]> rtime.felk.cvut.cz Git - can-eth-gw-linux.git/blob - mm/hugetlb.c
f1bb534254f6977a7685893ee7046774522b93ca
[can-eth-gw-linux.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
28
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include "internal.h"
35
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
38 unsigned long hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43
44 __initdata LIST_HEAD(huge_boot_pages);
45
46 /* for command line parsing */
47 static struct hstate * __initdata parsed_hstate;
48 static unsigned long __initdata default_hstate_max_huge_pages;
49 static unsigned long __initdata default_hstate_size;
50
51 /*
52  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53  */
54 DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58         bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60         spin_unlock(&spool->lock);
61
62         /* If no pages are used, and no other handles to the subpool
63          * remain, free the subpool the subpool remain */
64         if (free)
65                 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70         struct hugepage_subpool *spool;
71
72         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73         if (!spool)
74                 return NULL;
75
76         spin_lock_init(&spool->lock);
77         spool->count = 1;
78         spool->max_hpages = nr_blocks;
79         spool->used_hpages = 0;
80
81         return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86         spin_lock(&spool->lock);
87         BUG_ON(!spool->count);
88         spool->count--;
89         unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93                                       long delta)
94 {
95         int ret = 0;
96
97         if (!spool)
98                 return 0;
99
100         spin_lock(&spool->lock);
101         if ((spool->used_hpages + delta) <= spool->max_hpages) {
102                 spool->used_hpages += delta;
103         } else {
104                 ret = -ENOMEM;
105         }
106         spin_unlock(&spool->lock);
107
108         return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112                                        long delta)
113 {
114         if (!spool)
115                 return;
116
117         spin_lock(&spool->lock);
118         spool->used_hpages -= delta;
119         /* If hugetlbfs_put_super couldn't free spool due to
120         * an outstanding quota reference, free it now. */
121         unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126         return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131         return subpool_inode(vma->vm_file->f_dentry->d_inode);
132 }
133
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation mutex:
142  *
143  *      down_write(&mm->mmap_sem);
144  * or
145  *      down_read(&mm->mmap_sem);
146  *      mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149         struct list_head link;
150         long from;
151         long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156         struct file_region *rg, *nrg, *trg;
157
158         /* Locate the region we are either in or before. */
159         list_for_each_entry(rg, head, link)
160                 if (f <= rg->to)
161                         break;
162
163         /* Round our left edge to the current segment if it encloses us. */
164         if (f > rg->from)
165                 f = rg->from;
166
167         /* Check for and consume any regions we now overlap with. */
168         nrg = rg;
169         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170                 if (&rg->link == head)
171                         break;
172                 if (rg->from > t)
173                         break;
174
175                 /* If this area reaches higher then extend our area to
176                  * include it completely.  If this is not the first area
177                  * which we intend to reuse, free it. */
178                 if (rg->to > t)
179                         t = rg->to;
180                 if (rg != nrg) {
181                         list_del(&rg->link);
182                         kfree(rg);
183                 }
184         }
185         nrg->from = f;
186         nrg->to = t;
187         return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192         struct file_region *rg, *nrg;
193         long chg = 0;
194
195         /* Locate the region we are before or in. */
196         list_for_each_entry(rg, head, link)
197                 if (f <= rg->to)
198                         break;
199
200         /* If we are below the current region then a new region is required.
201          * Subtle, allocate a new region at the position but make it zero
202          * size such that we can guarantee to record the reservation. */
203         if (&rg->link == head || t < rg->from) {
204                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205                 if (!nrg)
206                         return -ENOMEM;
207                 nrg->from = f;
208                 nrg->to   = f;
209                 INIT_LIST_HEAD(&nrg->link);
210                 list_add(&nrg->link, rg->link.prev);
211
212                 return t - f;
213         }
214
215         /* Round our left edge to the current segment if it encloses us. */
216         if (f > rg->from)
217                 f = rg->from;
218         chg = t - f;
219
220         /* Check for and consume any regions we now overlap with. */
221         list_for_each_entry(rg, rg->link.prev, link) {
222                 if (&rg->link == head)
223                         break;
224                 if (rg->from > t)
225                         return chg;
226
227                 /* We overlap with this area, if it extends further than
228                  * us then we must extend ourselves.  Account for its
229                  * existing reservation. */
230                 if (rg->to > t) {
231                         chg += rg->to - t;
232                         t = rg->to;
233                 }
234                 chg -= rg->to - rg->from;
235         }
236         return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241         struct file_region *rg, *trg;
242         long chg = 0;
243
244         /* Locate the region we are either in or before. */
245         list_for_each_entry(rg, head, link)
246                 if (end <= rg->to)
247                         break;
248         if (&rg->link == head)
249                 return 0;
250
251         /* If we are in the middle of a region then adjust it. */
252         if (end > rg->from) {
253                 chg = rg->to - end;
254                 rg->to = end;
255                 rg = list_entry(rg->link.next, typeof(*rg), link);
256         }
257
258         /* Drop any remaining regions. */
259         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260                 if (&rg->link == head)
261                         break;
262                 chg += rg->to - rg->from;
263                 list_del(&rg->link);
264                 kfree(rg);
265         }
266         return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271         struct file_region *rg;
272         long chg = 0;
273
274         /* Locate each segment we overlap with, and count that overlap. */
275         list_for_each_entry(rg, head, link) {
276                 long seg_from;
277                 long seg_to;
278
279                 if (rg->to <= f)
280                         continue;
281                 if (rg->from >= t)
282                         break;
283
284                 seg_from = max(rg->from, f);
285                 seg_to = min(rg->to, t);
286
287                 chg += seg_to - seg_from;
288         }
289
290         return chg;
291 }
292
293 /*
294  * Convert the address within this vma to the page offset within
295  * the mapping, in pagecache page units; huge pages here.
296  */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298                         struct vm_area_struct *vma, unsigned long address)
299 {
300         return ((address - vma->vm_start) >> huge_page_shift(h)) +
301                         (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305                                      unsigned long address)
306 {
307         return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311  * Return the size of the pages allocated when backing a VMA. In the majority
312  * cases this will be same size as used by the page table entries.
313  */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316         struct hstate *hstate;
317
318         if (!is_vm_hugetlb_page(vma))
319                 return PAGE_SIZE;
320
321         hstate = hstate_vma(vma);
322
323         return 1UL << (hstate->order + PAGE_SHIFT);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328  * Return the page size being used by the MMU to back a VMA. In the majority
329  * of cases, the page size used by the kernel matches the MMU size. On
330  * architectures where it differs, an architecture-specific version of this
331  * function is required.
332  */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336         return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342  * bits of the reservation map pointer, which are always clear due to
343  * alignment.
344  */
345 #define HPAGE_RESV_OWNER    (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350  * These helpers are used to track how many pages are reserved for
351  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352  * is guaranteed to have their future faults succeed.
353  *
354  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355  * the reserve counters are updated with the hugetlb_lock held. It is safe
356  * to reset the VMA at fork() time as it is not in use yet and there is no
357  * chance of the global counters getting corrupted as a result of the values.
358  *
359  * The private mapping reservation is represented in a subtly different
360  * manner to a shared mapping.  A shared mapping has a region map associated
361  * with the underlying file, this region map represents the backing file
362  * pages which have ever had a reservation assigned which this persists even
363  * after the page is instantiated.  A private mapping has a region map
364  * associated with the original mmap which is attached to all VMAs which
365  * reference it, this region map represents those offsets which have consumed
366  * reservation ie. where pages have been instantiated.
367  */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370         return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374                                                         unsigned long value)
375 {
376         vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380         struct kref refs;
381         struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387         if (!resv_map)
388                 return NULL;
389
390         kref_init(&resv_map->refs);
391         INIT_LIST_HEAD(&resv_map->regions);
392
393         return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400         /* Clear out any active regions before we release the map. */
401         region_truncate(&resv_map->regions, 0);
402         kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407         VM_BUG_ON(!is_vm_hugetlb_page(vma));
408         if (!(vma->vm_flags & VM_MAYSHARE))
409                 return (struct resv_map *)(get_vma_private_data(vma) &
410                                                         ~HPAGE_RESV_MASK);
411         return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416         VM_BUG_ON(!is_vm_hugetlb_page(vma));
417         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419         set_vma_private_data(vma, (get_vma_private_data(vma) &
420                                 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425         VM_BUG_ON(!is_vm_hugetlb_page(vma));
426         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433         VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435         return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440                         struct vm_area_struct *vma)
441 {
442         if (vma->vm_flags & VM_NORESERVE)
443                 return;
444
445         if (vma->vm_flags & VM_MAYSHARE) {
446                 /* Shared mappings always use reserves */
447                 h->resv_huge_pages--;
448         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449                 /*
450                  * Only the process that called mmap() has reserves for
451                  * private mappings.
452                  */
453                 h->resv_huge_pages--;
454         }
455 }
456
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459 {
460         VM_BUG_ON(!is_vm_hugetlb_page(vma));
461         if (!(vma->vm_flags & VM_MAYSHARE))
462                 vma->vm_private_data = (void *)0;
463 }
464
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
467 {
468         if (vma->vm_flags & VM_MAYSHARE)
469                 return 1;
470         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471                 return 1;
472         return 0;
473 }
474
475 static void copy_gigantic_page(struct page *dst, struct page *src)
476 {
477         int i;
478         struct hstate *h = page_hstate(src);
479         struct page *dst_base = dst;
480         struct page *src_base = src;
481
482         for (i = 0; i < pages_per_huge_page(h); ) {
483                 cond_resched();
484                 copy_highpage(dst, src);
485
486                 i++;
487                 dst = mem_map_next(dst, dst_base, i);
488                 src = mem_map_next(src, src_base, i);
489         }
490 }
491
492 void copy_huge_page(struct page *dst, struct page *src)
493 {
494         int i;
495         struct hstate *h = page_hstate(src);
496
497         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498                 copy_gigantic_page(dst, src);
499                 return;
500         }
501
502         might_sleep();
503         for (i = 0; i < pages_per_huge_page(h); i++) {
504                 cond_resched();
505                 copy_highpage(dst + i, src + i);
506         }
507 }
508
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
510 {
511         int nid = page_to_nid(page);
512         list_move(&page->lru, &h->hugepage_freelists[nid]);
513         h->free_huge_pages++;
514         h->free_huge_pages_node[nid]++;
515 }
516
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518 {
519         struct page *page;
520
521         if (list_empty(&h->hugepage_freelists[nid]))
522                 return NULL;
523         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524         list_move(&page->lru, &h->hugepage_activelist);
525         set_page_refcounted(page);
526         h->free_huge_pages--;
527         h->free_huge_pages_node[nid]--;
528         return page;
529 }
530
531 static struct page *dequeue_huge_page_vma(struct hstate *h,
532                                 struct vm_area_struct *vma,
533                                 unsigned long address, int avoid_reserve)
534 {
535         struct page *page = NULL;
536         struct mempolicy *mpol;
537         nodemask_t *nodemask;
538         struct zonelist *zonelist;
539         struct zone *zone;
540         struct zoneref *z;
541         unsigned int cpuset_mems_cookie;
542
543 retry_cpuset:
544         cpuset_mems_cookie = get_mems_allowed();
545         zonelist = huge_zonelist(vma, address,
546                                         htlb_alloc_mask, &mpol, &nodemask);
547         /*
548          * A child process with MAP_PRIVATE mappings created by their parent
549          * have no page reserves. This check ensures that reservations are
550          * not "stolen". The child may still get SIGKILLed
551          */
552         if (!vma_has_reserves(vma) &&
553                         h->free_huge_pages - h->resv_huge_pages == 0)
554                 goto err;
555
556         /* If reserves cannot be used, ensure enough pages are in the pool */
557         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558                 goto err;
559
560         for_each_zone_zonelist_nodemask(zone, z, zonelist,
561                                                 MAX_NR_ZONES - 1, nodemask) {
562                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
564                         if (page) {
565                                 if (!avoid_reserve)
566                                         decrement_hugepage_resv_vma(h, vma);
567                                 break;
568                         }
569                 }
570         }
571
572         mpol_cond_put(mpol);
573         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574                 goto retry_cpuset;
575         return page;
576
577 err:
578         mpol_cond_put(mpol);
579         return NULL;
580 }
581
582 static void update_and_free_page(struct hstate *h, struct page *page)
583 {
584         int i;
585
586         VM_BUG_ON(h->order >= MAX_ORDER);
587
588         h->nr_huge_pages--;
589         h->nr_huge_pages_node[page_to_nid(page)]--;
590         for (i = 0; i < pages_per_huge_page(h); i++) {
591                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
592                                 1 << PG_referenced | 1 << PG_dirty |
593                                 1 << PG_active | 1 << PG_reserved |
594                                 1 << PG_private | 1 << PG_writeback);
595         }
596         VM_BUG_ON(hugetlb_cgroup_from_page(page));
597         set_compound_page_dtor(page, NULL);
598         set_page_refcounted(page);
599         arch_release_hugepage(page);
600         __free_pages(page, huge_page_order(h));
601 }
602
603 struct hstate *size_to_hstate(unsigned long size)
604 {
605         struct hstate *h;
606
607         for_each_hstate(h) {
608                 if (huge_page_size(h) == size)
609                         return h;
610         }
611         return NULL;
612 }
613
614 static void free_huge_page(struct page *page)
615 {
616         /*
617          * Can't pass hstate in here because it is called from the
618          * compound page destructor.
