base File Data definitions of signals or
parameters.

Description Documentation N/A Description of model. From
Model description field on
Model Properties dialog box.**

15-66

Customize Code Organization and Format

Symbol Name*
Symbol
Group

Symbol
Scope

Symbol Description
(What the symbol puts in
the generated file)

Documentation Base N/A Comments about how to
interpret the generated files.

Enums Base File Enumerated data type
definitions.

ExternalCalibrationLookup1D Declarations External ***

ExternalCalibrationLookup2D Declarations External ***

ExternalCalibrationScalar Declarations External ***

ExternalVariableScalar Declarations External ***

FileName Documentation N/A Name of the generated file.

FilescopeCalibrationLookup1D Definitions File ***

FilescopeCalibrationLookup2D Definitions File ***

FilescopeCalibrationScalar Definitions File ***

FilescopeVariableScalar Definitions File ***

Functions Base File Generated function code.

GlobalCalibrationLookup1D Definitions Global ***

GlobalCalibrationLookup2D Definitions Global ***

GlobalCalibrationScalar Definitions Global ***

GlobalVariableScalar Definitions Global ***

History Documentation N/A User-supplied revision history
of the generated files. Placed
in the generated file based on
the Stateflow note, Simulink
annotation, or DocBlock on the
model.**

Includes Base File #include preprocessor
directives.

15-67

15 Code Appearance

Symbol Name*
Symbol
Group

Symbol
Scope

Symbol Description
(What the symbol puts in
the generated file)

LastModifiedDate Documentation N/A Date when model was last
saved. From Last saved
on field on Model Properties
dialog box.

LastModifiedBy Documentation N/A User who last saved model.
From Last saved by field on
Model Properties dialog box.

LocalDefines Defines File #define preprocessor
directives from
code-generation data
dictionary.

LocalMacros Defines File C/C++ macros local to the file.

ModelName Documentation N/A Name of the model.

ModelVersion Documentation N/A Version number of the
Simulink model.

ModifiedBy Documentation N/A Name of user who last
modified the model. From
Model version field on Model
Properties dialog box.

ModifiedComment Documentation N/A Comment user enters in the
Modified Comment field on
the Log Change dialog box.
For more information, see “Log
Comments History”.

ModifiedDate Documentation N/A Date model was last modified
before code was generated.

ModifiedHistory Documentation N/A Text from Modified history
field on Model Properties
dialog box.**

15-68

Customize Code Organization and Format

Symbol Name*
Symbol
Group

Symbol
Scope

Symbol Description
(What the symbol puts in
the generated file)

Notes Documentation N/A User-supplied miscellaneous
notes about the model or
generated files. Placed in
the generated file based on
the Stateflow note, Simulink
annotation, or DocBlock on the
model.**

ToolVersion Documentation N/A A list of the versions of the
toolboxes used in generating
the code.

Types Base Data types of generated code.

* Symbol names must be enclosed between %< >. For example, %<Functions>.

** This symbol can be used to add a comment to the generated files. See “Add
Global Comments” on page 15-6. The code generator places the comment in
each generated file whose template has this symbol name. The code generator
places the comment at the location that corresponds to where the symbol
name is located in the template file.

*** The description can be deduced from the symbol name. For example,
GlobalCalibrationScalar is a symbol that identifies a scalar. It contains
data of global scope that you can calibrate .

15-69

15 Code Appearance

Rules for Modifying or Creating a Template
The following are the rules for creating a MPF template. “Comparison of a
Template and Its Generated File” on page 15-48 illustrates several of these
rules.

1 Place a symbol on a template within the %< > delimiter. For example, the
symbol named Includes should look like this on a template: %<Includes>.
Note that symbol names are case sensitive.

2 Place a symbol on a template where desired. Its location on the template
determines where the item associated with this symbol is located in the
generated file. If no item is associated with it, the symbol is ignored.

3 Place a C/C++ statement outside of the %< > delimiter, and on a different
line than a %< > delimiter, for that statement to appear in the generated
file. For example, #pragma message ("my text") in the template results
in #pragma message ("my text") at the corresponding location in the
generated file. Note that the statement must be compatible with your
C/C++ compiler.

4 Use the .cgt extension for every template filename. ("cgt" stands for code
generation template.)

5 Note that %% $Revision: 1.1.4.10.4.1 $ appears at the top of the
MathWorks supplied templates. This is for internal MathWorks use only.
It does not need to be placed on a user-defined template and does not show
in a generated file.

6 Place a comment on the template between /* */ as in standard ANSI C6.
This results in /*comment*/ on the generated file.

7 Each MPF template must have all of the Base group symbols, in predefined
order. They are listed in “Template Symbol Groups” on page 15-64. Each
symbol in the Base group is a parent. For example, Declarations is a
parent symbol.

8 Each symbol in a non-Base group is a child. For example, LocalMacros is
a child.

6. ANSI® is a registered trademark of the American National Standards Institute, Inc.

15-70

Customize Code Organization and Format

9 Except for Documentation children, children must be placed after their
parent, before the next parent, and before the Functions symbol.

10 Documentation children can be located before or after their parent in any
order anywhere in the template.

11 If a non-Documentation child is missing from the template, the code
generator places the information associated with this child at its parent
location in the generated file.

12 If a Documentation child is missing from the template, the code generator
omits the information associated with that child from the generated file.

15-71

15 Code Appearance

Code Annotation for Justifying Polyspace Checks
With the Polyspace® Model Link™ SL product you can apply Polyspace
verification to Embedded Coder generated code. The software detects run-time
errors in the generated code and helps you to locate and fix model faults.

Polyspace might highlight overflows for certain operations that are legitimate
because of the way Embedded Coder implements these operations. Consider
the following model and the corresponding generated code.

32 /* Sum: '<Root>/Sum' incorporates:

33 * Inport: '<Root>/In1'

34 * Inport: '<Root>/In2'

35 */

36 qY_0 = sat_add_U.In1 + sat_add_U.In2;

37 if ((sat_add_U.In1 < 0) && ((sat_add_U.In2 < 0) && (qY_0 >= 0))) {

38 qY_0 = MIN_int32_T;

39 } else {

40 if ((sat_add_U.In1 > 0) && ((sat_add_U.In2 > 0) && (qY_0 <= 0))) {

41 qY_0 = MAX_int32_T;

42 }

43 }

Embedded Coder software recognizes that the largest built-in data type
is 32-bit. It is not possible to saturate the results of the additions and
subtractions using MIN_INT32 and MAX_INT32 and a bigger single-word
integer data type. Instead the software detects the results overflow and the
direction of the overflow, and saturates the result.

15-72

Code Annotation for Justifying Polyspace Checks

If you do not provide justification for the addition operator on line 36, a
Polyspace verification generates an orange check that indicates a potential
overflow. The verification does not take into account the saturation function
of lines 37 to 43. In addition, the trace-back functionality of Polyspace Model
Link SL does not identify the reason for the orange check.

To justify overflows from operators that are legitimate, on the Configuration
Parameters > Code Generation > Comments pane:

• Under Overall control, select the Include comments check box.

• Under Auto generate comments, select the Operator annotations
check box.

When you generate code, the Embedded Coder software annotates the code
with comments for Polyspace. For example:

32 /* Sum: '<Root>/Sum' incorporates:
33 * Inport: '<Root>/In1'
34 * Inport: '<Root>/In2'
35 */
36 qY_0 = sat_add_U.In1 +/*MW:OvOk*/ sat_add_U.In2;

When you run a verification using Polyspace Model Link SL, the Polyspace
software uses the annotations to justify the operator-related orange checks
and assigns the Not a defect classification to the checks.

15-73

15 Code Appearance

Manage Placement of Data Definitions and Declarations

In this section...

“Overview of Data Placement” on page 15-74

“Priority and Usage” on page 15-75

“Ownership Settings” on page 15-81

“Memory Section Settings” on page 15-81

“Data Placement Rules” on page 15-81

“Settings for a Data Object” on page 15-82

“Data Placement Rules and Results” on page 15-91

Overview of Data Placement
This chapter focuses on module packaging features (MPF) settings that are
interdependent. Their combined values, along with Simulink partitioning,
determine the file placement of data definitions and declarations, or data
placement. This includes

• The number of files generated.

• Whether or not the generated files contain definitions for a model’s global
identifiers. And, if a definition exists, the settings determine the files in
which MPF places them.

• Where MPF places global data declarations (extern).

The following six MPF settings are distributed among the main procedures
and form an important interdependency:

• The Data definition field on the Code Placement pane of the
Configuration Parameters dialog box.

• The Data declaration field on the Code Placement pane of the
Configuration Parameters dialog box.

• The Owner field of the data object in the Model Explorer and the checkbox
for Use owner from data object for data definition placement on the

15-74

Manage Placement of Data Definitions and Declarations

Code Placement pane of the Configuration Parameters dialog box. The
term "ownership settings" refers to these fields together.

• The Definition file field of the data object on the Model Explorer.

• The Header file field of the data object on the Model Explorer.

• TheMemory section field of the data object on the Model Explorer.

Priority and Usage

• “Overview” on page 15-75

• “Read-Write Priority” on page 15-76

• “Global Priority” on page 15-79

• “Definition File, Header File, and Ownership Priorities” on page 15-80

Overview
There is a priority order among interdependent MPF settings. From highest
to lowest, the priorities are

• Definition File priority

• Header File priority

• Ownership priority

• Read-Write priority or Global priority

Priority order varies inversely with frequency of use, as illustrated below. For
example, Definition File is highest priority but least used.

15-75

15 Code Appearance

*:���&"��-	�@�	����B��"C>�&��
%���
�	����"�"�����@N����

O&�8�
����&��&��

��6�
����&��&��

���
���
�"

D�
���
�"

��%&!&�&�!�$&	�

O��"���$&	�

*6!��
8&�

B��"C>�&�� -	�@�	

MPF Settings Priority and Usage

Unless they are overridden, the Read-Write and Global priorities place in
the generated files all of the model’s MPF-derived data objects that you
selected using Data Object Wizard. (See “Create Data Objects with Data
Object Wizard” on page 8-57 for details.) Before generating the files, you can
use the higher priority Definition file, Header file, and Ownership, as desired,
to override Read-Write or Global priorities for single data objects. Most
users will employ Read-Write or Global, without an override. A few users,
however, will want to do an override for certain data objects. We expect that
those users whose applications include multiple modules will want to use
the Ownership priority.

The priorities are used only for those data objects that are derived from
Simulink.Signal and Simulink.Parameter, and whose custom storage
classes are specified using the Custom Storage Class Designer. (For details,
see “Design Custom Storage Classes and Memory Sections” on page 10-8.)
Otherwise, the build process determines the data placement.

Read-Write Priority
This is the lowest priority. Consider that a model consists of one or more
Simulink blocks or Stateflow diagrams. There can be subsystems within

15-76

Manage Placement of Data Definitions and Declarations

these. For the purpose of illustration, think of a model with one top-level block
called fuelsys. You double-clicked the block and now see three subsystems
labeled subsys1, subsys2 and subsys3, as shown in the next figure. Signals
a and b are outputs from the top-level block (fuelsys). Signal a is an input
to subsys1 and b is input to subsys2. Signal c is an output from subsys1.
Notice the other inputs and outputs (d and e). Signals a through e have
corresponding data objects and are part of the code generation data dictionary.

As explained in “Data Definition and Declaration Management” on page 8-55,
MPF provides you with the means of selecting a data object that you want
defined as an identifier in the generated code. MPF also allows you to specify
property values for each data object. For this illustration, we choose to include
all of the data objects to be in the dictionary.

D�"�	

�@
�
(

�@
�
+

�@
�
0

%��	
�

�

@

�

"

�

� @

15-77

15 Code Appearance

The Generated Files. We generate code for this model. As shown in the
figure below, this results in a .c source file corresponding to each of the
subsystems. (In actual applications, there could be more than one .c source
file for a subsystem. This is based on the file partitioning previously selected
for the model. But for our illustration, we only need to show one for each
subsystem.) Data objects a through e have corresponding identifiers in the
generated files.

A .c source file has one or more functions in it, depending on the internal
operations (functions) of its corresponding subsystem. An identifier in a
generated .c file has local scope when it is used only in one function of that
.c file. An identifier has file scope when more than one function in the same
.c file uses it. An identifier has global scope when more than one of the
generated files uses it.

A subsystem’s source file contains the definitions for that subsystem’s data
objects that have local scope or file scope. (These definitions are not shown in
the figure.) But where are the definitions and declarations for data objects of
global scope? These are shown in the next figure.

D�"�	

�@
�
(

�@
�
+

�@
�
0

%��	
�

�

@

�

"

�

� @

-�!�����"�$&	�

B�
�	�
��%�B��"C>�&�����&��&��

��������� ������	��

������
�� ���
�����

������

�������������

������

�������������

�������������

������

�������������

������

������

15-78

Manage Placement of Data Definitions and Declarations

For the Read-Write priority, this source file contains the definitions for the
subsystem’s global data objects, if this is the file that first writes to the data
object’s address. Other files that read (use) that data object only include a
reference to it. This is why this priority is called Read-Write. Since a read
and a write of a file are analogous to input and output of a model’s block,
respectively, there is another way of saying this. The definitions of a block’s
global data objects are located in the corresponding generated file, if that data
object is an output from that block. The declarations (extern) of a block’s
global data objects are located in the corresponding generated file, if that
data object is an input to that block.

Settings for Read-Write Priority. The generated files and what they
include, as just described, occur when the Read-Write priority is used. For
this to be the case, the other priorities are turned off. That is,

• The Data definition field on the Code Placement pane is set to Data
defined in source file.

• The Data declaration field on the Code Placement pane is set to Data
declared in source file.

• The Owner field on the Model Explorer is blank, and the checkbox for the
Use owner from data object for data definition placement field on
the Code Placement pane is not checked.

• Definition file and Header file on the Model Explorer are blank.

Global Priority
This has the same priority as Read-Write (the lowest) priority. The settings
for this are the same as for Read-Write Priority, except

• The Data definition field on the Code Placement pane is set to Data
defined in single separate source file.

• The Data declaration field on the Code Placement pane is set to Data
declared in single separate header file.

The generated files that result are shown in the next figure. A subsystem’s
data objects of local or file scope are defined in the .c source file where the
subsystem’s functions are located (not shown). The data objects of global
scope are defined in another .c file (called global.c in the figure). The

15-79

15 Code Appearance

declarations for the subsystem’s data objects of global scope are placed in a .h
file (called global.h).

For example, data objects of local and file scope for subsys1 are defined in
subsys1.c. Signal c in the model is an output of subsys1 and an input to
subsys2. So c is used by more than one subsystem and thus is a global
data object. Because of the global priority, the definition for c (int c;) is
in global.c. The declaration for c (extern int c;) is in global.h. Since
subsys2 uses (reads) c, #include "global.h" is in subsys2.c.

D�"�	

�@
�
(

�@
�
+

�@
�
0

%��	
�

�

@

�

"

�

� @

-�!�����"�$&	�

B�
�	�
��%�-	�@�	���&��&��

��������� ������	��

������
�� ���
�����

����
������
���
���

������

������

�������

������

������

�
���
�� �
���
��

�������������

�������������

�������������

�������������

�������������

����
������
���
���

����
������
���
��� ����
������
���
���

Definition File, Header File, and Ownership Priorities
While the Read-Write and Global priorities operate on all MPF-derived data
objects that you want defined in the generated code, the remaining priorities

15-80

Manage Placement of Data Definitions and Declarations

allow you to override the Read-Write or Global priorities for one or more
particular data objects. There is a high-to-low priority among these remaining
priorities — Definition File, Header File, and Ownership — for a particular
data object, as shown in MPF Settings Priority and Usage on page 15-76

Ownership Settings
Ownership settings refers to the on or off setting specified using the Use
owner from data object for data definition placement checkbox on the
Code Placement pane of the Configuration Parameters dialog box, and
the Owner field of a data object in the Model Explorer. These settings do
not control what files are generated. These settings only specify definitions
and extern statements. There are four possible configurations, as shown in
“Ownership Settings” on page 15-91.

Memory Section Settings
Memory sections allow you to specify storage directives for a data object. As
shown in Parameter and Signal Property Values on page 9-3, the possible
values for the Memory section property of a parameter or signal object are
Default, MemConst, MemVolatile or MemConstVolatile.

If you specify a filename for Definition file, and select Default, MemConst,
MemVolatile or MemConstVolatile for the Memory section property, the
code generation software generates a .c file and an .h file. The .c file
contains the definition for the data object with the pragma statement or
qualifier associated with theMemory section selection. The .h file contains
the declaration for the data object. The .h file can be included, using the
preprocessor directive #include, in files that need to reference the data object.

You can add more memory sections. For more information, see “Design
Custom Storage Classes and Memory Sections” on page 10-8 and “Memory
Sections”.

Data Placement Rules
For a complete set of data placement rules in convenient tabular form, based
on the priorities discussed in this chapter, see “Data Placement Rules and
Results” on page 15-91.

15-81

15 Code Appearance

Settings for a Data Object

• “Introduction” on page 15-82

• “Read-Write” on page 15-84

• “Ownership” on page 15-85

• “Header File” on page 15-87

• “Definition File” on page 15-89

Introduction
“Settings and Resulting Generated Files” on page 15-91 provides example
settings for one data object of a model. Eight examples are listed so that
you can see the generated files that result from a wide variety of settings.
Four examples from this table are discussed below in more detail. These
discussions provide information for understanding settings you might choose.
For illustration purposes, the four examples assume that we are dealing with
an overall system that controls engine idle speed.

The next figure shows that the software component of this example system
consists of two modules, IAC (Idle Air Control), and IO (Input-Output).

15-82

Manage Placement of Data Definitions and Declarations

�!�&!���"	������"���!���	���
��'

��������	��
����
�����������	 ��������	

����	�
����������
�	
	���	���
�	�����������������
�

�	�	
����
������	��

��

�	�	
����
������	��

��

�	
	���	���
�	������������������

� �!���������� �
���
�"�#��������$�%�%�
���
�"������#��$�%�%�

� �&������
�!��� �
����������
�"�#��������
����������
�"������#��

'(��

'(��

The code in the IO module controls the system’s IO hardware. Code is
generated only for the IAC module. (Some other means produced the code for
the IO module, such as hand-coding.) So the code in IO is external to MPF,
and can illustrate legacy code. To simplify matters, the IO code contains one
source file, called IO.c, and one header file, called IO.h.

The IAC module consists of two Stateflow charts, spd_filt and iac_ctrl.
The spd_filt chart has two signals (meas_spd) and filt_spd), and one
parameter (a). The iac_ctrl chart also has two signals (filt_spd and
iac_cmd) and a parameter (ref_spd). (The parameters are not visible in the
top-level charts.) One file for each chart is generated. This example system
allows us to illustrate referencing from file to file within the MPF module,
and model to external module. It also illustrates the case where there is no
such referencing.

15-83

15 Code Appearance

Proceed to the discussion of the desired example settings:

• “Read-Write” on page 15-84

• “Ownership” on page 15-85

• “Header File” on page 15-87

• “Definition File” on page 15-89

Read-Write
These settings and the generated files that result are shown as Example
Settings 1 in “Settings and Resulting Generated Files” on page 15-91. As you
can see from the table, this example illustrates the case in which only one .c
source file (for each chart) is generated.

So, for the IAC model, select the following settings. Accept the Data defined
in source file in the Data definition field and the Data declared in
source file in the Data declaration field on the Code Placement pane of
the Configuration Parameters dialog box. Accept the default unchecked Use
owner from data object for data definition placement field. Accept
the default blank settings for the Owner, Definition file and Header file
fields on the Model Explorer. For Memory section, accept Default. Now
the Read-Write priority is active. Generate code. The next figure shows the
results in terms of definition and declaration statements.

15-84

Manage Placement of Data Definitions and Declarations

�!�&!���"	������"���!���	���
��'�.B��"C>�&����,�'�	�/

��������	��
����
�����������	 ��������	

����	�
����������
�	
	���	���
�	�����������������
�

�	
	���	���
�	������������������

� �!���������� �

���
�"�#��������$�%�%�

���
�"������#��$�%�%�

� �&������
�!��� �

����������
�"�#��������

����������
�"������#��

'(��

'(��

������
���

�������
��

� �!���������� �

���������
�"���$�%�)�

���
�"���
������$�%�%�

���
�"�#��������$�%�%�

� �!���������� �

���������
�"���������$�%�%�

���
�"������#��$�%�%�

� !��
�������� �

����������
�"���
������

The code generator generated a spd_filt.c for the spd_filt chart and
iac_ctrl.c for the iac_ctrl chart. As you can see, MPF placed definitions of
data objects for the spd_filt chart in spd_filt.c. It placed definitions of
data objects for the iac_ctrl chart in iac_ctrl.c.

However, notice real_T filt_spd. This data object is defined in spd_filt.c
and declared in iac_ctrl.c. That is, since the Read-Write priority is active,
filt_spd is defined in the file that first writes to its address. And, it is
declared in the file that reads (uses) it. Further, real_T meas_spd is defined
in both spd_filt.c and the external IO.c. And, real_T iac_cmd is defined
in both iac_ctrl.c and IO.c.

Ownership
See tables “Ownership Settings” on page 15-91 and “Settings and Resulting
Generated Files” on page 15-91. In the “Read-Write” on page 15-84, there are

15-85

15 Code Appearance

several instances where the same data object is defined in more than one .c
source file, and there is no declaration (extern) statement. This would result
in compiler errors during link time. But in this example, we configure MPF
Ownership rules so that linking can take place. Notice the Example Settings
2 row in “Settings and Resulting Generated Files” on page 15-91. Except for
the ownership settings, assume these are the settings you made for the model
in the IAC module. Since this example has no Definition file or Header file
specified, now Ownership takes priority. (If you specified a Definition file or
Header file, MPF ignores the ownership settings.)

On the Code Placement pane of the Configuration Parameters dialog box,
check the box for the Use owner from data object for data definition
placement field. Open the Model Explorer (by issuing the MATLAB
command daexplr) and, for all data objects except meas_spd and iac_cmd,
type IAC in the Owner field (case sensitive). Then, only for the meas_spd and
iac_cmd data objects, type IO as their Owner (case sensitive). Generate code.

15-86

Manage Placement of Data Definitions and Declarations

The results are shown in the next figure. Notice the extern real_T meas_spd
statement in spd_filt.c, and extern real_T iac_cmd in iac_ctrl.c. MPF
placed these declaration statements in the files where these data objects are
used. This allows the generated source files (spd_filt.c and iac_ctrl.c) to
be compiled and linked with IO.c.

�!�&!���"	������"���!���	���
��'�.*6!��
8&���,�'�	�/

��������	��
����
�����������	 ��������	

����	�
����������
�	
	���	���
�	�����������������
�

�	
	���	���
�	������������������

� �!���������� �

���
�"�#��������$�%�%�

���
�"������#��$�%�%�

� �&������
�!��� �

����������
�"�#��������

����������
�"������#��

'(��

'(��

������
���

�������
��

� �!���������� �

���������
�"���$�%�)�

���
�"���
������$�%�%�

� !��
�������� �

����������
�"�#��������

� �!���������� �

���������
�"���������$�%�%�

� !��
�������� �

����������
�"���
������

����������
�"������#��

Header File
These settings and the generated files that result are shown as Example
Settings 3 in “Settings and Resulting Generated Files” on page 15-91. This
example has no Definition file specified. If you specified a Definition file,
MPF ignores the Header file setting. The focus of this example is to show
how the Header file settings result in the linking of the two chart source files
to the external IO files, shown in the next figure. (Also, ownership settings
will be used to link the two chart files with each other.)

15-87

15 Code Appearance

As you can see in the figure, the meas_spd and iac_cmd identifiers are defined
in IO.c and declared in IO.h. Both of these identifiers are external to the
generated .c files. You open the Model Explorer and select both the meas_spd
and iac_cmd data objects. For each of these data objects, in the Header
file field, specify IO.h, since this is where these two objects are declared.
This setting allows the spd_filt.c source file to compile and link with the
external IO.c file.

Now we configure the ownership settings. In the Model Explorer, select the
filt_spd data object and set its Owner field to IAC. Then, on the Code
Placement pane of the Configuration Parameters dialog box, check the box
for the Use owner from data object for data definition placement field.
Now the spd_filt source file links to the iac_ctrl source file. Generate
code. See the figure below.

�!�&!���"	������"���!���	���
��'�.O��"���$&	���,�'�	�/

��������	��
����
�����������	 ��������	

����	�
�����������	
	���	���
�	�����������������
�

�	
	���	���
�	������������������

� �!���������� �

���
�"�#��������$�%�%�

���
�"������#��$�%�%�

� �&������
�!��� �

����������
�"�#��������

����������
�"������#��

'(��

'(��

������
���

�������
��

� �'��
���� �

����
����*'(��+

� �!���������� �

���������
�"���$�%�)�

���
�"���
������$�%�%�

� �'��
���� �

����
����*'(��+

� �!���������� �

���������
�"���������$�%�%�

� �!��
�������� �

����������
�"���
������

15-88

Manage Placement of Data Definitions and Declarations

Since you specified the IO.h filename for the Header file field for the
meas_spd and iac_ctrl objects, the code generator assumed that their
declarations are in IO.h. So the code generator placed #include IO.h in each
source file: spd_filt.c and iac_ctrl.c. So these two files will link with the
external IO files. Also, due to the ownership settings that were specified, the
code generator places the real_T filt_spd = 0.0; definition in spd_filt.c
and declares the filt_spd identifier in iac_ctrl.c with extern real_T
iac_cmd;. Consequently, the two source files will link together.

Definition File
These settings and the generated files that result are shown as Example
Settings 4 in “Settings and Resulting Generated Files” on page 15-91. Notice
that a definition filename is specified. The settings in the table only apply to
the data object called a. You have decided that you do not want this object
defined in spd_filt.c, the generated source file for the spd_filt chart.
(There are many possible organizational reasons one might want an object
declared in another file. It is not important for this example to specify the
reason.)

For this example, assume the settings for all data objects are the same as
those indicated in “Header File” on page 15-87, except for the data object a.
The description below identifies only the differences that result from this.

Open the Model Explorer, and select data object a. In the Definition file
field specify a filename. Choose filter_constants.c. Generate code. The
results are shown in the next figure.

15-89

15 Code Appearance

�!�&!���"	������"���!���	���
��'�.��%&!&�&�!�$&	���,�'�	�/

��������	��
����
�����������	 ��������	

����	�
�����������	
	���	���
�	�����������������
�

�	
	���	���
�	������������������

� �!���������� �

���
�"�#��������$�%�%�

���
�"������#��$�%�%�

� �&������
�!��� �

����������
�"�#��������

����������
�"������#��

'(��

'(��

������
���

�������
��

� �'��
���� �

����
����,'(��,

����
����,��
���������������,

� �!���������� �

���
�"���
������$�%�%�

� �'��
���� �

����
����*'(��+

� �!���������� �

����������
�"���������$�%�%�

� �!��
�������� �

����������
�"���
������

����������
�"������#��

��
���������������

�
���
��

� �!����������� �

���������
�"���$�%�)�

� �!��
��������� �

����������
�"���

The code generator generates the same files as in the “Header File” on page
15-87, and adds a new file, filter_constants.c. Data object a now is defined
in filter_constants.c, rather than in the source file spd_filt.c, as it
is in the example. This data object is declared with an extern statement
in global.h

15-90

Manage Placement of Data Definitions and Declarations

Data Placement Rules and Results

• “Ownership Settings” on page 15-91

• “Settings and Resulting Generated Files” on page 15-91

• “Data Placement Rules” on page 15-94

Ownership Settings

Row
Number

Enable Data
Ownership Checkbox Owner Setting Result*

1 Off** Blank** Embedded Coder determines
whether the current model defines
data.

2 Off** A name is specified. Embedded Coder determines
whether the current model defines
data.

3 On Blank** Embedded Coder determines
whether the current model defines
data.

4 On A name is specified. The model specified in the Owner
setting defines data.

* See also “Ownership Settings” on page 15-81.
** Default.

Settings and Resulting Generated Files

Data
Defined
In...

Data
Declared
In...

Owner-
ship*

Defined
File**

Header
File Generated Files

Example
Settings 1

Source file Source file Blank Blank Blank .c/.cpp source file

15-91

15 Code Appearance

Data
Defined
In...

Data
Declared
In...

Owner-
ship*

Defined
File**

Header
File Generated Files

(Rd-Write
Example)

Example
Settings 2
(Owner- ship
Example)

Source file Source file Name of
module
specified

Blank Blank .c/.cpp source file

Example
Settings 3
(Header File
Example)

Source file Source file Blank Blank Desired
include
filename
specified.

.c/.cpp source file

.h definition file

Example
Settings 4
(Def. File
Example)

Source file Source file Blank Desired
definition
filename
specified.

Desired
include
filename
specified.

.c/.cpp source file

.c/.cpp definition
file*
.h definition file*

Example
Settings 5

Single
separate
source file

Source file Blank Blank Blank .c/.cpp source file
global .c/.cpp

Example
Settings 6

Single
separate
source file

Single
separate
header file

Blank Blank Blank .c/.cpp source file
global .c/.cpp
global.h

Example
Settings 7

Single
separate
source file

Single
separate
header file

Name of
module
specified

Blank Blank .c/.cpp source file
global.c/.cpp
global.h

Example
Settings 8

Single
separate
source file

Single
separate
header file

Blank Blank Desired
include
filename
specified.

.c/.cpp source file
global.c/.cpp
global.h
.h definition file

* "Blank" in ownership setting means that the check box for the Use owner
from data object for data definition placement field on the Code
Placement pane is Off and the Owner field on the Model Explorer is blank.
"Name of module specified" can be a variety of ownership settings as defined
in “Ownership Settings” on page 15-91.

15-92

Manage Placement of Data Definitions and Declarations

** The code generator generates a definition .c/.cpp file for every data object
for which you specified a definition filename (unless you selected #DEFINE for
the Memory section field). For example, if you specify the same definition
filename for all data objects, only one definition .c/.cpp file is generated.
The code generator places declarations in model.h by default, unless you
specify Data declared in single separate header file for the Data
declaration option on the Code Generation > Code Placement pane of
the Configuration Parameter dialog box. If you select that data placement
option, the code generator places declarations in global.h. If you specify a
definition filename for each data object, the code generator generates one
definition .c/.cpp file for each data object and places declarations in model.h
by default, unless you specify Data declared in single separate header
file for Data declaration. If you select that data placement option, the code
generator places declarations in global.h.

15-93

15 Code Appearance

Note If you generate C++ rather than C code, the .c files listed in the
following table will be .cpp files.

Data Placement Rules

Global
Settings:

Override Settings for
Specific Data Object: Results in Generated Files:

Storage Class
Setting

Data
Def.

Data
Dec.

Def.
File Owner

Header
File

Where
Data
Def. Is

Where
Data
Dec. Is

Dec.
Inclusion

mpt or Simulink Noncustom Storage Classes:
auto N/A N/A N/A N/A N/A Note 12 model.h Note 1
Exported-Global N/A N/A N/A N/A N/A model.c model.h Note 1
Imported--
Extern,
Imported--
Extern-Pointer

N/A N/A N/A N/A N/A None.
External

model_-
private.h

Note 2

Simulink-Global N/A N/A N/A N/A N/A Note 13 model.h Note 1

mpt or Simulink Custom Storage Class: Imported Data:
Imported--
FromFile

D/C D/C D/C N/A null None model_-
private.h

Note 3

Imported--
FromFile

D/C D/C D/C N/A hdr.h None model_-
private.h

Note 4

Simulink Custom Storage Class: #define Data:
Define D/C D/C N/A N/A N/A N/A #define,

model.h
Note 5

mpt Custom Storage Class: #define Data:
Define D/C D/C N/A N/A null N/A #define,

model.h
Note 5

Define D/C D/C N/A N/A hdr.h N/A #define,
model.h

Note 6

mpt or Simulink Custom Storage Class: GetSet:
GetSet D/C D/C N/A N/A hdr.h N/A External

hdr.h
Note 4

15-94

Manage Placement of Data Definitions and Declarations

Global
Settings:

Override Settings for
Specific Data Object: Results in Generated Files:

Storage Class
Setting

Data
Def.

Data
Dec.

Def.
File Owner

Header
File

Where
Data
Def. Is

Where
Data
Dec. Is

Dec.
Inclusion

mpt or Simulink Custom Storage Class: Bitfield, Struct:
Bitfield, Struct D/C D/C N/A N/A N/A model.c model.h Note 7

mpt Custom Storage Class: Global, Const, ConstVolatile, Volatile:
Global, Const,
Const-Volatile,
Volatile

auto auto null null or
locally
owned

null model.c model.h Note 1

Global, Const,
Const-Volatile,
Volatile

src auto null null or
locally
owned

null src.c model.h Note 1

Global, Const,
Const-Volatile,
Volatile

sep auto null null or
locally
owned

null gbl.c model.h Note 1

Global, Const,
Const-Volatile,
Volatile

auto src null null or
locally
owned

null model.c src.c Note 8

Global, Const,
Const-Volatile,
Volatile

src src null null or
locally
owned

null src.c src.c Note 8

Global, Const,
Const-Volatile,
Volatile

sep src null null or
locally
owned

null gbl.c src.c Note 8

Global, Const,
Const-Volatile,
Volatile

auto sep null null or
locally
owned

null model.c gbl.h Note 9

Global, Const,
Const-Volatile,
Volatile

src sep null null or
locally
owned

null src.c gbl.h Note 9

Global, Const,
Const-Volatile,
Volatile

sep sep null null or
locally
owned

null gbl.c gbl.h Note 9

Global, Const,
Const-Volatile,
Volatile

D/C D/C data.c D/C null data.c See Note
10.

Note 10

15-95

15 Code Appearance

Global
Settings:

Override Settings for
Specific Data Object: Results in Generated Files:

Storage Class
Setting

Data
Def.

Data
Dec.

Def.
File Owner

Header
File

Where
Data
Def. Is

Where
Data
Dec. Is

Dec.
Inclusion

Global, Const,
Const-Volatile,
Volatile

D/C D/C data.c D/C hdr.h data.c hdr.h Note 11

Global, Const,
Const-Volatile,
Volatile

auto D/C null null hdr.h model.c hdr.h Note 11

Global, Const,
Const-Volatile,
Volatile

src D/C null null hdr.h src.c hdr.h Note 11

Global, Const,
Const-Volatile,
Volatile

sep D/C null null hdr.h gbl.c hdr.h Note 11

Global, Const,
Const-Volatile,
Volatile

D/C auto null External
owner

null External
user--
supplied
file

model.h Note 1

Global, Const,
Const-Volatile,
Volatile

D/C src null External
owner

null External
user--
supplied
file

src.c Note 8

Global, Const,
Const-Volatile,
Volatile

D/C sep null External
owner

null External
user--
supplied
file

gbl.h Note 9

Global, Const,
Const-Volatile,
Volatile

D/C D/C null External
owner

header.h External
user--
supplied
file

hdr.h Note 11

Global, Const,
Const-Volatile,
Volatile

D/C D/C null External
owner

header.h External
user--
supplied
file

hdr.h Note 11

mpt Custom Storage Class: Exported Data:

15-96

Manage Placement of Data Definitions and Declarations

Global
Settings:

Override Settings for
Specific Data Object: Results in Generated Files:

Storage Class
Setting

Data
Def.

Data
Dec.

Def.
File Owner

Header
File

Where
Data
Def. Is

Where
Data
Dec. Is

Dec.
Inclusion

ExportTo-File auto auto null null null model.c model.h Note 1
ExportTo-File src auto null null null src.c model.h Note 1
ExportTo-File sep auto null null null gbl.c model.h Note 1
ExportTo-File auto src null null null model.c src.c Note 8
ExportTo-File src src null null null src.c src.c Note 8
ExportTo-File sep src null null null gbl.c src.c Note 8
ExportTo-File auto sep null null null model.c gbl.h Note 9
ExportTo-File src sep null null null src.c gbl.h Note 9
ExportTo-File sep sep null null null gbl.c gbl.h Note 9
ExportTo-File D/C D/C data.c null null data.c See Note

10.
Note 10

ExportTo-File D/C D/C data.c null hdr.h model.c hdr.h Note 11
ExportTo-File auto D/C null null hdr.h src.c hdr.h Note 11
ExportTo-File sep D/C null null hdr.h gbl.c hdr.h Note 11

Simulink Custom Storage Class: Default, Const, ConstVolatile, Volatile:
Default, Const,
Const-Volatile,
Volatile

auto auto N/A N/A N/A model.c model.h Note 1

Default, Const,
Const-Volatile,
Volatile

src auto N/A N/A N/A src.c model.h Note 1

Default, Const,
Const-Volatile,
Volatile

sep auto N/A N/A N/A gbl.c model.h Note 1

Default, Const,
Const-Volatile,
Volatile

auto src N/A N/A N/A model.c src.c Note 8

Default, Const,
Const-Volatile,
Volatile

src src N/A N/A N/A src.c src.c Note 8

15-97

15 Code Appearance

Global
Settings:

Override Settings for
Specific Data Object: Results in Generated Files:

Storage Class
Setting

Data
Def.

Data
Dec.

Def.
File Owner

Header
File

Where
Data
Def. Is

Where
Data
Dec. Is

Dec.
Inclusion

Default, Const,
Const-Volatile,
Volatile

sep src N/A N/A N/A gbl.c src.c Note 8

Default, Const,
Const-Volatile,
Volatile

auto sep N/A N/A N/A model.c gbl.h Note 9

Default, Const,
Const-Volatile,
Volatile

src sep N/A N/A N/A src.c gbl.h Note 9

Default, Const,
Const-Volatile,
Volatile

sep sep N/A N/A N/A gbl.c gbl.h Note 9

Simulink Custom Storage Class: Exported Data:
ExportTo-File auto auto N/A N/A null model.c model.h Note 1
ExportTo-File src auto N/A N/A null src.c model.h Note 1
ExportTo-File sep auto N/A N/A null gbl.c model.h Note 1
ExportTo-File auto src N/A N/A null model.c src.c Note 8
ExportTo-File src src N/A N/A null src.c src.c Note 8
ExportTo-File sep src N/A N/A null gbl.c src.c Note 8
ExportTo-File auto sep N/A N/A null model.c gbl.h Note 9
ExportTo-File src sep N/A N/A null src.c gbl.h Note 9
ExportTo-File sep sep N/A N/A null gbl.c gbl.h Note 9
ExportTo-File auto D/C N/A N/A hdr.h model.c hdr.h Note 11
ExportTo-File src D/C N/A N/A hdr.h src.c hdr.h Note 11
ExportTo-File sep D/C N/A N/A hdr.h gbl.c hdr.h Note 11

Notes. In the previous table:

• A Declaration Inclusion Approach is a file in which the header file that
contains the data declarations is included.

15-98

Manage Placement of Data Definitions and Declarations

• D/C stands for don’t care.

• Dec stands for declaration.

• Def stands for definition.

• gbl stands for global.

• hdr stands for header.

• N/A stands for not applicable.

• null stands for field is blank.

• sep stands for separate.

Note 1: model.h is included directly in all source files.

Note 2: model_private.h is included directly in all source files.

Note 3: extern is included in model_private.h, which is in source.c.

Note 4: header.h is included in model_private.h, which is in source.c.

Note 5: model.h is included directly in all source files that use #define.

Note 6: header.h is included in model.h, which is in source files that use
#define.

Note 7: model.h is included in all source.c files.

Note 8: extern is inlined in source files where data is used.

Note 9: global.h is included in model.h, which is in all source files.

Note 10: When you specify a definition filename for a data object, a header
file is not generated for that data object. The code generator declares the data
object according to the data placement priorities.

Note 11: header.h is included in model.h, which is in all source files.

Note 12: Signal: Either not defined because it is expression folded, or local
data, or defined in a structure in model.c, all depending on model’s code

15-99

15 Code Appearance

generation settings. Parameter: Either inlined in the code, or defined in
model_data.c.

Note 13: Signal: In a structure that is defined in model.c. Parameter: In a
structure that is defined in model_data.c.

15-100

Specify Delimiter for #Includes

Specify Delimiter for #Includes
Understanding the purpose of this procedure requires understanding the
Header file property of a data object, described in Parameter and Signal
Property Values on page 9-3, and applied in “Create mpt Data Objects with
Data Object Wizard” on page 8-63. For a particular data object, you can
specify as the Header file property value a .h filename where that data
object will be declared. Then, in the IncludeFile section of the generated file,
this .h file is indicated in a #include preprocessor directive.

Further, when specifying the filename as the Header file property value, you
may or may not place it within the double-quote or angle-bracket delimiter.
That is, you can specify it as filename.h, "filename.h", or <filename.h>.
The code generator finds every data object for which you specified a filename
as its Header file property value without a delimiter. By default, it assigns
to each of these the double-quote delimiter.

This procedure allows you to specify the angle-bracket delimiter for these
instead of the default double-quote delimiter. See the figure below.

1 In the #include file delimiter field on the Code Placement pane of the
Configuration Parameters dialog box, select #include <header.h> instead
of the default #include "header.h".

2 Click Apply.

15-101

15 Code Appearance

15-102

16

Source Code Generation

• “Generating Code Using Embedded Coder” on page 16-2

• “Generate Code Modules” on page 16-8

• “Generate Reentrant Code from MATLAB Code” on page 16-14

16 Source Code Generation

Generating Code Using Embedded Coder
This example shows how to select a target for a Simulink model, configure
options, generate C code for embedded systems, and view generated files.

1. Open the model.

model='rtwdemo_rtwecintro';
open_system(model)

2. Open the Configuration Parameters dialog box from the model editor by
clicking Simulation > Model Configuration Parameters.

Alternately, type the following commands at the MATLAB command prompt.

cs = getActiveConfigSet(model);
openDialog(cs);

3. Select the Code Generation node.

16-2

Generating Code Using Embedded Coder

4. In the Target Selection pane, click Browse to select a target.

You can generate code for a particular target environment or purpose. Some
built-in targeting options are provided using system target files, which control
the code generation process for a target.

16-3

16 Source Code Generation

5. Select the Embedded Real-Time (ERT) target and click Apply.

The ERT target includes a utility to specify and prioritize code generation
settings based on your application objectives.

6. In the Code Generation Advisor pane, click Set Objectives.

You can set and prioritize objectives for the generated code. For example,
while code traceability might be a very important criterion for your

16-4

Generating Code Using Embedded Coder

application, you might not want to prioritize it at the cost of code execution
efficiency.

7. In the Set Objectives pane, select Execution efficiency and
Traceability. Click OK.

You can select and prioritize a combination of objectives before generating
code.

8. In the Code Generation pane, click Build to generate code.

9. View the code generation report that appears.

16-5

16 Source Code Generation

The report includes rtwdemo_rtwecintro.c, associated utility and header
files, and traceability and validation reports.

The figure below contains a portion of rtwdemo_rtwecintro.c

16-6

Generating Code Using Embedded Coder

10. Close the model.

bdclose(model)
rtwdemoclean;

16-7

16 Source Code Generation

Generate Code Modules

In this section...

“Introduction” on page 16-8

“Generated Code Modules” on page 16-8

“User-Written Code Modules” on page 16-11

“Customize Generated Code Modules” on page 16-11

Introduction
This section summarizes the code modules and header files that make up a
Embedded Coder program and describes where to find the code modules and
header files.

The easiest way to locate and examine the generated code files is to use the
HTML code generation report. The code generation report provides a table of
hyperlinks that you click to view the generated code in the MATLAB Help
browser. For more information, see “Traceability in Code Generation Report”
on page 18-4.

Generated Code Modules
The Embedded Coder software creates a build folder in your working folder
to store generated source code. The build folder also contains object files, a
makefile, and other files created during the code generation process. The
default name of the build folder is model_ert_rtw.

Embedded Coder® File Packaging on page 16-9 summarizes the structure of
source code generated by the Embedded Coder software.

16-8

Generate Code Modules

Embedded Coder File Packaging

File Description

model.c or .cpp Contains entry points for code implementing the model
algorithm (for example, model_step, model_initialize, and
model_terminate).

model_private.h Contains local macros and local data that are required by the
model and subsystems. This file is included in the model.c file as a
#include statement. You do not need to include model_private.h
when interfacing handwritten code to the generated code of a
model.

model.h Declares model data structures and a public interface to the model
entry points and data structures. Also provides an interface to the
real-time model data structure (model_M) with accessor macros.
model.h is included in the subsystem .c or .cpp files of the model.

If you are interfacing your handwritten code to generated code for
one or more models, include model.h for each of those models.

model_data.c or .cpp
(conditional)

model_data.c or .cpp is conditionally generated. It contains
the declarations for the parameters data structure, the constant
block I/O data structure, and any zero representations for the
model structure data types. If these data structures and zero
representations are not used in the model, model_data.c or .cpp
is not generated. These structures and zero representations are
declared extern in model.h.

model_types.h Provides forward declarations for the real-time model data
structure and the parameters data structure. Function
declarations of reusable functions might need these declarations.
Also provides type definitions for user-defined types used by the
model.

rtwtypes.h Defines data types, structures, and macros required by Embedded
Coder generated code. Most other generated code modules also
require these definitions.

ert_main.c or .cpp
(optional)

If the Generate an example main program option is on, this
file is generated. (This option is on by default.) See “Generate an
example main program”.

16-9

16 Source Code Generation

Embedded Coder File Packaging (Continued)

File Description

rtmodel.h
(optional)

If the Generate an example main program option is off, this
file is generated. (See “Generate an example main program”.)

rtmodel.h contains #include directives required by the static
rt_main.c main program module. Because rt_main.c is not
created at code generation time, it includes rtmodel.h to access
model-specific data structures and entry points.

For more information, see “Static Main Program Module” on page
20-12.

model_capi.c or .cpp
model_capi.h
(optional)

Provides data structures that enable a running program to access
model signals, states, and parameters without external mode. To
learn how to generate and use the model_capi.c or .cpp and .h
files, see “Data Interchange Using the C API” in the Simulink
Coder documentation.

You can customize the generated set of files in several ways:

• File packaging formats: Specify the number of source files generated for
your model. In the Configuration Parameter dialog box, on the Code
Generation > Code Placement pane, specify the File packaging
format parameter. For more information, see “Customize Generated Code
Modules” on page 16-11.

• Nonvirtual subsystem code generation: Instruct the code generation
software to generate separate functions, within separate code files, for
nonvirtual subsystems. You can control the names of the functions
and of the code files. For further information, see “Code Generation of
Subsystems”.

• Custom storage classes: Use custom storage classes to partition generated
data structures into different files based on file names that you specify.
For further information, see “Introduction to Custom Storage Classes”
on page 10-2.

16-10

Generate Code Modules

• Module Packaging Features (MPF): Direct the generated code into a
required set of .c or .cpp and .h files, and control the internal organization
of the generated files. For details, see “Data, Function, and File Definition”.

User-Written Code Modules
Code that you write to interface with generated model code usually includes
a customized main module (based on a main program provided by the code
generation software), and may also include interrupt handlers, device driver
blocks and other S-functions, and other supervisory or supporting code.

Establish a working folder for your own code modules. Put your working
folder on the MATLAB path. Minimally, you must also modify the ERT
template makefile and system target file so that the build process can find
your source and object files. If you want to generate code for a particular
microprocessor or development board and deploy the code on target hardware
with a cross-development system, make more extensive modifications to the
ERT target files.

For information on how to customize the ERT target for your production
requirements, see “Target Development”.

Customize Generated Code Modules
Embedded Coder software provides a configuration parameter to specify
how the generated source code is packaged into files. The configuration
parameter “File packaging format” drop-down list options are located in
the Configuration Parameter dialog box, on the Code Generation > Code
Placement pane, in the Code Packaging section. The options are: Modular,
Compact (with separate data file), and Compact. Generated Files
According to File Packaging Format on page 16-12 shows the files generated
for each file packaging format and the files that have been removed.

16-11

16 Source Code Generation

Generated Files According to File Packaging Format

File Packaging
Format

Generated Files Removed Files

Modular (default) model.c

subsystem files
(optional)

model.h

model_types.h

model_private.h

model_data.c
(conditional)

None

Compact (with
separate data file)

model.c

model.h

model_data.c
(conditional)

model_private.h

model_types.h
(conditional, see below)

Compact model.c

model.h

model_data.c

model_private.h

model_types.h
(conditional, see below)

The code generation process places the content of the removed files as follows:

Removed File Generated Content In File

model_private.h model.c and model.h

model_types.h model.h

model_data.c model.c

You can specify a different file packaging format for each referenced model.

If you specify Shared code placement as Shared location on the Code
Generation > Interface pane of the Configuration Parameter dialog box, the

16-12

Generate Code Modules

code generation process generates separate files for utility code in a shared
location, regardless of the file packaging format. If you specify the Shared
code placement as Auto, the generated code for utilities is dependent on
the file packaging format as follows:

• Modular: Some shared utility files are in the build directory

• Compact (with separate data file): Utility code is generated in
model.c

• Compact: Utility code is generated in model.c

File packaging formats Compact and Compact (with separate data file)
generate model_types.h for models containing:

• A Model Variants block or a Variant Subsystem block. The model_types.h
file includes preprocessor directives defining the variant objects associated
with a variant block.

• Custom storage classes specifying a separate header file. The
model_types.h file includes the #include call to the external header file.

File packaging formats Compact and Compact (with separate data file)
are not compatible with the following:

• A model containing a subsystem, which is configured to generate separate
source files

• A model containing a noninlined S-function

• A model for which Shared code placement is set to Auto, which uses data
objects for which Data scope is set to Exported

16-13

16 Source Code Generation

Generate Reentrant Code from MATLAB Code

In this section...

“What Is Reentrant Code?” on page 16-14

“When to Generate Reentrant Code” on page 16-14

“Generate Reentrant Code” on page 16-15

“Generated Code API” on page 16-16

“Call Reentrant Code in a Single-Thread Environment” on page 16-16

“Call Reentrant Code in a Multithreaded Environment” on page 16-17

“Call Reentrant Code with No Persistent or Global Data (UNIX Only)” on
page 16-18

“Call Reentrant Code — Multithreaded with Persistent Data (Windows
Only)” on page 16-24

“Call Reentrant Code — Multithreaded with Persistent Data (UNIX Only)”
on page 16-30

What Is Reentrant Code?
Reentrant code is a reusable programming routine that multiple programs can
use simultaneously. Operating systems and other system software that uses
multithreading to handle concurrent events use reentrant code. Sharing code
with persistent or static data in a concurrent environment is difficult because
multiple threads or processes might attempt to simultaneously read and write
the static data. Reentrant code does not contain static data. Calling programs
maintain their state variables and pass them into the function. Therefore,
any number of threads or processes can share one copy of a reentrant routine.

With an Embedded Coder license, you can use codegen to generate reusable
code. For more information, see “Generate Reentrant Code” on page 16-15.

When to Generate Reentrant Code
Generate reentrant code when you want to:

• Deploy your code in multi-threaded environments.

16-14

Generate Reentrant Code from MATLAB Code

• Share the same algorithm with different persistent data.

• Compile code that uses function variables that are too large to fit on the
stack.

If you do not choose to generate reentrant code, codegen generates code that
uses statically allocated memory for function variables that are too large to
fit on the stack, and for global and persistent variables. The use of static
memory allocation for these variables means that you cannot deploy the
generated code in environments that require code to be reentrant. In addition,
the generated code can result in static memory size overflow if you cannot
adjust the static memory allocation size to accommodate the static memory
requirements of the program.

When you generate reentrant code, codegen creates input data structures for
function variables that are too large to fit on the stack, and for persistent and
global variables. You can then dynamically allocate memory for these input
structures. The use of dynamic memory allocation means that you can deploy
the code in reentrant environments.

Generate Reentrant Code

Prerequisites
This option requires an Embedded Coder license.

Procedure
Use the MultiInstanceCode option of the coder.EmbeddedCodeConfig code
generation configuration object. For example, to compile the file foo.m and
generate reusable code:

1 Create a code generation configuration object and enable the
MultiInstanceCode option.

cfg = coder.config('lib', 'ecoder', true);
cfg.MultiInstanceCode = true;

2 Pass the configuration object to codegen using the -config option.

codegen -config cfg foo

16-15

16 Source Code Generation

Alternatively, you can set this parameter using the MATLAB Coder Project
Settings dialog box. On the Interface pane , selectGenerate reusable code.

Generated Code API
When you generate reusable code, codegen supports dynamic allocation of
function variables that are too large for the stack, as well as persistent and
global variables. It generates a header file, primary_function_name_types.h,
which you must include when using the generated code. This header file
contains the following structures:

• primary_function_nameStackData

This structure contains the user allocated memory. You must pass a
pointer to this structure as the first parameter to all functions that use
it either directly, because the function uses a field in the structure, or
indirectly, because the function passes the structure to a called function.

The primary_function_nameStackData structure also contains a pointer
to the primary_function_namePersistentData structure if the algorithm
uses persistent or global data. Including this pointer means that you have
to pass only one parameter to each calling function.

• primary_function_namePersistentData

If your algorithm uses persistent or global variables, codegen provides a
separate structure for them and adds a pointer to this structure to the
memory allocation structure. Having a separate structure for persistent
and global variables allows you to allocate memory for these variables once
and share them with all threads. However, if there is no communication
between threads, you can choose to allocate memory for these variables per
thread or per application.

For more information on using these global structures, see “Multithreaded
Examples” on page 16-18.

Call Reentrant Code in a Single-Thread Environment
To call reentrant code in a single-thread environment, create a main function
that:

16-16

Generate Reentrant Code from MATLAB Code

• Includes the header file primary_function_name.h.

• Allocates memory for the global memory allocation structure
primary_function_nameStackData.

• If the algorithm uses persistent or global data, allocates memory for the
global structure primary_function_namePersistentData, .

• Calls these functions:

- primary_function_name_initialize.

- primary_function_name.

- primary_function_name_terminate.

When you convert a MATLAB function to a C/C++ library function or a
C/C++ executable, codegen automatically generates two housekeeping
functions that you must call with the C/C++ function. For more information,
see “Calling Initialize and Terminate Functions”.

• Frees the memory used for global structures.

Call Reentrant Code in a Multithreaded Environment
To call reentrant code, create a main function that:

• Includes the header file primary_function_name.h.

• For each thread, allocates memory for the global memory allocation
structure primary_function_nameStackData.

• If the algorithm uses persistent or global data, allocates memory for the
global structure primary_function_namePersistentData. If there is
communication between threads, you must allocate this memory once for
the application. Otherwise, you can choose to allocate memory per thread
or per application.

• Contains a thread function that calls these functions:

- primary_function_name_initialize.

- primary_function_name.

- primary_function_name_terminate.

When you convert a MATLAB function to a C/C++ library function or a
C/C++ executable, codegen automatically generates two housekeeping

16-17

16 Source Code Generation

functions that you must call with the C/C++ function. For more information,
see “Calling Initialize and Terminate Functions” in the MATLAB Coder
documentation.

• Initializes each thread and passes in a pointer to the memory allocation
structure as the first parameter to the thread function.

• Frees the memory used for global structures.

Multithreaded Examples

Type of Reentrant
Code

Platform Reference

Windows “Generating Reentrant C Code from MATLAB Code”Multithreaded without
persistent or global data UNIX “Call Reentrant Code with No Persistent or Global Data

(UNIX Only)” on page 16-18

Windows “Call Reentrant Code — Multithreaded with Persistent
Data (Windows Only)” on page 16-24

Multithreaded with
persistent or global data

UNIX “Call Reentrant Code — Multithreaded with Persistent
Data (UNIX Only)” on page 16-30

Call Reentrant Code with No Persistent or Global
Data (UNIX Only)
This example requires POSIX thread (pthread) libraries and, therefore, runs
only on UNIX platforms. It is a simple multithreaded example that uses no
persistent or global data. Two threads call the MATLAB function matrix_exp
with different sets of input data.

MATLAB Code Used for This Example

function Y = matrix_exp(X) %#codegen

%

% The function matrix_exp computes matrix exponential

% of the input matrix using Taylor series and returns

% the computed output.

%

16-18

Generate Reentrant Code from MATLAB Code

E = zeros(size(X));

F = eye(size(X));

k = 1;

while norm(E+F-E,1) > 0

E = E + F;

F = X*F/k;

k = k+1;

end

Y = E;

Provide a Main Function
To call the reentrant code, you must provide a main function that:

• Includes the header file matrix_exp.h.

• For each thread, allocates memory for stack data.

• Calls the matrix_exp_initialize housekeeping function. For more
information, see “Calling Initialize and Terminate Functions”.

• Calls matrix_exp.

• Calls matrix_exp_terminate.

• Frees the memory used for stack data.

For this example, main.c contains:

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include "matrix_exp.h"

#include "matrix_exp_initialize.h"

#include "matrix_exp_terminate.h"

#include "rtwtypes.h"

#define NUMELEMENTS (160*160)

typedef struct {

real_T in[NUMELEMENTS];

real_T out[NUMELEMENTS];

matrix_expStackData* spillData;

16-19

16 Source Code Generation

} IODATA;

/* The thread_function calls the matrix_exp function written in MATLAB */

void *thread_function(void *dummyPtr) {

IODATA *myIOData = (IODATA*)dummyPtr;

matrix_exp_initialize();

matrix_exp(myIOData->spillData, myIOData->in, myIOData->out);

matrix_exp_terminate();

}

int main() {

pthread_t thread1, thread2;

int iret1, iret2;

IODATA data1;

IODATA data2;

int32_T i;

/*Initializing data for passing to the 2 threads*/

matrix_expStackData* sd1=(matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

matrix_expStackData* sd2=(matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

data1.spillData = sd1;

data2.spillData = sd2;

for (i=0;i<NUMELEMENTS;i++) {

data1.in[i] = 1;

data1.out[i] = 0;

data2.in[i] = 1.1;

data2.out[i] = 0;

}

/*Initializing the 2 threads and passing required data to the thread functions*/

printf("Starting thread 1...\n");

iret1 = pthread_create(&thread1, NULL, thread_function, (void*) &data1);

if (iret1 != 0){

perror("Thread 1 creation failed.");

exit(EXIT_FAILURE);

}

printf("Starting thread 2...\n");

16-20

Generate Reentrant Code from MATLAB Code

iret2 = pthread_create(&thread2, NULL, thread_function, (void*) &data2);

if (iret2 != 0){

perror("Thread 2 creation failed.");

exit(EXIT_FAILURE);

}

/*Wait for both the threads to finish execution*/

iret1 = pthread_join(thread1, NULL);

if (iret1 != 0){

perror("Thread 1 join failed.");

exit(EXIT_FAILURE);

}

iret2 = pthread_join(thread2, NULL);

if (iret2 != 0){

perror("Thread 2 join failed.");

exit(EXIT_FAILURE);

}

free(sd1);

free(sd2);

printf("Finished Execution!\n");

exit(EXIT_SUCCESS);

}

Generate Reentrant C Code
Run the following script at the MATLAB command line to generate code.

16-21

16 Source Code Generation

% This example can only be run on Unix platforms

if ~isunix

error('This example requires pthread libraries and can only be run on Unix.');

end

% Setting the options for the Config object

% Create a code gen configuration object

e = coder.config('exe','ecoder', true);

% Enable reentrant code generation

e.MultiInstanceCode = true;

% Set the post code generation command to be the 'setbuildargs' function

e.PostCodeGenCommand = 'setbuildargs(buildInfo)';

% Compiling

codegen -config e main.c matrix_exp.m -report -args ones(160,160)

These commands:

• Check that the example is running on UNIX platforms and generates an
error message if not.

• Create a Simulink Coder configuration object for an ERT target.

• Enable the MultiInstanceCode option to generate reusable, reentrant code.

• Use the PostCodeGenCommand option to set the post-code-generation
command to be the setbuildargs function. This function sets the
-lpthread flag to specify that the build include the pthread library.

function setbuildargs(buildInfo)

% The example being compiled requires pthread support.

% The -lpthread flag requests that the pthread library

% be included in the build

linkFlags = {'-lpthread'};

addLinkFlags(buildInfo, linkFlags);

16-22

Generate Reentrant Code from MATLAB Code

For more information about the PostCodeGenCommand option, see
“Customize the Post-Code-Generation Build Process”.

• Invoke codegen with the following options:

- -config to pass in the code generation configuration object e.

- main.c to include this file in the compilation.

- -report to create a code generation report.

- -args to specify an example input with class, size, and complexity.

For more information on these options, see codegen.

Examine the Generated Code
codegen generates a header file matrix_exp_types.h, which defines the
matrix_expStackData global structure. This structure contains local
variables that are too large to fit on the stack.

/*

* matrix_exp_types.h

*

* MATLAB Coder code generation for function 'matrix_exp'

*/

#ifndef __MATRIX_EXP_TYPES_H__

#define __MATRIX_EXP_TYPES_H__

/* Type Definitions */

typedef struct {

struct {

real_T F[25600];

real_T Y[25600];

} f0;

} matrix_expStackData;

#endif

/* End of MATLAB Coder code generation (matrix_exp_types.h) */

16-23

16 Source Code Generation

Run the Code
Finally, call the code using the command:

system('./matrix_exp')

The executable runs and reports completion.

Call Reentrant Code — Multithreaded with Persistent
Data (Windows Only)
This example requires libraries that are specific to the Microsoft Windows
operating system and, therefore, runs only on Windows platforms. It is a
multithreaded example that uses persistent data. Two threads call the
MATLAB function matrix_exp with different sets of input data.

MATLAB Code Used for This Example

function [Y,numTimes] = matrix_exp(X) %#codegen

%

% The function matrix_exp computes matrix exponential

% of the input matrix using Taylor series and returns

% the computed output. It also returns the number of

% times this function has been called.

%

persistent count;

if isempty(count)

count = 0;

end

count = count+1;

E = zeros(size(X));

F = eye(size(X));

k = 1;

while norm(E+F-E,1) > 0

E = E + F;

F = X*F/k;

k = k+1;

end

16-24

Generate Reentrant Code from MATLAB Code

Y = E ;

numTimes = count;

Provide a Main Function
To call reentrant code that uses persistent data, you must provide a main
function that:

• Includes the header file matrix_exp.h.

• For each thread, allocates memory for stack data.

• Allocates memory for persistent data, once per application if threads share
data, and once per thread otherwise.

• Calls the matrix_exp_initialize housekeeping function. For more
information, see “Calling Initialize and Terminate Functions”.

• Calls matrix_exp.

• Calls matrix_exp_terminate.

• Frees the memory used for stack and persistent data.

For this example, main.c contains:

#include <stdio.h>

#include <stdlib.h>

#include <windows.h>

#include "matrix_exp.h"

#include "matrix_exp_initialize.h"

#include "matrix_exp_terminate.h"

#include "rtwtypes.h"

#define NUMELEMENTS (160*160)

typedef struct {

real_T in[NUMELEMENTS];

real_T out[NUMELEMENTS];

real_T numTimes;

matrix_expStackData* spillData;

} IODATA;

16-25

16 Source Code Generation

/*The thread_function calls the matrix_exp function written in MATLAB*/

DWORD WINAPI thread_function(PVOID dummyPtr) {

IODATA *myIOData = (IODATA*)dummyPtr;

matrix_exp_initialize(myIOData->spillData);

matrix_exp(myIOData->spillData, myIOData->in, myIOData->out, &myIOData->numTimes);

printf("Number of times function matrix_exp is called is %g\n",myIOData->numTimes);

matrix_exp_terminate();

return 0;

}

void main() {

HANDLE thread1, thread2;

IODATA data1;

IODATA data2;

int32_T i;

/*Initializing data for passing to the 2 threads*/

matrix_expPersistentData* pd1 = (matrix_expPersistentData*)calloc(1,sizeof(matrix_expPersistentData));

matrix_expPersistentData* pd2 = (matrix_expPersistentData*)calloc(1,sizeof(matrix_expPersistentData));

matrix_expStackData* sd1 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

matrix_expStackData* sd2 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

sd1->pd = pd1;

sd2->pd = pd2;

data1.spillData = sd1;

data2.spillData = sd2;

for (i=0;i<NUMELEMENTS;i++) {

data1.in[i] = 1;

data1.out[i] = 0;

data2.in[i] = 1.1;

data2.out[i] = 0;

}

data1.numTimes = 0;

data2.numTimes = 0;

/*Initializing the 2 threads and passing required data to the thread functions*/

printf("Starting thread 1...\n");

16-26

Generate Reentrant Code from MATLAB Code

thread1 = CreateThread(NULL, 0, thread_function, (PVOID) &data1, 0, NULL);

if (thread1 == NULL){

perror("Thread 1 creation failed.");

exit(EXIT_FAILURE);

}

printf("Starting thread 2...\n");

thread2 = CreateThread(NULL, 0, thread_function, (PVOID) &data2, 0, NULL);

if (thread2 == NULL){

perror("Thread 2 creation failed.");

exit(EXIT_FAILURE);

}

/*Wait for both the threads to finish execution*/

if (WaitForSingleObject(thread1, INFINITE) != WAIT_OBJECT_0){

perror("Thread 1 join failed.");

exit(EXIT_FAILURE);

}

if (WaitForSingleObject(thread2, INFINITE) != WAIT_OBJECT_0){

perror("Thread 2 join failed.");

exit(EXIT_FAILURE);

}

free(sd1);

free(sd2);

free(pd1);

free(pd2);

printf("Finished Execution!\n");

exit(EXIT_SUCCESS);

}

Generate Reentrant C Code
Run the following script at the MATLAB command line to generate code.

16-27

16 Source Code Generation

% This example can only be run on Windows platforms

if ~ispc

error...

('This example requires Windows-specific libraries and can only be run on Windows.');

end

% Setting the options for the Config object

% Create a code gen configuration object

e = coder.config('exe', 'ecoder', true);

% Enable reentrant code generation

e.MultiInstanceCode = true;

% Compiling

codegen -config e main.c -report matrix_exp.m -args ones(160,160)

These commands:

• Check that the example is running on Windows platforms and generates an
error message if not.

• Create a code generation configuration object for an ERT target.

• Enable the MultiInstanceCode option to generate reusable, reentrant code.

• Invoke codegen with the following options:

- -config to pass in the code generation configuration object e.

- main.c to include this file in the compilation.

- -report to create a code generation report.

- -args to specify an example input with class, size, and complexity.

For more information on these options, see codegen.

Examine the Generated Code
codegen generates a header file matrix_exp_types.h, which defines:

16-28

Generate Reentrant Code from MATLAB Code

• The matrix_expStackData global structure that contains local
variables that are too large to fit on the stack and a pointer to the
matrix_expPersistentData global structure.

• The matrix_expPersistentData global structure that contains persistent
data.

/*

* matrix_exp_types.h

*

* MATLAB Coder code generation for function 'matrix_exp'

*

*/

#ifndef __MATRIX_EXP_TYPES_H__

#define __MATRIX_EXP_TYPES_H__

/* Type Definitions */

typedef struct {

real_T count;

} matrix_expPersistentData;

typedef struct {

struct {

real_T F[25600];

real_T Y[25600];

} f0;

matrix_expPersistentData *pd;

} matrix_expStackData;

#endif

/* End of code generation (matrix_exp_types.h) */

Run the Code
Finally, call the code using the command:

system('matrix_exp.exe')

The executable runs and reports completion.

16-29

16 Source Code Generation

Call Reentrant Code — Multithreaded with Persistent
Data (UNIX Only)
This example requires POSIX thread (pthread) libraries and, therefore, runs
only on UNIX platforms. It is a multithreaded example that uses persistent
data. Two threads call the MATLAB function matrix_exp with different
sets of input data.

MATLAB Code Used for This Example

function [Y,numTimes] = matrix_exp(X) %#codegen

%

% The function matrix_exp computes matrix exponential

% of the input matrix using Taylor series and returns

% the computed output. It also returns the number of

% times this function has been called.

%

persistent count;

if isempty(count)

count = 0;

end

count = count+1;

E = zeros(size(X));

F = eye(size(X));

k = 1;

while norm(E+F-E,1) > 0

E = E + F;

F = X*F/k;

k = k+1;

end

Y = E ;

numTimes = count;

16-30

Generate Reentrant Code from MATLAB Code

Provide a Main Function
To call reentrant code that uses persistent data, you must provide a main
function that:

• Includes the header file matrix_exp.h.

• For each thread, allocates memory for stack data.

• Allocates memory for persistent data, once per application if threads share
data, and once per thread otherwise.

• Calls the matrix_exp_initialize housekeeping function. For more
information, see “Calling Initialize and Terminate Functions”.

• Calls matrix_exp.

• Calls matrix_exp_terminate.

• Frees the memory used for stack and persistent data.

For this example, main.c contains:

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include "matrix_exp.h"

#include "matrix_exp_initialize.h"

#include "matrix_exp_terminate.h"

#include "rtwtypes.h"

#define NUMELEMENTS (160*160)

typedef struct {

real_T in[NUMELEMENTS];

real_T out[NUMELEMENTS];

real_T numTimes;

matrix_expStackData* spillData;

} IODATA;

/*The thread_function calls the matrix_exp function written in MATLAB*/

void *thread_function(void *dummyPtr) {

IODATA *myIOData = (IODATA*)dummyPtr;

matrix_exp_initialize(myIOData->spillData);

16-31

16 Source Code Generation

matrix_exp(myIOData->spillData, myIOData->in, myIOData->out, &myIOData>numTimes);

printf("Number of times function matrix_exp is called is %g\n",myIOData->numTimes);

matrix_exp_terminate();

}

int main() {

pthread_t thread1, thread2;

int iret1, iret2;

IODATA data1;

IODATA data2;

int32_T i;

/*Initializing data for passing to the 2 threads*/

matrix_expPersistentData* pd1 =

(matrix_expPersistentData*)calloc(1,sizeof(matrix_expPersistentData));

matrix_expPersistentData* pd2 =

(matrix_expPersistentData*)calloc(1,sizeof(matrix_expPersistentData));

matrix_expStackData* sd1 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

matrix_expStackData* sd2 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

sd1->pd = pd1;

sd2->pd = pd2;

data1.spillData = sd1;

data2.spillData = sd2;

for (i=0;i<NUMELEMENTS;i++) {

data1.in[i] = 1;

data1.out[i] = 0;

data2.in[i] = 1.1;

data2.out[i] = 0;

}

data1.numTimes = 0;

data2.numTimes = 0;

/*Initializing the 2 threads and passing required data to the thread functions*/

printf("Starting thread 1...\n");

iret1 = pthread_create(&thread1, NULL, thread_function, (void*) &data1);

if (iret1 != 0){

perror("Thread 1 creation failed.");

16-32

Generate Reentrant Code from MATLAB Code

exit(EXIT_FAILURE);

}

printf("Starting thread 2...\n");

iret2 = pthread_create(&thread2, NULL, thread_function, (void*) &data2);

if (iret2 != 0){

perror("Thread 2 creation failed.");

exit(EXIT_FAILURE);

}

/*Wait for both the threads to finish execution*/

iret1 = pthread_join(thread1, NULL);

if (iret1 != 0){

perror("Thread 1 join failed.");

exit(EXIT_FAILURE);

}

iret2 = pthread_join(thread2, NULL);

if (iret2 != 0){

perror("Thread 2 join failed.");

exit(EXIT_FAILURE);

}

free(sd1);

free(sd2);

free(pd1);

free(pd2);

printf("Finished Execution!\n");

return(0);

}

Generate Reentrant C Code
Run the following script at the MATLAB command line to generate code.

16-33

16 Source Code Generation

% This example can only be run on Unix platforms

if ~isunix

error('This example requires pthread libraries and can only be run on Unix.');

end

% Setting the options for the Config object

% Specify an ERT target

e = coder.config('exe','ecoder', true);

% Enable reentrant code generation

e.MultiInstanceCode = true;

% Set the post code generation command to be the 'setbuildargs' function

e.PostCodeGenCommand = 'setbuildargs(buildInfo)';

% Compiling

codegen -config e main.c -report matrix_exp.m -args ones(160,160)

These commands:

• Check that the example is running on UNIX platforms and generates an
error message if not.

• Create a code generation configuration object.

• Enable the MultiInstanceCode option to generate reusable, reentrant code.

• Use the PostCodeGenCommand option to set the post-code-generation
command to be the setbuildargs function. This function sets the
-lpthread flag to specify that the build include the pthread library.

function setbuildargs(buildInfo)

% The example being compiled requires pthread support.

% The -lpthread flag requests that the pthread library

% be included in the build

linkFlags = {'-lpthread'};

addLinkFlags(buildInfo, linkFlags);

16-34

Generate Reentrant Code from MATLAB Code

For more information about the PostCodeGenCommand option, see
“Customize the Post-Code-Generation Build Process”.

• Invokes codegen with the following options:

- -config to pass in the code generation configuration object e.

- main.c to include this file in the compilation.

- -report to create a code generation report.

- -args to specify an example input with class, size, and complexity.

For more information on these options, see codegen.

Examine the Generated Code
codegen generates a header file matrix_exp_types.h, which defines:

• The matrix_expStackData global structure that contains local
variables that are too large to fit on the stack and a pointer to the
matrix_expPersistentData global structure.

• The matrix_expPersistentData global structure that contains persistent
data.

/*

* matrix_exp_types.h

*

* MATLAB Coder code generation for function 'matrix_exp'

*

*/

#ifndef __MATRIX_EXP_TYPES_H__

#define __MATRIX_EXP_TYPES_H__

/* Type Definitions */

typedef struct {

real_T count;

} matrix_expPersistentData;

typedef struct {

struct {

real_T F[25600];

16-35

16 Source Code Generation

real_T Y[25600];

} f0;

matrix_expPersistentData *pd;

} matrix_expStackData;

#endif

/* End of code generation (matrix_exp_types.h) */

Run the Code
Finally, call the code using the command:

system('./matrix_exp')

The executable runs and reports completion.

16-36

17

Code Generation for
AUTOSAR Software
Components

• “Overview of AUTOSAR Support” on page 17-2

• “Simulink Modeling Patterns for AUTOSAR” on page 17-3

• “Workflows for AUTOSAR” on page 17-31

• “Import an AUTOSAR Software Component” on page 17-34

• “Create an AUTOSAR Software Component in Simulink” on page 17-38

• “Prepare a Model for AUTOSAR Code Generation” on page 17-43

• “Generate AUTOSAR Code and Description Files” on page 17-82

• “Configure AUTOSAR Options Programmatically” on page 17-88

• “Verify AUTOSAR Code with SIL and PIL” on page 17-89

• “Limitations and Tips” on page 17-92

• “Sample Workflows and Further Reading” on page 17-100

17 Code Generation for AUTOSAR Software Components

Overview of AUTOSAR Support
Embedded Coder software supports AUTomotive Open System ARchitecture
(AUTOSAR), an open and standardized automotive software architecture.
Automobile manufacturers, suppliers, and tool developers jointly develop
AUTOSAR.

The AUTOSAR standard addresses:

• Architecture – Three layers, Application, Runtime Environment (RTE), and
Basic Software, enable decoupling of AUTOSAR Software Components from
the execution platform. Standard interfaces between AUTOSAR Software
Components and the Runtime Environment allow reuse or relocation of
components within the Electronic Control Unit (ECU) topology of a vehicle.

• Methodology – Specification of code formats and description file templates,
for example.

• Application Interfaces – Specification of interfaces for typical automotive
applications.

For more information, see:

• www.autosar.org for details on the AUTOSAR standard.

• “Simulink Modeling Patterns for AUTOSAR” on page 17-3 to model
AUTOSAR Software Components and related concepts in Simulink.

• “Workflows for AUTOSAR” on page 17-31 to use Embedded Coder software
to generate code and description files that are compliant with AUTOSAR.

• Technical Solution 1–DTZNVZ to learn about the AUTOSAR Target
Production Package. It offers advanced production capabilities for Simulink
and Embedded Coder.

• http://www.mathworks.com/automotive/standards/autosar.html to learn
about using MathWorks products and third-party tools for AUTOSAR.

17-2

http://www.autosar.org
http://www.mathworks.com/support/solutions/en/data/1-DTZNVZ/index.html
http://www.mathworks.com/automotive/standards/autosar.html

Simulink® Modeling Patterns for AUTOSAR

Simulink Modeling Patterns for AUTOSAR

In this section...

“About Simulink Modeling Patterns for AUTOSAR” on page 17-3

“AUTOSAR Software Components” on page 17-3

“AUTOSAR Communication” on page 17-9

“Calibration Parameters” on page 17-15

“Inter-Runnable Variables” on page 17-16

“Data Types” on page 17-17

“Per-Instance Memory” on page 17-27

“AUTOSAR Terminology” on page 17-28

About Simulink Modeling Patterns for AUTOSAR
This section describes how you model AUTOSAR Software Components and
related concepts in Simulink.

AUTOSAR Software Components
In AUTOSAR, application software consists of separate units, AUTOSAR
Software Components.

Note An AUTOSAR Software Component is sometimes referred to as atomic
because it is never split across more than one Electronic Control Unit (ECU).
Do not confuse atomic in this context with the concept of Simulink atomic
subsystems.

The behavior of an AUTOSAR Software Component is implemented by a
single or multiple runnable entities (runnables), which expose well-defined
connection points, ports.

In Simulink, you can represent an AUTOSAR Software Component using a
model or a subsystem. For example, the following figure shows modeling

17-3

17 Code Generation for AUTOSAR Software Components

patterns for AUTOSAR Software Components (ASWC) labeled ASWC1, ASWC2,
ASWC3, and ASWC4.

Runnables
AUTOSAR Software Components contain runnables that are directly or
indirectly scheduled by the underlying AUTOSAR operating system.

The following figure shows an AUTOSAR Software Component with two
runnables, Runnable 1 and Runnable 2. Each runnable is triggered by
RTEEvents, events generated by the AUTOSAR Runtime Environment (RTE).
For example, TimingEvent is an RTEEvent that is generated periodically.

17-4

Simulink® Modeling Patterns for AUTOSAR

The components ASWC1, ASWC2 and ASWC4 contain single runnables. These
components are represented by a subsystem or a model, and can be single-
or multirate. However, the software implements each component as a
single-tasking operation.

Note The software generates an additional runnable for the initialization
function regardless of the modeling pattern.

ASWC2 is modeled as a single-rate, single-tasking atomic subsystem.

You can generate the ASWC2 runnable, which corresponds to the step function
of the subsystem. Use the Configure AUTOSAR Interface dialog box to
specify the names of the initial and periodic runnables, as shown by the
following figure.

17-5

17 Code Generation for AUTOSAR Software Components

The software generates TimingEvents for the runnables. The TimingEvent
period for the periodic runnable is the fundamental sample time of the model

17-6

Simulink® Modeling Patterns for AUTOSAR

or atomic subsystem. Specify this sample time in the Subsystem Parameters
dialog box, in the Sample time (-1 for inherited) field.

The component ASWC3 contains multiple runnables.

Use the Export Functions feature to map the runnables to Simulink
function-call subsystems. See “Configure Multiple Runnables” on page 17-69
and “Export AUTOSAR Software Component” on page 17-85. The software
also generates an initialization runnable for the initialization function.

Use the Configure AUTOSAR Interface dialog box to specify the names of the
multiple runnables and the periods of TimingEvents.

17-7

17 Code Generation for AUTOSAR Software Components

Multiple Instantiation
AUTOSAR supports multiple instantiations of software components.
However, Simulink supports multiple instantiations (reentrant code) only if a
model is configured as a server operation. See “Configure a Server Operation”
on page 17-63.

To generate reentrant code for a model configured as a server operation, on
the Code Generation > Interface pane of the Configuration Parameters
dialog box, select Generate reusable code.

17-8

Simulink® Modeling Patterns for AUTOSAR

AUTOSAR Communication
AUTOSAR Software Components provide well-defined connection points,
ports. There are two types of AUTOSAR ports:

• Require

• Provide

In addition, these AUTOSAR ports can reference two kinds of interfaces:

• Sender-Receiver

• Client-Server

The following figure shows an AUTOSAR Software Component with four
ports representing the port and interface combinations.

Sender-Receiver Interface
A Sender-Receiver Interface consists of one or more data elements. Although
a Require or Provide port may reference a Sender-Receiver Interface, the
AUTOSAR Software Component does not necessarily access all of the data
elements. For example, consider the following figure.

17-9

17 Code Generation for AUTOSAR Software Components

The AUTOSAR Software Component has a Require and Provide port that
references the same Sender-Receiver Interface, interface1. Although this
interface contains data elements DE1, DE2, DE3, DE4, and DE5, the component
does not utilize all of the data elements.

The following figure is an example of how you model, in Simulink, an
AUTOSAR Software Component that accesses data elements.

ASWC accesses data elements DE1 and DE2. You model data element access as
follows:

17-10

Simulink® Modeling Patterns for AUTOSAR

• For Require ports, use Simulink inports. For example, RPort1_DE1 and
RPort1_DE2.

• For Provide ports, use Simulink outports. For example, PPort1_DE1 and
PPort1_DE2.

ErrorStatus is a value that the AUTOSAR Runtime Environment (RTE)
returns to indicate errors that the communication system detects for each
data element. You can use a Simulink inport to model error status, for
example, RPort1_DE1 (ErrorStatus).

Use the Configure AUTOSAR Interface dialog box to specify the AUTOSAR
settings for each inport and outport. The following figure shows settings
for ASWC.

17-11

17 Code Generation for AUTOSAR Software Components

For example, the Data Access Mode for RPort1_DE1 is set to ImplicitReceive.
For information on how you specify settings, see “Configure the AUTOSAR
Interface” on page 17-43.

Client-Server Interface
A Client-Server Interface consists of one or more operation prototypes. An
operation prototype contains one or more arguments of specific data types. A
Client-Server Interface can be referenced by either a Require or Provide port.

The following figure shows an AUTOSAR Software Component with Require
ports (RPort2 and NvM) that reference Client-Server Interfaces (Interface2
and NvM).

Simulink provides the following modeling patterns for Client-Server
Interfaces:

• If you want to invoke a Basic Software interface with operations that have
only one argument, for example, Client-Server Interface: NvM, use
an inport or outport.

• If you want to invoke Basic Software or application software interfaces
that contain operations potentially with multiple arguments, for example,
Client-Server Interface: Interface2, use the Invoke AUTOSAR
Server Operation block. See “Configure the Invoke AUTOSAR Server
Operation Block” on page 17-65

The following figure shows the use of the Invoke AUTOSAR Server Operation
block in modeling an AUTOSAR Software Component in Simulink.

17-12

Simulink® Modeling Patterns for AUTOSAR

Use the Configure AUTOSAR Interface dialog box to specify the AUTOSAR
settings for each inport and outport. See “Configure the AUTOSAR Interface”
on page 17-43.

The following figure shows an AUTOSAR Software Component with a
Provide port that references a Client-Server Interface.

17-13

17 Code Generation for AUTOSAR Software Components

In Simulink, you can model a single operation of an AUTOSAR Software
Component that is referenced by a Client-Server Interface. Consider the
following model.

Use the Configure AUTOSAR Interface dialog box to map the inports and
outports to the arguments of the operation prototype. For example, the
inports map to arguments upper, input, and lower.

17-14

Simulink® Modeling Patterns for AUTOSAR

For more information, see “Configure a Server Operation” on page 17-63 .

Calibration Parameters

About Calibration Parameters
A calibration parameter is a value in an Electronic Control Unit (ECU). You
tune or modify these parameters using a calibration data management tool
or an offline calibration tool.

The AUTOSAR standard specifies the following types of calibration
parameters:

17-15

17 Code Generation for AUTOSAR Software Components

• Calibration parameters that belong to a calibration component, which can
be accessed by AUTOSAR Software Components.

You define calibration components using an AUTOSAR authoring tool.

• Internal calibration parameters, which are defined and accessed by only
one AUTOSAR Software Component.

The software supports import, export, and code generation for both types of
calibration parameters.

Import and Export Calibration Parameters
You can import calibration parameters into the MATLAB base workspace.

For example, to import parameters from an AUTOSAR calibration component
description, use arxml.importer.createCalibrationComponentObjects.

To provide your Simulink model with access to these parameters, assign the
imported parameters to block parameters.

For more information, see “Import an AUTOSAR Software Component” on
page 17-34.

You can specify the type of calibration parameter exported by
configuring properties of the corresponding block parameter in the base
workspace. See “Configure Calibration Parameters” on page 17-77 and
rtwdemo_autosar_legacy_script.

Inter-Runnable Variables
In AUTOSAR, inter-runnable variables are used to communicate primitive
type data between runnables in the same component. You define these
variables in a Simulink model by the signal lines that connect subsystems
(runnables). For example, in the following figure, irv1, irv2, irv3, and irv4
are inter-runnable variables.

17-16

Simulink® Modeling Patterns for AUTOSAR

You can specify the names and data access modes of the inter-runnable
variables that you export. See “Configure Inter-Runnable Variables” on
page 17-70.

Data Types
AUTOSAR specifies data types that apply to:

• Data elements of a Sender-Receiver Interface

• Operation arguments of a Client-Server Interface

• Calibration parameters

• Inter-runnable variables

The data types fall into two categories:

• Primitive data types, which allow a direct mapping to C intrinsic types.

• Composite data types, which map to C arrays and structures.

17-17

17 Code Generation for AUTOSAR Software Components

You can use Simulink data types to define AUTOSAR primitive types.

AUTOSAR Data Type Simulink Data Type

UInt4 uint8

SInt4 int8

UInt8 uint8

SInt8 int8

UInt16 uint16

SInt16 int16

UInt32 uint32

SInt32 int32

Float_with_NaN single

Float single

Double_with_NaN double

Double double

Boolean boolean

Char8 uint8

Char16 Not supported

AUTOSAR composite data types are arrays and records, which are
represented in Simulink by wide signals and bus objects, respectively. In the
Inport or Outport Block Parameters dialog box, use the Signal Attributes
pane to configure wide signals and bus objects.

The following figure shows how to specify a wide signal, which corresponds to
an AUTOSAR composite array.

17-18

Simulink® Modeling Patterns for AUTOSAR

The following figure shows how to specify a bus object, which corresponds
to an AUTOSAR composite record.

17-19

17 Code Generation for AUTOSAR Software Components

You can use the Data Type Assistant on the Signal Attributes pane of the
Inport or Outport Block Parameters dialog box to specify the data types of
data elements and arguments of an operation prototype. If you selectMode to
be Built in, then you can specify the data type to be, for example, single or
boolean. Alternatively, if you selectMode to be Expression, you can specify
an (alias) expression for data type. As an example, the following figure shows
an alias UInt4 in the Data type field.

17-20

Simulink® Modeling Patterns for AUTOSAR

Enumerated Data Types
AUTOSAR supports enumerated data types. For the import process, if there
is a corresponding Simulink enumerated data type, the software uses the data

17-21

17 Code Generation for AUTOSAR Software Components

type. The software checks that the two data types are consistent. However, if
a corresponding Simulink data type is not found, the software automatically
creates the enumerated data type using the Simulink.defineIntEnumType
class. This automatic creation of data types is useful when you want to import
a large number of enumerated data types.

Consider the following example:

<SHORT-NAME>BasicColors</SHORT-NAME>
<COMPU-INTERNAL-TO-PHYS>
<COMPU-SCALES>

<COMPU-SCALE>
<LOWER-LIMIT>0</LOWER-LIMIT>
<UPPER-LIMIT>0</UPPER-LIMIT>
<COMPU-CONST>

<VT>Red</VT>
....

The software creates an enumerated data type using:

Simulink.defineIntEnumType('BasicColors', ...
{'Red', 'Green', 'Blue'}, ...
[0;1;2], ...
'Description', 'Type definition of BasicColors.', ...
'HeaderFile', 'Rte_Type.h', ...
'AddClassNameToEnumNames', false);

Structure Parameters
Before exporting an AUTOSAR Software Component, specify the data types of
structure parameters to be Simulink.Bus objects. See “Structure Parameters
and Generated Code” in Simulink Coder documentation. Otherwise, the
software displays the following behavior:

• When you validate the AUTOSAR interface, the software issues a warning.

• When you build the model, the software defines each data type to be an
anonymous struct and generates a random, nondescriptive name for the
data type.

17-22

Simulink® Modeling Patterns for AUTOSAR

When importing an AUTOSAR Software Component, if a parameter structure
has a data type name that corresponds to an anonymous struct, the software
sets the data type to struct. However, if the component has data elements
that reference this anonymous struct data type, the software generates an
error.

Data Type Support for Release 4.0
AUTOSAR R4.0 introduces the notion of application data types,
implementation data types and base types. The duality of application and
implementation data types allows the separation of the following attributes:

• Physical attributes (application level) — For example, real-world range of
values, the data structure, and physical semantics.

• Implementation attributes (implementation level) — For example,
stored-integer minimum and maximum values and specification of
primitive type such as integer, Boolean, real, and opaque.

For information about how Simulink supports AUTOSAR R4.0 data types, see
“R4.0 Data Types — Generate Code Without Importing XML” on page 17-24
and “R4.0 Data Types — Import XML and Generate Code” on page 17-26.

For comparison, the following table shows how the software translates
AUTOSAR R2.X and R3.X data types to Simulink data types.

17-23

17 Code Generation for AUTOSAR Software Components

AUTOSAR Simulink

Primitive types (excluding
fixed point), for example,
myInt16

Covers Boolean, integer, real

>> myInt16 = Simulink.AliasType;

>> myInt16.BaseType = `int16';

>> myInt16.IsAlias = true;

>> myInt16.HeaderFile =
`Rte_Type.h';

Primitive type (fixed point), for
example, myFixPt

>> myFixPt = Simulink.NumericType;

>> myFixPt.DataTypeMode =…

>> myFixPt.IsAlias = true;

>> myFixPt.HeaderFile =
`Rte_Type.h';

Enumerations, for example,
myEnum

Simulink.defineIntEnumType('myEnum',
...

{'Red', 'Green', `Blue'},...

[1;2;3], ...);

Record types, for example,
myRecord

myRecord = Simulink.Bus;

R4.0 Data Types — Generate Code Without Importing XML. In this
workflow, you create a Simulink model and export the model as an AUTOSAR
Software Component.

The software generates the application and implementation data types and
base types to preserve the information contained within the Simulink data
types:

• For Simulink data types, the software generates implementation data
types.

17-24

Simulink® Modeling Patterns for AUTOSAR

• For each fixed-point type, in addition to the implementation data type, the
software generates an application data type with the COMPU-METHOD-REF
element to preserve scale and bias information. This application data type
is mapped to the implementation data type.

Note The software does not support application data types for code generated
from referenced models.

AUTOSAR XMLSimulink Data Type

Implementation Type Application Type

Primitive (excluding
fixed point), for
example, myInt16

>> myInt16 =
Simulink.AliasType;

>> myInt16.BaseType
= 'int16';

>> myInt16.IsAlias
= 'true'

Covers Boolean,
integer, real

<IMPLEMENTATION-DATA-
TYPE>

<SHORT-NAME>
myInt16</SHORT-NAME>

<CATEGORY>VALUE
</CATEGORY>

…

Not generated

Primitive (fixed point),
for example, myFixPt

>> myFixPt =
Simulink.NumericType;

>>
myFixPt.DataTypeMode
= …

>> myFixPt.IsAlias
= 'true';

<IMPLEMENTATION-
DATA-TYPE>

<SHORT-NAME>
myFixPt></SHORT-NAME>

<CATEGORY>VALUE
</CATEGORY> …

<APPLICATION-
PRIMITIVE-DATA-TYPE>

<SHORT-NAME>
myFixPt …

<COMPU-METHOD-REF …

17-25

17 Code Generation for AUTOSAR Software Components

AUTOSAR XMLSimulink Data Type

Implementation Type Application Type

Enumeration, for
example, myEnum

Simulink.defineIntEnum
Type('myEnum', ...

{'Red', 'Green',
'Blue'},

...

[1;2;3], …);

<IMPLEMENTATION-
DATA-TYPE>

<SHORT-NAME>myEnum>
</SHORT-NAME>

<CATEGORY>VALUE
<\CATEGORY>

<COMPU-METHOD> ...

Not generated

Record, for example,
myRecord

myRecord =
Simulink.Bus;

<IMPLEMENTATION-DATA-
TYPE>

<SHORT-NAME>myRecord>
</SHORT-NAME>

<CATEGORY>STRUCT
</CATEGORY>

Not generated

R4.0 Data Types — Import XML and Generate Code. With this
workflow, you first import an AUTOSAR Software Component using the XML
description generated by an AUTOSAR authoring tool. Later, you generate
AUTOSAR code.

If the data prototype references an application data type, the software stores
application to implementation data type mapping within the model and uses
the application data type name to define the Simulink data type.

For example, suppose the authoring tool specifies an application data type:

ApplDT1

In this case, the software defines the following Simulink data type:

ImplDT1

17-26

Simulink® Modeling Patterns for AUTOSAR

AUTOSAR XML

Application Type Implementation Type

Simulink Data Type

<APPLICATION-
PRIMITIVE-
DATA-TYPE>

<SHORT-NAME>myFixPt

…

<COMPU-METHOD-REF …

<IMPLEMENTATION-DATA-
TYPE>

<SHORT-NAME>myInt

>> myFixPt =
Simulink.NumericType;

>>
myFixPt.DataTypeMode
= …

>> myFixPt.IsAlias
= `true';

If the data prototype references an implementation data type, the software
does not store mapping information and uses the implementation data type
name to define the Simulink data type.

The software uses the application data types in simulations and the
implementation data types for code generation. When you re-export the
AUTOSAR Software Component, the software uses the stored information
to provide the same mapping between the exported application and
implementation data types.

Per-Instance Memory
AUTOSAR supports per-instance memory, which allows you to specify
instance-specific global memory within a software component. An AUTOSAR
run-time environment generator allocates this memory and provides an API
through which you access this memory.

In Simulink, you can model per-instance memory through the use
of Data Store Memory and Data Store Read/Write blocks together
with an AUTOSAR.Signal data object that specifies, for example, the
PerInstanceMemory custom storage class.

17-27

17 Code Generation for AUTOSAR Software Components

AUTOSAR also allows you to use per-instance memory as a RAM mirror for
data in non-volatile RAM (NVRAM), which enables you to access and use
NVRAM in your AUTOSAR application.

Once an AUTOSAR.Signal data object specifies the PerInstanceMemory custom
storage class, you can configure this per-instance memory to be a mirror block
for a specific NVRAM block by setting the attribute needsNVRAMAccess to true.

For detailed information about how you model per-instance memory, see the
example rtwdemo_autosar_PIM_script. For an outline, see “Use Data Store
Memory Blocks to Specify Per-Instance Memory” on page 17-79.

AUTOSAR Terminology

Term Notes

AUTOSAR Runtime
Environment (RTE)

• Layer between Application and Basic Software
layers

• Realizes communication between:

- AUTOSAR Software Components

- AUTOSAR Software Components and Basic
Software

AUTOSAR Software
Component

• A software component containing one or more
algorithms, which communicates with its
environment through ports

• Connected to the AUTOSAR Runtime
Environment (RTE)

• Relocatable (not tied to a particular ECU)

Characteristics Values of characteristics can be changed on an
ECU through a calibration data management tool
or an offline calibration tool.

Client-Server Interface • PortInterface for client-server communication

• Defines operations provided by server and used
by client

17-28

Simulink® Modeling Patterns for AUTOSAR

Term Notes

Composite data types Category of data types, such as one of the
following:
• Array — Contains more than one element of
the same type, and has zero-based indexing

• Record — Non-empty set of objects, where each
object has a unique identifier

ComSpec Defines specific communication attributes.

DataElementPrototype
(data element)

Data value (signal) exchanged between a sender
and a receiver.

Data types • Either primitive or composite

• Types data elements, arguments of operations
in a Client-Server Interface, and constants

ErrorStatus Indicates errors detected by communication
system. Runtime Environment defines
the following macros for sender-receiver
communication:
• RTE_E_OK: no errors

• RTE_E_INVALID: data element invalid

• RTE_E_MAX_AGE_EXCEEDED: data element
outdated

OperationPrototype
(operation)

• Invoked by a client

• Provides value for each argument with
direction in or inout, which must be of the
corresponding data type

• Client expects to receive a response to the
invoked operation, part of which is a value with
direction out or inout

PortInterface • Characterizes information provided or required
by a port

• Can be either Sender-Receiver Interface or
Client-Server Interface

17-29

17 Code Generation for AUTOSAR Software Components

Term Notes

Primitive data types Category of data types that allow a direct mapping
to C intrinsic types.

Provide port (PPort) Port providing data or service of a server.

Require port (RPort) Port requiring data or service of a server.

RTEEvent Event or situation that triggers execution of a
runnable by the Runtime Environment (RTE).
The software supports the following RTEEvents:
• OperationInvokedEvent (applicable to server
operations)

• TimingEvent

• DataReceivedEvent

Runnable entity
(runnable)

Part of AUTOSAR Software-Component that can
be executed and scheduled independently of other
runnable entities (runnables).

Sender-Receiver
Interface

• PortInterface for sender-receiver
communication

• Defines data elements sent by sending
component (with Provide port providing
Sender-Receiver Interface) or received by
receiving component (with Require requiring
Sender-Receiver Interface)

Sender Receiver
Annotation

Annotation of data elements in a port that
implements Sender-Receiver Interface.

Sensor Actuator
Software Component

AUTOSAR Software Component dedicated to the
control of a sensor or actuator.

Service Logical entity of Basic Software that offers
functionality, which is used by various AUTOSAR
Software Components.

17-30

Workflows for AUTOSAR

Workflows for AUTOSAR
This section describes how you use Embedded Coder software to configure a
Simulink representation of an AUTOSAR application for model-based design,
and subsequently generate AUTOSAR-compliant code from the model.

Two typical workflows are

• The round-trip workflow, in which you import AUTOSAR Software
Components created by an AUTOSAR authoring tool (AAT) into the
Simulink model-based design environment, and later export XML
descriptions and C code for merging back into the AAT environment.

• The Simulink originated, or bottom-up, workflow, in which you take a
model-based design that originated in Simulink, configure and evolve it for
AUTOSAR code generation, and export XML descriptions and C code for
use in the AUTOSAR environment.

The following diagram shows the round-trip workflow.

17-31

17 Code Generation for AUTOSAR Software Components

In the round-trip workflow, you perform the following tasks:

1 Import previously specified AUTOSAR Software Components, including
definitions of calibration parameters, into Simulink. See:

• “Import an AUTOSAR Software Component” on page 17-34

• “Configure Calibration Parameters” on page 17-77

2 Develop the model using Simulink model-based design. This process
includes mapping Simulink model elements to AUTOSAR component
elements, configuring the AUTOSAR interface, and validating the
interface. See:

• “Configure the AUTOSAR Interface” on page 17-43

17-32

Workflows for AUTOSAR

• “Configure Ports for Basic Software and Error Status Receivers” on
page 17-60

• “Configure Client-Server Communication” on page 17-61

• “Configure AUTOSAR Options Programmatically” on page 17-88

• “Modify and Validate an Existing AUTOSAR Interface” on page 17-80

3 Export the AUTOSAR component from Simulink, generating XML
description files and C code files. See:

• “Export AUTOSAR Software Component” on page 17-85

• “Configure Multiple Runnables” on page 17-69

You can also verify your generated code in a simulation. See “Verify
AUTOSAR Code with SIL and PIL” on page 17-89.

4 Merge generated code and description files with other
systems using an AUTOSAR authoring tool. See example
rtwdemo_autosar_roundtrip_script.

You can use the authoring tool to export specifications, which can be
imported back into Simulink.

In the Simulink originated (bottom-up) workflow, you perform the same tasks
as with the round-trip workflow, except that rather than importing AUTOSAR
Software Components from an AAT (step 1), you start with a Simulink
model-based design and use Simulink to create a customized AUTOSAR
component. See “Create an AUTOSAR Software Component in Simulink” on
page 17-38. Subsequent tasks in the workflow are as listed above.

17-33

17 Code Generation for AUTOSAR Software Components

Import an AUTOSAR Software Component
The AUTOSAR software component importer tool parses an AUTOSAR
Software Component description file produced, for example, by an AUTOSAR
authoring tool (AAT) and imports software component information into a
Simulink model for further configuration and model-based design.

The tool imports a subset of the elements and objects from an arxml file
representing an AUTOSAR Software Component. The subset consists of
AUTOSAR objects and properties relevant for Simulink model-based design
of an automotive application, for example, AUTOSAR Components, Ports,
Interfaces, DataTypes, and Packages.

As part of the import operation, the tool validates the XML in the imported
arxml files. If XML validation fails for a file, the tool displays errors. For
example:

Error

The IsService attribute is undefined for interface /mtest_pkg/mtest_if/In1

in file hArxmlFileErrorMissingIsService_SR_3p2.arxml:48.

Specify the IsService attribute to be either true or false

In this example message, the file name is a hyperlink, and you can click the
hyperlink to see the location of the error in the arxml file.

To help support the round trip of AUTOSAR elements between an AAT and
the Simulink model-based design environment, Embedded Coder preserves
AUTOSAR elements and their UUIDs across arxml import and export, as
follows:

• When arxml files created by an AAT are imported into a Simulink model,
AUTOSAR element information is preserved, including UUIDs (for
Identifiables), properties, references, and packages.

• After import, you can view and edit AUTOSAR objects in a Simulink
model window without losing the information imported from the AAT. For
example, you can use the Configure AUTOSAR Interface dialog box to edit
object name and property values (preserving the original object UUID),
add new objects such as Interfaces and Ports (creating new UUIDs), and
delete objects (retiring UUIDs). These actions do not perturb the imported
objects and their relationships.

17-34

Import an AUTOSAR Software Component

• When arxml files are exported from a Simulink model, the elements
are generated back into arxml with their UUIDs and other information
preserved.

As a result, the arxml files exported from Simulink can more easily be merged
back into the AAT environment. Existing elements retain their UUIDs, while
new elements created in Simulink get new UUIDs.

The AUTOSAR software component importer tool is implemented as
an arxml.importer class. For a complete list of methods, see the
arxml.importer class reference page.

Use arxml.importer methods in the following order:

1 Call the constructor arxml.importer, for example,
arxml.importer('mySoftwareComponentFile.arxml'), to
create an importer object that looks for atomic software components in the
specified XML file. In the Command Window, you see reports describing
identified atomic software components. You can have multiple components.
For example:

The file "mySoftwareComponentFile.arxml" contains:

1 Atomic-Software-Component-Type:

'/ComponentType/complex_type_component'

3 CalPrm-Component-Type:

'/ComponentType/MyCalibComp1'

'/ComponentType/MyCalibComp2'

'/ComponentType/MyCalibComp3'

To change the main file and update the list of components, use
arxml.importer.setFile.

Each software component requires an arxml.importer object. For
each arxml.importer object, specify the file that contains the software
component that you want.

2 Use arxml.importer.setDependencies if you need to specify additional
dependent XML files containing the information that completes the
software component description (for example, data types, interfaces). You
can specify a cell array of files or a single file.

17-35

17 Code Generation for AUTOSAR Software Components

Complete specifying dependencies only for components that you intend to
import into Simulink.

3 To import a parsed atomic software component into a Simulink model, call
one of the following methods. If you have not specified all dependencies for
the components, you will see errors.

• arxml.importer.createComponentAsSubsystem — Creates and
configures a Simulink subsystem skeleton corresponding to the specified
atomic software component description.

• arxml.importer.createComponentAsModel— Creates and configures a
Simulink model skeleton corresponding to the specified atomic software
component description.

For example:

importer_obj.createComponentAsModel('/ComponentType/complex_type_component')

• arxml.importer.createCalibrationComponentObjects — Creates
Simulink calibration objects corresponding to the specified AUTOSAR
calibration component description.

For example:

[success] = createCalibrationComponentObjects(importer_obj,

'/ComponentType/MyCalibComp1',

'CreateSimulinkObject', true)

See also the limitation, “Cannot Import Internal Behavior” on page 17-92.

After you import your software component into Simulink, you can modify the
skeleton model or subsystem. For parameters from a calibration component,
after importing the parameters into the MATLAB workspace, assign the
calibration parameters to block parameters in your model.

To configure AUTOSAR code generation options and XML export options, see:

• “Prepare a Model for AUTOSAR Code Generation” on page 17-43

• “Generate AUTOSAR Code and Description Files” on page 17-82

• “Configure AUTOSAR Options Programmatically” on page 17-88

17-36

Import an AUTOSAR Software Component

To see how to import, modify, and export AUTOSAR Software Components,
view the example Import and Export an AUTOSAR Software Component.

17-37

17 Code Generation for AUTOSAR Software Components

Create an AUTOSAR Software Component in Simulink
As an alternative to importing an AUTOSAR Software Component from an
AUTOSAR authoring tool (AAT), you can create an AUTOSAR software
component in Simulink. To do this:

1 Open a Simulink model that is not configured for AUTOSAR.

2 Click Simulation > Model Configuration Parameters to open the
Configuration Parameters dialog box.

3 On the Code Generation pane, use System target file to select the
target for AUTOSAR code generation, autosar.tlc.

4 Go to the Code Generation > AUTOSAR Code Generation Options
pane, and inspect the settings of the AUTOSAR code generation parameters
to see if modifications are required.

5 Click the button Configure AUTOSAR Interface. This opens the Create
AUTOSAR Component? dialog box, which offers two paths for creating
an AUTOSAR software component:

• Create Default Component — Automatically create an AUTOSAR
component and bring it up in the Configure AUTOSAR Interface dialog
box.

• Create Component Interactively — Interactively create an
AUTOSAR component using the AUTOSAR Component Builder dialog
box.

17-38

Create an AUTOSAR Software Component in Simulink®

6 Click one of the two buttons. If you click Create Default Component, a
new AUTOSAR component comes up in the Configure AUTOSAR Interface
dialog box. For information about using this dialog box, see “Configure the
AUTOSAR Interface” on page 17-43. If you click Create Component
Interactively, the AUTOSAR Component Builder dialog box opens.

7 In the initial view of the AUTOSAR Component Builder dialog box, you
specify:

• Path for the AUTOSAR component package.

• Name for the AUTOSAR component.

• AUTOSAR component type: Application for an AUTOSAR
application software component, or Sensor Accuator for an AUTOSAR
sensor/actuator software component.

Click Next to go to the Add Interfaces view.

17-39

17 Code Generation for AUTOSAR Software Components

8 In the Add Interfaces view of the AUTOSAR Component Builder dialog
box, you can:

• Modify the name of the Interface package associated with the AUTOSAR
component.

• Use the Add Interface button to add more Sender or Receiver interfaces
to the displayed list.

• Use the Remove Interface button to remove a selected Sender or
Receiver interface.

• For each listed interface, edit the name, edit the number of data
elements it contains, and select whether the interface is a service.

Note If you opened this dialog box from the Configure AUTOSAR
Interface dialog box, the Add Interface and Remove Interface buttons
do not appear.

17-40

Create an AUTOSAR Software Component in Simulink®

Click Next to go to the Add Ports view. (If you opened this dialog box from
the Configure AUTOSAR Interface dialog box, click Add.)

9 In the Add Ports view of the AUTOSAR Component Builder dialog box,
you can:

• Use the Add Port button to add more ports to the displayed list.

• Use the Remove Port button to remove a selected Sender-Receiver
interface.

• For each listed port, edit the name, select the associated interface, and
select whether the port type is Sender or Receiver.

Note If you opened this dialog box from the Configure AUTOSAR
Interface dialog box, the Add Port and Remove Port buttons do not
appear, and only one port is listed.

17-41

17 Code Generation for AUTOSAR Software Components

Click Configure Simulink Mapping to open the Configure AUTOSAR
Interface dialog box. To continue from this point, see “Configure the
AUTOSAR Interface” on page 17-43. (If you opened this dialog box from
the Configure AUTOSAR Interface dialog box, click Add.)

17-42

Prepare a Model for AUTOSAR Code Generation

Prepare a Model for AUTOSAR Code Generation

In this section...

“Configure the AUTOSAR Interface” on page 17-43

“Configure Single Runnables for DataReceivedEvents” on page 17-57

“Configure Ports for Basic Software and Error Status Receivers” on page
17-60

“Configure Client-Server Communication” on page 17-61

“Configure Multiple Runnables” on page 17-69

“Configure Calibration Parameters” on page 17-77

“Use Data Store Memory Blocks to Specify Per-Instance Memory” on page
17-79

“Modify and Validate an Existing AUTOSAR Interface” on page 17-80

Configure the AUTOSAR Interface

• “Map Simulink Model to AUTOSAR Software Component” on page 17-45

• “Configure AUTOSAR Software Components and Interfaces” on page 17-49

After you have imported an AUTOSAR software component into a Simulink
model, using arxml.importer, or created a Simulink representation of an
AUTOSAR software component, using the AUTOSAR Component Builder,
open the model and use the Configure AUTOSAR Interface dialog box to
further develop the AUTOSAR component. The Configure AUTOSAR
Interface dialog box provides two distinct views of the AUTOSAR component,
which can be used separately and together to configure the AUTOSAR
interface:

• Simulink-AUTOSAR Mapping Explorer — This view displays model
inports, outports, and entry point functions in a tree format. Use this view
to map model components and interfaces to AUTOSAR components and
interfaces from a Simulink model perspective.

• AUTOSAR Properties Explorer — This view displays AUTOSAR
components, S-R interfaces, and XML options in a tree format. Use this

17-43

17 Code Generation for AUTOSAR Software Components

view to configure AUTOSAR elements from an AUTOSAR component
perspective.

In a model for which the AUTOSAR code generation target (autosar.tlc)
has been selected, you can open the Configure AUTOSAR Interface dialog
box by selecting Code > C/C++ Code > Configure Model as AUTOSAR
Component.

As you progressively configure the model representation of the AUTOSAR
component, you can:

• Freely switch between the Simulink and AUTOSAR perspectives, by
clicking Simulink-AUTOSAR Mapping or AUTOSAR Properties.

• Click the Validate icon to validate the AUTOSAR interface
configuration

17-44

Prepare a Model for AUTOSAR Code Generation

• If you add a block in your Simulink model, click the Synchronize icon
to update the AUTOSAR interface configuration with content from the
added block.

• Use the Filter Contents field (where available) to selectively display some
elements, while omitting others, in the current view.

For more information on the Simulink-AUTOSAR Mapping Explorer, see
“Map Simulink Model to AUTOSAR Software Component” on page 17-45.
For more information on the AUTOSAR Properties Explorer, see “Configure
AUTOSAR Software Components and Interfaces” on page 17-49.

Map Simulink Model to AUTOSAR Software Component
To map Simulink model elements to AUTOSAR software component elements:

1 Open a model for which the AUTOSAR code generation target
(autosar.tlc) has been selected.

2 Open the Configure AUTOSAR Interface dialog box by selecting
Code > C/C++ Code > Configure Model as AUTOSAR Component. If
the Simulink-AUTOSAR Mapping Explorer is not already selected, click
Simulink-AUTOSAR Mapping. The model tree in the top-level view
shows the types of Simulink elements that can be mapped to AUTOSAR
component elements:

• A Simulink model can be mapped to an AUTOSAR component.

• A Simulink inport or outport can be mapped to a data element of an
AUTOSAR port, with a specific data access mode.

• A Simulink entry-point function can be mapped to an AUTOSAR
runnable.

17-45

17 Code Generation for AUTOSAR Software Components

In the left-hand pane, under Simulink-Mapping, select the model name.

3 The model view of the Simulink-AUTOSAR Mapping Explorer displays
the model name and the name of the AUTOSAR component to which the
model is being mapped.

17-46

Prepare a Model for AUTOSAR Code Generation

In the left-hand pane, under the model name, select Inports.

4 The Inports view of the Simulink-AUTOSAR Mapping Explorer maps each
Simulink inport to a data element of an AUTOSAR port. You can:

• Map a Simulink inport by selecting the inport and then selecting menu
values for an AUTOSAR Port and an AUTOSAR Element. (In this
example, there is only one available mapping.)

• Select a port and then select a menu value for its AUTOSAR
port data access mode: ImplicitReceive, ExplicitReceive,
QueuedExplicitReceive, BasicSoftwarePort, or ErrorStatus.

17-47

17 Code Generation for AUTOSAR Software Components

In the left-hand pane, select Outports.

5 The Outports view of the Simulink-AUTOSAR Mapping Explorer maps
each Simulink outport to a data element of an AUTOSAR port. You can:

• Map a Simulink outport by selecting the outport and then selecting
menu values for an AUTOSAR Port and an AUTOSAR Element. (In this
example, there is only one available mapping.)

• Select a port and then select a menu value for its AUTOSAR port data
access mode: ImplicitSend, ExplicitSend, or BasicSoftwarePort.

In the left-hand pane, select Entry Point Functions.

6 The Entry Point Functions view of the Simulink-AUTOSAR Mapping
Explorer maps each Simulink entry-point function to an AUTOSAR
runnable. You can map a Simulink entry-point function by selecting the
entry point function and then selecting a menu value for an AUTOSAR
runnable.

17-48

Prepare a Model for AUTOSAR Code Generation

7 Click the Validate icon to validate the AUTOSAR interface
configuration. If errors are reported, address them and then retry
validation.

Configure AUTOSAR Software Components and Interfaces
To configure AUTOSAR elements from an AUTOSAR component perspective
in Simulink:

1 Open a model for which the AUTOSAR code generation target
(autosar.tlc) has been selected.

2 Open the Configure AUTOSAR Interface dialog box by selecting
Code > C/C++ Code > Configure Model as AUTOSAR Component. If
the AUTOSAR Properties Explorer is not already selected, click AUTOSAR
Properties. The top-level view shows the types of AUTOSAR elements
for which properties can be configured — atomic software components,
S-R interfaces, and XML options.

17-49

17 Code Generation for AUTOSAR Software Components

In the left-hand pane, under AUTOSAR, select AtomicComponents.

3 The Atomic Components view of the AUTOSAR Properties Explorer
displays atomic components and their types. You can:

• Select an AUTOSAR component and then select a menu value for its
kind: Application for an AUTOSAR application software component,
or Sensor Accuator for.an AUTOSAR sensor/actuator software
component.

• Rename an AUTOSAR component by clicking its name and then editing
the name string.

17-50

Prepare a Model for AUTOSAR Code Generation

In the left-hand pane, expand AtomicComponents and select an
AUTOSAR component.

4 The component view of the AUTOSAR Properties Explorer displays the
name and type of the selected component, and lists the types of AUTOSAR
component elements for which properties can be configured — receiver
ports, sender ports, and runnables.

In the left-hand pane, expand the component and select ReceiverPorts.

5 The Receiver Ports view of the AUTOSAR Properties Explorer lists receiver
ports and their properties. You can

• Select an AUTOSAR receiver port and then select a menu value for its
interface type: Input or Output.

17-51

17 Code Generation for AUTOSAR Software Components

• Rename an AUTOSAR receiver port by clicking its name and then
editing the name string.

• Click the Add icon to open an AUTOSAR Component Builder dialog
box to add a port. The Add Ports dialog box lets you add a receiver port
for input or output.

• Select a port and then click the Delete icon to remove it.

In the left-hand pane, select SenderPorts.

6 The Sender Ports view of the AUTOSAR Properties Explorer lists sender
ports and their properties. You can:

• Select an AUTOSAR sender port and then select a menu value for its
interface type: Input or Output.

• Rename an AUTOSAR sender port by clicking its name and then editing
the name string.

• Click the Add icon to open an AUTOSAR Component Builder dialog
box to add a port. The Add Ports dialog box lets you add a sender port
for input or output.

• Select a port and then click the Delete icon to remove it.

17-52

Prepare a Model for AUTOSAR Code Generation

In the left-hand pane, select Runnables.

7 The Runnables view of the AUTOSAR Properties Explorer lists runnables
for the AUTOSAR component. You can:

• Rename an AUTOSAR runnable by clicking its name and then editing
the name string.

• Click the Add icon to add an AUTOSAR runnable.

• Select an AUTOSAR runnable and then click the Delete icon to
remove it.

• Select a runnable to see its list of associated events. The Events
pane lists each AUTOSAR event with its type (TimingEvent or
DataReceivedEvent), name (modifiable string), execution periods (for
TimingEvent only), and trigger (for DataReceivedEvent only). You can
use the buttons Add Event and Delete Event to add or delete events
from a runnable.

17-53

17 Code Generation for AUTOSAR Software Components

In the left-hand pane, select S-R Interfaces.

8 The S-R Interfaces view of the AUTOSAR Properties Explorer lists
AUTOSAR sender and receiver interfaces and their properties. You can

• Select an AUTOSAR interface and then select a menu value to specify
whether or not it is a service.

• Rename an AUTOSAR interface by clicking its name and then editing
the name string.

• Click the Add icon to open an AUTOSAR Component Builder dialog
box to add one or more interfaces. The Add Interfaces dialog box lets you
specify the name of the new interface, the number of associated data
elements to create, whether or not the interface is a service, and the path
of the Interface package associated with the AUTOSAR component.

• Select an interface and then click the Delete icon to remove it.

17-54

Prepare a Model for AUTOSAR Code Generation

In the left-hand pane, expand S-R Interfaces and select an AUTOSAR
interface from the list.

9 The interface view of the AUTOSAR Properties Explorer displays the name
of the selected interface, whether or not it is a service, and shows the type
of AUTOSAR interface element for which properties can be configured
— data elements.

In the left-hand pane, expand the selected interface and select
DataElements.

10 The Data Elements view of the AUTOSAR Properties Explorer lists
interface data elements and their properties. You can

• Select an AUTOSAR interface data element and edit the name value.

• Click the Add icon to add a data element.

17-55

17 Code Generation for AUTOSAR Software Components

• Select a data element and then click the Delete icon to remove it.

In the left-hand pane, select XML Options.

11 The XML Options view of the AUTOSAR Properties Explorer displays
XML export parameters and their values. You can:

• Specify the file packaging for exported XML by selecting a menu value:
Modular or Single file. The following table shows which XML files are
generated based on the value selection.

Exported XML file
packaging Value

File Name Description

modelname _behavior.arxml Specifies the software component
internal behavior

modelname
_implementation.arxml

Specifies the software component
implementation

modelname _interface.arxml Specifies the software component
interfaces, including extra
interfaces

modelname _component.arxml Specifies the software component
type, including additional ports
added to the Simulink model

Modular

modelname _datatype.arxml Specifies the software component
data types, including any
modified or additional data types

Single file modelname.arxml Contains all specifications

17-56

Prepare a Model for AUTOSAR Code Generation

• Specify paths for the AUTOSAR Component Package, Datatype Package,
and Interface Package.

• Specify qualified names for the AUTOSAR Internal Behavior Name
and Implementation Name.

12 Click the Validate icon to validate the AUTOSAR interface
configuration. If errors are reported, address them and then retry
validation.

Configure Single Runnables for DataReceivedEvents
The AUTOSAR Runtime Environment uses the event type DataReceivedEvent
to trigger a runnable only when the value of a received data element is
updated.

The software supports two data access modes that enable DataReceivedEvents
to act as triggers, ExplicitReceive and QueuedExplicitReceive. The latter,
in principle, allows the queuing of events. However, by default, the software

17-57

17 Code Generation for AUTOSAR Software Components

restricts the queue length to one event only. If you want a different queue
length, you must edit the generated XML file.

To create a runnable trigger with a DataReceivedEvent:

1 Under Configure AUTOSAR Interface, select the Input/Output tab.

2 If you want an input data signal to be a trigger (for example, Input) set
Data Access Mode for the corresponding inport to ExplicitReceive or
QueuedExplicitReceive.

3 Select the Runnables tab. To create a new trigger event, click Add Event.
By default, from the Event Type drop-down list, the software selects
DataReceivedEvent.

17-58

Prepare a Model for AUTOSAR Code Generation

4 In the Event Name column, specify an event name.

5 In the Trigger Port column, from the drop-down list, select the Simulink
port, for example, Input.

6 To create an additional trigger event, repeat steps 3 – 5. You can remove a
trigger event by selecting the event row and clicking Delete Event.

7 To verify that you have configured the event triggers, click Validate.

17-59

17 Code Generation for AUTOSAR Software Components

Note If you define a DataReceivedEvent in a top-model or right-click build
configuration, you should specify sample time independence for the model,
that is, you should set the Periodic sample time constraint on the Solver
configuration parameters dialog pane to Ensure sample time independent.
This action checks that the generated code can be executed at non-periodic
rates, for example, asynchronously. However, if you know the execution
context, for example, the data triggers periodically, then you do not have to
specify sample time independence.

Configure Ports for Basic Software and Error Status
Receivers
You can configure ports to access AUTOSAR services and device drivers
(AUTOSAR basic software), and to access communication error status in your
model. You can configure ports programmatically or by using the AUTOSAR
Model Interface dialog box. To open the dialog box, right-click a subsystem and
select C/C++ Code > Configure Subsystem as AUTOSAR Component.

17-60

Prepare a Model for AUTOSAR Code Generation

In the dialog box, you can specify the Data Access Mode of every port.

• Designate inports and outports as access points to basic software.

If you select Basic Software, specify the service name, operation, and
interface. The service name and operation must be valid AUTOSAR
identifiers, and the service interface must be a valid path of the form
AUTOSAR/Service/servicename.

After you export your AUTOSAR components, you must include your
service interface definition XML file to import these components into an
authoring tool.

• Designate inports to receive error status.

If you select Error Status for an inport, you must select the other port (of
mode Implicit or Explicit Receive) to listen for error status. Error status
ports must use uint8 data type (or an alias).

Configure Client-Server Communication

• “Configure a Server Operation” on page 17-63

• “Configure the Invoke AUTOSAR Server Operation Block” on page 17-65

• “Create Configurable Subsystems from a Client-Server Interface” on page
17-67

17-61

17 Code Generation for AUTOSAR Software Components

• “Simulate and Generate Code for Client-Server Communication” on page
17-68

AUTOSAR allows client-server communication between:

• Application software components

• An application software component and Basic Software

An AUTOSAR Client-Server Interface defines the interaction between a
software component that provides the interface and a software component
that requires the interface. The component that provides the interface is the
server. The component that requires the interface is the client.

In Simulink, you can:

• Configure your model to implement a server operation. When you build
your model, you generate AUTOSAR-compliant code and XML description
files, including a client-server interface. See “Configure a Server Operation”
on page 17-63.

• Configure a client port for your model using an Invoke AUTOSAR Server
Operation block that references a client-server interface. When you build
your model, you generate AUTOSAR-compliant code and XML description
files for your client port. See “Configure the Invoke AUTOSAR Server
Operation Block” on page 17-65.

Once you create a client-server interface, you can generate a Simulink library
of configurable, client-server subsystems that reference the:

• Invoke AUTOSAR Server Operation block for code generation

• Server operation model block for simulation

For information on how to generate this library, see “Create Configurable
Subsystems from a Client-Server Interface” on page 17-67

You can deploy the client-server subsystem in a Simulink model and, using
the Mode Switch for Invoke AUTOSAR Server Operation, run the model in
either a simulation or code-generation mode. See “Simulate and Generate
Code for Client-Server Communication” on page 17-68.

17-62

Prepare a Model for AUTOSAR Code Generation

For an example on generating and using an AUTOSAR Client-Server
Interface, see rtwdemo_autosar_clientserver_script.

Configure a Server Operation
In the Configure AUTOSAR Interface dialog box, you can configure
your Simulink model as a server operation. Then you can generate
AUTOSAR-compliant code and XML files, including the client-server
interface.

1 Select the Configure I/O for server operation check box. The
Input/Output tab becomes the Server Operation tab.

17-63

17 Code Generation for AUTOSAR Software Components

2 Click Get Default Configuration to populate the controls for your model.

The runnable names, XML properties, and I/O configuration are initialized.
If you click Get Default Configuration again later, only the I/O
configurations are reset to default values.

On the Configure AUTOSAR Interface pane, use the controls to change
your AUTOSAR code generation options and XML export options.

3 On the Server Operation tab, specify the following:

• Server port name. Use a valid AUTOSAR short-name identifier.

• Operation prototype . The names of the prototype and its arguments
must be valid AUTOSAR short-name identifiers, for example,
rtwdemo_autosar_server_operation(IN double upper, IN double
input, IN double lower, OUT double output).

• Interface name. The path reference of the client-server interface. Use
a valid AUTOSAR short-name path, for example, csinterface.

• Server type. From the drop-down list, select either Application
software or Basic software.

4 On the Runnables tab, specify the names of your initial and periodic
runnables, for example, Runnable_Init and Runnable_Step.

5 On the XML Options tab, specify:

17-64

Prepare a Model for AUTOSAR Code Generation

a The form of your Exported XML file packaging. Select Modular
(default) if you want to publish the XML descriptions as separate files. If
you want to combine the XML descriptions, select Single file.

b The names and package paths of the XML files that you publish when
you generate code.

See “Export AUTOSAR Software Component” on page 17-85.

6 After you configure your options, click Validate, which calls
runValidation. If a problem occurs, you see messages describing why
the configuration is invalid. See also “Modify and Validate an Existing
AUTOSAR Interface” on page 17-80.

7 If validation succeeds, click OK to return to the Configuration Parameters
dialog box.

8 Save your model.

9 To generate AUTOSAR-compliant code and XML files, select Code > C/C++
Code > Build Model.

Configure the Invoke AUTOSAR Server Operation Block
You can use the Invoke AUTOSAR Server Operation block in your Simulink
model to configure a client port (that accesses either application software
or AUTOSAR Basic Software). You can then build the model to generate
AUTOSAR-compliant code and XML files.

17-65

17 Code Generation for AUTOSAR Software Components

1 Drag an Invoke AUTOSAR Server Operation block into your model.

2 Double-click the block to open the Invoke AUTOSAR Server Operation
dialog box. Specify the following:

• Client port name. A valid AUTOSAR short-name identifier.

• Operation prototype. The names of the prototype and its arguments
must be valid AUTOSAR short-name identifiers, for example,
rtwdemo_autosar_server_operation(IN double upper, IN double
input, IN double lower, OUT double output).

• Interface path. The path reference of the client-server interface.
You must use a valid AUTOSAR short-name path, for example,
/AUTOSAR/Interface.

• Server type. From the drop-down list, select either Application
software or Basic software.

• Show error status. If you want the client port to receive the error
status of client-server communication, select this check box.

• Sample time. Set this parameter to -1 to inherit the sample time.

3 Click OK. Your Invoke AUTOSAR Server Operation block is updated.

17-66

Prepare a Model for AUTOSAR Code Generation

4 Connect the updated Invoke AUTOSAR Server Operation block to your
model.

5 Select Code > C/C++ Code > Build Model. AUTOSAR-compliant code
and XML files for the client port are generated.

Create Configurable Subsystems from a Client-Server Interface
You can generate a Simulink library of configurable subsystems by
applying the createOperationAsConfigurableSubsystems method to the
arxml.importer object with the client-server interface. For example:

% Create an AUTOSAR importer object

obj = arxml.importer('rtwdemo_autosar_csinterface.arxml');

% Create the client-server operation configurable subsystem library

obj.createOperationAsConfigurableSubsystems('/PortInterface/csinterface', ...

'CreateSimulinkObject', false);

yield the following PortInterface_csinterface library.

17-67

17 Code Generation for AUTOSAR Software Components

Simulate and Generate Code for Client-Server Communication
Use the Template block from the client-server subsystem library to construct
a model that can be run in either code-generation or simulation mode.

1 Drag the Template block from the subsystem library into your model
window and connect it to other blocks.

2 Place the Mode Switch for Invoke AUTOSAR Server Operation in your
model window.

17-68

Prepare a Model for AUTOSAR Code Generation

To simulate the model:

1 Double-click the Mode Switch for AUTOSAR Server Operation to change
the current mode from code generation to simulation.

2 Select Simulation > Run.

To generate code for the model:

1 Double-click the Mode Switch for AUTOSAR Server Operation to change
the current mode from simulation to code generation.

2 Select Code > C/C++ Code > Build Model.

Configure Multiple Runnables
You can use function-call subsystems within a wrapper subsystem to
represent multiple runnables in a single AUTOSAR Software Component,
and export each function-call subsystem as an AUTOSAR runnable.

If you group function-call subsystems within your wrapper subsystem into
virtual subsystems, for example, to improve the graphical layout of your
model, you can still export the function-call subsystems as AUTOSAR
runnables. For information about virtual subsystems, see “Create a
Subsystem” and “Virtual Blocks” in the Simulink documentation.

The software supports the following blocks within a wrapper subsystem:

• Data Store

• Display

• DocBlock

• From

• Goto

• Merge

• Model Info

• Scope

• Signal Specification

17-69

17 Code Generation for AUTOSAR Software Components

The software also supports the use of Simulink library blocks when creating
multiple runnables from subsystems. See “Simulink Block Library Support
for Multiple Runnables” on page 17-75.

Use the Configure AUTOSAR Interface dialog box to specify an AUTOSAR
interface for each function-call subsystem that you want to export as
a runnable. To open this dialog box, right-click the top-level wrapper
subsystem and select C/C++ Code > Configure Subsystem as AUTOSAR
Component. For information on how you configure multiple runnables, see:

• “Configure the AUTOSAR Interface” on page 17-43

• “Configure Inter-Runnable Variables” on page 17-70

• “Specify Execution Period” on page 17-72

• “Configure Multiple Runnables for DataReceivedEvents” on page 17-73

See also the AUTOSAR Code Generation for Multiple Runnable Entities
example.

Configure Inter-Runnable Variables
Inter-runnable variables communicate primitive type data between runnables
in a component. You define these inter-runnable variables by the signal lines
that connect subsystems. For an example, see “Inter-Runnable Variables” on
page 17-16.

By default, the software assigns the signal name to the exported
inter-runnable variable. If you want to edit the name, before generating code,
double-click the signal name and enter a new name. However, you can specify
a different name for the exported variable. In addition, you can specify the
data access mode of the inter-runnable variable.

To configure an inter-runnable variable:

1 In the Configure AUTOSAR Interface dialog box, select the
Inter-Runnable Variables tab. You see Simulink signals with (default)
inter-runnable names and data access modes.

17-70

Prepare a Model for AUTOSAR Code Generation

2 For each signal that you want to configure:

a In the Inter-Runnable cell, specify your AUTOSAR name for the
exported variable.

b In the Data Access Mode cell, from the drop-down list, select either
Explicit or Implicit (recommended).

3 Click OK.

When you select a signal, links appear under Source ports for signal.

Each link corresponds to an instance of the signal and is associated with a
source port in the Simulink model. Click a link to go to the corresponding
model signal. For example, clicking rtw.../ASWC/Runnable1/2 takes you
to the following.

17-71

17 Code Generation for AUTOSAR Software Components

Specify Execution Period
You may need to use blocks that depend on time for a software component
with multiple runnables, for example, the Discrete-Time Integrator block. In
this case, you can specify a timer for each AUTOSAR runnable. The timer
increments at each execution of the runnable.

Use the Configure AUTOSAR Interface dialog box to specify the execution
period:

1 Select the Runnables tab.

2 Under Runnable, select a runnable, for example, Runnable1.

3 In the Execution Period cell for the TimingEvent of the runnable, enter
the execution period.

4 Click OK.

Note The timer value in an AUTOSAR runnable is valid only if the runnable
runs at a periodic rate that corresponds to the execution period that you
specify. If the runnable runs at different rate, or does not begin executing at t
= 0, then the timer value will be incorrect.

The timer data type generated depends on the execution period and the
application life span. To specify the application life span:

17-72

Prepare a Model for AUTOSAR Code Generation

1 Open the Configuration Parameters dialog box and select the
Optimization pane.

2 In the Application lifespan (days) field, enter the required value.

Configure Multiple Runnables for DataReceivedEvents
The AUTOSAR Runtime Environment uses the event type DataReceivedEvent
to trigger runnables only when the value of a received data element is updated.

The software supports two data access modes that enable DataReceivedEvents
to act as triggers, ExplicitReceive and QueuedExplicitReceive. The latter,
in principle, allows the queuing of events. However, by default, the software
restricts the queue length to one event only. If you want a different queue
length, you must edit the generated XML file.

To create runnable triggers with DataReceivedEvents:

1 Under Configure AUTOSAR Interface, select the Input/Output tab.

2 If you want an input data signal to be a trigger, for example, RPort_DE1,
from the corresponding Data Access Mode drop-down list, select either
ExplicitReceive or QueuedExplicitReceive.

3 Select the Runnables tab. Under Runnable, select the runnable that you
want to configure, for example, Runnable1.

17-73

17 Code Generation for AUTOSAR Software Components

4 Click Add Event to create a new trigger event. By default, from the Event
Type drop-down list, the software selects DataReceivedEvent .

5 In the Event Name column, specify an event name.

6 In the Trigger Port column, from the drop-down list, select the Simulink
port, for example, RPort_DE1.

7 To create an additional trigger event, repeat steps 4 – 6. You can remove a
trigger event by selecting the event row and clicking Delete Event.

8 To verify that you have configured the trigger events, click Validate.

17-74

Prepare a Model for AUTOSAR Code Generation

Note If a runnable contains blocks that use absolute time, for example, a
discrete-time integrator, you should:

• Use a timing event to trigger the runnable

• Specify the execution period of the timing event to be the same as the
sample time of the function-call trigger.

Simulink Block Library Support for Multiple Runnables
The software supports the use of Simulink library blocks when creating
multiple runnables from subsystems. This support allows you to use:

17-75

17 Code Generation for AUTOSAR Software Components

• A wrapper subsystem (containing function-call subsystems) that is a link
to a library block

• Function-call subsystems (within the wrapper subsystem) that are links
to library blocks

Use the Configure AUTOSAR Interface dialog box to configure the linked
subsystem. When you save the configured subsystem, the software saves the
AUTOSAR configuration in the model file of the subsystem. The software does
not store the AUTOSAR configuration of the subsystem as a parametrized
link — see “Modify Linked Blocks”.

As an example, consider the example model
rtwdemo_autosar_multirunnables, where the wrapper subsystem ASWC is
replaced by MRB_instance, a link to a block from my_autosar_lib.

You can go to the block library by selecting MRB_instance and typing Ctrl+L.

17-76

Prepare a Model for AUTOSAR Code Generation

Configure Calibration Parameters
You can specify the type of calibration parameter that you export by
configuring properties of the corresponding block parameter in the base
workspace.

For example, to configure an internal calibration parameter for your
AUTOSAR model:

1 Create an AUTOSAR.Parameter object.

a Open the Model Explorer (Ctrl+H).

b In the Model Hierarchy view, under Simulink Root, select Base
Workspace.

c Select Add > Add Custom. The Model Explorer – Select Object dialog
box opens.

17-77

17 Code Generation for AUTOSAR Software Components

d Specify a value in the Object Name(s) field, for example, myPrm.

e From the Object class drop-down list, select AUTOSAR.Parameter.

f Click OK. A new object myPrm appears in the base workspace.

2 In the Contents pane, select the object, for example, myPrm.

3 Using the Dialog pane, configure the following properties of this data
object:

• Value— Specify a value for the calibration parameter. For an internal
calibration parameter, this value represents the initial value.

• Data type. For information about a creating data type, for example, a
bus object data type, see “Specify Data Types Using Data Type Assistant”
in the Simulink documentation.

• Storage class — To specify an internal calibration parameter, from
the drop-down list, select InternalCalPrm. You must then specify Per
instance behavior. Select one of the following:

– Parameter shared by all instances of the Software
Component

– Each instance of the Software Component has its own copy
of the parameter

For information about the Dialog pane, see “Model Explorer: Property
Dialog Pane” in the Simulink documentation.

4 In the Block Parameters dialog box, assign the data object to your model,
for example:

Before you generate code, you must:

• Open the Configuration Parameters dialog box and select
Optimization > Signals and Parameters > Inline parameters.

• Clear Code Generation > Ignore custom storage classes.

17-78

Prepare a Model for AUTOSAR Code Generation

Specifying these parameters allows the software to export the calibration
parameters. See “Generate Code with Custom Storage Classes” on page 10-53.

For calibration component parameters, after you export your AUTOSAR
components, you must include your calibration interface definition XML file
to import the parameters into an authoring tool.

Note The software does not support the use of AUTOSAR calibration
parameters within Model blocks.

Use Data Store Memory Blocks to Specify
Per-Instance Memory
You can model per-instance memory through the use of Data Store Memory
blocks together with an AUTOSAR.Signal data object. For a detailed example,
see rtwdemo_autosar_PIM_script. The following is an outline of the required
steps:

1 In the base workspace, create an AUTOSAR.Signal object.

2 Set the storage class of this object to PerInstanceMemory.

3 If required, set needsNVRAMAccess property to true.

4 Create a Data Store Memory block that references the AUTOSAR.Signal
object. See Data Store Memory in the Simulink Reference documentation.

Note The software does not support per-instance memory modeling within
a submodel.

When you build your model, the XML files that are generated define an
exclusive area for each Data Store Memory block that references per-instance
memory. Every runnable that accesses per-instance memory runs inside
the corresponding exclusive area. If multiple AUTOSAR runnables have
access to the same Data Store Memory block, the exported AUTOSAR
specification enforces data consistency by using an AUTOSAR exclusive area.

17-79

17 Code Generation for AUTOSAR Software Components

With this specification, the runnables have mutually exclusive access to the
per-instance memory global data, which prevents data corruption.

If you set needsNVRAMAccess to true, then a SERVICE-NEEDS entry (schema
version 3.0) or NVRAM-MAPPINGS entry (schema version 2.1) is declared in
XML files to indicate that the per-instance memory is a RAM mirror block
and must be serviced by the NvM manager module.

Create an AUTOSAR.Signal Object
To create an AUTOSAR.Signal object in the base workspace:

1 Open the Model Explorer (Ctrl+H).

2 In the Model Heirarchy view, under Simulink Root, select Base
Workspace.

3 Select Add > Add Custom. The Model Explorer – Select Object dialog
box opens.

4 Specify a value in the Object Name(s) field, for example, nvmImplicitRW.

5 From the Object class drop-down list, select AUTOSAR.Signal.

6 Click OK. A new object nvmImplicitRW appears in the base workspace.

Modify and Validate an Existing AUTOSAR Interface
You can validate your AUTOSAR interface using the Configure AUTOSAR
Interface dialog box. See “Configure the AUTOSAR Interface” on page 17-43.
The following steps show how you can modify and validate your AUTOSAR
interface programmatically:

1 Get the handle to an existing model-specific RTW.AutosarInterface object
that is attached to your loaded Simulink model. Enter:

obj = RTW.getFunctionSpecification(modelName)

modelName is a string specifying the name of a loaded Simulink model,
and obj returns a handle to an RTW.AutosarInterface object attached to
the specified model.

17-80

Prepare a Model for AUTOSAR Code Generation

Test the AUTOSAR interface object. Enter:

isa(obj,'RTW.AutosarInterface')

This test must return 1. If the model does not have an AUTOSAR interface
object, the function returns [].

2 To view and change items, use the AUTOSAR get and set functions listed
in RTW.AutosarInterface.

3 Validate the function prototype using
RTW.AutosarInterface.runValidation.

4 If validation succeeds, save your model and then generate code.

17-81

17 Code Generation for AUTOSAR Software Components

Generate AUTOSAR Code and Description Files

In this section...

“Select an AUTOSAR Schema” on page 17-82

“Specify Maximum SHORT-NAME Length” on page 17-83

“Configure AUTOSAR Compiler Abstraction Macros” on page 17-83

“Root-Level Matrix I/O” on page 17-85

“Export AUTOSAR Software Component” on page 17-85

Select an AUTOSAR Schema
The default AUTOSAR schema version is 3.1. If you need to change the
schema version, you must do so before exporting your AUTOSAR Software
Component. Embedded Coder supports the following AUTOSAR schema
versions:

• 4.0 (4.0.2)

• 3.2 (3.2.1)

• 3.1 (3.1.4)

• 3.0 (3.0.2)

• 2.1 (XSD rev 0017)

To select a schema version:

1 Open the Configuration Parameters dialog box. In models that use the
autosar.tlc system target file, AUTOSAR Code Generation Options
appears in the tree.

2 Click AUTOSAR Code Generation Options to open the AUTOSAR
Code Generation Options pane.

3 From the Generate XML file for schema version drop-down list, select
the schema version that you require.

17-82

Generate AUTOSAR Code and Description Files

Specify Maximum SHORT-NAME Length
The AUTOSAR standard specifies that SHORT-NAME XML elements must not
be greater than 32 characters in length. However, your authoring tool may
support the use of longer elements, for example, to name ports and interfaces.
The software allows you to specify the maximum length of your SHORT-NAME
elements.

Before you build your model, in the Code Generation > AUTOSAR Code
Generation Options pane of the Configuration Parameters dialog box, in
theMaximum SHORT-NAME length field, specify the maximum length of
your SHORT-NAME elements. You may specify a maximum length of up to 128
characters. The default is 32 characters.

Configure AUTOSAR Compiler Abstraction Macros
Compilers for 16-bit platforms (for example, Cosmic and Metrowerks for S12X
or Tasking for ST10) use special keywords to deal with the limited 16-bit
addressing range. The location of data and code beyond the 64 k border is
selected explicitly by special keywords. However, if such keywords are used
directly within the source code, then software must be ported separately for
each microcontroller family, that is, the software is not platform-independent.

AUTOSAR specifies C macros to abstract compiler directives (near/far
memory calls) in a platform-independent manner. These compiler directives,
derived from the 16-bit platforms, enable better code efficiencies for 16-bit
micro-controllers without separate porting of source code for each compiler.
This approach allows your system integrator, rather than your software
component implementer, to choose the location of data and code for each
software component.

For more information on AUTOSAR compiler abstraction, see
www.autosar.org.

Configure AUTOSAR Compiler Macro Generation
Before you build your model, in the Code Generation > AUTOSAR Code
Generation Options pane of the Configuration Parameters dialog box, select
Use AUTOSAR compiler abstraction macros.

17-83

http://www.autosar.org

17 Code Generation for AUTOSAR Software Components

When you build the model, the software applies compiler abstraction macros
to global data and function definitions in the generated code.

For data, the macros are in the following form:

• CONST(consttype, memclass) varname;

• VAR(type, memclass) varname;

where

• consttype and type are data types

• memclass is a macro string SWC_VAR (SWC is the software component
identifier)

• varname is the variable identifier

For functions (model and subsystem), the macros are in the following form:

• FUNC(type, memclass) funcname(void)

where

• type is the data type of the return argument

• memclass is a macro string. This string can be either SWC_CODE for
runnables (external functions), or SWC_CODE_LOCAL for internal functions
(SWC is the software component identifier).

Example

If you do not select the Use AUTOSAR compiler abstraction macros
option, the software generates the following code:

/* Block signals (auto storage) */
BlockIO rtB;

/* Block states (auto storage) */
D_Work rtDWork;

/* Model step function */

17-84

Generate AUTOSAR Code and Description Files

void Runnable_Step(void)

However, if you select the Use AUTOSAR compiler abstraction macros
check box, the software generates macros in the code:

/* Block signals (auto storage) */
VAR(BlockIO, SWC1_VAR) rtB;

/* Block states (auto storage) */
VAR(D_Work, SWC1_VAR) rtDWork;

/* Model step function */
FUNC(void, SWC1_CODE) Runnable_Step(void)

Root-Level Matrix I/O
The software supports matrix I/O at the root-level by generating code that
implements matrices as one-dimensional arrays. However, this behavior
is not the default. Before you build your model, on the AUTOSAR Code
Generation Options pane of the Configuration Parameters dialog box, select
Support root-level matrix I/O using one-dimensional arrays.

Export AUTOSAR Software Component
After configuring your AUTOSAR export options, generate code to export
your AUTOSAR Software Component.

To generate code and XML files:

• For a single runnable from a top model, build the model (Ctrl+B).

• For multiple runnables from subsystems:

1 Right-click the top-level subsystem.

2 Select C/C++ Code > Export Functions. The Build Code for
Subsystem dialog box opens.

3 Click Build.

This command builds code for an AUTOSAR runnable for each
subsystem. The build also creates an additional runnable to aggregate
the initialization functions for each of the function-call subsystems.

17-85

17 Code Generation for AUTOSAR Software Components

The software component C code and the following XML files are exported
to the build folder. The following table shows which XML files are
generated based on the value of Configure AUTOSAR Interface > XML
Options > Exported XML file packaging.

Exported XML File
Packaging Value

File Name Description

modelname _behavior.arxml Specifies the software component
internal behavior

modelname
_implementation.arxml

Specifies the software component
implementation

modelname _interface.arxml Specifies the software component
interfaces, including extra
interfaces

modelname _component.arxml Specifies the software component
type, including additional ports
added to the Simulink model

Modular

modelname _datatype.arxml Specifies the software component
data types, including any modified
or additional data types

Single file modelname.arxml Contains all specifications

Note In addition to the AUTOSAR software component C code, Embedded
Coder creates the following header files in the stub subfolder of the build
folder:

• Rte_Type.h

• Rte_SWC.h, where SWC is the name of the software component

• Compiler.h

These files contain dummy implementations of AUTOSAR functions, which
the software uses for SIL and PIL simulations. You must not use these
files outside Simulink. Your AUTOSAR RTE generator should produce the
equivalent files.

17-86

Generate AUTOSAR Code and Description Files

You can merge the software component information back into an AUTOSAR
authoring tool. This software component information is partitioned into
separate files to facilitate merging. The partitioning attempts to minimize the
number of merges that you must do. You do not need to merge the data type
file into the authoring tool because data types are usually defined early in the
design process. You must, however, merge the internal behavior file because
this information is part of the model implementation.

For examples of how to generate AUTOSAR-compliant code and export
AUTOSAR Software Component description XML files from a Simulink
model, see the following examples.

• AUTOSAR Code Generation

• AUTOSAR Code Generation for Multiple Runnable Entities

17-87

17 Code Generation for AUTOSAR Software Components

Configure AUTOSAR Options Programmatically
To control AUTOSAR options programmatically, use the AUTOSAR functions
listed in the following class reference pages:

• arxml.importer

• RTW.AutosarInterface

17-88

Verify AUTOSAR Code with SIL and PIL

Verify AUTOSAR Code with SIL and PIL

In this section...

“Overview” on page 17-89

“Use the SIL and PIL Simulation Modes” on page 17-89

“Use a SIL or PIL Block for AUTOSAR Verification” on page 17-90

Overview
You can carry out model-based verification of AUTOSAR software components
using software-in-the-loop (SIL) and processor-in-the-loop (PIL) simulations.
Use SIL for verification of generated source code on your host computer, and
PIL for verification of object code on your production target.

Use the SIL and PIL Simulation Modes
You can run a top model or Model block that is configured for the AUTOSAR
target (autosar.tlc) using the Software-in-the-Loop (SIL) and
Processor-in-the-Loop (PIL) simulation modes.

For more information, see “Top-Model SIL or PIL Simulation” on page 31-15
and “Model Block SIL or PIL Simulation” on page 31-17.

AUTOSAR Top Model SIL and PIL Support
For a top model running in SIL or PIL simulation mode, the software does
not support client-server operations.

Logging Invariant Output Signals. Through signal logging, you can
configure your top model to log invariant output signals. However, the
software will log these invariant signals as periodically sampled data.

AUTOSAR Model Block SIL and PIL Support
The software supports testing of AUTOSAR components that are modeled
as model reference components. These model reference components are
implemented as standard model reference Simulink Coder targets and do not
contain special AUTOSAR behavior.

17-89

17 Code Generation for AUTOSAR Software Components

Use a SIL or PIL Block for AUTOSAR Verification
To verify source code, you create a SIL block, which wraps the generated
code in an S-function. The AUTOSAR target automatically configures the
generated S-function to route simulation data using AUTOSAR run-time
environment (RTE) API calls.

To verify the behavior of production-intent object code, you create a PIL
block. You must provide an implementation of the target connectivity API
for this block.

To carry out a verification using a SIL or PIL block:

1 In the Configuration Parameters dialog box, select the Code Generation
pane and clear Generate code only. If you select Generate code only,
the software does not create a SIL or PIL block.

2 Select the Code Generation > Verification pane.

3 From the Create block drop-down list, select either SIL or PIL. Click OK.

4 To create your SIL or PIL block, generate code in the usual way. See
“Export AUTOSAR Software Component” on page 17-85 and “Configure
Multiple Runnables” on page 17-69.

5 Once the SIL or PIL block is built, replace the existing component in your
model with the new block.

6 Simulate the model and check the output to verify that the code produces
the same data as the original subsystem.

Note The software does not propagate non-zero outport initialization inside
an AUTOSAR model to the outports (via the RTE) until the step function
executes. When you run the generated code in a SIL simulation, you do not
see the outport initialization until the SIL wrapper executes the step function
for the first time.

For more information about configuring and running simulations with SIL or
PIL blocks, see “Use a SIL or PIL Block” on page 31-19.

17-90

Verify AUTOSAR Code with SIL and PIL

AUTOSAR SIL and PIL Block Support
For a SIL or PIL block, the software does not support client-server operations.

Runnable with Stateflow Chart Using Absolute Time. Consider a
runnable (function-call subsystem) in a model, which contains a Stateflow
chart using absolute-time temporal logic. Replace the runnable with a SIL
block and run a simulation with the model. If the SIL block is executed
conditionally in the model, then the results of the SIL simulation differ from
the results of the Normal mode simulation.

Runnables in Feedback Loops. If your model has function-call subsystems
and you export a runnable that has context-dependent inputs (for example,
feedback signals), then the results of a SIL/PIL simulation with the generated
code may not match the results of the Normal mode simulation of your model.
See “Exported Functions in Feedback Loops” on page 31-81.

17-91

17 Code Generation for AUTOSAR Software Components

Limitations and Tips

In this section...

“Cannot Import Internal Behavior” on page 17-92

“Cannot Copy Subsystem Blocks Without Losing Interface Information” on
page 17-93

“Source of Initial Output Value for Function-Call Subsystem Outport” on
page 17-93

“Error If No Default Configuration” on page 17-93

“The Generate Code Only Check Box” on page 17-93

“Specify Sample Time Independent Server Operation Model” on page 17-93

“Invoke AUTOSAR Server Operation Block in Referenced Model” on page
17-94

“Cannot Save Importer Objects in MAT-Files” on page 17-94

“Use the Merge Block for Inter-Runnable Variables” on page 17-94

“Use Goto and From Blocks Within Wrapper Subsystems” on page 17-96

“Postfix in Generated File Names” on page 17-96

“AUTOSAR Compiler Abstraction Macros” on page 17-97

“Intrinsic Fixed-Point Types for Model Configured as Server” on page 17-98

“Server Operation Model with Tunable Parameters” on page 17-99

“Relative File Paths in Code Descriptors” on page 17-99

Cannot Import Internal Behavior
Internal behavior is not parsed. This means I/O information stored at the
runnable level (for example, implicit or explicit) is not imported, and internal
I/O settings default to implicit. You can subsequently configure these I/O
ports with the setIODataAccessMode method or in the Configure AUTOSAR
Interface dialog box.

17-92

Limitations and Tips

Cannot Copy Subsystem Blocks Without Losing
Interface Information
If you copy and paste a subsystem block to create a new block in either a
new model or the same model, the software does not copy the AUTOSAR
interface information stored with the original subsystem block to the new
subsystem block.

Source of Initial Output Value for Function-Call
Subsystem Outport
Before exporting a runnable from a function-call subsystem with an outport,
you must set the Outport block parameter SourceOfInitialOutputValue
to Dialog. Otherwise, when you try to export the runnable, the software
generates an error indicating this requirement. See the Outport reference
page.

Error If No Default Configuration
If you do not configure your model using the Get Default Configuration
button or the RTW.AutosarInterface.getDefaultConf method, when you
build the model the software produces an error message indicating this.

The Generate Code Only Check Box
If you do not select the Generate code only check box, the software produces
an error message when you build the model. The message states that you can
build an executable with the AUTOSAR target only if you:

• Configure the model to create a software-in-the-loop (SIL) or
processor-in-the-loop (PIL) block

• Run the model in SIL or PIL simulation mode

• Provide a custom template makefile

Specify Sample Time Independent Server Operation
Model
For a server operation model, MathWorks recommends that you set the
Periodic sample time constraint on the Solver configuration parameters

17-93

17 Code Generation for AUTOSAR Software Components

dialog pane to Ensure sample time independent. With this parameter, you
can specify the sample time of the client model that invokes the server model
(through an Invoke AUTOSAR Server Operation block) independently of the
server model. If you do not specify this parameter, you need to check that the
client block calls the server block at the same sample time. Otherwise, the
data returned from the server model may be invalid.

Invoke AUTOSAR Server Operation Block in
Referenced Model
The software does not support the use of the Invoke AUTOSAR Server
Operation block in a referenced model.

Cannot Save Importer Objects in MAT-Files
If you try to save an arxml.importer object in a MAT-file, you lose the
information. If you reload the MAT-file, then the object is null (handle = –1),
because of the Java® objects that compose the arxml.importer object.

Use the Merge Block for Inter-Runnable Variables
You can use the Merge block to merge inter-runnable variables. However,
you must do the following:

• Connect the output signal of the Merge block to either one root outport
or one or more subsystems.

• If the output signal of the Merge block is connected to the inputs of one or
more subsystems, assign the same signal name to the Merge block’s output
and inputs.

In addition, the signal from the function-call subsystem outport that enters
a Merge block must not be conditionally computed. Consider the following
example.

17-94

Limitations and Tips

The output from the subsystem F_condition is the conditional output from
Enabled Subsystem. When you try to validate or build the model, the
software generates an error.

If you use an S-Function block instead of the Enabled Subsystem block, the
software generates a warning when you validate or build the model.

17-95

17 Code Generation for AUTOSAR Software Components

Use Goto and From Blocks Within Wrapper
Subsystems
If your wrapper subsystem contains Goto and From blocks, you can generate
code and XML files for multiple runnables. However, you must:

• Set the scope of the Goto block tag to local.

• Label, unambiguously, signals entering and leaving Goto and From blocks
that connect subsystems. If the signal into the Goto block and the signal
out of the corresponding From block connect two subsystems (runnables),
then these signal segments represent an inter-runnable variable. You must
provide a label for at least one signal segment, for example, the signal into
the Goto block. In addition, if there are labels for other segments of the
same signal, you must check that these labels are the same.

Postfix in Generated File Names
When you use the Export Functions feature, the software creates a hidden
intermediate model and generates code from the intermediate model. The
software generates files with names that contain a postfix if:

• Your top model or a loaded model and the wrapper subsystem have
identical names.

• Libraries used by your model have the same name as the wrapper
subsystem. These libraries are also used by the intermediate model,
and the software recognizes this when generating code for the wrapper
subsystem.

For example, if you rename the model rtwdemo_autosar_multirunnables
ASWC and build the wrapper subsystem ASWC, the software creates the
following files:

17-96

Limitations and Tips

The names of files generated from the wrapper subsystem ASWC have the
postfix 0.

To avoid creating file names with postfixes, check that:

• The name of the wrapper subsystem is different from your top model or
another loaded model.

• Libraries used by your model do not have the same name as the wrapper
subsystem.

To identify loaded models and libraries that have the same name as the
wrapper subsystem, you can use the command find_system. For information
about:

• Removing models and libraries from memory, see the close_system
reference page.

• Closing system windows, see the bdclose reference page.

AUTOSAR Compiler Abstraction Macros
The software does not generate AUTOSAR compiler abstraction macros for
data or functions arising from the following:

• Model blocks

• Stateflow

17-97

17 Code Generation for AUTOSAR Software Components

• MATLAB Coder

• Shared utility functions

• Custom storage classes

• Local or temporary variables

Intrinsic Fixed-Point Types for Model Configured as
Server
The software does not support operation prototype arguments with intrinsic
fixed-point data types. For example, ufix5 shown in the following figure.

The software produces an error when you build the model.

To work around this limitation, before building the model, create a
Simulink.NumericType base workspace object with the required property
values. For example, to create a Simulink.NumericType object ufix5, enter
the following in the Command Window:

>> ufix5 = Simulink.NumericType;

>> ufix5.DataTypeMode = 'Fixed-point: binary point scaling';

>> ufix5.Signedness = 'Signed'

>> ufix5.WordLength = 16

>> ufix5.FractionLength = 0

>> ufix5.IsAlias = 1;

>> ufix.HeaderFile = 'Rte_Type.h'

17-98

Limitations and Tips

For more information, see Simulink.NumericType in the Simulink
documentation.

Server Operation Model with Tunable Parameters
The software does not provide AUTOSAR support for a model that is
configured as a server operation and has tunable parameters with storage
class set to SimulinkGlobal (Auto).

Relative File Paths in Code Descriptors
When you build a Simulink model for an AUTOSAR target, the software
generates a CODE-DESCRIPTORS element within the SWC_IMPLEMENTATION
element. The CODE-DESCRIPTORS element contains XFILE elements that
provide descriptions of the generated code.

For example, if you build the model rtwdemo_autosar_counter, the
generated file rtwdemo_autosar_counter_implementation.arxml has the
following XFILE element:

...

<XFILE>

<SHORT-NAME>rtwdemo_autosar_counter_c</SHORT-NAME>

<CATEGORY>GeneratedFile</CATEGORY>

<URL>rtwdemo_autosar_counter_autosar_rtw\rtwdemo_autosar_counter.c</URL>

<TOOL>Embedded Coder</TOOL>

<TOOL-VERSION>5.6</TOOL-VERSION>

</XFILE>

...

However, the URL element does not specify an absolute path. The path is
relative to the build folder. Therefore, before you use the AUTOSAR XML in
a Run-Time Environment to generate code, you must place the XML in the
parent folder.

17-99

17 Code Generation for AUTOSAR Software Components

Sample Workflows and Further Reading

AUTOSAR Examples
For detailed explanations of AUTOSAR workflows with Embedded Coder
software, see the examples in the following table.

Example How to ...

AUTOSAR Code Generation:
rtwdemo_autosar_legacy_script

Generate AUTOSAR-compliant code and
export AUTOSAR Software Component
description XML files from a Simulink
model.

Using an AUTOSAR Client-Server Interface
rtwdemo_autosar_clientserver_script

Configure and generate
AUTOSAR-compliant code and export
AUTOSAR-compliant XML files for a
Simulink model with an AUTOSAR
client-server interface.

AUTOSAR Code Generation for Multiple Runnable
Entities:
rtwdemo_autosar_multirunnables_script

Configure and generate
AUTOSAR-compliant code and export
AUTOSAR Software Component
description XML files for a Simulink model
with multiple runnables.

Import and Export an AUTOSAR Software
Component:
rtwdemo_autosar_roundtrip_script

Use an AUTOSAR authoring tool with
Simulink to develop AUTOSAR Software
Components. Learn how to import software
component interfaces into Simulink,
modify and export them, and merge the
completed software component back into
an AUTOSAR authoring tool.

Using Data Stores to Access Per-Instance Memory:
rtwdemo_autosar_PIM_script

Publish an AUTOSAR Software Component
with per-instance memory.

Further Reading
For more information, see the AUTOSAR Web site:
http://www.autosar.org/.

17-100

http://www.autosar.org/

18

Report Generation

• “HTML Code Generation Report Extensions” on page 18-2

• “Traceability in Code Generation Report” on page 18-4

• “Model Web View in Code Generation Report” on page 18-6

• “Analyze the Generated Code Interface” on page 18-11

• “Static Code Metrics” on page 18-25

• “Generate a Static Code Metrics Report for a Simulink Model” on page 18-28

• “Generate a Static Code Metrics Report for MATLAB Code” on page 18-32

• “Analyze Code Replacements in the Generated Code” on page 18-35

• “Generate HTML Report After Build Process” on page 18-37

18 Report Generation

HTML Code Generation Report Extensions
The Embedded Coder code generation report is an enhanced version of the
HTML code generation report generated by the Simulink Coder build process.
With the Embedded Coder software, you can configure your model to include
the following sections in the report:

• The Code Interface Report section provides information about the
generated code interface, including model entry point functions and
input/output data. For more information, see “Analyze the Generated Code
Interface” on page 18-11.

• The Traceability Report section allows you to account for Eliminated
/ Virtual Blocks that are untraceable versus the listed Traceable
Simulink Blocks / Stateflow Objects / MATLAB Scripts, providing
a complete mapping between model elements and code. For more
information, see “Customize Traceability Reports” on page 28-10.

• The Static Code Metrics Report section provides statistics of the
generated code. Metrics are estimated from static analysis of the generated
code. For more information, see “Static Code Metrics” on page 18-25.

• The Code Replacements Report section allows you to account for code
replacement library (CRL) functions that were used during code generation,
providing a mapping between each replacement instance and the Simulink
block that triggered the replacement. For more information, see “Analyze
Code Replacements in the Generated Code” on page 18-35.

• The model Web view displays an interactive model diagram within the code
generation report and supports traceability between the source code and
the model. Therefore, you can share your model and generated code outside
of the MATLAB environment. For more information, see “Generate HTML
Code Generation Report with Model Web View” on page 18-7.

In the Generated Files section on the Contents pane, you can click the
names of source code files generated from your model to view their contents in
a MATLAB Web browser window. In the displayed source code:

• If you enable code-to-model traceability, hyperlinks within the displayed
source code navigate to the blocks or subsystems from which the code was
generated. For more information, see “Traceability in Code Generation

18-2

HTML Code Generation Report Extensions

Report” on page 18-4 and “Trace Code to Model Objects Using Hyperlinks”
on page 28-4.

• If you enable model-to-code traceability, you can navigate to the generated
code for a block in the model. For more information, see “Trace Model
Objects to Generated Code” on page 28-6.

• If you set the Code coverage tool parameter on the Code
Generation > Verification pane, you can view the code coverage data
and annotations. For more information, see “Code Coverage in SIL and PIL
Simulations” on page 32-2.

18-3

18 Report Generation

Traceability in Code Generation Report
This example shows how to create an HTML code generation report which
includes links to trace between the source code and the Simulink model
window.

1 With your ERT-based model open, open the Configuration Parameters dialog
box or Model Explorer and navigate to the Code Generation > Report pane.

2 Select Create code generation report if it is not already selected. By
default, Open report automatically and Code-to-model are selected.
Model-to-code is not selected.

3 Select the Model-to-code parameter.

4 If your model contains referenced models and you want to enable traceability
for the referenced model’s code generation report, repeat steps 2–3 for each
referenced model.

5 Generate code for your model by clicking Build on the Code Generation
pane of the Configuration Parameters dialog box. The build process opens the
code generation report in a MATLAB Web browser.

6 In the left navigation pane, select a source code file. In the source code in the
right pane, there are hyperlinks to blocks in the model.

7 Click a hyperlink in the code. The model diagram window displays and
highlights the corresponding block in the model.

8 To highlight the generated code for a block in your Simulink model, right-click
the block and select C/C++ Code > Navigate to C/C++ Code. This selection
highlights the generated code for the block in the HTML code generation
report.

9 If you have a referenced model in your model, in the left navigation pane,
below Reference Models, click the link to a referenced model. The code
generation report for the referenced model is now displayed in the window.

10 In the left navigation pane, click the Back button to go back to the previous
code generation report.

18-4

Traceability in Code Generation Report

Note For large models (containing over 1000 blocks), you might find that
HTML report generation takes longer than you want. In this case, consider
clearing the Code-to-model and Model-to-code check boxes.

For more information about navigating between the generated code and the
model diagram, see:

• “Trace Model Objects to Generated Code” on page 28-6

• “Trace Code to Model Objects Using Hyperlinks” on page 28-4

• “Traceability Limitations” on page 28-13

18-5

18 Report Generation

Model Web View in Code Generation Report

In this section...

“About Model Web View” on page 18-6

“Generate HTML Code Generation Report with Model Web View” on page
18-7

“Model Web View Limitations” on page 18-9

About Model Web View
To review and analyze the generated code, it is helpful to navigate between the
code and model. You can include a Web view of the model within the HTML
code generation report. You can then share your model and generated code
outside of the MATLAB environment. When you generate the report, the Web
view includes the block diagram attributes displayed in the Simulink Editor,
such as, block sorted execution order, signal properties, and port data types.

A Simulink Report Generator license is required to include a Web view of the
model in the code generation report.

Browser Requirements for Web View
Web view requires a Web browser that supports Scalable Vector Graphics
(SVG). Web view uses SVG to render and navigate models.

You can use the following Web browsers:

• Mozilla Firefox Version 1.5 or later, which has native support for SVG. To
download the Firefox browser, go to www.mozilla.com/.

• The Microsoft Internet Explorer® Web browser with the Adobe® SVG
Viewer plug-in. To download the Adobe SVG Viewer plug-in, go to
www.adobe.com/svg/.

• Apple Safari Web browser

18-6

http://www.mozilla.com/
http://www.adobe.com/svg/

Model Web View in Code Generation Report

Generate HTML Code Generation Report with Model
Web View
This example shows how to create an HTML code generation report which
includes a Web view of the model diagram.

1 Open the rtwdemo_mdlreftop model.

2 Open the Configuration Parameters dialog box or Model Explorer and
navigate to the Code Generation pane.

3 Specify ert.tlc for the System target file parameter.

4 Open the Code Generation > Report pane.

5 Select the following parameters:

• Create code generation report

• Open report automatically

• Code-to-model

• Model-to-code

• Generate model Web view

Note These settings specify only the top model, not referenced models.

6 Open the Configuration Parameters for the referenced model,
rtwdemo_mdlrefbot and perform steps 3–5.

7 Save the models, rtwdemo_mdlreftop and rtwdemo_mdlrefbot.

8 From the top model diagram, press Ctrl+B. After building the model and
generating code, the code generation report for the top model opens in a
MATLAB Web browser.

9 In the left navigation pane, select a source code file. The corresponding source
code is displayed in the right pane and includes hyperlinks.

18-7

18 Report Generation

10 Click a link in the code. The model Web view displays and highlights the
corresponding block in the model.

11 To highlight the generated code for a referenced model block in your model,
click CounterB. The corresponding code is highlighted in the source code pane.

18-8

Model Web View in Code Generation Report

Note You cannot open the referenced model diagram in the Web view by
double-clicking the referenced model block in the top model.

12 To open the code generation report for a referenced model, in the
left navigation pane, below Referenced Models, click the link,
rtwdemo_mdlrefbot. The source files for the referenced model are displayed
along with the Web view of the referenced model.

13 To go back to the code generation report for the top model, at the top of
the left navigation pane, click the Back button until the top model’s report
is displayed.

For more information about exploring a model in a Web view, see “Navigate
Web Views” in the Simulink Report Generator documentation.

For more information about navigating between the generated code and the
model diagram, see :

• “Trace Model Objects to Generated Code” on page 28-6

• “Trace Code to Model Objects Using Hyperlinks” on page 28-4

Model Web View Limitations
The HTML code generation report includes the following limitations when
using the model Web view:

• Code is not generated for virtual blocks. In the model Web view of the code
generation report, when tracing between the model and the code, when you
click a virtual block, it is highlighted yellow.

• In the model Web view, you cannot open a referenced model diagram by
double-clicking the referenced model block in the top model. Instead, open
the code generation report for the referenced model by clicking a link under
Referenced Models in the left navigation pane.

• Stateflow truth tables, events, and links to library charts are not supported
in the model Web view.

• Searching in the code generation report does not find or highlight text in
the model Web view.

18-9

18 Report Generation

• If you navigate from the actual model diagram (not the model Web view
in the report), to the source code in the HTML code generation report, the
model Web view is disabled and not visible. To enable the model Web view,
open the report again, see “Open Code Generation Report”.

• For a subsystem build, the traceability hyperlinks of the root level inport
and outport blocks are disabled.

• “Traceability Limitations” on page 28-13 that apply to tracing between the
code and the actual model diagram.

18-10

Analyze the Generated Code Interface

Analyze the Generated Code Interface

In this section...

