Embedded Coder®
User’'s Guide

R2013a

MATLAB&SIMULINK®

<+)} MathWorks:

LN N

How to Contact MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Embedded Coder® User’s Guide
© COPYRIGHT 2011-2013 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www .mathworks.com/patents for more information.

Revision History

April 2011 Online only New for Version 6.0 (Release 2011a)
September 2011 Online only New for Version 6.1 (Release 2011b)
March 2012 Online only New for Version 6.2 (Release 2012a)
September 2012 Online only New for Version 6.3 (Release 2012b)

March 2013 Online only New for Version 6.4 (Release 2013a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks

reports critical known bugs brought to its attention on its Bug Report system at

www . mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs tool
with the search phrase “Incorrect Code Generation” to obtain a report of known bugs that
produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies between
the actual behavior of a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

http://www.mathworks.com/support/bugreports/

Bug Reports

Check Bug Reports for Issues and Fixes 1-2

Model Architecture and Design

Modeling Environment

2

Set Up Your Modeling Environment 2-2

Application Objectives

3

Guidelines and Standards

q

What Are the Standards and Guidelines? 4-2
MAAB Guidelines 4-4
MISRA C Guidelines i iiiiinnnn. 4-5

IEC 61508 Standard 4-7

vi

Apply Simulink and Embedded Coder to the IEC 61508

Standard e e e 4-7
Check for IEC 61508 Standard Compliance Using the Model
AdVISOr ..t e e 4-7
Validate Traceability cciiiiiiinn... 4-8
IS0 26262 Standard, 4-9
Apply Simulink and Embedded Coder to the ISO 26262
Standard, e e e 4-9
Check for ISO 26262 Standard Compliance Using the Model
AdVISOr ..t e e 4-9
Validate Traceability, 4-10
DO-178C Standardc.iiiiiin.. 4-11
Apply Simulink and Embedded Coder to the DO-178C
Standard e e 4-11
Check for Standard Compliance Using the Model
AdVISOr ..o e e 4-11
Validate Traceability 4-12

5

About Modeling Patterns 5-3
Prepare a Model for Code Generation 5-4
Configurea Signalciiiiiiiinna... 5-4
Configure Input and Output Ports 5-4
Initialize States i i 5-5
Set Up Configuration Parameters for Code Generation ... 5-5
Set Up an Example Model With a Stateflow Chart 5-6
Set Up an Example Model With a MATLAB Function
Block .. e e 5-7
Data Declaration i, 5-9
CConstructuiiiiiiiiiiiii i 5-9
Declare a Variable for a Block Parameter Using a Data
ObJeCt vt e 5-9
CConstructuiiiiiiiiiiiii i 5-11

Contents

Declare a Variable for a Signal using a Data Object 5-11

Data Type Conversioncccvuuunnn. 5-13
CConstruct ...ttt e i 5-13
Modeling Patterns 5-13
Modeling Pattern for Data Type Conversion — Simulink

Block .. e e 5-13
Modeling Pattern for Data Type Conversion — Stateflow

Chart ... 5-14
Modeling Pattern for Data Type Conversion — MATLAB

Function Block i 5-15
Other Type Conversions in Modeling 5-16

Type Qualifiers 5-17
Modeling Patterns for Type Qualifiers 5-17
Using a Tunable Parameter in the Base Workspace 5-17

Use a Data Object of the Const Custom Storage Class ... 5-18

Relational and Logical Operators 5-20
Modeling Patterns for Relational and Logical Operators .. 5-20
Modeling Pattern for Relational or Logical Operators —

Simulink Blocks i 5-20
Modeling Pattern for Relational and Logical Operators
—Stateflow Chart i, 5-21
Modeling Pattern for Relational and Logical Operators —
MATLAB Function Block 5-22
Bitwise Operations, 5-24
Simulink Bitwise-Operator Block 5-24
Stateflow Chart, 5-25
MATLAB Function Block 5-26
I Else .. e 5-28
CConstruct ...ttt e 5-28
Modeling Patterns 5-28
Modeling Pattern for If-Else: Switch block 5-29
Modeling Pattern for If-Else: Stateflow Chart 5-31

Modeling Pattern for If-Else: MATLAB Function Block .. 5-33

Switch ... 5-35
CConSstruct . ..ov it e e e 5-35

vii

Modeling Patterns 5-35

Modeling Pattern for Switch: Switch Case block 5-36
Modeling Pattern for Switch: MATLAB Function block ... 5-39
Convert If-Elseif-Else to Switch statement 5-40
ForLoop i 5-41
CConstruct ...ttt e 5-41
Modeling Patterns: 5-41
Modeling Pattern for For Loop: For-Iterator Subsystem
blocKk .. e e 5-42
Modeling Pattern for For Loop: Stateflow Chart 5-45
Modeling Pattern for For Loop: MATLAB Function
blocKk .. e e 5-48
While Loop i 5-50
CConstruct ...ttt e 5-50
Modeling Patterns 5-50
Modeling Pattern for While Loop: While Iterator Subsystem
blocKk .. e e 5-51
Modeling Pattern for While Loop: Stateflow Chart 5-55
Modeling Pattern for While Loop: MATLAB Function
Block .. e e 5-58
DoWhileLoop, 5-62
CConstruct ...ttt e e 5-62
Modeling Patterns 5-62
Modeling Pattern for Do While Loop: While Iterator
Subsystem block 5-63

Modeling Pattern for Do While Loop: Stateflow Chart 5-66

Function Call i, 5-69
CConstruct . .ovviit ittt e 5-69
Procedure 5-69
Results i 5-70

Function Prototyping 5-71
CConstruct . .ovviit ittt e 5-71
Modeling Patterns 5-71
Function Call Using Graphical Functions 5-71

Control Function Prototype of the model_step Function .. 5-73

viii Contents

External C Functions iiu.. .. 5-75

CConstruct . ..vvv ittt e 5-75
Modeling Patterns 5-75
Use the Legacy Code Tool to Create S-functions 5-75
Use a Stateflow Chart to Make Calls to C Functions 5-78
Using a MATLAB Function Block to Make Calls to C
Functions 5-79
Macro Definitions (#define) 5-82
CClonstruct . .ovviit it 5-82
Modeling Patterns 5-82
Use a 'Define’ Custom Storage Class 5-82
Use a Custom Header File 5-83
Conditional Inclusions (#if /#endif) 5-85
Typedef 5-86
CClonstruct . ..oui ittt e e 5-86
Procedure 5-86
Results i 5-87
Structures for Parameters 5-88
CClonstruct . ..oui ittt e e 5-88
Procedure 5-88
Results i 5-89
Structures for Signals 5-91
CConstruct . ..vuiie it e 5-91
Modeling Patterns 5-91
Structure for Signals Using a ’Struct’ Custom Storage
Class o e 5-91
Structure for Signals Using a Simulink Non-Virtual Bus
ObJECt vttt e e 5-93
Nested Structuresciiiiiiiinne... 5-95
CClonstruct . ..ouvit it e 5-95
Procedure 5-95
Results i 5-97
Bitfields 5-99
CClonstruct . ..ouvit it e 5-99

ix

Procedure 5-99

Results ... o 5-100
Arrays for Parameters 5-101
CConStruct . ..vv ittt e e e 5-101
Procedure 5-101
Results ... 5-102
Arraysfor Signals 5-103
CConStruct . ..vv it e e e e 5-103
Procedure 5-103
Results ... 5-104
Pointers for Signals 5-105
CConStruct . ..vv it e e e e 5-105
Procedure 5-105
Results ... 5-105
Pointers Using Simulink Data Objects 5-106
CConSstruct . ..ov vt e e e e 5-106
Procedure 5-106
Results ... o 5-106

6

About Variant Systemsc ... 6-2
Why Generate Code for Variant Systems? 6-3

Generate Preprocessor Conditionals for Variant

SySteIMS ... e 6-4
Define Variant Controls 6-4
Configure Model for Generating Preprocessor Conditional
Directives i 6-6
Build Your Model i 6-6

Contents

Review Code Variants in Code Generation Report

Generate Code for Model Variants

Generate Code for Variant Subsystems
Open the Example Model
Define the Variant Controls
Make Each Child Subsystem an Atomic Subsystem
Configure Model for Generating Preprocessor Conditional

Directives ... e
View the Generated Code

Restrictions on Variant Subsystem Code Generation ..

Special Considerations for Generating Preprocessor
Conditionals

Limitations on Generating Code for Variants

Generated Code Components Not Compiled
Conditionally

Scheduling Considerations

7

Use Discrete and Continuous Time
Support for Discrete and Continuous Time Blocks
Support for Continuous Solvers
Support for Stop Time,

Optimize Multirate Multitasking Operation on RTOS
Targets it
L0 =) T 1=
UsertmStepTask
Scheduling Code for Multirate Multitasking on
VxWorks ... i e
Suppress Redundant Scheduling Calls

7-2
7-2

7-4
7-4
7-5

7-5
7-6

xi

Data, Function, and File Definition

Data Types
Apply User-Defined Data Types 8-2
Define User Data Typesciiiiniinininnn. 8-2
Select User-Defined Data Types 8-4
Specify Persistence Level for Signals and
Parameters 8-7
Buses e e 8-11
About Buses and Code Generation 8-11
Set Bus Diagnosticscoiiiiiiiiiiin.. 8-12
Optimize Virtual and Nonvirtual Buses 8-12
Use Single-Rate and Multi-Rate Buses 8-15
Set Bus Signal Initial Values 8-20
Use Buses with Atomic Subsystems 8-25
Rename Built-In Data Types 8-30
Generate Code Including User-Defined Data Types ... 8-32
About User-Defined Data Types 8-32
Specify Location of User-Defined Type Definitions 8-33
Apply User-Defined Data Types 8-34
Create Data Types for mpt Data Objects 8-35
Register mpt User Object Typesccvvvieenn. 8-39
Data Type Replacement 8-44
Replace Data Types, 8-44
Replace Built-In Data Type Names 8-46
Programmatically Replace Built-In Data Type Names ... 8-51
Replace boolean with an Integer Data Type 8-52
Data Type Replacement Limitations 8-54
Data Definition and Declaration Management 8-55
Overview of Data Dictionary 8-55
Create Simulink and mpt Data Objects 8-56
Create a Data Dictionary for a Model 8-70

xii Contents

Define Global Data Objects in Separate File 8-77

Define Global Data Objects in Separate Files 8-79
Save and Load Data Objectsccovviivo... 8-79
Apply Naming Rules to Identifiers Globally 8-79

Module Packaging Tool (MPT) Data Objects

92

MPT Data Object Properties 9-2

Custom Storage Classes

10

Introduction to Custom Storage Classes 10-2
Custom Storage Class Memory Sections 10-3
Register Custom Storage Classes 10-3
Custom Storage Class Examples 10-4

Resources for Defining Custom Storage Classes 10-5

Simulink Package Custom Storage Classes 10-6

Design Custom Storage Classes and Memory

Sections e e 10-8
Create Packages for Custom Storage Class Definitions ... 10-8
Use Custom Storage Class Designer 10-8
Edit Custom Storage Class Properties 10-16
Use Custom Storage Class References 10-23
Create and Edit Memory Section Definitions 10-28
Use Memory Section References 10-31
Apply Custom Storage Classes 10-34
About Applying Custom Storage Classes 10-34
Apply Custom Storage Classes to Parameters 10-35
Apply Custom Storage Classes to Signals 10-36

xiii

xiv

Custom Storage Classes Using Signal Objects 10-37
Custom Storage Classes Using Embedded Signal

ObJECtS v ittt e 10-39
Specify Custom Storage Classes Using GUI 10-46
Specify Custom Storages Classes Using API 10-48

Generate Code with Custom Storage Classes 10-53
Code Generation Prerequisites 10-53
Code Generation With Custom Storage Classes 10-53

Define Advanced Custom Storage Classes Types 10-57
Introduction i i 10-57
Create Your Own Parameter and Signal Classes 10-57
Create Custom Attributes Classes for Custom Storage

ClasseS i e e 10-57
Write TLC Code for Custom Storage Classes 10-58
Register Custom Storage Class Definitions 10-58

GetSet Custom Storage Classes 10-61
About GetSet Custom Storage Class 10-61
GetSet Custom Storage Class Properties 10-61
Apply the GetSet Custom Storage 10-62
GetSet Custom Storage Class Restrictions 10-62
Increase Code Efficiency With GetSet CSC 10-63

Custom Storage Class Implementation 10-65

Custom Storage Class Limitations 10-67

User Package Registration

11

Contents

About Data Object Wizard and User Packages 11-2

Register User Packages Using sl_customization.m 11-3

User Package Customization Using
sl_customization.m

Function and Class Interfaces

Function Prototype Control
About Function Prototype Control
Configure Function Prototypes Using Graphical

Interfaceso
Sample Procedure for Configuring Function Prototypes
Configure Function Prototypes Programmatically
Sample Script for Configuring Function Prototypes
Verify Generated Code for Customized Functions
Function Prototype Control Limitations

C++ Encapsulation Interface Control
About C++ Encapsulation Interface Control
Simple Use of C++ Encapsulation Control
Configure C++ Encapsulation Interfaces Using Graphical

Interfaces i
Configure C++ Encapsulation Interfaces

Programmatically
Configure the Step Method for a Model Class
C++ Encapsulation Interface Control Limitations

Atomic Subsystem Code
About Nonvirtual Subsystem Code Generation
Configure Subsystem for Generating Modular Function

Code .o e e
Modular Function Code for Nonvirtual Subsystems
Nonvirtual Subsystem Modular Function Code

Limitationsoiiiuiniii it

XV

xvi

Memory Sections

13

About Memory Sections i, 13-2
What Are Memory Sections?ccvveevnne... 13-2
Requirements for Defining Memory Sections 13-3
Define Memory Sectionscciiiuun... 13-5
Edit Memory Section Properties 13-5
Specify the Memory Section Name 13-6
Specify a Qualifier for Custom Storage Class Data
Definitionsciiiiniii it 13-7
Specify Comment and Pragma Text 13-7
Surround Individual Definitions with Pragmas 13-7
Include Identifier Names in Pragmas 13-8
Configure Memory Sections 13-9
Declare Constant Data as Volatile 13-10
Apply Memory Sections, 13-13
Assign Memory Sections to Custom Storage Classes 13-13
Apply Memory Sections to Model-Level Functions and
Internal Data 13-15
Apply Memory Sections to Atomic Subsystems 13-17
Generated Code with Memory Sections 13-21
Sample ERT-Based Model with Subsystem 13-21
Model-Level Data Structures 13-23
Model-Level Functions 13-23
Subsystem Function 13-24
Memory Section Limitation 13-26

Contents

Code Generation

14

Configuration
Application Objectives, 14-2
High-Level Code Generation Objectives 14-3

Determine Model Configuration for Specified
Objectives ...t e e 14-5

Check and Configure Model for Code Generation
Objectives ...t e e 14-6

Check and Configure Model for Code Generation
Objectives Using Configuration Parameters Dialog
BoX . e e 14-10

Configure Code Generation Objectives

Programmatically 14-13
Check Objectives in Referenced Models 14-14
Check Model During Code Generation 14-15
Create Custom Objectivesc... ... 14-17

Specify Parameters in Custom Objectives 14-17

Specify Checks in Custom Objectives 14-18

Determine Checks and Parameters in Existing

ObJeCtIVeS v v ittt e 14-19

How to Create Custom Objectives 14-20
Target i 14-24

About Target Selection i, 14-24

Select an ERT Target, 14-25

Customize an ERT Target 14-26

Configure Support for Numeric Data 14-26

xXvii

xviii

Configure Support for Time Values 14-27

Support for Non-inlined S-Functions 14-27
Configure Model Function Generation and Argument
Passing 14-28
Set Up Support for Code Reuse 14-29
Configure Code Replacement Libraries 14-31
Configuration Variations 14-32
About Model Configuration for Code Generation 14-32
Wizard e e 14-33
Block Library i, 14-33
Add a Configuration Wizard Block 14-35
Use Configuration Wizard Blocks 14-37
Create a Custom Configuration Wizard Block 14-37

Code Appearance

15

Contents

Add Custom Comments to Generated Code 15-2

Add Custom Comments for Signal or Parameter

Identifiers 15-4
Add Global Comments, 15-6
Use a Simulink DocBlock to Add a Comment 15-6
Use a Simulink Annotation to Add a Comment 15-9
Use a Stateflow Note to Add a Comment 15-9
Use Sorted Notes to Add Comments 15-10
Customize Generated Identifier Naming Rules 15-12
Identifier Format Control 15-14
Control Name Mangling in Generated Identifiers 15-18
Minimize Name Mangling000.... 15-18

Avoid Identifier Name Collisions with Referenced
Models e e

Maintain Traceability for Generated Identifiers

Exceptions to Identifier Formatting Conventions

Identifier Format Control Parameters Limitations

Specify Simulink Data Object Naming Rules

Control Code Style

Customize Code Organization and Format
Custom File Processing Overview
Custom File Processing Components
Custom File Processing User Interface Options
Code Generation Template (CGT) Files
Use Custom File Processing (CFP) Templates
Custom File Processing (CFP) Template Structure
Change the Organization of a Generated File
Generate Source and Header Files with a Custom File

Processing (CFP) Template
Comparison of a Template and Its Generated File
Code Template API Summary
Generate Custom File and Function Banners
Template Symbolsand Rules

Code Annotation for Justifying Polyspace Checks

Manage Placement of Data Definitions and
Declarations i i
Overview of Data Placement
Priority and Usagecciiiiiiiinnnn.
Ownership Settings ...ttt
Memory Section Settingscciiiiiinnn...
Data Placement Rules
Settings for a Data Object
Data Placement Rules and Results

. 15-23

15-25

15-26

15-28
15-28
15-29
15-30
15-31
15-35
15-36
15-37

15-39
15-48
15-51
15-55
15-63

. 15-72

15-74
15-74
15-75
15-81
15-81
15-81
15-82
15-91

xix

Specify Delimiter for #Includes 15-101

Source Code Generation

16

Generating Code Using Embedded Coder 16-2
Generate Code Modules 16-8
Introduction i 16-8
Generated Code Modulesccviii... 16-8
User-Written Code Modules 16-11
Customize Generated Code Modules 16-11
Generate Reentrant Code from MATLAB Code 16-14
What Is Reentrant Code?, 16-14
When to Generate Reentrant Code 16-14
Generate Reentrant Code 16-15
Generated Code API 16-16
Call Reentrant Code in a Single-Thread Environment 16-16
Call Reentrant Code in a Multithreaded Environment ... 16-17
Call Reentrant Code with No Persistent or Global Data
(UNIXOnly) ..oiiii e e 16-18
Call Reentrant Code — Multithreaded with Persistent Data
Windows Only)ot 16-24
Call Reentrant Code — Multithreaded with Persistent Data
(UNIXOnly) ..oiiii e e 16-30

Code Generation for AUTOSAR Software

Components

Overview of AUTOSAR Support 17-2
Simulink Modeling Patterns for AUTOSAR 17-3
About Simulink Modeling Patterns for AUTOSAR 17-3

XX Contents

AUTOSAR Software Components
AUTOSAR Communicationooeeeeeeeeennn.
Calibration Parameters
Inter-Runnable Variables
DataTypes ... e e
Per-Instance Memory,
AUTOSAR Terminology

Workflows for AUTOSAR
Import an AUTOSAR Software Component

Create an AUTOSAR Software Component in
Simulink

Prepare a Model for AUTOSAR Code Generation
Configure the AUTOSAR Interface
Configure Single Runnables for DataReceivedEvents ..
Configure Ports for Basic Software and Error Status

Recelvers ...ttt
Configure Client-Server Communication
Configure Multiple Runnables
Configure Calibration Parameters
Use Data Store Memory Blocks to Specify Per-Instance

Memory ... e
Modify and Validate an Existing AUTOSAR Interface

Generate AUTOSAR Code and Description Files
Select an AUTOSAR Schema
Specify Maximum SHORT-NAME Length
Configure AUTOSAR Compiler Abstraction Macros
Root-Level Matrix I/O
Export AUTOSAR Software Component

Configure AUTOSAR Options Programmatically

Verify AUTOSAR Code with SILand PIL.
OVeIVIEW o ittt ettt ettt e e
Use the SIL and PIL Simulation Modes
Use a SIL or PIL Block for AUTOSAR Verification

17-88

17-89
17-89
17-89
17-90

xxi

xxii

18

Contents

Limitationsand Tips 17-92

Cannot Import Internal Behavior 17-92
Cannot Copy Subsystem Blocks Without Losing Interface

Information i i, 17-93
Source of Initial Output Value for Function-Call Subsystem

OUtPOLt o vttt e 17-93
Error If No Default Configuration 17-93
The Generate Code Only Check Box 17-93
Specify Sample Time Independent Server Operation

Model e 17-93
Invoke AUTOSAR Server Operation Block in Referenced

Model e 17-94
Cannot Save Importer Objects in MAT-Files 17-94
Use the Merge Block for Inter-Runnable Variables 17-94
Use Goto and From Blocks Within Wrapper Subsystems .. 17-96
Postfix in Generated File Names 17-96
AUTOSAR Compiler Abstraction Macros 17-97
Intrinsic Fixed-Point Types for Model Configured as

I 13 7 17-98
Server Operation Model with Tunable Parameters 17-99
Relative File Paths in Code Descriptors 17-99

Sample Workflows and Further Reading 17-100

AUTOSAR Examples ..., 17-100
Further Reading 17-100

Report Generation

HTML Code Generation Report Extensions 18-2
Traceability in Code Generation Report 18-4
Model Web View in Code Generation Report 18-6
About Model Web View, 18-6
Generate HTML Code Generation Report with Model Web
VW e e 18-7
Model Web View Limitations 18-9

Analyze the Generated Code Interface 18-11

Code Interface Report Overview 18-11
Generating a Code Interface Report 18-12
Navigating Code Interface Report Subsections 18-15
Interpreting the Entry Point Functions Subsection 18-16
Interpreting the Inports and Outports Subsections 18-19
Interpreting the Interface Parameters Subsection 18-20
Interpreting the Data Stores Subsection 18-22
Code Interface Report Limitations 18-23
Static Code Metricsciiiiiiiinne... 18-25
About Static Code Metricsccciiiiinn... 18-25
Static Code Metrics Analysiscovviieeeeene... 18-26

Generate a Static Code Metrics Report for a Simulink
Model i e e e 18-28

Generate a Static Code Metrics Report for MATLAB

Code ... o 18-32
In a MATLAB Coder Project 18-32
At the Command Line i, 18-34
Analyze Code Replacements in the Generated Code .. 18-35
Generate HTML Report After Build Process 18-37

Deployment

Desktops

Shared Object Libraries 19-2
About Host-Based Shared Libraries 19-2
Generate Shared Library Version of Model Code 19-3
Create Application Code to Use Shared Library 19-3
Host-Based Shared Library Limitations 19-8

xxiil

xXxiv

Non-Real-Time Operating System Integration 19-9

Real-Time and Embedded Systems

20

Standalone Programs (No Operating System) 20-2
About Standalone Program Execution 20-2
Generate a Standalone Program 20-2
Standalone Program Components 20-3
Main Programt 20-3
rt_OneStep and Scheduling Considerations 20-5
Static Main Program Module 20-12
Rate Grouping Compliance and Compatibility Issues 20-16

Operating System Integration 20-22

Processor Support Packages 20-23

Import Custom Code into Model

21

Generate S-Function Wrappers 21-2
About S-Function Wrapper Generation 21-2
Createa SILBlock, 21-3
S-Function Wrapper Generation Limitations 21-3

Export Code Generated from Model to External

Application
Export Function-Call Subsystems 22-2
Exporting Function-Call Subsystems 22-2

Contents

Requirements for Exporting Function-Call Subsystems .. 22-3

Techniques for Exporting Function-Call Subsystems 22-6
Optimize Exported Function-Call Subsystems 22-8
Export Functions That Depend on Elapsed Time 22-8
Function-Call Subsystem Export 22-9
Function-Call Subsystems Export Limitations 22-12
Control Generation of Function Prototypes 22-14
C++ Encapsulation Interface Control 22-16

Code Replacement

23|

Introduction to Code Replacement Libraries 23-2
Overview of Code Replacement Libraries 23-2
Code Replacement Libraries General Workflow 23-10
Code Replacement Libraries Quick-Start Example 23-11

Create Code Replacement Tables 23-18
Overview of Code Replacement Table Creation 23-18
Create Table Entriesiiiiiiiiiinne... 23-22
Map Math Functions to Target-Specific

Implementations 23-30
Map memcpy Function to Target-Specific

Implementationsc 0 iiiiiiinnn. 23-37
Map Nonfinite Utility Functions to Target-Specific

Implementations 23-42
Map Scalar Operators to Target-Specific

Implementations iiiiiiirnn. 23-47
Map Nonscalar Operators to Target-Specific

Implementations iiiiiiirnn. 23-52
Map Fixed-Point Operators to Target-Specific

Implementations iiiiiiinnnn. 23-82
Remap Operator Outputs to Implementation Function

Inputs ... e 23-118
Configure Data Alignment for Function

Implementations iiiiiiernn. 23-120

XXv

Refine Matching and Replacement Using Custom

Entries ... e e e e 23-133
Replace Math Functions Based on Computation Method .. 23-150
Map Semaphore or Mutex Operations to Target-Specific

Implementations 23-152
Specify Build Information for Code Replacements 23-161
Add Code Replacement Library Reserved Identifiers 23-165

Manage CRTs with the Code Replacement Tool 23-168
Code Replacement Tool, 23-168
Create Code Replacement Table for a Sample Model 23-169
Create Code Replacement Table for a Sample MATLAB

Coder Project 0. 23-176
Create and Modify Code Replacement Tables 23-183
Validate Code Replacement Tables and Table Entries 23-189
Generate a Code Replacement Registration File 23-189

Examine and Validate Code Replacement Tables 23-191
Overview of Code Replacement Table Validation 23-191
Invoke the Table Definition File 23-191
Use Code Replacement Viewer to Examine Tables 23-192
Use Code Replacement Viewer to Examine CRLs 23-193
Trace Code Replacements Generated Using Your CRL ... 23-195

Determine Why Code Replacement Functions Not Used .. 23-198

Register Code Replacement Libraries 23-203
Overview of CRL Registration 23-203
Register CRL with Simulink Software

(sl_customization)uiiiimnnneneeennnnn 23-204
Register CRL with MATLAB Coder Software

(rtwTargetInfo) 23-208
Register Multiple CRLs 23-210

Custom Code Substitution for MATLAB Functions

Using Code Replacement Libraries 23-212
Replace MATLAB Function with Custom Code 23-213
At the Command Line Using the codegen Function 23-213
Specify a Code Replacement Function in a MATLAB Coder
Project 23-217

XXVvi Contents

Enable the Code Replacements Report 23-219

In a MATLAB Coder Project 23-219
Atthe Command Line 23-219
See AlSO v e 23-220

Viewing Code Replacements in the Generated Code .. 23-221
See AlSO oot e 23-222

Replace MATLAB Function Block Code with Custom

Code ... o 23-223
Code Replacement Library Limitations 23-229
Performance
Configuration
Configure Code Optimizations 24-2
Set Hardware Implementation Parameters 24-5
Use External Mode with the ERT Target 24-6
Memory Managementcciuiiiiinnn... 24-6
Generation of Pure Integer Code with External Mode 24-7

Data Copy Reduction

25|

Use Virtualized Output Ports Optimization 25-2

Control Signal Storage 25-4

xXxvii

xxviii

Execution Speed

26

Remove Initialization Code 26-2
Generate Pure Integer Code If Possible 26-4
Disable MAT-File Logging 26-5
Simplify Multiply Operations In Array Indexing 26-6

Generated Code Results 26-6

Memory Usage

27

Optimize Generated Code Using Specified Minimum

and Maximum Values 27-2
How to Configure Your Model 27-2
How to Enable Optimization 27-3
Optimize Generated Code Using Specified Minimum and
Maximum Values 27-4
Limitationsuiiiiiniii it 27-6

Reduce Global Variables in Nonreusable Subsystem

Functions i 27-8

Generate void-void Function 27-8

Generate Function with Arguments 27-9
Verification

Code Tracing

28|

About Code Tracingc.oiiiiiiinnnennn. 28-2

Contents

Format of Traceability Tags 28-3

Examples of Tagged Codeccii... 28-3
Trace Code to Model Objects Using Hyperlinks 28-4
Trace Model Objects to Generated Code 28-6
Reload Existing Traceability Information 28-8
Customize Traceability Reports 28-10
Generate a Traceability Matrix 28-12
Traceability Limitations 28-13

Component Verification

29

Component Verification in the Target Environment .. 29-2
Goals of Component Verification 29-3
Maximizing Code Portability and Configurability 29-4

Simplifying Code Integration and Maximizing Code
Efficiency i 29-5

Running Component Tests 29-7

XXix

XXX

Component Verification With a Real-Time
Target Environment

30

About Real-Time Software Component Verification ... 30-2

Real-Time Software Component Testing 30-4

Numerical Equivalence Checking

31

Contents

About SIL and PIL Simulations 31-2
OVeIVIEW o ittt ettt ettt e e 31-2
What are SIL and PIL Simulations? 31-2
Why Use SILand PIL 31-3

How SIL and PIL Simulations Work 31-6

Comparison of SIL and PIL Simulation 31-7

Choose a SIL or PIL Approach 31-9
About Choosing a SIL or PIL Simulation 31-9
When to Use Top-Model SILor PIL 31-9
When to Use Model Block SILor PIL 31-9
When to Use the SILor PILBlock 31-13

Configure a SIL or PIL Simulation 31-15
Top-Model SIL or PIL Simulation 31-15
Model Block SIL or PIL Simulation 31-17
UseaSILorPILBlock 31-19
Verify a SIL or PIL Configuration 31-20

Top Model Simulation Using SILor PIL 31-23

Referenced Model Simulation Using SIL or PIL 31-24
Verify Internal Signals of a Component 31-24

Simulation Mode Override Behavior in Model Reference
Hierarchy i

Code Interfaces for SILand PIL
Code Interface for Top-Model SIL or PIL.
Code Interface for Model Block SILor PIL.