619          */
620         struct hstate *h = page_hstate(page);
621         int nid = page_to_nid(page);
622         struct hugepage_subpool *spool =
623                 (struct hugepage_subpool *)page_private(page);
624
625         set_page_private(page, 0);
626         page->mapping = NULL;
627         BUG_ON(page_count(page));
628         BUG_ON(page_mapcount(page));
629
630         spin_lock(&hugetlb_lock);
631         hugetlb_cgroup_uncharge_page(hstate_index(h),
632                                      pages_per_huge_page(h), page);
633         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
634                 /* remove the page from active list */
635                 list_del(&page->lru);
636                 update_and_free_page(h, page);
637                 h->surplus_huge_pages--;
638                 h->surplus_huge_pages_node[nid]--;
639         } else {
640                 arch_clear_hugepage_flags(page);
641                 enqueue_huge_page(h, page);
642         }
643         spin_unlock(&hugetlb_lock);
644         hugepage_subpool_put_pages(spool, 1);
645 }
646
647 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
648 {
649         INIT_LIST_HEAD(&page->lru);
650         set_compound_page_dtor(page, free_huge_page);
651         spin_lock(&hugetlb_lock);
652         set_hugetlb_cgroup(page, NULL);
653         h->nr_huge_pages++;
654         h->nr_huge_pages_node[nid]++;
655         spin_unlock(&hugetlb_lock);
656         put_page(page); /* free it into the hugepage allocator */
657 }
658
659 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
660 {
661         int i;
662         int nr_pages = 1 << order;
663         struct page *p = page + 1;
664
665         /* we rely on prep_new_huge_page to set the destructor */
666         set_compound_order(page, order);
667         __SetPageHead(page);
668         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
669                 __SetPageTail(p);
670                 set_page_count(p, 0);
671                 p->first_page = page;
672         }
673 }
674
675 int PageHuge(struct page *page)
676 {
677         compound_page_dtor *dtor;
678
679         if (!PageCompound(page))
680                 return 0;
681
682         page = compound_head(page);
683         dtor = get_compound_page_dtor(page);
684
685         return dtor == free_huge_page;
686 }
687 EXPORT_SYMBOL_GPL(PageHuge);
688
689 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
690 {
691         struct page *page;
692
693         if (h->order >= MAX_ORDER)
694                 return NULL;
695
696         page = alloc_pages_exact_node(nid,
697                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
698                                                 __GFP_REPEAT|__GFP_NOWARN,
699                 huge_page_order(h));
700         if (page) {
701                 if (arch_prepare_hugepage(page)) {
702                         __free_pages(page, huge_page_order(h));
703                         return NULL;
704                 }
705                 prep_new_huge_page(h, page, nid);
706         }
707
708         return page;
709 }
710
711 /*
712  * common helper functions for hstate_next_node_to_{alloc|free}.
713  * We may have allocated or freed a huge page based on a different
714  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
715  * be outside of *nodes_allowed.  Ensure that we use an allowed
716  * node for alloc or free.
717  */
718 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
719 {
720         nid = next_node(nid, *nodes_allowed);
721         if (nid == MAX_NUMNODES)
722                 nid = first_node(*nodes_allowed);
723         VM_BUG_ON(nid >= MAX_NUMNODES);
724
725         return nid;
726 }
727
728 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
729 {
730         if (!node_isset(nid, *nodes_allowed))
731                 nid = next_node_allowed(nid, nodes_allowed);
732         return nid;
733 }
734
735 /*
736  * returns the previously saved node ["this node"] from which to
737  * allocate a persistent huge page for the pool and advance the
738  * next node from which to allocate, handling wrap at end of node
739  * mask.
740  */
741 static int hstate_next_node_to_alloc(struct hstate *h,
742                                         nodemask_t *nodes_allowed)
743 {
744         int nid;
745
746         VM_BUG_ON(!nodes_allowed);
747
748         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
749         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
750
751         return nid;
752 }
753
754 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
755 {
756         struct page *page;
757         int start_nid;
758         int next_nid;
759         int ret = 0;
760
761         start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
762         next_nid = start_nid;
763
764         do {
765                 page = alloc_fresh_huge_page_node(h, next_nid);
766                 if (page) {
767                         ret = 1;
768                         break;
769                 }
770                 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
771         } while (next_nid != start_nid);
772
773         if (ret)
774                 count_vm_event(HTLB_BUDDY_PGALLOC);
775         else
776                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
777
778         return ret;
779 }
780
781 /*
782  * helper for free_pool_huge_page() - return the previously saved
783  * node ["this node"] from which to free a huge page.  Advance the
784  * next node id whether or not we find a free huge page to free so
785  * that the next attempt to free addresses the next node.
786  */
787 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
788 {
789         int nid;
790
791         VM_BUG_ON(!nodes_allowed);
792
793         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
794         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
795
796         return nid;
797 }
798
799 /*
800  * Free huge page from pool from next node to free.
801  * Attempt to keep persistent huge pages more or less
802  * balanced over allowed nodes.
803  * Called with hugetlb_lock locked.
804  */
805 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
806                                                          bool acct_surplus)
807 {
808         int start_nid;
809         int next_nid;
810         int ret = 0;
811
812         start_nid = hstate_next_node_to_free(h, nodes_allowed);
813         next_nid = start_nid;
814
815         do {
816                 /*
817                  * If we're returning unused surplus pages, only examine
818                  * nodes with surplus pages.
819                  */
820                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
821                     !list_empty(&h->hugepage_freelists[next_nid])) {
822                         struct page *page =
823                                 list_entry(h->hugepage_freelists[next_nid].next,
824                                           struct page, lru);
825                         list_del(&page->lru);
826                         h->free_huge_pages--;
827                         h->free_huge_pages_node[next_nid]--;
828                         if (acct_surplus) {
829                                 h->surplus_huge_pages--;
830                                 h->surplus_huge_pages_node[next_nid]--;
831                         }
832                         update_and_free_page(h, page);
833                         ret = 1;
834                         break;
835                 }
836                 next_nid = hstate_next_node_to_free(h, nodes_allowed);
837         } while (next_nid != start_nid);
838
839         return ret;
840 }
841
842 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
843 {
844         struct page *page;
845         unsigned int r_nid;
846
847         if (h->order >= MAX_ORDER)
848                 return NULL;
849
850         /*
851          * Assume we will successfully allocate the surplus page to
852          * prevent racing processes from causing the surplus to exceed
853          * overcommit
854          *
855          * This however introduces a different race, where a process B
856          * tries to grow the static hugepage pool while alloc_pages() is
857          * called by process A. B will only examine the per-node
858          * counters in determining if surplus huge pages can be
859          * converted to normal huge pages in adjust_pool_surplus(). A
860          * won't be able to increment the per-node counter, until the
861          * lock is dropped by B, but B doesn't drop hugetlb_lock until
862          * no more huge pages can be converted from surplus to normal
863          * state (and doesn't try to convert again). Thus, we have a
864          * case where a surplus huge page exists, the pool is grown, and
865          * the surplus huge page still exists after, even though it
866          * should just have been converted to a normal huge page. This
867          * does not leak memory, though, as the hugepage will be freed
868          * once it is out of use. It also does not allow the counters to
869          * go out of whack in adjust_pool_surplus() as we don't modify
870          * the node values until we've gotten the hugepage and only the
871          * per-node value is checked there.
872          */
873         spin_lock(&hugetlb_lock);
874         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
875                 spin_unlock(&hugetlb_lock);
876                 return NULL;
877         } else {
878                 h->nr_huge_pages++;
879                 h->surplus_huge_pages++;
880         }
881         spin_unlock(&hugetlb_lock);
882
883         if (nid == NUMA_NO_NODE)
884                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
885                                    __GFP_REPEAT|__GFP_NOWARN,
886                                    huge_page_order(h));
887         else
888                 page = alloc_pages_exact_node(nid,
889                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
890                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
891
892         if (page && arch_prepare_hugepage(page)) {
893                 __free_pages(page, huge_page_order(h));
894                 page = NULL;
895         }
896
897         spin_lock(&hugetlb_lock);
898         if (page) {
899                 INIT_LIST_HEAD(&page->lru);
900                 r_nid = page_to_nid(page);
901                 set_compound_page_dtor(page, free_huge_page);
902                 set_hugetlb_cgroup(page, NULL);
903                 /*
904                  * We incremented the global counters already
905                  */
906                 h->nr_huge_pages_node[r_nid]++;
907                 h->surplus_huge_pages_node[r_nid]++;
908                 __count_vm_event(HTLB_BUDDY_PGALLOC);
909         } else {
910                 h->nr_huge_pages--;
911                 h->surplus_huge_pages--;
912                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
913         }
914         spin_unlock(&hugetlb_lock);
915
916         return page;
917 }
918
919 /*
920  * This allocation function is useful in the context where vma is irrelevant.
921  * E.g. soft-offlining uses this function because it only cares physical
922  * address of error page.
923  */
924 struct page *alloc_huge_page_node(struct hstate *h, int nid)
925 {
926         struct page *page;
927
928         spin_lock(&hugetlb_lock);
929         page = dequeue_huge_page_node(h, nid);
930         spin_unlock(&hugetlb_lock);
931
932         if (!page)
933                 page = alloc_buddy_huge_page(h, nid);
934
935         return page;
936 }
937
938 /*
939  * Increase the hugetlb pool such that it can accommodate a reservation
940  * of size 'delta'.
941  */
942 static int gather_surplus_pages(struct hstate *h, int delta)
943 {
944         struct list_head surplus_list;
945         struct page *page, *tmp;
946         int ret, i;
947         int needed, allocated;
948         bool alloc_ok = true;
949
950         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
951         if (needed <= 0) {
952                 h->resv_huge_pages += delta;
953                 return 0;
954         }
955
956         allocated = 0;
957         INIT_LIST_HEAD(&surplus_list);
958
959         ret = -ENOMEM;
960 retry:
961         spin_unlock(&hugetlb_lock);
962         for (i = 0; i < needed; i++) {
963                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
964                 if (!page) {
965                         alloc_ok = false;
966                         break;
967                 }
968                 list_add(&page->lru, &surplus_list);
969         }
970         allocated += i;
971
972         /*
973          * After retaking hugetlb_lock, we need to recalculate 'needed'
974          * because either resv_huge_pages or free_huge_pages may have changed.