“Code Interface Report Overview” on page 18-11

“Generating a Code Interface Report” on page 18-12

“Navigating Code Interface Report Subsections” on page 18-15

“Interpreting the Entry Point Functions Subsection” on page 18-16

“Interpreting the Inports and Outports Subsections” on page 18-19

“Interpreting the Interface Parameters Subsection” on page 18-20

“Interpreting the Data Stores Subsection” on page 18-22

“Code Interface Report Limitations” on page 18-23

Code Interface Report Overview
When you select the Create code generation report option for an
ERT-based model, a Code Interface Report section is automatically
included in the generated HTML report. The Code Interface Report section
provides documentation of the generated code interface for consumers of the
generated code, including model entry point functions and interface data, for
consumers of the generated code. The information in the report can help
facilitate code review and code integration.

The code interface report includes the following subsections:

• Entry Point Functions — interface information about each model
entry point function, including model_initialize, model_step, and (if
applicable) model_terminate.

• Inports and Outports — interface information about each model inport
and outport.

• Interface Parameters— interface information about tunable parameters
that are associated with the model.

• Data Stores — interface information about global data stores and data
stores with non-auto storage that are associated with the model.

18-11

18 Report Generation

For limitations that apply to code interface reports, see “Code Interface Report
Limitations” on page 18-23.

For illustration purposes, this section uses the following models:

• rtwdemo_basicsc (with the ExportedGlobal Storage Class button
selected in the model window) for examples of report subsections

• rtwdemo_mrmtbb for examples of timing information

• rtwdemo_fcnprotoctrl for examples of function argument and return
value information

Generating a Code Interface Report
To generate a code interface report for your model:

1 Open your model, go to the Code Generation pane of the Configuration
Parameters dialog box, and select ert.tlc or an ERT-based System
target file, if one is not already selected.

2 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box and select the option Create code generation
report, if it is not already selected. The rtwdemo_basicsc,
rtwdemo_mrmtbb, and rtwdemo_fcnprotoctrl models used in this section
select multiple Report pane options by default. But selecting only Create
code generation report, generates a Code Interface Report section
in the HTML report.

Alternatively, you can programmatically select the option by issuing the
following MATLAB command:

set_param(bdroot, 'GenerateReport', 'on')

If the Report pane option Code-to-model is selected, the generated report
contains hyperlinks to the model. Leave this value selected unless you plan
to use the report outside the MATLAB environment.

3 Build the model. If you selected the Report pane option Open report
automatically, the code generation report opens automatically after the
build process is complete. (Otherwise, you can open it manually from
within the model build folder.)

18-12

Analyze the Generated Code Interface

4 To display the code interface report for your model, go to the Contents
pane of the HTML report and click the Code Interface Report link.
For example, here is the generated code interface report for the model
rtwdemo_basicsc (with the ExportedGlobal Storage Class button
selected in the model window).

18-13

18 Report Generation

18-14

Analyze the Generated Code Interface

For help navigating the content of the code interface report subsections, see
“Navigating Code Interface Report Subsections” on page 18-15. For help
interpreting the content of the code interface report subsections, see the
sections beginning with “Interpreting the Entry Point Functions Subsection”
on page 18-16.

Navigating Code Interface Report Subsections
To help you navigate code interface descriptions, the code interface report
provides collapse/expand tokens and hyperlinks, as follows:

• For a large subsection, the report provides [-] and [+] symbols that
allow you to collapse or expand that section. In the example in the
previous section, the symbols are provided for the Inports and Interface
Parameters sections.

• Several forms of hyperlink navigation are provided in the code interface
report. For example:

- The Table of Contents located at the top of the code interface report
provides links to each subsection.

- You can click each function name to go to its definition in model.c.

- You can click each function’s header file name to go to the header file
source listing.

- If you selected the Report pane option Code-to-model for your model,
to go to the corresponding location in the model display, you can click
hyperlinks for any of the following:

• Function argument

• Function return value

• Inport

• Outport

• Interface parameter (if the parameter source is a block)

• Data store (if the data store source is a Data Store Memory block)

18-15

18 Report Generation

For backward and forward navigation within the HTML code generation
report, use the Back and Forward buttons above the Contents section in
the upper-left corner of the report.

Interpreting the Entry Point Functions Subsection
The Entry Point Functions subsection of the code interface report
provides the following interface information about each model entry point
function, including model_initialize, model_step, and (if applicable)
model_terminate.

Field Description

Function: Lists the function name. You can click the function
name to go to its definition in model.c.

Prototype Displays the function prototype, including the function
return value, name, and arguments.

Description Provides a text description of the function’s purpose in
the application.

Timing Describes the timing characteristics of the function,
such as how many times the function is called, or if
it is called periodically, and at what time interval.
For a multirate timing example, see the following
rtwdemo_mrmtbb report excerpt.

Arguments If the function has arguments, displays the number,
name, data type, and Simulink description for
each argument. If you selected the Report pane
option Code-to-model for your model, you can click
the hyperlink in the description to go to the block
corresponding to the argument in the model display. For
argument examples, see the rtwdemo_fcnprotoctrl
report excerpt below.

18-16

Analyze the Generated Code Interface

Field Description

Return value If the function has a return value, this field displays
the return value data type and Simulink description. If
you selected the Report pane option Code-to-model
for your model, you can click the hyperlink in the
description to go to the block corresponding to the return
value in the model display. For a return value example,
see the following rtwdemo_fcnprotoctrl report excerpt.

Header file Lists the name of the header file for the function. You
can click the header file name to go to the header file
source listing.

For example, here is the Entry Point Functions subsection for the model
rtwdemo_basicsc.

To illustrate how timing information might be listed for a multirate model,
here are the Entry Point Functions and Inports subsections for the
model rtwdemo_mrmtbb. This multirate, discrete-time, multitasking model
contains Inport blocks 1 and 2, which specify 1-second and 2-second sample
times, respectively. The sample times are constrained to the specified times

18-17

18 Report Generation

by the Periodic sample time constraint option on the Solver pane of the
Configuration Parameters dialog box.

To illustrate how function arguments and return values are displayed in the
report, here is the Entry Point Functions description of the model step
function for the model rtwdemo_fcnprotoctrl.

18-18

Analyze the Generated Code Interface

Interpreting the Inports and Outports Subsections
The Inports and Outports subsections of the code interface report provide
the following interface information about each inport and outport in the model.

Field Description

Block Name Displays the Simulink block name of the inport or
outport. If you selected the Report pane option
Code-to-model for your model, you can click on each
inport or outport Block Name value to go to its location
in the model display.

Code Identifier Lists the identifier associated with the inport or outport
data in the generated code, as follows:

• If the data is defined in the generated code, the field
displays the identifier string.

• If the data is declared but not defined in the generated
code — for example, if the data is resolved with
an imported storage class — the field displays the
identifier string prefixed with the label ’Imported
data:’.

18-19

18 Report Generation

Field Description

• If the data is neither defined nor declared in the
generated code — for example, if the option Generate
reusable code is selected for the model — the field
displays the string ’Defined externally’.

Data Type Lists the data type of the inport or outport.

Dimension Lists the dimensions of the inport or outport (for
example, 1 or [4, 5]).

For example, here are the Inports and Outports subsections for the model
rtwdemo_basicsc.

Interpreting the Interface Parameters Subsection
The Interface Parameters subsection of the code interface report provides
the following interface information about tunable parameters that are
associated with the model.

18-20

Analyze the Generated Code Interface

Field Description

Parameter
Source

Lists the source of the parameter value, as follows:

• If the source of the parameter value is a block, the
field displays the block name, such as <Root>/Gain2
or <S1>/Lookup1. If you selected the Report pane
option Code-to-model for your model, you can
click the Parameter Source value to go to the
parameter’s location in the model display.

• If the source of the parameter value is a workspace
variable, the field displays the name of the workspace
variable prefixed with the label ’Workspace
variable:’; for example, Workspace variable: K2.

Code Identifier Lists the identifier associated with the tunable
parameter data in the generated code, as follows:

• If the data is defined in the generated code, the field
displays the identifier string.

• If the data is declared but not defined in the generated
code — for example, if the data is resolved with
an imported storage class — the field displays the
identifier string prefixed with the label ’Imported
data:’.

• If the data is neither defined nor declared in the
generated code — for example, if the option Generate
reusable code is selected for the model — the field
displays the string ’Defined externally’.

Data Type Lists the data type of the tunable parameter.

Dimension Lists the dimensions of the tunable parameter (for
example, 1 or [4, 5, 6]).

For example, here is the Interface Parameters subsection for the model
rtwdemo_basicsc (with the ExportedGlobal Storage Class button selected
in the model window).

18-21

18 Report Generation

Interpreting the Data Stores Subsection
The Data Stores subsection of the code interface report provides the following
interface information about global data stores and data stores with non-auto
storage that are associated with the model.

Field Description

Data Store
Source

Lists the source of the data store memory, as follows:

• If the data store is defined using a Data Store
Memory block, the field displays the block name,
such as <Root>/DS1. If you selected the Report pane
option Code-to-model for your model, you can click
on the Data Store Source value to go to the data
store’s location in the model display.

• If the data store is defined using a Simulink.Signal
object, the field displays the name of the
Simulink.Signal object prefixed with the label
’Global:’.

Code Identifier Lists the identifier associated with the data store data
in the generated code, as follows:

• If the data is defined in the generated code, the field
displays the identifier string.

18-22

Analyze the Generated Code Interface

Field Description

• If the data is declared but not defined in the generated
code — for example, if the data is resolved with
an imported storage class — the field displays the
identifier string prefixed with the label ’Imported
data:’.

• If the data is neither defined nor declared in the
generated code — for example, if the option Generate
reusable code is selected for the model — the field
displays the string ’Defined externally’.

Data Type Lists the data type of the data store.

Dimension Lists the dimensions of the data store (for example, 1
or [1, 2]).

For example, here is the Data Stores subsection for the model
rtwdemo_basicsc (with the ExportedGlobal Storage Class button selected
in the model window).

Code Interface Report Limitations
The following limitations apply to the code interface section of the HTML
code generation reports.

• The code interface report does not support the GRT interface with an
ERT target or the C++ (Encapsulated) language option. For these
configurations, the code interface report is not generated and does not
appear in the HTML code generation report Contents pane.

• The code interface report supports data resolved with most custom storage
classes (CSCs), except when the CSC properties are set in any of the
following ways:

18-23

18 Report Generation

- The CSC property Type is set to FlatStructure. For example, the
BitField and Struct CSCs in the Simulink package have Type set
to FlatStructure.

- The CSC property Type is set to Other. For example, the GetSet CSC in
the Simulink package has Type set to Other.

- The CSC property Data access is set to Pointer, indicating that
imported symbols are declared as pointer variables rather than simple
variables. This property is accessible only when the CSC property Data
scope is set to Imported or Instance-specific.

In these cases, the report displays empty Data Type and Dimension
fields.

• For outports, the code interface report cannot describe the associated
memory (data type and dimensions) if the memory is optimized. In these
cases, the report displays empty Data Type and Dimension fields.

• The code interface report does not support data type replacement using the
Code Generation > Data Type Replacement pane of the Configuration
Parameters dialog box. The data types listed in the report will link to
built-in data types rather than their specified replacement data types.

18-24

Static Code Metrics

Static Code Metrics

In this section...

“About Static Code Metrics” on page 18-25

“Static Code Metrics Analysis” on page 18-26

About Static Code Metrics
The code generator performs static analysis of the generated C code and
provides these metrics in the Static Code Metrics Report section of the
HTML Code Generation Report.

You can use the information in the report to:

• Find the number of files and lines of code in each file.

• Estimate the number of lines of code and stack usage per function.

• Compare the difference in terms of how many files, functions, variables,
and lines of code are generated every time you change the model or
MATLAB algorithm.

• Determine a target platform and allocation of RAM to the stack, based on
the size of global variables plus the estimated stack size.

• Determine possible performance slow points, such as the largest global
variables or the most costly call path in terms of stack usage.

• View the cyclomatic complexity of a function, which counts the number of
linearly independent paths through a function.

• View the function call tree. Determine the longest call path to estimate the
worst case execution timing.

• View how target functions, provided by the selected code replacement
library, are used in the generated code.

For examples, see

• “Generate a Static Code Metrics Report for a Simulink Model” on page 18-28

• “Generate a Static Code Metrics Report for MATLAB Code” on page 18-32

18-25

18 Report Generation

Static Code Metrics Analysis
Static analysis of the generated code is performed only on the source code
without executing the program. The results of the static code metrics
analysis are included in the Static Code Metrics section of the HTML Code
Generation Report. The static code metrics report does not support the C++
target language. The report is not available if you generate a MEX function
from MATLAB code.

Static analysis of the generated source code files:

• Uses the specified C data types. For Simulink models, you specify these
data types in the Hardware Implementation > Embedded hardware
pane of the Configuration Parameters dialog box. For code generation from
MATLAB code, you specify them in the Hardware tab of the MATLAB
Coder Project Settings dialog box or using a code generation configuration
object. Actual object code metrics might differ due to target-specific
compiler and platform settings.

• Includes custom code only if you specify it. For Simulink models, you
specify custom code on the Code Generation > Custom Code pane in
the model configuration. For code generation from MATLAB code, you
specify it on the Custom Code tab of the MATLAB Coder Project Settings
dialog box or using a code generation configuration object. An error report
is generated if the generated code includes platform-specific files not
contained in the standard C run-time library.

• For Simulink models, includes the generated code from referenced models.

• Uses 1-byte alignment for all members of a structure for estimating global
and local data structure sizes. The size of a structure is calculated by
summing the sizes of all of its fields. This estimation represents the
smallest possible size for a structure.

• Calculates the self stack size of a function as the size of local data within
a function, excluding input arguments. The accumulated stack size of a
function is the self stack size plus the maximum of the accumulated stack
sizes of its called functions. For example, if the accumulated stacks sizes
for the called functions are represented as accum_size1...accum_sizeN,
then the accumulated stack size for a function is

accumulated_stack_size = self_stack_size + max(accum_size1,...,accum_sizeN)

18-26

Static Code Metrics

• When estimating the stack size of a function, static analysis stops at
the first instance of a recursive call. The Function Information table
indicates when recursion occurs in a function call path. Code generation
generates only recursive code for Stateflow event broadcasting and for
graphical functions if it is written as a recursive function.

• Calculates the cyclomatic complexity of a function as the number of
decisions plus one:

CC = Number of decisions + 1

The following constructs add a decision:

- If statement

- Else-If statement

- Switch statement (1 decision for each case branch)

- Loop statements: While, For, Do-while

Note Boolean operators in the above constructs do not add extra decisions.

• Does not include ert_main.c, because you have the option to provide your
own main.c.

18-27

18 Report Generation

Generate a Static Code Metrics Report for a Simulink
Model

The Static Code Metrics Report is a section included in the HTML Code
Generation Report. For more information on the static analysis of the
generated code, see “Static Code Metrics Analysis” on page 18-26.

1 Before generating the HTML Code Generation Report, open the
Configuration Parameters dialog box for your model. On the Code
Generation > Report pane, select the “Static code metrics” checkbox.

If your model includes referenced models, select the Static code metrics
checkbox in each referenced model’s configuration set. Otherwise, you
cannot view a separate static code metrics report for a referenced model.

2 Press Ctrl+B to build your model and generate the HTML code generation
report. For more information, see “Traceability in Code Generation Report”
on page 18-4.

3 If the HTML Code Generation Report is not already open, open the report.
On the left navigation pane, in the Contents section, select Static Code
Metrics Report.

4 Hover your cursor over column titles and some column values to see a
description of the corresponding data.

18-28

Generate a Static Code Metrics Report for a Simulink® Model

5 To see the generated files and how many lines of code are generated per
file, look at the File Information section.

6 If your model includes referenced models, the File information section
includes a Referenced Model column. In this column, click the referenced
model name to open its static code metrics report. If the static code metrics
report is not available for a referenced model, specify the Static code
metrics parameter in the referenced model’s configuration set and rebuild
your model.

7 To view the global variables in the generated code and their size, see the
Global Variables section.

18-29

18 Report Generation

8 To navigate from the report to the source code, click a global variable or
function name. These names are hyperlinks to their definitions.

9 To view the function call tree of the generated code, in the Function
Information section, click Call Tree at the top of the table.

ert_main.c is not included in the code metrics analysis, therefore it is
not shown in the call tree format. The Complexity column includes the
cyclomatic complexity of each function.

10 To view the functions in a table format, click Table.

18-30

Generate a Static Code Metrics Report for a Simulink® Model

The second column, Called By, lists functions that call the function listed
in the first column, using the following criteria:

• If a function is called by multiple functions, all functions are listed.

• If a function has no called function, this column is empty.
For example, Fueling_Mode is called by Fail and
fuel_rate_control_step. The number of call sites is included in
parentheses. Fail calls Fueling_Mode twice.

18-31

18 Report Generation

Generate a Static Code Metrics Report for MATLAB Code

In a MATLAB Coder Project
This example shows how to generate a static code metrics report for a static C
library generated from MATLAB code in a MATLAB Coder project.

By default, when you generate standalone C code with MATLAB Coder, the
code generation report now includes a static code metrics report. The static
code metrics report is not available for generated MEX functions.

1 In a local, writable folder, create a MATLAB file, moving_average.m, that
contains:

function [avg,z] = moving_average(x,z)
%#codegen

if nargin < 2,
z = zeros(10,1);

end
z(2:end) = z(1:end-1); % Update buffer
z(1) = x; % Add new value
avg = mean(z); % Compute moving average

end

2 In the same folder, set up a MATLAB Coder project.

a At the MATLAB command line, enter:

coder -new moving_average.prj

By default, the project opens in the MATLAB workspace on the right
side.

b On the project Overview tab, click the Add files link. Browse to the
file moving_average.m. Click OK to add the file to the project.

The file is displayed on the Overview tab. Both inputs are undefined.

c Define the type of input u.

i On the Overview tab, click the field to the right of the input
parameter x and, from the list of input options, select double.

18-32

Generate a Static Code Metrics Report for MATLAB® Code

ii From the list of size options, select 1 x 1 to specify that the input
is a scalar.

3 Repeat the previous step for input z.

4 In the MATLAB Coder project, click the Build tab.

5 On this tab, set the Output type to C/C++ Static library.

The default output file name is moving_average.

6 On this tab, clickMore settings to open the Project Settings dialog box.

7 In the Project Settings dialog box, select the Debugging tab and verify that
Static code metrics is selected.

8 Click the Build button to generate a library.

MATLAB Coder builds the project and generates a C static library and
supporting files in the default folder, codegen/lib/moving_average and
provides a link to the code generation report.

9 Open the code generation report and click Static Code Metrics Report to
open the report.

10 To see the generated files and how many lines of code are generated per
file, look at the File Information section.

11 To view the global variables in the generated code and their size, see the
Global Variables section.

To navigate from the report to the source code, click a global variable name.
The names are hyperlinks to their definitions.

12 To view the function call tree of the generated code, in the Function
Information section, click Call Tree at the top of the table.

18-33

18 Report Generation

To navigate from the report to the function code, click a function name.

13 To view the functions in a table format, click Table.

The second column, Called By, lists functions that call the function listed
in the first column, using the following criteria:

• If a function is called by multiple functions, all functions are listed.

• If a function has no called function, this column is empty.

At the Command Line
To enable a static code metrics report at the command line:

1 Create a code generation configuration object for standalone code
generation. For example, to generate a static library:

cfg = coder.config('lib');

2 Generate code, passing the configuration object as a parameter and
specifying the -report option. For example:

codegen -config cfg -report foo

Alternatively,

1 Create a code generation configuration object for standalone code
generation. For example, to generate a static library:

cfg = coder.config('lib');

2 Set the configuration object GenerateReport and
GenerateCodeMetricsReport parameters to true.

cfg.GenerateReport = true;
cfg.GenerateCodeMetricsReport = true;

3 Generate code, passing the configuration object as a parameter. For
example:

codegen -config cfg foo

18-34

Analyze Code Replacements in the Generated Code

Analyze Code Replacements in the Generated Code
When you select the Code Generation > Report option Summarize which
blocks triggered code replacements for an ERT-based model, a Code
Replacements Report section is automatically included in the generated
HTML report. The Code Replacements Report section documents the code
replacement library (CRL) functions that were used for code replacements
during code generation, providing a mapping between each replacement
instance and the Simulink block that triggered the replacement. You can
use the report to:

• Determine which replacement functions were used in the generated code.

• Trace each replacement instance back to the block that triggered the
replacement.

The figure below shows a Code Replacements Report generated for the CRL
model rtwdemo_crladdsub. Each replacement function used is listed with a
link to the block that triggered the replacement.

If you click a block path in the report, the block that triggered the replacement
is highlighted in the model diagram. If the replacement was triggered by a

18-35

18 Report Generation

Stateflow chart or a MATLAB function, a window opens to display the chart
or function.

For more information, see Trace Code Replacements Generated Using Your
Code Replacement Library.

18-36

Generate HTML Report After Build Process

Generate HTML Report After Build Process
After generating code, if you did not configure your model to create a code
generation report, you can generate a code generation report without
rebuilding your model.

1 In the Simulink editor, select Code > C/C++ Code > Code Generation
Report > Options. The Configuration Parameters dialog box opens with
the Report pane displayed.

2 Select any Code Generation Report parameters to be included in the report,
such as:

• Create code generation report

• Open report automatically

• All Navigation parameters

• All Traceability Report Contents parameters

• Static code metrics

3 In the Simulink editor, select Code > C/C++ Code > Code Generation
Report > Open Model Report.

4 Click the Generate Report button. The code generation report,
model_codgen_rpt.html, is created in the /html subfolder of the current
build folder and automatically opens.

18-37

18 Report Generation

18-38

Deployment

• Chapter 19, “Desktops”

• Chapter 20, “Real-Time and Embedded Systems”

• Chapter 21, “Import Custom Code into Model”

• Chapter 22, “Export Code Generated from Model to External
Application”

• Chapter 23, “Code Replacement”

19

Desktops

• “Shared Object Libraries” on page 19-2

• “Non-Real-Time Operating System Integration” on page 19-9

19 Desktops

Shared Object Libraries

In this section...

“About Host-Based Shared Libraries” on page 19-2

“Generate Shared Library Version of Model Code” on page 19-3

“Create Application Code to Use Shared Library” on page 19-3

“Host-Based Shared Library Limitations” on page 19-8

About Host-Based Shared Libraries
The Embedded Coder product provides an ERT target, ert_shrlib.tlc, for
generating a host-based shared library from your Simulink model. Selecting
this target allows you to generate a shared library version of your model code
for your host platform, either a Windows dynamic link library (.dll) file or a
UNIX shared object (.so) file. This feature can be used to package your source
code for easy distribution and shared use. The generated .dll or .so file is
shareable among different applications and upgradeable without having to
recompile the applications that use it.

Code generation for the ert_shrlib.tlc target exports

• Variables and signals of type ExportedGlobal as data

• Real-time model structure (model_M) as data

• Functions essential to executing your model code

To view a list of symbols contained in a generated shared library file, you can

• On Windows, use the Dependency Walker utility, downloadable from
http://www.dependencywalker.com

• On UNIX, use nm -D model.so

To generate and use a host-based shared library, you

1 Generate a shared library version of your model code

2 Create application code to load and use your shared library file

19-2

http://www.dependencywalker.com

Shared Object Libraries

Generate Shared Library Version of Model Code
This section summarizes the steps to generate a shared library version of
your model code.

1 To configure your model code for shared use by applications, open your
model and select the ert_shrlib.tlc target on the Code Generation
pane of the Configuration Parameters dialog box. Click OK.

Selecting the ert_shrlib.tlc target causes the build process to generate a
shared library version of your model code into your current working folder.
The selection does not change the code that is generated for your model.

2 Build the model.

3 After the build completes, you can examine the generated code in the
model subfolder, and the .dll file or .so file that has been generated into
your current folder.

Create Application Code to Use Shared Library
To illustrate how application code can load an ERT shared library
file and access its functions and data, MathWorks provides the model
rtwdemo_shrlib. Clicking the blue button in the model runs a script that:

1 Builds a shared library file from the model (for example,
rtwdemo_shrlib_win32.dll on 32-bit Windows)

19-3

19 Desktops

2 Compiles and links an example application, rtwdemo_shrlib_app, that will
load and use the shared library file

3 Executes the example application

Note It is recommended that you change directory to a new or empty folder
before running the rtwdemo_shrlib script.

The model uses the following example application files, which are located in
matlabroot/toolbox/rtw/rtwdemos/shrlib_demo.

File Description

rtwdemo_shrlib_app.h Example application header file

rtwdemo_shrlib_app.c Example application that loads and uses
the shared library file generated for the
model

run_rtwdemo_shrlib_app.m Script to compile, link, and execute the
example application

You can view each of these files by clicking white buttons in the model
window. Additionally, running the script places the relevant source and
generated code files in your current folder. The files can be used as templates
for writing application code for your own ERT shared library files.

The following sections present key excerpts of the example application files.

Example Application Header File
The example application header file rtwdemo_shrlib_app.h contains type
declarations for the model’s external input and output.

#ifndef _APP_MAIN_HEADER_

#define _APP_MAIN_HEADER_

typedef struct {

int32_T Input;

} ExternalInputs_rtwdemo_shrlib;

19-4

Shared Object Libraries

typedef struct {

int32_T Output;

} ExternalOutputs_rtwdemo_shrlib;

#endif /*_APP_MAIN_HEADER_*/

Example Application C Code
The example application rtwdemo_shrlib_app.c includes the following code
for dynamically loading the shared library file. Notice that, depending on
platform, the code invokes Windows or UNIX library commands.

#if (defined(_WIN32)||defined(_WIN64)) /* WINDOWS */

#include <windows.h>

#define GETSYMBOLADDR GetProcAddress

#define LOADLIB LoadLibrary

#define CLOSELIB FreeLibrary

#else /* UNIX */

#include <dlfcn.h>

#define GETSYMBOLADDR dlsym

#define LOADLIB dlopen

#define CLOSELIB dlclose

#endif

int main()

{

void* handleLib;

...

#if defined(_WIN64)

handleLib = LOADLIB("./rtwdemo_shrlib_win64.dll");

#else

#if defined(_WIN32)

handleLib = LOADLIB("./rtwdemo_shrlib_win32.dll");

#else /* UNIX */

handleLib = LOADLIB("./rtwdemo_shrlib.so", RTLD_LAZY);

#endif

#endif

19-5

19 Desktops

...

return(CLOSELIB(handleLib));

}

The following code excerpt shows how the C application accesses the model’s
exported data and functions. Notice the hooks for adding user-defined
initialization, step, and termination code.

int32_T i;

...

void (*mdl_initialize)(boolean_T);

void (*mdl_step)(void);

void (*mdl_terminate)(void);

ExternalInputs_rtwdemo_shrlib (*mdl_Uptr);

ExternalOutputs_rtwdemo_shrlib (*mdl_Yptr);

uint8_T (*sum_outptr);

...

#if (defined(LCCDLL)||defined(BORLANDCDLL))

/* Exported symbols contain leading underscores when DLL is linked with

LCC or BORLANDC */

mdl_initialize =(void(*)(boolean_T))GETSYMBOLADDR(handleLib ,

"_rtwdemo_shrlib_initialize");

mdl_step =(void(*)(void))GETSYMBOLADDR(handleLib ,

"_rtwdemo_shrlib_step");

mdl_terminate =(void(*)(void))GETSYMBOLADDR(handleLib ,

"_rtwdemo_shrlib_terminate");

mdl_Uptr =(ExternalInputs_rtwdemo_shrlib*)GETSYMBOLADDR(handleLib ,

"_rtwdemo_shrlib_U");

mdl_Yptr =(ExternalOutputs_rtwdemo_shrlib*)GETSYMBOLADDR(handleLib ,

"_rtwdemo_shrlib_Y");

sum_outptr =(uint8_T*)GETSYMBOLADDR(handleLib , "_sum_out");

#else

mdl_initialize =(void(*)(boolean_T))GETSYMBOLADDR(handleLib ,

"rtwdemo_shrlib_initialize");

mdl_step =(void(*)(void))GETSYMBOLADDR(handleLib ,

"rtwdemo_shrlib_step");

mdl_terminate =(void(*)(void))GETSYMBOLADDR(handleLib ,

"rtwdemo_shrlib_terminate");

19-6

Shared Object Libraries

mdl_Uptr =(ExternalInputs_rtwdemo_shrlib*)GETSYMBOLADDR(handleLib ,

"rtwdemo_shrlib_U");

mdl_Yptr =(ExternalOutputs_rtwdemo_shrlib*)GETSYMBOLADDR(handleLib ,

"rtwdemo_shrlib_Y");

sum_outptr =(uint8_T*)GETSYMBOLADDR(handleLib , "sum_out");

#endif

if ((mdl_initialize && mdl_step && mdl_terminate && mdl_Uptr && mdl_Yptr &&

sum_outptr)) {

/* === user application initialization function === */

mdl_initialize(1);

/* insert other user defined application initialization code here */

/* === user application step function === */

for(i=0;i<=12;i++){

mdl_Uptr->Input = i;

mdl_step();

printf("Counter out(sum_out): %d\tAmplifier in(Input): %d\tout(Output): %d\n",

*sum_outptr, i, mdl_Yptr->Output);

/* insert other user defined application step function code here */

}

/* === user application terminate function === */

mdl_terminate();

/* insert other user defined application termination code here */

}

else {

printf("Cannot locate the specified reference(s) in the shared library.\n");

return(-1);

}

Example Application Script
The application script run_rtwdemo_shrlib_app.m loads and rebuilds the
model, and then compiles, links, and executes the model’s shared library
target file. You can view the script source file by opening rtwdemo_shrlib
and clicking a white button to view source code. The script constructs
platform-dependent command strings for compilation, linking, and execution
that may apply to your development environment. To run the script, click
the blue button.

19-7

19 Desktops

Host-Based Shared Library Limitations
The following limitations apply to using ERT host-based shared libraries:

• Code generation for the ert_shrlib.tlc target exports only the following
as data:

- Variables and signals of type ExportedGlobal

- Real-time model structure (model_M)

• Code generation for the ert_shrlib.tlc target supports the C language
only (not C++). When you select the ert_shrlib.tlc target, language
selection is greyed out on the Code Generation pane of the Configuration
Parameters dialog box.

• On Windows systems, the ert_shrlib target by default does not generate
or retain the .lib file for implicit linking (explicit linking is preferred for
portability).

You can change the default behavior and retain the .lib file by modifying
the corresponding template makefile (TMF). If you do this, the generated
model.h file needs a small modification to be used together with the
generated ert_main.c for implicit linking. For example, if you are using
Visual C++, you need to declare __declspec(dllimport) in front of data to
be imported implicitly from the shared library file.

• To reconstruct a model simulation using a generated host-based shared
library, the application author must maintain the timing between system
and shared library function calls in the original application. The timing
needs to be consistent so that you can check the simulation and integration
results.

19-8

Non-Real-Time Operating System Integration

Non-Real-Time Operating System Integration
Embedded Coder support non-real-time operating system integration for
Linux®. For details, see “Working with Linux Target”

19-9

19 Desktops

19-10

20

Real-Time and Embedded
Systems

• “Standalone Programs (No Operating System)” on page 20-2

• “Operating System Integration” on page 20-22

• “Processor Support Packages” on page 20-23

20 Real-Time and Embedded Systems

Standalone Programs (No Operating System)

In this section...

“About Standalone Program Execution” on page 20-2

“Generate a Standalone Program” on page 20-2

“Standalone Program Components” on page 20-3

“Main Program” on page 20-3

“rt_OneStep and Scheduling Considerations” on page 20-5

“Static Main Program Module” on page 20-12

“Rate Grouping Compliance and Compatibility Issues” on page 20-16

About Standalone Program Execution
By default, the Embedded Coder software generates standalone programs
that do not require an external real-time executive or operating system. A
standalone program requires minimal modification to be adapted to the target
hardware. The standalone program architecture supports execution of models
with either single or multiple sample rates.

Generate a Standalone Program
To generate a standalone program:

1 In the Custom templates section of the Code Generation > Templates
pane of the Configuration Parameters dialog box, select the Generate an
example main program option (which is on by default). This enables the
Target operating system menu.

2 From the Target operating system menu, select BareBoardExample
(the default selection).

3 Generate the code.

Different code is generated for multirate models depending on the following
factors:

20-2

Standalone Programs (No Operating System)

• Whether the model executes in single-tasking or multitasking mode.

• Whether or not reusable code is being generated.

These factors affect the scheduling algorithms used in generated code, and in
some cases affect the API for the model entry point functions. The following
sections discuss these variants.

Standalone Program Components
The core of a standalone program is the main loop. On each iteration, the
main loop executes a background or null task and checks for a termination
condition.

The main loop is periodically interrupted by a timer. The function rt_OneStep
is either installed as a timer interrupt service routine (ISR), or called from a
timer ISR at each clock step.

The execution driver, rt_OneStep, sequences calls to the model_step
functions. The operation of rt_OneStep differs depending on whether
the generating model is single-rate or multirate. In a single-rate model,
rt_OneStep simply calls the model_step function. In a multirate model,
rt_OneStep prioritizes and schedules execution of blocks according to the
rates at which they run.

Main Program

• “Overview of Operation” on page 20-3

• “Guidelines for Modifying the Main Program” on page 20-4

Overview of Operation
The following pseudocode shows the execution of a main program.

main()
{

Initialization (including installation of rt_OneStep as an
interrupt service routine for a real-time clock)

Initialize and start timer hardware
Enable interupts

20-3

20 Real-Time and Embedded Systems

While(not Error) and (time < final time)
Background task

EndWhile
Disable interrupts (Disable rt_OneStep from executing)
Complete any background tasks
Shutdown

}

The pseudocode is a design for a harness program to drive your model. The
main program only partially implements this design. You must modify it
according to your specifications.

Guidelines for Modifying the Main Program
This section describes the minimal modifications you should make in your
production version of the main program module to implement your harness
program.

1 Call model_initialize.

2 Initialize target-specific data structures and hardware, such as ADCs or
DACs.

3 Install rt_OneStep as a timer ISR.

4 Initialize timer hardware.

5 Enable timer interrupts and start the timer.

Note rtModel is not in a valid state until model_initialize has
been called. Servicing of timer interrupts should not begin until
model_initialize has been called.

6 Optionally, insert background task calls in the main loop.

7 On termination of the main loop (if applicable):

• Disable timer interrupts.

• Perform target-specific cleanup such as zeroing DACs.

20-4

Standalone Programs (No Operating System)

• Detect and handle errors. Note that even if your program is designed to
run indefinitely, you may need to handle severe error conditions, such as
timer interrupt overruns.

You can use the macros rtmGetErrorStatus and rtmSetErrorStatus
to detect and signal errors.

rt_OneStep and Scheduling Considerations

• “Overview of Operation” on page 20-5

• “Single-Rate Single-Tasking Operation” on page 20-6

• “Multirate Multitasking Operation” on page 20-7

• “Multirate Single-Tasking Operation” on page 20-10

• “Guidelines for Modifying rt_OneStep” on page 20-10

Overview of Operation
The operation of rt_OneStep depends upon

• Whether your model is single-rate or multirate. In a single-rate model, the
sample times of all blocks in the model, and the model’s fixed step size, are
the same. A model in which the sample times and step size do not meet
these conditions is termed multirate.

• Your model’s solver mode (SingleTasking versus MultiTasking)

Permitted Solver Modes for Embedded Coder® Targeted Models on page 20-6
summarizes the permitted solver modes for single-rate and multirate models.
Note that for a single-rate model, only SingleTasking solver mode is allowed.

20-5

20 Real-Time and Embedded Systems

Permitted Solver Modes for Embedded Coder Targeted Models

Mode Single-Rate Multirate

SingleTasking Allowed Allowed

MultiTasking Disallowed Allowed

Auto Allowed

(defaults to
SingleTasking)

Allowed

(defaults to MultiTasking)

The generated code for rt_OneStep (and associated timing data structures
and support functions) is tailored to the number of rates in the model and to
the solver mode. The following sections discuss each possible case.

Single-Rate Single-Tasking Operation
The only valid solver mode for a single-rate model is SingleTasking. Such
models run in “single-rate” operation.

The following pseudocode shows the design of rt_OneStep in a single-rate
program.

rt_OneStep()
{

Check for interrupt overflow or other error
Enable "rt_OneStep" (timer) interrupt
Model_Step() -- Time step combines output,logging,update

}

For the single-rate case, the generated model_step function is

void model_step(void)

Single-rate rt_OneStep is designed to execute model_step within a single
clock period. To enforce this timing constraint, rt_OneStep maintains and
checks a timer overrun flag. On entry, timer interrupts are disabled until the
overrun flag and other error conditions have been checked. If the overrun flag
is clear, rt_OneStep sets the flag, and proceeds with timer interrupts enabled.

20-6

Standalone Programs (No Operating System)

The overrun flag is cleared only upon successful return from model_step.
Therefore, if rt_OneStep is reinterrupted before completing model_step, the
reinterruption is detected through the overrun flag.

Reinterruption of rt_OneStep by the timer is an error condition. If this
condition is detected rt_OneStep signals an error and returns immediately.
(Note that you can change this behavior if you want to handle the condition
differently.)

Note that the design of rt_OneStep assumes that interrupts are disabled
before rt_OneStep is called. rt_OneStep should be noninterruptible until the
interrupt overflow flag has been checked.

Multirate Multitasking Operation
In a multirate multitasking system, code generation uses a prioritized,
preemptive multitasking scheme to execute the different sample rates in
your model.

The following pseudocode shows the design of rt_OneStep in a multirate
multitasking program.

rt_OneStep()
{

Check for base-rate interrupt overrun
Enable "rt_OneStep" interrupt
Determine which rates need to run this time step

Model_Step0() -- run base-rate time step code

For N=1:NumTasks-1 -- iterate over sub-rate tasks
If (sub-rate task N is scheduled)
Check for sub-rate interrupt overrun

Model_StepN() -- run sub-rate time step code
EndIf

EndFor
}

20-7

20 Real-Time and Embedded Systems

Task Identifiers. The execution of blocks having different sample rates is
broken into tasks. Each block that executes at a given sample rate is assigned
a task identifier (tid), which associates it with a task that executes at that
rate. Where there are NumTasks tasks in the system, the range of task
identifiers is 0..NumTasks-1.

Prioritization of Base-Rate and Subrate Tasks. Tasks are prioritized,
in descending order, by rate. The base-rate task is the task that runs at the
fastest rate in the system (the hardware clock rate). The base-rate task has
highest priority (tid 0). The next fastest task (tid 1) has the next highest
priority, and so on down to the slowest, lowest priority task (tid NumTasks-1).

The slower tasks, running at submultiples of the base rate, are called subrate
tasks.

Rate Grouping and Rate-Specific model_step Functions. In a single-rate
model, the block output computations are performed within a single function,
model_step. For multirate, multitasking models, the code generator tries
to use a different strategy. This strategy is called rate grouping. Rate
grouping generates separate model_step functions for the base rate task
and each subrate task in the model. The function naming convention for
these functions is

model_stepN

where N is a task identifier. For example, for a model named my_model that
has three rates, the following functions are generated:

void my_model_step0 (void);
void my_model_step1 (void);
void my_model_step2 (void);

Each model_stepN function executes the blocks sharing tid N; in other words,
the block code that executes within task N is grouped into the associated
model_stepN function.

Scheduling model_stepN Execution. On each clock tick, rt_OneStep
maintains scheduling counters and event flags for each subrate task. The
counters are implemented as taskCounter arrays indexed on tid. The event
flags are implemented as arrays indexed on tid.

20-8

Standalone Programs (No Operating System)

The scheduling counters and task flags for sub-rates are maintained by
rt_OneStep. The scheduling counters are basically clock rate dividers that
count up the sample period associated with each sub-rate task. A pair of tasks
that exchanges data maintains an interaction flag at the faster rate. Task
interaction flags indicate that both fast and slow tasks are scheduled to run.

The event flags indicate whether or not a given task is scheduled for
execution. rt_OneStep maintains the event flags based on a task counter that
is maintained by code in the main program module for the model. When a
counter indicates that a task’s sample period has elapsed, the main code sets
the event flag for that task.

On each invocation, rt_OneStep updates its scheduling data structures and
steps the base-rate task (rt_OneStep calls model_step0 because the base-rate
task must execute on every clock step). Then, rt_OneStep iterates over the
scheduling flags in tid order, unconditionally calling model_stepN for any
task whose flag is set. The tasks are executed in order of priority.

Preemption. Note that the design of rt_OneStep assumes that interrupts are
disabled before rt_OneStep is called. rt_OneStep should be noninterruptible
until the base-rate interrupt overflow flag has been checked (see pseudocode
above).

The event flag array and loop variables used by rt_OneStep are stored as
local (stack) variables. Therefore, rt_OneStep is reentrant. If rt_OneStep is
reinterrupted, higher priority tasks preempt lower priority tasks. Upon return
from interrupt, lower priority tasks resume in the previously scheduled order.

Overrun Detection. Multirate rt_OneStep also maintains an array of timer
overrun flags. rt_OneStep detects timer overrun, per task, by the same logic
as single-rate rt_OneStep.

Note If you have developed multirate S-functions, or if you use a
customized static main program module, see “Rate Grouping Compliance and
Compatibility Issues” on page 20-16 for information about how to adapt your
code for rate grouping compatibility. This adaptation lets your multirate,
multitasking models generate more efficient code.

20-9

20 Real-Time and Embedded Systems

Multirate Single-Tasking Operation
In a multirate single-tasking program, by definition, sample times in the
model must be an integer multiple of the model’s fixed-step size.

In a multirate single-tasking program, blocks execute at different rates, but
under the same task identifier. The operation of rt_OneStep, in this case, is a
simplified version of multirate multitasking operation. Rate grouping is not
used. The only task is the base-rate task. Therefore, only one model_step
function is generated:

void model_step(void)

On each clock tick, rt_OneStep checks the overrun flag and calls model_step.
The scheduling function for a multirate single-tasking program is
rate_scheduler (rather than rate_monotonic_scheduler). The scheduler
maintains scheduling counters on each clock tick. There is one counter for
each sample rate in the model. The counters are implemented in an array
(indexed on tid) within the Timing structure within rtModel.

The counters are clock rate dividers that count up the sample period
associated with each subrate task. When a counter indicates that a sample
period for a given rate has elapsed, rate_scheduler clears the counter. This
condition indicates that blocks running at that rate should execute on the
next call to model_step, which is responsible for checking the counters.

Guidelines for Modifying rt_OneStep
rt_OneStep does not require extensive modification. The only required
modification is to reenable interrupts after the overrun flags and error
conditions have been checked. If applicable, you should also

• Save and restore your FPU context on entry and exit to rt_OneStep.

• Set model inputs associated with the base rate before calling model_step0.

• Get model outputs associated with the base rate after calling model_step0.

20-10

Standalone Programs (No Operating System)

Note If you modify rt_OneStep to read a value from a continuous output
port after each base-rate model step, see the relevant cautionary guideline
below.

• In a multirate, multitasking model, set model inputs associated with
subrates before calling model_stepN in the subrate loop.

• In a multirate, multitasking model, get model outputs associated with
subrates after calling model_stepN in the subrate loop.

Comments in rt_OneStep indicate the place to add your code.

In multirate rt_OneStep, you can improve performance by unrolling for
and while loops.

In addition, you may choose to modify the overrun behavior to continue
execution after error recovery is complete.

Also observe the following cautionary guidelines:

• You should not modify the way in which the counters, event flags, or other
timing data structures are set in rt_OneStep, or in functions called from
rt_OneStep. The rt_OneStep timing data structures (including rtModel)
and logic are critical to the operation of the generated program.

• If you have customized the main program module to read model outputs
after each base-rate model step, be aware that selecting model options
Support: continuous time and Single output/update function
together may cause output values read from main for a continuous output
port to differ slightly from the corresponding output values in the model’s
logged data. This is because, while logged data is a snapshot of output
at major time steps, output read from main after the base-rate model
step potentially reflects intervening minor time steps. To eliminate the
discrepancy, either separate the generated output and update functions
(clear the Single output/update function option) or place a Zero-Order
Hold block before the continuous output port.

20-11

20 Real-Time and Embedded Systems

Static Main Program Module

• “Overview” on page 20-12

• “Rate Grouping and the Static Main Program” on page 20-13

• “Modify the Static Main Program” on page 20-14

Overview
In most cases, the easiest strategy for deploying generated code is to use the
Generate an example main program option to generate the ert_main.c
or .cpp module (see “Generate a Standalone Program” on page 20-2).

However, if you turn the Generate an example main program option off,
you can use the module matlabroot/rtw/c/src/common/rt_main.c as a
template example for developing your embedded applications. The module
is not part of the generated code; it is provided as a basis for your custom
modifications, and for use in simulation. If your existing applications depend
upon a static ert_main.c (developed in releases before R2012b) or rt_main.c,
you may need to continue using a static main program module.

When developing applications using a static rt_main.c, you should copy this
module to your working folder and rename it to model_rt_main.c before
making modifications. Also, you must modify the template makefile such that
the build process creates model_rt_main.obj (on UNIX, model_rt_main.o)
in the build folder.

The static rt_main.c contains

• rt_OneStep, a timer interrupt service routine (ISR). rt_OneStep calls
model_step to execute processing for one clock period of the model.

• A skeletal main function. As provided, main is useful in simulation only.
You must modify main for real-time interrupt-driven execution.

For single-rate models, the operation of rt_OneStep and the main function are
essentially the same in the static rt_main.c as they are in the autogenerated
version described in “About Standalone Program Execution” on page 20-2.
For multirate, multitasking models, however, the static and generated code is
slightly different. The next section describes this case.

20-12

Standalone Programs (No Operating System)

Rate Grouping and the Static Main Program
Targets based on the ERT target sometimes use a static rt_main module
and disallow use of the Generate an example main program option.
This is done because target-specific modifications have been added to the
static rt_main.c, and these modifications would not be preserved if the main
program were regenerated.

Your rt_main module may or may not use rate grouping compatible
model_stepN functions. If your main module is based on the static rt_main.c
module, it does not use rate-specific model_stepN function calls. The static
rt_main.c module uses the old-style model_step function, passing in a task
identifier:

void model_step(int_T tid);

By default, when the Generate an example main program option is off,
the ERT target generates a model_step “wrapper” for multirate, multitasking
models. The purpose of the wrapper is to interface the rate-specific
model_stepN functions to the old-style call. The wrapper code dispatches to
the model_stepN call with a switch statement, as in the following example:

void mymodel_step(int_T tid) /* Sample time: */
{

switch(tid) {
case 0 :
mymodel_step0();
break;

case 1 :
mymodel_step1();
break;

case 2 :
mymodel_step2();
break;

default :
break;

}
}

The following pseudocode shows how rt_OneStep calls model_step from the
static main program in a multirate, multitasking model.

20-13

20 Real-Time and Embedded Systems

rt_OneStep()
{

Check for base-rate interrupt overflow
Enable "rt_OneStep" interrupt
Determine which rates need to run this time step

ModelStep(tid=0) --base-rate time step

For N=1:NumTasks-1 -- iterate over sub-rate tasks
Check for sub-rate interrupt overflow
If (sub-rate task N is scheduled)

ModelStep(tid=N) --sub-rate time step
EndIf

EndFor
}

You can use the TLC variable RateBasedStepFcn to specify that only the
rate-based step functions are generated, without the wrapper function. If your
target calls the rate grouping compatible model_stepN function directly, set
RateBasedStepFcn to 1. In this case, the wrapper function is not generated.

You should set RateBasedStepFcn prior to the %include
"codegenentry.tlc" statement in your system target file. Alternatively, you
can set RateBasedStepFcn in your target_settings.tlc file.

Modify the Static Main Program
As with the generated ert_main.c or .cpp, you should make a few
modifications to the main loop and rt_OneStep. See “Guidelines for Modifying
the Main Program” on page 20-4 and “Guidelines for Modifying rt_OneStep”
on page 20-10.

Also, you should replace the rt_OneStep call in the main loop with a
background task call or null statement.

20-14

Standalone Programs (No Operating System)

Other modifications you may need to make are

• If your model has multiple rates, the generated code might not operate as
expected unless:

- The multirate scheduling code is removed. The relevant code is tagged
with the keyword REMOVE in comments (see also the Version 3.0
comments in rt_main.c).

- Use the MODEL_SETEVENTS macro (defined in rt_main.c) to set the event
flags instead of accessing the flags directly. The relevant code is tagged
with the keyword REPLACE in comments.

Note The MODEL_SETEVENTS macro provides a way to call the model
entry function model_SetEventsForThisBaseStep from a static
main program. Versions of the Embedded Coder software prior to
R2008a generated the model_SetEventsForThisBaseStep function for
multirate, multitasking models, but it is no longer generated. You should
avoid using MODEL_SETEVENTS unless you have a specific need for it.

• If applicable, follow comments in the code regarding where to add code for
reading/writing model I/O and saving/restoring FPU context.

Note If you modify rt_main.c to read a value from a continuous output
port after each base-rate model step, see the relevant cautionary guideline
in “Guidelines for Modifying rt_OneStep” on page 20-10.

• When the Generate an example main program option is off rtmodel.h
is generated to provide an interface between the main module and
generated model code. If you create your own static main program module,
you would normally include rtmodel.h.

Alternatively, you can suppress generation of rtmodel.h, and include
model.h directly in your main module. To suppress generation of
rtmodel.h, use the following statement in your system target file:

%assign AutoBuildProcedure = 0

20-15

20 Real-Time and Embedded Systems

• If you have cleared the Terminate function required option, remove or
comment out the following in your production version of rt_main.c:

- The #if TERMFCN... compile-time error check

- The call to MODEL_TERMINATE

• If you do not want to combine output and update functions, clear the Single
output/update function option and make the following changes in your
production version of rt_main.c:

- Replace calls to MODEL_STEP with calls to MODEL_OUTPUT and
MODEL_UPDATE.

- Remove the #if ONESTEPFCN... error check.

• The static rt_main.c module does not support the Generate Reusable
Code option. Use this option only if you are generating a main program.
The following error check raises a compile-time error if Generate
Reusable Code is used illegally.

#if MULTI_INSTANCE_CODE==1

Rate Grouping Compliance and Compatibility Issues

• “Main Program Compatibility” on page 20-16

• “Make Your S-Functions Rate Grouping Compliant” on page 20-16

Main Program Compatibility
When the Generate an example main program option is off, code
generation produces slightly different rate grouping code, for compatibility
with the older static ert_main.c module. See “Rate Grouping and the Static
Main Program” on page 20-13 for details.

Make Your S-Functions Rate Grouping Compliant
Built-in Simulink blocks, as well as DSP System Toolbox blocks, are
compliant with the requirements for generating rate grouping code. However,
user-written multirate inlined S-functions may not be rate grouping
compliant. Noncompliant blocks generate less efficient code, but are otherwise
compatible with rate grouping. To take full advantage of the efficiency of
rate grouping, your multirate inlined S-functions must be upgraded to be

20-16

Standalone Programs (No Operating System)

fully rate grouping compliant. You should upgrade your TLC S-function
implementations, as described in this section.

Use of noncompliant multirate blocks to generate rate-grouping code
generates dead code. This can cause two problems:

• Reduced code efficiency.

• Warning messages issued at compile time. Such warnings are caused when
dead code references temporary variables before initialization. Since the
dead code does not run, this problem does not affect the run-time behavior
of the generated code.

To make your S-functions rate grouping compliant, you can use the following
TLC functions to generate ModelOutputs and ModelUpdate code, respectively:

OutputsForTID(block, system, tid)
UpdateForTID(block, system, tid)

20-17

20 Real-Time and Embedded Systems

The code listings below illustrate generation of output computations without
rate grouping (Listing 1) and with rate grouping (Listing 2). Note the
following:

• The tid argument is a task identifier (0..NumTasks-1).

• Only code guarded by the tid passed in to OutputsForTID is generated.
The if (%<LibIsSFcnSampleHit(portName)>) test is not used in
OutputsForTID.

• When generating rate grouping code, OutputsForTID and/or UpdateForTID
is called during code generation. When generating non-rate-grouping code,
Outputs and/or Update is called.

• In rate grouping compliant code, the top-level Outputs and/or Update
functions call OutputsForTID and/or UpdateForTID functions for each rate
(tid) involved in the block. The code returned by OutputsForTID and/or
UpdateForTID must be guarded by the corresponding tid guard:

if (%<LibIsSFcnSampleHit(portName)>)

as in Listing 2.

Listing 1: Outputs Code Generation Without Rate Grouping.

%% multirate_blk.tlc

%implements "multirate_blk" "C"

%% Function: mdlOutputs ===

%% Abstract:

%%

%% Compute the two outputs (input signal decimated by the

%% specified parameter). The decimation is handled by sample times.

%% The decimation is only performed if the block is enabled.

%% Each ports has a different rate.

%%

%% Note, the usage of the enable should really be protected such that

%% Neach task has its own enable state. In this example, the enable

%% occurs immediately which may or may not be the expected behavior.

%%

20-18

Standalone Programs (No Operating System)

%function Outputs(block, system) Output

/* %<Type> Block: %<Name> */

%assign enable = LibBlockInputSignal(0, "", "", 0)

{

int_T *enabled = &%<LibBlockIWork(0, "", "", 0)>;

%if LibGetSFcnTIDType("InputPortIdx0") == "continuous"

%% Only check the enable signal on a major time step.

if (%<LibIsMajorTimeStep()> && ...

%<LibIsSFcnSampleHit("InputPortIdx0")>) {

*enabled = (%<enable> > 0.0);

}

%else

if (%<LibIsSFcnSampleHit("InputPortIdx0")>) {

*enabled = (%<enable> > 0.0);

}

%endif

if (*enabled) {

%assign signal = LibBlockInputSignal(1, "", "", 0)

if (%<LibIsSFcnSampleHit("OutputPortIdx0")>) {

%assign y = LibBlockOutputSignal(0, "", "", 0)

%<y> = %<signal>;

}

if (%<LibIsSFcnSampleHit("OutputPortIdx1")>) {

%assign y = LibBlockOutputSignal(1, "", "", 0)

%<y> = %<signal>;

}

}

}

%endfunction

%% [EOF] sfun_multirate.tlc

Listing 2: Outputs Code Generation With Rate Grouping.

%% example_multirateblk.tlc

%implements "example_multirateblk" "C"

20-19

20 Real-Time and Embedded Systems

%% Function: mdlOutputs ===

%% Abstract:

%%

%% Compute the two outputs (the input signal decimated by the

%% specified parameter). The decimation is handled by sample times.

%% The decimation is only performed if the block is enabled.

%% All ports have different sample rate.

%%

%% Note: the usage of the enable should really be protected such that

%% each task has its own enable state. In this example, the enable

%% occurs immediately which may or may not be the expected behavior.

%%

%function Outputs(block, system) Output

%assign portIdxName = ["InputPortIdx0","OutputPortIdx0","OutputPortIdx1"]

%assign portTID = [%<LibGetGlobalTIDFromLocalSFcnTID("InputPortIdx0")>, ...

%<LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx0")>, ...

%<LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx1")>]

%foreach i = 3

%assign portName = portIdxName[i]

%assign tid = portTID[i]

if (%<LibIsSFcnSampleHit(portName)>) {

%<OutputsForTID(block,system,tid)>

}

%endforeach

%endfunction

%function OutputsForTID(block, system, tid) Output

/* %<Type> Block: %<Name> */

%assign enable = LibBlockInputSignal(0, "", "", 0)

%assign enabled = LibBlockIWork(0, "", "", 0)

%assign signal = LibBlockInputSignal(1, "", "", 0)

%switch(tid)

%case LibGetGlobalTIDFromLocalSFcnTID("InputPortIdx0")

%if LibGetSFcnTIDType("InputPortIdx0") == "continuous"

20-20

Standalone Programs (No Operating System)

%% Only check the enable signal on a major time step.

if (%<LibIsMajorTimeStep()>) {

%<enabled> = (%<enable> > 0.0);

}

%else

%<enabled> = (%<enable> > 0.0);

%endif

%break

%case LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx0")

if (%<enabled>) {

%assign y = LibBlockOutputSignal(0, "", "", 0)

%<y> = %<signal>;

}

%break

%case LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx1")

if (%<enabled>) {

%assign y = LibBlockOutputSignal(1, "", "", 0)

%<y> = %<signal>;

}

%break

%default

%% error it out

%endswitch

%endfunction

%% [EOF] sfun_multirate.tlc

20-21

20 Real-Time and Embedded Systems

Operating System Integration
Embedded Coder supports integration for Linux, Texas Instruments™
DSP/BIOS™, and Wind River VxWorks. For details, see “Embedded Systems”.

20-22

Processor Support Packages

Processor Support Packages
Embedded Coder supports integration for specific processors. For details, see
“Embedded Systems”.

20-23

20 Real-Time and Embedded Systems

20-24

21

Import Custom Code into
Model

21 Import Custom Code into Model

Generate S-Function Wrappers

In this section...

“About S-Function Wrapper Generation” on page 21-2

“Create a SIL Block” on page 21-3

“S-Function Wrapper Generation Limitations” on page 21-3

About S-Function Wrapper Generation
An S-function wrapper is an S-function that calls your C or C++ code from
within Simulink. S-function wrappers provide a standard interface between
Simulink and externally written code, allowing you to integrate your code into
a model with minimal modification. This is useful for software-in-the-loop
(SIL) code verification (validating your generated code in Simulink), as well
as for simulation acceleration purposes (see “Use a SIL or PIL Block” on page
31-19). For more information, see “About S-Functions and Code Generation”.

Using theCreate block parameter, on theCode Generation > Verification
pane, you can build in one automated step:

• A noninlined C or C++ MEX S-function wrapper that calls generated code

• A model with a SIL block. This block, which contains the generated
S-function, is ready for use with other blocks or models

When the Create block parameter is set to SIL, the build process generates
an additional source code file, model_sf.c or .cpp, in the build folder. This
module contains the S-function that calls the generated code that you deploy.
You can use this S-function within Simulink.

The build process then compiles and links model_sf.c or .cpp with model.c
or .cpp and the other generated code modules, building a MEX-file. The
MEX-file is named model_sf.mexext. (mexext is the file extension for
MEX-files on your platform, as given by the MATLAB mexext command.) The
MEX-file is stored in your working folder. Finally, the build process creates
and opens an untitled model containing the SIL block with the generated
S-function.

21-2

Generate S-Function Wrappers

Note To generate a wrapper S-function for a subsystem, you can use a
right-click subsystem build. Right-click the subsystem block in your model,
select C/C++ Code > Generate S-Function, and in the Generate S-Function
dialog box, select Create Software-In-the-Loop (SIL) block and click
Build.

Create a SIL Block
To create a SIL block with the S-function wrapper for your generated code,
open your ERT-based Simulink model and do the following:

1 Open the Configuration Parameters dialog box.

2 Select the Code Generation > Verification pane.

3 From the Create block drop-down list, select SIL.

4 Configure the other code generation options as required.

5 To initialize the memory for the S-function to zero, you must clear
the following options in the Data initialization section of the
Optimization > General pane:

• “Remove root level I/O zero initialization”

• “Remove internal data zero initialization”

• “Use memset to initialize floats and doubles to 0.0”

6 Select the Code Generation pane, and click Build.

7 When the build process completes, an untitled model window opens. This
model contains a SIL block with the generated S-function.

8 Save the new model.

9 You can now use the SIL block with other blocks or models in Simulink.

S-Function Wrapper Generation Limitations
The following limitations apply to Embedded Coder S-function wrapper
generation:

21-3

21 Import Custom Code into Model

• Continuous sample time is not supported. The Support continuous time
option should not be selected when creating a SIL block.

• Models that contain S-function blocks for which the S-function is not
inlined with a TLC file are not supported when creating a SIL block.

• You cannot use multiple instances of a SIL block within a model, because
the code uses static memory allocation. Each instance potentially can
overwrite global data values of the others.

• SIL blocks can be used with other blocks and models for SIL code
verification and simulation acceleration, but they cannot be used for code
generation.

• A MEX S-function wrapper must only be used in the version of MATLAB in
which the wrapper is created.

21-4

22

Export Code Generated
from Model to External
Application

• “Export Function-Call Subsystems” on page 22-2

• “Control Generation of Function Prototypes” on page 22-14

• “C++ Encapsulation Interface Control” on page 22-16

22 Export Code Generated from Model to External Application

Export Function-Call Subsystems

In this section...

“Exporting Function-Call Subsystems” on page 22-2

“Requirements for Exporting Function-Call Subsystems” on page 22-3

“Techniques for Exporting Function-Call Subsystems” on page 22-6

“Optimize Exported Function-Call Subsystems” on page 22-8

“Export Functions That Depend on Elapsed Time” on page 22-8

“Function-Call Subsystem Export” on page 22-9

“Function-Call Subsystems Export Limitations” on page 22-12

Exporting Function-Call Subsystems
Embedded Coder software provides code export capabilities that you can use to

• Automatically generate code for

- A function-call subsystem that contains only blocks that support code
generation

- A virtual subsystem that contains only such subsystems and a few other
types of blocks

• Create a SIL block that represents the generated code

You can use these capabilities only if the subsystem and its interface to the
Simulink model conform to certain requirements and constraints, as described
in “Requirements for Exporting Function-Call Subsystems” on page 22-3. For
limitations that apply, see “Function-Call Subsystems Export Limitations”
on page 22-12. To see an example of exported function-call subsystems, type
rtwdemo_export_functions in the MATLAB Command Window.

22-2

Export Function-Call Subsystems

Note For models designed in earlier releases, Embedded Coder software
also supports the ability to export functions from triggered subsystems. In
general, the requirements and limitations stated for exporting functions from
function-call subsystems also apply to exporting functions from triggered
subsystems, with the following exceptions:

• Triggered subsystems from which you intend to export functions must be
encapsulated in a single top-level virtual subsystem.

• Triggered subsystems do not have to meet the requirements in “Trigger
Signals Require a Common Source” on page 22-4 and “Requirements for
Exported Virtual Subsystems” on page 22-5.

• The section “Export Functions That Depend on Elapsed Time” on page 22-8
is not applicable to exporting functions from triggered subsystems.

Additional Information
See the following in the Simulink documentation for additional information
relating to exporting function-call subsystems:

• “Systems and Subsystems”

• “Signals”

• “Triggered Subsystems”

• “Function-Call Subsystems and S-Functions”

• “Host-Specific Code”

If you want to use Stateflow blocks to trigger exportable function-call
subsystems, you may also need information from “Interface with Simulink”.

Requirements for Exporting Function-Call Subsystems
To be exportable as code, a function-call subsystem, or a virtual subsystem
that contains such subsystems, must meet certain requirements. Most
requirements are similar for either type of export, but some apply only to

22-3

22 Export Code Generated from Model to External Application

virtual subsystems. The requirements for Simulink code generation also
apply.

For brevity, exported subsystem in this section means only an exported
function-call subsystem or an exported virtual subsystem that contains such
subsystems. The requirements listed do not necessarily apply to other types
of exported subsystems.

Requirements for Exported Subsystems
These requirements apply to both exported function-call subsystems and
exported virtual subsystems that contain such subsystems.

Blocks Must Support Code Generation. All blocks within an exported
subsystem must support code generation. However, blocks outside the
subsystem need not support code generation unless they will be converted to
code in some other context.

Blocks Must Not Use Absolute Time. Certain blocks use absolute time.
Blocks that use absolute time are not supported in exported function-call
subsystems. For a complete list of such blocks, see “Limitations on the Use of
Absolute Time” in the Simulink Coder documentation.

Blocks Must Not Depend on Elapsed Time. Certain blocks, like the
Sine Wave block and Discrete Integrator block, depend on elapsed time.
If an exported function-call subsystem contains a block that depends on
elapsed time, the subsystem must specify periodic execution. See “Export
Functions That Depend on Elapsed Time” on page 22-8 in the Simulink Coder
documentation.

Trigger Signals Require a Common Source. If more than one trigger
signal crosses the boundary of an exported system, all of the trigger signals
must be periodic and originate from the same function-call initiator.

Trigger Signals Must Be Scalar. A trigger signal that crosses the boundary
of an exported subsystem must be scalar. Input and output data signals that
do not act as triggers need not be scalar.

22-4

Export Function-Call Subsystems

Data Signals Must Be Nonvirtual. A data signal that crosses the boundary
of an exported system cannot be a virtual bus, and cannot be implemented
as a Goto-From connection. Every data signal crossing the export boundary
must be scalar, muxed, or a nonvirtual bus.

Requirements for Exported Virtual Subsystems
These requirements apply only to exported virtual subsystems that contain
function-call subsystems.

Virtual Subsystem Must Use Only Permissible Blocks. The top level of
an exported virtual subsystem that contains function-call subsystem blocks
can contain only the following other types of blocks:

• Input and Output blocks (ports)

• Constant blocks (including blocks that resolve to constants, such as Add)

• Merge blocks

• Virtual connection blocks (Mux, Demux, Bus Creator, Bus Selector, Signal
Specification)

• Signal-viewer blocks, such as Scope blocks

These restrictions do not apply within function-call subsystems, whether
or not they appear in a virtual subsystem. They apply only at the top level
of an exported virtual subsystem that contains one or more function-call
subsystems.

Constant Blocks Must Be Inlined. When a constant block appears at the
top level of an exported virtual subsystem, the containing model must check
Inline parameters on the Optimization > Signals and Parameters pane
of the Configuration Parameters dialog box.

Constant Outputs Must Specify a Storage Class. When a constant
signal drives an output port of an exported virtual subsystem, the signal
must specify a storage class.

22-5

22 Export Code Generated from Model to External Application

Techniques for Exporting Function-Call Subsystems

• “General Workflow” on page 22-6

• “Specify a Custom Initialize Function Name” on page 22-7

• “Specify a Custom Description” on page 22-7

General Workflow
To export a function-call subsystem, or a virtual subsystem that contains
function-call subsystems,

1 Check that the subsystem to be exported satisfies the “Requirements for
Exporting Function-Call Subsystems” on page 22-3.

2 In the Configuration Parameters dialog box:

a On the Code Generation pane, specify an ERT code generation target
such as ert.tlc.

b If you want a SIL block with the generated code, go to the Verification
pane and, from the Create block drop-down list, select SIL.

c Click OK or Apply.

3 Right-click the subsystem block and choose C/C++ Code > Export
Functions from the context menu.

The Build code for subsystem: Subsystem dialog box appears. This
dialog box is not specific to exporting function-call subsystems, and
generating code does not require entering information in the box.

4 Click Build.

The MATLAB Command Window displays messages similar to the code
generation sequence. Simulink generates code and places it in the working
folder.

If you set Create block to SIL in step 2b, Simulink opens a new window
that contains an S-function block that represents the generated code. This
block has the same size, shape, and connectors as the original subsystem.

22-6

Export Function-Call Subsystems

Code generation and optional block creation are now complete. You can test
and use the code and optional block as you could for generated ERT code
and S-function block.

Specify a Custom Initialize Function Name
You can specify a custom name for the initialize function of your exported
function as an argument to the rtwbuild command. When used for this
purpose, the command takes the following form:

blockHandle = rtwbuild('subsystem', 'Mode', 'ExportFunctionCalls',..

'ExportFunctionInitializeFunctionName', 'fcnname')

where fcnname specifies the desired function name. For example, if you
specify the name 'myinitfcn', the build process emits code similar to the
following:

/* Model initialize function */
void myinitfcn(void){
...
}

Specify a Custom Description
You can enter a custom description for an exported function using the Block
Properties dialog box of an Inport block. To do this, go to the subsystem that
is to be exported as a function, right-click on the Inport block that drives
the control port of the subsystem, and select Properties. In the General
tab, use the Description field to enter your descriptive text. During
function export, the text you enter is emitted to the generated code in the
header for the Inport block. For example, if you open the example program
rtwdemo_export_functions and enter a description in the Block Properties
dialog box for port t_1tic_A, code similar to the following is emitted:

/*
* Output and update for exported function: t_1tic_A
*
* My custom description of the exported function

*/
void t_1tic_A(void)
{

22-7

22 Export Code Generated from Model to External Application

...
}

Optimize Exported Function-Call Subsystems
To optimize the code generated for a function-call subsystem or virtual block
that contains such subsystems, you can

• Specify a storage class for every input signal and output signal that crosses
the boundary of the subsystem.

• For each function-call subsystem to be exported (whether directly or within
a virtual subsystem):

1 Right-click the subsystem and choose Block Parameters (Subsystem)
from the context menu.

2 Select the Code Generation tab and set the Function packaging
parameter to Auto.

3 Click OK or Apply.

Export Functions That Depend on Elapsed Time
Some blocks, such as the Sine Wave block (if sample-based) and the
Discrete-Time Integrator block, depend on elapsed time. See “Absolute and
Elapsed Time Computation” in the Simulink Coder documentation for more
information.

When a block that depends on elapsed time exists in a function-call subsystem,
the subsystem cannot be exported unless it specifies periodic execution. To
specify for this:

1 Right-click the Trigger block in the function-call subsystem and choose
Block Parameters from the context menu.

2 Specify periodic in the Sample time type field.

3 Set the Sample time to the same granularity specified (directly or by
inheritance) in the function-call initiator.

4 Click OK or Apply.

22-8

Export Function-Call Subsystems

Function-Call Subsystem Export
This example shows a virtual subsystem that contains two function-call
subsystems, and the associated code that implements the virtual subsystem.
The first figure shows the top level of a model that uses a Stateflow chart
named Chart to input two function-call trigger signals (denoted by dash-dot
lines) to a virtual subsystem named Subsystem.

The next figure shows the contents of Subsystem in the previous figure. The
subsystem contains two function-call subsystems, each driven by one of the
signals input from the top level.

In the preceding model, the Stateflow chart can assert either of two scalar
signals, Toggle and Select.

22-9

22 Export Code Generated from Model to External Application

• Asserting Toggle toggles the Boolean state of the function-call subsystem
Toggle Output Subsystem.

• Asserting Select causes the function-call subsystem Select Input
Subsystem to assign the value of DataIn1 or DataIn2 to its output signal.
The value assigned depends on the current state of Toggle Output
Subsystem.

The following generated code implements the subsystem named Subsystem.
The code is typical for virtual subsystems that contain function-call
subsystems. It specifies an initialization function and a function for each
contained subsystem, and would also include functions to enable and disable
subsystems if applicable.

#include "Subsystem.h"

#include "Subsystem_private.h"

/* Exported block signals */

real_T DataIn1; /* '<Root>/In3' */

real_T DataIn2; /* '<Root>/In4' */

real_T DataOut; /* '<S4>/Switch' */

boolean_T SelectorSignal; /* '<S5>/Logical Operator' */

/* Exported block states */

boolean_T SelectorState; /* '<S5>/Unit Delay' */

/* Real-time model */

RT_MODEL_Subsystem Subsystem_M_;

RT_MODEL_Subsystem *Subsystem_M = &Subsystem_M_;

/* Initial conditions for exported function: Toggle */

void Toggle_Init(void)

{

/* Initial conditions for function-call system: '<S1>/Toggle Output Subsystem' */

/* InitializeConditions for UnitDelay: '<S5>/Unit Delay' */

SelectorState = Subsystem_P.UnitDelay_X0;

}

/* Output and update for exported function: Toggle */

22-10

Export Function-Call Subsystems

void Toggle(void)

{

/* Output and update for function-call system: '<S1>/Toggle Output Subsystem' */

/* Logic: '<S5>/Logical Operator' incorporates:

* UnitDelay: '<S5>/Unit Delay'

*/

SelectorSignal = !SelectorState;

/* Update for UnitDelay: '<S5>/Unit Delay' */

SelectorState = SelectorSignal;

}

/* Output and update for exported function: Select */

void Select(void)

{

/* Output and update for function-call system: '<S1>/Select Input Subsystem' */

/* Switch: '<S4>/Switch' incorporates:

* Inport: '<Root>/In3'

* Inport: '<Root>/In4'

*/

if(SelectorSignal) {

DataOut = DataIn1;

} else {

DataOut = DataIn2;

}

}

/* Model initialize function */

void Subsystem_initialize(void)

{

/* initialize error status */

rtmSetErrorStatus(Subsystem_M, (const char_T *)0);

/* block I/O */

22-11

22 Export Code Generated from Model to External Application

/* exported global signals */

DataOut = 0.0;

SelectorSignal = FALSE;

/* states (dwork) */

/* exported global states */

SelectorState = FALSE;

/* external inputs */

DataIn1 = 0.0;

DataIn2 = 0.0;

Toggle_Init();

}

/* Model terminate function */

void Subsystem_terminate(void)

{

/* (no terminate code required) */

}

Function-Call Subsystems Export Limitations
The function-call subsystem export capabilities have the following limitations:

• Subsystem block parameters do not control the names of the files containing
the generated code. All such filenames begin with the name of the exported
subsystem. Each filename is suffixed to the file.

• Subsystem block parameters do not control the names of top-level functions
in the generated code. Each function name reflects the name of the signal
that triggers the function, or for an unnamed signal, the block from which
the signal originates.

• The software cannot export reusable code for a function-call subsystem. The
parameter Configuration Parameters > Code Generation > Interface
> Generate reusable code does not apply for a function-call subsystem.

• The function-call subsystem export capability does not support the target
language C++ (Encapsulated).

22-12

Export Function-Call Subsystems

• The software supports code generation for a SIL block provided the block
does not have function-call input ports. However, the block will appear as
a noninlined S-function in the generated code.

• The software supports a SIL block in accelerator mode only if its
function-call initiator is noninlined in accelerator mode. Examples of
noninlined initiators include Stateflow charts.

• The SIL block must be driven by a Level-2 S-function initiator block, such
as a Stateflow chart or the built-in Function-call Generator block.

• An asynchronous (sample-time) function-call system can be exported,
but the software does not support the ERT S-function wrapper for an
asynchronous system.

• The software does not support code generation for a SIL block if the block is
generated for exported function calls.

• The output from a SIL block cannot be merged using the Merge block.

• The software does not support MAT-file logging for exported function calls.
Specifications that enable MAT-file logging is ignored.

• The use of the TLC function LibIsFirstInit is deprecated for exported
function calls.

22-13

22 Export Code Generated from Model to External Application

Control Generation of Function Prototypes
The Embedded Coder software provides a Configure Model Functions
button, located on the Code Generation > Interface pane of the
Configuration Parameters dialog box, that allows you to control the model
function prototypes that are generated for ERT-based Simulink models.

By default, the function prototype of an ERT-based model’s generated
model_step function resembles the following:

void model_step(void);

The function prototype of an ERT-based model’s generated model_initialize
function resembles the following:

void model_initialize(void);

(For more detailed information about the default calling interface for the
model_step function, see the model_step reference page.)

The Configure Model Functions button on the Interface pane provides you
flexible control over the model function prototypes that are generated for your
model. Clicking Configure Model Functions launches a Model Interface
dialog box. Based on the Function specification value you specify for your
model function (supported values include Default model initialize and
step functions and Model specific C prototypes), you can preview and
modify the function prototypes. Once you validate and apply your changes,
you can generate code based on your function prototype modifications.

For more information about using the Configure Model Functions
button and the Model Interface dialog box, see “Sample Procedure for
Configuring Function Prototypes” on page 12-11 and the example model
rtwdemo_fcnprotoctrl, which is preconfigured to demonstrate function
prototype control.

Alternatively, you can use function prototype control functions to
programmatically control model function prototypes. For more information,
see “Configure Function Prototypes Programmatically” on page
12-16“Configure Function Prototypes Programmatically” on page 12-16.

22-14

Control Generation of Function Prototypes

You can also control model function prototypes for nonvirtual subsystems, if
you generate subsystem code using right-click build. To launch the Model
Interface for subsystem dialog box, use the RTW.configSubsystemBuild
function.

Right-click building the subsystem generates the step and initialization
functions according to the customizations you make. For more information,
see “Configure Function Prototypes for Nonvirtual Subsystems” on page 12-8.

For limitations that apply, see “Function Prototype Control Limitations” on
page 12-21.

22-15

22 Export Code Generated from Model to External Application

C++ Encapsulation Interface Control
Using the Language option, C++ (Encapsulated), on the Code Generation
pane of the Configuration Parameters dialog box, you can generate a C++
class interface to model code. The generated interface encapsulates required
model data into C++ class attributes and model entry point functions into C++
class methods. The benefits of encapsulation include:

• Greater control over access to model data

• Ability to multiply instantiate model classes

• Easier integration of model code into C++ programming environments

C++ encapsulation also works for right-click builds of nonvirtual subsystems.
(For information on requirements that apply, see “Configure C++
Encapsulation Interfaces for Nonvirtual Subsystems” on page 12-41.)

The general procedure for generating C++ encapsulation interfaces to model
code is as follows:

1 Configure your model to use an ert.tlc system target file provided by
MathWorks.

2 Select the language option C++ (Encapsulated) for your model.

3 Optionally, configure related C++ encapsulation interface settings for your
model code, using either a graphical user interface (GUI) or application
programming interface (API).

4 Generate model code and examine the results.

To get started with an example, see “Simple Use of C++ Encapsulation
Control” on page 12-25. For more details about configuring C++ encapsulation
interfaces for your model code, see Generating and Configuring C++
Encapsulation Interfaces to Model Code and “Configure C++ Encapsulation
Interfaces Programmatically” on page 12-43. For limitations that apply, see
“C++ Encapsulation Interface Control Limitations” on page 12-47.

22-16

C++ Encapsulation Interface Control

Note For a demonstration of the C++ encapsulation capability, see the
example model rtwdemo_cppencap.

22-17

22 Export Code Generated from Model to External Application

22-18

23

Code Replacement

• “Introduction to Code Replacement Libraries” on page 23-2

• “Create Code Replacement Tables” on page 23-18

• “Manage CRTs with the Code Replacement Tool” on page 23-168

• “Examine and Validate Code Replacement Tables” on page 23-191

• “Register Code Replacement Libraries” on page 23-203

• “Custom Code Substitution for MATLAB Functions Using Code
Replacement Libraries” on page 23-212

• “Replace MATLAB Function with Custom Code” on page 23-213

• “Enable the Code Replacements Report” on page 23-219

• “Viewing Code Replacements in the Generated Code” on page 23-221

• “Replace MATLAB Function Block Code with Custom Code” on page 23-223

• “Code Replacement Library Limitations” on page 23-229

23 Code Replacement

Introduction to Code Replacement Libraries

In this section...

“Overview of Code Replacement Libraries” on page 23-2

“Code Replacement Libraries General Workflow” on page 23-10

“Code Replacement Libraries Quick-Start Example” on page 23-11

Overview of Code Replacement Libraries
The Embedded Coder software provides the code replacement library (CRL)
API, which allows you to create and register code replacement tables. When
selected for a model, these CRL tables provide the basis for replacing default
functions and operators in your model code with target-specific code. The
ability to control function and operator replacements potentially allows you
to optimize target speed and memory and better integrate model code with
external and legacy code.

A code replacement library (CRL) is a set of one or more code replacement
tables that define the target-specific implementations of functions and
operators to be used in generating code for your Simulink model. The code
generation software provides default CRLs, described in the following table.
You select these CRLs from the Code replacement library drop-down list
on theCode Generation > Interface pane of the Configuration Parameters
dialog box.

CRL Description Contains Tables...

C89/C90
(ANSI)

Generates calls to the ISO®/IEC
9899:1990 C standard math library for
floating-point functions.

ansi_tfl_table_tmw.mat
private_intrinsic_tfl_table_tmw.mat
rtw_linux_tfl_table_tmw.mat
rtw_mac_tfl_table_tmw.mat
rtw_windows_tfl_table_tmw.mat
rtw_vxworks_tfl_table_tmw.mat

C99 (ISO) Generates calls to the ISO/IEC
9899:1999 C standard math library.

iso_tfl_table_tmw.mat
ansi_tfl_table_tmw.mat
private_intrinsic_tfl_table_tmw.mat
rtw_linux_tfl_table_tmw.mat
rtw_mac_tfl_table_tmw.mat

23-2

Introduction to Code Replacement Libraries

CRL Description Contains Tables...

rtw_windows_tfl_table_tmw.mat
rtw_vxworks_tfl_table_tmw.mat

GNU99 (GNU) Generates calls to the GNU®7 gcc
math library, which provides C99
extensions as defined by compiler option
-std=gnu99.

gnu_tfl_table_tmw.mat
iso_tfl_table_tmw.mat
ansi_tfl_table_tmw.mat
private_intrinsic_tfl_table_tmw.mat
rtw_linux_tfl_table_tmw.mat
rtw_mac_tfl_table_tmw.mat
rtw_windows_tfl_table_tmw.mat
rtw_vxworks_tfl_table_tmw.mat

C++ (ISO) Generates calls to the ISO/IEC
14882:2003 C++ standard math library.

iso_cpp_tfl_table_tmw.mat
private_iso_cpp_tfl_table_tmw.mat
iso_tfl_table_tmw.mat
ansi_tfl_table_tmw.mat
private_intrinsic_tfl_table_tmw.mat
rtw_linux_tfl_table_tmw.mat
rtw_mac_tfl_table_tmw.mat
rtw_windows_tfl_table_tmw.mat
rtw_vxworks_tfl_table_tmw.mat

When a CRL contains multiple tables, the order in which they are listed
reflects the order in which they are searched. The CRL API allows you to
create your own CRLs, made up of your own function tables in combination
with one of the default CRLs. For example, you could create a CRL for
an embedded processor that combines some special-purpose function
customizations with a processor-specific library of function and operator
implementations:

7. GNU® is a registered trademark of the Free Software Foundation.

23-3

23 Code Replacement

MyProcessor
(ANSI)

Generates calls to my custom function
implementations or a processor-specific
library.

crl_table_sinfcn.m
crl_table_myprocessor.m
ansi_tfl_table_tmw.mat
private_intrinsic_tfl_table_tmw.mat
rtw_linux_tfl_table_tmw.mat
rtw_mac_tfl_table_tmw.mat
rtw_windows_tfl_table_tmw.mat
rtw_vxworks_tfl_table_tmw.mat

Each CRL code replacement table contains one or more table entries, with
each table entry representing a potential replacement for a single function or
operator. Each table entry provides a mapping between a conceptual view of
the function or operator (similar to the Simulink block view of the function or
operator) and a target-specific implementation of that function or operator.

The conceptual view of a function or operator is represented in a CRL table
entry by the following elements, which identify the function or operator entry
to the code generation process:

• A function or operator key (a function name such as 'cos' or an operator
ID string such as 'RTW_OP_ADD')

• A set of conceptual arguments that observe a Simulink naming scheme
('y1', 'u1', 'u2', ...), along with their I/O types (output or input) and
data types

• Other attributes, such as fixed-point saturation and rounding
characteristics for operators, to identify the function or operator to the code
generation process as exactly as you require for matching purposes

The target-specific implementation of a function or operator is represented in
a CRL table entry by the following elements:

• The name of your implementation function (such as 'cos_dbl' or
'u8_add_u8_u8')

• A set of implementation arguments that you define (the order of which
must correspond to the conceptual arguments), along with their I/O types
(output or input) and data types

23-4

Introduction to Code Replacement Libraries

• Parameters providing the build information for your implementation
function, including header file and source file names and paths

Additionally, a CRL table entry includes a priority value (0–100, with 0 as the
highest priority), which defines the entry’s priority relative to other entries
in the table.

During code generation for your model, when the code generation process
encounters a call site for a function or operator, it creates and partially
populates a CRL entry object, for the purpose of querying the CRL for a
replacement function. The information provided for the CRL query includes
the function or operator key and the conceptual argument list. The CRL
entry object is then passed to the CRL. If a matching table entry exists in the
CRL, a fully-populated CRL entry, including the implementation function
name, argument list, and build information, is returned to the call site and
used to generate code.

Within the CRL that is selected for your model, the tables that comprise the
CRL are searched in the order in which they are listed (by RTW.viewTFL or
by the CRL’s Code replacement library tool tip). Within each table, if
multiple matches are found for a CRL entry object, priority level determines
the match that is returned. A higher-priority (lower-numbered) entry is used
over a similar entry with a lower priority (higher number).

The Embedded Coder software supports the following functions for
replacement with custom library functions using CRL tables.

Note Function replacement supports only scalar inputs. (Operation
replacement supports nonscalar inputs for some matrix operations.)

Math Functions

Note For detailed support information, see “Map Math Functions to
Target-Specific Implementations” on page 23-30.

abs acos acosh asin

23-5

23 Code Replacement

asinh atan atan2 atanh

ceil cos cosh exactrSqrt

exp fix floor frexp

hypot ldexp ln log

log10 max min mod/fmod

pow rem round rSqrt

saturate sign sin sincos

sinh sqrt round tanh

Memory Utility Functions

memcmp memcpy memset memset2zero1

Nonfinite Support Utility Functions2

getInf getMinusInf getNaN isInf3

isNaN3

Notes:
1 Some target processors provide optimized memset functions for use when
performing a memory set to zero. The CRL API supports replacing memset
to zero functions with more efficient target-specific functions.
2 Replacement of nonfinite functions is supported for Simulink code
generation (not for Stateflow or MATLAB Coder code generation).
3 Replacement of isInf and isNaN is supported only for complex
floating-point inputs.

The Embedded Coder software also supports the following operations for
replacement with custom library functions using CRL tables.

23-6

Introduction to Code Replacement Libraries

Note Unless otherwise stated, the listed operators are supported for the
following input data types:

• single, double, and their complex equivalents

• int8, int16, int32, and their complex equivalents

• uint8, uint16, uint32, and their complex equivalents

• Fixed-point data types

• Mixed data types (different types for different inputs)

Operator Key Scalar Inputs Nonscalar Inputs

Addition (+) RTW_OP_ADD Yes Yes

Subtraction (-) RTW_OP_MINUS Yes Yes

Multiplication
(*)

RTW_OP_MUL Yes Yes, including
the ability to
map to Basic
Linear Algebra
Subroutine (BLAS)
multiplication
functions

Division (/) RTW_OP_DIV Yes —

Data type
conversion
(cast)

RTW_OP_CAST Yes —

Shift left (<<) RTW_OP_SL Yes, for
integer and
fixed-point
data types

—

Shift right (>>) RTW_OP_SRA
(arithmetic)1

RTW_OP_SRL
(logical)

Yes, for
integer and
fixed-point
data types

—

23-7

23 Code Replacement

Operator Key Scalar Inputs Nonscalar Inputs

Element-wise
matrix
multiplication
(.*)

RTW_OP_ELEM_MUL2 — Yes

Matrix right
division (/)

RTW_OP_RDIV3 — Yes

Matrix left
division (\)

RTW_OP_LDIV3 — Yes

Matrix
inversion (inv)

RTW_OP_INV3 — Yes

Complex
conjugation

RTW_OP_CONJUGATE Yes Yes

Transposition
(.')

RTW_OP_TRANS — Yes

Hermitian
(complex
conjugate)
transposition
(')

RTW_OP_HERMITIAN — Yes

Multiplication
with
transposition

RTW_OP_TRMUL — Yes, including
the ability to
map to BLAS
multiplication
functions

23-8

Introduction to Code Replacement Libraries

Operator Key Scalar Inputs Nonscalar Inputs

Multiplication
with Hermitian
transposition

RTW_OP_HMMUL — Yes, including
the ability to
map to BLAS
multiplication
functions

Notes:
1 CRLs that provide arithmetic shift right implementations should also
provide logical shift right implementations, because some arithmetic shift
rights are converted to logical shift rights during code generation.
2 For scalar multiplication, use RTW_OP_MUL.
3 Matrix division and inversion are supported for Simulink code generation
(not for Stateflow or MATLAB Coder code generation).

For multicore target environments, the Embedded Coder software supports
the following semaphore and mutex operations for replacement with custom
library functions using CRL tables.

Note Semaphore and mutex code replacement is supported for Simulink
code generation for data transfer between tasks, and for code generation
targets. For more information, see “Map Semaphore or Mutex Operations to
Target-Specific Implementations” on page 23-152.

Operation Key

Mutex Destroy RTW_MUTEX_DESTROY

Mutex Init RTW_MUTEX_INIT

Mutex Lock RTW_MUTEX_LOCK

Mutex Unlock RTW_MUTEX_UNLOCK

Semaphore Destroy RTW_SEM_DESTROY

Semaphore Init RTW_SEM_INIT

Semaphore Post RTW_SEM_POST

Semaphore Wait RTW_SEM_WAIT

23-9

23 Code Replacement

Code Replacement Libraries General Workflow
The general steps for creating and using a code replacement library are as
follows:

1 Create one or more CRL tables containing replacement entries for math
operators and functions. To create a table, you can use either a MATLAB
based API or the Code Replacement Tool graphical interface. (The example
rtwdemo_crl_script provides example tables that can be used as a
starting point for customization.)

2 Register a code replacement library, consisting of one or more replacement
tables, for use with Simulink or MATLAB Coder software. To register a
library, you can use either a MATLAB based API or the Code Replacement
Tool graphical interface.

3 For Simulink code generation, open your model and select the desired code
replacement library from the Code replacement library drop-down list
located on the Code Generation > Interface pane of the Configuration
Parameters dialog box.

For MATLAB Coder applications, instantiate a Simulink Coder
configuration object, set the code replacement library, and provide the
configuration object in a call to the codegen function, as follows:

cfg = coder.config('lib','ecoder',true);

23-10

Introduction to Code Replacement Libraries

cfg.CodeReplacementLibrary = 'Addition & Subtraction Examples';
codegen -config cfg addsub_tow_int16 -args {t,t};

4 Build your Simulink model or MATLAB Coder application.

See the example rtwdemo_crl_script, which illustrates how to use CRLs to
replace operators and functions in generated code. With each model included
in this example, a separate CRL is provided to illustrate the creation of
operator and function replacements and how to register the replacements
with Simulink or MATLAB Coder software.

Code Replacement Libraries Quick-Start Example
This section steps you through a simple example of the complete CRL
workflow. (The materials for this example can easily be created based on the
file and model displays in this section.)

Note This example uses MATLAB based APIs to create a CRL table and
register a CRL. You can perform the same steps using the Code Replacement
Tool graphical interface. For more information, see “Manage CRTs with the
Code Replacement Tool” on page 23-168.

1 Create and save a CRL table definition file that instantiates and populates
a CRL table entry, such as the file crl_table_sinfcn.m shown below.
This file creates function table entries for the sin function. For detailed
information on creating table definition files for functions and operators,
see “Create Code Replacement Tables” on page 23-18.

function hTable = crl_table_sinfcn()

%CRL_TABLE_SINFCN - Describe function entries for a Code Replacement Library table.

hTable = RTW.TflTable;

% Create entry for double data type sine function replacement

hTable.registerCFunctionEntry(100, 1, 'sin', 'double', 'sin_dbl', ...

'double', 'sin_dbl.h','','');

% Create entry for single data type sine function replacement

23-11

23 Code Replacement

hTable.registerCFunctionEntry(100, 1, 'sin', 'single', 'sin_sgl', ...

'double', 'sin_sgl.h','','');

Note See “Map Math Functions to Target-Specific Implementations” on
page 23-30 for another example of sin function replacement, in which
function arguments are created individually.

2 As a first check of the validity of your table entries, invoke the CRL table
definition file as follows:

>> tbl = crl_table_sinfcn

tbl =

RTW.TflTable handle

Package: RTW

Properties:

Version: '1.0'

ReservedSymbols: []

StringResolutionMap: []

AllEntries: [2x1 RTW.TflCFunctionEntry]

EnableTrace: 1

Methods, Events, Superclasses

>>

Errors found during the invocation are displayed.

3 As a further check of your table entries, invoke the Code Replacement
Viewer using the following MATLAB command:

>> RTW.viewTfl(crl_table_sinfcn)

23-12

Introduction to Code Replacement Libraries

Select entries in your table and verify that the graphical display of the
contents of your table meets your expectations. (The Code Replacement
Viewer can also help you debug issues with the order of entries in a table,
the order of tables in a CRL, and function signature mismatches. For
more information, see “Examine and Validate Code Replacement Tables”
on page 23-191.)

4 Create and save a CRL registration file that includes the crl_table_sinfcn
table, such as the sl_customization.m file shown below. The file specifies
that the CRL to be registered is named 'Sine Function Example' and
consists of crl_table_sinfcn, with the default ANSI8 math library as
the base CRL table.

function sl_customization(cm)

% sl_customization function to register a code replacement library (CRL)

% Register the CRL defined in local function locCrlRegFcn

cm.registerTargetInfo(@locCrlRegFcn);

8. ANSI® is a registered trademark of the American National Standards Institute, Inc.

23-13

23 Code Replacement

end % End of SL_CUSTOMIZATION

% Local function to define a CRL containing crl_table_sinfcn

function thisCrl = locCrlRegFcn

% Instantiate a CRL registry entry

thisCrl = RTW.TflRegistry;

% Define the CRL properties

thisCrl.Name = 'Sine Function Example';

thisCrl.Description = 'Example of sine function replacement';

thisCrl.TableList = {'crl_table_sinfcn'};

thisCrl.BaseTfl = 'C89/C90 (ANSI)';

thisCrl.TargetHWDeviceType = {'*'};

end % End of LOCCRLREGFCN

If you place this sl_customization.m file in the MATLAB search path or in
the current working folder, the CRL is registered at each Simulink startup.

Tip To refresh Simulink customizations within the current MATLAB
session, use the command sl_refresh_customizations. To refresh
MATLAB Coder CRL registration information within a MATLAB session,
use the command RTW.TargetRegistry.getInstance('reset');.

For more information about registering CRLs with Simulink or MATLAB
Coder software, see “Register Code Replacement Libraries” on page 23-203.

5 With your sl_customization.m file in the MATLAB search path or in the
current working folder, open an ERT-based Simulink model and go to the
Code Generation > Interface pane of the Configuration Parameters
dialog box. Verify that the Code replacement library option lists the
CRL name you specified and select it.

23-14

Introduction to Code Replacement Libraries

Note If you hover over the selected library with the cursor, a tool tip
appears. This tip contains information derived from your CRL registration
file, such as the CRL description and the list of tables it contains.

Optionally, you can relaunch the Code Replacement Viewer, using
the command RTW.viewTFL without arguments, to examine currently
registered CRLs, including Sine Function Example.

6 Create an ERT-based model with a Trigonometric Function block set to the
sine function, for example:

Check that the CRL you registered, Sine Function Example, is selected
for this model.

7 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box and select the options Create code generation
report andModel-to-code. Then go to the Code Generation pane, select
the Generate code only option, and generate code for the model.

8 Go to Simulink Editor and use model-to-code highlighting to trace the
code generated using your CRL entry. For example, right-click the
Trigonometric Function block and select C/C++ Code > Navigate to
C/C++ Code. This selection highlights the sin function code within the
model step function in sinefcn.c. In this case, sin has been replaced
with sin_dbl in the generated code.

23-15

23 Code Replacement

9 If functions were not replaced as you intended, you can use the techniques
described in “Examine and Validate Code Replacement Tables” on page
23-191 to help you determine why the code generation process was unable
to match a function signature with the CRL table entry you created for it.

For example, you can view the CRL cache hits and misses logged during the
most recent build. For the code generation step in this example, there was
one cache hit and zero cache misses, as shown in the following HitCache
and MissCache entries:

>> a=get_param('sinefcn','TargetFcnLibHandle')

a =

RTW.TflControl

Version: '1.0'

HitCache: [1x1 RTW.TflCFunctionEntry]

MissCache: []

TLCCallList: [0x1 handle]

TflTables: [9x1 RTW.TflTable]

TargetHWWordLengths: '8,16,32,32'

SupportNonFinite: 1

TLCSupported: 1

Recording: 0

LoadedLibrary: 'Sine Function Example'

TargetCharacteristics: [1x1 RTW.TargetCharacteristics]

>> a.HitCache(1)

23-16

Introduction to Code Replacement Libraries

ans =

RTW.TflCFunctionEntry handle

Package: RTW

Properties:

.

.

.

Key: 'sin'

Priority: 100

ConceptualArgs: [2x1 RTW.TflArgNumeric]

Implementation: [1x1 RTW.CImplementation]

.

.

.

>>

23-17

23 Code Replacement

Create Code Replacement Tables

In this section...

“Overview of Code Replacement Table Creation” on page 23-18

“Create Table Entries” on page 23-22

“Map Math Functions to Target-Specific Implementations” on page 23-30

“Map memcpy Function to Target-Specific Implementations” on page 23-37

“Map Nonfinite Utility Functions to Target-Specific Implementations” on
page 23-42

“Map Scalar Operators to Target-Specific Implementations” on page 23-47

“Map Nonscalar Operators to Target-Specific Implementations” on page
23-52

“Map Fixed-Point Operators to Target-Specific Implementations” on page
23-82

“Remap Operator Outputs to Implementation Function Inputs” on page
23-118

“Configure Data Alignment for Function Implementations” on page 23-120

“Refine Matching and Replacement Using Custom Entries” on page 23-133

“Replace Math Functions Based on Computation Method” on page 23-150

“Map Semaphore or Mutex Operations to Target-Specific Implementations”
on page 23-152

“Specify Build Information for Code Replacements” on page 23-161

“Add Code Replacement Library Reserved Identifiers” on page 23-165

Overview of Code Replacement Table Creation
To create a CRL table containing replacement information for supported
functions and operators, you perform the following steps.

23-18

Create Code Replacement Tables

Note This procedure uses MATLAB based APIs to create a CRL table. You
can perform the same steps using the Code Replacement Tool graphical
interface. For more information, see “Manage CRTs with the Code
Replacement Tool” on page 23-168.

1 Create a table definition file containing a function definition in the
following general form:

function hTable = crl_table_name()

%CRL_TABLE_NAME - Describe entries for a Code Replacement Library table.

.

.

.

For example, the following sample function definition is from the “Code
Replacement Libraries Quick-Start Example” on page 23-11:

function hTable = crl_table_sinfcn()

%CRL_TABLE_SINFCN - Describe function entries for a Code Replacement Library table.

.

.

.

2 Within the function body, instantiate a CRL table with a command such
as the following:

hTable = RTW.TflTable;

3 Use the CRL table creation functions (listed in the table below) to add
table entries representing your replacements for supported functions and
operators. For each individual function or operator entry, you issue one or
more function calls to

a Instantiate a table entry.

b Add conceptual arguments, implementation arguments, and other
attributes to the entry.

c Add the entry to the table.

23-19

23 Code Replacement

“Create Table Entries” on page 23-22 describes this procedure in detail,
including two methods for creating function entries. The following sample
function entry is from the “Code Replacement Libraries Quick-Start
Example” on page 23-11:

% Create entry for double data type sine function replacement

hTable.registerCFunctionEntry(100, 1, 'sin', 'double', 'sin_dbl', ...

'double', 'sin_dbl.h','','');

4 Save the table definition file using the name of the table definition function,
for example, crl_table_sinfcn.m.

After you have created a table definition file, you can do the following:

• Examine and validate the table, as described in “Examine and Validate
Code Replacement Tables” on page 23-191.

• Register a CRL containing the table with the Simulink software, as
described in “Register Code Replacement Libraries” on page 23-203.

After you register a CRL with the Simulink software, it appears in the
Simulink GUI and can be selected for use in building models.

The following table provides a functional grouping of the CRL table creation
functions.

Function Description

Table entry creation

addEntry Add table entry to collection of table entries registered
in CRL table

copyConceptualArgsToImplementation Copy conceptual argument specifications to matching
implementation arguments for CRL table entry

createAndAddConceptualArg Create conceptual argument from specified properties
and add to conceptual arguments for CRL table entry

createAndAddImplementationArg Create implementation argument from specified
properties and add to implementation arguments for
CRL table entry

23-20

Create Code Replacement Tables

Function Description

createAndSetCImplementationReturn Create implementation return argument from
specified properties and add to implementation for
CRL table entry

enableCPP Enable C++ support for function entry in CRL table

setNameSpace Set name space for C++ function entry in CRL table

setTflCFunctionEntryParameters Set specified parameters for function entry in CRL
table

setTflCOperationEntryParameters Set specified parameters for operator entry in CRL
table

setTflCSemaphoreEntryParameters Set specified parameters for semaphore entry in CRL
table

Alternative method for conceptual argument creation

addConceptualArg Add conceptual argument to array of conceptual
arguments for CRL table entry

addDWorkArg Add DWork argument for semaphore entry in CRL
table

getTflArgFromString Create CRL argument based on specified name and
built-in data type

getTflDWorkFromString Create CRL DWork argument for semaphore entry
based on specified name and data type

Alternative method for function entry creation

registerCFunctionEntry Create CRL function entry based on specified
parameters and register in CRL table

registerCPPFunctionEntry Create CRL C++ function entry based on specified
parameters and register in CRL table

registerCPromotableMacroEntry Create CRL promotable macro entry based on specified
parameters and register in CRL table (for abs function
replacement only)

Build information

addAdditionalHeaderFile Add additional header file to array of additional
header files for CRL table entry

23-21

23 Code Replacement

Function Description

addAdditionalIncludePath Add additional include path to array of additional
include paths for CRL table entry

addAdditionalLinkObj Add additional link object to array of additional link
objects for CRL table entry

addAdditionalLinkObjPath Add additional link object path to array of additional
link object paths for CRL table entry

addAdditionalSourceFile Add additional source file to array of additional source
files for CRL table entry

addAdditionalSourcePath Add additional source path to array of additional
source paths for CRL table entry

Reserved identifiers

setReservedIdentifiers Register specified reserved identifiers to be associated
with CRL table

Create Table Entries

• “Overview of Table Entry Creation” on page 23-22

• “Create Function and Operator Entries” on page 23-25

• “Alternative Method for Creating Function Entries” on page 23-29

Overview of Table Entry Creation
You define CRL table entries by issuing CRL table creation function calls
inside a table definition file. The function calls must follow a function
declaration and a CRL table instantiation, such as the following.

Note This section uses MATLAB based APIs to create a CRL table. You can
perform the same steps using the Code Replacement Tool graphical interface.
For more information, see “Manage CRTs with the Code Replacement Tool”
on page 23-168.

function hTable = crl_table_sinfcn()

23-22

Create Code Replacement Tables

%CRL_TABLE_SINFCN - Describe function entries for a Code Replacement Library table.

hTable = RTW.TflTable;

Within the function body, you use the CRL table creation functions to add
table entries representing your replacements for supported functions and
operators. For each individual function or operator entry, you issue one or
more function calls to

1 Instantiate a table entry.

2 Add conceptual arguments, implementation arguments, and other
attributes to the entry.

3 Add the entry to the table.

The general method for creating function and operator entries, described in
“Create Function and Operator Entries” on page 23-25, uses the functions
shown in the following table.

Function Description

Table entry creation

addEntry Add table entry to collection of table entries registered
in CRL table

copyConceptualArgsToImplementation Copy conceptual argument specifications to matching
implementation arguments for CRL table entry

createAndAddConceptualArg Create conceptual argument from specified properties
and add to conceptual arguments for CRL table entry

createAndAddImplementationArg Create implementation argument from specified
properties and add to implementation arguments for
CRL table entry

createAndSetCImplementationReturn Create implementation return argument from
specified properties and add to implementation for
CRL table entry

enableCPP Enable C++ support for function entry in CRL table

setNameSpace Set name space for C++ function entry in CRL table

23-23

23 Code Replacement

Function Description

setTflCFunctionEntryParameters Set specified parameters for function entry in CRL
table

setTflCOperationEntryParameters Set specified parameters for operator entry in CRL
table

setTflCSemaphoreEntryParameters Set specified parameters for semaphore entry in CRL
table

Alternative method for conceptual argument creation

addConceptualArg Add conceptual argument to array of conceptual
arguments for CRL table entry

addDWorkArg Add DWork argument for semaphore entry in CRL
table

getTflArgFromString Create CRL argument based on specified name and
built-in data type

getTflDWorkFromString Create CRL DWork argument for semaphore entry
based on specified name and data type

A simpler alternative creation method is available for function entries,
with the constraints that input types must be uniform and implementation
arguments must use default Simulink naming. The alternative method uses
the following functions and is described in “Alternative Method for Creating
Function Entries” on page 23-29.

Function Description

Alternative method for function entry creation

registerCFunctionEntry Create CRL function entry based on specified
parameters and register in CRL table

registerCPPFunctionEntry Create CRL C++ function entry based on specified
parameters and register in CRL table

registerCPromotableMacroEntry Create CRL promotable macro entry based on specified
parameters and register in CRL table (for abs function
replacement only)

23-24

Create Code Replacement Tables

Create Function and Operator Entries
The general workflow for creating CRL table entries applies equally to
function and operator replacements, and involves the following steps.

Note

• This section uses MATLAB based APIs to create a CRL table. You can
perform the same steps using the Code Replacement Tool graphical
interface. For more information, see “Manage CRTs with the Code
Replacement Tool” on page 23-168.

• You can remap operator outputs to implementation function inputs
for operator replacement entries (see “Remap Operator Outputs to
Implementation Function Inputs” on page 23-118). However, for function
replacement entries, implementation argument order must match the
conceptual argument order. Remapping the argument order in a function
implementation is not supported.

• For function entries, if your implementations additionally meet the
requirements that all input arguments are of the same type and your
implementation arguments use default Simulink naming (return argument
y1 and input arguments un), you can use a simpler alternative method
for creating the entries, as described in “Alternative Method for Creating
Function Entries” on page 23-29.

1 Within the function body of your table definition file, instantiate a CRL
table entry for a function or operator, using one of the following lines
of code:

fcn_entry =
RTW.TflCFunctionEntry;

Supports function replacement

fcn_entry =
MyCustomFunctionEntry;
(where
MyCustomFunctionEntry
is a class derived from
RTW.TflCFunctionEntry)

Supports function replacement using
custom CRL table entries, described
in “Refine Matching and Replacement
Using Custom Entries” on page 23-133

23-25

23 Code Replacement

op_entry =
RTW.TflCOperationEntry;

Supports operator replacement

op_entry =
RTW.TflCOperationEntry-
Generator;

Provides relative scaling factor (RSF)
fixed-point parameters, described
in “Map Fixed-Point Operators to
Target-Specific Implementations” on
page 23-82, that are not available in
RTW.TflCOperationEntry

op_entry =
RTW.TflCOperationEntry-
Generator_NetSlope;

Provides net slope parameters,
described in “Map Fixed-Point
Operators to Target-Specific
Implementations” on page
23-82, that are not available in
RTW.TflCOperationEntry

op_entry =
RTW.TflBlasEntry-
Generator;

Supports replacement of nonscalar
operators with MathWorks BLAS
functions, described in “Map
Nonscalar Operators to Target-Specific
Implementations” on page 23-52

op_entry =
RTW.TflCBlasEntry-
Generator;

Supports replacement of nonscalar
operators with ANSI/ISO C BLAS
functions, described in “Map
Nonscalar Operators to Target-Specific
Implementations” on page 23-52

op_entry =
MyCustomOperationEntry;
(where
MyCustomOperationEntry
is a class derived from
RTW.TflCOperationEntry)

Supports operator replacement using
custom CRL table entries, described
in “Refine Matching and Replacement
Using Custom Entries” on page 23-133

sem_entry =
RTW.TflCSemaphoreEntry;

Supports semaphore and mutex
replacement, described in “Map
Semaphore or Mutex Operations to
Target-Specific Implementations” on
page 23-152

23-26

Create Code Replacement Tables

2 Set the table entry parameters, which are passed in parameter/value pairs
to one of the following functions:

• setTflCFunctionEntryParameters

• setTflCOperationEntryParameters

• setTflCSemaphoreEntryParameters

For example:

setTflCFunctionEntryParameters(fcn_entry, ...

'Key', 'sin', ...

'Priority', 30, ...

'ImplementationName', 'mySin', ...

'ImplementationHeaderFile', 'basicMath.h',...

'ImplementationSourceFile', 'basicMath.c');

For detailed descriptions of the settable function and operator
attributes, see the setTflCFunctionEntryParameters and
setTflCOperationEntryParameters reference pages.

3 Create and add conceptual arguments to the function or operator entry.
Output arguments must precede input arguments, and the function
signature (including argument naming, order, and attributes) must fulfill
the signature match sought by function or operator callers. Conceptual
argument names follow the default Simulink naming convention:

• For return argument, y1

• For input argument names, u1, u2, ..., un

You can create and add conceptual arguments in either of two ways:

• Call the createAndAddConceptualArg function to create the argument
and add it to the table entry. For example:

createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1',...

'IOType', 'RTW_IO_OUTPUT',...

'DataTypeMode', 'double');

23-27

23 Code Replacement

• Call the getTflArgFromString function to create an argument based on
a built-in data type, and then call the addConceptualArg function to add
the argument to the table entry.

Note If you use getTflArgFromString, the IOType property of the
created argument defaults to 'RTW_IO_INPUT', indicating an input
argument. For an output argument, you must change the IOType value
to 'RTW_IO_OUTPUT' by directly assigning the argument property, as
shown in the following example.

arg = getTflArgFromString(hTable, 'y1', 'int16');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

4 Create and add implementation arguments, representing the signature
of your implementation function, to the function or operator entry. The
implementation argument order must match the conceptual argument
order. You can create and add implementation arguments in either of two
ways:

• Call the copyConceptualArgsToImplementation function to populate
the implementation arguments as copies of the previously created
conceptual arguments. For example:

copyConceptualArgsToImplementation(fcn_entry);

• Call the createAndSetCImplementationReturn function to create the
implementation return argument and add it to the table entry, and
then call the createAndAddImplementationArg function to individually
create and add each of your implementation arguments. This method
allows you to vary argument attributes, including argument naming, as
long as conceptual argument order is maintained. For example:

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'IsSigned', true, ...

'WordLength', 32, ...

'FractionLength', 0);

23-28

Create Code Replacement Tables

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT',...

'IsSigned', true,...

'WordLength', 32, ...

'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT',...

'IsSigned', true,...

'WordLength', 32, ...

'FractionLength', 0);

5 Add the function or operator entry to the CRL table using the addEntry
function. For example:

addEntry(hTable, fcn_entry);

For complete examples of function entries and operator entries created
using the general method, see “Map Math Functions to Target-Specific
Implementations” on page 23-30 and “Map Scalar Operators to Target-Specific
Implementations” on page 23-47. For syntax examples, see the examples in
the CRL table creation function reference pages.

Alternative Method for Creating Function Entries
You can use a simpler alternative method for creating CRL function entries if
your function implementation meets the following criteria:

• The implementation argument order matches the conceptual argument
order.

• All input arguments are of the same type.

• The return argument name and input argument names follow the default
Simulink naming convention:

- For the return argument, y1

- For input argument names, u1, u2, ..., un

23-29

23 Code Replacement

The alternative method for creating function entries involves a single
step. Call one of the following functions to create and add conceptual and
implementation arguments and register the function entry:

• registerCFunctionEntry

• registerCPPFunctionEntry

• registerCPromotableMacroEntry (use only for the abs function)

For example:

hTable = RTW.TflTable;

registerCFunctionEntry(hTable, 100, 1, 'sqrt', 'double', ...

'sqrt', 'double', '<math.h>', '', '');

For detailed descriptions of the function arguments, see the
registerCFunctionEntry, registerCPPFunctionEntry, and
registerCPromotableMacroEntry reference pages.

Map Math Functions to Target-Specific
Implementations
The Embedded Coder software supports the following math functions for
replacement with custom library functions using code replacement library
(CRL) tables.

Note Function replacement supports only scalar inputs. (Operation
replacement supports nonscalar inputs for some matrix operations.)

Math Function Simulink Support Stateflow Support MATLAB functions and
MATLAB Coder Support

abs1 • Floating-point

• Integer

• Fixed-point

• Floating-point

• Integer

Floating-point

acos2 Floating-point Floating-point Floating-point

23-30

Create Code Replacement Tables

Math Function Simulink Support Stateflow Support MATLAB functions and
MATLAB Coder Support

acosh2 Floating-point Not available (NA) Not replaceable (NR)

asin2 Floating-point Floating-point Floating-point

asinh2 Floating-point NA NR

atan2 Floating-point Floating-point Floating-point

atan2 Floating-point Floating-point Floating-point

atanh2 Floating-point NA NR

ceil Floating-point Floating-point Floating-point

cos2,3 Floating-point Floating-point Floating-point

cosh2 Floating-point Floating-point Floating-point

exactrSqrt • Floating-point

• Integer

NA NA

exp Floating-point Floating-point Floating-point

fix Floating-point NA Floating-point

floor Floating-point Floating-point Floating-point

frexp Floating-point NA NA

hypot Floating-point NA Floating-point

ldexp Floating-point Floating-point Floating-point

ln Floating-point NA NA

log Floating-point Floating-point Floating-point

log10 Floating-point Floating-point Floating-point

max • Floating-point

• Integer

• Fixed-point

• Floating-point

• Integer

• Floating-point

• Integer

23-31

23 Code Replacement

Math Function Simulink Support Stateflow Support MATLAB functions and
MATLAB Coder Support

min • Floating-point

• Integer

• Fixed-point

• Floating-point

• Integer

• Floating-point

• Integer

mod/fmod • Floating-point (mod)

• Integer (mod)

Floating-point (fmod) NR

pow Floating-point Floating-point Floating-point

rem Floating-point NA Floating-point

round Floating-point NA Floating-point

rSqrt • Floating-point

• Integer

NA NA

saturate • Floating-point

• Integer

• Fixed-point

NA NA

sign • Floating-point

• Integer

• Fixed-point

NA Floating-point

sin2,3 Floating-point Floating-point Floating-point

sincos2,3 Floating-point NA NA

sinh2 Floating-point Floating-point Floating-point

sqrt • Floating-point

• Integer

• Fixed-point

Floating-point Floating-point

tan2 Floating-point Floating-point Floating-point

23-32

Create Code Replacement Tables

Math Function Simulink Support Stateflow Support MATLAB functions and
MATLAB Coder Support

tanh2 Floating-point Floating-point Floating-point

Notes:
1 abs is supported for wrap on integer overflow only; the block option Saturate on integer
overflow must be cleared.
2 Complex/real type combinations are supported for acos, acosh, asin, asinh, atan, atanh, cos,
cosh, sin, sincos, sinh, tan, and tanh for Simulink code generation (not for Stateflow or
MATLAB Coder code generation). Combinations include complex input/complex output and
real input/complex output.

3 The CORDIC approximation method is supported for sin, cos,and sincos for Simulink code
generation (not for Stateflow or MATLAB Coder code generation).

The following example uses the method described in “Create Function and
Operator Entries” on page 23-25 to create a CRL table entry for the sin
function.

Note

• This example uses MATLAB based APIs to create a CRL table and register
a CRL. You can perform the same steps using the Code Replacement Tool
graphical interface. For more information, see “Manage CRTs with the
Code Replacement Tool” on page 23-168.

• See “Code Replacement Libraries Quick-Start Example” on page 23-11 for
another example of sin function replacement, in which function arguments
are created using the simpler method described in “Alternative Method for
Creating Function Entries” on page 23-29.

1 Create and save the following CRL table definition file,
crl_table_sinfcn2.m. This file defines a CRL table containing a code
replacement entry for the sin function.

23-33

23 Code Replacement

The function body sets selected sine function entry parameters, creates
the y1 and u1 conceptual arguments individually, and then copies the
conceptual arguments to the implementation arguments. Finally the
function entry is added to the table.

function hTable = crl_table_sinfcn2()

%CRL_TABLE_SINFCN2 - Describe function entry for a Code Replacement Library table.

hTable = RTW.TflTable;

% Create entry for sine function replacement

fcn_entry = RTW.TflCFunctionEntry;

setTflCFunctionEntryParameters(fcn_entry, ...

'Key', 'sin', ...

'Priority', 30, ...

'ImplementationName', 'mySin', ...

'ImplementationHeaderFile', 'basicMath.h',...

'ImplementationSourceFile', 'basicMath.c');

createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1',...

'IOType', 'RTW_IO_OUTPUT',...

'DataTypeMode', 'double');

createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT',...

'DataTypeMode', 'double');

copyConceptualArgsToImplementation(fcn_entry);

addEntry(hTable, fcn_entry);

2 Optionally, perform a quick check of the validity of the function entry by
invoking the table definition file at the MATLAB command line (>> tbl =
crl_table_sinfcn2) and by viewing it in the Code Replacement Viewer
(>> RTW.viewTfl(crl_table_sinfcn2)). For more information about
validating CRL tables, see “Examine and Validate Code Replacement
Tables” on page 23-191.

23-34

Create Code Replacement Tables

3 Create and save the following CRL registration file, which references the
crl_table_sinfcn2 table.

The file specifies that the CRL to be registered is named 'Sine Function
Example 2' and consists of crl_table_sinfcn2, with the default ANSI9

math library as the base CRL table.

function sl_customization(cm)

% sl_customization function to register a code replacement library (CRL)

% Register the CRL defined in local function locCrlRegFcn

cm.registerTargetInfo(@locCrlRegFcn);

end % End of SL_CUSTOMIZATION

% Local function to define a CRL containing crl_table_sinfcn2

function thisCrl = locCrlRegFcn

% Instantiate a CRL registry entry

thisCrl = RTW.TflRegistry;

% Define the CRL properties

thisCrl.Name = 'Sine Function Example 2';

thisCrl.Description = 'Example of sine function replacement';

thisCrl.TableList = {'crl_table_sinfcn2'};

thisCrl.BaseTfl = 'C89/C90 (ANSI)';

thisCrl.TargetHWDeviceType = {'*'};

end % End of LOCCRLREGFCN

Place this sl_customization.m file in the MATLAB search path or in the
current working folder, so that the CRL is registered at each Simulink
startup.

9. ANSI® is a registered trademark of the American National Standards Institute, Inc.

23-35

23 Code Replacement

Tip To refresh Simulink customizations within the current MATLAB
session, use the command sl_refresh_customizations. To refresh
MATLAB Coder CRL registration information within a MATLAB session,
use the command RTW.TargetRegistry.getInstance('reset');.

For more information about registering CRLs with Simulink or MATLAB
Coder software, see “Register Code Replacement Libraries” on page 23-203.

4 With your sl_customization.m file in the MATLAB search path or in the
current working folder, open an ERT-based Simulink model and go to the
Code Generation > Interface pane of the Configuration Parameters
dialog box. Verify that the Code replacement library option lists the
CRL name you specified and select it.

Note If you hover over the selected library with the cursor, a tool tip
appears. This tip provides information derived from your CRL registration
file, such as the CRL description and the list of tables it contains.

Optionally, you can relaunch the Code Replacement Viewer, using the
MATLAB command RTW.viewTFL without arguments, to examine the
currently registered CRLs, including Sine Function Example 2.

5 Create an ERT-based model with a Trigonometric Function block set to the
sine function, such as the following:

Check that the CRL you registered, Sine Function Example 2, is selected
for this model.

23-36

Create Code Replacement Tables

6 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box and select the options Create code generation
report andModel-to-code. Then go to the Code Generation pane, select
the Generate code only option, and generate code for the model.

7 Go to the Simulink Editor and use model-to-code highlighting to trace
the code generated using your CRL entry. For example, right-click the
Trigonometric Function block and select C/C++ Code > Navigate to
C/C++ Code. This selection highlights the sin function code within the
model step function in sinefcn.c. In this case, sin has been replaced
with mySin in the generated code.

Map memcpy Function to Target-Specific
Implementations
The Embedded Coder software supports the following memory utility
functions for replacement with custom library functions using code
replacement library (CRL) tables.

memcmp
memcpy
memset
memset2zero

23-37

23 Code Replacement

The following example uses the method described in “Create Function and
Operator Entries” on page 23-25 to create a CRL table entry for the memcpy
function.

Note This example uses MATLAB based APIs to create a CRL table and
register a CRL. You can perform the same steps using the Code Replacement
Tool graphical interface. For more information, see “Manage CRTs with the
Code Replacement Tool” on page 23-168.

1 Create and save the following CRL table definition file,
crl_table_memcpy.m. This file defines a CRL table containing a code
replacement entry for the memcpy function.

The function body sets selected memcpy function entry parameters, creates
the y1, u1, u2, and u3 conceptual arguments individually, adds each
argument to the conceptual arguments array for the function, and then
copies the conceptual arguments to the implementation arguments. Finally
the function entry is added to the table.

function hTable = crl_table_memcpy()

%CRL_TABLE_MEMCPY - Describe memcpy function entry for a CRL table.

hTable = RTW.TflTable;

% Create function replacement entry for void* memcpy(void*, void*, size_t)

fcn_entry = RTW.TflCFunctionEntry;

setTflCFunctionEntryParameters(fcn_entry, ...

'Key', 'memcpy', ...

'Priority', 90, ...

'ImplementationName', 'memcpy_int', ...

'ImplementationHeaderFile', 'memcpy_int.h',...

'SideEffects', true);

% Set SideEffects to 'true' for function returning void to prevent it being

% optimized away

arg = getTflArgFromString(hTable, 'y1', 'void*');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(fcn_entry, arg);

23-38

Create Code Replacement Tables

arg = getTflArgFromString(hTable, 'u1', 'void*');

addConceptualArg(fcn_entry, arg);

arg = getTflArgFromString(hTable, 'u2', 'void*');

addConceptualArg(fcn_entry, arg);

arg = getTflArgFromString(hTable, 'u3', 'size_t');

addConceptualArg(fcn_entry, arg);

copyConceptualArgsToImplementation(fcn_entry);

addEntry(hTable, fcn_entry);

2 Optionally, perform a quick check of the validity of the memcpy entry by
invoking the table definition file at the MATLAB command line (>> tbl =
crl_table_memcpy) and by viewing it in the Code Replacement Viewer (>>
RTW.viewTfl(crl_table_memcpy)). For more information about validating
CRL tables, see “Examine and Validate Code Replacement Tables” on page
23-191.

3 Create and save the following CRL registration file, which references the
crl_table_memcpy table.

The file specifies that the CRL to be registered is named 'Memcpy Function
Example' and consists of crl_table_memcpy, with the default ANSI10 math
library as the base CRL table.

function sl_customization(cm)

% sl_customization function to register a code replacement library (CRL)

% Register the CRL defined in local function locCrlRegFcn

cm.registerTargetInfo(@locCrlRegFcn);

end % End of SL_CUSTOMIZATION

% Local function to define a CRL containing crl_table_memcpy

function thisCrl = locCrlRegFcn

10. ANSI® is a registered trademark of the American National Standards Institute, Inc.

23-39

23 Code Replacement

% Instantiate a CRL registry entry

thisCrl = RTW.TflRegistry;

% Define the CRL properties

thisCrl.Name = 'Memcpy Function Example';

thisCrl.Description = 'Example of memcpy function replacement';

thisCrl.TableList = {'crl_table_memcpy'};

thisCrl.BaseTfl = 'C89/C90 (ANSI)';

thisCrl.TargetHWDeviceType = {'*'};

end % End of LOCCRLREGFCN

Place this sl_customization.m file in the MATLAB search path or in the
current working folder, so that the CRL is registered at each Simulink
startup.

Tip To refresh Simulink customizations within the current MATLAB
session, use the command sl_refresh_customizations. To refresh
MATLAB Coder CRL registration information within a MATLAB session,
use the command RTW.TargetRegistry.getInstance('reset');.

For more information about registering CRLs with Simulink or MATLAB
Coder software, see “Register Code Replacement Libraries” on page 23-203.

4 With your sl_customization.m file in the MATLAB search path or in the
current working folder, open an ERT-based Simulink model and go to the
Code Generation > Interface pane of the Configuration Parameters
dialog box. Verify that the Code replacement library option lists the
CRL name you specified and select it.

Note If you hover over the selected library with the cursor, a tool tip
appears. This tip provides information derived from your CRL registration
file, such as the CRL description and the list of tables it contains.

23-40

Create Code Replacement Tables

Optionally, you can relaunch the Code Replacement Viewer, using the
MATLAB command RTW.viewTFL without arguments, to examine the
currently registered CRLs, including Memcpy Function Example.

5 Create an ERT-based model that uses memcpy for vector assignments. For
example,

a Use In, Out, and Mux blocks to create the following model.
(Alternatively, you can open rtwdemo_crlmath/Subsystem1 and copy
the subsystem contents to a new model.)

b Select the diagram and use Edit > Subsystem to make it a subsystem.

c Select an ERT-based system target file on the Code Generation
pane of the Configuration Parameters dialog box, and select the
CRL you registered, Memcpy Function Example, on the Code
Generation > Interface pane. You should also select a fixed-step
solver on the Solver pane. Leave the memcpy options on the
Optimization > Signals and Parameters pane at their default
settings, that is, Use memcpy for vector assignment is selected, and
Memcpy threshold (bytes) at 64. Apply the changes.

d Open Model Explorer and configure the Signal Attributes for the In1,
In2, and In3 source blocks. For each, set Port dimensions to [1,100],
and set Data type to int32. Apply the changes. Save the model.

6 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box and select the Create code generation report.
Then go to the Code Generation pane, select the Generate code only
option, and generate code for the model. When code generation completes,
the HTML code generation report is displayed.

23-41

23 Code Replacement

7 In the HTML code generation report, click on the model.c section (for
example, memcpyfcn.c) and inspect the model step function to confirm that
memcpy has been replaced with memcpy_int in the generated code.

Map Nonfinite Utility Functions to Target-Specific
Implementations
The Embedded Coder software supports the following nonfinite support
utility functions for replacement with custom library functions using code
replacement library (CRL) tables.

GetInf
GetMinusInf
GetNaN
IsInf
IsNan

Note

• Replacement of nonfinite functions is supported for Simulink code
generation (not for Stateflow or MATLAB Coder code generation).

• IsInf and IsNan are supported only for complex floating-point inputs.

23-42

Create Code Replacement Tables

The following example uses the method described in “Create Function and
Operator Entries” on page 23-25 to create CRL table entries for the nonfinite
functions.

1 Create and save the following CRL table definition file,
crl_table_nonfinite.m. This file defines a CRL table containing code
replacement entries for three nonfinite functions.

For each function, the function body uses the local function locAddFcnEnt
to create entries for single and double replacement. For each entry, the
local function sets selected function entry parameters, creates the y1 and
u1 conceptual arguments individually, and then copies the conceptual
arguments to the implementation arguments. Finally the function entry
is added to the table.

function hTable = crl_table_nonfinite()

%CRL_TABLE_NONFINITE - Describe function entries for a CRL table.

hTable = RTW.TflTable;

%% Create entries for nonfinite support utility functions

%locAddFcnEnt(hTable, key, implName, out, in1, hdr)

locAddFcnEnt(hTable, 'getNaN', 'getNaN', 'double', 'void', 'nonfin.h');

locAddFcnEnt(hTable, 'getNaN', 'getNaNF', 'single', 'void', 'nonfin.h');

locAddFcnEnt(hTable, 'getInf', 'getInf', 'double', 'void', 'nonfin.h');

locAddFcnEnt(hTable, 'getInf', 'getInfF', 'single', 'void', 'nonfin.h');

locAddFcnEnt(hTable, 'getMinusInf', 'getMinusInf', 'double', 'void', 'nonfin.h');

locAddFcnEnt(hTable, 'getMinusInf', 'getMinusInfF', 'single', 'void', 'nonfin.h');

%% Local Function

function locAddFcnEnt(hTable, key, implName, out, in1, hdr)

if isempty(hTable)

return;

end

fcn_entry = RTW.TflCFunctionEntry;

setTflCFunctionEntryParameters(fcn_entry, ...

'Key', key, ...

'Priority', 90, ...

'ImplementationName', implName, ...

23-43

23 Code Replacement

'ImplementationHeaderFile', hdr);

arg = getTflArgFromString(hTable, 'y1', out);

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(fcn_entry, arg);

arg = getTflArgFromString(hTable, 'u1', in1);

addConceptualArg(fcn_entry, arg);

copyConceptualArgsToImplementation(fcn_entry);

addEntry(hTable, fcn_entry);

%EOF

2 Optionally, perform a quick check of the validity of the nonfinite function
entries by invoking the table definition file at the MATLAB command
line (>> tbl = crl_table_nonfinite) and by viewing it in the Code
Replacement Viewer (>> RTW.viewTfl(crl_table_nonfinite)). For more
information about validating CRL tables, see “Examine and Validate Code
Replacement Tables” on page 23-191.

3 Create and save the following CRL registration file, which references the
crl_table_nonfinite table.

The file specifies that the CRL to be registered is named 'Nonfinite
Functions Example' and consists of crl_table_nonfinite, with the
default ANSI11 math library as the base CRL table.

function sl_customization(cm)

% sl_customization function to register a code replacement library (CRL)

% Register the CRL defined in local function locCrlRegFcn

cm.registerTargetInfo(@locCrlRegFcn);

end % End of SL_CUSTOMIZATION

% Local function to define a CRL containing crl_table_nonfinite

11. ANSI® is a registered trademark of the American National Standards Institute, Inc.

23-44

Create Code Replacement Tables

function thisCrl = locCrlRegFcn

% Instantiate a CRL registry entry

thisCrl = RTW.TflRegistry;

% Define the CRL properties

thisCrl.Name = 'Nonfinite Functions Example';

thisCrl.Description = 'Example of nonfinite functions replacement';

thisCrl.TableList = {'crl_table_nonfinite'};

thisCrl.BaseTfl = 'C89/C90 (ANSI)';

thisCrl.TargetHWDeviceType = {'*'};

end % End of LOCCRLREGFCN

Place this sl_customization.m file in the MATLAB search path or in the
current working folder, so that the CRL is registered at each Simulink
startup.

Tip To refresh Simulink customizations within the current MATLAB
session, use the command sl_refresh_customizations. To refresh
MATLAB Coder CRL registration information within a MATLAB session,
use the command RTW.TargetRegistry.getInstance('reset');.

For more information about registering CRLs with Simulink or MATLAB
Coder software, see “Register Code Replacement Libraries” on page 23-203.

4 With your sl_customization.m file in the MATLAB search path or in the
current working folder, open an ERT-based Simulink model and go to the
Code Generation > Interface pane of the Configuration Parameters
dialog box. Verify that the Code replacement library option lists the
CRL name you specified and select it.

Note If you hover over the selected library with the cursor, a tool tip
appears. This tip provides information derived from your CRL registration
file, such as the CRL description and the list of tables it contains.

23-45

23 Code Replacement

Optionally, you can relaunch the Code Replacement Viewer, using the
MATLAB command RTW.viewTFL without arguments, to examine the
currently registered CRLs, including Nonfinite Functions Example.

5 Create an ERT-based model with a Math Function block set to the rem
function, such as the following:

Open Model Explorer. Select the Support: non-finite numbers
parameter on the Code Generation > Interface pane of the Configuration
Parameters dialog box and configure the Signal Attributes for the In1
and Constant source blocks. For each source block, set Data type to
double. Apply the changes. Save the model.

Check that the CRL you registered, Nonfinite Functions Example, is
selected for this model.

6 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box and select the option Create code generation
report. Then go to the Code Generation pane, select the Generate code
only option, and generate code for the model.

7 In the HTML code generation report, click on the rtnonfinite.c link and
inspect the rt_InitInfAndNaN function to confirm that your replacements
for nonfinite support functions are present in the generated code.

23-46

Create Code Replacement Tables

Map Scalar Operators to Target-Specific
Implementations
The Embedded Coder software supports the following scalar operators for
replacement with custom library functions using code replacement library
(CRL) tables:

Operator Key

Addition (+) RTW_OP_ADD

Subtraction (-) RTW_OP_MINUS

Multiplication (*) RTW_OP_MUL

Division (/) RTW_OP_DIV

Data type conversion (cast) RTW_OP_CAST

Shift left (<<)
[integer and fixed-point data
types]

RTW_OP_SL

23-47

23 Code Replacement

Operator Key

Shift right (>>)
[integer and fixed-point data
types]

RTW_OP_SRA (arithmetic)1

RTW_OP_SRL (logical)

Complex conjugation RTW_OP_CONJUGATE

Notes:
1 CRLs that provide arithmetic shift right implementations should also
provide logical shift right implementations, because some arithmetic shift
rights are converted to logical shift rights during code generation.

Unless otherwise stated, the listed operators are supported for the following
input data types:

• single, double, and their complex equivalents

• int8, int16, int32, and their complex equivalents

• uint8, uint16, uint32, and their complex equivalents

• Fixed-point data types

• Mixed data types (different types for different inputs)

The following example uses the method described in “Create Function and
Operator Entries” on page 23-25 to create a CRL table entry for the +
(addition) operator.

Note This example uses MATLAB based APIs to create a CRL table and
register a CRL. You can perform the same steps using the Code Replacement
Tool graphical interface. For more information, see “Manage CRTs with the
Code Replacement Tool” on page 23-168.

1 Create and save the following CRL table definition file,
crl_table_add_uint8.m. This file defines a CRL table containing an
operator replacement entry for the + (addition) operator.

The function body sets selected addition operator entry parameters, creates
the y1, u1, and u2 conceptual arguments individually, and then copies

23-48

Create Code Replacement Tables

the conceptual arguments to the implementation arguments. Finally, the
operator entry is added to the table.

function hTable = crl_table_add_uint8

%CRL_TABLE_ADD_UINT8 - Describe operator entry for a Code Replacement Library table.

hTable = RTW.TflTable;

% Create entry for addition of built-in uint8 data type

% Saturation on, Rounding unspecified

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_ADD', ...

'Priority', 90, ...

'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

'ImplementationName', 'u8_add_u8_u8', ...

'ImplementationHeaderFile', 'u8_add_u8_u8.h', ...

'ImplementationSourceFile', 'u8_add_u8_u8.c');

arg = getTflArgFromString(hTable, 'y1', 'uint8');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

arg = getTflArgFromString(hTable, 'u1', 'uint8');

addConceptualArg(op_entry, arg);

arg = getTflArgFromString(hTable, 'u2', 'uint8');

addConceptualArg(op_entry, arg);

copyConceptualArgsToImplementation(op_entry);

addEntry(hTable, op_entry);

2 Optionally, perform a quick check of the validity of the operator entry by
invoking the table definition file at the MATLAB command line (>> tbl =
crl_table_add_uint8) and by viewing it in the Code Replacement Viewer
(>> RTW.viewTfl(crl_table_add_uint8)).

23-49

23 Code Replacement

For more information about validating CRL tables, see “Examine and
Validate Code Replacement Tables” on page 23-191.

3 Create and save the following CRL registration file, which references the
crl_table_add_uint8 table.

The file specifies that the CRL to be registered is named 'Addition
Operator Example' and consists of crl_table_add_uint8, with the
default ANSI math library as the base CRL table.

function sl_customization(cm)

% sl_customization function to register a code replacement library (CRL)

% Register the CRL defined in local function locCrlRegFcn

cm.registerTargetInfo(@locCrlRegFcn);

end % End of SL_CUSTOMIZATION

% Local function to define a CRL containing crl_table_add_uint8

function thisCrl = locCrlRegFcn

% Instantiate a CRL registry entry

thisCrl = RTW.TflRegistry;

% Define the CRL properties

thisCrl.Name = 'Addition Operator Example';

thisCrl.Description = 'Example of addition operator replacement';

thisCrl.TableList = {'crl_table_add_uint8'};

thisCrl.BaseTfl = 'C89/C90 (ANSI)';

thisCrl.TargetHWDeviceType = {'*'};

end % End of LOCCRLREGFCN

Place this sl_customization.m file in the MATLAB search path or in the
current working folder, so that the CRL is registered at each Simulink
startup.

23-50

Create Code Replacement Tables

Tip To refresh Simulink customizations within the current MATLAB
session, use the command sl_refresh_customizations. To refresh
MATLAB Coder CRL registration information within a MATLAB session,
use the command RTW.TargetRegistry.getInstance('reset');.

For more information about registering CRLs with Simulink or MATLAB
Coder software, see “Register Code Replacement Libraries” on page 23-203.

4 With your sl_customization.m file in the MATLAB search path or in the
current working folder, open an ERT-based Simulink model and go to the
Code Generation > Interface pane of the Configuration Parameters
dialog box. Verify that the Code replacement library option lists the
CRL name you specified and select it.

Note If you hover over the selected library with the cursor, a tool tip
appears. This tip provides information derived from your CRL registration
file, such as the CRL description and the list of tables it contains.

Optionally, you can relaunch the Code Replacement Viewer, using the
MATLAB command RTW.viewTFL without arguments, to examine The
currently registered CRLs, including Addition Operator Example.

5 Create an ERT-based model with an Add block, such as the following:

Check that the CRL you registered, Addition Operator Example, is
selected for this model.

23-51

23 Code Replacement

6 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box and select the options Create code generation
report andModel-to-code. Then go to the Code Generation pane, select
the Generate code only option, and generate code for the model.

7 Go to Simulink Editor and use model-to-code highlighting to trace the
code generated using your CRL entry. For example, right-click the Add
block and select C/C++ Code > Navigate to C/C++ Code. This selection
highlights the Sum block code within the model step function in add8.c.
In this case, code containing the + operator has been replaced with
u8_add_u8_u8 in the generated code.

Map Nonscalar Operators to Target-Specific
Implementations

• “Map Small Matrix Operations to Intrinsic Functions” on page 23-54

• “Map Matrix Multiplication to MathWorks BLAS Functions” on page 23-60

• “Map Matrix Multiplication to ANSI/ISO C BLAS Functions” on page 23-71

The Embedded Coder software supports the following nonscalar operators for
replacement with custom library functions using code replacement library
(CRL) tables:

23-52

Create Code Replacement Tables

Operator Key

Addition (+) RTW_OP_ADD

Subtraction (-) RTW_OP_MINUS

Multiplication (*) RTW_OP_MUL

Element-wise matrix
multiplication (.*)

RTW_OP_ELEM_MUL1

Matrix right division (/) RTW_OP_RDIV2

Matrix left division (/) RTW_OP_LDIV2

Matrix inversion (inv) RTW_OP_INV2

Complex conjugation RTW_OP_CONJUGATE

Transposition (.') RTW_OP_TRANS

Hermitian (complex conjugate)
transposition (')

RTW_OP_HERMITIAN

Multiplication with
transposition

RTW_OP_TRMUL

Multiplication with Hermitian
transposition

RTW_OP_HMMUL

Notes:
1 For scalar multiplication, use RTW_OP_MUL.
2 Matrix division and inversion are supported for Simulink code generation
(not for Stateflow or MATLAB Coder code generation).

These operators are supported for the following input data types:

• single, double, and their complex equivalents

• int8, int16, int32, and their complex equivalents

• uint8, uint16, uint32, and their complex equivalents

• Fixed-point data types

• Mixed data types (different types for different inputs)

23-53

23 Code Replacement

Note Saturation and rounding modes are ignored for floating-point
nonscalar addition and subtraction. In CRL table entries for nonscalar
addition and subtraction, if the argument data types are all floating-point,
the setTflCOperationEntryParameters function call should register
'RTW_SATURATE_UNSPECIFIED' for the SaturationMode parameter and
{'RTW_ROUND_UNSPECIFIED'} for the RoundingModes parameter.

Map Small Matrix Operations to Intrinsic Functions
You can efficiently implement small matrix operations by invoking
processor-specific intrinsic functions. The following example uses the method
described in “Create Function and Operator Entries” on page 23-25 to create
a CRL table entry mapping small matrix sum operations to implementation
functions that could invoke processor-specific intrinsic functions.

Note

• This example uses MATLAB based APIs to create a CRL table and register
a CRL. You can perform the same steps using the Code Replacement Tool
graphical interface. For more information, see “Manage CRTs with the
Code Replacement Tool” on page 23-168.

• For examples of replacing other matrix operations and handling other
data types, see the Matrix Operator Replacement section of the CRL
examples page rtwdemo_crl_script, including the example model
rtwdemo_crlmatops and its associated files.

1 Create and save the following CRL table definition file,
crl_table_matrix_add_double.m. This file defines a CRL table containing
two matrix operator replacement entries for the + (addition) operator and
the double data type.

The function body sets selected addition operator entry parameters, creates
the y1, u1, and u2 conceptual arguments individually, and then configures
the implementation arguments. Finally, the operator entry is added to
the table.

23-54

Create Code Replacement Tables

To specify a matrix argument to createAndAddConceptualArg, use the
CRL argument class RTW.TflArgMatrix and specify the base type and the
dimensions for which the argument is valid. In this example, the first table
entry specifies [2 2] and the second table entry specifies [3 3].

function hTable = crl_table_matrix_add_double

%CRL_TABLE_MATRIX_ADD_DOUBLE - Describe two matrix operator entries for a CRL table.

hTable = RTW.TflTable;

LibPath = fullfile(matlabroot, 'toolbox', 'rtw', 'rtwdemos', 'crl_demo');

% Create table entry for matrix_sum_2x2_double

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_ADD', ...

'Priority', 30, ...

'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

'ImplementationName', 'matrix_sum_2x2_double', ...

'ImplementationHeaderFile', 'MatrixMath.h', ...

'ImplementationSourceFile', 'MatrixMath.c', ...

'ImplementationHeaderPath', LibPath, ...

'ImplementationSourcePath', LibPath, ...

'AdditionalIncludePaths', {LibPath}, ...

'GenCallback', 'RTW.copyFileToBuildDir', ...

'SideEffects', true);

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'BaseType', 'double', ...

'DimRange', [2 2]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

'Name', 'u1', ...

'BaseType', 'double', ...

'DimRange', [2 2]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

'Name', 'u2', ...

'BaseType', 'double', ...

23-55

23 Code Replacement

'DimRange', [2 2]);

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

% Create table entry for matrix_sum_3x3_double

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_ADD', ...

'Priority', 30, ...

'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

'ImplementationName', 'matrix_sum_3x3_double', ...

'ImplementationHeaderFile', 'MatrixMath.h', ...

'ImplementationSourceFile', 'MatrixMath.c', ...

'ImplementationHeaderPath', LibPath, ...

'ImplementationSourcePath', LibPath, ...

'AdditionalIncludePaths', {LibPath}, ...

'GenCallback', 'RTW.copyFileToBuildDir', ...

'SideEffects', true);

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'BaseType', 'double', ...

'DimRange', [3 3]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

'Name', 'u1', ...

'BaseType', 'double', ...

23-56

Create Code Replacement Tables

'DimRange', [3 3]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

'Name', 'u2', ...

'BaseType', 'double', ...

'DimRange', [3 3]);

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

2 Optionally, perform a quick check of the validity of the operator entries
by invoking the table definition file at the MATLAB command line (>>
tbl = crl_table_matrix_add_double) and by viewing it in the Code
Replacement Viewer (>> RTW.viewTfl(crl_table_matrix_add_double)).

For more information about validating CRL tables, see “Examine and
Validate Code Replacement Tables” on page 23-191.

3 Create and save the following CRL registration file, which references the
crl_table_matrix_add_double table.

The file specifies that the CRL to be registered is named 'Matrix Addition
Operator Example' and consists of crl_table_matrix_add_double, with
the default ANSI math library as the base CRL table.

function sl_customization(cm)

% sl_customization function to register a code replacement library (CRL)

% Register the CRL defined in local function locCrlRegFcn

cm.registerTargetInfo(@locCrlRegFcn);

23-57

23 Code Replacement

end % End of SL_CUSTOMIZATION

% Local function to define a CRL containing crl_table_matrix_add_double

function thisCrl = locCrlRegFcn

% Instantiate a CRL registry entry

thisCrl = RTW.TflRegistry;

% Define the CRL properties

thisCrl.Name = 'Matrix Addition Operator Example';

thisCrl.Description = 'Example of matrix addition operator replacement';

thisCrl.TableList = {'crl_table_matrix_add_double'};

thisCrl.BaseTfl = 'C89/C90 (ANSI)';

thisCrl.TargetHWDeviceType = {'*'};

end % End of LOCCRLREGFCN

Place this sl_customization.m file in the MATLAB search path or in the
current working folder, so that the CRL is registered at each Simulink
startup.

Tip To refresh Simulink customizations within the current MATLAB
session, use the command sl_refresh_customizations. To refresh
MATLAB Coder CRL registration information within a MATLAB session,
use the command RTW.TargetRegistry.getInstance('reset');.

For more information about registering CRLs with Simulink or MATLAB
Coder software, see “Register Code Replacement Libraries” on page 23-203.

4 With your sl_customization.m file in the MATLAB search path or in the
current working folder, open an ERT-based Simulink model and go to the
Code Generation > Interface pane of the Configuration Parameters
dialog box. Verify that the Code replacement library option lists the
CRL name you specified and select it.

23-58

Create Code Replacement Tables

Note If you hover over the selected library with the cursor, a tool tip
appears. This tip provides information derived from your CRL registration
file, such as the CRL description and the list of tables it contains.

Optionally, you can relaunch the Code Replacement Viewer, using
the MATLAB command RTW.viewTFL without arguments, to examine
the currently registered CRLs, including Matrix Addition Operator
Example.

5 Create an ERT-based model with an Add block, such as the following:

Configure the Signal Attributes for the In1 and In2 source blocks. For
each source block, set Port dimensions to [3 3] and set the Data type
to double. Also, go to the Solver pane of the Configuration Parameters
dialog box and select a fixed-step, discrete solver with a fixed-step size such
as 0.1. Apply the changes. Save the model.

Check that the CRL you registered, Matrix Addition Operator Example,
is selected for this model.

6 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box and select the options Create code generation
report andModel-to-code. Then go to the Code Generation pane, select
the Generate code only option, and generate code for the model.

7 Go to Simulink Editor and use model-to-code highlighting to trace the
code generated using your CRL entry. For example, right-click the
Add block and select C/C++ Code > Navigate to C/C++ Code. This
selection highlights the Sum block code within the model step function
in matrixadd.c. In this case, code containing the + operator has been
replaced with matrix_sum_3x3_double in the generated code.

23-59

23 Code Replacement

Note Optionally, you can reconfigure the In1 and In2 block Port
dimensions to [2 2], regenerate code, and observe that code containing
the + operator is replaced with matrix_sum_2x2_double.

Map Matrix Multiplication to MathWorks BLAS Functions
You can use CRL tables to map nonscalar multiplication operations to the
Basic Linear Algebra Subroutine (BLAS) multiplication functions xgemm and
xgemv. The following example uses the method described in “Create Function
and Operator Entries” on page 23-25 to create a CRL table entry mapping
floating-point matrix/matrix and matrix/vector multiplication operations to
MathWorks BLAS library multiplication functions.

23-60

Create Code Replacement Tables

Note

• This example uses MATLAB based APIs to create a CRL table and register
a CRL. You can perform the same steps using the Code Replacement Tool
graphical interface. For more information, see “Manage CRTs with the
Code Replacement Tool” on page 23-168.

• For examples of handling other data types, see the BLAS Support section
of the CRL examples page rtwdemo_crl_script, including the example
model rtwdemo_crlblas and its associated files.

BLAS libraries support matrix/matrix multiplication in the form of

C = a(op(A) * op(B)) + bC , where op(X) means X, transposition of X, or
Hermitian transposition of X. However, CRLs support only the limited case of

C = op(A) * op(B) (a = 1.0, b = 0.0) . Correspondingly, although BLAS libraries

support matrix/vector multiplication in the form of y = a(op(A) * x) + by ,

CRLs support only the limited case of y = op(A) * x (a = 1.0, b = 0.0) .

1 Create and save the following CRL table definition file,
crl_table_tmwblas_mmult_double.m. This file defines a CRL table
containing dgemm and dgemv replacement entries for the matrix
multiplication operator and the double data type.

For each entry, the function body sets selected matrix multiplication
operator entry parameters, creates the y1, u1, and u2 conceptual arguments
individually, and then configures special implementation arguments that
are required for dgemm and dgemv replacements. Finally, each operator
entry is added to the table.

To specify a matrix argument to createAndAddConceptualArg, use the
CRL argument class RTW.TflArgMatrix and specify the base type and
the dimensions for which the argument is valid. This type of table entry
supports a range of dimensions specified in the format [Dim1Min Dim2Min
... DimNMin; Dim1Max Dim2Max ... DimNMax]. For example, [2 2;
inf inf] means any two-dimensional matrix of size 2x2 or larger. In
this example, the conceptual output argument for the dgemm32 entry for

23-61

23 Code Replacement

matrix/matrix multiplication replacement specifies dimensions [2 2;
inf inf], while the conceptual output argument for the dgemv32 entry
for matrix/vector multiplication replacement specifies dimensions [2 1;
inf 1].

function hTable = crl_table_tmwblas_mmult_double

%CRL_TABLE_TMWBLAS_MMULT_DOUBLE - Describe two mmult operator entries for CRL table.

hTable = RTW.TflTable;

% Define library path for Windows or UNIX

arch = computer('arch');

if ~ispc

LibPath = fullfile('$(MATLAB_ROOT)', 'bin', arch);

else

% Use Stateflow to get the compiler info

compilerInfo = sf('Private','compilerman','get_compiler_info');

compilerName = compilerInfo.compilerName;

if strcmp(compilerName, 'msvc90') || ...

strcmp(compilerName, 'msvc80') || ...

strcmp(compilerName, 'msvc71') || ...

strcmp(compilerName, 'msvc60'), ...

compilerName = 'microsoft';

end

LibPath = fullfile('$(MATLAB_ROOT)', 'extern', 'lib', arch, compilerName);

end

% Create table entry for dgemm32

op_entry = RTW.TflBlasEntryGenerator;

if ispc

libExt = 'lib';

elseif ismac

libExt = 'dylib';

else

libExt = 'so';

end

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_MUL', ...

'Priority', 100, ...

'ImplementationName', 'dgemm32', ...

23-62

Create Code Replacement Tables

'ImplementationHeaderFile', 'blascompat32.h', ...

'ImplementationHeaderPath', fullfile('$(MATLAB_ROOT)','extern','include'), ...

'AdditionalLinkObjs', {['libmwblascompat32.' libExt]}, ...

'AdditionalLinkObjsPaths', {LibPath}, ...

'SideEffects', true);

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'BaseType', 'double', ...

'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

'Name', 'u1', ...

'BaseType', 'double', ...

'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

'Name', 'u2', ...

'BaseType', 'double', ...

'DimRange', [1 1; inf inf]);

% Using RTW.TflBlasEntryGenerator for xgemm requires the following

% implementation signature:

%

% void f(char* TRANSA, char* TRANSB, int* M, int* N, int* K,

% type* ALPHA, type* u1, int* LDA, type* u2, int* LDB,

% type* BETA, type* y, int* LDC)

%

% Upon a match, the CRL entry will compute the

% values for M, N, K, LDA, LDB, and LDC and insert them into the

% generated code. TRANSA and TRANSB both will be set to 'N'.

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = RTW.TflArgCharConstant('TRANSA');

% Possible values for PassByType property are

23-63

23 Code Replacement

% RTW_PASSBY_AUTO, RTW_PASSBY_POINTER,

% RTW_PASSBY_VOID_POINTER, RTW_PASSBY_BASE_POINTER

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

arg = RTW.TflArgCharConstant('TRANSB');

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'M', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'N', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'K', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'ALPHA', 'double', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDA', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

23-64

Create Code Replacement Tables

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDB', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'BETA', 'double', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDC', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

% Create table entry for dgemv32

op_entry = RTW.TflBlasEntryGenerator;

if ispc

libExt = 'lib';

elseif ismac

libExt = 'dylib';

else

libExt = 'so';

end

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_MUL', ...

'Priority', 100, ...

'ImplementationName', 'dgemv32', ...

'ImplementationHeaderFile', 'blascompat32.h', ...

23-65

23 Code Replacement

'ImplementationHeaderPath', fullfile('$(MATLAB_ROOT)','extern','include'), ...

'AdditionalLinkObjs', {['libmwblascompat32.' libExt]}, ...

'AdditionalLinkObjsPaths', {LibPath},...

'SideEffects', true);

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'BaseType', 'double', ...

'DimRange', [2 1; inf 1]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

'Name', 'u1', ...

'BaseType', 'double', ...

'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

'Name', 'u2', ...

'BaseType', 'double', ...

'DimRange', [1 1; inf 1]);

% Using RTW.TflBlasEntryGenerator for xgemv requires the following

% implementation signature:

%

% void f(char* TRANS, int* M, int* N,

% type* ALPHA, type* u1, int* LDA, type* u2, int* INCX,

% type* BETA, type* y, int* INCY)

%

% Upon a match, the CRL entry will compute the

% values for M, N, LDA, INCX, and INCY, and insert them into the

% generated code. TRANS will be set to 'N'.

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = RTW.TflArgCharConstant('TRANS');

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

23-66

Create Code Replacement Tables

arg = getTflArgFromString(hTable, 'M', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'N', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'ALPHA', 'double', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDA', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'INCX','integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'BETA', 'double', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

23-67

23 Code Replacement

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'INCY', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

2 Optionally, perform a quick check of the validity of the operator
entries by invoking the table definition file at the MATLAB
command line (>> tbl = crl_table_tmwblas_mmult_double)
and by viewing it in the Code Replacement Viewer (>>
RTW.viewTfl(crl_table_tmwblas_mmult_double)).

For more information about validating CRL tables, see “Examine and
Validate Code Replacement Tables” on page 23-191.

3 Create and save the following CRL registration file, which references the
crl_table_tmwblas_mmult_double table.

The file specifies that the CRL to be registered is named 'MathWorks
BLAS Matrix Multiplication Operator Example' and consists of
crl_table_tmwblas_mmult_double, with the default ANSI math library
as the base CRL table.

function sl_customization(cm)

% sl_customization function to register a code replacement library (CRL)

% Register the CRL defined in local function locCrlRegFcn

cm.registerTargetInfo(@locCrlRegFcn);

end % End of SL_CUSTOMIZATION

% Local function to define a CRL containing crl_table_tmwblas_mmult_double

function thisCrl = locCrlRegFcn

23-68

Create Code Replacement Tables

% Instantiate a CRL registry entry

thisCrl = RTW.TflRegistry;

% Define the CRL properties

thisCrl.Name = 'MathWorks BLAS Matrix Multiplication Operator Example';

thisCrl.Description = 'Example of MathWorks BLAS mmult operator replacement';

thisCrl.TableList = {'crl_table_tmwblas_mmult_double'};

thisCrl.BaseTfl = 'C89/C90 (ANSI)';

thisCrl.TargetHWDeviceType = {'*'};

end % End of LOCCRLREGFCN

Place this sl_customization.m file in the MATLAB search path or in the
current working folder, so that the CRL is registered at each Simulink
startup.

Tip To refresh Simulink customizations within the current MATLAB
session, use the command sl_refresh_customizations. To refresh
MATLAB Coder CRL registration information within a MATLAB session,
use the command RTW.TargetRegistry.getInstance('reset');.

For more information about registering CRLs with Simulink or MATLAB
Coder software, see “Register Code Replacement Libraries” on page 23-203.

4 With your sl_customization.m file in the MATLAB search path or in the
current working folder, open an ERT-based Simulink model and go to the
Code Generation > Interface pane of the Configuration Parameters
dialog box. Verify that the Code replacement library option lists the
CRL name you specified and select it.

Note If you hover over the selected library with the cursor, a tool tip
appears. This tip provides information derived from your CRL registration
file, such as the CRL description and the list of tables it contains.

23-69

23 Code Replacement

Optionally, you can relaunch the Code Replacement Viewer, using
the MATLAB command RTW.viewTFL without arguments, to examine
the currently registered CRLs, including MathWorks BLAS Matrix
Multiplication Operator Example.

5 Create an ERT-based model with two Product blocks, such as the following:

a For each Product block, set the block parameter Multiplication to the
value Matrix(*).

b Configure the Signal Attributes for the In1, In2, and In3 source
blocks. For In1 and In2, set Port dimensions to [3 3] and set the
Data type to double. For In3, set Port dimensions to [3 1] and set
the Data type to double.

c Also, go to the Solver pane of the Configuration Parameters dialog box
and select a fixed-step, discrete solver with a fixed-step size such as 0.1.
Apply the changes.

d Save the model.

e Check that the CRL you registered, MathWorks BLAS Matrix
Multiplication Operator Example, is selected for this model.

6 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box and select the options Create code generation
report andModel-to-code. Then go to the Code Generation pane, select
the Generate code only option, and generate code for the model.

7 Go to Simulink Editor and use model-to-code highlighting to trace the code
generated using your CRL entry. For example, right-click the top Product

23-70

Create Code Replacement Tables

block and select C/C++ Code > Navigate to C/C++ Code. This selection
highlights the Product block code within the model step function in
tmwblas_mmult.c. In this case, code containing the matrix multiplication
operator has been replaced with a call to dgemm32 in the generated code.

Map Matrix Multiplication to ANSI/ISO C BLAS Functions
You can use CRL tables to map nonscalar multiplication operations to the
ANSI/ISO C BLAS multiplication functions xgemm and xgemv. The following
example uses the method described in “Create Function and Operator
Entries” on page 23-25 to create a CRL table entry mapping floating-point
matrix/matrix and matrix/vector multiplication operations to ANSI/ISO C
BLAS library multiplication functions.

23-71

23 Code Replacement

Note

• This example uses MATLAB based APIs to create a CRL table and register
a CRL. You can perform the same steps using the Code Replacement Tool
graphical interface. For more information, see “Manage CRTs with the
Code Replacement Tool” on page 23-168.

• For examples of handling other data types, see the BLAS Support section
of the CRL examples page rtwdemo_crl_script, including the example
model rtwdemo_crlblas and its associated files.

BLAS libraries support matrix/matrix multiplication in the form of

C = a(op(A) * op(B)) + bC , where op(X) means X, transposition of X, or
Hermitian transposition of X. However, CRLs support only the limited case of

C = op(A) * op(B) (a = 1.0, b = 0.0) . Correspondingly, although BLAS libraries

support matrix/vector multiplication in the form of y = a(op(A) * x) + by ,

CRLs support only the limited case of y = op(A) * x (a = 1.0, b = 0.0) .

1 Create and save the following CRL table definition file,
crl_table_cblas_mmult_double.m. This file defines a CRL table
containing dgemm and dgemv replacement entries for the matrix
multiplication operator and the double data type.

For each entry, the function body sets selected matrix multiplication
operator entry parameters, creates the y1, u1, and u2 conceptual arguments
individually, and then configures special implementation arguments that
are required for dgemm and dgemv replacements. Finally, each operator
entry is added to the table.

To specify a matrix argument to createAndAddConceptualArg, use the
CRL argument class RTW.TflArgMatrix and specify the base type and
the dimensions for which the argument is valid. This type of table entry
supports a range of dimensions specified in the format [Dim1Min Dim2Min
... DimNMin; Dim1Max Dim2Max ... DimNMax]. For example, [2 2;
inf inf] means any two-dimensional matrix of size 2x2 or larger. In this
example, the conceptual output argument for the cblas_dgemm entry for

23-72

Create Code Replacement Tables

matrix/matrix multiplication replacement specifies dimensions [2 2; inf
inf], while the conceptual output argument for the cblas_dgemv entry
for matrix/vector multiplication replacement specifies dimensions [2 1;
inf 1].

function hTable = crl_table_cblas_mmult_double

%CRL_TABLE_CBLAS_MMULT_DOUBLE - Describe two mmult operator entries for CRL table.

hTable = RTW.TflTable;

LibPath = fullfile(matlabroot, 'toolbox', 'rtw', 'rtwdemos', 'crl_demo');

% Create table entry for cblas_dgemm

op_entry = RTW.TflCBlasEntryGenerator;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_MUL', ...

'Priority', 100, ...

'ImplementationName', 'cblas_dgemm', ...

'ImplementationHeaderFile', 'cblas.h', ...

'ImplementationHeaderPath', LibPath, ...

'AdditionalIncludePaths', {LibPath}, ...

'GenCallback', 'RTW.copyFileToBuildDir', ...

'SideEffects', true);

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'BaseType', 'double', ...

'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

'Name', 'u1', ...

'BaseType', 'double', ...

'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

'Name', 'u2', ...

'BaseType', 'double', ...

'DimRange', [1 1; inf inf]);

% Using RTW.TflCBlasEntryGenerator for xgemm requires the following

23-73

23 Code Replacement

% implementation signature:

%

% void f(enum ORDER, enum TRANSA, enum TRANSB, int M, int N, int K,

% type ALPHA, type* u1, int LDA, type* u2, int LDB,

% type BETA, type* y, int LDC)

%

% Since CRLs do not have the ability to specify enums, you must

% use integer. (This will cause problems with C++ code generation,

% so for C++, use a wrapper function to cast each int to the

% corresponding enumeration type.)

%

% Upon a match, the CRL entry will compute the

% values for M, N, K, LDA, LDB, and LDC and insert them into the

% generated code.

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'ORDER', 'integer', 102);

%arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'TRANSA', 'integer', 111);

%arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'TRANSB', 'integer', 111);

%arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'M', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'N', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'K', 'integer', 0);

23-74

Create Code Replacement Tables

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'ALPHA', 'double', 1);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDA', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDB', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'BETA', 'double', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDC', 'integer', 0);

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

% Create table entry for cblas_dgemv

op_entry = RTW.TflCBlasEntryGenerator;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_MUL', ...

'Priority', 100, ...

'ImplementationName', 'cblas_dgemv', ...

'ImplementationHeaderFile', 'cblas.h', ...

'ImplementationHeaderPath', LibPath, ...

'AdditionalIncludePaths', {LibPath}, ...

'GenCallback', 'RTW.copyFileToBuildDir', ...

'SideEffects', true);

23-75

23 Code Replacement

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'BaseType', 'double', ...

'DimRange', [2 1; inf 1]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

'Name', 'u1', ...

'BaseType', 'double', ...

'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

'Name', 'u2', ...

'BaseType', 'double', ...

'DimRange', [1 1; inf 1]);

% Using RTW.TflCBlasEntryGenerator for xgemv requires the following

% implementation signature:

%

% void f(enum ORDER, enum TRANSA, int M, int N,

% type ALPHA, type* u1, int LDA, type* u2, int INCX,

% type BETA, type* y, int INCY)

%

% Since CRLs do not have the ability to specify enums, you must

% use integer. (This will cause problems with C++ code generation,

% so for C++, use a wrapper function to cast each int to the

% corresponding enumeration type.)

%

% Upon a match, the CRL entry will compute the

% values for M, N, LDA, INCX, and INCY and insert them into the

% generated code.

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'ORDER', 'integer', 102);

%arg.Type.ReadOnly=true;

23-76

Create Code Replacement Tables

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'TRANSA', 'integer', 111);

%arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'M','integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'N', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'ALPHA', 'double', 1);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDA', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'INCX', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'BETA', 'double', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'INCY', 'integer', 0);

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

23-77

23 Code Replacement

2 Optionally, perform a quick check of the validity of the operator
entries by invoking the table definition file at the MATLAB
command line (>> tbl = crl_table_cblas_mmult_double)
and by viewing it in the Code Replacement Viewer (>>
RTW.viewTFL(crl_table_cblas_mmult_double)).

For more information about validating CRL tables, see “Examine and
Validate Code Replacement Tables” on page 23-191.

3 Create and save the following CRL registration file, which references the
crl_table_cblas_mmult_double table.

The file specifies that the CRL to be registered is named 'ANSI/ISO
C BLAS Matrix Multiplication Operator Example' and consists of
crl_table_cblas_mmult_double, with the default ANSI math library as
the base CRL table.

function sl_customization(cm)

% sl_customization function to register a code replacement library (CRL)

% Register the CRL defined in local function locCrlRegFcn

cm.registerTargetInfo(@locCrlRegFcn);

end % End of SL_CUSTOMIZATION

% Local function to define a CRL containing crl_table_cblas_mmult_double

function thisCrl = locCrlRegFcn

% Instantiate a CRL registry entry

thisCrl = RTW.TflRegistry;

% Define the CRL properties

thisCrl.Name = 'ANSI/ISO C BLAS Matrix Multiplication Operator Example';

thisCrl.Description = 'Example of C BLAS mmult operator replacement';

thisCrl.TableList = {'crl_table_cblas_mmult_double'};

thisCrl.BaseTfl = 'C89/C90 (ANSI)';

thisCrl.TargetHWDeviceType = {'*'};

end % End of LOCCRLREGFCN

23-78

Create Code Replacement Tables

Place this sl_customization.m file in the MATLAB search path or in the
current working folder, so that the CRL is registered at each Simulink
startup.

Tip To refresh Simulink customizations within the current MATLAB
session, use the command sl_refresh_customizations. To refresh
MATLAB Coder CRL registration information within a MATLAB session,
use the command RTW.TargetRegistry.getInstance('reset');.

For more information about registering CRLs with Simulink or MATLAB
Coder software, see “Register Code Replacement Libraries” on page 23-203.

4 With your sl_customization.m file in the MATLAB search path or in the
current working folder, open an ERT-based Simulink model and go to the
Code Generation > Interface pane of the Configuration Parameters
dialog box. Verify that the Code replacement library option lists the
CRL name you specified and select it.

Note If you hover over the selected library with the cursor, a tool tip
appears. This tip provides information derived from your CRL registration
file, such as the CRL description and the list of tables it contains.

Optionally, you can relaunch the Code Replacement Viewer, using
the MATLAB command RTW.viewTFL without arguments, to examine
the currently registered CRLs, including ANSI/ISO C BLAS Matrix
Multiplication Operator Example.

5 Create an ERT-based model with two Product blocks, such as the following:

23-79

23 Code Replacement

a For each Product block, set the block parameter Multiplication to the
value Matrix(*).

b Configure the Signal Attributes for the In1, In2, and In3 source
blocks. For In1 and In2, set Port dimensions to [3 3] and set the
Data type to double. For In3, set Port dimensions to [3 1] and set
the Data type to double.

c Also, go to the Solver pane of the Configuration Parameters dialog box
and select a fixed-step, discrete solver with a fixed-step size such as 0.1.
Apply the changes.

d Save the model.

e Check that the CRL you registered, ANSI/ISO C BLAS Matrix
Multiplication Operator Example, is selected for this model.

6 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box and select the options Create code generation
report andModel-to-code. Then go to the Code Generation pane, select
the Generate code only option, and generate code for the model.

7 Go to Simulink Editor and use model-to-code highlighting to trace the
code generated using your CRL entry. For example, right-click the top
Product block and select C/C++ Code > Navigate to C/C++ Code. This
selection highlights the Product block code within the model step function
in cblas_mmult.c. In this case, code containing the matrix multiplication
operator has been replaced with a call to cblas_dgemm in the generated
code.

23-80

Create Code Replacement Tables

23-81

23 Code Replacement

Map Fixed-Point Operators to Target-Specific
Implementations

• “Overview of Fixed-Point Operator Replacement” on page 23-82

• “Fixed-Point Numbers and Arithmetic” on page 23-84

• “Create Fixed-Point Operator Entries” on page 23-90

• “Create Fixed-Point Operator Entries for Binary-Point-Only Scaling” on
page 23-93

• “Create Fixed-Point Operator Entries for [Slope Bias] Scaling” on page
23-96

• “Create Fixed-Point Operator Entries for Relative Scaling (Multiplication
and Division)” on page 23-99

• “Create Fixed-Point Operator Entries for Net Slope (Multiplication and
Division)” on page 23-103

• “Create Fixed-Point Operator Entries for Equal Slope and Zero Net Bias
(Addition and Subtraction)” on page 23-106

• “Map Data Type Conversion (Cast) Operations to Target-Specific
Implementations” on page 23-110

• “Map Fixed-Point Shift Left Operations to Target-Specific Implementations”
on page 23-113

Overview of Fixed-Point Operator Replacement
The Embedded Coder software supports CRL-based code replacement for the
following scalar operations on fixed-point data types:

Operator Key

Addition (+) RTW_OP_ADD

Subtraction (-) RTW_OP_MINUS

Multiplication (*) RTW_OP_MUL

Division (/) RTW_OP_DIV

Data type conversion (cast) RTW_OP_CAST

23-82

Create Code Replacement Tables

Operator Key

Shift left (<<) RTW_OP_SL

Shift right (>>) RTW_OP_SRA (arithmetic)1

RTW_OP_SRL (logical)

Notes:
1 CRLs that provide arithmetic shift right implementations should also
provide logical shift right implementations, because some arithmetic shift
rights are converted to logical shift rights during code generation.

Fixed-point operator table entries can be defined as matching:

• A specific binary-point-only scaling combination on the operator inputs
and output.

• A specific [slope bias] scaling combination on the operator inputs and
output.

• Relative scaling or net slope between multiplication or division operator
inputs and output.

Use these methods to map a range of slope and bias values to a replacement
function for multiplication or division.