Configure Hardware Implementation Settings for
SIL .o
Choose Hardware Implementation Options
Portable Word Sizescciuiiiiiiiiiiinnn.
Emulation Hardware
Embedded hardware configured for host

Debugging During SIL Simulations
Programming PIL Support Using Third-Party Tools ..

Create a Connectivity Configuration for a Target .
What Is a PIL Connectivity Configuration?
Overview of the Target Connectivity API
Create a Connectivity API Implementation
Register a Connectivity API Implementation
Synchronize Host and Target
Specify Hardware Timerccuvuiiieo...
Examples of the Target Connectivity API

View Test Harness in Code Generation Report

SIL and PIL Simulation Support and Limitations
About SIL and PIL Simulation Support and Limitations ..
Code Source SUPPOrtviiiiiiitiii e
Block Support e
Configuration Parameters Support
I/O Support ...
Hardware Implementation Support
Other Feature Support,

Programmatic Code Generation Verification
Code Generation Verification API Overview

31-39

. 31-40

31-40
31-41
31-46
31-47
31-47
31-48
31-51

31-53

31-55
31-56
31-57
31-60
31-62
31-70
31-82
31-84

31-85
31-85

xXxx1

xxxii

Verify Numerical Equivalence with CGV 31-85

Verify Numerical Equivalence Between Two Modes of
ExecutionofaModel 31-86

Plot Output Signals 31-93

Code Coverage

32

Contents

Code Coverage in SIL and PIL Simulations 32-2
Configure SIL and PIL Code Coverage 32-2
View Code Coverage Information at the End of SIL or PIL

Simulations i e e e 32-4

Configure Code Coverage Programmatically 32-7

Code Coveragefor PIL 32-9
PIL Support for LDRA Testbed 32-9
PIL Support for BullseyeCoverage 32-10

Code Coverage Summary and Annotations 32-11
LDRA Testbed Coverageovviiiiinnnnnnn. 32-11
BullseyeCoverage Information 32-14

Code Coverage Tool Support 32-17

Tips and Limitations 32-18
Compiler and Platform Support for SIL. 32-18
Right-Click Subsystem Build Unsupported for Code

OV vttt ettt e 32-18
BullseyeCoverage License Wait 32-18
Current Working Folder Cannot be UNC Path 32-18
Characters in matlabroot and File Path 32-18
Header Files with Identical Names 32-19
Code Coverage for Source Files in Shared Utility

Foldersi i 32-19
BullseyeCoverage Behavior with Inline Macros 32-19
SIL and PIL Simulations with Open LDRA Testbed 32-20
PIL Zero Coverage LDRA Testbed Annotations 32-20

Modify Legacy Code , 32-20

Code Execution Profiling

33

Embedded IDEs and Embedded Targets

About Code Execution Profiling 33-2

Configure Code Execution Profiling 33-3

Execution Profiling for Atomic Subsystems and Model

Reference Hierarchies 33-5
View and Compare Code Execution Times 33-7
Analyze Code ExecutionData 33-14
Tips and Limitations 33-16

Triggered Model Block 33-16

Outliers in Execution Time Profiles 33-16

Use of Hardware-Specific Timer 33-16

Getting Started with Embedded Targets

34

Add Support for Hardware and Software 34-2
Start Support Package Installer 34-3
Open or Reopen Support Package Examples 34-5
Install a Support Package on Multiple Computers 34-7

xxxiil

Project and Build Configurations for Embedded

Targets

Model Setupci it 35-2
Block Selection i 35-2
Configure Target Hardware Resources 35-3
Configuration Parameters 35-5
Model Reference 35-14
IDE Projectsiiiii i 35-16
Support for Third Party Products 35-16
Third Party Product Setup 35-16
Code Generationand Build 35-18
Automation of IDE Tasks and Processes 35-19
Makefiles for Software Build Tool Chains 35-21
What 1s the XMakefile Feature 35-21
Using Makefiles to Generate and Build Software 35-25
Making an XMakefile Configuration Operational 35-28
Creating a New XMakefile Configuration 35-28
XMakefile User Configuration dialog 35-34

Verification and Profiling Code Generated for
Embedded Targets

36

Processor-in-the-Loop (PIL) Simulation 36-2
OVeIVIBW & vttt ettt ettt e e e e 36-2
PIL Approaches, 36-3
Communicationsuiuienineennneennneennnn. 36-8
Running Your PIL Application to Perform Simulation and

Verificationc.0 i, 36-14
Performing a Model Block PIL Simulation via SCI Using

Makefilescciiuiiiiii i e 36-14
Definitions it e 36-18
PIL Issues and Limitations 36-19

XXXiv Contents

Execution Profiling for Embedded Targets 36-21

What Is Execution Profiling? 36-21
Feature Support 36-21
Execution Profiling during Standalone Execution 36-22
Execution Profiling during PIL Simulation 36-25
Stack Profiling for Embedded Targets 36-28
Feature Support 36-28
What 1s Stack Profiling? 36-28
Profiling System Stack Use 36-30

Processor-Specific Optimizations for Embedded

Targets
Code Replacement Library (CRL) 37-2
About Code Replacement Libraries and Optimization 37-2
Using a Processor-Specific Code Replacement Library to
Optimize Codeoviiiiniiiii i 37-4
Process of Determining Optimization Effects Using
Real-Time Profiling Capability 37-4
Reviewing Processor-Specific Code Replacement Library
Changes in Generated Code 37-5
Creating Your Own Code Replacement Library 37-8
Reviewing Code Replacement Library Operators and
Functions 37-8
Tips and Limitations i iiiurnnn.. 37-10

Working with Analog Devices VisualDSP++ IDE

38

Install Support for Analog Devices DSPs 38-2
Getting Started 38-4
OVeIVIBW o ittt ettt ettt e e e 38-4
Software Structure and Components 38-5

XXXV

XXXV1

Software Requirements 38-7

Installation and Configuration 38-7
IDE Automation Interface 38-9
Getting Started with IDE Automation Interface 38-9
Constructing Objectsciiiiiiiiinnneeennnn. 38-24
Properties and Property Values 38-25
adivdsp Object Propertiesccviii. .. 38-28
IDE Project Generatorcciuun.. 38-32
Introducing IDE Project Generator 38-32
Generate an IDE Project 38-33
Model Reference 38-36
Reported Limitationsand Tips 38-40
ReportedIssues, 38-40

Working with Eclipse IDE

39

Installing Third-Party Software for Eclipse 39-2
Tested Software Versionsccviiiinnnnn. 39-2
Installing Oracle Java Runtime Environment (JRE) 39-3
Installing Eclipse IDE for C/C++ Developers 39-5
Verifying the GNU Tool Chain on Linux Host 39-6
Installing the GNU Tool Chain on Windows 39-7

Configuring Your MathWorks Software to Work with

Eclipse 39-10
Additional Configuration Steps to Run Your Executable on
a Remote Embedded Linux Target 39-13
Troubleshooting with Eclipse IDE 39-15
Profiling for ARM® Processors Running Embedded Linux
Operating Systemtiiiiinnneneeennnn. 39-15
SIGSEGV Segmentation Fault for GDB 39-16
GDB Stops on Each Semaphore Post 39-16
Build Exrorso 39-16

Contents

Profiling Not Available for Intel x86/Pentium and AMD
K5/K6/Athlon Processors Running Windows or Linux

Operating Systemsuuiiiiinnneneeennnn. 39-17
Eclipse Message: “Can’t find a source file” 39-17
Eclipse Message: “Cannot access memory at address” 39-18
Some Versions of Eclipse CDT Do Not Catch GCC

Errors ..o e e e 39-18

Working with Green Hills MULTI IDE

40|

Install Support for Green Hills MULTIIDE 40-2
Getting Started 40-4
OV VIEW &ttt ettt ettt e e e e e 40-4
Software Structure and Components 40-5
IDE Automation Interface 40-12
Getting Started with IDE Automation Interface 40-12
Constructing Objects ...ttt 40-28
Properties and Property Values 40-29
ghsmulti Object Propertiesccuvviieo.o... 40-32
IDE Project Generatorcciuun.. 40-35
Introducing IDE Project Generator 40-35
Generate an IDE Project 40-36
Model Reference 40-40
Breakpointsand PIL 40-44

41|

Disambiguation 41-2

xXxxvil

xXxxviii

Preparing Models to Run on Linux Target 41-3

Scheduler i 41-4
BaseRate i 41-4
Running Target Applications on Multicore Processors 41-4
Avoiding Lock-Up in Free-Running, Multirate, Multitasking

Modelso e 41-11
Build on BeagleBoard Hardware 41-13
L0 =) T 1= 41-13
Configure the Windows Host 41-13
Configure the BeagleBoard Hardware 41-13
Configure MATLAB Software 41-14

Build on Linux Host and Run on BeagleBoard

Hardware i, 41-15
OV VIEW o ittt ettt ettt e e e 41-15
Prerequisites 41-15
Set up your environment for Linux-ARM Code

Generationuvitutiiieieeeeeeeeeeaa 41-15
Generate Code for Linux-ARM 41-18
External Mode Simulation 41-18

Working with Texas Instruments Code
Composer Studio 3.3 IDE

42|

Code Composer Studio 42-2
Using Code Composer Studio with Embedded Coder
Softwareouiiii i e e 42-2
Default Project Configuration 42-2
Getting Started 42-4
OVeIVIBW o ittt ettt ettt e e 42-4
Verifying Your Code Composer Studio Installation 42-7
IDE Automation Interface 42-9
Getting Started with IDE Automation Interface 42-9

Contents

Getting Started with RTDX 42-27

Constructing ticcs Objects, 42-48
ticcs Properties and Property Values 42-49
Overloaded Functions for ticecs Objects 42-50
tices Object Propertiesoiiiiieiinnnnnn. 42-50
IDE Project Generatorccuun.. 42-58
Introducing IDE Project Generator 42-58
IDE Project Generator and Board Selection 42-58
Generate an IDE Project 42-60
Model Reference 42-64
Exporting Filter Coefficients from FDATool 42-69
About FDATo0lt 42-69
Preparing to Export Filter Coefficients to Code Composer
Studio Projects e 42-70
Exporting Filter Coefficients to Your Code Composer Studio
Project 42-74
Preventing Memory Corruption When You Export
Coefficients to Processor Memory 42-80
Using Makefiles with Code Composer Studio 3.x 42-87
Introduction i i 42-87
Set Up XMakefile for CCSv3, 42-87
Prepare Your Model for CCSv3 and Makefiles 42-89
Create Target Configuration Filein CCSv3 42-89
Load and Run the Embedded Software 42-90
Reported Limitationsand Tips 42-92
Example Programs Do Not Run Well with Incorrect GEL
Files .o e e 42-93
Changing Values of Local Variables Does Not Work 42-93
Code Composer Studio Cannot Find a File After You Halt a
Program 42-94
C54x XPC Register Can Be Modified Only Through the PC
Register i 42-95
Working with More Than One Installed Version of Code
Composer Studiociiiiiiiinnnnnn.. 42-96
Changing CCS Versions During a MATLAB Session 42-96
MATLAB Hangs When Code Composer Studio Cannot Find
aBoard ... 42-96
Using Mapped Drivescvuiiiiiinnnn. 42-98

XXXIix

x1

Uninstalling Code Composer Studio 3.3 Prevents Embedded

Coder From Connectingcciiiiunnn... 42-98
PostCodeGenCommand Commands Do Not Apply to IDE
Projects 42-98

Working with Texas Instruments Code
Composer Studio 4 & 5 IDE

43|

Code Composer Studio 43-2
Feature Support 43-2
Getting Started 43-3
Verifying Your Code Composer Studio Installation 43-3
Learning About Makefiles 43-3
Using Makefiles with Code Composer Studio4 &5 434
Introduction 43-4
Set Up XMakefile for CCSv4/5, 43-4
Prepare Your Model for CCSv4/5 and Makefiles 43-6
Create Target Configuration File in CCSv4/5 43-6
Configure Windows Path for TI Debug Server Scripting
(DS) v e e 43-7
Load and Run the Embedded Software Using DSS 43-7
Reported Limitationsand Tips 43-10
Example Programs Do Not Run well with Incorrect GEL
Files .o e 43-10
PostCodeGenCommand Commands Do Not Apply to IDE
Projects ... 43-10

Contents

Working with Texas Instruments C2000

Processors

Setting Up and Configuring 44-3
Feature Support for Code Composer Studio 44-3
Installing and Configuring Software 44-3
Verifying the Configuration 44-4
Data Type Support, 44-6
Scheduling and Timing 44-7
OVerVIEW &ttt ettt et e e e e e 44-7
Timer-Based Interrupt Processing 44-7
Asynchronous Scheduling 44-8

Sharing General Purpose Timers between C281x
Peripherals,
Sharing General Purpose Timers between CAP and

eCAN
Sharing General Purpose Timers between CAP and SPI ..

Overview of Creating Models for C2000 Processors ...
Accessing the Embedded Coder Block Library
Building Your Model

Using the c2000lib Blockset
Introduction i
Hardware Setup i,
Starting the ¢c2000lib Library
Setting Upthe Model
Adding Blocks to the Model
Generating Code from the Model

Configuring Timing Parameters for CAN Blocks
The CAN Blocksot
Setting Timing Parameters
Parameter Tuning and Signal Logging

ADC-PWM Synchronization via ADC Interrupt

xli

Run the model using CCSv3 44-51
Run the model using CCSv4 44-51
Run the model using CCSv5 44-52

Configuring Acquisition Window Width for ADC

Blocks e e 44-54
What Is an Acquisition Window? 44-54
Configuring ADC Parameters for Acquisition Window
Width ... 44-56
Real-Time Data Exchange via RTDX™ 44-61
SPI-Based Control of PWM Duty Cycle 44-63
HIL Verification of IIR Filter viaSCI 44-67
CAN-Based Control of PWM Duty Cycle 44-74
CAN Calibration Protocol and External Mode 44-77

Using the 12C Bus to Access a Connected EEPROM ... 44-85

Using the IQmath Library 44-90
About the IQmath Library 44-90
Fixed-Point Numbers, 44-91
Building Models i 44-96

Programming Flash Memory 44-99
Introduction i i 44-99
Installing TT Flash APIs 44-100
Configuring the DSP Board Bootloader 44-100
Configuring the Software for Automatic Flash

Programming e 44-101
Selectively Erase, Program, or Verify Specific Flash
I 1T 7) = 44-101
Placing Additional Code or Data on Unused Flash
I 1T 7) = 44-102
Configuring LIN Communications 44-105

xlii Contents

OV eI VIEW ot ettt et et e e e e e e 44-105

Configuring Your Model 44-105
Tips and Limitations 44-108
Texas Instruments C28x DMC Blocks Require CRL 44-108

Working with Texas Instruments C6000

Processors
45|

Getting Started 45-2
Feature Support for Code Composer Studio 45-2
L0 Y T 1= 45-2
Using ThisGuide ..., 45-3
Configuration Information 45-4
Setting Up and Configuring 45-4
Targeting C6000 DSP Hardware 45-8
Introduction to Targeting 45-8
C6000 and Code Composer StudioIDE 45-9
Targeting — Single Rate Application 45-12
Schedulers and Timingciiiuiiieeneo... 45-19
Model Reference and Embedded Coder Software 45-29
Targeting Supported Boards 45-33
Simulink Models and Targeting 45-38
Targeting — A More Complex Application 45-38
Targeting Your C6713 DSK and Other Hardware 45-44

Creating Code Composer Studio Projects Without
Buildingo i e 45-47
Targeting Custom Hardware 45-49
Using Embedded Coder Software 45-62
Targeting with DSP/BIOS Options 45-64
Introducing DSP/BIOS, 45-64
DSP/BIOS and Targeting Your C6000 DSP 45-65
Code Generation with DSP/BIOS 45-68
Profiling Generated Codecccviiuinn. 45-72
Generating Code for C64x+ Processors or Boards 45-85

xliii

xliv

Using the C62x and C64x DSP Libraries 45-89

About the C62x and C64x DSP Libraries 45-89
Fixed-Point Numbers i, .. 45-91
Building Models i e 45-96
Configuring Timing Parameters for CAN Blocks 45-98
Setting Timing Parameters 45-98
HardwarelIssues, 45-102
Configuring the D.signT DSK-91C111 to Use TCP/IP and
UD P e 45-102
Requirements for the DM642 EVM 45-102
Installing and Configuring the Avnet Board Support
Library 45-105
Continuing Issues with Embedded Coder Software 45-107

Working with Wind River VxWorks RTOS

46

Overview of Support for Wind River VxWorks
Target i 46-2

Building and Running Embedded Software on VxWorks

Target i 46-4
Install and Set Up the Wind River Development
Environment 46-4
Setting VxWorks Environment Variables and Starting
MATLAB .. e 46-5
Setting Up XMakefile for VxWorks Target 46-6
Customizing XMakefile to Automatically Download and
Build Your Software 46-7
Prepare Your Model for VxWorks Target and Makefiles .. 46-8
Build Your Embedded Software 46-8
Working with Other Processors 46-9
Schedulers i 46-10
Running Target Applications on Multicore Processors 46-10

Contents

Work with Xilinx Zynq Platform

17|

Install Support for Xilinx Zynq Platform 47-2
Open Block Library for Xilinx Zynq Platform 47-5
Build and Run Executable on Xilinx Zynq Platform ... 47-7
Set the model Configuration Parameters 47-7
Set up the XMakefile User Configuration 47-10
Build and Run the Executable 47-11
Troubleshooting a Connection Error 47-13

Stop or Restart Executable Running on Xilinx Zynq
Platform i 47-14

Tune and Monitor Executable Running on Xilinx Zynq

Platform i 47-15
Overview of Using External Mode 47-15
Configure Simulink Model for External Mode 47-16
Run Executable on Zynq Platform 47-18
Stop External Mode 47-20
Set up Xilinx Zynq Platform and Software 47-22
Get IP Address of Xilinx Zynq Platform 47-25

Open Serial Command-line Session with Xilinx Zynq
Platform i, 47-27

Index

xlv

xlvi Contents

Bug Reports

l Bug Reports

Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code
generator might contain bugs, some of which are not detected by a compiler.
MathWorks reports critical known bugs brought to its attention on its Bug
Report system at http://www.mathworks.com/support/bugreports/. Use the
Saved Searches and Watched Bugs tool with the search phrase “Incorrect
Code Generation” to obtain a report of known bugs that produce code that
might compile and execute, but still produce wrong answers. Enter the search
phrase "Simulation And Code Generation Mismatch" to obtain a report of
known bugs where the output of the simulation differs from the output of the
generated code.

The bug reports are an integral part of the documentation for each release.
Examine periodically all bug reports for a release, as such reports may
identify inconsistencies between the actual behavior of a release you are using
and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and
validation strategy to identify potential bugs in your design, code, and tools.

1-2

http://www.mathworks.com/support/bugreports/

Model Architecture and Design

¢ Chapter 2, “Modeling Environment”

¢ Chapter 3, “Application Objectives”

¢ Chapter 4, “Guidelines and Standards”
® Chapter 5, “Patterns for C Code”

¢ Chapter 6, “Variant Systems”

e Chapter 7, “Scheduling Considerations”

Modeling Environment

2 Modeling Environment

2-2

Set Up Your Modeling Environment

When developing a system, use a combination of products to model each
system component based on the domain to which it applies.

The following table guides you to information and examples that pertain to
use of the Embedded Coder® product to meet goals for specific domains.

Goals

Related Product
Information

Examples

Generate a
software design

“Code Generation”
in the Simulink®

rtwdemo_codegenrpt

description Report Generator™
documentation
Trace model “Requirements rtwdemo_requirements

requirements to
generated code

Traceability” in the
Simulink Verification
and Validation™

documentation
Implement “Data Types and)
application Scaling” and rtwdemo_fixpti
on fixed-point “Fixed-Point Code rtwdemo_fuelsys_fxp_publish
processors Generation” in rtwdemo_dspanc_fixpt

the Fixed-Point

Designer™

documentation
Use an “Program Building, In rtwdemos, select one
integrated Interaction, and of the following folders:
development Debugging” topics Desktop IDEs, Desktop
environment in the Embedded Targets, Embedded IDEs, or
(IDE) to Coder documentation | Embedded Targets

integrate an
application on a
target processor
automatically

“Program Building,
Interaction, and
Debugging” and
Desktop Targets
topics in the

Set Up Your Modeling Environment

Simulink Coder™
documentation

2 Modeling Environment

Application Objectives

The first step in applying Embedded Coder configuration options to the
application development process is to consider how your application objectives,
particularly with respect to efficiency, traceability, and safety, map to code
generation options in a model configuration set.

Parameters that you set in the Solver, Data Import/Export, Diagnostics,
and Code Generation panes of the Configuration Parameters dialog box
affect the behavior of a model in simulation and the code generated for the
model.

Consider questions such as the following:

® What settings might help you debug your application?

® What is the highest objective for your application — efficiency, traceability,
extra safety precaution, debugging, or some other criteria?

® What is the second highest objective?
¢ Can the objective at the start of the project differ from the objective
required for the end result? What tradeoffs can you make?

After you answer these questions:

1 Define your objectives in the configuration set. For more information, see
“High-Level Code Generation Objectives” on page 14-3.

2 Use the Code Generation Advisor to identify parameter values that are not
configured for the objectives that you selected. For more information, see
“Determine Model Configuration for Specified Objectives” on page 14-5.

3 Application Obijectives

3-2

Guidelines and Standards

e “What Are the Standards and Guidelines?” on page 4-2
e “MAAB Guidelines” on page 4-4

o “MISRA C Guidelines” on page 4-5

e “IEC 61508 Standard” on page 4-7

* “ISO 26262 Standard” on page 4-9

¢ “D0O-178C Standard” on page 4-11

4 Guidelines and Standards

4-2

What Are the Standards and Guidelines?

If your application has mission-critical development and certification goals,
your models or subsystems and the code generated for them might need
to comply with one or more of the standards and guidelines listed in the
following table.

Standard or Guidelines

Organization

For More Information, See...

Guidelines: Use of
MATLAB®, Simulink, and
Stateflow® software for
control algorithm modeling
— MathWorks® Automotive
Advisory Board (MAAB)
Guidelines

MAAB

® Control Algorithm Modeling
Guidelines Using MATLAB,
Simulink, and Stateflow
Software: PDF, Word

¢ Develop Models and Code
That Comply with “MAAB
Guidelines” on page 4-4

Guidelines: Use of the C
Language in Critical Systems
(MISRA C®h

Motor Industry Software
Reliability Association
(MISRA)

e MISRA C Web site

e Technical Solution 1-1IFPOW
on the MathWorks Web site

® Develop Models and Code
That Comply with “MISRA C
Guidelines” on page 4-5

Standard: AUTomotive
Open System ARchitecture
(AUTOSAR)

AUTOSAR Development
Partnership

¢ Publications and specifications
available from the AUTOSAR
Web site

e Technical Solution 1-2WFS27
on the MathWorks Web site

® “Overview of AUTOSAR
Support” on page 17-2

1. MISRA® and MISRA C® are registered trademarks of MISRA® Ltd., held on behalf of
the MISRA® Consortium.

http://www.mathworks.com/automotive/standards/docs/MAAB_Style_Guideline_Version3p00_pdf.zip
http://www.mathworks.com/automotive/standards/docs/MAAB_Style_Guideline_Version3p00_pdf.zip
http://www.mathworks.com/automotive/standards/docs/MAAB_Style_Guideline_Version3p00_pdf.zip
http://www.mathworks.com/industries/auto/maab.html
http://www.mathworks.com/automotive/standards/docs/MAAB_Style_Guideline_Version3p00_pdf.zip
http://www.mathworks.com/automotive/standards/docs/MAAB_Style_Guideline_Version3p00_doc.zip
http://www.misra.org.uk/
http://www.misra.org.uk/
http://www.misra.org.uk/
http://www.misra-c.com/
http://www.mathworks.com/support/solutions/data/1-1IFP0W.html
http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.mathworks.com/support/solutions/data/1-2WFS27.html?solution=1-2WFS27

What Are the Standards and Guidelines?

Standard or Guidelines

Organization

For More Information, See...

Standard: IEC 61508,
Functional safety of
electrical/electronic/
programmable electronic
safety-related systems

International
Electrotechnical Commission

¢ [EC functional safety zone
Web site

¢ Model-Based Design for IEC
61508 (Excerpts) — For
the complete document, see
Technical Solution 1-32COJP
on the MathWorks Web site.

® Develop Models and Code
That Comply with “IEC 61508
Standard” on page 4-7

Standard: ISO 26262, Road
Vehicles - Functional Safety

International Organization
for Standardization

e [SO 26262 Support in
MATLAB and Simulink

® Develop Models and Code
That Comply with “ISO 26262
Standard” on page 4-9

Standard: DO-178C,

Software Considerations
in Airborne Systems and
Equipment Certification

Radio Technical Commission
for Aeronautics (RTCA)

® Develop Models and Code
That Comply with “D0O-178C
Standard” on page 4-11

For information on whether Simulink Coder technology is certified or qualified
and whether safety-critical software has been developed with MathWorks
tools, see Embedded Coder — Code Certification with MathWorks Tools.

