
SocketCAN and queueing disciplines:
Final Report

M. Sojka, R. Lisový, P. Ṕı̌sa
Czech Technical University in Prague

November 22, 2011
Version 1.1

Abstract

This document investigates the possibilities of using Linux traffic control subsystem with
CAN traffic. By using queueing disciplines provided by this subsystem, one can solve
certain type of priority inversion problems that arise from simultaneous use of a CAN
interface by multiple applications. The document contains a brief introduction to traffic
control under Linux, evaluates existing queueing disciplines for the use with CAN and
gives the instructions for setting useful queueing discipline configurations. The queueing
disciplines are also benchmarked to evaluate their fitness for small (and slow) embedded
systems.

Contents

1. Introduction 5
1.1. The problem . 5
1.2. Proposed solution . 6
1.3. Acknowledgment . 7

2. Linux traffic control basics 8
2.1. Terminology . 8
2.2. Packet flow through qdiscs . 9
2.3. The tc tool . 9

2.3.1. Configuring qdiscs/filters . 9
2.3.2. Obtaining information about configured qdiscs 11

3. Using qdiscs for controlling CAN traffic 12
3.1. Suitable qdiscs . 12

3.1.1. pfifo/bfifo . 12
3.1.2. pfifo fast . 12
3.1.3. pfifo head drop . 13
3.1.4. prio . 13
3.1.5. TBF . 14
3.1.6. SFQ . 14
3.1.7. HTB . 15

3.2. Classifying CAN frames . 15
3.2.1. u32 filter . 16
3.2.2. can filter . 16
3.2.3. Socket priority . 18

3.3. Qdiscs and virtual CAN interface . 18
3.4. Blocking the application when the queue is full 19
3.5. Summary . 19

4. Benchmarks 21
4.1. Test environment . 21
4.2. Conducted tests . 22
4.3. Experiment results . 22

4.3.1. Qdiscs comparison . 22
4.3.2. CAN filter . 27

5. Conclusion 28

3

Contents

A. Example configurations of queueing disciplines 29
A.1. Prio qdisc with multiple classes . 29
A.2. Prio qdisc with TBF child qdiscs . 30
A.3. Prio qdisc with SFQ child qdiscs . 31
A.4. Prio qdisc with TBF and SFQ child qdiscs 32
A.5. HTB qdisc . 33

B. Queueing disciplines available in Linux TC not suitable for SocketCAN 35

4

1. Introduction

In the past, most CAN bus devices (both embedded systems and host computers) run
only a single application that communicated via CAN bus. With the birth of SocketCAN
– the CAN subsystem of Linux – this paradigm changed. Now it is easily possible to run
as many applications as one wants in a single Linux-based device. Due to the architecture
of the Linux networking subsystem, this may lead to certain unwanted effects that would
not exist if the applications were run on separate nodes. In this report, we examine the
possibility of using Linux traffic control subsystem and its queueing disciplines with CAN
networks as a way to remove or reduce the unwanted effects.

1.1. The problem

The unwanted effects mentioned above are in general called priority inversion. In case of
CAN, it happens during frame transmission when high priority frames have to wait for
lower priority ones to be transmitted. This is caused by the fact that, by default, there
is only a single queue for storing the frames waiting for the transmission to the bus.
Therefore, time sensitive frames may be delayed by an unacceptable amount of time
because the kernel is processing non-time-sensitive frames submitted for transmission
beforehand.

The simple solution to this problem is to schedule the frames waiting for transmission
inside the kernel so that the high priority (the most time sensitive) frames are transmitted
first.

To be more precise, there are two different reasons that cause priority inversion to
happen:

Single TX queue Consider two independent applications transmitting frames in a single
node. One application transmits one frame per second and it is required that the
frames appear on the bus precisely in one second intervals. The second application
uses some transport protocol such as ISO-TP and sends many frames in bursts
but only from time to time and does not impose any timing constraints on these
frames.