• Equal slope and zero net bias across addition or subtraction operator inputs
and output.

Use this method to disregard specific slope and bias values and map relative
slope and bias values to a replacement function for addition or subtraction.

23-83

23 Code Replacement

Note

• The example rtwdemo_crlfixpt demonstrates these replacements
and provides example tables that can be used as a starting point for
customization.

• Using fixed-point data types in a model requires a Fixed-Point Designer
license.

• The fixed-point terminology used in this section is defined and explained
in the Fixed-Point Designer documentation. See especially “Fixed-Point
Numbers” and “Arithmetic Operations”.

Fixed-Point Numbers and Arithmetic
Fixed-point numbers use integers and integer arithmetic to represent real
numbers and arithmetic with the following encoding scheme:

V V SQ B= = +

where

• V is an arbitrarily precise real-world value.

• V is the approximate real-world value that results from fixed-point
representation.

• Q is an integer that encodes V , referred to as the quantized integer.

• S is a coefficient of Q , referred to as the slope.

• B is an additive correction, referred to as the bias.

The general equation for an operation between fixed-point operands is as
follows:

S Q B S Q B op S Q BO O O+() = +() < > +1 1 1 2 2 2()

23-84

Create Code Replacement Tables

The objective of CRL fixed-point operator replacement is to replace an
operator that accepts and returns fixed-point or integer inputs and output
with a function that accepts and returns built-in C numeric data types
(not fixed-point data types). The following sections provide additional
programming information for each supported operator.

Addition

The operation V0 = V1 + V2 implies that

Q
S

S
Q

S

S
Q

B B B

S0
1

0
1

2

0
2

1 2 0

0

=
⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟ + + −⎛

⎝
⎜

⎞

⎠
⎟

If an addition replacement function is defined such that the scaling on the
operands and sum are equal and the net bias

B B B

S
1 2 0

0

+ −⎛

⎝
⎜

⎞

⎠
⎟

is zero (for example, a function s8_add_s8_s8 that adds two signed
8-bit values and produces a signed 8-bit result), then the CRL operator
entry must set the operator entry parameters SlopesMustBeTheSame and
MustHaveZeroNetBias to true. (For parameter descriptions, see the reference
page for the function setTflCOperationEntryParameters.)

Subtraction

The operation V0 = V1 − V2 implies that

Q
S

S
Q

S

S
Q

B B B

S0
1

0
1

2

0
2

1 2 0

0

=
⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟ + − −⎛

⎝
⎜

⎞

⎠
⎟

If a subtraction replacement function is defined such that the scaling on the
operands and difference are equal and the net bias

23-85

23 Code Replacement

B B B

S
1 2 0

0

− −⎛

⎝
⎜

⎞

⎠
⎟

is zero (for example, a function s8_sub_s8_s8 that subtracts two signed
8-bit values and produces a signed 8-bit result), then the CRL operator
entry must set the operator entry parameters SlopesMustBeTheSame and
MustHaveZeroNetBias to true. (For parameter descriptions, see the reference
page for the function setTflCOperationEntryParameters.)

Multiplication

There are different ways to specify multiplication replacements. The most
direct way is to specify an exact match of the input and output types. This is
feasible if a model contains only a few (known) slope and bias combinations.
For this, use the TflCOperationEntry class and specify the exact values of
slope and bias on each argument. For scenarios where there are numerous
slope/bias combinations, it is not feasible to specify each value with a different
CRL entry. For this, use a relative scaling factor (RSF) entry or a net slope
entry:

• Relative scaling factor (RSF) entry:

The operation V0 = V1 * V2 implies, for binary-point-only scaling, that

S Q S Q S Q

Q
S S

S
Q Q

Q S Q Qn

0 0 1 1 2 2

0
1 2

0
1 2

0 1 2

    














where Sn is the net slope.

Multiplication replacement functions may be defined such that all scaling
is contained by a single operand. For example, a replacement function
s8_mul_s8_u8_rsf0p125 can multiply a signed 8-bit value by a factor of [0
... 0.1245] and produce a signed 8-bit result. The following discussion
describes how to convert the slope on each operand into a net factor.

23-86

Create Code Replacement Tables

To match a multiplication operation to the s8_mul_s8_u8_rsf0p125
replacement function, 0 <= SnQ2 <= 2

− 3. Substituting the maximum
integer value for Q2 results in the following match criteria: When Sn2

8 =
2 − 3, or Sn = 2

− 11, CRL replacement processing maps the multiplication
operation to the s8_mul_s8_u8_rsf0p125 function.

To accomplish this mapping, the CRL operator entry must define a
relative scaling factor, F2E, where the values for F and E are provided
using operator entry parameters RelativeScalingFactorF and
RelativeScalingFactorE. (For parameter descriptions, see the reference
page for the function setTflCOperationEntryParameters.) For the
s8_mul_s8_u8_rsf0p125 function, the RelativeScalingFactorF would be
set to 1 and the RelativeScalingFactorE would be set to -3.

Note When an operator entry specifies RelativeScalingFactorF and
RelativeScalingFactorE, zero bias is implied for the inputs and output.

• Net slope entry:

Net slope entries are similar to the relative scaling factor entry described
above. The difference is the match criteria. For a net slope entry,
the net slope of the call-site operation, Sn, must match the specified
net slope, Sn = F2

E, without regard to the maximum integer value.
Specify the desired net slope F and E values using operator entry
parameters NetSlopeAdjustmentFactor and NetFixedExponent.
(For parameter descriptions, see the reference page for the function
setTflCOperationEntryParameters.)

Note When an operator entry specifies NetSlopeAdjustmentFactor and
NetFixedExponent, matching entries must have arguments with zero bias.

Division

There are different ways to specify division replacements. The most direct
way is to specify an exact match of the input and output types. This is feasible
if a model contains only a few (known) slope and bias combinations. For this,

23-87

23 Code Replacement

use the TflCOperationEntry class and specify the exact values of slope and
bias on each argument. For scenarios where there are numerous slope/bias
combinations, it is not feasible to specify each value with a different CRL
entry. For this, use a relative scaling factor (RSF) entry or a net slope entry:

• Relative scaling factor (RSF) entry:

The operation V0 = (V1 / V2) implies, for binary-point-only scaling, that

S Q
S Q

S Q

Q S
Q

Qn

0 0
1 1

2 2

0
1

2

=
⎛

⎝
⎜

⎞

⎠
⎟

=
⎛

⎝
⎜

⎞

⎠
⎟

where Sn is the net slope.

As with multiplication, division replacement functions may be defined
such that all scaling is contained by a single operand. For example,
a replacement function s16_rsf0p5_div_s16_s16 can divide a signed
16<<16 value by a signed 16-bit value and produce a signed 16-bit result.
The following discussion describes how to convert the slope on each operand
into a net factor.

To match a division operation to the s16_rsf0p5_div_s16_s16 replacement
function, 0 <= SnQ1 <= 2

− 1. Substituting the maximum integer value
for Q1 results in the following match criteria: When Sn2

15 = 2 − 1, or Sn
= 2 − 16, CRL replacement processing maps the division operation to the
s8_mul_s8_u8_rsf0p125 function.

To accomplish this mapping, the CRL operator entry must define a
relative scaling factor, F2E, where the values for F and E are provided
using operator entry parameters RelativeScalingFactorF and
RelativeScalingFactorE. (For parameter descriptions, see the reference
page for the function setTflCOperationEntryParameters.) For the
s16_rsf0p5_div_s16_s16 function, the RelativeScalingFactorF would
be set to 1 and the RelativeScalingFactorE would be set to -1.

23-88

Create Code Replacement Tables

Note When an operator entry specifies RelativeScalingFactorF and
RelativeScalingFactorE, zero bias is implied for the inputs and output.

• Net slope entry:

Net slope entries are similar to the relative scaling factor entry described
above. The difference is the match criteria. For a net slope entry,
the net slope of the call-site operation, Sn, must match the specified
net slope, Sn = F2

E, without regard to the maximum integer value.
Specify the desired net slope F and E values using operator entry
parameters NetSlopeAdjustmentFactor and NetFixedExponent.
(For parameter descriptions, see the reference page for the function
setTflCOperationEntryParameters.)

Note When an operator entry specifies NetSlopeAdjustmentFactor and
NetFixedExponent, matching entries must have arguments with zero bias.

Data Type Conversion (Cast)

The data type conversion operation V0 = V1 implies, for binary-point-only
scaling, that

Q
S

S
Q

Q S Qn

0
1

0
1

0 1

=
⎛

⎝
⎜

⎞

⎠
⎟

=

where Sn is the net slope.

Shift

The shift left or shift right operation V0 = (V1 / 2
n) implies, for

binary-point-only scaling, that

23-89

23 Code Replacement

S Q
S Q

Q
S

S

Q

Q S
Q

n

n

n n

0 0
1 1

0
1

0

1

0
1

2

2

2

= ⎛
⎝⎜

⎞
⎠⎟

=
⎛

⎝
⎜

⎞

⎠
⎟ + ⎛

⎝⎜
⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

where Sn is the net slope.

Create Fixed-Point Operator Entries
To create CRL table entries for fixed-point operators, you use the “Create
Function and Operator Entries” on page 23-25 and specify fixed-point
parameter/value pairs to the functions shown in the following table.

Function Description

createAndAddConceptualArg Create conceptual argument from specified properties
and add to conceptual arguments for CRL table entry

createAndAddImplementationArg Create implementation argument from specified
properties and add to implementation arguments for
CRL table entry

createAndSetCImplementationReturn Create implementation return argument from
specified properties and add to implementation for
CRL table entry

setTflCOperationEntryParameters Set specified parameters for operator entry in CRL
table

The following table maps some common methods of matching CRL fixed-point
operator table entries to the associated fixed-point parameters that you need
to specify in your CRL table definition file.

23-90

Create Code Replacement Tables

To match... Instantiate class... Minimally specify parameters...

A specific
binary-point-only scaling
combination on the
operator inputs and
output

See “Create Fixed-Point
Operator Entries for
Binary-Point-Only
Scaling” on page 23-93.

RTW.TflCOperationEntry createAndAddConceptualArg function:

• CheckSlope: Specify the value true.

• CheckBias: Specify the value true.

• DataTypeMode (or DataType/Scaling
equivalent): Specify fixed-point
binary-point-only scaling.

• FractionLength: Specify a fraction
length (for example, 3).

A specific [slope bias]
scaling combination on
the operator inputs and
output

See “Create Fixed-Point
Operator Entries for
[Slope Bias] Scaling” on
page 23-96.

RTW.TflCOperationEntry createAndAddConceptualArg function:

• CheckSlope: Specify the value true.

• CheckBias: Specify the value true.

• DataTypeMode (or DataType/Scaling
equivalent): Specify fixed-point
[slope bias] scaling.

• Slope (or SlopeAdjustmentFactor/-
FixedExponent equivalent): Specify
a slope value (for example, 15).

• Bias: Specify a bias value (for
example, 2).

Relative scaling between
operator inputs and
output (multiplication
and division)

See “Create Fixed-Point
Operator Entries
for Relative Scaling

RTW.TflCOperationEntry-
Generator

setTflCOperationEntryParameters
function:

• RelativeScalingFactorF: Specify
the slope adjustment factor (F) part
of the relative scaling factor, F2E (for
example, 1.0).

• RelativeScalingFactorE: Specify
the fixed exponent (E) part of the
relative scaling factor, F2E (for
example, -3.0).

23-91

23 Code Replacement

To match... Instantiate class... Minimally specify parameters...

(Multiplication and
Division)” on page 23-99. createAndAddConceptualArg function:

• CheckSlope: Specify the value false.

• CheckBias: Specify the value false.

• DataType: Specify the value 'Fixed'.

Net slope between
operator inputs and
output (multiplication
and division)

See “Create Fixed-Point
Operator Entries for Net
Slope (Multiplication
and Division)” on page
23-103.

RTW.TflCOperationEntry-
Generator_NetSlope

setTflCOperationEntryParameters
function:

• NetSlopeAdjustmentFactor: Specify
the slope adjustment factor (F) part of
the net slope, F2E (for example, 1.0).

• NetFixedExponent: Specify the fixed
exponent (E) part of the net slope, F2E

(for example, -3.0).

createAndAddConceptualArg function:

• CheckSlope: Specify the value false.

• CheckBias: Specify the value false.

• DataType: Specify the value 'Fixed'.

Equal slope and
zero net bias across
operator inputs and
output (addition and
subtraction)

See “Create Fixed-Point
Operator Entries for
Equal Slope and Zero
Net Bias (Addition and

RTW.TflCOperationEntry-
Generator

setTflCOperationEntryParameters
function:

• SlopesMustBeTheSame: Specify the
value true.

• MustHaveZeroNetBias: Specify the
value true.

createAndAddConceptualArg function:

• CheckSlope: Specify the value false.

23-92

Create Code Replacement Tables

To match... Instantiate class... Minimally specify parameters...

Subtraction)” on page
23-106.

• CheckBias: Specify the value false.

Create Fixed-Point Operator Entries for Binary-Point-Only
Scaling
CRL table entries for operations on fixed-point data types can be defined as
matching a specific binary-point-only scaling combination on the operator
inputs and output. These binary-point-only scaling entries can map the
specified binary-point-scaling combination to a replacement function for
addition, subtraction, multiplication, or division.

The following example uses the method described in “Create Function and
Operator Entries” on page 23-25 to create a CRL table entry for multiplication
of fixed-point data types where arguments are specified with binary-point-only
scaling.

Note This example uses MATLAB based APIs to create a CRL table. You can
perform the same steps using the Code Replacement Tool graphical interface.
For more information, see “Manage CRTs with the Code Replacement Tool”
on page 23-168.

In this example:

• The CRL operator entry is instantiated using the RTW.TflCOperationEntry
class.

• The function setTflCOperationEntryParameters is called to set
operator entry parameters. These parameters include the type of
operation (multiplication), the saturation mode (saturate on overflow), the
rounding mode (unspecified), and the name of the replacement function
(s32_mul_s16_s16_binarypoint).

• The function createAndAddConceptualArg is called to create and
add conceptual output and input arguments to the operator entry.
Each argument specifies that the data type is fixed-point, the mode is
binary-point-only scaling, and its derived slope and bias values must

23-93

23 Code Replacement

exactly match the call-site slope and bias values. The output argument is
32 bits, signed, with a fraction length of 28, while the input arguments are
16 bits, signed, with fraction lengths of 15 and 13.

• The functions createAndSetCImplementationReturn and
createAndAddImplementationArg are called to create and add
implementation output and input arguments to the operator entry.
Implementation arguments must describe fundamental numeric data types
(not fixed-point data types). In this case, the output argument is 32 bits
and signed (int32) and the input arguments are 16 bits and signed (int16).

hTable = RTW.TflTable;

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_MUL', ...

'Priority', 90, ...

'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

'ImplementationName', 's32_mul_s16_s16_binarypoint', ...

'ImplementationHeaderFile', 's32_mul_s16_s16_binarypoint.h', ...

'ImplementationSourceFile', 's32_mul_s16_s16_binarypoint.c');

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'CheckSlope', true, ...

'CheckBias', true, ...

'DataTypeMode', 'Fixed-point: binary point scaling', ...

'IsSigned', true, ...

'WordLength', 32, ...

'FractionLength', 28);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'CheckSlope', true, ...

'CheckBias', true, ...

'DataTypeMode', 'Fixed-point: binary point scaling', ...

'IsSigned', true, ...

23-94

Create Code Replacement Tables

'WordLength', 16, ...

'FractionLength', 15);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT', ...

'CheckSlope', true, ...

'CheckBias', true, ...

'DataTypeMode', 'Fixed-point: binary point scaling', ...

'IsSigned', true, ...

'WordLength', 16, ...

'FractionLength', 13);

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'IsSigned', true, ...

'WordLength', 32, ...

'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', true, ...

'WordLength', 16, ...

'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', true, ...

'WordLength', 16, ...

'FractionLength', 0);

addEntry(hTable, op_entry);

To generate code using this table entry, you can follow the general procedure
in “Map Scalar Operators to Target-Specific Implementations” on page 23-47,
substituting in the code above and an ERT-based model such as the following:

23-95

23 Code Replacement

For this model,

• Set the Inport 1 Data type to fixdt(1,16,15)

• Set the Inport 2 Data type to fixdt(1,16,13)

• In the Product block:

- Set Output data type to fixdt(1,32,28)

- Select the option Saturate on integer overflow

Create Fixed-Point Operator Entries for [Slope Bias] Scaling
CRL table entries for operations on fixed-point data types can be defined
as matching a specific [slope bias] scaling combination on the operator
inputs and output. These [slope bias] scaling entries can map the specified
[slope bias] combination to a replacement function for addition, subtraction,
multiplication, or division.

The following example uses the method described in “Create Function and
Operator Entries” on page 23-25 to create a CRL table entry for division
of fixed-point data types where arguments are specified using [slope bias]
scaling.

Note This example uses MATLAB based APIs to create a CRL table. You can
perform the same steps using the Code Replacement Tool graphical interface.
For more information, see “Manage CRTs with the Code Replacement Tool”
on page 23-168.

In this example:

23-96

Create Code Replacement Tables

• The CRL operator entry is instantiated using the RTW.TflCOperationEntry
class.

• The function setTflCOperationEntryParameters is called to set operator
entry parameters. These parameters include the type of operation
(division), the saturation mode (saturate on overflow), the rounding
mode (round to ceiling), and the name of the replacement function
(s16_div_s16_s16_slopebias).

• The function createAndAddConceptualArg is called to create and add
conceptual output and input arguments to the operator entry. Each
argument specifies that the data type is fixed-point, the mode is [slope bias]
scaling, and its specified slope and bias values must exactly match the
call-site slope and bias values. The output argument and input arguments
are 16 bits, signed, each with specific [slope bias] specifications.

• The functions createAndSetCImplementationReturn and
createAndAddImplementationArg are called to create and add
implementation output and input arguments to the operator entry.
Implementation arguments must describe fundamental numeric data types
(not fixed-point data types). In this case, the output and input arguments
are 16 bits and signed (int16).

hTable = RTW.TflTable;

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_DIV', ...

'Priority', 90, ...

'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

'RoundingModes', {'RTW_ROUND_CEILING'}, ...

'ImplementationName', 's16_div_s16_s16_slopebias', ...

'ImplementationHeaderFile', 's16_div_s16_s16_slopebias.h', ...

'ImplementationSourceFile', 's16_div_s16_s16_slopebias.c');

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'CheckSlope', true, ...

'CheckBias', true, ...

'DataTypeMode', 'Fixed-point: slope and bias scaling', ...

23-97

23 Code Replacement

'IsSigned', true, ...

'WordLength', 16, ...

'Slope', 15, ...

'Bias', 2);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'CheckSlope', true, ...

'CheckBias', true, ...

'DataTypeMode', 'Fixed-point: slope and bias scaling', ...

'IsSigned', true, ...

'WordLength', 16, ...

'Slope', 15, ...

'Bias', 2);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT', ...

'CheckSlope', true, ...

'CheckBias', true, ...

'DataTypeMode', 'Fixed-point: slope and bias scaling', ...

'IsSigned', true, ...

'WordLength', 16, ...

'Slope', 13, ...

'Bias', 5);

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'IsSigned', true, ...

'WordLength', 16, ...

'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', true, ...

'WordLength', 16, ...

'FractionLength', 0);

23-98

Create Code Replacement Tables

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', true, ...

'WordLength', 16, ...

'FractionLength', 0);

addEntry(hTable, op_entry);

To generate code using this table entry, you can follow the general procedure
in “Map Scalar Operators to Target-Specific Implementations” on page 23-47,
substituting in the code above and an ERT-based model such as the following:

For this model,

• Set the Inport 1 Data type to fixdt(1,16,15,2)

• Set the Inport 2 Data type to fixdt(1,16,13,5)

• In the Divide block:

- Set Output data type to Inherit: Inherit via back propagation

- Set Integer rounding mode to Ceiling

- Select the option Saturate on integer overflow

Create Fixed-Point Operator Entries for Relative Scaling
(Multiplication and Division)
CRL table entries for multiplication or division of fixed-point data types can
be defined as matching relative scaling between operator inputs and output.
These relative scaling entries can map a range of slope and bias values to a
replacement function for multiplication or division.

23-99

23 Code Replacement

The following example uses the method described in “Create Function and
Operator Entries” on page 23-25 to create a CRL table entry for division of
fixed-point data types using a relative scaling factor.

Note This example uses MATLAB based APIs to create a CRL table. You can
perform the same steps using the Code Replacement Tool graphical interface.
For more information, see “Manage CRTs with the Code Replacement Tool”
on page 23-168.

In this example:

• The CRL operator entry is instantiated using the
RTW.TflCOperationEntryGenerator class, which provides access
to the fixed-point parameters RelativeScalingFactorF and
RelativeScalingFactorE.

• The function setTflCOperationEntryParameters is called to set
operator entry parameters. These parameters include the type of
operation (division), the saturation mode (saturation off), the rounding
mode (round to ceiling), and the name of the replacement function
(s16_div_s16_s16_rsf0p125). Additionally, RelativeScalingFactorF
and RelativeScalingFactorE are used to specify the F and E parts of the
relative scaling factor F2E.

• The function createAndAddConceptualArg is called to create and add
conceptual output and input arguments to the operator entry. Each
argument is specified as fixed-point, 16 bits, and signed. Also, each
argument specifies that CRL replacement request processing should not
check for an exact match to the call-site slope and bias values.

• The functions createAndSetCImplementationReturn and
createAndAddImplementationArg are called to create and add
implementation output and input arguments to the operator entry.
Implementation arguments must describe fundamental numeric data types
(not fixed-point data types). In this case, the output and input arguments
are 16 bits and signed (int16).

hTable = RTW.TflTable;

23-100

Create Code Replacement Tables

op_entry = RTW.TflCOperationEntryGenerator;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_DIV', ...

'Priority', 90, ...

'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

'RoundingModes', {'RTW_ROUND_CEILING'}, ...

'RelativeScalingFactorF', 1.0, ...

'RelativeScalingFactorE', -3.0, ...

'ImplementationName', 's16_div_s16_s16_rsf0p125', ...

'ImplementationHeaderFile', 's16_div_s16_s16_rsf0p125.h', ...

'ImplementationSourceFile', 's16_div_s16_s16_rsf0p125.c');

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'CheckSlope', false, ...

'CheckBias', false, ...

'DataType', 'Fixed', ...

'IsSigned', true, ...

'WordLength', 16);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'CheckSlope', false, ...

'CheckBias', false, ...

'DataType', 'Fixed', ...

'IsSigned', true, ...

'WordLength', 16);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT', ...

'CheckSlope', false, ...

'CheckBias', false, ...

'DataType', 'Fixed', ...

'IsSigned', true, ...

'WordLength', 16);

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

23-101

23 Code Replacement

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'IsSigned', true, ...

'WordLength', 16, ...

'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', true, ...

'WordLength', 16, ...

'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', true, ...

'WordLength', 16, ...

'FractionLength', 0);

addEntry(hTable, op_entry);

To generate code using this table entry, you can follow the general procedure
in “Map Scalar Operators to Target-Specific Implementations” on page 23-47,
substituting in the code above and an ERT-based model such as the following:

For this model,

• Set the Inport 1 Data type to int16

• Set the Inport 2 Data type to fixdt(1,16,-5)

• In the Divide block:

23-102

Create Code Replacement Tables

- Set Output data type to fixdt(1,16,-13)

- Set Integer rounding mode to Ceiling

Create Fixed-Point Operator Entries for Net Slope
(Multiplication and Division)
CRL table entries for multiplication or division of fixed-point data types can
be defined as matching net slope between operator inputs and output. These
net slope entries can map a range of slope and bias values to a replacement
function for multiplication or division.

The following example uses the method described in “Create Function and
Operator Entries” on page 23-25 to create a CRL table entry for division of
fixed-point data types using a net slope.

Note This example uses MATLAB based APIs to create a CRL table. You can
perform the same steps using the Code Replacement Tool graphical interface.
For more information, see “Manage CRTs with the Code Replacement Tool”
on page 23-168.

In this example:

• The CRL operator entry is instantiated using the
RTW.TflCOperationEntryGenerator_NetSlope class, which provides
access to the fixed-point parameters NetSlopeAdjustmentFactor and
NetFixedExponent.

• The function setTflCOperationEntryParameters is called to set operator
entry parameters. These parameters include the type of operation
(division), the saturation mode (wrap on overflow), the rounding mode
(unspecified), and the name of the replacement function (user_div_*).
Additionally, NetSlopeAdjustmentFactor and NetFixedExponent are
used to specify the F and E parts of the net slope F2E.

• The function createAndAddConceptualArg is called to create and add
conceptual output and input arguments to the operator entry. Each
argument is specified as fixed-point and signed. Also, each argument
specifies that CRL replacement request processing should not check for an
exact match to the call-site slope and bias values.

23-103

23 Code Replacement

• The function getTflArgFromString is called to create implementation
output and input arguments that are added to the operator entry.
Implementation arguments must describe fundamental numeric data types
(not fixed-point data types).

hTable = RTW.TflTable;

wv = [16,32];

for iy = 1:2

for inum = 1:2

for iden = 1:2

hTable = getDivOpEntry(hTable, ...

fixdt(1,wv(iy)),fixdt(1,wv(inum)),fixdt(1,wv(iden)));

end

end

end

%---

function hTable = getDivOpEntry(hTable,dty,dtnum,dtden)

%---

% Create an entry for division of fixed-point data types where

% arguments are specified using Slope and Bias scaling

% Saturation on, Rounding unspecified

funcStr = sprintf('user_div_%s_%s_%s',...

typeStrFunc(dty),...

typeStrFunc(dtnum),...

typeStrFunc(dtden));

op_entry = RTW.TflCOperationEntryGenerator_NetSlope;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_DIV', ...

'Priority', 90, ...

'SaturationMode', 'RTW_WRAP_ON_OVERFLOW',...

'RoundingModes', {'RTW_ROUND_UNSPECIFIED'},...

'NetSlopeAdjustmentFactor', 1.0, ...

'NetFixedExponent', 0.0, ...

'ImplementationName', funcStr, ...

'ImplementationHeaderFile', [funcStr,'.h'], ...

23-104

Create Code Replacement Tables

'ImplementationSourceFile', [funcStr,'.c']);

createAndAddConceptualArg(op_entry, ...

'RTW.TflArgNumeric', ...

'Name', 'y1',...

'IOType', 'RTW_IO_OUTPUT',...

'CheckSlope', false,...

'CheckBias', false,...

'DataTypeMode', 'Fixed-point: slope and bias scaling',...

'IsSigned', dty.Signed,...

'WordLength', dty.WordLength,...

'Bias', 0);

createAndAddConceptualArg(op_entry, ...

'RTW.TflArgNumeric',...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT',...

'CheckSlope', false,...

'CheckBias', false,...

'DataTypeMode', 'Fixed-point: slope and bias scaling',...

'IsSigned', dtnum.Signed,...

'WordLength', dtnum.WordLength,...

'Bias', 0);

createAndAddConceptualArg(op_entry, ...

'RTW.TflArgNumeric', ...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT',...

'CheckSlope', false,...

'CheckBias', false,...

'DataTypeMode', 'Fixed-point: slope and bias scaling',...

'IsSigned', dtden.Signed,...

'WordLength', dtden.WordLength,...

'Bias', 0);

arg = getTflArgFromString(hTable, 'y1', typeStrBase(dty));

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'u1', typeStrBase(dtnum));

op_entry.Implementation.addArgument(arg);

23-105

23 Code Replacement

arg = getTflArgFromString(hTable, 'u2',typeStrBase(dtden));

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

%---

function str = typeStrFunc(dt)

%---

if dt.Signed

sstr = 's';

else

sstr = 'u';

end

str = sprintf('%s%d',sstr,dt.WordLength);

%---

function str = typeStrBase(dt)

%---

if dt.Signed

sstr = ;

else

sstr = 'u';

end

str = sprintf('%sint%d',sstr,dt.WordLength);

Create Fixed-Point Operator Entries for Equal Slope and Zero
Net Bias (Addition and Subtraction)
CRL table entries for addition or subtraction of fixed-point data types can be
defined as matching relative slope and bias values (equal slope and zero net
bias) across operator inputs and output. These entries allow you to disregard
specific slope and bias values and map relative slope and bias values to a
replacement function for addition or subtraction.

The following example uses the method described in “Create Function and
Operator Entries” on page 23-25 to create a CRL table entry for addition of

23-106

Create Code Replacement Tables

fixed-point data types where slopes must be equal and net bias must be zero
across the operator inputs and output.

Note This example uses MATLAB based APIs to create a CRL table. You can
perform the same steps using the Code Replacement Tool graphical interface.
For more information, see “Manage CRTs with the Code Replacement Tool”
on page 23-168.

In this example:

• The CRL operator entry is instantiated using the
RTW.TflCOperationEntryGenerator class, which provides access to the
fixed-point parameters SlopesMustBeTheSame and MustHaveZeroNetBias.

• The function setTflCOperationEntryParameters is called to set
operator entry parameters. These parameters include the type
of operation (addition), the saturation mode (saturation off), the
rounding mode (unspecified), and the name of the replacement function
(u16_add_SameSlopeZeroBias). Additionally, SlopesMustBeTheSame and
MustHaveZeroNetBias are set to true to indicate that slopes must be equal
and net bias must be zero across the addition inputs and output.

• The function createAndAddConceptualArg is called to create and add
conceptual output and input arguments to the operator entry. Each
argument is specified as 16 bits and unsigned. Also, each argument
specifies that CRL replacement request processing should not check for an
exact match to the call-site slope and bias values.

• The functions createAndSetCImplementationReturn and
createAndAddImplementationArg are called to create and add
implementation output and input arguments to the operator entry.
Implementation arguments must describe fundamental numeric data types
(not fixed-point data types). In this case, the output and input arguments
are 16 bits and unsigned (uint16).

hTable = RTW.TflTable;

op_entry = RTW.TflCOperationEntryGenerator;

setTflCOperationEntryParameters(op_entry, ...

23-107

23 Code Replacement

'Key', 'RTW_OP_ADD', ...

'Priority', 90, ...

'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

'SlopesMustBeTheSame', true, ...

'MustHaveZeroNetBias', true, ...

'ImplementationName', 'u16_add_SameSlopeZeroBias', ...

'ImplementationHeaderFile', 'u16_add_SameSlopeZeroBias.h', ...

'ImplementationSourceFile', 'u16_add_SameSlopeZeroBias.c');

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'CheckSlope', false, ...

'CheckBias', false, ...

'IsSigned', false, ...

'WordLength', 16);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'CheckSlope', false, ...

'CheckBias', false, ...

'IsSigned', false, ...

'WordLength', 16);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT', ...

'CheckSlope', false, ...

'CheckBias', false, ...

'IsSigned', false, ...

'WordLength', 16);

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'IsSigned', false, ...

'WordLength', 16, ...

'FractionLength', 0);

23-108

Create Code Replacement Tables

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', false, ...

'WordLength', 16, ...

'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', false, ...

'WordLength', 16, ...

'FractionLength', 0);

addEntry(hTable, op_entry);

To generate code using this table entry, you can follow the general procedure
in “Map Scalar Operators to Target-Specific Implementations” on page 23-47,
substituting in the code above and an ERT-based model such as the following:

For this model,

• Set the Inport 1 Data type to fixdt(0,16,13)

• Set the Inport 2 Data type to fixdt(0,16,13)

• In the Add block:

- Verify that Output data type is set to its default, Inherit via
internal rule

- Set Integer rounding mode to Zero

23-109

23 Code Replacement

Map Data Type Conversion (Cast) Operations to Target-Specific
Implementations

• “Create a CRL Entry to Replace Casts From int32 To int16” on page
23-110

• “Create a CRL Entry to Replace Fixed-Point Casts Using Net Slope” on
page 23-111

You can use CRL table entries to replace the default generated code for data
type conversion (cast) operations with calls to optimized functions.

For details of the arithmetic supported for replacement of data type
conversion, see the data type conversion (cast) subsection of “Fixed-Point
Numbers and Arithmetic” on page 23-84.

Create a CRL Entry to Replace Casts From int32 To int16. The following
example uses the method described in “Create Function and Operator
Entries” on page 23-25 to create a CRL table entry to replace int32 to int16
data type conversion (cast) operations. In this example:

• The CRL operator entry is instantiated using the RTW.TflCOperationEntry
class.

• The function setTflCOperationEntryParameters is called to set operator
entry parameters. These parameters include the type of operation (cast),
the saturation mode (saturate on overflow), the rounding mode (toward
negative infinity), and the name of the replacement function (my_sat_cast).

• The function getTflArgFromString is called to create an int16 output
argument, which is then added to the operator entry both as the first
conceptual argument and the implementation return argument.

• The function getTflArgFromString is called to create an int32 input
argument, which is then added to the operator entry both as the second
conceptual argument and the sole implementation input argument.

hTable = RTW.TflTable;

% Create an int16 to int32 cast replacement

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

23-110

Create Code Replacement Tables

'Key', 'RTW_OP_CAST', ...

'Priority', 50, ...

'ImplementationName', 'my_sat_cast', ...

'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

'RoundingModes', {'RTW_ROUND_FLOOR'}, ...

'ImplementationHeaderFile', 'some_hdr.h', ...

'ImplementationSourceFile', 'some_hdr.c');

% Create int16 arg as conceptual arg 1 and implementation return

arg = getTflArgFromString(hTable, 'y1', 'int16');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

op_entry.Implementation.setReturn(arg);

% Create int32 arg as conceptual arg 2 and implementation input arg 1

arg = getTflArgFromString(hTable, 'u1', 'int32');

addConceptualArg(op_entry, arg);

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

Create a CRL Entry to Replace Fixed-Point Casts Using Net Slope.
The following example uses the method described in “Create Function and
Operator Entries” on page 23-25 to create a CRL table entry to replace data
type conversions (casts) of fixed-point data types using a net slope.

Note This example uses MATLAB based APIs to create a CRL table. You can
perform the same steps using the Code Replacement Tool graphical interface.
For more information, see “Manage CRTs with the Code Replacement Tool”
on page 23-168.

In this example:

• The CRL operator entry is instantiated using the
RTW.TflCOperationEntryGenerator_NetSlope class, which provides
access to the fixed-point parameters NetSlopeAdjustmentFactor and
NetFixedExponent.

23-111

23 Code Replacement

• The function setTflCOperationEntryParameters is called to set operator
entry parameters. These parameters include the type of operation (cast),
the saturation mode (saturate on overflow), the rounding mode (toward
negative infinity), and the name of the replacement function (my_fxp_cast).
Additionally, NetSlopeAdjustmentFactor and NetFixedExponent are
used to specify the F and E parts of the net slope F2E.

• The function createAndAddConceptualArg is called to create conceptual
output and input arguments that are added to the operator entry. Each
argument is specified as fixed-point and signed. Also, each argument
specifies that CRL replacement request processing should not check for an
exact match to the call-site slope and bias values.

• The functions createAndSetCImplementationReturn and
createAndAddImplementationArg are called to create implementation
return and input arguments that are added to the operator entry.
Implementation arguments must describe fundamental numeric data types
(not fixed-point data types).

hTable = RTW.TflTable;

% Create a fixed-point cast replacement using a NetSlope entry

op_entry = RTW.TflCOperationEntryGenerator_NetSlope;

InFL = 2;

InWL = 16;

InSgn = true;

OutFL = 4;

OutWL = 32;

OutSgn = true;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_CAST', ...

'Priority', 50, ...

'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

'RoundingModes', {'RTW_ROUND_FLOOR'}, ...

'NetSlopeAdjustmentFactor', 1.0, ...

'NetFixedExponent', (OutFL - InFL), ...

'ImplementationName', 'my_fxp_cast', ...

'ImplementationHeaderFile', 'some_hdr.h', ...

'ImplementationSourceFile', 'some_hdr.c');

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

23-112

Create Code Replacement Tables

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'CheckSlope', false, ...

'CheckBias', false, ...

'DataTypeMode', 'Fixed-point: binary point scaling', ...

'IsSigned', OutSgn, ...

'WordLength', OutWL, ...

'FractionLength',OutFL);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'CheckSlope', false, ...

'CheckBias', false, ...

'DataTypeMode', 'Fixed-point: binary point scaling', ...

'IsSigned', InSgn, ...

'WordLength', InWL, ...

'FractionLength',InFL);

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'IsSigned', OutSgn, ...

'WordLength', OutWL, ...

'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', InSgn, ...

'WordLength', InWL, ...

'FractionLength', 0);

addEntry(hTable, op_entry);

Map Fixed-Point Shift Left Operations to Target-Specific
Implementations

• “Create a CRL Entry to Replace Shift Lefts for int16 Data” on page 23-114

23-113

23 Code Replacement

• “Create a CRL Entry to Replace Fixed-Point Shift Lefts Using Net Slope”
on page 23-115

You can use CRL table entries to replace the default generated code for <<
(shift left) operations with calls to optimized functions.

For details of the arithmetic supported for replacement of shift-left operations,
see the shift left subsection of “Fixed-Point Numbers and Arithmetic” on
page 23-84.

Create a CRL Entry to Replace Shift Lefts for int16 Data. The following
example uses the method described in “Create Function and Operator
Entries” on page 23-25 to create a CRL table entry to replace << (shift left)
operations for int16 data. In this example:

• The CRL operator entry is instantiated using the RTW.TflCOperationEntry
class.

• The function setTflCOperationEntryParameters is called to set operator
entry parameters. These parameters include the type of operation (shift
left) and the name of the replacement function (my_shift_left).

• The function getTflArgFromString is called to create an int16 output
argument, which is then added to the operator entry both as the first
conceptual argument and the implementation return argument.

• The function getTflArgFromString is called to create an int16 input
argument, which is then added to the operator entry both as the second
conceptual argument and the first implementation input argument.

• The function getTflArgFromString is called to create an int8 input
argument, which is then added to the operator entry both as the third
conceptual argument and the second implementation input argument. This
argument specifies the number of bits to shift the previous input argument.
Since the argument type is not relevant, type checking is disabled by
setting the CheckType property to false.

hTable = RTW.TflTable;

% Create a shift left replacement for int16 data

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

23-114

Create Code Replacement Tables

'Key', 'RTW_OP_SL', ...

'Priority', 50, ...

'ImplementationName', 'my_shift_left', ...

'ImplementationHeaderFile', 'some_hdr.h', ...

'ImplementationSourceFile', 'some_hdr.c');

% Create int16 arg as conceptual arg 1 and implementation return

arg = getTflArgFromString(hTable, 'y1', 'int16');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

op_entry.Implementation.setReturn(arg);

% Create int16 arg as conceptual arg 2 and implementation input arg 1

arg = getTflArgFromString(hTable, 'u1', 'int16');

addConceptualArg(op_entry, arg);

op_entry.Implementation.addArgument(arg);

% Create int8 arg as conceptual arg 3 and implementation input arg 2

% Turn off type checking for number of bits to shift argument

arg = getTflArgFromString(hTable, 'u2', 'int8');

arg.CheckType = false;

addConceptualArg(op_entry, arg);

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

Create a CRL Entry to Replace Fixed-Point Shift Lefts Using Net Slope.
The following example uses the method described in “Create Function and
Operator Entries” on page 23-25 to create a CRL table entry to replace <<
(shift left) operations for fixed-point data using a net slope. In this example:

• The CRL operator entry is instantiated using the
RTW.TflCOperationEntryGenerator_NetSlope class, which provides
access to the fixed-point parameters NetSlopeAdjustmentFactor and
NetFixedExponent.

• The function setTflCOperationEntryParameters is called to set operator
entry parameters. These parameters include the type of operation (shift
left), the saturation mode (saturate on overflow), the rounding mode
(toward negative infinity), and the name of the replacement function

23-115

23 Code Replacement

(my_fxp_shift_left). Additionally, NetSlopeAdjustmentFactor and
NetFixedExponent are used to specify the F and E parts of the net slope F2E.

• The function createAndAddConceptualArg is called to create conceptual
output and input arguments that are added to the operator entry. Each
argument is specified as fixed-point and signed. Also, each argument
specifies that CRL replacement request processing should not check for an
exact match to the call-site slope and bias values.

• The functions createAndSetCImplementationReturn and
createAndAddImplementationArg are called to create implementation
return and input arguments that are added to the operator entry.
Implementation arguments must describe fundamental numeric data types
(not fixed-point data types).

• The function getTflArgFromString is called to create a uint8 input
argument, which is then added to the operator entry both as the third
conceptual argument and the second implementation input argument. This
argument specifies the number of bits to shift the previous input argument.
Since the argument type is not relevant, type checking is disabled by
setting the CheckType property to false.

hTable = RTW.TflTable;

% Create a fixed-point shift left replacement using a NetSlope entry

op_entry = RTW.TflCOperationEntryGenerator_NetSlope;

InFL = 2;

InWL = 16;

InSgn = true;

OutFL = 4;

OutWL = 32;

OutSgn = true;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_SL', ...

'Priority', 50, ...

'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

'RoundingModes', {'RTW_ROUND_FLOOR'}, ...

'NetSlopeAdjustmentFactor', 1.0, ...

'NetFixedExponent', (OutFL - InFL),...

'ImplementationName', 'my_fxp_shift_left', ...

'ImplementationHeaderFile', 'some_hdr.h', ...

23-116

Create Code Replacement Tables

'ImplementationSourceFile', 'some_hdr.c');

% Create fixed-point arg as conceptual arg 1

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'CheckSlope', false, ...

'CheckBias', false, ...

'DataTypeMode', 'Fixed-point: binary point scaling', ...

'IsSigned', OutSgn, ...

'WordLength', OutWL, ...

'FractionLength',OutFL);

% Create fixed-point arg as conceptual arg 2

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'CheckSlope', false, ...

'CheckBias', false, ...

'DataTypeMode', 'Fixed-point: binary point scaling', ...

'IsSigned', InSgn, ...

'WordLength', InWL, ...

'FractionLength',InFL);

% Create implementation return arg

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'IsSigned', OutSgn, ...

'WordLength', OutWL, ...

'FractionLength', 0);

% Create implementation input arg 1

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', InSgn, ...

'WordLength', InWL, ...

'FractionLength', 0);

23-117

23 Code Replacement

% Create uint8 arg as conceptual arg 3 and implementation input arg 2

% Turn off type checking for number of bits to shift argument

arg = getTflArgFromString(hTable, 'u2', 'uint8');

arg.CheckType = false;

addConceptualArg(op_entry, arg);

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

Remap Operator Outputs to Implementation Function
Inputs
If you need your generated code to meet a specific coding pattern or you want
more flexibility, for example, to further improve performance, you have the
option of remapping operator outputs to input positions in an implementation
function argument list.

Note Remapping outputs to implementation function inputs is supported
only for operator replacement.

For example, for a sum operation, the build process might generate code
similar to the following:

add8_Y.Out1 = u8_add_u8_u8(add8_U.In1, add8_U.In2);

If you remap the output to the first input, the build process generates code
similar to the following:

u8_add_u8_u8(&add8_Y.Out1;, add8_U.In1, add8_U.In2);

Note To prevent generation of extra data copies in the code, select the model
configuration option Minimize data copies between local and global
variables (EnhancedBackFolding) on the Optimization > Signals and
Parameters pane of the Configuration Parameters dialog box.

23-118

Create Code Replacement Tables

To remap an operator output to an implementation function input for an
existing CRL operator replacement entry, you modify the CRL table definition
file as follows.

1 In the setTflCOperationEntryParameters function call for the operator
replacement, specify the SideEffects parameter as true.

2 When defining the implementation function return, create a new void
output argument, for example, y2.

3 When defining the implementation function arguments, set the operator
output argument (for example, y1) as an additional input argument,
marking its IOType as output, and make its type a pointer type.

For example, the following CRL table definition file for a sum operation
has been modified to remap operator output y1 as the first function input
argument. The modified lines of code are shown in bold type. (This definition
file generated the example remap code shown above.)

Note To exercise this example, you can use the registration file, model,
and instructions shown in “Map Scalar Operators to Target-Specific
Implementations” on page 23-47.

function hTable = crl_table_add_uint8

%CRL_TABLE_ADD_UINT8 - Describe operator entry for a Code Replacement Library table.

hTable = RTW.TflTable;

% Create entry for addition of built-in uint8 data type

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_ADD', ...

'Priority', 90, ...

'ImplementationName', 'u8_add_u8_u8', ...

'ImplementationHeaderFile', 'u8_add_u8_u8.h', ...

'ImplementationSourceFile', 'u8_add_u8_u8.c', ...

'SideEffects', true);

23-119

23 Code Replacement

arg = getTflArgFromString(hTable, 'y1', 'uint8');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

arg = getTflArgFromString(hTable, 'u1', 'uint8');

addConceptualArg(op_entry, arg);

arg = getTflArgFromString(hTable, 'u2', 'uint8');

addConceptualArg(op_entry, arg);

% Create new void output y2

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

% Set y1 as first input arg, mark IOType as output, and use pointer type

arg=getTflArgFromString(hTable, 'y1', 'uint8*');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

arg=getTflArgFromString(hTable, 'u1', 'uint8');

op_entry.Implementation.addArgument(arg);

arg=getTflArgFromString(hTable, 'u2', 'uint8');

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

Configure Data Alignment for Function
Implementations

• “About CRL-Specified Data Alignment” on page 23-121

• “Specify Data Alignment Requirements for Function Arguments” on page
23-121

• “Provide Data Alignment Specifications for Compilers” on page 23-123

• “Basic Example of CRL-Specified Data Alignment” on page 23-127

• “Data Alignment Limitations” on page 23-132

23-120

Create Code Replacement Tables

About CRL-Specified Data Alignment
CRLs provide the ability to align data objects passed into a replacement
function to a specified boundary. This allows you to take advantage of
target-specific function implementations that require data to be aligned in
order to optimize application performance. To configure data alignment for
a function implementation:

1 Specify the data alignment requirements in a CRL table entry. Alignment
can be specified separately for each implementation function argument or
collectively for all function arguments. For more information, see “Specify
Data Alignment Requirements for Function Arguments” on page 23-121.

2 Specify the data alignment capabilities and syntax for one or more
compilers, and include the alignment specifications in a CRL registry entry
in an sl_customization.m or rtwTargetInfo.m file. For more information,
see “Provide Data Alignment Specifications for Compilers” on page 23-123.

3 Register the CRL containing the table entry and the alignment specification
object.

You can then select the CRL for your model, generate code, and observe the
results.

For examples, see “Basic Example of CRL-Specified Data Alignment” on page
23-127 and the data alignment examples in the example rtwdemo_crl_script.

Specify Data Alignment Requirements for Function Arguments
To specify the data alignment requirement for an argument in a CRL
replacement entry:

• If you are defining a replacement function in a CRL table definition
file, you instantiate an object of class RTW.ArgumentDescriptor, use its
AlignmentBoundary property to specify the required alignment boundary,
and assign the RTW.ArgumentDescriptor object to the Descriptor
property of the argument.

• If you are defining a replacement function using the Code Replacement
Tool, you enter a value in the Alignment value parameter, which
is located on the Mapping Information tab, within the Argument
properties for the replacement function.

23-121

23 Code Replacement

The AlignmentBoundary property (or Alignment value parameter) specifies
the alignment boundary for data passed to a function argument, in number
of bytes. The AlignmentBoundary property is valid only for addressable
objects, including matrix and pointer arguments. It is not applicable for value
arguments. Valid values are:

• -1 (default) — If the data is a Simulink.Bus, Simulink.Signal, or
Simulink.Parameter object, specifies that the code generator should
determine an optimal alignment based on usage. Otherwise, specifies that
there is not an alignment requirement for this argument.

• Positive integer that is a power of 2, not exceeding 128 — Specifies number
of bytes in the boundary. The starting memory address for the data
allocated for the function argument will be a multiple of the specified
value. If you specify an alignment boundary that is less than the natural
alignment of the argument data type, the alignment directive is emitted in
the generated code, but is silently ignored by the target compiler.

For example, the following code specifies the AlignmentBoundary for an
argument as 16 bytes.

hLib = RTW.TflTable;
entry = RTW.TflCOperationEntry;
arg = hLib.getTflArgFromString('u1','single*');
desc = RTW.ArgumentDescriptor;
desc.AlignmentBoundary = 16;

23-122

Create Code Replacement Tables

arg.Descriptor = desc;
entry.Implementation.addArgument(arg);

Here is the equivalent alignment boundary specification in the Code
Replacement Tool dialog box:

Note If your model imports Simulink.Bus, Simulink.Parameter, or
Simulink.Signal objects, you can specify an alignment boundary in the
object properties, using the Alignment property. For more information,
see the reference pages for Simulink.Bus, Simulink.Parameter, and
Simulink.Signal.

Provide Data Alignment Specifications for Compilers
To support data alignment in generated code, you must describe the data
alignment capabilities and syntax for your compiler(s) to the CRL registry. To
do this, you provide one or more alignment specifications for each compiler in
a CRL registry entry. For more information about CRL registry entries, see
“Register Code Replacement Libraries” on page 23-203.

To describe the data alignment capabilities and syntax for a compiler:

• If you are defining a CRL registry entry in a sl_customization.m
or rtwTargetInfo.m customization file, you add one or more
AlignmentSpecification objects to an RTW.DataAlignment object, and
attach the RTW.DataAlignment object to the TargetCharacteristics
object of the CRL registry entry.

The RTW.DataAlignment object also has the property
DefaultMallocAlignment, which specifies the default alignment
boundary, in bytes, that the compiler uses for dynamically-allocated

23-123

23 Code Replacement

memory. During code generation, if dynamic memory allocation is used for
a data object involved in a code replacement, this value is used to determine
if the dynamically allocated memory satisfies the alignment requirement of
the replacement. If not, the replacement is disallowed. The default value
for DefaultMallocAlignment is -1, indicating that the default alignment
boundary used for dynamically-allocated memory is unknown. In this case,
code generation uses the natural alignment of the data type to determine
whether to allow a replacement.

• If you are generating a customization file function using the Code
Replacement Tool, you fill out the following fields for each compiler:

Click the plus (+) symbol to add additional compiler specifications.

For each data alignment specification, you provide the following information:

23-124

Create Code Replacement Tables

Alignment-
Specification
Property

Dialog Box
Parameter

Description

AlignmentType Alignment
type

Cell array of predefined enumerated strings, specifying
which types of alignment are supported by this
specification:

• DATA_ALIGNMENT_LOCAL_VAR — Local
variables.

• DATA_ALIGNMENT_GLOBAL_VAR — Global
variables.

• DATA_ALIGNMENT_STRUCT_FIELD — Individual
structure fields.

• DATA_ALIGNMENT_WHOLE_STRUCT — Whole
structure, with padding (individual structure field
alignment, if specified, is favored and takes precedence
over whole structure alignment).

Each alignment specification must specify at
least DATA_ALIGNMENT_GLOBAL_VAR and
DATA_ALIGNMENT_STRUCT_FIELD.

AlignmentPosition Alignment
position

Predefined enumerated string specifying the
position in which the compiler alignment
directive should be placed for alignment type
DATA_ALIGNMENT_WHOLE_STRUCT:

• DATA_ALIGNMENT_PREDIRECTIVE — The
alignment directive is emitted before struct
st_tag{ }, as part of the type definition statement
(for example, MSVC).

• DATA_ALIGNMENT_POSTDIRECTIVE — The
alignment directive is emitted after struct
st_tag{ }, as part of the type definition statement
(for example, gcc).

• DATA_ALIGNMENT_PRECEDING_STATEMENT —
The alignment directive is emitted as a stand alone

23-125

23 Code Replacement

Alignment-
Specification
Property

Dialog Box
Parameter

Description

statement immediately preceding the definition of the
structure type. The registered alignment syntax must
be terminated by a semicolon (;).

• DATA_ALIGNMENT_FOLLOWING_STATEMENT
— The alignment directive is emitted as a stand alone
statement immediately following the definition of the
structure type. The registered alignment syntax must
be terminated by a semicolon (;).

For alignment types other than
DATA_ALIGNMENT_WHOLE_STRUCT,
code generation uses alignment position
DATA_ALIGNMENT_PREDIRECTIVE.

AlignmentSyntax-
Template

Alignment
syntax

Specifies the alignment directive string that the compiler
supports. The string is registered as a syntax template
that has placeholders in it. The following placeholders
are supported:

• %n — Replaced by the alignment boundary for the
replacement function argument.

• %s — Replaced by the symbol that will be aligned,
usually the identifier of a variable.

For example, for the gcc compiler, you might specify
__attribute__((aligned(%n))), or for the MSVC
compiler, __declspec(align(%n)).

SupportedLanguages Supported
languages

Cell array specifying the language(s) to which this
alignment specification applies, among c and c++.
Sometimes alignment syntax and position differ between
languages for a compiler.
.

For example, here is a data alignment specification for the GCC compiler:

23-126

Create Code Replacement Tables

da = RTW.DataAlignment;

as = RTW.AlignmentSpecification;

as.AlignmentType = {'DATA_ALIGNMENT_LOCAL_VAR', ...

'DATA_ALIGNMENT_STRUCT_FIELD', ...

'DATA_ALIGNMENT_GLOBAL_VAR'};

as.AlignmentSyntaxTemplate = '__attribute__((aligned(%n)))';

as.AlignmentPosition = 'DATA_ALIGNMENT_PREDIRECTIVE';

as.SupportedLanguages = {'c', 'c++'};

da.addAlignmentSpecification(as);

tc = RTW.TargetCharacteristics;

tc.DataAlignment = da;

Here is the corresponding specification in the Generate customization dialog
box of the Code Replacement Tool:

Basic Example of CRL-Specified Data Alignment
This section steps you through a simple example of the complete workflow for
CRL-specified data alignment.

1 Create and save the following CRL table definition file,
crl_table_mmul_4x4_single_align.m. This CRL table defines a
replacement entry for the * (multiplication) operator, the single data type,

23-127

23 Code Replacement

and input dimensions [4,4]. The entry also specifies a data alignment
boundary of 16 bytes for each replacement function argument. This
expresses the requirement that the starting memory address for the data
allocated for the function arguments during code generation will be a
multiple of 16.

function hLib = crl_table_mmul_4x4_single_align

%CRL_TABLE_MMUL_4x4_SINGLE_ALIGN - Describe matrix operator entry with data alignment

hLib = RTW.TflTable;

entry = RTW.TflCOperationEntry;

entry.setTflCOperationEntryParameters(...

'Key', 'RTW_OP_MUL', ...

'Priority', 90, ...

'ImplementationName', 'matrix_mul_4x4_s');

% conceptual arguments

entry.createAndAddConceptualArg('RTW.TflArgMatrix',...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'BaseType', 'single', ...

'DimRange', [4 4]);

entry.createAndAddConceptualArg('RTW.TflArgMatrix',...

'Name', 'u1', ...

'BaseType', 'single', ...

'DimRange', [4 4]);

entry.createAndAddConceptualArg('RTW.TflArgMatrix',...

'Name', 'u2', ...

'BaseType', 'single', ...

'DimRange', [4 4]);

% implementation arguments

arg = hLib.getTflArgFromString('y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

entry.Implementation.Return=arg;

arg = hLib.getTflArgFromString('y1','single*');

desc = RTW.ArgumentDescriptor;

23-128

Create Code Replacement Tables

desc.AlignmentBoundary = 16;

arg.Descriptor = desc;

entry.Implementation.addArgument(arg);

arg = hLib.getTflArgFromString('u1','single*');

desc = RTW.ArgumentDescriptor;

desc.AlignmentBoundary = 16;

arg.Descriptor = desc;

entry.Implementation.addArgument(arg);

arg = hLib.getTflArgFromString('u2','single*');

desc = RTW.ArgumentDescriptor;

desc.AlignmentBoundary = 16;

arg.Descriptor = desc;

entry.Implementation.addArgument(arg);

hLib.addEntry(entry);

2 Create and save the following CRL registration file, rtwTargetInfo.m. If
you intend to compile the code generated in this example, you can modify
the AlignmentSyntaxTemplate property for the compiler you intend to
use. For example, for the MSVC compiler, replace the gcc template string
__attribute__((aligned(%n))) with __declspec(align(%n)).

function rtwTargetInfo(cm)

% rtwTargetInfo function to register a code replacement library (CRL)

% for use with code generation

% Register the CRL defined in local function locCrlRegFcn

cm.registerTargetInfo(@locCrlRegFcn);

end % End of RTWTARGETINFO

% Local function to define a CRL containing crl_table_mmul_4x4_single_align

function thisCrl = locCrlRegFcn

% create an alignment specification object, assume gcc

as = RTW.AlignmentSpecification;

as.AlignmentType = {'DATA_ALIGNMENT_LOCAL_VAR', ...

'DATA_ALIGNMENT_GLOBAL_VAR', ...

23-129

23 Code Replacement

'DATA_ALIGNMENT_STRUCT_FIELD'};

as.AlignmentSyntaxTemplate = '__attribute__((aligned(%n)))';

as.SupportedLanguages={'c', 'c++'};

% add the alignment specification object

da = RTW.DataAlignment;

da.addAlignmentSpecification(as);

% add the data alignment object to target characteristics

tc = RTW.TargetCharacteristics;

tc.DataAlignment = da;

% Instantiate a CRL registry entry

thisCrl = RTW.TflRegistry;

% Define the CRL properties

thisCrl.Name = 'Data Alignment Example';

thisCrl.Description = 'Example of replacement with data alignment';

thisCrl.TableList = {'crl_table_mmul_4x4_single_align'};

thisCrl.BaseTfl = 'C89/C90 (ANSI)';

thisCrl.TargetCharacteristics = tc;

end % End of LOCCRLREGFCN

3 To register your CRL with code generation software without having to
restart MATLAB, enter the following command in the MATLAB Command
Window:

>> RTW.TargetRegistry.getInstance('reset');

4 Open an ERT-based Simulink model and go to the Code
Generation > Interface pane of the Configuration Parameters dialog box.
Verify that the Code replacement library option lists the CRL name
you specified and select it.

5 Create an ERT-based model with a Product block and configure the Product
block for [4,4] matrix multiplication.

23-130

Create Code Replacement Tables

Check that the CRL you registered, Data Alignment Example, is selected
for this model.

6 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box and select the options Create code generation
report andModel-to-code. Then go to the Code Generation pane, select
the Generate code only option, and generate code for the model.

7 Go to Simulink Editor and use model-to-code highlighting to trace the code
generated using your CRL entry. For example, right-click the Product
block and select C/C++ Code > Navigate to C/C++ Code. This selection
highlights the Product function code within the model step function in
mmalign.c. In this case, a multiplication operation has been replaced with
a matrix_mul_4x4_s function call in the generated code.

Also, in mmalign.h, the gcc alignment directive
__attribute__((aligned(16))) has been generated to align the function
variables.

23-131

23 Code Replacement

Data Alignment Limitations
CRL data alignment has the following limitations:

• Complex data types are not supported.

• Software-in-the-loop (SIL) and Processor-in-the-loop (PIL) are not
supported.

• Model reference parameters are not supported.

• For Simulink.Bus:

- If structure field alignment is not supported by user registered alignment
specifications, aligning Simulink.Bus objects is not supported unless the
Simulink.Bus is imported.

- When aligning a Simulink.Bus data object, the elements in the bus
object will be aligned on the same boundary, which is the lowest common
multiple of the alignment requirements for each individual bus element.

• When using the CRL data alignment feature for MATLAB Coder code
generation, local variables in a MATLAB function will not be promoted to
structure fields if the registered data alignment type specification does
not support alignment of local variables. If a desired replacement of an
operation on local variables cannot be aligned as required, the replacement
does not occur, and code is generated as if the CRL replacement was not
registered.

• Data alignment is not honored in code generation for shared utilities if the
replacement would impose alignment requirements on the shared utility
interface arguments. Under these conditions, replacement does not occur.

23-132

Create Code Replacement Tables

Replacement is allowed if the registered data alignment type specification
supports alignment of local variables, and the replacement involves only
local variables.

• Data alignment is not honored in code generation for a Stateflow graphical
function if the function is exported; replacement does not occur.

• When alignment is specified for functions that occur in a model reference
hierarchy, and the same function data is operated on by multiple models in
the hierarchy, the bottommost model dictates the alignment for the rest
of the hierarchy. If the alignment requirement for a function in a model
higher in the hierarchy cannot be honored due to the alignment set by a
model lower in the hierarchy, the replacement in the higher model does not
occur (in some cases, an error message is generated). To work around this
issue, if the shared data is represented by a bus or signal object, you can
manually set the alignment property on the shared data by setting the
alignment property of the Simulink.Bus or Simulink.Signal object.

Refine Matching and Replacement Using Custom
Entries

• “Customize CRL Matching and Replacement for Operators” on page 23-135

• “Customize CRL Matching and Replacement for Functions” on page 23-144

During code generation for your model, the CRL replacement capability uses

• Preset match criteria to identify functions and operators for which
target-specific implementations should replace default implementations

• Preset replacement function signatures

However, preset match criteria and preset replacement function signatures
might not completely meet your function and operator replacement needs.
For example,

• You might want to replace an operator with a particular fixed-point
implementation function only when fraction lengths are within a particular
range.

23-133

23 Code Replacement

• When a match is made, you might want to modify your replacement
function signature based on compile-time information, such as passing
fraction-length values into the function.

When you need to add extra logic into the CRL matching and replacement
process, you can create custom CRL table entries. Custom entries allow you
to specify additional match criteria and/or modify the replacement function
signature to meet your application needs.

To create a custom CRL table entry, you perform the following steps:

1 Create a custom CRL entry class, derived from either
RTW.TflCOperationEntryML (for operator replacement) or
RTW.TflCFunctionEntryML (for function replacement).

2 In your derived class, implement a do_match method with a fixed preset
signature as a MATLAB function. In your do_match method, you can
provide either or both of the following customizations for use by CRL table
entries that instantiate the class:

a Add any additional match criteria not provided by the base class. The
base class provides a match based on argument number, argument name,
signedness, word size, slope (if not wildcarded), bias (if not wildcarded),
math modes such as saturation and rounding, and operator or function
key. For example, you can accept a match only when additional size or
range conditions are met.

b Modify the implementation signature by adding additional arguments
or setting constant input argument values. For example, you can inject
a constant value, such as an input’s scaling value, as an additional
argument to the replacement function.

3 Create CRL table entries that instantiate your custom CRL entry class.

4 Register a CRL containing the CRL table entries. The registered CRL is
then available for selection in the Code Generation > Interface pane of
the Simulink Configuration Parameters dialog box.

During code generation, the CRL matching process first tries to match
function or operator call sites with the base class of your derived entry class.
If a match is found, the software calls your do_match method to execute your

23-134

Create Code Replacement Tables

additional match logic (if any) and your replacement function customizations
(if any).

The following sections provide examples of creating custom CRL table
entries to refine matching and replacement for operators and functions. For
more examples, see the CRL examples page, including the example model
rtwdemo_crlcustomentry.

Customize CRL Matching and Replacement for Operators
This example demonstrates how to use custom CRL table entries to refine the
matching and replacement logic for operators. In this example, a fixed-point
addition replacement needs to be modified such that the implementation
function passes in the fraction lengths of the input and output data types as
arguments.

1 To exercise the custom CRL table entries created in this example, create an
ERT-based model with one or more unsigned 32-bit fixed-point addition
operations, such as the following:

For the purposes of this example, in the block parameters for both Add
blocks, set Integer rounding mode to Floor and select the option
Saturate on integer overflow.

2 Create a class folder using the name of your derived class, such as
@TflCustomOperationEntry. Check that the class folder is in the MATLAB
search path or in the current working folder.

3 In the class folder, create and save the following class definition
file, TflCustomOperationEntry.m. This file defines the class
TflCustomOperationEntry, which is derived from the base class
RTW.TflCOperationEntryML

23-135

23 Code Replacement

The derived class defines a do_match method . In the do_match method
signature,

• ent is the return handle, which is returned either as empty (indicating
that the match failed) or as a TflCOperationEntry handle.

• hThis is the handle to this object.

• hCSO is a handle to an object created by the code generator for the
purpose of querying the CRL for a replacement.

• The remaining arguments are the number of bits for various data types
of the current target.

The purpose of the do_match method is to add any required additional
match criteria not provided by the base class and make any required
modifications to the implementation signature. In this case, the do_match
method can rely on the base class for checking word size and signedness,
and additionally only needs to match the number of conceptual arguments
to the value 3 (two inputs and one output) and the bias for each argument to
the value 0. If a match is made, the method sets the return handle, removes
slope and bias wildcarding from the conceptual arguments (since the match
is for specific slope and bias values), and writes fraction-length values for
the inputs and output into replacement function arguments 3, 4, and 5.

Note The three additional implementation function arguments for passing
fraction lengths can be created and added either here in the class definition
or in each CRL table entry definition that instantiates this class. In this
example, the arguments are created and added in a CRL table definition
file and set to specific values in the class definition code. For an example
of creating and adding additional implementation function arguments in
a class definition, see “Customize CRL Matching and Replacement for
Functions” on page 23-144.

classdef TflCustomOperationEntry < RTW.TflCOperationEntryML

methods

function ent = do_match(hThis, ...

hCSO, ... %#ok

targetBitPerChar, ... %#ok

targetBitPerShort, ... %#ok

23-136

Create Code Replacement Tables

targetBitPerInt, ... %#ok

targetBitPerLong) %#ok

% DO_MATCH - Create a custom match function. The base class

% checks the types of the arguments prior to calling this

% method. This will check additional data and perhaps modify

% the implementation function.

% The base class checks word size and signedness. Slopes and biases

% have been wildcarded, so the only additional checking to do is

% to check that the biases are zero and that there are only three

% conceptual arguments (one output, two inputs)

ent = []; % default the return to empty, indicating the match failed.

if length(hCSO.ConceptualArgs) == 3 && ...

hCSO.ConceptualArgs(1).Type.Bias == 0 && ...

hCSO.ConceptualArgs(2).Type.Bias == 0 && ...

hCSO.ConceptualArgs(3).Type.Bias == 0

% Modify the default implementation. Since this is a

% generator entry, a concrete entry is created using this entry

% as a template. The type of entry being created is a standard

% TflCOperationEntry. Using the standard operation entry

% provides the necessary information, and you do not need

% a custom match function.

ent = RTW.TflCOperationEntry(hThis);

% Since this entry is modifying the implementation for specific

% fraction-length values (arguments 3, 4, and 5), the conceptual argument

% wildcards must be removed (the wildcards were inherited from the

% generator when it was used as a template for the concrete entry).

% This concrete entry is now for a specific slope and bias

% (not for any slope and bias). The hCSO holds the

% slope and bias values (created by the code generator).

for idx=1:3

ent.ConceptualArgs(idx).CheckSlope = true;

ent.ConceptualArgs(idx).CheckBias = true;

% Set the specific Slope and Biases

ent.ConceptualArgs(idx).Type.Slope = hCSO.ConceptualArgs(idx).Type.Slope;

23-137

23 Code Replacement

ent.ConceptualArgs(idx).Type.Bias = 0;

end

% Set the fraction-length values in the implementation function.

ent.Implementation.Arguments(3).Value = ...

-1.0*hCSO.ConceptualArgs(2).Type.FixedExponent;

ent.Implementation.Arguments(4).Value = ...

-1.0*hCSO.ConceptualArgs(3).Type.FixedExponent;

ent.Implementation.Arguments(5).Value = ...

-1.0*hCSO.ConceptualArgs(1).Type.FixedExponent;

end

end

end

end

Exit the class folder and return to the previous working folder.

4 Create and save the following CRL table definition file,
crl_table_custom_add_ufix32.m. This file defines a CRL table
containing a single operator entry, a CRL entry generator for unsigned
32-bit fixed-point addition operations, with arbitrary fraction-length values
on the inputs and the output. This entry instantiates the derived class from
the previous step, TflCustomOperationEntry.

23-138

Create Code Replacement Tables

Note

• If you want to replace all word sizes and signedness attributes (not just
32-bit and unsigned), you can use the same derived class, but not the
same CRL entry, because the WordLength and IsSigned arguments
cannot be wildcarded. For example, to support uint8, int8, uint16,
int16, and int32, you would need to add five other distinct CRL entries.
Similarly, if you wanted to use different implementation functions for
saturation and rounding modes other than overflow and round to floor,
you would need to add CRL entries for those match permutations.

• This table entry creates and adds three implementation arguments to
hold the fraction-length values for the inputs and output. Alternatively,
this table entry could omit those argument definitions and instead the
do_match method of the derived class TflCustomOperationEntry could
create and add the three implementation arguments. In particular, you
should use the alternative approach when the number of additional
implementation arguments required might vary based on compile-time
information.

function hTable = crl_table_custom_add_ufix32

hTable = RTW.TflTable;

%% Add TflCustomOperationEntry

op_entry = TflCustomOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_ADD', ...

'Priority', 30, ...

'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

'RoundingModes', {'RTW_ROUND_FLOOR'}, ...

'ImplementationName', 'myFixptAdd', ...

'ImplementationHeaderFile', 'myFixptAdd.h', ...

'ImplementationSourceFile', 'myFixptAdd.c');

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'CheckSlope', false, ...

23-139

23 Code Replacement

'CheckBias', false, ...

'DataType', 'Fixed', ...

'Scaling', 'BinaryPoint', ...

'IsSigned', false, ...

'WordLength', 32);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'CheckSlope', false, ...

'CheckBias', false, ...

'DataType', 'Fixed', ...

'Scaling', 'BinaryPoint', ...

'IsSigned', false, ...

'WordLength', 32);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT', ...

'CheckSlope', false, ...

'CheckBias', false, ...

'DataType', 'Fixed', ...

'Scaling', 'BinaryPoint', ...

'IsSigned', false, ...

'WordLength', 32);

% Specify replacement function signature

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'IsSigned', false, ...

'WordLength', 32, ...

'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', false, ...

'WordLength', 32, ...

'FractionLength', 0);

23-140

Create Code Replacement Tables

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', false, ...

'WordLength', 32, ...

'FractionLength', 0);

% Add 3 fraction-length args. Actual values will be set during code generation.

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumericConstant', ...

'Name', 'fl_in1', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', false, ...

'WordLength', 32, ...

'FractionLength', 0, ...

'Value', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumericConstant', ...

'Name', 'fl_in2', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', false, ...

'WordLength', 32, ...

'FractionLength', 0, ...

'Value', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumericConstant', ...

'Name', 'fl_out', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', false, ...

'WordLength', 32, ...

'FractionLength', 0, ...

'Value', 0);

addEntry(hTable, op_entry);

5 Optionally, perform a quick check of the validity of the function entry
by invoking the table definition file at the MATLAB command line (>>
tbl = crl_table_custom_add_ufix32) and by viewing it in the Code
Replacement Viewer (>> RTW.viewTfl(crl_table_custom_add_ufix32)).

23-141

23 Code Replacement

For more information about validating CRL tables, see “Examine and
Validate Code Replacement Tables” on page 23-191.

6 Create and save the following CRL registration file, which references the
crl_table_custom_add_ufix32 table.

The file specifies that the CRL to be registered is named Custom CRL
Operator Entry Example and consists of crl_table_custom_add_ufix32,
with the default ANSI math library as the base CRL table.

function sl_customization(cm)

% sl_customization function to register a code replacement library (CRL)

% Register the CRL defined in local function locCrlRegFcn

cm.registerTargetInfo(@locCrlRegFcn);

end % End of SL_CUSTOMIZATION

% Local function to define a CRL containing crl_table_custom_add_ufix32

function thisCrl = locCrlRegFcn

% Instantiate a CRL registry entry

thisCrl = RTW.TflRegistry;

% Define the CRL properties

thisCrl.Name = 'Custom CRL Operator Entry Example';

thisCrl.Description = 'Example of custom match for operator replacement';

thisCrl.TableList = {'crl_table_custom_add_ufix32'};

thisCrl.BaseTfl = 'C89/C90 (ANSI)';

thisCrl.TargetHWDeviceType = {'*'};

end % End of LOCCRLREGFCN

Place this sl_customization.m file in the MATLAB search path or in the
current working folder, so that the CRL is registered at each Simulink
startup.

23-142

Create Code Replacement Tables

Tip To refresh Simulink customizations within the current MATLAB
session, use the command sl_refresh_customizations. To refresh
MATLAB Coder CRL registration information within a MATLAB session,
use the command RTW.TargetRegistry.getInstance('reset');.

For more information about registering CRLs with Simulink or MATLAB
Coder software, see “Register Code Replacement Libraries” on page 23-203.

7 With your sl_customization.m file in the MATLAB search path or in the
current working folder, open the model you created in step 1 and go to the
Code Generation > Interface pane of the Configuration Parameters
dialog box. Verify that the Code replacement library option lists the
CRL name you specified and select it.

Optionally, you can relaunch the Code Replacement Viewer, using the
MATLAB command RTW.viewTFL without arguments, to examine the
currently registered CRLs, including Custom CRL Operator Entry
Example.

8 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box and select the options Create code generation
report andModel-to-code. Then go to the Code Generation pane, select
the Generate code only option, and generate code for the model.

9 Go to Simulink Editor and use model-to-code highlighting to trace the
code generated using your CRL entry. For example, right-click either
Add block and select C/C++ Code > Navigate to C/C++ Code. This
selection highlights the Sum block code within the model step function
in the model.c file. As shown below, the default implementation code
for the unsigned 32-bit fixed-point addition operation has been replaced
with myFixptAdd, and the three additional fraction-length arguments are
present.

/* Model step function */

void ufix32_add_step(void)

{

/* Outport: '<Root>/Out1' incorporates:

* Inport: '<Root>/In1'

* Inport: '<Root>/In2'

23-143

23 Code Replacement

* Sum: '<Root>/Add'

*/

ufix32_add_Y.Out1 = myFixptAdd(ufix32_add_U.In1, ufix32_add_U.In2, 9U, 7U, 6U);

/* Outport: '<Root>/Out2' incorporates:

* Inport: '<Root>/In3'

* Inport: '<Root>/In4'

* Sum: '<Root>/Add1'

*/

ufix32_add_Y.Out2 = myFixptAdd(ufix32_add_U.In3, ufix32_add_U.In4, 10U, 9U, 7U);

}

Customize CRL Matching and Replacement for Functions
This example demonstrates how to use custom CRL table entries to refine the
matching and replacement logic for functions. In this example, a sine function
replacement needs to be modified, only if the integer size on the current
target platform is 32 bits, such that the implementation function passes in a
degrees-versus-radians flag as an input argument.

1 To exercise the custom CRL table entries created in this example, create an
ERT-based model with a sine function block, such as the following:

For the purposes of this example, in the import block parameters, set the
signal Data type to double. Also, if the target platform selected for your
model on the Hardware Implementation pane of the Configuration
Parameters dialog box supports an integer size other than 32, you should
either temporarily select a target platform with a 32-bit integer size, or
modify the code in this example to match the integer size of your target
platform.

2 Create a class folder using the name of your derived class, such as
@TflCustomFunctionEntry. Check that the class folder is in the MATLAB
search path or in the current working folder.

23-144

Create Code Replacement Tables

3 In the class folder, create and save the following class definition
file, TflCustomFunctionEntry.m. This file defines the class
TflCustomFunctionEntry, which is derived from the base class
RTW.TflCFunctionEntryML

The derived class defines a do_match method . In the do_match method
signature,

• ent is the return handle, which is returned either as empty (indicating
that the match failed) or as a TflCFunctionEntry handle.

• hThis is the handle to this object.

• hCSO is a handle to an object created by the code generator for the
purpose of querying the CRL for a replacement.

• The remaining arguments are the number of bits for various data types
of the current target.

The purpose of the do_match method is to add any required additional
match criteria not provided by the base class and make any required
modifications to the implementation signature. In this case, the do_match
method only needs to match targetBitPerInt, representing the number
of bits in the C int data type for the current target, to the value 32. If a
match is made, the method sets the return handle and creates and adds an
input argument, representing whether units are expressed as degrees or
radians, to the replacement function signature.

Note Alternatively, the additional implementation function argument
for passing a units flag could be created and added in each CRL table
definition file that instantiates this class. In that case, this class definition
code would not create the argument and would only set its value. For
an example of creating and adding additional implementation function
arguments in a table definition file, see “Customize CRL Matching and
Replacement for Operators” on page 23-135.

classdef TflCustomFunctionEntry < RTW.TflCFunctionEntryML

methods

function ent = do_match(hThis, ...

hCSO, ... %#ok

23-145

23 Code Replacement

targetBitPerChar, ... %#ok

targetBitPerShort, ... %#ok

targetBitPerInt, ... %#ok

targetBitPerLong) %#ok

% DO_MATCH - Create a custom match function. The base class

% checks the types of the arguments prior to calling this

% method. This will check additional data and perhaps modify

% the implementation function.

ent = []; % default the return to empty, indicating the match failed.

% Match sine function only if the target int size is 32 bits

if targetBitPerInt == 32

% Need to modify the default implementation, starting from a copy

% of the standard TflCFunctionEntry.

ent = RTW.TflCFunctionEntry(hThis);

% If the target int size is 32 bits, the implementation function

% takes an additional input flag argument indicating degress vs.

% radians. The additional argument can be created and added either

% in the CRL table definition file that instantiates this class, or

% here in the class definition, as follows:

createAndAddImplementationArg(ent, 'RTW.TflArgNumericConstant', ...

'Name', 'u2', ...

'IsSigned', true, ...

'WordLength', 32, ...

'FractionLength', 0, ...

'Value', 1);

end

end

end

end

Exit the class folder and return to the previous working folder.

4 Create and save the following CRL table definition file,
crl_table_custom_sinfcn_double.m. This file defines a CRL table
containing a function table entry for sine with double input and
output. This entry instantiates the derived class from the previous step,
TflCustomFunctionEntry.

23-146

Create Code Replacement Tables

function hTable = crl_table_custom_sinfcn_double

hTable = RTW.TflTable;

%% Add TflCustomFunctionEntry

fcn_entry = TflCustomFunctionEntry;

setTflCFunctionEntryParameters(fcn_entry, ...

'Key', 'sin', ...

'Priority', 30, ...

'ImplementationName', 'mySin', ...

'ImplementationHeaderFile', 'mySin.h', ...

'ImplementationSourceFile', 'mySin.c');

createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'DataTypeMode', 'double');

createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'DataTypeMode', 'double');

% TflCustomFunctionEntry class do_match method will create and add

% an implementation function argument during code generation if

% the supported integer size on the current target is 32 bits.

copyConceptualArgsToImplementation(fcn_entry);

addEntry(hTable, fcn_entry);

5 Optionally, perform a quick check of the validity of the function
entry by invoking the table definition file at the MATLAB
command line (>> tbl = crl_table_custom_sinfcn_double)
and by viewing it in the Code Replacement Viewer (>>
RTW.viewTfl(crl_table_custom_sinfcn_double)). For more information
about validating CRL tables, see “Examine and Validate Code Replacement
Tables” on page 23-191.

6 Create and save the following CRL registration file, which references the
crl_table_custom_sinfcn_double table.

23-147

23 Code Replacement

The file specifies that the CRL to be registered is named
'Custom CRL Function Entry Example' and consists of
crl_table_custom_sinfcn_double, with the default ANSI math library
as the base CRL table.

function sl_customization(cm)

% sl_customization function to register a code replacement library (CRL)

% Register the CRL defined in local function locCrlRegFcn

cm.registerTargetInfo(@locCrlRegFcn);

end % End of SL_CUSTOMIZATION

% Local function to define a CRL containing crl_table_custom_sinfcn_double

function thisCrl = locCrlRegFcn

% Instantiate a CRL registry entry

thisCrl = RTW.TflRegistry;

% Define the CRL properties

thisCrl.Name = 'Custom CRL Function Entry Example';

thisCrl.Description = 'Example of custom match for function replacement';

thisCrl.TableList = {'crl_table_custom_sinfcn_double'};

thisCrl.BaseTfl = 'C89/C90 (ANSI)';

thisCrl.TargetHWDeviceType = {'*'};

end % End of LOCCRLREGFCN

Place this sl_customization.m file in the MATLAB search path or in the
current working folder, so that the CRL is registered at each Simulink
startup.

Tip To refresh Simulink customizations within the current MATLAB
session, use the command sl_refresh_customizations. To refresh
MATLAB Coder CRL registration information within a MATLAB session,
use the command RTW.TargetRegistry.getInstance('reset');.

23-148

Create Code Replacement Tables

For more information about registering CRLs with Simulink or MATLAB
Coder software, see “Register Code Replacement Libraries” on page 23-203.

7 With your sl_customization.m file in the MATLAB search path or in the
current working folder, open the model you created in step 1 and go to the
Code Generation > Interface pane of the Configuration Parameters
dialog box. Verify that the Code replacement library option lists the
CRL name you specified and select it.

Optionally, you can relaunch the Code Replacement Viewer, using the
MATLAB command RTW.viewTFL without arguments to examine the
currently registered CRLs, including Custom CRL Function Entry
Example.

8 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box and select the options Create code generation
report andModel-to-code. Then go to the Code Generation pane, select
the Generate code only option, and generate code for the model.

9 Go to Simulink Editor and use model-to-code highlighting to trace the
code generated using your CRL entry. For example, right-click the sine
block and select C/C++ Code > Navigate to C/C++ Code. This selection
highlights the sine block code within the model step function in the
model.c file. As shown below, the default implementation code for the
sine function has been replaced with mySin, and the additional units flag
input argument is present.

/* Model step function */

void sine_double_step(void)

{

/* Outport: '<Root>/Out1' incorporates:

* Inport: '<Root>/In1'

* Trigonometry: '<Root>/Trigonometric Function'

*/

sine_double_Y.Out1 = mySin(sine_double_U.In1, 1);

}

23-149

23 Code Replacement

Note Optionally, you can change the current target for the model such
that the supported integer size is not 32 bits, and then regenerate code.
In that case, the custom match is not made, and the additional input
argument does not appear in the generated code for the sine block.

Replace Math Functions Based on Computation
Method
Certain math function blocks are configured with computation or
approximation methods that you can use as distinguishing attributes to
control CRL-based code replacement. For example,

• You can configure the Reciprocal Sqrt block to use either of two computation
methods, Newton-Raphson or Exact.

• You can configure the Trigonometric Function block, with Function set to
sin, cos, or sincos, to use either of two approximation methods, CORDIC
or None.

You can define CRL table entries to replace these functions for one or all of
the available computation methods. For example, you could provide a table
entry to replace only Newton-Raphson instances of the rSqrt function.

To distinguish between computation methods for a given function, use
the EntryInfoAlgorithm property of CRL function entries in a call to the
setTflCFunctionEntryParameters function. The arguments for specifying
the computation method to match during code generation are:

• For rSqrt:

- 'RTW_DEFAULT' (match the default computation method, Exact)

- 'RTW_NEWTON_RAPHSON'

- 'RTW_UNSPECIFIED' (match any computation method)

• For sin, cos, or sincos:

- 'RTW_CORDIC'

- 'RTW_DEFAULT' (match the default approximation method, None)

23-150

Create Code Replacement Tables

- 'RTW_UNSPECIFIED' (match any approximation method)

For example, to replace only Newton-Raphson instances of the rSqrt function,
you can create a table entry similar to the following.

hLib = RTW.TflTable;

%
% real_T rsqrt(real_T)
%

e = RTW.TflCFunctionEntry;
setTflCFunctionEntryParameters(e, ...

'Key', 'rSqrt', ...
'Priority', 80, ...
'ImplementationName', 'rsqrt_newton', ...
'ImplementationHeaderFile', 'rsqrt.h', ...
'EntryInfoAlgorithm', 'RTW_NEWTON_RAPHSON');

createAndAddConceptualArg(e, 'RTW.TflArgNumeric', ...
'Name', 'y1', ...
'IOType', 'RTW_IO_OUTPUT', ...
'DataTypeMode', 'double');

createAndAddConceptualArg(e, 'RTW.TflArgNumeric', ...
'Name', 'u1', ...
'DataTypeMode', 'double');

copyConceptualArgsToImplementation(e);
addEntry(hLib, e);

The generated code for a Newton-Raphson instance of the rSqrt function
resembles the following:

/* Model step function */
void mrsqrt_step(void)
{

/* Outport: '<Root>/Out1' incorporates:
* Inport: '<Root>/In1'
* Sqrt: '<Root>/rSqrtBlk'
*/

mrsqrt_Y.Out1 = rsqrt_newton(mrsqrt_U.In1);
}

23-151

23 Code Replacement

Map Semaphore or Mutex Operations to
Target-Specific Implementations
The Embedded Coder software supports the following semaphore and
mutex operations for replacement with custom library functions using code
replacement library (CRL) tables.

Operation Key

Mutex Destroy RTW_MUTEX_DESTROY

Mutex Init RTW_MUTEX_INIT

Mutex Lock RTW_MUTEX_LOCK

Mutex Unlock RTW_MUTEX_UNLOCK

Semaphore Destroy RTW_SEM_DESTROY

Semaphore Init RTW_SEM_INIT

Semaphore Post RTW_SEM_POST

Semaphore Wait RTW_SEM_WAIT

Note Semaphore and mutex code replacement is supported for:

• Simulink code generation for data transfer between tasks

• Code generation targets

Semaphore and mutex code replacement is not supported for:

• Stateflow charts, MATLAB Function blocks, and MATLAB functions

• Simulation targets

MathWorks provides code replacement tables that support semaphore and
mutex replacement for Windows, Linux, Mac, and VxWorks platforms. You
can use the RTW.viewTfl command to open a base CRL, such as C89/C90
(ANSI), and view the operating system specific definitions for the semaphore
and mutex replacements. If you are authoring or maintaining a custom

23-152

Create Code Replacement Tables

target that supports concurrent execution, and you want to provide custom
implementations of semaphore or mutex operations, you create a code
replacement table with four semaphore entries, four mutex entries, or both,
and include the table in a custom CRL. (The semaphore or mutex entries are
mutually dependent and must be provided in complete sets of four.)

Note A custom target that supports concurrent multitasking must set the
target configuration parameter ConcurrentExecutionCompliant. For more
information, see “Support Concurrent Execution of Multiple Tasks” in the
Simulink Coder documentation.

During code generation for a multicore target environment, if the build
process generates semaphore or mutex function calls for data transfer
between tasks, you can use a custom CRL to replace the generated function
calls with custom semaphore or mutex implementations that are optimal
for your target environment. Using the Code Replacement Tool (crtool) or
equivalent CRL functions, you can:

• Configure CRL table entries for custom semaphore or mutex functions
to be called during system startup, during execution of the code for data
transfer between tasks, and during system shutdown.

• Configure DWork arguments that represent global data accessed by the
semaphore or mutex functions. A DWork pointer is passed to the model
entry functions.

Generated semaphore or mutex code typically consists of the following:

• In model initialization code, a semaphore or mutex initialization function
call to create a semaphore or mutex to control entry to a critical code section.

• In model step code:

- Semaphore wait or mutex lock function calls to reserve the semaphore
or mutex before code for data transfer between tasks enters the critical
section.

- Semaphore post or mutex unlock function calls to release the semaphore
or mutex after the data transfer code has finished executing the critical
section.

23-153

23 Code Replacement

• In model termination code, a semaphore or mutex destroy function to
explicitly delete the semaphore or mutex during model termination
(optional).

The following example shows how to create CRL table entries for a mutex
replacement scenario. In this scenario, a multicore target model is configured
for concurrent execution and for data transfer between tasks of differing
rates, which are handled by Rate Transition blocks. In the generated code
for the model, each Rate Transition block has a separate, unique mutex.
Mutex lock and unlock operations within Rate Transition block generated
code share access to the same global data via the unique mutex created for
that Rate Transition block.

1 Open the Code Replacement Tool. For example, enter the MATLAB
command crtool.

2 Create and open a new CRL table. In the Code Replacement dialog box,
select File > New table.

3 Name the table. In the right-most pane of the dialog box, in the Name
field, enter a name such as crl_table_rt_mutex.

4 First, create a table entry for a mutex initialization function replacement.

a Select File > New entry > Semaphore entry. This action opens a
new table entry for configuring a semaphore or mutex replacement.

b In the Mapping Information tab, use the Function parameter
to select Mutex Init. Initial default values for the table entry are
displayed. In the Conceptual function section, typically you can leave
the argument settings at their defaults.

c In the DWork attributes section, the Allocate DWork option is
selected, and the dialog box provides a unique entry tag for the DWork
argument d1.

23-154

Create Code Replacement Tables

The DWork attributes pane allows you to configure a DWork argument
to the replacement function. The DWork argument supports sharing
of a semaphore or mutex between code that creates the semaphore or
mutex, code that requests and relinquishes access, and code that deletes
the semaphore or mutex. In this example, the DWork argument for the
Mutex Init function defines a unique entry tag (autogenerated by the
dialog box), entry_25576, and the DWork arguments for Mutex Lock,
Mutex Unlock, and Mutex Destroy reference the entry tag to share
the DWork data.

The only data type supported for the DWork Data type parameter is
void*.

d In the Replacement function section, Name field, enter a function
name. This example uses myMutexCreate. In the list of Function
arguments, leave the DWork argument d1 data type as void**.

23-155

23 Code Replacement

The function signature preview now shows void myMutexCreate (
void** d1);.

e In the Replacement function section, select the option Function
modifies internal or global state. This flags the code generator that
the implementation function described by this entry should not be
optimized away, because it accesses global memory values. Click Apply.
Optionally, you can click Validate entry to validate the information
entered in the Mapping Information tab.

Note For the purposes of creating a sample CRL table entry, you can
configure the replacement function signature without the replacement
function and its build information being present. However, if header
and source files for the implementation functions are available, you can
select the Build Information tab and specify them.

f The Mutex Init table entry is complete. Optionally, you can save the
table to a file, and inspect the MATLAB code created for the table
definition so far.

5 Repeat the following sequence to create the table entries for the mutex lock,
unlock, and destroy function replacements. Each table entry references
the DWork unique tag entry, entry_25576, defined in the Mutex Init
table entry.

23-156

Create Code Replacement Tables

a Select File > New entry > Semaphore entry.

b In the Mapping Information tab, use the Function parameter to
select Mutex Lock, Mutex Unlock, or Mutex Destroy. Initial default
values for the table entry are displayed. In the Conceptual function
section, typically you can leave the argument settings at their defaults.

c For a Rate Transition block mutex, the wait, post, and destroy functions
operate on the DWork allocated at system startup by the mutex
initialization function. In the DWork attributes section, check that the
Allocate DWork option is cleared. From the DWork Allocator entry
drop-down list, select the entry tag matching the value in the Mutex
Init table entry, which in this example is entry_25576.

d In the Replacement function section, Name field, enter a function
name. This example uses myMutexLock, myMutexUnlock, and
myMutexDelete. In the list of Function arguments, leave the DWork
argument d1 data type as void*.

23-157

23 Code Replacement

e In the Replacement function section, select the option Function
modifies internal or global state. This flags the code generator that
the implementation function described by this entry should not be
optimized away, because it accesses global memory values.

f Optionally, supply replacement function build information on the Build
Information tab.

g Click Apply. In the middle pane, right-click the table entry and select
Validate entry(s).

6 When you have added the table entries for Mutex Lock, Mutex Unlock, and
Mutex Destroy to the entry for Mutex Init, the rate transition mutex
replacement table is complete. In the left-most pane, right-click the table
name and select Validate table. If errors are flagged, address the errors
and repeat the table validation.

7 Save the table to a MATLAB file in your working folder, for example,
using File > Save table. The name of the saved file is the table name,
crl_table_rt_mutex, with an .m extension. Optionally, you can open the
saved file and examine the MATLAB code for the CRL table definition

8 Create a CRL registration file, rtwTargetInfo.m, that includes your code
replacement table. Select File > Generate registration file to open the
Generate registration file dialog box. Edit the dialog box fields to match
the following figure:

23-158

Create Code Replacement Tables

Click OK. The Select location dialog box opens. Use the dialog box to
specify a location for the registration file. The location must be on the
MATLAB path or in the current working folder. Save the file. Optionally,
you can open the generated file and examine the MATLAB code for the
CRL registry entry.

9 To register your CRL with code generation software without having to
restart MATLAB, enter the following MATLAB command:

>> RTW.TargetRegistry.getInstance('reset');

10 Open an ERT-based Simulink model, configured for a multicore target
environment, that contains a rate transition for which the build process
generates mutex function calls. This example uses the following model.

11 Go to the Code Generation > Interface pane of the Configuration
Parameters dialog box. Verify that the Code replacement library

23-159

23 Code Replacement

parameter lists the CRL that you registered, RT mutex example, and
select it.

12 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box. Select the options Create code generation
report, Open report automatically, Model-to-code, and Summarize
which block triggered code replacements. Then go to the Code
Generation pane, select the Generate code only option and click Apply.
Click Generate code to generate code for the model.

13 Inspect the code generated for your model to see if the replacements
occurred as expected. Below, from the generated model.c file, are
samples of mutex replacements in model step code (myMutexLock and
mMutexUnlock), model initialization code (myMutexCreate), and model
termination code (myMutexDelete), respectively.

/* Model step function for TID1 */

void mRateTransition_step1(void) /* Sample time: [0.01s, 0.0s] */

{

...

/* RateTransition: '<Root>/F' */

myMutexLock(mRateTransition_DWork.F_d0_SEMAPHORE);

...

myMutexUnlock(mRateTransition_DWork.F_d0_SEMAPHORE);

...

/* End of RateTransition: '<Root>/F' */

...

}

/* Model step function for TID2 */

void mRateTransition_step2(void) /* Sample time: [0.02s, 0.0s] */

{

/* RateTransition: '<Root>/F' */

myMutexLock(mRateTransition_DWork.F_d0_SEMAPHORE);

...

myMutexUnlock(mRateTransition_DWork.F_d0_SEMAPHORE);

...

/* End of RateTransition: '<Root>/F' */

...

}

23-160

Create Code Replacement Tables

/* Model initialize function */

void mRateTransition_initialize(void)

{

...

/* Start for RateTransition: '<Root>/F' */

...

myMutexCreate(&mRateTransition_DWork.F_d0_SEMAPHORE;)

;

...

}

/* Model terminate function */

void mRateTransition_terminate(void)

{

/* Terminate for RateTransition: '<Root>/F' */

myMutexDelete(mRateTransition_DWork.F_d0_SEMAPHORE);

}

Specify Build Information for Code Replacements

• “Functions and Properties for Specifying Table Entry Build Information”
on page 23-162

• “Use RTW.copyFileToBuildDir to Copy Files to Build Folder” on page
23-163

• “Include RTW.copyFileToBuildDir In Table Entries” on page 23-164

Note This section describes MATLAB based API functions and properties
for specifying build information for code replacements. Alternatively, you
can specify build information using the Code Replacement Tool graphical
interface. For more information, see “Manage CRTs with the Code
Replacement Tool” on page 23-168.

23-161

23 Code Replacement

Functions and Properties for Specifying Table Entry Build
Information
As you create CRL table entries for function or operator replacement,
you specify the header and source file information for each function
implementation using one of the following:

• The arguments ImplementationHeaderFile,
ImplementationHeaderPath, ImplementationSourceFile, and
ImplementationSourcePath to setTflCFunctionEntryParameters or
setTflCOperationEntryParameters

• The headerFile argument to registerCFunctionEntry,
registerCPPFunctionEntry, or registerCPromotableMacroEntry

Each table entry can specify additional header files, source files, and object
files to be included in model builds whenever the CRL table entry is matched
and used to replace a function or operator in generated code. To add an
additional header file, source file, or object file, use the following CRL table
creation functions.

Function Description

addAdditionalHeaderFile Add additional header file to array of
additional header files for CRL table entry

addAdditionalIncludePath Add additional include path to array of
additional include paths for CRL table entry

addAdditionalLinkObj Add additional link object to array of
additional link objects for CRL table entry

addAdditionalLinkObjPath Add additional link object path to array of
additional link object paths for CRL table
entry

addAdditionalSourceFile Add additional source file to array of
additional source files for CRL table entry

addAdditionalSourcePath Add additional source path to array of
additional source paths for CRL table entry

Also, each table entry can specify additional compile flags, additional link
flags, or other files to be included in model builds whenever the CRL table

23-162

Create Code Replacement Tables

entry is matched and used to replace a function or operator in generated
code. To add additional compile or link flags or other files, use the following
CRL table entry properties.

Property Description

AdditionalCompileFlags Add additional compile flags, specified as cell
array of strings, for CRL table entry

AdditionalLinkFlags Add additional link flags, specified as cell
array of strings, for CRL table entry

OtherFiles Add other files, specified as cell array of
strings, for CRL table entry (for example, a
DLL file or README file to be copied to the
build folder)

For example, the following code provides an additional compile flag for a
function entry:

fcn_entry = RTW.TflCFunctionEntry;
fcn_entry.AdditionalCompileFlags = {'-O3'}

Use RTW.copyFileToBuildDir to Copy Files to Build Folder
If a CRL table entry uses header, source, or object files that reside in external
directories, and if the table entry is matched and used to replace a function
or operator in generated code, the external files will need to be copied to the
build folder before the generated code is built. The RTW.copyFileToBuildDir
function can be invoked after code generation to copy the table entry’s
specified header file, source file, additional header files, additional source
files, and additional link objects to the build folder. The copied files are then
available for use in the build process.

To direct that a table entry’s external files should be copied to the build folder
after code generation, specify the argument 'RTW.copyFileToBuildDir' to
the genCallback parameter of the CRL function that you use to set the table
entry parameters, among the following:

• registerCFunctionEntry

• registerCPPFunctionEntry

23-163

23 Code Replacement

• registerCPromotableMacroEntry

• setTflCFunctionEntryParameters

• setTflCOperationEntryParameters

Include RTW.copyFileToBuildDir In Table Entries
The following example defines a table entry for an optimized multiplication
function that takes signed 32-bit integers and returns a signed 32-bit integer,
taking saturation into account. Multiplications in the generated code will
be replaced with calls to your optimized function. Your optimized function
resides in an external folder and must be copied into the build folder to be
compiled and linked into the application.

The multiplication table entry specifies the source and header file names as
well as their full paths. To request the copy to be performed, the table entry
specifies the argument 'RTW.copyFileToBuildDir' to the genCallback
parameter of the setTflCOperationEntryParameters function. In this
example, the header file s32_mul.h contains an inlined function that invokes
assembly functions contained in s32_mul.s. If the table entry is matched and
used to generate code, the RTW.copyFileToBuildDir function will copy the
specified source and header files into the build folder.

function hTable = make_my_crl_table

hTable = RTW.TflTable;

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_MUL', ...

'Priority', 100, ...

'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

'ImplementationName', 's32_mul_s32_s32_sat', ...

'ImplementationHeaderFile', 's32_mul.h', ...

'ImplementationSourceFile', 's32_mul.s', ...

'ImplementationHeaderPath', {fullfile('$(MATLAB_ROOT)','crl')}, ...

'ImplementationSourcePath', {fullfile('$(MATLAB_ROOT)','crl')}, ...

'GenCallback', 'RTW.copyFileToBuildDir');

.

23-164

Create Code Replacement Tables

.

.

addEntry(hTable, op_entry);

The following example shows the use of the addAdditional* functions along
with RTW.copyFileToBuildDir.

hTable = RTW.TflTable;

% Path to external source, header, and object files

libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

'Key', 'RTW_OP_ADD', ...

'Priority', 90, ...

'SaturationMode', 'RTW_SATURATE_UNSPECIFIED', ...

'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

'ImplementationName', 's32_add_s32_s32', ...

'ImplementationHeaderFile', 's32_add_s32_s32.h', ...

'ImplementationSourceFile', 's32_add_s32_s32.c'...

'GenCallback', 'RTW.copyFileToBuildDir');

addAdditionalHeaderFile(op_entry, 'all_additions.h');

addAdditionalIncludePath(op_entry, fullfile(libdir, 'include'));

addAdditionalSourceFile(op_entry, 'all_additions.c');

addAdditionalSourcePath(op_entry, fullfile(libdir, 'src'));

addAdditionalLinkObj(op_entry, 'addition.o');

addAdditionalLinkObjPath(op_entry, fullfile(libdir, 'bin'));

.

.

.

addEntry(hTable, op_entry);

Add Code Replacement Library Reserved Identifiers
The Simulink Coder software reserves certain words for its own use
as keywords of the generated code language. Reserved keywords for
code generation are for use internal to the Simulink Coder software
or C programming and should not be used in Simulink models as
identifiers or function names. Reserved keywords for code generation

23-165

23 Code Replacement

include many CRL identifiers, the majority of which are function
names, such as acos. To view a list of reserved identifiers for the
CRL that you are using to generate code, call the MATLAB function
RTW.TargetRegistry.getInstance.getTflReservedIdentifiers, passing
the name of the CRL as displayed in the Code replacement library menu
on the Code Generation > Interface pane of the Configuration Parameters
dialog box. For example,

crl_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers('GNU99 (GNU)')

For more information, see “Simulink Coder Code Replacement Library
Keywords” in the Simulink Coder documentation.

In a CRL table, each function implementation name defined by a table
entry is registered as a reserved identifier. You can register additional
reserved identifiers for the table on a per-header-file basis. Providing
additional reserved identifiers can help prevent duplicate symbols and other
identifier-related compile and link issues.

To register additional CRL reserved identifiers, use the following function.

Function Description

setReservedIdentifiers Register specified reserved identifiers to be
associated with CRL table

You can register up to four reserved identifier structures in a CRL table. One
set of reserved identifiers can be associated with an arbitrary CRL, while
the other three (if present) must be associated with ANSI, ISO12, or GNU13

libraries. The following example shows a reserved identifier structure that
specifies two identifiers and the associated header file.

d{1}.LibraryName = 'ANSI';

d{1}.HeaderInfos{1}.HeaderName = 'math.h';

d{1}.HeaderInfos{1}.ReservedIds = {'y0', 'y1'};

12. ISO® is a registered trademark of the International Organization for Standardization.

13. GNU® is a registered trademark of the Free Software Foundation.

23-166

Create Code Replacement Tables

The specified identifiers are added to the reserved identifiers collection and
honored during the build procedure. For more information and examples, see
setReservedIdentifiers.

23-167

23 Code Replacement

Manage CRTs with the Code Replacement Tool

In this section...

“Code Replacement Tool” on page 23-168

“Create Code Replacement Table for a Sample Model” on page 23-169

“Create Code Replacement Table for a Sample MATLAB Coder Project”
on page 23-176

“Create and Modify Code Replacement Tables” on page 23-183

“Validate Code Replacement Tables and Table Entries” on page 23-189

“Generate a Code Replacement Registration File” on page 23-189

Code Replacement Tool
The Code Replacement Tool provides a graphical interface for creating
and managing the code replacement tables (CRTs) that make up a code
replacement library (CRL). You can:

• Create a new code replacement table or import existing tables.

• Add, modify, and delete table entries. Each table entry represents a
potential code replacement for a single function or operator. You can
manage multiple tables together and copy and paste entries between tables.

• Validate tables and table entries.

• Save code replacement tables as MATLAB files.

• Generate the customization file to register your code replacement tables
with code generation software.

Each code replacement table contains one or more table entries. Each table
entry represents a potential replacement of a single function or operator by
a custom implementation during code generation. For each table entry, you
provide:

• Mapping Information, which relates a conceptual view of the function or
operator — similar to the Simulink block view of the function or operator
— to a custom implementation of that function or operator.

23-168

Manage CRTs with the Code Replacement Tool

• Build Information, which provides header, source, or link information
required for building the custom implementation.

For detailed information about the Code Replacement Tool workflow, see
“Create and Modify Code Replacement Tables” on page 23-183, “Validate
Code Replacement Tables and Table Entries” on page 23-189, and “Generate
a Code Replacement Registration File” on page 23-189. For introductory
examples, see “Create Code Replacement Table for a Sample Model” on page
23-169 and “Create Code Replacement Table for a Sample MATLAB Coder
Project” on page 23-176.

Create Code Replacement Table for a Sample Model
Here is a simple example of the complete Code Replacement Tool workflow.

1 Start a new MATLAB session. Navigate (cd) to a folder that does not have
artifacts from previous code replacement library (CRL) work, such as CRL
table definition files or CRL registration files.

2 Open the Code Replacement Tool by entering the MATLAB command
crtool.

3 Create a new code replacement table using File > New table. This
table will define one or more entries for replacing generated code for the
math function sin with a custom C implementation. In the right-most
pane, in the Name field, enter a name for the code replacement table,
crl_table_sinfcn, and click Apply. Later, when you save this table to a
MATLAB file, the tool will save it with the name crl_table_sinfcn.m.

23-169

23 Code Replacement

4 Create a table entry using File > New entry > Function. The new table
entry appears in the middle pane, initially without a name.

5 This table entry will map a sin function with double input and double
output to a custom implementation function named sin_dbl, defined in
header file sin_dbl.h. Select the table entry in the middle pane, go to the
Mapping Information tab in the right pane, and configure the mapping
information as follows:

a In the Function parameter drop-down list, select sin. Leave the
Algorithm parameter set to Unspecified, and leave the parameters in
the Conceptual function group at their default values.

b In the Replacement function group, for the Name parameter,
enter sin_dbl. Click Apply. The Function signature preview
automatically updates to reflect the specified replacement function

23-170

Manage CRTs with the Code Replacement Tool

name. Leave the remaining parameters in the Replacement function
group at their default values.

c To validate the table entry so far, go to the bottom of the tab and click
Validate entry. The completed mapping information is shown in the
following figure.

23-171

23 Code Replacement

23-172

Manage CRTs with the Code Replacement Tool

6 Go to the Build Information tab in the right pane, and configure the build
information as follows. In the Implementation Header File parameter
field, enter the header file specification sin_dbl.h. Click Apply. For this
example, you can leave the other Build Information parameters at their
default values.

Optionally, you can revalidate the modified table entry, by returning to
Mapping Information and clicking the Validate entry button.

7 Optionally, you can create a second table entry that maps a sin function
with single input and double output to a custom implementation function
named sin_sgl. Copy and paste the first entry to create a second entry.

23-173

23 Code Replacement

Then, in the second entry, modify the input specifications (conceptual and
replacement) from double to single. Modify the replacement function
name and header file from sin_dbl to sin_sgl.

8 Validate the code replacement table, for example, usingActions > Validate
table. If errors are reported, fix the errors, and retry the validation.
Repeat until errors are not reported.

9 Save the table to a MATLAB file in your working folder, for example,
using File > Save table. The name of the saved file is the table name,
crl_table_sinfcn, with an .m extension. Optionally, you can open the
saved file in a text editor and examine the MATLAB code for the CRL
table definition.

10 Create a CRL registration file, rtwTargetInfo.m, that includes your code
replacement table. Select File > Generate registration file to open the
Generate registration file dialog box. Edit the dialog box fields to match
the following figure.

23-174

Manage CRTs with the Code Replacement Tool

Click OK. The Select location dialog box opens. Use the dialog box to
specify a location for the registration file. The location must be on the
MATLAB path or in the current working folder. Save the file.

Optionally, you can open the generated file in a text editor and examine the
MATLAB code for the CRL registry entry.

11 To register your CRL with code generation software without having to
restart MATLAB, enter the following MATLAB command:

>> RTW.TargetRegistry.getInstance('reset');

12 Open an ERT-based Simulink model. Go to the Code
Generation > Interface pane of the Configuration Parameters
dialog box. Verify that the Code replacement library option lists the
CRL name that you specified and select it.

Note If you hover over the selected library with the cursor, a tool tip
appears. This tip contains information derived from your CRL registration
file, such as the CRL description and the list of tables it contains.

13 Create an ERT-based model with a Trigonometric Function block set to the
sine function, for example:

Check that the CRL you registered, Sine Function Example, is selected
for this model.

14 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box. Select the options Create code generation

23-175

23 Code Replacement

report andModel-to-code. Then go to the Code Generation pane, select
the Generate code only option, and generate code for the model.

15 Go to Simulink Editor and use model-to-code highlighting to trace the
code generated using your CRL entry. For example, right-click the
Trigonometric Function block and select C/C++ Code > Navigate to
C/C++ Code. This selection highlights the sin function code within the
model step function in sine_double.c. In this case, sin has been replaced
with sin_dbl in the generated code.

Create Code Replacement Table for a Sample MATLAB
Coder Project
This example shows how to use the Code Replacement Tool when generating
C code from MATLAB code in a MATLAB Coder project.

1 Start a new MATLAB session. Navigate (cd) to a folder that does not have
artifacts from previous code replacement library (CRL) work, such as CRL
table definition files or CRL registration files.

2 Create a new MATLAB Coder project.

23-176

Manage CRTs with the Code Replacement Tool

coder -new code_replace.prj

By default, the project opens in the MATLAB workspace on the right side.

3 In the same folder, create a MATLAB file, foo.m.

function y = foo(u)
y=sin(u);

end

4 On the project Overview tab, click the Add files link. Browse to the file
foo.m and then click OK to add the file to the project.

5 In the project, define the type of input u.

a On the Overview tab, click the field to the right of the input parameter
u and then, from the list of input options, select double.

b From the list of size options, select 1 x 1 to specify that u is a scalar.

6 In the project, select the Build tab.

7 On the Build tab, set Output type to C/C++ Static Library.

8 Click the More settings link.

9 In the Project Settings dialog box, select the Hardware tab.

10 On the Hardware tab, click the Custom link to open the Code
Replacement Tool.

11 In the Code Replacement Tool, create a new code replacement table using
File > New table. This table defines one or more entries for replacing
generated code for the math function sin with a custom C implementation.
In the right-most pane, in the Name field, enter a name for the code
replacement table, crl_table_sinfcn, and click Apply. Later, when
you save this table to a MATLAB file, the tool saves it with the name
crl_table_sinfcn.m.

23-177

23 Code Replacement

12 Create a table entry using File > New entry > Function. The new table
entry is displayed in the middle pane, initially without a name.

13 This table entry maps a sin function with double input and double output
to a custom implementation function named sin_dbl, defined in header file
sin_dbl.h. Select the table entry in the middle pane, go to the Mapping
Information tab in the right pane, and configure the mapping information:

a Set Function to sin. Leave the Algorithm parameter set to
Unspecified. Leave the parameters in the Conceptual function group
at their default values.

b In the Replacement function group, for the Name parameter, enter
sin_dbl. Click Apply.

23-178

Manage CRTs with the Code Replacement Tool

The Function signature preview automatically updates to reflect the
specified replacement function name. Leave the remaining parameters
in the Replacement function group at their default values.

c To validate the table entry so far, go to the bottom of the tab and click
Validate entry. The completed mapping information is displayed.

23-179

23 Code Replacement

23-180

Manage CRTs with the Code Replacement Tool

14 Go to the Build Information tab in the right pane, and configure the build
information. In the Implementation Header File parameter field, enter
the header file specification sin_dbl.h. Click Apply. For this example, you
can leave the other Build Information parameters at their default values.

Optionally, you can revalidate the modified table entry by returning to
Mapping Information and clicking Validate entry.

15 Optionally, you can create a second table entry that maps a sin function
with single input and double output to a custom implementation function
named sin_sgl. Copy and paste the first entry to create a second entry.
Then, in the second entry, modify the input specifications (conceptual and

23-181

23 Code Replacement

replacement) from double to single. Modify the replacement function
name and header file from sin_dbl to sin_sgl.

16 Validate the code replacement table using Actions > Validate table. If
errors are reported, fix the errors, and retry the validation. Repeat until
errors are not reported.

17 Select File > Save table to save the table to a MATLAB file in
your working folder. The name of the saved file is the table name,
crl_table_sinfcn, with a .m extension. Optionally, you can open the
saved file in a text editor and examine the MATLAB code for the CRL
table definition.

18 Create a CRL registration file, rtwTargetInfo.m, that includes your code
replacement table. Select File > Generate registration file.

19 In the Generate registration file dialog box, edit the dialog box fields to
match the following figure.

23-182

Manage CRTs with the Code Replacement Tool

Click OK. The Select location dialog box opens. Use the dialog box to
specify a location for the registration file. The location must be on the
MATLAB path or in the current working folder. Save the file.

Optionally, you can open the generated file in a text editor and examine the
MATLAB code for the CRL registry entry.

20 To register your CRL with code generation software without having to
restart MATLAB, enter the following MATLAB command:

>> RTW.TargetRegistry.getInstance('reset');

21 In the Project Settings dialog box, on the Hardware tab, set Code
replacement library to Sine Function Example.

22 On the Build tab, click Build.

MATLAB Coder builds the project and generates a C static library and
supporting files in the default folder, codegen/lib/foo. It also provides a
link to the code generation report.

23 Click the View report link.

24 In the code generation report, view the C code generated for the foo
function.

The call to sin has been replaced with sin_dbl in the generated code.

real_T foo(real_T u)
{

return sin_dbl(u);
}

Create and Modify Code Replacement Tables

• “Open the Code Replacement Tool” on page 23-184

• “Open and Save Code Replacement Tables” on page 23-185

• “Configure Code Replacement Tables” on page 23-187

23-183

23 Code Replacement

Open the Code Replacement Tool
You can open the Code Replacement Tool in the following ways:

• From the Simulink Editor, open the Configuration Parameters dialog box.
Go to the Code Generation > Interface pane, and click the Custom
button located to the right of the Code replacement library parameter.

Note The Custom button appears only for ERT-based targets. Creating
custom code replacement tables requires an Embedded Coder license.

• In the MATLAB Command Window, enter the command crtool.

When first used, here is how the Code Replacement Tool dialog box looks:

23-184

Manage CRTs with the Code Replacement Tool

You can access table operations in the following ways:

• Available actions are provided through menus, including File, Edit, View,
Actions, and Help. You can also right-click in most areas to open context
menus. Additionally, many menu items list equivalent keyboard shortcuts.

• Common actions are available through icons. You can hover over each icon
to see a description.

• Keyboard shortcuts are provided for most operations.

• Cut, copy, paste, and delete operations are provided by Edit menu entries
and by icons. You can copy and paste many types of information. The Edit
menu additionally provides specialized Copy Build information and
Paste Build information operations.

Open and Save Code Replacement Tables
To open an existing code replacement table, select File > Open table to
launch the Import file dialog box. Browse to the MATLAB file that contains
the table. Optionally, you can repeat the sequence to open additional tables,
and potentially work on multiple tables together. Here is a sample display
with two tables opened.

By default, the tool displays, left to right, a root pane, a list pane, and a dialog
pane. You can manipulate the display using the following controls:

23-185

23 Code Replacement

• Drag boundaries to widen, narrow, shorten, or lengthen panes, and to
resize table columns.

• Select View > Show dialog pane to hide or display the right-most
pane. (The View menu also contains the option Prompt if dialog has
unapplied changes, which is selected by default.)

• Click a table column heading to sort the table according to the contents of
the selected column.

• Right-click a table column heading and select Hide to remove the column
from the display. (You cannot hide the Name column.)

If you open multiple tables, you can manage the tables together. Use the
available menu entries and icons to create new table entries, delete table
entries, and copy and paste or cut and paste information between tables.

To create a new code replacement table and add it to the Tables List in the
left-most pane, select File > New table. The new table initially is empty.

Next, you add one or more table entries, each representing a potential
function or operator replacement. The Code Replacement Tool provides
several types of table entries for replacing math operators and functions. It
also provides a specialized type known as a custom CRL table entry, described
in “Refine Matching and Replacement Using Custom Entries” on page 23-133.
After you add each table entry, you configure its displayed attributes. Each
entry relates a conceptual view of the function or operator to be replaced
— similar to the Simulink block view of the function or operator — to a
custom implementation of that function or operator. For more information,
see “Configure Code Replacement Tables” on page 23-187.

To save each table to a MATLAB file, select File > Save table. The Browse
For Folder dialog box opens. Use the dialog box to specify a location for the
file. Typically, you select a location on the MATLAB path. Save the file. The
name for the saved file is the table name specified in the Name field in the

23-186

Manage CRTs with the Code Replacement Tool

middle pane of the Code Replacement Tool, with the extension .m. You cannot
rename a table during the save operation.

Configure Code Replacement Tables

• “About Code Replacement Configuration” on page 23-187

• “Mapping Information” on page 23-188

• “Build Information” on page 23-189

About Code Replacement Configuration. To configure a code replacement
table, you open or create the table as described in “Open and Save Code
Replacement Tables” on page 23-185. Then, you add, modify, and delete table
entries. Each table entry represents a potential code replacement for a single
function or operator by a custom implementation during code generation. You
can configure multiple tables together and copy and paste entries between
tables. Before saving a configured table, you validate it, as described in
“Validate Code Replacement Tables and Table Entries” on page 23-189. You
can also use the Code Replacement Tool to generate the registration file
to register your tables with the code generation software, as described in
“Generate a Code Replacement Registration File” on page 23-189.

To configure a table entry, select the table in the left pane, select the table
entry in the middle pane, then examine and modify its attributes in the
right-most pane. For most types of table entries, the attributes are grouped
in two tabs within the right-most pane, Mapping Information and Build
Information.

23-187

23 Code Replacement

For a basic example of creating a new code replacement table, configuring it,
validating it, registering it, and using it for code generation, see “Create Code
Replacement Table for a Sample Model” on page 23-169.

Mapping Information. The Mapping Information tab for a code
replacement table entry relates a conceptual view of the function or operator
— similar to the Simulink block view of the function or operator — to a
custom implementation of that function or operator.

23-188

Manage CRTs with the Code Replacement Tool

Build Information. The Build Information tab for a code replacement
table entry provides header, source, or link information required for building
the custom implementation.

Validate Code Replacement Tables and Table Entries
The Code Replacement Tool allows you to validate the syntactic correctness of
code replacement tables and table entries as you configure them. If validation
finds errors, you can address the errors and retry the validation. Repeat until
errors are not reported. You can run validation in the following ways:

• To validate a table entry, select the entry, go to the bottom of theMapping
Information tab, and click Validate entry. Alternatively, you can select
multiple entries and use right-click to select validation for all of them.

• To validate a table, select the table, and select Actions > Validate table.

• When you save a table, validation is run on any unvalidated content in
the table.

Generate a Code Replacement Registration File
To register a code replacement library containing your code replacement
tables with the code generation software, you must create a registration
file, as described in “Register Code Replacement Libraries” on page 23-203.
The Code Replacement tool provides a graphical interface for creating the
registration file. After you have validated and saved your code replacement
tables, select File > Generate registration file to open the Generate
registration file dialog box.

23-189

23 Code Replacement

The dialog box fields correspond to the CRL registry entry properties
described in “Register Code Replacement Libraries” on page 23-203. For an
example of registering a custom CRL using the Code Replacement Tool, see
“Create Code Replacement Table for a Sample Model” on page 23-169.

23-190

Examine and Validate Code Replacement Tables

Examine and Validate Code Replacement Tables

In this section...

“Overview of Code Replacement Table Validation” on page 23-191

“Invoke the Table Definition File” on page 23-191

“Use Code Replacement Viewer to Examine Tables” on page 23-192

“Use Code Replacement Viewer to Examine CRLs” on page 23-193

“Trace Code Replacements Generated Using Your CRL” on page 23-195

“Determine Why Code Replacement Functions Not Used” on page 23-198

Overview of Code Replacement Table Validation
After you create a code replacement library (CRL) table containing your code
replacement entries, but before you deploy production CRLs containing your
table for general use in building models, you can use various techniques to
examine and validate the CRL table entries. These include:

• Invoking the table definition file

• Using the Code Replacement Viewer at various stages of CRL development
to examine CRLs, tables, and entries

• Tracing code generated from models for which your CRL is selected

• Examining CRL cache hits and misses logged during code generation

Invoke the Table Definition File
Immediately after creating or modifying a table definition file (as described
in “Create Code Replacement Tables” on page 23-18), you should invoke it at
the MATLAB command line. This invocation serves as a check of the validity
of your table entries. For example,

>> tbl = crl_table_sinfcn

tbl =

RTW.TflTable

Version: '1.0'

23-191

23 Code Replacement

AllEntries: [2x1 RTW.TflCFunctionEntry]

ReservedSymbols: []

StringResolutionMap: []

>>

Errors found during the invocation are displayed. In the following example, a
typo in a data type name is detected and displayed.

>> tbl = crl_table_sinfcn

??? RTW_CORE:tfl:TflTable: Unsupported data type, 'dooble'.

Error in ==> crl_table_sinfcn at 7

hTable.registerCFunctionEntry(100, 1, 'sin', 'dooble', 'sin_dbl', ...

>>

Use Code Replacement Viewer to Examine Tables
After creating or modifying a table definition file, as a further check of your
table entries, you should use the Code Replacement Viewer to display and
examine your table. Invoke the Code Replacement Viewer using the following
form of the MATLAB command RTW.viewTfl:

RTW.viewTfl(table-name)

For example,

>> RTW.viewTfl(crl_table_sinfcn)

23-192

Examine and Validate Code Replacement Tables

Select entries in your table and verify that the graphical display of the
contents of your table meets your expectations. Common problems that can be
detected at this stage include:

• Incorrect argument order

• Conceptual argument naming that does not match the naming convention
used by the code generation process

• Incorrect relative priority of entries within the table (highest priority is 0,
and lowest priority is 100).

For more information about the Code Replacement Viewer, see “Using the
Code Replacement Viewer” in the Simulink Coder documentation.

Use Code Replacement Viewer to Examine CRLs
After you register a CRL that includes your code replacement table (as
described in “Register Code Replacement Libraries” on page 23-203), you
should use the Code Replacement Viewer to verify that your CRL was

23-193

23 Code Replacement

properly registered and to examine the CRL and the tables it contains. Invoke
the Code Replacement Viewer using the MATLAB command RTW.viewTfl
without arguments. This command displays the CRLs registered in the
current Simulink session. For example:

>> RTW.viewTfl

If your CRL is not displayed,

• There may be an error in your CRL registration file.

• You may need to refresh the CRL registration information, by
issuing the refresh command for your registration mechanism:
sl_refresh_customizations for sl_customization.m, or
RTW.TargetRegistry.getInstance('reset') for rtwTargetInfo.m.

If your CRL is displayed, select the CRL and examine and compare its tables,
including their relative order. Common problems that can be detected at
this stage include

23-194

Examine and Validate Code Replacement Tables

• Incorrect relative order of tables in the library (tables are displayed in
search order)

• Table entry problems as listed in the previous section

For more information about the Code Replacement Viewer, see “Using the
Code Replacement Viewer” in the Simulink Coder documentation.

Trace Code Replacements Generated Using Your CRL
After you register a CRL that includes your code replacement tables, you
should use the CRL to generate code and verify that you are obtaining the
function or operator replacement that you expect. The following example
illustrates two complementary approaches:

• Check the Code Replacement Report section of the HTML code generation
report for a specific expected replacement

• Using model-to-code highlighting to trace a specific expected replacement

1 Open an ERT-based model for which you anticipate that a function or
operator replacement should occur. This example uses the example model
.rtwdemo_crladdsub.

2 Select your CRL in the Code replacement library drop-down list on the
Code Generation > Interface pane of the Configuration Parameters
dialog box.

3 Go to the Code Generation > Report pane of the Configuration
Parameters dialog box and select the options Create code generation
report, Open report automatically, Model-to-code, and Summarize
which blocks triggered code replacements.

4 Go to the Code Generation pane, select the Generate code only option,
and generate code for the model.

5 Go to the Code Replacements Report section of the HTML code
generation report. This report section lists the replacement functions
that were used during code generation, and provides a mapping between
each replacement instance and the Simulink block that triggered the
replacement. Inspect the report to see if the function or operator
replacement occurred as you expected. If the replacement function is listed,

23-195

23 Code Replacement

you can click on each instance of its use to highlight the Simulink block
that triggered the replacement. Also, the report provides a link that opens
up the code replacement library for the model in the Code Replacement
Viewer, so that you can review code replacement hits and misses.

6 Go to Simulink Editor and use model-to-code highlighting to trace the code
generated using your CRL. For example, right-click a block that you expect
to have generated a function or operator replacement and select C/C++

23-196

Examine and Validate Code Replacement Tables

Code > Navigate to C/C++ Code. This selection highlights the applicable
generated function code within the HTML code generation report display
of rtwdemo_crladdsub.c.

Inspect the generated code and see if the function or operator replacement
occurred as you expected.

23-197

23 Code Replacement

Note If a function or operator was not replaced as you expected, it means
that a call site request was not matched as you intended by your table entry
attributes. Either a higher-priority (lower priority value) match was used
or a match was not found. You can analyze the CRL table entry matching
behavior by using the following resources together:

• Code Replacement Viewer, as described in “Use Code Replacement Viewer
to Examine Tables” on page 23-192 and “Use Code Replacement Viewer
to Examine CRLs” on page 23-193

• HTML code generation reports, with bidirectional tracing including
model-to-code highlighting, and the ability to map replacement functions
to associated blocks

• Information about CRL cache hits and misses logged during code
generation, as described in “Determine Why Code Replacement Functions
Not Used” on page 23-198

Determine Why Code Replacement Functions Not
Used

• “About Code Replacement Hits and Misses” on page 23-198

• “Debugging CRL Entries Using Viewer Trace Information” on page 23-199

• “View Cache Hits and Misses Using Command-Line” on page 23-200

About Code Replacement Hits and Misses
Code replacement library (CRL) replacement may behave differently than you
expect in some cases. To verify that you are obtaining the function or operator
replacement that you expect, you first inspect the generated code, as described
in “Trace Code Replacements Generated Using Your CRL” on page 23-195.

To analyze replacement behavior, in addition to referencing the HTML code
generation report and examining your CRL tables in the Code Replacement
Viewer, you can view the CRL cache hits and misses logged during the most
recent code generation session. This approach provides information on what
data types and attributes should be registered in order to achieve the desired

23-198

Examine and Validate Code Replacement Tables

replacement. The following techniques can help you determine why code
replacement functions were not used:

• “Debugging CRL Entries Using Viewer Trace Information” on page 23-199

• “View Cache Hits and Misses Using Command-Line” on page 23-200

Debugging CRL Entries Using Viewer Trace Information
When debugging a CRL table entry, you can use hits and misses information
in the Code Replacement Viewer to help determine why a replacement
function was not used in the generated code.

Note To generate code replacement trace information for viewing in the
Code Replacement Viewer, you must select the Code Generation > Report
option Summarize which blocks triggered code replacements before
generating code.

To display the CRL cache hits and misses logged for a CRL table entry during
the most recent code generation session:

1 Open the Code Replacement Viewer using the following commands:

>> crl=get_param('model', 'TargetFcnLibHandle')

>> RTW.viewTfl(crl)

2 In the left pane, select the CRL table to examine. In the middle pane, the
viewer lists every entry in the table, with general information for each,
including a usage count, which is the number of times the table entry was
matched and its replacement function was used during code generation.

3 In the middle pane, select the table entry to examine. In the right pane,
the viewer displays General Information and Trace Information about
the table entry.

4 In the right pane, select the Trace Information tab.

23-199

23 Code Replacement

The figure below shows the Trace Information display for the example
model rtwdemo_crladdsub, with the crl_table_addsub table selected in the
left pane, and the int16 addition table entry selected in the middle pane.

The Trace Information tab lists Hit Source Locations andMiss Source
Locations. Notice that the usage count for the entry is 2, and that the
Trace Information tab lists 2 hits and 2 misses in the most recent code
generation. The display provides links to each source location (the source
block for which code replacement was considered) and, for misses, lists aMiss
Reason. In the display above, in one case a saturation mode setting did not
match between the CRL entry and the source block, and in another case the
signedness attribute did not match. If an expected replacement did not occur,
you can use the hit and miss information to modify the match criteria in
the CRL table entry.

View Cache Hits and Misses Using Command-Line
To display the CRL cache hits and misses logged during the most recent code
generation session in the MATLAB Command Window, use the following
command:

>> crl=get_param('model', 'TargetFcnLibHandle')

The resulting display includes the following fields:

23-200

Examine and Validate Code Replacement Tables

Field Description

HitCache Table containing function entries that were matched during
a code generation session. These entries represent function
implementations that should appear in the generated code.

MissCache Table containing function entries that failed to match during
a code generation session. These entries are created by the
code generation process for the purpose of querying the CRL
to locate a registered implementation. If there is a registered
implementation that you feel should have been used in the
generated code and was not, examining the MissCache for
entries that are similar but did not match can help you locate
discrepancies in a conceptual argument list or in table entry
attributes.

In the following example, the most recent code generation session logged
one cache hit and zero cache misses. You can examine the logged HitCache
entry using its table index.

>> a=get_param('sinefcn','TargetFcnLibHandle')

a =

RTW.TflControl

Version: '1.0'

HitCache: [1x1 RTW.TflCFunctionEntry]

MissCache: [0x1 handle]

TLCCallList: [0x1 handle]

TflTables: [2x1 RTW.TflTable]

>> a.HitCache(1)

ans =

RTW.TflCFunctionEntry

Key: 'sin'

Priority: 100

ConceptualArgs: [2x1 RTW.TflArgNumeric]

Implementation: [1x1 RTW.CImplementation]

RTWmakecfgLibName: ''

23-201

23 Code Replacement

GenCallback: ''

GenFileName: ''

SaturationMode: 'RTW_SATURATE_UNSPECIFIED'

RoundingModes: {'RTW_ROUND_UNSPECIFIED'}

AcceptExprInput: 1

SideEffects: 0

UsageCount: 2

SharedUsageCount: 0

Description: ''

ImplType: 'FCN_IMPL_FUNCT'

AdditionalHeaderFiles: {0x1 cell}

AdditionalIncludePaths: {0x1 cell}

AdditionalSourceFiles: {0x1 cell}

AdditionalSourcePaths: {0x1 cell}

AdditionalLinkObjs: {0x1 cell}

AdditionalLinkObjsPaths: {0x1 cell}

>>

23-202

Register Code Replacement Libraries

Register Code Replacement Libraries

In this section...

“Overview of CRL Registration” on page 23-203

“Register CRL with Simulink Software (sl_customization)” on page 23-204

“Register CRL with MATLAB® Coder™ Software (rtwTargetInfo)” on page
23-208

“Register Multiple CRLs” on page 23-210

Overview of CRL Registration
After you define function and operator replacements in a code replacement
library (CRL) table definition file, your table can be included in a CRL that
you register either with Simulink software or with MATLAB Coder software.
When a CRL is registered, it appears in the Code replacement library
drop-down list on the Code Generation > Interface pane of the Simulink
Configuration Parameters dialog box or on the Hardware pane of the
MATLAB Coder Project Settings dialog box. You can select it from the Code
replacement library drop-down list for use in code generation.

To register CRLs with Simulink software, use the Simulink customization
file sl_customization.m. This file is a mechanism that allows you to use
MATLAB code to perform customizations of the standard Simulink user
interface. The Simulink software reads the sl_customization.m file, if
present on the MATLAB path, when it starts and the customizations specified
in the file are applied to the Simulink session. For more information on the
sl_customization.m customization file, see “Registering Customizations”.

To register CRLs with MATLAB Coder software, use the MATLAB Coder
customization file rtwTargetInfo.m. This file is a mechanism that allows
you to use MATLAB code to perform customizations of the standard
MATLAB Coder project settings. The MATLAB Coder software reads the
rtwTargetInfo.m file, if present on the MATLAB path, when it starts and the
customizations specified in the file are applied to the MATLAB Coder session.

23-203

23 Code Replacement

Note

• This section describes MATLAB based APIs used to register a CRL.
You also can register a CRL using the Code Replacement Tool graphical
interface. The Code Replacement Tool generates registration code into an
rtwTargetInfo.m customization file. For more information, see “Manage
CRTs with the Code Replacement Tool” on page 23-168.

• The rtwTargetInfo.m customization file works equally well for MATLAB
or Simulink code generation, while the sl_customization.m customization
file works only for Simulink code generation.

• MATLAB Coder does not support TLC callbacks.

Register CRL with Simulink Software
(sl_customization)
To register a CRL, you create an instance of sl_customization.m and
include it on the MATLAB path of the Simulink installation that you want to
customize. The sl_customization function accepts one argument: a handle
to a customization manager object. The function is declared as follows:

function sl_customization(cm)

The body of the sl_customization function invokes the
registerTargetInfo(crl) method to register one or more CRLs
with the Simulink software. Typically, the registerTargetInfo function
call references a local function that defines the CRLs to be registered. For
example:

% Register the CRL defined in local function locCrlRegFcn

cm.registerTargetInfo(@locCrlRegFcn);

end % End of SL_CUSTOMIZATION

Below the sl_customization function, the referenced local function describes
one or more CRLs to be registered. For example, you can declare the local
function as follows:

23-204

Register Code Replacement Libraries

% Local function to define a CRL

function thisCrl = locCrlRegFcn

In the local function body, for each CRL to be registered, you instantiate a
CRL registry entry using crl = RTW.TflRegistry. For example,

thisCrl = RTW.TflRegistry;

Then, you define the CRL properties shown in the following table within
the registry entry.

CRL Property Description

Name String specifying the name of the CRL,
as it should be displayed in the Code
replacement library drop-down list on the
Code Generation > Interface pane of the
Configuration Parameters dialog box.

Description String specifying a text description of the CRL, as
it should be displayed in the tool tip for the CRL in
the Configuration Parameters dialog box.

TableList Cell array of strings specifying the tables that
make up the CRL, in descending priority order.
Tables can be specified in the following ways:

• Name of a CRL table file on the MATLAB search
path

• Absolute path to a table file

• Path to a table file relative to $(MATLAB_ROOT)

See “Register Multiple CRLs” on page 23-210 for
examples of each type of table specification.

23-205

23 Code Replacement

CRL Property Description

BaseTfl String specifying the name of the CRL on which
this CRL is based.

Note You must specify one of the default
MathWorks libraries as the base CRL: 'C89/C90
(ANSI)', 'C99 (ISO)', 'GNU99 (GNU)', 'C++
(ISO)', or an equivalent alias. Doing this provides
coverage of the functions, macros, and constants
used by built-in blocks in your CRL, and supports
compatibility between releases.

TargetHWDeviceType Specify {'*'}.

LanguageConstraint Cell array of strings specifying language constraint
keywords. You must specify {'C++'} if your CRL
includes C++ function entries or a mix of C and
C++ function entries. Otherwise you can omit the
field or specify it as empty.

TargetCharacteristicsContains properties that can be used to
describe target characteristics, including the
DataAlignment property. You can use the
DataAlignment property to provide compiler
information to support data alignment for
function implementations in your CRL. For more
information, see “Configure Data Alignment for
Function Implementations” on page 23-120. If you
are not configuring data alignment for your CRL,
you can omit this field.

For example:

thisCrl.Name = 'Sine Function Example';

thisCrl.Description = 'Example of sine function replacement';

thisCrl.TableList = {'crl_table_sinfcn'};

thisCrl.BaseTfl = 'C89/C90 (ANSI)';

thisCrl.TargetHWDeviceType = {'*'};

23-206

Register Code Replacement Libraries

end % End of LOCCRLREGFCN

Combining the elements described in this section, the complete
sl_customization function for the Sine Function Example CRL would
appear as follows:

function sl_customization(cm)

% sl_customization function to register a code replacement library (CRL)

% for use with Simulink

% Register the CRL defined in local function locCrlRegFcn

cm.registerTargetInfo(@locCrlRegFcn);

end % End of SL_CUSTOMIZATION

% Local function to define a CRL containing crl_table_sinfcn

function thisCrl = locCrlRegFcn

% Instantiate a CRL registry entry

thisCrl = RTW.TflRegistry;

% Define the CRL properties

thisCrl.Name = 'Sine Function Example';

thisCrl.Description = 'Example of sine function replacement';

thisCrl.TableList = {'crl_table_sinfcn'};

thisCrl.BaseTfl = 'C89/C90 (ANSI)';

thisCrl.TargetHWDeviceType = {'*'};

end % End of LOCCRLREGFCN

If you place the sl_customization.m file containing this function in
the MATLAB search path or in the current working folder, the CRL is
registered at each Simulink startup. The Simulink software will display
the CRL in the Code replacement library drop-down list on the Code
Generation > Interface pane of the Configuration Parameters dialog box.
For example, the following figure shows the Configuration Parameters dialog
box display for the Sine Function Example CRL.

23-207

23 Code Replacement

If you hover over the selected library with the cursor, a tool tip appears, and
displays the CRL description and the list of tables it contains.

Tip

• To refresh Simulink customizations within the current MATLAB session,
use the command sl_refresh_customizations.

• To list sl_customization files in the current search path, use the
command which sl_customization -all.

• If you disable a CRL registration (for example, by renaming the registration
file sl_customization.m and then issuing sl_refresh_customizations),
you may want to reset and save the Code replacement library option
setting in saved models that selected the disabled CRL.

Register CRL with MATLAB Coder Software
(rtwTargetInfo)
To register a CRL for use with MATLAB Coder software, you create an
instance of rtwTargetInfo.m and include it on the MATLAB path of the
MATLAB Coder installation that you want to customize. The rtwTargetInfo
function accepts one argument: a handle to a target registration object. The
function is declared as follows:

function rtwTargetInfo(tr)

Note MATLAB Coder does not support TLC callbacks.

The body of the rtwTargetInfo function invokes the
registerTargetInfo(crl) method provided by the target registry object to
register one or more CRLs with the MATLAB Coder software. Typically, the
registerTargetInfo function call references a local function that defines the
CRLs to be registered. For example:

23-208

Register Code Replacement Libraries

% Register the CRL defined in local function locCrlRegFcn

tr.registerTargetInfo(@locCrlRegFcn);

end % End of RTWTARGETINFO

Below the rtwTargetInfo function, the referenced local function describes
one or more CRLs to be registered. The format exactly matches the CRL
description format previously described for Simulink use. For example, here is
the MATLAB Coder equivalent of the complete CRL registration file displayed
in “Register CRL with Simulink Software (sl_customization)” on page 23-204.

function rtwTargetInfo(tr)

% rtwTargetInfo function to register a code replacement library (CRL)

% for use with codegen

% Register the CRL defined in local function locCrlRegFcn

tr.registerTargetInfo(@locCrlRegFcn);

end % End of RTWTARGETINFO

% Local function to define a CRL containing crl_table_sinfcn

function thisCrl = locCrlRegFcn

% Instantiate a CRL registry entry

thisCrl = RTW.TflRegistry;

% Define the CRL properties

thisCrl.Name = 'Sine Function Example';

thisCrl.Description = 'Example of sine function replacement';

thisCrl.TableList = {'crl_table_sinfcn'};

thisCrl.BaseTfl = 'C89/C90 (ANSI)';

thisCrl.TargetHWDeviceType = {'*'};

end % End of LOCCRLREGFCN

If you place the rtwTargetInfo.m file containing this function in the
MATLAB search path or in the current working folder, the CRL is registered
at each MATLAB Coder startup. The MATLAB Coder software will display

23-209

23 Code Replacement

the CRL in the Code replacement library drop-down list on the Code
Generation > Interface pane of the Configuration Parameter dialog box.

Tip To refresh MATLAB Coder CRL registration information
within the current MATLAB session, use the command
RTW.TargetRegistry.getInstance('reset');.

Register Multiple CRLs
For an example of a CRL registration file that registers multiple CRLs, see
the sl_customization.m file used in the CRL example rtwdemo_crl_script.
The following example illustrates the general approach, which applies equally
to Simulink and MATLAB Coder CRL registration files. In this example,
the three CRL tables referenced in the TableList fields reside at different
locations, either on the MATLAB search path or at locations specified using
path strings.

function sl_customization(cm)

cm.registerTargetInfo(@locCrlRegFcn);

end % End of SL_CUSTOMIZATION

% Local function(s)

function thisCrl = locCrlRegFcn

% Register a Code Replacement Library for use with model: rtwdemo_crladdsub

thisCrl(1) = RTW.TflRegistry;

thisCrl(1).Name = 'Addition & Subtraction Examples';

thisCrl(1).Description = 'Example of addition/subtraction op replacement';

thisCrl(1).TableList = {'crl_table_addsub'};

thisCrl(1).BaseTfl = 'C89/C90 (ANSI)';

thisCrl(1).TargetHWDeviceType = {'*'};

% Register a Code Replacement Library for use with model: rtwdemo_crlmuldiv

thisCrl(2) = RTW.TflRegistry;

thisCrl(2).Name = 'Multiplication & Division Examples';

thisCrl(2).Description = 'Example of mult/div op repl for built-in integers';

thisCrl(2).TableList = {'c:/work_crl/crl_table_muldiv'};

thisCrl(2).BaseTfl = 'C89/C90 (ANSI)';

23-210

Register Code Replacement Libraries

thisCrl(2).TargetHWDeviceType = {'*'};

% Register a Code Replacement Library for use with model: rtwdemo_crlfixpt

thisCrl(3) = RTW.TflRegistry;

thisCrl(3).Name = 'Fixed-Point Examples';

thisCrl(3).Description = 'Example of fixed-point operator replacement';

thisCrl(3).TableList = ...

{fullfile('$(MATLAB_ROOT)','toolbox','rtw','rtwdemos','crl_demo','crl_table_fixpt')};

thisCrl(3).BaseTfl = 'C89/C90 (ANSI)';

thisCrl(3).TargetHWDeviceType = {'*'};

end % End of LOCCRLREGFCN

23-211

23 Code Replacement

Custom Code Substitution for MATLAB Functions Using
Code Replacement Libraries

The coder.replace function provides the ability to replace a specified
MATLAB function with a code replacement library (CRL) function in the
generated code. You can use coder.replace in MATLAB code from which
you want to generate C code using MATLAB Coder and in MATLAB code in
a MATLAB Function block.

You can replace MATLAB functions that have:

• Single or multiple inputs

• Single or multiple outputs

• Scalar and matrix inputs and outputs

Supported types include:

• single, double (complex and non-complex)

• int8, uint8 (complex and non-complex)

• int16, uint16 (complex and non-complex)

• int32, uint32 (complex and non-complex)

• Fixed-point integers

• Mixed types (different type on each input)

23-212

Replace MATLAB® Function with Custom Code

Replace MATLAB Function with Custom Code

At the Command Line Using the codegen Function
This example shows how to use code replacement libraries to replace a
specified MATLAB function with a code replacement library (CRL) function
in the generated code using the codegen function.

Prerequisites

To complete this example, you must install the following products:

• MATLAB

• MATLAB Coder

• Embedded Coder

• C compiler

For a list of supported compilers, see
http://www.mathworks.com/support/compilers/current_release/.

Before generating C code, you must set up the C compiler. See “Setting Up
the C/C++ Compiler”.

For instructions on installing MathWorks products, see the MATLAB
installation documentation. If you have installed MATLAB and want to check
which other MathWorks products are installed, in the MATLAB Command
Window, enter ver .

Create MATLAB Functions

1 Create a MATLAB function that uses coder.replace, for example:

function y = foo(u) %#codegen
coder.replace('-errorifnoreplacement');
y=sin(u);

end

2. Create another function that calls foo:

23-213

23 Code Replacement

function y = bar(u) %#codegen
y=foo(u);

end

Create a Table of Replacement Function Entries

1 Create a file named crl_table_foo.m that describes the function entries
for a Code Replacement Library table. The replacement function sin_dlb.c
and header file sin_dlb.h must be on the path.

function hLib = crl_table_foo
hLib = RTW.TflTable;

%---------- entry: foo -----------
hEnt = RTW.TflCFunctionEntry;
hEnt.setTflCFunctionEntryParameters(...

'Key', 'foo', ...
'Priority', 100, ...
'ImplementationName', 'sin_dbl', ...
'ImplementationHeaderFile', 'sin_dbl.h', ...
'ImplementationSourceFile', 'sin_dbl.c')

% Conceptual Args

arg = hEnt.getTflArgFromString('y1','double');
arg.IOType = 'RTW_IO_OUTPUT';
hEnt.addConceptualArg(arg);

arg = hEnt.getTflArgFromString('u1','double');
hEnt.addConceptualArg(arg);

% Implementation Args

arg = hEnt.getTflArgFromString('y1','double');
arg.IOType = 'RTW_IO_OUTPUT';
hEnt.Implementation.setReturn(arg);

arg = hEnt.getTflArgFromString('u1','double');
hEnt.Implementation.addArgument(arg);

%arg = hEnt.getTflArgFromString('y1','double*');

23-214

Replace MATLAB® Function with Custom Code

%arg.IOType = 'RTW_IO_OUTPUT';
%hEnt.Implementation.addArgument(arg);

hLib.addEntry(hEnt);

2 View the replacement table.

RTW.viewTfl(crl_table_foo)

The Code Replacement Viewer displays the specified table.

Register a Code Replacement Library

Register a code replacement library using an rtwTargetInfo.m file.

1 Create an rtwTargetInfo file:

function rtwTargetInfo(tr)
% rtwTargetInfo function to register a code replacement library (CRL)
% for use with codegen

% Register the CRL defined in local function locCrlRegFcn
tr.registerTargetInfo(@locCrlRegFcn);

end % End of RTWTARGETINFO

23-215

23 Code Replacement

2 Create a locCrlRegFcn file:

function thisCrl = locCrlRegFcn

% Instantiate a CRL registry entry
thisCrl = RTW.TflRegistry;

% Define the CRL properties
thisCrl.Name = 'My foo Example';
thisCrl.Description = 'Example of function replacement';
thisCrl.TableList = {'crl_table_foo'};
thisCrl.BaseTfl = 'C89/C90 (ANSI)';
thisCrl.TargetHWDeviceType = {'*'};

end % End of LOCCRLREGFCN

3 Refresh registration information. At the MATLAB command line, enter:

RTW.TargetRegistry.getInstance('reset');

Specify Code Replacement Library to Use for Code Generation

Set up code generation configuration object to use the My foo Example code
replacement library. At the MATLAB command line, enter:

cfg =coder.config('lib');
cfg.CodeReplacementLibrary='My foo Example';

Enable Code Replacements Report

The Code Replacements report summarizes the replacements used from the
selected code replacement library.

cfg.GenerateCodeReplacementReport=true;

Generate Code

Generate C code only and create a code generation report. At the MATLAB
command line, enter:

codegen -report -config cfg -c bar -args {0}

23-216

Replace MATLAB® Function with Custom Code

View the Generated Code

In the MATLAB command window, click the link to the code generation
report. The generated code for the bar function contains the replacement
function for foo.

real_T bar(real_T u)
{

return sin_dbl(u);
}

View the Code Replacements Report

In the Code Generation Report, click the Code Replacements Report
link. The Code Replacements Report provides a mapping between each
code replacement instance and the line of MATLAB code that triggered the
replacement.

Specify a Code Replacement Function in a MATLAB
Coder Project
1 On the project Build tab, set the Output type to generate a library or
executable.

2 Click the More settings link.

23-217

23 Code Replacement

3 In the Project Settings dialog box, select the Hardware tab.

4 On the Hardware tab, set Code replacement library to the replacement
library that you want to use.

23-218

Enable the Code Replacements Report

Enable the Code Replacements Report

In a MATLAB Coder Project
1 On the project Build tab, set the Output type to generate a library or
executable.

2 Click the More settings link.

3 In the Project Settings dialog box, select the Debugging tab.

4 On the Debugging tab, select Code replacements.

At the Command Line
1 Create a code generation configuration object for standalone code
generation. For example, to generate a static library:

cfg = coder.config('lib');

2 Set up code generation configuration object to use a code replacement
library. For example:

cfg.CodeReplacementLibrary='My foo Example';

3 Generate code, passing the configuration object as a parameter and
specifying the -report option. For example:

codegen -config cfg -report foo

Alternatively,

1 Create a code generation configuration object for a library or executable.
For example, for a static library, at the command line, enter:

cfg=coder.config('lib');

2 Set up code generation configuration object to use a code replacement
library. For example:

cfg.CodeReplacementLibrary='My foo Example';

23-219

23 Code Replacement

3 Set the configuration object GenerateReport and
GenerateCodeReplacementReport parameters to true.

cfg.GenerateReport=true;
cfg.GenerateCodeReplacementReport=true;

See Also

• “Replace MATLAB Function with Custom Code” on page 23-213

• “Viewing Code Replacements in the Generated Code” on page 23-221

23-220

Viewing Code Replacements in the Generated Code

Viewing Code Replacements in the Generated Code
When you generate standalone C code from MATLAB code, you can select
to generate a Code Replacements report. This report details the code
replacement library functions that were used for code replacements during
code generation. It provides a mapping between each replacement instance
and the line of MATLAB code that triggered the replacement. The Code
Replacements report is not available for generated MEX functions.

When you choose to include code replacements in the code generation report:

• The code generation report includes a link to the Code Replacements
Report.

• Code replacement trace information is generated for viewing in the Trace
Information tab of the Code Replacement Viewer.

• The code replacements report lists replacement functions and their
associated MATLAB code.

You can use the report to:

• Determine which replacement functions were used in the generated code.

• Trace each replacement instance back to the code that triggered the
replacement.

23-221

23 Code Replacement

See Also

• “Enable the Code Replacements Report” on page 23-219

• “Replace MATLAB Function with Custom Code” on page 23-213

23-222

Replace MATLAB Function Block Code with Custom Code

Replace MATLAB Function Block Code with Custom Code
This example shows how to use code replacement libraries to replace a
specified MATLAB function with a code replacement library (CRL) function
in the generated code.

Prerequisites

To complete this example, you must install the following products:

• MATLAB

• MATLAB Coder

• Simulink Coder

• Embedded Coder

• Third-party software

To compile and build generated code for the integration and testing
tutorials, you can use an Integrated Development Environment (IDE)
or equivalent tools such as command-line compilers and makefiles.
For information on how to install and use the Eclipse™ IDE for C/C++
Developers and the Cygwin™ debugger for integrating and testing your
generated code, see “Installing Eclipse IDE and Cygwin Debugger”.

Open the Simulink Model

Open the ex_replace model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','ecoder','examples'))
ex_replace

View the MATLAB Function Block Code

In the model, double-click the MATLAB Function block to view the code in
the MATLAB editor.

function y = customFcn(u1, u2) %#codegen
% This block supports MATLAB for code generation.

% Replace this MATLAB function with CRL replacement function and if no

23-223

23 Code Replacement

% CRL replacement is found, generate an error during code generation.
coder.replace('-errorifnoreplacement');

assert(isa(u1,'int32'));
assert(isa(u2,'int32'));

y = power(u1,u2);

The coder.replace('-errorifnoreplacement') statement instructs
Embedded Coder software to replace this MATLAB function with a code
replacement library function and, if no CRL replacement is found, generate
an error during code generation.

Create a Table of Replacement Function Entries

1 In a local, writable folder create a file named crl_table_coderreplace.m
that describes the function entries for a Code Replacement Library
table. Create a file MyMath.c and header file MyMath.h that contain the
replacement function.

function hLib = crl_table_coderreplace

hLib = RTW.TflTable;

%---------- entry: customFcn -----------
hEnt = RTW.TflCFunctionEntry;
hEnt.setTflCFunctionEntryParameters(...

'Key', 'customFcn', ...
'Priority', 100, ...
'ImplementationName', 'scalarFcnReplacement', ...
'ImplementationHeaderFile', 'MyMath.h', ...
'ImplementationSourceFile', 'MyMath.c')

% Conceptual Args

arg = hEnt.getTflArgFromString('y1','int32');
arg.IOType = 'RTW_IO_OUTPUT';
hEnt.addConceptualArg(arg);

arg = hEnt.getTflArgFromString('u1','int32');
hEnt.addConceptualArg(arg);

23-224

Replace MATLAB Function Block Code with Custom Code

arg = hEnt.getTflArgFromString('u2','int32');
hEnt.addConceptualArg(arg);

% Implementation Args

arg = hEnt.getTflArgFromString('void','void');
arg.IOType = 'RTW_IO_OUTPUT';
hEnt.Implementation.setReturn(arg);

arg = hEnt.getTflArgFromString('u1','int32');
hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('u2','int32');
hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('y1','int32*');
arg.IOType = 'RTW_IO_OUTPUT';
hEnt.Implementation.addArgument(arg);

hLib.addEntry(hEnt);

2 In the same folder, create files MyMath.c and MyMath.h that define the
replacement function, scalarFcnReplacement which has two int32 inputs
and one int32 output.

MyMath.c

#include "MyMath.h"

void scalarFcnReplacement(int32_T u1, int32_T u2, int32_T* y1) {
*y1 = u1^u2;

}

MyMath.h

#ifndef _ScalarMath_h
#define _ScalarMath_h

#include "rtwtypes.h"

23-225

23 Code Replacement

#ifdef __cplusplus
extern "C" {
#endif

extern void scalarFcnReplacement(int32_T u1, int32_T u2, int32_T* y1);

#ifdef __cplusplus
}
#endif

#endif

3 View the replacement table.

RTW.viewTfl(crl_table_coderreplace)

The Code Replacement Viewer displays a list of currently registered code
replacement tables.

Register a Code Replacement Library

Register a code replacement library using a rtwTargetInfo.m file.

1 Create a rtwTargetInfo file:

23-226

Replace MATLAB Function Block Code with Custom Code

function rtwTargetInfo(tr)
tr.registerTargetInfo(@locCrlRegFcn);

end % End of RTWTARGETINFO

2 Create a locCrlRegFcn file:

function thisCrl = locCrlRegFcn

% Register a Code Replacement Library for use with model 'ex_replace'
thisCrl = RTW.TflRegistry;
thisCrl.Name = 'Coder Replace Examples';
thisCrl.Description = 'Replace MATLAB code using CRL';
thisCrl.TableList = {'crl_table_coderreplace'};
thisCrl.BaseTfl = 'C89/C90 (ANSI)';
thisCrl.TargetHWDeviceType = {'*'};

end % End of LOCCRLREGFCN

3 Refresh registration information. At the MATLAB command line, enter:

RTW.TargetRegistry.getInstance('reset');

Verify Code Replacement Library to Use for Code Generation

1 In the model, select Simulation > Model Configuration Parameters to
open the Configuration Parameters dialog box.

2 On the Code Generation > Interface pane, verify that Code
replacement library is set to Coder Replace Examples.

Generate Code

From the model menu, select Code > C/C++ Code > Build Model.

View the Generated Code

In the code generation report, view the generated code ex_replace.c.

void ex_replace_step(void)
{

23-227

23 Code Replacement

int32_T y;
scalarFcnReplacement(ex_replace_U.In1, ex_replace_U.In2, &y);
ex_replace_Y.Out1 = y;

}

23-228

Code Replacement Library Limitations

Code Replacement Library Limitations
• Code replacement library (CRL) replacement may behave differently than
you expect in some cases. For example, data types that you observe in a
model do not necessarily match what the code generator determines to use
as intermediate data types in an operation. To verify whether you are
obtaining the function or operator replacement that you expect, inspect
the generated code.

• To analyze code replacement behavior, in addition to inspecting the
generated code, you can use the following resources:

- Code Replacement Viewer

- HTML code generation reports, with bidirectional tracing including
model-to-code highlighting, and the ability to map replacement functions
to associated blocks

- Information about CRL cache hits and misses logged during code
generation

For more information on analyzing code replacement behavior, see
“Examine and Validate Code Replacement Tables” on page 23-191.

• You must register a CRL in either an sl_customization.m file or an
rtwTargetInfo file, but not in both files.

• For limitations that apply to MATLAB function code replacement, see
coder.replace.

23-229

23 Code Replacement

23-230

Performance

• Chapter 24, “Configuration”

• Chapter 25, “Data Copy Reduction”

• Chapter 26, “Execution Speed”

• Chapter 27, “Memory Usage”

24

Configuration

• “Configure Code Optimizations” on page 24-2

• “Set Hardware Implementation Parameters” on page 24-5

• “Use External Mode with the ERT Target” on page 24-6

24 Configuration

Configure Code Optimizations
Several parameters available on the Optimization panes configure your
model to optimize code generation. The following table includes parameters
on the Optimization > General pane:

To... Select or Specify...

Remove initialization code for root-level
inports and outports with a value of zero

Select Remove root level I/O zero initialization.

Generate additional code to set float and
double storage explicitly to value 0.0

SelectUse memset to initialize floats and doubles
to 0.0 When you set this parameter, the memset
function clears internal storage (regardless of type)
to the integer bit pattern 0 (that is, all bits are off).
The additional code generated when the option is
off, is slightly less efficient.If the representation of
floating-point zero used by your compiler and target
CPU is identical to the integer bit pattern 0, you can
gain efficiency by setting this parameter.

Suppress the generation of code that
initializes internal work structures (for
example, block states and block outputs)
to zero

Select Remove internal state zero initialization.

Generate run-time initialization code
for a block that has states only if the
block is in a system that can reset its
states, such as an enabled subsystem

Select Optimize initialization code for model
reference This results in more efficient code.

The following restrictions apply to using the
Optimize initialization code for model reference
parameter. However, these restrictions do not apply
to a Model block that references a function-call model.

• In a subsystem that resets states, do not include a
Model block that references a model that has this
parameter set to on. For example, in an enabled
subsystem with the States when enabling
block parameter set to reset, do not include a
Model block that references a model that has
the Optimize initialization code for model
reference parameter set to on.

24-2

Configure Code Optimizations

To... Select or Specify...

• If you set the Optimize initialization code for
model reference parameter to off in a model that
includes a Model block that directly references a
submodel, do not set the Optimize initialization
code for model reference parameter for the
submodel to on.

Remove wrapping code that handles
out-of-range floating-point to integer
conversion results

Select Remove code from floating-point to
integer conversions that wraps out-of-range
values. This reduces the size and increases the
speed of the generated code at the cost of potentially
producing results that do not match simulation in the
case of out-of-range values.

Suppress generation of code that guards
against fixed-point division by zero

Select Remove code that protects against
division arithmetic exceptions. When you select
this parameter, simulation results and results from
generated code may not be in bit-for-bit agreement.

To minimize the amount of memory
allocated for absolute and elapsed time
counters

Specify an integer value for Application lifespan
(days) For more information on the allocation
and operation of absolute and elapsed timers, see
“Timers”, “Use Timers in Asynchronous Tasks”, and
“Control Memory Allocation for Time Counters” in the
Simulink Coder documentation.

The following table includes optimization parameters on the
Optimization > Signals and Parameters pane:

To... Select or Specify...

Control whether parameter data for
reusable subsystems is generated in a
separate header file for each subsystem
or in a single parameter data structure

Select Hierarchical or NonHierarchical for
Parameter structure.

Replace multiply operations in array
indices when accessing arrays in a loop

Select Simplify array indexing.

24-3

24 Configuration

To... Select or Specify...

Store Boolean signals as one-bit bitfields
instead of as a Boolean data type

Select Pack Boolean data into bitfields. Selecting
this parameter enables the Bitfield declarator
type specifier. To optimize your code further,
select uchar_T, however this optimization benefit is
dependent on your choice of target.

Pass each reusable subsystem output
argument as an address of a local
to reduce global memory usage and
eliminate copying local variables back to
global block I/O structures

Select Individual arguments for Pass reusable
subsystem outputs as.

24-4

Set Hardware Implementation Parameters

Set Hardware Implementation Parameters
Specification of target-specific characteristics of generated code (such as word
sizes for char, short, int, and long data types, or desired rounding behaviors
in integer operations) can be critical in embedded systems development.
The Hardware Implementation category of options in a configuration set
provides a simple and flexible way to control such characteristics in both
simulation and code generation.

Before generating and deploying code, you should become familiar with the
options on the Hardware Implementation pane of the Configuration
Parameters dialog box. See “Hardware Implementation Pane” in the Simulink
documentation and “Platform Options for Development and Deployment”
in the Simulink Coder documentation for full details on the Hardware
Implementation pane.

By configuring the Hardware Implementation properties of your model’s
active configuration set to match the behaviors of your compiler and
hardware, you can generate more efficient code. For example, if you specify
the Byte ordering property, you can avoid generation of extra code that tests
the byte ordering of the target CPU.

You can use the rtwdemo_targetsettings demo model to determine some
implementation-dependent characteristics of your C or C++ compiler, as well
as characteristics of your target hardware. By using this model in conjunction
with your target development system and debugger, you can observe the
behavior of the code as it executes on the target. You can then use this
information to configure the Hardware Implementation parameters of
your model.

To use this model, type the command

rtwdemo_targetsettings

Follow the instructions in the model window.

24-5

24 Configuration

Use External Mode with the ERT Target
Selecting the External mode option turns on generation of code to support
external mode communication between host (Simulink) and target systems.
The Embedded Coder software supports Simulink external mode features,
as described in the “Host/Target Communication” section of the Simulink
Coder documentation.

This section discusses external mode options that may be of special interest
to embedded systems designers. The next figure shows the Data Exchange
subpane of the Configuration Parameters dialog box, Interface pane, with
External mode selected.

Memory Management
Consider the Memory management option Static memory allocation
before generating external mode code for an embedded target. Static memory
allocation is generally desirable, as it reduces overhead and promotes
deterministic performance.

When you select the Static memory allocation option, static external mode
communication buffers are allocated in the target application. When Static
memory allocation is deselected, communication buffers are allocated
dynamically (with malloc) at run time.

24-6

Use External Mode with the ERT Target

Generation of Pure Integer Code with External Mode
The Embedded Coder software supports generation of pure integer code when
external mode code is generated. To do this, select the External mode
option, and deselect the Support floating-point numbers option in the
Software environment section of the Interface pane.

This enhancement lets you generate external mode code that is free of storage
definitions of double or float data type, and allows your code to run on
integer-only processors

If you intend to generate pure integer code with External mode on, note
the following requirements:

• All trigger signals must be of data type int32. Use a Data Type Conversion
block if needed.

• When pure integer code is generated, the simulation stop time specified
in the Solver options is ignored. To specify a stop time, run your target
application from the MATLAB command line and use the -tf option. (See
“Run the External Program” in the Simulink Coder documentation.) If you
do not specify this option, the application executes indefinitely (as if the
stop time were inf).

When executing pure integer target applications, the stop time specified
by the -tf command line option is interpreted as the number of base rate
ticks to execute, rather than as an elapsed time in seconds. The number of
ticks is computed as

stop time in seconds / base rate step size in seconds

24-7

24 Configuration

24-8

25

Data Copy Reduction

• “Use Virtualized Output Ports Optimization” on page 25-2

• “Control Signal Storage” on page 25-4

25 Data Copy Reduction

Use Virtualized Output Ports Optimization
The virtualized output ports optimization lets you store the signal entering
the root output port as a global variable. This eliminates code and data
storage associated with root output ports when theMAT-file logging option
is cleared and the TLC variable FullRootOutputVector equals 0, both of
which are defaults for Embedded Coder targets.

To illustrate this feature, consider the model shown in the following block
diagram. Assume that the signal exportedSig has exportedGlobal storage
class.

In the default case, the output of the Gain block is written to the signal
storage location, exportedSig. The code generator does not generate code or
data for the Out1 block, which has become a virtual block. This is shown in
the following code fragment.

/* Gain Block: <Root>/Gain */
exportedSig = rtb_PulseGen * VirtOutPortLogOFF_P.Gain_Gain;

In cases where either the MAT-file logging option is enabled, or
FullRootOutputVector = 1, the generated code represents root output ports
as members of an external outputs vector.

The following code fragment was generated from the same model shown in
the previous example, but withMAT-file logging enabled. The output port is
represented as a member of the external outputs vector VirtOutPortLogON_Y.
The Gain block output value is copied to both exportedSig and to the
external outputs vector.

/* Gain Block: <Root>/Gain */
exportedSig = rtb_PulseGen * VirtOutPortLogON_P.Gain_Gain;

/* Outport Block: <Root>/Out1 */
VirtOutPortLogON_Y.Out1 = exportedSig;

25-2

Use Virtualized Output Ports Optimization

The overhead incurred by maintenance of data in the external outputs vector
can be significant for smaller models being used to perform benchmarks.

Note that you can force root output ports to be stored in the external outputs
vector (regardless of the setting of MAT-file logging) by setting the TLC
variable FullRootOutputVector to 1. You can do this by adding the statement

%assign FullRootOutputVector = 1

to the Embedded Coder system target file. Alternatively, you can enter
the assignment with TLC options on the Code Generation pane of the
Configuration Parameters dialog box.

For more information on how to control signal storage in generated code,
see “Signals”.

25-3

25 Data Copy Reduction

Control Signal Storage
There are a number of options that let you control how signals in your model
are stored and represented in the generated code. You can control whether
signal storage is declared in global memory space, or locally in functions (that
is, in stack variables).

For a complete discussion of signal storage options, see “Signals”.

If you want to store signals in stack space, you must turn the Enable local
block outputs option on. To do this:

1 Select theOptimization > Signals and Parameters of the Configuration
Parameters dialog box. Make sure that Signal storage reuse is selected.
If Signal storage reuse is cleared, Enable local block outputs is not
available.

2 Select the Enable local block outputs option. Click Apply.

25-4

26

Execution Speed

• “Remove Initialization Code” on page 26-2

• “Generate Pure Integer Code If Possible” on page 26-4

• “Disable MAT-File Logging” on page 26-5

• “Simplify Multiply Operations In Array Indexing” on page 26-6

26 Execution Speed

Remove Initialization Code
Consider selecting the Remove internal state zero initialization
and Remove root level I/O zero initialization options on the
Optimization > General pane.

These options (both off by default) control whether internal data (block states
and block outputs) and external data (root inports and outports whose value
is zero) are initialized. Initializing the internal and external data whose
value is zero is a precaution and your application might not require it. Many
embedded application environments initialize RAM to zero at startup, making
generation of initialization code redundant.

However, be aware that if you select Remove internal state zero
initialization, memory might not be in a known state each time the
generated code begins execution. If you turn the option on, running a model
(or a generated S-function) multiple times can result in different answers
for each run.

This behavior is sometimes desirable. For example, you can turn on Remove
internal state zero initialization if you want to test the behavior of
your design during a warm boot (that is, a restart without full system
reinitialization).

In cases where you have turned on Remove internal state zero
initialization but still want to get the same answer on every run from a
S-function generated by the Embedded Coder software, you can use either of
the following MATLAB commands before each run:

clear SFcnName

where SFcnName is the name of the S-function, or

clear mex

A related option, Use memset to initialize floats and doubles, lets
you control the representation of zero used during initialization. See “Use
memset to initialize floats and doubles to 0.0” in the Simulink reference
documentation.

26-2

Remove Initialization Code

Note that the code still initializes data structures whose value is not zero
when Remove internal state zero initialization and Remove root level
I/O zero initialization are selected.

Note also that data of ImportedExtern or ImportedExternPointer storage
classes are not initialized, regardless of the settings of these options.

26-3

26 Execution Speed

Generate Pure Integer Code If Possible
If your application uses only integer arithmetic, clear the Support
floating-point numbers option in the Software environment section of
the Interface pane so that the generated code contains no floating-point data
or operations. When this option is cleared, an error is raised if noninteger
data or expressions are encountered during code generation. The error
message reports the offending blocks and parameters.

26-4

Disable MAT-File Logging

Disable MAT-File Logging
Clear the MAT-file logging option in the Verification section of the
Interface pane. This setting is the default, and is recommended for
embedded applications because it eliminates the extra code and memory
usage required to initialize, update, and clean up logging variables. In
addition to these efficiencies, clearing the MAT-file logging option lets you
exploit further efficiencies under certain conditions. See “Use Virtualized
Output Ports Optimization” on page 25-2 for information.

Note also that code generated to support MAT-file logging invokes malloc,
which may be undesirable for your application.

26-5

26 Execution Speed

Simplify Multiply Operations In Array Indexing
The generated code might have multiply operations when indexing an element
of an array. You can select the optimization parameter “Simplify array
indexing” to replace multiply operations in the array index with a temporary
variable. To modify this parameter open the Configuration Parameters dialog
box and select the Optimization > Signals and Parameters pane. This
optimization can improve execution speed by reducing the number of times
the multiply operation is executed.

If you have the following model:

The Constant blocks have the following Constant value:

• Const1: reshape(1:30,[1 5 3 2])

• Const2: reshape(1:20,[1 5 2 2])

• Const3: reshape(1:90,[1 5 9 2])

The Concatenate block parameter Mode is set to Multidimensional array.