975          */
976         spin_lock(&hugetlb_lock);
977         needed = (h->resv_huge_pages + delta) -
978                         (h->free_huge_pages + allocated);
979         if (needed > 0) {
980                 if (alloc_ok)
981                         goto retry;
982                 /*
983                  * We were not able to allocate enough pages to
984                  * satisfy the entire reservation so we free what
985                  * we've allocated so far.
986                  */
987                 goto free;
988         }
989         /*
990          * The surplus_list now contains _at_least_ the number of extra pages
991          * needed to accommodate the reservation.  Add the appropriate number
992          * of pages to the hugetlb pool and free the extras back to the buddy
993          * allocator.  Commit the entire reservation here to prevent another
994          * process from stealing the pages as they are added to the pool but
995          * before they are reserved.
996          */
997         needed += allocated;
998         h->resv_huge_pages += delta;
999         ret = 0;
1000
1001         /* Free the needed pages to the hugetlb pool */
1002         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1003                 if ((--needed) < 0)
1004                         break;
1005                 /*
1006                  * This page is now managed by the hugetlb allocator and has
1007                  * no users -- drop the buddy allocator's reference.
1008                  */
1009                 put_page_testzero(page);
1010                 VM_BUG_ON(page_count(page));
1011                 enqueue_huge_page(h, page);
1012         }
1013 free:
1014         spin_unlock(&hugetlb_lock);
1015
1016         /* Free unnecessary surplus pages to the buddy allocator */
1017         if (!list_empty(&surplus_list)) {
1018                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1019                         put_page(page);
1020                 }
1021         }
1022         spin_lock(&hugetlb_lock);
1023
1024         return ret;
1025 }
1026
1027 /*
1028  * When releasing a hugetlb pool reservation, any surplus pages that were
1029  * allocated to satisfy the reservation must be explicitly freed if they were
1030  * never used.
1031  * Called with hugetlb_lock held.
1032  */
1033 static void return_unused_surplus_pages(struct hstate *h,
1034                                         unsigned long unused_resv_pages)
1035 {
1036         unsigned long nr_pages;
1037
1038         /* Uncommit the reservation */
1039         h->resv_huge_pages -= unused_resv_pages;
1040
1041         /* Cannot return gigantic pages currently */
1042         if (h->order >= MAX_ORDER)
1043                 return;
1044
1045         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1046
1047         /*
1048          * We want to release as many surplus pages as possible, spread
1049          * evenly across all nodes with memory. Iterate across these nodes
1050          * until we can no longer free unreserved surplus pages. This occurs
1051          * when the nodes with surplus pages have no free pages.
1052          * free_pool_huge_page() will balance the the freed pages across the
1053          * on-line nodes with memory and will handle the hstate accounting.
1054          */
1055         while (nr_pages--) {
1056                 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1057                         break;
1058         }
1059 }
1060
1061 /*
1062  * Determine if the huge page at addr within the vma has an associated
1063  * reservation.  Where it does not we will need to logically increase
1064  * reservation and actually increase subpool usage before an allocation
1065  * can occur.  Where any new reservation would be required the
1066  * reservation change is prepared, but not committed.  Once the page
1067  * has been allocated from the subpool and instantiated the change should
1068  * be committed via vma_commit_reservation.  No action is required on
1069  * failure.
1070  */
1071 static long vma_needs_reservation(struct hstate *h,
1072                         struct vm_area_struct *vma, unsigned long addr)
1073 {
1074         struct address_space *mapping = vma->vm_file->f_mapping;
1075         struct inode *inode = mapping->host;
1076
1077         if (vma->vm_flags & VM_MAYSHARE) {
1078                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1079                 return region_chg(&inode->i_mapping->private_list,
1080                                                         idx, idx + 1);
1081
1082         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1083                 return 1;
1084
1085         } else  {
1086                 long err;
1087                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1088                 struct resv_map *reservations = vma_resv_map(vma);
1089
1090                 err = region_chg(&reservations->regions, idx, idx + 1);
1091                 if (err < 0)
1092                         return err;
1093                 return 0;
1094         }
1095 }
1096 static void vma_commit_reservation(struct hstate *h,
1097                         struct vm_area_struct *vma, unsigned long addr)
1098 {
1099         struct address_space *mapping = vma->vm_file->f_mapping;
1100         struct inode *inode = mapping->host;
1101
1102         if (vma->vm_flags & VM_MAYSHARE) {
1103                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1104                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1105
1106         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1107                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1108                 struct resv_map *reservations = vma_resv_map(vma);
1109
1110                 /* Mark this page used in the map. */
1111                 region_add(&reservations->regions, idx, idx + 1);
1112         }
1113 }
1114
1115 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1116                                     unsigned long addr, int avoid_reserve)
1117 {
1118         struct hugepage_subpool *spool = subpool_vma(vma);
1119         struct hstate *h = hstate_vma(vma);
1120         struct page *page;
1121         long chg;
1122         int ret, idx;
1123         struct hugetlb_cgroup *h_cg;
1124
1125         idx = hstate_index(h);
1126         /*
1127          * Processes that did not create the mapping will have no
1128          * reserves and will not have accounted against subpool
1129          * limit. Check that the subpool limit can be made before
1130          * satisfying the allocation MAP_NORESERVE mappings may also
1131          * need pages and subpool limit allocated allocated if no reserve
1132          * mapping overlaps.
1133          */
1134         chg = vma_needs_reservation(h, vma, addr);
1135         if (chg < 0)
1136                 return ERR_PTR(-ENOMEM);
1137         if (chg)
1138                 if (hugepage_subpool_get_pages(spool, chg))
1139                         return ERR_PTR(-ENOSPC);
1140
1141         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1142         if (ret) {
1143                 hugepage_subpool_put_pages(spool, chg);
1144                 return ERR_PTR(-ENOSPC);
1145         }
1146         spin_lock(&hugetlb_lock);
1147         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1148         if (page) {
1149                 /* update page cgroup details */
1150                 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1151                                              h_cg, page);
1152                 spin_unlock(&hugetlb_lock);
1153         } else {
1154                 spin_unlock(&hugetlb_lock);
1155                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1156                 if (!page) {
1157                         hugetlb_cgroup_uncharge_cgroup(idx,
1158                                                        pages_per_huge_page(h),
1159                                                        h_cg);
1160                         hugepage_subpool_put_pages(spool, chg);
1161                         return ERR_PTR(-ENOSPC);
1162                 }
1163                 spin_lock(&hugetlb_lock);
1164                 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1165                                              h_cg, page);
1166                 list_move(&page->lru, &h->hugepage_activelist);
1167                 spin_unlock(&hugetlb_lock);
1168         }
1169
1170         set_page_private(page, (unsigned long)spool);
1171
1172         vma_commit_reservation(h, vma, addr);
1173         return page;
1174 }
1175
1176 int __weak alloc_bootmem_huge_page(struct hstate *h)
1177 {
1178         struct huge_bootmem_page *m;
1179         int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1180
1181         while (nr_nodes) {
1182                 void *addr;
1183
1184                 addr = __alloc_bootmem_node_nopanic(
1185                                 NODE_DATA(hstate_next_node_to_alloc(h,
1186                                                 &node_states[N_HIGH_MEMORY])),
1187                                 huge_page_size(h), huge_page_size(h), 0);
1188
1189                 if (addr) {
1190                         /*
1191                          * Use the beginning of the huge page to store the
1192                          * huge_bootmem_page struct (until gather_bootmem
1193                          * puts them into the mem_map).
1194                          */
1195                         m = addr;
1196                         goto found;
1197                 }
1198                 nr_nodes--;
1199         }
1200         return 0;
1201
1202 found:
1203         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1204         /* Put them into a private list first because mem_map is not up yet */
1205         list_add(&m->list, &huge_boot_pages);
1206         m->hstate = h;
1207         return 1;
1208 }
1209
1210 static void prep_compound_huge_page(struct page *page, int order)
1211 {
1212         if (unlikely(order > (MAX_ORDER - 1)))
1213                 prep_compound_gigantic_page(page, order);
1214         else
1215                 prep_compound_page(page, order);
1216 }
1217
1218 /* Put bootmem huge pages into the standard lists after mem_map is up */
1219 static void __init gather_bootmem_prealloc(void)
1220 {
1221         struct huge_bootmem_page *m;
1222
1223         list_for_each_entry(m, &huge_boot_pages, list) {
1224                 struct hstate *h = m->hstate;
1225                 struct page *page;
1226
1227 #ifdef CONFIG_HIGHMEM
1228                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1229                 free_bootmem_late((unsigned long)m,
1230                                   sizeof(struct huge_bootmem_page));
1231 #else
1232                 page = virt_to_page(m);
1233 #endif
1234                 __ClearPageReserved(page);
1235                 WARN_ON(page_count(page) != 1);
1236                 prep_compound_huge_page(page, h->order);
1237                 prep_new_huge_page(h, page, page_to_nid(page));
1238                 /*
1239                  * If we had gigantic hugepages allocated at boot time, we need
1240                  * to restore the 'stolen' pages to totalram_pages in order to
1241                  * fix confusing memory reports from free(1) and another
1242                  * side-effects, like CommitLimit going negative.
1243                  */
1244                 if (h->order > (MAX_ORDER - 1))
1245                         totalram_pages += 1 << h->order;
1246         }
1247 }
1248
1249 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1250 {
1251         unsigned long i;
1252
1253         for (i = 0; i < h->max_huge_pages; ++i) {
1254                 if (h->order >= MAX_ORDER) {
1255                         if (!alloc_bootmem_huge_page(h))
1256                                 break;
1257                 } else if (!alloc_fresh_huge_page(h,
1258                                          &node_states[N_HIGH_MEMORY]))
1259                         break;
1260         }
1261         h->max_huge_pages = i;
1262 }
1263
1264 static void __init hugetlb_init_hstates(void)
1265 {
1266         struct hstate *h;
1267
1268         for_each_hstate(h) {
1269                 /* oversize hugepages were init'ed in early boot */
1270                 if (h->order < MAX_ORDER)
1271                         hugetlb_hstate_alloc_pages(h);
1272         }
1273 }
1274
1275 static char * __init memfmt(char *buf, unsigned long n)
1276 {
1277         if (n >= (1UL << 30))
1278                 sprintf(buf, "%lu GB", n >> 30);
1279         else if (n >= (1UL << 20))
1280                 sprintf(buf, "%lu MB", n >> 20);
1281         else
1282                 sprintf(buf, "%lu KB", n >> 10);
1283         return buf;
1284 }
1285
1286 static void __init report_hugepages(void)
1287 {
1288         struct hstate *h;
1289
1290         for_each_hstate(h) {
1291                 char buf[32];
1292                 printk(KERN_INFO "HugeTLB registered %s page size, "
1293                                  "pre-allocated %ld pages\n",
1294                         memfmt(buf, huge_page_size(h)),
1295                         h->free_huge_pages);
1296         }
1297 }
1298
1299 #ifdef CONFIG_HIGHMEM
1300 static void try_to_free_low(struct hstate *h, unsigned long count,
1301                                                 nodemask_t *nodes_allowed)
1302 {
1303         int i;
1304
1305         if (h->order >= MAX_ORDER)
1306                 return;
1307
1308         for_each_node_mask(i, *nodes_allowed) {
1309                 struct page *page, *next;
1310                 struct list_head *freel = &h->hugepage_freelists[i];
1311                 list_for_each_entry_safe(page, next, freel, lru) {
1312                         if (count >= h->nr_huge_pages)
1313                                 return;
1314                         if (PageHighMem(page))
1315                                 continue;
1316                         list_del(&page->lru);
1317                         update_and_free_page(h, page);
1318                         h->free_huge_pages--;
1319                         h->free_huge_pages_node[page_to_nid(page)]--;
1320                 }
1321         }
1322 }
1323 #else
1324 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1325                                                 nodemask_t *nodes_allowed)
1326 {
1327 }
1328 #endif
1329
1330 /*
1331  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1332  * balanced by operating on them in a round-robin fashion.