4-3

http://www.iec.ch/
http://www.iec.ch/
http://www.iec.ch/zone/fsafety/
http://www.iec.ch/zone/fsafety/
http://www.mathworks.com/products/embedded-coder/technicalliterature.html
http://www.mathworks.com/products/embedded-coder/technicalliterature.html
http://www.mathworks.com/support/solutions/data/1-32COJP.html?solution=1-32COJP
http://www.iso.org/iso/home.html
http://www.iso.org/iso/home.html
http://www.mathworks.com/automotive/standards/iso-26262.html
http://www.mathworks.com/automotive/standards/iso-26262.html
http://www.rtca.org/aboutrtca.asp
http://www.rtca.org/aboutrtca.asp
http://www.mathworks.com/products/embedded-coder/technicalliterature.html

4 Guidelines and Standards

4-4

MAAB Guidelines

The MathWorks Automotive Advisory Board (MAAB) involves major
automotive OEMs and suppliers in the process of evolving MathWorks
controls, simulation, and code generation products, including Simulink,
Stateflow, and Simulink Coder. An important result of the MAAB has been
the “MAAB Control Algorithm Modeling” guidelines..

If you have a Simulink Verification and Validation product license, you can
check that your Simulink model or subsystem, and the code that you generate
from it, complies with MAAB guidelines. To check your model or subsystem,
open the Simulink Model Advisor. Navigate to By Product > Simulink
Verification and Validation > Modeling Standards > MathWorks
Automotive Advisory Board Checks and run the MathWorks Automotive
Advisory Board checks.

For more information on using the Model Advisor, see “Consult the Model
Advisor” in the Simulink documentation.

http://www.mathworks.com/products/simverification/

MISRA C® Guidelines

MISRA C Guidelines

The Motor Industry Software Reliability Association (MISRA?) has
established “Guidelines for the Use of the C Language in Critical Systems”
(MISRA C). For general information about MISRA C, see www.misra-c.com.

In 1998, MIRA Ltd. published MISRA C (MISRA C:1998) to provide a
restricted subset of a standardized, structured language that met Safety
Integrity Level (SIL) 2 and higher. A major update based on feedback was
published in 2004 (MISRA C:2004), followed by a minor update in 2007
known as Technical Corrigendum (T'C1). In 2007, MISRA also published the
MISRA AC AGC standard, “MISRA AC AGC: Guidelines for the Application
of MISRA-C:2004 in the Context of Automatic Code Generation.” MISRA
AC AGC does not change MISRA C:2004 rules, rather it modifies the
adherence recommendation. For more information about MISRA C, see
www.misra-c.com.

Embedded Coder and Simulink offer capabilities to minimize the potential
for MISRA C rule violations, especially rules deemed applicable by MISRA
AC AGC.

To configure a model or subsystem so that the code generator is most likely to
produce MISRA C:2004 compliant code, use the Code Generation Advisor. For
more information, refer to:

¢ “High-Level Code Generation Objectives” on page 14-3

¢ “Determine Model Configuration for Specified Objectives” on page 14-5

The Model Advisor also checks that you developed your model or subsystem
to increase the likelihood of generating MISRA C:2004 compliant code. To
check your model or subsystem:

1 Open the Model Advisor.
2 Navigate to By Product > Embedded Coder.

3 Run the following checks:

2. MISRA® and MISRA C® are registered trademarks of MIRA Ltd., held on behalf of the
MISRA® Consortium.

4-5

http://www.misra-c.com
http://www.misra-c.com

4 Guidelines and Standards

4-6

® “Check for blocks not recommended for MISRA-C:2004 compliance”
e “Check configuration parameters for MISRA-C:2004 compliance”

For more information about using the Model Advisor, see “Consult the Model
Advisor” in the Simulink documentation.

For information about using Embedded Coder software within MISRA C
guidelines, see Technical Solution 1-1IFPOW on the MathWorks Web site.

http://www.mathworks.com/support/solutions/data/1-1IFP0W.html

IEC 61508 Standard

IEC 61508 Standard

In this section...

“Apply Simulink and Embedded Coder to the IEC 61508 Standard” on
page 4-7

“Check for IEC 61508 Standard Compliance Using the Model Advisor” on
page 4-7

“Validate Traceability” on page 4-12

Apply Simulink and Embedded Coder to the IEC
61508 Standard

Applying Model-Based Design to a safety-critical system requires extra
consideration and rigor so that the system adheres to defined safety
standards. IEC 61508, Functional safety of electrical/electronic/programmable
electronic safety related systems, is such a standard. Because the standard
was published when most software was coded by hand, the standard needs
to be mapped to Model-Based Design technologies. Model-Based Design for
TEC 61508 (Excerpts) provides a sampling of information available from a
document that offers recommendations on how to apply Simulink, Simulink
Coder, and third-party products for Model-Based Design to IEC 61508
measures and techniques. For the complete version of Model-Based Design
for IEC 61508, see Technical Solution 1-32COJP on the MathWorks Web site.

MathWorks provides an IEC Certification Kit product that you can
use to certify MathWorks code generation and verification tools for
projects based on the IEC 61508 standard. For more information, see
http://www.mathworks.com/products/iec-61508/.

Check for IEC 61508 Standard Compliance Using the
Model Advisor

If you have a Simulink Verification and Validation product license, you

can check that your Simulink model or subsystem and the code that you
generate from it complies with selected aspects of the IEC 61508 standard by
running the Simulink Model Advisor. Navigate to By Product > Simulink
Verification and Validation > Modeling Standards > IEC 61508 and

4-7

http://www.mathworks.com/products/embedded-coder/technicalliterature.html
http://www.mathworks.com/products/embedded-coder/technicalliterature.html
http://www.mathworks.com/support/solutions/data/1-32COJP.html?solution=1-32COJP
http://www.mathworks.com/products/iec-61508/
http://www.mathworks.com/products/simverification/

4 Guidelines and Standards

IS0 26262 Checks or By Task > Modeling Standards for IEC 61508 and
run the “IEC 61508 and ISO 26262 Checks”.

For more information on using the Model Advisor, see “Consult the Model
Advisor” in the Simulink documentation.

Validate Traceability

Typically, applications that require certification require some level of
traceability between requirements, models, and corresponding code.

To... Use...
Associate requirements The “Requirements Traceability” that
documents with objects in is available if you have a Simulink
Simulink models Verification and Validation license.
Trace model blocks and The Model-to-code traceability option
subsystems to generated when generating an HTML report during
code the code generation or build process.
Trace generated code to model The Code-to-model traceability option
blocks and subsystems when generating an HTML report during
the code generation or build process.

ISO 26262 Standard

ISO 26262 Standard

In this section...

“Apply Simulink and Embedded Coder to the ISO 26262 Standard” on
page 4-9

“Check for ISO 26262 Standard Compliance Using the Model Advisor” on
page 4-9

“Validate Traceability” on page 4-12

Apply Simulink and Embedded Coder to the 1SO
26262 Standard

Applying Model-Based Design to a safety-critical system requires extra
consideration and rigor so that the system adheres to defined functional
safety standards. ISO 26262, Road Vehicles - Functional Safety, is such a
standard. For further information about MathWorks support for ISO 26262,
see ISO 26262 Support in MATLAB and Simulink.

MathWorks provides an IEC Certification Kit product that you can
use to qualify MathWorks code generation and verification tools for
projects based on the ISO 26262 standard. For more information, see
http://www.mathworks.com/products/iso—26262/.

Check for 1ISO 26262 Standard Compliance Using the
Model Advisor

If you have a Simulink Verification and Validation product license, you

can check that your Simulink model or subsystem and the code that you
generate from it complies with selected aspects of the ISO 26262 standard by
running the Simulink Model Advisor. Navigate to By Product > Simulink
Verification and Validation > Modeling Standards > IEC 61508 and
IS0 26262 Checks or By Task > Modeling Standards for ISO 26262 and
run the “IEC 61508 and ISO 26262 Checks”.

For more information on using the Model Advisor, see “Consult the Model
Advisor” in the Simulink documentation.

4-9

http://www.mathworks.com/automotive/standards/iso-26262.html
http://www.mathworks.com/products/iec-61508/
http://www.mathworks.com/products/simverification/

4 Guidelines and Standards

4-10

Validate Traceability

Typically, applications that require certification require some level of
traceability between requirements, models, and corresponding code.

TO...

Use...

Associate requirements
documents with objects in
Simulink models

The “Requirements Traceability” that
is available if you have a Simulink
Verification and Validation license.

Trace model blocks and
subsystems to generated
code

The Model-to-code traceability option
when generating an HTML report during
the code generation or build process.

Trace generated code to model
blocks and subsystems

The Code-to-model traceability option
when generating an HTML report during
the code generation or build process.

DO-178C Standard

DO-178C Standard

In this section...

“Apply Simulink and Embedded Coder to the DO-178C Standard” on page
4-11

“Check for Standard Compliance Using the Model Advisor” on page 4-11

“Validate Traceability” on page 4-12

Apply Simulink and Embedded Coder to the DO-178C
Standard

Applying Model-Based Design to a high-integrity system requires extra
consideration and rigor so that the system adheres to defined safety
standards. DO-178C Software Considerations in Airborne Systems

and Equipment Certification is such a standard. A supplement to
DO-178C, DO-331, provides guidance on the use of Model-Based Design
technologies. MathWorks provides a DO Qualification Kit product that
you can use to qualify MathWorks verification tools for projects based on
the DO-178C, DO-331, and related standards. For more information, see
http://www.mathworks.com/products/do-178/.

For information about Model-Based Design and MathWorks
support of aerospace and defense industry standards, see
http://www.mathworks.com/aerospace-defense/ .

Check for Standard Compliance Using the Model
Advisor

If you have a Simulink Verification and Validation product license, you

can check that your Simulink model or subsystem and the code that you
generate from it complies with selected aspects of the DO-178C standard by
running the Simulink Model Advisor. Navigate to By Product > Simulink
Verification and Validation > Modeling Standards > DO-178C/D0-331
Checks or By Task > Modeling Standards for DO-178C/D0-331 and run
the DO-178C/D0-331 checks.

4-11

http://www.mathworks.com/products/do-178/
http://www.mathworks.com/aerospace-defense/
http://www.mathworks.com/products/simverification/

4 Guidelines and Standards

4-12

For more information on using the Model Advisor, see “Consult the Model
Advisor” in the Simulink documentation.

Validate Traceability

Typically, applications that require certification require some level of
traceability between requirements, models, and corresponding code.

TO...

Use...

Associate requirements
documents with objects in
Simulink models

The “Requirements Traceability” that
is available if you have a Simulink
Verification and Validation license.

Trace model blocks and
subsystems to generated
code

The Model-to-code traceability option
when generating an HTML report during
the code generation or build process.

Trace generated code to model
blocks and subsystems

The Code-to-model traceability option
when generating an HTML report during
the code generation or build process.

Patterns for C Code

® “About Modeling Patterns” on page 5-3

® “Prepare a Model for Code Generation” on page 5-4
e “Data Declaration” on page 5-9

¢ “Data Type Conversion” on page 5-13

e “Type Qualifiers” on page 5-17

e “Relational and Logical Operators” on page 5-20

® “Bitwise Operations” on page 5-24

e “If-Else” on page 5-28

® “Switch” on page 5-35

¢ “For Loop” on page 5-41

e “While Loop” on page 5-50

® “Do While Loop” on page 5-62

¢ “Function Call” on page 5-69

¢ “Function Prototyping” on page 5-71

¢ “External C Functions” on page 5-75

e “Macro Definitions (#define)” on page 5-82

¢ “Conditional Inclusions (#if / #endif)” on page 5-85
e “Typedef” on page 5-86

e “Structures for Parameters” on page 5-88

e “Structures for Signals” on page 5-91

® “Nested Structures” on page 5-95

5 Patterns for C Code

“Bitfields” on page 5-99

“Arrays for Parameters” on page 5-101

“Arrays for Signals” on page 5-103

“Pointers for Signals” on page 5-105

“Pointers Using Simulink Data Objects” on page 5-106

About Modeling Patterns

About Modeling Patterns

Several standard methods are available for setting up a model to generate
specific C constructs in your code. For preparing your model for code
generation, some of these methods include: configuring signals and ports,
initializing states, and setting up configuration parameters for code
generation. Depending on the components of your model, some of these
methods are optional. Methods for configuring a model to generate specific C
constructs are organized by category, for example, the Control Flow category
includes constructs if-else, switch, for, and while. Refer to the name of
a construct to see how you should configure blocks and parameters in your
model. Different modeling methodologies are available, such as Simulink
blocks, Stateflow charts, and MATLAB Function blocks, to implement a

C construct.

Model examples have the following naming conventions:

Model Components Naming Convention
Inputs ui, u2, u3, and so on
Outputs y1, y2, y3, and so on
Parameters p1, p2, p3, and so on
States x1, x2, x3, and so on

Input ports are named to reflect the signal names that they propagate.

5-3

5 Patterns for C Code

Prepare a Model for Code Generation

In this section...

“Configure a Signal” on page 5-4

“Configure Input and Output Ports” on page 5-4

“Initialize States” on page 5-5

“Set Up Configuration Parameters for Code Generation” on page 5-5

“Set Up an Example Model With a Stateflow Chart” on page 5-6

“Set Up an Example Model With a MATLAB Function Block” on page 5-7

Configure a Signal

1 Create a model in Simulink. For more information, see “Modeling Basics”.

2 Right-click a signal line. Select Properties. For more information about
the Signal Properties dialog box, see “Signal Properties”.

3 Enter a signal name for the Signal name parameter.

4 On the same Signal Properties dialog box, select the Code Generation
tab. Use the drop down menu for the Storage class parameter to specify a
storage class. Examples in this chapter use Exported Global.

Note Alternatively, on the Signal Properties dialog box, select Signal
name must resolve to Simulink signal object. Then create a signal
data object in the base workspace with the same name as the signal. See
“Create Simulink and mpt Data Objects” on page 8-56 for more information
on creating data objects in the base workspace. (Examples use mpt.Signal
and specify the Storage class as ExportedGlobal.

Configure Input and Output Ports

1 In your model,

Prepare a Model for Code Generation

Double-click an Inport or Outport block. A Block Parameters dialog box
opens.

2 Select the Signal Attributes tab.

3 Specify the Port dimensions and Data type. Examples leave the default
value for Port dimensions as 1 (for inherited) and Data type as
Inherit: auto.

Initialize States

1 Double-click a block.
2 In the Block Parameters dialog box, select the Main tab.

3 Specify the Initial conditions and Sample time. For more information,
see “Specify Sample Time”.

4 Select the State Attributes pane. Specify the state name. See “States”.

5 You can also use the Data Object Wizard for creating data objects. A part of
this process initializes states. See “Create Data Objects with Data Object
Wizard” on page 8-57.

Set Up Configuration Parameters for Code Generation

1 Open the Configuration Parameter dialog box by selecting
Simulation > Model Configuration parameters. You can also use the
keyboard shortcut Ctrl+E.

2 Open the Solver pane and select
® Solver type: Fixed-Step

e Solver: discrete (no continuous states)

3 Open the Optimization > Signals and Parameters pane, and select
the Inline parameters parameter.

4 Open the Code Generation pane, and specify ert.tlc as the System
Target File.

5 Patterns for C Code

5-6

5 Clear Generate makefile.
6 Select Generate code only.

7 Enable the HTML report generation by opening the Code Generation >
Report pane and selecting Create code generation report, Launch
report automatically, and Code-to-model. Enabling the HTML report
generation is optional.

8 Click Apply and then OK to exit.

Set Up an Example Model With a Stateflow Chart

Follow this general procedure to create a simple model containing a Stateflow
chart.

1 From the Stateflow > Chart library, add a Stateflow chart to your model .
2 Add Inport blocks and Outport blocks according to the example model.

3 Open the Stateflow Editor by performing one of the following:
® Double-click the Stateflow chart.
® Press Ctrl+R.

4 Select Chart > Add Inputs & Outputs > Data Input from Simulink to
add the inputs to the chart. A Data dialog box opens for each input.

5 Specify the Name (u1, u2, ...) and the Type (Inherit: Same as
Simulink) for each input, unless specified differently in the example. Click
OK.

Prepare a Model for Code Generation

Click Apply and close each dialog box.

6 Select Chart > Add Inputs & Outputs > Data Output from Simulink
to add the outputs to the chart. A Data dialog opens for each output.

7 Specify the Name (y1, y2, ...) and Type (Inherit: Same as
Simulink) for each output, unless specified differently in the example.
Click OK.

8 Click Apply and close each dialog box.

9 In the Stateflow Editor, create the Stateflow diagram specific to the
example.

10 The inputs and outputs appear on the chart in your model.
11 Connect the Inport and Outport blocks to the Stateflow Chart.

12 Configure the input and output signals; see “Configure a Signal” on page
5-4.

Set Up an Example Model With a MATLAB Function
Block

4. @

example ¥

E: a 5 e
= =
Fa L
-
2
13
N

MATLAB Function
1 Add the number of Inport and Outport blocks according to a C construct

example included in this chapter.

2 From the Simulink User-defined Functions library drag a MATLAB
Function block into the model.

3 Double-click the block. The MATLAB Function Block Editor opens. Edit
the function to implement your application.

5-7

5 Patterns for C Code

5-8

4 Click File > Save and close the MATLAB Function Block Editor.

5 Connect the Inport and Outport blocks to the MATLAB Function block. See
“Configure a Signal” on page 5-4.

6 Save your model.

Data Declaration

Data Declaration

C Construct

int32 p1 = 3;

Declare a Variable for a Block Parameter Using a
Data Object

You can specify certain block parameters as a variable. If you define the
variable as a data object, the variable is global. Where the variable is declared
in the generated code depends on the custom storage class that you choose
(and whether you select Inline Parameters on the Optimization > Signals
and Parameters pane). If you choose Inline Parameters, then the data
object name is used in the generated code. If you did not choose Inline
Parameters, the generated code creates a global structure that stores all of
the parameters. For more information on how to create a data object, see
“Apply User-Defined Data Types” on page 8-2.

Block Parameter
Constant Value

Gain Value

For Iterator Tteration Limit

There are several methods for configuring data objects:

¢ For a model with many parameters, use the Data Object Wizard, which
analyzes your model and finds the unresolved data objects and data types.
You can then create the data objects in the Data Object Wizard. The
procedure for using the Data Object Wizard for a parameter is similar to
the procedure for a signal. For an example, see “Declare a Variable for a
Signal using a Data Object” on page 5-11.

¢ To add, delete, edit, and configure data objects, use the base workspace in
the Model Explorer.

¢ To create and configure data objects, use the MATLAB command line.

5 Patterns for C Code

5-10

The following example demonstrates how to create a data object using the
Model Explorer. The declaration statement in the generated code is as follows:

int Kp = 3;

1 Create a model containing a Constant block and a Gain block.
2 Press Ctrl+E to open the Configuration Parameters dialog box.

3 On the Optimization > Signals and Parameters pane of the
Configuration Parameter dialog box, select Inline parameters.

4 Click Apply and OK. The Configuration Parameter dialog box closes.

5 In your model, double-click the Constant block. The Block Parameters
dialog box opens.

6 In the Value field, enter a variable name. In this example, the variable
name 1s p1.

7 In your model, double-click the Gain block. The Block Parameters dialog
box opens.

8 In the Value field, enter a variable name. In this example, the variable
name 1s p2.

9 Press Ctrl+H to open the Model Explorer. On the Model Hierarchy pane,
select the base workspace.

10 To add two MPT parameter objects, in the menu bar, select Add > MPT
Parameter in the menu bar twice. On the Contents of: Base Workspace
pane, you see the parameters.

11 Double-click each mpt.Parameter object and change their names to p1
and p2.

12 Click the p1 parameter. The data object parameters are displayed in the
right pane of the Model Explorer.

13 In the Value field, enter 3 for p1. For the Data type, select int32.
Because you chose an MPT parameter, the Storage Class is already set
to Global (Custom).

Data Declaration

14 In the Value field, enter 5 for p2. For the Data type, select int32.

15 Press Ctrl+B to generate code.

In the model.c file you see:

int32 p1
int32 p2

3;
S5

Note Depending on the storage class, the global variable is represented
differently in the generated code. For more information, see “Parameter
Objects”.

C Construct

int p1 = 3;

Declare a Variable for a Signal using a Data Object

1 Create a model and label the signals.

2 Ppen the Data Object Wizard. In the Simulink Editor, select
Code > Data Objects > Data Object Wizard. If you are not familiar

with creating Simulink Data Objects using the wizard, refer to “Data
Object Wizard” .

3 Click Find. The list of unresolved parameters and objects populates the
Data Object Wizard. You can do mass edits for identical data objects.

4 Select the signals individually or select all signals by clicking Check All.

5 From the parameter Choose package for selected data objects
drop-down list, select the mpt package. Click Apply Package. When you
open the Model Explorer the data objects appear in the base workspace.

6 In the base workspace, click the p1 data object . The data object parameters
appear in the right pane of the Model Explorer.

7 From the Data type drop-down list, select int16.

5-11

5 Patterns for C Code

8 You can also specify the storage class. The data object is an mpt.Parameter
object, therefore the Storage Class is automatically set to Global (Custom).

Note The Storage class alters the data object implementation in the
generated code. For more information, see “Signal Objects”.

5-12

Data Type Conversion

Data Type Conversion

C Construct

y1 = (double)ul;

Modeling Patterns

® “Modeling Pattern for Data Type Conversion — Simulink Block” on page

5-13

* “Modeling Pattern for Data Type Conversion — Stateflow Chart” on page
5-14

* “Modeling Pattern for Data Type Conversion — MATLAB Function Block”
on page 5-15

Modeling Pattern for Data Type Conversion —
Simulink Block

One method to create a data type conversion is to use a Data Type Conversion
block from the Simulink > Commonly Used Blocks library.

double }r—h-
u -
Data Type Conversion !

ex_data_type_SL

1 From the Commonly Used Blocks library, drag a Data Type Conversion
block into your model and connect to the Inport and Outport blocks.

2 Double-click on the Data Type Conversion block to open the Block
Parameters dialog box.

3 Select the Output data type parameter as double.

4 Press Ctrl+B to build the model and generate code.

The generated code appears in ex_data_type_SL.c, as follows:

5-13

5 Patterns for C Code

5-14

int32_T ul;
real T y1;

void ex_data_type SL_step(void)

{
y1 = (real_T)uil;

}

The Embedded Coder type definition for double is real T.

Modeling Pattern for Data Type Conversion —
Stateflow Chart

!
."J-

¥ 1= double [u1});
|
A

ol
!

Stateflow Chart Type Conversion

Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on
page 5-6 . This example contains one Inport block and one Outport block.

2 Name the example model ex_data_type_SF.

3 Double-click the Inport block and select the Signal Attributes tab. Specify
the Data Type as int32 from the drop down menu.

4 Double-click the Outport block and select the Signal Attributes tab.
Specify the Data Type as Inherit: auto from the drop down menu.

5 Press Ctrl+B to build the model and generate code.

Results
The generated code appears in ex_data_type_ SF.c, as follows:

Data Type Conversion

int32_T ut;
real_T yi1;
void ex_data_type_SF_step(void)
{
y1 = (real_T)ul;
}

Modeling Pattern for Data Type Conversion —
MATLAB Function Block

Procedure

1 Follow the steps for “Set Up an Example Model With a MATLAB Function
Block” on page 5-7 . This example model contains one Inport block and
one Outport block.

2 Name the model ex_data_type ML _Func
3 In the MATLAB Function Block Editor enter the function, as follows:
function y1 = typeconv(ul)

y1 = double(ul);
end

4 Press Ctrl+B to build the model and generate code.

Results

The generated code appears in ex_data_type ML_func.c, where real32_T is
a float and real_Tis a double. Type conversion occurs across assignments.

real32_T ul;
real T yi;

void ex_data_type_ML_func_step(void)

{
y1 = ul;

5-15

5 Patterns for C Code

Other Type Conversions in Modeling

Type conversions can also occur on the output of blocks where the output
variable is specified as a different data type. For example, in the Gain block,
you can select the Inherit via internal rule parameter to control the
output signal data type. Another example of type conversion can occur at
the boundary of a Stateflow chart. You can specify the output variable as

a different data type.

5-16

Type Qualifiers

Type Qualifiers

Modeling Patterns for Type Qualifiers

¢ “Using a Tunable Parameter in the Base Workspace” on page 5-17

e “Use a Data Object of the Const Custom Storage Class” on page 5-18

Using a Tunable Parameter in the Base Workspace

A tunable parameter is a block parameter whose value can be changed
at runtime. The storage class property of a parameter specifies how the
parameter is declared in the generated code.

ot f——(D

Cut1

Constant

ex_type_qual

Procedure

1 Create a model containing a Constant block and an Outport block.

2 Double-click the Constant block. In the Constant value field, enter the
parameter name p1 .

3 In the base workspace, create a MATLAB variable for p1 and specify its
Value as 9.8 and its Data type as double.

4 Press Ctrl+E to open the Configuration Parameters dialog box and select
the Optimization > Signals and Parameters pane.

5 Select the Inline parameters parameter, which activates the Configure
button.

6 Click the Configure button to open the Model Parameter Configuration
dialog box.

7 To declare a tunable parameter, from the Source list, select the variable
p1.

5-17

5 Patterns for C Code

5-18

8 Click the Add to table button to add p1 to the Global (tunable)
parameters section.

9 Click the Storage Class and select Exported Global.
10 Click the Storage Type Qualifier arrow and select const.
11 Click Apply to save the changes.

12 Press Ctrl+B to build the model and generate code.

Results
The generated code appears in ex_type_qual.c as follows:

/* Exported block parameters */
const real_T p1 = 9.8; /* Variable: p1
* Referenced by: '<Root>/Constant'
*/

Use a Data Object of the Const Custom Storage Class

One way to create a type qualifier in the generated code is to create a
data object and specify a custom storage class. Use the previous model,
ex_type_qual, for this example. Specify p1 differently as follows:

Procedure

1 Press Ctrl+H to open the Model Explorer. On the Model Hierarchy pane,
select the base workspace.

2 In the menu bar, select Add > MPT Parameter to add an MPT parameter
object. The parameter is displayed in the Contents of: Base Workspace
pane.

3 Double-click the mpt.Parameter object and change the Name to p1.

4 Click the p1 parameter which displays the data object parameters on the
right pane of the Model Explorer.

5 In the Value field, enter 9.8 for p1. Specify the Data type as auto for
64—bit double.

Type Qualifiers

6 You can use the different type qualifiers by selecting a custom storage
class from the Storage class list. For this example, select ConstVolatile

(custom).

7 In the Configuration Parameters dialog box, on the
Optimization > Signals and Parameters pane, select the

Inline parameters.

8 Press Ctrl+B to build the model and generate code.

Results
The generated code produces the type qualifier in ex_type qual.c:

const volatile real T p1 = 9.8;

5-19

5 Patterns for C Code

Relational and Logical Operators

Modeling Patterns for Relational and Logical
Operators

® “Modeling Pattern for Relational or Logical Operators — Simulink Blocks”
on page 5-20

¢ “Modeling Pattern for Relational and Logical Operators —Stateflow Chart”
on page 5-21

¢ “Modeling Pattern for Relational and Logical Operators — MATLAB
Function Block” on page 5-22

Modeling Pattern for Relational or Logical Operators
— Simulink Blocks

(D
u
“* N e
(D s o ¥
—
u2
Lo-gical
Operator

ex_logical SL

Procedure

1 From the Logic and Bit Operations library, drag a Logical Operator
block into your model.

2 Double-click the block to configure the logical operation. Set the Operator
field to OR.

3 Name the blocks, as shown in the model ex_logical_SL.

4 Connect the blocks and name the signals, as shown in the model
ex_logical_ SL.

5 Press Ctrl+B to build the model and generate code.

5-20

Relational and Logical Operators

Note You can use the above procedure to implement relational operators by
replacing the Logical Operator block with a Relational Operator block.