Generated Code Results
Building the model with the Simplify array indexing parameter turned off
generates the following code:

int32_T i;
int32_T i_0;

26-6

Simplify Multiply Operations In Array Indexing

int32_T i_1;

for (i = 0; i < 2; i++) {
for (i_1 = 0; i_1 < 3; i_1++) {

for (i_0 = 0; i_0 < 5; i_0++) {
ex_arrayindex_Y.Out[(i_0 + 5 * i_1) + 70 * i] =

ex_arrayindex_P.Constant1_Value[(5 * i_1 + i_0) + 15 * i];
}

}
}

for (i = 0; i < 2; i++) {
for (i_1 = 0; i_1 < 2; i_1++) {

for (i_0 = 0; i_0 < 5; i_0++) {
ex_arrayindex_Y.Out[(i_0 + 5 * (i_1 + 3)) + 70 * i] =

ex_arrayindex_P.Constant2_Value[(5 * i_1 + i_0) + 10 * i];
}

}
}

for (i = 0; i < 2; i++) {
for (i_1 = 0; i_1 < 9; i_1++) {

for (i_0 = 0; i_0 < 5; i_0++) {
ex_arrayindex_Y.Out[(i_0 + 5 * (i_1 + 5)) + 70 * i] =

ex_arrayindex_P.Constant3_Value[(5 * i_1 + i_0) + 45 * i];
}

}
}

After selecting the Simplify array indexing parameter and building the
model again, a multiply operation in the array index, [(i_0 + 5 * i_1)
+ 70 * i], is replaced with [(i_0 + tmp_1) + tmp]. The generated code
is now:

int32_T i;
int32_T i_0;
int32_T i_1;
int32_T tmp;
int32_T tmp_0;
int32_T tmp_1;

26-7

26 Execution Speed

tmp = 0;
tmp_0 = 0;
for (i = 0; i < 2; i++) {

tmp_1 = 0;
for (i_1 = 0; i_1 < 3; i_1++) {

for (i_0 = 0; i_0 < 5; i_0++) {
ex_arrayindex_Y.Out[(i_0 + tmp_1) + tmp] =

ex_arrayindex_P.Constant1_Value[(i_0 + tmp_1) + tmp_0];
}

tmp_1 += 5;
}

tmp += 70;
tmp_0 += 15;

}

tmp = 0;
tmp_0 = 0;
for (i = 0; i < 2; i++) {

tmp_1 = 0;
for (i_1 = 0; i_1 < 2; i_1++) {

for (i_0 = 0; i_0 < 5; i_0++) {
ex_arrayindex_Y.Out[((i_0 + tmp_1) + tmp) + 15] =

ex_arrayindex_P.Constant2_Value[(i_0 + tmp_1) + tmp_0];
}

tmp_1 += 5;
}

tmp += 70;
tmp_0 += 10;

}

tmp = 0;
tmp_0 = 0;
for (i = 0; i < 2; i++) {

tmp_1 = 0;
for (i_1 = 0; i_1 < 9; i_1++) {

26-8

Simplify Multiply Operations In Array Indexing

for (i_0 = 0; i_0 < 5; i_0++) {
ex_arrayindex_Y.Out[((i_0 + tmp_1) + tmp) + 25] =

ex_arrayindex_P.Constant3_Value[(i_0 + tmp_1) + tmp_0];
}

tmp_1 += 5;
}

tmp += 70;
tmp_0 += 45;

}

26-9

26 Execution Speed

26-10

27

Memory Usage

• “Optimize Generated Code Using Specified Minimum and Maximum
Values” on page 27-2

• “Reduce Global Variables in Nonreusable Subsystem Functions” on page
27-8

27 Memory Usage

Optimize Generated Code Using Specified Minimum and
Maximum Values

To optimize the generated code for your model, you can choose an option to use
input range information, also known as design minimum and maximum, that
you specify on signals and parameters. These minimum and maximum values
usually represent environmental limits, such as temperature, or mechanical
and electrical limits, such as output ranges of sensors.

When you select the Optimize using specified minimum and maximum
values configuration parameter, the software uses the minimum and
maximum values to derive range information for downstream signals in
the model. It then uses this derived range information to determine if it is
possible to streamline the generated code. For example, by:

• Reducing expressions to constants

• Removing dead branches of conditional statements

• Eliminating unnecessary mathematical operations

This optimization results in:

• Reduced ROM and RAM consumption

• Improved execution speed

How to Configure Your Model
To make optimization more likely:

• Provide as much design minimum and maximum information as possible.
Specify minimum and maximum values for signals and parameters in the
model for:

- Inport and Outport blocks

- Block outputs

- Block inputs, for example, for the MATLAB Function and Stateflow
Chart blocks

- Simulink.Signal objects

27-2

Optimize Generated Code Using Specified Minimum and Maximum Values

• Before generating code, test the minimum and maximum values for signals
and parameters. Otherwise, optimization might result in numerical
mismatch with simulation. You can simulate your model with simulation
range checking enabled. If errors or warnings occur, fix these issues before
generating code.

How to Enable Simulation Range Checking

1 In your model, select Simulation > Model Configuration
Parameters to open the Configuration Parameters dialog box.

2 In the Configuration Parameters dialog box, select Diagnostics > Data
Validity.

3 On the Data Validity pane, under Signals, set Simulation range
checking to warning or error.

• Provide design minimum and maximum information upstream of blocks as
close to the inputs of the blocks as possible. If you specify minimum and
maximum values for a block output, these values are most likely to affect
the outputs of the blocks immediately downstream. For more information,
see “Optimize Generated Code Using Specified Minimum and Maximum
Values” on page 27-4.

How to Enable Optimization
1 Set the Code Generation > System target file configuration parameter
to select an Embedded Real-Time (ERT) target (requires a Embedded Coder
license).

2 Specify design minimum and maximum values for signals and parameters
in your model using the tips in “How to Configure Your Model” on page 27-2.

3 Select the Optimization > General Optimize using specified
minimum and maximum values configuration parameter.

For more information, see “Optimize using the specified minimum and
maximum values” in the Simulink documentation.

27-3

27 Memory Usage

Optimize Generated Code Using Specified Minimum
and Maximum Values
This example demonstrates how the software uses specified input range
information to determine whether it can eliminate unnecessary utility
functions from the generated code. It uses the rtwdemo_minmax model.

Generate Code Without Using Specified Minimum and
Maximum Values
First, generate code without taking into account the minimum and maximum
values for the inputs to the Sum and Gain blocks or the minimum and
maximum values for the Gain block parameter to see the code generated
without the optimization.

1 Open the model. At the MATLAB command line, enter:

rtwdemo_minmax

2 Double-click the View Optimization Configuration button.

The Optimization pane of the Configuration Parameters dialog box
appears.

On the Code generation panel, note that the Optimize using specified
minimum and maximum values parameter is cleared.

3 Double-click the Generate Code button.

The code generation report appears.

4 In the left pane of the report, click the rtwdemo_minmax.c link.

The report displays the C code in the right pane.

The generated code for this model includes a branch for each of the
Relational Operator block inputs.

void rtwdemo_minmax_step(void)
{

if (U1 + U2 <= k * U3) {
rtY.Out1 = (U1 + U2) + U3;

27-4

Optimize Generated Code Using Specified Minimum and Maximum Values

} else {
rtY.Out1 = U1 * U2 * U3;

}
}

Generate Code Using Minimum and Maximum Values
Next, enable the optimization and generate code for the model again, this
time taking into account the design minimum and maximum values for the
inputs to the Sum and Gain blocks and the minimum and maximum values
for the Gain block parameter.

Note that:

• The minimum value of the first input to the Relational Operator block is 50
because this value is the minimum output from the Sum block.

27-5

27 Memory Usage

• The maximum value of the second input to the Relational Operator block
is 40 because this value is the maximum output of the Gain block.

Therefore, the output of the Relational Operator block is false, and the output
of the Switch block is always the product of the three inputs.

1 Double-click the View Optimization Configuration button.

The Optimization pane of the Configuration Parameters dialog box appears.

2 On the Code generation panel, select the Optimize using specified
minimum and maximum values parameter and click Apply.

3 Double-click the Generate Code button.

The code generation report appears.

4 In the left pane of the report, click the rtwdemo_minmax.c link and inspect
the generated code. Using the minimum and maximum values, the software
optimized the generated code by eliminating the conditional statement.

void rtwdemo_minmax_step(void)
{

rtY.Out1 = U1 * U2 * U3;
}

Limitations

• This optimization does not take into account minimum and maximum
values for:

- Merge block inputs. To work around this issue, use a Simulink.Signal
object on the Merge block output and specify the range on this object.

- Bus elements.

- Conditionally-executed subsystem (such as a triggered subsystem) block
outputs that are directly connected to an Outport block.

Outport blocks in conditionally-executed subsystems can have an initial
value specified for use only when the system is not triggered. In this
case, the optimization cannot use the range of the block output because
the range might not cover the initial value of the block.

27-6

Optimize Generated Code Using Specified Minimum and Maximum Values

• If you use Polyspace software to verify code generated using this
optimization, it might mark code that was previously green as orange.
For example, if your model contains a division where the range of the
denominator does not include zero, the generated code does not include
protection against division by zero. Polyspace might mark this code orange
because it does not have information about the minimum and maximum
values for the inputs to the division.

The Polyspace Model Link products do automatically capture some
minimum and maximum values specified in the MATLAB workspace, for
example, for Simulink.Signal and Simulink.Parameter objects. In this
example, to provide range information to the Polyspace software, use a
Simulink.Signal object on the input of the division and specify a range
that does not include zero.

The Polyspace Model Link products store these values in a Data Range
Specification (DRS) file. However, they do not capture all minimum and
maximum values in your Simulink model. To provide additional minimum
and maximum information to Polyspace, you can manually define a DRS
file.

• If you are using double-precision data types and the Code Generation >
Interface > Support non-finite numbers configuration parameter is
selected, this optimization does not occur.

• If your model contains multiple instances of a reusable subsystem and
each instance uses input signals with different minimum and maximum
values, this optimization might result in different generated code for each
subsystem so code reuse does not occur. Without this optimization, code is
generated once for the subsystem and shares this code among the multiple
instances of the subsystem.

• The Model Advisor Check safety-related optimization settings check
generates a warning if this option is selected. For many safety-critical
applications, removing dead code automatically is unacceptable because
doing so might make code untraceable. For more information, see Check
safety-related optimization settings.

27-7

27 Memory Usage

Reduce Global Variables in Nonreusable Subsystem
Functions

In this section...

“Generate void-void Function” on page 27-8

“Generate Function with Arguments” on page 27-9

Global variables can increase memory requirements and reduce execution
speed. To reduce global RAM for a nonreusable subsystem, you can generate
a function interface that passes data through arguments instead of global
variables. The Subsystem block parameter “Function interface” provides this
option. To compare the outputs for the Function interface options, first
generate a function for a subsystem with a void-void interface, and then
generate a function with arguments.

Generate void-void Function
By default, when you configure a Subsystem block as a nonreusable function,
it generates a void-void interface.

1 Open the example model rtwdemo_roll.

2 In the Simulink editor, select Code > C/C++ Code > Code Generation
Options. The Configuration Parameters dialog box displays the Code
Generation pane.

3 Set the System target file parameter to ert.tlc, and then click Apply.

4 Right-click the subsystem RollAngleReference. From the list select Block
Parameter (Subsystem). The is displayed.

5 In the Subsystem Block Parameter dialog box, select the Treat as atomic
unit check box.

6 Click the Code Generation tab and set the Function packaging
parameter to Nonreusable function.

7 Generate code and the static code metrics report for rtwdemo_roll. This
model is configured to generate a code generation report and to open the

27-8

Reduce Global Variables in Nonreusable Subsystem Functions

report automatically. For more information, see “Generate a Static Code
Metrics Report for a Simulink Model” on page 18-28.

In the code generation report, in rtwdemo_roll.c, the generated code for
subsystem RollAngleReference is similar to the following:

void RollAngleReference(void)
{

if (fabs(rtU.Turn_Knob) < 3.0) {
rtDWork.TKSwitch = rtDWork.FixPtUnitDelay1_DSTATE;

} else {
rtDWork.TKSwitch = rtU.Turn_Knob;

}
if (!rtU.AP_Eng) {

if ((rtU.Phi >= 6.0) || (rtU.Phi <= -6.0)) {
rtDWork.FixPtUnitDelay1_DSTATE = rtU.Phi;

} else {
rtDWork.FixPtUnitDelay1_DSTATE = 0.0;

}
}

}

In the static code metrics report, navigate to Global Variables. With the
void-void option, the number of bytes for global variable rtDWork is 41.
Next, generate the same function with the Allow arguments option to
compare the results.

Generate Function with Arguments
To reduce global RAM, improve ROM usage and execution speed, generate a
function that allows arguments:

1 Open the Subsystem Block Parameter dialog box for RollAngleReference.

2 Click the Code Generation tab. Set the Function interface parameter
to Allow arguments.

3 Generate code and the static code metrics report for rtwdemo_roll.

In the code generation report, in rtwdemo_roll.c, the generated code for
subsystem RollAngleReference is now similar to the following:

27-9

27 Memory Usage

void RollAngleReference(real_T rtu_Turn_Knob, boolean_T rtu_AP_Eng,
real_T rtu_Phi, real_T *rty_Phi_Ref)

{
if (fabs(rtu_Turn_Knob) < 3.0) {

*rty_Phi_Ref = rtDWork.FixPtUnitDelay1_DSTATE;
} else {

*rty_Phi_Ref = rtu_Turn_Knob;
}
if (!rtu_AP_Eng) {

if ((rtu_Phi >= 6.0) || (rtu_Phi <= -6.0)) {
rtDWork.FixPtUnitDelay1_DSTATE = rtu_Phi;

} else {
rtDWork.FixPtUnitDelay1_DSTATE = 0.0;

}
}

}

In the static code metrics report, navigate to Global Variables. With the
Allow arguments option set, the number of bytes for the global variable
rtDWork is now 33.

27-10

Verification

• Chapter 28, “Code Tracing”

• Chapter 29, “Component Verification”

• Chapter 30, “Component Verification With a Real-Time Target
Environment”

• Chapter 31, “Numerical Equivalence Checking”

• Chapter 32, “Code Coverage”

• Chapter 33, “Code Execution Profiling”

28

Code Tracing

• “About Code Tracing” on page 28-2

• “Format of Traceability Tags” on page 28-3

• “Trace Code to Model Objects Using Hyperlinks” on page 28-4

• “Trace Model Objects to Generated Code” on page 28-6

• “Reload Existing Traceability Information” on page 28-8

• “Customize Traceability Reports” on page 28-10

• “Generate a Traceability Matrix” on page 28-12

• “Traceability Limitations” on page 28-13

28 Code Tracing

About Code Tracing
The Simulink Coder code generator produces the HTML code generation
report for a model. The report includes the following resources that support
code traceability:

• Code element hyperlinks (indicated with underlining) that you can use to
trace through and toggle between generated source and header files.

• Tags in code comments that identify blocks from which lines of code are
generated.

For more information, see

• “Format of Traceability Tags” on page 28-3

• Tracing code to blocks using hilite_system

• “Generate a Code Generation Report”

The Embedded Coder product extends traceability capabilities to support:

• “Trace Code to Model Objects Using Hyperlinks” on page 28-4

• “Trace Model Objects to Generated Code” on page 28-6

• “Reload Existing Traceability Information” on page 28-8

• “Customize Traceability Reports” on page 28-10

28-2

Format of Traceability Tags

Format of Traceability Tags
A traceability tag appears in a comment above the corresponding line of
generated code. The format of the tags is <system>/block_name, where

• system is one of the following:

- The string Root

- A unique system number assigned by the Simulink engine

• block_name is the name of the source block

The code generator documents the tags for a model in the comments section
of the generated header file model.h. For example, the following comment
appears in the header file for model, foo, that has a subsystem Outer and
a nested subsystem Inner:

/* Here is the system hierarchy for this model.
*
* <Root> : foo
* <S1> : foo/Outer
* <S2> : foo/Outer/Inner
*/

Examples of Tagged Code
The following code shows a tag comment adjacent to a line of code. This code
is generated from a Gain block at the root level of a source model:

/* Gain: '<Root>/UnDeadGain1' */
rtb_UnDeadGain1_h = dead_gain_U.In1 *

dead_gain_P.UnDeadGain1_Gain;

The following code shows a tag comment adjacent to a line of code. This code
is generated from a Gain block within a subsystem one level below the root
level of the source model:

/* Gain: '<S1>/Gain' */
dead_gain_B.temp0 *= (dead_gain_P.s1_Gain_Gain);

28-3

28 Code Tracing

Trace Code to Model Objects Using Hyperlinks
When using the Simulink Coder product, you can trace code to model objects
using the hilite_system command. The Embedded Coder product simplifies
traceability with the use of hyperlinks in HTML code generation reports. The
reports display hyperlinks in “Regarding,” “Outport,” and other comment lines
in generated code. You can highlight the corresponding block or subsystem
in the model diagram by clicking the hyperlinks.

To use hyperlinks for tracing code to model objects:

1 Open the model and make sure it is configured for an ERT target.

2 In the Configuration Parameters dialog box, select Code
Generation > Report Create code generation report. The parameter
is selected by default. When selected, the parameter enables and selects
Open report automatically and Code-to-model.

3 Build or generate code for the model. An HTML code generation report
is displayed.

4 In the HTML report window, click hyperlinks to highlight source blocks.
For example, generate an HTML report for model rtwdemo_hyperlinks. In
the generated code for the model step function in rtwdemo_hyperlinks.c,
click the first UnitDelay block hyperlink .

28-4

Trace Code to Model Objects Using Hyperlinks

In the model window, the corresponding UnitDelay block is highlighted.

28-5

28 Code Tracing

Trace Model Objects to Generated Code
To trace model objects to generated code:

1 Open the model and make sure it is configured for an ERT target.

2 In the Configuration Parameters dialog box, select Code
Generation > Report > Create code generation report. The
parameter is selected by default. When selected, the parameter enables and
selects the Open report automatically and Code-to-model parameters.

3 Select Model-to-code.

This parameter:

• Enables the Configure button, which opens a dialog box for loading
existing trace information.

• Enables and selects parameters for customizing the content of a
traceability report.

28-6

Trace Model Objects to Generated Code

4 Build or generate code for the model. An HTML code generation report
is displayed.

5 In the model window, right-click a model object.

6 In the context menu, select C/C++ Code > Navigate to C/C++ Code. In
the HTML code generation report, you see the first instance of highlighted
code generated for the model object. In the left pane of the report, numbers
that appear to the right of generated file names indicate the total number
of highlighted lines in each file. The following figure shows the result of
tracing the Unit Delay block in model rtwdemo_hyperlinks.

To navigate through multiple instances of highlighted lines, click Previous
and Next.

If you close and reopen a model, the Navigate to Code context menu option
might not be available. This occurs because Embedded Coder cannot find a
build folder for your model in the current working folder. To address this, do
one of the following:

• Reset the current working folder to the parent folder of the existing build
folder.

• Select Model-to-code and rebuild the model. This regenerates the build
folder into the current working folder.

• Click Configure and in the Model-to-code navigation dialog box, reload the
existing trace information.

28-7

28 Code Tracing

Reload Existing Traceability Information
To reload existing traceability information for a model:

1 In the Configuration Parameters dialog box, click Code
Generation > Report > Configure. The Model-to-code navigation dialog
box opens.

2 In the Build folder field, type or browse to the build folder that contains
the existing traceability information.

If you close and reopen a model, the Navigate to Code context menu
option might not be available. This occurs because Embedded Coder cannot
find a build folder for your model in the current working folder. To fix this
without having to reset the current working folder or rebuild the model, do
the following:

1 Click Configure to open the Model-to-code navigation dialog box.

2 In the Model-to-code navigation dialog box, click Browse.

3 Browse to the build folder for your model, and select the folder. The
build folder path is displayed in the Build folder field, as shown in the
preceding figure.

28-8

Reload Existing Traceability Information

4 Click Apply or OK. This loads traceability information from the
earlier build into your Simulink session, provided that you selected
Model-to-code for the build.

5 Right-click a model object and select C/C++ Code > Navigate to C/C++
Code to open the context menu and trace a model object to corresponding
code.

28-9

28 Code Tracing

Customize Traceability Reports
In the Configuration Parameters dialog box, the Code
Generation > Report > Traceability Report Contents section
lists parameters you can select and clear to customize the content of your
traceability reports. By default, all parameters are selected.

Select or clear any combination of the following:

• Eliminated / virtual blocks (account for blocks that are untraceable)

• Traceable Simulink blocks

• Traceable Stateflow objects

• Traceable MATLAB functions

If you select all parameters, you get a complete mapping between model
elements and the generated code.

The following figure shows the top section of the traceability report
generated by selecting all traceability content parameters for model
rtwdemo_hyperlinks.

28-10

Customize Traceability Reports

28-11

28 Code Tracing

Generate a Traceability Matrix
If you are licensed for either DO Qualification Kit software or IEC
Certification Kit software and are using a Windows host, you can generate a
traceability matrix into Microsoft Excel format directly from the traceability
report described in “Customize Traceability Reports” on page 28-10.

To do this, go to the Traceability Report section of the HTML code
generation report and click the Generate Traceability Matrix button.

When you click the button, a Generate Traceability Matrix dialog box appears.
Use this dialog to select an existing matrix file to update or specify a new
matrix file to create. Optionally, you can use this dialog to select and order
the columns that appear in the generated matrix. For more information,
see “Generating a Traceability Matrix” in either the DO Qualification Kit
documentation or the IEC Certification Kit documentation.

28-12

Traceability Limitations

Traceability Limitations
The following limitations apply to reports generated by Embedded Coder
software.

• Under the following conditions, model-to-code traceability is disabled for
a block if the block name contains:

- A single quote (').

- An asterisk (*), that causes a name-mangling ambiguity relative to other
names in the model. This name-mangling ambiguity occurs if in a block
name or at the end of a block name, an asterisk precedes or follows
a slash (/).

- The character (char(255)).

• If a block name contains a newline character (\n), in the generated code
comments, the block path name hyperlink replaces the newline character
with a space for readability.

• You cannot trace blocks representing the following types of subsystems to
generated code:

- Virtual subsystems

- Masked subsystems

- Nonvirtual subsystems for which code has been optimized away

If you cannot trace a subsystem at subsystem level, you might be able to
trace individual blocks within the subsystem.

28-13

28 Code Tracing

28-14

29

Component Verification

• “Component Verification in the Target Environment” on page 29-2

• “Goals of Component Verification” on page 29-3

• “Maximizing Code Portability and Configurability” on page 29-4

• “Simplifying Code Integration and Maximizing Code Efficiency” on page
29-5

• “Running Component Tests” on page 29-7

29 Component Verification

Component Verification in the Target Environment
After you generate production code for a component design, you need to
integrate, compile, link, and deploy the code as a complete application on the
embedded system. One approach is to manually integrate the code into an
existing software framework that consists of an operating system, device
drivers, and support utilities. The algorithm can include externally written
legacy or custom code.

An easier and more recommended approach to verifying a component in a
target environment, is to use processor-in-the-loop (PIL) simulation. For
information about PIL simulations, see “About SIL and PIL Simulations”
on page 31-2.

29-2

Goals of Component Verification

Goals of Component Verification
Assuming that you have generated production source code and integrated
required externally written code, such as drivers and a scheduler, you can
verify that the integrated software operates as expected by testing it in the
target environment. During testing, you can achieve either of the following
goals, depending on whether you export code that is strictly ANSI C/C++ or
mixes ANSI C/C++ with code optimized for a target environment.

Goal Type of Code Export

Maximize code portability and configurability ANSI C/C++

Simplify integration and maximize use of processor
resources and code efficiency

Mixed code

Regardless of your goal, you must integrate required external drivers and
scheduling software. To achieve real-time execution, you must integrate the
real-time scheduling software.

29-3

29 Component Verification

Maximizing Code Portability and Configurability
To maximize code portability and configurability, limit the application code to
ANSI/ISO C or C++ code only, as the following figure shows.

Special
interfaces

Actuators
Communication

interfaces
Comm
drivers

Input
drivers

Output
drivers

Special
device
drivers

Scheduler/operating system
and support utilities

Sensors

Tuning

Algorithm model

Generated
algorithm

code

Included
legacy
code

29-4

Simplifying Code Integration and Maximizing Code Efficiency

Simplifying Code Integration and Maximizing Code
Efficiency

To simplify code integration and maximize code efficiency for a target
environment, use Embedded Coder features for:

• Controlling code interfaces

• Exporting subsystems

• Including target-specific code, including compiler optimizations

The following figure shows a mix of ANSI C/C++ code with code that is
optimized for a target environment.

29-5

29 Component Verification

Special
interfaces

Actuators
Communication

interfaces
Comm
drivers

Input
drivers

Output
drivers

Special
device
drivers

Scheduler/operating system
and support utilities

Sensors

Tuning

Controller model

Generated
algorithm

code

Included
target

optimized
code

29-6

Running Component Tests

Running Component Tests
The workflow for running software component tests in the target environment
is:

1 Integrate external code, for example, for device drivers and a scheduler,
with the generated C or C++ code for your component model. For more
information, see “Generate S-Function Wrappers” on page 21-2 and “Insert
S-Function Code” in the Simulink Coder documentation. For more specific
references depending on your verification goals, see the following table.

For... See...

ANSI C/C++ code
integration

“Integrate C Functions Using Legacy Code
Tool” in the Simulink documentation. Also,
open rtwdemos and navigate to the Custom
Code folder.

Mixed code integration • “Export Function-Call
Subsystems” on page 22-2 and
examplertwdemo_export_functions

• “Function Prototype Control” on page
12-2, “C++ Encapsulation Interface
Control” on page 12-24, and example
rtwdemo_fcnprotoctrl

• “Introduction to Code Replacement
Libraries” on page 23-2 and example
rtwdemo_crl_script

2 Simulate the integrated component model.

3 Generate code for the integrated component model.

4 Connect to data interfaces for the generated C code data structures. See
“Data Interchange Using the C API” and “ASAP2 Data Measurement and
Calibration” in the Simulink Coder documentation. Also see examples
rtwdemo_capi and rtwdemo_asap2.

29-7

29 Component Verification

5 Customize and control the build process, if required. See “Customize
Post-Code-Generation Build Processing” in the Simulink Coder
documentation, and example rtwdemo_buildinfo .

6 Create a zip file that contains generated code files, static files, and
dependent data to build the generated code in an environment other
than your host computer. See “Relocate Code to Another Development
Environment”, in the Simulink Coder documentation, and example
rtwdemo_buildinfo.

29-8

30

Component Verification
With a Real-Time Target
Environment

• “About Real-Time Software Component Verification” on page 30-2

• “Real-Time Software Component Testing” on page 30-4

30 Component Verification With a Real-Time Target Environment

About Real-Time Software Component Verification
One approach to verifying a software component is to build the component
into a complete software system that can execute in real time in the target
environment. A complete software system includes:

• Algorithm for the software component

• Scheduling algorithms

• Calls to drivers for board-specific devices

This single build approach is more time consuming to set up, but makes it
easier to get the complete application running in the target environment.

The following figure shows code generated for an algorithm being built into a
complete system executable for the target environment.

30-2

About Real-Time Software Component Verification

Special
interfaces

Actuators
Communication

interfaces
Comm
drivers

Input
drivers

Output
drivers

Special
device
drivers

Scheduler/operating system
and support utilities

Sensors

Tuning

Algorithm model

Generated
algorithm

code

Optional
target

optimized
code

30-3

30 Component Verification With a Real-Time Target Environment

Real-Time Software Component Testing
The workflow for testing component software as part of a complete real-time
target environment is:

1 Develop a component model and generate source code for production.

For information on building in scheduling and real-time system support,
see:

• “Scheduling” in the Simulink Coder documentation. For an example,
open rtwdemos and navigate to the Multirate Support folder.

• “Handle Asynchronous Events” in the Simulink Coder documentation
and example rtwdemo_async

• “Standalone Programs (No Operating System)” on page 20-2

• “Workflows for AUTOSAR” on page 17-31
and examples rtwdemo_autosar_legacy_script,
rtwdemo_autosar_mulitrunnables_script, and
rtwdemo_autosar_clientserver_script

2 Optimize generated code for a specific run-time environment,
using specialized function libraries. For more information, see
“Introduction to Code Replacement Libraries” on page 23-2 and example
rtwdemo_tfl_script.

3 Customize post code generation build processing to accommodate
third-party tools and processes, as required. See “Customize
Post-Code-Generation Build Processing” in the Simulink Coder
documentation and example rtwdemo_buildinfo.

4 Integrate external code, for example, for device drivers and a scheduler,
with the generated C or C++ code for your component model. For
more information, see “Insert S-Function Code” in the Simulink Coder
documentation. For more specific references depending on your verification
goals, see the following table.

30-4

Real-Time Software Component Testing

For... See...

ANSI C/C++ code
integration

“Integrate C Functions Using Legacy Code
Tool” in the Simulink documentation. Also,
open rtwdemos and navigate to the Custom
Code folder.

Mixed code integration • “Export Function-Call
Subsystems” on page 22-2 and
examplertwdemo_export_functions

• “Function Prototype Control” on page
12-2, “C++ Encapsulation Interface
Control” on page 12-24, and example
rtwdemo_fcnprotoctrl

• “Introduction to Code Replacement
Libraries” on page 23-2 and example
rtwdemo_crl_script

5 Simulate the integrated model.

6 Generate code for the integrated model.

7 Connect to data interfaces for the generated C code data structures. See
“Data Interchange Using the C API” and “ASAP2 Data Measurement and
Calibration” in the Simulink Coder documentation. Also see examples
rtwdemo_capi and rtwdemo_asap2.

8 Customize and control the build process, as required. See “Customize
Post-Code-Generation Build Processing”, in the Simulink Coder
documentation, and example rtwdemo_buildinfo .

9 Create a zip file that contains generated code files, static files, and
dependent data to build the generated code in an environment other
than your host computer. See “Relocate Code to Another Development
Environment”, in the Simulink Coder documentation, and example
rtwdemo_buildinfo.

30-5

30 Component Verification With a Real-Time Target Environment

30-6

31

Numerical Equivalence
Checking

• “About SIL and PIL Simulations” on page 31-2

• “How SIL and PIL Simulations Work” on page 31-6

• “Comparison of SIL and PIL Simulation” on page 31-7

• “Choose a SIL or PIL Approach” on page 31-9

• “Configure a SIL or PIL Simulation” on page 31-15

• “Top Model Simulation Using SIL or PIL” on page 31-23

• “Referenced Model Simulation Using SIL or PIL” on page 31-24

• “Code Interfaces for SIL and PIL” on page 31-28

• “Configure Hardware Implementation Settings for SIL” on page 31-30

• “Debugging During SIL Simulations” on page 31-36

• “Programming PIL Support Using Third-Party Tools” on page 31-39

• “Create a Connectivity Configuration for a Target” on page 31-40

• “View Test Harness in Code Generation Report” on page 31-53

• “SIL and PIL Simulation Support and Limitations” on page 31-55

• “Programmatic Code Generation Verification” on page 31-85

31 Numerical Equivalence Checking

About SIL and PIL Simulations

In this section...

“Overview” on page 31-2

“What are SIL and PIL Simulations?” on page 31-2

“Why Use SIL and PIL” on page 31-3

Overview
Embedded Coder supports software-in-the-loop (SIL) and processor-in-the-loop
(PIL) simulations, which allow you to verify generated source code and
compiled object code.

A SIL simulation involves compiling and running production source code
on your host computer, while a PIL simulation involves cross-compiling
and running production object code on a target processor or an equivalent
instruction set simulator.

You can use SIL and PIL simulations to verify the numerical behavior of
your code, optimize your code, collect code metrics such as code coverage and
execution profiling data, and achieve IEC 61508, ISO 26262, or DO-178
certification. See “Why Use SIL and PIL” on page 31-3.

For examples of SIL and PIL verification, see rtwdemo_sil_pil_script. For
information about how you verify the configuration of your model for a SIL or
PIL simulation, see “Verify a SIL or PIL Configuration” on page 31-20.

What are SIL and PIL Simulations?
The Embedded Coder product supports software-in-the-loop (SIL) and
processor-in-the-loop (PIL) simulations.

A SIL simulation involves compiling and running production source code
on your host computer to verify the source code. SIL provides a convenient
alternative to processor-in-the-loop (PIL) simulation as no target hardware
(for example, an evaluation board or instruction set simulator) is required.
For examples of SIL verification, see rtwdemo_sil_pil_script.

31-2

About SIL and PIL Simulations

A PIL simulation involves cross-compiling and running production object code
on a target processor or an equivalent instruction set simulator.

You can run a SIL or PIL simulation using:

• The Software-in-the-Loop (SIL) or Processor-in-the-Loop (PIL)
simulation mode for top models and Model blocks

• A SIL or PIL block

For more information, see “Choose a SIL or PIL Approach” on page 31-9.

The following features enable you to verify the generated code:

• Compare the output of regular simulation modes, for example, Normal or
Accelerator, against the output of SIL and PIL simulation modes.

• Easily switch between regular simulation, SIL, and PIL modes.

You can model and test your embedded software component in Simulink and
then reuse your test suites across simulation and compiled production code.
This approach avoids the time-consuming process of leaving the Simulink
software environment and verifying production code on a separate test
infrastructure.

Why Use SIL and PIL
You can achieve early verification and fixing of defects when you use SIL
and PIL. See “V-Model for System Development” in the Simulink Coder
documentation.

The following table describes situations when you should use SIL and PIL.

31-3

31 Numerical Equivalence Checking

Situation Use...

You want to reuse test vectors developed for Normal mode
simulation to verify numerical output of generated (or
legacy) code. For example, reusing test cases generated
by Simulink Design Verifier™. See “What Is Test
Case Generation?” in the Simulink Design Verifier
documentation.

SIL and PIL

You want to collect metrics for generated code:
• Code coverage. See “Code Coverage in SIL and PIL
Simulations” on page 32-2.

• Execution profiling. See “About Code Execution
Profiling” on page 33-2

• Stack profiling. See “Stack Profiling for Embedded
Targets” on page 36-28.

SIL and PIL

You want to achieve IEC 61508, ISO 26262, and DO-178
certification. See “Verification and Validation at the Code
Level (Code Verification)” in the IEC Certification Kit
documentation and Testing of Outputs of Integration
Process in the DO Qualification Kit documentation.

SIL and PIL

You do not have target hardware and want a convenient
alternative to PIL.

SIL

You have target hardware, for example, an evaluation
board or instruction set simulator, and you want to:
• Verify behavior of target specific code, for example,
Code Replacement optimizations, and legacy code. See
“Introduction to Code Replacement Libraries” on page
23-2.

• Optimize the execution speed and memory footprint
of your code. See, in this table, row with information
about collecting execution profiling and stack profiling
metrics.

• Investigate effects of compiler settings and
optimizations, for example, deviation from ANSI C
overflow behavior.

PIL

31-4

About SIL and PIL Simulations

Situation Use...

Normal simulation techniques do not account for
restrictions and requirements that the hardware
imposes, such as limited memory resources or behavior of
target-specific optimized code.
See “Sample Custom Targets” in the Simulink Coder
documentation, which gives information about running
PIL simulations on specific targets.

31-5

31 Numerical Equivalence Checking

How SIL and PIL Simulations Work
In a SIL/PIL simulation, code is generated for either the top model or part
of the model. With SIL, this code is compiled for, and executed on the host
computer. With PIL, the code is cross-compiled for the target hardware and
runs on the target processor.

Through a communication channel, Simulink sends stimulus signals to the
code on the host or target processor for each sample interval of the simulation:

• For a top model, Simulink uses stimulus signals from the base or model
workspace.

• If you have designated only part of the model to simulate in SIL/PIL mode,
then a part of the model remains in Simulink without the use of code
generation. Typically, you configure this part of the model to provide test
vectors for the software executing on the hardware. This part of the model
can represent other parts of the algorithm or the environment model in
which the algorithm operates.

When the host/target processor receives signals from Simulink, the processor
executes the SIL/PIL algorithm for one sample step. The SIL/PIL algorithm
returns output signals computed during this step to Simulink through a
communication channel. At this point, one sample cycle of the simulation is
complete and Simulink proceeds to the next sample interval. The process
repeats and the simulation progresses. SIL/PIL simulations do not run in real
time. At each sample period, Simulink and the object code exchange I/O data.
See also “Verify Internal Signals of a Component” on page 31-24.

31-6

Comparison of SIL and PIL Simulation

Comparison of SIL and PIL Simulation
Use SIL or PIL simulation to verify automatically generated code by
comparing the results with a Normal mode simulation. With SIL, you can
easily verify the behavior of production source code on your host computer.
However, you cannot verify exactly the same code that is subsequently
compiled for your target hardware because the code must be compiled for
your host computer (that is, a different compiler and different processor
architecture than the target). With PIL simulation, you can verify exactly the
same code that you intend to deploy in production, and you can run the code
on either real target hardware or an instruction set simulator. See “What are
SIL and PIL Simulations?” on page 31-2.

You can use the following approaches to verification.

Approach SIL PIL

Simulation mode
(for top model or
Model block)

Generated production
code compiled and
executed on host computer
as separate process,
independent of the
MATLAB process.
Execution is host/host and
nonreal time

Test the generated
code as cross-compiled
object code on target
processor or instruction
set simulator. Exercises
same object code used in
production software.
Execution is host/target
and nonreal time.

Block Create SIL block.
Software runs generated
code through S-function
wrapper on host computer.
SIL S-function links
directly with generated
code, so generated code
runs inside MATLAB
process.
Execution is host/host and
nonreal time.
See “Use a SIL or PIL
Block” on page 31-19.

Create PIL block.
Software runs
cross-compiled object
code through S-function
wrapper on host
computer. S-function
communicates with
object code executing as
standalone application
on target processor or
instruction set simulator.
Execution is host/target
and nonreal time.
See “Use a SIL or PIL
Block” on page 31-19.

31-7

31 Numerical Equivalence Checking

To decide which verification approach you want to use, see “Choose a SIL or
PIL Approach” on page 31-9 .

31-8

Choose a SIL or PIL Approach

Choose a SIL or PIL Approach

In this section...

“About Choosing a SIL or PIL Simulation” on page 31-9

“When to Use Top-Model SIL or PIL” on page 31-9

“When to Use Model Block SIL or PIL” on page 31-9

“When to Use the SIL or PIL Block” on page 31-13

About Choosing a SIL or PIL Simulation
This section describes how to choose the SIL or PIL verification approach for
your needs.

For examples, see rtwdemo_sil_pil_script, which allow you to compare:

• SIL block for SIL Simulation

• SIL or PIL Simulation for Model Blocks

• SIL or PIL Simulation for Top Models

When to Use Top-Model SIL or PIL
Use the top-model approach if you want to:

• Verify code generated for a top model (standalone code interface).

• Load test vectors or stimulus inputs from the MATLAB workspace.

• Switch the entire model between normal, SIL, or PIL simulation modes.

For an example, see rtwdemo_sil_pil_script .

When to Use Model Block SIL or PIL
Use the Model block approach if you want to:

• Verify code generated for referenced models (model reference code
interface).

31-9

31 Numerical Equivalence Checking

• Provide a test harness model (or a system model) to generate test vector or
stimulus inputs.

• Switch a Model block between normal, SIL, or PIL simulation modes.

See “Modeling Scenarios with the Model Block” on page 31-10.

Modeling Scenarios with the Model Block
You can use the Model block to test single components or a whole hierarchy
of model reference components. For example, you can select a single leaf
component for SIL verification. Later in the development cycle, as your
components become integrated into a larger system, you can select a hierarchy
of components for SIL verification.

You must deploy your Model block component code as part of a standalone
executable. The following examples show ways of testing your component.

• “Testing a Model Reference Component in SIL Mode” on page 31-10

• “Deploying Through an Atomic Subsystem” on page 31-11

• “Deploying Through a Top Model” on page 31-12

Testing a Model Reference Component in SIL Mode. You can test a
model reference component or hierarchy of components by placing a Model
block in a test harness model, as shown in model T1.

To test the component, for example, in SIL mode:

1 Set the simulation mode of component C to SIL mode.

2 Simulate the model to run component C in SIL mode, and test its model
reference target.

31-10

Choose a SIL or PIL Approach

Note If the model reference target code interface for component C does
not already exist, simulating the model generates it. For more information
about the model reference target code interface, see “Code Interfaces for
SIL and PIL” on page 31-28.

The following deployment scenarios reuse the model reference target of
component C. This reuse allows you to test exactly the same object code that
you deploy.

Deploying Through an Atomic Subsystem. To generate code with the
standalone interface for deployment, place a Model block inside an atomic
subsystem, as shown by model D1

and D_Subsys

To create standalone code, perform a subsystem build of D_Subsys. The
standalone code calls the model reference target of component C.

To test the component, for example, in SIL mode:

1 Set the simulation mode of component C to SIL mode.

2 Simulate the model to run component C in SIL mode and test its model
reference target.

31-11

31 Numerical Equivalence Checking

You can place multiple Model blocks and other blocks into the model to deploy
a whole system of components.

Deploying Through a Top Model. To generate code with the standalone
interface for deployment, place the Model block inside a top model, as shown
by model D2.

To create standalone code, perform a build of D2. The standalone code calls
the model reference target of component C.

You can place multiple Model blocks and other blocks into the model to deploy
a whole system of components.

To pass test inputs to component C (running in SIL mode):

1 Create a test harness model that references model D2 in Normal mode, as
shown by model T2.

2 Simulate the T2 model to run component C in SIL mode and test its model
reference target.

The Model Dependency Viewer shows the model reference hierarchy of T2 and
the simulation modes of each Model block component.

31-12

Choose a SIL or PIL Approach

When to Use the SIL or PIL Block
Use the SIL or PIL block if you want to:

• Verify code generated for a top model with a standalone code interface,
or a subsystem with a (right-click build) standalone code interface. For
more information about the standalone target code interface, see “Code
Interfaces for SIL and PIL” on page 31-28.

• Change the model and insert a SIL or PIL block to represent a component
running in SIL or PIL mode, in a situation where a test harness model or a
system model provides test vector or stimulus inputs.

For example, you can replace the controller subsystem in the following
model,

31-13

31 Numerical Equivalence Checking

with a SIL block (highlighted) that represents the controller.

For information about how you create a SIL or PIL block, see “Use a SIL or
PIL Block” on page 31-19.

Note If you compare a SIL or PIL block simulation with a top-model
simulation, you see that you must perform two steps before you can run the
simulation. First, you perform a right-click subsystem build to create the
SIL or PIL block. Then, you replace the subsystem in the original model
with the newly created SIL block.

31-14

Configure a SIL or PIL Simulation

Configure a SIL or PIL Simulation

In this section...

“Top-Model SIL or PIL Simulation” on page 31-15

“Model Block SIL or PIL Simulation” on page 31-17

“Use a SIL or PIL Block” on page 31-19

“Verify a SIL or PIL Configuration” on page 31-20

Top-Model SIL or PIL Simulation
To configure and run a top-model SIL or PIL simulation:

1 Open your model.

2 Select either Simulation > Software-in-the-Loop (SIL) or
Simulation > Processor-in-the-Loop (PIL).

Note This option is available only if the model is configured for an ERT or
AUTOSAR target. See “Code Generation Pane: General” and “Generate
AUTOSAR Code and Description Files” on page 17-82 for configuration
information.

3 If you have not already done so, in the Configuration Parameters dialog
box, on the Data Import/Export pane:

• In the Input check box and field, specify stimulus signals (or test
vectors) for your top model.

• Configure logging for model outputs, using either output logging or
signal logging:

– In the Output check box and field, specify output logging.

– In the Signal logging check box and field, specify signal logging.
See “Internal Signal Logging Support” on page 31-66 and “Top-Model
Root-Level Logging Limitations” on page 31-67.

31-15

31 Numerical Equivalence Checking

• Disable logging of Data Store Memory variables. The software does not
support this option for this simulation mode. If you do not clear the
Data stores check box, the software produces a warning when you run
the simulation.

4 If you are configuring a SIL simulation, specify the portable word sizes
option. This option allows you to switch seamlessly between the SIL and
PIL modes. Select Code Generation > Verification > Enable portable
word sizes. See “Configure Hardware Implementation Settings for SIL”
on page 31-30.

5 If required, configure:

• Code coverage. See “Code Coverage in SIL and PIL Simulations” on
page 32-2.

• Code execution profiling. See “Configure Code Execution Profiling” on
page 33-3.

• Creation of code generation report and static code metrics. See “View
Test Harness in Code Generation Report” on page 31-53.

6 Start the simulation.

Note You cannot:

• Close the model while the simulation is running. To interrupt the
simulation, in the Command Window, press Ctrl+C.

• Alter the model during the simulation. You can move blocks and lines as
long as it does not alter the behavior of the model.

You can run a top-model SIL or PIL simulation using the command
sim(model).

31-16

Configure a SIL or PIL Simulation

Note The software supports the sim command options SrcWorkspace and
DstWorkspace for only the following values:

• SrcWorkspace — 'base'

• DstWorkspace — 'base' or 'current'

For more information on the sim command and its options, see “Run
Simulation Using the sim Command” in the Simulink documentation.

For information about how a simulation behaves when the top model contains
a Model block (and this Model block is a parent Model block containing Model
blocks at lower levels of its reference hierarchy), see “Simulation Mode
Override Behavior in Model Reference Hierarchy” on page 31-25.

For a PIL simulation, you control the way code compiles and executes in
the target environment through connectivity configurations. See “Create a
Connectivity Configuration for a Target” on page 31-40.

Model Block SIL or PIL Simulation
To configure a Model block for a SIL or PIL simulation:

1 Open your model.

31-17

31 Numerical Equivalence Checking

2 Right-click your Model block, for example, Counter A. In the context
menu, select ModelReference Parameters to open the Model Reference
Parameters dialog box.

3 From the Simulation Mode drop-down list, select the required mode, for
example, Software-in-the-loop (SIL).

4 If you are configuring a SIL simulation, specify the portable word sizes
option. This option allows you to switch seamlessly between the SIL and
PIL modes. Select Code Generation > Verification > Enable portable
word sizes. See “Configure Hardware Implementation Settings for SIL”
on page 31-30.

5 If required, configure:

• Code coverage. See “Code Coverage in SIL and PIL Simulations” on
page 32-2.

• Code execution profiling for your Model block, by configuring execution
profiling for the top model. See “Configure Code Execution Profiling”
on page 33-3.

• Creation of code generation report and static code metrics. See “View
Test Harness in Code Generation Report” on page 31-53.

6 Start the simulation.

31-18

Configure a SIL or PIL Simulation

Note For a PIL simulation, you control the way code compiles and executes
in the target environment through connectivity configurations. See “Create a
Connectivity Configuration for a Target” on page 31-40.

Use a SIL or PIL Block
You can automatically create a SIL or PIL block from a complete model or a
subsystem. You can use this block to test the code generated from your model:

1 In the Configuration Parameters dialog box, select Code
Generation > Verification.

2 From the Create block drop-down list, select either SIL or PIL.

3 If you want to enable code execution profiling for a PIL block:

a Select the Collect execution time measurements check box.

b In the Workspace variable field, specify a name.
The software does not support code execution profiling in SIL blocks. For
more information, see “About Code Execution Profiling” on page 33-2.

4 Click OK.

5 In your model window, right-click the subsystem that you want to simulate.

6 Select C/C++ Code > Build This Subsystem.

7 Click Build to start a subsystem build that generates a SIL or PIL block
for the generated subsystem code.

8 Add the generated block to an environment or test harness model that
supplies test vectors or stimulus input.

9 Run simulations with the environment or test harness model to perform
SIL or PIL tests.

10 Verify that the generated code captured in the SIL or PIL block provides
the same result as the original subsystem.

31-19

31 Numerical Equivalence Checking

Note You cannot create a SIL or PIL block (Create block appears dimmed)
if you do one of the following:

• Disable either the CreateSILPILBlock or GenerateErtSFunction property

• Select a code coverage tool

For a PIL simulation, you control the way code compiles and executes in
the target environment through connectivity configurations. See “Create a
Connectivity Configuration for a Target” on page 31-40.

For an example of how the SIL block is used in testing, see
rtwdemo_sil_pil_script.

For a description of the SIL block as an S-function wrapper, see “Generate
S-Function Wrappers” on page 21-2.

Verify a SIL or PIL Configuration
You might need to change model settings to configure the model for SIL or
PIL. To find out what settings you must change, use the cgv.Config class.
Using the cgv.Config class, you can review your model configuration and
determine which settings you must change to configure the model for SIL or
PIL. By default, cgv.Config changes configuration parameter values to the
value that it recommends, but does not save the model. Alternatively, you can
specify that cgv.Config use one of the following approaches:

• Change configuration parameter values to the values that cgv.Config
recommends, and save the model. Specify this approach using the
SaveModel property.

• List the values that cgv.Config recommends for the configuration
parameters, but do not change the configuration parameters or the model.
Specify this approach using the ReportOnly property.

31-20

Configure a SIL or PIL Simulation

Note

• To execute the model in the target environment, you might need to make
additional modifications to the configuration parameter values or the
model.

• Do not use referenced configuration sets in models that you are changing
using cgv.Config. If the model uses a referenced configuration
set, update the model with a copy of the configuration set. Use
the Simulink.ConfigSetRef.getRefConfigSet method. For more
information, see Simulink.ConfigSetRef in the Simulink documentation.

• If you use cgv.Config on a model that executes a callback function, the
callback function might change configuration parameter values each
time the model loads. The callback function might revert changes that
cgv.Config made. When this change occurs, the model might no longer be
set up for SIL or PIL. For more information, see “Callbacks for Customized
Model Behavior”.

For more information about the cgv.Config class, see cgv.Config.

How To Verify a SIL or PIL Configuration
To verify that your model is configured for SIL or PIL:

1 Construct a cgv.Config object that changes the configuration parameter
values without saving the model. For example, to configure your model
for SIL:

c = cgv.Config('vdp', 'connectivity', 'sil');

31-21

31 Numerical Equivalence Checking

Tip

• You can obtain a list of changes without changing the configuration
parameter values. When you construct the object, include the
'ReportOnly', 'on' property name and value pair.

• You can change the configuration parameter values and save the model.
When you construct the object, include the 'SaveModel', 'on' property
name and value pair.

2 Determine and change the configuration parameter values that the object
recommends using the configModel method. For example:

c.configModel();

3 Display a report of the changes that configModel makes. For example:

c.displayReport();

4 Review the changes.

5 To apply the changes to your model, save the model.

31-22

Top Model Simulation Using SIL or PIL

Top Model Simulation Using SIL or PIL
With a top-model SIL or PIL simulation:

• Simulink generates and executes code that uses the same code interface
produced by the standalone build process. See “Code Interfaces for SIL and
PIL” on page 31-28.

• You can load data from the MATLAB workspace to specify stimulus signals,
and you can log output signals, which allows you to verify object code
generated from a complete model without creating a separate test harness
model. Running the SIL or PIL simulation is a simple operation.

Top-model SIL/PIL simulation is an alternative to the block-based approach.
Two differences between the block-based approach and top-model SIL/PIL
simulation are:

• With Model block SIL/PIL simulation, the model reference target that is
generated does not have the same interface as standalone code (see “Code
Interfaces for SIL and PIL” on page 31-28).

• With Model block SIL/PIL simulations, you cannot load data from the
workspace but instead you must use input and output blocks to feed signals
into and out of your model. See “Verify Internal Signals of a Component”
on page 31-24 and “Choose a SIL or PIL Approach” on page 31-9.

To compare SIL/PIL simulation options, see “Choose a SIL or PIL Approach”
on page 31-9.

For the top-model SIL/PIL approach, Simulink creates a hidden wrapper
model. When you run a top-model SIL simulation, the software generates
code for the model and creates a hidden wrapper model to call this code at
each time step.

Under some circumstances this causes logged signals to have a _wrapper
suffix. See “Top-Model Root-Level Logging Limitations” on page 31-67.

31-23

31 Numerical Equivalence Checking

Referenced Model Simulation Using SIL or PIL
In addition to the regular simulation modes, Model blocks have a
Software-in-the-loop (SIL) and Processor-in-the-loop (PIL) mode.

You can switch the Model block between regular, SIL, and PIL simulation
modes. This allows you to easily verify the generated code by executing the
referenced model as compiled code on the host computer or target platform.
You can model and test your embedded software component in Simulink and
you can reuse your regression test suites across simulation and compiled
object code. This capability avoids the time-consuming process of leaving the
Simulink software environment to run tests again on object code compiled for
your production hardware.

The label (SIL) or (PIL) on the block indicates the mode of the Model block.

To understand how SIL or PIL works in the Model block, see the following
information:

• “Simulation Mode Override Behavior in Model Reference Hierarchy” on
page 31-25

• “Code Interfaces for SIL and PIL” on page 31-28

• “When to Use Model Block SIL or PIL” on page 31-9

• “Modeling Scenarios with the Model Block” on page 31-10

For an introduction to the Model block, see the Model Variants block section
in the Simulink reference documentation.

Verify Internal Signals of a Component
Outputs of the SIL or PIL component are available for verification. If you
want to examine an internal signal, you can:

• Enable internal signal logging for top-model or Model block SIL or PIL, but
check the limitations. See “Internal Signal Logging Support” on page 31-66.

• Manually route the signal to the top level.

• Use global data stores to access internal signals:

31-24

Referenced Model Simulation Using SIL or PIL

1 Inside the component, connect a Data Store Write block to the required
signal.

2 Outside the component, use a Data Store Read block to access the signal
value.

See “About Data Stores” and “Global Data Store Example” in the
Simulink documentation.

• Use MAT-file logging. See “Logging” in the Simulink Coder documentation.
For PIL, target environment must support MAT-file logging.

For more information on signal support, see “I/O Support” on page 31-70.

Simulation Mode Override Behavior in Model
Reference Hierarchy
This section describes simulation behavior when the top model contains a
Model block. This Model may also be a parent block containing child Model
blocks at lower levels of its reference hierarchy.

Note You can view your model hierarchy in the Model Dependency Viewer.
In the Referenced Model Instances view, the software displays Model
blocks differently to indicate their simulation modes, for example, Normal,
Accelerator, SIL, and PIL. In this view, the software does not indicate the
simulation mode of the top model.

You can specify the simulation mode of a top model to be Normal, Accelerator,
Rapid Accelerator, SIL, or PIL. With a Model block, you can specify all modes
except Rapid Accelerator. The configured simulation mode of a Model block
may be overridden by the parent simulation mode. The following table shows
how the software determines the effective simulation mode of a Model block
in the hierarchy.

31-25

31 Numerical Equivalence Checking

Mode of parent or child block in reference
hierarchyMode of top

model or
parent block Normal Accelerator SIL PIL

Normal Equivalent Compatible Compatible Compatible

Accelerator Override Equivalent Error Error

Rapid
Accelerator

Override Override Error Error

SIL Override Override Equivalent Error

PIL Override Override Error Equivalent

The following list explains the different types of simulation behavior:

• Equivalent – Both parent and child Model block run in the same simulation
mode.

• Compatible – If the simulation mode of the top model or parent block is
Normal, then the software simulates the child block in the mode specified
for it.

• Error – The simulation produces an error. For example, if a top model or
parent Model block has simulation mode Accelerator but contains a child
block in SIL or PIL mode, then running a simulation produces an error: the
Accelerator mode cannot override the SIL and PIL mode of child blocks.
This behavior avoids the risk of “false positives”, that is, the simulation of a
model in Accelerator mode will not lead to the conclusion that generated
source or object code of child Model blocks has been tested or verified.

• Override – The simulation mode of the top model or parent Model block
overrides the simulation mode of the child block. For example, if a top
model or parent Model block that is configured for a SIL simulation contains
a child Model block with simulation mode Normal or Accelerator, then the
software simulates the child block in SIL mode. This override behavior:

- Allows a Model block in the reference hierarchy to have the SIL or PIL
mode.

- Makes lower-level referenced models execute in SIL or PIL mode if you
simulate the top model or parent Model block in SIL or PIL mode, . You

31-26

Referenced Model Simulation Using SIL or PIL

do not have to switch manually the simulation mode of every model
component in the hierarchy.

For an example model hierarchy, see “Modeling Scenarios with the Model
Block” on page 31-10.

31-27

31 Numerical Equivalence Checking

Code Interfaces for SIL and PIL
This section describes and compares the different code interfaces that the
code generation products produce.

You generate standalone code when you perform a top-model or right-click
subsystem build for a single deployable component. You can compile and
link standalone code into a standalone executable or integrate it with other
code. For more information on the standalone code interface, see “Entry Point
Functions and Scheduling”.

When you generate code for a referenced model hierarchy, the software
generates standalone executable code for the top model, and a library module
called a model reference target for each referenced model. When the code
executes, the standalone executable invokes the applicable model reference
targets to compute the referenced model outputs. For more information, see
“Build Model Reference Targets”.

Note The model reference target does not have the same code interface as
standalone code.

If you intend to integrate automatically generated code with legacy code, use
standalone code because the standalone code interface (for example, entry
points) is fully documented.

SIL/PIL Feature Standalone Code
Interface

Model Reference
Code Interface

Top-model Yes No (but you can include
Model blocks inside
your top model)

Model block No Yes

SIL or PIL block Yes No

Code Interface for Top-Model SIL or PIL
Top-model SIL or PIL generates the standalone code interface for the model.

31-28

Code Interfaces for SIL and PIL

When you run a top-model SIL or PIL simulation, the software calls the
standalone code for the model if it already exists. The software generates the
standalone code if it does not exist.

Code Interface for Model Block SIL or PIL
Model block SIL or PIL mode generates the model reference code interface.

When you run a simulation with a Model block in SIL or PIL mode, the
software calls the model reference target for the Model block if it already
exists, or generates the model reference target.

If the model reference target does not yet exist, you can generate it in one of
three ways:

• Run the simulation.

• Press Ctrl+B to build the top model containing the Model block.

• Use the command slbuild, specifying the model reference option, for
example:

slbuild('model','ModelReferenceRTWTargetOnly')

You cannot use standalone code with the Model block. You can generate
standalone code for a model referenced by a Model block by opening the model
and performing a top-level build. However, you cannot use this standalone
code with Model block SIL or PIL simulation.

For more information, see the table in “Choose a SIL or PIL Approach” on
page 31-9.

31-29

31 Numerical Equivalence Checking

Configure Hardware Implementation Settings for SIL

In this section...

“Choose Hardware Implementation Options” on page 31-30

“Portable Word Sizes” on page 31-30

“Emulation Hardware” on page 31-34

“Embedded hardware configured for host” on page 31-35

Choose Hardware Implementation Options

Hardware Implementation
Settings Option

Choose when...

Portable word sizes Portable word sizes is the preferred
option, because you can switch
seamlessly between the SIL and PIL
modes without regenerating code.

Emulation hardware Use this option only if you need to
work around a limitation of portable
word sizes. You cannot use PIL
mode with this option.

Embedded hardware configured for
host

Use this option only if the embedded
hardware settings match the host,
e.g., to generate code for the host
platform.

Portable Word Sizes
Embedded Coder provides an option to specify portable word sizes. If you
select this option for a model, you can use the same generated source code
files for:

• Software-in-the-loop (SIL) simulation on the host computer

• Production deployment on the target platform

31-30

Configure Hardware Implementation Settings for SIL

To configure a model to use portable word sizes, set the following model
configuration parameters.

Set... To...

Hardware
Implementation > Emulation
hardware > None

Selected

Code Generation > Verification
> Enable portable word sizes

Selected

When you generate code for a model with the preceding parameter settings,
the code generator conditionalizes data type definitions:

• tmwtypes.h supports SIL simulation on the host system

• Code generation types support deployment on the target system

For example, in the following generated code, the first two lines define types
for SIL simulation on a host system. The bold lines define types for target
deployment.

#ifdef PORTABLE_WORDSIZES /* PORTABLE_WORDSIZES defined */
include "tmwtypes.h"
#else /* PORTABLE_WORDSIZES not defined */
#define __TMWTYPES__
#include <limits.h>
...
typedef signed char int8_T;
typedef unsigned char uint8_T;
typedef int int16_T;
typedef unsigned int uint16_T;
typedef long int32_T;
typedef unsigned long uint32_T;
typedef float real32_T;
typedef double real64_T;
...
#endif /* PORTABLE_WORDSIZES */

31-31

31 Numerical Equivalence Checking

Compile Generated Code That Supports Portable Word Sizes
When you compile generated code that supports portable word sizes for SIL
testing, pass the definition PORTABLE_WORDSIZES to the compiler.

For example:

-DPORTABLE_WORDSIZES

To build the same code for target deployment, compile the code without the
PORTABLE_WORDSIZES definition.

Code that the Host Cannot Compile
Consider the case where your target uses code that the host cannot compile.
When you switch from the PIL mode to the SIL mode and try to simulate the
model, you see compilation errors . You might be able to work around this
problem by adding the source code files to the SkipForSil group in the build
information object RTW.BuildInfo. The SIL build on the host platform does
not compile source files present in the SkipForSil group. For information
about how you add source code files to a group in the build information object,
see:

• addSourceFiles in the Simulink Coder reference documentation

• “Customize Post-Code-Generation Build Processing” in the Simulink Coder
documentation

Portable Word Sizes Limitations
The following limitations apply when using portable word sizes in SIL
simulation:

• Numerical results might differ between generated code executing in a SIL
simulation and generated code executing on the embedded hardware under
one of the following conditions:

- Your model contains blocks implemented in TLC, for which C integral
promotion in expressions might behave differently between the MATLAB
host and the embedded hardware target. Normal and PIL simulation
results will match, but SIL simulation results might be different.

31-32

Configure Hardware Implementation Settings for SIL

- Your embedded hardware implements rounding to Floor for signed
integer division, and divisions in your model use rounding mode Floor
or Simplest. Normal and PIL simulation results will match, but SIL
simulation results might be different.

- The precision of floating-point operations differs between the MATLAB
host and the embedded hardware target. In this case, Normal and SIL
simulation results will match, but PIL simulation results might be
different.

- You use custom code with the Stateflow product. In this case, type
conversion statements will not be inserted into the custom code, which
may be required to achieve target overflow behavior on the host. Normal
and PIL simulation results will match, but SIL simulation results might
be different.

• Compilation warnings might occur for code generated using portable word
sizes if all of the following conditions exist:

- The combination of MATLAB host and embedded hardware target word
sizes causes rtwtypes.h to redefine the word sizes using preprocessor
macros. For example, when the embedded hardware has a 16-bit int
data type and the MATLAB host has a 16-bit short data type, int16_T
is redefined to be short on the host and int on the target.

- The data types are used in pointer arguments to function calls.

- The called functions are host-based precompiled functions (not compiled
using rtwtypes.h).

Under these conditions, the compiler typically issues a warning similar
to the following:

warning: passing argument 2 of 'frexp' from incompatible pointer type

Executing the generated code on the MATLAB host could lead to memory
corruption. For example, the function "double frexp (double value,
int *exp);" expects 'int *' as the second argument, for which 'int16_T
*' is passed in the generated code. But on the MATLAB host, int16_T is
redefined to short, and during SIL execution, frexp will attempt to write 4
bytes to a 2 byte location.

A potential workaround for the SIL workflow is to provide a custom Code
Replacement Library (CRL) entry for functions that write to address

31-33

31 Numerical Equivalence Checking

locations obtained through pointer arguments. In the above example, the
function frexp is called by the reciprocal square root operation (rSqrt) and
rSqrt is replaceable using CRLs. Therefore, you can provide a custom
version of rSqrt to support SIL execution. The replacement function
would perform the change in memory allocation for the data accessed by
the pointer variable, perhaps by introducing a temporary variable and
transferring the data to and from that variable. For more information about
CRLs, see “Introduction to Code Replacement Libraries” on page 23-2.

Emulation Hardware
Use this option only if you need to work around a limitation of portable word
sizes. You cannot use PIL mode with this option.

See “Platform Options for Development and Deployment” in the Simulink
Coder documentation.

To configure a model to use emulation hardware, set the following model
configuration parameters.

Set... To...

Code Generation > Verification
> Enable portable word sizes

Clear this checkbox

Hardware
Implementation > Emulation
hardware > None

Clear this checkbox

Hardware
Implementation > Emulation
hardware > Device vendor

Generic

Hardware
Implementation > Emulation
hardware > Device type

MATLAB Host Computer

For an example of how to configure a model to maintain bit-true
agreement between host simulation and target deployment, and
generate code that is portable between the host and target systems, see
rtwdemo_sil_hardware_config.

31-34

Configure Hardware Implementation Settings for SIL

Embedded hardware configured for host
Use this option only if the embedded hardware settings match the host, e.g.,
to generate code for the host platform.

To configure a model to use emulation hardware, set the following model
configuration parameters.

Set... To...

Code Generation > Verification
> Enable portable word sizes

Clear this checkbox

Hardware
Implementation > Emulation
hardware > None

Clear this checkbox

Hardware
Implementation > Embedded
hardware

Select settings under
Embedded hardware to
match your host.

31-35

31 Numerical Equivalence Checking

Debugging During SIL Simulations
You can run SIL simulations with the Microsoft Visual Studio® debugger
enabled. From the Microsoft Visual Studio IDE, you can insert break points in
the generated code and use the debugger to execute code between breakpoints.

For example, if you notice differences between the results of a Normal
mode and SIL mode simulation, you can rerun the SIL simulation with the
Microsoft Visual Studio debugger enabled. By inserting breakpoints, you can
observe the behavior of code sections, which might help you to understand the
cause of the differences in results.

To enable the Microsoft Visual Studio debugger for a SIL simulation, on the
Configuration Parameters > Code Generation > Verification pane,
select the Enable source-level debugging for SIL simulations check box.

Note The software supports SIL debugging for only the following compilers:

• Microsoft Visual C++ 2010 Professional

• Microsoft Visual C++ 2008 Professional SP1

When you rerun your SIL simulation, your model.c or model.cpp file opens
in the Microsoft Visual Studio IDE with debugger breakpoints at the start of
the model_initialize and model_step functions.

31-36

Debugging During SIL Simulations

You can now use the debugger features to observe code behaviour. For
example, you can step through code and examine variables.

To end the debugging session:

1 Remove all breakpoints.

2 Click the Continue button (F5).

The SIL simulation runs to completion and the Microsoft Visual Studio
IDE closes automatically.

31-37

31 Numerical Equivalence Checking

Note In the Microsoft Visual Studio IDE, if you select Debug > Stop
Debugging, the SIL simulation times out with the following error message:

The timeout of 1 seconds for receiving data from the rtiostream interface h
been exceeded. There are multiple possible causes for this failure.
...
...

31-38

Programming PIL Support Using Third-Party Tools

Programming PIL Support Using Third-Party Tools
You can use the Processor-in-the-loop (PIL) Connectivity API to apply the
power of PIL verification to object code compiled for your target processor.
There are m custom or third-party tools for building, downloading, and
communicating with an executable on a target environment. Use the API to
integrate your tools for:

• Building the PIL application (an executable for the target hardware)

• Downloading and running the executable

• Communicating with the executable

You can use PIL with target hardware or instruction set simulators, and
combination of tools that provide the required level of automation. For
hardware cases that MathWorks does not support, see “SIL and PIL
Simulation Support and Limitations” on page 31-55.

For instructions and examples on PIL and the Target Connectivity API, see:

• “Configure a SIL or PIL Simulation” on page 31-15

• “Create a Connectivity Configuration for a Target” on page 31-40

• “Examples of the Target Connectivity API” on page 31-51

31-39

31 Numerical Equivalence Checking

Create a Connectivity Configuration for a Target

In this section...

“What Is a PIL Connectivity Configuration?” on page 31-40

“Overview of the Target Connectivity API” on page 31-41

“Create a Connectivity API Implementation” on page 31-46

“Register a Connectivity API Implementation” on page 31-47

“Synchronize Host and Target” on page 31-47

“Specify Hardware Timer” on page 31-48

“Examples of the Target Connectivity API” on page 31-51

What Is a PIL Connectivity Configuration?
You can use PIL connectivity configurations and the target connectivity API
to customize PIL to work with a target environment.

Use a connectivity configuration to define:

• A configuration name

• A connectivity API implementation

• Settings that define the set of Simulink models that the configuration is
compatible with, for example, the set of models that have a particular
system target file, template makefile, and hardware implementation.

You can use the API to integrate third party tools for:

• Building the PIL application, an executable for the target hardware

• Downloading and running the executable

• Communicating with the executable

A particular connectivity configuration name is associated with a single
connectivity API implementation. M different connectivity configurations
can coexist and be available for use with PIL simulations. You register each

31-40

Create a Connectivity Configuration for a Target

connectivity configuration to Simulink by creating an sl_customization.m
file and placing it on the MATLAB path.

To run a PIL simulation, the software must first determine which of the
available connectivity configurations to use. The software looks for a
connectivity configuration that is compatible with the model under test. If the
software finds multiple or no compatible connectivity configurations, you see
an error message describing how to resolve the problem.

For information on how you create a connectivity configuration for a target,
see:

1 “Overview of the Target Connectivity API” on page 31-41

2 “Create a Connectivity API Implementation” on page 31-46

3 “Register a Connectivity API Implementation” on page 31-47

Overview of the Target Connectivity API

• “Target Connectivity API Components” on page 31-41

• “Communications rtiostream API” on page 31-42

• “Test an rtiostream Driver” on page 31-44

Target Connectivity API Components
The following diagram shows what functions the Target Connectivity API
components perform:

• Configuring the build process

• Controlling communication between Simulink and the target

• Downloading, starting, and stopping the application on the target

31-41

31 Numerical Equivalence Checking

Communications rtiostream API
The communications part of the target connectivity API builds upon the
rtiostream API, described in this section.

You can use the rtiostream API to implement a communication channel to
enable exchange of data between different processes. This communication
channel is required to enable processor-in-the-loop (PIL) on a new target.

PIL requires a host-target communications channel. This communications
channel comprises driver code that runs on the host and target. The
rtiostream API defines the signature of both target-side and host-side
functions that must be implemented by this driver code.

31-42

Create a Connectivity Configuration for a Target

The API is independent of the physical layer that sends the data. Possible
physical layers include RS232, Ethernet, or Controller Area Network (CAN).

A full rtiostream implementation requires both host-side and target-side
drivers. Code generation software includes host-side drivers for the default
TCP/IP implementation as well as a version for serial communications. To use
the TCP/IP rtiostream communications channel, you must provide, or obtain
from a third party, target-specific TCP/IP device drivers. You must also do this
if you require serial communications. For other communication channels and
platforms, there is no default implementation provided by the code generation
software. You must provide both the host-side and the target-side drivers.

The rtiostream API comprises the following functions:

• rtIOStreamOpen

• rtIOStreamSend

• rtIOStreamRecv

• rtIOStreamClose

You can use rtiostream_wrapper to test the rtiostream shared library
methods from MATLAB code.

For information about how the rtiostream functions fit into the workflow
of creating a connectivity implementation, see “Create a Connectivity API
Implementation” on page 31-46.

31-43

31 Numerical Equivalence Checking

Test an rtiostream Driver
Use a test suite to debug and verify the behavior of custom rtiostream
interface implementations.

The test suite has the following advantages:

• Reduces time for integrating custom hardware that does not have built-in
rtiostream support.

• Reduces time for testing custom rtiostream drivers.

• Helps analyze the performance of custom rtiostream drivers.

The test suite has two parts. One part of the test suite runs on the target.

Note After building the target application, download it to the target and
run it.

To launch this part, compile and link the following files, which are in
matlabroot/toolbox/coder/rtiostream/src/rtiostreamtest.

• rtiostreamtest.c

• rtiostreamtest.h

• rtiostream.h (located at matlabroot/rtw/c/src/)

• rtiostream implementation under investigation (e.g.,
rtiostream_tcpip.c)

• main.c

To run the MATLAB part of the test suite, invoke rtiostreamtest. The
syntax is as follows:

function rtiostreamtest(connection,param1,param2)

• connection is a string indicating the communication method. It can have
values 'tcp' or 'serial'.

• param1 and param2 have different values depending on the value of
connection.

31-44

Create a Connectivity Configuration for a Target

- If connection is 'tcp': param1,param2 are hostname and port,
respectively.

- If connection is 'serial': param1,param2 are COM port and baud
rate, respectively.

For example, you can run the MATLAB part of the test suite as follows:

function rtiostreamtest('tcp','localhost','2345')

An output in the following format appears in the MATLAB window:

Test suite for rtiostream
Initializing connection with target...

Hardware characteristics discovered
Size of char : 8 bit
Size of short : 16 bit
Size of int : 32 bit
Size of long : 32 bit
Size of float : 32 bit
Size of double : 64 bit
Size of pointer : 64 bit
Byte ordering : Little Endian

rtiostream characteristics discovered
Round trip time : 0.96689 ms
rtIOStreamRecv behavior : non-blocking

Test results
Test 1 (fixed size data exchange): PASS
Test 2 (varying size data exchange): PASS

Test suite for rtiostream finished successfully

Furthermore, the following profile appears.

31-45

31 Numerical Equivalence Checking

Create a Connectivity API Implementation
To create a target connectivity API implementation, you must create a
subclass of rtw.connectivity.Config.

• You must instantiate rtw.connectivity.MakefileBuilder. This class
configures the build process.

31-46

Create a Connectivity Configuration for a Target

• You must create a subclass of rtw.connectivity.Launcher. This class
downloads and executes the application using a third-party tool.

• Configure your rtiostream communications implementation:

- On the target-side, integrate the driver code implementing rtiostream
functions directly into the build process by creating a subclass of
rtw.pil.RtIOStreamApplicationFramework.

- On the host-side, compile the driver code into a shared library. You
load and initialize this shared library by instantiating (or optionally,
customizing) rtw.connectivity.RtIOStreamHostCommunicator.

• If you want to carry out code execution profiling, you must create a timer
object that provides details of the hardware-specific timer and associated
source files. See “Specify Hardware Timer” on page 31-48.

Note Each time you modify a connectivity implementation, close and reopen
the models to refresh.

See also:

• “Creating Subclasses — Syntax and Techniques” in MATLAB
documentation.

• rtwdemo_custom_pil_script for an example that helps you to create a target
connectivity configuration using the Target Connectivity API

Register a Connectivity API Implementation
Register the new connectivity API implementation to Simulink as a
connectivity configuration, by creating or adding to an sl_customization.m
file. By doing this, you also define the set of Simulink models that the new
connectivity configuration is compatible with.

For details, see rtw.connectivity.ConfigRegistry.

Synchronize Host and Target
If you use the rtiostream API to implement the communications channel,
the host and target must be synchronized, which prevents Simulink from

31-47

31 Numerical Equivalence Checking

transmitting and receiving data before the target application is fully
initialized.

To synchronize the host and target for TCP/IP rtiostream
implementations, use the setInitCommsTimeout method from
rtw.connectivity.RtIOStreamHostCommunicator. This approach works well
for connection-oriented TCP/IP rtiostream implementations because Simulink
automatically waits until the target server is running.

With other rtiostream implementations, for example, serial, the Simulink
side of the rtiostream connection will open without waiting for the
target to be fully initialized. In this case, you must make your Launcher
implementation wait until the target application is fully initialized. Use one
of the following approaches to synchronize your host and target:

• Add a pause at the end of the Launcher implementation that makes the
Launcher wait until target initialization is complete.

• In the Launcher implementation, use third-party downloader or debugger
APIs that wait until target initialization is complete.

• Implement a handshaking mechanism in the Launcher / rtiostream
implementation to confirm that target initialization is complete.

Specify Hardware Timer
If you want to carry out code execution profiling, you must create a timer
object that provides details of the hardware-specific timer and associated
source files. You can use the Code Replacement Tool or the code replacement
library API to specify this hardware-specific timer.

To specify the timer with the Code Replacement Tool:

1 Open the Code Replacement Tool. In the Command Window, enter crtool.

2 Create a new code replacement table. Select File > New table.

3 Create a new function entry. Under Tables List, right-click the new table.
Then, from the context-menu, select New entry > Function.

4 In the middle view, select the new unnamed function.

31-48

Create a Connectivity Configuration for a Target

5 On the Mapping Information pane:

a From the Function drop-down list, select code_profile_read_timer.

b Specify the count direction for your timer. For example, from the Count
direction drop-down list, select Up.

c In the Ticks per second field, specify the number of ticks per second
for your timer, for example, 1e+09.

Default value is 0. In this case, the software reports time measurements
in terms of ticks, not seconds.

d In the Name field, specify a replacement function name, for example,
MyTimer.

e Click Apply.

31-49

31 Numerical Equivalence Checking

f To validate the function entry, click Validate entry.

6 On the Build Information pane, specify the required build information.
See “Code Replacement Tool” on page 23-168.

7 Save the table (Ctrl+S). When you save the table for the first time, use the
Save As dialog box to specify the file name and location.

You must save the table in a location that is on the MATLAB search
path. For example, you can save this file in the folder for your subclass of
rtw.connectivity.Config.

31-50

Create a Connectivity Configuration for a Target

The software stores your timer information as a code replacement library
table.

8 In your subclass of rtw.connectivity.Config, add the following line:

this.setTimer('MyCrlTable')

MyCrlTable is the name of the file that you saved in step 7.

For detailed information about using the Code Replacement Tool or the code
replacement library API, see “Code and Operator Replacement”.

Examples of the Target Connectivity API
For step-by-step examples, see the following examples:

• rtwdemo_custom_pil_script

This example shows you how to create a custom PIL implementation using
the target connectivity APIs. You can examine the code that configures the
build process to support PIL, a tool to use for downloading and execution,
and a communication channel between host and target. Follow the steps in
the example to activate a full host-based PIL configuration.

• rtwdemo_rtiostream_script

This example shows you how to implement a communication channel
for use with the Embedded Coder product and your embedded target.
This communication channel enables exchange of data between different
processes. PIL simulation requires this because it requires exchange of
data between the Simulink software running on your host computer and
deployed code executing on target hardware.

The rtiostream interface provides a generic communication channel that
you can implement in the form of target connectivity drivers for a range of
connection types. The example shows how to configure your own target-side
driver for TCP/IP, to operate with the default host-side TCP/IP driver. The
default TCP/IP communications allow high bandwidth communication
between host and target, which you can use for transferring data such
as video.

31-51

31 Numerical Equivalence Checking

The example also shows how to implement custom target connectivity
drivers, for example, using serial, CAN, or USB for both host and target
sides of the communication channel.

31-52

View Test Harness in Code Generation Report

View Test Harness in Code Generation Report
With top-model and Model block SIL and PIL simulations, you can produce a
code generation report and static code metrics that cover SIL and PIL test
harness files. The information helps you to:

• Understand and review the SIL and PIL verification process.

• See how your registered custom target connectivity files fit into the target
application that runs during a SIL or PIL simulation.

This feature is not supported for simulations that you run with the PIL block.

To configure the creation of a code generation report and static code metrics,
on the Configuration Parameters > Code Generation > Report pane,
select the Create code generation report and Static code metrics check
boxes. Then click OK. For more information about:

• Code generation reports, see “HTML Code Generation Report Extensions”
on page 18-2

• Static code metrics, see “Static Code Metrics” on page 18-25

At the end of the simulation, the software displays test harness files and the
corresponding static code metrics in the code generation report.

31-53

31 Numerical Equivalence Checking

The software displays the test harness files in the Interface files category.

Note You must not use files from the SIL/PIL test harness in code
development as these files may change over releases. Use supplied APIs
for code development.

31-54

SIL and PIL Simulation Support and Limitations

SIL and PIL Simulation Support and Limitations

In this section...

“About SIL and PIL Simulation Support and Limitations” on page 31-56

“Code Source Support” on page 31-57

“Block Support” on page 31-60

“Configuration Parameters Support” on page 31-62

“I/O Support” on page 31-70

“Hardware Implementation Support” on page 31-82

“Other Feature Support” on page 31-84

31-55

31 Numerical Equivalence Checking

About SIL and PIL Simulation Support and Limitations
Top-model and Model block software-in-the-loop (SIL) and
processor-in-the-loop (PIL) simulation modes, and SIL and PIL blocks are
Embedded Coder features.

The following tables summarize the support provided for top-model SIL and
PIL, Model block SIL and PIL and the SIL or PIL block. “Yes” indicates
a supported feature.

Information on selected aspects of SIL and PIL is also provided, especially
unsupported features and limitations.

31-56

SIL and PIL Simulation Support and Limitations

Code Source Support

Code
Source

Code
Interface

Top-Model
SIL/PIL

Model Block
SIL/PIL

SIL Block PIL Block

Top model Standalone Yes No Yes Yes

Atomic
subsystem

Standalone No No Yes Yes

Virtual
subsystem

Standalone No No Yes, but
recommend
atomic
subsystem.
See “Algebraic
Loop Issues”
on page 31-64

Yes, but
recommend
atomic
subsystem.
See “Algebraic
Loop Issues”
on page 31-64.

Model block Model
reference
target

No, but you
can include
Model blocks
inside your
top model.

Yes. See
“Conditionally
Executed
Subsystem” on
page 31-59

No, but you
can include
Model blocks
inside your
model.

No, but you
can include
Model blocks
inside your
model.

Enabled/
Triggered
subsystem

Standalone No No Yes Yes

Export
Functions
subsystem

Export
Functions

N/A N/A Yes Yes. See “PIL
Block Export
Functions” on
page 31-59.

Legacy code Custom See “Custom
Code
Interfaces”
on page
31-59.

See “Custom
Code Interfaces”
on page 31-59.

See “Custom
Code
Interfaces” on
page 31-59.

See “Custom
Code
Interfaces” on
page 31-59.

MATLAB
Coder

MATLAB
Coder

See “Custom
Code
Interfaces”
on page
31-59.

See “Custom
Code Interfaces”
on page 31-59.

See “Custom
Code
Interfaces” on
page 31-59.

See “Custom
Code
Interfaces” on
page 31-59.

31-57

31 Numerical Equivalence Checking

For more information on code interfaces, see “Code Interfaces for SIL and
PIL” on page 31-28.

31-58

SIL and PIL Simulation Support and Limitations

Custom Code Interfaces
MathWorks does not provide direct SIL/PIL support for code interfaces such
as legacy code and MATLAB Coder. However, you can incorporate these
interfaces into Simulink as an S-function (for example, using the Legacy
Code Tool, S-Function Builder, or handwritten code), and then verify them
using SIL/PIL.

SIL/PIL Does Not Check Simulink Coder Error Status
SIL/PIL does not check the Simulink Coder error status of the generated code
under test. This error status flags exceptional conditions during execution
of the generated code.

The Simulink Coder error status can also be set by blocks in the model (for
example, custom blocks developed by a user). It is a limitation that SIL/PIL
cannot check this error status and report back errors.

Conditionally Executed Subsystem
You see an error if:

• You place your Model block (in either SIL or PIL simulation mode) in a
conditionally executed subsystem and the referenced model is multirate
(that is, has multiple sample times). Single rate referenced models (with
only a single sample time) are not affected.

• Your Model block (in either SIL or PIL simulation mode) has blocks that
depend on absolute time and is conditionally executed.

PIL Block Export Functions
The PIL block does not support the export of functions from triggered
subsystems. With the PIL block, you can export only function-call subsystems.

31-59

31 Numerical Equivalence Checking

Block Support

Blocks Top-Model
SIL/PIL

Model Block SIL/PIL SIL Block PIL Block

Model block Yes, you can
include Model
blocks inside
your top model.

Yes Yes, you can
include Model
blocks inside
your subsystem
or model.

Yes, you can
include Model
blocks inside
your subsystem
or model.

DSP System
Toolbox

Yes Yes Yes Yes

Computer
Vision System
Toolbox™

Yes Yes Yes Yes

MATLAB
Function block

Yes Yes Yes Yes

Driver blocks Yes, but not
recommended.

Yes, but not
recommended.

Yes, but not
recommended.

Yes, but not
recommended.

To File blocks Yes, if MAT-file
logging is
on. MAT-file
logging may not
be available in
PIL mode.

No. MAT-file logging
is not supported.

Yes, if MAT-file
logging is on.

Yes, if MAT-file
logging is
supported and
on.

To Workspace
blocks

Yes, if MAT-file
logging is
on. MAT-file
logging may not
be available in
PIL mode.

No, MAT-file logging
is not supported.

Yes, if MAT-file
logging is on.

Yes, if MAT-file
logging is
supported and
on.

31-60

SIL and PIL Simulation Support and Limitations

Blocks Top-Model
SIL/PIL

Model Block SIL/PIL SIL Block PIL Block

Merge blocks Yes Yes. Cannot connect
SIL/PIL outputs to
Merge blocks. See
“Merge Block Issue”
on page 31-61.

Yes. Cannot
connect SIL
outputs to Merge
blocks. See
“Merge Block
Issue” on page
31-61.

Yes. Cannot
connect PIL
outputs to Merge
blocks. See
“Merge Block
Issue” on page
31-61.

Stop block No. SIL/PIL
ignores the
Stop Simulation
block and
continues
simulating.

No. SIL/PIL ignores
the Stop Simulation
block and continues
simulating.

No. SIL
ignores the Stop
Simulation block
and continues
simulating.

No. PIL
ignores the Stop
Simulation block
and continues
simulating.

Scope blocks,
and all types
of run-time
display
For example,
display of port
values and
signal values

No No No No

Merge Block Issue
If you connect SIL/PIL outputs to a Merge block, you see an error because
S-function memory is not reusable.

Other Top-Model SIL/PIL Limitations
SIL/PIL does not support the callbacks (model or block) StartFcn and
StopFcn.

Note Top-model SIL/PIL supports the callback InitFcn.

31-61

31 Numerical Equivalence Checking

Configuration Parameters Support

Configuration
Parameters

Top-Model
SIL/PIL

Model Block SIL/PIL SIL Block PIL Block

ERT-based
system target
file

Yes Yes Yes Yes

AUTOSAR
system target
file

Yes. See “Use
the SIL and PIL
Simulation Modes”
on page 17-89.

Yes. See “Use the SIL
and PIL Simulation
Modes” on page 17-89.

Yes. See
“Use a SIL
or PIL Block
for AUTOSAR
Verification”
on page 17-90.

Yes. See
“Use a SIL
or PIL Block
for AUTOSAR
Verification”
on page 17-90.

GRT-based
system target
file

No No No No

Classic call
interface

No; see “Missing
Code Interface
Description File
Errors” on page
31-64.

No; see “Missing Code
Interface Description
File Errors” on page
31-64.

No No; see
“Missing Code
Interface
Description
File Errors” on
page 31-64.

Function
Prototype
Control

Yes Yes Yes Yes

Reusable code
format

Yes, but see the
special cases in
“Imported Data
Definitions” on
page 31-76.

N/A Yes Yes, but see
the special
cases in
“Imported
Data
Definitions”
on page 31-76.

Code
replacement
library

Yes Yes Yes Yes

C++ Yes Yes Yes Yes

31-62

SIL and PIL Simulation Support and Limitations

Configuration
Parameters

Top-Model
SIL/PIL

Model Block SIL/PIL SIL Block PIL Block

C++
(Encapsulated)

Yes Yes Yes Yes

Generate
ASAP2 file

Yes Yes Yes Yes

Generate
example main

N/A N/A N/A N/A

MAT-file
logging

Yes. For PIL, the
target environment
may not support
MAT-file logging.

No Yes Yes, if
the target
environment
supports
MAT-file
logging.

Signal logging Yes, for internal
signals and for
signals connected
to root-level inports
and outports.
See “Internal
Signal Logging
Support” on page
31-66, “Top-Model
Root-Level Logging
Limitations” on
page 31-67.

Yes. See “Internal
Signal Logging
Support” on page
31-66

No, but
see “Verify
Internal
Signals of a
Component” on
page 31-24.

No, but
see “Verify
Internal
Signals of a
Component”
on page 31-24.

’Simplified’
model
initialization

Yes Yes Yes Yes

31-63

31 Numerical Equivalence Checking

Configuration
Parameters

Top-Model
SIL/PIL

Model Block SIL/PIL SIL Block PIL Block

Single
output/update

Yes, but see
“Algebraic Loop
Issues” on page
31-64.

Yes, but see
“Algebraic Loop
Issues” on page 31-64.

Yes, but see
“Algebraic
Loop Issues”
on page 31-64.

Yes, but see
“Algebraic
Loop Issues”
on page 31-64.

Configuration
set reference

Yes Yes Yes Yes

• “Missing Code Interface Description File Errors” on page 31-64

• “Algebraic Loop Issues” on page 31-64

• “Internal Signal Logging Support” on page 31-66

• “Top-Model Root-Level Logging Limitations” on page 31-67

Missing Code Interface Description File Errors
SIL/PIL requires a code interface description file, which is generated during
the code generation process for the component under test. If the code interface
description file is missing, the SIL/PIL simulation cannot proceed and you
see an error reporting that the file does not exist. This error can occur if you
select the unsupported option Classic call interface in your configuration
parameters. Do not select this option.

Algebraic Loop Issues
For more information on algebraic loops, see:

• “Algebraic Loops” in the Simulink documentation.

• The Algebraic Loops section in “Modeling Semantic Considerations”.

• “Code Generation of Subsystems”.

There are three ways that PIL simulation can introduce algebraic loops that
do not exist for a normal simulation:

• “Algebraic Loops Caused by Code Generation for a Virtual Subsystem” on
page 31-65

31-64

SIL and PIL Simulation Support and Limitations

• “Algebraic Loops Caused by “Single output/update function”” on page 31-65

• “Algebraic Loops Caused by SIL/PIL Scheduling Limitations” on page 31-65

Algebraic Loops Caused by Code Generation for a Virtual Subsystem.
If you generate code for a virtual subsystem, code generation treats the
subsystem as atomic and generates the code accordingly. The resulting code
can change the execution behavior of your model, for example, by applying
algebraic loops, and introduce inconsistencies to the simulation behavior.

Declare virtual subsystems as atomic subsystems to enable consistent
simulation and execution behavior for your model. For more information,
see “Code Generation of Subsystems”

Algebraic Loops Caused by “Single output/update function”. The
“single output/update function” in code generation optimization can introduce
algebraic loops because it introduces direct feedthrough via a combined output
and update function.

This option is not compatible with the Minimize algebraic loop
occurrences option (in the Subsystem Parameters dialog box and Model
Referencing pane of the Configuration Parameters dialog box). This option
allows code generation to remove algebraic loops by partitioning generated
code between output and update functions to avoid direct feedthrough.

Algebraic Loops Caused by SIL/PIL Scheduling Limitations. The
S-function scheduling mechanism that the software uses to execute the
SIL/PIL component has the following limitations:

• Direct feedthrough is set to true.

• Separate output and update functions in the SIL/PIL component are
executed from the mdlOutputs S-function callback.

These limitations mean that SIL/PIL can introduce algebraic loops that do
not exist in normal simulation, and you might get incorrect results. If this
happens, you see a warning or error about the introduced algebraic loop and
SIL/PIL results may differ from simulation results. You do not see a warning
or error if Configuration Parameters > Diagnostics > Algebraic loop is
set to none.

31-65

31 Numerical Equivalence Checking

A workaround is to break the algebraic loop by inserting a Unit Delay block so
that the algebraic loop does not occur. You can then use SIL/PIL.

Internal Signal Logging Support
You can use Simulink signal logging with the SIL and PIL simulation modes,
with both top-model SIL or PIL and Model block (referenced model) SIL or
PIL. This allows you to:

• Collect signal logging outputs (e.g., logsout) during SIL and PIL
simulations.

• Log the internal signals and the root-level outputs of a SIL or PIL
component.

• Manage the SIL and PIL signal logging settings using the Simulink Signal
Logging Selector.

• More easily compare logged signals between normal, SIL, and PIL
simulations, for example, using Simulation Data Inspector.

SIL or PIL signal logging requires the following model configuration settings:

• On the Data Import/Export pane of the Configuration Parameters dialog
box, set Signal logging format to Dataset.

• On the Code Generation > Interface pane of the Configuration
Parameters dialog box, set Interface to C API.

The C API is used to determine the addresses of the internal signals that
need to be logged. See also “Internal Signal Logging Limitations” on page
31-66.

Internal Signal Logging Limitations.

• The C API requires that support for floating-point numbers
is selected (see Configuration Parameters > Code
Generation > Interface > Support > floating-point numbers).

• Only signals that are included in the C API are logged during SIL/PIL
simulation. You might need to configure signals as test points (see
Signal Properties > Test point) to check that they are observable in
the generated code.

31-66

SIL and PIL Simulation Support and Limitations

• Logging of signals in models referenced by the SIL/PIL component is not
supported. Only signals within the top-level of the SIL/PIL component
are logged.

• Virtual signals (e.g. MUX) are not supported.

• Buses are not supported.

• Custom storage classes are not supported.

• Continuous, asynchronous and triggered sample times are not supported.

• Logging of Stateflow States and Local Data is not supported.

With top-model internal signal logging, some additional limitations apply:

• Variable-size signals, Function-call signals, and Action signals: error for
normal simulation and warning for SIL/PIL.

• State port signals: error for normal simulation; no warning for SIL/PIL.

• Signals feeding merge blocks are not supported for logging in normal
simulation but are logged in SIL/PIL mode. The logged values during
SIL/PIL will be the same as the logged values for the output of the merge
block.

• Under the following circumstances, top-model Normal simulation logs
data at a periodic rate, but top-model SIL/PIL simulation logs data at the
constant rate:

- Inline parameters is not selected.

- A constant sample time signal from a Model block is logged in the top
model.

- The logged signal is not directly connected to a root-level output port.
To avoid this behaviour, select Inline parameters to log at constant rate
in all simulation modes.

Top-Model Root-Level Logging Limitations
Top-model SIL/PIL supports signal logging for signals connected to root-level
inports and outports. Both ModelDataLogs and Dataset signal logging
formats are supported, and the C API is not required. Root-level logging has
the following limitations:

31-67

31 Numerical Equivalence Checking

• The characteristics of the logged data such as data type and dimensions
match the characteristics of the root-level inports and outports rather than
the characteristics of the connected signal.

In some cases, there may be differences in data type and dimensions
between the signal being logged and the root inport or outport that the
signal is connected to. Consider the following examples.

- If a signal being logged has matrix dimensions [1x5] but the outport
connected to the signal has vector dimensions (5), then the data logged
during a SIL or PIL simulation has vector dimensions (5).

- If a signal being logged has scalar dimensions but the outport connected
to the signal has matrix dimensions [1x1], then the data logged during
a SIL or PIL simulation has matrix dimensions [1x1].

• Signals connected to duplicated inports are not logged during SIL/PIL
simulation. No warning is issued.

During normal simulation, signals connected directly to duplicated inports
are logged.

• The Signal Logging Selector / DataLoggingOverride override mechanism
is not supported.

• There is no support for signals that are not named.

• The Normal and SIL/PIL simulations for a top model produce logged bus
signals with names that are different when all of the following conditions
apply:

- The signal logging format is Dataset.

- The names of the elements in the bus signal are different from the
corresponding names in the bus object.

• Under the following circumstances, the software adds the suffix _wrapper
to the block path for signals in logsout and to the block name for signals
in yout.

- For signal logging, if you specify the signal logging format to be
ModelDataLogs, the software adds the suffix _wrapper to the block path
for signals in logsout, as shown in the following example:

>> logsout.SignalLogging

31-68

SIL and PIL Simulation Support and Limitations

Name: 'SignalLogging'
BlockPath: 'sillogging_wrapper/sillogging'
PortIndex: 1

SignalName: 'SignalLogging'
ParentName: 'SignalLogging'

TimeInfo: [1x1 Simulink.TimeInfo]
Time: [11x1 double]
Data: [11x1 double]

To avoid this behavior, use the Dataset signal logging format. See
Simulink.SimulationData.Dataset.

- For output logging, if the save format is Structure or Structure with
time and you run the sim command without specifying the single-output
format, the software adds the suffix _wrapper to the block name for
signals in yout, as shown in the following example:

>> yout.signals

ans =
values: [11x1 double]

dimensions: 1
label: 'SignalLogging'

blockName: 'sillogging_wrapper/OutputLogging'

If the save format is Array, then the software does not add a wrapper
suffix.

To avoid this behavior, run command-line simulations with the sim
command specifying the single-output format. See “Run Simulation
Using the sim Command”.

31-69

31 Numerical Equivalence Checking

I/O Support

I/O Top-Model
SIL/PIL

Model Block SIL/PIL SIL Block PIL Block

Tunable
parameters
(Model
reference
arguments)

N/A Yes. See “Tunable
Parameters and SIL/PIL”
on page 31-74.

N/A N/A

Tunable
parameters
(Workspace
variables)

No Yes. See “Tunable
Parameters and SIL/PIL”
on page 31-74.

Yes Yes. See
“Tunable
Parameters
and SIL/PIL”
on page 31-74.

Virtual buses No Yes Yes Yes, but some
limitations
at PIL
component
boundary;
see “PIL
Block Virtual
Bus Support
Limitations”
on page 31-80.

Nonvirtual
buses

Yes, but see
“Top-Model
SIL/PIL Bus
Limitations” on
page 31-80.

Yes Yes Yes

MUX/DEMUX No Yes Yes Yes, but see
“PIL Block
MUX Support
Limitations”
on page 31-81.

Vector/2D/
Multidimensional

Yes Yes Yes Yes

31-70

SIL and PIL Simulation Support and Limitations

I/O Top-Model
SIL/PIL

Model Block SIL/PIL SIL Block PIL Block

Complex data Yes Yes Yes Yes

Fixed-point
data

Yes Yes Yes Yes

Complex
fixed-point data

Yes Yes Yes Yes

Fixed-point
data type
override

Not at SIL or
PIL component
boundary. See
“Fixed-Point
Tool Data Type
Override” on
page 31-79

Not at SIL or PIL
component boundary.
See “Fixed-Point Tool
Data Type Override” on
page 31-79.

Yes Not at PIL
component
boundary. See
“Fixed-Point
Tool Data
Type
Override” on
page 31-79.

Data type
replacement

Yes, but see
“Data Type
Replacement
Limitation” on
page 31-80

Yes, but see “Data Type
Replacement Limitation”
on page 31-80

Yes Yes, but see
“Data Type
Replacement
Limitation” on
page 31-80

Goto/From I/O N/A N/A Yes Goto / From
blocks must
not cross
the PIL
component
boundary. You
can use Goto /
From blocks to
route buried
signals up
to top-level
Inports and
Outports
inside the PIL
component.

31-71

31 Numerical Equivalence Checking

I/O Top-Model
SIL/PIL

Model Block SIL/PIL SIL Block PIL Block

Global data
store I/O

Yes. See
“Global Data
Store Support”
on page
31-76 and
“Imported Data
Definitions” on
page 31-76.

Yes. See “Global Data
Store Support” on page
31-76 and “Imported
Data Definitions” on page
31-76.

Yes. See
“Global Data
Store Support”
on page 31-76.

Yes. See
“Global Data
Store Support”
on page 31-76
and “Imported
Data
Definitions”
on page 31-76.

Local data store
I/O

No. See
“Imported Data
Definitions” on
page 31-76.

No. See “Imported Data
Definitions” on page
31-76.

Yes No. See
“Imported
Data
Definitions”
on page 31-76.

Non-port-based
sample times

Yes Yes Yes Yes

Continuous
sample times

Not at SIL or
PIL component
boundary.

No No Not at PIL
component
boundary.

Outputs with
constant sample
time

Yes No Yes Yes

Non-auto-storage
classes for data
(such as signals,
parameters,
data stores)

Yes. See
“Imported Data
Definitions” on
page 31-76.

Yes. See “Imported Data
Definitions” on page
31-76.

Yes Yes. See
“Imported
Data
Definitions”
on page 31-76.

Simulink data
objects

Yes Yes Yes Yes

Simulink
numeric type
and
alias type

Yes Yes Yes Yes

31-72

SIL and PIL Simulation Support and Limitations

I/O Top-Model
SIL/PIL

Model Block SIL/PIL SIL Block PIL Block

Simulink
enumerated
data

Yes Yes Yes Yes

Custom storage
classes

Yes, but see
“Imported Data
Definitions” on
page 31-76,
and “GetSet
Custom
Storage Class”
on page 31-77.

Yes, but see “Imported
Data Definitions” on
page 31-76, and “GetSet
Custom Storage Class” on
page 31-77.

Yes Yes, but see
“Imported
Data
Definitions”
on page 31-76,
and “GetSet
Custom
Storage Class”
on page 31-77.

Variable-size
signals

No. See
“Variable-Size
Signals and
SIL/PIL” on
page 31-79.

Yes. On the
Simulation > Configuration
Parameters > Model
Referencing pane, in
the Propagate sizes of
variable-size signals
field, specify During
execution.
Otherwise, software
generates error.

Yes No. See
“Variable-Size
Signals and
SIL/PIL” on
page 31-79.

Noninlined
S-functions

Yes No Yes Yes

• “Tunable Parameters and SIL/PIL” on page 31-74

• “Global Data Store Support” on page 31-76

• “Imported Data Definitions” on page 31-76

• “GetSet Custom Storage Class” on page 31-77

• “Unsupported Implementation Errors” on page 31-78

• “Variable-Size Signals and SIL/PIL” on page 31-79

• “Fixed-Point Tool Data Type Override” on page 31-79

31-73

31 Numerical Equivalence Checking

• “Data Type Overrides Unavailable for Most Blocks in Embedded Targets
and Desktop Targets” on page 31-80

• “Data Type Replacement Limitation” on page 31-80

• “Top-Model SIL/PIL Bus Limitations” on page 31-80

• “PIL Block Virtual Bus Support Limitations” on page 31-80

• “PIL Block MUX Support Limitations” on page 31-81

• “Incremental Build for Top-Model SIL/PIL” on page 31-81

• “Exported Functions in Feedback Loops” on page 31-81

Tunable Parameters and SIL/PIL
You can tune parameters during a SIL/PIL mode simulation the same way
that you tune parameters during a Normal mode simulation.

For more information, see “Global Tunable Parameters” and “Using Model
Arguments” in the Simulink documentation.

The following table summarizes SIL/PIL support for tunable workspace
parameters.

Action Top-Model
SIL/PIL

Model Block
SIL/PIL

PIL Block

Define and
initialize
parameters

Yes. See
“Limitations”
on page 31-74.

Yes. See
“Limitations”
on page 31-74.

Yes. See
“Limitations”
on page 31-74.

Tune parameters Yes. See
“Limitations”
on page 31-74.

Yes. See
“Limitations”
on page 31-74.

Yes. See
“Limitations”
on page 31-74.

Limitations. During a SIL/PIL simulation, the software cannot define,
initialize, or tune the following types of tunable workspace parameters. The
software produces warnings or errors.

31-74

SIL and PIL Simulation Support and Limitations

Software response for ...Parameter
description

Top-Model
SIL/PIL

Model Block
SIL/PIL

PIL Block

Parameters with
storage class that
applies "static"
scope or "const"
keyword. For example,
Custom, Const, or
ConstVolatile

Warning Warning Warning

Fixed-point
parameters with data
type size greater than
32 bits

Warning Error Warning

Parameters with
data types that have
different sizes on host
and target

Warning Error Warning

Structure parameters
with storage class
SimulinkGlobal

Warning Supported, so
no warning or
error

Warning

During a PIL block simulation, the software supports the tuning of tunable
workspace parameters but not tunable block dialog parameters.

For C++ (Encapsulated), SIL/PIL tunable workspace parameters can be
tuned, provided the code interface block parameter visibility is set to public.

If you select the configuration parameter Generate reusable code but do
not select Inline parameters and the model contains parameters, then
top-Model SIL/PIL and the PIL block can produce errors. If these conditions
apply, then the software produces an error similar to the following:

Parameter Dialog:InitialOutput in 'rtwdemo_sil_topmodel/CounterTypeA/count'

is part of the imported "rtP" structure in the generated code but cannot be

initialized by SIL or PIL. To avoid this error, make sure the parameter

corresponds to a tunable base workspace variable with a storage class such

31-75

31 Numerical Equivalence Checking

as SimulinkGlobal and is supported for dynamic parameter initialization /

tuning with SIL/PIL.

Global Data Store Support
SIL/PIL supports global data stores. PIL components that access global data
stores must be single rate. If your SIL/PIL component has multiple sample
times and accesses global data stores, you see an error. To avoid the error,
either remove accesses to global data stores or make the component single
rate.

Imported Data Definitions
You can use, for example, signals, parameters, and data stores that specify
storage classes with imported data definitions.

SIL Block. When you create a SIL block from a model or subsystem, the
software defines all imported data in the file model_or_subsystem_sf.c.
Within models that are referenced by the component, only root-level imported
signals are defined.

Model Block SIL/PIL. The SIL/PIL application automatically defines storage
for imported data associated with:

• Signals at the root level of the component (on the I/O boundary)

• Parameters. See Tunable Parameters and SIL/PIL Limitations.

• Global data stores

Note Model block SIL/PIL does not define imported signals that are internal
with respect to the component or models referenced by the component.

A limitation is that SIL/PIL does not define storage for other
imported data storage. You must define the storage through custom
code included by the component under test or through the PIL
rtw.pil.RtIOStreamApplicationFramework API. For example, the PIL
application does not define imported data storage for data associated with:

31-76

SIL and PIL Simulation Support and Limitations

• Internal signals (not on the I/O boundary)

• Local data stores

Top-Model SIL/PIL and PIL Block. The top-model SIL/PIL or PIL block
application automatically defines storage for imported data associated with:

• Signals at the root level of the component (on the I/O boundary)

• Global data stores

• Parameters. See Tunable Parameters and SIL/PIL Limitations.

Note Top model SIL/PIL and the PIL block do not define imported signals
that are internal with respect to the component or models referenced by the
component.

A limitation is that SIL/PIL does not define storage for other
imported data storage. You must define the storage through custom
code included by the component under test or through the PIL
rtw.pil.RtIOStreamApplicationFramework API. For example, the SIL/PIL
application does not define imported data storage for data associated with:

• Internal signals (not on the I/O boundary)

• Local data stores

GetSet Custom Storage Class
The software supports the GetSet custom storage class for all types of SIL
and PIL simulations, with one limitation. GetSet behavior for the SIL block
is different from top-model SIL/PIL, Model block SIL/PIL, and PIL block:

• SIL block — The C definitions of the Get and Set functions that you provide
form part of the algorithm under test.

• Other types of SIL/PIL — The SIL/PIL test harness automatically provides
C definitions of the Get and Set functions that are used during SIL/PIL
simulations. In addition, the software supports only scalar signals,
parameters and global data stores.

31-77

31 Numerical Equivalence Checking

Unsupported Implementation Errors
If you use a data store, signal, or parameter implementation that SIL/PIL
does not support, you may see errors like the following:

The following data interfaces have

implementations that are not supported by SIL or PIL.

data interfaces may be global data stores, inports, outports or
parameters.

You see this error message because the model output port has been optimized
through virtual output port optimization. See “Use Virtualized Output Ports
Optimization” on page 25-2. The error occurs because the properties (for
example, data type, dimensions) of the signal or signals entering the virtual
root output port have been modified by routing the signals in one of the
following ways:

• Through a Mux block

• Through a block that changes the signal data type. To check the
consistency of data types in the model, display Port Data Types by selecting
Display > Signals & Ports > Port Data Types.

• Through a block that changes the signal dimensions. To check the
consistency of data types in the model, display dimensions by selecting
Display > Signal & Ports > Signal Dimensions.

Note Dimension changes from scalar (1) to matrix [1x1], and, matrix
[1x1] to scalar (1), can lead to this error. Furthermore, it is difficult to
inspect the model for such changes because the Display > Signal &
Ports > Signal Dimensions feature does not distinguish between (1)
and [1x1] dimensions. The software shows both signals as scalar signals.
Check your model and workspace objects carefully and see that scalar
dimensions are specified consistently.

The following model causes this error by changing the output port signal
data type.

31-78

SIL and PIL Simulation Support and Limitations

Variable-Size Signals and SIL/PIL
SIL/PIL treats variable-size signals at the I/O boundary of the SIL/PIL
component as fixed-size signals, which can lead to errors during propagation
of signal sizes. To avoid such errors, use only fixed-size signals at the I/O
boundary of the SIL/PIL component.

There may be cases where no error occurs during propagation of signal sizes.
In these cases, the software treats variable-size input signals as zero-size
signals.

Fixed-Point Tool Data Type Override
SIL/PIL does not support signals with data types overridden by the
Fixed-Point Tool Data type override parameter at the SIL/PIL component
boundary.

You may see an error message like the following:

Detected "Scaled double" fixed-point data type override in SIL/PIL interface data,

which is not supported. Use the Fixed-Point Tool to verify that DataTypeOverride

is not "Scaled double"

There is no resolution for this issue.

31-79

31 Numerical Equivalence Checking

Data Type Overrides Unavailable for Most Blocks in Embedded
Targets and Desktop Targets
When you attempt to perform a datatype override on a block, you may get an
error message similar to the following example:

Error reported by S-function 'sfun_can_frame_splitter' in
'c2000_host_CAN_monitor/CAN Message Unpacking/CAN Message
Unpacking': Incompatible DataType or Size specified.

Data type overrides using the Fixed point tool are not available for those
blocks in Simulink Coder > Desktop Targets and Embedded Coder >
Embedded Targets libraries that support fixed-point.

There is no resolution for this issue.

Data Type Replacement Limitation
The software does not support replacement data type names that you define
for the built-in data type boolean if these names map to either the int or
uint built-in data type.

Top-Model SIL/PIL Bus Limitations
The software does not support grounded or unconnected signals at the outputs
of a top model.

You must enable the strict bus mode for top-model SIL/PIL:

1 In the model window, select Simulation > Configuration
Parameters > Diagnostics > Connectivity.

2 Set Mux blocks used to create bus signals to error.

PIL Block Virtual Bus Support Limitations
The PIL block supports virtual buses except for the following cases:

• You see an error if the PIL component is a top model with a root level
outport that is configured to output a virtual bus. A root level outport
outputs a virtual bus, regardless of the type of the bus that drives it, if

31-80

SIL and PIL Simulation Support and Limitations

it specifies a bus object and the Output as nonvirtual bus in parent
model check box is not selected.

• You see an error if a right-click subsystem build expands the bus into
individual signals.

• For right-click subsystem builds only, the PIL block changes the output
of outports driven by virtual buses (with associated bus objects) into
nonvirtual buses. You do not see an error message in this case.

To avoid these limitations, use nonvirtual buses at the PIL component
boundary.

PIL Block MUX Support Limitations
The PIL block supports mux signals, except mixed data-type mux signals that
expand into individual signals during a right-click subsystem build. You
see an error for unsupported cases.

Incremental Build for Top-Model SIL/PIL
When you start a top-model SIL/PIL simulation, the software regenerates
code if it detects changes to your model. The software detects changes by
using a checksum for the model. However, the software does not detect
changes that you make to:

• The HeaderFile property of a Simulink.AliasType object

• Legacy S-functions

Therefore, if you make these changes, you must build (Ctrl-B) your model
again before starting the next PIL simulation.

Exported Functions in Feedback Loops
If your model has function-call subsystems and you export a subsystem that
has context-dependent inputs (for example, feedback signals), then the results
of a SIL/PIL simulation with the generated code may not match the results of
the Normal mode simulation of your model. One approach to make SIL/PIL
and Normal mode simulations yield identical results is to use Function-Call
Feedback Latch blocks in your model. This approach allows you to make
context-dependent inputs become context-independent.

31-81

31 Numerical Equivalence Checking

Note The software generates a warning identifying context-dependent
inputs of exported function-call subsystems if you set Configuration
Parameters > Diagnostics > Connectivity > Context-dependent
inputs to one of the following:

• Enable all as warnings

• Use local settings

• Disable all

For details, see “Context-dependent inputs”.

Hardware Implementation Support

Hardware Implementation Embedded Coder

Different host and target data-type size No. See “Hardware Implementation Settings” on
page 31-82.

Word-addressable targets Yes. Data type sizes smaller than target word
sizes are supported.

Multiword data type word order different
to target byte order

No. PIL simulation fails with undefined behavior.

Multiword No

Size of target 'long' > 32 bits No

Hardware Implementation Settings
PIL requires that, in the Simulink Configuration Parameters dialog box,
you configure the right Hardware Implementation settings for the target
environment. You must also specify byte ordering for targets.

Warning If you do not specify the correct Hardware Implementation
settings, the PIL simulation fails, displaying undefined behavior.

Host/Target Data Type Size Mismatch. PIL supports only data types that
have the same size on the host and the target at the PIL I/O boundary.

31-82

SIL and PIL Simulation Support and Limitations

The data types used at the PIL I/O boundary are restricted based on the
following rule: PIL supports the data type only if the data-type size on the
host (Simulink) is the same as the data-type size on the target.

• For boolean, uint8, and int8, the size is 8-bits.

• For uint16 and int16, the size is 16-bits.

• For uint32 and int32, the size is 32-bits.

• For single, the size is 32-bits.

• For double, the size is 64-bits.

Examples of unsupported data types are:

• single and double on targets with 24-bit floating-point types

• double on targets with 32-bit double, that is, the same size as single

31-83

31 Numerical Equivalence Checking

Other Feature Support

Other
Features

Top-Model SIL/PIL Model Block
SIL/PIL

SIL Block PIL Block

Multiplatform
support (such
as Linux)

Yes Yes Yes Yes

Execution
profiling

Yes Yes No Yes

Stack profiling SIL: No.
PIL: Depends on
target connectivity
configuration and
third-part product
support.

SIL: No.
PIL: Depends on
target connectivity
configuration and
third-party product
support.

No Depends
on target
connectivity
configuration
and third-party
product support.

C code coverage
report

Yes. See also “Tips
and Limitations” on
page 32-18.

Yes. See also “Tips
and Limitations” on
page 32-18.

No Depends
on target
connectivity
configuration
and third-party
product support.

Debugging SIL: Yes.
PIL: No.

SIL: Yes.
PIL: No.

Yes No

31-84

Programmatic Code Generation Verification

Programmatic Code Generation Verification

In this section...

“Code Generation Verification API Overview” on page 31-85

“Verify Numerical Equivalence with CGV” on page 31-85

“Verify Numerical Equivalence Between Two Modes of Execution of a
Model” on page 31-86

“Plot Output Signals” on page 31-93

Code Generation Verification API Overview
When you execute a model in different modes of execution, you can use
the Code Generation Verification (CGV) API to verify the numerical
equivalence of results. CGV supports executing the model in simulation,
Software-In-the-Loop (SIL), and Processor-In-the-Loop (PIL). For more
information about SIL and PIL, see “About SIL and PIL Simulations” on page
31-2. The CGV example, rtwdemo_cgv_script, shows CGV configuration,
execution, and comparison support.

Note CGV helps you verify the numerical equivalence of results for a given
set of inputs. CGV can detect numerical deviations for the given set of inputs
only. The completeness of the input data that you provide to CGV determines
the validity of the results.

Verify Numerical Equivalence with CGV
Before verifying numerical equivalence:

• Configure your model for SIL or PIL simulation. For more information, see
“Configure a SIL or PIL Simulation” on page 31-15.

• Use the cgv.Config class of the CGV API to verify the model configuration
for SIL or PIL simulation. For more information, see “Verify a SIL or PIL
Configuration” on page 31-20.

• Configure your model for code generation. For more information, see .

31-85

31 Numerical Equivalence Checking

• Save your model. If you modify a model without saving it, CGV might
issue an error.

To verify numerical equivalence:

• Set up the tests for the first execution environment. For example,
simulation.

• Use cgv.CGV.run to run the tests for the first execution environment.

• Set up the tests for the second execution environment. For example,
top-model PIL.

• Use cgv.CGV.run to run the tests for the second execution environment.

• Use cgv.CGV.getOutputData to get the output data for each execution
environment.

• Use cgv.CGV.getSavedSignals to display the signal names in the output
data. (optional)

• Build a list of signal names for input to other cgv.CGV methods. (optional)

• Use cgv.CGV.createToleranceFile to create a file correlating tolerance
information with output signal names. (optional)

• Use cgv.CGV.compare to compare the output signals of the first and second
execution environments for numerical equivalence.

Verify Numerical Equivalence Between Two Modes
of Execution of a Model
The following example describes configuring, executing, and comparing the
results of the rtwdemo_cgv model in simulation and SIL modes.

This example contains the following tasks:

• “Configure the Model” on page 31-87

• “Execute the Model” on page 31-88

• “Compare All Output Signals” on page 31-89

• “Compare Individual Output Signals” on page 31-92

31-86

Programmatic Code Generation Verification

Configure the Model
The first task for verifying numerical equivalence is to check the configuration
of your model.

1 Open the rtwdemo_cgv model.

cgvModel = 'rtwdemo_cgv';

load_system(cgvModel);

2 Save the model to a working directory.

save_system(cgvModel, fullfile(pwd, cgvModel));

close_system(cgvModel); % avoid original model shadowing saved model

3 Use the cgv.Config to create a cgv.Config object. Specify parameters that
check and modify configuration parameter values and save the model for
top-model SIL mode of execution.

cgvCfg = cgv.Config('rtwdemo_cgv', 'connectivity', 'sil', 'SaveModel', 'on');

4 Use the cgv.Config.configModel method to review your model configuration
and to change the settings to configure your model for SIL. When
'connectivity' is set to 'sil', the system target file is automatically set
to 'ert.tlc'. If you specified the parameter/value pair, ('SaveModel',
'on') when you created the cgvCfg object, the cgv.Config.configModel
method saves the model.

Note CGV runs on models that are open. If you modify a model without
saving it, CGV might issue an error.

cgvCfg.configModel(); % Evaluate, change, and save your model for SIL

5 Display a report of the changes that cgv.Config.configModel makes to
the model.

cgvCfg.displayReport(); % In this example, this reports no changes

31-87

31 Numerical Equivalence Checking

Execute the Model
Use the CGV API to execute the model in two modes. The two modes in this
example are normal mode simulation and SIL mode. In each execution of the
model, the CGV object for each mode captures the output data and writes
the data to a file.

1 If you have not already done so, follow the steps described in “Configure
the Model” on page 31-87.

2 Create a cgv.CGV object that specifies the rtwdemo_cgv model in normal
mode simulation.

cgvSim = cgv.CGV(cgvModel, 'connectivity', 'sim');

Note When the top model is set to Normal simulation mode, referenced
models set to PIL mode will be changed to Accelerator mode.

3 Provide the input file to the cgvSim object.

cgvSim.addInputData(1, [cgvModel '_data']);

4 Before execution of the model, specify the MATLAB files to execute or
MAT-files to load. This step is optional.

cgvSim.addPostLoadFiles({[cgvModel '_init.m']});

5 Specify a location where the object writes all output data and metadata
files for execution. This step is optional.

cgvSim.setOutputDir('cgv_output');

6 Execute the model.

result1 = cgvSim.run();

*** handling PostLoad file rtwdemo_cgv_init.m

Start CGV execution of model rtwdemo_cgv, ComponentType topmodel, ...

connectivity sim, InputData rtwdemo_cgv_data.mat

End CGV execution: status completed

31-88

Programmatic Code Generation Verification

7 Get the output data associated with the input data.

outputDataSim = cgvSim.getOutputData(1);

8 For the next mode of execution, SIL, repeat steps 2–7.

cgvSil = cgv.CGV(cgvModel, 'Connectivity', 'sil');

cgvSil.addInputData(1, [cgvModel '_data']);

cgvSil.addPostLoadFiles({[cgvModel '_init.m']});

cgvSil.setOutputDir('cgv_output');

result2 = cgvSil.run();

At the MATLAB command line, the result is:

*** handling PostLoad file rtwdemo_cgv_init.m

Start CGV execution of model rtwdemo_cgv, ComponentType topmodel, ...

connectivity sil, InputData rtwdemo_cgv_data.mat

Starting build procedure for model: rtwdemo_cgv

Successful completion of build procedure for ...

model: rtwdemo_cgv

Preparing to start SIL simulation ...

Starting SIL simulation for model: rtwdemo_cgv

Stopping SIL simulation for model: rtwdemo_cgv

End CGV execution: status completed

Compare All Output Signals
After setting up and running the test, compare the outputs by doing the
following:

1 If you have not already done so, configure and test the model, as described
in “Configure the Model” on page 31-87 and “Execute the Model” on page
31-88.

2 Test that the execution result of the model:

if ~result1 || ~result2

error('Execution of model failed.');

end

31-89

31 Numerical Equivalence Checking

3 Use the cgv.CGV.getOutputData method to get the output data from the
cgv.CGV objects.

simData = cgvSim.getOutputData(1);

silData = cgvSil.getOutputData(1);

4 Display a list of signals by name using the cgv.CGV.getSavedSignals
method.

cgvSim.getSavedSignals(simData);

At the MATLAB command line, the result it:

simData.hi0.Data(:,1)

simData.hi0.Data(:,2)

simData.Vector.Data(:,1)

simData.Vector.Data(:,2)

simData.Vector.Data(:,3)

simData.Vector.Data(:,4)

simData.BusOutputs.hi0.Data(:,1)

simData.BusOutputs.hi0.Data(:,2)

simData.BusOutputs.hi1.mid0.lo0.Data(1,1,:)

simData.BusOutputs.hi1.mid0.lo0.Data(1,2,:)

simData.BusOutputs.hi1.mid0.lo0.Data(2,1,:)

simData.BusOutputs.hi1.mid0.lo0.Data(2,2,:)

simData.BusOutputs.hi1.mid0.lo1.Data

simData.BusOutputs.hi1.mid0.lo2.Data

simData.BusOutputs.hi1.mid1.Data(:,1)

simData.BusOutputs.hi1.mid1.Data(:,2)

simData.ErrorsInjected.Data

5 Using the list of signals, build a list of signals in a cell array of strings. The
signal list can contain a number of signals.

signalList = {'simData.ErrorsInjected.Data'};

6 Use the cgv.CGV.createToleranceFile method to create a file, in this
example, 'localtol', correlating tolerance information with output signal
names.

toleranceList = {{'absolute', 0.5}};

31-90

Programmatic Code Generation Verification

cgv.CGV.createToleranceFile('localtol', signalList, toleranceList);

7 Compare the output data signals. By default, the cgv.CGV.compare method
looks at all signals which have a common name between both executions. If
a tolerance file is present, cgv.CGV.compare uses the associated tolerance
for a specific signal during comparison; otherwise the tolerance is zero. In
this example, the 'Plot' parameter is set to 'mismatch'. Therefore, only
mismatched signals produce a plot.

[matchNames, ~, mismatchNames, ~] = ...

cgv.CGV.compare(simData, silData, 'Plot', 'mismatch', ...

'Tolerancefile', 'localtol');

fprintf('%d Signals match, %d Signals mismatch\n', ...

length(matchNames), length(mismatchNames));

disp('Mismatched Signal Names:');

disp(mismatchNames);

At the MATLAB command line, the result is:

14 Signals match, 1 Signals mismatch

Mismatched Signal Names:

'simData.ErrorsInjected.Data'

A plot results from the mismatch on signal simData.ErrorsInjected.Data.

31-91

31 Numerical Equivalence Checking

The lower plot displays the numeric difference between the results.

Compare Individual Output Signals
After setting up and running the test, compare the outputs of individual
signals by doing the following:

1 If you have not already done so, configure and test the model, as described
in “Configure the Model” on page 31-87 and “Execute the Model” on page
31-88.

2 Use the cgv.CGV.getOutputData method to get the output data from the
cgv.CGV objects.

simData = cgvSim.getOutputData(1);

silData = cgvSil.getOutputData(1);

31-92

Programmatic Code Generation Verification

3 Use the cgv.CGV.getSavedSignals method to display the output data signal
names. Build a list of specific signal names in a cell array of strings. The
signal list can contain number of signals.

cgv.CGV.getSavedSignals(simData);

signalList = {'simData.BusOutputs.hi1.mid0.lo1.Data', ...

'simData.BusOutputs.hi1.mid0.lo2.Data', 'simData.Vector.Data(:,3)'};

4 Use the specified signals as input to the cgv.CGV.compare method to
compare the signals from separate runs.

[matchNames, ~, mismatchNames, ~] = ...

cgv.CGV.compare(simData, silData, 'Plot', 'mismatch', ...

'signals', signalList);

fprintf('%d Signals match, %d Signals mismatch\n', ...

length(matchNames), length(mismatchNames));

if ~isempty(mismatchNames)

disp('Mismatched Signal Names:');

disp(mismatchNames);

end

At the MATLAB command line, the result is:

3 Signals match, 0 Signals mismatch

Plot Output Signals
After setting up and running the test, use the cgv.CGV.plot method to plot
output signals.

1 If you have not already done so, configure and test the model, as described
in “Configure the Model” on page 31-87 and “Execute the Model” on page
31-88.

2 Use the cgv.CGV.getOutputData method to get the output data from the
cgv.CGV objects.

simData = cgvSim.getOutputData(1);

3 Use the cgv.CGV.getSavedSignals method to display the output data signal
names. Build a list of specific signal names in a cell array of strings. The
signal list can contain number of signals.

31-93

31 Numerical Equivalence Checking

cgv.CGV.getSavedSignals(simData);

signalList = {'simData.Vector.Data(:,1)'};

4 Use the specified signal list as input to the cgv.CGV.plot method to compare
the signals from separate runs.

[signalNames, signalFigures] = cgv.CGV.plot(simData, ...

'Signals', {'simData.Vector.Data(:,1)'});

31-94

32

Code Coverage

• “Code Coverage in SIL and PIL Simulations” on page 32-2

• “Configure Code Coverage Programmatically” on page 32-7

• “Code Coverage for PIL” on page 32-9

• “Code Coverage Summary and Annotations” on page 32-11

• “Code Coverage Tool Support” on page 32-17

• “Tips and Limitations” on page 32-18

32 Code Coverage

Code Coverage in SIL and PIL Simulations

In this section...

“Configure SIL and PIL Code Coverage” on page 32-2

“View Code Coverage Information at the End of SIL or PIL Simulations”
on page 32-4

Configure SIL and PIL Code Coverage
During a top-model or Model block SIL or PIL simulation, you can collect
code coverage metrics for generated code using a third-party tool. Embedded
Coder supports the following tools:

• LDRA Testbed® from LDRA Software Technology. For information about
installing and using this tool, go to www.ldra.com.

The software supports LDRA Testbed code coverage for SIL and PIL.
For information about PIL support, see “PIL Support for LDRA Testbed”
on page 32-9.

• BullseyeCoverage™ from Bullseye Testing Technology™. For information
about installing and using this tool, go to www.bullseye.com/cgi-bin/mwEval.

The software supports BullseyeCoverage code coverage for SIL and, in
certain cases, PIL. For information about PIL support, see “PIL Support for
BullseyeCoverage” on page 32-10.

See “Code Coverage Tool Support” on page 32-17.

To configure a code coverage tool for a top-model or Model block SIL or PIL
simulation:

1 Select Simulation > Model Configuration Parameters > Code
Generation > Verification.

2 From the Code coverage tool drop-down list, select a tool, for example,
BullseyeCoverage or LDRA Testbed.

3 Click Configure Coverage to open the Code Coverage Settings dialog box.

32-2

http://www.ldra.com
http://www.bullseye.com/cgi-bin/mwEval

Code Coverage in SIL and PIL Simulations

4 In the Installation folder field, specify the location where your coverage
tool is installed. If you click Browse, the Browse for Folder dialog box
opens, which allows you to navigate to the folder where your coverage tool
is installed. The software detects and displays the tool version.

5 Specify the models for which you want code coverage data:

• To generate coverage data for just the current (top) model, select the
Code coverage for this model check box.

• To generate data for models referenced by the current (top) model, select
the Code coverage for referenced models check box.

Note If you do not select a check box, the software does not generate
code coverage data.

6 Click OK. You return to the Verification pane.

7 To view cumulative code coverage results within a code generation report,
in the Configuration Parameters > Code Generation > Report pane,
select the following check boxes:

• Create code generation report

• Launch report automatically

8 Click OK. You return to the model window.

32-3

32 Code Coverage

To examine the generated code coverage information, see “View Code
Coverage Information at the End of SIL or PIL Simulations” on page 32-4.

With LDRA Testbed:

• The evaluation of cumulative code coverage begins from the point when
you last added a new file to the existing set of source files. For example,
existing code coverage results will be deleted when you:

- Run a simulation with a new model using the existing code generation
folder

- Run a simulation that results in additional source code files being
instrumented

• If you switch between SIL and PIL simulations of a model, the software
generates separate cumulative code coverage results for the SIL and PIL
simulations.

For an example of collecting code coverage metrics, see
rtwdemo_code_coverage_script.

View Code Coverage Information at the End of SIL or
PIL Simulations
When the SIL or PIL simulation is complete, the code generation report opens
automatically and you see hyperlinks in the Command Window.

If you specified the LDRA Testbed, you see three links in the Command
Window:

Starting SIL simulation for component: rtwdemo_sil_topmodel

Stopping SIL simulation for component: rtwdemo_sil_topmodel

Starting analysis of coverage data

Use the following links to view code coverage results:

LDRA Testbed GUI

LDRA Testbed Code Coverage Overview Report

HTML code generation report with code coverage annotations

Completed code coverage analysis

>>

To:

32-4

Code Coverage in SIL and PIL Simulations

• Go to the LDRA Testbed GUI, click the first link.

• Open the LDRA Testbed Report with your Web browser, click the second
link.

For information about using this report, refer to the LDRA Testbed
documentation.

• View summary data and code annotations with coverage information in the
code generation report, click the third link. See “Code Coverage Summary
and Annotations” on page 32-11.

32-5

32 Code Coverage

If you specified the BullseyeCoverage tool, you see two links in the Command
Window:

Starting SIL simulation for component: rtwdemo_sil_topmodel

Stopping SIL simulation for component: rtwdemo_sil_topmodel

Processing code coverage data

Use the following links to view code coverage results:

BullseyeCoverage browser (coverage for last run)

HTML code generation report (cumulative coverage)

Completed code coverage analysis

>>

To :

• View the coverage report using the BullseyeCoverage Browser, click the
first link.

The BullseyeCoverage Browser shows coverage data for instrumented files
associated with your latest top-model simulation. The coverage data shown
in the browser is not cumulative and pertains only to the most recent
simulation. For information about the BullseyeCoverage Browser, go
to www.bullseye.com.

• View summary data and code annotations with coverage information in the
code generation report, click the second link. See “Code Coverage Summary
and Annotations” on page 32-11.

32-6

http://www.bullseye.com

Configure Code Coverage Programmatically

Configure Code Coverage Programmatically
You can configure code coverage for your model using command line APIs. A
typical workflow with BullseyeCoverage is:

1 Using get_param, retrieve the object containing coverage settings for the
current model, for example, gcs.

>> covSettings = get_param(gcs, 'CodeCoverageSettings')

covSettings =

cov.CodeCoverageSettings handle

Package: cov

Properties:

TopModelCoverage: 'on'

ReferencedModelCoverage: 'off'

CoverageTool: 'BullseyeCoverage'

Methods, Events, Superclasses

The property TopModelCoverage determines whether the software
generates code coverage data for just the top model, while
ReferencedModelCoverage determines whether the software generates
coverage data for models referenced by the top model. If neither property is
'on', then no code coverage data is generated during a SIL simulation.

If LDRA Testbed is the specified code coverage tool, then the property
CoverageTool is 'LDRA Testbed'.

When you save your model, the properties TopModelCoverage,
ReferencedModelCoverage, and CoverageTool are also saved.

2 Check the class of covSettings.

>> class(covSettings)

ans =

cov.CodeCoverageSettings

32-7

32 Code Coverage

3 Turn on coverage for referenced models.

>> covSettings.ReferencedModelCoverage='on';

4 Using set_param, apply the new coverage settings to the model.

>>set_param(gcs,'CodeCoverageSettings', covSettings);

5 Assuming you have installed the BullseyeCoverage tool, specify the
installation path.

>> cov.BullseyeCoverage.setPath('C:\Program Files\BullseyeCoverage')

For LDRA Testbed, use cov.LDRA.setPath('C:\...).

6 Check that the path is saved as a preference.

>> cov.BullseyeCoverage.getPath

For LDRA Testbed, use cov.LDRA.getPath.

32-8

Code Coverage for PIL

Code Coverage for PIL

PIL Support for LDRA Testbed
The target connectivity API supports code coverage with LDRA Testbed for
top-model and Model block PIL.

For LDRA Testbed version 8.5.1, you must manually add MathWorks
instrumentation files to the LDRA Testbed installation folder, for example:

• C:\LDRA_Toolsuite\Compiler_spec\MathWorks\MathWorks_Cinstr.DAT

• C:\LDRA_Toolsuite\Compiler_spec\MathWorks\MathWorks_CPPINSTR.DAT

These files may be available in future versions of LDRA Testbed.

There are minor differences in the code coverage information collected during
SIL and PIL simulations. In particular, with PIL, the software does not
explicitly show function exit point coverage. However, you can infer the
coverage of function exit points by examining statement coverage.

32-9

32 Code Coverage

PIL Support for BullseyeCoverage
Code coverage with BullseyeCoverage is available for top-model and Model
block PIL provided your PIL application can write directly to the host file
system. Your target for the PIL application must provide fopen and fread
access to the host file system.

If code coverage is not available when you run the PIL application on your
target hardware, you might be able to collect code coverage measurements
by running the PIL application on an instruction set simulator that supports
direct file I/O with the host file system.

32-10

Code Coverage Summary and Annotations

Code Coverage Summary and Annotations
If you specify a code coverage tool for a SIL or PIL simulation (see “Code
Coverage in SIL and PIL Simulations” on page 32-2), the software produces a
code generation report that provides summary data and code annotations with
coverage information. Each code annotation is associated with a code feature
and indicates the nature of the feature coverage during code execution. For
more information, see:

• “LDRA Testbed Coverage” on page 32-11

• “BullseyeCoverage Information” on page 32-14

The code generation report also allows you to navigate easily between blocks
in your model and the corresponding sections in the source code. For more
information, see “Trace Model Objects to Generated Code” on page 28-6 and
“Trace Code to Model Objects Using Hyperlinks” on page 28-4.

LDRA Testbed Coverage
The cumulative coverage data in a code generation report is derived from
instrumented files associated with your latest top-model simulation and
coverage data collected from simulations with other top models that share
referenced models with your current top model.

32-11

32 Code Coverage

The software provides LDRA Testbed annotations in the code generation
report to help you to review code coverage.

Note Do not use the code generation report alone to verify that you have
achieved your coverage goals. You must refer to the LDRA Testbed Report.
See “View Code Coverage Information at the End of SIL or PIL Simulations”
on page 32-4.

This example shows three kinds of annotations. On lines 134, 139, 140, and
141, the annotation indicates that statement coverage for each of these
lines of code is not complete.

Placing the cursor over the annotation =>b produces a tooltip.

This tooltip indicates that only one branch destination is covered. The
code within the curly brackets, which starts at column 45 of line 134, is
not executed. As the if statement on line 139 lies within this code, the
corresponding annotation => states that the branch is not covered.

The following table describes the LDRA Testbed code annotations that you
might see in a code generation report produced by a SIL and PIL simulations.

32-12

Code Coverage Summary and Annotations

Code feature Annotation
symbol What happened during simulation

Fcn
Function name returned through this
exit point.

Function
=> Function name never returned through

this exit point.

=> Condition not encountered.

=>t Condition evaluated true only.

=>f Condition evaluated false only.Branch/condition

tf
Condition evaluated both true and
false.

=> Branch never encountered.

=>b
Branch to at least one destination
covered and branch to at least one other
destination not covered.

Branch/decision

b Branch fully exercised.

=>mc Condition did not independently affect
outcome of decision .Modified

Condition/Decision
Coverage (MC/DC) mc Condition independently affected

outcome of decision.

Statements associated with line
covered.

Statement
Not all statements associated with line
covered.

32-13

32 Code Coverage

Code feature Annotation
symbol What happened during simulation

=>Σ

Zero coverage — probes within source
code line or files included by source
code line not exercised.

=>Σ

Coverage probes within source code line
or any included file partially exercised.

Code that is
reformatted by
LDRA Testbed and
does not match
the original source
code. For example,
source code
with #include
statements to
include other
files, and source
code with #define
statements for
macros.
For detailed
coverage
information, refer
to the LDRA
Testbed report.

Σ

Coverage probes within source code
line or included files fully exercised.

BullseyeCoverage Information
The cumulative coverage data in a code generation report is derived from
instrumented files associated with your latest top-model simulation and
coverage data collected from simulations with other top models that share
referenced models with your current top model.

32-14

Code Coverage Summary and Annotations

The software provides BullseyeCoverage annotations in the code generation
report to help you to review code coverage.

This example shows two kinds of annotations. At line 41, TF indicates that the
if decision had both true and false outcomes during the simulation. At line
52, =>F indicates that the if decision was false only during the simulation.

The following table describes the BullseyeCoverage code annotations that you
might see in a code generation report produced by a SIL simulation.

Code feature Annotation
symbol What happened during simulation

=> Decision not executed.

TF Decision evaluated both true and false.

=>T Decision evaluated true only.
Decision

=>F Decision evaluated false only.

32-15

32 Code Coverage

Code feature Annotation
symbol What happened during simulation

=> Function not called.
Function

Fcn Function called.

=> Switch command not used.
Switch label

Sw Switch command used.

Constant k
Decision or condition was constant, which
did not allow any variation in coverage.

=> Condition not encountered.

tf Condition evaluated both true and false.

=>t Condition evaluated true only.
Condition

=>f Condition evaluated false only.

=> Try block never completed.
Try

Try Try block covered.

=> Catch block not covered.
Catch

Cat Catch block covered.

32-16

Code Coverage Tool Support

Code Coverage Tool Support
Embedded Coder is tested with the following versions of the BullseyeCoverage
and LDRA Testbed tools.

Note

• BullseyeCoverage is supported on 64-bit Linux only.

• BullseyeCoverage support is not tested on the 64-bit Macintosh operating
system.

Operating system BullseyeCoverage LDRA Testbed

Windows 8.4.23 8.5.1

Linux 8.4.19 Not supported

32-17

32 Code Coverage

Tips and Limitations

Compiler and Platform Support for SIL
For SIL code coverage, the software supports the following compilers and
platforms:

• On a Linux platform, gcc

• On a Windows platform, Microsoft Visual C++ (MSVC)

Note For both SIL and PIL, the Watcom compiler is not supported. If you
specify this compiler, an error appears when you build your model.

For information on how to specify a compiler, see “Choose and Configure a
Compiler” in the Simulink Coder documentation.

Right-Click Subsystem Build Unsupported for Code
Coverage
The software does not support right-click builds for subsystems if a code
coverage tool is specified.

BullseyeCoverage License Wait
When you build your model, you might have to wait for a BullseyeCoverage
license. If you want to see information about the wait, before you build your
model, select Code Generation > Debug > Verbose build.

Current Working Folder Cannot be UNC Path
If your MATLAB current working folder is a Universal Naming Convention
(UNC) path, code coverage fails.

Characters in matlabroot and File Path
If matlabroot or the path to your generated files contains a space or the .
(period) character, code coverage might fail.

32-18

Tips and Limitations

Header Files with Identical Names
Consider a model that is configured for LDRA Testbed code coverage. During
the build process, if the software detects two header files with the same name
in the folder for generated code, the software generates an error.

Code Coverage for Source Files in Shared Utility
Folders
The software supports code coverage for source files generated in shared
utility folders. If you configure code coverage for a model that uses shared
utility code generation, when you build the model, you also build all source
files in the shared utilities folder with code coverage enabled.

Whenever you build a model, the code coverage settings of the model must be
consistent with source files that you previously built in the shared utilities
folder. Otherwise, the software reports that code in the shared utilities folder
is inconsistent with the current model configuration and must be rebuilt. For
example, if you run a SIL simulation for a model with code coverage enabled
and then run a SIL simulation for another model with code coverage disabled,
the software must rebuild all source files in the shared utilities folder.

BullseyeCoverage Behavior with Inline Macros
The BullseyeCoverage tool, by default, does not provide code coverage data
for inline macros.

For example, if a model generates a file
slprj/ert/_sharedutils/rt_SATURATE.h that contains the macro

#define rt_SATURATE(sig,ll,ul) (((sig) >= (ul)) ? (ul) :
(((sig) <= (ll)) ? (ll) : (sig)))

and the macro is in sat_ert_rtw/sat.c, then the coverage report provides a
measurement for sat.c, but no coverage data for the conditions within the
macro rt_SATURATE.

To configure the BullseyeCoverage tool to provide code coverage data for
inline macros:

32-19

32 Code Coverage

1 Open the BullseyeCoverage Browser.

2 Select Tools > Options to open the Options dialog box.

3 On the Build tab, select the Instrument macro expansions check box.

4 Click OK.

5 Rerun your simulation.

Alternatively, you can add the text -macro to the
BullseyeCoverage configuration file. For more information, go to
www.bullseye.com/help/ref_covc.html.

SIL and PIL Simulations with Open LDRA Testbed
If you enable code coverage with the LDRA Testbed tool, you must verify that
the LDRA Testbed GUI is not open when you run your SIL or PIL simulation.
If the set name in the LDRA Testbed GUI differs from the set name used by
the SIL or PIL simulation, the SIL or PIL simulation fails.

PIL Zero Coverage LDRA Testbed Annotations
For a PIL simulation with LDRA Testbed code coverage specified, there might
be some source files where the recorded coverage is zero. In this case, the
software provides summary information indicating that:

• There is coverage to measure.

• The coverage is zero.

You do not see information for individual probes on each line. The displayed
summary information has an associated annotation tooltip:

0 out of N coverage probes were exercised (detailed breakdown unavailable)

Modify Legacy Code
If you modify legacy code and rerun a SIL or PIL simulation, the legacy code
will be recompiled. However, the code from the model may be up-to-date. In
this case, the code generation report is not updated and does not show the
modified legacy code. Instead, the code coverage information for the modified

32-20

http://www.bullseye.com/help/ref_covc.html

Tips and Limitations

legacy code is displayed with reference to the original legacy code. You must
regenerate the report. For more information, see “Limitation”.

32-21

32 Code Coverage

32-22

33

Code Execution Profiling

• “About Code Execution Profiling” on page 33-2

• “Configure Code Execution Profiling” on page 33-3

• “Execution Profiling for Atomic Subsystems and Model Reference
Hierarchies” on page 33-5

• “View and Compare Code Execution Times” on page 33-7

• “Analyze Code Execution Data” on page 33-14

• “Tips and Limitations” on page 33-16

33 Code Execution Profiling

About Code Execution Profiling
Use code execution profiling to obtain a profile of execution times for tasks
and functions in your generated code. The software calculates execution times
from data that is obtained through instrumentation probes added to the SIL
or PIL test harness or placed inside generated code.

Note Tasks are main entry points into the generated code. For example, the
step function for a sample rate or the model_initialize function.

During a SIL or PIL simulation, you can collect execution time measurements
in a specified base workspace variable. See “Configure Code Execution
Profiling” on page 33-3.

At the end of the simulation, you can:

• View a report of code execution times

• Use the Simulation Data Inspector to view and compare plots of function
execution times

• Analyze the measurements within the MATLAB environment

See “View and Compare Code Execution Times” on page 33-7 and “Analyze
Code Execution Data” on page 33-14.

Note The software supports code execution profiling for all types of SIL and
PIL simulations, with the exception of SIL block simulations.

33-2

Configure Code Execution Profiling

Configure Code Execution Profiling
To configure code execution profiling for a SIL or PIL simulation:

1 In your top model, open the Configuration Parameters dialog box, and
select the Code Generation > Verification pane.

2 Select the Measure task execution time check box.

3 If you also want function execution times, select the Measure function
execution times check box. For information about how you apply
this setting to atomic subsystems and model reference hierarchies,
see “Execution Profiling for Atomic Subsystems and Model Reference
Hierarchies” on page 33-5.

Note This feature does not support state functions or MATLAB functions
from the Stateflow product.

4 In the Workspace variable field, specify a name. When you run the
simulation, the software generates a variable with this name. The variable
contains the execution time measurements, and is an object of type
coder.profile.ExecutionTime.

5 From the Save options drop-down list, select one of the following:

• Summary data only— If you want to generate only a report and seek to
reduce the use of memory, for example, during a long simulation. See
“View and Compare Code Execution Times” on page 33-7.

• All measurement and analysis data — Allows you to
generate a report and store execution time profiles in
the base workspace. After the simulation, you can use
methods from the coder.profile.ExecutionTime and
coder.profile.ExecutionTimeSection classes to retrieve execution
time measurements for every call to each profiled section of code that
occurs during the simulation. See “Analyze Code Execution Data” on
page 33-14.

33-3

33 Code Execution Profiling

6 Click OK.

For a PIL simulation, you must configure a hardware-specific timer. When
you set up the connectivity configuration for your target, create a timer object.
See “Create a Connectivity Configuration for a Target” on page 31-40. This
action is not required for a SIL simulation.

If you select All measurement and analysis data from the Save options
drop-down list, the software imports simulation results into the Simulation
Data Inspector, allowing you to plot execution times and manage and compare
plots from various simulations. On the generated report, click any Simulation

Data Inspector icon . See “View and Compare Code Execution Times”
on page 33-7.

For details about automatically importing simulation data into the Simulation
Data Inspector, see “Validate System Behavior”.

33-4

Execution Profiling for Atomic Subsystems and Model Reference Hierarchies

Execution Profiling for Atomic Subsystems and Model
Reference Hierarchies

To generate execution data for tasks only, on the Code
Generation > Verification pane of the Configuration Parameters dialog
box, select the Measure task execution time check box and clear the
Measure function execution times check box.

To generate function execution data for atomic subsystems in the top model,
on the Code Generation > Verification pane, you must select theMeasure
task execution time andMeasure function execution times check boxes.

Note The generation of function execution data requires the insertion
of measurement probes into the generated code. The software inserts
measurement probes for an atomic subsystem only if you set the Function
packaging field (on the Code Generation tab of the Function Block
Parameters dialog box) to either Nonreusable function or Reusable
function. If the field is set to Auto, then the insertion of probes depends on
the packaging choice that results from the Auto setting. If the field is set to
Inline, the software does not insert probes.

You might not want to generate profiles for specific subsystems. To disable
code execution profiling for a subsystem in the top model:

1 Right-click the subsystem.

2 From the context menu, select Properties.

3 In the Block Properties dialog box, select the General tab.

4 In the Tag field, enter DoNotProfile.

5 Click OK.

To generate function execution data for model reference hierarchies:

1 In the top model, open the Configuration Parameters dialog box, and select
the Code Generation > Verification pane.

33-5

33 Code Execution Profiling

2 Select the Measure task execution time check box.

3 For each Model block that you want to profile, select Measure function
execution times only at the reference level for which you require function
execution data.

For example, consider a top model that has Model block A, which in turn
contains Model block B.

If you want to generate execution times for functions from model B, you
must selectMeasure task execution time for the top model and Measure
function execution times for model B.

If your top model has a PIL block, the execution profiling settings that apply
to the PIL block are the settings from the original model that you used to
create the PIL block. See “Use a SIL or PIL Block” on page 31-19. The
execution profiling settings of your top model do not apply to the PIL block.

33-6

View and Compare Code Execution Times

View and Compare Code Execution Times
After a SIL or PIL simulation, you can:

• View reports using the report method from the
coder.profile.ExecutionTime class.

• Use the Simulation Data Inspector to:

- Plot execution times.

- Manage and compare plots from various simulations.

Consider the model rtwdemo_sil_topmodel, which has two subsystems
CounterTypeA and CounterTypeB.

33-7

33 Code Execution Profiling

To generate code execution times for the subsystems, specify the following
profiling options and run a SIL simulation.

To generate code execution times for the subsystems, on the Configuration
Parameters > Code Generation > Verification pane:

1 Select the following check boxes:

• Measure task execution time

33-8

View and Compare Code Execution Times

• Measure function execution times

2 Specify aWorkspace variable, for example, executionProfile.

3 From the Save options drop-down list, select All measurement and
analysis data.

When you run, for example, a SIL simulation, the software generates the
workspace variable executionProfile.

To display a code execution report, in the Command Window, enter:

>> executionProfile.report

A code execution profiling report opens.

33-9

33 Code Execution Profiling

Part 1 provides a summary. Part 2 contains information about profiled code
sections.

You can expand and collapse profiled sections in Part 2 by clicking [+] and [–]
respectively. The following graphic shows fully expanded sections.

The report contains time measurements for:

• The model initialization function rtwdemo_sil_topmodel_initialize

• A task represented by the step function rtwdemo_sil_topmodel_step
[0.1 0]

• Functions generated from the subsystems CounterTypeA and
CounterTypeB.

To go to a profiled code section in the Code Generation Report, click the
corresponding code section number link. For example, if you click 1, you see
the measurement probes around the rtwdemo_sil_topmodel_initialize
call site in the SIL test harness.

33-10

View and Compare Code Execution Times

By default, the report displays time in nanoseconds (10-9 seconds). You can
specify the time unit and numeric display format. For example, to display
time in microseconds (10-6 seconds), use the following command:

>>executionProfile.report('Units', 'Seconds', 'ScaleFactor', '1e-06', 'Nume

For more information, see report.

The report displays time in seconds only if the timer is calibrated, that is,
the number of timer ticks per second is known. On a Windows machine, the
software automatically determines this value for a SIL simulation. On a
Linux machine, you must manually calibrate the timer. For example, if your
processor speed is 1 GHz, specify the number of timer ticks per second:

>>executionProfile.TimerTicksPerSecond = 1e9;

For more information, see “Analyze Code Execution Data” on page 33-14.

To display measured execution times for a task or function, click the

Simulation Data Inspector icon on the corresponding row. You can use
the Simulation Data Inspector to manage and compare plots from various
simulations.

33-11

33 Code Execution Profiling

For information, see “Inspect Signal Data with Simulation Data Inspector”.

The following table describes the information provided in the code section
profiles.

Column Description

Model Name of task, top model, subsystem or Model block.
Click the link to go to the model.With a task, the sample
period and sample offset are listed next to the name.
For example, rtwdemo_sil_topmodel_step [0.1 0]
indicates that the sample period is 0.1 seconds and the
sample offset is 0.

Code Section
Number

Number of profiled code section. Click the link to go to the
code section in the Code Generation Report. Code section
may be a task or function.

33-12

View and Compare Code Execution Times

Column Description

Maximum
Execution Time

Maximum time between start and end of function
execution. Includes time spent in child functions.

Average
Execution Time

Average time between start and end of execution.
Includes time spent in child functions.

Maximum Self
Time

Longest time spent in function. Excludes time spent in
child functions.

Average Self
Time

Average time spent in function. Excludes time spent in
child functions.

Calls Number of calls made to task or function.

Icon that you click to display measured execution
times with Simulation Data Inspector.The link works
only if the specified workspace variable, for example,
executionProfile is present in the base workspace.

33-13

33 Code Execution Profiling

Analyze Code Execution Data
After a SIL or PIL simulation, you can analyze execution time
data using methods from the coder.profile.ExecutionTime and
coder.profile.ExecutionTimeSection classes.

Consider the model rtwdemo_sil_topmodel. Specify the following profiling
options and then run a SIL simulation.

The software generates the workspace variable myExecutionProfile, an
coder.profile.ExecutionTime object.

To get the total number of code sections that have profiling data, use the
Sections method.

>> no_of_Sections = myExecutionProfile.Sections

no_of_Sections =

2

>>

To get the coder.profile.ExecutionTimeSection object for a profiled code
section, use the method Sections.

>> FirstSectionProfile = myExecutionProfile.Sections(1)

coder.profile.ExecutionTimeTaskSection

Section name = rtwdemo_sil_topmodel_initialize

Sample period = 0

Sample offset = 0

>>

33-14

Analyze Code Execution Data

>> SecondSectionProfile = myExecutionProfile.Sections(2)

coder.profile.ExecutionTimeTaskSection

Section name = rtwdemo_sil_topmodel_step [0.1 0]

Sample period = 0.1

Sample offset = 0

>>

Use coder.profile.ExecutionTimeSection methods to extract profiling
information for a particular code section. For example, use Name to obtain
the name of a profiled task.

>> name_of_section = SecondSectionProfile.Name

name_of_section =

rtwdemo_sil_topmodel_step [0.1 0]

>>

To get the sample time associated with the profiled task, use the method
SamplePeriod.

>> sample_time = SecondSectionProfile.SamplePeriod

sample_time =

0.1000

>>

If the timer is uncalibrated and you know the timer rate, for example
2.2 GHz, you can use the coder.profile.ExecutionTime method
TimerTicksPerSecond to calibrate the timer:

>> myExecutionProfile.TimerTicksPerSecond(2.2e9)

>> SecondSectionProfile = myExecutionProfile.Sections(2);

>>

33-15

33 Code Execution Profiling

Tips and Limitations

Triggered Model Block
Consider the case where a triggered Model block is configured to run in the
SIL or PIL simulation mode. The software generates one execution time
measurement each time the referenced model is triggered to run. If there
are multiple triggers in a single time step, the software generates multiple
measurements for the triggered Model block. Conversely, if there is no trigger
in a given time step, the software generates no time measurements.

Outliers in Execution Time Profiles
The operating system may preempt a SIL application after the start of a
measurement, making the code execution profiling result for the time step
unreliable. As a consequence of preemption, you may see outliers in your
execution time profiles, with execution times that are longer than expected.

Additionally, for execution time measurements greater than 232 ticks, the
counter wraps. Counter wrapping occurs when the actual execution time is
very long, which results in a measured execution time that is shorter than
expected.

Use of Hardware-Specific Timer
If your target configuration does not already specify a timer, you must specify
one. To specify a timer, you must create a timer object that provides details
of the hardware-specific timer and associated source files. The following
limitations apply:

• For SIL simulation, only a 32-bit timer can be used.

• For PIL simulation, you can specify an 8-, 16-, 32- or 64-bit timer. However,
only the lower 32-bits of the 64 bit timer are used.

33-16

Embedded IDEs and Embedded
Targets

• Chapter 34, “Getting Started with Embedded Targets”

• Chapter 35, “Project and Build Configurations for Embedded Targets”

• Chapter 36, “Verification and Profiling Code Generated for Embedded
Targets”

• Chapter 37, “Processor-Specific Optimizations for Embedded Targets”

• Chapter 38, “Working with Analog Devices™ VisualDSP++® IDE”

• Chapter 39, “Working with Eclipse IDE”

• Chapter 40, “Working with Green Hills® MULTI® IDE”

• Chapter 41, “Working with Linux Target”

• Chapter 42, “Working with Texas Instruments Code Composer
Studio 3.3 IDE”

• Chapter 43, “Working with Texas Instruments Code Composer
Studio 4 & 5 IDE”

• Chapter 44, “Working with Texas Instruments C2000 Processors”

• Chapter 45, “Working with Texas Instruments C6000 Processors”

• Chapter 46, “Working with Wind River VxWorks RTOS”

• Chapter 47, “Work with Xilinx® Zynq® Platform”

34

Getting Started with
Embedded Targets

• “Add Support for Hardware and Software” on page 34-2

• “Start Support Package Installer” on page 34-3

• “Open or Reopen Support Package Examples” on page 34-5

• “Install a Support Package on Multiple Computers” on page 34-7

34 Getting Started with Embedded Targets

Add Support for Hardware and Software
At the time of publication, you can use Support Package Installer to add
support for the following third-party software or hardware to the Embedded
Coder product:

• Analog Devices™ DSPs

• Green Hills® MULTI®

• Xilinx® Zynq®-7000 Platform

For detailed information about using Support Package Installer with your
hardware, see:

• “Start Support Package Installer” on page 34-3

• “Install Support for Analog Devices DSPs” on page 38-2

• “Install Support for Green Hills® MULTI® IDE” on page 40-2

• “Install Support for Xilinx® Zynq® Platform” on page 47-2

34-2

Start Support Package Installer

Start Support Package Installer
You can use Support Package Installer to install support for specific
third-party hardware and software products.

Support Package Installer guides you through the process of downloading and
installing a support package.

To start Support Package Installer, use one of the following methods:

• In a MATLAB Command Window, enter targetinstaller.

• In a model, select Tools > Run on Target Hardware > Install/Update
Support Package.

• Double-click a *.mlpkginstall file.

• On the MATLAB tool strip, click Add-Ons and select Get Hardware
Support Packages.

Show me

34-3

34 Getting Started with Embedded Targets

• In Configuration Parameters dialog box, on the Coder Targets pane, under
the Target Hardware Resources tab, set the IDE/Tool Chain parameter
to Get more....

34-4

Open or Reopen Support Package Examples

Open or Reopen Support Package Examples
To open or reopen support package examples for your target hardware:

• When you use Support Package Installer to install a support package or
update the firmware, leave the Show support package examples check
box on the last pane enabled, and click Finish.

• On the MATLAB Help home page, click the Supplemental Software link.

34-5

34 Getting Started with Embedded Targets

34-6

Install a Support Package on Multiple Computers

Install a Support Package on Multiple Computers
You can save time by downloading the support package files once and then
reusing them on multiple computers.

This approach provides:

• Faster installations across multiple machines, such as in a classroom.

• Version control of the support package and most third-party software.

• Reduced Internet bandwidth usage and download times.

1 Download and install a support package from the Internet.

Note During that process, on the Install or update support package
screen, you select the Internet option.

Support Package Installer saves the support package to a
\downloads subfolder within the Installation folder displayed
on the Select a support package screen. For example:
C:\MATLAB\SupportPackages\R2013a\downloads.

2 Locate the \downloads folder and make it available to other computers by:

• Sharing the folder on the local network. (In Microsoft, right-click the
folder and select Share.)

• Copying the folder to a network drive.

• Copying the folder to a removable storage device, such as a USB flash
drive.

Note If you have trouble locating the folder, run Support Package Installer
again, select the support package on the Select a support package
screen, and look at the Installation folder parameter.

3 Run Support Package Installer on each of the .

34-7

34 Getting Started with Embedded Targets

4 On the Install or update support package screen, select the Folder
option, and use Browse to locate the \downloads folder on the network or
removable storage device.

5 Complete the installation process.

34-8

35

Project and Build
Configurations for
Embedded Targets

• “Model Setup” on page 35-2

• “IDE Projects” on page 35-16

• “Makefiles for Software Build Tool Chains” on page 35-21

35 Project and Build Configurations for Embedded Targets

Model Setup

In this section...

“Block Selection” on page 35-2

“Configure Target Hardware Resources” on page 35-3

“Configuration Parameters” on page 35-5

“Model Reference” on page 35-14

Block Selection
You can create models for targeting the same way you create other Simulink
models—by combining standard blocks and C-MEX S-functions.

You can use blocks from the following sources:

• The Embedded Targets library (embeddedtargetslib) in the Embedded
Coder product.

• Blocks from the System Toolboxes products

• Custom blocks

Avoid using blocks that do not generate code, including the following blocks.

Block
Name/Category Library Description

Scope Simulink, DSP
System Toolbox
software

Provides oscilloscope view of
your output. Do not use the
Save data to workspace
option on the Data history
pane in the Scope Parameters
dialog.

To Workspace Simulink Return data to your MATLAB
workspace.

From Workspace Simulink Send data to your model from
your MATLAB workspace.

35-2

Model Setup

Block
Name/Category Library Description

Spectrum Scope DSP System
Toolbox

Compute and display the
short-time FFT of a signal.
It has internal buffering that
can slow your process without
adding value.

To File Simulink Send data to a file on your host
machine.

From File Simulink Get data from a file on your host
machine.

Triggered to
Workspace

DSP System
Toolbox

Send data to your MATLAB
workspace.

Signal To
Workspace

DSP System
Toolbox

Send a signal to your MATLAB
workspace.

Signal From
Workspace

DSP System
Toolbox

Get a signal from your MATLAB
workspace.

Triggered Signal
From Workspace

DSP System
Toolbox

Get a signal from your MATLAB
workspace.

To Wave device DSP System
Toolbox

Send data to a .wav device.

From Wave device DSP System
Toolbox

Get data from a .wav device.

Configure Target Hardware Resources
This topic contains the following subtopics:

• “About Supported IDEs” on page 35-4

• “Configure Parameters Under the Target Hardware Resources Tab” on
page 35-4

35-3

35 Project and Build Configurations for Embedded Targets

About Supported IDEs
This “Configure Target Hardware Resources” on page 35-3 section applies
to the following IDEs:

• Analog Devices VisualDSP++®

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio™ 3.3

• Texas Instruments Code Composer Studio 4 (makefile generation only)

• Texas Instruments Code Composer Studio 5 (makefile generation only)

• Wind River Diab/GCC (makefile generation only)

Configure Parameters Under the Target Hardware Resources
Tab
Configure the parameters under the Target Hardware Resources tab of
your Simulink model for a specific tool chain and target hardware. Doing
so updates other parameters in the Configuration Parameters dialog to the
default values for the software build tool chain and target hardware you are
using.

Note The Target Preferences (Removed) block has been removed from
the Simulink block libraries for the Embedded Coder and Simulink Coder
products.

Parameters in the Target Preferences block have been moved to the Target
Hardware Resources tab.

To configure your Simulink model for a specific tool chain and target
hardware:

1 In a Simulink model, open the model Configuration Parameters by:

• Clicking the gear icon,

35-4

Model Setup

• Pressing Ctrl+E on your keyboard

• Selecting the Simulation > Model Configuration Parameters menu
items

2 In the Configuration Parameters dialog, click Code Generation, and then
click “+” next to Code Generation. This action displays the sub-panes under
Code Generation.

3 On the Code Generation pane, change System target file to
idelink_ert.tlc or idelink_grt.tlc.

The dialog displays a Coder Target pane under the Code Generation pane.

4 Select the Coder Target pane.

5 Select the Target Hardware Resources tab.

6 Set the following parameters to match the tool chain and target hardware
you are using:

• IDE/Tool Chain

• Board

• Processor

7 Review the other parameters under the Target Hardware Resources tab.

8 Click Apply, and save the changes to your model.

Configuration Parameters

• “What are Configuration Parameters?” on page 35-5

• “Setting Model Configuration Parameters” on page 35-6

What are Configuration Parameters?
To see the model Configuration Parameters, open the Configuration
Parameters dialog. You can do this in the model editor by selecting

35-5

35 Project and Build Configurations for Embedded Targets

Simulation > Model Configuration Parameters, or by pressing Ctrl+E
on your keyboard.

The Configuration Parameters dialog specifies the values for a model’s
active configuration set. These parameters determine the type of solver used,
the import and export settings, and other values that determine how the
model runs.

Setting Model Configuration Parameters
To set the Configuration Parameters to the right values for you to generate
code from your model, see “Configure Parameters Under the Target Hardware
Resources Tab” on page 35-4. This action initializes the model Configuration
Parameters to the right default values for you to generate code. You can then
use the Configuration Parameters dialog to make further modifications to the
values. You can generate buildable code using these default values.

The following subsections provide a quick overview of the panes and
parameters with which you are most likely to interact.

Code Generation Pane. When you set System target file to
idelink_ert.tlc or idelink_grt.tlc, the dialog adds an Coder Target
pane to the list of panes under Code Generation.

35-6

Model Setup

Leave Language set to C. The idelink_ert.tlc and idelink_grt.tlc
system target files do not support C++ code generation.

For more information, see “Code Generation Pane: General”

35-7

35 Project and Build Configurations for Embedded Targets

Coder Target Pane Parameters.

The Coder Target entry provides options in these areas:

• Run-Time— Set options for run-time operations, like the build action

• Vendor Tool Chain— Set compiler, linker, and system stack size options

• Code Generation— Configure your code generation requirements

• Link Automation— Export an IDE link handle object, such as IDE_Obj,
to your MATLAB workspace

• Diagnostics— Determine how the code generation process responds when
you use source code replacement in the Custom Code pane.

For more information, see Code Generation Pane: Coder Target.

35-8

Model Setup

Build format

Select Project to create an IDE project, or select Makefile to create a
makefile build script.

Build action

Your selection for Build action determines what happens when you click
Build or press Ctrl+B. Your selection tells Simulink Coder software when to
stop the code generation and build process.

To run your model on the processor, select Build_and_execute. This selection
is the default build action.

The actions are cumulative—each action performs an additional step relative
to the preceding action on the list.

If you set Build format to Project, select one of the following options:

• Create_project— Directs Simulink Coder software to start the IDE and
populate a new project with the files from the build process. This option
offers a convenient way to build projects in the IDE.

• Archive_library— Directs Simulink Coder software to create an archive
library for this model. Use this option when you plan to use the model in
a model reference application. Model reference requires that you archive
your the IDE projects for models that you use in model referencing.

• Build— Builds the executable file, but does not download the file to the
target hardware.

• Build_and_execute—Directs Simulink Coder software to build, download,
and run your generated code as an executable on your target hardware.

• Create_processor_in_the_loop_project — Directs code generation
process to create PIL algorithm object code as part of the project build. This
option requires an Embedded Coder license.

If you set Build format to Makefile, select one of the following options:

• Create_makefile — Creates a makefile.

35-9

35 Project and Build Configurations for Embedded Targets

• Archive_library — Creates a makefile and the generated output will
be an archive library.

• Build — Creates a makefile and an executable.

• Build_and_execute — Creates a makefile and an executable. Then it
evaluates the execute instruction in the current configuration.

Overrun notification

To enable the overrun indicator, choose one of three ways for the target to
respond to an overrun condition in your model:

• None— Ignore overruns encountered while running the model.

• Print_message — When the target encounters an overrun condition, it
prints a message to the standard output device, stdout.

• Call_custom_function — Respond to overrun conditions by calling the
custom function you identify in Function name.

Function name

When you select Call_custom_function from the Overrun notification
list, you enable this option. Enter the name of the function the target should
use to notify you that an overrun condition occurred. The function must exist
in your code on the target hardware.

Configuration

The Configuration parameter defines sets of build options that apply to
the files generated from your model.

The Release and Debug option apply build settings that are defined by your
compiler. For more information, refer to your compiler documentation.

Custom has the same default values as Release, but:

• Leaves Compiler options string empty.

35-10

Model Setup

Compiler options string

To determine the degree of optimization provided by the optimizing compiler,
enter the optimization level to apply to files in your project. For details about
the compiler options, refer to your IDE documentation. When you create new
projects, the coder product does not set optimization flags.

With Texas Instruments Code Composer Studio 3.3 and Analog Devices
VisualDSP++, the user interface displays Get From IDE and Reset buttons
next to this parameter. If you have an active project open in the IDE, you
can click Get From IDE to import the compiler option setting from the
current project in the IDE. To reset the compiler option to the default value,
click Reset.

Linker options string

To specify the options provided by the linker during link time, you enter the
linker options as a string. For details about the linker options, refer to your
IDE documentation. When you create new projects, the coder product does
not set linker options.

With Texas Instruments Code Composer Studio 3.3 and Analog Devices
VisualDSP++, the user interface displays Get From IDE and Reset buttons
next to this parameter. If you have an active project open in the IDE, you can
click Get From IDE to import the linker options string from the current
project in the IDE. To clear the linker options, click Reset.

System stack size (MAUs)

Enter the amount of memory that is available for allocating stack data,
measured in minimum addressable units (MAU). Block output buffers are
placed on the stack until the stack memory is fully allocated. After that, the
output buffers go in global memory. An MAU is typically 1 byte, but its size
can vary by target hardware.

This parameter is used in targets to allocate the stack size for the generated
application. For example, with embedded processors that are not running an
operating system, this parameter determines the total stack space that can be

35-11

35 Project and Build Configurations for Embedded Targets

used for the application. For such as Linux or VxWorks operating systems,
this value specifies the stack space allocated per thread.

This parameter also applies to the “Maximum stack size (bytes)” parameter,
located in the Optimization > Signals and Parameters pane.

System heap size (MAUs)

Set the default heap size that the target hardware reserves for dynamic
memory allocation.

The target hardware uses this heap for functions like printf() and system
services code.