1333  * Returns 1 if an adjustment was made.
1334  */
1335 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1336                                 int delta)
1337 {
1338         int start_nid, next_nid;
1339         int ret = 0;
1340
1341         VM_BUG_ON(delta != -1 && delta != 1);
1342
1343         if (delta < 0)
1344                 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1345         else
1346                 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1347         next_nid = start_nid;
1348
1349         do {
1350                 int nid = next_nid;
1351                 if (delta < 0)  {
1352                         /*
1353                          * To shrink on this node, there must be a surplus page
1354                          */
1355                         if (!h->surplus_huge_pages_node[nid]) {
1356                                 next_nid = hstate_next_node_to_alloc(h,
1357                                                                 nodes_allowed);
1358                                 continue;
1359                         }
1360                 }
1361                 if (delta > 0) {
1362                         /*
1363                          * Surplus cannot exceed the total number of pages
1364                          */
1365                         if (h->surplus_huge_pages_node[nid] >=
1366                                                 h->nr_huge_pages_node[nid]) {
1367                                 next_nid = hstate_next_node_to_free(h,
1368                                                                 nodes_allowed);
1369                                 continue;
1370                         }
1371                 }
1372
1373                 h->surplus_huge_pages += delta;
1374                 h->surplus_huge_pages_node[nid] += delta;
1375                 ret = 1;
1376                 break;
1377         } while (next_nid != start_nid);
1378
1379         return ret;
1380 }
1381
1382 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1383 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1384                                                 nodemask_t *nodes_allowed)
1385 {
1386         unsigned long min_count, ret;
1387
1388         if (h->order >= MAX_ORDER)
1389                 return h->max_huge_pages;
1390
1391         /*
1392          * Increase the pool size
1393          * First take pages out of surplus state.  Then make up the
1394          * remaining difference by allocating fresh huge pages.
1395          *
1396          * We might race with alloc_buddy_huge_page() here and be unable
1397          * to convert a surplus huge page to a normal huge page. That is
1398          * not critical, though, it just means the overall size of the
1399          * pool might be one hugepage larger than it needs to be, but
1400          * within all the constraints specified by the sysctls.
1401          */
1402         spin_lock(&hugetlb_lock);
1403         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1404                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1405                         break;
1406         }
1407
1408         while (count > persistent_huge_pages(h)) {
1409                 /*
1410                  * If this allocation races such that we no longer need the
1411                  * page, free_huge_page will handle it by freeing the page
1412                  * and reducing the surplus.
1413                  */
1414                 spin_unlock(&hugetlb_lock);
1415                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1416                 spin_lock(&hugetlb_lock);
1417                 if (!ret)
1418                         goto out;
1419
1420                 /* Bail for signals. Probably ctrl-c from user */
1421                 if (signal_pending(current))
1422                         goto out;
1423         }
1424
1425         /*
1426          * Decrease the pool size
1427          * First return free pages to the buddy allocator (being careful
1428          * to keep enough around to satisfy reservations).  Then place
1429          * pages into surplus state as needed so the pool will shrink
1430          * to the desired size as pages become free.
1431          *
1432          * By placing pages into the surplus state independent of the
1433          * overcommit value, we are allowing the surplus pool size to
1434          * exceed overcommit. There are few sane options here. Since
1435          * alloc_buddy_huge_page() is checking the global counter,
1436          * though, we'll note that we're not allowed to exceed surplus
1437          * and won't grow the pool anywhere else. Not until one of the
1438          * sysctls are changed, or the surplus pages go out of use.
1439          */
1440         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1441         min_count = max(count, min_count);
1442         try_to_free_low(h, min_count, nodes_allowed);
1443         while (min_count < persistent_huge_pages(h)) {
1444                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1445                         break;
1446         }
1447         while (count < persistent_huge_pages(h)) {
1448                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1449                         break;
1450         }
1451 out:
1452         ret = persistent_huge_pages(h);
1453         spin_unlock(&hugetlb_lock);
1454         return ret;
1455 }
1456
1457 #define HSTATE_ATTR_RO(_name) \
1458         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1459
1460 #define HSTATE_ATTR(_name) \
1461         static struct kobj_attribute _name##_attr = \
1462                 __ATTR(_name, 0644, _name##_show, _name##_store)
1463
1464 static struct kobject *hugepages_kobj;
1465 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1466
1467 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1468
1469 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1470 {
1471         int i;
1472
1473         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1474                 if (hstate_kobjs[i] == kobj) {
1475                         if (nidp)
1476                                 *nidp = NUMA_NO_NODE;
1477                         return &hstates[i];
1478                 }
1479
1480         return kobj_to_node_hstate(kobj, nidp);
1481 }
1482
1483 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1484                                         struct kobj_attribute *attr, char *buf)
1485 {
1486         struct hstate *h;
1487         unsigned long nr_huge_pages;
1488         int nid;
1489
1490         h = kobj_to_hstate(kobj, &nid);
1491         if (nid == NUMA_NO_NODE)
1492                 nr_huge_pages = h->nr_huge_pages;
1493         else
1494                 nr_huge_pages = h->nr_huge_pages_node[nid];
1495
1496         return sprintf(buf, "%lu\n", nr_huge_pages);
1497 }
1498
1499 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1500                         struct kobject *kobj, struct kobj_attribute *attr,
1501                         const char *buf, size_t len)
1502 {
1503         int err;
1504         int nid;
1505         unsigned long count;
1506         struct hstate *h;
1507         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1508
1509         err = strict_strtoul(buf, 10, &count);
1510         if (err)
1511                 goto out;
1512
1513         h = kobj_to_hstate(kobj, &nid);
1514         if (h->order >= MAX_ORDER) {
1515                 err = -EINVAL;
1516                 goto out;
1517         }
1518
1519         if (nid == NUMA_NO_NODE) {
1520                 /*
1521                  * global hstate attribute
1522                  */
1523                 if (!(obey_mempolicy &&
1524                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1525                         NODEMASK_FREE(nodes_allowed);
1526                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1527                 }
1528         } else if (nodes_allowed) {
1529                 /*
1530                  * per node hstate attribute: adjust count to global,
1531                  * but restrict alloc/free to the specified node.
1532                  */
1533                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1534                 init_nodemask_of_node(nodes_allowed, nid);
1535         } else
1536                 nodes_allowed = &node_states[N_HIGH_MEMORY];
1537
1538         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1539
1540         if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1541                 NODEMASK_FREE(nodes_allowed);
1542
1543         return len;
1544 out:
1545         NODEMASK_FREE(nodes_allowed);
1546         return err;
1547 }
1548
1549 static ssize_t nr_hugepages_show(struct kobject *kobj,
1550                                        struct kobj_attribute *attr, char *buf)
1551 {
1552         return nr_hugepages_show_common(kobj, attr, buf);
1553 }
1554
1555 static ssize_t nr_hugepages_store(struct kobject *kobj,
1556                struct kobj_attribute *attr, const char *buf, size_t len)
1557 {
1558         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1559 }
1560 HSTATE_ATTR(nr_hugepages);
1561
1562 #ifdef CONFIG_NUMA
1563
1564 /*
1565  * hstate attribute for optionally mempolicy-based constraint on persistent
1566  * huge page alloc/free.
1567  */
1568 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1569                                        struct kobj_attribute *attr, char *buf)
1570 {
1571         return nr_hugepages_show_common(kobj, attr, buf);
1572 }
1573
1574 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1575                struct kobj_attribute *attr, const char *buf, size_t len)
1576 {
1577         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1578 }
1579 HSTATE_ATTR(nr_hugepages_mempolicy);
1580 #endif
1581
1582
1583 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1584                                         struct kobj_attribute *attr, char *buf)
1585 {
1586         struct hstate *h = kobj_to_hstate(kobj, NULL);
1587         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1588 }
1589
1590 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1591                 struct kobj_attribute *attr, const char *buf, size_t count)
1592 {
1593         int err;
1594         unsigned long input;
1595         struct hstate *h = kobj_to_hstate(kobj, NULL);
1596
1597         if (h->order >= MAX_ORDER)
1598                 return -EINVAL;
1599
1600         err = strict_strtoul(buf, 10, &input);
1601         if (err)
1602                 return err;
1603
1604         spin_lock(&hugetlb_lock);
1605         h->nr_overcommit_huge_pages = input;
1606         spin_unlock(&hugetlb_lock);
1607
1608         return count;
1609 }
1610 HSTATE_ATTR(nr_overcommit_hugepages);
1611
1612 static ssize_t free_hugepages_show(struct kobject *kobj,
1613                                         struct kobj_attribute *attr, char *buf)
1614 {
1615         struct hstate *h;
1616         unsigned long free_huge_pages;
1617         int nid;
1618
1619         h = kobj_to_hstate(kobj, &nid);
1620         if (nid == NUMA_NO_NODE)
1621                 free_huge_pages = h->free_huge_pages;
1622         else
1623                 free_huge_pages = h->free_huge_pages_node[nid];
1624
1625         return sprintf(buf, "%lu\n", free_huge_pages);
1626 }
1627 HSTATE_ATTR_RO(free_hugepages);
1628
1629 static ssize_t resv_hugepages_show(struct kobject *kobj,
1630                                         struct kobj_attribute *attr, char *buf)
1631 {
1632         struct hstate *h = kobj_to_hstate(kobj, NULL);
1633         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1634 }
1635 HSTATE_ATTR_RO(resv_hugepages);
1636
1637 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1638                                         struct kobj_attribute *attr, char *buf)
1639 {
1640         struct hstate *h;
1641         unsigned long surplus_huge_pages;
1642         int nid;
1643
1644         h = kobj_to_hstate(kobj, &nid);
1645         if (nid == NUMA_NO_NODE)
1646                 surplus_huge_pages = h->surplus_huge_pages;
1647         else
1648                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1649
1650         return sprintf(buf, "%lu\n", surplus_huge_pages);
1651 }
1652 HSTATE_ATTR_RO(surplus_hugepages);
1653
1654 static struct attribute *hstate_attrs[] = {
1655         &nr_hugepages_attr.attr,
1656         &nr_overcommit_hugepages_attr.attr,
1657         &free_hugepages_attr.attr,
1658         &resv_hugepages_attr.attr,
1659         &surplus_hugepages_attr.attr,
1660 #ifdef CONFIG_NUMA
1661         &nr_hugepages_mempolicy_attr.attr,
1662 #endif
1663         NULL,
1664 };
1665
1666 static struct attribute_group hstate_attr_group = {
1667         .attrs = hstate_attrs,
1668 };
1669
1670 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1671                                     struct kobject **hstate_kobjs,
1672                                     struct attribute_group *hstate_attr_group)
1673 {
1674         int retval;
1675         int hi = hstate_index(h);
1676
1677         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1678         if (!hstate_kobjs[hi])
1679                 return -ENOMEM;
1680
1681         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1682         if (retval)
1683                 kobject_put(hstate_kobjs[hi]);
1684
1685         return retval;
1686 }
1687
1688 static void __init hugetlb_sysfs_init(void)
1689 {
1690         struct hstate *h;
1691         int err;
1692
1693         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1694         if (!hugepages_kobj)
1695                 return;
1696
1697         for_each_hstate(h) {
1698                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1699                                          hstate_kobjs, &hstate_attr_group);
1700                 if (err)
1701                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1702                                                                 h->name);
1703         }
1704 }
1705
1706 #ifdef CONFIG_NUMA
1707
1708 /*
1709  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1710  * with node devices in node_devices[] using a parallel array.  The array
1711  * index of a node device or _hstate == node id.