Since all transmitted frames are enqueued into a single queue, the frames of the
former application have to wait until all ISO-TP frames of the second application
are transmitted, which causes their timing requirements to be violated. The de-
sired behavior is to interleave the frames of both applications so that the timing
constraints are respected.

5

1. Introduction

Priority/ID mismatch The second reason is that in some applications the CAN frame
IDs (frame priorities) are not (for whatever reason) assigned according to the
timing requirements for those frames. If a frame with strict timing requirements is
assigned a low priority ID, it might be delayed in a CAN controller transmit buffer
waiting for all higher priority frames being transmitted from other nodes.

In other words it means that the priority inversion can happen not only when two
applications with different timing requirements reside in a single node but also
when each of them resides in a different node.

1.2. Proposed solution

The solution to the above described problem is to develop a so called queueing discipline
(qdisc) that will schedule frames in a way that the priority inversion does not occur or the
probability of its occurrence is lowered. Linux kernel already contains many ready-to-use
qdiscs so we investigate here their suitability for use with CAN.

Figure 1.1 shows the structure of queueing discipline that, we think, is able to fulfill
the most requirements of the typical CAN application. In particular:

1. Some applications (App 1 and 2 in the figure) generate urgent frames that must be
transmitted as fast as possible. This is achieved by storing those frames in a queue
with the highest priority. Frames from this queue are transmitted preferably to
anything else.

2. For the lower priority frames, there is a fairness requirement. When multiple
applications send frames with equal priority, they are served in more or less round-

App 1

App 2

App 3

R
o

u
n

d
 r

o
b

in

P
ri

o
ri

ty

R
. r

o
b

in

App 4

App 5

High

Mid

Low

CAN device

App 6

Figure 1.1.: Ideal CAN queueing discipline.

6

1. Introduction

robin fashion. In the figure, this is represented by “Round-robin” boxes for middle
and low priorities.

3. It should be possible to throttle the traffic generated by selected applications. This
is represented by leftmost clock symbols in the figure.

4. Throttling is not only useful for individual applications but also for sets of appli-
cations. The rightmost clock symbols in the figure represent throttling of the joint
traffic with certain priority. This may be used to not fully load the bus so that
other nodes have a chance of transmitting their frames. This can help in the case
of priority/ID mismatch mentioned above.

The rest of this document is structured as follows. Section 2 summarizes the termi-
nology of Linux traffic control and should give the reader basic understanding of traffic
control functionality and usage. Then, in Section 3, we describe which qdiscs are suitable
for use with CAN and how to use them. Section 4 deals with benchmarks performed on
particular qdiscs used with SocketCAN. We conclude the report in Section 5.

Appendix A contains real-world examples of qdisc configurations with short explana-
tions. Appendix B shortly mentions qdisc available in Linux traffic control subsystem
not suitable to be used with SocketCAN.

1.3. Acknowledgment

This work was financially supported by Volkswagen AG. The authors would like to thank
Oliver Hartkopp for his feedback on this work.

7

2. Linux traffic control basics

This section tries to summarize the terminology used in Linux traffic control and the
basic principles of its operation.

2.1. Terminology

From our experience, the terminology in this area is sometimes confusing. Therefore,
we try to summarize the meaning of terms used in this document. Besides Linux source
code, we took the information from [1, 2].

Qdisc (queueing discipline) is the basic element in Linux traffic control. Different qdiscs
vary widely in what they actually are. A common denominator of all qdiscs is that
they represent an algorithm to enqueue and dequeue packets. Besides the algorithm
the qdiscs can optionally consist of the actual queue for queueing packets, one or
more classes, a classifier and filters.

Qdiscs can be hierarchically composed. Every classful qdisc (i.e. qdisc with classes)
may have attached internal child-qdiscs to some of the classes. Simple qdiscs that
do not allow attaching of child-qdiscs are called classless.

Classful qdiscs typically do not enqueue packets by themselves. Instead, they use
the child-qdiscs to perform the queueing.