The following IDEs use this parameter:

• Analog Devices VisualDSP++

• Green Hills MULTI

• IAR Embedded Workbench

• Wind River Diab/GCC (makefile generation only)

Profile real-time execution

To enable the real-time execution profile capability, select Profile real-time
execution. With this selected, the build process instruments your code to
provide performance profiling at the task level or for atomic subsystems.
When you run your code, the executed code reports the profiling information
in an HTML report.

Link Automation

When you build a model for a target, the coder product automatically creates
or uses an existing IDE link handle object (named IDE_Obj, by default) to
connect to your IDE.

35-12

Model Setup

Although IDE_Obj is a handle for a specific instance of the IDE, it also
contains information about the IDE instance to which it refers, such as the
target the IDE accesses. In this pane, the Export IDE link handle to
base workspace option lets you instruct the coder product to export the
object to your MATLAB workspace, giving it the name you assign in IDE
link handle name.

You can also use the IDE link handle object to interact with the IDE using
IDE Automation Interface commands.

Maximum time allowed to build project (s)

Specifies how long the software waits for the IDE to build the software.

Maximum time allowed to complete IDE operation (s)

Specifies how long the software waits for IDE functions, such as read or
write, to return completion messages. If you do not specify a timeout, the
default value is 10 seconds.

Export IDE link handle to base workspace

Directs the software to export the IDE_Obj object to your MATLAB workspace.

IDE link handle name

Specifies the name of the IDE_Obj object that the build process creates.

Source file replacement

Selects the diagnostic action to take if the software detects conflicts when you
replace source code with custom code. The diagnostic message responds to
both source file replacement in the Configuration Parameters under Code

35-13

35 Project and Build Configurations for Embedded Targets

Generation > Coder Target parameters and under Code Generation > Custom
Code.

The following settings define the messages you see and how the code
generation process responds:

• none— Does not generate warnings or errors when it finds conflicts.

• warning— Displays a warning. warn is the default value.

• error— Terminates the build process and displays an error message that
identifies which file has the problem and suggests how to resolve it.

The build operation continues if you select warning and the software detects
custom code replacement problems. You see warning messages as the build
progresses.

Select error the first time you build your project after you specify custom
code to use. The error messages can help you diagnose problems with your
custom code replacement files. Use none when the replacement process works
and you do not want to see multiple messages during your build.

Model Reference
The idelink_ert.tlc and idelink_grt.tlc system target files provide
support for generating code from models that use Model Reference. A
referenced model will generate an archive library.

To enable Model Reference builds:

1 Open your referenced model.

2 Select Simulation > Model Configuration Parameters from the model
menus.

3 From the list of panes under Code Generation, choose Coder Target.

4 In the right pane, under Run-Time, select Archive_library from the
Build action list.

35-14

Model Setup

If your top-model uses a reference model that does not have the Build action
set to Archive_library, the build process automatically changes the Build
action to Archive_library and issues a warning about the change.

Configuration Parameters in Reference Models
Use the same Coder Target pane settings in Configuration Parameters for
the models in the model hierarchy.

35-15

35 Project and Build Configurations for Embedded Targets

IDE Projects

In this section...

“Support for Third Party Products” on page 35-16

“Third Party Product Setup” on page 35-16

“Code Generation and Build” on page 35-18

“Automation of IDE Tasks and Processes” on page 35-19

Support for Third Party Products
For more information about Embedded Coder support for third-party IDEs
and targets, see the following links, organized by vendor:

• Analog Devices VisualDSP++ IDE and Blackfin® processors —
http://www.mathworks.com/products/embedded-coder/adi-adaptor.html

• Eclipse IDE with GNU GCC—
http://www.mathworks.com/products/embedded-coder/eclipse-adaptor.html

• Green Hills MULTI —
http://www.mathworks.com/products/embedded-coder/ghs-adaptor.html

• Texas Instruments Code Composer Studio IDE,
and C2000™, C5000™, C6000™ processors —
http://www.mathworks.com/products/embedded-coder/ti-adaptor.html

• ARM® —
http://www.mathworks.com/products/embedded-coder/arm-adaptor/

• Wind River VxWorks —
http://www.mathworks.com/products/embedded-coder/windriver-adaptor/

Third Party Product Setup
Install your third party IDE or software build tool chain according to the
vendor’s instructions.

If you are using one of the following IDEs, perform the additional steps
described here:

35-16

http://www.mathworks.com/products/embedded-coder/adi-adaptor.html
http://www.mathworks.com/products/embedded-coder/eclipse-adaptor.html
http://www.mathworks.com/products/embedded-coder/ghs-adaptor.html
http://www.mathworks.com/products/embedded-coder/ti-adaptor.html
http://www.mathworks.com/products/embedded-coder/arm-adaptor/
http://www.mathworks.com/products/embedded-coder/windriver-adaptor/

IDE Projects

Analog Devices VisualDSP++ IDE

Use the adivdspsetup command to complete the configuration and install a
plug-in in VisualDSP++. The reference page provides a brief example. Also
see “Working with Analog Devices VisualDSP++ IDE”.

Eclipse IDE

Complete the instructions in “Installing Third-Party Software for Eclipse”
on page 39-2 and in “Configuring Your MathWorks Software to Work with
Eclipse” on page 39-10.

Green Hills MULTI IDE

See “Working with Green Hills MULTI IDE”.

Texas Instruments Code Composer Studio 3.3 IDE

Before you use Embedded Coder with Code Composer Studio (CCS IDE) for
the first time, use the checkEnvSetup function to check for third-party tools
and set environment variables. Run checkEnvSetup again whenever you
configure CCS IDE to interact with a new board or processor, or upgrade
the related third-party tools.

To verify that CCSv3 is installed on your machine and has at least one board
configured, enter

ccsboardinfo

in the MATLAB Command Window. With CCS installed and configured,
MATLAB software returns information about the boards that CCS recognizes
on your machine, in a form similar to the following listing.

Board Board Proc Processor Processor

Num Name Num Name Type

--- -------------------------------- --- -------------

1 C6xxx Simulator (Texas Instrum .0 6701 TMS320C6701

0 C6x13 DSK (Texas Instruments) 0 CPU TMS320C6x1x

35-17

35 Project and Build Configurations for Embedded Targets

If MATLAB software does not return information about the boards, open
your CCS installation and use the Setup Utility in CCS to configure at least
one board.

As a final test, start CCS to verify that it runs. For Embedded Coder to
operate with CCS, the CCS IDE must be able to run on its own.

Also see “Working with Texas Instruments Code Composer Studio IDE”.

Texas Instruments Code Composer Studio 4 IDE

Before you use Embedded Coder with Code Composer Studio (CCS IDE) for
the first time, use the checkEnvSetup function to check for third-party tools
and set environment variables. Run checkEnvSetup again whenever you
configure CCS IDE to interact with a new board or processor, or upgrade
the related third-party tools.

Also see “Working with Texas Instruments Code Composer Studio IDE”.

Code Generation and Build

Building Your Model

In your model, click Build Model . The software performs the actions
you selected for Build action in the model Configuration Parameters, under
Code Generation > Coder Target.

IDE Project Generator Features
The IDE Project Generator component provides or supports the following
features for developing IDE projects and generating code:

• Automatically create IDE projects for your generated code during the code
generation process.

• Customize code generation using options in the model Configuration
Parameters.

• Configure the automatic project build process.

35-18

IDE Projects

• Automatically download and run your generated projects on your target
hardware.

IDE Link Handle Objects
IDE Project Generator automatically creates and uses an IDE link handle
object to communicate with your IDE and target hardware.

To create the IDE link handle object, IDE Project Generator uses one of the
following constructor functions:

• adivdsp for Analog Devices VisualDSP++

• eclipseide for Eclipse IDE

• ghsmulti for Green Hills MULTI

• ticcs for Texas Instruments Code Composer Studio

For a command line example of how to use a constructor function, see the
corresponding reference page for each function.

Automation of IDE Tasks and Processes
The IDE Automation Interface component provides a powerful API for
automating IDE tasks via MATLAB scripts. For example, with IDE
Automation Interface, your script can automatically:

• Automate project creation, including adding source files, include paths, and
preprocessor defines

• Configure batch building of projects

• Launch a debugging session

Examples of IDE Automation Interface for Specific IDEs
To help you become familiar with IDE Automation Interface, you can use the
“IDE Automation Interface Tutorial” example for the following IDEs:

• Green Hills MULTI

• Eclipse IDE

35-19

35 Project and Build Configurations for Embedded Targets

• Analog Devices VisualDSP++

• Texas Instruments Code Composer Studio

The example shows you how to:

1 Configure and create an IDE link handle object.

2 Create and query objects in an IDE.

3 Use MATLAB software to load files into your IDE.

4 Work with your IDE project from MATLAB software.

5 Close connections you the IDE.

35-20

Makefiles for Software Build Tool Chains

Makefiles for Software Build Tool Chains

In this section...

“What is the XMakefile Feature” on page 35-21

“Using Makefiles to Generate and Build Software” on page 35-25

“Making an XMakefile Configuration Operational” on page 35-28

“Creating a New XMakefile Configuration” on page 35-28

“XMakefile User Configuration dialog” on page 35-34

What is the XMakefile Feature

• “Overview” on page 35-21

• “Supported Tool Chains in Embedded Coder” on page 35-22

• “Available XMakefile Configurations” on page 35-22

• “Feature Support” on page 35-24

Overview
You can use makefiles instead of IDE projects during the automated software
build process. This approach is described in “Using Makefiles to Generate
and Build Software” on page 35-25.

The XMakefile feature lets you choose the configuration of a specific software
build tool chain to use during the automated build process. The configuration
contains paths and settings for your make utility, compiler, linker, archiver,
pre-build, post-build, and execute tools.

You can choose one built-in configuration described in “Supported Tool Chains
in Embedded Coder” on page 35-22 and “Available XMakefile Configurations”
on page 35-22.

You can also create a new configuration for a new tool chain, as described in
“Creating a New XMakefile Configuration” on page 35-28.

35-21

35 Project and Build Configurations for Embedded Targets

Your requirements for specific features may determine whether you choose
makefiles or IDE projects. See “Feature Support” on page 35-24.

Supported Tool Chains in Embedded Coder
Embedded Coder includes support for the following IDEs and tool chains.

Tool Chain Processor
Family/Target
Operating System

Host Operating
System

Analog Devices
VisualDSP++

Blackfin, SHARC®, and
TigerSHARC®

Windows

Green Hills MULTI ARM, Analog Devices
Blackfin, PowerPC®,
and Renesas® v850

Linux, Windows

GNU development tools Linux Linux

GNU development tools ARM MontaVista Linux

Texas Instruments
Code Composer Studio
3.3, 4, and 5.1

Texas Instruments
C2000, C5500™, and
C6000

Windows

Wind River Diab/GCC ARM9, Host Simulator,
VxWorks, RTP and
RTP_SO

Windows

Xilinx ISE Design Suite ARM Cortex-A9 on
Xilinx Zynq-7000
running Linux

32-bit and 64-bit
Windows

Simulink Coder includes support for other IDEs and tool chains. See
“Supported Tool Chains in Simulink Coder”.

Available XMakefile Configurations
The following list describes the configurations in the XMakefile dialog that
this product supports:

• adivdsp_blackfin: Analog Devices VisualDSP++ & Analog Devices
Blackfin

35-22

Makefiles for Software Build Tool Chains

• adivdsp_sharc: Analog Devices VisualDSP++ & Analog Devices SHARC

• adivdsp_tigersharc: Analog Devices VisualDSP++ & Analog Devices
TigerSHARC

• gcc_target: GNU Compiler Collection & Host Operating System or
Embedded Operating System

• ghsmulti_arm: Green Hills MULTI & ARM

• ghsmulti_blackfin: Green Hills MULTI & Analog Devices Blackfin

• ghsmulti_ppc: Green Hills MULTI & PowerPC

• ghsmulti_v850: Green Hills MULTI & Renesas V850

• ticcs_c2000_ccsv3: Texas Instruments Code Composer Studio 3 & Texas
Instruments C2000

• ticcs_c2000_ccsv4: Texas Instruments Code Composer Studio 4 & Texas
Instruments C2000

• ticcs_c2000_ccsv5: Texas Instruments Code Composer Studio 5.1 &
Texas Instruments C2000

• ticcs_c5500_ccsv3: Texas Instruments Code Composer Studio 3 & Texas
Instruments C5500

• ticcs_c5500_ccsv4: Texas Instruments Code Composer Studio 4 & Texas
Instruments C5500

• ticcs_c5500_ccsv5: Texas Instruments Code Composer Studio 5.1 &
Texas Instruments C5500

• ticcs_c6000_ccsv3: Texas Instruments Code Composer Studio 3 & Texas
Instruments C6000

• ticcs_c6000_ccsv4: Texas Instruments Code Composer Studio 4 & Texas
Instruments C6000

• ticcs_c6000_ccsv5: Texas Instruments Code Composer Studio 5.1 &
Texas Instruments C6000

• ticcs_c6000_dspbios_ccsv3: Texas Instruments Code Composer Studio 3
& Texas Instruments DSP/BIOS on C6000

• ticcs_c6000_dspbios_ccsv4: Texas Instruments Code Composer Studio 4
& Texas Instruments DSP/BIOS on C6000

35-23

35 Project and Build Configurations for Embedded Targets

• ticcs_c6000_dspbios_ccsv5: Texas Instruments Code Composer Studio
5.1 & Texas Instruments DSP/BIOS on C6000

• wrsdiab_arm9_vxworks67_rtp: Wind River Systems DIAB Compiler &
ARM 9 & VxWorks 6.7 & real-time process applications

• wrsdiab_arm9_vxworks67_rtp_so: Wind River Systems DIAB Compiler &
ARM 9 & VxWorks 6.7 & real-time process applications with shared object

• wrsdiab_hostsim_vxworks67_rtp: Wind River Systems DIAB Compiler &
VxWorks Host Simulator & VxWorks 6.7 & real-time process applications

• wrsdiab_hostsim_vxworks67_rtp_so: Wind River Systems DIAB
Compiler & VxWorks Host Simulator & VxWorks 6.7 & real-time process
applications with shared object

• wrsdiab_hostsim_vxworks68_rtp: Wind River Systems DIAB Compiler &
VxWorks Host Simulator & VxWorks 6.8 & real-time process applications

• wrsdiab_hostsim_vxworks68_rtp_so: Wind River Systems DIAB
Compiler & VxWorks Host Simulator & VxWorks 6.8 & real-time process
applications with shared object

• wrsgnu_arm9_vxworks67_rtp: Wind River Systems GNU Compiler &
VxWorks Host Simulator & VxWorks 6.7 & real-time process applications

• wrsgnu_hostsim_vxworks67_rtp: Wind River Systems GNU Compiler &
VxWorks Host Simulator & VxWorks 6.7 & real-time process applications
with shared object

• wrsgnu_hostsim_vxworks68_rtp: Wind River Systems GNU Compiler &
VxWorks Host Simulator & VxWorks 6.8 & real-time process applications
with shared object

• xilinx_ise_14_x: Xilinx ISE Design Suite & ARM Cortex-A9 running
Linux on Xilinx Zynq-7000 platform

For more information about supported versions of third-party software, see
“Support for Third Party Products” on page 35-16

Feature Support
With makefiles, you cannot use features that rely on direct communications
between your MathWorks software and third-party IDEs.

35-24

Makefiles for Software Build Tool Chains

You cannot use the following features with makefiles:

• IDE Project Generation

• IDE Automation Interface

• IDE debugger communications during Processor-in-the-loop (PIL)
simulation

Using Makefiles to Generate and Build Software
In addition to this chapter, see the Makefile Generator Tutorial example for
more information about using makefiles to generate code.

Configuring Your Model to Use Makefiles
Update your model Configuration Parameters to use a makefile instead of an
IDE when you build software from the model:

1 Configure your model for your IDE, tool chain, and target hardware, as
described in “Configure Target Hardware Resources” on page 35-3.

2 In the Configuration Parameters dialog, under the Code Generation
tab, select Coder Target.

3 Set Build format to Makefile. For more information, see Build format on
page 9.

4 Set Build action to Build_and_execute. For more information, see Build
action on page 9.

Choosing an XMakefile Configuration
Configure how to generate makefiles:

1 Enter xmakefilesetup on the MATLAB Command Window. The software
opens an XMakefile User Configuration dialog.

35-25

35 Project and Build Configurations for Embedded Targets

2 Set the Template parameter to the option that matches the
Configuration parameter.

Note In most cases, the only option for Template is gmake. However,
if you have installed a Support Package, Template can have multiple
options.

3 For Configuration, select the option that describes your software build
toolchain and target platform. Click Apply.

Note Changing some elements of the XMakefile dialog disables other
elements until you apply the changes. Click Apply or OK after changing:

• Template

• Configurations

• User Templates

• User Configurations

• Tool Directories

35-26

Makefiles for Software Build Tool Chains

Note With the XMakefile User Configuration dialog, if you have an
Embedded Coder license and do not have a Simulink Coder license, the
Configuration list includes two unsupported options: gcc_target or
msvs_host. Disregard those two configurations. Choose one of the other
configurations.

Things to consider while setting Configuration:

• Selecting Display operational configurations only hides configurations
that contain incomplete or invalid information. For a configuration to be
operational, the vendor tool chain must be installed, and the configuration
must have the valid paths for each component of the vendor tool chain. For
more information, see “Making an XMakefile Configuration Operational”
on page 35-28.

• To display the configurations, including non-operational configurations,
clear Display operational configurations only.

• The list of configurations can include non-editable configurations defined in
the software and editable configurations defined by you.

• To create a new editable configuration, use the New button.

• For more information, see “XMakefile User Configuration dialog” on page
35-34.

Building Your Model

In your model, click Build Model . This action creates a makefile and
performs the other actions you specified in Build action.

By default, this process outputs files in the
<builddir>/<buildconfiguration> folder. For example, in
model_name/CustomMW.

Green Hills MULTI Output Folder

With Green Hills MULTI, Embedded Coder outputs the derived files in the
<builddir> folder. For example, in model_ghsmulti.

35-27

35 Project and Build Configurations for Embedded Targets

Making an XMakefile Configuration Operational
When the XMakefile utility starts, it checks each configuration file to verify
that the specified paths for the vendor tool chain are valid. If the paths are
not valid, the configuration is non-operational. Typically, the cause of this
problem is a difference between the path in the configuration and the actual
path of the vendor toolchain.

To make a configuration operational:

1 Clear Display operational configurations only to display
non-operational configurations.

2 Select the non-operational configuration from the Configuration options.

3 When you click Apply, a new dialog prompts you for the folder path of the
missing resources the configuration requires.

Use mapped network drives instead of UNC paths to specify directory
locations. Using UNC paths with compilers that do not support them
causes build errors.

Creating a New XMakefile Configuration

• “Overview” on page 35-28

• “Create a Configuration” on page 35-29

• “Modify the Configuration” on page 35-30

• “Test the Configuration” on page 35-33

Overview
This example shows you how to add support for a software development
toolchain to the XMakefile utility. This example uses the Intel Compiler and
Eclipse IDE, which provides an open framework and allows for otherwise
unsupported toolchains.

35-28

Makefiles for Software Build Tool Chains

Note To specify directory locations, use mapped network drives instead of
UNC paths. UNC paths cause build errors with compilers that do not support
them.

Create a Configuration
When you click New, the new configuration inherits values and behavior
from the current configuration. To create a configuration for the Intel
Compiler, clone a configuration from one of these configurations: msvs_host,
mingw_host, montavista_arm and gcc_target.

Open the XMakefile User Configuration UI by typing xmakefilesetup at the
MATLAB prompt. This action displays the following dialog.

Select an existing configuration, such as msvs_host, mingw_host,
montavista_arm or gcc_target. Click the New button.

A pop-up dialog prompts you for the name of the new configuration. Enter
intel_compiler and click OK.

35-29

35 Project and Build Configurations for Embedded Targets

The dialog displays a new configuration called intel_compiler, based on
the previous configuration.

Modify the Configuration
Adjust the compiler, linker, and archiver settings of the newly created
configuration. This example assumes the location of the Intel compiler is
C:\Program Files\Intel\Compiler\.

Make Utility. You do not need to make changes. This configuration uses the
gmake tool that ships with MATLAB.

35-30

Makefiles for Software Build Tool Chains

Compiler. For Compiler, enter the location of icl.exe in the Intel
installation.

Linker. For Linker, enter the location of the linker executable, xilink.exe.

For Arguments, add the /LIBPATH path to the Intel libraries.

35-31

35 Project and Build Configurations for Embedded Targets

Archiver. For Archiver, enter the location of the archiver, xilib.exe.
Confirm that File extensions for library files includes .lib.

Other tabs. For this example, ignore the remaining tabs. In other
circumstances, you can use them to configure additional build actions. In a
later step of this example, you will configure the software to automatically
build and run the generated code.

35-32

Makefiles for Software Build Tool Chains

Test the Configuration
Open the “sumdiff” model by entering sumdiff on the MATLAB prompt.

Configure the summdiff model for use with the Eclipse IDE. Follow the
steps in “Configure Target Hardware Resources” on page 35-3, setting
IDE/Tool Chain to Eclipse, set Board to Custom, and Processor to Intel
x86/Pentium.

35-33

35 Project and Build Configurations for Embedded Targets

On the Tool Chain Automation page, set Operating System to None or select
Windows. Click OK.

Open the Configuration Parameters for the summdiff model by
pressing Ctrl+E. Set Build format to Makefile and Build action to
Build_and_execute.

Save the model to a temporary location, such as C:\Temp\IntelTest\.

Set that location as a Current Folder by typing cd C:\temp\IntelTest\ at
the MATLAB prompt.

Build the model by pressing Ctrl+B. The MATLAB Command Window
displays something like:

TLC code generation complete.

Creating HTML report file sumdiff_codegen_rpt.html

Creating project: c:\temp\IntelTest\sumdiff_eclipseide\sumdiff.mk

Project creation done.

Building project...

Build done.

Downloading program: c:\temp\IntelTest\sumdiff_eclipseide\sumdiff

Download done.

A command window comes up showing the running model. Terminate the
generated executable by pressing Ctrl+C.

XMakefile User Configuration dialog

• “Active” on page 35-35

• “Make Utility” on page 35-37

• “Compiler” on page 35-37

• “Linker” on page 35-38

• “Archiver” on page 35-38

• “Pre-build” on page 35-39

• “Post-build” on page 35-39

35-34

Makefiles for Software Build Tool Chains

• “Execute” on page 35-40

• “Tool Directories” on page 35-40

Active

Template. Set the Template parameter to the option that matches the
Configuration parameter.

Note In most cases, the only option for Template is gmake. However, if you
have installed a Support Package, Template can have multiple options.

The template defines the syntax rules for writing the contents of the makefile
or buildfile. The default template is gmake, which works with the GNU make
utility.

To add templates to this parameter, save them as .mkt files to the location
specified by the User Templates parameter. For more information, see “User
Templates” on page 35-36.

Configuration. Select the configuration that best describes your toolchain
and target hardware.

35-35

35 Project and Build Configurations for Embedded Targets

You cannot edit or delete the configurations provided by MathWorks. You
can, however, edit and delete the configurations that you create.

Use the New button to create an editable copy of the currently selected
configuration.

Use the Delete button to delete a configuration you created.

Note You cannot edit or delete the configurations provided by MathWorks.

Note Use mapped network drives instead of UNC paths to specify directory
locations. Using UNC paths with compilers that do not support them causes
build errors.

Display operational configurations only. When you open the XMakefile
User Configuration dialog, the software verifies that each configuration
provided by MathWorks contains valid paths to the executable files it uses.
If the paths are valid, the configuration is operational. If the paths are not
valid, the configuration is not operational.

This setting only applies to configurations provided by MathWorks, not
configurations you create.

To display valid configurations, select Display operational configurations
only.

To display the configurations, including non-operational configurations, clear
Display operational configurations only.

For more information, see “Making an XMakefile Configuration Operational”
on page 35-28.

User Templates. Set the path of the folder to which you can add template
files. Saving templates files with the .mkt extension to this folder adds them
to the Templates options.

35-36

Makefiles for Software Build Tool Chains

User Configurations. Set the location of configuration files you create with
the New button.

Make Utility

Make utility. Set the path and filename of the make utility executable.

Arguments. Define the command-line arguments to pass to the make utility.
For more information, consult the third-party documentation for your make
utility.

Optional include. Set the path and file name of an optional makefile to
include.

Compiler

Compiler. Set the path and file name of the compiler executable.

Arguments. Define the command-line arguments to pass to the compiler. For
more information, consult the third-party documentation for your compiler.

Source. Define the file name extension for the source files. Use commas
to separate multiple file extensions.

35-37

35 Project and Build Configurations for Embedded Targets

Header. Define the file name extension for the header files. Use commas
to separate multiple file extensions.

Object. Define the file name extension for the object files.

Linker

Linker. Set the path and file name of the linker executable.

Arguments. Define the command-line arguments to pass to the linker. For
more information, consult the third-party documentation for your linker.

File extensions for library files. Define the file name extension for the file
library files. Use commas to separate multiple file extensions.

Generated output file extension. Define the file name extension for the
generated libraries or executables.

Archiver

Archiver. Set the path and file name of the archiver executable.

Arguments. Define the command-line arguments to pass to the archiver. For
more information, consult the third-party documentation for your archiver.

35-38

Makefiles for Software Build Tool Chains

Generated output file extension. Define the file name extension for the
generated libraries.

Pre-build

Enable Prebuild Step. Select this check box to define a prebuild tool that
runs before the compiler.

Prebuild tool. Set the path and file name of the prebuild tool executable.

Arguments. Define the command-line arguments to pass to the prebuild
tool. For more information, consult the third-party documentation for your
prebuild tool.

Post-build

Enable Postbuild Step. Select this check box to define a postbuild tool
that runs after the compiler or linker.

Postbuild tool. Set the path and file name of the postbuild tool executable.

Arguments. Define the command-line arguments to pass to the postbuild
tool. For more information, consult the third-party documentation for your
postbuild tool.

35-39

35 Project and Build Configurations for Embedded Targets

Execute

Use Default Execute Tool. Select this check box to use the generated
derivative as the execute tool when the build process is complete. Uncheck it
to specify a different tool. The default value, echo, simply displays a message
that the build process is complete.

Note On the Linux operating system, multirate multitasking executables
require root privileges to schedule POSIX threads with real-time priority.
If you are using makefiles to build multirate multitasking executables on
your Linux development system, you cannot use Execute tool to run the
executable. Instead, use the Linux command, sudo, to run the executable.

Execute tool. Set the path and file name of the execute tool executable or
built-in command.

Arguments. Define the command-line arguments to pass to the execute
tool. For more information, consult the third-party documentation for your
execute tool.

Tool Directories

35-40

Makefiles for Software Build Tool Chains

Installation. Use the Tool Directories tab to change the toolchain path of
an operational configuration.

For example, if you installed two versions of a vendor build tool in separate
folders, you can use the Installation path to change which one the
configuration uses.

35-41

35 Project and Build Configurations for Embedded Targets

35-42

36

Verification and Profiling
Code Generated for
Embedded Targets

• “Processor-in-the-Loop (PIL) Simulation” on page 36-2

• “Execution Profiling for Embedded Targets” on page 36-21

• “Stack Profiling for Embedded Targets” on page 36-28

36 Verification and Profiling Code Generated for Embedded Targets

Processor-in-the-Loop (PIL) Simulation

In this section...

“Overview” on page 36-2

“PIL Approaches” on page 36-3

“Communications” on page 36-8

“Running Your PIL Application to Perform Simulation and Verification” on
page 36-14

“Performing a Model Block PIL Simulation via SCI Using Makefiles” on
page 36-14

“Definitions” on page 36-18

“PIL Issues and Limitations” on page 36-19

Overview
Verification consists broadly of running generated code on a processor and
verifying that the code does what you intend. Embedded Coder provides
processor-in-the-loop (PIL) simulation to meet this need. PIL compares the
numeric output of your model under simulation with the numeric output of
your model running as an executable on a target hardware.

With PIL, you run your generated code on a target hardware or instruction
set simulator. To verify your generated code, you compare the output of
model simulation modes, such as Normal or Accelerator, with the output
of the generated code running on the processor. You can switch between
simulation and PIL modes. This flexibility allows you to verify the generated
code by executing the model as compiled code in the target environment.
You can model and test your embedded software component in Simulink and
then reuse your regression test suites across simulation and compiled object
code. This process avoids the time-consuming process of leaving the Simulink
software environment to run tests again on object code compiled for the
production hardware.

Embedded Coder supports the following PIL approaches:

• Model block PIL

36-2

Processor-in-the-Loop (PIL) Simulation

• Top-model PIL

• PIL block

When you use makefiles with PIL, use the “model block PIL” approach. With
makefiles, the other two approaches, “top-model PIL” and “PIL block”, and
are not supported.

PIL Approaches

• “Model Block PIL” on page 36-3

• “Top-Model PIL” on page 36-4

• “PIL Block” on page 36-6

Model Block PIL
Use model block PIL to:

• Verify code generated for referenced models (model reference code
interface).

• Provide a test harness model (or a system model) to generate test vector or
stimulus inputs.

• Switch a model block between normal, SIL, or PIL simulation modes.

To perform a model block PIL simulation, start with a top-model that contains
a model block. The top-model serves as a test harness, providing inputs and
outputs for the model block. The model block references the model you plan
to run on target hardware. During PIL simulation, the referenced model
runs on the target hardware.

For more information about using the model block, see Model Variants and
“Model Reference”.

By default, your MathWorks software uses the IDE debugger for PIL
communications with the target hardware. To achieve faster communications,
consider using one alternatives presented in “Communications” on page 36-8.

To use model block PIL:

36-3

36 Verification and Profiling Code Generated for Embedded Targets

1 Create and share a configuration reference between the top model and
the referenced model, as described in “Share a Configuration for Multiple
Models”.

2 Right-click the Model block, and selectModelReference Parameters.

3 When the software displays the Function Block Parameters: Model
dialog, set Simulation mode to Processor-in-the-loop (PIL) and click
OK.

4 Open the model block.

5 In the referenced model (model block) Configuration Parameters (Ctrl+E),
under Code Generation > Coder Target, set Build action set to
Archive_library. This action avoids a warning when you start the
simulation.

6 Save the changes to both models.

7 In the top-model menu bar, select Simulation > Run. This action builds
the referenced model in the model block, downloads it to your target
hardware, and runs the PIL simulation.

Note In the top-model Configuration Parameters (Ctrl+E), under Code
Generation > Coder Target, leave Build action set to Build_and_execute.
Do not change Build action to Create_Processor_In_the_Loop_Project.

Top-Model PIL
Use top-model PIL to:

• Verify code generated for a top-model (standalone code interface).

• Load test vectors or stimulus inputs from the MATLAB workspace.

• Switch the entire model between normal and SIL or PIL simulation modes.

Setting Model Configuration Parameters to Generate the PIL
Application. Configure your model to generate the PIL executable from
your model:

36-4

Processor-in-the-Loop (PIL) Simulation

1 Configure your model to run on target hardware, as described in “Configure
Target Hardware Resources” on page 35-3.

2 From the model toolstrip, select Simulation > Model Configuration
Parameters.

3 In Configuration Parameters, select Code Generation.

4 Set System Target File to idelink_ert.tlc.

5 From the list of panes under Code Generation, choose Coder Target.

6 Set Build format to Project.

7 Set Build action to Create_processor_in_the_loop_project.

8 Click OK to close the Configuration Parameters dialog.

For more information, see “Code Generation: Coder Target Pane”.

Running the Top-Model PIL Application. To create a PIL block, perform
the following steps:

1 In the model toolstrip, set the Simulation mode to Processor-in-the-loop.

2 In the model toolstrip, click Run.

36-5

36 Verification and Profiling Code Generated for Embedded Targets

A new Simulink Editor opens with the new PIL model block in it. The
third-party IDE compiles and links the PIL executable file. Follow the
progress of the build process in the MATLAB command window.

PIL Block
Use the PIL block to:

• Verify code generated for a top-model (standalone code interface) or
subsystem (right-click build standalone code interface).

• Represent a component running in SIL or PIL mode. The test harness
model or a system model provides test vector or stimulus inputs.

Preparing Your Model to Generate a PIL Block. Start with a model that
contains the algorithm blocks you want to verify on the processor as compiled
object code. To create a PIL application and PIL block from your algorithm
subsystem, follow these steps:

1 Identify the algorithm blocks to cosimulate.

2 Convert those blocks into an unmasked subsystem in your model.

For information about how to convert your process to a subsystem, refer to
Creating Subsystems in Using Simulink or in the online Help system.

3 Open the newly created subsystem.

4 Configure your subsystem to run on target hardware, as described in
“Configure Target Hardware Resources” on page 35-3.

Setting Model Configuration Parameters to Generate the PIL
Application. After you create your subsystem, set the Configuration
Parameters for your model to enable the model to generate a PIL block.

Configure your model to enable it to generate PIL algorithm code and a PIL
block from your subsystem:

1 From the model menu bar, select Simulation > Model Configuration
Parameters. This action opens the Configuration Parameters dialog.

36-6

Processor-in-the-Loop (PIL) Simulation

2 In the Configuration Parameters dialog, select Code Generation.

3 Set System Target File to idelink_ert.tlc.

4 From the list of panes under Code Generation, choose Coder Target.

5 Set Build format to Project.

6 Set Build action to Create_processor_in_the_loop_project.

7 Click OK to close the Configuration Parameters dialog.

For more information, see “Code Generation: Coder Target Pane”.

Creating the PIL Block from a Subsystem. To create a PIL block, perform
the following steps:

1 Right-click the masked subsystem in your model and select C/C++ Code >
Build This Subsystem from the context menu.

A new Simulink Editor opens and the new PIL block appears in it. The
third-party IDE compiles and links the PIL executable file.

This step builds the PIL algorithm object code and a PIL block that
corresponds to the subsystem, with the same inputs and outputs. Follow
the progress of the build process in the MATLAB command window.

2 Copy the new PIL block from the new model to your model. To simulate
the subsystem processes concurrently, place it parallel to your masked
subsystem. Otherwise, replace the subsystem with the PIL block.

To see a PIL block in a parallel masked subsystem, search the product help
for Getting Started with Application Development and select the example
that matches your IDE.

Note Models can have multiple PIL blocks for different subsystems. They
cannot have more than one PIL block for the same subsystem. Including
multiple PIL blocks for the same subsystem causes errors and inaccurate
results.

36-7

36 Verification and Profiling Code Generated for Embedded Targets

Communications

• “TCP/IP” on page 36-9

• “Additional Steps for TI C6000 Processors” on page 36-10

• “Serial Communication Interface (SCI) for Texas Instruments C2000” on
page 36-11

• “IDE Debugger” on page 36-13

Chose one of the following communication methods for transferring code and
data during PIL simulations:

Method Speed Comments

IDE Debugger Slow • Supports PIL communications with
an executable running an embedded
target hardware.

• Supports the largest number of
targets.

• Requires a physical connection
between host and target hardware.

• Only works with builds from IDE
projects. Does not work with builds
from makefiles.

TCP/IP Fast • Supports PIL communications with
an executable running on a Linux or
Windows host.

• Supports embedded targets running
Linux, TI DSP/BIOS, and Wind River
VxWorks.

• Requires network connection between
host and target hardware.

• Works with builds from IDE projects
and from makefiles.

Serial Communication
Interface (SCI)

Fast • Supports PIL communications with
an executable running an embedded
target hardware.

• Supports only TI C28035 and C28335
microcontrollers.

• Requires an SCI connection between
host and target hardware.

• Works with builds from IDE projects
and from makefiles.

36-8

Processor-in-the-Loop (PIL) Simulation

TCP/IP
You can use TCP/IP for PIL communications with a hardware target running:

• Linux

• Texas Instruments DSP/BIOS

• Wind River VxWorks

Using TCP/IP for PIL communications is typically faster than using a
debugger, particularly for large data sets, such as with video and audio
applications.

It also works well when you build an application on a remote Linux target
using the remoteBuild function.

You can use TCP/IP with the following PIL approaches:

• Top-model PIL

• Model block PIL

TCP/IP does not work with the Subsystem PIL approach.

To enable and configure TCP/IP with PIL:

1 Set up a PIL simulation according to the PIL approach you have chosen.

2 In the MATLAB Command Window, use setpref to specify the IP address
of the PIL server (servername).

If you are running the PIL server on a remote target, specify the IP address
of the target hardware. For example:

setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','servername','144.212.109.114');

If you are running PIL server locally, on your host Windows or Linux
system, enter 'localhost' instead of an IP address:

setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','servername','localhost');

36-9

36 Verification and Profiling Code Generated for Embedded Targets

3 Specify the TCP/IP port number to use for PIL data communication. Use
one of the free ports in your system. For example:

setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','portnum', 17025);

4 Enable PIL communications over TCP/IP:

setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','enabletcpip', true);

To disable PIL communications over TCP/IP, change the value to false.
This action automatically enables PIL communications over an IDE
debugger, if an IDE is available.

5 Open the Configuration Parameters in your model. On the Coder Target
pane, set the Operating System parameter to the operating system your
target hardware is running.

Note You cannot use TCP/IP for PIL when the value of Operating
System is None.

6 Regenerate the code or PIL block.

To disable PIL communications over TCP/IP, enter:

setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','enabletcpip', false);

Additional Steps for TI C6000 Processors
Add an IP Config block to the following location in your model:

• For top-model PIL, add it at the top level of your model.

• For model block PIL, add it to the referenced model to which you are
pointing.

• For Subsystem PIL, place it in the subsystem.

Configure the IP Config block settings as described in C6000 IP Config.

To determine the IP address assigned to the PIL server on the C6000 target:

36-10

Processor-in-the-Loop (PIL) Simulation

1 Enter an arbitrary IP address the first time you specify the IP address.

2 Build and run the code for your model.

3 In the CCS command window, observe the actual IP address assigned to
the C6000 processor by the DHCP server.

4 Enter the actual IP address the second time you specify the IP address.

Serial Communication Interface (SCI) for Texas Instruments
C2000
You can use SCI for processor-in-the-loop (PIL) simulations with Texas
Instruments C2000 processors that support Serial Communications Interface
(SCI). For other targets, configure PIL to communicate through TCP/IP or
an IDE debugger.

SCI typically provides faster communications than an IDE debugger,
particularly for large data sets.

To enable and configure SCI with PIL:

1 Set up a PIL simulation according to the PIL approach you have chosen.
For more information, see “PIL Approaches” on page 36-3.

2 In the MATLAB Command Window, use setpref to specify the
Configuration Parameters:

a Select the SCI port on your host computer that will be used for
communicating with the target hardware. For example, to use COM1,
enter the following command:

setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences', 'COMPort','COM1');

b Set the baud rate of the SCI port. For example, if both the host computer
and the target support 115200 baud, enter:

setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','BaudRate', 115200);

c Enable PIL communications over SCI:

setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','enableserial',true);

36-11

36 Verification and Profiling Code Generated for Embedded Targets

3 Configure the serial communications settings on your host computer to
match the preceding values. For example, in Windows 7:

a Open the Windows Device Manager. (Press the Windows key on your
keyboard and search for “Device Manager”.)

b Expand Ports (COM & LPT1).

c Right-click the communications port you previously specified in
MATLAB, such as Communications Port (COM1), and select
Properties.

d Go to the Port Settings tab, and match the value of Bits per second
with the baud rate you previously specified in MATLAB. This value
should match the baud rate you set in MATLAB. For example,
'BaudRate',115200.

4 Regenerate the code or PIL block.

Note: In serial PIL simulation, the changes that you
make to the BaudRate or COMPort parameters in
MathWorks_Embedded_IDE_Link_PIL_Preferences are not
detected, if the following conditions are met:

• You have already built your PIL application.

• You have set the Configuration Parameters >Model Referencing
>Rebuild option to a value other than Always.

• You have not made any changes to the model.

To apply your COM port or baudrate changes, either change the value in
the Configuration Parameters >Model Referencing >Rebuild option
to Always, or re-save the model to force a new build of the PIL application.

To disable PIL communications over SCI, enter:

setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','enableserial',false);

See “Performing a Model Block PIL Simulation via SCI Using Makefiles”
on page 36-14

36-12

Processor-in-the-Loop (PIL) Simulation

IDE Debugger
To enable PIL communications over an IDE debugger, disable PIL
communications over TCP/IP and SCI by entering the following commands:

setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','enabletcpip',false);

setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','enableserial',false);

Then regenerate the code or PIL block.

Using IDE debugger for PIL communication only works when you build your
code from IDE projects. Using IDE debugger for PIL communication does
not work with builds from makefiles.

Configuring Breakpoints. You can use the setStartApplicationPause API to
set breakpoints in the PIL application on the first PIL block simulation. If you
do not use the setStartApplicationPause API, you can configure breakpoints
after the initial run. The breakpoints remain active for subsequent runs.

You can enter the following static API method to pause after loading the
application and manually configure breakpoints:

rtw.connectivity.Launcher.setStartApplicationPause(pauseAmount)

About this method:

• This method tells the MATLAB session to pause immediately after the PIL
launcher starts the PIL application.

• pauseAmount is a pause time in seconds. To disable the pause, enter 0.

When you do not specify a pause, the software displays the following message:

To pause during PIL application start, run: >> rtw.connectivity.Launcher.

setStartApplicationPause(120)

The default pause is 120 sec. You can change this value.

When you specify a pause, a Start PIL Application Pause message box
appears and displays following message:

Pausing during PIL application start for 120s (click OK to continue).

To disable this pause, see the hyperlink in the MATLAB command window.

36-13

36 Verification and Profiling Code Generated for Embedded Targets

• The MATLAB command window shows the following text:

To remove the pause during PIL application start,
run: >> rtw.connectivity.Launcher. setStartApplicationPause(0)

where rtw.connectivity.Launcher. setStartApplicationPause(0) is a
hyperlink.

• The pause times out, or you can clear it early by closing the message box.

• During the pause, you cannot access MATLAB and thus cannot configure
breakpoints programmatically via the IDE Automation Interface API.

• For the PIL block, the debugger stays open between simulation runs. When
you perform an initial simulation run, you can automatically configure
breakpoints via the IDE Automation Interface API before starting the
second simulation.

Running Your PIL Application to Perform Simulation
and Verification
After you add your PIL block to your model, click Simulation > Run or press
Ctrl+T to run the PIL simulation and view the results.

Performing a Model Block PIL Simulation via SCI
Using Makefiles
This example shows you the complete workflow for performing a
processor-in-the loop (PIL) simulation that uses Serial Communications
Interface (SCI) for communications.

Prerequisites
Follow the board vendor’s instructions for setting up a Texas Instruments
C2000-based board that supports SCI. Connect the board to your host
computer using a serial cable.

Configure Your Model for Target Hardware

1 Enter fuelsys_pil in MATLAB. This action opens the fuelsys_pil model
with the title, “Verifying the Fixed-Point Fuel Control System”.

36-14

Processor-in-the-Loop (PIL) Simulation

2 Configure fuelsys_pil. Follow the steps in “Configure Target Hardware
Resources” on page 35-3 setting:

• IDE/Tool Chain to the version of CCS you are using.

• Board to a board that supports using SCI, such as SD F28335 eZdsp.

3 Click Yes.

If you are working with CCSv3, configure fuelsys_pil to use makefiles:

1 Select Simulation > Model Configuration Parameters.

2 In the Configuration Parameters dialog, expand Code Generation and
select Coder Target.

3 On the Coder Target pane, set Build format to Makefile.

If you are working with CCSv4/5, you do not need to configure the model
to use makefiles. Initializing the configuration parameters for CCSv4/5
automatically sets Build format to Makefile.

Configure Your Model for the Model Block PIL Approach

1 In the fuelsys_pil, copy the fuelsys_ctr model and paste it into the vacant
space below. Connect it to the input/output signals provided.

36-15

36 Verification and Profiling Code Generated for Embedded Targets

2 Right-click the upper fuelsys_ctr model, labeled “Model”, and select
ModelReference Parameters.

3 In the Function Block Parameters: Model dialog, set the Simulation
mode parameter to Processor-in-the-loop (PIL). Click the OK button.

4 Open the upper fuelsys_ctr model, labeled “Model”.

5 From the menu in the open fuelsys_ctrmodel, select Simulation > Model
Configuration Parameters (or press Ctrl+E).

6 In the Configuration Parameters dialog, in the Solver pane, set the Type
parameter to Fixed-step, and set Solver to ode3 (Bogacki-Shampine).

36-16

Processor-in-the-Loop (PIL) Simulation

7 In the MATLAB Command Window, enter:

set_param('fuelsys_ctr', 'ModelReferenceSymbolNameMessage', 'none')

8 In the Code Generation > Interface pane, clear the Software
environment absolute time check box.

9 In the Code Generation > Coder Target pane, set the Run time Build
action parameter to Archive library.

10 Save the changes to your model, and leave the model open.

11 Open the top model, fuelsys_pil. Open the Configuration Parameters
dialog, in the Solver pane, verify that the Type parameter is set to
Fixed-step, and reset Solver to ode3 (Bogacki-Shampine).

Note For information other PIL approaches, see “PIL Approaches” on page
36-3.

Enable and configure SCI

1 Use setpref to specify the Configuration Parameters in MATLAB :

setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','COMPort','COM1');

setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','BaudRate',115200);

setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','enableserial',true);

2 Configure the serial communications settings on your host computer to
match the preceding values. For example, in Windows 7:

a Open the Windows Device Manager. (Press the Windows key on your
keyboard and search for “Device Manager”.)

b Expand Ports (COM & LPT1).

c Right-click the communications port you previously specified in
MATLAB, such as Communications Port (COM1), and select
Properties.

d Go to the Port Settings tab, and match the value of Bits per second
with the baud rate you previously specified in MATLAB. This value

36-17

36 Verification and Profiling Code Generated for Embedded Targets

should match the baud rate you set in MATLAB. For example,
'BaudRate',115200.

Configure the Software to Use Makefiles

1 Enter xmakefilesetup in MATLAB. This action opens the XMakefile
User Configuration dialog.

2 In the dialog, set the Configuration parameter to ticcs_c2000_ccsv3,
ticcs_c2000_ccsv4, or ticcs_c2000_ccsv5. To see more options, clear
the Display operational configurations only check box.

3 Click the Apply button, and respond to messages requesting the location of
your tool chain.

4 Click the OK button.

5 Load and run the embedded software on the target hardware, as described
in “Load and Run the Embedded Software Using DSS” on page 43-7.

Run the PIL Simulation

1 Make sure the SD F28335 eZdsp board is connected to your host computer
via serial and USB cables and powered up.

2 Simulate the fuelsys_pil model (press Ctrl+T).

Definitions
PIL Algorithm

The algorithmic code, which corresponds to a subsystem or portion of a model,
to test during the PIL simulation. The PIL algorithm is in compiled object
form to enable verification at the object level.

PIL Application

The executable application that runs on the processor platform. Your coder
product creates a PIL application by augmenting your algorithmic code with

36-18

Processor-in-the-Loop (PIL) Simulation

the PIL execution framework. The PIL execution framework code compiles as
part of your embedded application.

The PIL execution framework code includes the string.h header file so that the
PIL application can use the memcpy function. The PIL application uses memcpy
to exchange data between the Simulink model and the simulation processor.

PIL Block

When you build a subsystem from a model for PIL, the process creates a PIL
block optimized for PIL simulation. When you run the simulation, the PIL
block acts as the interface between the model and the PIL application running
on the processor. The PIL block inherits the signal names and shape from the
source subsystem in your model. Inheritance is convenient for copying the
PIL block into the model to replace the original subsystem for simulation.

PIL Issues and Limitations
Consider the following issues when you work with PIL blocks.

Constraints
When using PIL in your models, keep the following constraints in mind:

• Models can have multiple PIL blocks for different subsystems. They cannot
have more than one PIL block for the same subsystem. Including multiple
PIL blocks for the same subsystem causes errors and inaccurate results.

• A model can contain a single model block running PIL mode.

• A model can contain a subsystem PIL block or a model block in PIL mode,
but not both.

Generic PIL Issues
Refer to PIL Feature Support and Limitations for general information about
using the PIL block with embedded link products.

36-19

36 Verification and Profiling Code Generated for Embedded Targets

With Texas Instruments CCS, PIL with DSP/BIOS Enabled Does
Not Support System Stack Profiling
Enabling DSP/BIOS for Texas Instruments processors disables the stack
profiling option. To use stack profiling with PIL, open the Target Hardware
Resources pane in model Configuration Parameters, and set the Operating
System parameter to None. For help opening the Target Hardware Resources
pane, see “Configure Target Hardware Resources” on page 35-3.

Simulink Coder grt.tlc-Based Targets Not Supported
PIL does not support grt.tlc system target files.

To use PIL, set System target file in the Configuration Parameters > Code
Generation pane to idelink_ert.tlc.

36-20

Execution Profiling for Embedded Targets

Execution Profiling for Embedded Targets

In this section...

“What Is Execution Profiling?” on page 36-21

“Feature Support” on page 36-21

“Execution Profiling during Standalone Execution” on page 36-22

“Execution Profiling during PIL Simulation” on page 36-25

What Is Execution Profiling?
You can measure the execution performance of the generated code running
on your target hardware with Execution Profiler. This feature can be used
to measure CPU utilization during standalone target hardware execution or
processor-in-the-loop (PIL) simulation.

Your software includes a set of utilities for profiling execution of generated
code on target hardware. The utilities profile execution times for synchronous
tasks, asynchronous tasks, and atomic subsystems. You can perform
execution profiling during standalone execution or processor-in-the-loop (PIL)
simulation.

Note To profile by atomic subsystems, your model must include at least one
atomic subsystem. To learn more about creating atomic subsystems, refer to
"Creating Subsystems" in the online help for Simulink software.

Feature Support
Execution profiling is supported on embedded targets, except those running
VxWorks.

Execution profiling is not supported on desktop targets, which are a capability
of Simulink Coder.

36-21

36 Verification and Profiling Code Generated for Embedded Targets

Execution Profiling during Standalone Execution
In standalone execution, instrumented code in the generated code collects
a user-specified number of execution time samples and stores in target
hardware memory. Once target hardware execution is halted the profile
function can be called to transfer profiling data from target hardware memory
to the MATLAB workspace for viewing and analysis.

Feature Support
Execution profiling during standalone execution requires IDE projects (Build
format = Project), which is supported with the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio 3.3

Execution profiling during standalone execution is not supported when using
makefiles (Build format = Makefile).

During standalone execution, you can perform profiling by tasks (synchronous
and asynchronous) or by atomic subsystems.

Profiling by Tasks
To configure a model to use task execution profiling, perform the following
steps:

1 Open the Configuration Parameters dialog for your model.

2 Select the Coder Target pane under the Code Generation pane.

3 Set Build format to Project and set Build action to Build_and_execute.

4 Select Profile real-time execution.

5 In the Profile by list, select Tasks.

36-22

Execution Profiling for Embedded Targets

6 Set the Number of profiling samples to collect. This is the size of the
buffer used to hold profiling data. Enter 2 times the number of samples.

7 Click OK to close the Configuration Parameters dialog.

To view the execution profile for your model:

1 Click Build Model on the model toolstrip. This action builds, loads,
and runs your code on the processor.

2 To stop the running program, select Debug > Halt in the IDE or use
IDE_obj.halt from the MATLAB command prompt. Gathering profiling
data from a running program may yield inaccurate results.

3 At the MATLAB command prompt, enter

profile(IDE_Obj,'execution','report')

to view the MATLAB software graphic of the execution report and the
HTML execution report.

For more information about other reporting options, see the product help
for the profile function.

The profiling plot from running an application that has three rates—the
base rate and two slower rates. Gaps in the Sub-Rate2 task bars indicate
preempted operations.

Profiling by Subsystems
When your models use atomic subsystems, you have the option of profiling
your code based on the subsystems.

To configure a model to use subsystem execution profiling, perform the
following steps:

1 Configure your model for your IDE, tool chain, and target hardware, as
described in “Configure Target Hardware Resources” on page 35-3.

2 On the Coder Target pane, set Build format to Project and set Build
action to Build_and_execute.

36-23

36 Verification and Profiling Code Generated for Embedded Targets

3 Select Profile real-time execution.

4 In the Profile by list, select Atomic subsystems.

5 Set the Number of profiling samples to collect. This is the size of the
buffer used to hold profiling data. Enter 2 times the number of samples.

6 Click OK to close the Configuration Parameters dialog.

To view the execution profile for your model:

1 Click Build Model on the model toolstrip. This action builds, loads,
and runs your code on the processor.

2 To stop the running program, select Debug > Halt in the IDE or use
IDE_obj.halt from the MATLAB command prompt. Gathering profiling
data from a running program may yield inaccurate results.

3 At the MATLAB command prompt, enter:

At the MATLAB command prompt, enter:

profile(IDE_Obj, 'execution','report')

to view the MATLAB software graphic of the execution report and the
HTML execution report.

For more information, see the product help for the profile function.

The profiling plot from running an application that has three subsystems—For
Iterator Subsystem, For Iterator Subsystem1, and Idle Task Subsystem.

36-24

Execution Profiling for Embedded Targets

Execution Profiling during PIL Simulation
You can use Execution Profiler during processor-in-the-loop (PIL) simulation
to measure CPU utilization of each synchronous task. During the PIL
simulation, Execution Profiler stores this execution profile data in an
coder.profile.ExecutionTime object, located in the MATLAB workspace.
After halting the PIL simulation, you can view and analyze this execution
profile data.

Feature Support
For execution profiling during PIL simulation, you can use IDE projects
(Build format = Project) or makefiles (Build format = Makefile).

With IDE projects , you can use the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

36-25

36 Verification and Profiling Code Generated for Embedded Targets

• Texas Instruments Code Composer Studio 3.3

With makefiles, you can use the targets described in “Supported Tool Chains
in Embedded Coder” on page 35-22

During processor-in-the-loop (PIL) simulation, you can profile by synchronous
tasks.

Gathering Execution Profile Data
To gather execution profile data during PIL simulation:

1 Configure a model for PIL simulation, as described in “Processor-in-the-Loop
(PIL) Simulation” on page 36-2.

2 In your model, select Simulation > Model Configuration Parameters.

3 In the Configuration Parameters dialog, select Code Generation, and
then Verification.

4 Select the Measure task execution time check box.

5 Provide a valid MATLAB variable name in the Workspace
edit box. The software uses this name when it creates the
coder.profile.ExecutionTime object.

6 Click OK to close the Configuration Parameters.

7 Run the PIL simulation, as described in “Processor-in-the-Loop (PIL)
Simulation” on page 36-2.

The software creates the coder.profile.ExecutionTime object and stores
the execution profile data in it.

8 Halt the PIL simulation.

Analyzing the Execution Profile Data
After halting the PIL simulation, you can view or analyze the data in the
coder.profile.ExecutionTime object.

36-26

Execution Profiling for Embedded Targets

Depending on the target, the execution profile data is measured in seconds or
timer ticks.

Targets Units

Texas Instruments C2000, C5000, and C6000 processors
with Code Composer Studio IDE

Seconds

Texas Instruments C6000 processors running DSP/BIOS
with Code Composer Studio IDE

Timer Ticks

Analog Devices Blackfin, SHARC, and TigerSHARC
processors with VisualDSP++ IDE

Timer Ticks

Freescale™ MPC74xx, Renesas V850, ARM, and Analog
Devices Blackfin processors with Green Hills MULTI IDE

Timer Ticks

ARM processors running Wind River VxWorks Timer Ticks

The coder.profile.ExecutionTime class has property
TimerTicksPerSecond for getting and setting the data units. You
can use this property on the execution profile data object after halting the PIL
simulation. When the data unit is timer ticks, using the TimerTicksPerSecond
property converts the data units to seconds.

36-27

36 Verification and Profiling Code Generated for Embedded Targets

Stack Profiling for Embedded Targets

In this section...

“Feature Support” on page 36-28

“What is Stack Profiling?” on page 36-28

“Profiling System Stack Use” on page 36-30

Feature Support
Stack profiling is supported on embedded targets, except those running an
operating system or RTOS.

Stack profiling is not supported on desktop targets, which are a capability of
Simulink Coder.

Execution profiling during standalone execution requires IDE projects (Build
format = Project), which is supported with the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio 3.3

Execution profiling during standalone execution is not supported when using
makefiles (Build format = Makefile).

What is Stack Profiling?
The coder product enables you to determine how your application uses the
processor system stack. Using the profile method, you can initialize and test
the size and usage of the stack. This information can help you optimize both
the size of the stack and how your code uses the stack.

To provide stack profiling, profile writes a known pattern to the addresses
in the stack. After you run your application for a while, and then stop your
application, profile examines the contents of the stack addresses. profile

36-28

Stack Profiling for Embedded Targets

counts each address that does not contains the known pattern as used. The
total number of address that have been used, compared to the total number of
addresses you allocated, becomes the stack usage profile. This profile process
does not tell you how often an address was changed by your application.

You can profile the stack with both the manually written code in a project and
the code you generate from a model.

When you use profile to initialize and test the stack operation, the software
returns a report that contains information about stack size, usage, addresses,
and direction. With this information, you can modify your code to use the
stack efficiently. The following program listing shows the stack usage results
from running an application on a simulator.

profile(IDE_Obj,'stack','report')

Maximum stack usage:

System Stack: 532/1024 (51.95%) MAUs used.

name: System Stack
startAddress: [512 0]

endAddress: [1535 0]
stackSize: 1024 MAUs

growthDirection: ascending

The following table describes the entries in the report:

Report Entry Units Description

System Stack Minimum Addressable
Unit (MAU)

Maximum number of
MAUs used and the
total MAUs allocated
for the stack.

name String for the stack
name

Lists the name assigned
to the stack.

36-29

36 Verification and Profiling Code Generated for Embedded Targets

Report Entry Units Description

startAddress Decimal address and
page

Lists the address of
the stack start and the
memory page.

endAddress Decimal address and
page

Lists the address of the
end of the stack and the
memory page.

stackSize Addresses Reports number of
address locations, in
MAUs, allocated for the
stack.

growthDirection Not applicable Reports whether the
stack grows from
the lower address to
the higher address
(ascending) or from
higher to lower
(descending).

Profiling System Stack Use
To profile the system stack operation, perform these tasks in order:

1 Load an application.

2 Set up the stack to enable profiling.

3 Run your application.

4 Request the stack profile information.

Follow these steps to profile the stack as your application interacts with it.
This particular example uses Texas Instruments Code Composer Studio 3.3.
However, you can generalize from this example to another supported IDE.

1 Load the application to profile.

36-30

Stack Profiling for Embedded Targets

2 Use the profile method with the setup input keyword to initialize the
stack to a known state.

profile(IDE_Obj,'stack','setup')

With the setup input argument, profile writes a known pattern into the
addresses that compose the stack.

3 Run your application.

4 Stop your running application. Stack use results gathered from an
application that is running may be inaccurate.

5 Use the profile method to capture and view the results of profiling the
stack.

profile(IDE_Obj,'stack','report')

The following example shows how to set up and profile the stack. The IDE
link handle object, IDE_Obj, must exist in your MATLAB workspace and your
application must be loaded on your processor. This example comes from a
TI C6713 simulator.

profile(IDE_Obj,'stack','setup') % Set up processor stack

%by write A5 to the stack addresses.

Maximum stack usage:

System Stack: 0/1024 (0%) MAUs used.

name: System Stack

startAddress: [512 0]

endAddress: [1535 0]

stackSize: 1024 MAUs

growthDirection: ascending

run(IDE_Obj)

halt(IDE_Obj)

profile(IDE_Obj,'stack','report') % Request stack use report.

36-31

36 Verification and Profiling Code Generated for Embedded Targets

Maximum stack usage:

System Stack: 356/1024 (34.77%) MAUs used.

name: System Stack

startAddress: [512 0]

endAddress: [1535 0]

stackSize: 1024 MAUs

growthDirection: ascending

36-32

37

Processor-Specific
Optimizations for
Embedded Targets

37 Processor-Specific Optimizations for Embedded Targets

Code Replacement Library (CRL)

In this section...

“About Code Replacement Libraries and Optimization” on page 37-2

“Using a Processor-Specific Code Replacement Library to Optimize Code”
on page 37-4

“Process of Determining Optimization Effects Using Real-Time Profiling
Capability” on page 37-4

“Reviewing Processor-Specific Code Replacement Library Changes in
Generated Code” on page 37-5

“Creating Your Own Code Replacement Library” on page 37-8

“Reviewing Code Replacement Library Operators and Functions” on page
37-8

“Tips and Limitations” on page 37-10

About Code Replacement Libraries and Optimization
A Code Replacement Library is a set of one or more function tables that define
processor- and compiler-specific implementations of functions and arithmetic
operators. The code generation process uses these tables when it generates
code from your Simulink model.

The coder product registers processor-specific Code Replacement Libraries
during installation. To use one of the libraries, select the set of tables that
correspond to functions implemented by intrinsics or assembly code for
your processor from the Code Replacement Library list in the model
Configuration Parameters. To do this, complete the following steps:

1 In your model, select Simulation > Model Configuration Parameters.

2 In the Configuration Parameters dialog, select Code Generation and
Interface.

3 Set the Code Replacement Library parameter to the right library for
your processor.

37-2

Code Replacement Library (CRL)

After you select the processor-specific library, the model build process uses the
library contents to optimize generated code for that processor. The generated
code includes processor-specific implementations for sum, sub, mult, div,
and various functions, such as tan or abs, instead of the default ANSI C
instructions and functions. The optimized code enables your application to
run more efficiently and quickly, and in many cases, reduces the size of
the code. For more information about Code Replacement Libraries, refer to
“Introduction to Code Replacement Libraries” on page 23-2 .

For a list of available CRLs, see “Reviewing Code Replacement Library
Operators and Functions” on page 37-8

Code Generation Using the Code Replacement Library
The build process begins by converting your model and its configuration set to
an intermediate form that reflects the blocks and configurations in the model.
Then the code generation phase starts.

During code generation for your model, the following process occurs:

1 Code generation encounters a call site for a function or arithmetic operator
and creates and partially populates a Code Replacement Library entry
object.

2 The entry object queries the Code Replacement Library database for an
equivalent math function or operator. The information provided by the code
generation process for the entry object includes the function or operator
key, and the conceptual argument list.

3 The code generation process passes the Code Replacement Library entry
object to the Code Replacement Library.

4 If a matching table entry is available in the Code Replacement Library,
the query returns a fully-populated Code Replacement Library entry to
the call site, including the implementation function name, argument list,
and build information

5 The code generation process uses the returned information to generate code.

Within the Code Replacement Library that you select for your model, the
software searches the tables that comprise the library. The search occurs in

37-3

37 Processor-Specific Optimizations for Embedded Targets

the order in which the tables appear in either the Code Replacement Viewer
or the Code Replacement Library tool tip. For each table searched, if
the search finds multiple matches for a Code Replacement Library entry
object, priority level determines the match to return. The search returns the
higher-priority (lower-numbered) entry.

For more information about Code Replacement Libraries in the build process,
refer to “Introduction to Code Replacement Libraries” on page 23-2.

Using a Processor-Specific Code Replacement Library
to Optimize Code
Perform the following steps to select the Code Replacement Library for your
processor:

1 Select Simulation > Model Configuration Parameters from the model
menu bar. The Configuration Parameters dialog for your model opens.

2 In the Configuration Parameters dialog, select the Code Generation pane.

3 Use Browse to select idelink_ert.tlc as the System target file.

4 From the list of panes under Code Generation, choose Interface.

5 On the Code Replacement Library list, select the processor family
that matches your processor. Then, click OK to save your changes and
close the dialog.

With the Code Replacement Library selected, your generated code uses the
specific functions in the library for your processor.

To stop using a processor-specific Code Replacement Library, open the
Interface pane in the model Configuration Parameters. Then, select the
C89/C90 (ANSI) library from the Code Replacement Library list.

Process of Determining Optimization Effects Using
Real-Time Profiling Capability
You can use the real-time profiling capability to examine the results of
applying the processor-specific library functions and operators to your

37-4

Code Replacement Library (CRL)

generated code. After you select a processor-specific Code Replacement
Library, use the real-time execution profiling capability to examine the
change in program execution time.

Use the following process to evaluate the effects of applying a processor-specific
Code Replacement Library when you generate code:

1 Enable real-time profiling in your model. Refer to “Execution Profiling for
Embedded Targets” on page 36-21.

2 Generate code for your project using the default Code Replacement Library
C89/C90 ANSI.

3 Profile the code, and save the report.

4 Rebuild your project using a processor-specific Code Replacement Library
instead of the C89/C90 ANSI library.

5 Profile the code, and save the second report.

6 Compare the profile report from running your application with the
processor-specific library selected to the profile results with the ANSI
library selected in the first report.

For an example of verifying the code optimization, search the product help for
the "Optimizing Embedded Code via Code Replacement Library" and select
the example that matches your IDE.

Reviewing Processor-Specific Code Replacement
Library Changes in Generated Code
Use one of the following techniques or tools to see the Code Replacement
Library elements where they appear in the generated code:

• “Reviewing Code Manually” on page 37-6.

• “Using Model-to-Code Tracing” on page 37-6 to navigate from blocks in
your model to the code generated from the block.

37-5

37 Processor-Specific Optimizations for Embedded Targets

• “Using a File Differencing Scheme” on page 37-7 to compare projects
that you generate before and after you select a processor-specific Code
Replacement Library.

Reviewing Code Manually
To see where the generated code uses Code Replacement Library
replacements, review the file modelname.c . Look for code similar to the
following examples.

For example, with CCS:

codeopt_tfl_B.Sum6[j] = ldexp((real_T)Sum[j], -11) + ldexp((real_T)

c62x_mul_s32_s32_s32_sr_sat(codeopt_tfl_P.Gain5_Gain, UnitDelay[j], 6),

For example, with MULTI:

j = mul_s32_s32_s32_sr6_sat(codeopt_tfl_P.Gain1_Gain, rtb_SineWave[i]);

tmp_0 = mul_s32_s32_s32_sr6_sat(codeopt_tfl_P.Gain2_Gain, rtb_UnitDelay[i]);

tmp_1 = j + tmp_0;

For example, with VisualDSP++:

codeopt_tfl_B.UnitDelay3[j] = sharc_mul_s32_s32_s32_sr_sat

(codeopt_tfl_P.Gain4_Gain, codeopt_tfl_B.UnitDelay2[j], 6);

The functions shown are the multiply implementation functions registered
in the Code Replacement Library. In these examples, the function performs
an optimized multiplication operation. Similar functions appear for add,
and sub. For more information about the arguments in the function, refer
to “Introduction to Code Replacement Libraries” on page 23-2 in the online
Help system.

Using Model-to-Code Tracing
You can use the model-to-code report options in the Configuration Parameters
to trace the code generated from a block with a Code Replacement Library.
After you create your model and select a Code Replacement Library, follow
these steps to use the report options to trace the generated code:

1 Open the model Configuration Parameters.

37-6

Code Replacement Library (CRL)

2 From the list of panes under Code Generation, select Report.

3 In the Report pane, select Create code generation report and
Model-to-code, and then save your changes.

4 Press Ctrl+B to generate code from your model.

The Code Generation Report window opens on your desktop. For more
information about the report, refer to the “Analyze the Generated Code
Interface” on page 18-11.

5 Use model-to-code highlighting to trace the code generated for each block
with a Code Replacement Library applied:

• Right-click a block in your model and select C/C++ Code > Navigate
To C/C++ Code from the context menu.

• Select Navigate-to-code to highlight the code generated from the block
in the report window.

Inspect the code to see the function or operator implementation in the
generated code. For more information, refer to “Trace Code Replacements
Generated Using Your CRL” on page 23-195.

If a Code Replacement Library replacement did not occur as you expected,
use the techniques described in “Examine and Validate Code Replacement
Tables” on page 23-191 to help you determine why the build process did not
use the intended function or operator implementation.

Using a File Differencing Scheme
You can also review the Code Replacement Library induced changes in your
project by comparing projects that you generate both with and without the
processor-specific Code Replacement Library.

1 Generate your project with the default C89/C90 ANSI Code Replacement
Library. On the Coder Target panel, set Build action to Create_Project,
Archive_Library, or Build.

2 Save the project to a new name—newproject1.

37-7

37 Processor-Specific Optimizations for Embedded Targets

3 Go back to the Configuration Parameters for your model, and select a Code
Replacement Library right for your processor.

4 Regenerate your project.

5 Save the project with a new name—newproject2

6 Compare the contents of the modelname.c files from newproject1 and
newproject2. The differences between the files show the Code Replacement
Library induced code changes.

Creating Your Own Code Replacement Library
For details about creating your own library, refer to the following sections in
your Embedded Coder documentation:

• “Introduction to Code Replacement Libraries” on page 23-2

• “Create Code Replacement Tables” on page 23-18

• “Examine and Validate Code Replacement Tables” on page 23-191

Reviewing Code Replacement Library Operators and
Functions
Embedded Coder software provides the Code Replacement Viewer to enable
you to review the arithmetic operators and functions registered in Code
Replacement Library tables.

To open the viewer, enter the following command at the MATLAB prompt.

RTW.viewTfl

For details about using the Code Replacement Viewer, refer to “Selecting and
Viewing Code Replacement Libraries” in the online Help system.

At this time, the following Code Replacement Libraries are available:

• C89/C90 (ANSI)

• C99 (ISO)

• GNU99 (GNU)

37-8

Code Replacement Library (CRL)

• C++ (ISO)

• ADI BF53x (ISO)

• ADI BF52x

• ADI BF53x

• ADI SHARC (ISO)

• ADI SHARC

• ADI TigerSHARC

• GCC ARM9

• GCC ARM9E

• GCC ARM10

• GCC ARM11

• GCC ARM Cortex-M3

• GCC ARM Cortex-R4

• GCC ARM Cortex-A5

• GCC ARM Cortex-A8

• GCC ARM Cortex-A9

• MULTI BF53x

• MULTI ARM9

• MULTI ARM9E

• MULTI ARM10

• MULTI ARM11

• TI C28x (ISO)

• TI C28x

• TI C55x (ISO)

• TI C55x

• TI C62x (ISO)

• TI C62x

37-9

37 Processor-Specific Optimizations for Embedded Targets

• TI C64x

• TI C64x+

• TI C67x

• TI C672x

• TI C674x

• Intel IPP (ANSI)

• Intel IPP (ISO)

• Intel IPP/SSE (GNU)

• XPC_BLAS

Tips and Limitations

Intel IPP/SSE (GNU) Works With GCC
The Intel IPP/SSE (GNU) CRL is intended for use with GCC compiler. If
used with other compilers, the code generated for your model may not compile.

37-10

38

Working with Analog
Devices VisualDSP++ IDE

• “Install Support for Analog Devices DSPs” on page 38-2

• “Getting Started” on page 38-4

• “IDE Automation Interface” on page 38-9

• “IDE Project Generator” on page 38-32

• “Reported Limitations and Tips” on page 38-40

38 Working with Analog Devices™ VisualDSP++® IDE

Install Support for Analog Devices DSPs
You can add support for Analog Devices VisualDSP++ DSPs to the Embedded
Coder product, using the following process.

After completing this process, you can use Embedded Coder software to
automatically generate and build code with Analog Devices VisualDSP++ IDE.

Using this installation process, you download and install the following items
on your host computer:

• Related Embedded Coder software features

• Simulink block library called “Embedded Coder Support Package for
Analog Devices VisualDSP++ IDE”

• Related examples

For convenience, these instructions occasionally refer to Analog Devices
VisualDSP++ IDE as the “IDE”.

1 In a MATLAB Command Window, enter targetinstaller. This starts the
Support Package Installer.

2 On the Install or update support package screen, select Internet and
click Next.

3 Select the Analog Devices DSPs check box, and click Next.

The Installation folder parameter specifies where Support Package Installer
puts the target files. You must have write privileges for the installation folder.

4 For the remaining screens, follow the instructions provided by the Support
Package Installer. To get additional information about any particular screen,
click Help.

5 When Support Package Installer confirms that the installation is complete,
click Finish. By default, Support Package Installer displays examples for
Analog Devices DSPs.

6 If you have not already installed Analog Devices VisualDSP++ IDE, install
it now .

38-2

Install Support for Analog Devices™ DSPs

7 Perform the additional configuration steps described in “Installation and
Configuration” on page 38-7.

When you complete this process, you can use Embedded Coder software with
Analog Devices VisualDSP++ IDE and Analog Devices DSPs.

38-3

38 Working with Analog Devices™ VisualDSP++® IDE

Getting Started

In this section...

“Overview” on page 38-4

“Software Structure and Components” on page 38-5

“Software Requirements” on page 38-7

“Installation and Configuration” on page 38-7

Overview
Embedded Coder software provides a connection between MATLAB and the
VisualDSP++ IDE to enable you to access the processor from MATLAB. You
can, manipulate data on the processor, and manage projects within the IDE,
while simultaneously utilizing the MATLAB tools of numerical analysis and
simulation. Using Embedded Coder software, you can perform the following
tasks, and others related to Model-Based Design:

• Function calls — Write scripts in MATLAB software to execute a function
in the VisualDSP++ IDE

• Automation — Write automated tests in MATLAB software to be executed
on your processor, including control and verification operations

• Host-Processor Communication — Communicate with the processor
directly from MATLAB software, without going to the IDE

• Verification and Validation

- Load and execute projects into the VisualDSP++ IDE from the MATLAB
Command Window

- Build and compile code, and then use vectors of test data and parameters
to test the code

- Build and compile your code, and then download the code to the
processor and execute it

• Design models — Design models and algorithms in MATLAB and Simulink
software and run them on the processor

38-4

Getting Started

• Generate code— Generate executable code for your processor directly from
the models designed in Simulink software, and execute it

Embedded Coder software connects MATLAB software and Simulink software
with Analog Devices VisualDSP++ integrated development and debugging
environment from Analog Devices. Embedded Coder software enables you to
use MATLAB and Simulink software to debug and verify embedded code
running on Analog Devices DSPs that VisualDSP++ software supports, such
as the Analog Devices Blackfin, Analog Devices SHARC and Analog Devices
TigerSHARC processor families.

Embedded Coder software includes an IDE Project Generator component.
With the IDE Project Generator component, you can generate a complete
project for the VisualDSP++ IDE from your Simulink software models. You
use Embedded Coder software to generate generic ANSI C code projects
for VisualDSP++ software from models. You can then build and run these
projects on Blackfin, SHARC, and TigerSHARC processors.

The following list suggests some of the uses for the capabilities of the software:

• Create test benches in MATLAB and Simulink software for testing your
manually written or automatically generated code running on ADI DSPs

• Generate code and project files for VisualDSP++ software from Simulink
models for rapid prototyping or deployment of a system or application

• Build, debug, and verify embedded code on ADI DSPs

• Perform processor-in-the-loop (PIL) testing of embedded code

Software Structure and Components

• “IDE Automation Interface” on page 38-6

• “IDE Project Generator” on page 38-6

• “Verification” on page 38-7

Embedded Coder software comprises components—the IDE Automation
Interface component, the IDE Project Generator component, and the
Verification component. The IDE Automation Interface component enables
communication between MATLAB software and Embedded Coder software.

38-5

38 Working with Analog Devices™ VisualDSP++® IDE

The IDE Project Generator component leverages Simulink software and lets
you build models, simulate them, and generate code from the models directly
to the processor.

The Verification component offers capabilities that help you use Model-Based
Design to validate and verify your projects. With the Verification component,
you can simulate algorithms and processes in Simulink models and
concurrently on your processor. Comparing the results helps verify the
fidelity of you model or algorithm code.

IDE Automation Interface
The IDE Automation Interface component allows you to use Embedded Coder
functions and methods to communicate with the VisualDSP++ IDE to perform
the following tasks:

• Automate project management

• Debug programs

• Manipulate the data in the processor internal and external memory, and
in the registers

• Communicate between the host and processor applications

The Debug Component of IDE Automation Interface includes methods and
functions for project automation, debugging, and data manipulation.

IDE Project Generator
The IDE Project Generator component comprises methods that utilize the
VisualDSP++ API to create projects in VisualDSP++ software and generate
code with Simulink Coder and Embedded Coder software. With the interface,
you can do the following:

• Automatic project-based build process — Automatically create and build
projects for code generated by Embedded Coder software.

• Custom code generation — Use System Target Files (STF) to generate
processor-specific and optimized code.

38-6

Getting Started

• Automatic downloading and debugging — Debug generated code in the
VisualDSP++ debugger, using either the instruction set simulator or real
hardware.

• Create and build projects for VisualDSP++ software from Simulink models
— IDE Project Generator uses Simulink Coder or Embedded Coder
software to build projects that work with Analog Devices processors.

• Generate custom code using the Configuration Parameters in your model
with the system target files vdsplink_ert.tlc and vdsplink_grt.tlc.

Verification
Verifying your processes and algorithms is an essential part of developing
applications. The components of Embedded Coder software combine to provide
the following verification tools for you to apply as you develop your code:

• Processor-in-the-loop simulation (PIL)

• Execution profiling

• Stack profiling

Software Requirements
For detailed information about the software and hardware required to use
Embedded Coder software, refer to the Embedded Coder system requirements
areas on the MathWorks Web site:

• Requirements for Embedded Coder:
www.mathworks.com/products/ide-link/requirements.html

• Requirements for use with VisualDSP++:
www.mathworks.com/products/ide-link/adi-adaptor.html

Installation and Configuration

1 Install VisualDSP++ according to the instructions provided with that
software.

2 Right-click MATLAB in the Windows Programs menu and select Run as
administrator.

38-7

http://www.mathworks.com/products/ide-link/requirements.html
http://www.mathworks.com/products/ide-link/adi-adaptor.html

38 Working with Analog Devices™ VisualDSP++® IDE

3 Enter adivdspsetup on the MATLAB Command Window.

4 Use Browse to locate the system folder for Analog Devices VisualDSP++.
This action registers the Embedded Coder with that IDE.

5 Confirm that the installation works by entering IDE_Obj = adivdsp on
the MATLAB Command Window. This action creates an IDE link handle
object for VisualDSP++ in MATLAB, and starts VisualDSP++.

38-8

IDE Automation Interface

IDE Automation Interface

In this section...

“Getting Started with IDE Automation Interface” on page 38-9

“Constructing Objects” on page 38-24

“Properties and Property Values” on page 38-25

“adivdsp Object Properties” on page 38-28

Getting Started with IDE Automation Interface

• “Introducing the IDE Automation Interface” on page 38-9

• “Interactive Learning” on page 38-12

• “Selecting Your Session and Processor” on page 38-13

• “Querying Objects for VisualDSP++ IDE” on page 38-14

• “Loading Files into VisualDSP++ IDE” on page 38-16

• “Running the Project” on page 38-17

• “Working with Global Variables and Memory” on page 38-18

• “Working with Local Variables and Memory” on page 38-20

• “Closing Files and Projects” on page 38-22

• “Closing the Connections or Cleaning Up VisualDSP++ Software” on page
38-23

• “Summary” on page 38-24

Introducing the IDE Automation Interface
Embedded Coder software provides a connection between MATLAB software
and a processor in VisualDSP++ software. You can use objects as a
mechanism to control and manipulate a signal processing application using
the computational power of MATLAB software. This approach can help you
while you debug and develop your application. Another possible use for
automation is creating MATLAB scripts that verify and test algorithms that
run in their final implementation on your production processor.

38-9

38 Working with Analog Devices™ VisualDSP++® IDE

Note Before using the functions available with the objects, you must select
a session in the VisualDSP++ IDE. The object you create is specific to a
designated session in VisualDSP++ IDE.

To get you started using objects for VisualDSP++ software, Embedded Coder
software includes an example script vdspautointtutorial.m. As you work
through this tutorial, you perform the following tasks that step you through
creating and using objects for VisualDSP++ IDE.

1 Select your session.

2 Create and query objects to VisualDSP++ IDE.

3 Use MATLAB software to load files into VisualDSP++ software IDE.

4 Work with your VisualDSP++ IDE project from MATLAB software.

5 Close the connections you opened to VisualDSP++ IDE.

You use these tasks in development work you do with signal processing
applications. Thus, the tutorial provided here gives you a working process and
best practice for using Embedded Coder software and your signal processing
programs to develop programs for a range of Analog Devices processors.

The tutorial covers some methods and functions for Embedded Coder software.
The functions listed first do not require an adivdsp object. The methods listed
require an existing adivdsp object before you can use the function syntax.

Functions for Working with VisualDSP++ Software. The following table
shows functions that do not require an object.

Function Description

listsessions Return information about the boards that
VisualDSP++ IDE recognizes as installed on
your PC.

adivdsp Construct an object that refers to a VisualDSP++
IDE session. When you construct the object you
specify the session by processor.

38-10

IDE Automation Interface

Methods for Working with adivdsp Objects in VisualDSP++ Software.
The following table presents some of the methods that require an adivdsp
object.

Methods Description

add Add a file to a project

address Return the address and page for an entry in the
symbol table in VisualDSP++ IDE

build Build the project in VisualDSP++ software

cd Change the working folder

display (IDE
Object)"

Display the properties of an object that references
a VisualDSP++ software session

halt Terminate execution of a process running on the
processor

info Return information about the object or session

isrunning Test whether the processor is executing a process

load Load a built project to the processor

open Open a file in the project

read Retrieve data from memory on the processor

reset Restore the program counter (PC) to the entry
point for the current program

run Execute the program loaded on the processor

save Save files or projects

visible Set whether VisualDSP++ IDE window is visible
on the desktop while VisualDSP++ IDE is
running

write Write data to memory on the processor

Running VisualDSP++ Software on Your Desktop — Visibility. When
you create an adivdsp object in the tutorial in the next section, Embedded
Coder starts VisualDSP++ software in the background.

38-11

38 Working with Analog Devices™ VisualDSP++® IDE

If VisualDSP++ software is running in the background, it does not appear on
your desktop, in your task bar, or on the Applications page in the Task
Manager. It does appear as a process, idde.exe, on the Processes tab in
Task Manager.

You can make the VisualDSP++ IDE visible with the function visible.
The function isvisible returns the status of the IDE—is it visible on your
desktop. To close the IDE when it is not visible and MATLAB is not running,
use the Processes tab in Windows Task Manager and look for idde.exe.

If an object that refers to VisualDSP++ software exists when you close
VisualDSP++ software, the application does not close. Windows software
moves it to the background (it becomes invisible). Only after you clear objects
that access VisualDSP++ IDE, or close MATLAB, does closing VisualDSP++
unload the application. You can see if VisualDSP++ IDE is running in the
background by checking in the Windows Task Manager. When VisualDSP++
IDE is running, the entry idde.exe appears in the Image Name list on the
Processes tab.

Interactive Learning
You have the option of running this tutorial from the MATLAB Command
Window or entering the functions as described in the following tutorial
sections.

To run the tutorial in MATLAB, click run vdspautointtutorial. This
command launches the tutorial in an interactive mode where the tutorial
program provides prompts and text descriptions to which you respond to move
to the next section. The interactive tutorial covers the same information
provided by the following tutorial sections. You can view the tutorial
MATLAB file used here by clicking vdspautointtutorial.m.

Note To run the interactive tutorial, you must have at least one session
configured in VisualDSP++ software. If you do not yet have a session, use
the Analog Devices VisualDSP++ Configurator to create a session to use for
this tutorial.

38-12

IDE Automation Interface

Selecting Your Session and Processor
Embedded Coder IDE requires that you have at least one session available
for VisualDSP++ software. To help you select the session to use for this
tutorial, and for development work, Embedded Coder software provides a
command line tool, called listsessions, which prints a list of the available
sessions. So that you can use this function in a script, listsessions can
return a MATLAB structure that you use when you want your script to select
a session in the IDE without your help.

Note The session you select is used throughout the tutorial.

1 To see a list of the sessions that you can use, enter the following command
at the MATLAB prompt:

session_list = listsessions

MATLAB returns a list that shows the sessions that Embedded Coder IDE
recognizes as available in your installation.

session_list =

'ADSP-21060 ADSP-2106x Simulator'
'ADSP-21362 ADSP-2136x Simulator'

2 listsessions has a verbose mode that provides further details about the
sessions in a cell array. The array contains structures that describe each
session—the target type, the platform, and the processor.

sessionsinfo = listsessions('verbose');

echo off
sessionname: 'ADSP-21362 ADSP-2136x Simulator'
targettype: 'ADSP-2136x Family Simulator'

platformname: 'ADSP-2136x Simulator'
processors: 'ADSP-21362'

3 Use adivdsp to create an object that accesses a session in VisualDSP++
IDE.

38-13

38 Working with Analog Devices™ VisualDSP++® IDE

IDE_Obj = adivdsp('sessionname','ADSP-21362 ADSP-2136x Simulator','procnum',0)

Sessionname and procnum are property names that specify the property to
set. ADSP-21362 ADSP-2136x Simulator is the session to access, and 0 is
the number of the processor to refer to in the session.

When you use adivdsp, you create an object, in this case IDE_Obj, that
refers to the session you specify in sessionname.

Querying Objects for VisualDSP++ IDE
In this tutorial section you create the connection between MATLAB and
VisualDSP++ IDE. This connection, or object, is a MATLAB object, which for
this session you save as variable IDE_Obj. You use function adivdsp to create
objects. When you create objects, adivdsp input arguments let you define
other object properties, such as the global time-out. Refer to the adivdsp
reference information for more about the input arguments.

Use the generated object IDE_Obj to direct actions to your session processor.
In the following tasks, IDE_Obj appears in function syntax that interacts with
IDE session and the processor: The object IDE_Obj identifies and refers to a
specific session. You need to include the object in method syntax you use to
access and manipulate a project or files in a session in VisualDSP++ IDE.

1 Create an object that refers to your selected session and processor. Enter
the following command at the prompt.

IDE_Obj = adivdsp('sessionname','ADSP-21362 ADSP-2136x Simulator','procnum',0)

If you watch closely, and your machine is not too fast, you see VisualDSP++
software appear briefly when you call adivdsp. If VisualDSP++ was not
running before you created the new object, VisualDSP++ software starts
and runs in the background.

Usually, you need to interact with VisualDSP++ while you develop your
application. The function visible, controls the state of VisualDSP++
software on your desktop. visible accepts Boolean inputs that make
VisualDSP++ software either visible on your desktop (input to visible ≥ 1)
or invisible on your desktop (input to visible = 0). For this tutorial, you
need to interact with the development environment, so use visible to
set the IDE visibility to 1.

38-14

IDE Automation Interface

2 To make VisualDSP++ IDE show on your desktop, enter the following
command at the prompt:

visible(IDE_Obj,1)

3 Next, enter display(IDE_Obj) at the prompt to see the status information.

ADIVDSP Object:
Session name : ADSP-21362 ADSP-2136x Simulator
Processor name : ADSP-21362
Processor type : ADSP-21362
Processor number : 0
Default timeout : 10.00 secs

Embedded Coder software provides methods to read the status of a
processor:

• info— Return a structure of testable session conditions.

• display— Print information about the session and processor.

• isrunning— Return the state (running or halted) of the processor.

4 Type procinfo = info(IDE_Obj).

The IDE_Obj link status information provides data about the hardware, as
follows:

procinfo =

procname: 'ADSP-21362'
proctype: 'ADSP-21362'
revision: ''

5 Verify that the processor is running by entering

runstatus = isrunning(IDE_Obj)

MATLAB responds, indicating that the processor is stopped, as follows:

runstatus =

0

38-15

38 Working with Analog Devices™ VisualDSP++® IDE

Loading Files into VisualDSP++ IDE
In this part of the tutorial, you load the executable code for the CPU in
the IDE. Embedded Coder software includes a tutorial project file for
VisualDSP++ IDE. Through the next commands in the tutorial, you locate
the tutorial project file and load it into VisualDSP++ IDE. The open method
directs VisualDSP++ software to load a project file or workspace file.

Note To continue the tutorial, you must identify or create a folder to which
you have write access. Embedded Coder software cannot create a folder for
you. If you do not have a writable folder, create one in Windows software
before you proceed with the rest of this tutorial.

VisualDSP++ software has its own workspace and workspace files that are
quite different from MATLAB workspace files and the MATLAB workspace.
Remember to monitor both workspaces. The next steps change the working
folder to your new writable folder.

1 Use cd to switch to the writable folder

prj_dir = cd('C:\vdsp_demo')

where the name and path to the writable folder is a string, such as
C:\vdsp_demo. Replace C:\vdsp_demo with the full path to your folder.

2 Change your working folder to the new folder by entering the following
command:

cd(IDE_Obj,prj_dir)

3 Next, use the following command to create a new VisualDSP++ software
project named dot_product_c.dpj in the new folder:

new(IDE_Obj,'debug_demo.dpj')

Look in the IDE to verify that your new project exists. Next you need to
add source files to your project.

4 Add the provided source file—scalarprod.c to the project debug_demo.dpj
using the following command:

38-16

IDE Automation Interface

add(IDE_Obj, [matlabroot '\toolbox\vdsplink\vdspdemos\src\scalarprod.c'])

The variable matlabroot indicates the root folder of your MATLAB
installation. Replace matlabroot with the path to MATLAB on your
machine. For more information about the MATLAB root folder, refer to
matlabroot in the MATLAB documentation.

5 Open the file in the IDE from MATLAB by issuing the following command
to open the file:

open(IDE_Obj,[matlabroot '\toolbox\vdsplink\vdspdemos\src\scalarprod.c'])

Switch to the IDE to verify that the files are in your project and open.

6 Save your project.

save(IDE_Obj,'debug_demo.dpj','project')

Your IDE project is saved with the name debug_demo.dpj in your writable
folder. The input string ’project’ specifies that you are saving a project file.

Running the Project
After you create dot_project_c.dpj in the IDE, you can use Embedded
Coder functions to create executable code from the project and load the code
to the processor.

The next steps in this tutorial build the executable and download and run
it on your processor.

1 Use the following build command to build an executable module from the
project dot_product_c.dpj.

build(IDE_Obj,30) %Optional input argument 30 sets time out period to 30 seconds.

At the end of the build process, Embedded Coder software returns a value
of 1 to indicate that the build succeeded. If the build process returns a 0,
the build failed.

ans =

1

38-17

38 Working with Analog Devices™ VisualDSP++® IDE

2 To load the new executable to the processor, use load with the project file
name and the object name. The name of the executable is debug_demo.dxe,
and it is stored with the project in your writable folder, in a subfolder
named debug.

load(IDE_Obj,'c:\vdsp_demo\debug\debug_demo.dxe',30);

Embedded Coder software provides methods to control processor
execution—run, halt, and reset. To see these methods, use run to start the
program you loaded on the processor, and then use halt to stop the processor.

Try the following methods at the command prompt.

run(IDE_Obj) % Start the program running on the processor.

halt(IDE_Obj) % Halt the processor.

reset(IDE_Obj) % Reset the program counter to start of program.

Working with Global Variables and Memory
After you load your program on the processor, you can access memory locations
and variables. You can then read variables either from the program symbol
table or directly from addresses in memory. Three methods—address, read,
and write, let you get, read, and write to and from your project and processor.

Start by getting the address of the global variable v1 from the debug_demo
project symbol table.

1 Enter the following command to retrieve the address for v1.

address_v1 = address(IDE_Obj, 'v1')

address_v1 =

753666 1

2 Convert the address from decimal format to hexadecimal.

dec2hex(address_v1(1))

ans =

38-18

IDE Automation Interface

B8002

The address of global data array v1 is 0xB8002, which is stored in type
1 memory on the processor

3 With the address of v1 saved as address_v1, use read to return the data
from that location. To specify the data type and the number of values to
read, add the datatype (’int32’) and count (32) input arguments.

value_v1 = read(IDE_Obj, address_v1, 'int32', 32) % Interpret data as 32-bit integers.

value_v1 =

Columns 1 through 10

-37 -133 31 -104 32 66 -123 19 140 -28

Columns 11 through 20

16 80 -2 83 -243 148 56 163 46 45

Columns 21 through 30

-217 -11 -164 49 -3 99 21 -61 -26 101

Columns 31 through 32

-101 -151

4 Repeat the read process for another global variable in the project—v2. Nest
the address method inside the read method to reduce typing.

value_v2 = read(IDE_Obj,address(IDE_Obj,'v2'),'int32',32)

value_v2 =

Columns 1 through 10

-50 5 -17 28 5 31 -23 -156 68 -5

38-19

38 Working with Analog Devices™ VisualDSP++® IDE

Columns 11 through 20

-220 5 -14 57 214 183 213 40 175 144

Columns 21 through 30

-12 -77 -18 77 130 -39 132 107 52 -59

Columns 31 through 32

127 -117

Working with Local Variables and Memory
If you examine the source files for debug_demo in the IDE, you can verify the
values for v1 and v2 in the source file scalarprod.c. You can also use the
address method to get the addresses of local variables on the stack, after
the variable is in scope.

To get the variables in scope (on the stack), you run the program. Adding
a breakpoint to the program allows you to read the stack contents when
the program stops at the breakpoint. Without the breakpoint, the program
runs to completion, and you cannot read the contents of the stack because it
does not exists.

Begin the process by adding a breakpoint to the project file scalarprod.c:

1 Insert a breakpoint on line 100 of program scalarprod.c with the
following command:

insert(IDE_Obj, 'scalarprod.c', 100)

2 Run the program to add the variable to the stack, and move the program
counter to the breakpoint. Add the optional input argument timeout sets
the time out value to 30s instead of the default 20s value:

run(IDE_Obj,'runtohalt',30)

The program stops at the breakpoint on line 100.

38-20

IDE Automation Interface

3 Read the address of the local variable result, and convert it to its
hexadecimal equivalent value.

address_result = address(IDE_Obj,'result','local')

address_result =

933884 1

dec2hex(address_result(1))

ans =

E3FFC

address returns 933884 as the location of result in memory, in type 1
memory on the processor, stored in the MATLAB variable address_result.

4 Use the variable address_result to get the value stored at that address by
issuing the following read command:

actual_value_result = read(IDE_Obj, address_result, 'int32')

actual_value_result =

18875

Verify in the IDE Output Window that 18875 is the value for the dot
product.

5 Use the following command to remove the breakpoint set on line 100.

remove(IDE_Obj, 'scalarprod.c', 100)

MATLAB includes a dot product function to use to verify the value in
actual_value_result. Called dot, the function calculates the dot product of
two input vectors. In this case, the inputs are vectors value_v1 and value_v2.

Comparing the two results—expected_value_result in MATLAB with
actual_value_result from the processor implementation validates your
simulation and implementation. With IDE Automation Interface methods,

38-21

38 Working with Analog Devices™ VisualDSP++® IDE

you can create MATLAB file scripts to test and verify algorithms in their
implementation on a processor.

1 Calculate the expected result by performing the dot function with two
input vectors.

expected_value_result = dot(value_v1, value_v2)

expected_value_result =

18875

2 Test to see if the actual and expected results match.

isequal(expected_value_result, actual_value_result)

ans =

1

3 After verifying the result and removing the breakpoint, run the program to
completion, and then halt and reset the processor.

run(IDE_Obj)
halt(IDE_Obj)
reset(IDE_Obj)

Closing Files and Projects
You can close files in your projects from the MATLAB Command Window.
The method close works at the command line to close programs or projects
in the IDE through the adivdsp object and input keywords that describe
the kind of file to close.

To finish this tutorial, close the open documents or files in the IDE, and then
close the project debug_demo.dpj.

1 Close the open files and documents in the IDE. The open files are text
files, so use the text input argument.

close(IDE_Obj, 'all', 'text')

38-22

IDE Automation Interface

2 Now, close the project.

close(IDE_Obj, 'debug_demo.dpj', 'project')

If you close the VisualDSP++ IDE manually outside of MATLAB, clear the
IDE link handle object in MATLAB. For example, in the MATLAB Command
Window enter:

clear IDE_Obj

Note If you have a Project options dialog open, close the Project options
dialog before using the close or clear methods. The dialog prevents the
methods from working but does not produce an error message.

Closing the Connections or Cleaning Up VisualDSP++ Software
Objects that you create in Embedded Coder software have connections to
VisualDSP++ software. Until you delete these handles, the VisualDSP++
process (idde.exe in the Windows Task Manager) remains in memory.
Closing MATLAB removes these objects automatically, but there may be times
when it helps to delete the handles manually, without quitting MATLAB.

Note When you clear the last adivdsp IDE link handle object, Embedded
Coder software closes VisualDSP++ software. When it closes the IDE, the
link software does not save current projects or files in the IDE, and it does
not prompt you to save them. A best practice is to save your projects and files
before you clear adivdsp objects from your MATLAB workspace.

1 Use the following command to make the IDE invisible if it is visible on
your desktop.

visible(IDE_Obj.0)

2 To delete your connection to VisualDSP++ IDE, use clear IDE_Obj.

38-23

38 Working with Analog Devices™ VisualDSP++® IDE

Summary
During the tutorial you performed the following tasks:

1 Selected your session.

2 Created and queried objects that refer to a session in Embedded Coder to
get information about the session and processor.

3 Used MATLAB to load files into VisualDSP++ IDE, and used methods in
MATLAB to run that file.

4 Accessed variables in the program symbol table and on the processor.

5 Used the IDE Automation Interface methods to compare the results of a
simulation in MATLAB with the same algorithm running on a processor.

6 Closed the files, projects, and connections you opened to VisualDSP++ IDE.

Constructing Objects
When you create a connection to a session in VisualDSP++ software using the
adivdsp function, you create an object. The object implementation relies on
MATLAB object-oriented programming capabilities similar to the objects you
find in MATLAB or Filter Design Toolbox.

The discussions in this section apply to the objects in Embedded Coder
software. Because adivdsp objects use the MATLAB programming
techniques, the information about working with the objects, such as how
you get or set properties, or use methods, apply to the objects you create in
Embedded Coder software.

Like other MATLAB structures, objects in Embedded Coder software have
predefined fields referred to as object properties.

You specify object property values by one of the following methods:

• Specifying the property values when you create the object

• Creating an object with default property values, and changing these
property values later

38-24

IDE Automation Interface

For examples of setting link properties, refer to “Setting Property Values
with set.”

Constructor for adivdsp Objects
The easiest way to create an object is to use the function adivdsp to create an
object with the default properties. Create an object named IDE_Obj referring
to a session in VisualDSP++ software by entering the following syntax:

IDE_Obj = adivdsp

MATLAB responds with a list of the properties of the object IDE_Obj you
created along with the associated default property values.

ADIVDSP Object:
Session name : ADSP-21362 ADSP-2136x Simulator
Processor name : ADSP-21362
Processor type : ADSP-21362
Processor number : 0
Default timeout : 10.00 secs

The object properties are described in the adivdsp documentation.

Note These properties are set to default values when you construct links.

Properties and Property Values

• “Setting and Retrieving Property Values” on page 38-26

• “Setting Property Values Directly at Construction” on page 38-26

• “Setting Property Values with set” on page 38-27

• “Retrieving Properties with get” on page 38-27

• “Direct Property Referencing to Set and Get Values” on page 38-28

• “Overloaded Functions for adivdsp Objects” on page 38-28

Objects in this software have properties associated with them. Each property
is assigned a value. You can set the values of most properties, either when

38-25

38 Working with Analog Devices™ VisualDSP++® IDE

you create the link or by changing the property value later. However, some
properties have read-only values. Also, a few property values, such as the
board number and the processor to which the link attaches, become read-only
after you create the object. You cannot change those after you create your link.

Setting and Retrieving Property Values
You can set adivdsp object property values by either of the following methods:

• Directly when you create the link — see “Setting Property Values Directly
at Construction”

• By using the set function with an existing link — see “Setting Property
Values with set”

Retrieve Embedded Coder software object property values with the get
function.

Direct property referencing lets you either set or retrieve property values for
adivdsp objects.

Setting Property Values Directly at Construction
To set property values directly when you construct an object, include the
following entries in the input argument list for the constructor method
adivdsp:

• A string for the property name to set followed by a comma. Enclose the
string in single quotation marks.

• The associated property value. Sometimes this value is also a string.

Include as many property names in the argument list for the object
construction command as there are properties to set directly.

Setting Object Property Values at Construction. Suppose that you want
to create a link to a session in VisualDSP++ software and set the following
object properties:

• Refer to the specified session.

• Connect to the first processor.

38-26

IDE Automation Interface

• Set the global time-out to 5 s. The default is 10 s.

Set these properties by entering

IDE_Obj = adivdsp('sessionname','ADSP-21060 ADSP-2106x Simulator','procnum',0,'timeout',5);

The sessionname, procnum, and timeout properties are described in Link
Properties, as are the other properties for links.

Setting Property Values with set
After you construct an object, the set function lets you modify its property
values.

Using the set function, you can change the value of a writable object property.

Setting Object Property Values Using set. To set the time-out
specification for the link IDE_Obj from the previous section, enter the
following syntax:

set(IDE_Obj,'timeout',8);

get(IDE_Obj,'timeout');
ans =

8

The display reflects the changes in the property values.

Retrieving Properties with get
You can use the get command to retrieve the value of an object property.

Retrieving Object Property Values Using get. To retrieve the value
of the sessionname property for vd2, and assign it to a variable, enter the
following syntax:

session = get(vd2,'sessionname')

session =

38-27

38 Working with Analog Devices™ VisualDSP++® IDE

ADSP-21060 ADSP-2106x Simulator

Direct Property Referencing to Set and Get Values
You can directly set or get property values using MATLAB structure-like
referencing. Do this by using a period to access an object property by name,
as shown in the following example.

Direct Property Referencing in Links. To reference an object property
value directly, perform the following steps:

1 Create a link with default values.

2 Change its time-out and number of open channels.

IDE_Obj = adivdsp;
IDE_Obj.time = 6;

Overloaded Functions for adivdsp Objects
Several methods and functions in Embedded Coder software have the same
name as functions in other MathWorks products. These functions behave
similarly to their original counterparts, but you apply them to an object. This
concept of having functions with the same name operate on different types of
objects (or on data) is called overloading of functions.

For example, the set command is overloaded for objects. After you specify
your object by assigning values to its properties, you can apply the methods
in this toolbox (such as address for reading an address in memory) directly
to the variable name you assign to your object. You do not have to specify
your object parameters again.

For a complete list of the methods that act on adivdsp objects, refer to
“Working with Analog Devices VisualDSP++ IDE”in the function reference
pages.

adivdsp Object Properties

• “Quick Reference to adivdsp Properties” on page 38-29

38-28

IDE Automation Interface

• “Details About adivdsp Object Properties” on page 38-30

Embedded Coder software provides links to your processor hardware so you
can communicate with processors for which you are developing systems and
algorithms. Because Embedded Coder software uses objects to create the
links, the parameters you set are called properties and you treat them as
properties when you set them, retrieve them, or modify them.

This section details the properties for the objects for VisualDSP++ software.
First the section provides tables of the properties, for quick reference.
Following the tables, the section offers in-depth descriptions of each property,
its name and use, and whether you can set and get the property value
associated with the property. Descriptions include a few examples of the
property in use.

MATLAB users may find much of this handling of objects familiar. Objects
in Embedded Coder software behave like objects in MATLAB and the other
object-oriented toolbox products. C++ programmers may already understand
the concepts described in this section.

Quick Reference to adivdsp Properties
The following table lists the properties for the links in Embedded Coder
software. The second column indicates the object to which the property
belongs. Knowing which property belongs to each object tells you how to
access the property.

Property
Name User Settable? Description

sessionname At construction
only

Reports the name of the session in
VisualDSP++ IDE that the object
references.

procnum At construction
only

Stores the number of the processor in
the session. If you have more than one
processor, this number identifies the
specific processor.

timeout Yes/default Contains the global time-out setting for
the link.

38-29

38 Working with Analog Devices™ VisualDSP++® IDE

Some properties are read only. Thus, you cannot set the property value.
Other properties, you can change. If the entry in the User Settable column is
“At construction only”, you can set the property value only when you create
the object. Thereafter it is read only.

Details About adivdsp Object Properties
To use the objects for VisualDSP++ interface, set values for the following:

• sessionname— Specify the session with which the object interacts.

• procnum— Specify the processor in the session. If the board has multiple
processors, procnum identifies the processor to use.

• timeout— Specify the global time-out value. (Optional. Default is 10 s.)

Details of the properties associated with adivdsp objects appear in the
following sections, listed in alphabetical order by property name.

procnum. Property procnum identifies the processor referenced by an object
for Embedded Coder IDE. Use procnum to specify the processor you are
working with in the session specified by sessionname. The VisualDSP++
Configurator assigns a number to each processor installed in each session.
To determine the value of procnum for a processor, use listsessions or the
Configurator.

To identify a processor, you need the sessionname and procnum values. For
sessions with one processor, procnum equals 0. VisualDSP++ IDE numbers
the processors on multiprocessor boards sequentially from 0 to the total
number of processors. For example, on a board with four processors, the
processors are numbered 0, 1, 2, and 3.

The adivdsp object only supports connecting to processor 0.

sessionname. Property sessionname identifies the session referenced by a
Embedded Coder software. When you create an object, you use sessionname
to specify the session you are intending to interact with. To get the value
for sessionname, use listsessions or the Analog Devices VisualDSP++
Configurator. The Configurator utility assigns the name for each session
available on your system.

38-30

IDE Automation Interface

timeout. Property timeout specifies how long VisualDSP++ software waits
for a process to finish. You set the global time-out when you create an object
for a session in VisualDSP++ IDE. The default global time-out value 10 s. The
following example shows the timeout value for object vd2.

display(vd2)

ADIVDSP Object:
Session name : ADSP-21060 ADSP-2106x Simulator
Processor name : ADSP-21060
Processor type : ADSP-21060
Processor number : 0
Default timeout : 10.00 secs

38-31

38 Working with Analog Devices™ VisualDSP++® IDE

IDE Project Generator

In this section...

“Introducing IDE Project Generator” on page 38-32

“Generate an IDE Project” on page 38-33

“Model Reference” on page 38-36

Introducing IDE Project Generator
IDE Project Generator provides the following features for developing projects
and generating code:

• Automated project building for VisualDSP++ software that lets you create
VisualDSP++ software projects from code generated by Simulink Coder and
Embedded Coder software. IDE Project Generator populates projects in the
VisualDSP++ software development environment.

• Blocks in the library idelinklib_adivdsp for controlling the scheduling
and timing in generated code.

• Highly configurable code generation using model Configuration
Parameters.

• Capability to use one of two system target files to generate code specific to
your processor.

• Highly configurable project build process.

• Automatic downloading and running of your generated projects on your
processor.

To configure your Simulink software models to use the IDE Project Generator
component, do one or both of the following tasks:

• Configure your model for your IDE, tool chain, and target hardware, as
described in “Configure Target Hardware Resources” on page 35-3.

• To use the asynchronous scheduler capability in Embedded Coder software,
add one or more hardware interrupt blocks or idle task block from the
idelinklib_adivdsp library.

38-32

IDE Project Generator

The following sections describe the blockset and the blocks in it, the scheduler,
and the IDE Project Generator component.

Generate an IDE Project

• “Building the Model” on page 38-33

• “Specifying Simulink Configuration Parameters for Your Model” on page
38-34

In this tutorial you build a model and generate a project from the model into
VisualDSP++ IDE.

Note The model shows project generation only. You cannot build and run
the model on your processor without additional blocks.

To generate a project from a model, complete the following tasks:

1 Use Simulink blocks, DSP System Toolbox blocks, and blocks from other
blocksets to create the model application.

2 Configure your model for your IDE, tool chain, and target hardware, as
described in “Configure Target Hardware Resources” on page 35-3.

3 Generate your project.

4 Review your project in VisualDSP++ software.

Building the Model
To build a model, follow these steps:

1 Open the Simulink Library Browser.

2 Use Simulink blocks to create a model, or open one of the example models
for Analog Devices VisualDSP++.

3 Name and save your model before continuing.

38-33

38 Working with Analog Devices™ VisualDSP++® IDE

Specifying Simulink Configuration Parameters for Your Model
The following sections describe how to configure the build and run parameters
for your model. Generating a project, or building and running a model on
the processor, starts with configuring model options in the Configuration
Parameters dialog in Simulink software.

Setting Solver Options. After you have designed and implemented your
digital signal processing model in Simulink software, complete the following
steps to set the Configuration Parameters for the model:

1 Open the Configuration Parameters dialog and set the right options on the
Solver category for your model and for Embedded Coder software.

• Set Start time to 0.0 and Stop time to inf (model runs without
stopping). If you set a stop time, your generated code does not honor the
setting. Set this to inf for completeness.

• Under Solver options, set Type to fixed-step and set Solver to
discrete (no continuous states). For PIL, set Type and Solver
to any setting.

• For Fixed step size (fundamental sample time), enter Auto, and set
Tasking mode for periodic sample times to SingleTasking.

Note Generated code does not honor Simulink stop time from the simulation.
Stop time is interpreted as inf. To implement a stop in generated code, you
must put a Stop Simulation block in your model.

Ignore the Data Import/Export, Diagnostics, and Optimization panes
in the Configuration Parameters dialog. The default settings are right for
your new model.

Setting Code Generation Options. To configure Simulink Coder software
to use the right processor files and to compile and run your model executable
file, set the options in the Code Generation pane in the Configuration
Parameters dialog. Follow these steps to set the Simulink Coder software
options to generate code tailored for your DSP:

1 In the Configuration Parameters dialog, select the Code Generation pane.

38-34

IDE Project Generator

2 In Target selection, click Browse to select the system target file for
Analog Devices processors—vdsplink_grt.tlc. It may already be the
selected target file.

Clicking Browse opens the System Target File Browser to allow you
to changes the system target file.

3 On the System Target File Browser, select the system target file
vdsplink_grt.tlc, and click OK to close the browser.

Setting Coder Target Options. Set the Coder Target options for your
Analog Devices processor.

1 In the Configuration Parameters dialog, select the Hardware
Implementation pane.

2 Verify that Device type matches the target hardware, such as ADI
Blackfin, ADI SHARC, or ADI TigerSHARC.

3 Under Code Generation, select Coder Target pane.

4 Set the following Run-Time options:

• Build action: Create_project.

• Interrupt overrun notification method: Print_message.

5 Set the following options in the dialog under Vendor Tool Chain:

• Set Configuration to Custom.

• Set Compiler options string and Linker options string to blank.

You have configured the Code Generation pane settings to generate a project
for your processor. A few of the panes under the node for the Code Generation
pane, such as Comments and Symbols do not require configuration.

For your new model, the default values for the options in these panes are
right. For other models you develop, you may want to set the options in these
panes to provide information during the build and to run TLC debugging when
you generate code. Refer to your Simulink and Simulink Coder documentation
for more information about setting the Configuration Parameters.

38-35

38 Working with Analog Devices™ VisualDSP++® IDE

Creating Your Project. After you set the Configuration Parameters and
configure Simulink Coder software to create the files you need, you direct
the software to create your project:

1 Click OK to close the Configuration Parameters dialog.

2 project into to generate your project into VisualDSP++ IDE.

When you perform an incremental build with Build action set to
Create_project, the automatic build process starts VisualDSP++ software
and populates a new project in the development environment.

Model Reference

• “How Model Reference Works” on page 38-36

• “Using Model Reference” on page 38-38

• “Configuring Targets to Use Model Reference” on page 38-39

Model reference lets your model include other models as modular components.
This technique is useful because it provides the following capabilities:

• Simplifies working with large models by letting you build large models
from smaller ones, or even large ones.

• Lets you generate code for the modules in the model, and later, regenerate
code for modules that change.

• Lets you develop the modules independently.

• Lets you reuse modules and models by reference, rather than including the
model or module multiple times in your model. Also, multiple models can
refer to the same model or module.

Your Simulink Coder documentation provides much more information about
model reference.

How Model Reference Works
Model reference behaves differently in simulation and in code generation. For
this discussion, you need to know the following terms:

38-36

IDE Project Generator

• The top-model is the root model block or model. It refers to other blocks or
models. In the model hierarchy, this is the topmost model.

• Referenced models are blocks or models that other models reference, such
as models the top-model refers to. Models or blocks below the top-model in
the hierarchy are reference models.

The following sections describe briefly how model reference works. More
details are available in your Simulink Coder documentation in the online
Help system.

Model Reference in Simulation. When you simulate the top-model,
Simulink Coder software detects that your model contains referenced models.
Simulink software generates code for the referenced models and uses the
generated code to build shared library files for updating the model diagram
and simulation. It also creates an executable (.mex file) for each reference
model that is used to simulate the top-model.

When you rebuild reference models for simulations or when you run or update
a simulation, Simulink software rebuilds the model reference files. Whether
reference files or models are rebuilt depends on:

• Whether and how you change the models.

• The Rebuild parameter on the Model Reference pane in the
Configuration Parameters dialog.

Model Reference in Code Generation. Simulink Coder software requires
executables to generate code from models. If you have not simulated your
model at least once, Simulink Coder software creates a .mex file for simulation.

Next, for each referenced model, the code generation process calls make_rtw
and builds each referenced model. This build process creates a library file for
each of the referenced models in your model.

After building the referenced models, the software calls make_rtw on the
top-model, linking to the library files it created for the associated referenced
models.

38-37

38 Working with Analog Devices™ VisualDSP++® IDE

Using Model Reference
With few limitations or restrictions, Embedded Coder software provides full
support for generating code from models that use model reference.

Build Action Setting. The most important requirement for using model
reference with the Analog Devices targets is to set the Build action for Model
blocks used by the simulation to Archive_library.

To set the build action, perform the following steps:

1 Open your model.

2 Select Simulation > Model Configuration Parameters from the model
menus.

3 In the Configuration Parameters dialog, expand the node for the Code
Generation pane and select the Coder Target pane.

4 In the right pane, under Run-Time, select Archive_library from the
Build action list.

If your top-model uses a reference model that does not have the build action
set to Archive_library, the build process automatically changes the build
action to Archive_library and issues a warning about the change.

Selecting the Archive_library setting removes the following options from
the dialog:

• Interrupt overrun notification method

• Compiler options string

• Linker options string

• System stack size (MAUs)

• Profile real-time execution

Other Block Limitations. Model reference with Embedded Coder software
does not allow you to use:

• Noninlined S-functions

38-38

IDE Project Generator

• Memory Allocate block

• Memory Copy block

• Idle Task block

• Hardware Interrupt block for SHARC, TigerSHARC, or Blackfin DSPs

Configuring Targets to Use Model Reference
When you create models to use in Model Referencing, keep in mind the
following considerations:

• Your model must use a system target file derived from the ERT or GRT
targets files.

• When you generate code from a model that references other models, you
must configure the top-level model and the referenced models for the same
system target file.

• Simulink Coder software builds and Embedded Coder software do not
support External mode in model reference. If you select the External mode
option, it is ignored during code generation.

• Your TMF must support use of the shared utilities folder, as described in
Supporting Shared Utility Directories in the Build Process in the Simulink
Coder documentation.

To use an existing processor, or a new processor, with Model Reference, set
the ModelReferenceCompliant flag for the processor. For information about
setting this option, refer to ModelReferenceCompliant in the online Help
system.

If you start with a model that was created prior to MATLAB release R14SP3,
use the following command to set the ModelReferenceCompliant flag to On to
make your model compatible with model reference:

set_param(bdroot,'ModelReferenceCompliant','on')

Code that you generate from Simulink software models by using Embedded
Coder software automatically include the model reference capability. You
do not need to set the flag.

38-39

38 Working with Analog Devices™ VisualDSP++® IDE

Reported Limitations and Tips

Reported Issues
Some long-standing issues apply to the Embedded Coder software. When you
are using adivdsp objects and methods to work with VisualDSP++ software
and supported hardware or simulators, recall the information in this section.

The latest issues in the list appear at the bottom. PIL means
“processor-in-the-loop” and is similar to hardware-in-the-loop operations.

Using 64-bit Symbols in a 64-bit Memory Section on SHARC
Processors
VisualDSP++ compiler design prevents Embedded Coder from generating
code that accesses 64-bit memory locations accurately. To avoid unexpected
results, do not allocate 64-bit data or symbols to 64-bit memory locations
on SHARC processors.

When 64-bit data is in 64-bit memory, the compiler generates code that
accesses the 64-bit locations as two 32-bit values. Thus, the code does not
read and write the 64-bit data accurately. It reads or writes every other 32-bit
location, returning or writing the wrong values and possibly exceeding the
allocated memory.

Refer to pp. 5-33 in the ADSP-2136x SHARC Processor Programming
Reference, revision 1.0 for a description of how the compiler treats 64-bit (long
word) data values.

38-40

39

Working with Eclipse IDE

• “Installing Third-Party Software for Eclipse” on page 39-2

• “Configuring Your MathWorks Software to Work with Eclipse” on page
39-10

• “Troubleshooting with Eclipse IDE” on page 39-15

Note To use the coder product with Eclipse IDE, complete the steps in
“Installing Third-Party Software for Eclipse” on page 39-2 and “Configuring
Your MathWorks Software to Work with Eclipse” on page 39-10

39 Working with Eclipse™ IDE

Installing Third-Party Software for Eclipse

In this section...

“Tested Software Versions” on page 39-2

“Installing Oracle Java Runtime Environment (JRE)” on page 39-3

“Installing Eclipse IDE for C/C++ Developers” on page 39-5

“Verifying the GNU Tool Chain on Linux Host” on page 39-6

“Installing the GNU Tool Chain on Windows” on page 39-7

Tested Software Versions
MathWorks has tested the coder product with the specific software versions
listed in the following tables.

Required for both platforms Tested Versions

Oracle® Java Runtime Environment
(JRE)

JRE 6.0 (Java 1.6.x)

Eclipse IDE for C/C++ Developers
package, which includes the CDT
feature

Ganymede (Eclipse 3.4)

CDT
(If CDT is installed separately from
Eclipse IDE for C/C++ Developers
package, match CDT version with
Eclipse version.)

CDT 5.0

Linux: Additional Software
Required

Tested Versions

GNU GCC (compiler) GCC 4.4

GNU as (assembler — part of the
GNU binutils package)

as 2.18

39-2

Installing Third-Party Software for Eclipse™

Linux: Additional Software
Required

Tested Versions

GNU ar (archiver — part of the GNU
binutils package)

ar 2.18

GNU GDB (debugger) GDB 6.8.x

GNU make make 3.81

Windows: Additional Software
Required

Tested Versions

MinGW 5.1.x

GDB GDB 6.3.x

MSYS 1.0.11

You can try untested versions and combinations of third-party software at
your own risk.

For the most current information about using
the coder product software with Eclipse IDE, see:
www.mathworks.com/products/embedded-coder/eclipse-adaptor.html

Installing Oracle Java Runtime Environment (JRE)
To install the JRE, complete the following steps:

1 At your Windows or Linux command prompt, enter:

java -version

If Java is present, the command line responds with the version information,
as this example shows.

2 If Java is missing or the version is lower than 1.6.x, download and install
JRE 6.0 from http://www.java.com.

39-3

http://www.mathworks.com/products/embedded-coder/eclipse-adaptor.html
http://www.java.com

39 Working with Eclipse™ IDE

3 Get the path of the Java JRE by entering which java on the command line.

4 Set the PATH system variable in your operating system.

For example, in Windows 7:

a Press the Windows key and search for “System environment variables”
and open “Edit the system environment variables”.

b In System Properties, to go Advanced and click Environment
Variables.

c In the System variables, locate and select “Path”.

d Click the Edit button and add the path of the Java JRE to the Variable
value.

For example , add C:\Program Files\Java\jre6\bin; to the Variable
value.

e Click OK to save your changes.

For example, with Linux:

a Open a startup file, such as ~/ .cshrc.

b Add the path of the Java JRE to the PATH variable.

For example, on a 64-bit Linux host computer, if you are using csh or
tcsh, enter:

setenv PATH $PATH:/local/MATLAB/R2011b/sys/java/jre/glnxa64/jre/bin

For example, on a 64-bit Linux host computer, if you are using sh, ksh,
or bash, enter:

PATH=$PATH:/local/MATLAB/R2011b/sys/java/jre/glnxa64/jre/bin ; export PATH

c Save your changes and close the file.

For more information, see http://www.java.com/en/download/help/path.xml.

5 Verify that Java is working by entering java -version again or by visiting
http://www.java.com/en/download/help/testvm.xml.

39-4

http://www.java.com/en/download/help/path.xml
http://www.java.com/en/download/help/testvm.xml

Installing Third-Party Software for Eclipse™

Installing Eclipse IDE for C/C++ Developers

Note The following instructions are based on Eclipse 3.4 (Ganymede). More
recent versions of the Eclipse IDE can have different appearances, menus,
or software package names.

The Eclipse IDE for C/C++ Developers package includes the Eclipse IDE
and the C/C++ Development Tools (CDT). To install Eclipse IDE for C/C++
Developers package, complete the following steps:

1 Download the Ganymede SR2 zip file for Eclipse IDE for C/C++ Developers,
from http://www.eclipse.org/downloads/packages/release/ganymede/sr2.

2 Extract the Eclipse files to a permanent location, such as C:\eclipse\ and
create a desktop shortcut to eclipse.exe.

3 Start Eclipse, and select Help > Software Updates.

4 Look under the Installed Software tab, and verify that Eclipse has the
following three CDT software packages.

• Eclipse C/C++ Development Platform

• Eclipse C/C++ Development Tools

• Mylin Bridge: C/C++ Development

If you have a previous Eclipse installation that does not include CDT,
complete the following steps:

1 In Eclipse, select Help > Software Updates.

2 Click the Available Software tab.

3 Click Ganymede Update Site.

4 Select C and C++ Development, and click Install.

5 When the installation process completes, click the Installed Software
tab, and verify that you have CDT.

39-5

http://www.eclipse.org/downloads/packages/release/ganymede/sr2

39 Working with Eclipse™ IDE

Verifying the GNU Tool Chain on Linux Host
Most Linux distributions include the following GNU C/C++ development
tools. Eclipse and CDT require these tools to compile code, build projects,
and debug applications:

• Assembler (as)

• Archiver (ar)

• compiler and linker (gcc)

• debugger (gdb)

• build utility (make)

Verify that the GNU tools are present and set the tool chain path:

1 On the Linux command line, enter:

• gcc --version

• gdb --version

• as --version

• ar --version

• make --version

2 Compare the version of each tool with the following list of tested versions:

• gcc 4.4

• as 2.18

• ar 2.18

• gdb 6.8.x

• make 3.81

If you are using Eclipse for targeting embedded Linux, disregard the
version numbers in the preceding list.

To install a missing tool or to change the version of the tool, use the
software installation manager that comes with your Linux distribution.

39-6

Installing Third-Party Software for Eclipse™

Alternatively, visit http://directory.fsf.org/GNU/ for more information about
individual tools. Source files for the tools are available from:

• binutils (includes as and ar), http://ftp.gnu.org/gnu/binutils/

• gcc, http://ftp.gnu.org/gnu/gcc/

• gdb, http://ftp.gnu.org/gnu/gdb/

• make, http://ftp.gnu.org/gnu/make/

3 Modify the PATH environment using the right commands for your running
shell. You can also modify the path environment variable in your login
scripts.

If you are using a Bash shell prompt, enter:

PATH=my_tool_path:$PATH

Where my_tool_path is the path to the GNU tool binaries. For example:

PATH=/bin:$PATH

If you are using a C shell prompt, enter:

setenv PATH my_tool_path:$PATH

Where my_tool_path is the path to the GNU tool binaries. For example:

setenv PATH /bin:$PATH

Installing the GNU Tool Chain on Windows
Windows typically does not include GNU C/C++ development tools. Eclipse
and CDT require these tools to compile code, build projects, and debug
applications.

Provide a GNU tool chain for Windows by installing MinGW:

1 Open http://sourceforge.net/projects/mingw/files/.

2 Download and run the latest version of the “Automated MinGW Installer".

39-7

http://directory.fsf.org/GNU/
http://ftp.gnu.org/gnu/binutils/
http://ftp.gnu.org/gnu/gcc/
http://ftp.gnu.org/gnu/gdb/
http://ftp.gnu.org/gnu/make/
http://sourceforge.net/projects/mingw/files/

39 Working with Eclipse™ IDE

Note The earliest version of MinGW available is more recent than the
tested version.

3 Start the MinGW installation wizard to perform a default installation.

Perform a default installation until you reach Select Components. At
that step, select MSYS Basic System.

Then, complete the default installation process. Wait for the installation
wizard to download, and install additional files from the Internet.

Note If you alter the default installation path, C:/MinGW, do not use
spaces in the new path.

Set the PATH environment variable:

1 In Windows, right-click My Computer or Computer, and choose
Properties.

2 Then select Advanced or Advanced system settings, and click
Environment Variables.

3 Under System variables, scroll down to the Path variable.

4 Select Path, and click Edit.

5 Configure the operating system to the GNU tools when there are multiple
paths:

a Add the paths of the MinGW and MSYS bin folders to the beginning of
the Variable value.

b Use semicolons to separate the paths. For example,
C:\mingw\bin;C:\mingw\msys\1.0\bin;

39-8

Installing Third-Party Software for Eclipse™

6 To verify the GNU tools installation and path settings, enter the following
commands on the Windows command line:

• gcc --version

• gdb --version

• as --version

• ar --version

• make --version

Each command displays the tool name and version on the command line. If
you receive a message that the command is not recognized, verify that you
completed the preceding installation and path configuration instructions.

You can use versions of the GNU tools that are more recent than the tested
versions at your own risk.

39-9

39 Working with Eclipse™ IDE

Configuring Your MathWorks Software to Work with
Eclipse

After you install the third-party software, configure the coder product to work
with Eclipse:

1 Close Eclipse IDE before you run eclipseidesetup. For more information,
see “Build Errors” on page 39-16.

2 in the MATLAB Command Window, enter eclipseidesetup. The coder
product opens the “IDE Link: Eclipse Adaptor Setup” dialog, as shown
here on Windows:

Note On Linux, the “IDE Link: Eclipse Adaptor Setup” dialog shows
different options than on Windows

3 Update Executable with the location and file name of the Eclipse
application file. For example, C:\eclipse\eclipse.exe.

39-10

Configuring Your MathWorks® Software to Work with Eclipse™

You can get this value by right-clicking a shortcut for Eclipse and looking
at the properties.

4 Update Workspace with the default location where
Eclipse creates and saves new project files. For example,
C:\WINNT\Profiles\username\workspace.

To find the current workspace, open Eclipse and select File > Switch
Workspace > Other.

In the future, if you change the Eclipse workspace, repeat this configuration
procedure.

Do not use workspace paths that contain spaces. If you have a path with
spaces, recreate the workspace, and then update the path in Eclipse.

5 For Port number, enter a valid, unused, IP port number. For example,
5555.

6 For Site, identify where the coder product uploads and runs the executable
file upon completing the build process. Use either of these options:

• Choose local to run the executable on your Linux or Windows
workstation.

This option requires the Simulink Coder product.

• Choose remote to download the executable to a remote target running
Linux operating system over a network connection (for example, to
connect to an embedded system connection to the Ethernet port on your
workstation).

This option requires the Embedded Coder product.

You must perform additional steps to connect to a remote target running
Linux. See “Additional Configuration Steps to Run Your Executable on a
Remote Embedded Linux Target” on page 39-13.

39-11

39 Working with Eclipse™ IDE

Note Later on, when you configure the Target Hardware Resources tab
in the model Configuration Parameters, and Processor to match the
processor at the Site you selected.

For more information, see “Configure Target Hardware Resources” on page
35-3.

7 When you click OK or Apply, the coder product:

• Verifies the locations of the Executable and Workspace in the Eclipse
Adaptor Setup dialog.

• Verifies that the required third-party software is present.

• Installs the coder product plug-ins in the Eclipse plugins folder. For
example, in C:\Program Files\eclipse\plugins\.

• Saves configuration information to the mwidelink.ini file, located in
the Eclipse plugins folder.

Note When Eclipse starts, it loads the coder product plug-in. The coder
product plug-in loads the port number from mwidelink.ini. To resolve a
port number conflict, change the port number by running eclipseidesetup
again. Do not edit mwidelink.ini.

8 To verify that the configuration process is complete, create a handle object
for the Eclipse IDE. Enter the following command in MATLAB

IDE_Obj = eclipseide

This command, starts Eclipse IDE if it is not already running, and creates
a handle object. For example:

Starting Eclipse(TM) IDE...

ECLIPSEIDE Object:
Default timeout : 10.00 secs
Eclipse folder : C:\eclipse3.4\eclipse
Eclipse workspace: C:\WINNT\Profiles\rolfedh\workspace

39-12

Configuring Your MathWorks® Software to Work with Eclipse™

Port number : 5555
Processor site : local

If you are using more recent versions of the GNU tools, you can disregard
command-line warnings about using untested versions.

9 In Eclipse, click the following icon to see the status of the IDE Link plug-in.

Additional Configuration Steps to Run Your
Executable on a Remote Embedded Linux Target
On Linux host systems, you can configure the coder product to download and
run an executable on a remote target running Embedded Linux.

During the “Configuring Your MathWorks Software to Work with Eclipse” on
page 39-10 process, complete these additional steps:

1 Set Site to remote. The dialog displays additional target hardware and
GNU GCC/GDB Commands parameters.

2 Under target hardware, enter the values the coder product uses to
connect to the target hardware over the network:

• User login: Supply a user name that has trusted “r-” access to the
remote system. The user name must appear in the /etc/hosts.equiv or
$HOME/.rhosts files on the remote system.

• IP address: Enter the IP address of the remote system. To test the
software on your local system instead of the remote system, enter
localhost.

• Port number: Enter the IP port number for communications between
the two systems. For example, 10000.

39-13

39 Working with Eclipse™ IDE

• Download path: Enter the path on the remote system that receives the
compiled executable and related files. For example, ./ sends the files to
the home folder of the user login.

3 Under GNU GCC/GDB Commands, enter the tool chain commands and
optional arguments the coder product uses to build executable for the
target hardware.

For example, if you are using the generic GNU tool chain to build an
executable for target hardware running Embedded Linux, enter:

• Assembler: as

• C Compiler: gcc

• C Linker: gcc

• Archiver: ar

• Debugger: gdb

For example, if you are using the MontaVista Linux tool chain to build an
executable for an ARM processor running Embedded Linux, enter:

• Assembler: arm_v5t_le-as

• C Compiler: arm_v5t_le-gcc

• C Linker: arm_v5t_le-gcc

• Archiver: arm_v5t_le-ar

• Debugger: arm_v5t_le-gdb

4 Click OK to complete the Eclipse Adaptor Setup process.

Also see “Working with Linux Target”.

39-14

Troubleshooting with Eclipse™ IDE

Troubleshooting with Eclipse IDE

In this section...

“Profiling for ARM® Processors Running Embedded Linux Operating
System” on page 39-15

“SIGSEGV Segmentation Fault for GDB” on page 39-16

“GDB Stops on Each Semaphore Post” on page 39-16

“Build Errors” on page 39-16

“Profiling Not Available for Intel x86/Pentium and AMD K5/K6/Athlon
Processors Running Windows or Linux Operating Systems” on page 39-17

“Eclipse Message: “Can’t find a source file”” on page 39-17

“Eclipse Message: “Cannot access memory at address”” on page 39-18

“Some Versions of Eclipse CDT Do Not Catch GCC Errors” on page 39-18

Profiling for ARM® Processors Running Embedded
Linux Operating System
Generating a free-running executable for ARM processors using MontaVista
Tools RemoteHost, you may see the following warning:

Warning: "Real-time execution profiling is not supported for

ARM processors when no operating system is selected. The generated

code will have compiler errors. To profile on ARM processors,

select an operating system via the Target Hardware Resources

and rebuild the model. To enable profiling on ARM processors

when no operating system is selected, refer to the Embedded

Coder documentation."

GCC does not use an extra timer for execution profiling. Instead, Eclipse uses
time.h from the ANSI C lib to define clock_t. When you use the profile
function to profile target applications on ARM® processors running Embedded
Linux, make time.h available for #include.

39-15

39 Working with Eclipse™ IDE

SIGSEGV Segmentation Fault for GDB
If you use Comodo Internet Security (CIS) software on your development
system, CIS causes a SIGSEGV segmentation fault for GDB. When this fault
occurs, you receive the following message:

Debugger name and version: GNU gdb (GDB) 7.0

Program received signal SIGSEGV, Segmentation fault.

In ntdll!RtlpWaitForCriticalSection () (C:\WINDOWS\system32\ntdll.dll)

Continuing...

Program received signal SIGSEGV, Segmentation fault.

In ?? () (C:\WINDOWS\system32\guard32.dll)

If you get this message, click OK and then click Continue.

For more information, see the “Guard32.dll causes SIGSEGV segmentation
fault for GDB debugger CIS 3.9.95478 x32” topic at http://forums.comodo.com/.

GDB Stops on Each Semaphore Post
If you use gdb to debug a target application running on Linux , gdb stops on
each semaphore post. You can override this expected behavior adding the
following text to .gdbinit, the GDB init file:

handle SIG34 nostop noprint pass
handle SIG35 nostop noprint pass

On Linux, .gdbinit resides on your home folder, by
default. For more information about creating .gdbinit and
configuring gdb, consult the GDB User Manual, available from
http://www.gnu.org/software/gdb/documentation/.

Build Errors
If you use eclipseidesetup without closing Eclipse IDE, you may get build
errors similar to the following ones:

The call to idelink_ert_make_rtw_hook, during the exit hook generated the following error:

Error while creating the project.

The build process will terminate as a result.

39-16

http://forums.comodo.com/defense_bugs/guard32dll_causes_sigsegv_segmentation_fault_for_gdb_debugger_cis_3995478_x32-t48069.0.html
http://www.gnu.org/software/gdb/documentation/

Troubleshooting with Eclipse™ IDE

===

Error while creating the project.

===

Error creating a new project.

===

An exception occurred while performing this operation. 0

To solve this problem, close and restart Eclipse IDE.

Profiling Not Available for Intel x86/Pentium and
AMD K5/K6/Athlon Processors Running Windows or
Linux Operating Systems
Profiling is not available for Intel® x86/Pentium and AMD® K5/K6/Athlon
processors running Windows or Linux.

Eclipse Message: “Can’t find a source file”
With specific Configuration Parameters, while building and loading a target
application, Eclipse IDE displays a message that it could not find a source
file. This message appears even if the load action completes. Here is an
example of the message:

Can't find a source file at
"../../sumdiff_bash_eclipseide/sumdiff_bash_main.c
Locate the file or edit the source lookup path
to include its location.

In Configuration Parameters, on the Coder Target pane, in the Vendor Tool
Chain section: If Configuration is set to Release or Custom, the coder
product does not specify the -g compiler option for gcc. Therefore, the build
process does not produce debugging information gdb requires. Without this
information, gdb cannot map the executable to the source file, resulting in the
"Can’t find a source file” message.

To solve this problem, add -g to the Compiler options string for the Custom
and Release configurations, or set Configuration to Debug.

39-17

39 Working with Eclipse™ IDE

Eclipse Message: “Cannot access memory at
address”
If you use the coder product’s halt method to stop the target application,
Eclipse displays a message similar to the following example:

[Switching to thread 5528.0x1664]
Quit (expect signal SIGINT when the program is resumed)
Cannot access memory at address 0x720000
Cannot access memory at address 0x720000

This error is not related to Eclipse IDE. It is a bug with gdb/MinGW. It
typically occurs when gdb tries to access an invalid or protected memory
location.

Some Versions of Eclipse CDT Do Not Catch GCC Errors
If you set a bad compiler flag, specific versions of Eclipse CDT prior to version
7.0.2 fail to catch gcc errors that the flag is wrong.

To reproduce this problem:

1 Open a project and select C/C++ Build > Tool Chain Editor.

2 Set Current builder to CDT Internal Builder.

3 Select Project properties > C/C++ Build > Settings.

4 Set GCC C Compiler: Miscellaneous to -D.

5 Build the project. Notice that gcc displays the following error while the
Problems tab for the Eclipse IDE project does not display errors:

<command-line>: error: macro names must be identifiers

39-18

40

Working with Green Hills
MULTI IDE

• “Install Support for Green Hills® MULTI® IDE” on page 40-2

• “Getting Started” on page 40-4

• “IDE Automation Interface” on page 40-12

• “IDE Project Generator” on page 40-35

• “Breakpoints and PIL” on page 40-44

40 Working with Green Hills® MULTI® IDE

Install Support for Green Hills MULTI IDE
You can add support for Green Hills MULTI IDE to the Embedded Coder
product, using the following process.

After completing this process, you can use Embedded Coder software to
automatically generate and build code with Green Hills MULTI IDE.

Using this installation process, you download and install the following items
on your host computer:

• Related Embedded Coder software features

• Simulink block library called “Embedded Coder Support Package for Green
Hills MULTI IDE”

• Related examples

For convenience, these instructions occasionally refer to Green Hills MULTI
IDE as the “IDE”.

1 In a MATLAB Command Window, enter targetinstaller. This starts the
Support Package Installer.

2 On the Install or update support package screen, select Internet and
click Next.

3 Select the Green Hills MULTI check box, and click Next.

The Installation folder parameter specifies where Support Package Installer
puts the target files. You must have write privileges for the installation folder.

4 For the remaining screens, follow the instructions provided by the Support
Package Installer. To get additional information about any particular screen,
click Help.

5 When Support Package Installer confirms that the installation is complete,
click Finish. By default, Support Package Installer displays examples for
MULTI IDE.

6 If you have not already installed Green Hills MULTI IDE, install it now.

40-2

Install Support for Green Hills® MULTI® IDE

7 In the MATLAB Command Window, enter ghsmulticonfig.

8 In the IDE Link Configuration for Green Hills MULTI dialog that opens,
enter the parameter values, and click OK.

When you complete this process, you can use Embedded Coder software with
Green Hills MULTI IDE.

40-3

40 Working with Green Hills® MULTI® IDE

Getting Started

In this section...

“Overview” on page 40-4

“Software Structure and Components” on page 40-5

Overview
Embedded Coder software provides an interface between MATLAB and the
Green Hills MULTI software. The software enables you to

• Access the processor

• Manipulate data on the processor

• Manage projects within the IDE

while using the MATLAB numerical analysis and simulation functions.

Embedded Coder software connects MATLAB and Simulink with Green Hills
MULTI integrated development and debugging environment from Green
Hills. The software enables you to use MATLAB and Simulink to debug and
verify embedded code running on many microprocessors that Green Hills
MULTI software supports, such as the ARM, Freescale MPC7400, Blackfin,
and Renesas V850 families.

Using the software, you can perform the following tasks and others related to
Model-Based Design:

• Function calls — Write scripts in MATLAB to execute functions in the
Green Hills MULTI IDE

• Automation — Write automated tests in MATLAB to execute on your
processor, including control and verification operations

• Host-Processor Communication — Communicate with the processor
directly from MATLAB, without going to the IDE

• Verification and Validation

40-4

Getting Started

- Load and execute projects into the Green Hills MULTI software from
the MATLAB Command Window

- Build and compile code, and then use vectors of test data and parameters
to test the code

- Build and compile your code, and then download the code to the
processor and execute it

• Design models — Design models and algorithms in MATLAB and Simulink
and run them on the processor

• Generate code — Generate executable code for your processor directly from
the models designed in Simulink, and execute it

Embedded Coder software includes an IDE Project Generator component.
With the IDE Project Generator component, you can generate a complete
project file for Green Hills MULTI software from Simulink models, using
C code generated with Embedded Coder software. Thus, you can use both
Simulink Coder and Embedded Coder software to generate generic ANSI C
code projects for Green Hills MULTI from Simulink models. You can then
build and run the code on supported processors.

The following list suggests some of the uses for Embedded Coder software:

• Create test benches in MATLAB and Simulink for testing your manually
written or automatically generated code running on a variety of DSPs

• Generate code and project files for Green Hills MULTI software from
Simulink models using both Simulink Coder and Embedded Coder software
for rapid prototyping or deployment of a system or application

• Build, debug, and verify embedded code on supported processors with
MATLAB, Simulink, and Green Hills MULTI software

• Perform processor-in-the-loop (PIL) testing of embedded code

Software Structure and Components

• “Components” on page 40-6

• “IDE Automation Interface” on page 40-6

• “IDE Project Generator” on page 40-7

40-5

40 Working with Green Hills® MULTI® IDE

• “Verification” on page 40-7

• “Configuring Your Software” on page 40-7

• “Configuring Green Hills® MULTI® to use Full Folder Paths” on page 40-10

Components
Embedded Coder software comprises these components

• IDE Automation Interface — Enables communication between MATLAB
and Green Hills MULTI software.

• IDE Project Generator — Uses Simulink to let you build models, simulate
them, and generate code from the models directly to the processor.

• Verification — Validate and verify your projects. You can simulate
algorithms and processes in Simulink models and concurrently on your
processor. Comparing the concurrent simulation results helps verify the
fidelity of your model or algorithm code.

IDE Automation Interface
The IDE Automation Interface component enables you to use MATLAB
functions and methods to communicate with the Green Hills MULTI software.
With the MATLAB functions, you can perform the following program
development tasks:

• Automate project management.

• Debug projects by manipulating the data in the processor memory (internal
and external) and registers.

• Exercise functions from your project on the processor.

• Communicate between the host and processor applications.

The IDE Automation Interface component provides the following functionality
in the Debug component—methods and functions for project automation,
debugging, and data manipulation.

40-6

Getting Started

IDE Project Generator
The IDE Project Generator component is a collection of methods that use
the Green Hills MULTI API to create projects in Green Hills MULTI and
generate code. With the interface, you can do the following:

• Automatic project-based build process — Automatically create and build
projects for code generated by Embedded Coder.

• Custom code generation — Use System Target Files (STF) to generate both
processor-specific and optimized code.

• Automatic downloading and debugging — Debug generated code in the
Green Hills MULTI debugger, using either the instruction set simulator or
real hardware.

• Create and build projects for Green Hills MULTI from Simulink models —
IDE Project Generator uses Simulink Coder or Embedded Coder to build
projects that work with supported processors.

• Generate custom code using the Configuration Parameters in your model
with the system target files idelink_ert.tlc and idelink_grt.tlc.

Verification
Verifying your processes and algorithms is an essential part of developing
applications. The components of Embedded Coder software provide the
following verification tools.

• Processor in the loop (PIL) simulation— Use simulation techniques
to verify generated code running in an instruction set simulator or real
hardware environment.

• Execution profiling — Gather execution profiling measurements with
Green Hills MULTI instruction set simulator to establish the timing
requirements of your algorithm.

Configuring Your Software
Embedded Coder software requires some information about your MULTI
installation before you can use the software to develop projects in MULTI
from MATLAB. To configure the interface between MATLAB and MULTI,
provide the information in the following table. Embedded Coder software

40-7

40 Working with Green Hills® MULTI® IDE

provides a GUI-based configuration utility to help you configure the software
and interface.

GUI
Parameter

Configuration
Information

Description

Directory MULTI
installation
folder

Identifies the path to your Green Hills
software.

Configuration Primary
processor

Identifies the processor on which you
are developing.

Debug
server

Debug server
type

Specifies the type of debug server to use.

Host name Host name Specifies the name of the system
running Simulink software.

Port number Port number Specifies the port for host/target
communications. The service listens on
this port.

Configuring Embedded Coder Software. You must configure your
installation before you start working with the software and MULTI.

To generate code for Blackfin processors, the software supports only the
Green Hills version of the Blackfin compiler.

Note The software does not support using Analog Devices Blackfin
compiler. When you select your configuration during the configuration
process, do not select bfadi_standalone.tgt from the Configuration list.
bfadi_standalone.tgt uses the ADI compiler.

Follow these steps to open the Embedded Coder configuration utility:

Note You must perform this configuration process before using Embedded
Coder software.

40-8

Getting Started

1 Enter ghsmulticonfig at the MATLAB prompt.

The Embedded Coder Configuration dialog opens, as shown in the following
figure.

2 In the Directory field, enter the path to the executable file multi.exe for
your Green Hills MULTI installation. To search for the file, click Browse.

3 From the Configuration list, select your primary processor.
Embedded Coder software supports a variety of processors. Choose
one that matches your development platform. In many cases, the
processor_standalone.tgt variants, such as ppc_standalone.tgt, work
well. Refer to your Green Hills MULTI documentation for more information
about the configuration options for processors.

4 Enter the debug server string in Debug server. The string you enter
sets specific values for processors, such as the board support library and
whether the processor is big or little endian.

The standard input string is debugconnection. To use a processor
simulator, such as the MPC7448 simulator, enter the string

40-9

40 Working with Green Hills® MULTI® IDE

simppc -cpu=ppc7448 -fast -dec-rom_use_entry

Your MULTI documentation provides more information about the debug
server options and how to use them. You can find more debug server string
for simulators in the reference material for ghsmulticonfig.

Note If you use a custom board, add the -bsp option to the Debug server
string to specify your processor. For example, add -bsp=mpc7448 if you use
the MPC7448 EVB.

5 In Host name, enter the name of the machine that is going to run the IDE
service. When you construct a ghsmulti object, the ghsmulti function
starts the IDE service. To launch the service, the function needs to know
where the service will run. The Host name string identifies that location.
The default value is localhost, meaning the service runs on the local
machine. Other inputs are not valid.

6 Enter the port number for the service in Port number.

Port number 4444 is the default port value. To change the port used, enter
a different value in this field. Verify that the port you enter is available. If
the port number you enter is not available, the IDE service does not start.
Thus, you get an error message in MATLAB when you try to construct a
ghsmulti object.

7 Select or clear Show server status window to specify whether the IDE
service status appears in the task bar. The default value is to show the
service status. Clearing Show server status window hides the status
in the task bar. Select this option as a best practice. Keeping this option
selected enables the software to shut down the communication services
for Green Hills MULTI completely.

8 Click OK to complete the configuration process and close the dialog.

Configuring Green Hills MULTI to use Full Folder Paths
By default, the Show Paths option in MULTI uses relative file paths.
Configure MULTI to use full folder paths instead:

40-10

Getting Started

1 Start MULTI from your desktop.

2 Switch to the Project Manager tool.

3 Select View > Show Paths > Full Paths.

Note With Green Hills MULTI, Embedded Coder outputs the derived files in
the <builddir> folder. For example, in model_ghsmulti.

40-11

40 Working with Green Hills® MULTI® IDE

IDE Automation Interface

In this section...

“Getting Started with IDE Automation Interface” on page 40-12

“Constructing Objects” on page 40-28

“Properties and Property Values” on page 40-29

“ghsmulti Object Properties” on page 40-32

Getting Started with IDE Automation Interface

• “Introducing the IDE Automation Interface” on page 40-12

• “Starting and Stopping Green Hills® MULTI® From the MATLAB Desktop”
on page 40-14

• “Interactive Learning” on page 40-18

• “Querying Objects for Green Hills® MULTI® Software” on page 40-18

• “Loading Files into Green Hills® MULTI® Software” on page 40-19

• “Running the Project” on page 40-21

• “Working With Data in Memory” on page 40-21

• “More Memory Data Manipulation” on page 40-24

• “Closing the Connections to Green Hills® MULTI® Software” on page 40-26

• “Review” on page 40-27

Introducing the IDE Automation Interface
Embedded Coder software provides a connection between MATLAB software
and a processor in Green Hills MULTI development environment. You
use MATLAB objects as a mechanism to control and manipulate a signal
processing application using the computational power of MATLAB software.
This approach can help you while you debug and develop your application.
Another possible use for automation is creating MATLAB scripts that verify
and test algorithms that run in their final implementation on your production
processor.

40-12

IDE Automation Interface

Note Before using the functions available with the objects, you must
designate a server and processor in Green Hills MULTI software. The object
you create is specific to the server and processor you specify.

To help you start using objects in the software, Embedded Coder software
includes a tutorial—multilinkautointtutorial.m. As you work through
this tutorial, you perform the following tasks that step you through creating
and using objects to interact with the Green Hills MULTI IDE:

1 Select your primary server and port.

2 Create and query objects to Green Hills MULTI IDE.

3 Use MATLAB to load files into Green Hills MULTI IDE.

4 Work with your Green Hills MULTI IDE project from MATLAB.

5 Close the connections you opened to Green Hills MULTI IDE.

The tutorial covers some methods and functions for the software. The
following tables show functions and methods for the software. The functions
do not require an object. The methods require an existing ghsmulti object to
use as an input argument for the method.

Functions for Working with Green Hills MULTI. The following table
shows functions that do not require an object.

Function Description

ghsmulti Construct an object that refers to a Green Hills
MULTI IDE instance. When you construct the
object you specify the IDE instance by host and
port.

ghsmulticonfig Set Embedded Coder software preferences.

Methods for Working with ghsmulti Objects in Green Hills MULTI. The
following table presents some of the methods that require a ghsmulti object.

40-13

40 Working with Green Hills® MULTI® IDE

Methods Description

add Add file to project

address Return address and page for entry in symbol
table in Green Hills MULTI IDE

build Build project in Green Hills MULTI

cd Change working folder

connect Connect IDE to processor

display (IDE
Object)"

Display properties of object that references Green
Hills MULTI IDE

halt Terminate execution of process running on
processor

isrunning Test whether processor is executing process

load Load built project to processor

open Open file in project

read Retrieve data from memory on processor

regread Read values from processor registers

regwrite Write data values to registers on processor

reset Restore program counter (PC) to entry point for
current program.

restart Restore processor to program entry point

run Execute program loaded on processor

write Write data to memory on processor

Starting and Stopping Green Hills MULTI From the MATLAB
Desktop
Embedded Coder software provides you the ability to control MULTI software
from the MATLAB command window. When you create a ghsmulti object,
MATLAB starts the services shown in the following table to enable MATLAB
to communicate with the Green Hills MULTI IDE:

40-14

IDE Automation Interface

Service Type for
Each Port

Process Name Description

Python Service mpythonrun.exe Python is a programming
language the software uses
to establish a connection
between MATLAB and
MULTI.

Python Service svc_python.exe Connection to IDE.

Python Service svc_router.exe Connection to IDE.

Python Service svc_statemgr.exe Connection to IDE

Python Service svc_window.exe Connection to IDE.

IDE service Not applicable Enables MATLAB to send
commands to the Green
Hills MULTI development
environment. This is a child
process of the python services.

Each time you create a ghsmulti object, the software starts another set of the
python services shown in the table.

Starting Green Hills MULTI From MATLAB. When you use the ghsmulti
function, the software starts two classes of services—python services and the
IDE service for each new port. The entries in the following table describe how
the software controls the IDE when you create a ghsmulti object:

Create ghsmulti Object with ghsmulti
Function

Status
of IDE

Result

id=ghsmulti
Not
running

The software starts the IDE
service and the IDE connects to
the default host name and port

40-15

40 Working with Green Hills® MULTI® IDE

Create ghsmulti Object with ghsmulti
Function

Status
of IDE

Result

number—localhost and 4444 as set
in the configuration options.

id=ghsmulti('hostname','localhost','portnum',4444)

Not
running

The software starts the IDE service
and the IDE and connects to the
specified host name and port
number—localhost and 4444.

id2=ghsmulti
Running The software connects to the existing

IDE service connected to the default
host name and port.

id2=ghsmulti('hostname','localhost','portnum',4446)

Running The software starts a new the IDE
service connected to the specified host
name and port number.

When the software starts the IDE service, it displays a dialog that includes
the following details:

Hostname— the name of the host. For example, localhost

Port Num — the port number. For example, 4444

#Clients — the number of clients. For example, 1

MultiDir— the location of the multi installation. For example, C:\ghs5_01

To open the MULTI Launcher utility, click the Launcher button in the
service dialog.

Stopping Green Hills MULTI From MATLAB. After you complete your
development work with the software, best practice suggests that you close the
IDE from MATLAB. Two conditions control how you close the IDE, as shown
in the following table:

40-16

IDE Automation Interface

The IDE service State To Close the IDE

One or more services appear in
the task bar and the IDE service
dialoges are visible.

Perform these steps:

1 Enter clear all in MATLAB to
remove the ghsmulti objects from
your workspace.

2 Verify that the MULTI clients
are disconnected by checking that
#Clients in each service dialog is
0.

3 Close the service dialoges.

Services appear in the task bar but
the service dialoges are not visible.

Perform these steps:

1 Enter clear all in MATLAB to
remove the ghsmulti objects from
your workspace.

2 Open the Microsoft Windows Task
Manager.

3 Click Processes.

4 Select svc_router.exe from
the list. Closing this service
stops mpythonrun.exe,
svc_window.exe, and
svc_statemgr.exe.

5 Click End Now.

6 Select svc_python.exe from the
list.

7 Click End Now.

40-17

40 Working with Green Hills® MULTI® IDE

Note Clicking the task bar icon for the service and selecting close does not
close the IDE.

Interactive Learning
You have the option of running this tutorial from the MATLAB Command
Window or entering the functions as described in the following tutorial
sections.

To run the tutorial in MATLAB, click run multilinkautointtutorial. This
command launches the tutorial in an interactive mode where the tutorial
program provides prompts and text descriptions to which you respond to move
to the next section. The interactive tutorial covers the same information
provided by the following tutorial sections. You can view the tutorial
MATLAB file used here by clicking multilinkautointtutorial.m.

Querying Objects for Green Hills MULTI Software
In this tutorial section you create the connection between MATLAB and
Green Hills MULTI IDE. This connection, or ghsmulti object, is a MATLAB
object that you save as variable id. You use function ghsmulti to create
ghsmulti objects. ghsmulti supports input arguments that let you specify
values for ghsmulti object properties, such as the global timeout. Refer to the
ghsmulti reference information for more about the input arguments.

Use the generated object id to direct actions to your project and processor.
In the following tasks, id appears in method syntax that interacts with the
IDE primary target and the processor: The object id identifies and refers to a
specific instance of the IDE.

You must include the object in the method syntax you use to access and
manipulate a project or files in a session in Green Hills MULTI software:

1 Create an object that refers to your selected service and port. Enter the
following command at the prompt.

id = ghsmulti('hostname','localhost','portnum',4444)

2 Next, enter display(id) at the prompt to see the status information.

40-18

IDE Automation Interface

MULTI Object:
Host Name : localhost
Port Num : 4444
Default timeout : 10.00 secs
MULTI Dir : C:\ghs\multi500\ppc\

Embedded Coder software provides methods to read the status of a
processor:

• info— Return a structure of testable session conditions.

• display— Print information about the session and processor.

• isrunning— Return the state (running or halted) of the processor.

3 Verify that the processor is running by entering

runstatus = isrunning(id)

The MATLAB prompt responds with message that indicates the processor
is stopped:

runstatus =

0

Loading Files into Green Hills MULTI Software
You have established the connection to a processor and board and have
created and queried objects. Next, give the processor something to do.

In this part of the tutorial, you load the executable code for the CPU in the
IDE. Embedded Coder software includes a tutorial project file for Green Hills
MULTI. Through the next commands in the tutorial, you locate the tutorial
project file and load it into Green Hills MULTI. The open method directs
Green Hills MULTI to load a project file or workspace file.

Note To continue the tutorial, you must identify or create a folder to which
you have write access. Embedded Coder software cannot create a folder for
you. Create one in the Microsoft Windows folder structure before you proceed
with the this tutorial.

40-19

40 Working with Green Hills® MULTI® IDE

Green Hills MULTI has its own workspace and workspace files that are
quite different from MATLAB workspace files and the MATLAB workspace.
Remember to monitor both workspaces. To change the working folder to your
writable folder:

1 Use cd to switch to the writable folder

prj_dir=cd('C:\ide_link_mu_demo')

where the name and path to the writable folder is a string,
such as C:\ide_link_mu_demo as used in the example. Replace
C:\ide_link_mu_demo with the full path to your writable folder.

2 Change your working folder to the new folder by entering the following
command:

cd(id,prj_dir)

3 Use the following command to create a new Green Hills MULTI project
named debug_demo.gpj in the new folder:

new(id,'debug_demo.gpj')

Switch to the IDE to verify that your new project exists. Next, add source
files to your project.

4 Add the provided source file—multilinkautointtutorial.c to the project
debug_demo.gpj using the following command:

add(id,'multilinkautointtutorial.c')

5 Save your project.

save(id,'my_debug_demo.gpj','project')

Your IDE project is saved with the name my_debug_demo.gpj in your
writable folder. The input string, project, specifies that you are saving a
project file.

6 Next, set the build options for your project. Use the following command to
set the compiler build options to use and specify a processor (optional).

40-20

IDE Automation Interface

setbuildopt(id,'Compiler','-G -cpu=V850')

The input argument -cpu=V850 is optional to specify the processor.

Running the Project
After you create dot_project_c.gpj in the IDE, you can use Embedded
Coder software functions to create executable code from the project and load
the code to the processor.

To build the executable and download and run it on your processor:

1 Use the following build command to build an executable module from the
project debug_demo.gpj.

build(id,'all',20) % Set optional time-out period to 20 seconds.

2 To load the new executable to the processor, use load with the project file
name and the object name. The name of the executable is debug_demo.

load(id,'debug_demo',30); % Set time-out value to 30 seconds.

Embedded Coder software provides methods to control processor
execution—run, halt, and reset. To see these methods, use run to start
the program you just loaded on to the processor, and then use halt to stop
the processor.

1 Enter the following methods at the command prompt and review the
response in the MATLAB command window.

run(id) % Start the program running on the processor.

halt(id) % Halt the processor.

reset(id) % Reset the program counter to start of program.

Use isrunning after the runmethod to verify that the processor is running.
After you stop the processor, isrunning can verify that the processor has
stopped.

Working With Data in Memory
Embedded Coder software provides methods that enable you to read and
write data to memory on the processor. Reading and writing data depends

40-21

40 Working with Green Hills® MULTI® IDE

on the symbol table for your project. The symbol table is available only after
you load the executable into the debugger. This sections introduces address
and dec2hex. Use them to read the addresses of two global variables—ddat
and idat.

1 After you load debug_demo into the debugger, enter the following commands
to read the addresses of ddat and idat:

ddatA=address(id,'ddat')
ddatA =

3145744 0

ddatI=address(id,'idat')

ddatI =

3145728 0

2 Review the results in hexadecimal representation.

dec2hex(ddatA)

ans =

300010
000000

dec2hex(ddatI)

ans =

300000
000000

After you load the target code to the processor, you can examine and modify
data values in memory, as the previous read function examples showed.

For non-changing data values in memory (static values), the values are
available immediately after you load the program file.

40-22

IDE Automation Interface

A more interesting case is looking at variable values that change during
program execution. Manipulating changing data values at intermediate points
during execution can provide helpful analysis and verification information.

To enable you to read and write data while your program is running, the
software provides methods to insert and delete breakpoints in the source
programs. Inserting breakpoints lets you pause program execution to read or
change variable data values. You cannot change values while your program is
running.

The method insert creates a new breakpoint at either a source file locations,
such as a line number, or at a physical memory address. insert takes either
the line number or the address as an input argument.

To read the values in the next section of this tutorial, use the following
methods to insert breakpoints at lines 24 and 29 in the source file
multilinkautointtutorial.c

1 Change folders to your original working folder.

cd(id,proj_dir);

2 (Optional for convenience) Create variables for the line numbers in the
source file.

brkpt24 = 24;
brtpt29 = 29;

3 Use the following commands to insert breakpoints on line 24 and line 29 of
the source file:

insert(id,'multilinkautointtutorial',brkpt24); % Insert breakpoint on line 24.

insert(id,'multilinkautointtutorial',brkpt29); % Insert breakpoint on line 29.

4 Open and activate the file in the IDE from the MATLAB command window
by issuing the following commands:

open(id,'multilinkautointtutorial');

activate(id,'multilinkautointtutorial');

40-23

40 Working with Green Hills® MULTI® IDE

Activating multilinkautointtutorial.c transfers focus in the IDE to the
activated file. Switch to the IDE to verify that the file is in your project
and open.

When you look in the IDE debugger window, the breakpoints you added to
multilinkautointtutorial.c are marked by a STOP sign icon on lines 24
and 29.

A similar method, remove, deletes breakpoints.

To help you inspect the source file in the IDE and verify the breakpoints, the
open and activate methods display the file multilinkautointtutorial.c
in the IDE and force the source file to the front.

One final method actually connects the IDE to your hardware or simulator.
connect takes a ghsmulti object as an input argument to connect the specific
IDE primary target referenced by id to the associated processor.

More Memory Data Manipulation
The source file multilinkaautointtutorial.c defines two 1-by-4 global data
arrays—ddat and idat. You can locate the declaration in the file. Embedded
Coder software provides the read and write methods so you can access the
arrays from MATLAB. Find the declaration and note the initialization values.

This tutorial section shows reading and writing data in memory, and
controlling the processor.

1 Get the address of the symbols ddat and idat. Enter the following
commands at the prompt.

ddat_addr=address(id,'ddat'); % Get address from symbol table.
idat_addr=address(id,'idat');

2 Create two MATLAB variables to specify the data types for ddat and idat.

ddat_type-'double';
idat_type='int32';

3 Declare some values in two MATLAB variables.

40-24

IDE Automation Interface

ddat_value=double([pi 12.3 exp(-1) sin(pi/4)]);
idat_value=int32(1:4);

4 Stop the processor.

halt(id)

5 Reload the project. If you did not save the source file in the project,
reloading the project removes the breakpoints you added and move the
program counter (PC) to the start of the program.

% Reload program file (.gpj). Reset PC to program start.
reload(id,100);

6 Use the following commands to restore the breakpoints on line 24 and 29.

insert(id,'multilinkautointtutorial.c',brkpt24);
insert(id,'multilinkautointtutorial.c',brkpt29);

7 Use the following method to connect the IDE to the processor:

connect(id);

8 With the breakpoints in the code, run the program until it stops at the
first breakpoint on line 24.

run(id,'runtohalt',30); % Set time-out to 30 seconds.

9 Check the current values stored in ddat and idat. Later in this tutorial
you change these values from MATLAB.

% Do ddat values match initialization values in the source?
ddatV=read(id,address(id,'ddat',ddat_type,4)
idatV=read(id,address(id,'idat',idat_type,4)

MATLAB displays the values of ddatV and idatV.

ddatV=

16.300 -2.1300 5.1000 11.8000

idatV=

40-25

40 Working with Green Hills® MULTI® IDE

1 508 646 7000

10 Change the values in ddat and idat by writing new values to the memory
addresses.

% Write pi, 12.3, exp(-1), and .7070 to memory.
write(id,address(id,'ddata'),ddat_value)
% Write vector [1:4] to memory.
write(id,address(id,'idat'),idat_value)

11 Resume the program execution from the breakpoint and run until the
program stops.

run(id,'runtohalt','30); % Stop at next breakpoint (line 29).

12 Read the values in memory for ddat and idat to verify the changes.

% Read the data as double data type.

ddatV = read(id,address(id(id,'ddat'),ddat_type,4)

ddatV=

3.1416 12.3000 0.3679 0.7071

% Read the data as int32 data type.

idatV = read(id,address(id,'idat'),idat_type,4)

idatV=

1 2 3 4

The data stored in ddat and idat are what you wrote to memory.

13 After you review the data, restart the processor to run to return the PC
to the program start.

restart(id);

Closing the Connections to Green Hills MULTI Software
Objects that you create in Embedded Coder software have connections to
Green Hills MULTI IDE. Until you delete these objects, the Green Hills

40-26

IDE Automation Interface

MULTI process (Idde.exe in the Windows Task Manager) remains in
memory. Closing MATLAB removes these objects automatically, but there
may be times when it helps to delete the handles manually, without quitting
MATLAB.

Note When you clear the last ghsmulti object, the software does not close
the running IDE service. When it does close the IDE, it does not save current
projects or files in the IDE, and it does not prompt you to save them.

A best practice is to save your projects and files before you clear ghsmulti
objects from your MATLAB workspace.

Use the following commands to close the project files in Green Hills MULTI
IDE and remove the breakpoints you added to the source file.

close(id,'debug_demo.gpj','project') % Close the project file.
remove(id,'multilinkautointtutorial.c',brkpt24);

remove(id,'multilinkautointtutorial.c',brkpt29);

Finally, to delete your link to Green Hills MULTI use clear id.

You have completed the IDE Automation Interface tutorial using Embedded
Coder software.

Review
During the tutorial you performed the following tasks:

1 Created and queried objects that refer to a session in Embedded Coder
software to get information about the session and processor.

2 Used MATLAB software to load files into the Green Hills MULTI IDE and
used methods in MATLAB software to run that file.

3 Closed the links you opened to Green Hills MULTI software.

This set of tasks is used in development of signal processing applications.
Thus, the tutorial gives you a working process for using Embedded Coder

40-27

40 Working with Green Hills® MULTI® IDE

software and your signal processing programs to develop programs for a
range of processors.

Constructing Objects
When you create a connection to a session in Green Hills MULTI using the
ghsmulti function, you create a ghsmulti object (in object-oriented design
terms, you instantiate the ghsmulti object). The object implementation relies
on MATLAB object-oriented programming capabilities like the objects in
MATLAB or DSP System Toolbox software.

The discussions in this section apply to the objects in Embedded Coder
software. Because ghsmulti objects use the MATLAB software techniques,
the information about working with the objects, such as how you get or set
object properties or use methods, apply to the ghsmulti objects in Embedded
Coder software.

Like other MATLAB structures, ghsmulti objects have predefined fields
referred to as object properties.

You specify object property values by the following methods:

• Specifying the property values when you create the object

• Creating an object with default property values, and changing these
property values later

For examples of setting link properties, refer to “Setting Property Values
with set”.

Constructor for ghsmulti Objects
The easiest way to create an object is to use the function ghsmulti to create
an object with the default properties. Create an object named id referring to a
session in Green Hills MULTI by entering the following syntax:

id = ghsmulti

MATLAB responds with a list of the properties of the object id you created
along with the associated default property values.

40-28

IDE Automation Interface

MULTI Object:
Host Name : localhost
Port Num : 4444
Default timeout : 10.00 secs
MULTI Dir : C:\ghs\multi500\ppc\

The object properties are described in the ghsmulti documentation.

Note These properties are set to default values when you construct links.

Properties and Property Values

• “Working with Properties” on page 40-29

• “Setting and Retrieving Property Values” on page 40-29

• “Setting Property Values Directly at Construction” on page 40-30

• “Setting Property Values with set” on page 40-31

• “Retrieving Properties with get” on page 40-31

• “Direct Property Referencing to Set and Get Values” on page 40-31

• “Overloaded Functions for ghsmulti Objects” on page 40-32

Working with Properties
Links (or objects) in this Embedded Coder software have properties associated
with them. Each property is assigned a value. You can set the values of
most properties, either when you create the link or by changing the property
value later. However, some properties have read-only values. Also, a few
property values, such as the board number and the processor to which the link
attaches, become read-only after you create the object. You cannot change
those after you create your link.

Setting and Retrieving Property Values
You can set ghsmulti object property values by either of the following
methods:

40-29

40 Working with Green Hills® MULTI® IDE

• Directly when you create the link — see “Setting Property Values Directly
at Construction”

• By using the set function with an existing link — see “Setting Property
Values with set”

Retrieve ghsmulti object property values with the get function.

Direct property referencing lets you either set or retrieve property values
for ghsmulti objects.

Setting Property Values Directly at Construction
To set property values directly when you construct an object, include the
following entries in the input argument list for the constructor method
ghsmulti:

• A string for the property name to set, followed by a comma. Enclose strings
in single quotation marks.

• The property value to associate with the named property. Sometimes this
value is also a string.

You can include as many property names in the argument list for the object
construction command as there are properties to set directly.

Setting Link Property Values at Construction. Create a connection to
an instance of the IDE in Green Hills MULTI software and set the following
object properties:

• Link to the specified MULTI instance and host.

• Specify the communication port on the host.

• Set the global timeout to 5 s. The default is 10 s.

Set these properties when you construct the object by entering

id = ghsmulti('hostname','localhost','portnum',4444,'timeout',5);

The localhost, portnum, and timeout properties are described in Link
Properties, as are the other properties for links.

40-30

IDE Automation Interface

Setting Property Values with set
After you construct an object, the set function lets you modify its property
values.

Using the set function, you can Set link property values.

Setting Link Property Values Using set. To set the timeout specification
for the link id from the previous section, enter the following syntax:

set(id,'timeout',8);

get(id,'timeout');
ans=

8

The display reflects the changes in the property values.