Results

Code implementing the logical operator OR is in the ex_logical SL_step
function in ex_logical_SL.c:

/* Exported block signals */

boolean T ul; /* '<Root>/utl' */
boolean T u2; /* '<Root>/u2' */
boolean T y1; /* '<Root>/Logical Operator'*/

/* Logic: '<Root>/Logical Operator' incorporates:
* Inport: '<Root>/ut'

* Inport: '<Root>/u2'

*/

yt = (ul || u2);

Modeling Pattern for Relational and Logical
Operators —Stateflow Chart

0
faat
LN

|
o

}1:LH||u2:
7]
A

Ty

ex_logical _SF/Logical Operator Stateflow® Chart

Procedure
1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on

page 5-6. This example model contains two Inport blocks and one Outport
block.

5-21

5 Patterns for C Code

5-22

2 Name the example model ex_logical SF.
3 In the Stateflow Editor, specify the Data Type for y1 as Boolean.

4 In the Stateflow Editor, create the Stateflow diagram as shown. The
relational or logical operation actions are on the transition from one junction
to another. Relational statements specify conditions to conditionally allow
a transition. In that case, the statement would be within square brackets.

5 Press Ctrl+B to build the model and generate code.

Results

Code implementing the logical operator OR is in the ex_logical SF_step
function in ex_logical_SF.c:

boolean T ul; /* '<Root>/ul' */
boolean T u2; /* '<Root>/u2' */
boolean T y1; /* '<Root>/Chart' */

void ex_logical_SF_step(void)

{
y1 = (ul || u2);
}

Modeling Pattern for Relational and Logical
Operators — MATLAB Function Block

This example demonstrates the MATLAB Function block method for
incorporating operators into the generated code using a relational operator.

Procedure

1 Follow the steps for “Set Up an Example Model With a MATLAB Function
Block” on page 5-7 . This example model contains two Inport blocks and
one Outport block.

2 Name the example model ex_rel operator ML.

3 In the MATLAB Function Block Editor enter the function, as follows:

Relational and Logical Operators

function y1 = fcn(ul, u2)
y1 = ul > u2;
end

4 Press Ctrl+B to build the model and generate code.

Results
Code implementing the relational operator ’>" is in the
ex_rel operator_ ML_step function in ex_rel operator ML.c:

real T ui; /* '<Root>/utl' */
real T u2; /* '<Root>/u2' */
boolean_ T y; /* '<Root>/MATLAB Function' */

void ex_rel_operator_ML_step(void)

{
y = (ul > u2);

}

5-23

5 Patterns for C Code

Bitwise Operations

5-24

Simulink Bitwise-Operator Block

Bitwise
AND —»(1)
— 0x02 ¥ 7
Bitw e
Operator

ex_bit_logic_SL

Procedure

1 Drag a Bitwise Operator block from the Logic and Bit Operations
library into your model.

2 Double-click the block to open the Block Parameters dialog.
3 Select the type of Operator. In this example, select AND.

4 In order to perform Bitwise operations with a bit-mask, select Use bit
mask.

Note If another input uses Bitwise operations, clear the Use bit mask
parameter and enter the number of input ports.

5 In the Bit Mask field, enter a decimal number. Use bin2dec or hex2dec to
convert from binary or hexadecimal. In this example, enter hex2dec('D9").

6 Name the blocks, as shown in, model ex_bit logic SL.

7 Connect the blocks and name the signals, as shown in, model
ex_bit_logic_SL.

Bitwise Operations

8 Press Ctrl+B to build the model and generate code.

Results

Code implementing the logical operator OR is in the ex_bit logic SL_step
function in ex_bit_logic_SL.c:

uint8_T uil;
uint8_T y1;

void ex_bit_logic_SL_step(void)
{

y1 = (uint8_T) (ul & 217);
}

Stateflow Chart

.
i
i

=

y1=ul & KD,

o
-

ex_bit_logic_SF/Bit_Logic Stateflow Chart

Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on
page 5-6. This example contains one Inport block and one Outport block.

2 Name the example model ex_bit logic_SF.

3 From the Stateflow Editor, selectTools > Explore to open the Model
Explorer.

4 In the Model Explorer, on the right pane, select Enable C-bit operations.

5 In the Stateflow Editor, create the Stateflow diagram,
ex_bit logic_SF/Bit_Logic.

5-25

5 Patterns for C Code

5-26

6 Press Ctrl+B to build the model and generate code.

Results

Code implementing the logical operator OR is in the ex_bit logic SF_step
function in ex_bit_logic_SF.c:

uint8_T uil;
uint8_T y1;

void bit_logic_SF_step(void)

{
y1 = (uint8_T) (u1 & 0xD9);

}

MATLAB Function Block

In this example, to demonstrate theMATLAB Function block method for
implementing bitwise logic into the generated code, use the bitwise OR, ’|’.

Procedure

1 Follow the steps for “Set Up an Example Model With a MATLAB Function
Block” on page 5-7. This example model contains two Inport blocks and
one Outport block.

2 Name your model ex_bit_logic_ ML.
3 In the MATLAB Function Block Editor enter the function, as follows:
function y1 = fcn(ul, u2)

y1 = bitor(utl, u2);
end

4 Press Ctrl+B to build the model and generate code.

Results

Code implementing the bitwise operator OR is in the ex_bit logic ML_step
function in ex_bit logic ML.c:

Bitwise Operations

uint8 T ut;
uint8 T u2;
uint8 T y1;

void ex_bit_logic_ML_step(void)
{

y1 = (uint8 T) (ul | u2);

}

5-27

5 Patterns for C Code

If-Else

C Construct

if (u1l > u2)

{

yl = ul;
}
else
{

y1 = u2;
}

Modeling Patterns

¢ “Modeling Pattern for If-Else: Switch block” on page 5-29
* “Modeling Pattern for If-Else: Stateflow Chart” on page 5-31
* “Modeling Pattern for If-Else: MATLAB Function Block” on page 5-33

5-28

I-Else

Modeling Pattern for If-Else: Switch block

One method to create an if-else statement is to use a Switch block from the
Simulink > Signal Routing library.

C
ul
-h!.
=
> |
Relational y1
Operator
& "
uZ

Switch

Model ex_if else_SL

Procedure

1 Drag the Switch block from the Simulink>Signal Routing library into
your model.

2 Connect the data inputs and outputs to the block.

3 Drag a Relational Operator block from the Logic & Bit Operations library
into your model.

4 Connect the signals that are used in the if-expression to the Relational
Operator block. The order of connection determines the placement of each
signal in the if-expression.

5 Configure the Relational Operator block to be a greater than operator.

6 Connect the controlling input to the middle input port of the Switch block.

7 Double-click the Switch block and set Criteria for passing first input to
u2~=0. The software selects u1 if u2 is TRUE; otherwise u2 passes.

5-29

5 Patterns for C Code

8 Enter Ctrl+B to build the model and generate code.

Results
The generated code includes the following ex_if_else_SL_step function
in the file ex_if_else_SL.c:

/* External inputs (root inport signals with auto storage) */

ExternalInputs U;

/* External outputs (root outports fed by signals with auto storage) */

ExternalOutputs Y;

/* Model step function */
void ex_if_else_SL_step(void)
{

/* Switch: '<Root>/Switch' incorporates:

* Inport: '<Root>/utl'

* Inport: '<Root>/u2'

* Qutport: '<Root>/y1'

* RelationalOperator: '<Root>/Relational Operator'

*/
if (U.ul > U.u2) {
Y.yl = U.ul;
} else {
Y.yl = U.u2;
}

5-30

I-Else

Modeling Pattern for If-Else: Stateflow Chart

[]

* [f-Else */

- [u1 = uZ]
Fan)

Y
vr 1 —————=_}

—= P

¥y1=uZ} y1=ul}

ex_if_else_SF/Chart

Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on
page 5-6. This example model contains two Inport blocks and one Outport
block.

2 Name your model ex_if_else_SF.

3 When configuring your Stateflow chart, select Chart > Add
Patterns > Decision > If-Else. The Stateflow Pattern dialog opens. Fill
in the fields as follows:

Description If-Else (optional)
If condition ut > u2
If action y1 = ui
Else action yl = u2

4 Press Ctrl+B to build the model and generate code.

Results

The generated code includes the following ex_if_else_ SF_step function in
the file If_Else_SF.c:

5-31

5 Patterns for C Code

/* External inputs (root inport signals with auto storage) */

Externallnputs U;

/* External outputs (root outports fed by signals with auto storage) */

ExternalOutputs Y;

/* Model step function */
void ex_if_else_SF_step(void)
{
/* Stateflow: '<Root>/Chart' incorporates:
* Inport: '<Root>/ut'
* Inport: '<Root>/u2'
* Qutport: '<Root>/y1'
*/
/* Gateway: Chart */
/* During: Chart */
/* Transition: '<S1>:14' */
/* If-Else */
if (U.ul > U.u2) {
/* Transition: '<S1>:13' */
/* Transition: '<S1>:12' */

Y.yl = U.ul;
/* Transition: '<S1>:11' */
} else {

/* Transition: '<S1>:10' */

Y.yl = U.u2;

/* Transition: '<S1>:9' */

5-32

I-Else

Modeling Pattern for If-Else: MATLAB Function Block

Procedure

1 Follow the steps for “Set Up an Example Model With a MATLAB Function
Block” on page 5-7. This example model contains two Inport blocks and
one Outport block.

2 Name your model ex_if else ML.
3 In the MATLAB Function Block Editor enter the function, as follows:

function y1 = fcn(ul, u2)
if ul > u2;
yl = ul;
else y1 = u2;
end

4 Press Ctrl+B to build the model and generate code.

Results

The generated code includes the following ex_if else ML_step function
in the file ex_if else ML.c:

/* External inputs (root inport signals with auto storage) */

ExternalInputs U;

/* External outputs (root outports fed by signals with auto storage) */

ExternalOutputs Y;

/* Model step function */
void ex_if_else_ML_step(void)
{
/* MATLAB Function Block: '<Root>/MATLAB Function' incorporates:
* Inport: '<Root>/uil'
* Inport: '<Root>/u2'
* Qutport: '<Root>/y1'
*/
/* MATLAB Function 'MATLAB Function': '<S81>:1' */

5-33

5 Patterns for C Code

if (U.u1l > U.u2) {
[* '<81>:1:4" */
/* '<81>:1:5' */
Y.yl = U.ul;

} else {
/* '<81>:1:6' */
Y.yl = U.u2;

5-34

Switch

Switch

C Construct

switch (ut)
{
case 2:
yl = u2;
break;
case 3:
y1 = u3;
break;
default:
yl = u4;
break;

}

Modeling Patterns

¢ “Modeling Pattern for Switch: Switch Case block” on page 5-36
® “Modeling Pattern for Switch: MATLAB Function block” on page 5-39
e “Convert If-Elseif-Else to Switch statement” on page 5-40

5-35

5 Patterns for C Code

Modeling Pattern for Switch: Switch Case block

One method for creating a switch statement is to use a Switch Case block
from the Simulink > Ports and Subsystems library.

_ case{}
w? i

54
Fa

Switch Case Action

Subsystemn
1 i case [3]:
(3) .
ul -
@ 5y s erge e
e i
u3 - Vi
Switch Case Action Merge
Subsystem
default *

default: }
4 ud 1
C y

Switch Case s

Switch Case Action
Subsystem2

Model ex_switch_SL

Procedure

1 Drag a Switch Case block from the Simulink > Ports and Subsystems
library into your model.

2 Double-click the block. In the Block Parameters dialog box, fill in the Case
Conditions parameter. In this example, the two cases are: {2,3}.

3 Select the Show default case parameter. The default case is optional in
a switch statement.

4 Connect the condition input u1 to the input port of the Switch block.

5 Drag Switch Case Action Subsystem blocks from the Simulink>Ports and
Subsystems library to correspond with the number of cases.

5-36

Switch

6 Configure the Switch Case Action Subsystem subsystems.

7 Drag a Merge block from the Simulink > Signal Routing library to
merge the outputs.

8 The Switch Case block takes an integer input, therefore, the input signal
ut is type cast to an int32.

9 Enter Ctrl+B to build the model and generate code.

Results

The generated code includes the following ex_switch_SL_step function in the
file ex_switch_SL.c:

/* Exported block signals */
int32_T ul; /* '<Root>/ul' */

/* External inputs (root inport signals with auto storage) */

ExternalInputs U;

/* External outputs (root outports fed by signals with auto storage) */

ExternalOutputs Y;

/* Model step function */
void ex_switch_SL_step(void)

{

~

* SwitchCase: '<Root>/Switch Case' incorporates:
* ActionPort: '<S1>/Action Port'
* ActionPort: '<82>/Action Port'
* ActionPort: '<83>/Action Port'
* Inport: '<Root>/utl'
* SubSystem: '<Root>/Switch Case Action Subsystem'
* SubSystem: '<Root>/Switch Case Action Subsystemi'
* SubSystem: '<Root>/Switch Case Action Subsystem2'
*/
switch (ul) {
case 2:
/* Inport: '<S81>/u2' incorporates:
* Inport: '<Root>/u2'
* Qutport: '<Root>/y1'

5-37

Patterns for C Code

*/
Y.yl = U.u2;

break;

case 3:
/* Inport:
* Inport:
* OQutport:
*/
Y.yl = U.u3;

break;

default:
/* Inport:
* Inport:
* OQutport:
*/
Y.yl = U.u4;

break;

5-38

'<82>/u3'’

'<83>/u4d’

'<Root>/u3’

'<Root>/y1'

'<Root>/u4’

'<Root>/y1'

incorporates:

incorporates:

Switch

Modeling Pattern for Switch: MATLAB Function block

Procedure

1 Follow the steps for “Set Up an Example Model With a MATLAB Function
Block” on page 5-7. This example model contains four Inport blocks and
one Outport block.

2 Name your model ex_switch_ ML.
3 In the MATLAB Function Block Editor enter the function, as follows:

function y1 = fcn(utl, u2, u3, u4)

switch ui
case 2
yl = u2;
case 3
y1 = u3;
otherwise
y1l = u4;
end

4 Press Ctrl+B to build the model and generate code.

Results
The generated code includes the following ex_switch_ML_step function in the
file ex_switch_ML.c:

/* External inputs (root inport signals with auto storage) */

ExternalInputs U;

/* External outputs (root outports fed by signals with auto storage) */

ExternalOutputs Y;

/* Model step function */
void ex_switch_ML_step(void)
{
/* MATLAB Function Block: '<Root>/MATLAB Function' incorporates:

5-39

5 Patterns for C Code

5-40

* Inport: '<Root>/ui'
* Inport: '<Root>/u2'
* Inport: '<Root>/u3'
* Inport: '<Root>/u4'
* Qutport: '<Root>/y1'
*/

/* MATLAB Function 'MATLAB Function': '<S1>:1' */

/* '<81>:1:4"' */

switch (U.ul) {

case 2:
/* '<81>:1:6' */
Y.yl = U.u2;

break;

case 3:
/* '<81>:1:8' */
Y.y1 = U.u3;

break;

default:
/* '<81>:1:10" */
Y.yl = U.u4;

break;

}

Convert If-Elseif-Else to Switch statement

If a MATLAB Function block or a Stateflow chart uses if-elseif-else
decision logic, you can convert it to a switch statement by using a
configuration parameter. In the Configuration Parameters dialog box, on
the Code Generation > Code Style pane, select the “Convert if-elseif-else
patterns to switch-case statements” parameter. For more information, see
“Converting If-Elseif-Else Code to Switch-Case Statements” in the Simulink
documentation. For more information on this conversion using a Stateflow
chart, see “Convert If-Elseif-Else Code to Switch-Case Statements” and
“Example of Converting Code to Switch-Case Statements” in the Stateflow
documentation.

For Loop

For Loop

C Construct

y1 = 0;
for(inx = 0; inx <10; inx++)
{
y1 = ul[inx] + y1;
}

Modeling Patterns:

® “Modeling Pattern for For Loop: For-Iterator Subsystem block” on page 5-42
¢ “Modeling Pattern for For Loop: Stateflow Chart” on page 5-45
® “Modeling Pattern for For Loop: MATLAB Function block” on page 5-48

5-41

5 Patterns for C Code

5-42

Modeling Pattern for For Loop: For-lterator

Subsystem block

One method for creating a for loop is to use a For Iterator Subsystem block
from the Simulink > Ports and Subsystems library.

u1 for{..1 yi —h-

ul vl
For ferator
Subsystem
Model ex_for_loop_SL
Fam v o
lterator™ o
For terstor
|+
J |+ ¥
O r—
ul Agd
Index 1—
Wector z
Unit Celay

For Iterator Subsystem

Procedure

¥1

1 Drag a For Iterator Subsystem block from the Simulink > Ports and

Subsystems library into your model.

2 Connect the data inputs and outputs to the For Iterator Subsystem block.

3 Open the Inport block.

For Loop

4 In the Block Parameters dialog box, select the Signal Attributes pane and
set the Port dimensions parameter to 10.

5 Double-click the For Iterator Subsystem block to open the subsystem.

6 Drag an Index Vector block from the Signal-Routing library into the
subsystem.

7 Open the For Iterator block. In the Block Parameters dialog box set the
Index-mode parameter to Zero-based and the Iteration limit parameter
to 10.

8 Connect the controlling input to the topmost input port of the Index Vector
block, and the other input to the second port.

9 Drag an Add block from the Math Operations library into the subsystem.

10 Drag a Unit Delay block from Commonly Used Blocks library into the
subsystem.

11 Double-click the Unit Delay block and set the Initial Conditions
parameter to 0. This parameter initializes the state to zero.

12 Connect the blocks as shown in the model diagram.
13 Save the subsystem and the model.
14 Enter Ctrl+B to build the model and generate code.

Results

The generated code includes the following ex_for_loop_SL_step function in
the file ex_for_loop_SL.c:

/* External inputs (root inport signals with auto storage) */

Externallnputs U;

/* External outputs (root outports fed by signals with auto storage) */

ExternalOutputs Y;

/* Model step function */

void ex_for_loop_SL_step(void)

5-43

5 Patterns for C Code

int32_T s1_iter;
int32_T rtb_y1;

/* Outputs for iterator SubSystem: '<Root>/For Iterator Subsystem' incorporates:
* ForIterator: '<S1>/For Iterator'
*/
for (si1_iter = 0; s1_iter < 10; si_iter++) {
/* Sum: '<S81>/Add' incorporates:
* Inport: '<Root>/ui'
* MultiPortSwitch: '<S1>/Index Vector'
* UnitDelay: '<S1>/Unit Delay'
*/
rtb_y1 = U.ul[s1_iter] + DWork.UnitDelay_DSTATE;

/* Update for UnitDelay: '<S1>/Unit Delay' */

DWork.UnitDelay DSTATE = rtb_y1;

/* end of Outputs for SubSystem: '<Root>/For Iterator Subsystem' */

/* Outport: '<Root>/y1' */
Y.yl = rtb_y1;

5-44

For Loop

Modeling Pattern for For Loop: Stateflow Chart

- [inx=10] T
ire=0;} _—
iy 1 = ulfink]+y1}
A=
2 T
J fnx+} T |
T .-"I'I'x
A q-'-.___.-'
I_{_I
Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on
page 5-6. This example model contains one Inport block and one Outport

block.
2 Name the model ex_for_ loop_SF.
3 Enter Ctrl+R to open the Model Explorer.

4 In the Model Explorer, select the output variable, u1, and in the right pane,
select the General tab and set the Initial Value to 0.

5 In the Stateflow Editor, select Chart > Add Patterns > Loop > For.
The Stateflow Pattern dialog opens.

6 Fill in the fields in the Stateflow Pattern dialog box as follows:

Description For Loop (optional)
Initializer expression inx = 0
Loop test expression inx < 10

5-45

5 Patterns for C Code

5-46

Counting expression inx++
For loop body y1 = ul[inx] + y1

The Stateflow diagram is shown.

7 Press Ctrl+B to build the model and generate code.

Results

The generated code includes the following ex_for_loop_SF_step function in
the file ex_for_loop_SF.c:

/* Block signals (auto storage) */
BlockIO B;

/* External inputs (root inport signals with auto storage) */

Externallnputs U;

/* External outputs (root outports fed by signals with auto storage) */
ExternalOutputs Y;

/* Model step function */
void ex_for_loop_SF_step(void)
{

int32_T sf_inx;

/* Stateflow: '<Root>/Chart' incorporates:
* Inport: '<Root>/ui
*/
/* Gateway: Chart */
/* During: Chart */
/* Transition: '<S81>:24' */
/* For Loop */
/* Transition: '<S1>:25' */
for (sf_inx = 0; sf_inx < 10; sf_inx++) {
/* Transition: '<§1>:22' */
/* Transition: '<S§1>:23' */

B.y1 = U.ul[sf_inx] + B.y1;

/* Transition: '<S1>:21' */

For Loop

/* Transition: '<S1>:20' */

/* Outport: '<Root>/y1' */
Y.yl = B.y1;

5-47

5 Patterns for C Code

5-48

Modeling Pattern for For Loop: MATLAB Function
block

Procedure

1 Follow the directions for “Set Up an Example Model With a MATLAB
Function Block” on page 5-7. This example model contains one Inport block
and one Outport block.

2 Name your model ex_for_loop_ML.

3 In the MATLAB Function Block Editor enter the function, as follows:
function y1 = fcn(utl)
y1 = 0;

for inx=1:10
yl = ul(inx) + y1 ;
end

4 Press Ctrl+B to build the model and generate code.

Results

The generated code includes the following ex_for_loop_ML_step function in
the file ex_for_loop_ML.c:

/* Exported block signals */
real_T ul[10]; /* '<Root>/ul' */
real_T y1; /* '<Root>/MATLAB Function' */

/* Model step function */
void ex_for_loop_ML_step(void)
{

int32_T inx;

/* MATLAB Function Block: '<Root>/MATLAB Function' incorporates:
* Inport: '<Root>/ui'
*/

For Loop

/* MATLAB Function 'MATLAB Function': '<S1>:1' */
/* '<81>:1:3"' */
y1 = 0.0;
for (inx = 0; inx < 10; inx++) {
[* '<81>:1:5' */
[* '<81>:1:6' */
y1 = ul[inx] + y1;

5-49

5 Patterns for C Code

While Loop

C Construct

while(flag && (num_iter <= 100)
{

flag = func ();

num_iter ++;

}

Modeling Patterns

* “Modeling Pattern for While Loop: While Iterator Subsystem block” on
page 5-51

¢ “Modeling Pattern for While Loop: Stateflow Chart” on page 5-55
¢ “Modeling Pattern for While Loop: MATLAB Function Block” on page 5-58

5-50

While Loop

Modeling Pattern for While Loop: While Iterator
Subsystem block

One method for creating a while loop is to use a While Iterator Subsystem
block from the Simulink > Ports and Subsystems library.

1 Tohe IC while { ..}
Initial Condition
SETto TRUE
While Iterator
Subsystem
Model ex_while_loop_SL
<flag>
flag » cond
func while {
.
A= »|C
IC

While Iterator

ex_while_loop_SL/While Iterator Subsystem

Procedure

1 Drag a While Iterator Subsystem block from the Simulink > Ports and
Subsystems library into the model.

2 Drag a Constant block from the Simulink > Commonly Used Blocks
library into the model. In this case, set the Initial Condition to 1 and the
Data Type to Boolean. You do not have to set the initial condition to
FALSE. The initial condition can be dependent on the input to the block.

5-51

5 Patterns for C Code

5-52

3 Connect the Constant block to the While Iterator Subsystem block.
4 Double-click the While Iterator Subsystem block to open the subsystem.
5 Place a Subsystem block next to the While Iterator block.

6 Right-click the subsystem and select Block Parameters (Subsystem).
The Block Parameters dialog box opens.

7 Select the Treat as atomic unit parameter to configure the subsystem to
generate a function. This enables parameters on the Code Generation
tab.

8 Select the Code Generation tab. From the Function packaging list,
select the option, Nonreusable function.

9 From the Function name options list, select the option, User
specified. The Function name parameter is displayed.

10 Specify the name as func.
11 Click Apply.

12 Double-click the func subsystem block. In this example, function func()
has an output flag set to 0 or 1 depending on the result of the algorithm in
func(). Create the func() algorithm as shown in the following diagram:

Al

Random
MNumber
] o (D
d
P ——— Relational flag
Cons Operator
func

13 Double-click the While Iterator block to set the Maximum number of
iterations to 100.

While Loop

14 Connect blocks as shown in the model and subsystem diagrams.

Results
The generated code includes the following ex_while_loop_SL_step function
in the file ex_while_loop_SL.c:

/* Exported block signals */
boolean_T IC; /* '<Root>/Initial Condition SET to TRUE' */
boolean_T flag; /* '<82>/Relational Operator' */

/* Block states (auto storage) */

D_Work DWork;

/* Start for atomic system: '<S1>/func() Is a function that updates the flag' */
void func_Start(void)
{

/* Start for RandomNumber: '<S2>/Random Number' */

DWork.RandSeed = 1144108930U;

DWork.NextOutput = rt_NormalRand(&DWork.RandSeed) * 1.7320508075688772E+000;

/* Output and update for atomic system:
* '<81>/func() Is a function that updates the flag' */
void func(void)
{
/* RelationalOperator: '<S2>/Relational Operator' incorporates:
* Constant: '<S82>/Constantt’
* RandomNumber: '<S2>/Random Number
*/
flag = (DWork.NextOutput > 1.0);

/* Update for RandomNumber: '<S2>/Random Number' */
DWork.NextOutput = rt_NormalRand(&DWork.RandSeed) * 1.7320508075688772E+000;

/* Model step function */
void ex_while_loop_SL_step(void)
{

int32_T si1_iter;

5-53

Patterns for C Code

5-54

boolean_T loopCond;

/* Outputs for iterator SubSystem:
* '<Root>/While Iterator Subsystem' incorporates:
* WhileIterator: '<S1>/While Iterator'
*/
s1_iter = 1;
loopCond = IC;
while (loopCond && (s1_iter <= 100)) {
/* Outputs for atomic SubSystem:
* '<81>/func() Is a function that updates the flag' */

func();

/* end of Outputs for SubSystem:
* '<81>/func() Is a function that updates the flag' */
loopCond = flag;

s1_iter++;

/* end of Outputs for SubSystem: '<Root>/While Iterator Subsystem'

*/

While Loop

Modeling Pattern for While Loop: Stateflow Chart

um_itert—————»(1)
= num _iter :
o d\, num_iter
flag t
;unc{}
h
Chart Trigger()
flag
func
Model ex_while_loop_SF
[
num_iter =1;
¥
¢ [(flag) && (num_iter==100]])
CH =
2 "“‘m.h‘ r
T~ unc;
g num_iter++;
H.\“\._ }
v 4

ex_while_loop_SF/Chart Executes the desired while-loop

Procedure

1 Add a Stateflow Chart to your model from the Stateflow > Chart library.
2 Double-click the chart.

3 Add the input, flag, and output, func, to the chart and specify their data
type.

5-55

5 Patterns for C Code

5-56

4 Connect the data input and output to the Stateflow chart as shown in the
model diagram.

5 In the Model Explorer, select the output variable, then, in the right pane,
select the General tab and set the Initial Value to 0.

6 Select Chart > Add Patterns > Loop > While. The Stateflow Pattern
dialog opens.

7 Fill in the fields for the Stateflow Pattern dialog box as follows:

Description While Loop (optional)
While condition (flag) && (num_iter<=100)
Do action func; num_iter++;

8 Place a Subsystem block in your model.

9 Right-click the subsystem and select Block Parameters (Subsystem).
The Block Parameters dialog box opens.

10 Select the Treat as atomic unit parameter to configure the subsystem to
generate a function. This enables parameters on the Code Generation
tab.