The top-level qdisc (attached to the network device) is called root qdisc. The
root qdisc is the only qdisc accessed directly by the networking subsystem when it
transmits a packet.

Class is an abstract container within the qdisc that is used for internal routing of the
packets going through the qdisc. Qdiscs supporting multiple classes can split the
traffic to several classes and treat each class differently. For instance, different
classes can have different priority.

Classes do have child-qdiscs attached to them. Child-qdiscs only deal with the
traffic assigned to the class they are attached to.

Classifier determines the class the packet is classified to. It can be hardcoded in the
qdisc or it can use one or more filters to perform the classification.

Filter User configurable algorithm to classify packets to classes. A filter can be attached
only to a classful qdisc.

8

2. Linux traffic control basics

Packet/Frame A unit of network communication. Frame is used in CAN networks,
packet is the term from IP networks. Qdiscs work on the level of packets/frames,
which are represented by sk_buff structure. In this document we use these two
terms interchangeably.

skb The abbreviation for sk_buff structure, i.e. the structure used by Linux kernel to
describe received or to-be-transmitted packets.

Flow/Stream A sequence of frames/packets that are logically related to each other.

SFF/EFF Abbreviation for CAN frame formats i.e. Standard Frame Format and Ex-
tended Frame Format.

Work-Conserving Qdisc Qdisc that never delays a packet if the network adaptor is
ready to send one.

2.2. Packet flow through qdiscs

The kernel only interacts with the root qdisc, i.e. it enqueues/dequeues packets to/from
root qdisc and it never touches directly the internal qdiscs. These internal qdiscs are
handled internally by their parent qdiscs according to their algorithm. This means that
when the packet is being enqueued, it traverses the qdisc hierarchy from the root to the
leaf qdisc, where it may stay queued for some time. When it is being dequeued, it goes
in the opposite direction.

In case of CAN, frames are enqueued in af can.c in function can send() as it calls
dev queue xmit(). Dequeueing happens when the kernel thinks it is appropriate, which
is either directly after the frame is enqueued or sometime later in NET TX SOFTIRQ.

2.3. The tc tool

Traffic control is configured by the tc tool which is a part of iproute2 package. It allows
to configure how the qdiscs are interconnected and how packets are classified into classes.

To use the tool, it is important to understand how qdiscs and their classes are identi-
fied. Every qdisc or class is identified by a handle composed of major and minor numbers
that are separated by a colon, e.g. 1:3. Qdiscs have minor numbers equal to zero and
classes of the particular qdisc have the same major number as the qdisc and nonzero
minor number. Refer to Figure 2.1 for an example of qdisc and class IDs.

2.3.1. Configuring qdiscs/filters

Qdiscs, filters and some types of classes are created and configured by the tc tool. The
main command used for most of the tasks looks as follows:

tc ${ENTITY} ${COMMAND} dev ${DEV} parent ${PARENT} handle ${HANDLE} ...

9

2. Linux traffic control basics

CLASS 1:2

CLASS 12:1

PFIFO 121:0

TBF 12:0

CLASS 1:3

CLASS 13:1

PFIFO 131:0

TBF 13:0

CLASS 1:1

PFIFO 11:0

Filter

PRIO 1:0 (root qdisc)

Enqueue
Dequeue

Legend:

Figure 2.1.: Graphical representation of hierarchical qdisc structure. Queueing disci-
plines are shown as blue shapes. Only the pfifo qdiscs actually queue the
packets. Token bucket filter (TBF) is one particular qdisc used to rate-
limit/throttle traffic.

ENTITY determines the type of object, which will be configured. Possible values are:
qdisc, filter, class.

COMMAND states the type of operation to be executed. It can be one of add, del, change,
show (and some other, not so common, commands).

DEV is the name of the particular device, e.g. can0.

PARENT is the handle of a qdisc/class the configured ENTITY belongs to. When creating
root qdisc, “parent ${PARENT}” is replaced with keyword root.