Retrieving Properties with get
You can use the get command to retrieve the value of an object property.

Retrieving Link Property Values Using get. To retrieve the value of the
hostnameproperty for id, and assign it to a variable, enter the following
syntax:

host=get(id,'hostname')

host =

localhost

Direct Property Referencing to Set and Get Values
You can directly set or get property values using MATLAB structure-like
referencing. Do this by using a period to access an object property by name,
as shown in the following example.

Direct Property Referencing in Links. To reference an object property
value directly, perform the following steps:

40-31

40 Working with Green Hills® MULTI® IDE

1 Create a link with default values.

2 Change its time out and number of open channels.

id = ghsmulti;
id.time = 6;

Overloaded Functions for ghsmulti Objects
Several methods and functions in Embedded Coder software have the same
name as functions in other MathWorks products. These functions behave
similarly to their original counterparts, but you apply them to an object. This
concept of having functions with the same name operate on different types of
objects (or on data) is called overloading of functions.

For example, the set command is overloaded for objects. After you specify
your object by assigning values to its properties, you can apply the methods
in this toolbox (such as address for reading an address in memory) directly
to the variable name you assign to your object. You do not have to specify
your object parameters again.

For a list of the methods that act on ghsmulti objects, refer to the “Working
with Green Hills MULTI IDE” in the function reference pages.

ghsmulti Object Properties

• “Quick Reference to ghsmulti Properties” on page 40-32

• “Details About ghsmulti Object Properties” on page 40-33

Quick Reference to ghsmulti Properties
The following table lists the properties for the links in Embedded Coder
software. The second column indicates to which object the property belongs.
Knowing which property belongs to each object in an interface tells you how
to access the property.

40-32

IDE Automation Interface

Property
Name User Settable? Description

hostname At construction
only

Reports the name of the host the IDE
service in Green Hills MULTI that the
object references.

portnum At construction
only

Stores the number of the port to
communicate with MULTI.

timeout Yes/default Contains the global timeout setting for
the link.

Some properties are read only. Thus, you cannot set the property value.
Other properties, you can change. If the entry in the User Settable column is
“At construction only,” you can set the property value only when you create
the object. Thereafter, it is read only.

Details About ghsmulti Object Properties
To use the objects for Green Hills MULTI interface, set values for the
following:

• hostname— Specify the session with which the object interacts.

• portnum— Specify the processor in the session. If the board has multiple
processors, procnum identifies the processor to use.

• timeout— Specify the global timeout value. (Optional. Default is 10 s.)

Details of the properties associated with ghsmulti objects appear in the
following sections, listed in alphabetical order by property name.

hostname. Property hostname identifies the host that is running the IDE
service. Use hostname to specify the machine to host your service.

To work with a service, you need the hostname and portnum values. Hostname
supports the string localhost only.

40-33

40 Working with Green Hills® MULTI® IDE

portnum. Property portnum specifies the port for communicating with the
IDE service. MATLAB uses sockets to communicate with Green Hills MULTI.
The portnum property value specifies the port, with a default value of 4444.
When you create a new ghsmulti object, Embedded Coder software assumes
the port value is 4444 unless you enter a different value when you configure
the software or use the portnum input argument with ghsmulti.

timeout. Property timeout specifies how long Green Hills MULTI waits for
processes to finish. You set the global timeout when you create an object for
a session in Green Hills MULTI. The default global timeout value 10 s. The
following example shows the timeout value for object id2.

display(id2)

MULTI Object:
Host Name : localhost
Port Num : 4444
Default timeout : 10.00 secs
MULTI Dir : C:\ghs\multi500\ppc\

40-34

IDE Project Generator

IDE Project Generator

In this section...

“Introducing IDE Project Generator” on page 40-35

“Generate an IDE Project” on page 40-36

“Model Reference” on page 40-40

Introducing IDE Project Generator
IDE Project Generator provides the following features for developing projects
and generating code:

• Automated project building for Green Hills MULTI that lets you create
MULTI projects from code generated by Embedded Coder. IDE Project
Generator populates projects in the MULTI development environment.

• Blocks in the library idelinklib_ghsmulti for controlling the scheduling
and timing in generated code.

• Highly configurable code generation using model Configuration
Parameters.

• Ability to use one of two system target files to generate code specific to
your processor.

• Highly configurable project build process.

• Automatic downloading and running of your generated projects on your
processor.

To configure your Simulink models to use the IDE Project Generator
component, do one or both of the following tasks:

• Configure your model for your IDE, tool chain, and target hardware,
as described in “Configure Target Hardware Resources” on page 35-3.
On the Tool Chain Automation tab, set the Build format parameter to
Project. If Project is not available, the IDE/Tool Chain parameter on the
Target Hardware Resources tab is set to an option that does not support
automatic creation of IDE projects. In that case, use the makefile approach

40-35

40 Working with Green Hills® MULTI® IDE

to building software, of, if available select an IDE/Tool Chain that supports
IDE project generation.

• To use the asynchronous scheduler capability in Embedded Coder software,
add a hardware interrupt block or idle task block.

The following sections describe the blockset and the blocks in it, the scheduler,
and the IDE Project Generator component.

Generate an IDE Project

• “Process for Building and Generating a Project” on page 40-36

• “Create the Model” on page 40-37

• “Specifying Simulink Configuration Parameters for Your Model” on page
40-37

• “Creating Your Project” on page 40-39

Process for Building and Generating a Project
In this tutorial, you build a model and generate a project from the model into
Green Hills MULTI.

Note The model shows project generation only. You cannot build and run
the model on your processor without additional blocks.

This is an overview of the process for generating a project from a model:

1 Use Simulink blocks, DSP System Toolbox blocks, and blocks from other
blocksets to create the model application.

2 Configure your model for your IDE, tool chain, and target hardware, as
described in “Configure Target Hardware Resources” on page 35-3.

3 Set the Configuration Parameters for your model, including the following
parameters:

40-36

IDE Project Generator

• Solver parameters such as simulation start and solver options. Choose
the discrete solver when you generate executables. If you are using PIL,
select any setting from the Type and Solver lists.

• Code Generation settings such as processor configuration and processor
compiler selection

4 Generate your project.

5 Review your project in MULTI.

Create the Model
To build a model, follow these steps:

1 Open the Simulink Library Browser.

2 Use Simulink blocks to create a model.

3 Name and save your model before continuing.

Specifying Simulink Configuration Parameters for Your Model
The following sections describe how to configure the build and run parameters
for your model. Generating a project, or building and running a model on
the processor, starts with configuring model options in the Configuration
Parameters dialog in Simulink.

Setting Solver Options. After you have designed and implemented your
digital signal processing model in Simulink, complete the following steps to
set the Configuration Parameters for the model:

1 Open the Configuration Parameters dialog and set the options on the
Solver category for your model and for Embedded Coder software.

• Set Start time to 0.0 and Stop time to inf (model runs without
stopping). If you set a stop time, your generated code does not honor the
setting. Set this parameter to inf for completeness.

• Under Solver options, set Type to fixed-step and set Solver to
discrete (no continuous states). For PIL, set Type and Solver
to any setting.

40-37

40 Working with Green Hills® MULTI® IDE

• For Fixed step size (fundamental sample time), enter Auto, and set
Tasking mode for periodic sample times to SingleTasking.

Note Generated code does not honor Simulink stop time from the simulation.
Stop time is interpreted as inf. To implement a stop in generated code, you
must put a Stop Simulation block in your model.

Ignore the Data Import/Export, Diagnostics, and Optimization panes
in the Configuration Parameters dialog. The default settings are valid for
your new model.

Setting Code Generation Options. To configure Simulink Coder
software to use the processor files, compile your model, and run your model
executable file, set the options in the Code Generation category of the model
Configuration Parameters. Follow these steps to set the Simulink Coder
software options to generate code tailored for your processor:

1 In the Configuration Parameters dialog, select the Code Generation pane.

2 Click the Browse button next to System target file and set the system
target file to idelink_grt.tlc or idelink_ert.tlc (if you use Embedded
Coder software).

Clicking Browse opens the System Target File Browser to allow you to
change the system target file.

3 On the System Target File Browser, select the idelink_grt.tlc or
idelink_ert.tlc system target file, and click OK to close the browser.

Setting Coder Target Options. After you set the Configuration Parameters
for code generation, set the options that apply to your Embedded Coder
software run-time and build processes.

1 Configure your model for your IDE, tool chain, and target hardware, as
described in “Configure Target Hardware Resources” on page 35-3.

2

3 On the Tool Chain Automation tab, set:

40-38

IDE Project Generator

• Build action: Create_project.

• Interrupt overrun notification method: Print_message.

4 (optional) Under Link Automation, verify that Export MULTI link
handle to base workspace is selected and provide a name for the handle
in MULTI link handle name.

5 If you are using an actual board, identify a Board Support Package (BSP) in
the Compiler options string (under Vendor Tool Chain). For example,
enter “-bsp=at91rm9200”. If you do not provide this type of information,
the software can generate errors that do not identify the absence of linker
directives as the cause.

6 Clear the options on the Code Generation pane.

7 Select the Hardware Implementation pane.

8 Verify that the Device type is valid for your processor—Analog Devices,
Renesas, or Freescale.

You have configured the Code Generation pane settings to generate a project
for your processor. A few of the panes under the node for the Code Generation
pane, such as Comments and Symbols do not require configuration.

For your new model, the default values for the options in these panes are
valid. For other models you develop, setting the options in these panes
provides more information during the build process. Some of the options
configure the model to run TLC debugging when you generate code. Refer to
your Simulink and Simulink Coder documentation for more information about
setting the Configuration Parameters.

Creating Your Project
After you set the Configuration Parameters and configure Simulink Coder to
create the files you need, you direct Simulink Coder to create your project:

1 Click OK to close the Configuration Parameters dialog.

2 To verify that you configured your Embedded Coder software, issue the
following command at the prompt to open the IDE Link Configuration for
Green Hills MULTI dialog.

40-39

40 Working with Green Hills® MULTI® IDE

ghsmulticonfig

3 Verify the settings in the Embedded Coder dialog.

4 After you verify the settings, click OK to close the dialog.

5 Enter cd at the prompt to verify that your working folder is the right one to
store your project results.

6 Click Build Model on the model toolstrip. This action generates a
Green Hills MULTI IDE project from your model.

When you press with Create_project selected for Build action, the
build process starts the Green Hills MULTI application and populates a
new project.

Model Reference

• “About Model Reference” on page 40-40

• “How Model Reference Works” on page 40-41

• “Using Model Reference” on page 40-42

• “Configuring Targets to Use Model Reference” on page 40-43

About Model Reference
Model reference lets your model include other models as modular components.
This technique is useful because it provides the following capabilities:

• Simplifies working with large models by letting you build large models
from smaller ones, or even large ones.

• Lets you generate code for the modules in the model, and later, regenerate
code for modules that change.

• Lets you develop the modules independently.

• Lets you reuse modules and models by reference, rather than including the
model or module multiple times in your model. Also, multiple models can
refer to the same model or module.

40-40

IDE Project Generator

Your Simulink Coder documentation provides much more information about
model reference.

How Model Reference Works
Model reference behaves differently in simulation and in code generation.
This discussion uses the following terms:

• The top-model is the root model block or model. It refers to other blocks or
models. In the model hierarchy, this model is the topmost model.

• Referenced models are blocks or models that other models reference, such
as models the top-model refers to. Models or blocks below the top-model in
the hierarchy are reference models.

The following sections describe briefly how model reference works. More
details are available in your Simulink Coder documentation in the online
Help system.

Model Reference in Simulation. When you simulate the top-model,
Simulink Coder detects that your model contains referenced models. Simulink
generates code for the referenced models and uses the generated code to build
shared library files for updating the model diagram and simulation. It also
creates an executable (.mex file) for each reference model that is used to
simulate the top-model.

When you rebuild reference models for simulations or when you run or update
a simulation, Simulink software rebuilds the model reference files. Whether
reference files or models are rebuilt depends on:

• Whether and how you change the models.

• The Rebuild parameter on the Model Reference pane in the
Configuration Parameters dialog.

Model Reference in Code Generation. Simulink Coder requires
executables to generate code from models. If you have not simulated your
model at least once, Simulink Coder creates a .mex file for simulation.

40-41

40 Working with Green Hills® MULTI® IDE

Next, for each referenced model, the code generation process calls make_rtw
and builds each referenced model. This build process creates a library file for
each of the referenced models in your model.

After building the referenced models, Simulink Coder calls make_rtw on the
top-model. The call to make_rtw links to the library files Simulink Coder
created for the associated referenced models.

Using Model Reference
With few limitations or restrictions, Embedded Coder software provides full
support for generating code from models that use model reference.

Build Action Setting. The most important requirement for using model
reference with the Green Hills MULTI software supported processors is
to set the Build action for Model blocks referred to in the simulation to
Archive_library.

To set the build action, perform the following steps:

1 Open your model.

2 Select Simulation > Model Configuration Parameters from the model
menus.

The Configuration Parameters dialog opens.

3 In the Configuration Parameters dialog, expand the node for the Code
Generation pane and select the Coder Target pane.

4 In the right pane, under Run-Time, select Archive_library from the
Build action list.

If your top-model uses a reference model that does not have the build action
set to Archive_library, the build process automatically changes the build
action to Archive_library and issues a warning about the change.

Selecting Archive_library disables the Interrupt overrun notification
method, Export MULTI link handle to the base workspace, and
System stack size options for the referenced models.

40-42

IDE Project Generator

Other Block Limitations. Model reference with Embedded Coder software
code generation options does not allow you to use noninlined S-functions in
reference models. Verify that the blocks in your model do not use noninlined
S-functions.

Configuring Targets to Use Model Reference
When you create models to use in Model Referencing, keep in mind the
following considerations:

• Your model must use a system target file derived from the ERT or GRT
target files.

• When you generate code from a model that references other models,
configure the top-level model and the referenced models for the same
system target file.

• Simulink Coder builds and Embedded Coder software projects do not
support External mode in model reference. If you select the External mode
option, it is ignored during code generation.

• Your TMF must support use of the shared utilities folder, as described in
Supporting Shared Utility Directories in the Build Process in the Simulink
Coder documentation.

To use an existing processor, or a new processor, with Model Reference, set
the ModelReferenceCompliant flag for the processor. For information about
setting this option, refer to ModelReferenceCompliant in the online Help
system.

If you start with a model that was created before MATLAB release R14SP3,
use the following command to make your model compatible with model
reference :

% Set the Model Reference Compliant flag to on.
set_param(bdroot,'ModelReferenceCompliant','on')

Code that you generate from Simulink models by using Embedded Coder
software includes the model reference capability. You do not need to set the
flag.

40-43

40 Working with Green Hills® MULTI® IDE

Breakpoints and PIL
Green Hills MULTI debugger allows you to add breakpoints to your projects.
When you run a PIL simulation that includes added breakpoints, a dialog
appears that gives you two options:

• Stop the running simulation by closing the dialog.

• Go to MULTI, remove the breakpoint you added, and press F5 to continue
running your simulation.

40-44

41

Working with Linux Target

• “Disambiguation” on page 41-2

• “Preparing Models to Run on Linux Target” on page 41-3

• “Scheduler” on page 41-4

• “Build on BeagleBoard Hardware” on page 41-13

• “Build on Linux Host and Run on BeagleBoard Hardware” on page 41-15

41 Working with Linux® Target

Disambiguation
This documentation uses the term “Linux” generically to refer to:

• Linux running on a host computer

• Linux running on an target hardware

If the distinction between host and target is important, the documentation
will identify the hardware platform on which Linux is running. For example:

• “Embedded Linux” or “Linux running on target hardware”

• “Linux running on a host computer.”

41-2

Preparing Models to Run on Linux® Target

Preparing Models to Run on Linux Target
To build an executable that runs on Linux, perform the following steps:

1 Install and configure Eclipse IDE according to the instructions in “Working
with Eclipse IDE”.

2 Configure your model as described in “Configure Target Hardware
Resources” on page 35-3, setting IDE/Tool Chain to Eclipse.

This action sets the Operating System parameter to Linux and displays
the Linux tab.

3 Select the Linux tab.

4 Set the Scheduling Mode to one of these options:

• If you select real-time, the model uses a timer to trigger the base rate
at regular periods.

• If you select free-running, the model does not use a timer. Instead, the
model completes each process or thread before running the next one.

5 For Linux, you can set the Base Rate Priority relative to other processes
and threads. You can enter values from (the number of rates + 1) to 99.

6 Configure the model to build and execute:

a In the model, select Simulation > Model Configuration Parameters.

b Under Code Generation, select the Coder Target pane.

c Set Build action to Build and execute.

7 Click Build Model on the model tool strip.

After the build completes, Embedded Coder software downloads the
executable to the remote system and runs it.

41-3

41 Working with Linux® Target

Scheduler

In this section...

“Base Rate” on page 41-4

“Running Target Applications on Multicore Processors” on page 46-10

“Avoiding Lock-Up in Free-Running, Multirate, Multitasking Models” on
page 41-11

Base Rate
The base rate in the model maps to a thread and runs as fast as possible. The
base rate priority selection in the OS tab allows you to set a static priority
for the base rate task. By default, this rate is 40.

The process running single-tasking models has Default scheduling policy
when model is single-tasking or there is a single rate in the model. Static
priority of the process is 0 in this case.

Running Target Applications on Multicore Processors

Introduction
This section provides a variation of the process described in “Build and
Download to a Multicore Target”.

This section shows you how to:

• Configure a multirate model

• Generate a multithreaded application from that model

So that the resulting application is enabled for concurrent multicore execution
on an embedded target running Linux or VxWorks.

This process uses the idelink_ert.tlc or idelink_grt.tlc system target
files, which enable you to:

41-4

Scheduler

• Use Embedded Coder Support Package for Xilinx Zynq-7000 Platform
to automatically build, download, and run an executable in the Linux
environment on the ARM Cortex-A9 processor on the Xilinx Zynq-7000
platform. (makefile-based)

• Use Eclipse IDE to manage projects for Linux targets (Support for this
capability is only available on 32-bit host platforms)

• Cross-compile from a Windows host to a Linux target

• Set thread priority using the Base rate task priority parameter on the
Target Hardware Resources tab.

• Use VxWorks

Note

• For Xilinx Zynq-7000 platform, see “Working with the Xilinx Zynq-7000
Platform”.

• For VxWorks, see “Building and Running Embedded Software on VxWorks
Target” on page 46-4.

Looking at a Model
Before setting up your own model, consider the
sldemo_concurrent_execution example model, which is referenced by
“Build and Download to a Multicore Target”.

The sldemo_concurrent_execution model is a useful example to look at
because:

• The model is partitioned using Model blocks that can potentially execute
concurrently.

• You can look at the Map Blocks To Tasks pane in the Concurrent
Execution window to see how the tasks are configured for concurrent
execution.

41-5

41 Working with Linux® Target

However, you cannot run an unmodified version of the
sldemo_concurrent_execution model on an embedded target
running Linux or VxWorks.

To prepare the sldemo_concurrent_execution as an example model for the
“Setting Up the Model” on page 46-13 and “Deploying the Model to Your
Target” on page 46-14 topics, first perform the following modifications:

• Update the Plant Model Block

• Update the Compensator Model Block

• Verify that Models are Mapped

These procedures guide you through the processes of discretizing models and
matching sample times of blocks with models.

Update the Plant Model Block.

1 In the sldemo_concurrent_execution model, open the “Plant” Model block:
sldemo_concurrent_execution_plant

2 Discretize the Plant model. Replace the Integrator blocks, “x1” and “x2”,
with equivalent discrete time blocks (such as the Discrete Time Integrator
block) or use the “Model Discretizer”.

3 Prevent modeling constraints by matching the sample time of the “x1” and
“x2” blocks with the model: Open the “x1” and “x2” blocks and change the
Sample time parameters to 0.1. Matching the sample times to the model
can also be accomplished using Rate Transition blocks.

4 Convert blocks with continuous sample times (Sample time = 0) to
inherited sample times (Sample time = -1). Open the “u1”, “u2” and “x”
blocks. For each one, click the Signal Attributes tab, then change Sample
time to -1.

5 Save your changes to the blocks and the model.

41-6

Scheduler

Update the Compensator Model Block.

1 In the sldemo_concurrent_execution model, open the “Compensator” Model
block: sldemo_concurrent_execution_compensator

2 Discretize the Compensator model. Replace the Integrator block, “c”, with
an equivalent discrete time block (such as the Discrete Time Integrator
block) or use the “Model Discretizer”.

3 Prevent modeling constraints by matching the sample time of the “c”
block with the top model: Open the “c” block and change the Sample
time parameters to 0.1. Matching the sample times to the top model,
sldemo_concurrent_execution, can also be accomplished using Rate
Transition blocks.

4 Convert blocks with continuous sample times (Sample time = 0) to
inherited sample times (Sample time = -1). Open the “y1”, “y2”, and “x”
blocks. For each one, click the Signal Attributes tab, then change Sample
time to -1.

5 The following parameters cannot both be enabled when you build the
model. Open the Configuration Parameters (Ctrl+E) and verify that one of
the following parameters is disabled (unchecked):

• Minimize algebraic loop occurrences, located on the Model
Referencing pane.

• Single output/update function, located on the Code Generation >
Interface pane

6 Save your changes to the blocks and the model.

Verify that the Models are Mapped. Open and inspect the Task editor to
see if the models are mapped:

1 In the Simulink model editor for sldemo_concurrent_execution, select View
> Model Explorer (Ctrl + H).

2 In Model Explorer, expand the top model, sldemo_concurrent_execution.

41-7

41 Working with Linux® Target

3 Under the top model, select Configuration (Active), then click
Concurrent Execution in the second column. In the third column, click
the ConfigureTasks and Map Blocks to Tasks button.

4 Click Map Blocks To Tasks. The mapping of the models should conform
to the guidelines provided by “Design Considerations”.

The sldemo_concurrent_execution example model is ready for you to use in
“Setting Up the Model” on page 46-13 and “Deploying the Model to Your
Target” on page 46-14.

Setting Up the Model
This procedure explains how to set up a model for a multicore processor.

1 Apply the recommendations in “Design Considerations” to your multirate
Simulink model. Or, refer to the sldemo_concurrent_execution example
model.

2 Configure your model for your IDE, tool chain, and target hardware, as
described in “Configure Target Hardware Resources” on page 35-3.

3 In Configuration Parameters, set the Operating System parameter to
Linux or VxWorks.

4 If your model uses a Rate Transition block to transition between rates, then
open the Rate Transition block and clear the Ensure deterministic data
transfer check box so that the block uses the most recent data available.

5 Configure the model for concurrent execution:

a In the Simulink model editor, select View >Model Explorer (Ctrl + H).

b In Model Explorer, expand the top model.

c Under the top model, right click Configuration (Active) and select
Convert to Configuration for Concurrent Execution. (In the
sldemo_concurrent_execution example model, this step has already been
performed.)

6 Repeat steps 4 through 5 for each referenced model in the model hierarchy
that you want to run with concurrent execution.

41-8

Scheduler

7 Select the configuration set of the model at the top of the model
hierarchy. In the second column, select the Concurrent Execution
node. A Concurrent Execution pane appears in the third column. (In the
sldemo_concurrent_execution example model, this step has already been
performed.)

8 In the Concurrent Execution pane in the third column, select the This is
the top of the model hierarchy check box, and click theConfigureTasks
and Map Blocks to Tasks button. (In the sldemo_concurrent_execution
example model, this step has already been performed.)

9 The Concurrent Execution configuration parameters dialog is displayed.
Click Apply.

Deploying the Model to Your Target
In your model, click the build button or enter Ctrl+B. The software performs
the actions you selected for Build action in the Configuration Parameters
dialog, on the Code Generation > Coder Target pane.

For more information on the structure of the code, please refer to “Build
and Download to a Multicore Target”. As mentioned in that section, the
coder product generates target-dependent code for thread creation, thread
synchronization, interrupt service routines, and signal handlers and data
transfer. For each periodic task, Simulink Coder combines the output and
update methods of the blocks mapped to that task and binds these methods
to a target-specific thread.

Note The idelink_ert.tlc or idelink_grt.tlc system target files do not
support Continuous times.

Generated Code
For idelink_ert.tlc or idelink_grt.tlc system target files, the generated
code from a mapped model creates a thread for each task and automatically
leverages the threading APIs supported by the operating system running
on the target.

41-9

41 Working with Linux® Target

• If the target platform is running Windows , the generated code will use
Windows threads.

• If the target platform is running Linux or VxWorks , the generated code
will use POSIX® threads (pthreads).

The following table summarizes the differences in the generated code between
the target platforms.

Aspect of Concurrent
Execution

Linux VxWorks

Periodic triggering
event

POSIX timer POSIX timer

Aperiodic triggering
event

POSIX real-time signal POSIX real-time and
non-real-time signal

Aperiodic trigger For blocksmapped to an
aperiodic task: thread
waiting for a signal
For blocks mapped to
an aperiodic trigger:
signal action

For blocksmapped to an
aperiodic task: thread
waiting for a signal.
For blocks mapped to
an aperiodic trigger:
signal action

Threads POSIX POSIX

Thread priority Based on Base
rate task priority
parameter

Based on Base
rate task priority
parameter

Example of overrun
detection

Yes Yes

The software checks that data transfer between concurrently executing tasks
behave as described in Data Transfer Options. The software checks data
transfer using the following APIs on supported targets.

41-10

Scheduler

API Linux
Implementation

VxWorks

Data protection API • pthread_mutex_init

• pthread_mutex_destroy

• pthread_mutex_lock

• pthread_mutex_unlock

• pthread_mutex_init

• pthread_mutex_destroy

• pthread_mutex_lock

• pthread_mutex_unlock

Synchronization API • sem_init

• sem_destroy

• sem_wait

• sem_post

• sem_open

• sem_unlink

• sem_wait

• sem_post

Avoiding Lock-Up in Free-Running, Multirate,
Multitasking Models
This section applies when the following conditions are true:

• The model is a multirate multitasking model

• In Configuration Parameters, on the Code Generation > Coder
Targets > Target Hardware Resources pane, the Operating system
parameter is set to Linux and the Scheduling Mode parameter is set to
free-running.

Because of the rate monotonic scheduling requirement in Linux, the scheduler
runs threads with a SCHED_FIFO scheduling policy. While it is ready to
run, a process scheduled with SCHED_FIFO prevents other processes from
running. Therefore, if the model does not contain blocking peripherals, the
entire Linux system can become unresponsive while you are running the
generated code. Such lock-up can even preempt the shell window from
running. To avoid this lock-up, apply one of the following solutions:

• Set Scheduling Mode to real_time.

• In your model, include a blocking device driver such as a UDP block.
Blocking devices suspend running threads while data is not available.

41-11

41 Working with Linux® Target

• Raise the shell window priority above the base-rate priority so you can kill
the process running with SCHED_FIFO class.

41-12

Build on BeagleBoard Hardware

Build on BeagleBoard Hardware

In this section...

“Overview” on page 41-13

“Configure the Windows Host” on page 41-13

“Configure the BeagleBoard Hardware” on page 41-13

“Configure MATLAB Software” on page 41-14

Overview
This example shows you how to generate code on a Windows host, and then
build it remotely on a BeagleBoard hardware running Linux.

Configure the Windows Host
Download and install the following PuTTY utilities from
http://www.chiark.greenend.org.uk/~sgtatham/putty/download:

• Plink (a command-line interface to the PuTTY back ends)

• PSCP (an SCP client)

Warning PuTTY software may be illegal in countries where
encryption is prohibited.

Configure the BeagleBoard Hardware
Install the GNU-compiler toolchain on the BeagleBoard. Open a terminal
session with the Linux command line on the BeagleBoard.

For example, on a board running the Angstrom Linux distribution, enter the
following commands:

root@beagleboard:~# opkg install binutils
root@beagleboard:~# opkg install gcc
root@beagleboard:~# opkg install gcc-symlinks
root@beagleboard:~# opkg install cpp-symlinks
root@beagleboard:~# opkg install libstdc++-dev
root@beagleboard:~# opkg install make-dev

41-13

http://www.chiark.greenend.org.uk/~sgtatham/putty/download

41 Working with Linux® Target

Configure MATLAB Software
Configure MATLAB software to generate code.

1 Enter xmakefilesetup in the MATLAB Command Window. In the
XMakefile Configuration dialog, set template to gmake and configuration
to gcc_target.

2 Configure your model for your IDE, tool chain, and target hardware, as
described in “Configure Target Hardware Resources” on page 35-3, setting
IDE/Toolchain to Eclipse, set Board to BeagleBoard ARM, and set
Operating System to Linux.

3 Under the Tool Chain Automation tab, set Build format to Makefile, and
set Build Action to Create_makefile.

4 Generate the code by pressing Ctrl+B.

5 Use remoteBuild function to build the code on the BeagleBoard hardware.
For example, enter:

remoteBuild('modelname', '/home/root', '144.212.110.193',
'root', 'password', 'C:\utils\putty')

The GNU compiler toolchain automatically builds and runs the software on
the BeagleBoard hardware.

For more information, see remoteBuild.

41-14

Build on Linux® Host and Run on BeagleBoard Hardware

Build on Linux Host and Run on BeagleBoard Hardware

In this section...

“Overview” on page 41-15

“Prerequisites” on page 41-15

“Set up your environment for Linux-ARM Code Generation” on page 41-15

“Generate Code for Linux-ARM” on page 41-18

“External Mode Simulation” on page 41-18

Overview
This example shows you how to build a target application locally on a Linux
host using Eclipse IDE, and then run the program remotely on the ARM
processor of a BeagleBoard hardware running Angstrom Linux.

Prerequisites
To generate code for BeagleBoard hardware, first obtain and install the
following third-party software:

• Eclipse™ IDE

• OpenEmbedded build system for BeagleBoard Angstrom

You can find instructions for installing Eclipse IDE here: “Working with
Eclipse IDE”

You can find instructions for building BeagleBoard OpenEmbedded here:
The Angstrom Distribution

Set up your environment for Linux-ARM Code
Generation
Before attempting to generate code for BeagleBoard hardware, it is important
to configure your environment. Use the following configuration steps to
generating code for the Linux-ARM target on the BeagleBoard hardware.
These instructions assume you have already built the OpenEmbedded

41-15

http://www.angstrom-distribution.org

41 Working with Linux® Target

Linux-Angstrom distribution. Make sure that you build the bitbake recipe
for gdb-cross and install gdbserver on the target board. For example, use the
bitbake gdb-cross command to build the GDB debugger that runs on your
host computer. Then use opkg to install gdbserver. For example, enter: opkg
install gdbserver. The Eclipse project generated by the coder product
uses local GDB debugger and a GDB server running on the target board to
enable debugging support. You also need an Ethernet connection to your
board to debug the generated code.

1 Set up your MATLAB environment to see OpenEmbedded GNU compiler
toolchain and the OpenEmbedded root file system by entering the following
in a MATLAB Command Window:

setenv('PATH', ['<pathtoOEtree>/oe/angstrom-dev/cross/armv7a/bin' ':' getenv('PATH')])

setenv('OETREE', '<pathtoOEtree>/oe')

The first setenv command adds the path to the GNU compiler toolchain
for MATLAB to locate compiler, linker, and so on, for the BeagleBoard
hardware. Internally, MATLAB uses OETREE environment variable
to locate the root file system of the BeagleBoard hardware and shared
libraries used for linking. Folder information extracted from OETREE
environment variable is used to set up the GDB initialization script.

2 Enter eclipseidesetup in the MATLAB Command Window. In the Eclipse
Adaptor Setup dialog that opens, set the parameters as shown here.

41-16

Build on Linux® Host and Run on BeagleBoard Hardware

41-17

41 Working with Linux® Target

In the Target Processor pane, enter the IP
address of your board. Set Download script to
eclipseideext.util.remoteDownloadSecure, and set GDB command file
to $(MATLAB_ROOT)/toolbox/idelink/extensions/eclipseide/host/-
.gdbinit_angstrom.

Generate Code for Linux-ARM

1 Enter sumdiff_codegen in the MATLAB Command Window. This opens
the sumdiff_codegen model.

2 Configure your model for your IDE, tool chain, and target hardware, as
described in “Configure Target Hardware Resources” on page 35-3, setting
IDE/Toolchain to Eclipse, set Board to BeagleBoard ARM, and set
Operating System to Linux.

3 In the Compiler options string edit box enter -mfloat-abi=softfp. This
option is an Angstrom distribution-specific compiler option required to
generate floating point code for BeagleBoard hardware.

4 Generate and build the ARM code. If the build process is complete, the code
starts running on the board automatically.

5 You can, alternatively, run the generate code by downloading to the target
file system. On a Linux command shell, you can execute the following:

> scp <pathtoarmexecutable>/sumdiff_codegen root@10.10.10.1:/home/root/.

> ssh root@10.10.10.1 /home/root/sumdiff_codegen

External Mode Simulation

1 To run the simulation in External mode, connect a scope to Out1 port
on the sumdiff_codegen model. Open Simulation -> Configuration
Parameters -> Code Generation -> Interface dialog. Enter the IP address
of the BeagleBoard hardware in the MEX-file Arguments edit box under
Host/Target interface. The IP address of the board is required for External
mode TCP/IP connection. If the IP address of your board is 10.10.10.1, for
example, enter ’10.10.10.1’ in the MEX-file Arguments edit box. Click OK
and close the dialog.

41-18

Build on Linux® Host and Run on BeagleBoard Hardware

2 Click Simulation -> Connect To Target (Ctrl-T) to establish External mode
connection.

3 Double click the Simulink Scope and examine the data retrieved from
Linux-ARM target. The scope should display zeros.

41-19

41 Working with Linux® Target

41-20

42

Working with Texas
Instruments Code
Composer Studio 3.3 IDE

• “Code Composer Studio” on page 42-2

• “Getting Started” on page 42-4

• “IDE Automation Interface” on page 42-9

• “IDE Project Generator” on page 42-58

• “Exporting Filter Coefficients from FDATool” on page 42-69

• “Using Makefiles with Code Composer Studio 3.x” on page 42-87

• “Reported Limitations and Tips” on page 42-92

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

Code Composer Studio

In this section...

“Using Code Composer Studio with Embedded Coder Software” on page 42-2

“Default Project Configuration” on page 42-2

Using Code Composer Studio with Embedded Coder
Software
Texas Instruments (TI) facilitates development of software for TI DSPs by
offering Code Composer Studio (CCS) Integrated Development Environment
(IDE). Used in combination with Embedded Coder software and Simulink
Coder software, CCS provides an integrated environment that, once installed,
does not require coding.

Executing code generated from Simulink Coder software on a particular
target requires that you tailor the code to the specific hardware target.
Target-specific code includes I/O device drivers and interrupt service routines
(ISRs). The software must use CCS to compile and link the generated source
code in order to load and execute on a TI DSP. To help you to build an
executable, Embedded Coder software uses Embedded Coder software to start
the code building process within CCS. After you download your executable
to your target and run it, the code runs wholly on the target hardware. You
can access the running process only from the CCS debugging tools or across
a link using Embedded Coder software. A wide range of Texas Instruments
DSPs are supported:

• TI’s C2000™

• TI’s C5000™

• TI’s C6000™

Default Project Configuration
CCS offers two standard project configurations, Release and Debug. Project
configurations define sets of project build options. When you specify the build
options at the project level, the options apply to the files in your project. For
more information about the build options, refer to your TI documentation. The

42-2

Code Composer Studio™

models you build with Embedded Coder software use a custom configuration
that provides a third combination of build and optimization settings —
CustomMW.

Default Build Options in the CustomMW Configuration
The default settings for CustomMW are the same as the Release project
configuration in CCS, except for the compiler options.

Your CCS documentation provides complete details on the compiler build
options. You can change the individual settings or the build configuration
within CCS.

42-3

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

Getting Started

In this section...

“Overview” on page 42-4

“Verifying Your Code Composer Studio Installation” on page 42-7

Overview

• “IDE Automation Interface” on page 42-5

• “IDE Project Generator” on page 42-6

• “Verification” on page 42-7

Embedded Coder software enables you to use MATLAB functions to
communicate with Code Composer Studio software and with information
stored in memory and registers on a processor. With the ticcs objects, you
can transfer information to and from Code Composer Studio software and
with the embedded objects you get information about data and functions
stored in your signal processor memory and registers, as well as information
about functions in your project.

Embedded Coder lets you build, test, and verify automatically generated code
using MATLAB, Simulink, Simulink Coder, and the Code Composer Studio
integrated development environment. You can use Embedded Coder to verify
code executing within the Code Composer Studio software environment using
a model in Simulink software. This processor-in-the-loop testing environment
uses code automatically generated from Simulink models by Embedded Coder
software. A range of Texas Instruments targets are supported:

• TI’s C2000

• TI’s C5000

• TI’s C6000

With Embedded Coder , you can use MATLAB software and Simulink
software to interactively analyze, profile and debug processor-specific code
execution behavior within CCS. In this way, Embedded Coder automates

42-4

Getting Started

deployment of the complete embedded software application and makes it
easy for you to assess possible differences between the model simulation and
processor code execution results.

Embedded Coder consists of these components:

• IDE Project Generator—add embedded framework code to the C code
generated from Simulink models, and package as a complete IDE project

• IDE Automation Interface—use functions in the MATLAB command
window to access and manipulate data and files in the IDE and on the
processor

• Verification—verify how your programs run on your processor

With Embedded Coder, you create objects that connect MATLAB software
to Code Composer Studio software.

Note Embedded Coder uses objects. You work with them the way you use
other MATLAB objects. You can set and get their properties, and use their
methods to change them or manipulate them and the IDE to which they refer.

The next sections describe briefly the components of Embedded Coder
software.

IDE Automation Interface
The IDE Automation Interface component is a collection of methods that use
the Code Composer Studio API to communicate between MATLAB software
and Code Composer Studio. With the interface, you can do the following:

• Automate complex tasks in the development environment by writing
MATLAB software scripts to communicate with the IDE, or debug and
analyze interactively in a live MATLAB software session.

• Automate debugging by executing commands from the powerful Code
Composer Studio software command language.

• Exchange data between MATLAB software and the processor running
in Code Composer Studio software.

42-5

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

• Set breakpoints, step through code, set parameters and retrieve profiling
reports.

• Automate project creation, including adding source files, include paths, and
preprocessor defines.

• Configure batch building of projects.

• Debug projects and code.

• Execute API Library commands.

The IDE Automation Interface provides an application program interface
(API) between MATLAB software and Code Composer Studio. Using the API,
you can create new projects, open projects, transfer data to and from memory
on the processor, add files to projects, and debug your code.

IDE Project Generator
The IDE Project Generator component is a collection of methods that use
the Code Composer Studio API to create projects in Code Composer Studio
and generate code with Embedded Coder. With the interface, you can do
the following:

• Automated project-based build process

Automatically create and build projects for code generated by Embedded
Coder.

• Customize code generation

Use Embedded Coder with a Embedded Coder system target file (STF) to
generate processor-specific and optimized code.

• Customize the build process

• Automate code download and debugging

Rapidly and effortlessly debug generated code in the Code Composer
Studio software debugger, using either the instruction set simulator or
real hardware.

• Create and build CCS projects from Simulink software models. IDE Project
Generator uses Simulink Coder software or Embedded Coder software to
build projects that work with C2000 software, C5000 software, and C6000
software processors.

42-6

Getting Started

• Highly customized code generation with the system target file
idelink_ert.tlc and idelink_grt.tlc that enable you to use the
Configuration Parameters in your model to customize your generated code.

• Automate the process of building and downloading your code to the
processor, and running the process on your hardware.

Verification
Verifying your processes and algorithms is an essential part of developing
applications. The components of Embedded Coder combine to provide the
following verification tools for you to apply as you develop your code:

• Processor-in-the-loop simulation (PIL)

• Execution profiling

• Stack profiling

Verifying Your Code Composer Studio Installation
To verify that CCS is installed on your machine and has at least one board
configured, enter

ccsboardinfo

in the MATLAB Command Window. With CCS installed and configured,
MATLAB software returns information about the boards that CCS recognizes
on your machine, in a form similar to the following listing.

Board Board Proc Processor Processor

Num Name Num Name Type

--- -------------------------------- --- -------------

1 C6xxx Simulator (Texas Instrum .0 6701 TMS320C6701

0 C6x13 DSK (Texas Instruments) 0 CPU TMS320C6x1x

If MATLAB software does not return information about boards, open your
CCS installation and use the Setup Utility in CCS to configure at least one
board.

As a final test, start CCS to verify that it runs. For Embedded Coder to
operate with CCS, the CCS IDE must be able to run on its own.

42-7

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

Embedded Coder uses objects to create:

• Connections to the Code Composer Studio Integrated Development
Environment (CCS IDE)

• Connections to the RTDX™ (RTDX) interface. This object is a subset of the
object that refers to the CCS IDE.

Concepts to know about the objects in this toolbox are covered in these
sections:

• “Constructing ticcs Objects” on page 42-48

• “ticcs Properties and Property Values” on page 42-49

• “Overloaded Functions for ticcs Objects” on page 42-50

Refer to MATLAB Classes and Objects in your MATLAB documentation for
more details on object-oriented programming in MATLAB software.

Many of the objects use COM server features to create handles for working
with the objects. Refer to your MATLAB documentation for more information
about COM as used by MATLAB software.

42-8

IDE Automation Interface

IDE Automation Interface

In this section...

“Getting Started with IDE Automation Interface” on page 42-9

“Getting Started with RTDX” on page 42-27

“Constructing ticcs Objects” on page 42-48

“ticcs Properties and Property Values” on page 42-49

“Overloaded Functions for ticcs Objects” on page 42-50

“ticcs Object Properties” on page 42-50

Getting Started with IDE Automation Interface

• “Introducing the IDE Automation Interface” on page 42-9

• “Selecting Your Processor” on page 42-13

• “Creating and Querying Objects for CCS IDE” on page 42-15

• “Loading Files into CCS” on page 42-17

• “Working with Projects and Data” on page 42-19

• “Closing the Links or Cleaning Up CCS IDE” on page 42-25

Introducing the IDE Automation Interface
Embedded Coder provides a connection between MATLAB software and a
processor in CCS. You can use objects to control and manipulate a signal
processing application using the computational power of MATLAB software.
This approach can help you debug and develop your application. Another
possible use for automation is creating MATLAB scripts that verify and
test algorithms that run in their final implementation on your production
processor.

Before using the functions available with the objects, you must select a
processor because objects you create are specific to a designated processor and
a designated instance of CCS IDE. For multiprocessor boards or multiple
board configurations of CCS, select the specific processor.

42-9

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

When you have one board with a single processor, the object defaults to the
existing processor. For the objects, the simulator counts as a board; if you
have both a board and a simulator that CCS recognizes, you must specify
the processor explicitly.

To get you started using objects for CCS software, Embedded Coder includes
a tutorial that introduces you to working with data and files. As you work
through this tutorial, you perform the following tasks that step you through
creating and using objects for CCS IDE:

1 Select your processor.

2 Create and query objects to CCS IDE.

3 Use MATLAB software to load files into CCS IDE.

4 Work with your CCS IDE project from MATLAB software.

5 Close the connections you opened to CCS IDE.

The tutorial provides a working process (a workflow) for using Embedded
Coder and your signal processing programs to develop programs for a range of
Texas Instruments processors.

During this tutorial, you load and run a digital signal processing application
on a processor you select. The tutorial shows both writing to memory and
reading from memory in the ““Working with Projects and Data” on page
42-19” portion of the tutorial.

You can use the read and write methods, as described in this tutorial, to read
and write data to and from your processor.

The tutorial covers the object methods and functions for Embedded Coder.
The functions listed in the first table apply to CCS IDE independent of the
objects — you do not need an object to use these functions. The methods
listed in the second and third table requires a ticcs object that you use in the
method syntax:

Functions for Working With Embedded Coder. The following functions
do not require a ticcs object as an input argument:

42-10

IDE Automation Interface

Function Description

ccsboardinfo Return information about the boards that CCS
IDE recognizes as installed on your PC.

ticcs Construct an object to communicate with
CCS IDE. When you construct the object you
specify the processor board and processor.

Methods for Working with ticcs Objects. The methods in the following
table require a ticcs object as an input argument:

Method Description

add Add files to active project in IDE.

address Memory address and page value of
symbol in IDE.

build Build or rebuild current project.

display (IDE Object) Display the properties of an object to
CCS IDE and RTDX.

halt Terminate execution of a process
running on the processor.

info Return information about the
processor or information about open
RTDX channels.

insert Insert debug point in file.

isrtdxcapable Test whether your processor
supports RTDX communications.

isvisible Determine whether IDE appears on
desktop.

isrunning Test whether the processor is
executing a process.

list Return various information listings
from Code Composer Studio
software.

42-11

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

Method Description

load Load program file onto processor.

read Retrieve data from memory on the
processor.

regread Read values from processor registers.

regwrite Write data values to registers on
processor.

remove Remove file, project, or breakpoint.

restart Restore the program counter (PC)
to the entry point for the current
program.

run Execute the program loaded on the
processor.

visible Set whether CCS IDE window is
visible on the desktop while CCS
IDE is running.

write Write data to memory on the
processor.

Running Code Composer Studio Software on Your Desktop —
Visibility. When you create a ticcs object , Embedded Coder starts CCS in
the background.

When CCS IDE is running in the background, it does not appear on your
desktop, in your task bar, or on the Applications page in the Task Manager.
It does appear as a process, cc_app.exe, on the Processes tab in Microsoft
Windows Task Manager.

You can make the CCS IDE visible with the function visible. The function
isvisible returns the status of the IDE—whether it is visible on your
desktop. To close the IDE when it is not visible and MATLAB software is not
running, use the Processes tab in Microsoft Windows Task Manager and
look for cc_app.exe.

42-12

IDE Automation Interface

If a link to CCS IDE exists when you close CCS, the application does not
close. Microsoft Windows software moves it to the background (it becomes
invisible). Only after you clear links to CCS IDE, or close MATLAB software,
does closing CCS IDE unload the application. You can see if CCS IDE is
running in the background by checking in the Microsoft Windows Task
Manager. When CCS IDE is running, the entry cc_app.exe appears in the
Image Name list on the Processes tab.

When you close MATLAB software while CCS IDE is not visible, MATLAB
software closes CCS if it started the IDE. This happens because the operating
system treats CCS as a subprocess in MATLAB software when CCS is not
visible. Having MATLAB software close the invisible IDE when you close
MATLAB software prevents CCS from remaining open. You do not need to
close it using Microsoft Windows Task Manager.

If CCS IDE is not visible when you open MATLAB software, closing MATLAB
software leaves CCS IDE running in an invisible state. MATLAB software
leaves CCS IDE in the visibility and operating state in which it finds it.

Interactive Learning. You have the option of running this tutorial from the
MATLAB Command Window or entering the functions as described in the
following tutorial sections.

To run the tutorial in MATLAB software, click run ccstutorial. This
command opens the tutorial in an interactive mode where the tutorial
program provides prompts and text descriptions to which you respond to move
to the next portion of the lesson. The interactive tutorial covers the same
information provided by the following tutorial sections. You can view the
tutorial file by clicking ccstutorial.m.

Selecting Your Processor
Links for CCS IDE provides two tools for selecting a board and processor in
multiprocessor configurations. One is a command line tool called ccsboardinfo
which prints a list of the available boards and processors. So that you can
use this function in a script, ccsboardinfo can return a MATLAB software
structure that you use when you want your script to select a board without
your help.

42-13

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

Note The board and processor you select is used throughout the tutorial.

1 To see a list of the boards and processors installed on your PC, enter the
following command at the MATLAB software prompt:

ccsboardinfo

MATLAB software returns a list that shows you the boards and processors
that CCS IDE recognizes as installed on your system.

2 To use the Selection Utility, boardprocsel, to select a board, enter

[boardnum,procnum] = boardprocsel

When you use boardprocsel, you see a dialog similar to the following.
Note that some entries vary depending on your board set.

3 Select a board name and processor name from the lists.

You are selecting a board and processor number that identifies your
particular processor. When you create the object for CCS IDE in the
next section of this tutorial, the selected board and processor become the
processor of the object.

42-14

IDE Automation Interface

4 Click Done to accept your board and processor selection and close the
dialog.

boardnum and procnum now represent the Board name and Processor
name you selected — boardnum = 1 and procnum = 0

Creating and Querying Objects for CCS IDE
In this tutorial section, you create the connection between MATLAB software
and CCS IDE. This connection, or object, is a MATLAB software object that
you save as variable IDE_Obj.

You use function ticcs to create objects. When you create objects, ticcs
input arguments let you define other object property values, such as the global
timeout. Refer to the ticcs reference documentation for more information
on these input arguments.

Use the generated object IDE_Obj to direct actions to your processor. In the
following tasks, IDE_Obj appears in function syntax that interacts with CCS
IDE and the processor:

1 Create an object that refers to your selected board and processor. Enter the
following command at the prompt.

IDE_Obj=ticcs('boardnum',boardnum,'procnum',procnum)

If you were to watch closely, and your machine is not too fast, you see Code
Composer Studio software appear briefly when you call ticcs. If CCS IDE
was not running before you created the new object, CCS starts and runs in
the background.

2 Enter visible(IDE_Obj,1) to force CCS IDE to be visible on your desktop.

Usually, you need to interact with Code Composer Studio software while
you develop your application. The first function in this tutorial, visible,
controls the state of CCS on your desktop. visible accepts Boolean inputs
that make CCS either visible on your desktop (input to visible = 1) or
invisible on your desktop (input to visible = 0). For this tutorial, use
visible to set the CCS IDE visibility to 1.

3 Next, enter display(IDE_Obj) at the prompt to see the status information.

42-15

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

TICCS Object:
Processor type : Cxx
Processor name : CPU
Running? : No
Board number : 0
Processor number : 0
Default timeout : 10.00 secs

RTDX channels : 0

Embedded Coder provides methods to read the status of a board and
processor:

• info— Return a structure of testable board conditions.

• display — Print information about the processor.

• isrunning— Return the state (running or halted) of the processor.

• isrtdxcapable— Return whether the hardware supports RTDX.

4 Type linkinfo = info(IDE_Obj).

The IDE_Obj link status information provides information about the
hardware as follows:

linkinfo =

procname: 'CPU_1'
isbigendian: 0

isrtdxcapable: 0
family: 320

subfamily: 103
revfamily: 11

targettype: 'simulator'
siliconrev: 0

timeout: 10
boardname: 'Cxxxx Device Simulator'

5 Check whether the processor is running by entering

runstatus = isrunning(IDE_Obj)

42-16

IDE Automation Interface

MATLAB software responds, indicating that the processor is stopped, as
follows:

runstatus =

0

6 At last, verify that the processor supports RTDX communications by
entering

usesrtdx = isrtdxcapable(IDE_Obj)
usesrtdx =

1

Loading Files into CCS
You have established the connection to a processor and board and have
created and queried objects. Next, the processor needs something to do.

In this part of the tutorial, you load the executable code for the processor CPU
in CCS IDE. Embedded Coder includes a CCS project file. Through the next
tasks in the tutorial, you locate the tutorial project file and load it into CCS
IDE. The open method directs CCS to load a project file or workspace file.

Note CCS has workspace and workspace files that are different from
the MATLAB workspace files and workspace. Remember to monitor both
workspaces.

After you have executable code running on your processor, you can exchange
data blocks with it. Exchanging data is the purpose of the objects provided by
Embedded Coder software.

1 To load the project file to your processor, enter the following command at
the MATLAB software prompt. getdemoproject is a specialized function
for loading Embedded Coder example files. It is not supported as a
standard Embedded Coder function.

demopjt= getDemoProject(IDE_Obj,'ccstutorial')

42-17

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

demopjt.ProjectFile

ans =

C:\Temp\EmbIDELinkCCDemos_v4.1\ccstutorial\cxx\cxxx\ccstut.pjt

demoPjt.DemoDir

ans =

C:\Temp\EmbIDELinkCCDemos_v4.1\ccstutorial\cxx\cxxx

Your paths may be different if you use a different processor. Note where the
software stored the example files on your machine. In general, Embedded
Coder software stores the example project files in

EmbIDELinkCCDemos_v#.#

Embedded Coder creates this folder in a location where you have write
permission. There are two locations where Embedded Coder software tries
to create the example folder, in the following order:

a In a temporary folder on your C drive, such as C:\temp\.

b If Embedded Coder software cannot use the temp folder, you see a dialog
that asks you to select a location to store the examples.

2 Enter the following command at the MATLAB command prompt to build
the processor executable file in CCS IDE.

build(IDE_Obj,'all',20)

You may get an error related to one or more missing .lib files. If you
installed CCS IDE in a folder other than the default installation folder,
browse in your installation folder to find the missing file or files. Refer to
the path in the error message as an indicator of where to find the missing
files.

3 Change your working folder to the example folder and enter
load(IDE_Obj,'projectname.out') to load the processor execution file,
where projectname is the tutorial you chose, such as ccstut_67x.

42-18

IDE Automation Interface

You have a loaded program file and associated symbol table to the IDE
and processor.

4 To determine the memory address of the global symbol ddat, enter the
following command at the prompt:

ddata = address(IDE_Obj,'ddat')
ddata =

1.0e+009 *

2.1475 0

Your values for ddata may be different depending on your processor.

Note The symbol table is available after you load the program file into the
processor, not after you build a program file.

5 To convert ddata to a hexadecimal string that contains the memory address
and memory page, enter the following command at the prompt:

dec2hex(ddata)

MATLAB software displays the following response, where the memory page
is 0x00000000 and the address is 0x80000010.

ans =

80000010
00000000

Working with Projects and Data
After you load the processor code, you can use Embedded Coder functions to
examine and modify data values in the processor.

42-19

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

When you look at the source file listing in the CCS IDE Project view window,
there should be a file named ccstut.c. Embedded Coder ships this file with
the tutorial and includes it in the project.

ccstut.c has two global data arrays — ddat and idat— that you declare and
initialize in the source code. You use the functions read and write to access
these processor memory arrays from MATLAB software.

Embedded Coder provides three functions to control processor execution —
run, halt, and restart.

1 To see these commands, use the following function to add a breakpoint to
line 68 of ccstut.c.

insert(IDE_Obj,'ccstut.c',68)

Line 68 is

printf("Embedded Coder: Tutorial - Memory Modified by Matlab!\n");

For information about adding breakpoints to a file, refer to insert in the
online Help system. Then proceed with the tutorial.

2 To see the new functions, try the following functions.

halt(IDE_Obj) % Halt the processor.

restart(IDE_Obj) % Reset the PC to start of program.

run(IDE_Obj,'runtohalt',30); % Wait for program execution to stop at

% breakpoint (timeout = 30 seconds).

When you switch to viewing CCS IDE, you see that your program stopped
at the breakpoint you inserted, and the program printed the following
messages in the CCS IDE Stdout tab. Nothing prints in the MATLAB
command window:

Embedded Coder: Tutorial - Initialized Memory
Double Data array = 16.3 -2.13 5.1 11.8
Integer Data array = -1-508-647-7000 (call me anytime!)

42-20

IDE Automation Interface

3 Before you restart your program (currently stopped at line 68), change
some values in memory. Perform one of the following procedures based on
your processor.

C5xxx processor family— Enter the following functions to see the read
and write functions.

a Enter
ddatv = read(IDE_Obj,address(IDE_Obj,'ddat'),'double',4).

MATLAB software responds with

ddatv =

16.3000 -2.1300 5.1000 11.8000

b Enter idatv = read(IDE_Obj,address(IDE_Obj,'idat'),'int16',4).

Now MATLAB software responds

idatv =

-1 508 647 7000

If you used 8-bit integers (int8), the returned values would be incorrect.

idatv=read(IDE_Obj,address(IDE_Obj,'idat'),'int8',4)

idatv =

1 0 -4 1

c You can change the values stored in ddat by entering
write(IDE_Obj,address(IDE_Obj,'ddat'),double([pi 12.3
exp(-1)...
sin(pi/4)]))

The double argument directs MATLAB software to write the values to
the processor as double-precision data.

d To change idat, enter

write(IDE_Obj,address(IDE_Obj,'idat'),int32([1:4]))

42-21

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

Here you write the data to the processor as 32-bit integers (convenient
for representing phone numbers, for example).

e Start the program running again by entering the following command:

run(IDE_Obj,'runtohalt',30);

The Stdout tab in CCS IDE reveals that ddat and idat contain new
values. Next, read those new values back into MATLAB software.

f Enter ddatv =
read(IDE_Obj,address(IDE_Obj,'ddat'),'double',4).

ddatv =

3.1416 12.3000 0.3679 0.7071

ddatv contains the values you wrote in step c.

g Verify that the change to idatv occurred by entering the following
command at the prompt:

idatv = read(IDE_Obj,address(IDE_Obj,'idat'),'int16',4)

MATLAB software returns the new values for idatv.

idatv =

1 2 3 4

h Use restart to reset the program counter for your program to the
beginning. Enter the following command at the prompt:

restart(IDE_Obj);

C6xxx processor family — Enter the following commands to see the
read and write functions.

a Enter
ddatv = read(IDE_Obj,address(IDE_Obj,'ddat'),'double',4).

MATLAB software responds with

ddatv =

42-22

IDE Automation Interface

16.3000 -2.1300 5.1000 11.8000

b Enter idatv = read(IDE_Obj,address(IDE_Obj,'idat'),'int16',4).

MATLAB software responds

idatv =

-1 508 647 7000

If you used 8-bit integers (int8), the returned values would be incorrect.

idatv=read(IDE_Obj,address(IDE_Obj,'idat'),'int8',4)

idatv =

1 0 -4 1

c Change the values stored in ddat by entering
write(IDE_Obj,address(IDE_Obj,'ddat'),double([pi 12.3
exp(-1)...
sin(pi/4)]))

The double argument directs MATLAB software to write the values to
the processor as double-precision data.

d To change idat, enter the following command:

write(IDE_Obj,address(IDE_Obj,'idat'),int32([1:4]))

In this command, you write the data to the processor as 32-bit integers
(convenient for representing phone numbers, for example).

e Next, start the program running again by entering the following
command:

run(IDE_Obj,'runtohalt',30);

The Stdout tab in CCS IDE reveals that ddat and idat contain new
values. Read those new values back into MATLAB software.

f Enter ddatv =
read(IDE_Obj,address(IDE_Obj,'ddat'),'double',4).

42-23

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

ddatv =

3.1416 12.3000 0.3679 0.7071

Verify that ddatv contains the values you wrote in step c.

g Verify that the change to idatv occurred by entering the following
command:

idatv = read(IDE_Obj,address(IDE_Obj,'idat'),'int32',4)

MATLAB software returns the new values for idatv.

idatv =

1 2 3 4

h Use restart to reset the program counter for your program to the
beginning. Enter the following command at the prompt:

restart(IDE_Obj);

4 Embedded Coder offers more functions for reading and writing data to your
processor. These functions let you read and write data to the processor
registers: regread and regwrite. They let you change variable values
on the processor in real time. The functions behave slightly differently
depending on your processor. Select one of the following procedures to see
regread and regwrite used with your processor.

C5xxx processor family — Most registers are memory-mapped and
available using read and write. However, the PC register is not memory
mapped. To access this register, use the special functions — regread and
regwrite. The following commands show how to use these functions to
read and write to the PC register.

a To read the value stored in register PC, enter the following command
at the prompt to indicate to MATLAB software the data type to read.
The input string binary indicates that the PC register contains a value
stored as an unsigned binary integer.

IDE_Obj.regread('PC','binary')

MATLAB software displays

42-24

IDE Automation Interface

ans =

33824

b To write a new value to the PC register, enter the following command.
This time, the binary input argument tells MATLAB software to write
the value to the processor as an unsigned binary integer. Notice that you
used hex2dec to convert the hexadecimal string to decimal.

IDE_Obj.regwrite('PC',hex2dec('100'),'binary')

c Verify that the PC register contains the value you wrote.

IDE_Obj.regread('PC','binary')

C6xxx processor family — regread and regwrite let you access the
processor registers directly. Enter the following commands to get data into
and out of the A0 and B2 registers on your processor.

a To retrieve the value in register A0 and store it in a variable in your
MATLAB workspace. Enter the following command:

treg = IDE_Obj.regread('A0','2scomp');

treg contains the two’s complement representation of the value in A0.

b To retrieve the value in register B2 as an unsigned binary integer, enter
the following command:

IDE_Obj.regread('B2','binary');

c Next, enter the following command to use regwrite to put the value in
treg into register A2.

IDE_Obj.regwrite('A2',treg,'2scomp');

CCS IDE reports that A0, B2, and A2 have the values you expect. Select
View > CPU Registers > Core Registers from the CCS IDE menu
bar to list the processor registers.

Closing the Links or Cleaning Up CCS IDE
Objects that you create in Embedded Coder software have COM handles to
CCS. Until you delete these handles, the CCS process (cc_app.exe in the

42-25

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

Microsoft Windows Task Manager) remains in memory. Closing MATLAB
software removes these COM handles, but there may be times when you want
to delete the handles without closing the application.

Use clear to remove objects from your MATLAB workspace and to delete
handles they contain. clear all deletes everything in your workspace. To
retain your MATLAB software data while deleting objects and handles, use
clear objname. This applies to IDE link handle objects you created with
ticcs. To remove the objects created during the tutorial, the tutorial program
executes the following command at the prompt:

clear cvar cfield uintcvar

This tutorial also closes the project in CCS with the following command:

close(IDE_Obj,projfile,'project')

To delete your link to CCS, enter clear IDE_Obj at the prompt.

Your development tutorial using Code Composer Studio IDE is done.

During the tutorial you

1 Selected your processor.

2 Created and queried links to CCS IDE to get information about the link
and the processor.

3 Used MATLAB software to load files into CCS IDE, and used MATLAB
software to run that file.

4 Worked with your CCS IDE project from MATLAB software by reading
and writing data to your processor, and changing the data from MATLAB
software.

5 Created and used the embedded objects to manipulate data in a C-like way.

6 Closed the links you opened to CCS IDE.

42-26

IDE Automation Interface

Getting Started with RTDX

• “Using RTDX” on page 42-28

• “Creating the ticcs Objects” on page 42-33

• “Configuring Communications Channels” on page 42-35

• “Running the Application” on page 42-37

• “Closing the Connections and Channels or Cleaning Up” on page 42-44

• “Listing Functions” on page 42-47

Texas Instruments Real-Time Data Exchange (RTDX) provides “real-time,
continuous visibility into the way target applications operate in the real
world. RTDX allows system developers to transfer data between target
devices and a host without interfering with the target application.”

You can use RTDX with Embedded Coder software and Code Composer Studio
to accelerate development and deployment to Texas Instruments C2000
processors. RTDX helps you test and analyze your processing algorithms in
your MATLAB workspace. RTDX lets you interact with your process in real
time while it’s running on the processor. For example, you can:

• Send and retrieve data from memory on the processor

• Change the operating characteristics of the program

• Make changes to algorithms as required without stopping the program
or setting breakpoints in the code

Enabling real-time interaction lets you more easily see your process or
algorithm in action, the results as they develop, and the way the process runs.

This tutorial assumes you have Texas Instruments Code Composer Studio
software and at least one target development board. You can use the
hardware simulator in CCS IDE to run this tutorial.

After you complete the tutorial, you can start using RTDX with your
applications and hardware.

42-27

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

Note To use RTDX with the XDS100 USB JTAG Emulator and the C28027
chip, add the following line to the linker command file:

_RTDX_interrupt_mask = ~0x000000008;

Using RTDX
Digital signal processing development efforts begin with an idea for processing
data; an application area, such as audio or wireless communications or
multimedia computing; and a platform or hardware to host the signal
processing. Usually these processing efforts involve applying strategies like
signal filtering, compression, and transformation to change data content; or
isolate features in data; or transfer data from one form to another or one
place to another.

Developers create algorithms they need to accomplish the desired result. After
they have the algorithms, they use models and target hardware development
tools to test their algorithms, to determine whether the processing achieves
the goal, and whether the processing works on the proposed platform.

Embedded Coder and the links for RTDX and CCS IDE ease the job of taking
algorithms from the model realm to the real world of the processor on which
the algorithm runs.

RTDX and links for CCS IDE provide a communications pathway to
manipulate data and processing programs on your processor. RTDX offers
real-time data exchange in two directions between MATLAB software and
your processor process. Data you send to the processor do little to alter
running processes. Plotting data you retrieve from the processor lets you see
how your algorithms are performing in real time.

To introduce the techniques and tools available in Embedded Coder for
using RTDX, the following procedures use many of the methods in the link
software to configure the processor, open and enable channels, send data to
the processor, and clean up after you finish your testing. Among the functions
covered are:

42-28

IDE Automation Interface

Functions From Objects for CCS IDE.

Function Description

ticcs Create connections to CCS IDE and
RTDX.

cd Change the CCS IDE working folder
from MATLAB software.

open Load program files in CCS IDE.

run Run processes on the processor.

Functions From the RTDX Class.

Function Description

close Close the RTDX links between
MATLAB software and your
processor.

configure Determine how many channel
buffers to use and set the size of each
buffer.

disable Disable the RTDX links before you
close them.

display Return the properties of an object
in formatted layout. When you omit
the closing semicolon on a function,
disp (a built-in function) provides
the default display for the results of
the operation.

enable Enable open channels so you can use
them to send and retrieve data from
your processor.

isenabled Determine whether channels are
enabled for RTDX communications.

42-29

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

Function Description

isreadable Determine whether MATLAB
software can read the specified
memory location.

iswritable Determine whether MATLAB
software can write to the processor.

msgcount Determine how many messages are
waiting in a channel queue.

open Open channels in RTDX.

readmat Read data matrices from the
processor into MATLAB software as
an array.

readmsg Read one or more messages from a
channel.

writemsg Write messages to the processor over
a channel.

This tutorial provides the following workflow to show you how to use many
of the functions in the links. By performing the steps provided, you work
through many of the operations yourself. The tutorial follows the general
task flow for developing digital signal processing programs through testing
with the links for RTDX.

Within this set of tasks, numbers 1, 2, and 4 are fundamental to function
syntax that interacts development projects. Whenever you work with
MATLAB software and objects for RTDX, you perform the functions and tasks
outlined and presented in this tutorial. The differences lie in Task 3. Task 3
is the most important for using Embedded Coder to develop your processing
system.

1 Create an RTDX link to your desired processor and load the program to
the processor.

The projects begin this way. Without the links you cannot load your
executable to the processor.

42-30

IDE Automation Interface

2 Configure channels to communicate with the processor.

Creating the links in Task 1 did not open communications to the processor.
With the links in place, you open as many channels as you need to support
the data transfer for your development work. This task includes configuring
channel buffers to hold data when the data rate from the processor exceeds
the rate at which MATLAB software can capture the data.

3 Run your application on the processor. You use MATLAB software to
investigate the results of your running process.

4 Close the links to the processor and clean up the links and associated
debris left over from your work.

Closing channels and cleaning up the memory and links you created
prepares CCS IDE, RTDX, and Embedded Coder for the next time you start
development on a project.

This tutorial uses an executable program named rtdxtutorial_6xevm.out
as your application. When you use the RTDX links and CCS IDE to develop
your own applications, replace rtdxtutorial_6xevm.out in Task 3 with the
filename and path to your digital signal processing application.

You can view the tutorial file used here by clicking rtdxtutorial. To run this
tutorial in MATLAB software, click run rtdxtutorial.

42-31

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

Note To be able to open and enable channels over a link to RTDX, the
program loaded on your processor must include functions or code that define
the channels.

Your C source code might look something like this to create two channels,
one to write and one to read.

rtdx_CreateInputChannel(ichan); % processor reads from this.
rtdx_CreateOutputChannel(ochan); % processor writes to this.

These are the entries we use in int16.c (the source code that generates
rtdxtutorial_6xevm.out) to create the read and write channels.

If you are working with a model in Simulink software and using code
generation, use the To Rtdx and From Rtdx blocks in your model to add the
RTDX communications channels to your model and to the executable code
on your processor.

One more note about this tutorial. Throughout the code we use both the dot
notation (direct property referencing) to access functions and link properties
and the function form.

For example, use the following command to open and configure ichan for
write mode.

IDE_Obj.rtdx.open('ichan','w');

You could use an equivalent syntax, the function form, that does not use
direct property referencing.

open(IDE_Obj.rtdx,'ichan','w');

Or, use

open(rx,'ichan','w');

if you created an alias rx to the RTDX portion of IDE_Obj, as shown by the
following command:

rx = IDE_Obj.rtdx;

42-32

IDE Automation Interface

Creating the ticcs Objects
With your processing model converted to an executable for your desired
processor, you are ready to use the objects to test and run your model on your
processor. Embedded Coder and the objects do not distinguish the source of
the executable — whether you used Embedded Coder, CCS IDE, or some
other development tool to program and compile your model to an executable
does not alter the object connections. So long as your .out file is acceptable
to the processor you select, Embedded Coder provides the connection to the
processor.

Before continuing with this tutorial, you must load a valid GEL file to
configure the EMIF registers of your processor and perform required
processor initialization steps. Default GEL files provided by CCS are stored
in ..\IDE_Obj\gel in the folder where you installed CCS software. Select
File > Load_GEL in CCS IDE to load the default GEL file that matches
your processor family, such as init6x0x.gel for the Cxxxx processor family,
and your configuration.

Note If you are performing the steps in this tutorial, create demoPjt as
described in “Loading Files into CCS” on page 42-17 before continuing.

Begin the process of getting your model onto the processor by creating a
an object that refers to CCS IDE. Start by clearing function syntax that
interacts existing handles and setting echo on so you see functions execute
as the program runs:

1 clear all; echo on;

clear all removes debugging breakpoints and resets persistent variables
because function breakpoints and persistent variables are cleared
whenever the MATLAB file changes or is cleared. Breakpoints within your
executable remain after clear. Clearing the MATLAB workspace does
not alter your executable.

2 Now construct the link to your board and processor by entering

IDE_Obj=ticcs('boardnum',0);

42-33

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

boardnum defines which board the new link accesses. In this example,
boardnum is 0. Embedded Coder connects the link to the first, and in this
case only, processor on the board. To find the boardnum and procnum values
for the boards and simulators on your system, use ccsboardinfo. When you
enter the following command at the prompt

ccsboardinfo

3 To open and load the processor file, change the path for MATLAB software
to be able to find the file.

projname = C:\Temp\EmbIDELinkCCDemos_v4.1\rtdxtutorial\cxx\cxxxp\rtdxtut_sim.pjt

outFile = C:\Temp\EmbIDELinkCCDemos_v4.1\rtdxtutorial\cxx\cxxxp\rtdxtut_sim.out

processor_dir = demoPjt.DemoDir

processor_dir = C:\Temp\EmbIDELinkCCDemos_v4.1\rtdxtutorial\cxx\cxxxp

cd(IDE_Obj,processor_dir); % Go to processor directory

cd(IDE_Obj,tgt_dir); % Or IDE_Obj.cd(tgt_dir)

dir(IDE_Obj); % Or IDE_Obj.dir

To load the project file to your processor, enter the following commands at
the MATLAB software prompt. getDemoProject is a specialized function
for loading Embedded Coder example files. It is not supported as a
standard Embedded Coder function.

demoPjt = getDemoProject(IDE_Obj,'ccstutorial');

demoPjt.ProjectFile

ans = C:\Temp\EmbIDELinkCCDemos_v4.1\ccstutorial\cxx\cxxxp\ccstut.pjt

demoPjt.DemoDir

ans = C:\Temp\EmbIDELinkCCDemos_v4.1\ccstutorial\cxx\cxxxp

42-34

IDE Automation Interface

Notice where the example files are stored on your machine. In general,
Embedded Coder software stores the example project files in

EmbIDELinkCCDemos_v#.#

For example, if you are using version 4.1 of Embedded Coder software, the
project examples are stored in EmbIDELinkCCDemos_v4.1\. Embedded
Coder software creates this folder in a location on your machine where you
have write permission. Usually, there are two locations where Embedded
Coder software tries to create the example folder, in the order shown.

a In a temporary folder on the C drive, such as C:\temp\.

b If Embedded Coder software cannot use the temp folder, you see a dialog
that asks you to select a location to store the examples.

4 You have reset the folder path to find the tutorial file. Now open the .out
file that matches your processor type.

IDE_Obj.open('rtdxtutorial_xxx.out')

Because open is overloaded for the CCS IDE and RTDX links, this may
seem a bit strange. In this syntax, open loads your executable file onto the
processor identified by IDE_Obj. Later in this tutorial, you use open with a
different syntax to open channels in RTDX.

In the next section, you use the new link to open and enable communications
between MATLAB software and your processor.

Configuring Communications Channels
Communications channels to the processor do not exist until you open and
enable them through Embedded Coder and CCS IDE. Opening channels
consists of opening and configuring each channel for reading or writing, and
enabling the channels.

In the open function, you provide the channel names as strings for the channel
name property. The channel name you use is not random. The channel name
string must match a channel defined in the executable file. If you specify
a string that does not identify an existing channel in the executable, the
open operation fails.

42-35

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

In this tutorial, two channels exist on the processor — ichan and ochan.
Although the channels are named ichan for input channel and ochan for
output channel, neither channel is configured for input or output until you
configure them from MATLAB software or CCS IDE. You could configure
ichan as the output channel and ochan as the input channel. The links would
work just the same. For simplicity, the tutorial configures ichan for input
and ochan for output. One more note—reading and writing are defined as
seen by the processor. When you write data from MATLAB software, you
write to the channel that the processor reads, ichan in this case. Conversely,
when you read from the processor, you read from ochan, the channel that
the processor writes to:

1 Configure buffers in RTDX to store the data until MATLAB software can
read it into your workspace. Often, MATLAB software cannot read data as
quickly as the processor can write it to the channel.

IDE_Obj.rtdx.configure(1024,4); % define 4 channels of 1024 bytes each

Channel buffers are optional. Adding them provides a measure of insurance
that data gets from your processor to MATLAB software without getting
lost.

2 Define one of the channels as a write channel. Use ’ichan’ for the channel
name and ’w’ for the mode. Either ’w’ or ’r’ fits here, for write or read.

IDE_Obj.rtdx.open('ichan','w');

3 Now enable the channel you opened.

IDE_Obj.rtdx.enable('ichan');

4 Repeat steps 2 and 3 to prepare a read channel.

IDE_Obj.rtdx.open('ochan','r');
IDE_Obj.rtdx.enable('ochan');

5 To use the new channels, enable RTDX by entering

IDE_Obj.rtdx.enable;

You could do this step before you configure the channels — the order does
not matter.

42-36

IDE Automation Interface

6 Reset the global time-out to 20s to provide a little room for error. ticcs
applies a default timeout value of 10 s. In some cases this may not be
enough.

IDE_Obj.rtdx.get('timeout')
ans =

10
IDE_Obj.rtdx.set('timeout', 20); % Reset timeout = 20 seconds

7 Check that the timeout property value is now 20s and that your object has
a valid configuration for the rest of the tutorial.

IDE_Obj.rtdx

RTDX Object:
API version: 1.0
Default timeout: 20.00 secs
Open channels: 2

Running the Application
To this point you have been doing common housekeeping functions. You load
the processor, configure the communications, and set up other properties
you need.

This tutorial shows you some of the Embedded Coder functions you can use to
prototype and experiment with your application. To see the RTDX readmat,
readmsg, and writemsg functions, you write data to your processor. Then,
after the data has been processed, you read data from the processor.

1 Restart the program you loaded on the processor. restart sets the program
counter (PC) to the beginning of the executable code on the processor.

IDE_Obj.restart

Restarting the processor does not start the program executing. You use run
to start program execution.

2 Type IDE_Obj.run('run');

42-37

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

Using ’run’ for the run mode tells the processor to continue to execute the
loaded program continuously until it receives a halt directive. In this mode,
control returns to MATLAB software so you can work in MATLAB software
while the program runs. Other options for the mode are

• ’runtohalt’ — start to execute the program and wait to return control to
MATLAB software until the process reaches a breakpoint or execution
terminates.

• ’tohalt’ — change the state of a running processor to ’runtohalt’ and
wait to return until the program halts. Use tohalt mode to stop the
running processor cleanly.

3 Type the following functions to enable the write channel and verify the
change:

IDE_Obj.rtdx.enable('ichan');
IDE_Obj.rtdx.isenabled('ichan')

If MATLAB software responds ans = 0 your channel is not enabled and
you cannot proceed with the tutorial. Try to enable the channel again and
verify the status.

4 Write some data to the processor. Check that you can write to the
processor, then use writemsg to send the data. You do not need to enter
the if-test code shown.

if IDE_Obj.rtdx.iswritable('ichan'), % Used in a script application.

disp('writing to processor...') % Optional to display progress.

indata=1:10

IDE_Obj.rtdx.writemsg('ichan', int16(indata))

end % Used in scripts for channel testing.

The if statement simulates writing the data from within a MATLAB
software script. The script uses iswritable to check that the input channel
is functioning. If iswritable returns 0 the script would skip the write and
exit the program, or respond in some way. When you are writing or reading
data to your processor in a script or MATLAB file, checking the status of
the channels can help you avoid errors during execution.

42-38

IDE Automation Interface

As your application runs you may find it helpful to display progress
messages. In this case, the program directed MATLAB software to print a
message as it reads the data from the processor by adding the function

disp('writing to processor...')

Function IDE_Obj.rtdx.writemsg('ichan', int16(indata)) results in
20 messages stored on the processor. Here’s how.

When you write indata to the processor, the following code running on the
processor takes your input data from ichan, adds one to the values and
copies the data to memory:

while (!RTDX_isInputEnabled(&ichan))

{/* wait for channel enable from MATLAB */}
RTDX_read(&ichan, recvd, sizeof(recvd));
puts("\n\n Read Completed ");

for (j=1; j<=20; j++) {
for (i=0; i<MAX; i++) {

recvd[i] +=1;
}
while (!RTDX_isOutputEnabled(&ochan))

{ /* wait for channel enable from MATLAB */ }
RTDX_write(&ochan, recvd, sizeof(recvd));
while (RTDX_writing != NULL)
{ /* wait for data xfer INTERRUPT DRIVEN for Cxxxx */ }

}

Program int16_rtdx.c contains this source code. You can find the file in a
folder in the ..\tidemos\rtdxtutorial folder.

5 Type the following to check the number of available messages to read from
the processor.

num_of_msgs = IDE_Obj.rtdx.msgcount('ochan');

num_of_msgs should be zero. Using this process to check the amount of
data lets you or your program know how much data to expect.

42-39

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

6 Type the following to verify that your read channel ochan is enabled for
communications.

IDE_Obj.rtdx.isenabled('ochan')

You should get back ans = 0— you have not enabled the channel yet.

7 Now enable and verify ’ochan’.

IDE_Obj.rtdx.enable('ochan');
IDE_Obj.rtdx.isenabled('ochan')

To show that ochan is ready, MATLAB software responds ans = 1. If not,
try enabling ochan again.

8 Type

pause(5);

The pause function gives the processor extra time to process the data in
indata and transfer the data to the buffer you configured for ochan.

9 Repeat the check for the number of messages in the queue. There should be
20 messages available in the buffer.

num_of_msgs = IDE_Obj.rtdx.msgcount('ochan')

With num_of_msgs = 20, you could use a looping structure to read the
messages from the queue in to MATLAB software. In the next few steps of
this tutorial you read data from the ochan queue to different data formats
within MATLAB software.

10 Read one message from the queue into variable outdata.

outdata = IDE_Obj.rtdx.readmsg('ochan','int16')

outdata =

2 3 4 5 6 7 8 9 10 11

Notice the ’int16’ represent option. When you read data from your
processor you need to tell MATLAB software the data type you are reading.

42-40

IDE Automation Interface

You wrote the data in step 4 as 16-bit integers so you use the same data
type here.

While performing reads and writes, your process continues to run. You
did not need to stop the processor to get the data or send the data, unlike
using most debuggers and breakpoints in your code. You placed your data
in memory across an RTDX channel, the processor used the data, and you
read the data from memory across an RTDX channel, without stopping
the processor.

11 You can read data into cell arrays, rather than into simple double-precision
variables. Use the following function to read three messages to cell array
outdata, an array of three, 1-by-10 vectors. Each message is a 1-by-10
vector stored on the processor.

outdata = IDE_Obj.rtdx.readmsg('ochan','int16',3)

outdata =
[1x10 int16] [1x10 int16] [1x10 int16]

12 Cell array outdata contains three messages. Look at the second message,
or matrix, in outdata by using dereferencing with the array.

outdata{1,2}

outdata =

4 5 6 7 8 9 10 11 12 13

13 Read two messages from the processor into two 2-by-5 matrices in your
MATLAB workspace.

outdata = IDE_Obj.rtdx.readmsg('ochan','int16',[2 5],2)

outdata =

[2x5 int16] [2x5 int16]

To specify the number of messages to read and the data format in your
workspace, you used the siz and nummsgs options set to [2 5] and 2.

14 You can look at both matrices in outdata by dereferencing the cell array
again.

42-41

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

outdata{1,:}

ans =

6 8 10 12 14

7 9 11 13 15

ans =

7 9 11 13 15

8 10 12 14 16

15 For a change, read a message from the queue into a column vector.

outdata = IDE_Obj.rtdx.readmsg('ochan','int16',[10 1])

outdata =

8

9

10

11

12

13

14

15

16

17

16 Embedded Coder provides a function for reading messages into
matrices–readmat. Use readmat to read a message into a 5-by-2 matrix in
MATLAB software.

outdata = readmat(IDE_Obj.rtdx,'ochan','int16',[5 2])

outdata =

9 14

10 15

11 16

12 17

13 18

Because a 5-by-2 matrix requires ten elements, MATLAB software reads
one message into outdata to fill the matrix.

42-42

IDE Automation Interface

17 To check your progress, see how many messages remain in the queue. You
have read eight messages from the queue so 12 should remain.

num_of_msgs = IDE_Obj.rtdx.msgcount('ochan')

num_of_msgs =
12

18 To see the connection between messages and a matrix in MATLAB
software, read data from 'ochan' to fill a 4-by-5 matrix in your workspace.

outdata = IDE_Obj.rtdx.readmat('ochan','int16',[4 5])

outdata =

10 14 18 13 17

11 15 19 14 18

12 16 11 15 19

13 17 12 16 20

Filling the matrix required two messages worth of data.

19 To verify that the last step used two messages, recheck the message count.
You should find 10 messages waiting in the queue.

num_of_msgs = IDE_Obj.rtdx.msgcount('ochan')

20 Continuing with matrix reads, fill a 10-by-5 matrix (50 matrix elements or
five messages).

outdata = IDE_Obj.rtdx.readmat('ochan','int16',[10 5])

outdata =

12 13 14 15 16

13 14 15 16 17

14 15 16 17 18

15 16 14 18 19

16 17 18 19 20

17 18 19 20 21

18 19 20 21 22

19 20 21 22 23

20 21 22 23 24

42-43

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

21 22 23 24 25

21 Recheck the number of messages in the queue to see that five remain.

22 flush lets you remove messages from the queue without reading them. Data
in the message you remove is lost. Use flush to remove the next message in
the read queue. Then check the waiting message count.

IDE_Obj.rtdx.flush('ochan',1)
num_of_msgs = IDE_Obj.rtdx.msgcount('ochan')

num_of_msgs =

4

23 Empty the remaining messages from the queue and verify that the queue is
empty.

IDE_Obj.rtdx.flush('ochan','all')

With the all option, flush discards the messages in the ochan queue.

Closing the Connections and Channels or Cleaning Up
One of the most important programmatic processes you should do in every
RTDX session is to clean up at the end. Cleaning up includes stopping your
processor, disabling the RTDX channels you enabled, disabling RTDX and
closing your open channels. Performing this series of tasks prevents trouble
caused by unexpected interactions with remaining handles, channels, and
links from earlier development work.

Best practices suggest that you include the following tasks (or an subset that
meets your development needs) in your development scripts and programs.

We use several functions in this section; each has a purpose — the operational
details in the following list explain how and why we use each one. They are

• close — close the specified RTDX channel. To use the channel again,
you must open and enable the channel. Compare close to disable.
close('rtdx') closes the communications provided by RTDX. After you
close RTDX, you cannot communicate with your processor.

42-44

IDE Automation Interface

• disable— remove RTDX communications from the specified channel, but
does not remove the channel, or link. Disabling channels may be useful
when you do not want to see the data that is being fed to the channel, but
you may want to read the channel later. By enabling the channel later, you
have access to the data entering the channel buffer. Note that data that
entered the channel while it was disabled is lost.

• halt— stop a running processor. You may still have one or more messages
in the host buffer.

Use the following procedure to shut down communications between MATLAB
software and the processor, and end your session:

1 Begin the process of shutting down the processor and RTDX by stopping
the processor. Type the following functions at the prompt.

if (isrunning(IDE_Obj)) % Use this test in scripts.
IDE_Obj.halt; % Halt the processor.

end % Done.

Your processor may already be stopped at this point. In a script, you might
put the function in an if-statement as we have done here. When you direct
a stopped processor to halt, the function returns immediately.

2 You have stopped the processor. Now disable the RTDX channels you
opened to communicate with the processor.

IDE_Obj.rtdx.disable('all');

If required, using disable with channel name and processor identifier
input arguments lets you disable only the channel you choose. When you
have more than one board or processor, you may find disabling selected
channels meets your needs.

When you finish your RTDX communications session, disable RTDX so that
Embedded Coder releases your open channels before you close them.

IDE_Obj.rtdx.disable;

42-45

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

3 Use the following function syntaxes to close your open channels. Either
close selected channels by using the channel name in the function, or use
the all option to close the open channels.

• IDE_Obj.rtdx.close('ichan') to close your input channel in this
tutorial.

• IDE_Obj.rtdx.close('ochan') to close your output channel in the
tutorial.

• IDE_Obj.rtdx.close('all') to close your open RTDX channels,
regardless of whether they are part of this tutorial.

Consider using the all option with the close function when you finish
your RTDX work. Closing channels reduces unforeseen problems caused by
channel objects that exist but do not get closed when you end your session.

4 When you created your RTDX object (IDE_Obj = ticcs('boardnum',1)
at the beginning of this tutorial, the ticcs function opened CCS IDE and
set the visibility to 0. To avoid problems that occur when you close the
interface to RTDX with CCS visibility set to 0, make CCS IDE visible on
your desktop. The following if statement checks the CCS IDE visibility
and changes it if required.

if IDE_Obj.isvisible,

IDE_Obj.visible(1);

end

Visibility can cause problems. When CCS IDE is running invisibly on your
desktop, do not use clear all to remove your links for CCS IDE and
RTDX. Without a ticcs object that references the CCS IDE you cannot
access CCS IDE to change the visibility setting, or close the application. To
close CCS IDE when you do not have an existing object, either create a new
object to access the CCS IDE, or use Microsoft Windows Task Manager to
end the process cc_app.exe, or close the MATLAB software.

5 You have finished the work in this tutorial. Enter the following commands
to close your remaining references to CCS IDE and release the associated
resources.

clear ('all'); % Calls the link destructors to remove all links.

echo off

42-46

IDE Automation Interface

clear all without the parentheses removes the variables from your
MATLAB workspace.

You have completed the tutorial using RTDX. During the tutorial you

1 Opened connections to CCS IDE and RTDX and used those connections to
load an executable program to your processor.

2 Configured a pair of channels so you could transfer data to and from your
processor.

3 Ran the executable on the processor, sending data to the processor for
processing and retrieving the results.

4 Stopped the executing program and closed the links to CCS IDE and RTDX.

This tutorial provides a working process for using Embedded Coder and
your signal processing programs to develop programs for a range of Texas
Instruments processors. While the processor may change, the essentials of
the process remain the same.

Listing Functions
To review a complete list of functions and methods that operate with ticcs
objects, either CCS IDE or RTDX, enter either of the following commands at
the prompt.

help ticcs
help rtdx

If you already have a ticcs object IDE_Obj, you can use dot notation to
return the methods for CCS IDE or RTDX by entering one of the following
commands at the prompt:

• IDE_Obj.methods

• IDE_Obj.rtdx.methods

42-47

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

In either instance MATLAB software returns a list of the available functions
for the specified link type, including both public and private functions. For
example, to see the functions (methods) for links to CCS IDE, enter:

help ticcs

Constructing ticcs Objects
When you create a connection to CCS IDE using the ticcs command, you are
creating a “ticcs object for accessing the CCS IDE and RTDX interface”. The
ticcs object implementation relies on MATLAB software object-oriented
programming capabilities.

The discussions in this section apply to the ticcs objects in Embedded Coder.

Like other MATLAB software structures, objects in Embedded Coder have
predefined fields called object properties.

You specify object property values by one of the following methods:

• Setting the property values when you create the ticcs object

• Creating an object with default property values, and changing these
property values later

For examples of setting ticcs object properties, refer to ticcs.

Constructor for ticcs Objects
The easiest way to create an object is to use the function ticcs to create an
object with the default properties. Create an object named IDE_Obj to refer to
CCS IDE by entering

IDE_Obj = ticcs

MATLAB software responds with a list of the properties of the object IDE_Obj
you created along with the associated default property values.

ticcs object:
API version : 1.0
Processor type : Cxx
Processor name : CPU

42-48

IDE Automation Interface

Running? : No
Board number : 0
Processor number : 0
Default timeout : 10.00 secs

RTDX channels : 0

Inspecting the output reveals two objects listed—a CCS IDE object and an
RTDX object. CCS IDE and RTDX objects cannot be created separately. By
design they maintain a member class relationship; the RTDX object is a class,
a member of the CCS object class. In this example, IDE_Obj is an instance of
the class CCS. If you enter

rx = IDE_Obj.rtdx

rx is a handle to the RTDX portion of the CCS object. As an alias, rx replaces
IDE_Obj.rtdx in functions such as readmat or writemsg that use the RTDX
communications features of the CCS link. Typing rx at the command line
now produces

rx

RTDX channels : 0

The object properties are described in the function reference, and in more
detail in ticcs Object Properties. These properties are set to default values
when you construct objects.

ticcs Properties and Property Values
Objects in Embedded Coder software have properties associated with them.
Each property is assigned a value. You can set the values of most properties,
either when you create the link or by changing the property value later.
However, some properties have read-only values. And a few property values,
such as the board number and the processor to which the link attaches,
become read-only after you create the object. You cannot change those after
you create your link.

42-49

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

Overloaded Functions for ticcs Objects
Several functions in this Embedded Coder have the same name as functions
in other MathWorks toolboxes or in MATLAB software. These behave
similarly to their original counterparts, but you apply these functions directly
to an object. This concept of having functions with the same name operate on
different types of objects (or on data) is called overloading of functions.

For example, the set command is overloaded for ticcs objects. After you
specify your link by assigning values to its properties, you can apply the
functions in this toolbox (such as readmat for using RTDX to read an array
of data from the processor) directly to the variable name you assign to your
object, without specifying your object parameters again.

ticcs Object Properties

• “Quick Reference to ticcs Object Properties” on page 42-51

• “Details About ticcs Object Properties” on page 42-52

Embedded Coder provides an interface to your processor hardware so you
can communicate with processors for which you are developing systems and
algorithms. Each ticcs object comprises two objects—a CCS IDE object and an
RTDX interface object. The objects are not separable; the RTDX object is a
subclass of the CCS IDE object. Each of the objects has multiple properties.
To configure the interface objects for CCS IDE and RTDX, you set parameters
that define details such as the desired board, the processor, the timeout
period applied for communications operations, and a number of other values.
Because Embedded Coder uses objects to create the interface, the parameters
you set are called properties and you treat them as properties when you set
them, retrieve them, or modify them.

This section details the properties for the ticcs objects for CCS IDE and
RTDX. First the section provides tables of the properties, for quick reference.
Following the tables, the section offers in-depth descriptions of each property,
its name and use, and whether you can set and get the property value
associated with the property. Descriptions include a few examples of the
property in use.

42-50

IDE Automation Interface

MATLAB software users may find much of this handling of objects familiar.
Objects in Embedded Coder, behave like objects in MATLAB software and
the other object-oriented toolboxes. For C++ programmers, discussion of
object-oriented programming is likely to be a review.

Quick Reference to ticcs Object Properties
The following table lists the properties for the ticcs objects in Embedded
Coder. The second column tells you which object the property belongs to.
Knowing which property belongs to each object in a ticcs object tells you
how to access the property.

Property
Name

Applies
to Which
Connection?

User
Settable? Description

apiversion CCS IDE No Reports the version
number of your CCS
API.

boardnum CCS IDE Yes/initially Specifies the index number
of a board that CCS IDE
recognizes.

ccsappexe CCS IDE No Specifies the path to the
CCS IDE executable.
Read-only property.

numchannels RTDX No Contains the number of
open RTDX channels for a
specific link.

page CCS IDE Yes/default Stores the default memory
page for reads and writes.

procnum CCS IDE Yes/at start
only

Stores the number CCS
Setup Utility assigns to the
processor.

42-51

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

Property
Name

Applies
to Which
Connection?

User
Settable? Description

timeout CCS IDE Yes/default Contains the global
timeout setting for the
link.

version RTDX No Reports the version of your
RTDX software.

Some properties are read only — you cannot set the property value. Other
properties, you can change. If the entry in the User Settable column is
“Yes/initially”, you can set the property value only when you create the link.
Thereafter it is read only.

Details About ticcs Object Properties
To use the links for CCS IDE and RTDX interface you set values for:

• boardnum— specify the board with which the link communicates.

• procnum — specify the processor on the board. If the board has multiple
processors, procnum identifies the processor to use.

• timeout— specify the global timeout value. (Optional. Default is 10 s.)

Details of the properties associated with connections to CCS IDE and RTDX
interface appear in the following sections, listed in alphabetical order by
property name.

Many of these properties are object linking and embedding (OLE) handles.
The MATLAB software COM server creates the handles when you create
objects for CCS IDE and RTDX. You can manipulate the OLE handles using
get, set, and invoke to work directly with the COM interface with which
the handles interact.

42-52

IDE Automation Interface

apiversion. Property appversion contains a string that reports the version
of the application program interface (API) for CCS IDE that you are using
when you create a link. You cannot change this string. When you upgrade
the API, or CCS IDE, the string changes to match. Use display to see the
apiversion property value for a link. This example shows the appversion
value for link IDE_Obj.

display(IDE_Obj)

TICCS Object:
API version : 1.0
Processor type : Cxx
Processor name : CPU
Running? : No
Board number : 0
Processor number : 0
Default timeout : 10.00 secs

RTDX channels : 0

Note that the API version is not the same as the CCS IDE version.

boardnum. Property boardnum identifies the board referenced by the
IDE link handle object for CCS. When you create a link, you use boardnum
to specify the board you are using. To get the value for boardnum, use
ccsboardinfo or the CCS Setup utility from Texas Instruments software. The
CCS Setup utility assigns the number for each board installed on your system.

ccsappexe. Property ccsappexe contains the path to the CCS IDE
executable file cc_app.exe. When you use ticcs to create a link, MATLAB
software determines the path to the CCS IDE executable and stores the path
in this property. This is a read-only property. You cannot set it.

numchannels. Property numchannels reports the number of open RTDX
communications channels for an RTDX link. Each time you open a channel for
a link, numchannels increments by one. For new links numchannels is zero
until you open a channel for the link.

To see the value for numchannels create a link to CCS IDE. Then open a
channel to RTDX. Use display to see the RTDX link properties.

42-53

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

IDE_Obj=ticcs

TICCS Object:
API version : 1.0
Processor type : Cxx
Processor name : CPU
Running? : No
Board number : 0
Processor number : 0
Default timeout : 10.00 secs

RTDX channels : 0

rx=IDE_Obj.rtdx

RTDX channels : 0

open(rx,'ichan','r','ochan','w');

get(IDE_Obj.rtdx)

ans =

numChannels: 2
Rtdx: [1x1 COM]

RtdxChannel: {'' '' ''}
procType: 103
timeout: 10

page. Property page contains the default value CCS IDE uses when the
user does not specify the page input argument in the syntax for a function
that access memory.

procnum. Property procnum identifies the processor referenced by the IDE
link handle object for CCS. When you create an object, you use procnum
to specify the processor you are using . The CCS Setup Utility assigns a
number to each processor installed on each board. To determine the value
of procnum for a processor, use ccsboardinfo or the CCS Setup utility from
Texas Instruments software.

42-54

IDE Automation Interface

To identify a processor, you need both the boardnum and procnum values.
For boards with one processor, procnum equals zero. CCS IDE numbers the
processors on multiprocessor boards sequentially from 0 to the number of
processors. For example, on a board with four processors, the processors
are numbered 0, 1, 2, and 3.

rtdx. Property rtdx is a subclass of the ticcs link and represents the RTDX
portion of the IDE link handle object for CCS. As shown in the example, rtdx
has properties of its own that you can set, such as timeout, and that report
various states of the link.

get(IDE_Obj.rtdx)

ans =

version: 1
numChannels: 0

Rtdx: [1x1 COM]
RtdxChannel: {'' [] ''}

procType: 103
timeout: 10

In addition, you can create an alias to the rtdx portion of a link, as shown
in this code example.

rx=IDE_Obj.rtdx

RTDX channels : 0

Now you can use rx with the functions in Embedded Coder, such as get or set.
If you have two open channels, the display looks like the following example:

get(rx)

ans =

numChannels: 2
Rtdx: [1x1 COM]

RtdxChannel: {2x3 cell}
procType: 98
timeout: 10

42-55

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

rtdxchannel. Property rtdxchannel, along with numchannels and
proctype, is a read-only property for the RTDX portion of the IDE link
handle object for CCS. To see the value of this property, use get with the link.
Neither set nor invoke work with rtdxchannel.

rtdxchannel is a cell array that contains the channel name, handle, and
mode for each open channel for the link. For each open channel, rtdxchannel
contains three fields, as follows:

.rtdxchannel{i,1} Channel name of the ith-channel, i from 1 to the
number of open channels

.rtdxchannel{i,2} Handle for the ith-channel

.rtdxchannel{i,3} Mode of the ith-channel, either 'r' for read or
'w' for write

With four open channels, rtdxchannel contains four channel elements and
three fields for each channel element.

timeout. Property timeout specifies how long CCS IDE waits for a process to
finish. Two timeout periods can exist — one global, one local. You set the
global timeout when you create the IDE link handle object for CCS. The
default global timeout value 10 s. However, when you use functions to read
or write data to CCS IDE or your processor, you can set a local timeout that
overrides the global value. If you do not set a specific timeout value in a read
or write process syntax, the global timeout value applies to the operation.
Refer to the help for the read and write functions for the syntax to set the
local timeout value for an operation.

version. Property version reports the version number of your RTDX
software. When you create a ticcs object, version contains a string that
reports the version of the RTDX application that you are using. You cannot
change this string. When you upgrade the API, or CCS IDE, the string
changes to match. Use display to see the version property value for a link.
This example shows the apiversion value for object rx.

get(rx) % rx is an alias for IDE_Obj.rtdx.

ans =

42-56

IDE Automation Interface

version: 1
numChannels: 0

Rtdx: [1x1 COM]
RtdxChannel: {'' [] ''}

procType: 103
timeout: 10

42-57

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

IDE Project Generator

In this section...

“Introducing IDE Project Generator” on page 42-58

“IDE Project Generator and Board Selection” on page 42-58

“Generate an IDE Project” on page 42-60

“Model Reference” on page 42-64

Introducing IDE Project Generator
IDE Project Generator provides the following features for developing project
and generating code:

• Support automated project building for Texas Instruments Code Composer
Studio software that lets you create projects from code generated by
Embedded Coder products. The project automatically populates CCS
projects in the CCS development environment.

• Configure code generation using model Configuration Parameters and
processor preferences block options

• Select from two system target files to generate code specific to your
processor

• Configure project build process

• Automatically download and run your generated projects on your processor

Note You cannot generate code for C6000 processors in big-endian mode.
Code generation supports only little-endian processor data byte order.

IDE Project Generator and Board Selection
IDE Project Generator uses ticcs objects to connect to the IDE. Each time
you build a model to generate a project, the build process starts by issuing the
ticcs method, as shown here:

IDE_Obj=ticcs('boardnum',boardnum,'procnum',procnum)

42-58

IDE Project Generator

The software attempts to connect to the board (boardnum) and processor
(procnum) associated with the Board name and Processor number
parameters located on the Target Hardware Resources pane in the model
Configuration Parameters.

The result of the ticcs method changes, depending on the boards you
configured in CCS. The following table describes how the software selects the
board to connect to in your board configuration.

CCS Board Configuration State Response by Software

Code Composer Studio or Embedded
Coder software not installed.

Returns an error message asking
you to verify that you installed
both Code Composer Studio and
Embedded Coder.

Code Composer Studio software does
not have configured boards.

Returns an error message that the
software could not find boards in
your configuration. Use Setup Code
Composer Studio to configure at
least one board.

Code Composer Studio software has
one configured board.

Attaches to the board regardless of
the value of the Board parameter.
You see a warning message telling
you which board the software
selected.

Code Composer Studio software
has one board configured that does
not match the value of the Board
parameter.(*)

Returns a warning message that
the software could not find the
board specified in the block and
connected to the board listed in the
warning message. The software
connects to the first board in your
CCS configuration.

42-59

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

CCS Board Configuration State Response by Software

Code Composer Studio has more
than one board configured. The
value of the Board parameter is one
of the configured boards.

Connects to the specified board.

Code Composer Studio has more
than one board configured. The
value of the Board parameter is not
one of the configured boards.(*)

Returns a message asking you
to select a board from the list of
configured boards. You have two
choices:
• Select a board to use for project
generation, and click OK. Your
selection does not change the
value of the Board parameter.
The software connects to the
selected board.

• Click Abort to stop the project
build and code generation process.
The software does not connect to
the IDE or board.

(*)You may encounter the situation where you do not have the valid board
configured in CCS because of one of the following conditions:

• You changed your board configuration and saved the model. When you
reopen the model, the board specified in Board name in the block is not
in your configuration.

• You are working with a model from a source whose board configuration is
not the same as yours.

Use ccsboardinfo at the MATLAB prompt to verify or review your configured
boards.

Generate an IDE Project

• “Creating the Model” on page 42-61

• “Specify Configuration Parameters for Your Model” on page 42-62

42-60

IDE Project Generator

In this tutorial you will use the Embedded Coder software to:

• Build a model.

• Generate a project from the model.

• Build the project and run the binary on a processor.

Note The model shows project generation. You cannot not build and run the
model on your processor without additional blocks.

To generate a project from a model, complete the following tasks:

1 Create a model application.

2 Configure your model for your IDE, tool chain, and target hardware, as
described in “Configure Target Hardware Resources” on page 35-3.

3 In the Configuration Parameters, also set:

• Solver parameters such as simulation start and solver options

• Software options such as processor configuration and processor compiler
selection

4 Generate your project.

5 Review your project in CCS.

Creating the Model
To build a model, follow these steps:

1 Open the Simulink Library Browser.

2 Use Simulink blocks to create a model, or open one of the example models
for Texas Instruments Code Composer Studio.

3 Name and save your model before continuing.

42-61

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

Specify Configuration Parameters for Your Model
The following sections describe how to configure the build and run parameters
for your model. Generating a project, or building and running a model on
the processor, starts with configuring model options in the Configuration
Parameters dialog in Simulink software.

Setting Solver Parameters. After you have designed and implemented your
digital signal processing model in Simulink software, complete the following
steps to set the Configuration Parameters for the model:

1 Configure your model for your IDE, tool chain, and target hardware, as
described in “Configure Target Hardware Resources” on page 35-3.

2 Select the Solver pane in the Configuration Parameters dialog.

3 Set Start time to 0.0 and Stop time to inf (model runs without stopping).
If you set a stop time, your generated code does not honor the setting. Set
this to inf for completeness.

4 Under Solver options, set Type to fixed-step and set Solver to
discrete (no continuous states). For PIL, set Type and Solver to
any setting.

5 For Fixed step size (fundamental sample time), enter Auto, and set
Tasking mode for periodic sample times to SingleTasking.

Note Generated code does not honor Simulink software stop time from the
simulation. Stop time is interpreted as inf. To implement a stop in generated
code, add a Stop Simulation block in your model.

When you use PIL, you can set the Solver options to any selection from
the Type and Solver lists.

Ignore the Data Import/Export, Diagnostics, and Optimization panes
in the Configuration Parameters dialog. The default settings are valid for
your new model.

42-62

IDE Project Generator

Setting Code Generation Parameters. To configure your software to use
the right processor files and to compile and run your model executable file,
configure the Code Generation pane in the Configuration Parameters dialog.

1 In the Configuration Parameters dialog, select the Code Generation pane.

2 Use the Browse button to set System target file to idelink_grt.tlc.

Setting Coder Target Parameters. To configure code generation options
and to compile and run your model executable file, configure the Coder Target
pane in the Configuration Parameters dialog.

1 In the Configuration Parameters dialog, expand the node for the Code
Generation pane and select the Coder Target pane.

2 Set the following options in the pane under Vendor Tool Chain:

• Configuration should be Custom.

• Set Compiler options string and Linker options string should be
blank.

3 Under Link Automation, verify that Export IDE link handle to base
workspace is selected and provide a name for the handle in Coder
Target handle name (optional).

4 Set the following Run-Time options:

• Build action: Build_and_execute.

• Interrupt overrun notification method: None.

You have configured the your software options that let you generate a project
for you processor. You may have noticed that you did not configure a few
of the Configuration Parameters panes, such as Comments, Symbols, and
Optimization.

For your new model, the default values for the options in these panes are
right. For other models you develop, you may want to set the options in these
panes to provide information during the build and to run TLC debugging
when you generate code. Refer to your product documentation for more
information about setting the Configuration Parameters.

42-63

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

Building Your Project. After you set the Configuration Parameters and
configure the coder product to create the files you need, you direct the build
process to create your project:

1 Press OK to close the Configuration Parameters dialog.

2 Click Ctrl+B to generate your project into CCS IDE.

When you click Build with Create_project selected for Build action,
the automatic build process starts CCS IDE, populates a new project in
the development environment, builds the project, loads the binary on the
processor, and runs it.

3 To stop processor execution, use the Halt option in CCS or enter
IDE_Obj.halt at the MATLAB command prompt. (Where “IDE_Obj” is
the IDE link handle name you specified previously in Configuration
Parameters.)

Model Reference
Model reference lets your model include other models as modular components.
This technique provides useful features because it:

• Simplifies working with large models by letting you build large models
from smaller ones, or even large ones.

• Lets you generate code for the modules in the model, and later, regenerate
code for modules that change.

• Lets you develop the modules independently.

• Lets you reuse modules and models by reference, rather than including the
model or module multiple times in your model. Also, multiple models can
refer to the same model or module.

Your product documentation provides much more information about model
reference.

How Model Reference Works
Model reference behaves differently in simulation and in code generation. For
this discussion, you need to know the following terms:

42-64

IDE Project Generator

• Top-model — The root model block or model. It refers to other blocks or
models. In the model hierarchy, this is the topmost model.

• Referenced models — Blocks or models that other models reference, such as
models the top-model refers to. The models or blocks below the top-model
in the hierarchy are reference models.

The following sections describe briefly how model reference works. More
details are available in your product documentation in the online Help system.

Model Reference in Simulation. When you simulate the top-model, the
coder product detects that your model contains referenced models. Simulink
software generates code for the referenced models and uses the generated code
to build shared library files for updating the model diagram and simulation.
It also creates an executable (a MEX file, .mex) for each reference model that
is used to simulate the top-model.

When you rebuild reference models for simulations or when you run or update
a simulation, Simulink software rebuilds the model reference files. Whether
reference files or models are rebuilt depends on:

• Whether and how you change the models.

• The Rebuild parameter on the Model Reference pane in the
Configuration Parameters dialog.

Model Reference in Code Generation. Embedded Coder software requires
executables to generate code from models. If you have not simulated your
model at least once, the coder product creates a .mex file for simulation.

Next, for each referenced model, the code generation process calls make_rtw
and builds each referenced model. This build process creates a library file for
each of the referenced models in your model.

After building the referenced models, the coder product calls make_rtw on the
top-model, linking to the library files it created for the associated referenced
models.

42-65

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

Using Model Reference
With few limitations or restrictions, Embedded Coder provides full support
for generating code from models that use model reference.

Build Action Setting. The most important requirement for using model
reference with the TI’s processors is to set the Build action for the Model
blocks in the simulation to Archive_library.

To set the build action

1 Open your model.

2 Select Simulation > Model Configuration Parameters from the model
menus.

The Configuration Parameters dialog opens.

3 Expand the node for the Code Generation pane. Then select the Coder
Target pane.

4 In the right pane, under Run-Time, select Archive_library from the
Build action list.

If your top-model uses a reference model that does not have the build action
set to Archive_library, the build process automatically changes the build
action to Archive_library and issues a warning about the change.

As a result of selecting the Archive_library setting, other options are
disabled:

• DSP/BIOS is disabled for the referenced models. Only the top-model
supports DSP/BIOS operation.

• Interrupt overrun notification method, Export IDE link handle to
base workspace, and System stack size are disabled for the referenced
models.

Other Block Limitations. Model reference with Embedded Coder does not
allow you to use the following blocks or S-functions in reference models:

42-66

IDE Project Generator

• Blocks from the C62x DSP Library (in c6000lib) (because these are
noninlined S-functions)

• Blocks from the C64x DSP Library (in c6000lib) (because these are
noninlined S-functions)

• Noninlined S-functions

• Driver blocks, such as the ADC or DAC blocks from a Embedded Coder
block library

Configuring processors to Use Model Reference
Processors that you plan to use in Model Referencing must meet some general
requirements.

• The System target file on the Code Generation pane of the
Configuration Parameters dialog must match the target hardware.

• When you generate code from a model that references another model, you
need to configure both the top-level model and the referenced models for
the same code generation processor.

• The External mode option is not supported in model reference processor
builds. Embedded Coder product does not support External mode. If you
select this option, it is ignored during code generation.

• To support model reference builds, your TMF must support use of
the shared utilities folder, as described in Supporting Shared Utility
Directories in the Build Process in the Simulink Coder documentation.

To use an existing processor, or a new processor, with Model Reference, you
set the ModelReferenceCompliant flag for the processor. For information
on how to set this option, refer to ModelReferenceCompliant in the online
Help system.

If you start with a model that was created prior to version 2.4 (R14SP3), to
make your model compatible with the model reference processor, use the
following command to set the ModelReferenceCompliant flag to On:

set_param(bdroot,'ModelReferenceCompliant','on')

42-67

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

Models that you develop with versions 2.4 and later of Embedded Coder
automatically include the model reference capability. You do not need to
set the flag.

42-68

Exporting Filter Coefficients from FDATool

Exporting Filter Coefficients from FDATool

In this section...

“About FDATool” on page 42-69

“Preparing to Export Filter Coefficients to Code Composer Studio Projects”
on page 42-70

“Exporting Filter Coefficients to Your Code Composer Studio Project” on
page 42-74

“Preventing Memory Corruption When You Export Coefficients to Processor
Memory” on page 42-80

About FDATool
Signal Processing Toolbox™ software provides the Filter Design and Analysis
tool (FDATool) that lets you design a filter and then export the filter
coefficients to a matching filter implemented in a CCS project.

Using FDATool with CCS IDE enables you to:

• Design your filter in FDATool

• Use CCS to test your filter on a processor

• Redesign and optimize the filter in FDATool

• Test your redesigned filter on the processor

For instructions on using FDATool, refer to the section “Filter Design and
Analysis Tool” in the Signal Processing Toolbox documentation.

Procedures in this chapter show how to use the FDATool export options to
export filter coefficients to CCS. Using these procedures, you can perform the
following tasks:

• Export filter coefficients from FDATool in a header file—“Exporting Filter
Coefficients from FDATool to the CCS IDE Editor” on page 42-75

• Export filter coefficients from FDATool to processor memory—“Replacing
Existing Coefficients in Memory with Updated Coefficients” on page 42-82

42-69

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

Caution For the best results, export coefficients in a header file. Exporting
coefficients directly to processor memory can generate unexpected results or
corrupt memory.

Also see the reference pages for the following functions. These primary
functions allow you use to access variables and write them to processor
memory from the MATLAB Command window.

• address— Return the address of a symbol so you can read or write to it.

• ticcs— Create a connection between MATLAB software and CCS IDE so
you can work with the project in CCS from the MATLAB Command window.

• write — Write data to memory on the processor.

Preparing to Export Filter Coefficients to Code
Composer Studio Projects

• “Features of a Filter” on page 42-70

• “Selecting the Export Mode” on page 42-71

• “Choosing the Export Data Type” on page 42-72

Features of a Filter
When you create a filter in FDATool, the filter includes defining features
identified in the following table.

Defining
Feature

Description

Structure Structure defines how the elements of a digital
filter—gains, adders/subtractors, and delays—combine
to form the filter. See the Signal Processing Toolbox
documentation in the Online Help system for more
information about filter structures.

Design Method Defines the mathematical algorithm used to determine
the filter response, length, and coefficients.

42-70

Exporting Filter Coefficients from FDATool

Defining
Feature

Description

Response
Type and
Specifications

Defines the filter passband shape, such as lowpass or
bandpass, and the specifications for the passband.

Coefficients Defines how the filter structure responds at each stage
of the filter process.

Data Type Defines how to represent the filter coefficients and
the resulting filtered output. Using a floating-point
or fixed-point coefficient alters the filter response and
output data values.

When you export your filter, FDATool exports only the number of and value of
the filter coefficients and the data type used to define the coefficients.

Selecting the Export Mode
You can export a filter by generating an ANSI C header file, or by writing
the filter coefficients directly to processor memory. The following table
summarizes when and how to use the export modes.

To…
Use Export
Mode… When to Use Suggested Use

Add filter
coefficients
to a project in
CCS

C header
file

You implemented a
filter algorithm in your
program, but you did
not allocate memory on
your processor for the
filter coefficients.

• Add the generated ANSI C header
file to a project. Building and loading
this project into your processor
allocates static memory locations on
the processor and writes your filter
coefficients to those locations.

• Edit the file so the header file allocates
extra processor memory and then add
the header file to your project. Refer
to “Allocating Extra Memory for Filter
Coefficients” on page 42-80 in the next
section.

42-71

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

To…
Use Export
Mode… When to Use Suggested Use

(For a sample generated header file,
refer to“Reviewing ANSI C Header File
Contents” on page 42-78.)

Modify
the filter
coefficients in
an embedded
application
loaded on a
processor

Write
directly
to memory

You loaded a program
on your processor.
The program allocated
space in your processor
memory to store the
filter coefficients.

• Optimize your filter design in
FDATool.

Then,

• Write the updated filter coefficients
directly to the allocated processor
memory. Refer to section “Preventing
Memory Corruption When You Export
Coefficients to Processor Memory” on
page 42-80 for more information.

Choosing the Export Data Type
The export process provides two ways you can specify the data type to use
to represent the filter coefficients. Select one of the options shown in the
following table when you export your filter.

Specify Data Type for
Export

Description

Export suggested Uses the data type that FDATool suggests to
preserve the fidelity of the filter coefficients
and the performance of your filter in the
project

Export as Lets you specify the data type to use to
export the filter coefficients

FDATool exports filter coefficients that use the following data types directly
without modifications:

• Signed integer (8, 16, or 32 bits)

• Unsigned integer (8, 16, or 32 bits)

42-72

Exporting Filter Coefficients from FDATool

• Double-precision floating point (64 bits)

• Single-precision floating point (32 bits)

Filters in FDATool in the Signal Processing Toolbox software use
double-precision floating point. You cannot change the data type.

If you have installed DSP System Toolbox software, you can use the filter
quantization options in FDATool to set the word and fraction lengths
that represent your filter coefficients. For information about using the
quantization options, refer to Filter Design and Analysis Tool in the Filter
Design Toolbox documentation in the Online help system.

If your filter uses one of the supported data types, Export suggested
specifies that data type.

If your filter does not use one of the supported data types, FDATool converts
the unsupported data type to one of the supported types and then suggests
that data type. For more information about how FDATool determines the data
type to suggest, refer to “How FDATool Determines the Export Suggested
Data Type” on page 42-74.

Follow these best-practice guidelines when you implement your filter
algorithm in source code and design your filter in FDATool:

• Implement your filter using one of the data types FDATool exports without
modifications.

• Design your filter in FDATool using the data type you used to implement
your filter.

To Choose the Export Data Type. When you export your filter, follow this
procedure to select the export data type so that the exported filter coefficients
closely match the coefficients of your filter in FDATool.

1 In FDATool, select Targets > Code Composer Studio IDE to open the
Export to Code Composer Studio IDE dialog.

2 Perform one of the following actions:

• Select Export suggested to export the coefficients in the suggested
data type.

42-73

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

• Select Export as and choose the data type your filter requires from
the list.

Caution If you select Export as, the exported filter coefficients can
be very different from the filter coefficients in FDATool. As a result,
your filter cutoff frequencies and performance may not match your
design in FDATool.

How FDATool Determines the Export Suggested Data Type. By default,
FDATool represents filter coefficients as double-precision floating-point data.
When you export your filter coefficients, FDATool suggests the same data
type.

If you set custom word and fraction lengths to represent your filter
coefficients, the export process suggests a data type to maintain the best
fidelity for the filter.

The export process converts your custom word and fraction lengths to a
suggested export data type, using the following rules:

• Round the word length up to the nearest larger supported data type. For
example, round an 18-bit word length up to 32 bits.

• Set the fraction length to the maintain the same difference between the
word and fraction length in the new data type as applies in the custom
data type.

For example, if you specify a fixed-point data type with word length of
14 bits and fraction length of 11 bits, the export process suggests an
integer data type with word length of 16 bits and fraction length of 13
bits, retaining the 3 bit difference.

Exporting Filter Coefficients to Your Code Composer
Studio Project

• “Exporting Filter Coefficients from FDATool to the CCS IDE Editor” on
page 42-75

• “Reviewing ANSI C Header File Contents” on page 42-78

42-74

Exporting Filter Coefficients from FDATool

Exporting Filter Coefficients from FDATool to the CCS IDE Editor
In this section, you export filter coefficients to a project by generating an
ANSI C header file that contains the coefficients. The header file defines
global arrays for the filter coefficients. When you compile and link the project
to which you added the header file, the linker allocates the global arrays in
static memory locations in processor memory.

Loading the executable file into your processor allocates enough memory
to store the exported filter coefficients in processor memory and writes the
coefficients to the allocated memory.

Use the following steps to export filter coefficients from FDATool to the CCS
IDE text editor.

1 Start FDATool by entering fdatool at the MATLAB command prompt.

fdatool % Starts FDATool.

2 Design a filter with the same structure, length, design method,
specifications, and data type you implemented in your source code filter
algorithm.

The following figure shows a Direct-form II IIR filter example that uses
second-order sections.

3 Click Store Filter to store your filter design. Storing the filter allows
you to recall the design to modify it.

4 To export the filter coefficients, select Targets > Code Composer Studio
IDE from the FDATool menu bar.

The Export to Code Composer Studio IDE dialog opens, as shown in the
following figure.

42-75

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

5 Set Export mode to C header file.

6 In Variable names in C header file, enter variable names for the
Numerator, Denominator, Numerator length, and Denominator
length parameters where the coefficients will be stored.

The dialog shows only the variables you need to export to define your filter.

Note You cannot use reserved ANSI C programming keywords, such as
if or int as variable names, or include invalid characters such as spaces
or semicolons (;).

42-76

Exporting Filter Coefficients from FDATool

7 In Data type to use in export, select Export suggested to accept the
recommended export data type. FDATool suggests a data type that retains
filter coefficient fidelity.

You may find it useful to select the Export as option and select an export
data type other than the one suggested.

Caution If you deviate from the suggested data type, the exported filter
coefficients can be very different from the filter coefficients in FDATool. As
a result, your filter cutoff frequencies and performance may not match your
design in FDATool.

For more information about how FDATool decides which data type to
suggest, refer to “How FDATool Determines the Export Suggested Data
Type” on page 42-74.

8 If you know the board number and processor number of your target, enter
DSP Board # and DSP Processor # values to identify your board.

When you have only one board or simulator, Embedded Coder software sets
DSP Board # and DSP Processor # values for your board automatically.

If you have more than one board defined in CCS Setup:

• Click Select target to open the Selection Utility dialog.

• From the list of boards and list of processors, select the board name
and processor name to use.

• Click Done to set the DSP Board # and DSP Processor # values.

9 Click Generate to generate the ANSI header file. FDATool prompts you
for a file name and location to save the generated header file.

The default location to save the file is your MATLAB working folder. The
default file name is fdacoefs.h.

10 Click OK to export the header file to the CCS editor.

If CCS IDE is not open, this step starts the IDE.

42-77

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

The export process does not add the file to your active project in the IDE.

11 Drag your generated header file into the project that implements the filter.

12 Add a #include statement to your project source code to include the new
header file when you build your project.

13 Generate a .out file and load the file into your processor. Loading the file
allocates locations in static memory on the processor and writes the filter
coefficients to those locations.

To see an example header file, refer to “Reviewing ANSI C Header File
Contents” on page 42-78.

Reviewing ANSI C Header File Contents
The following program listing shows the exported header (.h) file that
FDATool generates. This example shows a direct-form II filter that uses five
second-order sections. The filter is stable and has linear phase.

Comments in the file describe the filter structure, number of sections,
stability, and the phase of the filter. Source code shows the filter coefficients
and variables associated with the filter design, such as the numerator length
and the data type used to represent the coefficients.

/*

* Filter Coefficients (C Source) generated by the Filter Design and Analysis Tool

*

* Generated by MATLAB(R) 7.8 and the Signal Processing Toolbox 6.11.

*

* Generated on: xx-xxx-xxxx 14:24:45

*

*/

/*

* Discrete-Time IIR Filter (real)

* -------------------------------

* Filter Structure : Direct-Form II, Second-Order Sections

* Number of Sections : 5

* Stable : Yes

* Linear Phase : No

42-78

Exporting Filter Coefficients from FDATool

*/

/* General type conversion for MATLAB generated C-code */

#include "tmwtypes.h"

/*

* Expected path to tmwtypes.h

* $MATLABROOT\extern\include\tmwtypes.h

*/

#define MWSPT_NSEC 11

const int NL[MWSPT_NSEC] = { 1,3,1,3,1,3,1,3,1,3,1 };

const real64_T NUM[MWSPT_NSEC][3] = {

{

0.802536131462, 0, 0

},

{

0.2642710234701, 0.5285420469403, 0.2642710234701

},

{

1, 0, 0

},

{

0.1743690465012, 0.3487380930024, 0.1743690465012

},

{

0.2436793028081, 0.4873586056161, 0.2436793028081

},

{

1, 0, 0

},

{

0.3768793219093, 0.7537586438185, 0.3768793219093

},

{

1, 0, 0

}

};

const int DL[MWSPT_NSEC] = { 1,3,1,3,1,3,1,3,1,3,1 };

42-79

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

const real64_T DEN[MWSPT_NSEC][3] = {

{

1, 0, 0

},

{

1, -0.1842138030775, 0.1775781189277

},

{

1, 0, 0

},

{

1, -0.2160098642842, 0.3808329528195

},

{

1, 0, 0

}

};

Preventing Memory Corruption When You Export
Coefficients to Processor Memory

• “Allocating Extra Memory for Filter Coefficients” on page 42-80

• “Using the Exported Header File to Allocate Extra Processor Memory” on
page 42-81

• “Replacing Existing Coefficients in Memory with Updated Coefficients” on
page 42-82

• “Changing Filter Coefficients Stored on Your Processor” on page 42-83

Allocating Extra Memory for Filter Coefficients
You can allocate extra memory by editing the generated ANSI C header file.
You can then load the associated program file into your processor as described
in “Using the Exported Header File to Allocate Extra Processor Memory” on
page 42-81. Extra memory lets you change filter coefficients and overwrite
existing coefficients stored in processor memory more easily.

42-80

Exporting Filter Coefficients from FDATool

To prevent problems when you update filter coefficients in a project, , such as
writing coefficients to unintended memory locations, use the C header file
export mode option in FDATool to update filter coefficients in your program.

Using the Exported Header File to Allocate Extra Processor
Memory
You can edit the generated header file so the linked program file allocates
extra processor memory. By allocating extra memory, you avoid the problem
of insufficient memory when you export new coefficients directly to allocated
memory.

For example, changing the following command in the header file:

const real64_T NUM[47] = {...}

to

real64_T NUM[256] = {...}

allocates enough memory for NUM to store up to 256 numerator filter
coefficients rather than 47.

Exporting the header file to CCS IDE does not add the filter to your project.
To incorporate the filter coefficients from the header file, add a #include
statement:

#include "headerfilename.h"

Refer to “Exporting Filter Coefficients to Your Code Composer Studio Project”
on page 42-74 for information about generating a header file to export filter
coefficients.

When you export filter coefficients directly to processor memory, the export
process writes coefficients to as many memory locations as they need. The
write process does not perform bounds checking. Plan memory allocation
carefully, so that the software writes to the right locations and has enough
memory for filter coefficients.

42-81

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

Replacing Existing Coefficients in Memory with Updated
Coefficients
When you redesign a filter and export new coefficients to replace existing
coefficients in memory, verify the following conditions for your new design:

• Your redesign did not increase the memory required to store the coefficients
beyond the allocated memory.

Changes that increase the memory required to store the filter coefficients
include the following redesigns:

- Increasing the filter order

- Changing the number of sections in the filter

- Changing the numerical precision (changing the export data type)

• Your changes did not change the export data type.

Caution Identify changes that require additional memory to store the
coefficients before you begin your export. Otherwise, exporting the new filter
coefficients may overwrite data in memory locations you did not allocate for
storing coefficients. Also, exporting filter coefficients to memory after you
change the filter order, structure, design algorithm, or data type can yield
unexpected results and corrupt memory.

Changing the filter design algorithm in FDATool, such as changing from
Butterworth to Maximally Flat, often changes the number of filter coefficients
(the filter order), the number of sections, or both. Also, the coefficients
from the new design algorithm may not work with your source code filter
implementation.

If you change the design algorithm, verify that your filter structure and
length are the same after you redesign your filter, and that the coefficients
will work with the filter you implemented.

If you change the number of sections or the filter order, your filter will not
work well unless your filter algorithm implementation accommodates the
changes.

42-82

Exporting Filter Coefficients from FDATool

Changing Filter Coefficients Stored on Your Processor
This example writes filter coefficients to processor memory to replace the
existing coefficients. To perform this process, you need the names of the
variables in which your project stores the filter data.

Before you export coefficients directly to memory, verify that your project
allocated enough memory for the new filter coefficients. If your project
allocated enough memory, you can modify your filter in FDATool and then
follow the steps in this example to export the updated filter coefficients to
the allocated memory.

If your new filter requires additional memory space, use a C header file to
allocate memory on the processor and export the new coefficients as described
in “Exporting Filter Coefficients to Your Code Composer Studio Project” on
page 42-74.

For important guidelines on writing directly to processor memory, refer to
“Preventing Memory Corruption When You Export Coefficients to Processor
Memory” on page 42-80.

Follow these steps to export filter coefficients from FDATool directly to
memory on your processor.

1 Load the program file that contains your filter into CCS IDE to activate the
program symbol table. The symbol must contain the global variables you
use to store the filter coefficients and length parameters.

2 Start FDATool.

3 Click Filter Manager to open the Filter Manager dialog, shown in the
following figure.

42-83

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

4 Highlight the filter to modify on the list of filters, and select Edit current
filter. The highlighted filter appears in FDATool for you to change.

If you did not store your filter from a previous session, design the filter
in FDATool and continue.

5 Click Close to dismiss the Filter Manager dialog.

6 Adjust the filter specifications in FDATool to modify its performance.

7 In FDATool, select Targets > Code Composer Studio IDE to open the
Export to Code Composer Studio IDE dialog.

Keep the export dialog open while you work. When you do so, the contents
update as you change the filter in FDATool.

42-84

Exporting Filter Coefficients from FDATool

Tip Click Generate to export coefficients to the same processor memory
location multiple times without reentering variable names.

8 In the Export to Code Composer Studio dialog:

• Set Export mode to Write directly to memory

• Clear Disable memory transfer warnings to get a warning if your
processor does not support the export data type.

9 In Variable names in target symbol table, enter the names of the
variables in the processor symbol table that correspond to the memory
allocated for the parameters, such as Numerator and Denominator.
Your names must match the names of the filter coefficient variables in
your program.

10 Select Export suggested to accept the recommended export data type.

For more information about how FDATool determines the data type to
suggest, refer to “How FDATool Determines the Export Suggested Data
Type” on page 42-74.

11 If you know the board number and processor number of your target, enter
DSP Board # and DSP Processor # values to identify your board.

42-85

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

Note When you have only one board or simulator, Embedded Coder sets
DSP Board # and DSP Processor # to your board automatically.

If you have more than one board defined in CCS Setup:

• Click Select target to open the Selection Utility dialog.

• Select the board name and processor name to use from the list of boards.

12 Click Generate to export your filter. If your processor does not support the
data type you export, you see a warning similar to the following message.

You can continue to export the filter, or cancel the export process. To
prevent this warning dialog from appearing, select Disable memory
transfer warnings in the Export to Code Composer Studio IDE dialog.

13 (Optional) Continue to optimize filter performance by modifying your
filter in FDATool and then export the updated filter coefficients directly
to processor memory.

14 When you finish testing your filter, return to FDATool, and click Store
filter to save your changes.

42-86

Using Makefiles with Code Composer Studio™ 3.x

Using Makefiles with Code Composer Studio 3.x

In this section...

“Introduction” on page 42-87

“Set Up XMakefile for CCSv3” on page 42-87

“Prepare Your Model for CCSv3 and Makefiles” on page 42-89

“Create Target Configuration File in CCSv3” on page 42-89

“Load and Run the Embedded Software” on page 42-90

Introduction
This tutorial shows you how to use the XMakefile feature in your MathWorks
software to build and run embedded software with Code Composer Studio 3.3
(CCSv3). For more information about XMakefile, see “Makefiles for Software
Build Tool Chains” on page 35-21

Note The Embedded Coder IDE Project Generator feature is not available
for CCSv3 in the current release. For more information about IDE Project
Generator, see “IDE Projects” on page 35-16

To build the target software, complete the process covered in this chapter:

• Set up XMakefile for CCSv3.

• Prepare your model for CCSv3.

• Create a Target Configuration File in CCSv3.

• Load and run the embedded software.

Set Up XMakefile for CCSv3
The XMakefile feature tells your MathWorks software how to create makefiles
for a configuration, which is a specific combination of tool chain and embedded
target hardware. Some configurations require additional information before
you can use them.

42-87

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

Select and complete a configuration for Code Composer Studio 3.3 (CCSv3):

1 Enter xmakefilesetup at the MATLAB command prompt. This action
opens the XMakefile User Configuration dialog.

2 Clear Display operational configurations only. This displays the
configuration files, including ones that need updated path information.

3 For Configurations, select a configuration that matches your target and
ends with ccsv3. Then click Apply.

4 If the configuration is incomplete, the software displays a series of
Browse For Folder dialoges that include instructions to provide missing
information.

5 Examine the Tool Directories tab to see if the paths are right.

6 When you have supplied the missing information, and the configuration is
complete, click OK to close the XMakefile User Configuration dialog.

For example, to generate code for CCSv3 and a C6000 processor with
DSP/BIOS:

1 Enter xmakefilesetup on the command line.

2 In the XMakefile dialog, clear Display operational configurations only,
set Configurations to ticcs_c6000_dspbios_ccsv3, and click Apply.

3 A Browse For Folder appears, stating “Select the C6000 Code Generation
Tools root installation directory...”.

Browse and select a path such as C:\Program Files\Texas
Instruments\C6000 Code Generation Tools.

4 Another Browse For Folder dialog appears, stating “Select the C6000
CSL root installation directory...”.

Browse and select a path such as C:\Program Files\C6xCSL\.

5 Examine the Tool Directories tab to see if the paths are right.

42-88

Using Makefiles with Code Composer Studio™ 3.x

6 With the updated information, the ticcs_c6000_dspbios_ccsv3
configuration is operational. Click OK to save the updated configuration,
and close the dialog.

Prepare Your Model for CCSv3 and Makefiles

1 Configure your model as described in “Configure Target Hardware
Resources” on page 35-3

2 On the Coder Target pane, under the Tool Chain Automation tab, set
Build format to Makefile.

3 Build your embedded software by pressing CTRL+B.

Create Target Configuration File in CCSv3
Before loading and running your target software, use the CCSv3 IDE to
create a “target configuration file”. The TI Debug Server uses this file while
it works with CCSv3 to load and run your target software. The XML-based
target configuration file describes the target board and processor. The file
name ends with a *.ccxml extension.

Create a target configuration file:

1 In the CCSv3, select File > New > Target Configuration File to display
a New Target Configuration dialog:

• For File name, update the file name that ends with .ccxml to describe
your project and hardware.

• Click Finish. This action displays a utility in the CCS editor pane for
customizing the target configuration file.

2 Use the utility to select the Connection and Device type. Typing a partial
string next to Device filters the list of devices.

3 Click Save.

Note For more information about target configuration files, consult the
Texas Instruments documentation for CCSv3.

42-89

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

Load and Run the Embedded Software
First set the Windows system variable, Path, so you can call the TI Debug
Server Scripting (DSS) API from a folder.

1 In Windows, right-clickMy Computer, and select Properties. This action
opens the System Properties dialog.

2 In System Properties, select the Advanced tab, and click Environment
Variables. This action opens the Environment Variables dialog.

3 In Environment Variables, under System variables, select the Path
variable, and click Edit. This action opens the Edit System Variable dialog.

4 In Edit System Variable, for Variable value, append a semicolon and the
full path of the \ccsv3\scripting\bin subdirectory. For example, append
;C:\ti\ccsv3\scripting\bin.

Note The path cannot contain spaces. Customize the installation directory
when you install CCSv3 so it does not contain spaces.

For more information about using DSS, see
http://processors.wiki.ti.com/index.php/Debug_Server_Scripting.

MathWorks provides an example JavaScript file, runProgram.js, for you to
use with DSS. This script loads and runs the specified program on the target
specified in the target configuration file. You can create a copy of this script
and modify it to suit your needs. The location of runProgram.js is:

[MATLABROOT]\toolbox\idelink\extensions\ticcs\ccsdemos

The specific syntax for running dss.bat with runProgram.js is:

> dss runProgram.js targetConfigurationFile programFile

Replace targetConfigurationFile and programFile with paths and file
names. For example, if you are using a working directory called the CCSv3
workspace, and the model name is myProgram, enter:

> dss runProgram.js c:\workspace\myC6416dsk.ccxml myProgram.out

42-90

http://processors.wiki.ti.com/index.php/Debug_Server_Scripting

Using Makefiles with Code Composer Studio™ 3.x

This command builds and loads your software on the target or simulator.

You have completed the process of loading and running embedded software
using XMakefile and CCSv3.

42-91

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

Reported Limitations and Tips

In this section...

“Example Programs Do Not Run Well with Incorrect GEL Files” on page
42-93

“Changing Values of Local Variables Does Not Work” on page 42-93

“Code Composer Studio Cannot Find a File After You Halt a Program” on
page 42-94

“C54x XPC Register Can Be Modified Only Through the PC Register” on
page 42-95

“Working with More Than One Installed Version of Code Composer Studio”
on page 42-96

“Changing CCS Versions During a MATLAB Session” on page 42-96

“MATLAB Hangs When Code Composer Studio Cannot Find a Board” on
page 42-96

“Using Mapped Drives” on page 42-98

“Uninstalling Code Composer Studio 3.3 Prevents Embedded Coder From
Connecting” on page 42-98

“PostCodeGenCommand Commands Do Not Apply to IDE Projects” on
page 42-98

Some long-standing issues apply to the Embedded Coder product. When
you are using ticcs objects and the software methods to work with
Code Composer Studio and supported hardware or simulators, recall the
information in this section.

The latest issues in the list appear at the bottom. HIL refers to “hardware in
the loop,” also called processor in the loop (PIL) here and in other applications,
and sometimes referred to as function calls.

42-92

Reported Limitations and Tips

Example Programs Do Not Run Well with Incorrect
GEL Files
To run the Embedded Coder examples, you must load the corresponding GEL
files before you run the examples. For some boards, the examples run fine
with the default CCS GEL file. Some boards need to run device-specific GEL
files for the examples to work well.

Here are examples and boards which require specific GEL files.

• Board: C5416 DSK

Examples: rtdxtutorial, rtdxlmsdemo

Emulator: XDS-510

GEL file to load: c5416_dsk.gel

In general, if a example does not run with the default GEL file, try using a
device-specific GEL file by defining the file in the CCS Setup Utility.

Changing Values of Local Variables Does Not Work
If you halt the execution of your program on your DSP and modify a local
variable’s value, the new value may not be acknowledged by the compiler. If
you continue to run your program, the compiler uses the original value of
the variable.

This problem happens only with local variables. When you write to the local
variable via the Code Composer Studio Watch Window or via a MATLAB
object, you are writing into the variable’s absolute location (register or
address in memory).

However, within the processor function, the compiler sometimes saves
the local variable’s values in an intermediate location, such as in another
register or to the stack. That intermediate location cannot be determined or
changed/updated with a new value during execution. Thus the compiler uses
the old, unchanged variable value from the intermediate location.

42-93

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

Code Composer Studio Cannot Find a File After You
Halt a Program
When you halt a running program on your processor, Code Composer Studio
may display a dialog that says it cannot find a source code file or a library file.

When you halt a program, CCS tries to display the source code associated
with the current program counter. If the program stops in a system library
like the runtime library, DSP/BIOS, or the board support library, it cannot
find the source code for debug. You can either find the source code to debug it
or select the Don’t show this message again check box to ignore messages
like this in the future.

For more information about how CCS responds to the halt, refer the online
Help for CCS. In the online help system, use the search engine to search for
the keywords “Troubleshooting” and “Support.” The following information
comes from the online help for CCS, starting with the error message:

File Not Found
The debugger is unable to locate the source file required to enable source-level
debugging for this program.

To specify the location of the source file

1 Click Yes. The Open dialog appears.

2 In the Open dialog, specify the location and name of the source file then
click Open.

The next section provides more details about file paths.

Defining a Search Path for Source Files
The Directories dialog enables you to specify the search path the debugger
uses to find the source files included in a project.

To Specify Search Path Directories

1 Select Option > Customize.

42-94

Reported Limitations and Tips

2 In the Customize dialog, select the Directories tab. Use the scroll arrows
at the top of the dialog to locate the tab.

The Directories dialog offers the following options.

• Directories. The Directories list displays the defined search path.
The debugger searches the listed folders in order from top to bottom.

If two files have the same name and are located in different folders,
the file located in the folder that appears highest in the Directories
list takes precedence.

• New. To add a new folder to the Directories list, click New. Enter the
full path or click browse [...] to navigate to a folder. By default, the new
folder is added to the bottom of the list.

• Delete. Select a folder in the Directories list, then click Delete to
remove that folder from the list.

• Up. Select a folder in the Directories list, then click Up to move that
folder higher in the list.

• Down. Select a folder in the Directories list, then click Down to move
that folder lower in the list.

3 Click OK to close the Customize dialog and save your changes.

C54x XPC Register Can Be Modified Only Through
the PC Register
You cannot modify the XPC register value directly using regwrite to write
into the register. When you are using extended program addressing in C54x,
you can modify the XPC register by using regwrite to write a 23-bit data
value in the PC register. Along with the 16-bit PC register, this operation also
modifies the 7-bit XPC register that is used for extended program addressing.
On the C54x, the PC register is 23 bits (7 bits in XPC + 16 bits in PC).

You can then read the XPC register value using regread.

42-95

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

Working with More Than One Installed Version of
Code Composer Studio
When you have more than one version of Code Composer Studio installed on
your machine, you cannot select which CCS version MATLAB Embedded
Coder attaches to when you create a ticcs object. If, for example, you have
both CCS for C5000 and CCS for C6000 versions installed, you cannot choose
to connect to the C6000 version rather than the C5000 version.

When you issue the command

IDE_obj = ticcs

Embedded Coder starts the CCS version you last used. If you last used your
C5000 version, the IDE_obj object accesses the C5000 version.

Workaround
To make your ticcs object access the right processor:

1 Start and close the CCS version you plan to use before you create the ticcs
object in MATLAB.

2 Create the ticcs object using the boardnum and procnum properties to
select your processor, if required.

Recall that ccsboardinfo returns the boardnum and procnum values for
the processors that CCS recognizes.

Changing CCS Versions During a MATLAB Session
You can use only one version of CCS in a single MATLAB session. Embedded
Coder does not support using multiple versions of CCS in a MATLAB session.
To use another CCS version, exit MATLAB software and restart it. Then
create your links to the new version of CCS.

MATLAB Hangs When Code Composer Studio Cannot
Find a Board
In MATLAB software, when you create a ticcs object, the construction
process for the object automatically starts CCS. If CCS cannot find a processor

42-96

Reported Limitations and Tips

that is connected to your PC, you see a message from CCS like the following
DSP Device Driver dialog that indicates CCS could not initialize the processor.

Four options let you decide how to respond to the failure:

• Abort — Closes CCS and suspends control for about 30 seconds. If you
used MATLAB software functions to open CCS, such as when you create
a ticcs object, the system returns control to MATLAB command window
after a considerable delay, and issues this warning:

??? Unable to establish connection with Code Composer Studio.

• Ignore— Starts CCS without connecting to a processor. In the CCS IDE
you see a status message that says EMULATOR DISCONNECTED in the
status area of the IDE. If you used MATLAB to start CCS, you get control
immediately and Embedded Coder creates the ticcs object. Because
CCS is not connected to a processor, you cannot use the object to perform
processor operations from MATLAB, such as loading or running programs.

• Retry — CCS tries again to initialize the processor. If CCS continues
not to find your hardware processor, the same DSP Device Driver dialog

42-97

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

reappears. This process continues until either CCS finds the processor or
you choose one of the other options to respond to the warning.

One more option, Diagnostic, lets you enter diagnostic mode if it is enabled.
Usually, Diagnostic is not available for you to use.

Using Mapped Drives
Limitations in Code Composer Studio do not allow you to load programs
after you set your CCS working folder to a read-only mapped drive. Load
operations fail with an Application Error dialog.

The following combination of commands does not work:

1 cd(IDE_obj,'mapped_drive_letter') % Change CCS working
directory to read-only mapped drive.

2 load(IDE_obj,'program_file') % Loading program fails.

Uninstalling Code Composer Studio 3.3 Prevents
Embedded Coder From Connecting
Description On a machine where CCS 3.3 and CCS 3.1 are installed,
uninstalling 3.3 makes 3.1 unusable from MATLAB. This is because the CCS
3.3 uninstaller leaves stale registry entries in the Windows Registry that
prevent MATLAB from connecting to CCS 3.1.

Texas Instruments has documented this uninstall problem and the solution
on their Web site.

Updated information on this issue may also be available
from the Bug Reports section of www.mathworks.com at
http://www.mathworks.com/support/bugreports/379676

PostCodeGenCommand Commands Do Not Apply
to IDE Projects
PostCodeGenCommand commands, such as the addCompileFlags and
addLinkFlags functions in the BuildInfo API do not alter code generated

42-98

http://www-k.ext.ti.com/SRVS/CGI-BIN/WEBCGI.EXE/,/?St=76,E=0000000000008373418,K=3818,Sxi=9,Case=obj(52837)
http://www.mathworks.com/support/bugreports/379676

Reported Limitations and Tips

by Embedded Coder while System Target File is set to idelink_ert.tlc
or idelink_grt.tlc.

Use the ’Compiler options string’ and ’Linker options string’ parameters
located in the Configuration Parameters dialog (Ctrl+E) on the Code
Generation > Coder Target pane instead. You can also automate this
process using a model callback to SET_PARAM the ’CompilerOptionsStr’
and ’LinkerOptionsStr’ parameters.

42-99

42 Working with Texas Instruments™ Code Composer Studio™ 3.3 IDE

42-100

43

Working with Texas
Instruments Code
Composer Studio 4 & 5
IDE

• “Code Composer Studio” on page 43-2

• “Getting Started” on page 43-3

• “Using Makefiles with Code Composer Studio 4 & 5” on page 43-4

• “Reported Limitations and Tips” on page 43-10

43 Working with Texas Instruments™ Code Composer Studio™ 4 & 5 IDE

Code Composer Studio

Feature Support
When you use Code Composer Studio 4 or Code Composer Studio 5 with
Embedded Coder software, you can use:

• Makefiles to automate building and deploying software to target hardware.
For more information, see “Makefiles for Software Build Tool Chains” on
page 35-21 and “Using Makefiles with Code Composer Studio 4 & 5” on
page 43-4.

• Processor-in-the-loop (PIL) simulations to verify your software running on
target hardware. For more information, see “Processor-in-the-Loop (PIL)
Simulation” on page 36-2.

• Execution profiling with PIL to measure the performance of synchronous
tasks running on target hardware. For more information, see “Execution
Profiling during PIL Simulation” on page 36-25.

Features that require IDE projects (Build format = Project), such as IDE
Project Generator and IDE Automation Interface, are not available for use
with Code Composer Studio 4 & 5.

You can use CCSv4/5 with the Simulink Block Libraries for the following
Texas Instruments processors:

• TI’s C2000

• TI’s C5000

• TI’s C6000

43-2

Getting Started

Getting Started

In this section...

“Verifying Your Code Composer Studio Installation” on page 43-3

“Learning About Makefiles” on page 43-3

Verifying Your Code Composer Studio Installation
On your host computer, install CCSv4/5 and other third-party tools for
your board and processor, and set the environment variables. Then use the
checkEnvSetup function in MATLAB to verify that your setup includes the
required software. For more information and examples, see checkEnvSetup.

Learning About Makefiles
To learn about using makefiles, see “Makefiles for Software Build Tool
Chains” on page 35-21.

For an example of using CCSv4/5 with makefiles, model-block PIL, and the
Serial Communications Interface (SCI), see “Performing a Model Block PIL
Simulation via SCI Using Makefiles” on page 36-14.

43-3

43 Working with Texas Instruments™ Code Composer Studio™ 4 & 5 IDE

Using Makefiles with Code Composer Studio 4 & 5

In this section...

“Introduction” on page 43-4

“Set Up XMakefile for CCSv4/5” on page 43-4

“Prepare Your Model for CCSv4/5 and Makefiles” on page 43-6

“Create Target Configuration File in CCSv4/5” on page 43-6

“Configure Windows Path for TI Debug Server Scripting (DSS)” on page 43-7

“Load and Run the Embedded Software Using DSS” on page 43-7

Introduction
This tutorial shows you how to use the XMakefile feature in your MathWorks
software to build and run embedded software with Code Composer Studio 4
or 5 (CCSv4/5). For more information about XMakefile, see “Makefiles for
Software Build Tool Chains” on page 35-21

Note The Embedded Coder IDE Project Generator feature is not available
for CCSv4/5 in the current release. For more information about IDE Project
Generator, see “IDE Projects” on page 35-16

To build the target software, complete the process covered in this chapter:

• Set up XMakefile for CCSv4/5.

• Prepare your model for CCSv4/5.

• Create a Target Configuration File in CCSv4/5.

• Load and run the embedded software.

Set Up XMakefile for CCSv4/5
The XMakefile feature tells your MathWorks software how to create makefiles
for a configuration, which is a specific combination of tool chain and embedded

43-4

Using Makefiles with Code Composer Studio™ 4 & 5

target hardware. Some configurations require additional information before
you can use them.

Select and complete a configuration for Code Composer Studio 4 & 5
(CCSv4/5):

1 Enter xmakefilesetup at the MATLAB command prompt. This action
opens the XMakefile User Configuration dialog.

2 Clear Display operational configurations only. This displays the
configuration files, including ones that need updated path information.

3 For Configurations, select a configuration that matches your target and
ends with ccsv4 or ccsv5. Then click Apply.

4 If the configuration is incomplete, the software displays a series of
Browse For Folder dialoges that include instructions to provide missing
information.

5 Examine the Tool Directories tab to see if the paths are right.

6 When you have supplied the missing information, and the configuration is
complete, click OK to close the XMakefile User Configuration dialog.

For example, to generate code for CCSv4/5 and a C6000 processor with
DSP/BIOS:

1 Enter xmakefilesetup on the command line.

2 In the XMakefile dialog, clear Display operational configurations
only, set Configurations to ticcs_c6000_dspbios_ccsv4 or
ticcs_c6000_dspbios_ccsv5, and click Apply.

3 A Browse For Folder appears, stating “Select the C6000 Code Generation
Tools root installation directory...”.

Browse and select a path such as C:\Program Files\Texas
Instruments\C6000 Code Generation Tools.

4 Another Browse For Folder dialog appears, stating “Select the C6000
CSL root installation directory...”.

43-5

43 Working with Texas Instruments™ Code Composer Studio™ 4 & 5 IDE

Browse and select a path such as C:\Program Files\C6xCSL\.

5 Examine the Tool Directories tab and verify the paths shown there.
Verify the DSP/BIOS and XDC installation folders.

6 With the updated information, the ticcs_c6000_dspbios_ccsv4 or
ticcs_c6000_dspbios_ccsv5 configuration is operational. Click OK to
save the updated configuration, and close the dialog.

Prepare Your Model for CCSv4/5 and Makefiles

1 Configure your model as described in “Configure Target Hardware
Resources” on page 35-3 , setting IDE/Tool Chain to Texas Instruments
Code Composer Studio v4 (makefile generation only) or Texas
Instruments Code Composer Studio v5 (makefile generation only).

Choosing either of those options automatically sets Build format to
Makefile.

2 Build your embedded software by pressing CTRL+B.

Create Target Configuration File in CCSv4/5
Before loading and running your target software, use the CCSv4/5 IDE to
create a “target configuration file”. The TI Debug Server uses this file while it
works with CCSv4/5 to load and run your target software. The XML-based
target configuration file describes the target board and processor. The file
name ends with a *.ccxml extension.

Create a target configuration file:

1 In the CCSv4/5, select File > New > Target Configuration File to
display a New Target Configuration dialog:

• For File name, update the file name that ends with .ccxml to describe
your project and hardware.

• Click Finish. This action displays a utility in the CCSv4/5 editor pane
for customizing the target configuration file.

2 Use the utility to select the Connection and Device type. Typing a partial
string next to Device filters the list of devices.

43-6

Using Makefiles with Code Composer Studio™ 4 & 5

3 Click Save.

Note For more information about target configuration files, consult the
Texas Instruments documentation for CCSv4/5.

Configure Windows Path for TI Debug Server
Scripting (DSS)
Set the Windows system variable, Path, so you can call the TI Debug Server
Scripting (DSS) API from a folder.

1 In Windows, right-clickMy Computer, and select Properties. This action
opens the System Properties dialog.

2 In System Properties, select the Advanced tab, and click Environment
Variables. This action opens the Environment Variables dialog.

3 In Environment Variables, under System variables, select the Path
variable, and click Edit. This action opens the Edit System Variable dialog.

4 In Edit System Variable, for Variable value, append a semicolon and
the full path of the \ccsv4\scripting\bin or \ccsv5\scripting\bin
subdirectory. For example, append ;C:\ti\ccsv4\scripting\bin.

Note The path cannot contain spaces. Customize the installation directory
when you install CCSv4/5 so it does not contain spaces.

Load and Run the Embedded Software Using DSS
MathWorks provides an example JavaScript file, runProgram.js, for you to
use with DSS. This script loads and runs the specified program on the target
specified in the target configuration file. You can create a copy of this script
and modify it to suit your needs. The location of runProgram.js is:

[MATLABROOT]\toolbox\idelink\extensions\ticcs\ccsdemos

The specific syntax for running dss.bat with runProgram.js is:

43-7

43 Working with Texas Instruments™ Code Composer Studio™ 4 & 5 IDE

> dss runProgram.js targetConfigurationFile programFile

Replace targetConfigurationFile and programFile with paths and file
names. For example, if you are using a working directory called the CCSv4/5
workspace, and the model name is myProgram, enter:

> dss runProgram.js c:\workspace\myC6416dsk.ccxml myProgram.out

This command loads and runs your software on the target or simulator.

You have completed the process of loading and running embedded software
using XMakefile and CCSv4/5.

For more information about using DSS, see
http://processors.wiki.ti.com/index.php/Debug_Server_Scripting.

Troubleshooting DSS
With Code Composer Studio 4 & 5, using runProgram.js to download and run
the generated program file can produce an error message similar to:

SEVERE: Could not open session. Found 2 devices matching: .*

Spectrum Digital DSK-EVM-eZdsp onboard USB Emulator_0/C64XP_0

Spectrum Digital DSK-EVM-eZdsp onboard USB Emulator_0/IcePick_C_0

If this happens, specify one of the devices in line 65 in runProgram.js. For
example:

debugSession = debugServer.openSession(".*C64XP.*");

Alternatively, to connect to the first board & CPU detected, use ("*","*") in
line 65. For example:

debugSession = debugServer.openSession("*","*");

Remember to restore the original code to work with other devices.

Advanced DSS Features
To use advanced DSS features, you can also use the CCSv4/5 example batch
file, loadti.bat, as follows:

43-8

http://processors.wiki.ti.com/index.php/Debug_Server_Scripting

Using Makefiles with Code Composer Studio™ 4 & 5

Change directories to the loadti subdirectory. For example:

> cd c:\ccs4_install\ccsv4\scripting\examples\loadti

Run loadti.bat using the following syntax:

> loadti -a -c=targetConfigurationFile programFile

Replace targetConfigurationFile with the complete path of the target
configuration file.

Replace programFile with the name of the .out created using the XMakefile
feature. For example:

> loadti -a -c=c:\workspace\myC6416dsk.ccxml myProgram.out

For more information about loadti and its options, type the following on your
system command prompt

> loadti -help

43-9

43 Working with Texas Instruments™ Code Composer Studio™ 4 & 5 IDE

Reported Limitations and Tips

In this section...

“Example Programs Do Not Run well with Incorrect GEL Files” on page
43-10

“PostCodeGenCommand Commands Do Not Apply to IDE Projects” on
page 43-10

Some long-standing issues apply to the Embedded Coder product.

Example Programs Do Not Run well with Incorrect
GEL Files
To run the Embedded Coder examples, you must load the GEL files before you
run the examples. For some boards, the examples run fine with the default
CCSv4/5 GEL file. Some boards need to run device-specific GEL files for
the examples to work.

Here are examples and boards which require specific GEL files.

• Board: C5416 DSK

Examples: rtdxtutorial, rtdxlmsdemo

Emulator: XDS-510

GEL file to load: c5416_dsk.gel

In general, if a example does not run with the default GEL file, try using a
device-specific GEL file by defining the file in the CCSv4/5 Setup Utility.

PostCodeGenCommand Commands Do Not Apply
to IDE Projects
PostCodeGenCommand commands, such as the addCompileFlags and
addLinkFlags functions in the BuildInfo API do not alter code generated
while System Target File is set to idelink_ert.tlc or idelink_grt.tlc.

43-10

Reported Limitations and Tips

Use the ’Compiler options string’ and ’Linker options string’ parameters
located in the Configuration Parameters dialog (Ctrl+E) on the Code
Generation > Coder Target pane instead. You can also automate this
process using a model callback to SET_PARAM the ’CompilerOptionsStr’
and ’LinkerOptionsStr’ parameters.

43-11

43 Working with Texas Instruments™ Code Composer Studio™ 4 & 5 IDE

43-12

44

Working with Texas
Instruments C2000
Processors

• “Setting Up and Configuring” on page 44-3

• “Data Type Support” on page 44-6

• “Scheduling and Timing” on page 44-7

• “Sharing General Purpose Timers between C281x Peripherals” on page
44-13

• “Overview of Creating Models for C2000 Processors” on page 44-22

• “Using the c2000lib Blockset” on page 44-24

• “Configuring Timing Parameters for CAN Blocks” on page 44-30

• “ADC-PWM Synchronization via ADC Interrupt” on page 44-49

• “Configuring Acquisition Window Width for ADC Blocks” on page 44-54

• “Real-Time Data Exchange via RTDX™” on page 44-61

• “SPI-Based Control of PWM Duty Cycle” on page 44-63

• “HIL Verification of IIR Filter via SCI” on page 44-67

• “CAN-Based Control of PWM Duty Cycle” on page 44-74

• “CAN Calibration Protocol and External Mode” on page 44-77

• “Using the I2C Bus to Access a Connected EEPROM” on page 44-85

• “Using the IQmath Library” on page 44-90

44 Working with Texas Instruments™ C2000™ Processors

• “Programming Flash Memory” on page 44-99

• “Configuring LIN Communications” on page 44-105

• “Tips and Limitations” on page 44-108

44-2

Setting Up and Configuring

Setting Up and Configuring

In this section...

“Feature Support for Code Composer Studio” on page 44-3

“Installing and Configuring Software” on page 44-3

“Verifying the Configuration” on page 44-4

Feature Support for Code Composer Studio
The “Working with Texas Instruments C2000 Processors” section of the
User’s Guide contains some references to the IDE Automation Interface and
IDE Project Generator components. Embedded Coder supports these two
components with Code Composer Studio 3.3 (CCSv3). Embedded Coder does
not support these components with Code Composer Studio 4 & 5 (CCSv4/5).

For more information about Embedded Coder support for CCSv3 and
CCSv4/5, see “Working with Texas Instruments Code Composer Studio IDE”.

Installing and Configuring Software
Uninstall unsupported or untested versions of the third party products before
installing supported versions. This prevents errors that occur when the
Windows Environment Variables point to the unsupported versions.

Before you install the software, if you are installing Texas Instruments (TI)
Code Composer Studio CCSv3 on Windows 7, make sure that:

• You have administrator privileges.

• You have set the User Account Control (UAC) settings to the lowest level.

• You install CCSv3 in a folder other than Program Files.

Go to the vendor Web sites to find 64-bit compatible drivers for installing
CCSv3 on 64-bits machine with drivers such as, Spectrum Digital Emulators
or BlackHawk Emulators. Most vendors have 64-bit drivers that are
compatible with CCSv3.

44-3

44 Working with Texas Instruments™ C2000™ Processors

For the Host side CAN functionality, you must install 32-bit version of
MATLAB on 64-bit machines.

Install the software in the following order:

1 Install the required and optional MathWorks software. The software
license you purchase determines which products are available.

2 Install TI CCS.

3 Install TI Service Release for CCS.

4 Install the TI Code Generation Tools for Windows.

5 If you are using a Spectrum Digital board, download and install the
matching Spectrum Digital Driver.

6 If you are using RTDX for C28x host/target communications, download
and install TI DSP/BIOS.

7 If you program flash memory with standalone code, download the TI Flash
API for your target hardware.

Configure CCSv3 as follows:

1 In CCSv3, open Help > About > Component manager > Build tools >
TMS320C28XX and select (check) C2000 Code Generation Tools .

2 With the Component manager open, open Target Content (DSP/BIOS) >
TMS320C28XX and select Texas Instruments DSP/BIOS.

3 Save, exit, and restart CCSv3.

Verifying the Configuration
To determine whether Embedded Coder software is present on your system,
enter this command at the MATLAB prompt:

c2000lib

MATLAB displays the C2000 block libraries.

44-4

Setting Up and Configuring

If you do not see the listed libraries, or MATLAB does not recognize the
command, install the Embedded Coder software. Without the software, you
cannot use Simulink and Simulink Coder software to develop applications
targeted to the TI boards.

To verify that Code Composer Studio 3.3 (CCSv3) is present on your machine,
enter this command at the MATLAB prompt:

ccsboardinfo

With CCSv3 installed and configured, MATLAB returns a list of the boards
that CCSv3 recognizes on your machine like the following example:

Board Board Proc Processor Processor
Num Name Num Name Type
--- ---------------------------------- ---
1 F2812 Simulator 0 CPU TMS320C28xx
0 F2812 PP Emulator 0 CPU_1 TMS320C28xx

If MATLAB does not return information about boards, revisit the installation
and setup instructions in your CCSv3 documentation. If you have not done so
already, install the third-party “Board Support Packages” for your boards.

As a final test, launch CCSv3 to verify that it runs. For Embedded Coder
software to operate with CCSv3, the CCSv3 IDE must be able to run on its
own.

Note For a model to work in the targeting environment, select the
discrete-time solver in the Solver pane of the Simulink Configuration
Parameters dialog. Targeting does not work with continuous-time solvers.

To change the discrete-time solver, select Simulation > Model
Configuration Parameters in the Simulink Editor. In the Configuration
Parameters dialog, select the Solver pane, and set the Solver parameter to
Discrete (no continuous states).

44-5

44 Working with Texas Instruments™ C2000™ Processors

Data Type Support
TI C2000 DSPs support 16 and 32–bit data types, but does not have native
8-bit data types. Simulink models and Embedded Coder software support
many data types, including 8-bit data types.

If you select int8 or uint8 in your model, your simulation runs with 8-bit
data, but in the generated code, that data will be represented as 16-bit. This
may cause instances where data overflow and wraparound occurs in the
simulation, but not in the generated code.

For example, to make the overflow behavior of the simulation and generated
code match for a Simulink Add block in your model, select Saturate on
integer overflow in that block.

44-6

Scheduling and Timing

Scheduling and Timing

In this section...

“Overview” on page 44-7

“Timer-Based Interrupt Processing” on page 44-7

“Asynchronous Scheduling” on page 44-8

Overview
Normally the code generated by Embedded Coder software runs in the context
of a timer interrupt. Model blocks run in a periodical fashion clocked by the
periodical interrupt whose period is tied to the base sample time of the model.

This execution scheduling model, however, is not flexible enough for many
systems, especially control and communication systems, which must respond
to external events in real time. Such systems require the ability to handle
various hardware interrupts in an asynchronous fashion.

Embedded Coder software lets you model and generate code for such systems
by creating tasks driven by Hardware Interrupt blocks in addition to the
tasks that are left to be handled in the context of the timer interrupt.

Timer-Based Interrupt Processing
For code that runs in the context of the timer interrupt, each iteration of
the model solver is run after an interrupt has been posted and serviced by
an interrupt service routine (ISR). The code generated for the C280x, C281x,
and C28x3x uses CPU_timer0.

The timer is configured so that the model’s base rate sample time corresponds
to the interrupt rate. The timer period and prescaler are calculated and set
up to produce the desired rate as follows:

BaseRateSampleTime
TimerPeriod

TimerClockSpeed
=

44-7

44 Working with Texas Instruments™ C2000™ Processors

The minimum achievable base rate sample time depends on the model
complexity. The maximum value depends on the maximum timer period value
(232-1 for the F2812, F2808, and F28x35) and the CPU clock speed. The CPU
clock speed is 100 MHz for the F2808, and 150 MHz for the F2812 and F28335.

If the blocks in the model inherit their sample time value, and a sample time
is not explicitly defined, the default value is 0.2 s.

High-Speed Peripheral Clock
The Event Managers and their general-purpose timers, which drive PWM
waveform generation use the high-speed peripheral clock (HISCLK). By
default, this clock is selected in Embedded Coder software. This clock is
derived from the system clock (SYSCLKOUT):

HISCLK = [SYSCLKOUT / (high-speed peripheral prescaler)]

The high-speed peripheral prescaler is determined by the HSPCLK bits
set in SysCtrl. The default value of HSPCLK is 1, which corresponds to a
high-speed peripheral prescaler value of 2.

For example, on the F2812, the HISCLK rate becomes

HISCLK = 150 MHz / 2 = 75 MHz

Asynchronous Scheduling
This example shows how to use the c28x peripherals and Hardware Interrupt
blocks to control the execution of function-call subsystems in an asynchronous
fashion.

Required Hardware:

• Spectrum Digital F2808/F2812/F28335 eZdsp

• Texas Instruments F2808/F28035/F28069/F28335/F28343 ControlCARD
with docking station

• Texas Instruments F28069 ControlSTICK

• Oscilloscope and probes

44-8

Scheduling and Timing

Available versions of this example:

• F281x based board: c281x_asyncscheduling

• F280x/F2823x/F2833x based board: c280x_2833x_asyncscheduling

• Piccolo F2803x/F2806x based board: c280xx_asyncscheduling

Model

The following figure shows the example model.

Description

The EV Timer blocks are used to configure timer interrupts to be raised
on period match. Hardware Interrupt block installs the ISRs for the timer

44-9

44 Working with Texas Instruments™ C2000™ Processors

interrupts as well as for an eCAN message receive interrupt. The ISRs in
turn call function-call subsystems connected to the Hardware Interrupt block
output ports.

The outputs of first two subsystems are running counters. Their sum is used
to control the duty cycle of the PWMB for F2812 or ePWM2 for F2808/F28335.
The PWM waveform duty cycle increases linearly from 0 to 100 %.

The third subsystem contains an eCAN Rcv block whose message output
drives a PWM block (PWMA for F2812 or ePWM1 for F2808/F28335) to
control its duty cycle. The duty cycle varies from 0 to 100 % as the eCAN
messages are received from an eCAN Xmt block.

NOTE: The Self-Test mode of eCAN_A is enabled to connect eCAN_A
tranmitter and receiver internally to avoid external connection between
transmitter and receiver. Disabling the Self-Test mode for eCAN_A requires
tranmitter and receiver to be connected together externally.

How to Run the Example on the Board

The following sections explain how to configure, build, and deploy the
executable.

With Code Composer Studio v3.3 (CCSv3.3) - Default

• Open the model corresponding to the family of processor you are using.

• Go to Peripherals > eCAN_A and check Self-Test Mode.

• Click Incremental build to generate, build, load and run the program.

• Observe the PWM waveform on the oscilloscope.

With Code Composer Studio v4 (CCSv4)

CCSv4 support is provided via a makefile based approach. This requires
running xmakefilesetup to set the environment. You can ignore the following
if you have already gone through these steps. For more information, please
refer to the Xmakefile Documentation

• Run Xmakefile User Configuration.

44-10

Scheduling and Timing

• Set the Template parameter to gmake.

• Uncheck the Display operational configuration only checkbox.

• Set the Configuration parameter to ticcs_c2000_ccsv4, click Apply, if you
haven’t used this tool before, a dialog will ask you to browse to your CCSv4
installation folder. Pick the right folder and click OK.

• Click on the Tool Directories and make sure that the paths are pointing
to directories matching your installation. For example:

1 C:\Program Files\Texas Instruments\ccsv4\ for CCS Installation

2 C:\Program Files\Texas Instruments\ccsv4\tools\compiler\C2000\ for
Code Generation Tools

3 C:\Program Files\Texas Instruments\bios_5_41_10_36\ for DSP/BIOS
Installation

Code Generation and Creation of an .out file using CCSv4:

• Open the model corresponding to the family of processor you are using.

• Open the Coder Target pane. Under the Target Hardware Resources tab,
set the IDE/Tool chain parameter to Texas Instruments Code Composer
Studio v4 (makefile generation only).

• Change the selected board and processor to match your hardware.

• Go to Peripherals > eCAN_A and check Self-Test Mode.

• Click Incremental build or press Ctrl+B to generate and build an .out
executable file.

• Open CCSv4 and Connect to the Hardware. Load the program on to the
Hardware using CCSv4 and run.

• Observe the PWM waveform on the oscilloscope.

With Code Composer Studio v5 (CCSv5)

CCSv5 support is provided via a makefile based approach. This requires
running xmakefilesetup to set the environment. You can ignore the following
if you have already gone through these steps. For more information, please
refer to the Xmakefile Documentation

44-11

44 Working with Texas Instruments™ C2000™ Processors

• Run XMakefile User Configuration.

• Set the Template parameter to gmake.

• Uncheck the Display operational configuration only checkbox.

• Set the Configuration parameter to ticcs_c2000_ccsv5, click Apply, if you
haven’t used this tool before, a dialog will ask you to browse to your CCSv5
installation folder. Pick the right folder and click OK.