1712  * This is here to avoid any static dependency of the node device driver, in
1713  * the base kernel, on the hugetlb module.
1714  */
1715 struct node_hstate {
1716         struct kobject          *hugepages_kobj;
1717         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1718 };
1719 struct node_hstate node_hstates[MAX_NUMNODES];
1720
1721 /*
1722  * A subset of global hstate attributes for node devices
1723  */
1724 static struct attribute *per_node_hstate_attrs[] = {
1725         &nr_hugepages_attr.attr,
1726         &free_hugepages_attr.attr,
1727         &surplus_hugepages_attr.attr,
1728         NULL,
1729 };
1730
1731 static struct attribute_group per_node_hstate_attr_group = {
1732         .attrs = per_node_hstate_attrs,
1733 };
1734
1735 /*
1736  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1737  * Returns node id via non-NULL nidp.
1738  */
1739 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1740 {
1741         int nid;
1742
1743         for (nid = 0; nid < nr_node_ids; nid++) {
1744                 struct node_hstate *nhs = &node_hstates[nid];
1745                 int i;
1746                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1747                         if (nhs->hstate_kobjs[i] == kobj) {
1748                                 if (nidp)
1749                                         *nidp = nid;
1750                                 return &hstates[i];
1751                         }
1752         }
1753
1754         BUG();
1755         return NULL;
1756 }
1757
1758 /*
1759  * Unregister hstate attributes from a single node device.
1760  * No-op if no hstate attributes attached.
1761  */
1762 void hugetlb_unregister_node(struct node *node)
1763 {
1764         struct hstate *h;
1765         struct node_hstate *nhs = &node_hstates[node->dev.id];
1766
1767         if (!nhs->hugepages_kobj)
1768                 return;         /* no hstate attributes */
1769
1770         for_each_hstate(h) {
1771                 int idx = hstate_index(h);
1772                 if (nhs->hstate_kobjs[idx]) {
1773                         kobject_put(nhs->hstate_kobjs[idx]);
1774                         nhs->hstate_kobjs[idx] = NULL;
1775                 }
1776         }
1777
1778         kobject_put(nhs->hugepages_kobj);
1779         nhs->hugepages_kobj = NULL;
1780 }
1781
1782 /*
1783  * hugetlb module exit:  unregister hstate attributes from node devices
1784  * that have them.
1785  */
1786 static void hugetlb_unregister_all_nodes(void)
1787 {
1788         int nid;
1789
1790         /*
1791          * disable node device registrations.
1792          */
1793         register_hugetlbfs_with_node(NULL, NULL);
1794
1795         /*
1796          * remove hstate attributes from any nodes that have them.
1797          */
1798         for (nid = 0; nid < nr_node_ids; nid++)
1799                 hugetlb_unregister_node(&node_devices[nid]);
1800 }
1801
1802 /*
1803  * Register hstate attributes for a single node device.
1804  * No-op if attributes already registered.
1805  */
1806 void hugetlb_register_node(struct node *node)
1807 {
1808         struct hstate *h;
1809         struct node_hstate *nhs = &node_hstates[node->dev.id];
1810         int err;
1811
1812         if (nhs->hugepages_kobj)
1813                 return;         /* already allocated */
1814
1815         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1816                                                         &node->dev.kobj);
1817         if (!nhs->hugepages_kobj)
1818                 return;
1819
1820         for_each_hstate(h) {
1821                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1822                                                 nhs->hstate_kobjs,
1823                                                 &per_node_hstate_attr_group);
1824                 if (err) {
1825                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1826                                         " for node %d\n",
1827                                                 h->name, node->dev.id);
1828                         hugetlb_unregister_node(node);
1829                         break;
1830                 }
1831         }
1832 }
1833
1834 /*
1835  * hugetlb init time:  register hstate attributes for all registered node
1836  * devices of nodes that have memory.  All on-line nodes should have
1837  * registered their associated device by this time.
1838  */
1839 static void hugetlb_register_all_nodes(void)
1840 {
1841         int nid;
1842
1843         for_each_node_state(nid, N_HIGH_MEMORY) {
1844                 struct node *node = &node_devices[nid];
1845                 if (node->dev.id == nid)
1846                         hugetlb_register_node(node);
1847         }
1848
1849         /*
1850          * Let the node device driver know we're here so it can
1851          * [un]register hstate attributes on node hotplug.
1852          */
1853         register_hugetlbfs_with_node(hugetlb_register_node,
1854                                      hugetlb_unregister_node);
1855 }
1856 #else   /* !CONFIG_NUMA */
1857
1858 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1859 {
1860         BUG();
1861         if (nidp)
1862                 *nidp = -1;
1863         return NULL;
1864 }
1865
1866 static void hugetlb_unregister_all_nodes(void) { }
1867
1868 static void hugetlb_register_all_nodes(void) { }
1869
1870 #endif
1871
1872 static void __exit hugetlb_exit(void)
1873 {
1874         struct hstate *h;
1875
1876         hugetlb_unregister_all_nodes();
1877
1878         for_each_hstate(h) {
1879                 kobject_put(hstate_kobjs[hstate_index(h)]);
1880         }
1881
1882         kobject_put(hugepages_kobj);
1883 }
1884 module_exit(hugetlb_exit);
1885
1886 static int __init hugetlb_init(void)
1887 {
1888         /* Some platform decide whether they support huge pages at boot
1889          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1890          * there is no such support
1891          */
1892         if (HPAGE_SHIFT == 0)
1893                 return 0;
1894
1895         if (!size_to_hstate(default_hstate_size)) {
1896                 default_hstate_size = HPAGE_SIZE;
1897                 if (!size_to_hstate(default_hstate_size))
1898                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1899         }
1900         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1901         if (default_hstate_max_huge_pages)
1902                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1903
1904         hugetlb_init_hstates();
1905
1906         gather_bootmem_prealloc();
1907
1908         report_hugepages();
1909
1910         hugetlb_sysfs_init();
1911
1912         hugetlb_register_all_nodes();
1913
1914         return 0;
1915 }
1916 module_init(hugetlb_init);
1917
1918 /* Should be called on processing a hugepagesz=... option */
1919 void __init hugetlb_add_hstate(unsigned order)
1920 {
1921         struct hstate *h;
1922         unsigned long i;
1923
1924         if (size_to_hstate(PAGE_SIZE << order)) {
1925                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1926                 return;
1927         }
1928         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1929         BUG_ON(order == 0);
1930         h = &hstates[hugetlb_max_hstate++];
1931         h->order = order;
1932         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1933         h->nr_huge_pages = 0;
1934         h->free_huge_pages = 0;
1935         for (i = 0; i < MAX_NUMNODES; ++i)
1936                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1937         INIT_LIST_HEAD(&h->hugepage_activelist);
1938         h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1939         h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1940         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1941                                         huge_page_size(h)/1024);
1942         /*
1943          * Add cgroup control files only if the huge page consists
1944          * of more than two normal pages. This is because we use
1945          * page[2].lru.next for storing cgoup details.
1946          */
1947         if (order >= HUGETLB_CGROUP_MIN_ORDER)
1948                 hugetlb_cgroup_file_init(hugetlb_max_hstate - 1);
1949
1950         parsed_hstate = h;
1951 }
1952
1953 static int __init hugetlb_nrpages_setup(char *s)
1954 {
1955         unsigned long *mhp;
1956         static unsigned long *last_mhp;
1957
1958         /*
1959          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1960          * so this hugepages= parameter goes to the "default hstate".
1961          */
1962         if (!hugetlb_max_hstate)
1963                 mhp = &default_hstate_max_huge_pages;
1964         else
1965                 mhp = &parsed_hstate->max_huge_pages;
1966
1967         if (mhp == last_mhp) {
1968                 printk(KERN_WARNING "hugepages= specified twice without "
1969                         "interleaving hugepagesz=, ignoring\n");
1970                 return 1;
1971         }
1972
1973         if (sscanf(s, "%lu", mhp) <= 0)
1974                 *mhp = 0;
1975
1976         /*
1977          * Global state is always initialized later in hugetlb_init.
1978          * But we need to allocate >= MAX_ORDER hstates here early to still
1979          * use the bootmem allocator.
1980          */
1981         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1982                 hugetlb_hstate_alloc_pages(parsed_hstate);
1983
1984         last_mhp = mhp;
1985
1986         return 1;
1987 }
1988 __setup("hugepages=", hugetlb_nrpages_setup);
1989
1990 static int __init hugetlb_default_setup(char *s)
1991 {
1992         default_hstate_size = memparse(s, &s);
1993         return 1;
1994 }
1995 __setup("default_hugepagesz=", hugetlb_default_setup);
1996
1997 static unsigned int cpuset_mems_nr(unsigned int *array)
1998 {
1999         int node;
2000         unsigned int nr = 0;
2001
2002         for_each_node_mask(node, cpuset_current_mems_allowed)
2003                 nr += array[node];
2004
2005         return nr;
2006 }
2007
2008 #ifdef CONFIG_SYSCTL
2009 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2010                          struct ctl_table *table, int write,
2011                          void __user *buffer, size_t *length, loff_t *ppos)
2012 {
2013         struct hstate *h = &default_hstate;
2014         unsigned long tmp;
2015         int ret;
2016
2017         tmp = h->max_huge_pages;
2018
2019         if (write && h->order >= MAX_ORDER)
2020                 return -EINVAL;
2021
2022         table->data = &tmp;
2023         table->maxlen = sizeof(unsigned long);
2024         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2025         if (ret)
2026                 goto out;
2027
2028         if (write) {
2029                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2030                                                 GFP_KERNEL | __GFP_NORETRY);
2031                 if (!(obey_mempolicy &&
2032                                init_nodemask_of_mempolicy(nodes_allowed))) {
2033                         NODEMASK_FREE(nodes_allowed);
2034                         nodes_allowed = &node_states[N_HIGH_MEMORY];
2035                 }
2036                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2037
2038                 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2039                         NODEMASK_FREE(nodes_allowed);
2040         }
2041 out:
2042         return ret;
2043 }
2044
2045 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2046                           void __user *buffer, size_t *length, loff_t *ppos)
2047 {
2048
2049         return hugetlb_sysctl_handler_common(false, table, write,
2050                                                         buffer, length, ppos);
2051 }
2052
2053 #ifdef CONFIG_NUMA
2054 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2055                           void __user *buffer, size_t *length, loff_t *ppos)
2056 {
2057         return hugetlb_sysctl_handler_common(true, table, write,
2058                                                         buffer, length, ppos);
2059 }
2060 #endif /* CONFIG_NUMA */
2061
2062 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2063                         void __user *buffer,
2064                         size_t *length, loff_t *ppos)
2065 {
2066         proc_dointvec(table, write, buffer, length, ppos);
2067         if (hugepages_treat_as_movable)
2068                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2069         else
2070                 htlb_alloc_mask = GFP_HIGHUSER;
2071         return 0;
2072 }
2073
2074 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2075                         void __user *buffer,
2076                         size_t *length, loff_t *ppos)
2077 {
2078         struct hstate *h = &default_hstate;
2079         unsigned long tmp;
2080         int ret;
2081
2082         tmp = h->nr_overcommit_huge_pages;
2083
2084         if (write && h->order >= MAX_ORDER)
2085                 return -EINVAL;
2086
2087         table->data = &tmp;
2088         table->maxlen = sizeof(unsigned long);
2089         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2090         if (ret)
2091                 goto out;
2092
2093         if (write) {
2094                 spin_lock(&hugetlb_lock);
2095                 h->nr_overcommit_huge_pages = tmp;
2096                 spin_unlock(&hugetlb_lock);
2097         }
2098 out:
2099         return ret;
2100 }
2101
2102 #endif /* CONFIG_SYSCTL */
2103
2104 void hugetlb_report_meminfo(struct seq_file *m)
2105 {
2106         struct hstate *h = &default_hstate;
2107         seq_printf(m,
2108                         "HugePages_Total:   %5lu\n"
2109                         "HugePages_Free:    %5lu\n"
2110                         "HugePages_Rsvd:    %5lu\n"
2111                         "HugePages_Surp:    %5lu\n"
2112                         "Hugepagesize:   %8lu kB\n",
2113                         h->nr_huge_pages,
2114                         h->free_huge_pages,
2115                         h->resv_huge_pages,
2116                         h->surplus_huge_pages,
2117                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2118 }
2119
2120 int hugetlb_report_node_meminfo(int nid, char *buf)
2121 {
2122         struct hstate *h = &default_hstate;
2123         return sprintf(buf,
2124                 "Node %d HugePages_Total: %5u\n"
2125                 "Node %d HugePages_Free:  %5u\n"
2126                 "Node %d HugePages_Surp:  %5u\n",
2127                 nid, h->nr_huge_pages_node[nid],
2128                 nid, h->free_huge_pages_node[nid],
2129                 nid, h->surplus_huge_pages_node[nid]);
2130 }
2131
2132 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2133 unsigned long hugetlb_total_pages(void)
2134 {
2135         struct hstate *h = &default_hstate;
2136         return h->nr_huge_pages * pages_per_huge_page(h);
2137 }
2138
2139 static int hugetlb_acct_memory(struct hstate *h, long delta)
2140 {
2141         int ret = -ENOMEM;
2142
2143         spin_lock(&hugetlb_lock);
2144         /*
2145          * When cpuset is configured, it breaks the strict hugetlb page
2146          * reservation as the accounting is done on a global variable. Such
2147          * reservation is completely rubbish in the presence of cpuset because
2148          * the reservation is not checked against page availability for the
2149          * current cpuset. Application can still potentially OOM'ed by kernel
2150          * with lack of free htlb page in cpuset that the task is in.