HANDLE specifies a handle of the particular ENTITY, which is used for refering to the
entity later.

... are replaced with the command specific for the particular qdisc/filter/class.

Some basic examples of how to use the tc tool follows:

� Creating a qdisc:

tc qdisc add dev can0 root handle 1: prio

� Deleting a (root) qdisc:

10

2. Linux traffic control basics

tc qdisc del dev can0 root

� Creating a filter (see also Section 3.2.2):

tc filter add dev can0 parent 1:0 prio 1 handle 0xa \

can sffid 0x123 sffid 0x500:0x700 flowid 1:1

� Changing a filter:

tc filter change dev can0 parent 1:0 prio 1 handle 0xa \

can sffid 0x111 effid 0x111 flowid 1:1

� Showing information about a filter:

tc filter show dev can0

� Deleting a filter:

tc filter del dev can0 parent 1:0 prio 1 handle 0xa can

See Appendix A for more advanced real-world examples of how to use the tc tool.
For detailed information see tc manual page.

2.3.2. Obtaining information about configured qdiscs

When investigating already configured qdiscs, it is possible to use diagnostic commands
of the tc tool. The command to show static information about the configuration is:

tc [-d|-s] $ENTITY show dev $DEV

where $ENTITY can be one of the qdisc, filter, class. Optional parameter -d can
be used to show more detailed information (only some qdiscs actually implement it).

To show much more dynamic information, there are statistics available for each con-
figured qdisc and class. To show them, use the above command (with $ENTITY set to
one of class or qdisc) with -s parameter.

11

3. Using qdiscs for controlling CAN traffic

This section gives the reader the detailed information how to use queuing disciplines for
CAN traffic. After reading this section, one should be able to configure Linux traffic
control to implement the ideal CAN qdisc from Figure 1.1.

3.1. Suitable qdiscs

There are many qdiscs available in the Linux traffic control subsystem. This section
describes the qdiscs suitable for using with CAN. For a brief analysis of remaining qdiscs
see Appendix B.

Most of the subsections contain an example tc command showing how to set up the
particular queueing discipline.

3.1.1. pfifo/bfifo

Qdisc called pfifo is one of the simplest qdiscs. It represents a simple queue of fixed
length. In the case of queue overflow, the enqueued packets are dropped.

An example of how to configure pfifo qdisc with its size limited to 50 packets:

tc qdisc add dev can0 root handle 1: pfifo limit 50

For more information see tc-pfifo manual page.
The bfifo qdisc is almost the same as pfifo. The only difference is that the limit is

given in bytes and not in packets. As a CAN frame has always a fixed size (typically 16
bytes), bfifo does not offer any functionality that is not available in pfifo.

3.1.2. pfifo fast

pfifo fast is the default qdisc and it is only a bit more complicated than pfifo. The
reason why this qdisc is fast is that it does not maintain any statistics. It contains three
internal queues (called bands) of different priority – the packets are enqueued into them
based on skb->priority field (see Section 3.2.3). The priority is used as an index to
priomap, which is a hardcoded table1 used to map the priority to the band. Band 0 has
the highest priority and dequeueing happens in the order of decreasing priority.

The pfifo fast qdisc has no configuration parameters. The size of the queue is
determined from txqueuelen parameter of the particular device. This parameter is
configured with ip tool. For example:

1http://lxr.linux.no/#linux+v3.0.4/net/sched/sch_generic.c#L414

12

http://lxr.linux.no/#linux+v3.0.4/net/sched/sch_generic.c#L414

3. Using qdiscs for controlling CAN traffic

ip link set can0 txqueuelen 100

For more information see tc-pfifo fast manual page.

3.1.3. pfifo head drop

Like pfifo but in contrast to it, this queueing discipline drops the earliest enqueued
packet in the case of queue overflow. As a result the queue contains always the freshest
packets.