• Click on the Tool Directories and make sure that the paths are pointing
to directories matching your installation. For example:

1 C:\ti\ccsv5\ for CCS Installation

2 C:\ti\ccsv5\tools\compiler\c2000\ for Code Generation Tools

3 C:\ti\bios_5_41_11_38\ for DSP/BIOS Installation

Code Generation and Creation of an .out file using CCSv5:

• Open the model corresponding to the family of processor you are using.

• Open the Coder Target pane. Under the Target Hardware Resources tab,
set the IDE/Tool chain parameter to Texas Instruments Code Composer
Studio v5 (makefile generation only).

• Change the selected board and processor to match your hardware.

• Go to Peripherals > eCAN_A and check Self-Test Mode.

• Click Incremental build or press Ctrl+B to generate and build an .out
executable file.

• Open CCSv5 and Connect to the Hardware. Load the program on to the
Hardware using CCSv5 and run.

• Observe the PWM waveform on the oscilloscope.

44-12

Sharing General Purpose Timers between C281x Peripherals

Sharing General Purpose Timers between C281x
Peripherals

In this section...

“Sharing General Purpose Timers between CAP and eCAN” on page 44-14

“Sharing General Purpose Timers between CAP and SPI” on page 44-18

TMS320x281x DSP devices have four General Purpose (GP) timers. Each
Event Manager (EV) module includes two GP timers:

• EVA includes GP Timer 1 and GP Timer 2.

• EVB includes GP Timer 3 and GP Timer 4.

You can use the GP Timers independently or to operate peripherals associated
with the EV Manager, such as PWM, QEP, and CAP.

The following table describes the timer-peripheral mapping of the c281xlib
block library.

GP Timer Use for C281x Peripheral Blocks

GP Timer 1 GP Timer 2 GP Timer 3 GP Timer 4

PWM1-PWM6

PWM7-PWM12

QEP1-QEP2

QEP3-QEP4

CAP1-CAP3

CAP4-CAP6

Each PWM and QEP peripheral has access to only one timer, while each CAP
peripheral has access to two timers. In the PWM and QEP blocks, you can
set theModule option to A or B to determine which unique timer-peripheral
combination the block configures. By comparison, in the CAP block, you can
use the Time base option to select one of two timers for each CAP peripheral.

44-13

44 Working with Texas Instruments™ C2000™ Processors

Each GP timer is available to multiple peripherals. For example:

• PWM1-PWM6 and CAP1-CAP3 share GP Timer 1

• PWM7-PWM12 and CAP4-CAP6 share GP Timer 3

• QEP1-QEP2 and CAP1-CAP3 share GP Timer 2

• QEP3-QEP4 and CAP4-CAP6 share GP Timer 4

The PWM, QEP, CAP, and Timer blocks each provide independent access to
key timer registers. If the blocks in your model share a specific GP timer,
check that the timer-related settings are compatible. If the peripheral settings
for a shared timer are not compatible, the software generates an error when
you update the model or generate code.

Sharing General Purpose Timers between CAP and
eCAN

The model contains Timer and CAP blocks that both use Timer 1 (GP Timer 1).

44-14

Sharing General Purpose Timers between C281x Peripherals

44-15

44 Working with Texas Instruments™ C2000™ Processors

Both blocks have the same values for Timer prescaler and Counting
mode. However, each block has different values for Timer period. The
value of Timer period for Timer 1 is 65535 in the CAP block and 10000 in
the Timer block.

44-16

Sharing General Purpose Timers between C281x Peripherals

Since both blocks configure the same timer, and settings conflict, the software
generates an error when you update the model.

44-17

44 Working with Texas Instruments™ C2000™ Processors

Sharing General Purpose Timers between CAP and
SPI

The model contains QEP and CAP blocks that both use Timer 2. In the CAP
block, the Time base option shows which timer the block uses. In the QEP
block, settingModule to A configures the block to use QEP1–QEP2. GP Timer
Use for C281x Peripheral Blocks on page 44-13 shows that QEP1–QEP2 use
Timer 2.

44-18

Sharing General Purpose Timers between C281x Peripherals

44-19

44 Working with Texas Instruments™ C2000™ Processors

44-20

Sharing General Purpose Timers between C281x Peripherals

Currently, both blocks define different clock sources for Timer 2. The CAP
block uses Internal as a Clock source. The QEP block, which does not have
a configurable Clock source setting, uses the QEP circuit as a clock source.
If you build the model, the software generates the following error message.

To avoid generating errors when you build the model, change Clock source
in the CAP block to QEP device.

44-21

44 Working with Texas Instruments™ C2000™ Processors

Overview of Creating Models for C2000 Processors

In this section...

“Accessing the Embedded Coder Block Library” on page 44-22

“Building Your Model” on page 44-22

Accessing the Embedded Coder Block Library
After you have installed the supported development board, start MATLAB.

You can open the c2000lib blockset in the Simulink library browser, or by
typing the following command at the MATLAB command prompt:

c2000lib

Create your real-time model for your application the same way you create
other Simulink models. Select blocks to build your model from the following
sources or products:

• The libraries in the c2000lib block library (for handling input and output
functions for on your target hardware)

• Simulink Coder software

• Discrete time blocks from Simulink

• Another blockset that meets your needs and operates in the discrete time
domain

Building Your Model
With this configuration, you can generate a real-time executable and
download it to your TI development board. Simulink Coder software
automatically generates C code and inserts the I/O device drivers as specified
by the hardware blocks in your block diagram. These device drivers are
inserted in the generated C code.

During the same build operation, block parameter dialog entries are combined
into a project file for CCS for your TI C2000 board. If you selected the Build
and execute build action in the configuration settings, the TI cross-compiler

44-22

Overview of Creating Models for C2000™ Processors

builds an executable file. After automatically downloading the executable file
to the target, the build process runs the file on the board’s DSP.

Note After using the run-time Build option to generate and build code
for your application, you must perform the following reset sequence before
you can run that code on your board. If you want to rerun your application
manually once it has been generated, you must also use this procedure.

F2812, F2808, and F28335 eZdsp Reset Sequence

1 Reset the board CPU.

2 Load your code onto the target hardware.

3 Run your code on the target hardware.

44-23

44 Working with Texas Instruments™ C2000™ Processors

Using the c2000lib Blockset

In this section...

“Introduction” on page 44-24

“Hardware Setup” on page 44-24

“Starting the c2000lib Library” on page 44-25

“Setting Up the Model” on page 44-25

“Adding Blocks to the Model” on page 44-26

“Generating Code from the Model” on page 44-28

Introduction
This section uses an example to show how to create a Simulink model that
uses Embedded Coder blocks to target your board. The example creates a
model that performs PWM duty cycle control via pulse width change. It uses
the C2812 ADC block to sample an analog voltage and the C2812 PWM block
to generate a pulse waveform. The analog voltage controls the duty cycle of
the PWM and you can observe the duty cycle change on the oscilloscope. This
model is also provided in the Examples library. The model in the Examples
library also includes a model simulation.

Hardware Setup
The following hardware is required for this example:

• Spectrum Digital eZdsp F2812

• Function generator

• Oscilloscope and probes

To connect the hardware:

1 Connect the function generator output to the ADC input ADCINA0 on
the eZdsp F2812.

2 Connect the output of PWM1 on the eZdsp F2812 to the analog input of
the oscilloscope.

44-24

Using the c2000lib Blockset

3 Connect VREFLO to AGND on the eZdsp F2812. See the section
on the Analog Interface in Chapter 2 of the eZdsp™ F2812
Technical Reference, available from the Spectrum Digital Web site at
http://c2000.spectrumdigital.com/ezf2812/

Starting the c2000lib Library
At the MATLAB prompt, type the following command:

c2000lib

This command open the c2000lib library blockset, which contains libraries of
blocks designed for targeting your board.

Setting Up the Model
Preliminary tasks for setting up a new model include configuring the Target
Hardware Resources tab and setting the simulation parameters.

1 Configure the Target Hardware Resources tab, as described in “Configure
Target Hardware Resources” on page 35-3.

2 The following settings are made, referenced in the table below by their
locations in the Simulation > Model Configuration Parameters dialog:

Pane Field Setting

Solver Stop time 10

Solver Type Fixed-step

Data
Import/Export

Save to workspace - Time tout

Data
Import/Export

Save to workspace -
Output

yout

Hardware
Implementation

Device type C2000

Code Generation Target selection - System
target file

idelink_grt.tlc
or
idelink_ert.tlc

44-25

http://c2000.spectrumdigital.com/ezf2812/

44 Working with Texas Instruments™ C2000™ Processors

Note Generated code does not honor Simulink stop time from the
simulation. Stop time is interpreted as inf. To implement a stop in
generated code, you must put a Stop Simulation block in your model.

3 From your model’s main menu, select Simulation > Model
Configuration Parameters to verify and set the simulation parameters
for this model. Parameters you set in this dialog belong to the model you
are building. They are saved with the model and stored in the model file.
Refer to your Simulink documentation for information on the Configuration
Parameters dialog.

4 Use the Code Generation pane to set options for the real-time model.

5 Use the Browse button to locate and select a target configuration file,
idelink_grt.tlc or idelink_ert.tlc. When you do this, your coder
product chooses the system target file, and make command.

6 Set the Configuration Parameters by typing Ctrl-E and adjust these
parameters.

Adding Blocks to the Model

1 Open or double-click the C281x library, c281xlib.

2 Drag the ADC block into your model. Double-click the ADC block in the
model and set Sample time to 64/80000.

3 Drag the PWM block into your model. Double-click the PWM block in the
model and set the following parameters.

44-26

Using the c2000lib Blockset

Pane Field Parameter

Module A

Waveform
period source

Specify via dialog

Waveform
period units

Clock cycles

Waveform
period

64000

Timer

Waveform type Asymmetric

Enable
PWM1/PWM2

SelectedOutputs

Duty cycle
source

Input port

PWM1 control
logic

Active highLogic

PWM2 control
logic

Active low

Use
deadband for
PWM1/PWM2

Selected

Deadband
prescaler

16

Deadband

Deadband
period

12

ADC Control ADC start event Period interrupt

4 Enter Simulink in the MATLAB Command Window to open the Simulink
Library browser. Drag a Gain block from the Math Operations library into
your model. Double-click the Gain block in the model and set the following
parameters in the Function Block Parameters dialog. Click OK.

44-27

44 Working with Texas Instruments™ C2000™ Processors

Pane Field Parameter

Gain 30

Multiplication Element-wise(K.*u)

Main

Sample time -1

Output data type
mode

uint(16)Signal Attributes

Integer rounding
mode

Floor

Parameter
Attributes

Parameter data type
mode

Inherit from input

5 Connect the ADC block to the Gain block and the Gain block to the PWM
block.

Generating Code from the Model
This section summarizes how to generate code from your real-time model.

There are three ways to start the automatic code generation process:

• In the Simulink Editor, click Build Model .

• With your model open and in focus, press Ctrl+b.

44-28

Using the c2000lib Blockset

• Press the Build button located on the Code Generation pane of the
Configuration Parameters dialog.

Note In CCSv3, you see your project with the files in place in the folder
structure.

44-29

44 Working with Texas Instruments™ C2000™ Processors

Configuring Timing Parameters for CAN Blocks

In this section...

“The CAN Blocks” on page 44-30

“Setting Timing Parameters” on page 44-30

“Parameter Tuning and Signal Logging” on page 44-36

The CAN Blocks
The bit rate of these four CAN blocks cannot be set directly:

C281x eCAN Receive
C281x eCAN Transmit
C280x/C28x3x eCAN Receive
C280x/C28x3x eCAN Transmit

Setting Timing Parameters

• “Accessing the Timing Parameters” on page 44-30

• “Determining Timing Parameter Values” on page 44-33

• “Working with CAN Bit Timing” on page 44-34

Accessing the Timing Parameters
To set the Bitrate for a block whose bitrate cannot be set directly:

1 Configure the Target Hardware Resources tab, as described in “Configure
Target Hardware Resources” on page 35-3.

2 Under the Peripherals tab, use the TSEG1, TSEG2, and
BaudRatePrescaler (BRP) parameters to set the bitrate.

For example, the Target Hardware Resources tab for the F2812 eZdsp, this
dialog is shown in the following figure.

44-30

Configuring Timing Parameters for CAN Blocks

The C280x/C28x3x blocks have two independent eCAN modules.

44-31

44 Working with Texas Instruments™ C2000™ Processors

The following sections describe the series of steps and rules that govern the
process of setting these timing parameters.

44-32

Configuring Timing Parameters for CAN Blocks

Determining Timing Parameter Values
To determine the values for the timing parameters, complete the following
steps:

1 Determine the CAN Bitrate specification based on your application.

2 Determine the frequency of the CAN module clock. For example:

• CAN module clock = 100 MHz for the F2808 (Same as SYSCLKOUT)

• CAN module clock = 150 MHz for the F2812 (Same as SYSCLKOUT)

• CAN module clock = 75 MHz for the F28x3x (150 SYSCLKOUT/2)

3 Estimate the value of the BaudRatePrescaler (BRP).

4 Solve this equation for BitTime:

BitTime = CAN module clock frequency/(BRP * Bitrate)

5 Solve this equation for Bitrate:

Bitrate = CAN module clock frequency/(BRP * BitTime)

6 Estimate values for TSEG1 and TSEG2 that satisfy BitTime = TSEG1 +
TSEG2 + 1.

7 Use the following rules to determine the values of TSEG1 and TSEG2:

TSEG1 >= TSEG2
IPT (Information Processing Time) = 3/BRP
IPT <= TSEG1 <= 16 TQ
IPT <= TSEG2 <= 8 TQ
1 TQ <= SJW <= min (4 TQ, TSEG2)

where IPT is Information Processing Time, TQ is Time Quanta, and SJW
is Synchronization Jump Width, also set in the Target Hardware Resources
dialog.

8 Iterate steps 4 through 7 until the values selected for TSEG1, TSEG2,
and BRP meet the criteria.

The following illustration shows the relationship between the eCAN bit
timing parameters.

44-33

44 Working with Texas Instruments™ C2000™ Processors

Working with CAN Bit Timing
Assume that CAN Module Clock Frequency = 75 MHz, and a Bitrate of 1
Mbits/s is required.

1 Set the BRP to 5. Then substitute the values of CAN Module Clock
Frequency, BRP, and Bitrate into the following equation, solving for
BitTime:

BitTime = CAN Module Clock Frequency / (BRP * Bitrate)

BitTime = 75e6/(5 *1e6) = 15TQ

2 Set the values of TSEG1 and TSEG2 to 8TQ and 6TQ respectively.
Substitute the values of BitTime from the previous equation, and the
chosen values for TSEG1 and TSEG2 into the following equation:

BitTime = TSEG1 + TSEG2 + 1

15TQ = 8TQ + 6TQ + 1

3 Finally, check the selected values against the rules:

44-34

Configuring Timing Parameters for CAN Blocks

IPT = 3/BRP = 3/10 = .3
IPT <= TSEG1 <= 16 TQ True! .3<=8TQ<=16TQ
IPT <= TSEG2 <= 8TQ True! .3 <= 6TQ <= 8TQ
1TQ <= SJW <= min(4TQ, TSEG2) which means that SJW can be set to
either 2, 3, or 4

4 When the chosen values satisfy the criteria, so further iteration is not
required.

The following table provides example values for several bit rates when
CAN Module Clock Frequency = 75 MHz, as it is with the F28335. Other
combinations of the register values are possible.

Bitrate TSEG1 TSEG2 Bit Time BRP SJW

0.25
Mbit/s

8 6 15 20 2

0.5 Mbit/s 8 6 15 10 2

1 Mbit/s 8 6 15 5 2

The following table provides example values for several bit rates when
CAN Module Clock Frequency = 100 MHz, as it is with the F2808. Other
combinations of the register values are possible.

Bitrate TSEG1 TSEG2 Bit Time BRP SJW

0.25
Mbit/s

6 3 10 40 2

0.5 Mbit/s 5 4 10 20 2

1 Mbit/s 6 3 10 10 2

The following table provides example values for several bit rates when
CAN Module Clock Frequency = 150 MHz, as it is with the F2812. Other
combinations of the register values are possible.

44-35

44 Working with Texas Instruments™ C2000™ Processors

Bitrate TSEG1 TSEG2 Bit Time BRP SJW

0.25
Mbit/s

8 6 10 40 2

0.5 Mbit/s 7 7 10 20 2

1 Mbit/s 8 6 10 10 2

Parameter Tuning and Signal Logging

• “Overview” on page 44-36

• “Using External Mode” on page 44-36

• “Using a Third Party Calibration Tool” on page 44-46

Overview
Embedded Coder software supports parameter tuning and signal logging
either using Simulink External mode or with a third party calibration tool. In
both cases the model must include a CAN Calibration Protocol block.

Using External Mode
The Simulink External mode feature enables you to log signals and tune
parameters without requiring a calibration tool. This section describes the
steps for converting a model to use External mode.

External mode is supported using the CAN Calibration Protocol block and
ASAP2 interface. The CAN Calibration Protocol block is used to communicate
with the target, download parameter updates, and upload signal information.
The ASAP2 interface is used to get information about where in the target
memory a parameter or signal lives.

Note You must configure the host-side CAN application channel. See
“Configuring the Host Vector CAN Application Channel” on page 44-38.

To prepare your model for External mode, follow these steps:

44-36

Configuring Timing Parameters for CAN Blocks

1 Add a CCP driver block.

2 Identify signals you want to tune, and associate them with
Simulink.Parameter or canlib.Parameter objects with ExportedGlobal
storage class. It is important to set the data type and value of the object.
See “Using Supported Objects and Data Types” on page 44-39.

3 Identify signals you want to log, and associate them with canlib.Signal
objects. It is important to set the data type of the canlib.Signal. See
“Using Supported Objects and Data Types” on page 44-39.

For information about visualizing logged signal data, see “Viewing and
Storing Signal Data” on page 44-41.

4 Load the Simulink.Parameter or canlib.Parameter and canlib.Signal
data objects into the base workspace.

5 Configure the model for building, as described in “Manual Configuration
For External Mode” on page 44-44.

6 Build the model, and download the executable to the target

7 After downloading the executable to the target, you can switch the model
to External mode, as described in “Manual Configuration For External
Mode” on page 44-44.

8 You can now connect to the target using External mode by clicking the
Connect button.

9 If you have set up tunable parameters, you can now tune them. See
“Tuning Parameters” on page 44-40.

See the following topics for more information:

• “Configuring the Host Vector CAN Application Channel” on page 44-38

• “Using Supported Objects and Data Types” on page 44-39

• “Tuning Parameters” on page 44-40

• “Viewing and Storing Signal Data” on page 44-41

• “Manual Configuration For External Mode” on page 44-44

44-37

44 Working with Texas Instruments™ C2000™ Processors

• “Limitations” on page 44-45

Configuring the Host Vector CAN Application Channel. External
mode expects that the host-side CAN connection is using the 'MATLAB 1'
application channel. To configure the application channel used by the Vector
CAN drivers, enter the following in the MATLAB Command Window:

TargetsComms_VectorApplicationChannel.configureApplicationChannels

The Vector CAN Configuration tool appears. Use this tool to configure your
host-side CAN channel settings.

If you try to connect using an application channel other than 'MATLAB 1',
then you see the following warning in the command window:

Warning:
It was not possible to connect to the target using CCP.
An error occurred when issuing the CONNECT command.

If you have not already installed the Vector CAN drivers, you will get the
following error message:

??? Error using ==>

TargetsComms_VectorApplicationChannel.TargetsComms_VectorApplicationChannel>

TargetsComms_VectorApplicationChannel.configureApplicationChannels at 40

Unable to launch the application channel configuration utility.

The "vcanconf" utility was not found on the Windows System Path.

To fix this error, make sure the required CAN drivers are installed on this computer;

refer to the product documentation for details.

If you want to use CAN to transmit or receive CAN messages between your
host PC and your target, you require Vector-Informatik CAN hardware
supported by the Vector CAN Driver Library. Choose the driver libraries to
support profiling, downloading, and External mode.

44-38

http://www.vector-informatik.com/vi_can_hardware_en,,223.html

Configuring Timing Parameters for CAN Blocks

Note For CANcaseXL, install both the Vector XL-driver library and Vector
CAN Driver Library vcand32.dll.

For older CAN hardware, you must install the Vector CAN Driver Library
vcand32.dll.

Make sure that the library, vcand32.dll, is placed in the Windows system32
folder.

Using Supported Objects and Data Types. Supported objects:

• Simulink.Parameter or canlib.Parameter for parameter tuning

• canlib.Signal for signal logging

Supported data types:

• uint8, int8

• uint16, int16

• uint32, int32

• single

You need to define data objects for the signals and parameters of interest for
ASAP 2 file generation. For ease of use, create a MATLAB file to define the
data objects, so that you only have to set up the objects once.

To set up tunable parameters and signal logging:

1 Associate the parameters to be tuned with Simulink.Parameter or
canlib.Parameter objects with ExportedGlobal storage class. It is
important to set the data type and value of the parameter object. See the
following code for an example of how to create such a Simulink.Parameter
object for tuning:

stepSize = Simulink.Parameter;
stepSize.DataType = 'uint8';
stepSize.CoderInfo.StorageClass = 'ExportedGlobal';

44-39

44 Working with Texas Instruments™ C2000™ Processors

stepSize.Value = 1;

2 Associate the signals to be logged with canlib.Signal objects. It is important
to set the data type of the canlib.Signal. The following code example shows
how to declare such a canlib.Signal object for logging:

counter = canlib.Signal;
counter.DataType = 'uint8';

3 Associate the data objects you defined in the MATLAB file with parameters
or signals in the model. For the previous code examples, you could set the
Constant value in a Source block to stepSize, and set a Signal name
to counter in the Signal Properties dialog. Remember that stepSize and
counter are data objects defined in the code.

Tuning Parameters. To tune a parameter, follow these steps:

1 Set dataobject.value in the workspace while the model is running in
External mode. For example, to tune the parameter stepSize (that is, to
change its value) from 1 to 2, enter the following at the command line:

stepSize.value = 2

44-40

Configuring Timing Parameters for CAN Blocks

You see output similar to the following:

stepSize =

Simulink.Parameter (handle)
CoderInfo: [1x1 Simulink.ParamCoderInfo]

Description: ''
DataType: 'uint8'

Min: []
Max: []

DocUnits: ''
Value: 2

Complexity: 'real'
Dimensions: [1 1]

2 Return to your model, and update the model (press Ctrl+D) to apply the
changed parameter.

Viewing and Storing Signal Data. To view the logged signals, attach
a supported scope type to the signal (see “Limitations” on page 44-45 for
supported scope types).

By default, data from each scope is logged.

To customize which signals are logged:

1 In the Simulink Editor, select Code > External Mode Control Panel.

2 In External Mode Control Panel, click the Signal & Triggering button.

3 In External Signal & Triggering, clear the check boxes for scope data you
do not want to log.

44-41

44 Working with Texas Instruments™ C2000™ Processors

Storing signal data for further analysis. It is possible to store the logged
data for further analysis in MATLAB.

1 To use the Data Archiving feature of External mode, click Data Archiving
in the External Mode Control Panel. The External Data Archiving dialog
appears.

44-42

Configuring Timing Parameters for CAN Blocks

a Select the check box Enable archiving

b Edit the Folder and Filename and review the other settings.

c Close the dialog.

2 Open the Scope parameters, and select the check box Save data to
workspace.

44-43

44 Working with Texas Instruments™ C2000™ Processors

3 You may want to edit the Variable name in the edit box. The data that is
displayed on the scope at the end of the External mode session is available
in the workspace with this variable name.

The data that was previously displayed in the scope is stored in .mat files
as previously setup using Data Archiving.

For example, at the end of an External mode session, the following variable
and files could be available in the workspace and current folder:

• A variable ScopeData5 with the data currently displayed on the scope:

ScopeData5

ScopeData5 =

time: [56x1 double]
signals: [1x1 struct]

blockName: 'mpc755rt_ccp/Scope1'

• In the current folder, .mat files for the three previous Durations of
scope data:

ExternalMode_0.mat
ExternalMode_2.mat
ExternalMode_1.mat

Manual Configuration For External Mode. You can configure models
manually for build and execution with External mode.

To configure a model to be built for External mode:

1 Select Simulation > Model Configuration Parameters.

2 In the Configuration Parameters dialog, open the Optimization > Signals
and Parameters pane.

3 Select the Inline parameters check box and click the Configure button.

4 In the Model Parameter Configuration dialog that opens, define the (global)
tunable parameters for your models.

44-44

Configuring Timing Parameters for CAN Blocks

5 Select Simulation > Mode > Normal. Or, set Simulation mode as shown
here.

6 In the Configuration Parameters dialog, open the Code
Generation > Interface pane.

7 Set the Interface parameter to ASAP2.

After you build the model, you can configure it for External mode execution:

1 Select Simulation > Mode > External.

2 In the Configuration Parameters dialog, open the Code
Generation > Interface pane.

3 Set the Interface parameter to External mode.

Limitations. Multiple signal sinks (e.g. scopes) are not supported.

Only the following kinds of scopes are supported with External mode Logging:

• Simulink Scope block

• Simulink Display block

44-45

44 Working with Texas Instruments™ C2000™ Processors

• Viewer type: scope — To use this option, right-click a signal in the model,
and select Create & Connect Viewer > Simulink > Scope. The other
scope types listed there are not supported (e.g., floating scope).

Before connecting to External mode, you also need to right-click the signal,
and select Signal Properties. In the dialog, select the Test point check
box, and click OK.

GRT is supported but only for parameter tuning.

It is not possible to log signals with sample rates in excess of 10 kHz.

Subsystem builds are not supported for External mode, only top-level builds
are supported.

Logging and tuning of nonscalars is not supported. It is possible to log
nonscalar signals by breaking the signal down into its scalar components. For
an example of how to do this signal deconstruction, see the CCP example
models, which use a Demux and Signal Conversion block with contiguous copy.

Logging and tuning of complex numbers is not supported. It is possible to
work with complex numbers by breaking the complex number down into its
real and imaginary components. This breakdown can be performed using
the following blocks in the Simulink Math Operations library: Complex to
Real-Imag, Real-Imag to Complex, Magnitude-Angle to Complex, Complex
to Magnitude-Angle.

Using a Third Party Calibration Tool
Embedded Coder allows an ASAP2 data definition file to be generated during
the code generation process. This file can be used by a third party tool to
access data from the real-time application while it is executing.

ASAP2 is a data definition standard by the Association for Standardization
of Automation and Measuring Systems (ASAM). ASAP2 is a standard
description for data measurement, calibration, and diagnostic systems.
Embedded Coder software lets you export an ASAP2 file containing
information about your model during the code generation process.

Before you begin generating ASAP2 files with Embedded Coder software, see
“Generating an ASAP2 File” in the product help for Simulink Coder. That

44-46

Configuring Timing Parameters for CAN Blocks

section describes how to define the signal and parameter information required
by the ASAP2 file generation process.

Select the ASAP2 option before the build process as follows:

1 Select Simulation > Model Configuration Parameters.

The Configuration Parameters dialog appears.

2 Select the Code Generation > Interface pane.

3 Select the ASAP2 option from the Interface drop-down menu, in the Data
exchange frame.

4 Click Apply.

The build process creates an ASAM-compliant ASAP2 data definition file for
the generated C code.

• The standard ASAP2 file generation does not include the memory address
attributes in the generated file. Instead, it leaves a placeholder that must
be replaced with the actual address by postprocessing the generated file.

• The map file options in the template project need to be set up a certain way
for this procedure to work. If you have created your own template projects,
and you do not have the right settings, you see the following instructions:

Warning: It was not possible to do ASAP2 processing on your
.map file.This is because your IDE project template is not
configured to generate a .map file in the correct format.
To generate a .map file in the correct format you need to
setup the following options in your IDE project template:
Generate section map should be checked on
Generate register map should be checked off
Generate symbol table should be checked on
Format list file into pages should be checked off
Generate summary should be checked off
Page width should be equal to 132 characters
Symbol colums should be 1
You can change these options via Project -> Project Options
-> Linker/Locator -> Map File -> Map File Format.

44-47

44 Working with Texas Instruments™ C2000™ Processors

Embedded Coder software performs this postprocessing for you. To do this, it
first extracts the memory address information from the map file generated
during the link process. Secondly, it replaces the placeholders in the ASAP2
file with the actual memory addresses. This postprocessing is performed
automatically and does not require additional input from you.

44-48

ADC-PWM Synchronization via ADC Interrupt

ADC-PWM Synchronization via ADC Interrupt
This example shows how to use the ADC and PWM blocks. In the generated
code, changes in the voltage of the ADC input alter the duty cycle of the PWM
output. The period of the PWM waveform remains constant. This example
also shows how to use the Hardware Interrupt block to synchronize the
update of the PWM duty cycle with the ADC conversion.

Required Hardware:

• Spectrum Digital F2808/F2812/F28335 eZdsp

• Texas Instruments
F2808/F28027/F28035/F28044/F28069/F28335/F28343/F28346
ControlCARD with docking station

• Texas Instruments F28027/F28069 ControlSTICK

• Oscilloscope and probes

• Function generator

The following models are available for this example:

• F281x based board: c281x_adcpwmasynctest

• F280x/F2823x/F2833x based board: c280x_2833x_adcpwmasynctest

• Piccolo F2802x/F2803x/F2806x based board: c280xx_adcpwmasynctest

To open the model, enter the model name in the MATLAB Command Window.

The following figure shows the example model.

44-49

44 Working with Texas Instruments™ C2000™ Processors

This model shows how to use the ADC block to sample an analog voltage
and how to use the PWM block to generate a pulse waveform. The analog
voltage controls the duty cycle of the PWM waveform. Duty cycle changes can
be observed on the oscilloscope. "Hardware Interrupt" installs an Interrupt
Service Routine (ISR) for ADC interrupt and schedules the execution of the
connected subsystem (ADC-PWM Subsystem) when ADC interrupt (ADCINT)
is received.

"ADC-PWM Subsystem" consists of an ADC driving the duty cycle input port
of the PWM. PWM is configured to trigger ADC start of conversion (SOC).

Before using the model, connect the function generator output to the ADC
input ADCINA0 on the board. Connect the output of the PWM1 to the analog
input of the oscilloscope.

44-50

ADC-PWM Synchronization via ADC Interrupt

Run the model using CCSv3

• Open the model corresponding to the family of processor you are using.

• Each model is configured for a default processor. Open the Target
Hardware Resources tab to select a different processor.

• Click Incremental build or press Ctrl+b to generate, build, load and
run the program.

• Observe the change of the PWM waveform on the oscilloscope.

Run the model using CCSv4
CCSv4 support is provided via a makefile based approach. This requires
running xmakefilesetup to set the environment. You can ignore the
following if you have already gone through these steps. For more information,
see “Using Makefiles with Code Composer Studio 4 & 5” on page 43-4.

• Enter xmakefilesetup in a MATLAB Command Window.

• In the XMakefile User Configuration dialog that opens, set the Template
parameter to gmake.

• Clear the Display operational configuration only check box.

• Set the Configuration parameter to ticcs_c2000_ccsv4, click Apply.

• If you haven’t used this configuration before, a dialog will ask you to
browse to your CCSv4 installation folder. Pick the right folder and click
OK. Click the Tool Directories and make sure that the paths are pointing
to directories matching your installation. For example:

- CCS Installation: C:\Program Files\Texas Instruments\ccsv4\

- Code Generation Tools: C:\Program Files\Texas
Instruments\ccsv4\tools\compiler\C2000\

- DSP/BIOS Installation: C:\Program Files\Texas
Instruments\bios_5_41_10_36\

Code Generation and Creation of an .out file using CCSv4:

• Open the model that corresponds to the processor family you are using.

44-51

44 Working with Texas Instruments™ C2000™ Processors

• Open the Target Hardware Resources tab, as described in “Configure
Target Hardware Resources” on page 35-3, and set the IDE/Tool chain
parameter to Texas Instruments Code Composer Studio v4 (makefile
generation only).

• Change the selected board and processor to match your hardware.

• Click OK to save the changes on the Target Hardware Resources tab.

• Click Incremental build or press Ctrl+b to generate and build an .out
executable file.

• Using CCSv4, connect to your board, load and run the .out file.

• Observe the PWM waveform on the oscilloscope.

Run the model using CCSv5
CCSv5 support is provided via a makefile based approach. This requires
running xmakefilesetup to set the environment. You can ignore the
following if you have already gone through these steps. For more information,
see “Using Makefiles with Code Composer Studio 4 & 5” on page 43-4.

• Enter xmakefilesetup in a MATLAB Command Window.

• In the XMakefile User Configuration dialog that opens, set the Template
parameter to gmake.

• Clear the Display operational configuration only check box.

• Set the Configuration parameter to ticcs_c2000_ccsv5, click Apply.

• If you haven’t used this configuration before, a dialog will ask you to
browse to your CCSv5 installation folder. Pick the right folder and click
OK. Click the Tool Directories and make sure that the paths are pointing
to directories matching your installation. For example:

- CCS Installation: C:\ti\ccsv5\

- Code Generation Tools: C:\ti\ccsv5\tools\compiler\c2000\

- DSP/BIOS Installation: C:\ti\bios_5_41_11_38\

Code Generation and Creation of an .out file using CCSv5:

• Open the model.

44-52

ADC-PWM Synchronization via ADC Interrupt

• Open the Target Hardware Resources tab, as described in “Configure
Target Hardware Resources” on page 35-3, and set the IDE/Tool chain
parameter to Texas Instruments Code Composer Studio v5 (makefile
generation only).

• Change the selected board and processor to match your hardware.

• Click OK to save the changes on the Target Hardware Resources tab.

• Click Incremental build or press Ctrl+b to generate and build an .out
executable file.

• Using CCSv5, connect to your board, load and run the .out file.

• Observe the PWM waveform on the oscilloscope.

44-53

44 Working with Texas Instruments™ C2000™ Processors

Configuring Acquisition Window Width for ADC Blocks

In this section...

“What Is an Acquisition Window?” on page 44-54

“Configuring ADC Parameters for Acquisition WindowWidth” on page 44-56

What Is an Acquisition Window?
ADC blocks take a signal from an analog source and measure it with a digital
device. The digital device does not measure in a continuous process, but in a
series of discrete measurements, close enough together to approximate the
source signal with the required accuracy.

P!�	����&�!�	 �&�&��	�D��
���'�!�

The digital measurement itself is not an instantaneous process, but is a
measurement window, where the signal is acquired and measured, as shown
in the following figure.

44-54

Configuring Acquisition Window Width for ADC Blocks

������
�&�!�	

D��
���'�!� D��
���'�!�
P�M�&
&�&�!
>&!"�6

Ideally, as soon as the measurement window is opened, the actual signal
coming in would be measured perfectly. In reality the signal does not reach
its full magnitude immediately. The measurement process can be modeled by
a circuit similar to the one shown in the following figure for the ADC found on
the F2812 eZdsp

where the measurement circuit is characterized by a certain capacitance. In
the preceding figure, when the switch is closed, the measurement begins. In
this circuit, which is characterized by its capacitance, the signal received
is not in a form of a step function as shown by the ideal measurement, but
a ramp up to the true signal magnitude. The following figure shows what
happens to the signal when the sampler switch is closed and the signal is
received to be measured.

44-55

44 Working with Texas Instruments™ C2000™ Processors

P����	��&�!�	
P�M�&
&�&�!
>&!"�6
>&"�8

Because the signal acquisition is not instantaneous, it is very important to
set a wide enough acquisition window to allow the signal to ramp up to full
strength before the measurement is taken. If the window is too narrow,
the measurement is taken before the signal has reached its full magnitude,
resulting in erroneous data. If the window is too wide, the source signal itself
may change, and the sampling may be too infrequent to reflect the actual
value, also resulting in erroneous data. You must calculate the width of the
acquisition window based on the circuit characteristics of resistance and
capacitance of your specific circuit. Then, using the ADC parameters described
in the following section, you can configure the acquisition window width.

Configuring ADC Parameters for Acquisition Window
Width

• “Accessing the ADC Parameters” on page 44-56

• “Configure Acquisition Window Width Using ADC Parameters” on page
44-59

Accessing the ADC Parameters
The ADC parameters can be set from the Peripherals tab of the Target
Hardware Resources tab.

• You can set ACQ_PS — Acquisition Prescaler — to a value from 0 to 15.
To obtain the actual value, increment the setting by 1. This produces an
actual range from 1 to 16.

44-56

Configuring Acquisition Window Width for ADC Blocks

• You can set ADCLKPS — AD Clock Prescaler — to a value from 0 to 15.
To obtain the actual value, increment the setting by 1. This produces an
actual range from 1 to 16.

• You can set CPS— Clock Prescaler — to a value from 0 to 1. To obtain the
actual value, increment the setting by 1. This produces an actual range
from 1 to 2.

44-57

44 Working with Texas Instruments™ C2000™ Processors

These three prescalers serve to reduce the speed of the clock and to set the
acquisition window width. The following diagram shows how these prescalers
are used.

44-58

Configuring Acquisition Window Width for ADC Blocks

P���Q��
(�C�(3
.1�@&���	���
"&:&"��/

O�����Q
.8&�8�
���"
���&�8���	
�	���/ P���Q���C

��"���
��8�
&!��'&!���	���
%��M��!���@���
%�������%�(����(3

���

���

����C
%���8�����"���

�8���	���
%��M��!���@���
%�������%�(����+

P�R7��

P����Q�C
�8&
�&
��8�
P����	���

&�!�	

P�R7���C
P�M�&
&�&�!
���
��	���C
&!"&����

8�6�'�!�
P����Q
�&��
�6&		
��'��&
�
�8��6&!"�6

��'�	�
O�	"
�	���
��	
�

In the preceding diagram, the high speed peripheral clock frequency is
received and then divided by the ADCLKPS. The reduced clock frequency
is then further divided by CPS. The resulting frequency is the ADCCLK
signal. The value of ACQ_PS then determines how many ADCCLK ticks
comprise one S/H (sample and hold) period, or in other words, the length of
the acquisition window.

Configure Acquisition Window Width Using ADC Parameters
The following examples show how you can use ADC parameters to configure
the acquisition window width:

Example 1:

If the HISPCLK = 30 MHz, and ADCLKPS=1 (which is a value of 2), the
result is 15 MHz.

If CPS= 1 (which is a value of 2), then ADCCLK = 7.5 MHz.

If ACQ_PS = 0 (which is a value of 1), then the sample/hold period is 1
ADCCLK tick, or .1333 microseconds.

44-59

44 Working with Texas Instruments™ C2000™ Processors

Example 2:

If the HISPCLK = 30 MHz, and ADCLKPS=1 (which is a value of 2), the
result is 15 MHz.

If CPS= 1 (which is a value of 2), then ADCCLK = 7.5 MHz.

If ACQ_PS = 15 (which is a value of 16), then the sample/hold period is 16
ADCCLK ticks, or 2.1333 microseconds.

Note HISPCLK is set automatically for the user, and it is not possible to
change the rate. For more information, see “High-Speed Peripheral Clock”
on page 44-8

44-60

Real-Time Data Exchange via RTDX™

Real-Time Data Exchange via RTDX™
This example shows how to use the From RTDX and To RTDX blocks to
send data from host to target and receive data from target to host. The model
implements a simple sine wave generator that runs on the F28335 board.

NOTE: The Real-Time Data Exchange via RTDX™ supports only Code
Composer Studio v3.3.

Required Hardware:

• Spectrum Digital F2808 eZdsp

• Spectrum Digital F2812 eZdsp

• Spectrum Digital F28044 eZdsp

• Spectrum Digital F28335 eZdsp

• Texas Instruments F2808/F28027/F28035/F28069/F28335/F28343/F28346
ControlCARD with docking station

• Texas Instruments F28027/F28069 ControlSTICK

Available versions of this example:

This example can be run on different boards by changing the processor
selection on the Target Hardware Resources tab of the model: c28x_rtdxtest

Model

The following figure shows the example model.

44-61

44 Working with Texas Instruments™ C2000™ Processors

Description

The first step to run this example is to generate code for the model and to build
it to run on the target. Once the model is running, we use a MATLAB script to
read the sine wave values from the channel specified by the "To RTDX" block
and plot them. To change the frequency and amplitude of the sine wave while
it is running on the target, we use the same MATLAB script to write data to
the channels specified by the "From RTDX" blocks. Note that the RTDX™
channel names specified in the RTDX blocks in the Simulink model are the
same channel names used in the MATLAB script. Open the example script to
see the specific MATLAB code used to establish RTDX communication.

How to Run the Example

• Open the model c28x_rtdxtest.

• The model is configured by default for the F28335 processor. Open the
Target Hardware Resources tab to select a different processor.

• Click OK to save the changes on the Target Hardware Resources tab.

• Click Build/Reload & Run to generate, build, load and run the program.

44-62

SPI-Based Control of PWM Duty Cycle

SPI-Based Control of PWM Duty Cycle
This example shows how to the use of the SPI Receive, SPI Transmit, PWM,
and Memory Copy blocks to generate a PWM waveform.

Required Hardware:

• Spectrum Digital F2808/F2812/F28335 eZdsp

• Texas Instruments
F2808/F28027/F28035/F28044/F28069/F28335/F28343/F28346
ControlCARD with docking station

• Texas Instruments F28027/F28069 ControlSTICK

• Oscilloscope and probes

Available versions of this example:

• F281x based board: c281x_spitest

• F280x/F2823x/F2833x based board: c280x_2833x_spitest

• Piccolo F2802x/F2803x/F2806x based board: c280xx_spitest

Note: This model only runs with Code Composer Studio v3.3

Model

The following figure shows the example model.

44-63

44 Working with Texas Instruments™ C2000™ Processors

Description

Memory Copy block labeled "Read Duty Cycle" reads duty cycle value stored
at the memory location 0x8FF0. "C28xx SPI Transmit" block transmits this
value, while "C28xx SPI Receive" receives it. The duty cycle value is then sent
to the PWM1. The duty cycle of the generated pulse waveform is determined
by the relative ratio of the received pulse width value and the pulse period
which is fixed at 64000 clock cycles. The duty cycle toggles between 25%,
50%, and 75% based on user selection.

PWM Duty Cycle can be changed while the generated code is running using
write function. This method writes selected value to the memory location
0x8FF0. Select either 25%, 50%, or 75% value from the GUI that opens up
when "Build/Reload & Run" is pressed.

’Enable loopback’ mode is checked for ’SPI_A’ on the peripherals tab of
the Target Hardware Resources tab. This is required to get the transmitted
data back to the processor. If this mode is disabled, SPI_A tranmitter and
receiver have to be connected.

44-64

SPI-Based Control of PWM Duty Cycle

Note that "Simulate Duty Cycle Change" and "Simulate PWM Waveform"
are dedicated to simulation only. Use these blocks to simulate and observe
effects achieved with the generated code.

Hardware Connections

Connect the output of PWM1 on the board to the analog input of the
oscilloscope.

Note that SPI module is set to work in "loopback" mode. External SPI
hardware is not needed. As an alternative, the user may disable SPI loopback
mode and bridge SPI transmit and receive pins on each of the following:

• F2812eZdsp (connector P8 pins 23 and 24)

• F2808 eZdsp (connector P8 pins 9 and 10)

• F28335 eZdsp connector P8 pins 9 and 10)

• Texas Instruments F28027/F28069 controlSTICK (connector J1 pins 20
and 24)

• Texas Instruments controlCARD with docking station (GPIO 16 and 17)

How to Run the Example in Simulation

• Open this model.

• Click "Start simulation" button.

• Double-click on the "Duty Cycle Change" block and select a new duty
cycle value.

• Observe the PWM waveform change.

How to Run the Example on the Board

• Open the model corresponding to the family of processor you are using.

• Each model is configured for a default processor, open the Target Hardware
Resources tab to select a different processor.

• Go to Peripherals > SPI_A. Check Enable loopback. If your processor is
F2803x/F2806x, select GPIO16 for SOMI pin assignment and GPIO17
for SIMO pin assignment.

44-65

44 Working with Texas Instruments™ C2000™ Processors

• Click Build/Reload & Run to generate, build, load and run the program.

• Select a new duty cycle value in the dialog that opens.

• Observe the PWM waveform on the oscilloscope.

44-66

HIL Verification of IIR Filter via SCI

HIL Verification of IIR Filter via SCI
This example shows HIL verification of an IIR filter using serial
communication interface between a host simulation and generated code on
a TI C28x processor.

Required hardware:

• Spectrum Digital F2808 eZdsp

• Spectrum Digital F2812 eZdsp

• Spectrum Digital F28044 eZdsp

• Spectrum Digital F28335 eZdsp

On the following boards the embedded xds100 JTAG can be used as a serial
connection over USB. Jumper and switch settings with corresponding FTDI
drivers are required to use this serial communication technique.

• Texas Instruments
F2808/F28027/F28035/F28044/F28069/F28335/F28343/F28346
ControlCARD with docking station

• Texas Instruments F28027/F28069 ControlSTICK

Available versions of this example:

This example model c2000scitest can be used on a variety of boards.

Host Model

The following figure shows the host model.

44-67

44 Working with Texas Instruments™ C2000™ Processors

Target Model

The following figure shows the target model.

44-68

HIL Verification of IIR Filter via SCI

Description

This example shows HIL verification of an IIR filter using serial
communication interface between a host simulation and generated code on an
c28x processor-based target board.

Based on the position of the manual switch, either a saw-tooth or sine
waveform is passed to the Host-side SCI Transmit block and sent to the
target. The stream of data is received from the target the via Host-side SCI
Receive block and sent to the Simulink scope block.

The same algorithm runs on the target and the host side at the same time. The
scope displays three signals showing the result of the simulation compared
with the result of the algorithm running on the target. Because the algorithm
uses an IIR filter, its output is therefore dependent on every sample time that
occurs from the beginning of the simulation. Using an IIR filter clearly shows
the time consistency between the simulation and the generated code.

You can add a delay in the simulation by using the "Show Delayed Output"
switch. This delay can be used to verify the time consistency between both
models.

44-69

44 Working with Texas Instruments™ C2000™ Processors

Hardware Connections

• Connect the RS232 connector of your computer to the RS232 connector of
the F28xx chip-based board.

• F2812 eZdsp is not equipped with RS232 transceivers. You must add
RS232 transceivers to this board to run this example.

• ControlCARDs with Docking Stations, ControlSTICK boards can support
serial over the xds100 USB JTAG connection. Jumper and switch
settings with corresponding FTDI drivers are required to use this serial
communication technique.

How to Run the Example

The following sections explain how to configure, build, and deploy the
executable.

Note: The host model is set to use "COM1". Configure the SCI Setup, SCI
Transmit, and SCI Receive blocks to use a different COM port.

With Code Composer Studio v3.3 (CCSv3.3) - Default

• Open the model c2000scitest

• Double-Click on "Open Target-Side Model Default F28335". This opens
the target model.

• The model is configured by default for the F28335 processor. Open the
Target Hardware Resources tab to select a different processor.

• Go to "Peripherals" > "SCI_A", and change the "Communication mode"
to "Protocol".

• Click "OK" to save the changes on the Target Hardware Resources tab.

• Click "Build Model" button or press "Ctrl+B" to generate, build, load and
run the program on the target.

• Click "Run" to simulate the model c2000scitest

Change the manual switch position to select a different input signal.

With Code Composer Studio v4 (CCSv4)

44-70

HIL Verification of IIR Filter via SCI

CCSv4 support is provided via a makefile based approach. This requires
running xmakefilesetup to set the environment. You can ignore the following
if you have already gone through these steps. For more information, please
refer to the Xmakefile Documentation

• Run XMakefile User Configuration.

• Set the Template parameter to "gmake".

• Uncheck the "Display operational configuration only" checkbox.

• Set the Configuration parameter to "ticcs_c2000_ccsv4", click "Apply", if
you haven’t used this tool before, a dialog will ask you to browse to your
CCSv4 installation folder. Pick the right folder and click "OK".

• Click on the "Tool Directories" and make sure that the paths are pointing
to directories matching your installation. For example:

1 C:\Program Files\Texas Instruments\ccsv4\ for "CCS Installation".

2 C:\Program Files\Texas Instruments\ccsv4\tools\compiler\C2000\ for
"Code Generation Tools".

3 C:\Program Files\Texas Instruments\bios_5_41_10_36\ for "DSP/BIOS
Installation".

Code Generation and Creation of an .out file using CCSv4:

• Open the model c2000scitest.

• Double-Click on "Open Target-Side Model Default F28335". This opens
the target model.

• Open the Target Hardware Resources tab and set the IDE/Tool chain
parameter to Texas Instruments Code Composer Studio v4 (makefile
generation only).

• Change the selected board and processor to match your hardware.

• Go to "Peripherals" > "SCI_A", and change the "Communication mode"
to "Protocol".

• Click "OK" to save the changes on the Target Hardware Resources tab.

44-71

44 Working with Texas Instruments™ C2000™ Processors

• Click "Build Model" button or press "Ctrl+B" to generate and build an .out
executable file.

• Using CCSv4, connect to the Hardware and load and run the .out file.

• Now simulate the model c2000scitest.

Change the manual switch position to select a different input signal.

With Code Composer Studio v5 (CCSv5)

CCSv5 support is provided via a makefile based approach. This requires
running xmakefilesetup to set the environment. You can ignore the following
if you have already gone through these steps. For more information, please
refer to the Xmakefile Documentation

• Run XMakefile User Configuration.

• Set the Template parameter to "gmake".

• Uncheck the "Display operational configuration only" checkbox.

• Set the Configuration parameter to "ticcs_c2000_ccsv5", click "Apply", if
you haven’t used this tool before, a dialog will ask you to browse to your
CCSv5 installation folder. Pick the right folder and click "OK".

• Click on the "Tool Directories" and make sure that the paths are pointing
to directories matching your installation. For example:

1 C:\ti\ccsv5\ for "CCS Installation".

2 C:\ti\ccsv5\tools\compiler\c2000\ for "Code Generation Tools".

3 C:\ti\bios_5_41_11_38\ for "DSP/BIOS Installation".

Code Generation and Creation of an .out file using CCSv5:

• Open the model c2000scitest.

• Double-Click on "Open Target-Side Model Default F28335". This opens
the target model.

44-72

HIL Verification of IIR Filter via SCI

• Open the Target Hardware Resources tab and set the IDE/Tool chain
parameter to Texas Instruments Code Composer Studio v4 (makefile
generation only).

• Change the selected board and processor to match your hardware.

• Go to "Peripherals" > "SCI_A", and change the "Communication mode"
to "Protocol".

• Click "OK" to save the changes on the Target Hardware Resources tab.

• Click "Build Model" button or press "Ctrl+B" to generate and build an .out
executable file.

• Using CCSv5, connect to the Hardware and load and run the .out file.

• Now simulate the model c2000scitest.

Change the manual switch position to select a different input signal.

44-73

44 Working with Texas Instruments™ C2000™ Processors

CAN-Based Control of PWM Duty Cycle
This example shows how to use the CAN Receive, CAN Transmit, PWM, and
C2812 Memory Copy blocks to generate a pulse waveform.

Required Hardware:

• Spectrum Digital F2808/F2812/F28335 eZdsp

• Texas Instruments F2808/F28035/F28069/F28335/F28343 ControlCARD
with docking station

• Texas Instruments F28069 ControlSTICK

• Oscilloscope and probes

Available versions of this example:

• F281x based board: c281x_cantest

• F280x/F2823x/F2833x based board: c280x_2833x_cantest

• Piccolo F2803x/F2806x based board: c280xx_cantest

Note: These models only runs with Code Composer Studio v3.3

Model

The following figure shows the example model.

44-74

CAN-Based Control of PWM Duty Cycle

Description

Memory Copy block labeled "Read Duty Cycle" reads duty cycle value stored
at the memory location 0x8FF0. "Transmit CAN Msg" block uses mailbox
5 to transmit this value packed in a standard CAN message frame, while
"Receive CAN Msg" uses mailbox 0 to receive it. When the CAN message is
received, "Process CAN Msg" unpacks the duty cycle value and sends it to the
PWM1. The duty cycle of the generated pulse waveform is determined by the
relative ratio of the received pulse width value and the pulse period which
is fixed at 64000 clock cycles. The duty cycle toggles between 25%, 50%, and
75% based on user selection.

PWM Duty Cycle can be changed while the generated code is running using
the write function. This method writes selected value to the memory location
0x8FF0. Select either 25%, 50%, or 75% value from the GUI that opens up
when "Build/Reload & Run" is pressed.

NOTE: ’Self-Test’ mode is enabled for eCAN_A to receive the data transmitted
back to the processor in the example models. If ’Self-test’ mode is disabled,
the CAN transmitter and receiver have to be physically connected for the
example to work.

44-75

44 Working with Texas Instruments™ C2000™ Processors

Note that "Simulate Duty Cycle Change" and "Simulate PWM Waveform"
are dedicated to simulation only. Use these blocks to simulate and observe
effects achieved with the generated code.

Hardware Connections

Connect the output of PWM1 on the board to the analog input of the
oscilloscope.

Note that CAN module is set to work in "Self Test Mode". External CAN
hardware is not needed, as the CAN handshaking signals are emulated
in software.

How to Run the Example in Simulation

• Open the model corresponding to the family of processor you are using.

• Click Start simulation button

• Double-click on the "Duty Cycle Change" block and select a new duty
cycle value

• Observe the PWM waveform change

How to Run the Example on the Board

• Open the model corresponding to the family of processor you are using.

• Each model is configured for a default processor, open the Target Hardware
Resources tab to select a different processor.

• Go to Peripherals > eCAN_A and check Self-Test Mode.

• Click the "Build/Reload & Run" button to generate, build, load and run
the program.

• Select a new duty cycle value in the dialog that opens.

• Observe the PWM waveform on the oscilloscope.

44-76

CAN Calibration Protocol and External Mode

CAN Calibration Protocol and External Mode
This example shows how to use of the CAN Calibration Protocol (CCP) block.
You can use either external mode or a third party calibration tool to interact
with the real-time application running on the target hardware. CCP provides
a means of monitoring signals and altering the parameter values in the
application code running on the target.

Required hardware:

• Before running the model in external mode, install Vector-Informatik CAN
hardware and drivers on your host computer, and set the baud rate to 1M
to match processor CAN configurations.

• Spectrum Digital F2812/F2808/F28335 eZdsp board, F28069 controlSTICK
or F2808/F28035/F28044/F28069/F28335 ControlCARD with Docking
Station

• The model runs in MATLAB Win32 as Vector-Informatik supports win32

Available versions of this example:

• The example model c28x_ccp can be used for TI Piccolo F2803x/F2806x,
F28x3x, F280x, F281x series processors. Default F28335 processor is
selected.

• The target hardware can be selected from Target Hardware Resources
tab for the model

Model

The following figure shows the example model.

44-77

44 Working with Texas Instruments™ C2000™ Processors

44-78

CAN Calibration Protocol and External Mode

Scope Snapshots

44-79

44 Working with Texas Instruments™ C2000™ Processors

Description

This example shows how to use the c28x CCP block. During code generation,
for this model an ASAP2 file is generated. The ASAP2 file contains symbol
and memory address information that is used either by external mode or a
third party calibration tool. You can use either external mode or a calibration
tool to log signals and update parameters on the real-time application.

How to Run the Example

44-80

CAN Calibration Protocol and External Mode

The following sections explain how to configure, build, and deploy the
executable.

With Code Composer Studio v3.3 (CCSv3.3) - Default

• While opening the model c28x_ccp, a script will be processed as a Pre-Load
Function callback. This call can be viewed by selecting File > Model
Properties > Callbacks > PreLoadFcn.

• The c2000_ccp_data.m callback is setting Simulink signals and parameters
to resolve Simulink objects used for CCP DAQ lists and Simulink tunable
parameters as described in the CCP documentation. This step is required
to interact with these signals in real-time using CCP.

• The example model is configured for default processor F28335. Open the
Target Hardware Resources tab to select a different processor.

• Build the model. You can press Ctrl+B or click Incremental Build button
on the toolbar of your model.

• Follow the progress of the build in the MATLAB command window, and
wait until the project is created and built in Code Composer Studio™.

With Code Composer Studio v4 (CCSv4)

CCSv4 support is provided via a makefile based approach. This requires
running xmakefilesetup to set the environment. You can ignore the following
if you have already gone through these steps. For more information, please
refer to the Xmakefile Documentation

• Run XMakefile User Configuration.

• Set the Template parameter to gmake.

• Uncheck the Display operational configuration only checkbox.

• Set the Configuration parameter to ticcs_c2000_ccsv4, click Apply, if you
haven’t used this tool before, a dialog will ask you to browse to your CCSv4
installation folder. Pick the right folder and click OK.

• Click on the Tool Directories and make sure that the paths are pointing
to directories matching your installation. For example:

1 C:\Program Files\Texas Instruments\ccsv4\ for CCS Installation

44-81

44 Working with Texas Instruments™ C2000™ Processors

2 C:\Program Files\Texas Instruments\ccsv4\tools\compiler\C2000\ for
Code Generation Tools

3 C:\Program Files\Texas Instruments\bios_5_41_10_36\ for DSP/BIOS
Installation

Code Generation and Creation of an .out file using CCSv4:

• While opening the model c28x_ccp, a script will be processed as a Pre-Load
Function callback. This call can be viewed by selecting File > Model
Properties > Callbacks > PreLoadFcn.

• The c2000_ccp_data.m callback is setting Simulink signals and parameters
to resolve Simulink objects used for CCP DAQ lists and Simulink tunable
parameters as described in the CCP documentation. This step is required
to interact with these signals in real-time using CCP.

• Open the Target Hardware Resources tab and set the IDE/Tool chain
parameter to Texas Instruments Code Composer Studio v4 (makefile
generation only).

• Change the selected board and processor to match your hardware.

• Click OK to save the changes on the Target Hardware Resources tab.

• Build the model. You can press Ctrl+B or click Incremental Build button
on the toolbar of your model.

• Open CCSv4 and Connect to the Hardware. Load the program on to the
Hardware using CCSv4 and run.

With Code Composer Studio v5 (CCSv5)

CCSv5 support is provided via a makefile based approach. This requires
runnning xmakefilesetup to set the environment. You can ignore the following
if you have already gone through these steps. For more information, please
refer to the Xmakefile Documentation

• Run XMakefile User Configuration.

• Set the Template parameter to gmake.

• Uncheck the Display operational configuration only checkbox.

44-82

CAN Calibration Protocol and External Mode

• Set the Configuration parameter to ticcs_c2000_ccsv5, click Apply, if you
haven’t used this tool before, a dialog will ask you to browse to your CCSv5
installation folder. Pick the right folder and click OK.

• Click on the Tool Directories and make sure that the paths are pointing
to directories matching your installation. For example:

1 C:\ti\ccsv5\ to set CCS Installation

2 C:\ti\ccsv5\tools\compiler\c2000\ to set Code Generation Tools

3 C:\ti\bios_5_41_11_38\ to set DSP/BIOS Installation

Code Generation and Creation of an .out file using CCSv5

• While opening the model c28x_ccp, a script will be processed as a Pre-Load
Function callback. This call can be viewed by selecting File > Model
Properties > Callbacks > PreLoadFcn.

• The c2000_ccp_data.m callback is setting Simulink signals and parameters
to resolve Simulink objects used for CCP DAQ lists and Simulink tunable
parameters as described in the CCP documentation. This step is required
to interact with these signals in real-time using CCP.

• Open the Target Hardware Resources tab and set the IDE/Tool chain
parameter to Texas Instruments Code Composer Studio v5 (makefile
generation only).

• Change the selected board and processor to match your hardware.

• Click OK to save the changes on the Target Hardware Resources tab.

• Build the model. You can press Ctrl+B or click Incremental Build button
on the toolbar of your model.

• Open CCSv5 and Connect to the Hardware. Load the program on to the
Hardware using CCSv5 and run.

Signal Logging and Parameter Tuning with External Mode

The model c28x_ccp contains a variety of signals and parameters that
can be logged or changed while the application is executing in real-time.
Parameter tuning and signal logging is enabled by the CCP block included
in the model. Additionally, when the model is built, it must be configured

44-83

44 Working with Texas Instruments™ C2000™ Processors

to generate an ASAP2 file. The ASAP2 file contains information about
the signals and parameters that are available for logging or tuning in the
real-time application.

The model contains a simple counter with parameterized step size,
STEP_PARAM. You can update the parameter STEP_PARAM and log the
output of the counter, COUNTER_SIGNAL. Additional signals available for
logging are SINE_SIGNAL, PULSE_SIGNAL and the RANDOMx signals.

Before running the model in external mode you must have Vector-Informatik
CAN hardware installed on your host computer.

To run the model c28x_ccp in external mode:

• Check that the model is already built and running on the target.

• Configure the model to use External mode as described in “Manual
Configuration For External Mode” on page 44-44.

• Run the model in external mode by selecting Simulation > Connect To
Target.

• You can now view logged data in the scope windows.

• You can change the parameter STEP_PARAM in the real-time application:
first change its value, "STEP_PARAM.Value", in the MATLAB workspace;
then update the model to apply this new value to the real-time application;
to update the model select Edit > Update Diagram or press Ctrl+D.

Signal Logging and Parameter Tuning with a Third Party Calibration Tool

As an alternative to using external mode, you can use a third party
calibration tool for signal logging and parameter tuning. The same signals
and parameters may be logged or updated as those that are available with
external mode.

44-84

Using the I2C Bus to Access a Connected EEPROM

Using the I2C Bus to Access a Connected EEPROM
This example shows how to use the I2C blocks to access an EEPROM
connected to a chip using the I2C bus.

Required Hardware:

• Spectrum Digital F2808/F28335 eZdsp board

Note: C2000 (except c281x) controlSTICK or ControlCARD with Docking
Station board is not equipped with I2C EEPROM. You must add I2C
EEPROM to this board to run the example.

Available versions of this example:

• For c28x Processors: c28x_i2ctest

Model

The following figure shows the example model.

44-85

44 Working with Texas Instruments™ C2000™ Processors

Description

This example shows how to access the EEPROM connected to the I2C bus at
I2C slave address 0x50 on an F2808/F28335 eZdsp board.

This program writes 4 bytes to EEPROM and reads back the data from the
corresponding EEPROM address to show that communication has occurred.

The I2C Transmit block in the "EEPROM Write" subsystem writes the
free-running counter data from the "EEPROM Data" subsystem to the address
specified by "EEPROM Memory Addr" subsystem.

When an I2C interrupt is detected, "I2C SYS INTR" subsystem function
is executed. As a result, the I2C Receive block reads the EEPROM data
in "I2C SYS INTR:ARDY Subsystem:Subsystem". The global array
"EEPROM_DATA" contains the received data. You can monitor the value of
this array in Code Composer Studio™ Watch Window.

How to Run the Example

The following sections explain how to configure, build, and deploy the
executable.

With Code Composer Studio v3.3 (CCSv3.3) - Default

• Open this model c28x_i2ctest.

• The model is configured for a default processor F28335. Open the Target
Hardware Resources tab to select a different processor.

• In the Target Hardware Resources tab, under the Peripherals tab, select
I2C, and check Enable system interrupt.

• Once editable, check Enable SCD Interrupt and Enable ARDY
interrupt.

• Click OK to save the changes on the Target Hardware Resources tab.

• Click Incremental build on the Simulink toolbar or press Ctrl+B to
generate, build, load and run the program.

With Code Composer Studio v4 (CCSv4)

44-86

Using the I2C Bus to Access a Connected EEPROM

CCSv4 support is provided via a makefile based approach. This requires
running xmakefilesetup to set the environment. You can ignore the following
if you have already gone through these steps. For more information, please
refer to the Xmakefile Documentation

• Run XMakefile User Configuration.

• Set the Template parameter to gmake.

• Uncheck the Display operational configuration only checkbox.

• Set the Configuration parameter to ticcs_c2000_ccsv4, click Apply, if you
haven’t used this tool before, a dialog will ask you to browse to your CCSv4
installation folder. Pick the right folder and click OK.

• Click on the Tool Directories and make sure that the paths are pointing
to directories matching your installation. For example:

1 C:\Program Files\Texas Instruments\ccsv4\ for CCS Installation.

2 C:\Program Files\Texas Instruments\ccsv4\tools\compiler\C2000\ for
Code Generation Tools.

3 C:\Program Files\Texas Instruments\bios_5_41_10_36\ for DSP/BIOS
Installation.

Code Generation and Creation of an .out file using CCSv4:

• Open the model c28x_i2ctest.

• Open the Target Hardware Resources tab and set the IDE/Tool chain
parameter to Texas Instruments Code Composer Studio v4 (makefile
generation only).

• In the Target Hardware Resources tab, under the Peripherals tab, select
I2C, and check Enable system interrupt.

• Once editable, check Enable SCD Interrupt and Enable ARDY
interrupt.

• Click OK to save the changes on the Target Hardware Resources tab.

• Click Incremental build on the Simulink toolbar or press Ctrl+B to
generate and build an .out executable file.

44-87

44 Working with Texas Instruments™ C2000™ Processors

• Open CCSv4 and connect to the Hardware. Load the program on to the
Hardware using CCSv4 and run.

With Code Composer Studio v5 (CCSv5)

CCSv5 support is provided via a makefile based approach. This requires
running xmakefilesetup to set the environment. You can ignore the following
if you have already gone through these steps. For more information, please
refer to the Xmakefile Documentation

• Run XMakefile User Configuration.

• Set the Template parameter to gmake.

• Uncheck the Display operational configuration only checkbox.

• Set the Configuration parameter to ticcs_c2000_ccsv5, click Apply, if you
haven’t used this tool before, a dialog will ask you to browse to your CCSv5
installation folder. Pick the right folder and click OK.

• Click on the Tool Directories and make sure that the paths are pointing
to directories matching your installation. For example:

1 C:\ti\ccsv5\ for CCS Installation.

2 C:\ti\ccsv5\tools\compiler\c2000\ for Code Generation Tools.

3 C:\ti\bios_5_41_11_38\ for DSP/BIOS Installation.

Code Generation and Creation of an .out file using CCSv5:

• Open the model c28x_i2ctest.

• Open the Target Hardware Resources tab and set the IDE/Tool chain
parameter to Texas Instruments Code Composer Studio v5 (makefile
generation only).

• Change the selected board and processor to match your hardware.

• In the Target Hardware Resources tab, under the Peripherals tab, select
I2C, and check Enable system interrupt.

• Once editable, check Enable SCD Interrupt and Enable ARDY
interrupt.

44-88

Using the I2C Bus to Access a Connected EEPROM

• Click OK to save the changes on the Target Hardware Resources tab.

• Click Incremental build on the Simulink toolbar or press Ctrl+B to
generate and build an .out executable file.

• Open CCSv5 and connect to the Hardware. Load the program on to the
Hardware using CCSv5 and run.

44-89

44 Working with Texas Instruments™ C2000™ Processors

Using the IQmath Library

In this section...

“About the IQmath Library” on page 44-90

“Fixed-Point Numbers” on page 44-91

“Building Models” on page 44-96

About the IQmath Library

• “Introduction” on page 44-90

• “Common Characteristics” on page 44-91

• “References” on page 44-91

Introduction
The C28x IQmath Library blocks perform processor-optimized fixed-point
mathematical operations. These blocks correspond to functions in the Texas
Instruments C28x IQmath Library, an assembly-code library for the TI C28x
family of digital signal processors.

Note The implementation of this library for the TI C28x processor produces
the same simulation and code-generation output as the TI version of this
library, but it does not use a global Q value, as does the TI version. The Q
format is dynamically adjusted based on the Q format of the input data.

The IQmath Library blocks generally input and output fixed-point data types
and use numbers in Q format. The C28x IQmath Library block reference pages
discuss the data types accepted and produced by each block in the library. For
more information, consult the “Fixed-Point Numbers” on page 44-91 and “Q
Format Notation” on page 44-93 topics, as well as the Fixed-Point Designer
product documentation, which includes more information on fixed-point data
types, scaling, and precision issues.

44-90

Using the IQmath Library

You can use IQmath Library blocks with some core Simulink blocks and
Fixed-Point Designer blocks to run simulations in Simulink models before
generating code. Once you develop your model, you can generate equivalent
code that is optimized to run on a TI C28x DSP. During code generation, a
call is made to the IQmath Library for each IQmath Library block in your
model to create target-optimized code. To learn more about creating models
that include IQmath Library blocks and blocks from other blocksets, consult
“Building Models” on page 44-96.

Common Characteristics
The following characteristics are common to IQmath Library blocks:

• Sample times are inherited from driving blocks.

• Blocks are single rate.

• Parameters are not tunable.

• Blocks support discrete sample times.

To learn more about characteristics particular to each block in the library, see
the individual block reference pages.

References
For detailed information on the IQmath library, see the user’s guide for the
C28x IQmath Library - A Virtual Floating Point Engine, Literature Number
SPRC087, available at the Texas Instruments Web site. The user’s guide
is included in the zip file download that also contains the IQmath library
(registration required).

Fixed-Point Numbers

• “Notation” on page 44-92

• “Signed Fixed-Point Numbers” on page 44-93

• “Q Format Notation” on page 44-93

44-91

44 Working with Texas Instruments™ C2000™ Processors

Notation
In digital hardware, numbers are stored in binary words. A binary word is a
fixed-length sequence of binary digits (1s and 0s). How hardware components
or software functions interpret this sequence of 1s and 0s is defined by the
data type.

Binary numbers are used to represent either fixed-point or floating-point data
types. A fixed-point data type is characterized by the word size in bits, the
binary point, and whether it is signed or unsigned. The position of the binary
point is the means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a fractional fixed-point number
(either signed or unsigned) is shown below:

where

• bi is the ith binary digit.

• ws is the word size in bits.

• bws–1 is the location of the most significant (highest) bit (MSB).

• b0 is the location of the least significant (lowest) bit (LSB).

• The binary point is shown four places to the left of the LSB. In this
example, therefore, the number is said to have four fractional bits, or a
fraction length of 4.

Note For Embedded Coder, the results of fixed-point and integer
operations in MATLAB/Simulink match the results on the hardware target
down to the least significant bit (bit-trueness). The results of floating-point
operations in MATLAB/Simulink do not match those on the hardware
target, because the libraries used by the third-party compiler may be
different from those used by MATLAB/Simulink.

44-92

Using the IQmath Library

Signed Fixed-Point Numbers
Signed binary fixed-point numbers are typically represented in one of three
ways:

• Sign/magnitude

• One’s complement

• Two’s complement

Two’s complement is the most common representation of signed fixed-point
numbers and is used by TI digital signal processors.

Negation using signed two’s complement representation consists of a bit
inversion (translation to one’s complement representation) followed by the
binary addition of a 1. For example, the two’s complement of 000101 is
111011, as follows:

000101 ->111010 (bit inversion) ->111011 (binary addition of a 1 to the
LSB)

Q Format Notation
The position of the binary point in a fixed-point number determines how you
interpret the scaling of the number. When it performs basic arithmetic such
as addition or subtraction, hardware uses the same logic circuits regardless
of the value of the scale factor. In essence, the logic circuits do not have
knowledge of a binary point. They perform signed or unsigned integer
arithmetic — as if the binary point is to the right of b0. Therefore, you
determine the binary point.

In the IQmath Library, the position of the binary point in the signed,
fixed-point data types is expressed in and designated by Q format notation.
This fixed-point notation takes the form

Qm.n

where

• Q designates that the number is in Q format notation — the Texas
Instruments representation for signed fixed-point numbers.

44-93

44 Working with Texas Instruments™ C2000™ Processors

• m is the number of bits used to designate the two’s complement integer
portion of the number.

• n is the number of bits used to designate the two’s complement fractional
portion of the number, or the number of bits to the right of the binary point.

In Q format, the most significant bit is designated as the sign bit.
Representing a signed fixed-point data type in Q format requires m+n+1
bits to account for the sign.

Note The range and resolution varies for different Q formats. For specific
details, see Section 3.2 in the Texas Instruments C28x Foundation Software,
IQmath Library Module User’s Guide.

When converting from Q format to floating-point format, the accuracy of the
conversion depends on the values and formats of the numbers. For example,
for single-precision floating-point numbers that use 24 bits, the resolution of
the corresponding 32-bit number cannot be achieved. The 24-bit number
approximates its value by truncating the lower end. For example:

32-bit integer 11110000 11001100 10101010 00001111
Single-precision float +1.1110000 11001100 10101010 x 231
Corresponding value 11110000 11001100 10101010 00000000

Expressing Q Format — Q.15. For example, a signed 16-bit number with
n = 15 bits to the right of the binary point is expressed as

Q0.15

in this notation. This is (1 sign bit) + (m = 0 integer bits) + (n = 15 fractional
bits) = 16 bits total in the data type. In Q format notation, the m = 0 is often
implied, as in

Q.15

In Fixed-Point Designer software, this data type is expressed as

sfrac16

or

44-94

Using the IQmath Library

sfix16_En15

In DSP System Toolbox software, this data type is expressed as

[16 15]

Expressing Q Format — Q1.30. Multiplying two Q0.15 numbers yields a
product that is a signed 32-bit data type with n = 30 bits to the right of the
binary point. One bit is the designated sign bit, thereby forcing m to be 1:

m+n+1 = 1+30+1 = 32 bits total

Therefore, this number is expressed as

Q1.30

In Fixed-Point Designer software, this data type is expressed as

sfix32_En30

In DSP System Toolbox software, this data type is expressed as

[32 30]

Expressing Q Format — Q-2.17. Consider a signed 16-bit number with
a scaling of 2(-17). This requires n = 17 bits to the right of the binary point,
meaning that the most significant bit is a sign-extended bit.

Sign extension fills additional bits with the value of the MSB. For example,
consider a 4-bit two’s complement number 1011. When this number is
extended to 7 bits with sign extension, the number becomes 1111101 and the
value of the number remains the same.

One bit is the designated sign bit, forcing m to be -2:

m+n+1 = -2+17+1 = 16 bits total

Therefore, this number is expressed as

Q-2.17

In Fixed-Point Designer software, this data type is expressed as

44-95

44 Working with Texas Instruments™ C2000™ Processors

sfix16_En17

In DSP System Toolbox software, this data type is expressed as

[16 17]

Expressing Q Format — Q17.-2. Consider a signed 16-bit number with a
scaling of 2^(2) or 4. This means that the binary point is implied to be 2 bits to
the right of the 16 bits, or that there are n = -2 bits to the right of the binary
point. One bit must be the sign bit, thereby forcing m to be 17:

m+n+1 = 17+(-2)+1 = 16

Therefore, this number is expressed as

Q17.-2

In Fixed-Point Designer software, this data type is expressed as

sfix16_E2

In DSP System Toolbox software, this data type is expressed as

[16 -2]

Building Models

• “Overview” on page 44-96

• “Converting Data Types” on page 44-97

• “Using Sources and Sinks” on page 44-97

• “Choosing Blocks to Optimize Code” on page 44-97

• “Double and Single-Precision Parameter Values” on page 44-97

Overview
You can use IQmath Library blocks in models along with certain core
Simulink, Fixed-Point Designer, and other blockset blocks. This section
discusses issues you should consider when building a model with blocks from
these different libraries.

44-96

Using the IQmath Library

Converting Data Types
It is vital to make sure that blocks you connect in a model have compatible
input and output data types. In most cases, IQmath Library blocks handle
only a limited number of specific data types. You can refer to the block
reference page for a discussion of the data types that the block accepts and
produces.

When you connect IQmath Library blocks and Fixed-Point Designer blocks,
you often need to set the data type and scaling in the block parameters of the
Fixed-Point Designer block to match the data type of the IQmath Library
block. Many Fixed-Point Designer blocks allow you to set their data
type and scaling through inheritance from the driving block, or through
backpropagation from the next block. This can be a good way to set the data
type of a Fixed-Point Designer block to match a connected IQmath Library
block.

Some DSP System Toolbox blocks and core Simulink blocks also accept
fixed-point data types. Choose the right settings in these blocks’ parameters
when you connect them to an IQmath Library block.

Using Sources and Sinks
The IQmath Library does not include source or sink blocks. Use source or
sink blocks from the core Simulink library or Fixed-Point Designer in your
models with IQmath Library blocks.

Choosing Blocks to Optimize Code
In some cases, blocks that perform similar functions appear in more than
one blockset. For example, the IQmath Library and Fixed-Point Designer
software have a Multiply block. When you are building a model to run
on C2000 DSP, choosing the block from the IQmath Library yields better
optimized code. You can use a similar block from another library if it gives
you functionality that the IQmath Library block does not support, but you
will generate code that is less optimized.

Double and Single-Precision Parameter Values
When you enter double-precision floating-point values for parameters in the
IQ Math blocks, the software converts them to single-precision values that

44-97

44 Working with Texas Instruments™ C2000™ Processors

are compatible with the behavior on c28x processor. For example, with the
Ramp Generator block, the software converts the value of the Maximum
step angle parameter to a single-precision value.

44-98

Programming Flash Memory

Programming Flash Memory

In this section...

“Introduction” on page 44-99

“Installing TI Flash APIs” on page 44-100

“Configuring the DSP Board Bootloader” on page 44-100

“Configuring the Software for Automatic Flash Programming” on page
44-101

“Selectively Erase, Program, or Verify Specific Flash Sectors” on page
44-101

“Placing Additional Code or Data on Unused Flash Sectors” on page 44-102

Introduction
The Embedded Coder software includes a feature for programming
Flash memory on the target hardware. You can configure this feature to
automatically program Flash memory when you build and execute models for
DSP boards. You can also use the Flash programming feature to selectively
erase, program, or verify specific sectors of Flash memory.

Note Reprogramming Flash memory thousands of times may deplete
its ability to hold data. Consult the manufacturer’s documentation for
specifications.

Requirements:

• A F2812, F2808, or F28335 eZdsp board

• A working Simulink model

• The TI Flash API for your specific target

44-99

44 Working with Texas Instruments™ C2000™ Processors

Installing TI Flash APIs

1 Visit the Texas Instruments Web site and download the TI Flash API
installation software for your target:

• F281x: http://focus.ti.com/docs/toolsw/folders/print/sprc125.html

• F280x: http://focus.ti.com/docs/toolsw/folders/print/sprc193.html

• F2802x: http://focus.ti.com/docs/toolsw/folders/print/sprc848.html

• F2804x: http://focus.ti.com/docs/toolsw/folders/print/sprc325.html

• F2823x: http://focus.ti.com/docs/toolsw/folders/print/sprc665.html

• F2833x: http://focus.ti.com/docs/toolsw/folders/print/sprc539.html

2 Start the TI Flash API installation software (.exe) contained in the ZIP file.

3 During installation, use the default folder location for Location to Save
Files.

Otherwise, each time you create a model, you must configure Specify API
Location, located under the Peripherals tab of the Target Hardware
Resources tab.

4 Complete the installation process.

Configuring the DSP Board Bootloader
Configure the bootloader switch or jumper on the DSP board so that, upon
startup, the DSP board executes the program from Flash memory. Consult
the manufacturer’s hardware documentation to identify the specific switch
and settings.

Typically, you can enable the bootloader switch or jumper by moving it from
the factory default position (Flash disabled) to the opposite position (enabled).
For example:

• On the F2812 eZdsp, change jumper JP7 from the factory default setting.

• On the F2808 eZdsp, change switches 1 and 3 on bank SW1 from the
factory default settings.

44-100

http://focus.ti.com/docs/toolsw/folders/print/sprc125.html
http://focus.ti.com/docs/toolsw/folders/print/sprc193.html
http://focus.ti.com/docs/toolsw/folders/print/sprc848.html
http://focus.ti.com/docs/toolsw/folders/print/sprc325.html
http://focus.ti.com/docs/toolsw/folders/print/sprc665.html
http://focus.ti.com/docs/toolsw/folders/print/sprc539.html

Programming Flash Memory

• On F28335 eZdsp, change switch 3 on bank SW1 from the factory default
setting.

Configuring the Software for Automatic Flash
Programming
Configure Embedded Coder software to program Flash memory on the target
board when you build and execute a model.

1 On your keyboard, press Ctrl+E to open the Configuration Parameters
dialog, select the Code Generation > Coder Target pane.

2 On the Tool Chain Automation tab, set Build Action to
Build_and_execute.

3 On the Target Hardware Resources tab, set Board to a board whose name
includes (boot from flash).

4 Select the Peripherals tab, and then select Flash_loader

5 Set Enable flash programmer to Erase, Program, Verify.

6 Click OK to save and close the new configuration.

When you build the model, the software automatically erases, programs, and
verifies Flash memory. When the DSP board restarts, it loads and executes
the program from Flash memory.

Selectively Erase, Program, or Verify Specific Flash
Sectors
You can manually erase, program, and verify specific sectors of Flash memory:

1 Open the Target Hardware Resources tab for your model, and select the
Peripherals tab.

2 Select Flash_loader from the Peripherals list.

3 Set Enable flash programmer to erase, program, or verify flash.

4 (Optional) To protect specific Flash sectors:

44-101

44 Working with Texas Instruments™ C2000™ Processors

a Disable Detect Flash sectors to erase from COFF file.

b Clear the flash sectors you want to protect.

5 Click Execute. The software performs the action you specified upon the
unprotected flash sectors.

Note Erase Flash sectors before programming them.

Placing Additional Code or Data on Unused Flash
Sectors
To place additional code or data on unused Flash sectors:

1 Determine the address and length of the individual Flash sectors. You may
need to refer to the manufacturer’s specifications.

2 Determine the size of the primary C code program and the number of Flash
sectors it occupies.

3 Determine the size of the additional code or data and the number of Flash
sectors it will occupy.

4 Under the Target Hardware Resources tab, on theMemory tab, click Add
to create two or more new memory banks; one for the primary C code
program (e.g., FLASH_AB) and one or more for the additional code or data
(e.g., FLASH_CD). The address and length of each memory bank must
align with those of the flash sectors.

44-102

Programming Flash Memory

5 Under the Sections tab, underDefault sections, select .text. Then, under
Placement, select the new memory bank (e.g., FLASH_AB) you created

44-103

44 Working with Texas Instruments™ C2000™ Processors

for the primary C code program. The next time you program the Flash
memory, the software places the .text C code file in the new memory bank.

6 Similarly, select items from the Default sections or Custom sections
list, and place them in the new memory banks (e.g., FLASH_CD) for the
previously unoccupied Flash sectors.

44-104

Configuring LIN Communications

Configuring LIN Communications

In this section...

“Overview” on page 44-105

“Configuring Your Model” on page 44-105

Overview
The LIN communications architecture supports a single master node and up
to 16 slave nodes on a LIN network.

LIN nodes use message frames to exchange data. The message has two parts:

• Frame header, generated by the Master node.

• Frame response, which contains data generated by either Slave node or a
slave task on a Master node (but not both).

Configuring Your Model
First, study, and understand the LIN addressing system. See the “Message
Filtering and Validation” topic in the TMS320F2803x Piccolo Local
Interconnect Network (LIN) Module, Literature Number: SPRUGE2A.

Configure the LIN node in your model as a master or slave node:

1 Configure the Target Hardware Resources tab, as described in “Configure
Target Hardware Resources” on page 35-3.

2 In the Target Hardware Resources tab, select the Peripherals tab, and
then select LIN.

3 Set LIN mode to Master or Slave.

If the LIN node is a Master node:

• Add a LIN Transmit block to the model. This block enables the Master to
generate message headers.

44-105

http://focus.ti.com/lit/ug/spruge2a/spruge2a.pdf

44 Working with Texas Instruments™ C2000™ Processors

• To send data, set the ID input and Tx ID Mask input to make Tx ID
Match happen on this node.

• To receive data, place LIN Receive block in the model. Set the Rx ID Mask
input to make Rx ID Match happen on this node.

For example, to configure a model with a master node that receives data
from a slave node:

• Add a LIN Transmit block and a LIN Receive block to the model.

• In the Target Hardware Resources tab, configure the ID Slave Task Byte.

• For the LIN Transmit block, set the ID input.

• For the LIN Receive block, set the Rx ID Mask input so that: Rx ID Mask
= ID XOR Slave Task ID Byte.

If the LIN node is a Slave node:

• To send data, place LIN Transmit block in the model. Set the ID input
to match the LIN frame header issued by the remote Master. Set Tx ID
Mask to make a Tx ID Match happen on this node.

• To receive data, place LIN Receive block in the model. Set the Rx ID Mask
input to make an Rx ID Match happen on this node.

For example, to configure a model with a slave node that transmits data
to a master node:

• Add a LIN Transmit block to the model.

• In the Target Hardware Resources tab, configure the ID byte or ID Slave
Task Byte (depending on the ID filtering option).

• In the LIN Transmit block, set the ID input and Tx ID Mask input so that:
Tx ID Mask = ID XOR (ID Byte or ID Slave Task Byte).

Set the Data type and Data length values in your LIN Receive blocks to
match the type and length of the transmitted data. These values enable the
receive block reconstruct the data from the message frames.

44-106

Configuring LIN Communications

Note The LIN Transmit block inherits the data type and length from its
input.

44-107

44 Working with Texas Instruments™ C2000™ Processors

Tips and Limitations

Texas Instruments C28x DMC Blocks Require CRL
Starting in R2011a, the following blocks removed processor-specific optimized
code from Texas Instruments. To generate code that contains optimized code
from TI for the following TI C28x DMC blocks, enable the TI C28x Code
Replacement Library (CRL):

• C2000 Clarke Transformation

• C2000 Inverse Park Transformation

• C2000 Park Transformation

• C2000 PID Controller

• C2000 Ramp Generator

• C2000 Speed Measurement

The CRL code replacement library inserts optimized processor- and
compiler-specific implementations of functions and arithmetic operators. See
“About Code Replacement Libraries and Optimization” on page 37-2

Because the following blocks do not contain processor-specific code from
Texas Instruments, they are hardware agnostic, and you can use them in a
wide range of Simulink models:

• C2000 Clarke Transformation

• C2000 PID Controller

• C2000 Ramp Generator

• C2000 Speed Measurement

44-108

45

Working with Texas
Instruments C6000
Processors

• “Getting Started” on page 45-2

• “Targeting C6000 DSP Hardware” on page 45-8

• “Targeting with DSP/BIOS Options” on page 45-64

• “Using the C62x and C64x DSP Libraries” on page 45-89

• “Configuring Timing Parameters for CAN Blocks” on page 45-98

• “Hardware Issues” on page 45-102

45 Working with Texas Instruments™ C6000™ Processors

Getting Started

In this section...

“Feature Support for Code Composer Studio” on page 45-2

“Overview” on page 45-2

“Using This Guide” on page 45-3

“Configuration Information” on page 45-4

“Setting Up and Configuring” on page 45-4

Feature Support for Code Composer Studio
The “Working with Texas Instruments C6000 Processors” section of the
User’s Guide contains some references to the IDE Automation Interface and
IDE Project Generator components. Embedded Coder supports these two
components with Code Composer Studio 3.3 (CCSv3). Embedded Coder does
not support these components with Code Composer Studio 4 & 5 (CCSv4/5).

For more information, see “Working with Texas Instruments Code Composer
Studio IDE”.

Overview

Product Description
Use Embedded Coder to deploy generated code for real-time execution on
embedded microprocessors, microcontrollers, and DSPs. Using Embedded
Coder, you can integrate peripheral devices with the algorithms created using
MATLAB function blocks, Simulink®, and Stateflow®. You can deploy the
resulting executable onto embedded hardware for on-target rapid prototyping,
real-time performance analysis, and field production.

45-2

Getting Started

Using This Guide

Expected Background
This document introduces you to using Embedded Coder software to develop
digital signal processing applications for the Texas Instruments C6000 family
of DSP development hardware, such as the TI TMS320C6713 DSP Starter
Kit. To get the most out of this manual, you should be familiar with MATLAB
software and its associated programs, such as DSP System Toolbox software
and Simulink software. We do not discuss details of digital signal processor
operations and applications, except to introduce concepts related to using
specific targets. For more information about digital signal processing, you
may find one or more of the following books helpful:

• McClellan, J. H., R. W. Schafer, and M. A. Yoder, DSP First: A Multimedia
Approach, Prentice Hall, 1998.

• Lapsley, P., J. Bier, A. Sholam, and E. A. Lee, DSP Processor Fundamentals
Architectures and Features, IEEE® Press, 1997.

• Oppenheim, A.V., R. W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989.

• Mitra, S. K., Digital Signal Processing — A Computer-Based Approach, The
McGraw-Hill Companies, Inc, 1998.

• Steiglitz, K, A Digital Signal Processing Primer, Addison-Wesley
Publishing Company, 1996.

Refer to the documentation for your TI boards for information about setting
them up and using them.

If You Are a New User. New users should read “Getting Started”
on page 45-2, which introduces the Embedded Coder environment—the
required software and hardware, installation requirements, and the board
configuration settings that you need. You will find descriptions of the blocks
associated with the targeting software, and an introduction to the range of
digital signal processing applications of which the Embedded Coder is capable.

45-3

45 Working with Texas Instruments™ C6000™ Processors

If You Are an Experienced User. Everyone should read “Targeting C6000
DSP Hardware” on page 45-8 for information and examples about using
the new blocks and build software to target your C6713 DSK. Two example
models introduce the targeting software and build files, and give you an idea
of the range of applications supported by the Embedded Coder.

Configuration Information
To determine whether Embedded Coder software is installed on your system,
type this command at the MATLAB prompt.

c6000lib

Entering that command displays the C6000 block library:

To verify that the CCSv3 IDE is installed on your machine, enter
ccsboardinfo.

The command line responds with the current board information. For example:

>> ccsboardinfo

Board Board Proc Processor Processor

Num Name Num Name Type

--- ---------------------------------- --- ------------------------------

0 C6713 Device Cycle Accurate Si ... 0 TMS320C6713 TMS320C6000

With the CCSv3 IDE installed and configured, the command line returns
information about the boards that CCSv3 IDE recognizes on your machine, in
a form similar to the preceding example.

If the command line does not return information about boards, revisit your
CCSv3 IDE installation and setup in your CCSv3 IDE documentation.

As a final test, launch CCSv3 IDE to verify that it runs. For the Embedded
Coder to operate with this application, the CCSv3 IDE must be able to run on
its own.

Setting Up and Configuring

• “System Requirements” on page 45-5

45-4

Getting Started

• “Supported Hardware” on page 45-5

• “Installing and Configuring Software” on page 45-5

System Requirements
For detailed information about the software and hardware required to use
Embedded Coder software, refer to the Embedded Coder system requirements
areas on the MathWorks Web site:

• Requirements for Embedded Coder:
www.mathworks.com/products/target-package/requirements.html

• Requirements for use with TI’s C6000:
www.mathworks.com/products/target-package/ti-adaptor/

Supported Hardware
For a list of supported hardware, visit
http://www.mathworks.com/products/target-package/supportedio.html.

Installing and Configuring Software
Consult the “System Requirements” on page 45-5 for Embedded Coder . Only
use supported versions of the software listed under “Third-Party Embedded
Coder Requirements”. Uninstall unsupported versions before installing
supported versions. This prevents errors that occur when the Windows
Environment Variables point to the unsupported versions.

The System Requirements describe where you can obtain the additional
third-party software, and when available, provide links for downloading that
software.

Before you install the software, if you are installing Texas Instruments (TI)
Code Composer Studio CCSv3 on Windows 7, make sure that:

• You have administrator privileges.

• You have set the User Account Control (UAC) settings to the lowest level.

• You install CCSv3 in a folder other than Program Files.

45-5

http://www.mathworks.com/products/target-package/requirements.html
http://www.mathworks.com/products/target-package/ti-adaptor/
http://www.mathworks.com/products/target-package/supportedio.html

45 Working with Texas Instruments™ C6000™ Processors

Go to the vendor Web sites to find 64-bit compatible drivers for installing
CCSv3 on 64-bits machine with drivers such as, Spectrum Digital Emulators
or BlackHawk Emulators. Most vendors have 64-bit drivers that are
compatible with CCSv3.

For the Host side CAN functionality, you must install 32-bit version of
MATLAB on 64-bit machines.

Install the software in the following order:

1 Install the required and optional MathWorks software. The software
license you purchase determines which products are available.

2 Install TI CCS.

3 Install TI Service Release for CCS.

4 Install the TI Code Generation Tools for you processor.

5 If you are using a Spectrum Digital board, download and install the
matching Spectrum Digital Driver.

6 Install additional board-specific packages in the order in which they appear
on the System Requirements web page.

Configure CCS as follows:

1 In CCS, open Help > About > Component Manager > Build tools .

2 Open each target hardware you will be using and enable the supported
version of Code Generation Tools.

3 Open Help > About > Component Manager > Build Tools > Target
Content (DSP/BIOS) .

4 Open each target hardware you will be using and enable the supported
version of Texas Instruments DSP/BIOS.

5 In Component Manager, select Save the changes. Then exit and restart
CCS.

45-6

Getting Started

6 If you have a Spectrum Digital DM6437EVM board and or an Avnet
S3ADSP DM6437 board, refer to “Installing and Configuring the Avnet
Board Support Library” on page 45-105.

7 Verify the installation by repeating the instructions in “Configuration
Information” on page 45-4.

45-7

45 Working with Texas Instruments™ C6000™ Processors

Targeting C6000 DSP Hardware

In this section...

“Introduction to Targeting” on page 45-8

“C6000 and Code Composer Studio IDE” on page 45-9

“Targeting — Single Rate Application” on page 45-12

“Schedulers and Timing” on page 45-19

“Model Reference and Embedded Coder Software” on page 45-29

“Targeting Supported Boards” on page 45-33

“Simulink Models and Targeting” on page 45-38

“Targeting — A More Complex Application” on page 45-38

“Targeting Your C6713 DSK and Other Hardware” on page 45-44

“Creating Code Composer Studio Projects Without Building” on page 45-47

“Targeting Custom Hardware” on page 45-49

“Using Embedded Coder Software” on page 45-62

Introduction to Targeting

Overview
The Embedded Coder software lets you use Simulink Coder software to
generate a C language real-time implementation of your Simulink model.
You can compile, link, download, and execute the generated code on the
C6713 DSP Starter Kit (DSK). The Embedded Coder is ideal for rapid
prototyping and developing embedded systems applications for C6713 digital
signal processors. The Embedded Coder focuses on developing real-time
digital signal processing (DSP) applications for C6000 hardware. Additional
hardware that we support is listed in “Hardware Issues” on page 45-102.

Although the tutorials in this chapter focus on the C6713 DSK, the techniques
and processes apply to supported hardware, with minor adjustments for the
processor involved.

45-8

Targeting C6000™ DSP Hardware

This chapter describes how to use the Embedded Coder to create and execute
applications on Texas Instruments C6000 development boards. To use the
targeting software, you should be familiar with using Simulink software
to create models and with the basic concepts of Simulink Coder software
automatic code generation. To read more about Simulink Coder software,
refer to your Simulink Coder documentation.

This chapter frequently uses the C6713 DSK as a hardware example. You
can apply the tutorials, concepts, and procedures to other supported C6000
processors and boards.

Later sections discuss the Embedded Coder software and targeting custom
hardware.

Tip To make your figure easier to read, use easily distinguishable colors
and line styles.

C6000 and Code Composer Studio IDE

• “Using Code Composer Studio with Embedded Coder Software” on page
45-9

• “About Simulators” on page 45-10

• “Typical Hardware Setup for a Development Board” on page 45-11

Using Code Composer Studio with Embedded Coder Software
Texas Instruments (TI) markets a complete set of software tools to use
when you develop applications for your C6000 hardware boards. This
section provides a brief example of how Embedded Coder software uses Code
Composer Studio (CCS) Integrated Development Environment (IDE) with the
Simulink Coder software and the c6000lib blockset.

Executing code generated from Simulink Coder software on a particular
target in real time requires that Simulink Coder software generate target code
that is tailored to the specific hardware target. Target-specific code includes
I/O device drivers and an interrupt service routine (ISR). Since these device

45-9

45 Working with Texas Instruments™ C6000™ Processors

drivers and ISRs are specific to particular hardware targets, you must check
that the target-specific components are compatible with the target hardware.

To allow you to build an executable, TI C6000 uses the MATLAB links in
Embedded Coder software to invoke the code building process within the
CCSv3 IDE. After you download your executable to your target and run it, the
code runs wholly on the target; you can access the running process only from
the CCS IDE debugging tools. Otherwise the running process is not accessible.

Used in combination with your Embedded Coder and Simulink Coder
software, TI products provide an integrated development environment that,
once installed, does not need additional coding.

About Simulators
The CCS IDE offers simulators for the C6000 processors in the CCS IDE
Setup utility. Much of your model and algorithm development efforts work
with the simulators, such as code generation. And, since the Embedded Coder
provides a software-based scheduler, your models and generated code run on
the simulators just as they do on your hardware. For more information about
the simulators in CCS IDE, refer to your CCS online help system.

When you set up a simulator, match the processor on your target exactly to
simulate your target hardware. For example, to target a C6713DSK board,
your simulator must contain a C6713 processor, not just a C6xxx simulator.
Simulators must match the target hardware because the codecs on the board
are not the same and the simulator needs to identify the codec. Choosing the
simulator that corresponds to your hardware matches the memory maps and
registers with your target hardware.

To use a simulator, open the Target Hardware Resources tab in the model
Configuration Parameters dialog. Then, on the Board pane, under IDE
Support, use the Get from IDE button to get a list of simulators installed
with your IDE. Then use the Board Name parameter to select one of the
installed simulators.

In general, use the device cycle accurate simulators provided by CCS Setup
to simulate your processor.

45-10

Targeting C6000™ DSP Hardware

Typical Hardware Setup for a Development Board
The following block diagram represents typical inputs and output for a C6713
DSK development board.

After installing a supported development board, start MATLAB software.
At the command prompt, type c6000lib. This opens a Simulink blockset
named c6000lib that includes libraries that contain blocks predefined for
C6000 input and output devices.

The board-based block library for the C6713 DSK contains these blocks:

• ADC block

• DAC block

• DIP Switch block (optional, refer to the reference page for the DIP Switch
block for your target)

• LED block

• Reset block

Blocks from these libraries are associated with your boards and hardware. As
required, add the devices to your model. If you choose not to include either
an ADC or DAC block in your model (they are available in the target specific
libraries), the Embedded Coder provides a timer that produces the interrupts

45-11

45 Working with Texas Instruments™ C6000™ Processors

required for timing and running your model, either on your hardware target
or on a simulator.

Targeting — Single Rate Application

• “Overview” on page 45-12

• “Building the Audio Reverberation Model” on page 45-13

• “Adding C6713 DSK Blocks to Your Model” on page 45-14

• “Configuring Embedded Coder Blocks” on page 45-15

• “Specifying Configuration Parameters for Your Model” on page 45-16

Overview
In this tutorial you create and build a model that simulates audio
reverberation applied to an input signal. Reverberation is similar to the echo
you can hear when you shout across an open valley or canyon, or in a large
empty room.

You can choose to create the Simulink model for this tutorial from blocks
in DSP System Toolbox software and Simulink block libraries, or you can
find the model in Embedded Coder examples. For this example, you see
the model as it appears in the example program. The example model name
is c6713dskafxr as shown in the next figure. Open this model by entering
c6713dskafxr at the MATLAB prompt.

To run this model you need a microphone connected to the Mic In connector
on your C6713 DSK, and speakers and an oscilloscope connected to the
Line Out connector on your C6713 DSK. To test the model, speak into the
microphone and listen to the output from the speakers. You can observe the
output on the oscilloscope as well.

To download and run your model on your C6713 DSK, complete the following
tasks:

1 Use Simulink blocks, DSP System Toolbox software blocks, and blocks from
other blocksets to create your model application.

45-12

Targeting C6000™ DSP Hardware

2 Add Embedded Coder blocks that let your signal sources and output devices
communicate with your C6713 DSK—the C6713 DSK ADC and C6713 DSK
DAC blocks that you find in Embedded Coder c6000lib blockset.

3 Configure your model as described in “Configure Target Hardware
Resources” on page 35-3.

4 If you are using a C6713 simulator, use the Get from IDE button on the
Board pane, located on the Target Hardware Resources pane in the Model
Configuration Parameters. Then, set Board Name under IDE Support
to C6713 Device Cycle Accurate Simulator.

5 Set the Configuration Parameters for your model, including

• Solver parameters such as simulation start and solver options

• Software options such as target configuration and target compiler
selection

6 Build your model to the selected target hardware.

7 Test your model running on the target by changing the input to the target
and observing the output from the target hardware.

Your target for this tutorial is your C6713 DSK installed on your PC. Be sure
to configure and test your board as directed in “Configuring Your C6713DSK”
on page 45-36 in this guide before continuing this tutorial.

Building the Audio Reverberation Model
To build the model for audio reverberation, follow these steps:

1 Start Simulink.

2 Create a new model by selecting File > New > Model from the Simulink
menu bar.

3 Use Simulink blocks and DSP System Toolbox software blocks to create
the following model.

45-13

45 Working with Texas Instruments™ C6000™ Processors

Look for the Delay block in the Signal Operations library of the DSP
System Toolbox software. You do not need to add the input and output
signal lines at this time. When you add the C6713 DSK blocks in the next
section, you add the input and output to the sum blocks.

4 Name and save your model before continuing.

Adding C6713 DSK Blocks to Your Model
So that you can send signals to your C6713 DSK and get signals back from
the board, Embedded Coder software includes a block library containing five
blocks designed to work with the codec on your C6713 DSK:

• Input block (C6713 DSK ADC)

• Output block (C6713 DSK DAC)

• Light emitting diode block (C6713 DSK LED)

• Software reset block (Reset C6713 DSK)

• DIP switch block (C6713 DSK DIP Switch)

Entering c6713dsklib at the MATLAB prompt opens the block library for
the C6713 DSK. This block library is included in Embedded Coder c6000lib
blockset in the Simulink Library browser.

The C6713 DSK ADC and C6713 DSK DAC blocks generate code that
configures the codec on your C6713 DSK to accept input signals from the input
connectors on the board, and send the model output to the output connector

45-14

Targeting C6000™ DSP Hardware

on the board. Essentially, the C6713 DSK ADC and C6713 DSK DAC blocks
add driver software that controls the behavior of the codec for your model.

To add C6713 DSK target blocks to your model, follow these steps:

1 Double-click Embedded Coder software in the Simulink Library browser to
open the c6000lib blockset.

2 Click the block library for the C6713 DSK to see the blocks available for
your C6713 DSK.

3 Drag and drop C6713 DSK ADC and C6713 DSK DAC blocks to your model
as shown in the figure.

4 Connect new signal lines as shown in the figure.

5 Configure your model as described in “Configure Target Hardware
Resources” on page 35-3.

Configuring Embedded Coder Blocks
To configure Embedded Coder blocks in your model, follow these steps:

1 Click the C6713 DSK ADC block to select it.

2 Select Block Parameters from the Simulink Edit menu.

45-15

45 Working with Texas Instruments™ C6000™ Processors

3 Set the following parameters for the block:

• Clear the Stereo check box.

• Select the +20 dB mic gain boost check box.

From the list, set Sample rate to 8000.

• Set Codec data format to 16-bit linear.

• For Output data type, select Double from the list.

• Set Scaling to Normalize.

• Set Source gain to 0.0.

• Enter 64 for Samples per frame.

Include a signal path directly from the input to the output so you can
display both the input signal and the modified output signal on the
oscilloscope for comparison.

4 For C6713 DSK ADC source, select Mic In.

5 Click OK to close the C6713 DSK ADC dialog.

6 Now set the options for the C6713 DSK DAC block.

• Set Codec data format to 16-bit linear.

• Set Scaling to Normalize.

• For DAC attenuation, enter 0.0.

• Set Overflow mode to Saturate.

7 Click OK to close the dialog.

You have completed the model. Now configure the Simulink Coder software
options to build and download your new model to your C6713 DSK.

Specifying Configuration Parameters for Your Model
The following sections describe how to build and run real-time digital signal
processing models on your C6713 DSK. Running a model on the target starts
with configuring and building your model from the Configuration Parameters
dialog in Simulink software.

45-16

Targeting C6000™ DSP Hardware

Setting Simulink Configuration Parameters. After you have designed
and implemented your digital signal processing model in Simulink software,
complete the following steps to set the Configuration Parameters for the
model:

1 Open the Configuration Parameters dialog and set the right options on the
Solver category for your model and for Embedded Coder software.

• Set Start time to 0.0 and Stop time to inf (model runs without
stopping). Generated code does not honor this setting if you set a stop
time. Set this to inf for completeness.

• Under Solver options, set Type to fixed-step and set Solver to
discrete (no continuous states). For PIL, set Type and Solver
to any setting.

• For Fixed step size (fundamental sample time), enter Auto, and set
Tasking mode for periodic sample times to SingleTasking.

Note Generated code does not honor Simulink stop time from the simulation.
Stop time is interpreted as inf. To implement a stop in generated code, you
must put a Stop Simulation block in your model.

Ignore the Data Import/Export, Diagnostics, and Optimization panes
in the Configuration Parameters dialog. The default settings are right for
your new model.

Setting Simulink Coder Target Build Options. Configure Simulink Coder
software to generate and build code for the C6713 DSK:

1 Open the Configuration Parameters dialog by pressing Ctrl+E or by
selecting Simulation > Model Configuration Parameters.

2 Select the Code Generation pane.

3 Verify that the system target file is set to idelink_grt.tlc.

4 Expand the node for the Code Generation pane. Then select the Coder
Target pane.

45-17

45 Working with Texas Instruments™ C6000™ Processors

5 Among the Run-Time options, set Build action to Build_and_execute,
and set Interrupt overrun notification method to Print_message.

6 Among the Vendor Tool Chain, keep the default settings.

7 Among the Code Generation options, clear Profile real-time execution.

8 Among the Link Automation options, verify that Export Coder Target
handle to base workspace is selected and that Coder Target handle
name has a name (e.g., IDE_Obj).

9 In the Configuration Parameters dialog, select the Hardware
Implementation pane.

10 Verify that Byte ordering is Little endian.

When you have completed these steps, you have configured the Configuration
Parameters for the C6713 DSK target. Some of the panes under the
Code Generation pane, such as Comments and Symbols, do not require
configuration. The default values for the options in these panes are already
right for your new model. For other models, you may want to set the options
in these panes to provide information during the build and to run TLC
debugging when you generate code.

Building and Executing Your Model on Your C6713 DSK. After you
set the Configuration Parameters and configure Simulink Coder software
to create the files you need, you direct Simulink Coder software to build,
download, and run your model executable on your target:

1 Change the category to Code Generation on the Configuration
Parameters dialog.

2 Clear Generate code only and click Build to generate and build an
executable file targeted to your C6713 DSK.

When you click Build with Build_and_execute selected for Build action,
the automatic build process creates an executable file that can be run by
the C6713 DSP on your C6713 DSK, and then downloads the executable
file to the target and runs the file.

45-18

Targeting C6000™ DSP Hardware

3 To stop-model execution, click the Reset C6713 DSK block or use the
Halt option in CCS IDE. You could type halt from the MATLAB command
prompt as well.

Testing Your Audio Reverb Model. With your model running on your
C6713 DSK, speak into the microphone you connected to the board. The
model should generate a reverberation from of the speakers, delaying and
echoing the words you speak into the mike. If you built the model yourself,
rather than using the supplied model c6713dskafxr, try running the example
model to compare the results.

Schedulers and Timing

• “Timer-Based Versus Asynchronous Interrupt Processing” on page 45-19

• “Synchronous Scheduling” on page 45-20

• “Asynchronous Scheduling” on page 45-21

• “Using Asynchronous Scheduler” on page 45-22

• “Uses for Asynchronous Scheduling” on page 45-23

• “Scheduling Considerations” on page 45-28

Timer-Based Versus Asynchronous Interrupt Processing
Code generated for periodic tasks, both single- and multitasking, runs out of
the context of a timer interrupt. The generated code that represents model
blocks for periodic tasks runs periodically, clocked by the periodic interrupt
whose period is equal to the base sample time of the model. This description
of scheduling and timing applies both to generated code operation that
incorporates DSP/BIOS real-time operating system (RTOS) and basic code
generation mode where DSP/BIOS RTOS is not included.

Note In timer-based models, the timer counts through one full
base-sample-time before it creates an interrupt. When the model is finally
executed, it is for time 0.

45-19

45 Working with Texas Instruments™ C6000™ Processors

This execution scheduling scheme is not flexible enough for some systems,
such as control and communication systems that must respond to
asynchronous events in real time. Such systems may need to handle a variety
of hardware interrupts in an asynchronous, or aperiodic, fashion.

When you plan your project or algorithm, select your scheduling technique
based on your application needs.

If your application processes hardware interrupts asynchronously, add the
right asynchronous scheduling blocks from the Texas Instruments C6000
DSP/BIOS (dspbioslib) and Scheduling (c6000dspcorelib) block libraries to
your model.

If your application does not service asynchronous interrupts, your model
should include only the algorithm and device driver blocks that specify the
periodic sample times. Generating code from a model like this automatically
enables and manages a timer interrupt. The periodic timer interrupt clocks
the entire model.

Synchronous Scheduling
For code that runs synchronously in the context of the timer interrupt, each
iteration of the model runs after an interrupt has been posted and serviced by
an interrupt service routine (ISR). The code generated for Embedded Coder
software uses Timer 1 in DSP/BIOS mode and bare-board mode. Timer 1 is
configured so that the base rate sample time for the coded process corresponds
to the interrupt rate. The Embedded Coder calculates and configures the
timer period to produce the desired sample rate.

The minimum achievable base rate sample time depends on the algorithm
complexity and the CPU clock speed. The maximum value depends on the
maximum timer period value and the CPU clock speed.

If the blocks in the model inherit their sample time value, and a sample time
is not defined explicitly, Simulink assigns a default sample time of 0.2 second.

45-20

Targeting C6000™ DSP Hardware

Note In timer-based models, the timer counts through one full
base-sample-time before it creates an interrupt. When the model is finally
executed, it is for time 0.

Asynchronous Scheduling
Embedded Coder software facilitates modeling and automatically generating
code for asynchronous systems by using the following scheduling blocks:

• Hardware Interrupt and Idle Task blocks for bare-board code generation
mode

• DSP/BIOS Hardware Interrupt, DSP/BIOS Task, and DSP/BIOS Triggered
Task blocks for DSP/BIOS code generation mode

C6000 Hardware Interrupt blocks enable selected hardware interrupts for the
TI TMS320C6000 DSP, generate corresponding ISRs, and connect them to the
corresponding interrupt service vector table entries.

When you connect the output of the C6000 Hardware Interrupt block to the
control input of a function-call subsystem, the generated subsystem code is
called from the ISRs each time the interrupt is raised.

The C6000 Idle Task block specifies one or more functions to execute as
background tasks in the code generated for the model. The functions are
created from the function-call subsystems to which the Idle Task block is
connected.

The DSP/BIOS Hardware Interrupt block (in DSP/BIOS code generation
mode) has the same functionality as the bare-board C6000 Hardware
Interrupt block. The configuration and low-level handling of the hardware
interrupts is implemented through DSP/BIOS using DSP/BIOS Hardware
Interrupt module and DSP/BIOS dispatcher.

DSP/BIOS Task blocks (DSP/BIOS code generation mode) spawn free-running
tasks as separate DSP/BIOS threads. The spawned task runs the function-call
subsystem connected to its output. Blocks in the subsystem may use various
conditions and techniques to control sharing sources with other tasks.

45-21

45 Working with Texas Instruments™ C6000™ Processors

DSP/BIOS Triggered Task blocks (in DSP/BIOS code generation mode) spawn
semaphore-controlled tasks as separate DSP/BIOS threads. The semaphore
that enables execution of a single instance of the task is posted by an ISR that
is created by a DSP/BIOS Hardware Interrupt block. This block is connected
to a DSP/BIOS Triggered Task block.

Using Asynchronous Scheduler
Now you can use an asynchronous (real-time) scheduler for your target
application. Earlier versions of Embedded Coder software used a synchronous
CPU timer interrupt-driven scheduler. With the asynchronous scheduler
you can define interrupts and tasks to occur when you want them to using
blocks in the following libraries:

• C6000 Scheduler

• DSP/BIOS library (dspbioslib)

Also, you can schedule multiple tasks for asynchronous execution using those
blocks libraries.

The example models for Wavelet Denoising use the asynchronous scheduler
rather than the synchronous scheduler.

45-22

Targeting C6000™ DSP Hardware

Uses for Asynchronous Scheduling
The following sections present common cases for the scheduling blocks
described in the previous sections.

Free-Running DSP/BIOS Task. The following model illustrates a case
where a reverberation algorithm runs in the context of a free-running
DSP/BIOS task.

Normally, the algorithms in this type of task run in free-running mode,
that is, they run repetitively and indefinitely. However, in this function-call
subsystem (shown in detail in the following figure), ADC and DAC blocks
suspend the execution of the task until the ADC and DAC data is available.

Each instance of the reverberation algorithm is triggered only after the data
buffer is available (for both ADC and DAC). An asynchronous ADC/DAC
device driver layer separate from the task function manages the triggers
condition. This device driver layer uses a direct memory access (DMA)
interrupt to signal to the DSP/BIOS task when ADC and DAC data become
available for the task function.

45-23

45 Working with Texas Instruments™ C6000™ Processors

This model also illustrates how synchronous and asynchronous tasks can
work together. The code generated for C6416 DSK DIP Switch block runs
as a periodic task at the rate of 0.01 s. This is the only periodic task in the
model. It runs out of the context of a DSP/BIOS task scheduled via a timer
interrupt configured to go off every 0.01 second.

In general, Simulink blocks that specify nonzero sample rates, such as the
DIP Switch block, are scheduled by the C6000 synchronous scheduler and
executed either from the context of a DSP/BIOS task (if you incorporate
DSP/BIOS in your project) or a hardware interrupt (when you do not
incorporate DSP/BIOS).

For data integrity, Simulink Rate Transition blocks connect the C6416
DSK DIP Switch block with the reverberation algorithm. This transition is
required because the blocks belong to different rate groups. If the synchronous
and asynchronous parts of the model do not interact, the Rate Transition
blocks are not required.

45-24

Targeting C6000™ DSP Hardware

Idle Task. The following model illustrates a case where the reverberation
algorithm runs in the context of a background task in bare-board code
generation mode.

The function generated for this task normally runs in free-running
mode—repetitively and indefinitely. However, the ADC and DAC blocks in
this subsystem run in blocking mode. As a result, subsystem execution of
the reverberation function is the same as the subsystem described for the
Free-Running DSP/BIOS Task. It is data driven via a background DMA
interrupt-controlled ISR, shown in the following figure.

45-25

45 Working with Texas Instruments™ C6000™ Processors

Hardware Interrupt Triggered DSP/BIOS Task. The next model
illustrates a case where a function (Location Command) runs in the context of
a hardware interrupt-triggered DSP/BIOS task.

The DSP/BIOS Hardware Interrupt block installs an ISR function that signals
a DSP/BIOS task to run when the ISR detects an RTDX interrupt. Signaling
between the ISR and DSP/BIOS triggered task occurs via semaphores. This
task receives an RTDX message carrying the location command for the
downstream Text Insert block in the Text Overlay from the host computer.

The blocks running inside the Location Command and Text Overlay
subsystems are shown in the following figure.

45-26

Targeting C6000™ DSP Hardware

The text overlay subsystem is executed as for the Free-Running DSP/BIOS
Task. For data integrity, a Rate Transition block connects the two
subsystems that run at two different asynchronous rates. The execution of
two asynchronous rates is ordered based on the priority settings for the
DSP/BIOS Task blocks.

Hardware Interrupt Triggered Task. In the next figure, you see a case
where a function (LED Control) runs in the context of a hardware interrupt
triggered task.

In this model, the C6000 Hardware Interrupt block installs a task that runs
when it detects an external interrupt. This task then toggles an external
C6416DSK LED on or off.

45-27

45 Working with Texas Instruments™ C6000™ Processors

Scheduling Considerations
When you use the DSP/BIOS task blocks for scheduling, either the DSP/BIOS
Task block or the DSP/BIOS Triggered Task block, you must take care to
avoid some common scheduling pitfalls.

First, the DSP/BIOS operating system executes the task with the highest
priority. Contrast this execution scheme with that of some other real-time
operating systems (RTOS) where each task gets its fair share of processing
time. Therefore, depending on the situation, there may be cases where
lower-priority tasks do not execute because a higher priority task is not
blocked.

A DSP/BIOS task blocks only when a blocking device driver block is included
in the function call subsystem the task is executing, such as ADC/DAC blocks
and C6000 UDP Receive blocks. If a particular DSP/BIOS task executes
a function call subsystem that does not include device driver blocks, and
this particular task has the highest priority, it does not releases the CPU,
effectively disabling the other lower priority tasks in the application.

45-28

Targeting C6000™ DSP Hardware

For more information about asynchronous schedulers, refer to the “Handle
Asynchronous Events” chapter in your Simulink Coder documentation in
the online help system.

Model Reference and Embedded Coder Software

• “Overview” on page 45-29

• “How Model Reference Works” on page 45-29

• “Using Model Reference with Embedded Coder Software” on page 45-30

• “Configuring Targets to Use Model Reference” on page 45-32

Overview
Model reference lets your model include other models as modular components.
This technique provides useful features because it:

• Simplifies working with large models by letting you build large models
from smaller ones, or even large ones.

• Lets you generate code for the modules in the model, and later, regenerate
code for modules that change.

• Lets you develop the modules independently.

• Lets you reuse modules and models by reference, rather than including the
model or module multiple times in your model. Also, multiple models can
refer to the same model or module.

Your Simulink Coder documentation provides much more information about
model reference.

How Model Reference Works
Model reference behaves differently in simulation and in code generation. For
this discussion, you need to know the following terms:

• Top-model — The root model block or model. It refers to other blocks or
models. In the model hierarchy, this is the topmost model.

45-29

45 Working with Texas Instruments™ C6000™ Processors

• Referenced models — Blocks or models that other models reference, such as
models the top-model refers to. The models or blocks below the top-model
in the hierarchy are reference models.

The following sections describe briefly how model reference works. More
details are available in your Simulink Coder documentation in the online
help system.

Model Reference in Simulation. When you simulate the top-model,
Simulink Coder software detects that your model contains referenced models.
Simulink generates code for the referenced models and uses the generated
code to build shared library files for updating the model diagram and
simulation. It also creates an executable (a MEX file, .mex) for each reference
model that is used to simulate the top-model.

When you rebuild reference models for simulations or when you run or update
a simulation, Simulink software rebuilds the model reference files. Whether
reference files or models are rebuilt depends on:

• Whether and how you change the models.

• The Rebuild parameter on the Model Reference pane in the
Configuration Parameters dialog.

Model Reference in Code Generation. Simulink Coder software requires
executables to generate code from models. If you have not simulated your
model at least once, Simulink Coder software creates a .mex file for simulation.

Now, for each referenced model, the code generation process calls make_rtw
and builds each referenced model. This build process creates a library file for
each of the referenced models in your model.

After building the referenced models, Simulink Coder software calls make_rtw
on the top-model, linking to the library files it created for the associated
referenced models.

Using Model Reference with Embedded Coder Software
With few limitations or restrictions, the Embedded Coder provides full
support for generating code from models that use model reference.

45-30

Targeting C6000™ DSP Hardware

Build Action Setting. The most important requirement for using model
reference with the TI targets is to set the Build action for the Model blocks
in the simulation to Archive_library.

To set the build action

1 Open your model.

2 Select Simulation > Model Configuration Parameters from the model
menus.

The Configuration Parameters dialog opens.

3 Expand the node for the Code Generation pane. Then select the Coder
Target pane.

4 In the right pane, underRun-Time, set Build action to Archive_library.

If your top-model uses a reference model that does not have the build action
set to Archive_library, the build process automatically changes the build
action to Archive_library and issues a warning about the change.

As a result of selecting the Archive_library setting, other options are
disabled:

• DSP/BIOS is disabled for the referenced models. Only the top-model
supports DSP/BIOS operation.

• Overrun action, Overrun notification method, Exporting CCS
object to the workspace, and Stack size are the disabled for the
referenced models.

Other Block Limitations. Model reference with Embedded Coder software
does not allow you to use the following blocks or S-functions in reference
models:

• Blocks from the C62x DSP Library (tic64dsplib) (because these are
noninlined S-functions)

• Blocks from the C64x DSP Library (tic62dsplib) (because these are
noninlined S-functions)

45-31

45 Working with Texas Instruments™ C6000™ Processors

• Noninlined S-functions

• Driver blocks, such as the ADC or DAC blocks from an Embedded Coder
library

Configuring Targets to Use Model Reference
Targets that you plan to use in Model Referencing must meet some general
requirements.

• A model reference compatible target must be derived from the ERT or
GRT targets.

• When you generate code from a model that references another model, you
need to configure both the top-level model and the referenced models for
the same code generation target.

• The External mode option is not supported in model reference Simulink
Coder target builds. Embedded Coder software supports External mode,
but not with model reference. If you select this option, it is ignored during
code generation. For more information, please see the “Host/Target
Communication” chapter in the Simulink Coder User’s Guide.

• To support model reference builds, your TMF must support use of the
shared utilities folder, as described in Supporting Shared Utility folders
in the Build Process.

To use an existing target, or a new target, with Model Reference, you set the
ModelReferenceCompliant flag for the target hardware. For information
on how to set this option, refer to ModelReferenceCompliant in the online
help system.

If you start with a model that was created prior to version 2.4 (R14SP3),
to make your model compatible with the model reference target, use the
following command to set the ModelReferenceCompliant flag to On:

set_param(bdroot,'ModelReferenceCompliant','on')

Models that you target with the Embedded Coder versions 2.4 and later
automatically include the model reference capability. You do not need to
set the flag.

45-32

Targeting C6000™ DSP Hardware

Targeting Supported Boards

• “Overview” on page 45-33

• “Typical Targeting Process” on page 45-34

• “Targeting the C6713 DSP Starter Kit” on page 45-34

• “Configuring Your C6713DSK” on page 45-36

• “Confirming Your C6713DSK Installation” on page 45-37

Overview
Texas Instruments markets a complete set of tools for you to use with
the a range of development boards, such as the C6713 DSK. These tools
are primarily intended for rapid prototyping of control systems and
hardware-in-the-loop applications. This section provides a brief example of
how to use TI development tools with Simulink Coder software and the C6713
DSK blocks.

Executing code generated from Simulink Coder software on a particular
target in real time requires target-specific code. Target-specific code includes
I/O device drivers and an interrupt service routine. Other components, such
as Embedded Coder software, are required if you need the ability to download
parameters on the fly to your target hardware.

Since these components are specific to particular hardware targets (in this
case, the C6713 DSK), you must check that the target-specific components are
compatible with the target hardware.

To allow you to build an executable, Embedded Coder software provides
a target makefile specific to the evaluation module. This target makefile
invokes the optimizing compiler, provided as part of TI Code Composer Studio
software.

Used in combination with Simulink Coder software, TI products provide an
integrated development environment that, once installed, does not need
additional coding.

45-33

45 Working with Texas Instruments™ C6000™ Processors

Typical Targeting Process
Generally, targeting hardware, or a development environment as some call it,
requires that you complete a series of processes that starts with building your
model and ends with generating code to suit your target hardware.

1 Build the Simulink model of your algorithm or process to be converted
to code for your target hardware.

2 Add target-specific blocks to your model, such as ADC and DAC blocks,
and configure the block parameters.

3 Configure your model as described in “Configure Target Hardware
Resources” on page 35-3.

4 Configure the options on the Target Hardware Resources pane to select the
target, map memory segments, allocate sections to the memory segments,
and configure other target-specific options.

5 Build your model to your target hardware.

Targeting the C6713 DSP Starter Kit
After you install the C6713 DSK development board and supporting TI
products on your PC, start the MATLAB software. At the MATLAB
command prompt, enter c6713dsklib. This opens a Simulink block library,
c6713dsklib, that includes a set of blocks for C6713 DSK I/O devices, as
described in the following table.

Block Description

C6713 DSK ADC Configure the analog to digital converter

C6713 DSK DAC Configure the digital to analog converter

C6713 DSK LED Control the user status LEDs on the C6713 DSK

C6713 DSK Reset Reset the processor on the C6713 DSK

These blocks are associated with your C6713 DSK board. As required, add the
blocks to your model.

45-34

Targeting C6000™ DSP Hardware

With your model open, select Simulation > Model Configuration
Parameters. From the Configuration Parameters dialog, select the Code
Generation pane. Use the Code Generation pane to select the right System
target file for your embedded processor. For the C6713 DSK, in the Code
Generation pane, specify System target file—idelink_grt.tlc

With this configuration, you can generate a real-time executable and
download it to the TI C6713 evaluation board. You generate the executable by
clicking Build on the Code Generation pane. The Simulink Coder software
automatically generates C code and inserts the I/O device drivers as specified
in your block diagram. These device drivers are inserted in the generated C
code as inlined S-functions. Inlined S-functions offer speed advantages and
simplify the generated code. For more information about inlining S-functions,
refer to Target Language Compiler Reference documentation. For a complete
discussion of S-functions, refer to your Writing S-Functions documentation.

During the same build operation, the software invokes the TI compiler
to build an executable file. If you select the Build_and_execute option,
Simulink Coder software automatically downloads the executable to the TI
evaluation board via the peripheral component interface (PCI) bus. After
downloading the executable file to the C6713 DSK, the build process runs the
file on the processor.

Starting and Stopping DSP Applications on the C6713 DSK. When you
generate code, build the project, and download the code for your Simulink
model to your C6713 DSK, you are running actual machine code corresponding
to the block diagram you built in Simulink software. To start running your
DSP application on the evaluation module, you must open your Simulink
model and rebuild the machine executable by clicking Build. To start the
application on the C6713 DSK, you use Simulink Coder software to rebuild
the executable from the Simulink model and download the code to the board.

Your model runs until it encounters one of the following actions:

• You select Debug > Halt in CCS IDE.

• You shut down the host PC.

• The process encounters a Stop block in the model code.

45-35

45 Working with Texas Instruments™ C6000™ Processors

• The running application encounters an error condition that stops the
process.

If you included a Reset C6713 DSK block in your model, clicking the block
stops the running application and restores the digital signal processor to
its initial state.

Note When you build and execute a model on the C6713 DSK, the Simulink
Coder build process resets the evaluation module automatically. You do not
need to reset the board before building models. To stop processes that are
running on the evaluation module, or to return the board to a known state,
use the Reset C6713 DSK block.

Configuring Your C6713DSK
When you install the C6713DSK, set the dual inline pin (DIP) switches as
shown in the following table. If you have installed the board with different
settings, reconfigure the board. Refer to your TMS320C6201/6713Evaluation
Module User’s Guide for details.

DIP Switch Name Setting Outcome

SW2-1 BOOTMODE4 On Boot mode setting

SW2-2 BOOTMODE3 On Boot mode setting

SW2-3 BOOTMODE2 Off Sets memory map = 1
when SW2-5 is off

SW2-4 BOOTMODE1 On Boot mode setting

SW2-5 BOOTMODE0 Off Sets memory map =1
when SW2-3 is off

SW2-6 CLKMODE On Sets multiply-by-4 mode

SW2-7 CLKSEL On Selects oscillator A

SW2-8 ENDIAN On Selects little endian mode

SW2-9 JTAGSEL Off Selects internal Test Bus
Controller (TBC)

45-36

Targeting C6000™ DSP Hardware

DIP Switch Name Setting Outcome

SW2-10 USER2 On User-defined option

SW2-11 USER1 On User-defined option

SW2-12 USER0 On User-defined option

Confirming Your C6713DSK Installation
Texas Instruments supplies a test utility to verify the operation of the board
and its associated software. For complete information about running the
test utility and interpreting the results, refer to your TMS320C6201/6713
DSP Starter Kit User’s Guide.

To run the C6713 DSK verification test, complete the following steps after
you install your board:

1 Start CCS IDE.

2 Select Start > Programs > Code Composer Studio > DSK Confidence
Test. As the test runs, the results appear on your display.

By default, the test utility does not create a log file to store the test results.
To specify the name and location of a log file to contain the results of
the confidence test, use the command line options in CCS IDE to run
the confidence test utility. For further information about running the
verification test from a DOS window and using the command line options,
refer to TMS320C6201/6713 Evaluation Module User’s Guide.

3 Review the test results to verify that everything works. Check that the
options settings match the settings listed in the table above.

If your options settings do not match the configuration shown in the
preceding table, reconfigure your C6713 DSK. After you change your board
configuration, rerun the verification utility to check your new settings.

45-37

45 Working with Texas Instruments™ C6000™ Processors

Simulink Models and Targeting

Creating Your Simulink Model for Targeting
You create real-time digital signal processing models the same way you create
other Simulink models—by combining standard DSP blocks and C-MEX
S-functions.

You add blocks to your model in several ways:

• Use blocks from the DSP System Toolbox software

• Use blocks from the fixed-point blocks library TI C62x DSPLIB or TI C64x
DSPLIB

• Use other Simulink discrete-time blocks

• Use the blocks provided in the C6000 blockset: ADC, DAC, LED and Reset
blocks for specific supported target hardware

• Use blocks that provide the functions you need

• Create and use custom blocks

Once you have designed and built your model, you generate C code and build
the real-time executable by clicking Build on the Code Generation pane of the
Configuration Parameters dialog. The automatic build process creates the
file modelname.out containing a real-time model image in COFF file format
that can run on your target hardware.

The file modelname.out is an executable whose format is target-specific. You
can load the file to your target and execute it in real time. Refer to your
Simulink Coder documentation for more information about the build process.

Targeting — A More Complex Application

• “Overview” on page 45-39

• “Working and Build folders” on page 45-40

• “Setting Simulation Program Parameters” on page 45-40

• “Selecting the Target Configuration” on page 45-41

45-38

Targeting C6000™ DSP Hardware

• “Building and Running the Program” on page 45-42

• “Contents of the Build folder” on page 45-43

Overview
For this tutorial, we show an application that uses multiple stages—using
wavelets to remove noise from a noisy signal. Open the example model,
c6713dskwdnoisf. You can run this denoising example by typing
c6713dskwdnoisf at the MATLAB prompt. The model also appears in
the MATLAB examples collection in the Help browser—under Simulink
examples, in the Embedded Coder category. Here is a picture of the model
as it appears in the example library.

Unlike the audio reverberation example, this model is difficult to build from
blocks in Simulink software. It uses complex subsystems for the Delay
Alignment block and the Soft Threshold block. For this tutorial, you work
with a copy of the example model, rather than creating the model.

This tutorial takes you through generating C code and building an executable
program from the example model. The resulting program runs on your C6713
DSK as an executable COFF file.

45-39

45 Working with Texas Instruments™ C6000™ Processors

Working and Build folders
It is convenient to work with a local copy of the c6713dskwdnoisf model,
stored in its own folder, which you named (something like c6713dnoisfex).
This discussion assumes that the c6713dnoisfex folder resides on drive d:.
Use the right drive letter for your machine. Set up your working folder as
follows:

1 Create the new model folder from the MATLAB Command Window by
typing

!mkdir d:\c6713dnoisfex (on PC)

2 Make c6713dnoisfex your working folder.

cd d:/c6713dnoisfex

3 Open the c6713dskwdnoisf model.

c6713dskwdnoisf

The model appears in the Simulink window.

4 From the File menu, choose Save As. Save a copy of the c6713dskwdnoisf
model as d:/c6713dnoisfex/dnoisfrtw.

During code generation, Simulink Coder software creates a build folder within
your working folder. The build folder name is model_target_rtw, derived
from the name of your source model and your chosen target hardware. In
the build folder, Simulink Coder software stores generated source code and
other files created during the build process. You examine the contents of the
build folder at the end of this tutorial.

Setting Simulation Program Parameters
To generate code appropriately from the dnoisfrtw model, you must
change some of the Configuration Parameters. In particular, Simulink
Coder software uses a fixed-step solver. To set the parameters, use the
Configuration Parameters dialog as follows:

1 Select Simulation > Model Configuration Parameters. The
Configuration Parameters dialog opens.

45-40

Targeting C6000™ DSP Hardware

2 Click Solver and enter the following parameter values on the Solver
pane. Note that Embedded Coder software does not honor a stop time if
you set one here.

Start Time: 0.0

Stop Time: inf

Solver options: set Type to Fixed-step. Select the Discrete solver
algorithm. (Targeting does not work with continuous time solvers.)

Fixed step size: auto

Tasking mode for periodic sample times: Auto

3 Click Apply, and then click OK to close the dialog.

4 Save the model. Configuration Parameters persist with the model (as the
model configuration set), for you to use in future sessions.

Selecting the Target Configuration
To specify the desired target configuration, choose the System target file.

In these tutorials, you do not need to specify these parameters individually.
Instead, you use the ready-to-run idelink_grt.tlc target configuration.

Note In the Configuration Parameters dialog, you can expand the node for
the Code Generation pane in order to see other important panes. During
this tutorial you change or review options in just a few of those panes.

To target your C6713 DSK:

1 Select Simulation > Model Configuration Parameters. The
Configuration Parameters dialog opens.

2 Select the Code Generation pane.

3 Click Browse next to the System target file field. This opens the System
Target File Browser. The browser displays a list of available target

45-41

45 Working with Texas Instruments™ C6000™ Processors

configurations. When you select a target configuration, Simulink Coder
software automatically chooses the right system target file.

4 From the list of available configurations, select idelink_grt.tlc, and
click OK.

5 Expand the node for the Code Generation pane and select Coder Target.

6 Set the Run-Time and Vendor Tool Chain as shown in the preceding
figure.

7 To export the handle (a variable) that CCS IDE creates when you
generate code from your model, select Export IDE link handle to base
workspace, and enter a name for the handle in IDE link handle name.

8 Click OK to close the Configuration Parameters dialog. Save the model
to retain your new build settings.

Building and Running the Program
The Simulink Coder build process generates C code from your model, and
then compiles and links the generated program.

To build and run your program:

1 Access the Configuration Parameters dialog for your model.

2 Click Build in the Code Generation pane to start the build process.

3 A number of messages concerning code generation and compilation appear
in the MATLAB workspace. The initial messages are

Starting Simulink Coder build procedure for model:

dnoisfrtw

Generating code into build folder: .\dnoisfrtw_c6000_rtw

The content of the succeeding messages depends on your compiler and
operating system. The final message is

Successful completion of Simulink Coder build procedure

for model: dnoisfrtw

45-42

Targeting C6000™ DSP Hardware

4 The working folder now contains an executable, dnoisfrtw.exe.
In addition, Simulink Coder software created a build folder,
dnoisfrtw_c6000_rtw.

To review the contents of the working folder after the build, type the dir
command at the MATLAB command prompt.

dir
. dnoisfrtw.exe dnoisfrtw_c6000_rtw
.. dnoisfrtw.slx

5 To run the executable from the MATLAB command prompt, type

!dnoisfrtw

The “!” character passes the command that follows it to the operating
system, which runs the stand-alone dnoisfrtw program.

The program produces one line of output.

starting the model

6 To see the contents of the build folder, type

dir dnoisfrtw_c6713_rtw

Contents of the Build folder
The build process creates a build folder and names it model_target_rtw,
concatenating the name of your source model and your chosen target
hardware. In this example, your build folder is named dnoisfrtw_c6713_rtw.

dnoisfrtw_c6713_rtw contains these generated source code files:

• dnoisfrtw.c— The stand-alone C code that implements the model.

• dnoisfrtw.h — An include header file containing information about the
state variables

• dnoisfrtw_export.h — An include header file containing information
about exported signals and parameters

45-43

45 Working with Texas Instruments™ C6000™ Processors

The build folder also contains other files used in the build process, such as the
object (.obj) files and the generated makefile (dnoisfrtw.mk).

Targeting Your C6713 DSK and Other Hardware

• “Overview” on page 45-44

• “Confirming Your C6713 DSK Installation” on page 45-44

• “Running Models on Your C6713 DSK” on page 45-45

Overview
Embedded Coder software lets you use Simulink Coder software to generate,
target, and execute Simulink models on the Texas Instruments (TI) C6713
DSP Starter Kit (C6713 DSK). In combination with the C6713 DSK, your the
Embedded Coder is the ideal resource for rapidly prototyping and developing
embedded systems applications for the TI C6713 Digital Signal Processor.
The Embedded Coder focuses on developing real-time digital signal processing
(DSP) applications for the C6713 DSK.

This chapter describes how to use the Embedded Coder to create and execute
applications on the C6713 DSK. To use the targeting software, you should be
familiar with using Simulink to create models and with the basic concepts
of Simulink Coder software automatic code generation. To read more about
Simulink Coder software, refer to your Simulink Coder documentation.

Confirming Your C6713 DSK Installation
Texas Instruments supplies a test utility to verify operation of the board and
its associated software. For complete information about running the test
utility and interpreting the results, refer to your “TMS320CDSK Help” under
TMS320C6000 Code Composer Studio Help in the CCS online help system.

To run the C6713 DSK confidence test, complete the following steps after
you install and configure your board.

1 Open a DOS command window.

2 Access the folder \..\ti\c6000\dsk6x11\conftest

45-44

Targeting C6000™ DSP Hardware

CCS IDE creates this folder when you install it. It contains the files to run
the C6713 confidence test.

3 Start the confidence test by typing dsk6xtst at the DOS prompt.

By default, the test utility creates a log file named dsk6xtst.log where
it stores the test results. To specify the name and location of a log file
to contain the results of the confidence test, use the CCS IDE command
line options to run the confidence utility. For further information about
running the confidence test from a DOS window and using the command
line options, refer to the "DSK Confidence Test" topic in the CCS IDE
online help.

4 Review the test results to verify that everything works.

If your confidence test fails, reconfigure your C6713 DSK. After you change
your board configuration, rerun the confidence utility to check your new
settings.

Running Models on Your C6713 DSK
Texas Instruments markets a complete set of tools for use with the
C6713 DSK. These tools are primarily intended for rapid prototyping of
control systems and hardware-in-the-loop applications.

This section provides a brief example of how the TI development tools work
with Simulink Coder software, the Embedded Coder, and the C6713 DSK
block library.

Executing code generated from Simulink Coder software on a particular
target in real-time requires target-specific code. Target-specific code includes
I/O device drivers and an interrupt service routine.

Other components, such as Embedded Coder software, are required if you
need the ability to download parameters on-the-fly to your target hardware.

Since these components are specific to particular hardware targets (in
this case, the C6713 DSK), check that the target-specific components are
compatible with the target hardware.

45-45

45 Working with Texas Instruments™ C6000™ Processors

To allow you to build an executable, the Embedded Coder provides a target
makefile specific to C6000 hardware targets. This target makefile invokes the
optimizing compiler provided as part of CCS IDE.

Used in combination with the Embedded Coder and Simulink Coder software,
TI products provide an integrated development environment that, once
installed, does not need additional coding.

After you have installed the C6713 DSK development board and supporting
TI products on your PC, start the MATLAB software. At the MATLAB
command prompt, type c6713dsklib. This opens a Simulink block library,
c6713dsklib, that includes a set of blocks for C6713 DSK I/O devices:

• C6713 DSK ADC — Configure the analog to digital converter

• C6713 DSK DAC — Configure the digital to analog converter

• C6713 DSK LED — Control the user-defined light emitting diodes (LED)
on the C6713 DSK

• C6713 DSK DIP Switch — Set the dual inline pin switches on the C6713
DSK

• C6713 DSK Reset — Reset the processor on the C6713 DSK

These devices are associated with your C6713 DSK board.

With your model open, select Simulation > Model Configuration
Parameters from the menu bar to open the Configuration Parameters dialog.

In the Configuration Parameters dialog, select the Code Generation pane.
For the C6713 DSK set System target file to idelink_grt.tlc

With this configuration, you can generate and download a real-time
executable to your TI C6713 DSK. Start the Simulink Coder build process
by clicking Build on the Code Generation pane. Simulink Coder software
automatically generates C code and inserts the I/O device drivers as specified
by the ADC and DAC blocks in your block model.

These device drivers are inserted in the generated C code as inlined
S-functions. Inlined S-functions offer speed advantages and simplify the
generated code. For more information about inlining S-functions, refer to

45-46

Targeting C6000™ DSP Hardware

your Target Language Compiler documentation. For a complete discussion of
S-functions, refer to your documentation about writing S-functions.

During the same build operation, the software invokes the TI compiler to
build an executable file.

If you select the Build_and_execute option, the executable file is
automatically downloaded via the peripheral component interface (PCI) bus
to the TI evaluation board. After downloading the executable file to the C6713
DSK, the build process runs the file on the digital signal processor.

Starting and Stopping DSP Applications on the C6713 DSK. When
you create, build, and download a Simulink model to the C6713 DSK, you
are not running a simulation of your DSP application. You are running the
actual machine code corresponding to the block diagram you built in Simulink
software. To start running your DSP application on the evaluation module,
you must open your Simulink model and rebuild the machine executable by
clicking Build on the Code Generation pane. Each time you want to start the
application on the C6713 DSK, you use Simulink Coder software to rebuild
the executable from the Simulink model and download the code to the board.

Your model runs until the model encounters one of the following actions:

• Using the Debug > Halt option in CCS IDE

• Using halt from the MATLAB command prompt

• Encountering a Stop block in the model.

• Clicking the C6713 DSK Reset block in your model (if you added one) or in
the DSK block library

Clicking the Reset block stops the running application and restores the digital
signal processor to its initial state.

Creating Code Composer Studio Projects Without
Building

• “Introduction” on page 45-48

45-47

45 Working with Texas Instruments™ C6000™ Processors

• “Creating Projects in CCSv3 IDE Without Loading Files to Your Target” on
page 45-48

Introduction
Rather than targeting your C6000 board when you build your signal
processing application, you can create Texas Instruments Code Composer
Studio (CCSv3) IDE projects. Creating projects for CCSv3 IDE lets you use the
tools provided by the CCSv3 software suite to debug your real-time process.

If you build and download your Simulink model to CCSv3 IDE, Embedded
Coder software opens Code Composer Studio software, creates a new CCSv3
IDE project named for your model, and populates the new project with the
files it creates during the build process—the object code files, the assembly
language files, the map files, and other required files. As a result, you can
immediately use CCSv3 IDE to debug your model using the features provided
by the CCSv3 IDE.

Creating a project in CCSv3 IDE is the same as targeting C6000 hardware.
You configure your target options, select your build action to create a CCSv3
IDE project, and then build the project in CCSv3 IDE by clicking Make
Project.

Creating Projects in CCSv3 IDE Without Loading Files to Your
Target
In the Configuration Parameters dialog, expand the node for the Code
Generation pane, and then select the Coder Target pane. Set Build
action to Create_project. The Archive_library option does not create a
CCSv3 IDE project. The other options are not relevant when you are simply
creating an IDE project.

Return to the Simulink Coder category, clear Generate code only and click
Build to build your new CCSv3 IDE project.

Simulink Coder software and Embedded Coder software generate the files
for your project in CCSv3 IDE and create a new project in the IDE. Your
new project is named for the model you built, with a custom project build
configuration CustomMW, not Release or Debug.

45-48

Targeting C6000™ DSP Hardware

In CCSv3 IDE you see your project with the files in place in the folder tree.

Targeting Custom Hardware

• “Overview” on page 45-49

• “Typical Targeting Process” on page 45-50

• “Targeting a Custom Target” on page 45-52

• “Section Pane” on page 45-57

• “To Create Memory Maps for Targets” on page 45-61

Overview
As long as the processor on your custom board is from the TI C6000 DSP
family, you can use Embedded Coder software to generate code for your
target hardware.

The blocks for the peripherals in the C6000 DSP Library, such as the C6416
DSK ADC or C6713 DSK DAC blocks, are specific to their hardware and will
not work with your custom board. The board-specific blocks provided by this
toolbox do not work with custom hardware.

The Target Hardware Resources pane provides a way to target boards that
are not specifically supported. Within the support for Texas Instruments
products, custom hardware targeting only works with the C6000 DSPs. This
is due to certain features related to memory maps and other processor-specific
attributes.

Several guidelines apply to your targeting configuration decisions when you
decide to use custom targets and the custom Target Hardware Resources pane:

1 Specify the memory allocation (memory mapping) using the Memory
and Section panes on the Target Hardware Resources pane in the
Configuration Parameters dialog. Set the memory mapping for your target
that best matches your hardware. For example, if your custom target uses
the C6713 processor, be sure your memory configuration is the same as
the one on the supported C6713 DSK, such as has the same memory size,

45-49

45 Working with Texas Instruments™ C6000™ Processors

the same EMF settings, the same memory sections, and the same cache
organization.

2 To use on-chip memory only for your target, choose the Near_Calls setting
for theMemory model in the TI C6000 compiler options. To use external
memory that is specific to your board, choose the Far_Calls setting for the
Memory model. The other selection in the Memory model list offers a
combination of near and far allocation for data and aggregate data.

3 Do not use the existing ADC, DAC, DIP Switch, or LED blocks unless you
are quite sure that your hardware is identical to the matching EVM or DSK
in important respects. Generally, the ADC, DAC, and other target-specific
blocks are design specifically for their designated targets and can cause
problems when you use them on hardware that is not identical.

4 Set the Overrun notification method in the TI C6000 runtime category
to Print_message when you use the overrun notification feature. If you
choose to use the LED notification option, verify that on your specialized
target you access the LEDs in exactly the same way, and the LEDs respond
in the same way, as the LEDs on the corresponding supported DSK or EVM.

To use one of the custom targets, create your model, open the model
Configuration Parameters dialog, and configure the Coder Target pane for
your custom target.

Typical Targeting Process
Generally, targeting hardware, or a development environment as it is called
by some, requires that you complete a series of processes that starts with
building your model and ends with generating code to suit your target
hardware.

1 Build the Simulink model of your algorithm or process to be converted
to code for your target hardware.

2 Add target-specific blocks to your model, such as ADC and DAC blocks, and
configure the block parameters. (Skip this step when you are targeting a
processor on a custom board.)

3 Configure your model as described in “Configure Target Hardware
Resources” on page 35-3.

45-50

Targeting C6000™ DSP Hardware

Configure the options on the Target Hardware Resources pane to select
the target, map memory segments, allocate code and data sections to the
memory segments, and set other target-specific options.

4 Build your model to your target hardware.

Memory Maps. Memory maps are an essential part of targeting processors
or boards. Without the map, the code generation process cannot determine
where various features of the generated code, such as variables, data, and
executable code, reside on the target hardware.

To discuss memory maps and configuring memory, a few terms need to be
defined:

• Memory map — Map of the memory space for a target system. The memory
space is partitioned into functional blocks.

• memory segment — Memory partition that corresponds to a physical range
of memory on the target hardware. The segment is named in some fashion,
such as IPRAM or SDRAM.

• Memory section — The smallest unit of an object file. This is a block of data
or code that, based on the memory map, resides in an area of contiguous
memory on the target and in the memory map. Sections of object files are
both distinct and separate. Memory sections come in two flavors:

- Uninitialized sections that reserve memory space for uninitialized data.
One example of an uninitialized section is .bss. The .bss section reserves
space for variables that are not initialized.

- Initialized sections contain code and data. The .text (containing
executable code) and .data (containing initialized data) sections are
initialized.

• Memory management — Process of specifying the memory segments that
the various memory sections use for your application. A logical memory
map of the hardware memory results from the process of managing memory.

During code generation, the linker and assembler work to allocate your code
and data into the memory on your target according to the memory map
specifications you provide. For more information about memory utilization
and memory management, refer to the CCS IDE online help, using keywords
like memory map, memory segment, and section.

45-51

45 Working with Texas Instruments™ C6000™ Processors

The compiler does not interact with the memory map. It does not have
information about memory allocation or the memory map. As far as the C6000
compiler is concerned, the physical memory on your target is one continuous
linear block of memory that is subdivided into smaller blocks containing code,
data, or both.

When you configure the Target Hardware Resources pane, you are setting up
the memory map for your target hardware. You specify the memory segments
that are defined and the contents of each segment. You specify the sections,
both named and default, and the segments to which the sections are assigned.

These memory management functions are identical to the ones available
in the CCS IDE Configuration Tool.

Targeting a Custom Target
To use a board that has a TI C6000 processor but is not one of the supported
boards, configure the Target Hardware Resources pane as described in this
section.

Configuring the block parameters software about your target hardware and
how to generate code that will run on the target hardware.

1 Configure your model as described in “Configure Target Hardware
Resources” on page 35-3, setting the Board parameter to C6000 Custom.

2 Select your target hardware from the Processor list. Most of the C6000
family of DSP processors are on the list. If the one you need is not listed,
pick one that closely matches your target hardware.

3 Set the actual CPU clock rate for the CPU on your target in the CPU
Clock parameter. Report the clock speed of the processor on your target
hardware. When you enter a value, you are not changing the CPU clock
rate, you are reporting the actual rate. If the value you enter does not
match the rate on the target, your model real-time results and code
profiling results might be wrong. You must enter the actual clock rate the
board uses. The rate you enter here does not change the rate on the board.
Setting the CPU clock parameter to the actual board rate allows the code
you generate to run well according to the actual clock rate of the hardware.

45-52

Targeting C6000™ DSP Hardware

4 If your target is a simulator rather than a hardware target, use the Get
from IDE button on the Board pane of the Target Hardware Resources
pane. Then set Board Name under IDE Support to one of the simulators
installed with your IDE.

5 To enable the Embedded Coder to connect to CCS IDE, select your target
from the Board Name list. On this list you see the names of the boards
you have configured in the CCS Setup Utility. If your target board does
not appear on the list, start CCS Setup and add your board to the System
Configuration dialog.

6 Select the processor to target from the Processor Name list. For the board
you selected in Board Name, Processor Name lists the processors on
the board. The list comes from the processors you added to the board in
the CCS Setup Utility.

Now you have completed the process of identifying your target to the
Embedded Coder and Simulink Coder software. While this process is
required, it represents only one small part of enabling you to generate code to
run on your custom board.

One very important part of targeting custom hardware is to provide the target
memory map configuration to the linker and assembler.

Memory and Section panes on the Target Hardware Resources pane in the
Configuration Parameters dialog provide the controls required to specify
how the linker and assembler arrange the code, data, and variables on your
target hardware.

Memory Pane. The information that follows describes the options on the
panes in detail.

The Memory pane contains memory options in three areas:

• Physical Memory specifies the mapping for processor memory

• Heap specifies whether you use a heap and determines the size in words

• L2 Cache enables the L2 cache (where available) and sets the size in kB

45-53

45 Working with Texas Instruments™ C6000™ Processors

Be aware that these options can change the options on the Section pane.
You can make selections here that change how you configure options on the
Section pane.

Most of the information about memory segments and memory allocation is
available from the Code Composer Studio online help.

Physical Memory Options. This list shows the physical memory segments
available on the board and processor. By default, Target Hardware Resources
pane shows the memory segments found on the selected processor. In
addition, the Memory pane shows the memory segments available on the
board, but off of the processor. Target Hardware Resources pane has default
starting addresses, lengths, and contents of the default memory segments.

The default memory segments for each processor and board are different.
For example:

• Custom boards based on C670x processors provide IPRAM and IDRAM
memory segments by default.

• C6713 DSK boards provide SDRAM memory segment by default

Name. When you highlight an entry on the Physical memory list, the
name of the entry appears here. To change the name of the existing memory
segment, select it in the Physical memory list and then type the new name
here.

Note You cannot change the names of default processor memory segments.

To add a new physical memory segment to the list, click Add, replace the
temporary label in Name with the one to use, and press Return. Your new
segment appears on the list.

After you add the segment, you can configure the starting address, length,
and contents for the new segment. New segments start with code and data as
the type of content that can be stored in the segment (refer to the Contents
option).

45-54

Targeting C6000™ DSP Hardware

Names are case sensitive. NewSegment is not the same as newsegment or
newSegment.

Address. Address reports the starting address for the memory segment
showing in Name. Address entries are in hexadecimal format and limited
only by the board or processor memory.

When you are using a processor-specific preferences block, the starting
address shown is the default value. You can change the starting value by
entering the new value directly in Address when you select the memory
segment to change.

Length. From the starting address, Length sets the length of the memory
allocated to the segment in Name. As in the memory entries, specify the
length in hexadecimal format, in minimum addressable data units (MADUs).
For the C6000 processor family, the MADU is 8 bytes, one word.

When you are using a processor-specific preferences block, the length shown
is the default value. You can change the value by entering the new value
directly in this option.

Contents. Contents describes the kind of program sections that you can
store in the memory segment in Name. As the processor type for the Target
Hardware Resources pane changes, the kinds of information you store in
listed memory segments can change. Generally, the Contents list contains
these strings:

• Code— Allow code to be stored in the memory segment in Name.

• Data— Allow data to be stored in the memory segment in Name.

• Code and Data— Allow code and data to be stored in the memory segment
in Name. When you add a new memory segment, this is the default setting
for the contents of the new element.

You can add or use as many segments of each type as you need, within the
limits of the memory on your processor.

45-55

45 Working with Texas Instruments™ C6000™ Processors

Add. Click Add to add a new memory segment to the target memory map.
When you click Add, a new segment name appears, for example NEWMEM1, in
Name and on the Physical memory list. In Name, change the temporary
name NEWMEM1 by entering the new segment name. Entering the new name, or
clicking Apply updates the temporary name on the list to the name you enter.

Remove. This option lets you remove a memory segment from the memory
map. Select the segment to remove in the Physical memory list and click
Remove to delete the segment.

Create Heap. If your processor supports using a heap, as does the C6713,
for example, selecting this option enables creating the heap and enables the
Heap size option. Create heap is not available on processors that either do
not provide a heap or do not allow you to configure the heap.

Using this option you can create a heap in a memory segment on the Physical
memory list. Select the memory segment on the list and then select Create
heap to create a heap in the select segment. After you create the heap, use
the Heap size and Define label options to configure the heap.

The location of the heap in the memory segment is not under your control.
The only way to control the location of the heap in a segment is to make the
segment and the heap the same size. Otherwise, the compiler determines the
location of the heap in the segment.

Heap Size. After you select Create heap, this option lets you specify the
size of the heap in words. Enter the number of words in decimal format. When
you enter the heap size in decimal words, the system converts the decimal
value to hexadecimal format. You can enter the value directly in hexadecimal
format as well. Processors may support different maximum heap sizes.

Define Label. Selecting Create heap enables this option that allows you to
name the heap. Enter your label for the heap in the Heap label option.

Heap Label. Selecting Define label enables this option. You use Heap
Label to provide the label for the heap. Don’t use reserved characters in
C/C++ compilers.

45-56

Targeting C6000™ DSP Hardware

Enable L2 Cache. C621x, C671x, and C641x processors support an L2 cache
memory structure that you can configure as SRAM and partial cache. Both
the data memory and the program share this second-level memory. C620x
DSPs do not support L2 cache memory, and this option is not available when
you choose one of the C620x processors as your target hardware.

If your processor supports the two-level memory scheme, this option enables
the L2 cache on the processor.

L2 Cache Size. After you enable the L2 cache, select the size of the cache
from the list.

Section Pane
Options on this pane let you specify where various program sections should go
in memory. Program sections are distinct from memory segments—sections
are portions of the executable code stored in contiguous memory locations.
Among the sections used generally are .text, .bss, .data, and .stack. Some
sections relate to the compiler, some to DSP/BIOS, and some can be custom
sections as you require.

For more information about program sections and objects, refer to the CCS
IDE online help. Most of the definitions and descriptions in this section
come from CCS IDE.

In the pane shown in the preceding figure, you configure the allocation of
sections for Compiler, DSP/BIOS, and Custom needs.

This table provides brief definitions of the various kinds of sections in the
Compiler, DSP/BIOS, and Custom lists. Some sections do not appear on
both lists. The string appears on the list shown in the table.

String Section List
Description of the Section
Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in the
code

45-57

45 Working with Texas Instruments™ C6000™ Processors

String Section List
Description of the Section
Contents

.bios DSP/BIOS DSP/BIOS code if you are using
DSP/BIOS options in your program

.cinit Compiler Tables for initializing global and
static variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier
and string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global,
defined as far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS
startup initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service
routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the
target program can read

.pinit Compiler Load allocation of the table of global
object constructors section.

.stack Compiler The global stack

.switch Compiler Jump tables for switch statements
in the executable code

.sysdata DSP/BIOS Data about DSP/BIOS

.sysinit DSP/BIOS DSP/BIOS initialization startup
code

.sysmem Compiler Dynamically allocated object in the
code containing the heap

45-58

Targeting C6000™ DSP Hardware

String Section List
Description of the Section
Contents

.text Compiler Load allocation for the literal
strings, executable code, and
compiler generated constants

.trcdata DSP/BIOS TRC mask variable and its initial
value section load allocation

You can learn more about memory sections and objects in your Code Composer
Studio online help.

Compiler Sections. During program compilation, the C6000 compiler
produces both uninitialized and initialized blocks of data and code. These
blocks are allocated into memory as required by the configuration of your
system. On the Compiler Sections list you find both initialized (sections
that contain data or executable code) and uninitialized (sections that reserve
space in memory) sections. The initialized sections are

• .cinit

• .const

• .switch

• .text (created by the assembler)

These sections are uninitialized:

• .bss (created by the assembler)

• .far

• .stack

• .sysmem

Other sections appear on the list as well:

• .data (created by the assembler)

• .cio

45-59

45 Working with Texas Instruments™ C6000™ Processors

• .pinit

Note The C/C++ compiler does not use this section.

When you highlight a section on the list, Description shows a brief
description of the section. Also, Placement shows you where the section is
currently allocated in memory.

Description. Provides a brief explanation of the contents of the selected
entry in the Compiler Sections list.

Placement. Shows you where the selected Compiler Sections list entry
is allocated in memory. You change the memory allocation by selecting a
different location from the Placement list. The list contains the memory
segments as defined in the physical memory map on the Memory pane.
Select one of the listed memory segments to allocate the highlighted compiler
section to the segment.

DSP/BIOS Sections. During program compilation, DSP/BIOS produces
both uninitialized and initialized blocks of data and code. These blocks get
allocated into memory as required by the configuration of your system. On
the DSP/BIOS sections list you find both initialized (sections that contain
data or executable code) and uninitialized (sections that reserve space in
memory) sections.

Description. Provides a brief explanation of the contents of the selected
DSP/BIOS Sections list entry.

Placement. Shows where the selected DSP/BIOS Sections list entry is
allocated in memory. You change the memory allocation by selecting a
different location from the Placement list. The list contains the memory
segments available on C6000 processors, and changes based on the processor
you are using.

45-60

Targeting C6000™ DSP Hardware

DSP/BIOS Object Placement. Distinct from the entries on the DSP/BIOS
Sections list, DSP/BIOS objects like LOG, if your project uses them, are
placed in the memory segment you select from the DSP/BIOS Object
Placement list. The DSP/BIOS objects use the same memory segment. You
cannot select the locations for individual objects.

Custom Sections. When your program uses code or data sections that are
not included in either the Compiler Sections or DSP/BIOS Sections lists,
you add the new sections to this list. Initially, the Custom Sections list does
not contain fixed entries, just a placeholder for a section for you to define.

Name. You enter the name for your new section here. To add a new section,
click Add. Then replace the temporary name with the name to use. Although
the temporary name includes a period at the beginning, you do not need to
include the period in your new name. Names are case sensitive. NewSection
is not the same as newsection, or newSection.

Placement. With your new section added to theName list, select the memory
segment to which to add your new section. Within the restrictions imposed by
the hardware and compiler, you can select a segment that appears on the list.

Add. Clicking Add lets you configure a new entry to the list of custom
sections. When you click Add, the block provides a new temporary name
in Name. Enter the new section name to add the section to the Custom
Sections list. After typing the new name, click Apply to add the new section
to the list. Or click OK to add the section to the list and close the dialog.

Remove. To remove a section from the Custom Sections list, select the
section to remove and click Remove. The selected section disappears from
the list.

To Create Memory Maps for Targets
Although each processor has memory map requirements, the C6000 DSP
family of processors share some memory features and not others. Details
of the memory sections and segments, as well as memory allocations and
limitations for each processor, are provided in your documentation for CCS
IDE and from TI.

45-61

45 Working with Texas Instruments™ C6000™ Processors

To manage the memory on your processor, set the options within these panes
to specify the memory allocation to use. Recall that the memory map is
the result of the settings you provide for the options in the Memory and
Section panes in the Target Hardware Resources pane in the Configuration
Parameters dialog.

Unfortunately, each processor has different needs, and the differences make
it impossible to provide details about how you set the options for your target
hardware. You determine, from your model and code

• What memory segments you require

• Which sections you need and where

• Whether you need custom memory segments and sections

• Where to begin each memory segment and how much memory to allot to
each segment

• Other information that you need to set the options on the Memory and
Section panes

After you configure the options in the Target Hardware Resources pane in
the Configuration Parameters dialog, you are ready to set the Simulink
Configuration Parameters for your model and generate code.

Using Embedded Coder Software

• “Introduction” on page 45-62

• “To Use the Embedded Coder Target File” on page 45-63

Introduction
To take advantage of Embedded Coder software features, you must migrate
your models to a system target file called idelink_ert.tlc. This target is
based on the embedded real-time target (ERT) used by Embedded Coder
software. Other Embedded Coder target files are based on the generic
real-time target (GRT).

To use Embedded Coder software, choose the system target file
idelink_ert.tlc, available in the System Target File Browser.

45-62

Targeting C6000™ DSP Hardware

If you simply choose the system target file idelink_ert.tlc in the System
Target File Browser directly to change the target for the model, the Coder
Target options are reset to default values by the switch. The C6000-specific
options are the same between the two system target files.

You can set your model to use this system target file the usual way, via the
System Target File Browser, available from the Simulink Coder pane
in the Configuration Parameters dialog. However, when you use the system
target browser to switch your model between the ERT- and GRT-based TI
C6000 system target files, the TI C6000-specific options (the configuration
set) for the model are reset to default values.

To Use the Embedded Coder Target File
For setting up a new model to use the ERT-based target .tlc file.

1 From your model menu bar, select Simulation > Model Configuration
Parameters.

2 In the Configuration Parameters dialog, select the Code Generation pane.

3 Click Browse to open the System Target File Browser.

4 On the System Target File Browser, find and select the file
idelink_ert.tlc.

5 Click OK.

45-63

45 Working with Texas Instruments™ C6000™ Processors

Targeting with DSP/BIOS Options

In this section...

“Introducing DSP/BIOS” on page 45-64

“DSP/BIOS and Targeting Your C6000 DSP” on page 45-65

“Code Generation with DSP/BIOS” on page 45-68

“Profiling Generated Code” on page 45-72

“Generating Code for C64x+ Processors or Boards” on page 45-85

Introducing DSP/BIOS
Embedded Coder software supports DSP/BIOS features as options when you
generate code for your target hardware. In the following sections, read more
about DSP/BIOS, how the Embedded Coder incorporates DSP/BIOS features
into your generated code, and ways to use the real-time operating system
(RTOS) features of DSP/BIOS in your applications. Follow these links for more
information on specific areas that interest you, or read on for more details.

• “DSP/BIOS and Targeting Your C6000 DSP” on page 45-65

• “Code Generation with DSP/BIOS” on page 45-68

• “Profiling Generated Code” on page 45-72

• “Generating Code for C64x+ Processors or Boards” on page 45-85

As a part of the Texas Instruments eXpressDSP™ technology, TI designed
DSP/BIOS to include three components:

• DSP/BIOS Real-Time Analysis Tools — use these tools within Code
Composer Studio IDE to view your program as it executes on the target
in real time.

• DSP/BIOS Configuration Tool — enables you to add and configure
DSP/BIOS objects that you use to instrument your application. Use this
tool to configure interrupt schedules and handlers, set thread priorities,
and configure the memory layout on your DSP.

45-64

Targeting with DSP/BIOS™ Options

• DSP/BIOS Application Program Interface (API) — use C or assembly
language functions to access DSP/BIOS functions by calling over 150 API
functions. Embedded Coder software uses the API to access DSP/BIOS.

You link these components into your application, directly or indirectly
referencing only functions you need for your application to run efficiently and
optimally. Only functions that you specifically reference become part of your
code base. To avoid adding unused code to your project, the software excludes
functions you do not reference. After you add DSP/BIOS functions, the
configuration tool helps you disable features you do not need later, optimizing
your program for speed and size.

For details about DSP/BIOS and what it can do for your applications, refer to
your CCS IDE and DSP/BIOS documentation from Texas Instruments.

DSP/BIOS and Targeting Your C6000 DSP

• “Introduction” on page 45-65

• “DSP/BIOS Configuration File” on page 45-66

• “Memory Mapping” on page 45-67

• “Hardware Interrupt Vector Table” on page 45-67

• “Linker Command File” on page 45-67

Introduction
When you generate code from your DSP model, you can include DSP/BIOS
features provided by Embedded Coder software.

Including DSP/BIOS in your generated project adds the following files to
your project:

• modelname.tcf — a DSP/BIOS configuration file

• modelnamecfg.s62 — contains the DSP/BIOS objects required by your
application and the vector table for the hardware interrupts.

• modelnamecfg.h62— the header file for modelnamecfg.s62.

• modelnamecfg.h — model configuration header file.

45-65

45 Working with Texas Instruments™ C6000™ Processors

• modelnamecfg_c.c — source code for the model.

• modelnamecfg.cmd — the linker command file for the project. Adds the
required DSP/BIOS libraries and the library RTS6201.lib, or the run-time
support library for your target hardware.

The executable code and source code you generate when you use the DSP/BIOS
option are not the same as the code generated without DSP/BIOS included.

Instead of incorporating the DSP/BIOS files manually, as you would with CCS
IDE, the Embedded Coder software starts from your Simulink model and adds
the DSP/BIOS files automatically. As it adds the files, the support package:

• Configures the DSP/BIOS configuration file for your model needs

• Sets up the objects you use to analyze your program while it runs on your
target

• Handles memory mapping to optimize your code based on the blocks in
your model

DSP/BIOS Configuration File
DSP/BIOS projects have a file with the extension .tcf. The file contains the
DSP/BIOS configuration information for your project, in the form of objects
for instrumenting and scheduling tasks in the program code. A DSP/BIOS
project can include the following files:

• Log (LOG) objects for logging events and messages (replace the *printf
statements, for instance)

• A clock (CLK) object for configuring the clock on your target, and various
memory functions

• Hardware and software interrupt (HWI, SWI) objects that control program
execution

• Other objects you use to meet your needs

Your TI DSP/BIOS documentation can provide the details about the objects
and how to use them. In addition, your installed software from TI includes
tutorials to introduce you to using DSP/BIOS in projects.

45-66

Targeting with DSP/BIOS™ Options

Not all of the DSP/BIOS objects get used by the code you generate from
Embedded Coder software. In the next sections, you learn about which objects
the targeting software uses and how. You can still add more objects to your
code through CCS IDE.

If you add DSP/BIOS objects beyond those provided by the Embedded Coder,
you lose your additions when you regenerate code from your Simulink model.

Memory Mapping
Memory mapping that takes place in the linker command file now appears
in the MEM object in the DSP/BIOS configuration file. Your memory sections,
such as the DATA_MEM assignments and definitions, move to the MEM object,
as do the memory segments. After completing this conversion, the memory
assignment portions of your non-DSP/BIOS linker command file are not
required in the linker command file.

Hardware Interrupt Vector Table
In non-DSP/BIOS project, the assembly language file vector.asm in your
project defines the hardware interrupt vector table. This file defines which
interrupts your project uses and what each one does.

When you use DSP/BIOS, the interrupts defined in the vector table move to
the Hardware Interrupt Service Routine Manager in the CCS Configuration
Tool. With your interrupts defined as Hardware Interrupts (HWI) in the
Configuration Tool, your project does not need vector.asm, so the file does
not appear in your DSP/BIOS enabled projects.

Linker Command File
After migrating your memory sections, segment, and hardware interrupt
vector table to the configuration file, building with the DSP/BIOS option
creates a compound linker command file. Because DSP/BIOS allows only one
command file per project, and your linker file may comprise command options
that did not relocate the DSP/BIOS configuration, Embedded Coder software
uses compound command files. Compound command files work to let your
project use more than one command file.