2151          * Attempt to enforce strict accounting with cpuset is almost
2152          * impossible (or too ugly) because cpuset is too fluid that
2153          * task or memory node can be dynamically moved between cpusets.
2154          *
2155          * The change of semantics for shared hugetlb mapping with cpuset is
2156          * undesirable. However, in order to preserve some of the semantics,
2157          * we fall back to check against current free page availability as
2158          * a best attempt and hopefully to minimize the impact of changing
2159          * semantics that cpuset has.
2160          */
2161         if (delta > 0) {
2162                 if (gather_surplus_pages(h, delta) < 0)
2163                         goto out;
2164
2165                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2166                         return_unused_surplus_pages(h, delta);
2167                         goto out;
2168                 }
2169         }
2170
2171         ret = 0;
2172         if (delta < 0)
2173                 return_unused_surplus_pages(h, (unsigned long) -delta);
2174
2175 out:
2176         spin_unlock(&hugetlb_lock);
2177         return ret;
2178 }
2179
2180 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2181 {
2182         struct resv_map *reservations = vma_resv_map(vma);
2183
2184         /*
2185          * This new VMA should share its siblings reservation map if present.
2186          * The VMA will only ever have a valid reservation map pointer where
2187          * it is being copied for another still existing VMA.  As that VMA
2188          * has a reference to the reservation map it cannot disappear until
2189          * after this open call completes.  It is therefore safe to take a
2190          * new reference here without additional locking.
2191          */
2192         if (reservations)
2193                 kref_get(&reservations->refs);
2194 }
2195
2196 static void resv_map_put(struct vm_area_struct *vma)
2197 {
2198         struct resv_map *reservations = vma_resv_map(vma);
2199
2200         if (!reservations)
2201                 return;
2202         kref_put(&reservations->refs, resv_map_release);
2203 }
2204
2205 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2206 {
2207         struct hstate *h = hstate_vma(vma);
2208         struct resv_map *reservations = vma_resv_map(vma);
2209         struct hugepage_subpool *spool = subpool_vma(vma);
2210         unsigned long reserve;
2211         unsigned long start;
2212         unsigned long end;
2213
2214         if (reservations) {
2215                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2216                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2217
2218                 reserve = (end - start) -
2219                         region_count(&reservations->regions, start, end);
2220
2221                 resv_map_put(vma);
2222
2223                 if (reserve) {
2224                         hugetlb_acct_memory(h, -reserve);
2225                         hugepage_subpool_put_pages(spool, reserve);
2226                 }
2227         }
2228 }
2229
2230 /*
2231  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2232  * handle_mm_fault() to try to instantiate regular-sized pages in the
2233  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2234  * this far.
2235  */
2236 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2237 {
2238         BUG();
2239         return 0;
2240 }
2241
2242 const struct vm_operations_struct hugetlb_vm_ops = {
2243         .fault = hugetlb_vm_op_fault,
2244         .open = hugetlb_vm_op_open,
2245         .close = hugetlb_vm_op_close,
2246 };
2247
2248 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2249                                 int writable)
2250 {
2251         pte_t entry;
2252
2253         if (writable) {
2254                 entry =
2255                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2256         } else {
2257                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2258         }
2259         entry = pte_mkyoung(entry);
2260         entry = pte_mkhuge(entry);
2261         entry = arch_make_huge_pte(entry, vma, page, writable);
2262
2263         return entry;
2264 }
2265
2266 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2267                                    unsigned long address, pte_t *ptep)
2268 {
2269         pte_t entry;
2270
2271         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2272         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2273                 update_mmu_cache(vma, address, ptep);
2274 }
2275
2276
2277 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2278                             struct vm_area_struct *vma)
2279 {
2280         pte_t *src_pte, *dst_pte, entry;
2281         struct page *ptepage;
2282         unsigned long addr;
2283         int cow;
2284         struct hstate *h = hstate_vma(vma);
2285         unsigned long sz = huge_page_size(h);
2286
2287         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2288
2289         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2290                 src_pte = huge_pte_offset(src, addr);
2291                 if (!src_pte)
2292                         continue;
2293                 dst_pte = huge_pte_alloc(dst, addr, sz);
2294                 if (!dst_pte)
2295                         goto nomem;
2296
2297                 /* If the pagetables are shared don't copy or take references */
2298                 if (dst_pte == src_pte)
2299                         continue;
2300
2301                 spin_lock(&dst->page_table_lock);
2302                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2303                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2304                         if (cow)
2305                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2306                         entry = huge_ptep_get(src_pte);
2307                         ptepage = pte_page(entry);
2308                         get_page(ptepage);
2309                         page_dup_rmap(ptepage);
2310                         set_huge_pte_at(dst, addr, dst_pte, entry);
2311                 }
2312                 spin_unlock(&src->page_table_lock);
2313                 spin_unlock(&dst->page_table_lock);
2314         }
2315         return 0;
2316
2317 nomem:
2318         return -ENOMEM;
2319 }
2320
2321 static int is_hugetlb_entry_migration(pte_t pte)
2322 {
2323         swp_entry_t swp;
2324
2325         if (huge_pte_none(pte) || pte_present(pte))
2326                 return 0;
2327         swp = pte_to_swp_entry(pte);
2328         if (non_swap_entry(swp) && is_migration_entry(swp))
2329                 return 1;
2330         else
2331                 return 0;
2332 }
2333
2334 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2335 {
2336         swp_entry_t swp;
2337
2338         if (huge_pte_none(pte) || pte_present(pte))
2339                 return 0;
2340         swp = pte_to_swp_entry(pte);
2341         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2342                 return 1;
2343         else
2344                 return 0;
2345 }
2346
2347 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2348                             unsigned long start, unsigned long end,
2349                             struct page *ref_page)
2350 {
2351         int force_flush = 0;
2352         struct mm_struct *mm = vma->vm_mm;
2353         unsigned long address;
2354         pte_t *ptep;
2355         pte_t pte;
2356         struct page *page;
2357         struct hstate *h = hstate_vma(vma);
2358         unsigned long sz = huge_page_size(h);
2359
2360         WARN_ON(!is_vm_hugetlb_page(vma));
2361         BUG_ON(start & ~huge_page_mask(h));
2362         BUG_ON(end & ~huge_page_mask(h));
2363
2364         tlb_start_vma(tlb, vma);
2365         mmu_notifier_invalidate_range_start(mm, start, end);
2366 again:
2367         spin_lock(&mm->page_table_lock);
2368         for (address = start; address < end; address += sz) {
2369                 ptep = huge_pte_offset(mm, address);
2370                 if (!ptep)
2371                         continue;
2372
2373                 if (huge_pmd_unshare(mm, &address, ptep))
2374                         continue;
2375
2376                 pte = huge_ptep_get(ptep);
2377                 if (huge_pte_none(pte))
2378                         continue;
2379
2380                 /*
2381                  * HWPoisoned hugepage is already unmapped and dropped reference
2382                  */
2383                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2384                         continue;
2385
2386                 page = pte_page(pte);
2387                 /*
2388                  * If a reference page is supplied, it is because a specific
2389                  * page is being unmapped, not a range. Ensure the page we
2390                  * are about to unmap is the actual page of interest.
2391                  */
2392                 if (ref_page) {
2393                         if (page != ref_page)
2394                                 continue;
2395
2396                         /*
2397                          * Mark the VMA as having unmapped its page so that
2398                          * future faults in this VMA will fail rather than
2399                          * looking like data was lost
2400                          */
2401                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2402                 }
2403
2404                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2405                 tlb_remove_tlb_entry(tlb, ptep, address);
2406                 if (pte_dirty(pte))
2407                         set_page_dirty(page);
2408
2409                 page_remove_rmap(page);
2410                 force_flush = !__tlb_remove_page(tlb, page);
2411                 if (force_flush)
2412                         break;
2413                 /* Bail out after unmapping reference page if supplied */
2414                 if (ref_page)
2415                         break;
2416         }
2417         spin_unlock(&mm->page_table_lock);
2418         /*
2419          * mmu_gather ran out of room to batch pages, we break out of
2420          * the PTE lock to avoid doing the potential expensive TLB invalidate
2421          * and page-free while holding it.
2422          */
2423         if (force_flush) {
2424                 force_flush = 0;
2425                 tlb_flush_mmu(tlb);
2426                 if (address < end && !ref_page)
2427                         goto again;
2428         }
2429         mmu_notifier_invalidate_range_end(mm, start, end);
2430         tlb_end_vma(tlb, vma);
2431 }
2432
2433 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2434                           struct vm_area_struct *vma, unsigned long start,
2435                           unsigned long end, struct page *ref_page)
2436 {
2437         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2438
2439         /*
2440          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2441          * test will fail on a vma being torn down, and not grab a page table
2442          * on its way out.  We're lucky that the flag has such an appropriate
2443          * name, and can in fact be safely cleared here. We could clear it
2444          * before the __unmap_hugepage_range above, but all that's necessary
2445          * is to clear it before releasing the i_mmap_mutex. This works
2446          * because in the context this is called, the VMA is about to be
2447          * destroyed and the i_mmap_mutex is held.
2448          */
2449         vma->vm_flags &= ~VM_MAYSHARE;
2450 }
2451
2452 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2453                           unsigned long end, struct page *ref_page)
2454 {
2455         struct mm_struct *mm;
2456         struct mmu_gather tlb;
2457
2458         mm = vma->vm_mm;
2459
2460         tlb_gather_mmu(&tlb, mm, 0);
2461         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2462         tlb_finish_mmu(&tlb, start, end);
2463 }
2464
2465 /*
2466  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2467  * mappping it owns the reserve page for. The intention is to unmap the page
2468  * from other VMAs and let the children be SIGKILLed if they are faulting the
2469  * same region.