11 Select the Code Generation tab. From the Function packaging list,
select the option, Nonreusable function.

12 From the Function name options list, select the option, User specified.
The Function name parameter is displayed.

13 Specify the name as func.
14 Click Apply to apply the changes.

15 Double-click the func subsystem block. In this example, function func
has an output flag set to 0 or 1 depending on the result of the algorithm
in func(). The Trigger block parameter Trigger type is function-call.
Create the func() algorithm, as shown in the following diagram:

While Loop

Ao -

MNumber = flag

Constant

Trigger
ex_while_loop_SF/func A function that updates the flag

16 Save and close the subsystem.

17 Connect blocks to the Stateflow chart as shown in the model diagram for
ex_while_loop_SF.

18 Save your model.

Results
The generated code includes the following ex_while loop_SF_step function
in the file ex_while loop_ SF.c:

/* Exported block signals */
int32_T num_iter; /* '<Root>/Chart Executes the desired while-loop' */

boolean_T flag; /* '<82>/Relational Operator' */

/* Block states (auto storage) */

D_Work DWork;

/* Model step function */
void ex_while_loop_SF_step(void)
{
/* Stateflow: '<Root>/Chart Executes the desired
* while-loop' incorporates:
* SubSystem: '<Root>/func() A function that
* updates the flag'
*/
/* Gateway: Chart
Executes the desired while-loop */
/* During: Chart

Executes the desired while-loop */

5-57

5 Patterns for C Code

/* Transition: '<S1>:2' */
num_iter = 1;
while (flag && (num_iter <= 100)) {
/* Transition: '<S1>:3' */
/* Transition: '<S81>:4' */
/* Event: '<S1>:12' */
func();

num_iter = num_iter + 1;

/* Transition: '<S1>:5' */

/* Transition: '<S1>:1' */

}

Modeling Pattern for While Loop: MATLAB Function

Block
e func 1 4 func()
»{func_flag unc
fcn 1
THQQEW}
MATLAB Function func_flag
func

Model ex_while_loop_ML

Procedure

1 In the Simulink Library Browser, click Simulink > User Defined
Functions, and drag a MATLAB Function block into your model.

2 Double-click the MATLAB Function block. The MATLAB Function Block
Editor opens.

5-58

While Loop

3 In the MATLAB Function Block Editor enter the function, as follows:

function fcn(func_flag)

flag = true;
num_iter = 1;

while(flag && (num_iter<=100))
func;
flag = func_flag;
num_iter = num_iter + 1;
end

4 Click Save and close the MATLAB Function Block Editor.

5 Place a Subsystem block in your model, right-click the subsystem and
select Block Parameters (Subsystem). The Block Parameters dialog
box opens.

6 Select the Treat as atomic unit parameter to configure the subsystem to
generate a function. This enables parameters on the Code Generation
tab.

7 Select the Code Generation tab. From the Function packaging list,
select the option, Nonreusable function.

8 From the Function name options list, select the option, User specified.
The Function name parameter is displayed.

9 Specify the name as func.
10 Click Apply.

11 Double-click the func() subsystem block. In this example, function func()
has an output flag set to 0 or 1 depending on the result of the algorithm
in func(). The Trigger block parameter Trigger type is function-call.
Create the func() algorithm, as shown in the following diagram:

5-59

5 Patterns for C Code

5-60

Random Trigger

MNumber N
(R FE—
» func_fag P P
Relational unc flag
Operator

1
Constant1

12 Save and close the subsystem.

13 Connect the MATLAB Function block to the func() subsystem.

14 Save your model.

Results

The generated code includes the following while loop_ML_step function in

the file while loop EML.c. In some cases an equivalent for loop might be
generated instead of a while loop.

/* Exported block signals */

boolean_T func_flag; /* '<82>/Relational Operator' */

/* Block states (auto storage) */
D_Work DWork;

/* Model step function */
void while_loop_ML_step(void)
{
boolean_T func_flag_0;
boolean_T flag;

int32_T num_iter;

/* MATLAB Function Block: '<Root>/MATLAB Function Executes
* the desired While-Loop' incorporates:
* SubSystem: '<Root>/func() updates the "flag"'

*/

func_flag_0 = func_flag;

/* MATLAB Function 'MATLAB Function

While Loop

* Executes the desired While-Loop':

/* '<81>:1:3"' */
flag = TRUE;

/* '<S1>:1:4' */

num_iter = 1;

while (flag && (num_iter <= 100);

num_iter++)
/* '<81>:1:6'
/* '<§1>:1:7"'

func();

/* '<§1>:1:8'

flag = func_flag_O;

/* '<§1>:1:9'

num_iter++;

{
*/
*/

*/

*/

'<8§1>:1"

*/

5-61

5 Patterns for C Code

Do While Loop

C Construct

num_iter = 1;

do {
flag = func();
num_iter++;

}
while (flag && num_iter <= 100)

Modeling Patterns

¢ “Modeling Pattern for Do While Loop: While Iterator Subsystem block”
on page 5-63

® “Modeling Pattern for Do While Loop: Stateflow Chart” on page 5-66

5-62

Do While Loop

Modeling Pattern for Do While Loop: While Iterator
Subsystem block

One method for creating a while loop is to use a While Iterator Subsystem
block from the Simulink > Ports and Subsystems library.

do { ...} while

While lterator
Subsystem

ex_do_while_loop_SL

{ﬂ;.;:; dO {
cond
1 while

flag

¥

func

While Iterator

ex_do_while_loop_SL/While lterator Subsystem

Procedure

1 Drag a While Iterator Subsystem block from the Simulink > Ports and
Subsystems library into the model.

2 Double-click the While Iterator Subsystem block to open the subsystem.
3 Place a Subsystem block next to the While Iterator block.

4 Right-click the subsystem and select Block Parameters (Subsystem).
The Block Parameters dialog box opens.

5-63

5 Patterns for C Code

5-64

5 Select the Treat as atomic unit parameter to configure the subsystem to
generate a function. This enables parameters on the Code Generation
tab.

6 Select the Code Generation tab. From the Function packaging list,
select the option, Nonreusable function.

7 From the Function name options list, select the option, User
specified. The Function name parameter is displayed.

8 Specify the name as func.
9 Click Apply.

10 Double-click the func subsystem block. In this example, function func has
an output flag set to 0 or 1 depending on the result of the algorithm in
func. Create the func algorithm as shown in the following diagram:

Al

Random
MNumber

1 () T
d
B Relational flag
~one Operator

ex_do_while_loop_SL/While lterator Subsystem/func

11 Double-click the While Iterator block. This opens the Block Parameters
dialog.

12 Set the Maximum number of iterations to 100.
13 Specify the While loop type as do-while.
14 Connect blocks as shown in the model and subsystem diagrams.

15 Enter Ctrl+B to generate code.

Do While Loop

Results

void func(void)

{
flag = (DWork.NextOutput > (real_T)P.Constant1_Value);
DWork.NextOutput =
rt_NormalRand (&DWork.RandSeed) * P.RandomNumber_StdDev +
P.RandomNumber_Mean;
}

void ex_do_while_loop_SL_step(void)
{
int32_T si1_iter;

s1_iter = 1;
do {
func();
s1_iter++;
} while (flag && (si1_iter <= 100));

5-65

5 Patterns for C Code

5-66

Modeling Pattern for Do While Loop: Stateflow Chart

Yy

<flag=

¥

flag (tj[%jnc{}

N S 4
Chart Trigger()
flag
func

ex_do_while_loop_SF

1
num_iter=1;

4

A,

{
L S

unc; ——
num_iter++; e

¥ —Mag && (num_iter<=100}]

A4

ex_do_while_loop_SF/Chart

1 Add a Stateflow Chart to your model from the Stateflow > Chart library.
2 Double-click the chart to open it.

3 Add the inputs and outputs to the chart and specify their data type.

4 Connect the data input and output to the Stateflow chart.

5 In the Model Explorer, select the output variable, then, in the right pane,
select the General tab and set the Initial Value to 0.

Do While Loop

6 Select Chart > Add Patterns > Loop > While. The Stateflow Pattern
dialog opens.

7 Fill in the fields for the Stateflow Pattern dialog box as follows:

Description While Loop (optional)
While condition (flag) && (num_iter<=100)
Do action func; num_iter++;

8 Place a Subsystem block in your model.

9 Right-click the subsystem and select Block Parameters (Subsystem).
The Block Parameters dialog box opens.

10 Select the Treat as atomic unit parameter to configure the subsystem to
generate a function. This enables parameters on the Code Generation

tab.

11 Select the Code Generation tab. From the Function packaging list,
select the option, Nonreusable function.

12 From the Function name options list, select the option, User specified.

The Function name parameter is displayed.
13 Specify the name as func.
14 Click Apply to apply the changes.

15 Double-click the func subsystem block. In this example, function func
has an output flag set to 0 or 1 depending on the result of the algorithm
in func. The Trigger block parameter Trigger type is function-call.
Create the func algorithm, as shown in the following diagram:

5-67

5 Patterns for C Code

==
Ao ;

g
MNumber =
Relational fleg
Operator
1
Constant
Trigger

ex_do_while_loop_SF/func Updates the flag

16 Save and close the subsystem.

17 Connect blocks to the Stateflow chart as shown in the model diagram for
ex_do_while_loop_SF.

18 Save your model.

Results

void ex_do_while_loop_SF_step(void)
{
int32_T sf_num_iter;
num_iter = 1;
do {
func();
num_iter++;

} while (flag && (sf_num_iter <= 100));

5-68

Function Call

Function Call

To generate a function call, add a subsystem, which implements the
operations that you want.

C Construct

void add_function(void)

{
y1 = ul + u2;
}
G
ul i —b-
= v
u2

Add_Subsystemn

ex_function_call

Procedure

1 Create a model containing a subsystem. In this example, the subsystem
has two inputs and returns one output.

2 Double-click the subsystem. Create Add_Subsystem, as shown.

1)

vyl

ex_function_call/Add_Subsystem

3 Right-click the subsystem and select Block Parameters (Subsystem) to
open the Subsystem Parameters dialog box.

4 Select the Treat as atomic unit parameter. This enables parameters on
the Code Generation tab.

5-69

5 Patterns for C Code

5-70

Select the Code Generation tab. For the Function packaging
parameter, from the drop-down list, select Nonreusable function.

5 For the Function name options parameter, from the drop-down list,
select User specified.

6 In the Function name field, enter the subsystem name, add_function.
7 Click Apply and OK.
8 Press Ctrl+B to build and generate code.

Results
In ex_function_call.c, the function is called from ex_function_call step:

void ex_function_call_step(void)

{

add_function();

}

The function prototype is externed through the subsystem file,
add_function.h.

extern void add_function(void);
The function definition is in the subsystem file add_function.c:
void add_function(void)

{
function_call_Y.y1 = ul + u2;

Function Prototyping

Function Prototyping

C Construct
double add_function(double ui, double u2)
{

return ul + u2;

}

Modeling Patterns
® “Function Call Using Graphical Functions” on page 5-71

® “Control Function Prototype of the model_step Function” on page 5-73

Function Call Using Graphical Functions

Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on
page 5-6. This example model contains two Inport blocks and one Outport
block.

2 Name the example model ex_func_SF.

3

In the Stateflow Editor, create a graphical function by clicking the fx
button and placing a graphical function into the Stateflow chart.

4 Edit the graphical function signature to: output = add_function(uft,
uz2).

5 Add the transition action, as shown in the following diagram.

5-71

5 Patterns for C Code

5-72

N

I
X
lﬁ = add_function{u1, u2};
¥ |function output = add_function(in1, in2

[
:
|
_

l

'
g

utput =in1 + in2;

X
(]

p—

ex_func_SF/Chart
In the Stateflow chart is an example of a simple transition that calls
add_function.

6 Open the Model Explorer. From the Model Hierarchy tree, select
ex_func_SF > Chart > f()add_function. On the right pane, specify the
Function Inline Option as Function.

7 From the Model Hierarchy tree, click Chart and on the right pane select
the Export Chart Level Functions (Make Global) parameter. This
makes the function available globally to the entire model.

8 Press Ctrl+B to build the model and generate code.

Results
ex_func_SF.c contains the generated code:

extern real_T add_function(real_T sf_in1, real_T sf_in2)

{

return sf_int1 + sf_in2;

void ex_func_SF_step(void)

{

Function Prototyping

ex_func_SF_B.y1 = add_function(ul, u2);

ex_func_SF_Y.y1 = ex_func_SF_B.y1;
}

Control Function Prototype of the model_step Function

D o D
01 u1 y1 Vi

02 u2

ex_control_step_function

Procedure

1 Create the model, ex_control step function. See “Configure a Signal”
on page 5-4 and “Configure Input and Output Ports” on page 5-4, for more
information.

2 Press Ctrl+E to open the Configuration Parameters dialog box.

3 On the Code Generation > Interface pane, click Configure Model
Functions to open the Model Interface dialog box.

4 Specify the Function specification parameter as Model specific C
prototypes.

5 Click Get Default Configuration to update the Configure model
initialize and step functions section and list the input and output
arguments.

6 To configure the function output argument to pass a pointer, in the Step
function arguments table, specify the Category for the Outport as a
Pointer. In addition, you can specify the step function arguments order
and type qualifiers.

7 To validate your changes, click Validate.

5-73

5 Patterns for C Code

5-74

8 Press Ctrl+B to build the model and generate code.

Results
ex_control_step_function.c contains the generated code:

void ex_control_step_function_custom(real_T arg_ul, real_T arg_u2, ...

real_T *arg_y1)

(*arg_y1) = arg_ul + arg_u2;

External C Functions

External C Functions
C Construct

extern double add(double, double);

#include "add.h"
double add(double ul, double u2)

{
double y1;
y1 = ul + u2;
return (y1);
}

Modeling Patterns

There are several methods for integrating legacy C functions into the
generated code. These methods either create an S-function or make a call to
an external C function. For more information on S-functions, see “Insert
S-Function Code”.

e “Use the Legacy Code Tool to Create S-functions” on page 5-75
e “Use a Stateflow Chart to Make Calls to C Functions” on page 5-78

¢ “Using a MATLAB Function Block to Make Calls to C Functions” on page
5-79

Use the Legacy Code Tool to Create S-functions

This method uses the Legacy Code Tool to create an S-function and generate
a TLC file. The code generation software uses the TLC file to generate code
from this S-function. The advantage of using the Legacy Code Tool is that
the generated code is fully inlined and does not need wrapper functions to
access the custom code.

5-75

5 Patterns for C Code

Procedure

1 Create a C header file named add.h that contains the function signature:

extern double add(double, double);

2 Create a C source file named add.c that contains the function body:

double add(double ul, double u2)

{
double y1;
y1 = ul + u2;
return (y1);
}

3 To build an S-function for use in both simulation and code generation, Run
the following script or execute each of these commands at the MATLAB
command line:

%% Initialize legacy code tool data structure
def = legacy_code('initialize');

%% Specify Source File
def.SourceFiles = {'add.c'};

%% Specify Header File
def.HeaderFiles = {'add.h'};

%% Specify the Name of the generated S-function
def.SFunctionName = 'add_function';

%% Create a c-mex file for S-function
legacy_code('sfcn_cmex_generate', def);

%% Define function signature and target the Output method
def.OutputFcnSpec = ['double y1 = add(double ul, double u2)'];

%% Compile/Mex and generate a block that can be used in simulation
legacy_code('generate_for_sim', def);

%% Create a TLC file for Code Generation

5-76

External C Functions

legacy_code('sfcn_tlc_generate', def);

%% Create a Masked S-function Block
legacy_code('slblock_generate', def);

The output of this script produces:

¢ A new model containing the S-function block

¢ A TLC file named add_function.tlc.

e A C source file named add_function.c.

* A mexw32 dll file named add_function.mexw32

4 Add inport blocks and an outport block and make the connections, as

shown in the model.

double y1 = add{double u1, double uZ)

) <0
o =

(D)

¥1

add_function

ex_function_call_Ilct

5 Name and save your model. In this example, the model is named

ex_function_call_lct.

6 Press Ctrl+B to build the model and generate code.

Results

The following code is generated in ex_function_call_lct.c:

real_T ul;
real_T u2;
real_T yi;
void ex_function_call_lct_step(void)
{
y1 = add(ul, u2);
}

The user-specified header file, add. h, is included in ex_function_call_lct.h:

5-77

5 Patterns for C Code

5-78

#include "add.h"

Use a Stateflow Chart to Make Calls to € Functions

Procedure

1 Create a C header file named add.h that contains the example function
signature.

2 Create a C source file named add.c that contains the function body.

3 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on
page 5-6. This example model contains two Inport blocks and one Outport
block.

4 Name the example model ex_exfunction_call SF.

5 Double-click the Stateflow chart and edit the chart as shown. Place the call
to the add function within a transition action.

[

et
"

[=%
=1

-J-"] = adr

(u1,u2);

o

™y

C

ex_exfunction_call_SF/Chart

6 On the Stateflow Editor, select Simulation > Model Configuration
Parameters.

7 On the Configuration Parameters dialog box, select Simulation Target >
Custom Code. In the Include custom C code in generated section, on
the left pane, select Header file and in the Header file field, enter the
#include statement:

#include "add.h"

External C Functions

8 In the Include list of additional section, select Source files and in the
Source files field, enter add.c.

9 Press Ctrl+B to build the model and generate code.

Results
ex_exfunction_call SF.c contains the following code in the step function:

real_T ul;
real_T u2;

real T yi;

void exfunction_call_SF_step(void)

{
y1 = (real_T)add(ul, u2);
}

ex_exfunction_call_SF.h contains the include statement for add.h:

#include "add.h"

Using a MATLAB Function Block to Make Calls to C
Functions

Procedure

1 Create a C header file named add.h that contains the example function
signature.

2 Create a C source file named add.c that contains the function body.

3 In the Simulink Library Browser, click Simulink > User Defined
Functions, and drag a MATLAB Function block into your model.

4 Double-click the MATLAB Function block. The MATLAB Function Block
Editor opens.

5 Edit the function to include the statement:

function y1 = add_function(ul, u2)

5-79

5 Patterns for C Code

5-80

%Set the class and size of output
yl = ul;

%Call external C function
y1 = coder.ceval('add',ul,u2);

end

6 Open the Configuration Parameters dialog box, and select Simulation
Target > Custom Code.

7 In the Include custom C code in generated section, on the left pane,
select Header file and in the Header file field, enter the statement, :

#include "add.h"

8 In the Include list of additional section, select Source files and in the
Source files field, enter add.c.

9 Add two Inport blocks and one Outport block to the model and connect to
the MATLAB Function block.

10 Configure the signals: u1, u2, and y1, as described in “Configure a Signal”
on page 5-4.

11 Save the model as ex_exfunction_call_ML.

12 Press Ctrl+B to build the model and generate code.

Results
ex_exfunction_call_ML.c contains the following code:

real_T ul;
real_T u2;

real_T yi;

void ex_exfunction_call_ML_step(void)

{
y1 = add(utl, u2);

External C Functions

ex_exfunction_call ML.h contains the #include statement for add.h:

#include "add.h"

5-81

5 Patterns for C Code

Macro Definitions (#define)

C Construct

#define p_1 9.8;

Modeling Patterns
“Use a 'Define’ Custom Storage Class” on page 5-82

“Use a Custom Header File” on page 5-83

Use a ‘Define’ Custom Storage Class

Procedure

1 Create a model containing a Gain block.

@—» &5
ul v

Gain

2 Press Ctrl+E to open the Configuration Parameters dialog box.

3 In the Configuration Parameter dialog box, on the Optimization > Signals
and Parameters pane, select Inline parameters.

4 Click Apply and OK.

5 In your model, double-click the Gain block. The Block Parameters dialog
box opens.

6 In the Value field, enter a variable name. In this example, the variable
name 1s p1.

7 Press Ctrl+H to open the Model Explorer. On the Model Hierarchy pane,
select the Base Workspace.

5-82

Macro Definitions (#define)

8 To add an MPT parameter object, in the menu bar, select Add > MPT
Parameter. The parameter appears in the Contents of: Base
Workspace pane.

9 Double-click the mpt.Parameter object and change its name to p1.

10 Click the p1 parameter. The data object parameters are displayed in the
right pane of the Model Explorer.

11 In the Value field, enter 9.8. In the Code generation options section,
click the Storage Class drop-down list and select Define (Custom).

12 Press Ctrl+B to generate code.

Results

The generated code includes the inlined parameter, p1, in
ex_define_data_object.c:

/* Model step function */
void ex_define_data_object_step(void)
{
rtY.yt = p1 * rtU.ut;
}

Use a Custom Header File

Procedure

1 Follow steps 1 through 10 of “Use a 'Define’ Custom Storage Class” on
page 5-82.

2 In the Simulink.Parameter dialog box for p1, in the Value field, enter
9.8. In the Code generation options section, click the Storage Class
drop-down list and select ImportFromFile (Custom).

3 In the Header file parameter, enter the name of the header file, in this
example, external_params.h.

4 Click Apply and OK.

5-83

5 Patterns for C Code

5 Create the C header file, external params.h that contains the #define
statement:

#ifndef _EXTERNAL_PARAMS
#define _EXTERNAL_PARAMS

#define p1 9.8
#endif
/* EOF */

6 Press Ctrl+B to generate code.

Results

The generated code includes the inlined parameter, p1, in
ex_define_data_object.c:

/* Model step function */
void ex_define_data_object_step(void)
{

ex_define_data_object_Y.Out1 = p1 * ex_define_data_object _U.In1;

5-84

Conditional Inclusions (#if / #endif)

Conditional Inclusions (#if / #endif)

You can generate preprocessor conditional directives in your code by
implementing variant blocks (Model Variants block or Variant Subsystem
block) in your model. In the generated code, preprocessor conditional
directives select a section of code to execute at compile time. To implement
variants in your model, see “Working with Variant Systems”. To generate
code for variants, see “Generate Preprocessor Conditionals for Variant
Systems” on page 6-4.

5-85

5 Patterns for C Code

5-86

Typedef

To generate a typedef definition, use a Simulink.AliasType data object.

C Construct
typedef double float 64;

Procedure
1 Create the ex_get_typedef model with a Gain block.

l-.| B
T £u1 "2 y1 '?T_)
Gain

2 In the Gain block parameter dialog box, select the Parameter Attributes
tab, and specify the Parameter data type as double.

3 Right-click the u1 signal and select Properties. In the Signal Properties
dialog box, select Signal name must resolve to Simulink signal object.

4 Right-click the y1 signal and select Properties. In the Signal Properties
dialog box, select the Code Generation tab, and specify the Storage
class parameter as ExportedGlobal.

5 Create a new alias type by using a Simulink.AliasType data object. At
the MATLAB command line, enter:

float_64 = Simulink.AliasType;

6 In the base workspace, double-click float 64. The Simulink.AliasType
dialog box opens.

7 Specify the Base type parameter as double. Click Apply and OK.

8 Create a data object for the u1 signal. In the base workspace, select
Add > Simulink Signal, and name it u1. Specify the Data type parameter
as float_64 and the Storage class parameter as Global(custom).

Typedef

Note You can also specify an output data type for Simulink blocks using
the new alias type.

9 Click Apply and OK.

10 Press Ctrl+B to generate code.

Note An alternative method for defining a typedef is to import the alias
type from a custom header file. If you want to import all of the typedefs from
a C header file, using this alternative method is useful.

Results

The generated code includes the typedef definition, which is declared within
#ifndef and #endif statements in the ex_get_typedef types.h file.

#ifndef _DEFINED_TYPEDEF_FOR_float_64_
#define _DEFINED_TYPEDEF_FOR_float_64_

typedef real_T float_64;
typedef creal_T cfloat_64;

#endif

Note real Tisthe Embedded Coder typedef for double .

The generated code also includes the declaration of the Simulink data objects
of the alias type in ex_get_typedef.c

float_64 yi;
float_64 ul;

5-87

5 Patterns for C Code

Structures for Parameters

To generate a structure containing parameters, use a mpt.Parameter object
with a Struct (custom) storage class.

C Construct

typdef struct {
double p1;
double p2;
double p3;

} my_struct_type;

my_struct_type my_struct={1.0,2.0,3.0};

Procedure

1 Create the ex_struct_param model with three Constant blocks and three
Outport blocks.

pl—(1)
Constant1 v

p2|—— (2D
Constant2 y2

p3f— (3D
Constant3 ¥3

2 Create a data object for each parameter, p1, p2, and p3. At the MATLAB
command line, enter:

p1 = mpt.Parameter;
p2 mpt.Parameter;
p3 mpt.Parameter;

3 In the base workspace, double-click one of the parameter data objects to
open the mpt.Parameter dialog box

5-88

Structures for Parameters

4 Specify a Value parameter for each parameter object.

5 Specify the Storage class parameter as Struct (Custom) for each
parameter object.

6 In the Custom Attributes section, specify the Struct name as my_struct.
Click Apply and OK.

7 Press Ctrl+E to open the Configuration Parameters dialog box.

8 Open the Optimization > Signals and Parameters pane, and select
the Inline parameters parameter.

9 Click Apply and OK.

10 Press Ctrl+B to generate code.

Results

The generated code includes the typedef definition for a structure, which is
declared in the ex_struct_param_types.h file.

/* Type definition for custom storage class: Struct */
typedef struct my_struct_tag {
real T p1;
real T p2;
real T p3;
} my_struct_type;

The generated code also includes the declaration of my_struct in
ex_struct_param.c.

/* Definition for custom storage class: Struct */
my_struct_type my_struct = {

/[* p1 */

1.0,

/* p2 */
2.0,

[* p3 */
3.0

5-89

5 Patterns for C Code

5-90

b

Structures for Signals

Structures for Signals

To generate a structure containing parameters, use a mpt.Signal object with
a Struct (custom) storage class or a Simulink non-virtual bus object.

C Construct

typedef struct {
double ui;
double u2;
double u3;

} my_signals;

Modeling Patterns

“Structure for Signals Using a ’Struct’ Custom Storage Class” on page 5-91

“Structure for Signals Using a Simulink Non-Virtual Bus Object” on page 5-93

Structure for Signals Using a ’Struct’ Custom Storage
Class

Procedure

1 Create the ex_signal_struct_csc model using the blocks shown and
follow the steps to configure the signals and model.

uf £yl :2 1
Gain1 y

:Z:-£U2 4 Z

u2 - y2
Gain2

:E:-£u3 6 D

u3 - y3
Gain3

5-91

5 Patterns for C Code

2 Double-click a Gain block to open the block parameter dialog box. Set the
values of the Gain blocks as shown in the model diagram.

3 Right-click the u1 signal and select Properties. In the Signal Properties
dialog box, select Signal name must resolve to Simulink signal object.
Repeat for signals u2 and u3.

4 At the MATLAB command line, create a mpt.Signal data object for each
input signal.

ul = mpt.Signal;
u2 = mpt.Signal;
u3 = mpt.Signal;

Note You can also create a data object in the Model Explorer base
workspace, by selecting Add > MPT Signal.

5 In the base workspace, configure each of the data objects, u1, u2, and u3.
Double-click a data object, to open the mpt.Signal parameter dialog box.

6 Specify the Data type parameter as auto and the Storage class
parameter as Struct (custom).

7 Click Apply and OK.

8 Press Ctrl+B to generate code.

Results
The generated code includes the typedef definition for a structure, which is
declared in the ex_signal struct csc_types.h file.

/* Type definition for custom storage class: Struct */
typedef struct my_signal_struct_tag {
real T ul;
real T u2;
real T u3;
} my_signal_struct_type;

5-92

Structures for Signals

The generated code also includes the declaration of my_signal_struct in
ex_signal_struct_csc.c.

/* Definition for custom storage class: Struct */
my_signal_struct_type my_signals;

Structure for Signals Using a Simulink Non-Virtual
Bus Object

Procedure

1 Create the ex_signal struct_bus model using the blocks shown and
follow the steps to configure the bus object and model.

O

0 ut

u3 u3

This block creates a bus signal from its inputs.