By starting your original linker command file with the statement

45-67

45 Working with Texas Instruments™ C6000™ Processors

"-lmodelnamecfg.cmd"

added as the first line in the file, your DSP/BIOS enabled project uses both
your original linker command file and the DSP/BIOS command file. You get
the features provide by DSP/BIOS as well as the custom command directives
you need.

Code Generation with DSP/BIOS

• “Overview” on page 45-68

• “Enabling DSP/BIOS When You Generate Code” on page 45-68

• “Generated Code Without and With DSP/BIOS” on page 45-69

Overview
While generating code that includes the DSP/BIOS options is straightforward,
changes occur between code that does not include DSP/BIOS and code that
does. Two things change when you generate code with DSP/BIOS—files are
added and removed from the project in CCS IDE, and DSP/BIOS objects
become part of your generated code. With these in place, you can use the
DSP/BIOS features in CCS IDE to debug your project, as well as use the
profiling option in Embedded Coder software to check the performance of your
application running on your target hardware.

Enabling DSP/BIOS When You Generate Code
To include DSP/BIOS when you generate code from a model:

1 Open the model.

2 Configure your model as described in “Configure Target Hardware
Resources” on page 35-3.

3 On the Target Hardware Resources pane, select the Board pane, and set
the Operating system parameter to DSP/BIOS.

45-68

Targeting with DSP/BIOS™ Options

Generated Code Without and With DSP/BIOS
The next two figures show the results of generating code without and with the
DSP/BIOS option enabled in the Simulation Parameters dialog.

CCS 3.3 IDE c6713dskwdnoisf.pjt Project Without DSP/BIOS. When
you create your project in CCS IDE, the folder structure looks like this.

45-69

45 Working with Texas Instruments™ C6000™ Processors

CCS 3.3 IDE c6713dskwdnoisf.pjt Project with DSP/BIOS. If you now
create a project that includes DSP/BIOS, the folder structure for your project
changes to look like the following figure.

Added File Description

modelname.tcf Contains the DSP/BIOS objects required by your
application, and the vector table for the hardware
interrupts

modelnamecfg.s62 Shows the included files in your project, the
variables, the DSP/BIOS objects, and more in this
file generated from the .tcf file

modelnamecfg.h62 The header file for modelnamecfg.s62

modelnamecfg.h Model configuration header file

45-70

Targeting with DSP/BIOS™ Options

Added File Description

modelnamecfg_c.c Source code for the model

modelnamecfg.cmd The linker command file for the project. Adds
the required DSP/BIOS libraries and the library
RTS6201.lib or the run-time support library for your
target hardware.

Notice that the new folder includes some new files, shown in the next table.

With DSP/BIOS functions enabled for your project, the following files do not
appear in your project.

Filename Description

vectors.asm Defines the hardware interrupts (HWI) used by
interrupt service routines on the processor. This
file is removed after the hardware interrupts
appear in the HWI section of the Configuration
Tool.

Original linker
command
file—modelname.cmd

Assigns memory sections on the processor. This
file is removed if the SECTION directive is
empty because the section assignments moved to
the configuration file. Otherwise, include call to
the DSP/BIOS command file.

Some *.lib files Provide access to libraries for the processor, and
peripherals. These files are removed if their
contents have been incorporated in the new
compound linker command file.

When you investigate your generated code, notice that the function main
portion of modelname_main.c includes different code when you generate
DSP/BIOS-enabled source code, and modelname_main.c incorporates one or
more new functions.

45-71

45 Working with Texas Instruments™ C6000™ Processors

Profiling Generated Code

• “Overview” on page 45-72

• “Profiling Subsystems” on page 45-73

• “Details About Timing and Profiling” on page 45-74

• “Profiling Multitasking Systems” on page 45-75

• “The Profiling Report” on page 45-76

• “Interrupts and Profiling” on page 45-78

• “Reading Your Profile Report” on page 45-79

• “Definitions of Report Entries” on page 45-80

• “Profiling Your Generated Code” on page 45-82

• “To Enable Profiling for Your Generated Code” on page 45-82

• “To Create Atomic Subsystems for Profiling” on page 45-83

Overview
When you use Embedded Coder software to generate code that incorporates
the DSP/BIOS options, you can easily profile your generated code to gauge
performance and find bottlenecks.

By selecting Profile real-time execution in the Embedded Coder software
options, Embedded Coder software inserts the profiling instrumentation at
the beginning and end of the code for each atomic subsystem in your model.

After your code has been running for a few seconds on your target, you can
retrieve the profiling results from your target and display the information
in a custom HTML report.

Code profiling works only on atomic subsystems in your model. To allow
the Embedded Coder to profile your model when you build it in Simulink
Coder software, you convert segments of your model into atomic subsystems
using Diagram > Subsystem & Model Reference > Create Subsystem
from Selection.

45-72

Targeting with DSP/BIOS™ Options

By designating subsystems of your model as atomic, you force each subsystem
to execute only when all of its inputs are available. Waiting for the subsystem
inputs to be available before running the subsystem allows the subsystem
code to be profiled as a contiguous segment.

To enable the profile feature for your Simulink model, select
Simulation > Model Configuration Parameters from the model menu
bar. Under Code Generation, select the Coder Target pane and enable the
Profile real-time execution parameter.

Profiling Subsystems
Nested subsystems are profiled as part of their parent systems—the execution
time reported for the parent subsystem includes the time spent in profiled
child subsystems. You cannot profile child subsystems separately.

For models that include multiple sample times, one or more subsystems
in your model might not be included in the profiling process. When your
model is configured to use single-tasking mode, the atomic subsystems in
your model are profiled and appear in the report. When your model uses
multitasking (refer to your Simulink Coder documentation for more about
multitasking models) profiling applies only to single-rate subsystems that
execute at the base rate of your model. This limitation arises because all
of the generated code segments must execute contiguously for the profiling
timing measurements to be accurate. Setting the Tasking mode for
periodic sample times to Auto in the model Configuration Parameters
does not necessarily result in contiguous execution for the code segments
and subsystems.

Notice two things in your code:

• STS objects are added to the generated code

• A generated DSP/BIOS configuration gets added to the project configuration
file

Embedded Coder software inserts and configures these objects specifically for
profiling your code. You do not have to make changes to the STS objects. To
see the statistics objects in use, download your generated application to your
board, select DSP/BIOS > Statistics View from the menu bar in CCS IDE,

45-73

45 Working with Texas Instruments™ C6000™ Processors

and run the board for a few seconds. You see the statistics being accumulated
by the STS objects.

Details About Timing and Profiling
The profiling system in Embedded Coder software relies on DSP/BIOS STS
objects and the CLK_gethtime() function. CLK_gethtime() returns a high
resolution timing counter that enables profiling to measure the instruction
cycles the CPU spends executing code segments. To understand profiling, you
need to understand how CLK_gethtime() works.

This is how the system determines the value of CLK_gethtime:

CLK_gethtime() return val = CLK_getltime() *PRD0 + CNT0

PRD0 and CNT0 are timer 0 period and counter registers. In code generation,
BIOS allocates timer 0 as a system timer and set the timer to generate a
timer interrupt every 1ms. CLK_getltime() in turn returns the number of
BIOS system timer interrupts. By this logic, PRD0 is set to the number of
CPU clock cycles divided by the number of low resolution clock cycles that is
equivalent to 1 millisecond in absolute time (8 low resolution clock cycles for
C64x processors, for example).

The key point here is that function CLK_gethtime() relies on the
CLK_getltime() function which in turn relies on a timer 0 interrupt. If
your process globally disables interrupts during code execution for more
than 1 PRD0 instruction cycle, one or more timer interrupts can be missed,
resulting in a situation where both CLK_getltime() and CLK_gethtime()
can be inaccurate.

CLK_getltime() will be inaccurate because it does not report the time value
properly. But it is positive. The situation is worse for CLK_gethtime() It may
report negative timing around code segments where interrupts are disabled:

A = CLK_gethtime();
IRQ_globalDisable();
{

Code segment;
}
IRQ_globalEnable();
B = CLK_gethtime();

45-74

Targeting with DSP/BIOS™ Options

In this situation, if interrupts are disabled longer than 1ms around the code
segment to be profiled, B might be smaller than A since CTN0 might have
rolled over. So the count of the instruction cycles computed as (B - A) might
be negative.

Correcting Inaccurate Profile Information Due to Timing. One way to
solve problems in profiling caused by the disabled interrupts is to set the
DSP/BIOS system timer interrupt to occur less frequently. As noted earlier,
the timer is set to 1 millisecond by default.

You can change setting manually after you generate code for your project.
Here are the steps to use to reset the DSP/BIOS system timer interval.

1 Open the .tcf file for the project.

2 Select Scheduling > CLK Clock Manager.

3 Right-click CLK Clock Manager to set the properties for the clock manager.

4 Change the Microseconds/Int value from the default 1000.00
microseconds to something larger, for example, 5000.00 microseconds.

5 Save the project.

This timing change reduces the chances of missing a system timer interrupt.
If you do this and profile the code again, the profiling results improve.. You
can verify that if you reduce the system timer interrupt interval further, to
perhaps 100 microseconds, the profiling results degrade, possibly reporting
negative timing values.

Profiling Multitasking Systems
For a multitasking system, DSP/BIOS STS objects cannot reliably measure
the time the processor spends in the tasks. When tasks can be preempted
by other tasks (a result of multitasking operation), the profile timing
measurements may be inaccurate. For this reason, Embedded Coder software
includes profiling instrumentation for atomic systems that run at the base
sample rate only.

When you run the same model in single tasking mode, you can get the timing
measurements for the systems in your model for one iteration:

45-75

45 Working with Texas Instruments™ C6000™ Processors

1 Select Simulation > Model Configuration Parameters from the model
menu bar.

2 On the Solver pane, set Tasking mode for periodic sample times to
SingleTasking.

3 Rebuild and execute your model on your C6000 hardware.

The program will probably overrun immediately since single tasking mode
requires that the tasks complete within the base sample time which usually
does not happen. However, the systems and subsystems do run once before
the program terminates. This allows you to obtain profiling results for the
systems.

When the overrun occurs, click Halt in CCS IDE to stop DSP/BIOS operation.

Then, enter CCS_Obj.profile('report') at the MATLAB prompt to report
the statistics measurements.

Now you can view the timing measurements for each subsystem. Keep in
mind that the percentages are given relative to the base sample time, so you
must do some arithmetic to figure out whether a given system will fit in its
available time interval. For instance, if your base sample time is 1 second,
subsystem A executes every 3 seconds, the base-rate task takes 0.1 seconds
to run, and A takes 2.5 seconds to run, the system should execute without
overruns in multitasking mode.

If you change the overrun action option from its default setting of Notify
and halt to Notify and continue or None, you can get measurements for
multiple iterations of the system. Also, you will be able to request the profile
report without first halting the CPU.

The Profiling Report
To help you measure subsystem performance, Embedded Coder software
provides a custom report that analyzes and displays the profile statistics.
The report shows you the amount of time spent computing each subsystem,
including Outputs and Update code segments, and provides links that open
the corresponding subsystem in the Simulink model.

45-76

Targeting with DSP/BIOS™ Options

To view the profiling report, enter

profile(IDE_Obj,'report')

at the MATLAB prompt, where IDE_Obj is the handle to your target and CCS
IDE, and report is one of the input arguments for profile.

When you generate the report, the Embedded Coder stores the report in your
code generation working folder, something like modelname.c6000.rtw, with
the name profileReport.html.

If the MATLAB® software cannot find your code generation folder, the profile
reports is stored in your temporary folder, tempdir. To locate your temporary
folder, enter

tempdir

at the MATLAB command prompt.

Caution Each time you run the profiling process, the software replaces
your existing report with a newer version. To save earlier reports, rename
and save the report before you generate a new one, or change your destination
temporary folder in the MATLAB workspace.

You must invoke profile after your Simulink Coder build, without clearing
MATLAB memory between operations, so that stored information about the
model is still available to the report generator. If you clear your MATLAB
memory, information required for the profile report gets deleted and the
report does not work well. When this occurs, and if you have a CCS IDE
project that was previously created with Simulink Coder software, you must
repeat the Simulink Coder build to see the subsystem-based profile analysis
in the report.

Trace each subsystem presented in the profile report back to its corresponding
subsystem in your Simulink model by clicking a link in the report. (The
mapping from Simulink subsystems to generated system code is complex
and thus not detailed here.) Inspect your generated code, particularly
modelname.c, to determine where and how Simulink and Simulink Coder
software implemented particular subsystems.

45-77

45 Working with Texas Instruments™ C6000™ Processors

Within the generated code, you see entries like the following that define STS
objects used for profiling.

STS_set(&stsSys0_Output, CLK_gethtime());

or

STS_delta(&stsSys0_Output, CLK_gethtime());

This pair of code examples perform the profiling of the code section that lies
between them in modelname.c.

In CCS IDE, STS objects show up in the Statistics Object Manager section
under Instrumentation in the modelname.tcf file. Double-click the file
modelname.tcf in the CCS IDE tree view to open the file and see the sections.

In some cases, Simulink Coder software may have pruned unused data paths,
causing related performance measurements to become meaningless. Reusable
system code, or code reuse, where a single function is called from multiple
places in the generated code, can exhibit extra measurements in the profile
statistics, while the duplicate subsystem may not show valid measurements.

Interrupts and Profiling
Although there are STS objects that measure the execution time of the
entire mdlOutputs and mdlUpdate functions, those measurements can be
misleading because they do not include other segments of code that execute
at each interrupt. Statistics for the SWI are used when calculating the
headroom (the difference between the number of CPU cycles your process
requires to complete and the number available for the process to complete,
which does not include the small overhead required for each interrupt. Note
that profiling of multitasking systems does not measure the headroom. In
addition, multitasking profiling does not use the SWI statistics.

To measure the overall application CPU usage, consider the DSP/BIOS
IDL statistics, which measure time spent not doing application work.
Your DSP/BIOS documentation from TI provides details about the various
DSP/BIOS objects in the tcf file.

The interrupt rate for a DSP/BIOS application created by Embedded Coder
software is the fastest block execution rate in the model. The interrupt rate

45-78

Targeting with DSP/BIOS™ Options

is often the same as the codec frame rate. When there is an upsampling
operation or other rate increasing operation in your model, interrupts are
triggered by a timer (PRD) object at the faster rate. You can determine
the effective interrupt rate of the model by inverting the interrupt interval
reported by the profiler.

Profiling subsystems that contain “blocking” device drivers, such as the
ADC/DAC blocks and C6000 UDP Receive blocks may produce inaccurate and
misleading results, raising values for Max time spent in this subsystem
per interrupt and Max percent of base interval by many orders of
magnitude. To avoid this problem, design subsystems to isolate blocking
device drivers from algorithmic and other processing functions, and configure
profiling appropriately.

Reading Your Profile Report
After you have the report from your generated code, you need to interpret
the results. This section provides a link to sample report from a model and
explains each entry in the report.

Sample of a Profile Report. When you click Sample Profile Report, the
sample report opens in a new Help browser window. This opens the sample
report in a new window so you can read the report and the descriptions of the
report contents at the same time. Running the model c6713dskwdnoisf with
DSP/BIOS generates the sample profile report. The next sections explain
the headings in the report—what they mean and how they are measured
(where that applies).

Report Heading Information. At the beginning of the report, profiling
provides the name of the model you profiled, the target you used, and the date
of the report. Since the report changes each time you run it, the date can be
an important means of tracking model development.

Report Subsections and Contents. Within the body of your profile report,
sections report the overall performance of your generated code and the
performance of each atomic subsystem.

45-79

45 Working with Texas Instruments™ C6000™ Processors

Report Heading Description

Timing Constants Shows you the base sample time in your model
(=1/base rate in Hz) and the CPU clock speed used
for the analysis.

Profiled Simulink
Subsystems

Presents the statistics for each profiled subsystem
separately, by subsystem. Each listing includes
the STS object name or names that instrument
the subsystem.

STS Objects Lists every STS object in the generated code and
the statistics for each. DSP/BIOS uses these
objects to determine the CPU load statistics. For
more information about STS objects, refer to your
DSP/BIOS documentation from TI.

STS objects that are associated with subsystem profiling are configured for
host operation at 4*x, reflecting the numerical relationship between CPU
clock cycles and high-resolution timer clicks, x. STS Average, Max, and
Total measurements return their results in counts of instructions or CPU
clock cycles.

Definitions of Report Entries
In the following sections, we provide definitions of the entries in the profile
report. These definitions help you decipher the report and better understand
how your process is performing.

System name. Provides the name of the profiled model, using the form
targetnameprofile. targetname is the processor or board assigned as the
target, via the Target Hardware Resources pane.

Number of Iterations Counted. The number of interrupts that occurred
between the start of model execution and the moment the statistics were
obtained.

45-80

Targeting with DSP/BIOS™ Options

CPU Clock Speed. The instruction cycle speed of your digital signal
processor. On the C6713 DSK, you can adjust this speed to one of four
values, where 100 MHz is the default—25, 33.25, 100, 133 MHz. If you
change the speed to something other than the default setting of 100 MHz, you
must specify the new speed in the Simulink Coder software options. Use
the Current C6713DSK CPU clock rate option on the TIC6000 runtime
category on the Simulink Coder tab.

Set at a fixed 150 MHz, you cannot change the CPU clock rate on the C6713
DSK. You do not need to report the setting in the Simulink Coder software
options.

Maximum Time Spent in This Subsystem per Interrupt. The amount of
time spent in the code segment corresponding to the indicated subsystem in
the worst case. Over the iterations measured, the maximum time that occurs
is reported here. Since the profiler only supports single-tasking solver mode,
a calculation can not be preempted by a new interrupt. Calculations for the
subsystems must complete within one interrupt cycle, even for subsystems
that execute less often than the fastest rate.

Maximum Percent of Base Interval. The worst-case execution time of the
indicated subsystem, reported as a percentage of the time between interrupts.

STS Objects. Profiling uses STS objects to measure the execution time of
each atomic subsystem. STS objects are a feature of the DSP/BIOS run-time
analysis tools, and one STS object can be used to profile exactly one segment
of code. Depending on how Simulink Coder software generates code for each
subsystem, there may be one or two segments of code for the subsystem;
the computation of outputs and the updating of states can be combined or
separate. Each subsystem is assigned a unique index, i. The name of each
STS object helps you determine the correspondence between subsystems and
STS objects. Each STS object has a name of the form

stsSysi_segment

where i is the subsystem index and segment is Output, Update, or
OutputUpdate. For example, in the sample profile report shown in the
next section, the STS objects have the names stsSys1_OutputUpdate, and
stsSys2_OutputUpdate.

45-81

45 Working with Texas Instruments™ C6000™ Processors

Profiling Your Generated Code
Before profiling your generated code, you must configure your model and
Simulink Coder software to support the profiling features in Embedded Coder
software. Your model must use DSP/BIOS features for profiling to work fully.

The following tasks compose the process of profiling the code you generate.

1 Enable DSP/BIOS for your code.

2 Enable profiling in the Simulink Coder software.

3 Create atomic subsystems to profile in your model.

4 Build, download, and run your model.

5 Use profile to view the MATLAB profile report.

To show profiling of generated code, this procedure uses the wavelet denoising
model c6713dskwdnoisf that is included with Embedded Coder example
programs. If you are using the C6713 DSK as your target, use the model
C6713dskwdnoisf throughout this procedure. Simulators work as well, just
choose the right model for your simulator.

Begin by loading the model, entering

c6713dskwdnoisf

at the MATLAB prompt. The model opens on your desktop.

To Enable Profiling for Your Generated Code
Recall that you must use DSP/BIOS in your code to use profiling.

To enable the profile feature for your Simulink model, select
Simulation > Model Configuration Parameters from the model menu
bar. Under Code Generation, select the Coder Target pane and enable the
Profile real-time execution parameter.

45-82

Targeting with DSP/BIOS™ Options

To Create Atomic Subsystems for Profiling
Profiling your generated code depends on two features—DSP/BIOS being
enabled and your model having one or more subsystems defined as atomic
subsystems. To learn more about subsystems and atomic subsystems, refer to
your Simulink documentation in the Help browser.

In this tutorial, you create two atomic subsystems—one from the Analysis
Filter Bank block and a second from the Soft Threshold block:

1 Select the Analysis Filter Bank block. Select Diagram > Subsystem &
Model Reference > Create Subsystem from Selection from the model
menu bar. The name of the block changes to subsystem. Repeat for the
Soft Threshold block.

2 To convert your new subsystems to atomic subsystems, right-click each
subsystem and choose Subsystem parameters... from the context menu.

3 In the Block Parameters: Subsystem dialog for each subsystem, select
the Treat as atomic unit option. Click OK to close the dialog. If you
look closely you can see that the subsystems now have heavier borders to
distinguish them from the other blocks in your model.

To Build and Profile Your Generated Code. You have enabled profiling in
your model and configured two atomic subsystems in the model as well. Now,
use the profiling feature to see how your code runs and check the performance
for bottlenecks and slowdowns as the code runs on your target hardware.

Caution Do not click other open models while you are profiling your model.
Clicking on another open model can cause profiling to fail with an error
message like “Invalid Simulink object specifier.”

1 Click Build Model on the model toolstrip.

If you did not use the Simulink Coder software options to automate model
compiling, linking, downloading, and executing, perform these tasks using
the Project options in CCSv3 IDE.

45-83

45 Working with Texas Instruments™ C6000™ Processors

Allow the application to run for a few seconds or as long as required to
execute the model segments of interest a few times. Then stop the program.

2 Create a link to CCSv3 IDE by entering

IDE_Obj = ticcs;

at the MATLAB prompt.

3 Enter

profile(IDE_Obj,'report')

at the prompt to generate the profile report of your code executing on your
target hardware.

The profile report appears in the Help browser. It should look very much like
the following sample report; your results may differ based on your target
and the settings in the model.

45-84

Targeting with DSP/BIOS™ Options

Generating Code for C64x+ Processors or Boards
The Target Hardware Resources pane imports hardware information directly
from DSP/BIOS.

To configure a Target Hardware Resources pane for your C64x+ processor
or board:

1 Set the DSP/BIOS installation folder location using the MATLAB
Command Window.

For CCSv3, enter the setDspbiosFolder command. For example:

>> setDspbiosFolder('(path to DSP/BIOS)\bios_5_33_06');

45-85

45 Working with Texas Instruments™ C6000™ Processors

For CCSv4/5, also specify the XDC installation folder. For example:

>> setDspbiosFolder('(path to TI tools)\bios_5_41_02_14',
'(path to TI tools)\xdctools_3_10_05_61')

2 Import the processor / board information from DSP/BIOS:

>> importDspbiosConfig('board', 'all')

>> importDspbiosConfig('proc', 'all')

3 Configure your model as described in “Configure Target Hardware
Resources” on page 35-3.

4 On the Target Hardware Resources pane, set Board to C64x+, and set
Processor to match the processor on your target hardware.

The Embedded Coder software uses the BIOS_INSTALL_DIR environment
variable to locate the DSP/BIOS installation folder. Then, it queries
DSP/BIOS for a list of processors and boards with C64x+ cores and displays
them in the Processor list. When you select a processor and click Yes, the
software imports settings from DSP/BIOS such as the memory map, cache
settings, and CPU clock rate and applies them settings to the Memory,
Section and DSP/BIOS tabs.

If you change DSP/BIOS versions in the CCS Component Manager while
the Target Hardware Resources pane is open, close and reopen the Target
Hardware Resources pane to update the Processor options.

5 On the Target Hardware Resources pane, verify the CPU Clock rate for
your processor.

6 To improve the efficiency of your application, you can adjust the L1 and L2
cache values and other parameters in the Memory, Section, and DSP/BIOS
tabs. The following section provides an example of how to adjust these
settings.

7 Click OK.

Later, you can reopen the library by entering the name of the library in the
MATLAB Command Window.

45-86

Targeting with DSP/BIOS™ Options

Configuring Target Hardware Resources for
OMAP-L138/C6748 EVM
To create a custom Target Hardware Resources pane for OMAP-L138/C6748
EVM:

1 Configure your model as described in “Configure Target Hardware
Resources” on page 35-3.

2 In the Target Hardware Resources pane, set IDE/Tool Chain to match
your version of Code Composer Studio

3 Set Board to OMAP-L138/C6748 EVM.

Because this board has only one type of processor, this action automatically
sets the Processor parameter to OMAPL138 and updates the Memory,
Section and DSP/BIOS tabs with default values for that processor.

4 Review the cache settings:

a Click the Memory tab.

b Verify that L1D and L1P cache are set to 32 kb.

c If you adjust the cache size, also adjust the L1PSRAM and L1DSRAM
values to accommodate memory taken from the high address range
of the corresponding L1 memory segments. Because L1PSRAM and
L1DSRAM are 32 kb in the OMAP-L138/C6748 processor, the Length
for L1PSRAM and L1DSRAM is 0x00000000. These settings use the
entire L1 memory as level one cache.

d Verify that L2 cache is set to 128 kb, and that the Length for IRAM is
0x00020000 (128 kb).

e On the Target Hardware Resources pane Memory tab, confirm the
following settings and click Apply.

Name Address Length Contents

L1PSRAM 0x11e00000 0x00000000 Code

L1DSRAM 0x11f00000 0x00000000 Data

IRAM 0x11800000 0x00020000 Code & Data

45-87

45 Working with Texas Instruments™ C6000™ Processors

Name Address Length Contents

L3_CBA_RAM 0x80000000 0x00020000 Code & Data

DDR 0xc3000000 0x01000000 Code & Data

5 On the Section tab, observe that the Compiler sections have been
assigned to optimize the efficiency of the generated code. The .stack,
.bios, .hwi, and .hwi_vec sections are placed in fast internal memory
(IRAM). The other sections are assigned to external memory (DDR). This
approach avoids linking errors caused by placing excessive code and data in
limited internal memory. It also runs critical sections of the application
from internal memory.

6 The final step in configuring the OMAP-L138/C6748 EVM Target Hardware
Resources pane is to create a heap in external memory. Device drivers from
TI use heap to allocate data structures and device driver buffers. Without a
heap, integrating device drivers from TI would not be possible.

a Click the DSP/BIOS tab.

b In the Heap table, verify that the DDR check box is selected and that its
size is 0x00100000 (1 MB).

c Confirm the following settings for the DSP/BIOS tab, and click OK.

Parameter Value

DDR (check box selected) 0x0010000

Data objects IRAM

Code objects IRAM

Default stack size (bytes) 4096

Stack segmetn for static tasks IRAM

Stack segment for dynamic tasks DDR

45-88

Using the C62x and C64x DSP Libraries

Using the C62x and C64x DSP Libraries

In this section...

“About the C62x and C64x DSP Libraries” on page 45-89

“Fixed-Point Numbers” on page 45-91

“Building Models” on page 45-96

About the C62x and C64x DSP Libraries

• “C62x DSP Library” on page 45-89

• “C64x DSP Library” on page 45-90

• “Supported Platforms” on page 45-90

• “Characteristics Common to C62x and C64x Library Blocks” on page 45-91

C62x DSP Library
Blocks in the C62x DSP library correspond to functions in the Texas
Instruments TMS320C62x DSP Library assembly-code library, which target
the TI C62x family of digital signal processors. Use these blocks to run
simulations by building models in Simulink software before generating code.
Once you develop your model, you can invoke Simulink Coder software to
generate code that is optimized to run on C6713 DSK development platforms
or C62x hardware. (Fixed-point processing on C67x hardware is identical
to C62x fixed point hardware and processing so you can develop on the
C67x for the C62x.) During code generation, each C62x DSP Library block
in your model is mapped to its corresponding TMS320C62x DSP Library
assembly-code routine to create target-optimized code.

C62x DSP Library blocks generally input and output fixed-point data types.
The block reference topics discuss the data types accepted and produced by
each block. “Fixed-Point Numbers” on page 45-91 gives a brief overview of
using fixed-point data types in Simulink software.

You can use C62x DSP Library blocks with certain blocks from the DSP
System Toolbox software and Simulink software. To learn more about

45-89

45 Working with Texas Instruments™ C6000™ Processors

creating models that include both C62x DSP Library blocks and blocks from
other blocksets, refer to “Building Models” on page 45-96.

C64x DSP Library
Blocks in the C64x DSP library correspond to functions in the Texas
Instruments TMS320C64x DSP library assembly-code library, which target
the TI C64x family of digital signal processors. Use these blocks to run
simulations by building models in Simulink software before generating
code. Once you develop your model, you can invoke Simulink Coder
software to generate code that is optimized to run on the C6416 DSK
development platform or other C64x hardware. During code generation,
each C64x DSP Library block in your model is mapped to its corresponding
TMS320C64x DSP Library assembly-code routine to create target-optimized
code.

C64x DSP Library blocks generally input and output fixed-point data types.
The block reference topics discusses the data types accepted and produced
by each block in the library. “Fixed-Point Numbers” on page 45-91 gives a
brief overview of using fixed-point data types in Simulink software. For an
in-depth discussion of fixed-point data types, including issues with scaling and
precision when you perform fixed-point operations, refer to your Fixed-Point
Designer documentation.

You can use C64x DSP Library blocks with certain blocks from the DSP
System Toolbox software and Simulink software. To learn more about
creating models that include both C64x DSP Library blocks and blocks from
other blocksets, refer to “Building Models” on page 45-96.

Note While you can use C62x blocks on C64x targets, the generated code is
not optimal for the C64x target. Using the right C64x block creates better
optimized code. (Embedded Coder software generates a warning message
when you try to do this but allows you to use the block.)

Supported Platforms
The C62x and C64x DSP libraries can be used with the platforms listed in the
following table:

45-90

Using the C62x and C64x DSP Libraries

Library Supported platforms

C62x C62x, C67x, C67x+, C64x, C64x+

C64x C64x, C64x+

Characteristics Common to C62x and C64x Library Blocks
The following characteristics are common to the C62x and C64x DSP Library
blocks:

• The blocks inherit sample times from driving blocks.

• The blocks are single rate.

• Block filter weights and coefficients are tunable, but not in real time. Other
block parameters are not tunable.

• The blocks support discrete sample times. Individual block reference pages
indicate blocks that also support continuous sample times.

Fixed-Point Numbers

• “Notation” on page 45-91

• “Signed Fixed-Point Numbers” on page 45-92

• “Q Format Notation” on page 45-93

Notation
In digital hardware, numbers are stored in binary words. A binary word is a
fixed-length sequence of binary digits (1’s and 0’s). How hardware components
or software functions interpret this sequence of 1’s and 0’s is defined by the
data type.

Binary numbers are represented as either fixed-point or floating-point data
types. A fixed-point data type is characterized by the word size in bits, the
binary point, and whether it is signed or unsigned. The position of the binary
point is the means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a fractional fixed-point number
(either signed or unsigned) is shown below.

45-91

45 Working with Texas Instruments™ C6000™ Processors

where

• bi is the ith binary digit.

• ws is the word size in bits.

• bws–1 is the location of the most significant (highest) bit (MSB).

• b0 is the location of the least significant (lowest) bit (LSB).

• The binary point is shown four places to the left of the LSB. In this example
the number is said to have four fractional bits, or a fraction length of four.

Note For Embedded Coder, the results of fixed-point and integer operations
in MATLAB/Simulink match the results on the hardware target down to the
least significant bit (bit-trueness). The results of floating-point operations in
MATLAB/Simulink do not match those on the hardware target, because the
libraries used by the third-party compiler may be different from those used by
MATLAB/Simulink.

Signed Fixed-Point Numbers
Signed binary fixed-point numbers are typically represented in one of three
ways:

• Sign/magnitude

• One’s complement

• Two’s complement

Two’s complement is the most common representation of signed fixed-point
numbers and the one TI digital signal processors use.

45-92

Using the C62x and C64x DSP Libraries

Negation using signed two’s complement representation consists of a bit
inversion (translation into one’s complement) followed by the binary addition
of a one. For example, the two’s complement of 000101 is 111011:

000101 ->111010 (bit inversion) ->111011 (binary addition of 1 to the LSB)

results in the negative of 000101 being 111011.

Q Format Notation
The position of the binary point in a fixed-point number determines how
you interpret the scaling of the number. When performing arithmetic such
as addition or subtraction, hardware uses the same logic circuits regardless
of the value of the scale factor. In essence, the logic circuits do not have
knowledge of a binary point. They perform signed or unsigned integer
arithmetic—as if the binary point is to the right of the LSB (b0). Therefore,
you determine the binary point in your code.

In the C62x DSP Library, the position of the binary point in signed,
fixed-point data types is expressed in and designated by Q format notation.
This fixed-point notation takes the form

Qm.n

where

• Q designates that the number is in Q format notation—the Texas
Instruments notation for signed fixed-point numbers.

• m is the number of bits used to designate the two’s complement integer
portion of the number.

• n is the number of bits used to designate the two’s complement fractional
portion of the number, or the number of bits to the right of the binary point.
Sometimes n is called the scale factor.

Q format designates the most significant bit of a binary number as the sign
bit. Representing a signed fixed-point data type in Q format requires m+n+1
bits to account for the sign.

45-93

45 Working with Texas Instruments™ C6000™ Processors

Expressing Q Format — Q.15. For example, a signed 16-bit number with
n = 15 bits to the right of the binary point is expressed as

Q0.15

in this notation. This is (1 sign bit) + (0 = m integer bits) + (15 = n fractional
bits) = 16 bits total in the data type. In Q format notation the m = 0 is often
implied, as in

Q.15

In Fixed-Point Designer software, this data type is expressed as

sfrac16

or

sfix16_En15

DSP System Toolbox software expresses this data type as the vector

[16 15]

meaning the word length is 16 bits and the fraction length is 15 bits.

Expressing Q Format — Q1.30. Multiplying two Q.15 numbers yields a
product that is a signed 32-bit data type with 30 bits to the right of the binary
point. One bit is the designated sign bit, forcing m to be 1:

m+n+1 = 1+30+1 = 32 bits total

Therefore this number is expressed as

Q1.30

In Fixed-Point Designer software, this data type is expressed as

sfix32_En30

In DSP System Toolbox software, this data type is expressed as

[32 30]

45-94

Using the C62x and C64x DSP Libraries

Expressing Q Format — Q-2.17. Consider a signed 16-bit number with
a scaling of 2(-17). This requires n = 17 bits to the right of the binary point,
meaning the most significant bit is a sign-extended bit.

Sign extension adds bits to the high end (MSB end) of the word and fills the
added bits with the value of the MSB. For example, consider a 4-bit two’s
complement number 1011. Extending the number to 7 bits with sign extension
changes the number to 1111011—the value of the number remains the same.

One bit is the designated sign bit, forcing m to be -2.

m+n+1 = -2+17+1 = 16 bits total

Therefore this number is expressed as

Q-2.17

In Fixed-Point Designer software, this data type is expressed as

sfix16_En17

To express this data type in DSP System Toolbox software, use

[16 17]

Expressing Q Format — Q17.-2. Consider a signed 16-bit number with a
scaling of 2^(2) or 4. The binary point is implied to be 2 bits to the right of the
16 bits, or that there are n = -2 bits to the right of the binary point. One bit
must be the sign bit, forcing m to be 17.

m+n+1 = 17+(-2)+1 = 16

Therefore this number is expressed as

Q17.-2

In Fixed-Point Designer software, this data type is expressed as

sfix16_E2

In DSP System Toolbox software, this data type is expressed as

45-95

45 Working with Texas Instruments™ C6000™ Processors

[16 -2]

Building Models

• “Overview” on page 45-96

• “Converting Data Types” on page 45-96

• “Using Sources and Sinks” on page 45-97

• “Choosing Blocks to Optimize Code” on page 45-97

Overview
You can use C62x or C64x DSP Library blocks in models along with certain
core Simulink and DSP System Toolbox software. This section discusses
issues you should consider when you build models with blocks from these
libraries.

Converting Data Types
Blocks you connect in a model have compatible input and output data types.
In most cases, C62x or C64x DSP Library blocks handle only a limited number
of specific data types. Refer to the block reference page for a discussion of the
data types that each block accept sand produces.

When you connect C62x or C64x DSP Library blocks and Simulink blocks,
you often need to set the data type and scaling in the block parameters of the
Simulink block to match the data type of the C62x DSP Library block. Many
Simulink blocks allow you to set their data type and scaling by inheriting
from the driving block, or by back propagating from the next block. This can
be a good way to set the data type of a Simulink block to match a connected
C62x DSP Library block.

Some DSP System Toolbox software blocks and Simulink blocks also accept
fixed-point data types. Make the right settings in the block parameters when
you connect them to a C62x DSP Library block.

To use DSP System Toolbox software or core Simulink blocks that do not
handle fixed-point data types with C62x DSP Library blocks in your model,
you must use the right data type conversion block:

45-96

Using the C62x and C64x DSP Libraries

• To connect fixed-point and nonfixed-point blocks, use the Data Type
Conversion block from the Simulink Data Type library.

• To provide an interface to nonfixed-point blocks, use the C62x Convert
Floating-Point to Q.15 and C62x Convert Q.15 to Floating-Point blocks
from the C62x DSP Library.

• To connect blocks of varying nonfixed-point data types in your model, use
the Data Type Conversion block from the Signals and Systems Simulink
library

• To connect blocks of varying fixed-point data types in your model, use the
Data Type Conversion Inherited block from the Simulink Data Type library.

Refer to the reference pages for these blocks or invoke the Help system from
their block dialogs for more information.

Using Sources and Sinks
The C62x DSP Library does not include source or sink blocks. Use source or
sink blocks from the core Simulink library or DSP System Toolbox software in
your models with C62x DSP Library blocks. See “Converting Data Types” on
page 45-96 for more information on incorporating blocks from other libraries
into your models.

Choosing Blocks to Optimize Code
In some cases, blocks that perform similar functions appear in more than
one blockset. For example, the C62x DSP Library, the C64x DSP Library,
and the DSP System Toolbox software have Autocorrelation blocks. How do
you choose which to include in your model? If you are building a model to
run on the C6713 DSK or on C62x hardware, choosing the block from the
C62x DSP Library yields better optimized code. You can use a similar block
from another library if it provides functionality that the C62x DSP Library
block does not support, but you generate less well optimized code.

In the same manner, if you are building a model to run on the C6416 DSK
or on C64x hardware, choosing the block from the C64x DSP Library yields
better optimized code. You can use a similar block from another library if it
provides functionality that the C64x DSP Library block does not support, but
you generate less well optimized code.

45-97

45 Working with Texas Instruments™ C6000™ Processors

Configuring Timing Parameters for CAN Blocks

Setting Timing Parameters

• “Accessing the Timing Parameters” on page 45-98

• “Determining Timing Parameter Values” on page 45-99

• “Working with CAN Bit Timing” on page 45-100

Accessing the Timing Parameters
The timing parameters that control the bit rate for DM643x CAN Receive
and DM643x CAN Transmit blocks are Baud rate prescaler, TSEG1, and
TSEG2 in the DM643x CAN Setup block.

The following sections describe how to set these parameters.

45-98

Configuring Timing Parameters for CAN Blocks

Determining Timing Parameter Values
The following steps show you how to determine the right values to use for
the timing parameters.

1 Gather these two values:

• Bit rate of the CAN network

• CAN Module Clock Frequency — The CAN peripheral in the DM6437 is
in the CLKIN clock domain, which operates at the same frequency as
the primary reference clock to the DSP. In the DM6437EVM board, the
primary reference clock operates at 27 MHz.

2 Estimate the value of the Baud rate prescaler (BRP) and then solve
this equation for BitTime:

BitTime = CAN Module Clock Frequency/(BRP * Bit rate)

3 Estimate values for TSEG1 and TSEG2 that satisfy the following equation:

BitTime = TSEG1 + TSEG2 + 1

The estimated values must also satisfy the following constraints:

TSEG1 >= TSEG2
IPT (Information Processing Time) = 3/BRP
IPT <= TSEG1 <= 16 TQ
IPT <= TSEG2 <= 8 TQ
1 TQ <= SJW <= min(4 TQ, TSEG2)

where:

IPT is Information Processing Time, TQ is Time Quanta, and SJW is
Synchronization Jump Width, which can be set in the CAN Setup block.

4 Iterate steps two and three until the values selected for TSEG1, TSEG2,
and BRP meet the criteria.

The following illustration shows the relationship between the parameters:

45-99

45 Working with Texas Instruments™ C6000™ Processors

Working with CAN Bit Timing
This example shows how to determine CAN timing parameters.

Assume that CAN Module Clock Frequency = 27 MHz, and a Bit rate of
1 Mbits/s is required.

1 With the Baud rate prescaler (BRP) set to 12, substitute the values
of Bit rate, BRP, and CAN Module Clock Frequency into the following
equation, solving for BitTime:

BitTime = CAN Module Clock Frequency/(BRP * Bit rate)

BitTime = 27MHz/(12 * 0.25 MBits/sec) = 9TQ

2 Set the values of TSEG1 and TSEG2 to 6TQ and 2TQ, respectively.
Substitute the values of BitTime from the previous equation, and the
chosen values for TSEG1 and TSEG2 into the following equation:

BitTime = TSEG1 + TSEG2 + 1

9TQ = 6TQ + 2TQ + 1

45-100

Configuring Timing Parameters for CAN Blocks

3 Finally, check the selected values against the rules:

IPT = 3/BRP = 3/12 = .25
IPT <= TSEG1 <= 16 TQ True! .25 <= 6TQ <= 16TQ
IPT <= TSEG2 <= 8TQ True! .25 <= 2TQ <= 8TQ
1TQ <= SJW <= min(4TQ, TSEG2), as a result of which SJW can be
set to either 1 or 2.

4 The chosen values satisfy the criteria, so you have determined the
parameter values and can stop.

The following table provides common timing parameter settings for typical
values of Bit rate and CAN Module Clock Frequency = 27 MHz. This clock
frequency is the maximum for the DM6437 EVM blocks.

Bit rate TSEG1 TSEG2 Bit Time BRP SJW

250
Kbits/sec

6 2 3 12 1 or 2

500
Kbits/sec

3 1 6 9 1

1
Mbits/sec*

6 2 9 3 1 or 2

2
Mbits/sec*

1 1 4.5 3 ERROR

* 3-time sampling in the DM643x CAN module is not possible at this Bit
rate. In the DM643x CAN Setup block, the SAM parameter cannot be set to
Sample three times.

References. For detailed information on the CAN module, see
TMS320DM643x DMP High-End CAN Controller User’s Guide (Rev. A),
Literature Number SPRU981A, available at the Texas Instruments Web site.

See Also. DM643x CAN Setup, DM643x CAN Transmit

45-101

45 Working with Texas Instruments™ C6000™ Processors

Hardware Issues

In this section...

“Configuring the D.signT DSK-91C111 to Use TCP/IP and UDP” on page
45-102

“Requirements for the DM642 EVM” on page 45-102

“Installing and Configuring the Avnet Board Support Library” on page
45-105

“Continuing Issues with Embedded Coder Software” on page 45-107

Configuring the D.signT DSK-91C111 to Use TCP/IP
and UDP
Specific evaluation boards that don’t have a build-in Ethernet ports accept
the D.signT DSK-91C111 daughter card with the required Texas Instruments
TMS320C6000 TCP/IP Stack. To use the D.signT DSK-91C111, change the
position of solder point jumper JPINTPOL. Set the jumper to the “b” position
from the default “a” position. Refer to your TI TCP/IP Stack User’s Guide
documentation for additional information about configuring the daughter
card.

Requirements for the DM642 EVM

• “DM642 EVM Board Version Identification” on page 45-103

• “Installing Third-party Software” on page 45-104

• “Configuring the Target Hardware Resources pane for Your DM642 EVM”
on page 45-105

• “Configuring the DM642 EVM Video ADC Block” on page 45-105

This section provides details about using both the DM642 EVM hardware
target and the simulator.

45-102

Hardware Issues

DM642 EVM Board Version Identification
Spectrum Digital released three versions of the DM642 EVM board. Before
generating code for the DM642 EVM:

1 Determine the board version by looking at the ASSY number on the bottom
of the board, or consult the documentation provided with the board.

• Version 1 — Original board with 600 MHz DM642, Philips SAA7115
video decoders. ASSY 506840 Rev. D on back of board, 50 MHz oscillator.

• Version 2 — Original board with 720 MHz DM642, Philips SAA7115
video decoders. ASSY 506840 Rev. D on back of board, 60 MHz oscillator.

• Version 3 — Revised board with 720 MHz DM642, TI TVP5146/5150
video decoders and HD filters. ASSY 507340 Rev. B on back of board, 60
MHz oscillator.

2 Press Ctrl+E to open the Configuration Parameters dialog box.

3 Select the Coder Target pane in Configuration Parameters dialog box.

4 Under to the Target Hardware Resources tab, set the Board parameter
to specify the board version: SD DM642 EVM V1, SD DM642 EVM V2, or SD
DM642 EVM V3

5 If your model contains a DM642 EVM Video ADC block, open the block and
set the Decoder type parameter to:

• SAA7115 for board version 1 and 2

• TVP5146 for board version 3

45-103

45 Working with Texas Instruments™ C6000™ Processors

Installing Third-party Software
After determining the board version, install the supported versions of the
third-party software for that board version. See the “System Requirements”
on page 45-5 for the Embedded Coder software.

45-104

Hardware Issues

Configuring the Target Hardware Resources pane for Your
DM642 EVM
Set the CPU Clock parameter in the Target Hardware Resources pane to
match the version of the DM642EVM board you are using:

• For Version 1 boards, set the value of the CPU Clock parameter to 600.

• For Version 2 and Version 3 boards, set the value of the CPU Clock
parameter to 720.

Configuring the DM642 EVM Video ADC Block
If you have a DM642 EVM Version 2 or 3 board:

• Update the video drivers in your CCS IDE installation folder and

• Set the Decoder type parameter to TVP5146.

Installing and Configuring the Avnet Board Support
Library

• “Preface” on page 45-105

• “Installing the Avnet Board Support Library” on page 45-105

• “Setting the MATLAB Environment” on page 45-106

• “For Spectrum Digital DM6437EVM Users” on page 45-107

• “Verifying Your Installation” on page 45-107

Preface
The Avnet S3ADSP DaVinci evaluation platform is designed for joint software
and hardware design. It brings the Texas Instruments TMS320DM6437 DSP
and Xilinx Sparta-3A FPGA together. This chapter provides an overview of
the board, and instructions for installing, configuring, and using the Avnet
S3ADSP DM6437.

Installing the Avnet Board Support Library
Download and install the current Avnet Board Support Package for Simulink
(Avnet BSL), available from the Avnet Web site, www.avnet.com. Doing so

45-105

http://www.avnet.com

45 Working with Texas Instruments™ C6000™ Processors

creates environment variables that the Embedded Coder software uses to
locate files in the Avnet BSP.

Make a note of the installation folder for the Avnet BSL.

Setting the MATLAB Environment
The Embedded Coder software uses environment variables to locate files in
the Avnet BSP.

The MathWorks utility, setTgtEnv.m, automatically maps the following
environment variables (where <Avnet BSL> is the Avnet BSL installation
folder):

• PSP_EVMDM6437_INSTALLDIR: must be mapped to “<Avnet BSL>\psp”

• CSLR_DM6437_INSTALLDIR: must be mapped to “<Avnet BSL>\
psp\pspdrivers\soc\dm6437\dsp\inc”

• NDK_INSTALL_DIR: must be mapped to “<Avnet BSL>\ndk”

Run setTgtEnv by entering the following command at the MATLAB command
prompt: setTgtEnv('avnet_s3adsp_dm6437')

If you installed the Avnet BSL prior to installing the MathWorks BSL, the
utility detects the AVNET_S3ADSP_DM6437_INSTALLDIR environment
variable created by the Avnet BSL installer. It will automatically
set the environment variables above based on the path stored in the
AVNET_S3ADSP_DM6437_INSTALLDIR environment variable. You should
see the following messages printed on the MATLAB command window:

Setting environment variable "PSP_EVMDM6437_INSTALLDIR" to
C:\avnet_s3adsp_dm6437_1_06\psp"

Setting environment variable "CSLR_DM6437_INSTALLDIR" to
C:\avnet_s3adsp_dm6437_1_06\psp\pspdrivers\soc\dm6437\dsp\inc"

Setting environment variable "NDK_INSTALL_DIR" to
C:\avnet_s3adsp_dm6437_1_06\ndk"

45-106

Hardware Issues

If automatic mapping fails, the script will prompt you to browse for the
“avnet_s3adsp_dm6437_version.txt” file stored in the top-level Avnet BSL
installation folder. If so, browse for the file and click the Open button. This
will set the required environment variables.

For Spectrum Digital DM6437EVM Users
If you have a Spectrum Digital DM6437EVM board together with an
Avnet S3ADSP DM6437 board, setting environment for the Avnet board as
explained in section 2.3 will override DM6437EVM environment setup. To
revert back to DM6437EVM environment after using Avnet board, execute
the following at the MATLAB command prompt: setTgtEnv('dm6437evm')

Follow the instructions printed on the MATLAB command window to complete
environment configuration. To go back and forth between DM6437EVM
environment and Avnet S3ADSP DM6437 environment, use the setTgtEnv
script with the right platform name specified as the argument.

Verifying Your Installation
Open the Avnet S3ADSP Board Support Library by entering the following
command at the MATLAB command prompt: avnet_s3adsp_dm6437 This
opens the Avnet Spartan–3A DSP DaVinci Evaluation Platform Board
Support Library. You have completed installing and configuring the
MathWorks and Avnet Board Support Libraries. You are ready to start using
the Avnet S3ADSP DaVinci evaluation platform.

Continuing Issues with Embedded Coder Software
This section details some target operations that you should know about as
you use Embedded Coder software.

• “Setting the Clock Speed on the C6713 DSK” on page 45-108

• “Simulink Stop Block Works Differently When Not Using DSP/BIOS
Features” on page 45-109

• “Installing Third-Party Embedded Coder” on page 45-109

45-107

45 Working with Texas Instruments™ C6000™ Processors

Setting the Clock Speed on the C6713 DSK
The C6713DSK PLL is not automatically set to the right CPU Clock frequency
when you try to target the board. When you power-up your DSK, it runs at a
clock speed of 50 MHz. However, the C6713 is capable of running at 225 MHz.

If you generate code incorporating the DSP/BIOS real-time operating system,
the PLL is automatically configured for you at run-time to use the right clock
speed. If you are not using DSP/BIOS in your project, you must manually
configure the PLL to the right clock rate before running your code.

Setting the PLL to Drive the CPU at 225 MHz. To set the C6713 DSK PLL
to drive the CPU at 225 MHz, perform the following steps. Be sure you have
defined your GEL file for your DSK in the Setup Utility for CCS IDE.

1 Launch Code Composer Studio.

2 Open your C6713 DSK project with the GEL file.

3 Select GEL > Resets > InitPLL from the menu bar in CCS IDE.

To make this happen whenever you open Code Composer Studio to use your
C6713 DSK, edit the file \ti\IDE_Obj\gel\dsk6713.gel. Add the following
command to the StartUp() function:

init_pll();

This tells the GEL file to initialize the PLL to operate at 225 MHz.

On the DM642 EVM, ADC-DAC Loopback Displays An RGB Image
Incorrectly After Power-Up. When you set up the DM642 EVM to use
loopback from the ADC to the DAC, the DAC block does not faithfully
reproduce the colors in the captured image immediately after you power up
the board.

To get a clean image, reload the program to the target and run the program
again. This also happens with the examples Texas Instruments ships with
the DM642 EVM product.

45-108

Hardware Issues

Simulink Stop Block Works Differently When Not Using
DSP/BIOS Features
If you are using the Simulink Stop block in your model, but you are not using
DSP/BIOS features, your model might take longer to stop when it is running
on the target than if you are using DSP/BIOS.

The condition the model uses to detect the stop processing flag is different
when you do not use DSP/BIOS. The result is that the model may not detect
and respond to the flag as promptly, taking longer to stop the running model
on the target hardware.

Installing Third-Party Embedded Coder
For a list of required third-party target packages, with version
numbers, see the Embedded Coder System Requirements page at
http://www.mathworks.com/products/target-package/requirements.html.

When you install one or more of the third-party target packages listed below,
perform a default installation using the installation path provided for that
package, and perform additional steps given.

This documentation uses placeholders for portions of the installation
path that may vary by software version or environment. Please
replace the placeholders with the path information for your software
environment. For example, if the CCS IDE installation path is
C:\CCStudio_v3.3, then enter C:\CCStudio_v3.3\boards\evmdm642 instead
of <CCStudio_vn.n>\boards\evmdm642.

Placeholders:

• <CCStudio_vn.n>— The installation path for Code Composer Studio

• <n.n> — Version-specific path information

45-109

http://www.mathworks.com/products/target-package/requirements.html

45 Working with Texas Instruments™ C6000™ Processors

Note If you do not use the default installation paths, update the following
parameters:

• Libraries and Include paths under the Target Hardware Resources tab

• TCP/IP stack installation directory parameter in the C6000 IP Config
block

Otherwise, the software produces error messages when you attempt to
generate code.

DM642EVM Version 3 Board.

• Spectrum Digital EVMDM642 Board Support Package —
<CCSvn.n>\boards\evmdm642

• TI’s Network Developer’s Kit (NDK) — <CCSvn.n>\C6000\NDK

DM642EVM Version 1 & 2 Boards.

• Spectrum Digital EVMDM642 Board Support Package —
<CCSvn.n>\boards\evmdm642

• Device Driver Developer’s Kit (DDK) — <CCSvn.n>\ddk

• TI’s Network Developer’s Kit (NDK) — <CCSvn.n>\C6000\NDK

DM6437EVM.

• Spectrum Digital DM6437EVM DVSDK RTM — Install anywhere.
TI recommends using the root path of your main drive. For example,
C:\dvsdk_<n.n>

Also, set the following environment variables, replacing DVSK with the
DVSDK installation path (e.g., C:\dvsdk_<n.n>).

The first time you generate code, the Embedded Coder™ software prompts you
to locate specific files in the DVDSK folders and creates environment variables
mapped to the location of required folders. For example, the application

45-110

Hardware Issues

creates an environment variable called CSLR_DM6437_INSTALLDIR for the
path of the Register Layer Chip Support Library.

C6455DSK. Spectrum Digital DSK6455/EVM6455 Target Content Package
— <CCSvn.n>\boards\dsk6455_v<n.n>

Network Developer’s Kit NDK — <CCSvn.n>\C6000\NDK

C6727PADK. Lyrtech’s PADK Software — Install anywhere.

TI’s C672x Chip Support Libraries (CSL) — Extract the three C672x CSL
components from sprc223.zip to <CCSvn.n>\boards\C6727PADK.

TI’s System Patch Code, FastRts(V<n.n>)/DSPLIB (V<n.n>) —
<CCSvn.n>\boards\C6727PADK\sprc203

After installation, the path structure for the C672x CSL libraries should
resemble the following figure:

45-111

45 Working with Texas Instruments™ C6000™ Processors

The PADK Software installer automatically sets the PADK_DIR environment
variable with the installation path.

The first time you generate code, the Embedded Coder™ software prompts
you to locate the following files under <CCSvn.n>\boards\C6727PADK\ and
sets the environment variables accordingly:

• $(CSL_C672x_INSTALLDIR)\lib\csl_C6727.lib

• $(CSL_C672x_INTC_INSTALLDIR)\lib\csl_C672x_intc.lib

• $(SYSPATCH_C672x_INSTALLDIR)\applySystemPatch.obj

You have completed installation of the third-party software.

45-112

46

Working with Wind River
VxWorks RTOS

• “Overview of Support for Wind River VxWorks Target” on page 46-2

• “Building and Running Embedded Software on VxWorks Target” on page
46-4

• “Working with Other Processors” on page 46-9

• “Schedulers” on page 46-10

46 Working with Wind River® VxWorks® RTOS

Overview of Support for Wind River VxWorks Target
Using the XMakefiles feature, you can automatically generate and integrate
code with both VxWorks 6.7 and VxWorks 6.8. This support includes:

• Real-time scheduler

• Non real-time (free-running) scheduler

• Single-tasking and multitasking modes

You can use the following MathWorks software features to verify that the
target software you create for VxWorks:

• External mode simulation

• Processor-in-the-loop simulation over TCP/IP (TCP/IP PIL)

Additionally, the Simulink Library Browser contains a new VxWorks block
library, vxworkslib, with the following blocks:

• VxWorks Task

• UDP Receive

• UDP Send

You can find vxworkslib in the Simulink Library Browser under Embedded
Targets > Operating Systems > VxWorks.

In this release, Embedded Coder cannot generate IDE projects for the Wind
River Diab or GNU tool chains. Instead, use the XMakefile feature to generate
makefiles, source code, and related files from your model. You can then use
those files with to build, load, and run your embedded software on VxWorks.
For more information, see “IDE Projects” on page 35-16 and “Makefiles for
Software Build Tool Chains” on page 35-21.

The XMakefile feature includes the following configuration files:

• wrsdiab_arm9_vxworks67_rtp: Wind River Systems DIAB Compiler &
ARM 9 & VxWorks 6.7 & real-time process applications

46-2

Overview of Support for Wind River® VxWorks® Target

• wrsdiab_arm9_vxworks67_rtp_so: Wind River Systems DIAB Compiler &
ARM 9 & VxWorks 6.7 & real-time process applications with shared object

• wrsdiab_hostsim_vxworks67_rtp: Wind River Systems DIAB Compiler &
VxWorks Host Simulator & VxWorks 6.7 & real-time process applications

• wrsdiab_hostsim_vxworks67_rtp_so: Wind River Systems DIAB
Compiler & VxWorks Host Simulator & VxWorks 6.7 & real-time process
applications with shared object

• wrsdiab_hostsim_vxworks68_rtp: Wind River Systems DIAB Compiler &
VxWorks Host Simulator & VxWorks 6.8 & real-time process applications

• wrsdiab_hostsim_vxworks68_rtp_so: Wind River Systems DIAB
Compiler & VxWorks Host Simulator & VxWorks 6.8 & real-time process
applications with shared object

• wrsgnu_arm9_vxworks67_rtp: Wind River Systems GNU Compiler &
VxWorks Host Simulator & VxWorks 6.7 & real-time process applications

• wrsgnu_hostsim_vxworks67_rtp: Wind River Systems GNU Compiler &
VxWorks Host Simulator & VxWorks 6.7 & real-time process applications
with shared object

• wrsgnu_hostsim_vxworks68_rtp: Wind River Systems GNU Compiler &
VxWorks Host Simulator & VxWorks 6.8 & real-time process applications
with shared object

For more information, see “Makefiles for Software Build Tool Chains” on
page 35-21.

For an example of developing embedded software for VxWorks, see the Code
Generation and Verification example.

46-3

46 Working with Wind River® VxWorks® RTOS

Building and Running Embedded Software on VxWorks
Target

In this section...

“Install and Set Up the Wind River Development Environment” on page
46-4

“Setting VxWorks Environment Variables and Starting MATLAB” on page
46-5

“Setting Up XMakefile for VxWorks Target” on page 46-6

“Customizing XMakefile to Automatically Download and Build Your
Software” on page 46-7

“Prepare Your Model for VxWorks Target and Makefiles” on page 46-8

“Build Your Embedded Software” on page 46-8

This tutorial shows you how to use the XMakefile feature in your MathWorks
software to build and run embedded software for VxWorks. For more
information about XMakefile, see “Makefiles for Software Build Tool Chains”
on page 35-21.

Install and Set Up the Wind River Development
Environment
Set up VxWorks software and hardware on your host and target:

1 Install Wind River Workshop on the host.

2 Set up host-to-target communications.

3 Create a VxWorks operating system kernel image on the host.

4 Boot the embedded target with the kernel image.

For detailed instructions, consult your Wind River Workshop and VxWorks
documentation.

46-4

Building and Running Embedded Software on VxWorks® Target

Setting VxWorks Environment Variables and Starting
MATLAB
Each time you use VxWorks with your MathWorks software, start by:

• Setting the VxWorks environment variables

• Starting MATLAB

The XMakefiles feature in your MathWorks software uses standard
input/output (command line) to start and communicate with the tool chain in
Wind River Workbench. Wind River recommends that you set environment
variables using the wrenv utility each time you start those tools from the
command line. For more information, read the readme.txt file in the Wind
River installation folder, and search the Wind River Workbench help for
“Setting Environment Variables With wrenv”.

Set the VxWorks environment variables, and then start MATLAB:

1 Open a command-line session in Windows or Linux.

2 Change folders to the Wind River installation folder. For example, at the
Windows command line, enter:

cd C:\WindRiver

3 Run the wrenv utility, including -p followed by the relative path to the
VxWorks platform you are using.

For example, in Windows, enter:

wrenv.exe -p vxworks-6.7

For example, in Linux, enter:

./wrenv.sh -p vxworks-6.7

4 Start MATLAB. For example, enter:

C:\Program Files\MATLAB\R2010a\bin\matlab.exe

46-5

46 Working with Wind River® VxWorks® RTOS

Setting Up XMakefile for VxWorks Target
The XMakefile feature tells your MathWorks software how to create
makefiles for a “configuration”, which is a specific combination of tool chain
and embedded target hardware. Some configurations require additional
information before you can use them.

Select and complete a configuration for VxWorks:

1 Enter xmakefilesetup at the MATLAB command prompt. This action
opens the XMakefile User Configuration dialog.

2 Clear Display operational configurations only. This displays the
configuration files, including ones that need updated path information.

3 Set Configurations to a choice that starts with wrs and contains vxworks,
and click Apply.

4 If the configuration is incomplete, the software displays a series of
Browse For Folder dialoges that include instructions to provide missing
information.

5 Examine the Tool Directories tab to see if the paths are valid.

6 When you have supplied the missing information and the configuration is
complete, click OK to close the XMakefile User Configuration dialog.

For example, to generate code for VxWorks and an ARM9 processor:

1 Enter xmakefilesetup on the command line.

2 In the XMakefile dialog, clear Display operational configurations only,
set Configurations to wrsdiab_arm9_vxworks67_rtp, and click Apply.

3 When the Browse For Folder dialog appears, stating “Select the Wind
River Diab compiler binary directory...”, browse and select a path.

For example, you can select a path such as
C:\WindRiver\diab\5.7.0.0\WIN32\bin.

4 When another Browse For Folder dialog appears, stating “Select the
Wind River root installation directory...”, browse and select a path.

46-6

Building and Running Embedded Software on VxWorks® Target

For example, you can select a path such as C:\WindRiver.

5 Examine the Tool Directories tab to see if the paths are valid.

6 After you complete the update of configuration information, click
OK to save the updated configuration and close the dialog. The
wrsdiab_arm9_vxworks67_rtp configuration is now operational.

Customizing XMakefile to Automatically Download
and Build Your Software
Create a customized XMakefile configuration that automatically builds and
downloads your embedded software to the VxWorks target.

1 Enter xmakefilesetup at the MATLAB command prompt. This action
opens the XMakefile User Configuration dialog.

2 Verify that Configurations displays the right configuration, such as
wrsdiab_arm9_vxworks67_rtp configuration.

3 Click New, and name the new configuration.

4 On the Post-build tab:

• For Post-build tool, enter echo

• For Arguments, enter the following text as a single line:

rtpSp \"host:[|||MW_XMK_GENERATED_TARGET_REF[E]|||]\">"

[|||MW_XMK_OUTPUT_PATH_REF[E]|||]vxscript.txt"

5 On the Execute tab:

• For Execute tool, enter the complete path to the VxWorks simulator
executable. For example:

C:\WindRiver\vxworks-6.7\host\x86-win32\bin\vxsim.exe

• For Arguments, enter the following string. Substitute vxworksimage
with the complete path to the VxWorks operating system kernel image
you created earlier:

-f vxworksimage -s
"[|||MW_XMK_OUTPUT_PATH_REF[E]|||]vxscript.txt" &

46-7

46 Working with Wind River® VxWorks® RTOS

When you enter the path, use double back-slashes. For example:

-f C:\\WindRiver\\workspace\\test_img\\default\\vxWorks
-s "[|||MW_XMK_OUTPUT_PATH_REF[E]|||]vxscript.txt" &

Prepare Your Model for VxWorks Target and
Makefiles
The Target Hardware Resources pane contains information that your
MathWorks software needs to generate code for a specific combination of tool
chain and embedded target hardware.

Configure your model to generate code VxWorks by updating the Target
Hardware Resources pane.

1 Configure your model as described in “Configure Target Hardware
Resources” on page 35-3.

2 On the Target Hardware Resources pane, set IDE/Tool Chain to Wind
River Diab/GCC (makefile generation only), and set Board to one
of the supported processors.

This action sets the Operating system parameter to VxWorks.

Build Your Embedded Software
In your model, build your embedded software by entering CTRL+B. This
action causes your MathWorks software to generate code and makefiles.
Then the Wind River tool chain loads and runs the embedded software on
the VxWorks target.

46-8

Working with Other Processors

Working with Other Processors
The XMakefile feature includes configurations for VxWorks on the ARM9
processor. To generate makefiles for VxWorks running on other processors,
such as the ARM9E, ARM10, ARM11, or generic/custom processors, create a
new configuration file from an existing one:

1 Start the XMakefile dialog by typing xmakefilesetup at the command line.

2 Look at the options for Configuration and select the configuration for your
compiler that begins with wrsdiab_arm9 or wrsgnu_arm9. (If you don’t see
them, clear the Display operational configurations only check box.)

3 Click New, and name the new configuration.

4 Update the new configuration with missing information and new
arguments. Consult the Wind River documentation for information on
which arguments to provide.

46-9

46 Working with Wind River® VxWorks® RTOS

Schedulers

Running Target Applications on Multicore Processors

Introduction
This section provides a variation of the process described in “Build and
Download to a Multicore Target”.

This section shows you how to:

• Configure a multirate model

• Generate a multithreaded application from that model

So that the resulting application is enabled for concurrent multicore execution
on an embedded target running Linux or VxWorks.

This process uses the idelink_ert.tlc or idelink_grt.tlc system target
files, which enable you to:

• Use Embedded Coder Support Package for Xilinx Zynq-7000 Platform
to automatically build, download, and run an executable in the Linux
environment on the ARM Cortex-A9 processor on the Xilinx Zynq-7000
platform. (makefile-based)

• Use Eclipse IDE to manage projects for Linux targets (Support for this
capability is only available on 32-bit host platforms)

• Cross-compile from a Windows host to a Linux target

• Set thread priority using the Base rate task priority parameter on the
Target Hardware Resources tab.

• Use VxWorks

46-10

Schedulers

Note

• For Xilinx Zynq-7000 platform, see “Working with the Xilinx Zynq-7000
Platform”.

• For VxWorks, see “Building and Running Embedded Software on VxWorks
Target” on page 46-4.

Looking at a Model
Before setting up your own model, consider the
sldemo_concurrent_execution example model, which is referenced by
“Build and Download to a Multicore Target”.

The sldemo_concurrent_execution model is a useful example to look at
because:

• The model is partitioned using Model blocks that can potentially execute
concurrently.

• You can look at the Map Blocks To Tasks pane in the Concurrent
Execution window to see how the tasks are configured for concurrent
execution.

However, you cannot run an unmodified version of the
sldemo_concurrent_execution model on an embedded target
running Linux or VxWorks.

To prepare the sldemo_concurrent_execution as an example model for the
“Setting Up the Model” on page 46-13 and “Deploying the Model to Your
Target” on page 46-14 topics, first perform the following modifications:

• Update the Plant Model Block

• Update the Compensator Model Block

• Verify that Models are Mapped

46-11

46 Working with Wind River® VxWorks® RTOS

These procedures guide you through the processes of discretizing models and
matching sample times of blocks with models.

Update the Plant Model Block.

1 In the sldemo_concurrent_execution model, open the “Plant” Model block:
sldemo_concurrent_execution_plant

2 Discretize the Plant model. Replace the Integrator blocks, “x1” and “x2”,
with equivalent discrete time blocks (such as the Discrete Time Integrator
block) or use the “Model Discretizer”.

3 Prevent modeling constraints by matching the sample time of the “x1” and
“x2” blocks with the model: Open the “x1” and “x2” blocks and change the
Sample time parameters to 0.1. Matching the sample times to the model
can also be accomplished using Rate Transition blocks.

4 Convert blocks with continuous sample times (Sample time = 0) to
inherited sample times (Sample time = -1). Open the “u1”, “u2” and “x”
blocks. For each one, click the Signal Attributes tab, then change Sample
time to -1.

5 Save your changes to the blocks and the model.

Update the Compensator Model Block.

1 In the sldemo_concurrent_execution model, open the “Compensator” Model
block: sldemo_concurrent_execution_compensator

2 Discretize the Compensator model. Replace the Integrator block, “c”, with
an equivalent discrete time block (such as the Discrete Time Integrator
block) or use the “Model Discretizer”.

3 Prevent modeling constraints by matching the sample time of the “c”
block with the top model: Open the “c” block and change the Sample
time parameters to 0.1. Matching the sample times to the top model,
sldemo_concurrent_execution, can also be accomplished using Rate
Transition blocks.

4 Convert blocks with continuous sample times (Sample time = 0) to
inherited sample times (Sample time = -1). Open the “y1”, “y2”, and “x”

46-12

Schedulers

blocks. For each one, click the Signal Attributes tab, then change Sample
time to -1.

5 The following parameters cannot both be enabled when you build the
model. Open the Configuration Parameters (Ctrl+E) and verify that one of
the following parameters is disabled (unchecked):

• Minimize algebraic loop occurrences, located on the Model
Referencing pane.

• Single output/update function, located on the Code Generation >
Interface pane

6 Save your changes to the blocks and the model.

Verify that the Models are Mapped. Open and inspect the Task editor to
see if the models are mapped:

1 In the Simulink model editor for sldemo_concurrent_execution, select View
> Model Explorer (Ctrl + H).

2 In Model Explorer, expand the top model, sldemo_concurrent_execution.

3 Under the top model, select Configuration (Active), then click
Concurrent Execution in the second column. In the third column, click
the ConfigureTasks and Map Blocks to Tasks button.

4 Click Map Blocks To Tasks. The mapping of the models should conform
to the guidelines provided by “Design Considerations”.

The sldemo_concurrent_execution example model is ready for you to use in
“Setting Up the Model” on page 46-13 and “Deploying the Model to Your
Target” on page 46-14.

Setting Up the Model
This procedure explains how to set up a model for a multicore processor.

1 Apply the recommendations in “Design Considerations” to your multirate
Simulink model. Or, refer to the sldemo_concurrent_execution example
model.

46-13

46 Working with Wind River® VxWorks® RTOS

2 Configure your model for your IDE, tool chain, and target hardware, as
described in “Configure Target Hardware Resources” on page 35-3.

3 In Configuration Parameters, set the Operating System parameter to
Linux or VxWorks.

4 If your model uses a Rate Transition block to transition between rates, then
open the Rate Transition block and clear the Ensure deterministic data
transfer check box so that the block uses the most recent data available.

5 Configure the model for concurrent execution:

a In the Simulink model editor, select View >Model Explorer (Ctrl + H).

b In Model Explorer, expand the top model.

c Under the top model, right click Configuration (Active) and select
Convert to Configuration for Concurrent Execution. (In the
sldemo_concurrent_execution example model, this step has already been
performed.)

6 Repeat steps 4 through 5 for each referenced model in the model hierarchy
that you want to run with concurrent execution.

7 Select the configuration set of the model at the top of the model
hierarchy. In the second column, select the Concurrent Execution
node. A Concurrent Execution pane appears in the third column. (In the
sldemo_concurrent_execution example model, this step has already been
performed.)

8 In the Concurrent Execution pane in the third column, select the This is
the top of the model hierarchy check box, and click theConfigureTasks
and Map Blocks to Tasks button. (In the sldemo_concurrent_execution
example model, this step has already been performed.)

9 The Concurrent Execution configuration parameters dialog is displayed.
Click Apply.

Deploying the Model to Your Target
In your model, click the build button or enter Ctrl+B. The software performs
the actions you selected for Build action in the Configuration Parameters
dialog, on the Code Generation > Coder Target pane.

46-14

Schedulers

For more information on the structure of the code, please refer to “Build
and Download to a Multicore Target”. As mentioned in that section, the
coder product generates target-dependent code for thread creation, thread
synchronization, interrupt service routines, and signal handlers and data
transfer. For each periodic task, Simulink Coder combines the output and
update methods of the blocks mapped to that task and binds these methods
to a target-specific thread.

Note The idelink_ert.tlc or idelink_grt.tlc system target files do not
support Continuous times.

Generated Code
For idelink_ert.tlc or idelink_grt.tlc system target files, the generated
code from a mapped model creates a thread for each task and automatically
leverages the threading APIs supported by the operating system running
on the target.

• If the target platform is running Windows , the generated code will use
Windows threads.

• If the target platform is running Linux or VxWorks , the generated code
will use POSIX threads (pthreads).

The following table summarizes the differences in the generated code between
the target platforms.

Aspect of Concurrent
Execution

Linux VxWorks

Periodic triggering
event

POSIX timer POSIX timer

Aperiodic triggering
event

POSIX real-time signal POSIX real-time and
non-real-time signal

46-15

46 Working with Wind River® VxWorks® RTOS

Aspect of Concurrent
Execution

Linux VxWorks

Aperiodic trigger For blocksmapped to an
aperiodic task: thread
waiting for a signal
For blocks mapped to
an aperiodic trigger:
signal action

For blocksmapped to an
aperiodic task: thread
waiting for a signal.
For blocks mapped to
an aperiodic trigger:
signal action

Threads POSIX POSIX

Thread priority Based on Base
rate task priority
parameter

Based on Base
rate task priority
parameter

Example of overrun
detection

Yes Yes

The software checks that data transfer between concurrently executing tasks
behave as described in Data Transfer Options. The software checks data
transfer using the following APIs on supported targets.

API Linux
Implementation

VxWorks

Data protection API • pthread_mutex_init

• pthread_mutex_destroy

• pthread_mutex_lock

• pthread_mutex_unlock

• pthread_mutex_init

• pthread_mutex_destroy

• pthread_mutex_lock

• pthread_mutex_unlock

Synchronization API • sem_init

• sem_destroy

• sem_wait

• sem_post

• sem_open

• sem_unlink

• sem_wait

• sem_post

46-16

47

Work with Xilinx Zynq
Platform

• “Install Support for Xilinx® Zynq® Platform” on page 47-2

• “Open Block Library for Xilinx® Zynq® Platform” on page 47-5

• “Build and Run Executable on Xilinx® Zynq® Platform” on page 47-7

• “Stop or Restart Executable Running on Xilinx® Zynq® Platform” on page
47-14

• “Tune and Monitor Executable Running on Xilinx® Zynq® Platform” on
page 47-15

• “Set up Xilinx® Zynq® Platform and Software” on page 47-22

• “Get IP Address of Xilinx® Zynq® Platform” on page 47-25

• “Open Serial Command-line Session with Xilinx® Zynq® Platform” on
page 47-27

47 Work with Xilinx® Zynq® Platform

Install Support for Xilinx Zynq Platform
You can add support for the Xilinx Zynq-7000 platform to the Embedded
Coder product by installing Embedded Coder Support Package for Xilinx
Zynq-7000 Platform.

This support package:

• Enables the Embedded Coder product to work with Xilinx ISE Design Suite
and Xilinx Zynq-7000 platform

• Adds a Simulink block library named Embedded Coder Support Package
for Xilinx Zynq-7000 Platform

• Provides example tutorials that show you how to use this support package

When you have finished installing the support package, you can use the
following capabilities with Xilinx Zynq-7000 platform:

• Multitasking code generation that uses POSIX threads (Pthreads) for
concurrent execution on ARM cores running Linux (“Scheduler” on page
41-4)

• Automated makefile-based software build, download, and run on hardware
(“Build and Run Executable on Xilinx® Zynq® Platform” on page 47-7)

• Tuning and monitoring the executable running on the hardware from a
Simulink model (“Host/Target Communication”)

• Using Model block to reference other models (“Model Reference”)

• Processor-in-the-Loop (PIL) simulation using Model blocks and a TCP/IP
connection (“Processor-in-the-Loop (PIL) Simulation” on page 36-2)

• PIL-based execution profiling (“Execution Profiling during PIL Simulation”
on page 36-25)

• UDP Send, UDP Receive blocks for communication, and a Linux Task block
management

• Code-replacement library for ARM Cortex-A9 processor (“Code and
Operator Replacement”)

47-2

Install Support for Xilinx® Zynq® Platform

Note

• For more information about Support Packages, see “Start Support Package
Installer” on page 34-3.

• If you have the HDL Coder™ product, you can also install HDL Coder
Support Package for Xilinx Zynq-7000 Platform.

• PIL simulation and PIL-based execution profiling require single-core
execution.

To install Embedded Coder Support Package for Xilinx Zynq-7000 Platform:

1 Set up your hardware and software, as described in “Set up Xilinx® Zynq®

Platform and Software” on page 47-22.

2 In the MATLAB tool strip, click Add-Ons > Get Hardware Support
Packages.

47-3

47 Work with Xilinx® Zynq® Platform

3 Follow the instructions provided by Support Package Installer to complete
the installation.

In most cases, you can use the default settings. For more information about
a particular screen, click the Help button.

4 When the installation process is complete, Support Package Installer
displays examples that show you how to use the Embedded Coder product
with Zynq platform.

47-4

Open Block Library for Xilinx® Zynq® Platform

Open Block Library for Xilinx Zynq Platform
After installing the support package, you can open the block library for Zynq
platform.

In the MATLAB Command Window, enter zynqlib to open the following
block library.

In Simulink Library Browser, locate and select the Embedded Coder
Support Package for Xilinx Zynq-7000 Platform.

47-5

47 Work with Xilinx® Zynq® Platform

47-6

Build and Run Executable on Xilinx® Zynq® Platform

Build and Run Executable on Xilinx Zynq Platform

In this section...

“Set the model Configuration Parameters” on page 47-7

“Set up the XMakefile User Configuration” on page 47-10

“Build and Run the Executable” on page 47-11

“Troubleshooting a Connection Error” on page 47-13

Configure a Simulink model to automatically generate code, build an
executable, and then run the executable on your Zynq platform. The
executable runs in the Linux environment on the ARM Cortex-A9 processor
on the Xilinx Zynq-7000 platform.

Set the model Configuration Parameters

1 Create a copy of your model using File > Save As. Keep the original model
as a backup copy.

2 With your model open, press Ctrl+E or select Simulation > Model
Configuration Parameters.

3 In Configuration Parameters, select the Code Generation pane.

4 Display the items under Code Generation by clicking the triangle next
to it.

5 On the Code Generation pane, set System target file to
idelink_ert.tlc or idelink_grt.tlc.

47-7

47 Work with Xilinx® Zynq® Platform

6 Select the Coder Target pane.

7 Select the Target Hardware Resources tab.

8 Set the IDE/Tool chain parameter to Xilinx Zynq Design Suite
(makefile generation only).

9 Set the Board parameter to match your hardware, such as Xilinx Zynq
ZC702 evaluation kit.

47-8

Build and Run Executable on Xilinx® Zynq® Platform

10 Optional: Select the Tool Chain Automation tab, and verify that Build
action is set to Build_and_execute.

47-9

47 Work with Xilinx® Zynq® Platform

11 Optional: By default, the executable runs on a single core of the dual-core
ARM Cortex-A9 processor. PIL simulation and PIL-based execution
profiling require single-core execution. To configure the executable to run
on both cores, see “Running Target Applications on Multicore Processors”
on page 46-10.

See also:

• “Model Setup” on page 35-2

• “Code Generation: Coder Target Pane”

• “Code Generation: Target Hardware Resources Pane”

Set up the XMakefile User Configuration

1 In the MATLAB Command Window, enter:

xmakefilesetup

2 In the XMakefile User Configuration dialog box, clear the Display
operational configurations only check box.

3 Set the Configuration parameter to xilinx_ise_14_x.

4 When prompted to do so, browse or enter the path of the ISE_DS directory
for your Xilinx toolchain. For example: C:\Xilinx\14.2\ISE_DS.

This step adds the path to the toolchain settings for the xilinx_ise_14_x
configuration.

47-10

Build and Run Executable on Xilinx® Zynq® Platform

5 Click OK.

See also: “Makefiles for Software Build Tool Chains” on page 35-21

Build and Run the Executable

1 Save your changes to the model.

2 Press Ctrl+B or click the build button in your model.

The software performs the action you specified using the Build action
parameter in “Set the model Configuration Parameters” on page 47-7.
If Build action is set to Build_and_execute, the software builds
the executable, then downloads and runs the executable in the Linux
environment on the dual-core ARM Cortex-A9 processor on the Xilinx
Zynq-7000 platform. By default, the executable runs on a single core. PIL
simulation and PIL-based execution profiling require single-core execution.
To configure the executable to run on both cores, see “Running Target
Applications on Multicore Processors” on page 46-10.

3 The software displays a Code Generation Report for the model.

47-11

47 Work with Xilinx® Zynq® Platform

When the software finishes building and downloading the executable to the
hardware, it displays a command line status window.

47-12

Build and Run Executable on Xilinx® Zynq® Platform

Troubleshooting a Connection Error

1 If a connection timeout error occurs while the executable is downloading to
the Zynq platform, try these steps:

2 In the MATLAB Command Window, enter:

bdclose all
clear all
h = zynq()
h.setupZynqHardware

These commands close any open models and reload settings from the Zynq
platform.

3 Build the executable again by pressing Ctrl+B or clicking the build button.

47-13

47 Work with Xilinx® Zynq® Platform

Stop or Restart Executable Running on Xilinx Zynq
Platform

1 In the MATLAB Command Window, create a handle for the connection to
the Zynq platform. Enter:

h=zynq;

Note You do not need to enter h=zynq; if a previous instance of a Zynq
object such as h, is available in the MATLAB Workspace.

2 To stop an executable running on the hardware, enter:

h.stop('executableName');

3 To restart a stopped executable, or to run multiple instances of an
executable, enter:

h.run('executableName');

For example:

h.stop('zynq_gettingstarted')

....

h.run('zynq_gettingstarted')

ans =

1

47-14

Tune and Monitor Executable Running on Xilinx® Zynq® Platform

Tune and Monitor Executable Running on Xilinx Zynq
Platform

In this section...

“Overview of Using External Mode” on page 47-15

“Configure Simulink Model for External Mode” on page 47-16

“Run Executable on Zynq Platform” on page 47-18

“Stop External Mode” on page 47-20

Overview of Using External Mode
You can use External mode to tune parameter values in, and receive data
from, the executable while it is running on your hardware.

External mode enables you to tune model parameters and evaluate the effects
of different parameter values on the executable while it is running on the
hardware. Doing so helps you find the optimal values to achieve desired
results. This process is called parameter tuning.

External mode accelerates parameter tuning because you do not have to
generate code, build, and run the executable each time you change the value
of a parameter. You can also use External mode to develop and validate your
application using the actual data and hardware for which it is designed. This
software-hardware interaction is not available solely by simulating a model.

This workflow lists the tasks usually required to tune parameters with
External mode:

1 Optional: Place one or more sink blocks in your model. For example, use
Display or Scope blocks to visualize data, or use a To File block to log
signal data.

2 Configure the model to simulate in External mode with the executable.

3 Run the executable on the Zynq platform.

47-15

47 Work with Xilinx® Zynq® Platform

4 Connect the model on your host computer to the executable running on the
Zynq platform.

5 Optional: Observe data External mode sends from the executable running
on the hardware to the sink blocks in the model on your host computer.

6 Change parameter values in the model on your host computer that External
mode applies to the executable running on the hardware.

7 Find the optimal parameter values by making adjustments and observing
the results.

8 Save the new parameter values, disable External mode in the model, and
save the model.

See also: “Host/Target Communication”

Configure Simulink Model for External Mode

1 Verify that you are able to run an executable on the Zynq platform, as
described in “Build and Run Executable on Xilinx® Zynq® Platform” on
page 47-7.

2 In the model, review the default 10 second value of Simulation stop time
parameter, located on the model toolbar.

• To simulate in External mode for an indefinite period, enter inf.

• To simulate in External mode for a finite period, enter a number of
seconds. For example, entering 120 runs the executable on the hardware
for 2 minutes.

Note When model stops simulating in External mode, the binary
executable stops running on the hardware.

47-16

Tune and Monitor Executable Running on Xilinx® Zynq® Platform

3 Optional: To inspect, record, or log data, review the options under the
Record & Inspect Simulation Output button.

4 With your model open, press Ctrl+E or select Simulation > Model
Configuration Parameters.

5 In Configuration Parameters, select the Code Generation pane.

6 Display the items under Code Generation by clicking the triangle next
to it.

7 Select the Interface pane.

47-17

47 Work with Xilinx® Zynq® Platform

8 On the Interface pane, set:

• Interface to External mode

• Transport layer to tcpip

• MEX-file arguments to the IP address of the Zynq platform between
single quotes. For example: '172.28.144.60'

9 Click OK, and then save the changes to your model.

Tip When you have finished tuning and monitoring your application, disable
External mode by setting Interface to None.

Run Executable on Zynq Platform

1 Press Ctrl+B or click the build button in your model. The coder software
generates code, builds an executable, downloads the executable to the
hardware, and then runs it.

47-18

Tune and Monitor Executable Running on Xilinx® Zynq® Platform

If your model does not contain a sink block, the MATLAB Command
Window displays a warning message. You can disregard this warning or
add a sink block to the model.

2 In the model, select Simulation > Mode > External.

3 Select Simulation > Connect To Target. This starts the simulation. If
your model contains scopes, the scopes on your host computer start plotting
data from the executable running on the Zynq platform.

4 While the executable is running on the Zynq platform, you can:

• Change parameter values in the model on your host computer.

• If your model contains blocks from the Simulink Sinks block library,
the sink blocks in the model on your host computer display the values
generated by the executable running on the hardware.

47-19

47 Work with Xilinx® Zynq® Platform

Stop External Mode
To stop the model simulating in External mode, select Simulation > Stop, or
click the stop button on the model toolbar.

If it is set to a finite period, the Simulation stop time parameter stops
External mode when the period elapses.

47-20

Tune and Monitor Executable Running on Xilinx® Zynq® Platform

Note When model stops simulating in External mode, the binary executable
stops running on the hardware.

47-21

47 Work with Xilinx® Zynq® Platform

Set up Xilinx Zynq Platform and Software
Install Xilinx software and set up the hardware:

1 Install a supported version of Xilinx Design Tools, such as ISE Design
Suite and Vivado.

For more information about supported versions, visit mathworks.com and
search for Xilinx Zynq.

2 Set up the physical connections to your Zynq platform. For example, the
following illustration shows the connections for the Xilinx Zynq ZC702
evaluation kit.

47-22

Set up Xilinx® Zynq® Platform and Software

3 In Windows 7, open Devices and Printers.

Locate the USB device that connects to the Zynq platform, such as Silicon
Labs CP210x USB to UART Bridge.

47-23

47 Work with Xilinx® Zynq® Platform

4 Verify that the USB devices have drivers and are working correctly. If not,
search for the drivers online and install them.

47-24

Get IP Address of Xilinx® Zynq® Platform

Get IP Address of Xilinx Zynq Platform
You can get the IP address of the Zynq platform from the MATLAB Command
Window or using the Linux command line.

This is an optional task that you can use to:

• Run an executable on a different hardware from the previous one you
used. (Update the Host name parameter as described in “Build and Run
Executable on Xilinx® Zynq® Platform” on page 47-7.)

• Open a telnet or SSH session with hardware whose IP settings you do
not know.

• Configure the UDP Send block.

To get your hardware’s IP address from the MATLAB Command Window,
enter:

h = zynq();
h.setupZynqHardware();

Connecting to ZC702 using serial port COM20...

Setup for ZC702 is complete...

MATLAB will use following settings to communicate with ZC702 board:

IP Address :172.28.144.60

User name :root

Password :root

Build-directory :/root

COM port :COM20

To get your hardware’s IP address from the Linux command line:

1 Access the Linux command line on the Zynq platform as described in “Open
Serial Command-line Session with Xilinx® Zynq® Platform” on page 47-27.

2 At the Linux command line, enter: ifconfig

3 Locate the eth0 device, and get the value of inet addr from the
command-line output. For example:

zynq> ifconfig

47-25

47 Work with Xilinx® Zynq® Platform

eth0 Link encap:Ethernet HWaddr 00:0A:35:00:01:22

inet addr:172.28.144.60 Bcast:172.28.144.255 Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:26581 errors:5 dropped:0 overruns:0 frame:0

TX packets:106 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:2953666 (2.8 MiB) TX bytes:11772 (11.4 KiB)

Interrupt:54 Base address:0xb000

lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

UP LOOPBACK RUNNING MTU:16436 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Related
Examples

• “Open Serial Command-line Session with Xilinx® Zynq® Platform” on page
47-27
• “Build and Run Executable on Xilinx® Zynq® Platform” on page 47-7
• “Get IP Address of Xilinx® Zynq® Platform” on page 47-25

47-26

Open Serial Command-line Session with Xilinx® Zynq® Platform

Open Serial Command-line Session with Xilinx Zynq
Platform

You can configure and open a command-line session with the hardware.

This is an optional task that you can use to:

• View the standard output while the hardware boots.

• Get or set the IP address, as described in “Get IP Address of Xilinx® Zynq®

Platform” on page 47-25 topic.

To open a serial connection to your hardware:

1 Set up your hardware as described in “Set up Xilinx® Zynq® Platform and
Software” on page 47-22.

2 In the MATLAB Command Window, start PuTTY by entering:

h = zynq;

h.setupZynqHardware();

h.openShell('serial');

For example:

h = zynq;

h.setupZynqHardware();

Connecting to ZC702 using serial port COM20...

Setup for ZC702 is complete...

MATLAB will use following settings to communicate with ZC702 board:

IP Address :172.28.144.60

User name :root

Password :root

Build-directory :/root

COM port :COM20

h.openShell('serial');

47-27

47 Work with Xilinx® Zynq® Platform

Note

• h = zynq; creates a handle, h, for the connection with the Zynq platform.

• h.setupZynqHardware(); uses the serial-over-USB connection to get
information from the Zynq platform and displays it on the command line.

• h.openShell('serial'); opens a PuTTY Configuration window.

3 In the PuTTY dialog box that opens, select the Serial category.

4 Enter the following values:

• Serial line to connect to: Enter the COM port number.

• Speed: 115200

• Flow control: None

47-28

Open Serial Command-line Session with Xilinx® Zynq® Platform

5 In the PuTTY dialog box, select the Session category.

6 For Connection type, select Serial.

7 For Saved Sessions, enter a new name, such as “Serial”.

8 Click Save, and then click Open.

9 When a terminal window opens, press the Enter key on your keyboard.
The terminal window displays a Linux command prompt.

47-29

47 Work with Xilinx® Zynq® Platform

10 When you are finished, close the terminal window.

Leaving the terminal session open prevents the build process connecting
to the Zynq platform and produces a build error.

If you have trouble determining the COM port number, you can use this
alternative approach:

1 In Windows 7, open Devices and Printers.

2 Locate the USB device that connects to the Zynq platform, such as Silicon
Labs CP210x USB to UART Bridge. The device name includes the port
number. For example:

47-30

Open Serial Command-line Session with Xilinx® Zynq® Platform

47-31

47 Work with Xilinx® Zynq® Platform

47-32

Index

IndexA
absolute time 14-27
access properties 38-26 40-29
acquisition window

ADC blocks
ACQ_PS 44-54

additional options
adding custom comments 15-4
delimiter for #includes 15-101

adivdsp 38-24
adivdsp object properties 38-31

procnum 38-30
sessionname 38-30

algorithms
verifying in context of complete real-time

target environment 30-1
Alias 9-10
Analog Devices model reference 38-36
apiversion 42-53
Archive_library 38-38 40-42 42-66 45-31
ASAP2 files, generating 44-46
asynchronous scheduling 45-19
attributes 8-56
AUTOSAR 4-2

standards, complying with 4-5

B
Bitfield (Custom) 9-7
block limitations using model reference 38-38

40-43 42-66 45-31
blocks

adding to model 44-26
boardnum 42-53
boards, selecting 35-19 42-58
Browse button

on Code Generation pane 14-24
build folder

contents of 45-43
naming convention 45-40

build format 35-9
building models

use C62x DSP Library blocks 45-96

C
c2000lib startup 44-25
C6000 model reference 42-64 45-29
C6000 Target

targeting Code Composer Studio™ 45-47
C62x DSP Library blocks

building models 45-96
choosing blocks to optimize code 45-97
common characteristics 45-91
Q format notation 45-93
using source and sink blocks 45-97

C6713 DSK
confirming configuration 45-37
start/stop-models 45-35 45-47
tutorial about multirate applications 45-38

C6713 DSK blocks
tutorial 45-38

C6713 DSK folders
build 45-40
working 45-40

CAN
timing parameters

Bitrate 45-98
CAN/eCAN

timing parameters
Bitrate 44-30

CCS 42-2 43-2
See also Code Composer Studio™

CCS IDE
create projects for the IDE 45-47

CCS IDE objects
tutorial about using 42-9

ccsappexe 42-53
changing identifier names 8-79
classes 8-56

Index-1

Index

clock speed 44-8
Code Composer Studio 45-47

MATLAB API 42-5
Code Composer Studio™ 42-2 43-2
code generation

overview 44-28
code generation options

Application lifespan (days) 24-3
Bitfield declarator type specifier 24-4
Classic call interface 14-28
code style pane 15-26
Configure Step Function 14-29
Custom comments 15-2
External mode 24-6
Fixed-point exception protection 24-3
Generate reusable code 14-28
Identifier format control 15-12
MAT-file logging

clearing 26-5
Pack Boolean data into bitfields 24-4
Parameter structure 24-3
Pass reusable subsystem outputs as 24-4
Pass root-level I/O as 14-30
Requirements in block comments 15-2
Reusable code error diagnostic 14-30
Simplify array indexing 24-3
Simulink block descriptions 15-2
Simulink data object descriptions 15-2
Single output/update function 14-28

clearing 20-16
Stateflow object descriptions 15-2
Support absolute time 14-27
Support complex numbers 14-27
Support continuous time 14-27

for using continuous time blocks 7-2
limitations 21-4

Support floating-point numbers 14-26
Support non-finite numbers 14-27
Support noninlined S-functions 14-27

Suppress error status in real-time model
data structure 14-29

Terminate function required 14-28
Code generation options 9-5
Code Generation pane

target configuration options
Browse button 14-24
system target file field 14-24

Code Generation Report 8-77
code modules, generated 16-8
code optimization 44-97
code replacement library. See CRL
code style

controlling 15-26
code templates

example of use 15-39
generating code with 15-40
structure of 15-36
summary of API 15-51

code tracing
by using HTML reports 28-4

code, generated
verifying in target environment 29-1

code, user-written 16-11
codegen

generating reusable, reentrant code 16-14
comments

adding custom 15-4
adding global 15-6

Complexity 9-4
component models

verifying in context of complete real-time
target environment 30-1

configuration default 42-2
Configuration Wizard buttons 14-33
confirm your C6713 DSK configuration 45-37
Const (Custom) 9-7
ConstVolatile (Custom) 9-8
controllers

Index-2

Index

verifying in context of complete real-time
target environment 30-1

controlling signal storage 25-4
convert data types 45-96
CPU clock speed 44-8
create custom Code Replacement Library 37-8
creating a data dictionary 8-57
CRL 23-1

assessing execution time after selecting a
library 37-4

build information for code
replacements 23-161

cache hits and misses 23-198
conceptual view of function or operator 23-4
create a custom library 37-8
defining 23-18
examining 23-191
optimization 37-2
registering 23-203
reserved identifiers 23-165
RTW.copyFileToBuildDir 23-163
rtwTargetInfo.m file 23-203
seeing the library changes in your generated

code 37-5
selecting in MATLAB Coder 23-11
selecting in Simulink 23-10
selecting the library to use 37-4
sl_customization.m file 23-203
table definition file 23-18
table entry 23-4
target-specific implementation of function or

operator 23-4
TargetFcnLibHandle 23-198
tracing generated code 23-195
use in the build process 37-3
using with link software 37-2
validating 23-191
viewer 23-192
viewing library tables 37-8
when to use 37-4

workflow 23-10
custom C6000 target

about 45-52
preferences block 45-52
setup 45-52

custom code generation
of file banners 15-55
with code templates 15-35

custom comments 15-4
custom file processing (CFP) template 15-28
custom hardware guidelines 45-49
custom hardware, target 45-49

D
daexplr command 8-60
Data access 9-9
data dictionary 8-55

introduction 8-55
See also data objects

data initialization
of floats and doubles 24-2
of internal states 24-2
of root-level I/O ports 24-2

data object wizard 8-57
data objects

adding missing 8-57
naming rules

changing #defines 8-86
changing parameter names 8-85
changing signal names 8-85

properties 9-3
setting property values 8-60
wizard 8-57

data placement
introduction 15-74
rules for 15-94
settings 15-74

data templates 15-28
Data type property 9-3

Index-3

Index

data type support 44-6
data types

conversion 44-97
creating 8-35

dataobjectwizard 8-58
Default (Custom) storage class 9-5
default build configuration 42-2
Define (Custom) 9-8
defining one object in its own file 8-79
Definition file 9-6
Definition File priority 15-80
Description 9-10
design specification

developing 2-1 7-1
dialog boxes

Configure AUTOSAR Interface 17-43
Model Interface 12-3

Dialog boxes
Model Explorer 8-60

Dimensions 9-4
Direct 9-9
DO-178C 4-2

standards, complying with 4-11
DO-178C Standard 4-11
DO178-C 4-2
DocBlock 15-6
domain

installing products for 2-1
DSP/BIOS

added files 45-71
files removed from project 45-71
to enable 45-68

DSP/BIOS, enabling 45-68

E
Eclipse™ IDE for C/C++ Developers 39-5
elapsed time 14-27
Embedded Coder®

about 45-2

create Simulink® model for targeting 45-38
expected background for use 45-3
information for new users 45-3
listing link functions 42-47

enabling DSP/BIOS 45-68
execution in timer-based models 45-20
execution profiling

subsystem 36-23
export filters to CCS IDE from FDATool 42-69

select the export data type 42-72
set the Export mode option 42-71

ExportToFile (Custom) 9-8
external data dictionary

importing data objects from 8-68
External mode support 24-6

F
FDATool. See export filters to CCS IDE from

FDATool
file banners, generation of 15-55
file packaging 16-8
files added to DSP/BIOS project 45-71
files removed from DSP/BIOS projects 45-71
fixed-point numbers 44-91 45-91

signed 45-92
Frame based 9-4
functions

overloading 38-28 40-32 42-50

G
generate optimized code 35-8
generated code

modules 16-8
verifying in target environment 29-1

generating reusable, reentrant code
codegen 16-14

Get function 9-9
GetSet (Custom) 9-9

Index-4

Index

GetSet custom storage class 10-61
getting properties 38-27 40-31
ghsmulti 40-28
ghsmulti object properties 40-34

portnum 40-34
procnum 40-33

Global (Custom) storage class 9-5
global comments

using DocBlock 15-6
using Simulink annotation 15-9
using sorted notes 15-10
using Stateflow note 15-9

Global priority 15-79
GNU® Tool Chain on Linux® 39-6
GNU® Tool Chain on Windows® 39-7
Green Hills MULTI® IDE objects

tutorial about using 40-12
Green Hills Software model reference 40-40
guidelines

MISRA C® 4-5

H
hardware 45-5
Hardware Implementation parameters

configuration of 24-5
hardware, custom 45-49
Header file 9-6
Header File priority 15-80
heap size, set heap size 35-12
high-speed peripheral clock 44-8

I
identifier format control parameters 15-16
identifier format control tokens 15-14
IEC 61508 4-2

standards, complying with 4-7
IEC 61508 Standard 4-7

import filter coefficients from FDATool.. See
FDATool

ImportFromFile (Custom) 9-9
inaccurate profile information 45-75
#include

specifying delimiter 15-101
industry standards and guidelines

modeling and coding 4-2
initialized memory 45-51
inserting custom comments 15-4
inserting global comments 15-6
installing software 44-3 45-5
integer-only code 26-4
integer-only code generation 26-4
interrupts, servicing 20-3
IQ Math library 44-90

building models 44-96
code optimization 44-97
common characteristics 44-91
Q format notation 44-93

ISO 26262
standards, complying with 4-9

ISO 26262 Standard 4-9
issues, using PIL 36-19

L
link filters properties

getting 38-28 40-31
link properties

about 38-30 40-32 to 40-33 42-50 42-52
apiversion 42-53
boardnum 42-53
ccsappexe 42-53
numchannels 42-53
page 42-54
procnum 42-54
quick reference table 42-51
rtdx 42-55
rtdxchannel 42-56

Index-5

Index

setting 38-28 40-31
timeout 42-56
version 42-56

link properties, details about 38-30 40-33 42-52
linking objects

quick reference 38-28
links

closing CCS IDE 42-25
closing Green Hills MULTI® 40-26
closing RTDX 42-44
closing VisualDSP++® 38-23
communications for RTDX 42-35
creating links for RTDX 42-33
details 38-30 40-33 42-52
introducing the tutorial for using links for

RTDX 42-28
loading files into CCS IDE 42-17
loading files into Green Hills MULTI®

IDE 40-19
loading files into VisualDSP++® IDE 38-16
quick reference 40-32 42-50
running applications using RTDX 42-37
tutorial about using links for RTDX 42-27
working with your processor 38-17 40-21

42-19

M
main program

modifying 20-4
operation of 20-3

main program (rt_main)
static module 20-12

management, memory 45-51
map memory 45-51
map, memory 45-51
math blocks. See IQ Math library
MathWorks Automotive Advisory Board (MAAB)

guidelines, complying with 4-4

MathWorks® Automotive Advisory Board
(MAAB) 4-2

MATLAB functions
#define naming 8-86
parameter naming 8-85
signal naming 8-85

Maximum property 9-5
MemConst 9-5
MemConstVolatile 9-5
memory

initialized 45-51
management 45-51
map 45-51
section 45-51
segment 45-51
uninitialized 45-51

memory maps 45-51
Memory section 9-5
MemVolatile 9-5
Minimum property 9-4
MISRA C 4-2
MISRA C®

guidelines, complying with 4-5
MISRA C® guidelines 4-5
model

add blocks 44-26
building overview 44-22
IQmath library 44-96

model design specification
developing 2-1 7-1

model execution 45-19
Model Explorer

parameter and signal properties 9-3
model reference 38-36 40-40 42-64 45-29

about 38-36 40-40 42-64 45-29
Archive__library 45-31
Archive_library 38-38 40-42 42-66
block limitations 38-38 40-43 42-66 45-31
modelreferencecompliant flag 38-39 40-43

42-67 45-32

Index-6

Index

setting build action 38-38 40-42 42-66 45-31
using 38-38 40-42 42-66 45-30

model schedulers 45-19
modelreferencecompliant flag 38-39 40-43

42-67 45-32
modifying rt_OneStep 20-10
mpt (module packaging tool) data object 8-56
MULTI

starting from MATLAB 40-14
stopping from MATLAB 40-14

N
name mangling 15-18
naming rules

applying globally 8-79
changing parameter names 8-85
changing signal names 8-85

numchannels 42-53

O
object

adivdsp 38-24
ghsmulti 40-28
ticcs 42-48

object properties
about 38-28
quick reference table 38-29 40-32

objects
creating objects for CCS IDE 42-15
creating objects for Green Hills MULTI®

IDE 40-18
creating objects for VisualDSP++® IDE 38-14
introducing the objects for CCS IDE

tutorial 42-9
introducing the objects for Green Hills

MULTI® IDE tutorial 40-12
introducing the objects for VisualDSP++®

IDE tutorial 38-9

selecting processors for CCS IDE 42-13
selecting processors for VisualDSP++® IDE

38-13
tutorial about using IDE Automation

Interface for CCS IDE 42-9
tutorial about using IDE Automation

Interface for Green Hills® MULTI®

IDE 40-12
tutorial about using IDE Automation

Interface for VisualDSP++® IDE 38-9
optimization code 44-97
optimization, processor specific 35-8
optimize code 45-97
Oracle® Java® Runtime Environment 39-3
overloading 38-28 40-32 42-50
Owner 9-6
ownership

explanation 15-81
settings 15-81

Ownership priority 15-80

P
package 8-56
page 42-54
Parameter class 8-56
parameter names

changing all 8-85
Persistence level 9-7
PIL issues 36-19
Pointer 9-9
portnum 40-34
priority and usage 15-75

Definition File priority 15-80
Global priority 15-79
Header File priority 15-80
introduction 15-75
Ownership priority 15-80
Read-Write priority 15-76
See also interdependent settings

Index-7

Index

processor configuration options
build action 35-9
overrun action 35-10

processor specific optimization 35-8
processor-in-the-loop (PIL)

communications API 31-42
connectivity API 31-39
connectivity API examples 31-51
connectivity configuration 31-40
custom target 31-40
limitations 31-55
rtiostream API 31-42
target connectivity API 31-40

procnum 38-30 40-33 42-54
profile generated code 45-72
profile report

about 45-72
correcting inaccurate profile

information 45-75
CPU clock speed 45-81
maximum percent of interrupt interval (Max

%) 45-81
maximum time spent in this subsystem per

interrupt (Max time) 45-81
number of interrupts counted 45-80
profiling subsystems 45-73
reading 45-79
sample 45-79
STS objects 45-81
timing details 45-74
to generate 45-82

profiling execution
by subsystem 36-23

program execution
main program 20-3
rt_OneStep 20-5

multirate multitasking operation 20-7
multirate single-tasking operation 20-10
reentrancy 20-9
single-rate single-tasking operation 20-6

project generation
selecting the board 35-19 42-58

projects, create for CCS IDE 45-47
properties

link properties 40-32 42-50
object properties 38-28
referencing directly 38-28 40-31
retrieving 38-26 40-29

function for 38-27 40-31
retrieving by direct property

referencing 38-28 40-31
setting 38-26 40-29

property values
definition 8-55
descriptions 9-3
setting 8-60

pure integer code 26-4
and external mode 24-7

Q
Q format 44-93
Q format notation 45-93

R
rate grouping 20-8
Read-Write priority 15-76
reentrant code 14-28

codegen 16-14
reset 44-23
reusable code 14-28

codegen 16-14
rt_main.c 20-12
rtdx 42-55
RTDX links

tutorial about using 42-27
rtdxchannel 42-56
RTW.copyFileToBuildDir 23-163
rtwdemo_mpf 8-71

Index-8

Index

run the DSK confidence test 45-37

S
S-function wrapper generation 21-2
Sample based 9-4
Sample mode 9-4
Sample time 9-4
scheduling 44-7
section,memory 45-51
segment, memory 45-51
selecting boards 35-19 42-58
sessionname 38-30
Set function 9-9
set heap size 35-12
set properties 38-26 40-29
set stack size 35-11
Signal class 8-56
signal names

changing all 8-85
signed fixed-point numbers 44-93 45-92
simulator

device cycle accurate 45-10
use simulators for development 45-10
use with DSP/BIOS 45-10

simulators, about 45-10
Simulink annotation 15-9
solver modes, permitted 20-5
sorted notes 15-10
source and sink blocks 45-97
source code files, generated 16-8
specification

developing 2-1 7-1
stack size, set stack size 35-11
standards

DO-178C 4-11
IEC 61508 4-7
ISO 26262 4-9

standards and guidelines, modeling and
coding 4-2

start MULTI from MATLAB 40-14
startup c2000lib 44-25
Stateflow note 15-9
stop MULTI from MATLAB 40-14
Storage class 9-5
Struct (Custom) 9-9
Struct name 9-7
structure-like referencing 38-28 40-31
supported hardware 45-5
symbols for templates

alphabetical list 15-66
synchronous scheduling 45-20
system requirements 45-5
System Target File Browser 14-25
system target files

selecting programmatically 14-25

T
target Code Composer Studio™ 45-47
target connectivity API 31-40
target custom hardware 45-49
target environment

verifying generated code in 29-1
targets

selecting programmatically 14-25
task identifier (tid) 20-8
templates

example with generated file 15-48
rules for creating or modifying 15-70
symbols 15-66

ticcs 42-48
tid 20-8
timeout 42-56

timeout 38-31 40-34
timer interrupts 20-3
timer-based models, execution 45-20
timer-based scheduler 45-20
timing 45-19

interrupts 44-7

Index-9

Index

tutorial
changing identifier names 8-81
changing organization of generated file 15-37
creating a data dictionary 8-70
defining objects in separate file 8-77
defining one object in its own file 8-79

tutorial for C6713 DSK blocks 45-38
tutorials

links for RTDX 42-27
objects for CCS 42-9
objects for Green Hills MULTI® 40-12
objects for VisualDSP++® 38-9

U
uninitialized memory 45-51
Units 9-3
use blocks for the C6713 DSK 45-38
use C62x and C64x DSP Library blocks 45-89
use C6713 DSK blocks 45-38

User data type 8-35
User object type 9-3

V
Value 9-3
version 42-56
viewing Code Replacement Libraries 37-8
virtualized output port optimization 25-2
VisualDSP++® IDE objects

tutorial about using 38-9
Volatile (Custom) 9-7

W
Web view

browser requirements 18-6
wizard

data object 8-57
working folder 45-40

Index-10

	toc
	Check Bug Reports for Issues and Fixes
	Bug Reports
	Check Bug Reports for Issues and Fixes

	Model Architecture and Design
	Modeling Environment
	Set Up Your Modeling Environment

	Application Objectives
	Guidelines and Standards
	What Are the Standards and Guidelines?
	MAAB Guidelines
	MISRA C Guidelines
	IEC 61508 Standard
	Apply Simulink and Embedded Coder to the IEC 61508 Standard
	Check for IEC 61508 Standard Compliance Using the Model Advisor
	Validate Traceability

	ISO 26262 Standard
	Apply Simulink and Embedded Coder to the ISO 26262 Standard
	Check for ISO 26262 Standard Compliance Using the Model Advisor
	Validate Traceability

	DO-178C Standard
	Apply Simulink and Embedded Coder to the DO-178C Standard
	Check for Standard Compliance Using the Model Advisor
	Validate Traceability

	Patterns for C Code
	About Modeling Patterns
	Prepare a Model for Code Generation
	Configure a Signal
	Configure Input and Output Ports
	Initialize States
	Set Up Configuration Parameters for Code Generation
	Set Up an Example Model With a Stateflow Chart
	Set Up an Example Model With a MATLAB Function Block

	Data Declaration
	C Construct
	Declare a Variable for a Block Parameter Using a Data Object
	C Construct
	Declare a Variable for a Signal using a Data Object

	Data Type Conversion
	C Construct
	Modeling Patterns
	Modeling Pattern for Data Type Conversion — Simulink Block
	Modeling Pattern for Data Type Conversion — Stateflow Chart
	Procedure
	Results

	Modeling Pattern for Data Type Conversion — MATLAB Function Bloc
	Procedure
	Results

	Other Type Conversions in Modeling

	Type Qualifiers
	Modeling Patterns for Type Qualifiers
	Using a Tunable Parameter in the Base Workspace
	Procedure
	Results

	Use a Data Object of the Const Custom Storage Class
	Procedure
	Results

	Relational and Logical Operators
	Modeling Patterns for Relational and Logical Operators
	Modeling Pattern for Relational or Logical Operators — Simulink
	Procedure
	Results

	Modeling Pattern for Relational and Logical Operators —Stateflow
	Procedure
	Results

	Modeling Pattern for Relational and Logical Operators — MATLAB F
	Procedure
	Results

	Bitwise Operations
	Simulink Bitwise-Operator Block
	Procedure
	Results

	Stateflow Chart
	Procedure
	Results

	MATLAB Function Block
	Procedure
	Results

	If-Else
	C Construct
	Modeling Patterns
	Modeling Pattern for If-Else: Switch block
	Procedure
	Results

	Modeling Pattern for If-Else: Stateflow Chart
	Procedure
	Results

	Modeling Pattern for If-Else: MATLAB Function Block
	Procedure
	Results

	Switch
	C Construct
	Modeling Patterns
	Modeling Pattern for Switch: Switch Case block
	Procedure
	Results

	Modeling Pattern for Switch: MATLAB Function block
	Procedure
	Results

	Convert If-Elseif-Else to Switch statement

	For Loop
	C Construct
	Modeling Patterns:
	Modeling Pattern for For Loop: For-Iterator Subsystem block
	Procedure
	Results

	Modeling Pattern for For Loop: Stateflow Chart
	Procedure
	Results

	Modeling Pattern for For Loop: MATLAB Function block
	Procedure
	Results

	While Loop
	C Construct
	Modeling Patterns
	Modeling Pattern for While Loop: While Iterator Subsystem block
	Procedure
	Results

	Modeling Pattern for While Loop: Stateflow Chart
	Procedure
	Results

	Modeling Pattern for While Loop: MATLAB Function Block
	Procedure
	Results

	Do While Loop
	C Construct
	Modeling Patterns
	Modeling Pattern for Do While Loop: While Iterator Subsystem blo
	Procedure
	Results

	Modeling Pattern for Do While Loop: Stateflow Chart
	Results

	Function Call
	C Construct
	Procedure
	Results

	Function Prototyping
	C Construct
	Modeling Patterns
	Function Call Using Graphical Functions
	Procedure
	Results

	Control Function Prototype of the model_step Function
	Procedure
	Results

	External C Functions
	C Construct
	Modeling Patterns
	Use the Legacy Code Tool to Create S-functions
	Procedure
	Results

	Use a Stateflow Chart to Make Calls to C Functions
	Procedure
	Results

	Using a MATLAB Function Block to Make Calls to C Functions
	Procedure
	Results

	Macro Definitions (#define)
	C Construct
	Modeling Patterns
	Use a 'Define' Custom Storage Class
	Procedure
	Results

	Use a Custom Header File
	Procedure
	Results

	Conditional Inclusions (#if / #endif)
	Typedef
	C Construct
	Procedure
	Results

	Structures for Parameters
	C Construct
	Procedure
	Results

	Structures for Signals
	C Construct
	Modeling Patterns
	Structure for Signals Using a 'Struct' Custom Storage Class
	Procedure
	Results

	Structure for Signals Using a Simulink Non-Virtual Bus Object
	Procedure
	Results

	Nested Structures
	C Construct
	Procedure
	Results

	Bitfields
	C Construct
	Procedure
	Results

	Arrays for Parameters
	C Construct
	Procedure
	Results

	Arrays for Signals
	C Construct
	Procedure
	Results

	Pointers for Signals
	C Construct
	Procedure
	Results

	Pointers Using Simulink Data Objects
	C Construct
	Procedure
	Results

	Variant Systems
	About Variant Systems
	Why Generate Code for Variant Systems?
	Generate Preprocessor Conditionals for Variant Systems
	Define Variant Controls
	Configure Model for Generating Preprocessor Conditional Directiv
	Build Your Model

	Review Code Variants in Code Generation Report
	Generate Code for Model Variants
	Generate Code for Variant Subsystems
	Open the Example Model
	Define the Variant Controls
	Make Each Child Subsystem an Atomic Subsystem
	Configure Model for Generating Preprocessor Conditional Directiv
	View the Generated Code

	Restrictions on Variant Subsystem Code Generation
	Special Considerations for Generating Preprocessor Conditionals
	Limitations on Generating Code for Variants
	Generated Code Components Not Compiled Conditionally

	Scheduling Considerations
	Use Discrete and Continuous Time
	Support for Discrete and Continuous Time Blocks
	Support for Continuous Solvers
	Support for Stop Time

	Optimize Multirate Multitasking Operation on RTOS Targets
	Overview
	Use rtmStepTask
	Scheduling Code for Multirate Multitasking on VxWorks
	Suppress Redundant Scheduling Calls

	Data, Function, and File Definition
	Data Types
	Apply User-Defined Data Types
	Define User Data Types
	Select User-Defined Data Types

	Specify Persistence Level for Signals and Parameters
	Buses
	About Buses and Code Generation
	Set Bus Diagnostics
	Optimize Virtual and Nonvirtual Buses
	Use Virtual Buses Wherever Possible
	Avoid Nonlocal Nested Buses in Nonvirtual Buses

	Use Single-Rate and Multi-Rate Buses
	Introduction
	Techniques for Combining Multiple Rates
	Larger Buses and Multiple Rates
	Specify Sample Time Rates

	Set Bus Signal Initial Values
	Introduction
	Initialize Bus Signals in Simulink
	Bus Initialization in Stateflow
	Create a Bus of Constants

	Use Buses with Atomic Subsystems
	Extract Nonvirtual Bus Signals from Atomic Subsystems
	Virtual Bus Signals Crossing Atomic Boundaries
	Atomic Subsystems and Buses of Constants

	Rename Built-In Data Types
	Generate Code Including User-Defined Data Types
	About User-Defined Data Types
	Specify Location of User-Defined Type Definitions
	Omit a HeaderFile Value
	Specify a HeaderFile Value

	Apply User-Defined Data Types
	Create Data Types for mpt Data Objects
	User Data Types for mpt Data Objects
	Register User Data Types Using sl_customization.m
	User Data Type Customization Using sl_customization.m
	sl_customization.m for User Data Type Customizations

	Register mpt User Object Types
	Introduction
	Register mpt User Object Types Using sl_customization.m
	mpt User Object Type Customization Using sl_customization.m
	sl_customization.m for mpt Object Type Customizations

	Data Type Replacement
	Replace Data Types
	Replace Built-In Data Type Names
	Generated Code with real_T Built-In Data Type
	Generated Code with FLOAT64 Replacement Data Type
	Programmatically Replace Built-In Data Type Names
	Replace boolean with an Integer Data Type
	Data Type Replacement Limitations

	Data Definition and Declaration Management
	Overview of Data Dictionary
	Create Simulink and mpt Data Objects
	Ways to Create Data Objects
	Create Data Objects with Data Object Wizard
	Create mpt Data Objects with Data Object Wizard
	Simulink and mpt Data Object Comparison
	Create Data Objects from External Data Dictionary

	Create a Data Dictionary for a Model
	Use Data Object Wizard
	Inspect the Data Dictionary
	Generate and Inspect Code

	Define Global Data Objects in Separate File
	Define Global Data Objects in Separate Files
	Save and Load Data Objects
	Apply Naming Rules to Identifiers Globally
	Overview
	Change Names of Identifiers
	Specify Data Object Naming Rules
	Define Rules That Change Signal Names
	Define Rules That Change Parameter Names
	Define Rules That Change #defines

	Module Packaging Tool (MPT) Data Objects
	MPT Data Object Properties

	Custom Storage Classes
	Introduction to Custom Storage Classes
	Custom Storage Class Memory Sections
	Register Custom Storage Classes
	Custom Storage Class Examples

	Resources for Defining Custom Storage Classes
	Simulink Package Custom Storage Classes
	Design Custom Storage Classes and Memory Sections
	Create Packages for Custom Storage Class Definitions
	Use Custom Storage Class Designer
	Select Data Class Package
	Manipulate Custom Storage Classes and Memory Sections
	Save Definitions
	Restart MATLAB After Changing Definitions

	Edit Custom Storage Class Properties
	General Category
	Comments Category
	Structure Attributes Category
	Validate Definitions Category

	Use Custom Storage Class References
	Change Existing Custom Storage Class References

	Create and Edit Memory Section Definitions
	Preview Generated Code

	Use Memory Section References
	Change Existing Memory Section References

	Apply Custom Storage Classes
	About Applying Custom Storage Classes
	Apply Custom Storage Classes to Parameters
	Create Parameter Objects Using GUI
	Create Parameter Objects Using API

	Apply Custom Storage Classes to Signals
	Custom Storage Classes Using Signal Objects
	Create Signal Objects in Base Workspace Using GUI
	Create Signal Objects in Base Workspace Using API

	Custom Storage Classes Using Embedded Signal Objects
	Create Embedded Signal Objects Using GUI
	Delete Embedded Signal Objects Using GUI
	Create Embedded Signal Objects Using API
	Change Embedded Signal Objects Using API
	Delete Embedded Signal Objects Using API
	Resolve Signal Names to Simulink Signal Objects Using API

	Specify Custom Storage Classes Using GUI
	Specify Custom Storages Classes Using API
	CoderInfo Properties
	Specify a Custom Storage Class
	Specify Instance-Specific Attributes
	Assign Embedded Signal Objects to Output Ports

	Generate Code with Custom Storage Classes
	Code Generation Prerequisites
	Code Generation With Custom Storage Classes
	Grouped Custom Storage Classes

	Define Advanced Custom Storage Classes Types
	Introduction
	Create Your Own Parameter and Signal Classes
	Create Custom Attributes Classes for Custom Storage Classes
	Write TLC Code for Custom Storage Classes
	Register Custom Storage Class Definitions

	GetSet Custom Storage Classes
	About GetSet Custom Storage Class
	GetSet Custom Storage Class Properties
	Apply the GetSet Custom Storage
	GetSet Custom Storage Class Restrictions
	Increase Code Efficiency With GetSet CSC

	Custom Storage Class Implementation
	Custom Storage Class Limitations

	User Package Registration
	About Data Object Wizard and User Packages
	Register User Packages Using sl_customization.m
	User Package Customization Using sl_customization.m
	sl_customization.m for User Package Customizations

	Function and Class Interfaces
	Function Prototype Control
	About Function Prototype Control
	Configure Function Prototypes Using Graphical Interfaces
	Launch the Model Interface Dialog Boxes
	Default Model Initialize and Step Functions View
	Model Specific C Prototypes View
	Configure Function Prototypes for Nonvirtual Subsystems

	Sample Procedure for Configuring Function Prototypes
	Configure Function Prototypes Programmatically
	Sample Script for Configuring Function Prototypes
	Verify Generated Code for Customized Functions
	Function Prototype Control Limitations

	C++ Encapsulation Interface Control
	About C++ Encapsulation Interface Control
	Simple Use of C++ Encapsulation Control
	Configure C++ Encapsulation Interfaces Using Graphical Interface
	Select the C++ (Encapsulated) Option
	Configure Code Interface Options
	Configure Step Method for Your Model Class
	Configure C++ Encapsulation Interfaces for Nonvirtual Subsystems

	Configure C++ Encapsulation Interfaces Programmatically
	Configure the Step Method for a Model Class
	C++ Encapsulation Interface Control Limitations

	Atomic Subsystem Code
	About Nonvirtual Subsystem Code Generation
	Configure Subsystem for Generating Modular Function Code
	Modular Function Code for Nonvirtual Subsystems
	H File Differences for Nonvirtual Subsystem Function Data Separa
	C File Differences for Nonvirtual Subsystem Function Data Separa

	Nonvirtual Subsystem Modular Function Code Limitations

	Memory Sections
	About Memory Sections
	What Are Memory Sections?

	Requirements for Defining Memory Sections
	Define Memory Sections
	Edit Memory Section Properties
	Specify the Memory Section Name
	Specify a Qualifier for Custom Storage Class Data Definitions
	Specify Comment and Pragma Text
	Surround Individual Definitions with Pragmas
	Include Identifier Names in Pragmas

	Configure Memory Sections
	Declare Constant Data as Volatile
	Apply Memory Sections
	Assign Memory Sections to Custom Storage Classes
	Apply Memory Sections to Model-Level Functions and Internal Data
	Apply Memory Sections to Atomic Subsystems

	Generated Code with Memory Sections
	Sample ERT-Based Model with Subsystem

	Model-Level Data Structures
	Model-Level Functions
	Subsystem Function

	Memory Section Limitation

	Code Generation
	Configuration
	Application Objectives
	High-Level Code Generation Objectives
	Determine Model Configuration for Specified Objectives
	Check and Configure Model for Code Generation Objectives
	Check and Configure Model for Code Generation Objectives Using C
	Configure Code Generation Objectives Programmatically
	Check Objectives in Referenced Models
	Check Model During Code Generation
	Create Custom Objectives
	Specify Parameters in Custom Objectives
	Specify Checks in Custom Objectives
	Determine Checks and Parameters in Existing Objectives
	How to Create Custom Objectives

	Target
	About Target Selection
	Select an ERT Target
	Customize an ERT Target
	Configure Support for Numeric Data
	Configure Support for Time Values
	Support for Non-inlined S-Functions
	Configure Model Function Generation and Argument Passing
	Set Up Support for Code Reuse
	Configure Code Replacement Libraries

	Configuration Variations
	About Model Configuration for Code Generation

	Wizard
	Block Library
	Add a Configuration Wizard Block
	Use Configuration Wizard Blocks
	Create a Custom Configuration Wizard Block
	Setting Up a Configuration Wizard Block
	Create a Configuration Wizard Script
	Invoke a Configuration Wizard Script from the MATLAB Command Pro

	Code Appearance
	Add Custom Comments to Generated Code
	Add Custom Comments for Signal or Parameter Identifiers
	Add Global Comments
	Use a Simulink DocBlock to Add a Comment
	Use a Simulink Annotation to Add a Comment
	Use a Stateflow Note to Add a Comment
	Use Sorted Notes to Add Comments

	Customize Generated Identifier Naming Rules
	Identifier Format Control
	Control Name Mangling in Generated Identifiers
	Minimize Name Mangling

	Avoid Identifier Name Collisions with Referenced Models
	Maintain Traceability for Generated Identifiers
	Exceptions to Identifier Formatting Conventions
	Identifier Format Control Parameters Limitations
	Specify Simulink Data Object Naming Rules
	Control Code Style
	Customize Code Organization and Format
	Custom File Processing Overview
	Custom File Processing Components
	Custom File Processing User Interface Options
	Code Generation Template (CGT) Files
	Default CGT file
	CGT File Structure
	Built-In Tokens and Sections
	Subsections

	Use Custom File Processing (CFP) Templates
	Custom File Processing (CFP) Template Structure
	Change the Organization of a Generated File
	Generate Source and Header Files with a Custom File Processing (
	Generate Code with a CFP Template
	Analysis of the Example CFP Template and Generated Code
	Generate a Custom Section
	Custom Tokens

	Comparison of a Template and Its Generated File
	Template and Generated File

	Code Template API Summary
	Generate Custom File and Function Banners
	Create a Custom File and Function Banner Template
	Customize a Code Generation Template (CGT) File for File and Fun

	Template Symbols and Rules
	Introduction
	Template Symbol Groups
	Template Symbols
	Rules for Modifying or Creating a Template

	Code Annotation for Justifying Polyspace Checks
	Manage Placement of Data Definitions and Declarations
	Overview of Data Placement
	Priority and Usage
	Overview
	Read-Write Priority
	Global Priority
	Definition File, Header File, and Ownership Priorities

	Ownership Settings
	Memory Section Settings
	Data Placement Rules
	Settings for a Data Object
	Introduction
	Read-Write
	Ownership
	Header File
	Definition File

	Data Placement Rules and Results
	Ownership Settings
	Settings and Resulting Generated Files
	Data Placement Rules

	Specify Delimiter for #Includes

	Source Code Generation
	Generating Code Using Embedded Coder
	Generate Code Modules
	Introduction
	Generated Code Modules
	User-Written Code Modules
	Customize Generated Code Modules

	Generate Reentrant Code from MATLAB Code
	What Is Reentrant Code?
	When to Generate Reentrant Code
	Generate Reentrant Code
	Prerequisites
	Procedure

	Generated Code API
	Call Reentrant Code in a Single-Thread Environment
	Call Reentrant Code in a Multithreaded Environment
	Multithreaded Examples

	Call Reentrant Code with No Persistent or Global Data (UNIX Only
	MATLAB Code Used for This Example
	Provide a Main Function
	Generate Reentrant C Code
	Examine the Generated Code
	Run the Code

	Call Reentrant Code — Multithreaded with Persistent Data (Window
	MATLAB Code Used for This Example
	Provide a Main Function
	Generate Reentrant C Code
	Examine the Generated Code
	Run the Code

	Call Reentrant Code — Multithreaded with Persistent Data (UNIX O
	MATLAB Code Used for This Example
	Provide a Main Function
	Generate Reentrant C Code
	Examine the Generated Code
	Run the Code

	Code Generation for AUTOSAR Software Components
	Overview of AUTOSAR Support
	Simulink Modeling Patterns for AUTOSAR
	About Simulink Modeling Patterns for AUTOSAR
	AUTOSAR Software Components
	Runnables
	Multiple Instantiation

	AUTOSAR Communication
	Sender-Receiver Interface
	Client-Server Interface

	Calibration Parameters
	About Calibration Parameters
	Import and Export Calibration Parameters

	Inter-Runnable Variables
	Data Types
	Enumerated Data Types
	Structure Parameters
	Data Type Support for Release 4.0

	Per-Instance Memory
	AUTOSAR Terminology

	Workflows for AUTOSAR
	Import an AUTOSAR Software Component
	Create an AUTOSAR Software Component in Simulink
	Prepare a Model for AUTOSAR Code Generation
	Configure the AUTOSAR Interface
	Map Simulink Model to AUTOSAR Software Component
	Configure AUTOSAR Software Components and Interfaces

	Configure Single Runnables for DataReceivedEvents
	Configure Ports for Basic Software and Error Status Receivers
	Configure Client-Server Communication
	Configure a Server Operation
	Configure the Invoke AUTOSAR Server Operation Block
	Create Configurable Subsystems from a Client-Server Interface
	Simulate and Generate Code for Client-Server Communication

	Configure Multiple Runnables
	Configure Inter-Runnable Variables
	Specify Execution Period
	Configure Multiple Runnables for DataReceivedEvents
	Simulink Block Library Support for Multiple Runnables

	Configure Calibration Parameters
	Use Data Store Memory Blocks to Specify Per-Instance Memory
	Create an AUTOSAR.Signal Object

	Modify and Validate an Existing AUTOSAR Interface

	Generate AUTOSAR Code and Description Files
	Select an AUTOSAR Schema
	Specify Maximum SHORT-NAME Length
	Configure AUTOSAR Compiler Abstraction Macros
	Configure AUTOSAR Compiler Macro Generation
	Example

	Root-Level Matrix I/O
	Export AUTOSAR Software Component

	Configure AUTOSAR Options Programmatically
	Verify AUTOSAR Code with SIL and PIL
	Overview
	Use the SIL and PIL Simulation Modes
	AUTOSAR Top Model SIL and PIL Support
	AUTOSAR Model Block SIL and PIL Support

	Use a SIL or PIL Block for AUTOSAR Verification
	AUTOSAR SIL and PIL Block Support

	Limitations and Tips
	Cannot Import Internal Behavior
	Cannot Copy Subsystem Blocks Without Losing Interface Informatio
	Source of Initial Output Value for Function-Call Subsystem Outpo
	Error If No Default Configuration
	The Generate Code Only Check Box
	Specify Sample Time Independent Server Operation Model
	Invoke AUTOSAR Server Operation Block in Referenced Model
	Cannot Save Importer Objects in MAT-Files
	Use the Merge Block for Inter-Runnable Variables
	Use Goto and From Blocks Within Wrapper Subsystems
	Postfix in Generated File Names
	AUTOSAR Compiler Abstraction Macros
	Intrinsic Fixed-Point Types for Model Configured as Server
	Server Operation Model with Tunable Parameters
	Relative File Paths in Code Descriptors

	Sample Workflows and Further Reading
	AUTOSAR Examples
	Further Reading

	Report Generation
	HTML Code Generation Report Extensions
	Traceability in Code Generation Report
	Model Web View in Code Generation Report
	About Model Web View
	Browser Requirements for Web View

	Generate HTML Code Generation Report with Model Web View
	Model Web View Limitations

	Analyze the Generated Code Interface
	Code Interface Report Overview
	Generating a Code Interface Report
	Navigating Code Interface Report Subsections
	Interpreting the Entry Point Functions Subsection
	Interpreting the Inports and Outports Subsections
	Interpreting the Interface Parameters Subsection
	Interpreting the Data Stores Subsection
	Code Interface Report Limitations

	Static Code Metrics
	About Static Code Metrics
	Static Code Metrics Analysis

	Generate a Static Code Metrics Report for a Simulink Model
	Generate a Static Code Metrics Report for MATLAB Code
	In a MATLAB Coder Project
	At the Command Line

	Analyze Code Replacements in the Generated Code
	Generate HTML Report After Build Process

	Deployment
	Desktops
	Shared Object Libraries
	About Host-Based Shared Libraries
	Generate Shared Library Version of Model Code
	Create Application Code to Use Shared Library
	Example Application Header File
	Example Application C Code
	Example Application Script

	Host-Based Shared Library Limitations

	Non-Real-Time Operating System Integration

	Real-Time and Embedded Systems
	Standalone Programs (No Operating System)
	About Standalone Program Execution
	Generate a Standalone Program
	Standalone Program Components
	Main Program
	Overview of Operation
	Guidelines for Modifying the Main Program

	rt_OneStep and Scheduling Considerations
	Overview of Operation
	Single-Rate Single-Tasking Operation
	Multirate Multitasking Operation
	Multirate Single-Tasking Operation
	Guidelines for Modifying rt_OneStep

	Static Main Program Module
	Overview
	Rate Grouping and the Static Main Program
	Modify the Static Main Program

	Rate Grouping Compliance and Compatibility Issues
	Main Program Compatibility
	Make Your S-Functions Rate Grouping Compliant

	Operating System Integration
	Processor Support Packages

	Import Custom Code into Model
	Generate S-Function Wrappers
	About S-Function Wrapper Generation
	Create a SIL Block
	S-Function Wrapper Generation Limitations

	Export Code Generated from Model to External Application
	Export Function-Call Subsystems
	Exporting Function-Call Subsystems
	Additional Information

	Requirements for Exporting Function-Call Subsystems
	Requirements for Exported Subsystems
	Requirements for Exported Virtual Subsystems

	Techniques for Exporting Function-Call Subsystems
	General Workflow
	Specify a Custom Initialize Function Name
	Specify a Custom Description

	Optimize Exported Function-Call Subsystems
	Export Functions That Depend on Elapsed Time
	Function-Call Subsystem Export
	Function-Call Subsystems Export Limitations

	Control Generation of Function Prototypes
	C++ Encapsulation Interface Control

	Code Replacement
	Introduction to Code Replacement Libraries
	Overview of Code Replacement Libraries
	Code Replacement Libraries General Workflow
	Code Replacement Libraries Quick-Start Example

	Create Code Replacement Tables
	Overview of Code Replacement Table Creation
	Create Table Entries
	Overview of Table Entry Creation
	Create Function and Operator Entries
	Alternative Method for Creating Function Entries

	Map Math Functions to Target-Specific Implementations
	Map memcpy Function to Target-Specific Implementations
	Map Nonfinite Utility Functions to Target-Specific Implementatio
	Map Scalar Operators to Target-Specific Implementations
	Map Nonscalar Operators to Target-Specific Implementations
	Map Small Matrix Operations to Intrinsic Functions
	Map Matrix Multiplication to MathWorks BLAS Functions
	Map Matrix Multiplication to ANSI/ISO C BLAS Functions

	Map Fixed-Point Operators to Target-Specific Implementations
	Overview of Fixed-Point Operator Replacement
	Fixed-Point Numbers and Arithmetic
	Addition
	Subtraction
	Multiplication
	Division
	Data Type Conversion (Cast)
	Shift
	Create Fixed-Point Operator Entries
	Create Fixed-Point Operator Entries for Binary-Point-Only Scalin
	Create Fixed-Point Operator Entries for [Slope Bias] Scaling
	Create Fixed-Point Operator Entries for Relative Scaling (Multip
	Create Fixed-Point Operator Entries for Net Slope (Multiplicatio
	Create Fixed-Point Operator Entries for Equal Slope and Zero Net
	Map Data Type Conversion (Cast) Operations to Target-Specific Im
	Map Fixed-Point Shift Left Operations to Target-Specific Impleme

	Remap Operator Outputs to Implementation Function Inputs
	Configure Data Alignment for Function Implementations
	About CRL-Specified Data Alignment
	Specify Data Alignment Requirements for Function Arguments
	Provide Data Alignment Specifications for Compilers
	Basic Example of CRL-Specified Data Alignment
	Data Alignment Limitations

	Refine Matching and Replacement Using Custom Entries
	Customize CRL Matching and Replacement for Operators
	Customize CRL Matching and Replacement for Functions

	Replace Math Functions Based on Computation Method
	Map Semaphore or Mutex Operations to Target-Specific Implementat
	Specify Build Information for Code Replacements
	Functions and Properties for Specifying Table Entry Build Inform
	Use RTW.copyFileToBuildDir to Copy Files to Build Folder
	Include RTW.copyFileToBuildDir In Table Entries

	Add Code Replacement Library Reserved Identifiers

	Manage CRTs with the Code Replacement Tool
	Code Replacement Tool
	Create Code Replacement Table for a Sample Model
	Create Code Replacement Table for a Sample MATLAB Coder Project
	Create and Modify Code Replacement Tables
	Open the Code Replacement Tool
	Open and Save Code Replacement Tables
	Configure Code Replacement Tables

	Validate Code Replacement Tables and Table Entries
	Generate a Code Replacement Registration File

	Examine and Validate Code Replacement Tables
	Overview of Code Replacement Table Validation
	Invoke the Table Definition File
	Use Code Replacement Viewer to Examine Tables
	Use Code Replacement Viewer to Examine CRLs
	Trace Code Replacements Generated Using Your CRL
	Determine Why Code Replacement Functions Not Used
	About Code Replacement Hits and Misses
	Debugging CRL Entries Using Viewer Trace Information
	View Cache Hits and Misses Using Command-Line

	Register Code Replacement Libraries
	Overview of CRL Registration
	Register CRL with Simulink Software (sl_customization)
	Register CRL with MATLAB Coder Software (rtwTargetInfo)
	Register Multiple CRLs

	Custom Code Substitution for MATLAB Functions Using Code Replace
	Replace MATLAB Function with Custom Code
	At the Command Line Using the codegen Function
	Prerequisites
	Create MATLAB Functions
	Create a Table of Replacement Function Entries
	Register a Code Replacement Library
	Specify Code Replacement Library to Use for Code Generation
	Enable Code Replacements Report
	Generate Code
	View the Generated Code
	View the Code Replacements Report
	Specify a Code Replacement Function in a MATLAB Coder Project

	Enable the Code Replacements Report
	In a MATLAB Coder Project
	At the Command Line
	See Also

	Viewing Code Replacements in the Generated Code
	See Also

	Replace MATLAB Function Block Code with Custom Code
	Prerequisites
	Open the Simulink Model
	View the MATLAB Function Block Code
	Create a Table of Replacement Function Entries
	Register a Code Replacement Library
	Verify Code Replacement Library to Use for Code Generation
	Generate Code
	View the Generated Code
	Code Replacement Library Limitations

	Performance
	Configuration
	Configure Code Optimizations
	Set Hardware Implementation Parameters
	Use External Mode with the ERT Target
	Memory Management
	Generation of Pure Integer Code with External Mode

	Data Copy Reduction
	Use Virtualized Output Ports Optimization
	Control Signal Storage

	Execution Speed
	Remove Initialization Code
	Generate Pure Integer Code If Possible
	Disable MAT-File Logging
	Simplify Multiply Operations In Array Indexing
	Generated Code Results

	Memory Usage
	Optimize Generated Code Using Specified Minimum and Maximum Valu
	How to Configure Your Model
	How to Enable Simulation Range Checking
	How to Enable Optimization
	Optimize Generated Code Using Specified Minimum and Maximum Valu
	Generate Code Without Using Specified Minimum and Maximum Values
	Generate Code Using Minimum and Maximum Values

	Limitations

	Reduce Global Variables in Nonreusable Subsystem Functions
	Generate void-void Function
	Generate Function with Arguments

	Verification
	Code Tracing
	About Code Tracing
	Format of Traceability Tags
	Examples of Tagged Code

	Trace Code to Model Objects Using Hyperlinks
	Trace Model Objects to Generated Code
	Reload Existing Traceability Information
	Customize Traceability Reports
	Generate a Traceability Matrix
	Traceability Limitations

	Component Verification
	Component Verification in the Target Environment
	Goals of Component Verification
	Maximizing Code Portability and Configurability
	Simplifying Code Integration and Maximizing Code Efficiency
	Running Component Tests

	Component Verification With a Real-Time Target Environment
	About Real-Time Software Component Verification
	Real-Time Software Component Testing

	Numerical Equivalence Checking
	About SIL and PIL Simulations
	Overview
	What are SIL and PIL Simulations?
	Why Use SIL and PIL

	How SIL and PIL Simulations Work
	Comparison of SIL and PIL Simulation
	Choose a SIL or PIL Approach
	About Choosing a SIL or PIL Simulation
	When to Use Top-Model SIL or PIL
	When to Use Model Block SIL or PIL
	Modeling Scenarios with the Model Block

	When to Use the SIL or PIL Block

	Configure a SIL or PIL Simulation
	Top-Model SIL or PIL Simulation
	Model Block SIL or PIL Simulation
	Use a SIL or PIL Block
	Verify a SIL or PIL Configuration
	How To Verify a SIL or PIL Configuration

	Top Model Simulation Using SIL or PIL
	Referenced Model Simulation Using SIL or PIL
	Verify Internal Signals of a Component
	Simulation Mode Override Behavior in Model Reference Hierarchy

	Code Interfaces for SIL and PIL
	Code Interface for Top-Model SIL or PIL
	Code Interface for Model Block SIL or PIL

	Configure Hardware Implementation Settings for SIL
	Choose Hardware Implementation Options
	Portable Word Sizes
	Compile Generated Code That Supports Portable Word Sizes
	Code that the Host Cannot Compile
	Portable Word Sizes Limitations

	Emulation Hardware
	Embedded hardware configured for host

	Debugging During SIL Simulations
	Programming PIL Support Using Third-Party Tools
	Create a Connectivity Configuration for a Target
	What Is a PIL Connectivity Configuration?
	Overview of the Target Connectivity API
	Target Connectivity API Components
	Communications rtiostream API
	Test an rtiostream Driver

	Create a Connectivity API Implementation
	Register a Connectivity API Implementation
	Synchronize Host and Target
	Specify Hardware Timer
	Examples of the Target Connectivity API

	View Test Harness in Code Generation Report
	SIL and PIL Simulation Support and Limitations
	About SIL and PIL Simulation Support and Limitations
	Code Source Support
	Custom Code Interfaces
	SIL/PIL Does Not Check Simulink Coder Error Status
	Conditionally Executed Subsystem
	PIL Block Export Functions

	Block Support
	Merge Block Issue
	Other Top-Model SIL/PIL Limitations

	Configuration Parameters Support
	Missing Code Interface Description File Errors
	Algebraic Loop Issues
	Internal Signal Logging Support
	Top-Model Root-Level Logging Limitations

	I/O Support
	Tunable Parameters and SIL/PIL
	Global Data Store Support
	Imported Data Definitions
	GetSet Custom Storage Class
	Unsupported Implementation Errors
	Variable-Size Signals and SIL/PIL
	Fixed-Point Tool Data Type Override
	Data Type Overrides Unavailable for Most Blocks in Embedded Targ
	Data Type Replacement Limitation
	Top-Model SIL/PIL Bus Limitations
	PIL Block Virtual Bus Support Limitations
	PIL Block MUX Support Limitations
	Incremental Build for Top-Model SIL/PIL
	Exported Functions in Feedback Loops

	Hardware Implementation Support
	Hardware Implementation Settings

	Other Feature Support

	Programmatic Code Generation Verification
	Code Generation Verification API Overview
	Verify Numerical Equivalence with CGV
	Verify Numerical Equivalence Between Two Modes of Execution of a
	Configure the Model
	Execute the Model
	Compare All Output Signals
	Compare Individual Output Signals

	Plot Output Signals

	Code Coverage
	Code Coverage in SIL and PIL Simulations
	Configure SIL and PIL Code Coverage
	View Code Coverage Information at the End of SIL or PIL Simulati

	Configure Code Coverage Programmatically
	Code Coverage for PIL
	PIL Support for LDRA Testbed
	PIL Support for BullseyeCoverage

	Code Coverage Summary and Annotations
	LDRA Testbed Coverage
	BullseyeCoverage Information

	Code Coverage Tool Support
	Tips and Limitations
	Compiler and Platform Support for SIL
	Right-Click Subsystem Build Unsupported for Code Coverage
	BullseyeCoverage License Wait
	Current Working Folder Cannot be UNC Path
	Characters in matlabroot and File Path
	Header Files with Identical Names
	Code Coverage for Source Files in Shared Utility Folders
	BullseyeCoverage Behavior with Inline Macros
	SIL and PIL Simulations with Open LDRA Testbed
	PIL Zero Coverage LDRA Testbed Annotations
	Modify Legacy Code

	Code Execution Profiling
	About Code Execution Profiling
	Configure Code Execution Profiling
	Execution Profiling for Atomic Subsystems and Model Reference Hi
	View and Compare Code Execution Times
	Analyze Code Execution Data
	Tips and Limitations
	Triggered Model Block
	Outliers in Execution Time Profiles
	Use of Hardware-Specific Timer

	Embedded IDEs and Embedded Targets
	Getting Started with Embedded Targets
	Add Support for Hardware and Software
	Start Support Package Installer
	Show me
	Open or Reopen Support Package Examples
	Install a Support Package on Multiple Computers

	Project and Build Configurations for Embedded Targets
	Model Setup
	Block Selection
	Configure Target Hardware Resources
	About Supported IDEs
	Configure Parameters Under the Target Hardware Resources Tab

	Configuration Parameters
	What are Configuration Parameters?
	Setting Model Configuration Parameters
	Build format
	Build action
	Overrun notification
	Function name
	Configuration
	Compiler options string
	Linker options string
	System stack size (MAUs)
	System heap size (MAUs)
	Profile real-time execution
	Link Automation
	Maximum time allowed to build project (s)
	Maximum time allowed to complete IDE operation (s)
	Export IDE link handle to base workspace
	IDE link handle name
	Source file replacement

	Model Reference
	Configuration Parameters in Reference Models

	IDE Projects
	Support for Third Party Products
	Third Party Product Setup
	Analog Devices VisualDSP++ IDE
	Eclipse IDE
	Green Hills MULTI IDE
	Texas Instruments Code Composer Studio 3.3 IDE
	Texas Instruments Code Composer Studio 4 IDE
	Code Generation and Build
	Building Your Model
	IDE Project Generator Features
	IDE Link Handle Objects

	Automation of IDE Tasks and Processes
	Examples of IDE Automation Interface for Specific IDEs

	Makefiles for Software Build Tool Chains
	What is the XMakefile Feature
	Overview
	Supported Tool Chains in Embedded Coder
	Available XMakefile Configurations
	Feature Support

	Using Makefiles to Generate and Build Software
	Configuring Your Model to Use Makefiles
	Choosing an XMakefile Configuration
	Building Your Model
	Green Hills MULTI Output Folder

	Making an XMakefile Configuration Operational
	Creating a New XMakefile Configuration
	Overview
	Create a Configuration
	Modify the Configuration
	Test the Configuration

	XMakefile User Configuration dialog
	Active
	Make Utility
	Compiler
	Linker
	Archiver
	Pre-build
	Post-build
	Execute
	Tool Directories

	Verification and Profiling Code Generated for Embedded Targets
	Processor-in-the-Loop (PIL) Simulation
	Overview
	PIL Approaches
	Model Block PIL
	Top-Model PIL
	PIL Block

	Communications
	TCP/IP
	Additional Steps for TI C6000 Processors
	Serial Communication Interface (SCI) for Texas Instruments C2000
	IDE Debugger

	Running Your PIL Application to Perform Simulation and Verificat
	Performing a Model Block PIL Simulation via SCI Using Makefiles
	Prerequisites
	Configure Your Model for Target Hardware
	Configure Your Model for the Model Block PIL Approach
	Enable and configure SCI
	Configure the Software to Use Makefiles
	Run the PIL Simulation

	Definitions
	PIL Issues and Limitations
	Constraints
	Generic PIL Issues
	With Texas Instruments CCS, PIL with DSP/BIOS Enabled Does Not S
	Simulink Coder grt.tlc-Based Targets Not Supported

	Execution Profiling for Embedded Targets
	What Is Execution Profiling?
	Feature Support
	Execution Profiling during Standalone Execution
	Feature Support
	Profiling by Tasks
	Profiling by Subsystems

	Execution Profiling during PIL Simulation
	Feature Support
	Gathering Execution Profile Data
	Analyzing the Execution Profile Data

	Stack Profiling for Embedded Targets
	Feature Support
	What is Stack Profiling?
	Profiling System Stack Use

	Processor-Specific Optimizations for Embedded Targets
	Code Replacement Library (CRL)
	About Code Replacement Libraries and Optimization
	Code Generation Using the Code Replacement Library

	Using a Processor-Specific Code Replacement Library to Optimize
	Process of Determining Optimization Effects Using Real-Time Prof
	Reviewing Processor-Specific Code Replacement Library Changes in
	Reviewing Code Manually
	Using Model-to-Code Tracing
	Using a File Differencing Scheme

	Creating Your Own Code Replacement Library
	Reviewing Code Replacement Library Operators and Functions
	Tips and Limitations
	Intel IPP/SSE (GNU) Works With GCC

	Working with Analog Devices VisualDSP++ IDE
	Install Support for Analog Devices DSPs
	Getting Started
	Overview
	Software Structure and Components
	IDE Automation Interface
	IDE Project Generator
	Verification

	Software Requirements
	Installation and Configuration

	IDE Automation Interface
	Getting Started with IDE Automation Interface
	Introducing the IDE Automation Interface
	Interactive Learning
	Selecting Your Session and Processor
	Querying Objects for VisualDSP++ IDE
	Loading Files into VisualDSP++ IDE
	Running the Project
	Working with Global Variables and Memory
	Working with Local Variables and Memory
	Closing Files and Projects
	Closing the Connections or Cleaning Up VisualDSP++ Software
	Summary

	Constructing Objects
	Constructor for adivdsp Objects

	Properties and Property Values
	Setting and Retrieving Property Values
	Setting Property Values Directly at Construction
	Setting Property Values with set
	Retrieving Properties with get
	Direct Property Referencing to Set and Get Values
	Overloaded Functions for adivdsp Objects

	adivdsp Object Properties
	Quick Reference to adivdsp Properties
	Details About adivdsp Object Properties

	IDE Project Generator
	Introducing IDE Project Generator
	Generate an IDE Project
	Building the Model
	Specifying Simulink Configuration Parameters for Your Model

	Model Reference
	How Model Reference Works
	Using Model Reference
	Configuring Targets to Use Model Reference

	Reported Limitations and Tips
	Reported Issues
	Using 64-bit Symbols in a 64-bit Memory Section on SHARC Process

	Working with Eclipse IDE
	Installing Third-Party Software for Eclipse
	Tested Software Versions
	Installing Oracle Java Runtime Environment (JRE)
	Installing Eclipse IDE for C/C++ Developers
	Verifying the GNU Tool Chain on Linux Host
	Installing the GNU Tool Chain on Windows

	Configuring Your MathWorks Software to Work with Eclipse
	Additional Configuration Steps to Run Your Executable on a Remot

	Troubleshooting with Eclipse IDE
	Profiling for ARM® Processors Running Embedded Linux Operating S
	SIGSEGV Segmentation Fault for GDB
	GDB Stops on Each Semaphore Post
	Build Errors
	Profiling Not Available for Intel x86/Pentium and AMD K5/K6/Athl
	Eclipse Message: “Can't find a source file”
	Eclipse Message: “Cannot access memory at address”
	Some Versions of Eclipse CDT Do Not Catch GCC Errors

	Working with Green Hills MULTI IDE
	Install Support for Green Hills MULTI IDE
	Getting Started
	Overview
	Software Structure and Components
	Components
	IDE Automation Interface
	IDE Project Generator
	Verification
	Configuring Your Software
	Configuring Green Hills MULTI to use Full Folder Paths

	IDE Automation Interface
	Getting Started with IDE Automation Interface
	Introducing the IDE Automation Interface
	Starting and Stopping Green Hills MULTI From the MATLAB Desktop
	Interactive Learning
	Querying Objects for Green Hills MULTI Software
	Loading Files into Green Hills MULTI Software
	Running the Project
	Working With Data in Memory
	More Memory Data Manipulation
	Closing the Connections to Green Hills MULTI Software
	Review

	Constructing Objects
	Constructor for ghsmulti Objects

	Properties and Property Values
	Working with Properties
	Setting and Retrieving Property Values
	Setting Property Values Directly at Construction
	Setting Property Values with set
	Retrieving Properties with get
	Direct Property Referencing to Set and Get Values
	Overloaded Functions for ghsmulti Objects

	ghsmulti Object Properties
	Quick Reference to ghsmulti Properties
	Details About ghsmulti Object Properties

	IDE Project Generator
	Introducing IDE Project Generator
	Generate an IDE Project
	Process for Building and Generating a Project
	Create the Model
	Specifying Simulink Configuration Parameters for Your Model
	Creating Your Project

	Model Reference
	About Model Reference
	How Model Reference Works
	Using Model Reference
	Configuring Targets to Use Model Reference

	Breakpoints and PIL

	Working with Linux Target
	Disambiguation
	Preparing Models to Run on Linux Target
	Scheduler
	Base Rate
	Running Target Applications on Multicore Processors
	Introduction
	Looking at a Model
	Setting Up the Model
	Deploying the Model to Your Target
	Generated Code

	Avoiding Lock-Up in Free-Running, Multirate, Multitasking Models

	Build on BeagleBoard Hardware
	Overview
	Configure the Windows Host
	Configure the BeagleBoard Hardware
	Configure MATLAB Software

	Build on Linux Host and Run on BeagleBoard Hardware
	Overview
	Prerequisites
	Set up your environment for Linux-ARM Code Generation
	Generate Code for Linux-ARM
	External Mode Simulation

	Working with Texas Instruments Code Composer Studio 3.3 IDE
	Code Composer Studio
	Using Code Composer Studio with Embedded Coder Software
	Default Project Configuration
	Default Build Options in the CustomMW Configuration

	Getting Started
	Overview
	IDE Automation Interface
	IDE Project Generator
	Verification

	Verifying Your Code Composer Studio Installation

	IDE Automation Interface
	Getting Started with IDE Automation Interface
	Introducing the IDE Automation Interface
	Selecting Your Processor
	Creating and Querying Objects for CCS IDE
	Loading Files into CCS
	Working with Projects and Data
	Closing the Links or Cleaning Up CCS IDE

	Getting Started with RTDX
	Using RTDX
	Creating the ticcs Objects
	Configuring Communications Channels
	Running the Application
	Closing the Connections and Channels or Cleaning Up
	Listing Functions

	Constructing ticcs Objects
	Constructor for ticcs Objects

	ticcs Properties and Property Values
	Overloaded Functions for ticcs Objects
	ticcs Object Properties
	Quick Reference to ticcs Object Properties
	Details About ticcs Object Properties

	IDE Project Generator
	Introducing IDE Project Generator
	IDE Project Generator and Board Selection
	Generate an IDE Project
	Creating the Model
	Specify Configuration Parameters for Your Model

	Model Reference
	How Model Reference Works
	Using Model Reference
	Configuring processors to Use Model Reference

	Exporting Filter Coefficients from FDATool
	About FDATool
	Preparing to Export Filter Coefficients to Code Composer Studio
	Features of a Filter
	Selecting the Export Mode
	Choosing the Export Data Type

	Exporting Filter Coefficients to Your Code Composer Studio Proje
	Exporting Filter Coefficients from FDATool to the CCS IDE Editor
	Reviewing ANSI C Header File Contents

	Preventing Memory Corruption When You Export Coefficients to Pro
	Allocating Extra Memory for Filter Coefficients
	Using the Exported Header File to Allocate Extra Processor Memor
	Replacing Existing Coefficients in Memory with Updated Coefficie
	Changing Filter Coefficients Stored on Your Processor

	Using Makefiles with Code Composer Studio 3.x
	Introduction
	Set Up XMakefile for CCSv3
	Prepare Your Model for CCSv3 and Makefiles
	Create Target Configuration File in CCSv3
	Load and Run the Embedded Software

	Reported Limitations and Tips
	Example Programs Do Not Run Well with Incorrect GEL Files
	Changing Values of Local Variables Does Not Work
	Code Composer Studio Cannot Find a File After You Halt a Program
	File Not Found
	Defining a Search Path for Source Files
	To Specify Search Path Directories

	C54x XPC Register Can Be Modified Only Through the PC Register
	Working with More Than One Installed Version of Code Composer St
	Workaround

	Changing CCS Versions During a MATLAB Session
	MATLAB Hangs When Code Composer Studio Cannot Find a Board
	Using Mapped Drives
	Uninstalling Code Composer Studio 3.3 Prevents Embedded Coder Fr
	PostCodeGenCommand Commands Do Not Apply to IDE Projects

	Working with Texas Instruments Code Composer Studio 4 & 5 IDE
	Code Composer Studio
	Feature Support

	Getting Started
	Verifying Your Code Composer Studio Installation
	Learning About Makefiles

	Using Makefiles with Code Composer Studio 4 & 5
	Introduction
	Set Up XMakefile for CCSv4/5
	Prepare Your Model for CCSv4/5 and Makefiles
	Create Target Configuration File in CCSv4/5
	Configure Windows Path for TI Debug Server Scripting (DSS)
	Load and Run the Embedded Software Using DSS
	Troubleshooting DSS
	Advanced DSS Features

	Reported Limitations and Tips
	Example Programs Do Not Run well with Incorrect GEL Files
	PostCodeGenCommand Commands Do Not Apply to IDE Projects

	Working with Texas Instruments C2000 Processors
	Setting Up and Configuring
	Feature Support for Code Composer Studio
	Installing and Configuring Software
	Verifying the Configuration

	Data Type Support
	Scheduling and Timing
	Overview
	Timer-Based Interrupt Processing
	High-Speed Peripheral Clock

	Asynchronous Scheduling
	Model
	Description
	How to Run the Example on the Board
	With Code Composer Studio v3.3 (CCSv3.3) - Default
	With Code Composer Studio v4 (CCSv4)
	With Code Composer Studio v5 (CCSv5)

	Sharing General Purpose Timers between C281x Peripherals
	Sharing General Purpose Timers between CAP and eCAN
	Sharing General Purpose Timers between CAP and SPI

	Overview of Creating Models for C2000 Processors
	Accessing the Embedded Coder Block Library
	Building Your Model
	F2812, F2808, and F28335 eZdsp Reset Sequence

	Using the c2000lib Blockset
	Introduction
	Hardware Setup
	Starting the c2000lib Library
	Setting Up the Model
	Adding Blocks to the Model
	Generating Code from the Model

	Configuring Timing Parameters for CAN Blocks
	The CAN Blocks
	Setting Timing Parameters
	Accessing the Timing Parameters
	Determining Timing Parameter Values
	Working with CAN Bit Timing

	Parameter Tuning and Signal Logging
	Overview
	Using External Mode
	Using a Third Party Calibration Tool

	ADC-PWM Synchronization via ADC Interrupt
	Run the model using CCSv3
	Run the model using CCSv4
	Run the model using CCSv5

	Configuring Acquisition Window Width for ADC Blocks
	What Is an Acquisition Window?
	Configuring ADC Parameters for Acquisition Window Width
	Accessing the ADC Parameters
	Configure Acquisition Window Width Using ADC Parameters

	Real-Time Data Exchange via RTDX™
	Model
	Description
	How to Run the Example
	SPI-Based Control of PWM Duty Cycle
	Model
	Description
	Hardware Connections
	How to Run the Example in Simulation
	How to Run the Example on the Board
	HIL Verification of IIR Filter via SCI
	Host Model
	Target Model
	Description
	Hardware Connections
	How to Run the Example
	With Code Composer Studio v3.3 (CCSv3.3) - Default
	With Code Composer Studio v4 (CCSv4)
	With Code Composer Studio v5 (CCSv5)
	CAN-Based Control of PWM Duty Cycle
	Model
	Description
	Hardware Connections
	How to Run the Example in Simulation
	How to Run the Example on the Board
	CAN Calibration Protocol and External Mode
	Model
	Scope Snapshots
	Description
	How to Run the Example
	With Code Composer Studio v3.3 (CCSv3.3) - Default
	With Code Composer Studio v4 (CCSv4)
	With Code Composer Studio v5 (CCSv5)
	Signal Logging and Parameter Tuning with External Mode
	Signal Logging and Parameter Tuning with a Third Party Calibrati
	Using the I2C Bus to Access a Connected EEPROM
	Model
	Description
	How to Run the Example
	With Code Composer Studio v3.3 (CCSv3.3) - Default
	With Code Composer Studio v4 (CCSv4)
	With Code Composer Studio v5 (CCSv5)
	Using the IQmath Library
	About the IQmath Library
	Introduction
	Common Characteristics
	References

	Fixed-Point Numbers
	Notation
	Signed Fixed-Point Numbers
	Q Format Notation

	Building Models
	Overview
	Converting Data Types
	Using Sources and Sinks
	Choosing Blocks to Optimize Code
	Double and Single-Precision Parameter Values

	Programming Flash Memory
	Introduction
	Installing TI Flash APIs
	Configuring the DSP Board Bootloader
	Configuring the Software for Automatic Flash Programming
	Selectively Erase, Program, or Verify Specific Flash Sectors
	Placing Additional Code or Data on Unused Flash Sectors

	Configuring LIN Communications
	Overview
	Configuring Your Model

	Tips and Limitations
	Texas Instruments C28x DMC Blocks Require CRL

	Working with Texas Instruments C6000 Processors
	Getting Started
	Feature Support for Code Composer Studio
	Overview
	Product Description

	Using This Guide
	Expected Background

	Configuration Information
	Setting Up and Configuring
	System Requirements
	Supported Hardware
	Installing and Configuring Software

	Targeting C6000 DSP Hardware
	Introduction to Targeting
	Overview

	C6000 and Code Composer Studio IDE
	Using Code Composer Studio with Embedded Coder Software
	About Simulators
	Typical Hardware Setup for a Development Board

	Targeting — Single Rate Application
	Overview
	Building the Audio Reverberation Model
	Adding C6713 DSK Blocks to Your Model
	Configuring Embedded Coder Blocks
	Specifying Configuration Parameters for Your Model

	Schedulers and Timing
	Timer-Based Versus Asynchronous Interrupt Processing
	Synchronous Scheduling
	Asynchronous Scheduling
	Using Asynchronous Scheduler
	Uses for Asynchronous Scheduling
	Idle Task. The following model illustrates a case where the rev

	Scheduling Considerations

	Model Reference and Embedded Coder Software
	Overview
	How Model Reference Works
	Using Model Reference with Embedded Coder Software
	Configuring Targets to Use Model Reference

	Targeting Supported Boards
	Overview
	Typical Targeting Process
	Targeting the C6713 DSP Starter Kit
	Configuring Your C6713DSK
	Confirming Your C6713DSK Installation

	Simulink Models and Targeting
	Creating Your Simulink Model for Targeting

	Targeting — A More Complex Application
	Overview
	Working and Build folders
	Setting Simulation Program Parameters
	Selecting the Target Configuration
	Building and Running the Program
	Contents of the Build folder

	Targeting Your C6713 DSK and Other Hardware
	Overview
	Confirming Your C6713 DSK Installation
	Running Models on Your C6713 DSK

	Creating Code Composer Studio Projects Without Building
	Introduction
	Creating Projects in CCSv3 IDE Without Loading Files to Your Tar

	Targeting Custom Hardware
	Overview
	Typical Targeting Process
	Targeting a Custom Target
	Section Pane
	To Create Memory Maps for Targets

	Using Embedded Coder Software
	Introduction
	To Use the Embedded Coder Target File

	Targeting with DSP/BIOS Options
	Introducing DSP/BIOS
	DSP/BIOS and Targeting Your C6000 DSP
	Introduction
	DSP/BIOS Configuration File
	Memory Mapping
	Hardware Interrupt Vector Table
	Linker Command File

	Code Generation with DSP/BIOS
	Overview
	Enabling DSP/BIOS When You Generate Code
	Generated Code Without and With DSP/BIOS

	Profiling Generated Code
	Overview
	Profiling Subsystems
	Details About Timing and Profiling
	Profiling Multitasking Systems
	The Profiling Report
	Interrupts and Profiling
	Reading Your Profile Report
	Definitions of Report Entries
	Profiling Your Generated Code
	To Enable Profiling for Your Generated Code
	To Create Atomic Subsystems for Profiling

	Generating Code for C64x+ Processors or Boards
	Configuring Target Hardware Resources for OMAP-L138/C6748 EVM

	Using the C62x and C64x DSP Libraries
	About the C62x and C64x DSP Libraries
	C62x DSP Library
	C64x DSP Library
	Supported Platforms
	Characteristics Common to C62x and C64x Library Blocks

	Fixed-Point Numbers
	Notation
	Signed Fixed-Point Numbers
	Q Format Notation

	Building Models
	Overview
	Converting Data Types
	Using Sources and Sinks
	Choosing Blocks to Optimize Code

	Configuring Timing Parameters for CAN Blocks
	Setting Timing Parameters
	Accessing the Timing Parameters
	Determining Timing Parameter Values
	Working with CAN Bit Timing

	Hardware Issues
	Configuring the D.signT DSK-91C111 to Use TCP/IP and UDP
	Requirements for the DM642 EVM
	DM642 EVM Board Version Identification
	Installing Third-party Software
	Configuring the Target Hardware Resources pane for Your DM642 EV
	Configuring the DM642 EVM Video ADC Block

	Installing and Configuring the Avnet Board Support Library
	Preface
	Installing the Avnet Board Support Library
	Setting the MATLAB Environment
	For Spectrum Digital DM6437EVM Users
	Verifying Your Installation

	Continuing Issues with Embedded Coder Software
	Setting the Clock Speed on the C6713 DSK
	Simulink Stop Block Works Differently When Not Using DSP/BIOS Fe
	Installing Third-Party Embedded Coder

	Working with Wind River VxWorks RTOS
	Overview of Support for Wind River VxWorks Target
	Building and Running Embedded Software on VxWorks Target
	Install and Set Up the Wind River Development Environment
	Setting VxWorks Environment Variables and Starting MATLAB
	Setting Up XMakefile for VxWorks Target
	Customizing XMakefile to Automatically Download and Build Your S
	Prepare Your Model for VxWorks Target and Makefiles
	Build Your Embedded Software

	Working with Other Processors
	Schedulers
	Running Target Applications on Multicore Processors
	Introduction
	Looking at a Model
	Setting Up the Model
	Deploying the Model to Your Target
	Generated Code

	Work with Xilinx Zynq Platform
	Install Support for Xilinx Zynq Platform
	Open Block Library for Xilinx Zynq Platform
	Build and Run Executable on Xilinx Zynq Platform
	Set the model Configuration Parameters
	Set up the XMakefile User Configuration
	Build and Run the Executable
	Troubleshooting a Connection Error

	Stop or Restart Executable Running on Xilinx Zynq Platform
	Tune and Monitor Executable Running on Xilinx Zynq Platform
	Overview of Using External Mode
	Configure Simulink Model for External Mode
	Run Executable on Zynq Platform
	Stop External Mode

	Set up Xilinx Zynq Platform and Software
	Get IP Address of Xilinx Zynq Platform
	Open Serial Command-line Session with Xilinx Zynq Platform

	Index

	tables
	Naming Rules and Alias Override (Global Change of Force Lower Ca
	Parameter and Signal Property Values
	Examples of Property Value Changes on Generated Code
	Function Prototype Control Functions
	C++ Encapsulation Interface Control Functions
	Model-Level Memory Section Assignments and Definitions
	Subsystem-Level Memory Section Assignments and Definitions
	Identifier Format Tokens
	Identifier Format Control Parameter Values
	Name Mangling String Per Object
	Built-In CGT Tokens and Corresponding Code Sections
	Subsections Defined for Built-In Sections
	Mapping Template Specification to Code Generation
	Code Template API Functions
	Summary of Tokens for File Banner Generation
	Summary of Tokens for Function Banner Generation
	Summary of Tokens for Shared Utility Function Banner Generation
	Embedded Coder File Packaging
	Generated Files According to File Packaging Format
	Permitted Solver Modes for Embedded Coder Targeted Models
	GP Timer Use for C281x Peripheral Blocks