2470  */
2471 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2472                                 struct page *page, unsigned long address)
2473 {
2474         struct hstate *h = hstate_vma(vma);
2475         struct vm_area_struct *iter_vma;
2476         struct address_space *mapping;
2477         struct prio_tree_iter iter;
2478         pgoff_t pgoff;
2479
2480         /*
2481          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2482          * from page cache lookup which is in HPAGE_SIZE units.
2483          */
2484         address = address & huge_page_mask(h);
2485         pgoff = vma_hugecache_offset(h, vma, address);
2486         mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2487
2488         /*
2489          * Take the mapping lock for the duration of the table walk. As
2490          * this mapping should be shared between all the VMAs,
2491          * __unmap_hugepage_range() is called as the lock is already held
2492          */
2493         mutex_lock(&mapping->i_mmap_mutex);
2494         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2495                 /* Do not unmap the current VMA */
2496                 if (iter_vma == vma)
2497                         continue;
2498
2499                 /*
2500                  * Unmap the page from other VMAs without their own reserves.
2501                  * They get marked to be SIGKILLed if they fault in these
2502                  * areas. This is because a future no-page fault on this VMA
2503                  * could insert a zeroed page instead of the data existing
2504                  * from the time of fork. This would look like data corruption
2505                  */
2506                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2507                         unmap_hugepage_range(iter_vma, address,
2508                                              address + huge_page_size(h), page);
2509         }
2510         mutex_unlock(&mapping->i_mmap_mutex);
2511
2512         return 1;
2513 }
2514
2515 /*
2516  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2517  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2518  * cannot race with other handlers or page migration.
2519  * Keep the pte_same checks anyway to make transition from the mutex easier.
2520  */
2521 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2522                         unsigned long address, pte_t *ptep, pte_t pte,
2523                         struct page *pagecache_page)
2524 {
2525         struct hstate *h = hstate_vma(vma);
2526         struct page *old_page, *new_page;
2527         int avoidcopy;
2528         int outside_reserve = 0;
2529
2530         old_page = pte_page(pte);
2531
2532 retry_avoidcopy:
2533         /* If no-one else is actually using this page, avoid the copy
2534          * and just make the page writable */
2535         avoidcopy = (page_mapcount(old_page) == 1);
2536         if (avoidcopy) {
2537                 if (PageAnon(old_page))
2538                         page_move_anon_rmap(old_page, vma, address);
2539                 set_huge_ptep_writable(vma, address, ptep);
2540                 return 0;
2541         }
2542
2543         /*
2544          * If the process that created a MAP_PRIVATE mapping is about to
2545          * perform a COW due to a shared page count, attempt to satisfy
2546          * the allocation without using the existing reserves. The pagecache
2547          * page is used to determine if the reserve at this address was
2548          * consumed or not. If reserves were used, a partial faulted mapping
2549          * at the time of fork() could consume its reserves on COW instead
2550          * of the full address range.
2551          */
2552         if (!(vma->vm_flags & VM_MAYSHARE) &&
2553                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2554                         old_page != pagecache_page)
2555                 outside_reserve = 1;
2556
2557         page_cache_get(old_page);
2558
2559         /* Drop page_table_lock as buddy allocator may be called */
2560         spin_unlock(&mm->page_table_lock);
2561         new_page = alloc_huge_page(vma, address, outside_reserve);
2562
2563         if (IS_ERR(new_page)) {
2564                 long err = PTR_ERR(new_page);
2565                 page_cache_release(old_page);
2566
2567                 /*
2568                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2569                  * it is due to references held by a child and an insufficient
2570                  * huge page pool. To guarantee the original mappers
2571                  * reliability, unmap the page from child processes. The child
2572                  * may get SIGKILLed if it later faults.
2573                  */
2574                 if (outside_reserve) {
2575                         BUG_ON(huge_pte_none(pte));
2576                         if (unmap_ref_private(mm, vma, old_page, address)) {
2577                                 BUG_ON(huge_pte_none(pte));
2578                                 spin_lock(&mm->page_table_lock);
2579                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2580                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2581                                         goto retry_avoidcopy;
2582                                 /*
2583                                  * race occurs while re-acquiring page_table_lock, and
2584                                  * our job is done.
2585                                  */
2586                                 return 0;
2587                         }
2588                         WARN_ON_ONCE(1);
2589                 }
2590
2591                 /* Caller expects lock to be held */
2592                 spin_lock(&mm->page_table_lock);
2593                 if (err == -ENOMEM)
2594                         return VM_FAULT_OOM;
2595                 else
2596                         return VM_FAULT_SIGBUS;
2597         }
2598
2599         /*
2600          * When the original hugepage is shared one, it does not have
2601          * anon_vma prepared.
2602          */
2603         if (unlikely(anon_vma_prepare(vma))) {
2604                 page_cache_release(new_page);
2605                 page_cache_release(old_page);
2606                 /* Caller expects lock to be held */
2607                 spin_lock(&mm->page_table_lock);
2608                 return VM_FAULT_OOM;
2609         }
2610
2611         copy_user_huge_page(new_page, old_page, address, vma,
2612                             pages_per_huge_page(h));
2613         __SetPageUptodate(new_page);
2614
2615         /*
2616          * Retake the page_table_lock to check for racing updates
2617          * before the page tables are altered
2618          */
2619         spin_lock(&mm->page_table_lock);
2620         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2621         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2622                 /* Break COW */
2623                 mmu_notifier_invalidate_range_start(mm,
2624                         address & huge_page_mask(h),
2625                         (address & huge_page_mask(h)) + huge_page_size(h));
2626                 huge_ptep_clear_flush(vma, address, ptep);
2627                 set_huge_pte_at(mm, address, ptep,
2628                                 make_huge_pte(vma, new_page, 1));
2629                 page_remove_rmap(old_page);
2630                 hugepage_add_new_anon_rmap(new_page, vma, address);
2631                 /* Make the old page be freed below */
2632                 new_page = old_page;
2633                 mmu_notifier_invalidate_range_end(mm,
2634                         address & huge_page_mask(h),
2635                         (address & huge_page_mask(h)) + huge_page_size(h));
2636         }
2637         page_cache_release(new_page);
2638         page_cache_release(old_page);
2639         return 0;
2640 }
2641
2642 /* Return the pagecache page at a given address within a VMA */
2643 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2644                         struct vm_area_struct *vma, unsigned long address)
2645 {
2646         struct address_space *mapping;
2647         pgoff_t idx;
2648
2649         mapping = vma->vm_file->f_mapping;
2650         idx = vma_hugecache_offset(h, vma, address);
2651
2652         return find_lock_page(mapping, idx);
2653 }
2654
2655 /*
2656  * Return whether there is a pagecache page to back given address within VMA.
2657  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2658  */
2659 static bool hugetlbfs_pagecache_present(struct hstate *h,
2660                         struct vm_area_struct *vma, unsigned long address)
2661 {
2662         struct address_space *mapping;
2663         pgoff_t idx;
2664         struct page *page;
2665
2666         mapping = vma->vm_file->f_mapping;
2667         idx = vma_hugecache_offset(h, vma, address);
2668
2669         page = find_get_page(mapping, idx);
2670         if (page)
2671                 put_page(page);
2672         return page != NULL;
2673 }
2674
2675 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2676                         unsigned long address, pte_t *ptep, unsigned int flags)
2677 {
2678         struct hstate *h = hstate_vma(vma);
2679         int ret = VM_FAULT_SIGBUS;
2680         int anon_rmap = 0;
2681         pgoff_t idx;
2682         unsigned long size;
2683         struct page *page;
2684         struct address_space *mapping;
2685         pte_t new_pte;
2686
2687         /*
2688          * Currently, we are forced to kill the process in the event the
2689          * original mapper has unmapped pages from the child due to a failed
2690          * COW. Warn that such a situation has occurred as it may not be obvious
2691          */
2692         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2693                 printk(KERN_WARNING
2694                         "PID %d killed due to inadequate hugepage pool\n",
2695                         current->pid);
2696                 return ret;
2697         }
2698
2699         mapping = vma->vm_file->f_mapping;
2700         idx = vma_hugecache_offset(h, vma, address);
2701
2702         /*
2703          * Use page lock to guard against racing truncation
2704          * before we get page_table_lock.
2705          */
2706 retry:
2707         page = find_lock_page(mapping, idx);
2708         if (!page) {
2709                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2710                 if (idx >= size)
2711                         goto out;
2712                 page = alloc_huge_page(vma, address, 0);
2713                 if (IS_ERR(page)) {
2714                         ret = PTR_ERR(page);
2715                         if (ret == -ENOMEM)
2716                                 ret = VM_FAULT_OOM;
2717                         else
2718                                 ret = VM_FAULT_SIGBUS;
2719                         goto out;
2720                 }
2721                 clear_huge_page(page, address, pages_per_huge_page(h));
2722                 __SetPageUptodate(page);
2723
2724                 if (vma->vm_flags & VM_MAYSHARE) {
2725                         int err;
2726                         struct inode *inode = mapping->host;
2727
2728                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2729                         if (err) {
2730                                 put_page(page);
2731                                 if (err == -EEXIST)
2732                                         goto retry;
2733                                 goto out;
2734                         }
2735
2736                         spin_lock(&inode->i_lock);
2737                         inode->i_blocks += blocks_per_huge_page(h);
2738                         spin_unlock(&inode->i_lock);
2739                 } else {
2740                         lock_page(page);
2741                         if (unlikely(anon_vma_prepare(vma))) {
2742                                 ret = VM_FAULT_OOM;
2743                                 goto backout_unlocked;
2744                         }
2745                         anon_rmap = 1;
2746                 }
2747         } else {
2748                 /*
2749                  * If memory error occurs between mmap() and fault, some process
2750                  * don't have hwpoisoned swap entry for errored virtual address.
2751                  * So we need to block hugepage fault by PG_hwpoison bit check.
2752                  */
2753                 if (unlikely(PageHWPoison(page))) {
2754                         ret = VM_FAULT_HWPOISON |
2755                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2756                         goto backout_unlocked;
2757                 }
2758         }
2759
2760         /*
2761          * If we are going to COW a private mapping later, we examine the
2762          * pending reservations for this page now. This will ensure that
2763          * any allocations necessary to record that reservation occur outside
2764          * the spinlock.
2765          */
2766         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2767                 if (vma_needs_reservation(h, vma, address) < 0) {
2768                         ret = VM_FAULT_OOM;
2769                         goto backout_unlocked;
2770                 }
2771
2772         spin_lock(&mm->page_table_lock);
2773         size = i_size_read(mapping->host) >> huge_page_shift(h);
2774         if (idx >= size)
2775                 goto backout;
2776
2777         ret = 0;
2778         if (!huge_pte_none(huge_ptep_get(ptep)))
2779                 goto backout;
2780
2781         if (anon_rmap)
2782                 hugepage_add_new_anon_rmap(page, vma, address);
2783         else
2784                 page_dup_rmap(page);
2785         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2786                                 && (vma->vm_flags & VM_SHARED)));
2787         set_huge_pte_at(mm, address, ptep, new_pte);
2788
2789         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2790                 /* Optimization, do the COW without a second fault */
2791                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2792         }
2793
2794         spin_unlock(&mm->page_table_lock);
2795         unlock_page(page);
2796 out:
2797         return ret;
2798
2799 backout:
2800         spin_unlock(&mm->page_table_lock);
2801 backout_unlocked:
2802         unlock_page(page);
2803         put_page(page);
2804         goto out;
2805 }
2806
2807 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2808                         unsigned long address, unsigned int flags)
2809 {
2810         pte_t *ptep;
2811         pte_t entry;
2812         int ret;
2813         struct page *page = NULL;
2814         struct page *pagecache_page = NULL;
2815         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2816         struct hstate *h = hstate_vma(vma);
2817
2818         address &= huge_page_mask(h);
2819
2820         ptep = huge_pte_offset(mm, address);
2821         if (ptep) {
2822                 entry = huge_ptep_get(ptep);
2823                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2824                         migration_entry_wait(mm, (pmd_t *)ptep, address);
2825                         return 0;
2826                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2827                         return VM_FAULT_HWPOISON_LARGE |
2828                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2829         }
2830
2831         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2832         if (!ptep)
2833                 return VM_FAULT_OOM;
2834
2835         /*
2836          * Serialize hugepage allocation and instantiation, so that we don't
2837          * get spurious allocation failures if two CPUs race to instantiate
2838          * the same page in the page cache.