2 Add the Inport blocks, an Outport block, and a Bus Creator block to your
diagram.

3 Double-click the Bus Creator block to open the block parameter dialog box.
4 Specify the Number of inputs parameter as 3. Click Apply.

5 In your model diagram, connect the three Inport blocks to the three inports
of the Bus Creator block. Also, connect the outport of the Bus Creator
block to the Outport block.

6 Label the signals as shown in the model diagram.

7 In the Bus Creator block parameter dialog box, Signals in bus now
displays the signals connected to the Bus Creator block.

5-93

5 Patterns for C Code

5-94

8 Create a bus object named MySignals that includes signals u1,u2, and u3.
For more information on creating bus objects, see “Manage Bus Objects
with the Bus Editor”. Once the bus object, MySignals, is created, it appears
in the base workspace.

9 In the Bus Creator block parameter dialog box, select the Output as
nonvirtual bus parameter, which specifies that bus signals must be
grouped into a structure in the generated code.

10 Click Apply and OK.

11 Press Ctrl+B to generate code.

Results
The generated code includes the typedef definition for a structure, which is
declared in the signal_struct_bus_types.h file.

typedef struct {
real T ul;
real T u2;
real T u3;

} MySignals;

Nested Structures

Nested Structures

One way to create nested structures of signals in the generated code is by
using multiple non-virtual bus objects. When nesting bus objects, all of the
bus objects must either be non-virtual, or all of them must be virtual.

C Construct

typedef struct {
double ui;
double u2;
double u3;

} my_signalsi123;

typedef struct {
double u4;
double u5;
double u6;

} my_signals456;

typedef struct {
my_signalsi123 y1;

my_signals456 y2;
} nested_signals;

Procedure

1 Create the ex_nested_structure model using the blocks shown and follow
the steps to configure the bus objects and model.

5-95

5 Patterns for C Code

5-96

&b ut
ut
ZUQ u2 v1
3 u3
u3
e
Z)M ud Generate a
nested structure
%55 us y2
B ut
ut

2 For each bus in the model, follow the instructions for “Structure for Signals
Using a Simulink Non-Virtual Bus Object” on page 5-93, creating bus
objects My_Signals_ 123 and My_Signals_456.

3 Drag a Bus Creator block into your model. Configure the Bus Creator block
so that it takes in signals from different buses.

4 Double-click the Bus Creator block to open the block parameter dialog box.
5 Specify the Number of inputs parameter as 2. Click Apply.

6 In your model diagram, connect the two bus outports to the inports of the
new Bus Creator block.

7 Label the signals as shown in the model diagram.

8 In the Bus Creator block parameter dialog box, Signals in bus now
displays the signals, y1 and y2, connected to the Bus Creator block.

9 Create a bus object named Nested_Signals that includes signals y1 and
y2, where the DataType for y1 is My_Signals_123 and the DataType
for y2 is My_Signals_456.

Nested Structures

B Bus Editor - Manage Bus Objects in the Base Workspace H=] B3

File Edit WView Options Help

JJ{_}é il |'||£ -zt 3 | & By 3 X |J_|Fi|ter:|byBusName =l 2
| Mame | DataType | Simulink.Bus: Nested_Signals

- ﬁ Base Workspace

’ = y1(My_Signals... My_Signals_123
= = My_Signals_123 —_

y2(My_Sianals... My_Signals_456

—Properties

ol Name: INested_SignaIs
e— 2
= u3 HeaderFile: I

Description:

'
y1(My_Signals_123)

[+ = y2(My_Signals_458)

For more information on creating bus objects, see “Manage Bus Objects
with the Bus Editor”. Once the bus object, Nested _Signals, is created,
it appears in the base workspace.

10 In the Bus Creator block parameter dialog box, select the Qutput as
nonvirtual bus parameter, which specifies that bus signals must be
grouped into a structure in the generated code.

11 Click Apply and OK.

12 Press Ctrl+B to generate code.

Results

The generated code includes the typedef definitions for structures, which are
declared in the ex_nested_structure_types.h file.

#ifndef DEFINED TYPEDEF_FOR_My Signals 123_
#define DEFINED TYPEDEF_FOR_My Signals 123_

typedef struct {
real T ul;
real T u2;
real T u3;

} My_Signals_123;

5-97

5 Patterns for C Code

#endif

#ifndef DEFINED TYPEDEF_FOR_My_ Signals_456_
#define DEFINED TYPEDEF_FOR_My Signals_456_

typedef struct {
real T u4;
real T ub;
real T u6;

} My_Signals_456;

#endif

#ifndef DEFINED TYPEDEF_FOR_Nested Signals_
#define DEFINED TYPEDEF_FOR_Nested Signals_

typedef struct {
My Signals_123 y1;
My _Signals_ 456 y2;
} Nested_Signals;

#endif

5-98

Bitfields

Bitfields

One way to create bitfields in the generated code is by using a mpt.Parameter
object with Bitfield (Custom) storage class.

C Construct

typedef struct {
unsigned int p1 : 1;
unsigned int p2 : 2;
unsigned int p3 : 3;
} my_struct_type

Procedure

1 Using the model, ex_struct_param, in “Structures for Parameters” on page
5-88, rename the model as ex_struct_bitfield CSC.

2 Create a data object for each parameter, p1, p2, and p3. At the MATLAB
command line, enter:

p1 = mpt.Parameter;
p2 mpt.Parameter;
p3 mpt.Parameter;

3 In the base workspace, double-click one of the parameter data objects to
open the mpt.Parameter dialog box.

4 Specify the Value parameter for each parameter object.

5 Specify the Storage class parameter as Bitfield (Custom) for each
parameter object.

6 In the Custom Attributes section, specify the Struct name as my_struct.
Click Apply and OK.

7 Specify the data objects for each parameter.

5-99

5 Patterns for C Code

5-100

Contents of: Base Workspace I ‘ mpt.Parameter: p1

Caolumn View: IData Objects v | Show Details 3 object(s Value: ID

| Name | Value |DaiaTypE | Min |Max | O Data type: Ibnolean ;I
[j,%i] pl 1} boolean -Inf Inf [: i :
[i‘ii] p2 i bodlean nf Inf Dimensions: I[:l 1] Complexity: Ireal
[o3 0 boolean -Inf Inf Minimum: -Inf Maximum: | Inf

Units: I

Code generation options

Storage class: IBitF\Ehj (Custom)

Custom attributes

’751:ruct name: I my_struct

8 Press Ctrl+E to open the Configuration Parameters dialog box.

9 Open the Optimization > Signals and Parameters pane, and select
the Inline parameters parameter.

10 Click Apply and OK.

11 Press Ctrl+B to generate code.

Results

The generated code of the model, ex_struct_bitfield CSC, includes
the typedef definition for a Bitfield, which is declared in the
ex_struct _bitfield CSC_types.h file.

/* Type definition for custom storage class: BitField */
typedef struct my_struct_tag {

uint_T p1 : 1;

uint_ T p2 : 1;

uint_T p3 : 1;
} my_struct_type;

Arrays for Parameters

Arrays for Parameters

To create an array in the generated code, you can use a constant parameter in
the base workspace, or a mpt.Parameter.

C Construct
int params[5]= {1,2,3,4,5};
Procedure

1 Create a model, ex_array_params, containing the Constant blocks and
Outport blocks and label the blocks as shown in the model diagram.

params1p—— (1)
Constant1 y1

params2p———— {2)
Constant2 y2

2 Double-click the Constant1 block and give the Constant value the name
of a parameter, paramsi.

3 Double-click the Constant2 block and give the Constant value the name
of a parameter, params2.

4 To create the parameters in the base workspace, at the MATLAB command

line, enter:
params1 = [1,2,3,4,5];
params2 = mpt.Parameter;

5 In the base workspace, double-click params2 to open the mpt.Parameter
dialog box.

6 In the Value field, specify the array, [1 2 3 4 5].

7 Press Ctrl+E to open the Configuration Parameters dialog box.

5-101

5 Patterns for C Code

8 Open the Optimization > Signals and Parameters pane, and select
the Inline parameters parameter.

9 Click Apply and OK.

10 Press Ctrl+B to generate code.

Results

The generated code includes the array, params2, in the ex_array_params.c
file:

int16_T params2[5] = { 1, 2, 3, 4, 5 } ;
The data object, params1, is defined in the array_params_data.c file:

/* Constant parameters (auto storage) */
const ConstParam_array_params array_params_ConstP = {
/* Computed Parameter: Constantl1_Value
* Referenced by: '/Constantil'
*/
{1,2,3,4,5}
};

where ConstParam_array_params is a structure containing the array and
defined in the array_params.h file.

typedef struct {
/* Computed Parameter: Constant1_Value
* Referenced by: '/Constantil'
*/
int16_T Constanti1_Value[5];
} ConstParam_array_params;

5-102

Arrays for Signals

Arrays for Signals

To create an array in the generated code for signal data, you can specify a
signal as ExportedGlobal, or use a mpt.Signal object.

C Construct

int u1[5];
int y1[5];

Procedure

1 Create the ex_array_signals model using the blocks shown and follow the
steps to configure the signals and model.

h

ut

| B
D7D
Gain y

2 Double-click the Inport block to open the Inport block parameter dialog box.

3 Select the Signal Attributes tab and specify the Port dimensions
parameter as 5, for an array of length 5.

4 Click OK.
5 Right-click the u1 signal line and select Properties.

6 Select the Code Generation tab and specify the Storage Class parameter
as ExportedGlobal.

7 Repeat steps 5 and 6 for signal y1.

8 Press Ctrl+B to generate code.

Note Alternatively, you can use Simulink data objects (mpt.Signal) to
specify the storage class and dimensions for the signals, u1 and y1.

5-103

5 Patterns for C Code

Results

The generated code includes arrays for u1 and y1 in the ex_array_signals.c
file:

int16_T ul1[5];
int16_T y1[5];

In this case, a for loop is generated to carry out the gain operations on
elements of the input signal.

int32 T i
for (1 = 0; i < 5; i++) {

y1[i] = (int16_T)(5 * ul[i]);
}

However, if the dimension of the array is less than a threshold value (typically
5), code generation might not include a for loop for array operations.

5-104

Pointers for Signals

Pointers for Signals

To create a pointer in the generated code, you can configure a signal to
use the ImportedExternPointer storage class or use an mpt.Signal (or
mpt.Parameter for parameters) object with an ImportedExternPointer
storage class.

C Construct
extern double *uil;

Procedure

This is a quick method to obtain pointers in the generated code. You cannot
control the data type, which is decided by the model compilation process.

1 Create the ex_pointer_signal model using the blocks shown and follow
the steps to configure the signals and model.

ut ut [&

Gain y1

2 Label the signal to be imported as a pointer, in this example, u1.
3 Right-click the ul signal line and select Properties.

4 Select the Code Generation tab and specify the Storage Class parameter
as ImportedExternPointer.

5 Click OK.

6 Press Ctrl+B to generate code.

Results

The generated code includes the extern declaration for the pointer in the
ex_pointer_signal_private.h file.

extern real T *uil;

5-105

5 Patterns for C Code

Pointers Using Simulink Data Objects

You can control the data type of a signal or parameter by using a Simulink
data object to generate a pointer.

C Construct
extern double *uil;

Procedure

You can use this procedure for either a signal or parameter. To create a
pointer for a parameter, use an mpt.Parameter instead of an mpt.Signal
data object described in step 3.

1 Create the ex_pointer_signal_data_object model using the blocks
shown and follow the steps to configure the signals and model.

&D
¥

Ay "
o ul v1

Gain
2 Label the signal to be imported as a pointer, in this example, u1.
3 At the MATLAB command line, create a data object for signal ut.

ul = mpt.Signal;
4 In the base workspace, double-click u1 to open the mpt.Signal dialog box.
5 Specify the Storage class parameter as ImportedExternPointer.

6 Click Apply and OK.

7 Press Ctrl+B to generate code.

Results

The generated code includes the extern declaration for the pointer in the
ex_pointer_signal data_object_private.h file.

extern real T *ul;

5-106

Pointers Using Simulink Data Obijects

The ex_pointer_signal_data_object_private.h file imports the pointer
into the generated code. To compile the code, you must declare and define the
pointer in the main program.

5-107

5 Patterns for C Code

5-108

Variant Systems

e “About Variant Systems” on page 6-2

® “Why Generate Code for Variant Systems?” on page 6-3

® “Generate Preprocessor Conditionals for Variant Systems” on page 6-4
e “Review Code Variants in Code Generation Report” on page 6-7

¢ “Generate Code for Model Variants” on page 6-8

® “Generate Code for Variant Subsystems” on page 6-10

® “Restrictions on Variant Subsystem Code Generation” on page 6-14

® “Special Considerations for Generating Preprocessor Conditionals” on page
6-16

® “Limitations on Generating Code for Variants” on page 6-17

® “Generated Code Components Not Compiled Conditionally” on page 6-18

6 Variant Systems

About Variant Systems

6-2

The Embedded Coder software generates code from a Simulink model
containing one or more Model Variants blocks or Variant Subsystem blocks.
To learn how to create a model containing variant blocks, see “Variant
Systems”.

By default, the Simulink Coder software generates code for the active variant.
The Embedded Coder software can generate code for different variant choices
as well as the active variant. If you want to generate code for variants, you
must set the following conditions:

® Select Generate preprocessor conditionals.
¢ Deselect Override variant conditions and use the following variant.
e Select Model Configuration Parameters > Optimization > Signals

and Parameters > Inline Parameters .

Code generated for variants is surrounded by C preprocessor conditionals,
#if, #elif, and #endif. Therefore, the active variant is selected at compile
time and the preprocessor conditionals determine which sections of the code
to execute.

To construct model reference variants and generate preprocessor directives in
the generated code, see the example rtwdemo_preprocessor_script.

To construct variant subsystems and generate preprocessor directives in the
generated code, see the example rtwdemo_preprocessor_subsys_script.

Why Generate Code for Variant Systems?

Why Generate Code for Variant Systems?
When you implement variants in the generated code, you can:
® Reuse generated code from a set of application models that share

functionality with minor variations.

e Share generated code with a third party that activates one of the variants
in the code.

e Validate the supported variants for a model and then choose to activate one
variant for a particular application, without regenerating and re-validate
the code.

6-3

6 Variant Systems

Generate Preprocessor Conditionals for Variant Systems

Define Variant Controls

To learn about variant controls, see “How Variant Controls Work” in the
Simulink documentation. Perform the following steps to define variant
control for generating code.

1 Open the Model Explorer and click the Base Workspace.

2 A variant control can be a condition expression, a Simulink.Variant object
specifying a condition expression or a Simulink.Parameter object. In the
Model Explorer, select Add and choose Simulink Parameter. Specify a
name for the new parameter.

3 On the Simulink.Parameter property dialog box, specify the Value and
Data type.

4 Specify the Storage class parameter by choosing one of the following:
e ImportedDefine(Custom) custom storage class.

® CompilerFlag(Custom) custom storage class.

® A user-defined storage class is created using the Custom Storage Class
Designer. Your storage class must have the Data initialization
parameter set to Macro and the Data scope parameter set to Imported.
See “Use Custom Storage Class Designer” on page 10-8 for more
information.

5 Specify the value of the variant control. If the storage class is either
ImportedDefine (Custom) or a user-defined custom storage class, do the
following:

a Specify the Header File parameter as an external header file in the
Custom Attributes section of the Simulink.Parameter property dialog
box.

b Supply the values of the variant controls in the external header file.

6-4

Generate Preprocessor Conditionals for Variant Systems

Note The generated code refers to a variant control as a user-defined
macro. The generated code does not contain the value of the macro.
The value of the variant control determines the active variant in the
compiled code.

If the variant control is a CompilerFlag custom storage class

the value of the variant control is set at compile time. On the

Code Generation > General pane of the Model Configuration
Parameters dialog box, add a makefile option to the “Make command”
parameter. For example, for variant control, VSSMODE, enter make_rtw
OPTS="-DVSSMODE=1" in the Make command field.

Note If you want to modify the value of the variant control after
generating the makefile, use a makefile option when compiling your code.
For example, at a command line outside of MATLAB, enter:

makecommand -f model.mk OPTS="-DVSSMODE=1"

Follow the instructions for to implement variant objects for code generation.
Check that only one variant object is active in the generated code by
implementing the condition expressions of the variant objects such that
only one evaluates to true. The generated code includes a test of the
variant objects to determine that there is only one active variant. If this
test fails, your code will not compile.

Note You can define the variant controls using Simulink.Parameter
object of enumerated type. This provides meaningful names and improves
the readability of the conditions. The generated code includes preprocessor
conditionals to check that the variant condition contains valid values of
the enumerated type.

6 Variant Systems

6-6

Configure Model for Generating Preprocessor
Conditional Directives

In order to generate preprocessor conditional directives configure your model
as follows:

On the Code Generation pane of the Configuration Parameter dialog box,
set the System target file field as ert.tlc.

On the Code Generation pane of the Configuration Parameter dialog box,
select the Create code generation report field.

On the Optimization > Signals and Parameters pane of the
Configuration Parameters dialog box, select Inline parameters.

On the Code Generation pane of the Configuration Parameter dialog box,
clear “Ignore custom storage classes”. In order to generate preprocessor
conditionals, you must use custom storage classes.

On the Interface pane of the Configuration Parameter dialog box,

select the Use Local Settings option of the Generate preprocessor
conditionals parameter. This parameter is a global setting for the parent
model. This setting enables the Generate preprocessor conditionals
parameter located in the Model Variants block parameters dialog box or
Variant Subsystem parameters dialog box. See “Generate preprocessor
conditionals” for more information.

Open the Model Variants block parameters dialog box or the Variant
Subsystem block parameter dialog box, depending on your application.
Select the Generate preprocessor conditionals parameter. If the block
parameters dialog box was already open, close and reopen the dialog box to
see the enabled Generate preprocessor conditionals parameter.

Clear the parameter, Override variant conditions and use following
variant.

Build Your Model

After configuring your model to generate code, build your model.

Review Code Variants in Code Generation Report

Review Code Variants in Code Generation Report

The Code Variants Report displays a list of the variant objects in alphabetical
order and their condition. The report also lists the model blocks that have
Variants, and the referenced models that use them. In the Contents section
of the code generation report, click the link to the Code Variants Report:

Table of Contents

* Variant Control
® Model Reference Blocks that have Variants
* Subsystem Blocks that have Variants

Variant Control [hide

Code Variants Report for rtwdemo_preprocessor

Variant Condition Used in Blocks

LINEAR VSSMODE == 0 <Root>/Left Controller
<Root>/Right Controller

NOMNLINEAR VSSMODE == 1 <Raoot>/Left Controller

<Root>/Right Controller

Model Reference Blocks that have Variants [hide

Model Block Variant Model

<Root>/Left Controller LINEAR rtwdemo_lini
NONLINEAR rtwdemo_nlinl

<Root>/Right Controller LINEAR rtwdemo_linr
MONLINEAR rtwdemo_nlinr

Subsystem Blocks that have Variants [hide

(No SubSystem blocks that have Variants)

6-7

6 Variant Systems

Generate Code for Model Variants

To open a model for generating preprocessor conditionals, enter
rtwdemo_preprocessor.

After building the model, look at the variants in the generated code.
rtwdemo_preprocessor_types.h includes the following:

Call to external header file, rtwdemo_preprocessor_macros.h, which
contains the macro definition for the variant control variable, VSSMODE.

/* Includes for objects with custom storage classes. */

#include "rtwdemo_importedmacros.h"

Preprocessor directives defining the variant objects, LINEAR and NONLINEAR.
The values of these macros depend on the value of the variant control
variable, VSSMODE. The condition expression associated with each macro,
LINEAR and NONLINEAR, determine the active variant.

/* Model Code Variants */
#ifndef LINEAR
#define LINEAR (VSSMODE == 0)
#endif

#ifndef NONLINEAR
#define NONLINEAR (VSSMODE == 1)
#endif

Check that exactly one variant is active at a time:

/* Exactly one variant for '<Root>/Left Controller' should be active */
#if (LINEAR) + (NONLINEAR) != 1
#error Exactly one variant for '<Root>/Left Controller' should be active

#endif

Calls to the step and initialization functions are conditionally compiled as
shown in a portion of the step function, rtwdemo_preprocessor_step:

#if LINEAR

/* ModelReference: '<Root>/Left Controller' */

Generate Code for Model Variants

rtwdemo_linl (&rtb_Add, &rtb_LeftController_vmerge_1,
&(rtwdemo_preprocessor_DWork.LeftController_1_DWORK1.rtdw));

#elif NONLINEAR
/* ModelReference: '<Root>/Left Controller' */
rtwdemo_nlinl(&rtb_Add, &rtb_LeftController_vmerge_1,
&(rtwdemo_preprocessor_DWork.LeftController_2_DWORK1.rtdw));
#endif
and
#if LINEAR
/* ModelReference: '<Root>/Right Controller' */
rtwdemo_linr(&trb_Add, &rtb_RightController_vmerge,
&(rtwdemo_preprocessor_DWork.RightController_1_DWORK1.rtdw));
#elif NONLINEAR
/* ModelReference: '<Root>/Right Controller' */
rtwdemo_nlinr(&rtb_Add, &rtb_RightController_vmerge_1,

&(rtwdemo_preprocessor_DWork.RightController_2_DWORK1.rtdw));

#endif /* LINEAR */

6 Variant Systems

Generate Code for Variant Subsystems

Open the Example Model

Open model AutoSSVar, which contains a variant subsystem.

Define the Variant Controls

Variant Controls can be a condition expression or Simulink.Variant object
specifying a condition expression or a Simulink.Parameter object. To
recreate the variant controls specifically for code generation:

1 Open the Model Explorer and click the Base Workspace.

2 In the Model Explorer, remove the current variant control variables, EMIS
and FUEL, and recreate them as Simulink.Parameter objects. Select Add
and Simulink Parameter to create two variant control variables, EMIS
and FUEL.

3 In the Simulink.Parameter property dialog box, specify the Value as 1
and the Data type as int8 for both EMIS and FUEL.

4 Specify the Storage class parameter for both EMIS and FUEL as
ImportedDefine (Custom).

5 Specify the Header File parameter as an external header file,
AutoSSVar_variables.h, in the Custom Attributes section of the
Simulink.Parameter property dialog box. You must specify the header file
since the storage class is ImportedDefine (Custom).

6 Add the values of the variant control variables in the external header file
AutoSSVar_variables.h as follows:

#define FUEL 1
#define EMIS 1

6-10

Generate Code for Variant Subsystems

Note The generated code refers to a variant control variable as a
user-defined macro. The generated code does not contain the value of the
macro. The value of the variant control variable determines the active

variant in the compiled code.

7 Check that only one variant is active in the generated code by implementing
the condition expressions of the variant controls such that only one
evaluates to true. The generated code includes a test of the variant
controls to determine that there is only one active variant. If this test fails,

your code does not compile.

Make Each Child Subsystem an Atomic Subsystem

1 Double-click the Variant Subsystem block, Engine, to display the child
subsystems.

2 For each child subsystem, right-click the subsystem and select Subsystem
Parameters from the list. The block parameters dialog box opens.

3 To specify each child subsystem as an atomic subsystem, in the block
parameters dialog box, select the Treat as atomic unit parameter.

Configure Model for Generating Preprocessor
Conditional Directives

In order to generate preprocessor conditional directives configure your model
as follows:

1 On the Code Generation pane of the Configuration Parameter
dialog box, specify the System target file parameter as ert.tlc and
clear “Ignore custom storage classes”. In order to generate preprocessor
conditionals, you must use custom storage classes.

2 On the Optimization > Signals and ParametersMATLAB pane of the
Configuration Parameters dialog box, select Inline parameters.

6-11

6 Variant Systems

6-12

3 On the Code Generation > Interface pane of the Configuration
Parameter dialog box, select the Enable All option of the Generate
preprocessor conditionals parameter. This parameter is a global setting
for the parent model and enables generating preprocessor conditionals for
variants in the model. For more information, see “Generate preprocessor
conditionals”.

4 On the Code Generation > Report pane of the Configuration Parameter
dialog box, select Create code generation report.

View the Generated Code

The generated code contains child subsystems of the Variant Subsystem block
protected by C preprocessor conditionals. In this case, the selection of the
active variant (subsystem) is deferred until the generated code is compiled.
Only one variant object, which is encoded in C macros, must evaluate to true.

After building the model, look at the variants in the generated code.
AutoSSVar_types.h includes the following:

e (Call to external header file, AutoSSVar_variables.h, which contains the
macro definitions for the variant control variables, FUEL and EMIS.

/* Includes for objects with custom storage classes. */

#include "AutoSSVar_variables.h"

® Preprocessor directives defining the variant objects. The values of these
macros depend on the value of the variant control variables, FUEL and
EMIS. The condition expression associated with each macro determine the
active variant.

/* Model Code Variants */

#ifndef DE

#define DE ((FUEL == 2) && (EMIS == 2))
#endif

#ifndef DU
#define DU ((FUEL == 2) && (EMIS == 1))

#endif

#ifndef GE

Generate Code for Variant Subsystems

#define GE
#endif

#ifndef GU
#define GU
#endif

((FUEL == 1) && (EMIS == 2))

((FUEL == 1) && (EMIS == 1))

¢ Check that exactly one variant is active at a time:

/* Exactly one variant for '<Root>/Engine' should be active */
#if (GU) + (GE) + (DU) + (DE) !=1
#error Exactly one variant for '<Root>/Engine' should be active

#endif

Calls to the step and initialization functions are conditionally compiled as
shown in a portion of the step function, AutoSSVar_step, in AutoSSvar.c:

#if DE

rtb_VariantMergeForOutportOut1

#elif DU

rtb_VariantMergeForOutportOut1

#elif GE

rtb_VariantMergeForOutportOut1

#elif GU

rtb_VariantMergeForOutportOut1

#endif

* AutoSSVar_U.Int;

* AutoSSVar_U.Int;

* AutoSSVar_U.Int;

* AutoSSVar_U.Int;

/* DE */

6-13

6 Variant Systems

Restrictions on Variant Subsystem Code Generation

To generate preprocessor conditionals, the types of blocks that you can

place within the child subsystems of a Variant Subsystem block are limited.
Connections are not allowed in the Variant Subsystem block diagram.
However, during the code generation process, one VariantMerge block is
placed at the input of each Outport block within the Variant Subsystem block
diagram. All of the child subsystems connect to each of the VariantMerge
blocks.

In the figure below, the code generation process makes the following
connections and adds VariantMerge blocks to the sldemo_variant_subsystems
model.

When compared to a generic Merge block the VariantMerge block can have
only one parameter which is the number of Inputs. The VariantMerge block is
used for code generation in variant subsystems internally, and is not available
externally to be used in models. The number of inputs for VariantMerge is
determined and wired as shown in the figure below.

6-14

Restrictions on Variant Subsystem Code Generation

Out1

Dutl

Ot Z -

Nenlinear Controller

The child subsystems of the Variant Subsystem block must be atomic
subsystems. Select Treat as atomic unit parameter in the Subsystem
block parameters dialog, to make the subsystems atomic. The VariantMerge
blocks are inserted at the outport of the subsystems if more than one child
subsystems are present. If the source block of a VariantMerge block input
1s non-virtual, an error message will be displayed during code generation.
You must make the source block contiguous, by inserting Signal Conversion
blocks inside the variant choices. The VariantMerge block does not support
variable dimensions through it, so you cannot have child subsystems with
different output signal dimensions.

6-15

6 Variant Systems

Special Considerations for Generating Preprocessor
Conditionals

When you select the Generate preprocessor conditionals parameter,
consider the following:

® The code generation process checks that the inports and outports of a
Variant Subsystem block or a Model Variants block must be identical
(same port numbers and names) to the corresponding inports and outports
of its variants. The build process for simulation does not make this check.
Therefore, if your variant block contains mismatched inports or outports,
the code generation process issues an error.