The command used to configure such a qdisc with queue length of 1 packet:

tc qdisc add dev can0 root handle 1: pfifo_head_drop limit 1

3.1.4. prio

The prio qdisc is a simple classful queueing discipline that contains an arbitrary number
of classes (also called bands) of different priority. When dequeueing, class 0 is tried first
and only if it does not deliver a packet dequeueing with class 1, then with class 2 and
so on. In case of three classes (i.e. the default setting), the most urgent packets should
be classified into class 0, best effort packets into class 1 and background packets into
class 2.

The following command can be used to create prio qdisc with 5 classes:

tc qdisc add dev can0 root handle 1: prio bands 5

The classifier implemented in prio qdisc offers three methods for how the packet can
be classified.

1. If skb->priority is greater 0x10000 and higher 16 bits of skb->priority match
the major number of the qdiscs handle, then the lower 16 bits are used as an
one-based(!) index into priomap (see below).

2. Otherwise, user configurable filters are consulted for classification. See Section 3.2
for more details about CAN frame classification. There is also an example of prio
qdisc with filters in Figure 4.2.

3. If no filters are attached to the prio qdisc or none of them matches the packet,
prio uses skb->priority field, which is in this case less than 0x10000, for classi-
fication. The priority is used as an zero-based index to priomap the same way as
for pfifo fast.

Unlike for pfifo fast the prio allows to chnage the priomap. The default value is (1
2 2 2 1 2 0 0 1 1 1 1 1 1 1 1) and it can be changed with the following command:

13

3. Using qdiscs for controlling CAN traffic

tc qdisc add dev can0 root handle 1: prio bands 5 priomap 0 1 2 3 4

This command sets priomap so that the priority of the skb represents directly the priority
of the packet.

For more information see tc-prio manual page.

3.1.5. TBF

Token Bucket Filter (TBF) is a classful queueing discipline (with only one internal
class). Packets are enqueued without limitations, during dequeueing TBF ensures that
the outgoing data rate does not exceed some administratively set rate, but with the
possibility to allow short bursts in excess of this rate. The rate of these bursts can also
be limited. The default qdisc created inside of the TBF is bfifo.

TBF may be set with the following command (for more information about used units
see tc manual page):

tc qdisc add dev can0 root handle 1: \

tbf rate 0.1mbit burst 160b latency 70ms

The rate parameter specifies the outgoing rate. In case of CAN the rate does not
precisely correspond to the actual rate on the CAN bus. TBF tries to calculates the real
bus rate from skb->len, which is always 16 bytes in case of CAN, and from the table
(TCA TBF RTAB) sent to the kernel by the tc tool. The content of the table can be
influenced by the following parameters passed on tc command line: mpu, linklayer,
overhead, mtu, but setting these parameters has not much sense for CAN. With default
settings, TBF assumes that every transmitted CAN frame is 128 bits long. This roughly
corresponds to 8 byte CAN frames, which are, depending on the number stuffed bits,
about 120 bits long.

The above command therefore limits the traffic to 0.1×106/128 = 781.25 CAN frames
per second. The second parameter (burst) specifies the size of burst. Since every CAN
frame counts for 16 bytes, the configuration in the example allows for sending maximum
10 frames without traffic limiting. The smallest working size of burst parameter seems
to be 24 bytes. This is probably due to some rounding errors inside TBF. With smaller
value, TBF always returns ENOBUFS error to the application.

The last parameter in the example, latency (or limit) specifies how many frames
can be stored in the TBF’s queue. The latency is recalculated to the number of bytes,
which are used as the limit for the internal bfifo qdisc.

For more information see tc-tbf manual page.

3.1.6. SFQ

Stochastic Fairness Queueing (SFQ) is a classless queueing discipline that attempts
to fairly distribute opportunity to transmit data to the network among an arbitrary

14

3. Using qdiscs for controlling CAN traffic

number of flows. It accomplishes this by using a hash function to separate the traffic
into one of the 128 internally maintained FIFOs which are dequeued in round-robin
fashion. In the case of CAN protocol, the input of hashing function is the address of
the originating socket (skb->sk). This means that SFQ distinguishes at least between
different applications.