2839          */
2840         mutex_lock(&hugetlb_instantiation_mutex);
2841         entry = huge_ptep_get(ptep);
2842         if (huge_pte_none(entry)) {
2843                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2844                 goto out_mutex;
2845         }
2846
2847         ret = 0;
2848
2849         /*
2850          * If we are going to COW the mapping later, we examine the pending
2851          * reservations for this page now. This will ensure that any
2852          * allocations necessary to record that reservation occur outside the
2853          * spinlock. For private mappings, we also lookup the pagecache
2854          * page now as it is used to determine if a reservation has been
2855          * consumed.
2856          */
2857         if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2858                 if (vma_needs_reservation(h, vma, address) < 0) {
2859                         ret = VM_FAULT_OOM;
2860                         goto out_mutex;
2861                 }
2862
2863                 if (!(vma->vm_flags & VM_MAYSHARE))
2864                         pagecache_page = hugetlbfs_pagecache_page(h,
2865                                                                 vma, address);
2866         }
2867
2868         /*
2869          * hugetlb_cow() requires page locks of pte_page(entry) and
2870          * pagecache_page, so here we need take the former one
2871          * when page != pagecache_page or !pagecache_page.
2872          * Note that locking order is always pagecache_page -> page,
2873          * so no worry about deadlock.
2874          */
2875         page = pte_page(entry);
2876         get_page(page);
2877         if (page != pagecache_page)
2878                 lock_page(page);
2879
2880         spin_lock(&mm->page_table_lock);
2881         /* Check for a racing update before calling hugetlb_cow */
2882         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2883                 goto out_page_table_lock;
2884
2885
2886         if (flags & FAULT_FLAG_WRITE) {
2887                 if (!pte_write(entry)) {
2888                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2889                                                         pagecache_page);
2890                         goto out_page_table_lock;
2891                 }
2892                 entry = pte_mkdirty(entry);
2893         }
2894         entry = pte_mkyoung(entry);
2895         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2896                                                 flags & FAULT_FLAG_WRITE))
2897                 update_mmu_cache(vma, address, ptep);
2898
2899 out_page_table_lock:
2900         spin_unlock(&mm->page_table_lock);
2901
2902         if (pagecache_page) {
2903                 unlock_page(pagecache_page);
2904                 put_page(pagecache_page);
2905         }
2906         if (page != pagecache_page)
2907                 unlock_page(page);
2908         put_page(page);
2909
2910 out_mutex:
2911         mutex_unlock(&hugetlb_instantiation_mutex);
2912
2913         return ret;
2914 }
2915
2916 /* Can be overriden by architectures */
2917 __attribute__((weak)) struct page *
2918 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2919                pud_t *pud, int write)
2920 {
2921         BUG();
2922         return NULL;
2923 }
2924
2925 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2926                         struct page **pages, struct vm_area_struct **vmas,
2927                         unsigned long *position, int *length, int i,
2928                         unsigned int flags)
2929 {
2930         unsigned long pfn_offset;
2931         unsigned long vaddr = *position;
2932         int remainder = *length;
2933         struct hstate *h = hstate_vma(vma);
2934
2935         spin_lock(&mm->page_table_lock);
2936         while (vaddr < vma->vm_end && remainder) {
2937                 pte_t *pte;
2938                 int absent;
2939                 struct page *page;
2940
2941                 /*
2942                  * Some archs (sparc64, sh*) have multiple pte_ts to
2943                  * each hugepage.  We have to make sure we get the
2944                  * first, for the page indexing below to work.
2945                  */
2946                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2947                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2948
2949                 /*
2950                  * When coredumping, it suits get_dump_page if we just return
2951                  * an error where there's an empty slot with no huge pagecache
2952                  * to back it.  This way, we avoid allocating a hugepage, and
2953                  * the sparse dumpfile avoids allocating disk blocks, but its
2954                  * huge holes still show up with zeroes where they need to be.
2955                  */
2956                 if (absent && (flags & FOLL_DUMP) &&
2957                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2958                         remainder = 0;
2959                         break;
2960                 }
2961
2962                 if (absent ||
2963                     ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2964                         int ret;
2965
2966                         spin_unlock(&mm->page_table_lock);
2967                         ret = hugetlb_fault(mm, vma, vaddr,
2968                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2969                         spin_lock(&mm->page_table_lock);
2970                         if (!(ret & VM_FAULT_ERROR))
2971                                 continue;
2972
2973                         remainder = 0;
2974                         break;
2975                 }
2976
2977                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2978                 page = pte_page(huge_ptep_get(pte));
2979 same_page:
2980                 if (pages) {
2981                         pages[i] = mem_map_offset(page, pfn_offset);
2982                         get_page(pages[i]);
2983                 }
2984
2985                 if (vmas)
2986                         vmas[i] = vma;
2987
2988                 vaddr += PAGE_SIZE;
2989                 ++pfn_offset;
2990                 --remainder;
2991                 ++i;
2992                 if (vaddr < vma->vm_end && remainder &&
2993                                 pfn_offset < pages_per_huge_page(h)) {
2994                         /*
2995                          * We use pfn_offset to avoid touching the pageframes
2996                          * of this compound page.
2997                          */
2998                         goto same_page;
2999                 }
3000         }
3001         spin_unlock(&mm->page_table_lock);
3002         *length = remainder;
3003         *position = vaddr;
3004
3005         return i ? i : -EFAULT;
3006 }
3007
3008 void hugetlb_change_protection(struct vm_area_struct *vma,
3009                 unsigned long address, unsigned long end, pgprot_t newprot)
3010 {
3011         struct mm_struct *mm = vma->vm_mm;
3012         unsigned long start = address;
3013         pte_t *ptep;
3014         pte_t pte;
3015         struct hstate *h = hstate_vma(vma);
3016
3017         BUG_ON(address >= end);
3018         flush_cache_range(vma, address, end);
3019
3020         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3021         spin_lock(&mm->page_table_lock);
3022         for (; address < end; address += huge_page_size(h)) {
3023                 ptep = huge_pte_offset(mm, address);
3024                 if (!ptep)
3025                         continue;
3026                 if (huge_pmd_unshare(mm, &address, ptep))
3027                         continue;
3028                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3029                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3030                         pte = pte_mkhuge(pte_modify(pte, newprot));
3031                         set_huge_pte_at(mm, address, ptep, pte);
3032                 }
3033         }
3034         spin_unlock(&mm->page_table_lock);
3035         /*
3036          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3037          * may have cleared our pud entry and done put_page on the page table:
3038          * once we release i_mmap_mutex, another task can do the final put_page
3039          * and that page table be reused and filled with junk.
3040          */
3041         flush_tlb_range(vma, start, end);
3042         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3043 }
3044
3045 int hugetlb_reserve_pages(struct inode *inode,
3046                                         long from, long to,
3047                                         struct vm_area_struct *vma,
3048                                         vm_flags_t vm_flags)
3049 {
3050         long ret, chg;
3051         struct hstate *h = hstate_inode(inode);
3052         struct hugepage_subpool *spool = subpool_inode(inode);
3053
3054         /*
3055          * Only apply hugepage reservation if asked. At fault time, an
3056          * attempt will be made for VM_NORESERVE to allocate a page
3057          * without using reserves
3058          */
3059         if (vm_flags & VM_NORESERVE)
3060                 return 0;
3061
3062         /*
3063          * Shared mappings base their reservation on the number of pages that
3064          * are already allocated on behalf of the file. Private mappings need
3065          * to reserve the full area even if read-only as mprotect() may be
3066          * called to make the mapping read-write. Assume !vma is a shm mapping
3067          */
3068         if (!vma || vma->vm_flags & VM_MAYSHARE)
3069                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3070         else {
3071                 struct resv_map *resv_map = resv_map_alloc();
3072                 if (!resv_map)
3073                         return -ENOMEM;
3074
3075                 chg = to - from;
3076
3077                 set_vma_resv_map(vma, resv_map);
3078                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3079         }
3080
3081         if (chg < 0) {
3082                 ret = chg;
3083                 goto out_err;
3084         }
3085
3086         /* There must be enough pages in the subpool for the mapping */
3087         if (hugepage_subpool_get_pages(spool, chg)) {
3088                 ret = -ENOSPC;
3089                 goto out_err;
3090         }
3091
3092         /*
3093          * Check enough hugepages are available for the reservation.
3094          * Hand the pages back to the subpool if there are not
3095          */
3096         ret = hugetlb_acct_memory(h, chg);
3097         if (ret < 0) {
3098                 hugepage_subpool_put_pages(spool, chg);
3099                 goto out_err;
3100         }
3101
3102         /*
3103          * Account for the reservations made. Shared mappings record regions
3104          * that have reservations as they are shared by multiple VMAs.
3105          * When the last VMA disappears, the region map says how much
3106          * the reservation was and the page cache tells how much of
3107          * the reservation was consumed. Private mappings are per-VMA and
3108          * only the consumed reservations are tracked. When the VMA
3109          * disappears, the original reservation is the VMA size and the
3110          * consumed reservations are stored in the map. Hence, nothing
3111          * else has to be done for private mappings here
3112          */
3113         if (!vma || vma->vm_flags & VM_MAYSHARE)
3114                 region_add(&inode->i_mapping->private_list, from, to);
3115         return 0;
3116 out_err:
3117         if (vma)
3118                 resv_map_put(vma);
3119         return ret;
3120 }
3121
3122 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3123 {
3124         struct hstate *h = hstate_inode(inode);
3125         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3126         struct hugepage_subpool *spool = subpool_inode(inode);
3127
3128         spin_lock(&inode->i_lock);
3129         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3130         spin_unlock(&inode->i_lock);
3131
3132         hugepage_subpool_put_pages(spool, (chg - freed));
3133         hugetlb_acct_memory(h, -(chg - freed));
3134 }
3135
3136 #ifdef CONFIG_MEMORY_FAILURE
3137
3138 /* Should be called in hugetlb_lock */
3139 static int is_hugepage_on_freelist(struct page *hpage)
3140 {
3141         struct page *page;
3142         struct page *tmp;
3143         struct hstate *h = page_hstate(hpage);
3144         int nid = page_to_nid(hpage);
3145
3146         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3147                 if (page == hpage)
3148                         return 1;
3149         return 0;
3150 }
3151
3152 /*
3153  * This function is called from memory failure code.
3154  * Assume the caller holds page lock of the head page.
3155  */
3156 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3157 {
3158         struct hstate *h = page_hstate(hpage);
3159         int nid = page_to_nid(hpage);
3160         int ret = -EBUSY;
3161
3162         spin_lock(&hugetlb_lock);
3163         if (is_hugepage_on_freelist(hpage)) {
3164                 list_del(&hpage->lru);
3165                 set_page_refcounted(hpage);
3166                 h->free_huge_pages--;
3167                 h->free_huge_pages_node[nid]--;
3168                 ret = 0;
3169         }
3170         spin_unlock(&hugetlb_lock);
3171         return ret;
3172 }
3173 #endif