® The code generation process checks that there is at least one active variant
by using the variant control values stored in the base workspace. If you are
generating preprocessor conditionals and using an external header file for
the values of the variant controls, the code generator issues an error if the
values in the base workspace do not indicate an active variant.

¢ If you comment out child subsystems listed in the Variant Choices table
in the Variant Subsystem block parameter dialog box, the code generator
does not generate code for the commented out subsystems.

6-16

Limitations on Generating Code for Variants

Limitations on Generating Code for Variants

When you are generating code for Model Variants blocks and Variant
Subsystem blocks, the blocks cannot have:

e Continuous states or mass matrices

® Function call ports

¢ Qutports with constant sample time

® The Model Variants block and its referenced models must have the same
number of inports and outports.

® The Variant Subsystem block and its active child subsystems must have
the same number of inports and outports.

e All of the port numbers and names for each active child subsystem in a
Variant Subsystem block must also match.

6-17

6 Variant Systems

Generated Code Components Not Compiled Conditionally

The following components in the generated code are not compiled
conditionally. This is true even if they are referenced only by code for variant
subsystems or models that are conditionally compiled.

rtModel data structure fields

#include’s of utility files

Global non-constant parameter structure fields; when the configuration
parameter Optimization > Signals and Parameters > Parameter
structure is set to NonHierarchical

® Global constant parameter structure fields that are referenced by multiple
subsystems activated by different variants

¢ Parameters that are configured to use an imported, exported, or custom
code generation storage class, and are referenced by multiple subsystems
that are activated by different variants

¢ Parameters that are configured to use an imported, exported, or custom
code generation storage class, and are used by variant model blocks

6-18

7

Scheduling Considerations

e “Use Discrete and Continuous Time” on page 7-2

® “Optimize Multirate Multitasking Operation on RTOS Targets” on page 7-4

7 Scheduling Considerations

Use Discrete and Continuous Time

In this section...

“Support for Discrete and Continuous Time Blocks” on page 7-2

“Support for Continuous Solvers” on page 7-2

“Support for Stop Time” on page 7-3

Support for Discrete and Continuous Time Blocks

The ERT target supports code generation for discrete and continuous time
blocks. If the Support continuous time option is selected, you can use these
blocks in your models, without restriction.

Note that use of certain blocks is not recommended for production code
generation for embedded systems. The Simulink Block Data Type Support
table summarizes characteristics of blocks in the Simulink and Fixed-Point
Designer block libraries, including whether or not they are recommended for
use 1n production code generation. To view this table, execute the following
command and see the “Code Generation Support” column of the table that
appears:

showblockdatatypetable

Support for Continuous Solvers

The ERT target supports continuous solvers. In the Solver options dialog,
you can select an available solver in the Solver menu. (Note that the solver
Type must be fixed-step for use with the ERT target.)

Note Custom targets must be modified to support continuous time. The
required modifications are described in “Custom Targets” in the Simulink
Coder documentation.

Use Discrete and Continuous Time

Support for Stop Time

The ERT target supports the stop time for a model. When generating
host-based executables, the stop time value is honored if one of the following
is true:

¢ (Classic call interface is selected on the Interface pane

¢ External mode is selected in the Data exchange subpane of the
Interface pane

e MAT-file logging is selected on the Interface pane

Otherwise, the executable runs indefinitely.

Note The ERT target provides both generated and static examples of
the ert_main.c file. The ert_main.c file controls the overall model code
execution by calling the model step function and optionally checking the
ErrorStatus/StopRequested flags to terminate execution. For a custom
target, if you provide your own custom static main.c, you should consider
including support for checking these flags.

7 Scheduling Considerations

Optimize Multirate Multitasking Operation on RTOS

Targets

In this section...

“Overview” on page 7-4
“Use rtmStepTask” on page 7-5
“Scheduling Code for Multirate Multitasking on VxWorks” on page 7-5

“Suppress Redundant Scheduling Calls” on page 7-6

Overview

Using the rtmStepTask macro, targets that employ the task management
mechanisms of an RTOS can eliminate certain redundant scheduling calls
during the execution of tasks in a multirate, multitasking model, thereby
improving performance of the generated code.

To understand the optimization that is available for an RTOS target, consider
how the ERT target schedules tasks for bareboard targets (where RTOS is
not present). The ERT target maintains scheduling counters and event flags
for each subrate task. The scheduling counters are implemented within the
real-time model (rtM) data structure as arrays, indexed on task identifier
(tid).

The scheduling counters are updated by the base-rate task. The counters
are clock rate dividers that count up the sample period associated with each
subrate task. When a given subrate counter reaches a value that indicates it
has a hit, the sample period for that rate has elapsed and the counter is reset
to zero. When this occurs, the subrate task must be scheduled for execution.

The event flags indicate whether or not a given task is scheduled for execution.
For a multirate, multitasking model, the event flags are maintained by code
in the main program for the model. For each task, the code maintains a task
counter. When the counter reaches 0, indicating that the task’s sample period
has elapsed, the event flag for that task is set.

On each time step, the counters and event flags are updated and the base-rate
task executes. Then, the scheduling flags are checked in tid order, and tasks

Optimize Multirate Multitasking Operation on RTOS Targets

whose event flag is set 1s executed. Therefore, tasks are executed in order of
priority.

For bareboard targets that cannot rely on an external RTOS, the event
flags are mandatory to allow overlapping task preemption. However, an
RTOS target uses the operating system itself to manage overlapping task
preemption, making the maintenance of the event flags redundant.

Use rimStepTask

The rtmStepTask macro is defined in model.h and its syntax is as follows:

boolean task_ready = rtmStepTask(rtm, idx);
The arguments are:

® rtm: pointer to the real-time model structure (rtM)

e idx: task identifier (tid) of the task whose scheduling counter is to be
tested

rtmStepTask returns TRUE if the task’s scheduling counter equals zero,
indicating that the task should be scheduled for execution on the current time
step. Otherwise, it returns FALSE.

If your target supports the Generate an example main program
parameter, you can generate calls to rtmStepTask using the TLC function
RTMTaskRunsThisBaseStep.

Scheduling Code for Multirate Multitasking on
VxWorks

The following task scheduling code, from ertmainlib.tlc, is designed for
multirate multitasking operation on a Wind River® Systems VxWorks®
target. The example uses the TLC function RTMTaskRunsThisBaseStep to
generate calls to the rtmStepTask macro. A loop iterates over each subrate
task, and rtmStepTask is called for each task. If rtmStepTask returns TRUE,
the VxWorks semGive function is called, and the VxWorks RTOS schedules
the task to run.

%assign ifarg = RTMTaskRunsThisBaseStep("i")

7-5

7 Scheduling Considerations

7-6

for (i = 1; 1 < %<FcnNumST>; i++) {
if (%<ifarg>) {
semGive (taskSemList[i]);
if (semTake(taskSemList[i],NO_WAIT) != ERROR) {
logMsg("Rate for SubRate task %d is too fast.\n",i,0,0,0,0,0);
semGive (taskSemList[i]);

Suppress Redundant Scheduling Calls

Redundant scheduling calls are still generated by default for backward
compatibility. To change this setting and suppress them, add the following
TLC variable definition to your system target file before the %include
"codegenentry.tlc" statement:

%assign SuppressSetEventsForThisBaseRateFcn = 1

Data, Function, and File
Definition

¢ Chapter 8, “Data Types”

¢ Chapter 9, “Module Packaging Tool (MPT) Data Objects”
¢ Chapter 10, “Custom Storage Classes”

¢ Chapter 11, “User Package Registration”

¢ Chapter 12, “Function and Class Interfaces”

¢ Chapter 13, “Memory Sections”

Data Types

e “Apply User-Defined Data Types” on page 8-2

® “Specify Persistence Level for Signals and Parameters” on page 8-7
* “Buses” on page 8-11

* “Rename Built-In Data Types” on page 8-30

® “Generate Code Including User-Defined Data Types” on page 8-32
e “Data Type Replacement” on page 8-44

e “Data Definition and Declaration Management” on page 8-55

8 Data Types

Apply User-Defined Data Types

8-2

In this section...

“Define User Data Types” on page 8-2
“Select User-Defined Data Types” on page 8-4

Define User Data Types

You can use user-defined data types for Simulink signals and parameters and
their corresponding identifiers in generated code. This is true whether or not
a signal or parameter has a Simulink data object associated with it.

Before you can select a user-defined data type for a signal or parameter, you
must:

1 Create a user data type (alias), as explained in the description of

Simulink.AliasType in the Simulink documentation. For the example in
“Select User-Defined Data Types” on page 8-4 that shows how to select user
data types for signals and parameters, create the alias data type £32.

2 Register the user data type so that it is associated with the corresponding

MathWorks C/C++ data type, as explained in “Create Data Types for mpt
Data Objects” on page 8-35.

Note Dialog boxes that contain the data type field display user-defined
data types for both mpt as well as Simulink data objects. Modifications you
make to s1_customization.m in order to display user-defined data types
are still supported.

For the example, register the data type f32 so that it 1s associated
with type real32_T. The call to function addUserDataType in the
sl customization.m file you use for the registration must specify:

e 32 as the user data type
® real32 T as the built-in data type

Apply User-Defined Data Types

e <userdata_types.h> as the user header file that is to include the user
data type definition

For example,

function sl_customization(cm)

hObj = cm.slDataObjectCustomizer;

addUserDataType(hObj, 'f32', 'real32_T', '<userdata_types.h>');

end

If you have not already done so, add the directory containing the
sl customization.m file that you created or modified in step 1 to the
MATLAB search path.

Open a model. The example uses the following model.

G}
In1 g Out
Gain
)

Create a data dictionary for the model, as explained in “Create Simulink
and mpt Data Objects” on page 8-56, to associate signals and parameters
with data objects. For the example, the Model Explorer display must
appear as shown below. The three data objects that appear, sig1, sig2,
and ¢, and the registered user data type, 32, appear in the middle pane.
The "T" indicates that f32 is an alias data type.

8-3

8 Data Types

8-4

@ Model Explorer EI@
File Edit View Tools Add Help
= B] € “ 4 &
Search: by Mame - MName: % Search
Model Hierarchy 3% %L, | | Contents of: Base Workspace Filter Contents Base Workspace
4 EI Simulink Root PP ; X = The base (MATLAB) workspace cc
ﬁ | Column View: |Data Cbjects v | ShowDetails 4objects) '~ tha_t are vigible to all Simulink moc
wvariables can be used to paramet
%\:ﬁ Configuration Mame Value DataType model, block and signal paramete
[iéﬂ a 10 auto
-£ sigt auto
-£ sig? auto
[T] 22 ‘ 1
4 1 b rEE ILI
1 m + Contents Search Results e L) L

For the selection procedure and to continue with the example, continue to
“Select User-Defined Data Types” on page 8-4.

Select User-Defined Data Types

After completing the preparation explained in “Define User Data Types” on
page 8-2, you can use the user-defined data types for Simulink signals and
parameters and for their corresponding identifiers in the generated code. You
can use user-defined data types with signals and parameters whether or not
they have Simulink objects associated with them.

1 For an mpt object that is associated with a signal or parameter in your
model, in the Data type field, select the user data type that you want.
For example, select f32, for sig1.

This selects £32 for the sig1 data object in the data dictionary, but does
not select 32 for the corresponding labeled signal in the model. Therefore,
the two may be in conflict. If you try to update the model, you could get
an error message.

To continue with the example, type f32 into the Data type field for sig1.

2 Select the model and double-click the signal or parameter source block.
(The source block of a model signal or parameter controls the signal’s or
parameter’s data type.) For example, in the example model the Sum block

Apply User-Defined Data Types

1s the source block for sig1. Double-click the Sum block. The Function

Block Parameters dialog box opens.

3 Select the Signal Attributes tab.

4 In the Output data type or Parameter data type field, type the name
of the user data type that you specified for the data object in step 1, and

click Apply. The user data type of the
the signal object are now the same.

=] Function Block Parameters: Sum

Sum

signal in the model and that of

x|

Add or subtract inputs. Specify one of the fullov%g:

a) string containing + or - for each input port, | for spacer between ports (e.g. ++I-1++)

b) scalar, »= 1, spedifies the number of input ports to be summed.
When there is only one input port, add or subtract elements over all dimensions or ane
specified dimension

Main Signal Attributes I

™ Require all inputs to have the same data type

Accumulator data type: I Inherit: Inherit via internal rule

Cutput minimum: Cutput maximum:

=l >

[[0

Output data type: | f32

=l <<

’rDaB Type Assistant:

Mode: IExpression ﬂ |f32

[~ Lock scaling against changes by the autoscaling tool

Integer rounding mode: IFInnr

[~ saturate on integer overflow

J- oK I Cancel | Help | Apply

Alternatively, you can use dictionary-driven data typing. In the
Output data type field, specify object.DataType, where object is the
case-sensitive object name. For example, you can specify sig1.DataType

instead of £32.

8-5

8 Data Types

] Function Block Parameters: Sum

Sur

b 1x

Add or subtract inputs, Specify one of the following:

a) string containing + or - for each input part, | for spacer between ports (e.g. ++|-|
++)

b) scalar, == 1, specifies the number of input ports to be summed.

When there is only one input port, add or subtract elements over all dimensions or one
specified dimension %

Main Signal Attributes I
™ Require all inputs to have the same data type

Accumulator data type: I Inherit: Inherit via internal rule ﬂ b3 |

Qutput minimum: Qutput maximum:

0 [0

Qutput data type: |sigl‘DataType LI << |
Data Type Assistant

’7Mnde: IExpresslnn ﬂ Islgl.DataType

™ Lock scaling against changes by the autoscaling tool

Integer rounding mode: IFInnr ;I
(=
J- OK I Cancel | Help | Apply |

The advantage of using the alternative is that subsequent user data type
changes for the object in the dictionary automatically change the user data
type of the corresponding model signal or parameter.

5 Repeat steps 1 through 4 for each remaining model signal and parameter
that has a corresponding signal object for which you selected a user data
type.

6 Save the model and corresponding data objects in the MATLAB base
workspace in a .mat file for reuse later. Generated code for sig1 in the
example model (with default MPF settings) would appear as follows:

In sampleUserDT.c 32 sig1l;

In sampleUserDT_types.h #include <userdata_types.h>

Specify Persistence Level for Signals and Parameters

Specify Persistence Level for Signals and Parameters

With this procedure, you can control the persistence level of signal and
parameter objects associated with a model. Persistence level allows you to
make intermediate variables or parameters global during initial development.
At the later stages of development, you can use this procedure to remove these
signals and parameters for efficiency. Notice the Persistence Level field on
the Model Explorer, as illustrated in the figure below. For descriptions of the
properties on the Model Explorer, see Parameter and Signal Property Values

[} Model Explorer =R |
File Edit View Tools Add Help
S 4B X B Ew (@ 4 &
Search: by Name ~ Name: 2} search
Madel Hierarchy ¥ %, | contents of: Base Workspace Filter Contents ‘ mpt.Signak A
4 Simulink Root oo o) = -
£ simuiink roo Column View: [Data Objects | ShowDetsls 7obiects) Fr Databype: auto - >>
B Base Workspace
% Configuration Preferences Name Value Datalype Min Max Dimeni Complexity: [auto -
B rtwdemo_mpf Y » —
Dimensions: -1 Dimensions mode: [auto -
H caint 5
B Gainz 3 Sample time: -1 Sample mode: auto -
He & Minmum: [] Maximum: 3]
H 2 26
m a3 9 Initial value: Units:
£a auto non 4 Code generation options
Storage dass: | Global (Custom) -
Custom attributes
Memory section: [Default -]
Header fle:
Owner:
Defiition fle:
Persistence level: 1
Alias:
« i)
« i D
revert | [belp] [Apoly
Contents Search Results

Notice also the Signal display level and Parameter tune level fields on
the Code Placement pane of the Configuration Parameters dialog box, as
illustrated in the next figure.

8-7

8 Data Types

8-8

% Configuration Parameters: twdemo_mpf/Configuration (Active)

Select: Global data placement (custom storage classes only)

-~ Solver Data definition: IData defined in a single separate source file

i~Data Import/Export

&~ Optimization Data definition filename: global.c

—--D!agnnstlcs] Data declaration: IData declared in a single separate header file
+-Sample Time

Data declaration filename: global.h

#include file delimiter: IAuto

[T] use owner from data object for data definition placement

Global data placement (MPT data objects only)

- Stateflow

Signal display level: 10 Parameter tune level: 10
-Hardware Implementat...

--Model Referencing
~Simulation Target

Code Packaging

o]

-Code Generation File packaging format: {Compact (with separate data file)

-~ Report
Comments
- Symbols
- Custom Code
- Debug
Interface
--SIL and PIL Verificat...
- Code Style
- Templates
- Code Placement
- Data Type Replace...

The Signal display level field allows you to specify whether or not the code
generator defines a signal data object as global data in the generated code.
The number you specify in this field is relative to the number you specify in
the Persistence level field. The Signal display level number is for mpt
(module packaging tool) signal data objects in the model. The Persistence
level number is for a particular mpt signal data object. If the data object’s
Persistence level is equal to or less than the Signal display level, the
signal appears in the generated code as global data with the properties
(custom attributes) specified in “Create mpt Data Objects with Data Object
Wizard” on page 8-63. For example, this would occur if Persistence level
is 2 and Signal display level is 5.

Otherwise, the code generator automatically determines how the particular

signal data object appears in the generated code. Depending on the settings
on the Optimization pane of the Configuration Parameters dialog box, the

signal data object could appear in the code as local data without the custom

attributes you specified for that data object. Or, based on expression folding,
the code generator could remove the data object so that it does not appear in
the code. For more information, see “Code Optimization Basics”.

Specify Persistence Level for Signals and Parameters

The Parameter tune level field allows you to specify whether or not the
code generator declares a parameter data object as tunable global data in the
generated code.

The number you specify in this field is relative to the number you specify in
the Persistence level field. The Parameter tune level number is for mpt
parameter data objects in the model. The Persistence level number is for a
particular mpt parameter data object. If the data object’s Persistence level
1s equal to or less than the Parameter tune level, the parameter appears
in the generated code with the properties (custom attributes) specified in
“Create mpt Data Objects with Data Object Wizard” on page 8-63, and thus
1s tunable. For example, this would occur if Persistence level is 2 and
Parameter tune level is 5.

Otherwise, the parameter is inlined in the generated code, and the code
generation settings determine its exact form.

Note that, in the initial stages of development, you might be more concerned
about debugging than code size. Or, you might want one or more particular
data objects to appear in the code so that you can analyze intermediate
calculations of an equation. In this case, you might want to specify the
Parameter tune level (Signal display level for signals) to be higher than
Persistence level for some mpt parameter (or signal) data objects. This
results in larger code size, because the code generator defines the parameter
(or signal) data objects as global data, which have the custom properties
you specified. As you approach production code generation, however, you
might have more concern about reducing the size of the code and less need
for debugging or intermediate analyses. In this stage of the tradeoff, you
could make the Parameter tune level (Signal display level for signals)
greater than Persistence level for one or more data objects, generate code
and observe the results. Repeat until satisfied.

1 With the model open, in the Configuration Parameters dialog box, click
Code Generation > Code Placement.

2 Type the desired number in the Signal display level or Parameter tune
level field, and click Apply.

3 In the Model Explorer, type the desired number in the Persistence field
for the selected signal or parameter, and click Apply.

8-9

8 Data Types

4 Save the model and generate code.

8-10

Buses

Buses

In this section...

“About Buses and Code Generation” on page 8-11

“Set Bus Diagnostics” on page 8-12

“Optimize Virtual and Nonvirtual Buses” on page 8-12
“Use Single-Rate and Multi-Rate Buses” on page 8-15
“Set Bus Signal Initial Values” on page 8-20

“Use Buses with Atomic Subsystems” on page 8-25

About Buses and Code Generation

When you use buses in a model for which you intend to generate code:
e Setting diagnostic configuration parameters can add to the ease of
development.

¢ The bus implementation techniques used can influence the speed, size, and
clarity of that code.

* Some bus implementation techniques that can be useful are not

immediately obvious.

This chapter contains guidelines that you can use to improve the results when
you work with buses. The guidelines describe techniques for:

¢ Simplifying the layout of the model

¢ Increasing the efficiency of generated code

¢ Defining data structures for function/subsystem interfaces

¢ Defining data structures that match existing data structures in external C

code

Some trade-offs inevitably exist among speed, size, and clarity. For example,
the code for nonvirtual buses is easier to read because the buses appear in
the code as structures, but the code for virtual buses is faster because virtual

8-11

8 Data Types

8-12

buses do not require copying signal data. The applicability of some guidelines
can therefore depend on where you are in the application development process.

This chapter focuses on optimizations that are useful for final production
code. Before you read this chapter, read “Composite Signals”. This topic
assumes that you understand the concepts and procedures described in that
one, including the blocks used for creating and manipulating buses.

Set Bus Diagnostics

Simulink provides diagnostics that you can use to optimize bus
usage. Set the following values on the Configuration Parameters
> Diagnostics > Connectivity pane:

Buses

Unspecified bus object at root Outport block: |warning

Element name mismatch: |warning v|
Mux blocks used to create bus signals: |error - |
Bus signal treated as vector: |warning - |
Non-bus signals treated as bus signals: |none - |
Repair bus selections: |Warn and repair - |

Bus signal treated as vector is enabled only when Mux blocks used to
create bus signals is set to error. Setting Mux blocks used to create
bus signals to None disables both diagnostics. Temporarily disabling

the two mux and bus diagnostics allows you to debug other bus problems
before addressing mux and bus mixtures. You can then enable the last two
diagnostics and use them to eliminate such mixtures. When you build existing
models, the diagnostic settings should be as shown. See “Avoid Mux/Bus
Mixtures” for more information.

Optimize Virtual and Nonvirtual Buses

e “Use Virtual Buses Wherever Possible” on page 8-13

® “Avoid Nonlocal Nested Buses in Nonvirtual Buses” on page 8-14

Buses

Use Virtual Buses Wherever Possible

Virtual buses are graphical conveniences that do not affect generated code. As
a result, the code generation engine is able to fully optimize the signals in the
bus. You should therefore use virtual rather than nonvirtual buses wherever
possible. You can convert between virtual and nonvirtual buses using Signal
Conversion blocks. In many cases, Simulink automatically converts a virtual
bus to a nonvirtual bus when required. For example, a virtual bus input

to a Model block becomes a nonvirtual bus without the need for explicit
conversion. See for more information.

When are Virtual and Nonvirtual Buses Required?. In some cases,
Simulink requires the use of nonvirtual buses:

* For non-auto storage classes
¢ Inports and Outports of Model blocks
® To generate a specific structure from the bus

® Root level Inport or Outport blocks when the bus has mixed data types
In one case, Simulink requires the use of virtual buses:

¢ Only virtual buses can be used for bundling function call signals.

8-13

8 Data Types

8-14

Avoid Nonlocal Nested Buses in Nonvirtual Buses

Buses can contain subordinate buses. The storage class of a subordinate bus
should be auto, which results in a local signal. Setting a subordinate bus to a
non-auto storage class has two undesirable results:

¢ Allocation of redundant memory (memory for the subordinate bus object
and memory for the final bus object)

¢ Additional copy operations (first copying to the subordinate bus and then
copying from the subordinate bus to the final bus)

In the following example, the final bus is created from local scoped subordinate
elements. The resulting assignment operations are relatively efficient:

double

1
.- Al SimpleBus 1

In1

[}
&
v

35 |

Nonwvirtual In One.

38 Nonvirtual In One.

39 Nonwvirtual 1 One

40 Nonvirtual
41 Nonwvirtual
42 Nonvirtual In Cne.
43 Nonvirtual In One

Nonwvirtual In One

Buses

By contrast in the next example the subordinate elements Sub_Bus_1 and
Sub_Bus_2 are global in scope. First the assignment to the subordinate bus
occurs (lines 54 — 59) then the copy of the subordinate bus to the main bus
(lines 60 — 61). In most cases, this is not an efficient implementation:

double ExporiedGlobal

1
A1 SimpleBus_1 ExporedGiohal
doutie ExporidGiotl e >
2 AZ
I
doubk ExporiedGlobal
o il s~ BN it i Y
double ExporedGlobal Monwirtuzl In Cne @
Ind
doubke ExporedGlobal n
(5 :‘AE' >
In&
H2 void bus in steps b step(void)
{
5 Sub bus l.enableFlag = Al;
55 Sub bus 2.Entzry 1 = A3;
5 Sub_bus l.calValues[0] = E2[0]:
3 Sub bus Z.Entry 2 Array[0] A4[0];
5 Sub bus l.calValues[l] = A2[1];
A4[1]:
= Sub bus 1;
L = Sub bus 2Z;
r[0] = A5[0]:
6 r[1] = AS[1]:
64 £[Z] = A5[2]):
65 }
o I I o
Use Single-Rate and Multi-Rate Buses
® “Introduction” on page 8-16
e “Techniques for Combining Multiple Rates” on page 8-16

® “Larger Buses and Multiple Rates” on page 8-18

8-15

8 Data Types

8-16

e “Specify Sample Time Rates” on page 8-20

Introduction

Nonvirtual buses do not support multiple rates. Virtual buses support
multiple rates as long as the bus does not cross a root level inport or outport.
The best techniques for optimizing a bus that contains signals that initially
have different rates can depend on the type of the bus and the number of
signals.

Techniques for Combining Multiple Rates

The simplest bus contains only two signals. The next figure shows two
examples of two-element buses. The first example shows a virtual bus created
from two signals that have different rates. The second example shows a
nonvirtual bus created from the same two signals. The Sample Time Legend
shows the different signal rates:

int8 D1
1} >
= int3Z 02 > m SimpleBus 1 T

R ate Transition

In2
intg D'
D >
SimpleBus 1 01
In3 = o T
int3z 02 D iirtE.Z S — e r ||
CGo—|-H > S

[}
Ind [

R ate Transition2

Buses

P o)

EﬂampfeTIme Legend @

ex_bus_multirate

Sample Times for 'ex_bus_multirate’

Annotation Description Value

01 Discrete 1 1
D2 Discrete 2 2
H Hybrid Mot Applicable

The signals with different rates in the first example can be combined into
a virtual bus, because virtual buses support multiple rates. However, a
multirate virtual bus cannot connect to a root-level output port. The bus
therefore passes through a Rate Transition block that converts it to a
single-rate bus, then connects to the Outport. This technique is preferable
only for virtual buses that contain one or two signals. See “Larger Buses
and Multiple Rates” on page 8-18.

The signals with different rates in the second example cannot initially be
combined into a nonvirtual bus, because nonvirtual buses do not support
multiple rates. One of the signals therefore passes through a Rate Transition
block, which converts it to have the same rate as the other signal, then
connects to the Bus Creator block. The signals can then combine into a
single-rate nonvirtual bus, which can connect to the root-level outport without
further conversion.

8-17

8 Data Types

8-18

Larger Buses and Multiple Rates

When you create a multirate virtual bus that contains more than two signals,
you can convert the bus to single-rate by applying a Rate Transition block to
the output of the Bus Creator block. Use a Rate Transition block on each
input signal to give full control over the output rate. As the next figure shows,
when a single Rate Transition block is used, the block sets the signals to

the fastest rate (D1):

o
Q2 >
X
In1
oz
2} >
—
D3 [[
> g
A3 it
— RateTrans tion
o
4} >
A4
Ind
D N = N
i fom
In% RateTransition1
Dz
= >
Dz —
. e i 2 j
- D3 [=| Cz . Out?
- i fom

In? RateTransitionZ

@=L

RateTrans ibion3

h 4

Buses

-

W Sample Time Legend (=]

ex_large_bus_multirate

Sample Times for "ex_large_bus_multirate'

Annotation Description Value

D1 Discrete 1 1
D2 Discrete 2 2
D3 Discrete 3 4
H Hybrid Not Applicable

Note that the preferred techniques for a virtual bus with more than two
signals, and the required technique for a nonvirtual bus with one or more
signals, are the same. Note also that, in the preceding figure, the blocks that
perform rate transition are not actual Rate Transition blocks, but other blocks
that can change the signal rate as part of some other operation. The identity
of the blocks that perform rate transition is not as significant; what matters is
that the signal rates match when required.

8-19

8 Data Types

8-20

Specify Sample Time Rates

The sample time for buses should be specified through the signals that
define the bus. If the sample times do not match, use Rate Transition (or
equivalent) blocks to create a uniform rate, as shown in the previous figures.
The signal rates should not be set by specifying Sample Time values in a
Bus Creator block’s bus object. Instead, set the sample time for each signal
before inputting it to the Bus Creator, and set each Sample Time in the
corresponding bus object to -1, which indicates the value is inherited.

Set Bus Signal Initial Values

® “Introduction” on page 8-20
e “Initialize Bus Signals in Simulink” on page 8-20
e “Bus Initialization in Stateflow” on page 8-21

e “Create a Bus of Constants” on page 8-24

Introduction

Unlike scalar and vector signals, buses do not provide a direct way to initialize
signals. This section describes techniques for initializing bus signals using
Simulink, Stateflow, and MATLAB functions.

Initialize Bus Signals in Simulink

In Simulink, you can set initial values on a bus by using a set of conditionally
executed subsystems, such as Function-Call subsystems, and a Merge block,
as shown in this example:

Buses

InitTrig}

Oy

%Qpﬁig{} 1 E

SimpleSched

Quti

i
i

i

i e

i trigger() CounierBus
i

i

i

InitBus CounterBus
Merge remwemEE = -@
boolean trigger(} GlobalCountar

In1 Cut1
(CounterBus

In1
double cutl

(2 y——#{nz

InZ

Standardl pdste Merge

Both subsystems (InitBus and StandardUpdate) create a bus signal of type
CounterBus. However, the assignment to the variable GlobalCounter is
controlled by the Merge block. See “Function-Call Subsystems” for more
information.

This technique is limited because the StandardUpdate subsystem does not
use the initial values from the InitBus subsystem. If the calculations depend
on past information from the bus, consider using Stateflow or MATLAB
functions to initialize bus signals.

Bus Initialization in Stateflow

Stateflow and MATLAB functions allow for conditional execution internally.
In the following example, the init and update code are Functions in

the Stateflow diagram. This technique simplifies the presentation in the
generated code:

8-21

8 Data Types

nit/ N Periodic/
en:lnitVal(): eze=1n du: UpdateCnt();
[MODE ~= INIT]
A
function Initval function Updaiecnt

{
GlobalCounter. cnt[0] = uint&(100);

GlobalCounter.cnt[1] = uint&(50); [GlobalCounter cnt[0]==uint8{255)]
GlobalCounter.reset = boolean(0); 6)1

GlobalCounter. Other = 20; 5

i {

GlobalCounter.cnt[0] = uint&(0);

GlobalCounter.cnt[0}++; GlobalCounter.reset = boolean(1);
GlobalCounter.reset = boalean(0); |

}
L

In the generated code, you can see that the UpdateCnt function uses the past
value of GlobalCounter.cnt:

8-22

Buses

static void initBus 4 Stateflow Arr initVal (void)
i

GlobhalCountar.ent[0]

100U;
GlobalCounter.cntil] = 500:
GlobalCounter.resst = falae:
GlobalCounter.Other = 20.0;

static void initBus 4 Stateflow A UpdateCnt (void)

i
if [(GlobalCounter.cnt[0] = 255) {
GlobalCounter.cnt (0] = 0U;
GlokalCouncer.reset = true;
} elase { —
GlobalCounter.cnt[0] = (uint8 TK(GlobalCounter.cnt0] + 1):
GlobalCounter.reset = false; iy —
}
}

The previous example used Stateflow Graphical functions to initialize and
update the buses. Alternatively, you can use MATLAB functions or Simulink
subsystems embedded in a Stateflow diagram. The next figure illustrates
this technique:

Init/ Periodic/
en:GlobalCounter = initval(y; [MODE==INIT] du: GlobalCounter = UpdateCni{GlobalCounter);

TMODE ~= INIT]

Simulink Function gimulink Function
BusOut = initval BusOut = UpdateCnt(Busin)

The Simulink subsystems are the same as those used in the earlier
Simulink-only example.

8-23

8 Data Types

Create a Bus of Constants

The code for specifying a bus of constant values will appear in either the
Init or the Step function of the model. The code location depends on the
configuration of the bus. In most cases the code appears in the Step function.
However if the following conditions hold the code will be placed in the Init
function:

® The bus is a virtual bus

® The signals in the bus have the same data type

® The signals in the bus are constants
In the next figure, only the bus named Bus_2 meets the requirements:

Virtual Bus
I Multiple Data Types (mied)

|
&

k%2

Virtual Bus

goubie Single Diata Type (all double)

™
A J

Nomirtual Bus

5 Multiple Data Types (mibed)

int32

doubl: I Bus ¢ @

Monvirtual Bus
doublk: Single Data Type (all double)

A J

[SimpleBus_2

— e e S -@

} - Outd

™

00 B0 G0 6

A d

The code for Bus_2 therefore appears in the Init function. The code for the
other buses appears in the Step function:

8-24

Buses

SimpleBus 1 Bus 3;
ExternalOutputs busOfConstants busOfConstants A ¥;
KT MODEL bu=0fConstants A busaCfConstants & M ;

RT MODEL busOfConstants A ’busCfConstant; R ﬁ = gbusaCfConstants A M ;

-

void hustConstan:s_a_step[vcid}

{
busOfConsrants A Y.Out l.enableFlag = 1;
Bus 3.enableFlag = 1;
3:5_4.En:xy_1 = 0.0
busOfConstants A Y.Out l.calValues[0] = 2;
Bus_3.calValues[0] = 2;
Bus 4.Entry 2 Array(0] = 6.0;
b:sOchnstants_"_Y.Du:_l.calvaluesjl: = 3;
Bus 3.calValues[l] = 3;
Bus 4¢.Entry 2 Arrayil] = 7.0

}

“void busOfConstants A initialize (void) \

{
busOfConstanta A ¥.Out 2[0] = 0.0;
busOfConstantcs A Y.Out_ 2[1] 8.0;
busOfConstants A Y.Cut 2[2] = 7.0;

To avoid repeatedly updating a bus of constants, place the bus code into a
function-call subsystem, as described in “Initialize Bus Signals in Simulink”
on page 8-20. When you use this technique, make sure the function-call
subsystem is called at the start of execution. See “Function-Call Subsystems”
for more information.

Use Buses with Atomic Subsystems

e “Extract Nonvirtual Bus Signals from Atomic Subsystems” on page 8-26
* “Virtual Bus Signals Crossing Atomic Boundaries” on page 8-27

® “Atomic Subsystems and Buses of Constants” on page 8-29

8-25

8 Data Types

8-26

Extract Nonvirtual Bus Signals from Atomic Subsystems
Selecting signals from a nonvirtual bus can result in unnecessary data copies
when those signals cross an atomic boundary. In the following example the
same code, a simple multiplication of two elements in a vector, is executed
three times:

Reference Example
—Mo extra copies—

l double
SimpleBus 2 ExporedGiobal jdoubke (2) I » idouble
- x
(@B’ T b
In1 Cut1

Froductl

Selected Outside

—Exira copies—
SimpleBus 2 ExporedGiobal lcmbb 2 doubk
| Ini ouip—————————p 2
@ e :
In2 outz
Select_Cubide
Seleced Inside
—No extra copies--
SimpleBus 2 ExporiedGilobal doutk
] Ind Outip— w3
I
In2 Out2

Select_Inside

Buses

In the second instance when the bus signals are selected outside of the atomic
subsystem an unnecessary copy of the bus data is created.

Although this example shows only signals with global scope, both global and
local signals show the same behavior: the selection of the signals outside of the
model results in an unnecessary copy, while the internal selection does not.

Virtual Bus Signals Crossing Atomic Boundaries

Virtual buses that cross atomic boundaries can result in the creation of
unnecessary data copies. The following example shows the data copy that
occurs when a virtual bus crosses an atomic boundary:

Wirtual Across Atomic Boundary
—Extra Data Copy--

ExportedGlobal doubk ExporedGlobal

In1 Qutl 1
@ Wirtual " 4 Virtual Result CD
n

Ot

Virtual_Case

MNonvirtual Aoross Atomic Boundary
—Mo Extra Dats Copy--

SimpleBus 2 ExporiedGlobal doubk ExporedGlobal

P T Int Qutt _ » 2 J
Monirtus! MNon\Virs] Resut

n2 Cut2

Momvirtual_Case

8-27

8 Data Types

12 void virtuallAcrossBo Nonwvirtual Case(voild)
13 {

Nonwvirtual Result = Norwzrtual.Entxy_z_n.xrayfljj L Honvlrtual.Ent,xy_g_nrray:lf:

15 1
vold wirtualZcrossBound Virtual Case (void)
18 {

13 Virtual Result = wvirtuallcrossBoundary B.Entry 2 Array[0] *
20 virtualAcrossBoundary B.Entry 2 Array([l]:

woid wirtuallAcrossBoundary step(void)

2 {

25 virtualAcrossBoundary B.Entry 2 Array(0] = Virtual.Entry 2 Arrayio]:

26 virtualhcrossBoundary B.Entry 2 Array{l] = Virtual.Entry 2 Array[l]:
7 virtualAcrossBound Virtual Case():

28 virtualAcrossBo Nonwvirtual Case():

23 1

Lines 25-26 show the signals being selected out of the bus before they are
used in the function on lines 19-20. By comparison the nonvirtual bus does
not require the use of temporary variables.

8-28

Buses

Atomic Subsystems and Buses of Constants

If the bus passed into an atomic subsystem consists exclusively of constants,

using a virtual bus is more efficient, because Simulink is able to inline the
constant values into the code:

IIIdm.np
Int
PR =R
2 double ExporedGiobal
Vit_For_BOC,
double ExporiedGiobal - Outt
[In2
In_1
Int
Virtua Cese With BOGC
double:
li' impleBus_2
Int
Pa— double Bus 2 "
2 doube ExporisdGiobal
Ot #(2)
NonVin_For_BOC.
double ExporidGiobal e Guiz
2 In2
C iz
In2 -

Virusl_Cese_With_BOC1

void virtuallc Virtual Case With BOC (void)
f
Virt For BOC = 6.0 * In 1;

- r
e ——

void wirtualA Virtual Case With BOCI1 (void)
{
NonVirt For BOC = wirtualAcrossBoundaryBOC B.Bi

E.Bua 2.Entry 2 Array[o] *
virtualAcrossBoundaryBOC B.Bus 2Z.Entry 2 Arrayil] * In 2;

}

void virtualAcrossBoundaryBOC step(void)

{
virtualZic Virtual Case With BOC():
virtualAcroasBoundaryBOC B.Bus 2.Entry 1 = 1.0;
virtualAcrossBoundaryBOC B.Bus 2.Entry 2 Arrayi0] = 2.0;
vlrtualﬁcrosssaunda:yBOCMB.Sus_z.Entxywzﬁhrray:l: = 3.0;
virtuall Virtual Case With BOC1():

}

8-29

8 Data Types

Rename Built-In Data Types

You can replace built-in data type names with user-defined replacement data
type names in the generated code for a model.

To configure replacement data types,

1 In the Model Editor, set the simulation mode of the open model. From
the Simulation menu, select Normal, Software-in-the-loop (SIL), or
Processor-in-the-loop (PIL).

2 In the Configuration Parameters dialog box, click Code
Generation > Data Type Replacement > Replace data type names
in the generated code. A Data type names table appears. The table
lists each Simulink built-in data type name with its corresponding code
generation data type name.

% Configuration Parameters: ex_bus_constants_atomic/Configuration (Active)

Select: V| Replace data type names in the generated code
rSalver Data type names
-Data Import/Export
-Optimization
+-Diagnostics Simulink Code Generation Replacement
~~Hardware Implementat... Name Name Name
--Model Referencing
+-Simulation Target
=I-Code Generation Couhle fEaliy
-~ Report single real32_T
- Comments
Symbols int32 int32_T
Custom Code int16 int16_T
- Debug
- Interface int8 int8_T
- S1L and FIL Verificat... uint32 uint32_ T
- Code Style
- Templates uint1le uintle_T
- Code Placement — T
- Data Type Replace... uin it
~Memary Sections boolean boolean_T

+-HDL Code Generation

int int_T
uint uint_T
char char_T

3 Fill in fields in the third column with your replacement data types. Each
replacement data type should be the name of a Simulink.AliasType object

8-30

Rename BuiltIn Data Types

that exists in the base workspace. Replacements may be specified or not for
each individual built-in type.

For each replacement data type you enter, the BaseType property of the
associated Simulink.AliasType object must be consistent with the built-in
data type it replaces.

e For double, single, int32, int16, int8, uint32, uint16, and uints, the
replacement data type’s BaseType must match the built-in data type.

® For boolean, the replacement data type’s BaseType must be either an
8-bit integer or an integer of the size displayed for Number of bits:
int on the Hardware Implementation pane of the Configuration
Parameters dialog box.

e For int, uint, and char, the replacement data type’s size must match
the size displayed for Number of bits: int or Number of bits: char on
the Hardware Implementation pane of the Configuration Parameters
dialog box.

An error occurs, if
® A replacement data type specification is inconsistent.

® The Simulink.AliasType object has the Data scope parameter set
to Exported.

8-31

8 Data Types

Generate Code Including User-Defined Data Types

In this section...

“About User-Defined Data Types” on page 8-32

“Specify Location of User-Defined Type Definitions” on page 8-33
“Apply User-Defined Data Types” on page 8-34
“Create Data Types for mpt Data Objects” on page 8-35

“Register mpt User Object Types” on page 8-39

About User-Defined Data Types

The Embedded Coder software supports use of user-defined data type objects
in code generation. These include objects of the following classes:

® Simulink.AliasType

® Simulink.Bus

® Simulink.NumericType

For information on the properties and usage of these data object classes,
see Simulink.AliasType, Simulink.Bus, and Simulink.NumericType. For

general information on creating and using data objects, see the “Data Objects”
section of the Simulink documentation

In code generation, you can use user-defined data objects to

e Map your own data type definitions to Simulink built-in data types, and
specify that your data types are to be used in generated code.

® Optionally, generate #include directives specifying your own header files,
containing your data type definitions. This technique lets you use legacy
data types in generated code.

In general, code generated from user-defined data objects conforms to the
properties and attributes of the objects as defined for use in simulation.
When generating code from user-defined data objects, the name of the object
is the name of the data type that is used in the generated code. Exception:

8-32

Generate Code Including User-Defined Data Types

for Simulink.NumericType objects whose IsAlias property is false, the
name of the functionally equivalent built-in or fixed-point Simulink data
type is used instead.

Note The names of data types defined using Simulink.AliasType objects
are preserved in the generated code only for installations with a Embedded
Coder license.

Specify Location of User-Defined Type Definitions
When a model uses Simulink.DataType and Simulink.Bus objects,

the generated code includes corresponding typedef definitions. Both
Simulink.DataType and Simulink.Bus objects have a HeaderFile property
that controls the location of the object’s typedef. Setting a HeaderFile is
optional and specific to code generation only.

Omit a HeaderFile Value

If the HeaderFile property for a Simulink.DataType or Simulink.Bus object
is left empty, a generated typedef for the object appears in the generated file
model _types.h.

Example. For a Simulink.NumericType object named myfloat with
a Category of double and without HeaderFile property specified,
model types.h in the generated code contains:

typedef real_T myfloat;

Specify a HeaderFile Value

If the HeaderFile property for a Simulink.DataType or Simulink.Bus object
1s set to a string value,

¢ The string must be the name of a header file that contains a typedef for
the object.

® The generated file model types.h contains a #include that gives the
header file name.

8-33

8 Data Types

8-34

You can use this technique to include legacy or other externally created
typedefs in generated code. When the generated code compiles, the specified
header file must be accessible on the build process include path.

HeaderFile Property Syntax. The HeaderFile property should include the
desired preprocessor delimiter ("" or '<>'), as in the following examples.

This example:

myfloat.HeaderFile = '<legacy_types.h>'

generates the directive:

#include <legacy_types.h>

This example:

myfloat.HeaderFile = '"legacy_types.h>""'

generates the directive:

#include "legacy_types.h"

Apply User-Defined Data Types

To specify and use user-defined data types for code generation:

1 Create a user-defined data object and configure its properties, as described
in the “Data Objects” section of the Simulink documentation.

2 If you specified the HeaderFile property, copy the header file to the
specified directory.

3 Set the output data type of selected blocks in your model to the user-defined
data object. To do this, set the Data type parameter of the block to
Specify with dialog. Then, enter the object name in the Output data
type parameter.

4 The specified output data type propagates through the model and variables
of the user-defined type are declared as required in the generated code.

Generate Code Including User-Defined Data Types

Create Data Types for mpt Data Objects

e “User Data Types for mpt Data Objects” on page 8-35
® “Register User Data Types Using sl_customization.m” on page 8-36

e “User Data Type Customization Using sl_customization.m” on page 8-38

Note The capabilities described in this section apply only to mpt data objects.

User Data Types for mpt Data Objects

By default, MathWorks data types (such as real32_T and uint8_T) are used to
define data in the generated code. If you prefer using your company-standard
data types (such as DBL and U8), you can define user data types. To use

this feature, you must register and create your data types so that the code
generator can associate them with the corresponding MathWorks C/C++ data
types. Then, the code generator will use your user data types in the generated
code instead of the MathWorks C/C++ data types.

Code generation software automatically associates the MathWorks C/C++
data types with the equivalent ANSI®® C/C++ data types. If you want to use
only the default MathWorks C/C++ data types, you do not need to register
and create your own data types.

To register user data types, use the Simulink customization file
sl_customization.m. This file is a mechanism that allows you to use
MATLAB code to perform customizations of the standard Simulink user
interface. The Simulink software reads the s1_customization.m file, if
present on the MATLAB path, when it starts and the customizations specified
in the file are applied to the Simulink session. For more information on the
sl customization.m customization file, see “Registering Customizations”.

Once you have registered your user data types using s1_customization.m,
you must create the Simulink.AliasType objects corresponding to your
user data types. If your model references a user data type either directly
(for example, in the output data type of a block) or indirectly (for example,

3. ANSI® is a registered trademark of the American National Standards Institute, Inc.

8-35

8 Data Types

8-36

a Simulink.Signal object data type is set to the user data type), you must
create the corresponding Simulink.AliasType object before updating

the model, running a simulation, or generating code. To create the
Simulink.AliasType objects, you can:

® Invoke the MATLAB function ec_create_type obj to programmatically
create the required Simulink.AliasType objects

® (Create Simulink.AliasType objects one at a time by selecting
Add > Simulink.AliasType in the Model Explorer

e Create Simulink.AliasType objects one at a time by entering the MATLAB
command userdatatype = Simulink.AliasType, where userdatatype is
a user data type registered in s1_customization.m

Register User Data Types Using sl_customization.m

To register user data type customizations, you create an instance of
sl_customization.m and include it on the MATLAB path of the Simulink
installation that you want to customize. The s1_customization function
accepts one argument: a handle to a customization manager object. For
example,

function sl _customization(cm)

As a starting point for your customizations, the s1_customization function
must first get the default (factory) customizations, using the following
assignment statement:

hObj = cm.slDataObjectCustomizer;
You then invoke methods to register your customizations. The customization
manager object includes the following methods for registering Simulink user

data type customizations:

® addUserDataType(hObj, userName, builtinName, userHeader)

addUserDataType(hObj, userName, builtinName)

(

(
addUserDataType(hObj, userName, aliasTypeObj)
addUserDataType(hObj, userName, numericTypeObj)
(

addUserDataType(hObj, userName, fixdtString)

Generate Code Including User-Defined Data Types

Registers the specified user-defined data type and adds it to the top of the
data type list, as displayed in the Data type pull-down list in the Model
Explorer.

= userName — Name of the user data type

= builtinName — MathWorks C/C++ data type to which userName is
mapped

= userHeader — Name of the user header file that includes the definition
of the user data type

= aliasTypeObj, numericTypeObj, or fixdtString —
Simulink.AliasType, Simulink.NumericType, or fixdt to
which userName is mapped

Note If a Simulink.AliasType or Simulink.NumericType object of the
same name as your registered user data type is already defined in the base
workspace, the definitions of the existing object and the registered user
data type must be consistent or a consistency warning will be displayed.

moveUserDataTypeToTop(hObj, userName)

Moves the specified user-defined data type to the top of the data type list,
as displayed in the Data type pull-down list in the Model Explorer.

moveUserDataTypeToEnd(hObj, userName)

Moves the specified user-defined data type to the end of the data type list,
as displayed in the Data type pull-down list in the Model Explorer.

removeUserDataType(hObj, userName)

Removes the specified user-defined data type from the data type list.

Your instance of the s1_customization function should use these methods to
register user data types for your Simulink installation.

The Simulink software reads the s1_customization.m file when it starts. If
you subsequently change the file, to use the changes you must restart your
Simulink session or enter the following command at the MATLAB command
line:

8-37

8 Data Types

sl refresh_customizations

User Data Type Customization Using sl_customization.m

The s1_customization.m file shown in sl_customization.m for User Data
Type Customizations on page 8-38 uses the following methods:

® addUserDataType to register the user-defined data types MyInt16,
MyInt32, MyBool, and fixdt(1,8)

* moveUserDataTypeToTop to move MyBool to the top of the data type list, as
displayed in the Data type pull-down list in the Model Explorer

® removeUserDataType to remove the built-in data types boolean and
double from the data type list

sl_customization.m for User Data Type Customizations

function sl_customization(cm)
% Register user customizations

% Get default (factory) customizations
hObj = cm.slDataObjectCustomizer;

% Add custom types

hObj.addUserDataType('MyInt16', 'int16_T', '<mytypes.h>");
hObj.addUserDataType('MyInt32', 'int32_T', '<mytypes.h>");
hObj .addUserDataType('MyBool', 'boolean_T');
hObj.addUserDataType('fixdt(1,8)"');

% Make MyBool first in the list
hObj.moveUserDataTypeToTop('MyBool');

% Remove built-in boolean and double from the list
hObj.removeUserDataType('boolean');
hObj.removeUserDataType('double');

end

If you include the above file on the MATLAB path of the Simulink installation
that you want to customize, the specified customizations will appear in Model
Explorer. For example, you could view the customizations as follows:

8-38

Generate Code Including User-Defined Data Types

1 Start a MATLAB session.

2 Open Model Explorer, for example, by entering the MATLAB command
daexplr.

3 Select Base Workspace.
4 Add an mpt signal, for example, by selecting Add > MPT Signal.
5 In the right-hand pane display for the added mpt signal, examine the

Data type drop-down list, noting the impact of the changes specified in
sl_customization.m for User Data Type Customizations on page 8-38.

& Model Explorer (] 3]
File Edit Wew Toos Add Help
AR RE BT Y FEECIE TR EE)
Search: [ty Block Typs = Type: | Rd| Search |
Model Higrarchy Contents of: Base \wWorkspace mpt.Signal: Sig
- [E8]Simulink Floot [Nams 7 [Value | DataTyp|| Datatype: [auto Units: =
& 1 Base Warkspace o= 5y e Dimensions: \Complesity [auto -1
B untived sample e | YES0! . =
ample hrme: det[18] ample mode: | auko
Feinimun: Mylnt3z I aimuim: Int
Initial value: |MYINTE
Cod single
~Code genef o
Storage clf Uit — =
Custom 4 16
uint16 -
Memory SEEGRT DEra0T =l
Header file: |
Dvmer |
Defiition fle: |
Persistence levet [1
Aliaz: |
Description:
g 2 ~
Contents | Search Aesults Revert Help | Apply |
A

Register mpt User Object Types

® “Introduction” on page 8-40

¢ “Register mpt User Object Types Using sl_customization.m” on page 8-40

8-39

8 Data Types

8-40

* “mpt User Object Type Customization Using sl_customization.m” on page
8-42

Introduction

Embedded Coder software allows you to create custom mpt object types and
specify properties and property values to be associated with them (see “Create
mpt Data Objects with Data Object Wizard” on page 8-63). Once created, a
user object type can be applied to data objects displayed in Model Explorer.
When you apply a user object type to a data object, by selecting a type name
in the User object type pull-down list in Model Explorer, the data object is
automatically populated with the properties and property values that you
specified for the user object type.

To register mpt user object type customizations, use the Simulink
customization file s1_customization.m. This file is a mechanism that allows
you to use MATLAB code to perform customizations of the standard Simulink
user interface. The Simulink software reads the s1_customization.m file, if
present on the MATLAB path, when it starts and the customizations specified
in the file are applied to the Simulink session. For more information on the
sl customization.m customization file, see “Registering Customizations”.

Register mpt User Object Types Using sl_customization.m

To register mpt user object type customizations, you create an instance of
sl customization.m and include it on the MATLAB path of the Simulink
installation that you want to customize. The s1_customization function
accepts one argument: a handle to a customization manager object. For
example,

function sl_customization(cm)

As a starting point for your customizations, the s1_customization function
must first get the default (factory) customizations, using the following
assignment statement:

hObj = cm.slDataObjectCustomizer;

You then invoke methods to register your customizations. The customization
manager object includes the following methods for registering mpt user object
type customizations:

Generate Code Including User-Defined Data Types

® addMPTObjectType(hObj, objectTypeName, classtype, propNamel,
propValuel, propName2, propValue2, ...)

addMPTObjectType(hObj, objectTypeName, classtype, {propNamei,
propName2, ...}, {propValuel, propValue2, ...})

Registers the specified user object type, along with specified values for
object properties, and adds the object type to the top of the user object
type list, as displayed in the User object type pull-down list in the Model
Explorer.

= objectTypeName — Name of the user object type

= classType — Class to which the user object type applies: 'Signal’,
'"Parameter’', or 'Both'

= propName — Name of a property of an mpt or mpt-derived data object to
be populated with a corresponding propValue when the registered user
object type is selected

= propValue — Specifies the value for a corresponding propName
® moveMPTObjectTypeToTop(hObj, objectTypeName)

Moves the specified user object type to the top of the user object type list, as
displayed in the User object type pull-down list in the Model Explorer.

® moveMPTObjectTypeToEnd(hObj, objectTypeName)

Moves the specified user object type to the end of the user object type list,
as displayed in the User object type pull-down list in the Model Explorer.

® removeMPTObjectType(hObj, objectTypeName)
Removes the specified user object type from the user object type list.

Your instance of the s1_customization function should use these methods to
register mpt object type customizations for your Simulink installation.

The Simulink software reads the s1_customization.m file when it starts. If

you subsequently change the file, to use the changes, you must restart your
MATLAB session.

8-41

8 Data Types

8-42

mpt User Object Type Customization Using sl_customization.m
The s1_customization.m file shown in sl_customization.m for mpt Object
Type Customizations on page 8-42 uses the addMPTObjectType method to
register the user signal types EngineType and FuelType for mpt objects.

sl_customization.m for mpt Object Type Customizations

function sl_customization(cm)
% Register user customizations

% Get default (factory) customizations
hObj = cm.slDataObjectCustomizer;

% Add commonly used signal types
hObj .addMPTObjectType(. ..
'EngineType', 'Signal',...
'DataType', 'uint8',...
‘Min', 0,...
'Max', 255,...
'DocUnits', 'm/sec');

hObj.addMPTObjectType(...
'FuelType', 'Signal’,...
'DataType', 'inti16',...
'Min', -12,...
'Max', 3000,...
'DocU