The command used to setup SFQ qdisc is as follows:

tc qdisc add dev can0 root handle 1: sfq perturb 10

Parameter perturb sets the interval in seconds after which the hashing algorithm is
changed. If two sockets hashes to the same FIFO, it is likely that this will be no longer
true after 10 seconds. For more information see tc-sfq manual page.

3.1.7. HTB

Hierarchical Token Bucket (HTB) is an advanced qdisc which allows for complex setting
of how is the available bandwidth distributed between different flows. HTB instances
contain classes, which are organized hierarchically. The leaf classes have attached an-
other qdisc, by default pfifo fast.

HTB ensures that the amount of bandwidth provided to each class is at least the
minimum of the amount it requests and the amount assigned to it. When a class requests
less than the assigned bandwidth, the remaining (excess) bandwidth is distributed to
other classes with the same parent and which request the service – the default scheme is
to distribute the excess bandwidth to the other classes in proportion to their allocations.
It is also possible to prioritize some classes so that the excess bandwidth is offered to
them in the first place. It is also possible to limit maximum excess bandwidth that a
class can use (i.e. how much bandwidth the class can “borrow”). Child classes can never
use more bandwidth than it is allocated to their parent.

An example configuration of HTB qdisc and its classes with bandwidth limits is as
follows:

tc qdisc add dev can0 root handle 1: htb

tc class add dev can0 parent 1: classid 1:1 htb rate 100kbps ceil 100kbps

tc class add dev can0 parent 1:1 classid 1:10 htb rate 30kbps ceil 100kbps

tc class add dev can0 parent 1:1 classid 1:11 htb rate 10kbps ceil 100kbps

tc class add dev can0 parent 1:1 classid 1:12 htb rate 60kbps ceil 100kbps

It must be noted that the rate specification is probably a subject to the same limitations
as in case of TBF (see Section 3.1.5). For more information see tc-htb manual page.

3.2. Classifying CAN frames

Network packets can be classified either by hardcoded qdisc classifiers, which typically
classify the packets based on the various fields of sk buffer (e.g. by sk buffer->priority),

15

3. Using qdiscs for controlling CAN traffic

or/and by user configurable filters. This section describes two types of user configurable
filters that can be used for CAN as well as the method of setting sk buffer->priority

which is used by hardcoded classifiers.

3.2.1. u32 filter

The filter called u32 can be used to classify packets based on any values in the packet.
For CAN traffic this means that u32 can classify packets based on CAN IDs, packet
length (can dlc) and/or the data payload.
u32 filter is configured using selectors. A selector specifies the size of the field to be

matched (one byte (u8), two bytes (u16) or four bytes (u32)), the offset of this field in
the packet (as it is stored in an skb) and a mask. Internally, u32 uses several hash tables
to locate the selectors and quickly find whether the packet matches or not.

There is one issue when using u32 filter for matching CAN frames – CAN ID is always
stored in the skb in the native endianness of the particular architecture, whereas u32

filter expects the values to be stored in network byte order, i.e. big-endian.
CAN ID is stored in the first 32 bits of the skb (see Figure 3.1). To set a rule for

matching CAN ID 0x1 on x86 (little-endian) architecture, it is necessary to specify the
ID converted to the network-order (big-endian), which equals to 0x01000000.

The following command sets up the u32 filter that matches CAN frames with ID 0x1
on x86 architecture and CAN frames with ID 0x01000000 on big-endian architectures
such as PowerPC:

tc filter add dev can0 parent 1:0 prio 1 \

u32 match u32 0x01000000 0xffffffff at 0 flowid 1:1

When matching single byte values, endianess is no more an obstacle. An example of
how to match frames of different sizes is:

tc filter add dev ${DEV} parent 1:0 prio 1 \

u32 match u8 0x01 0xff at 4 flowid 1:1

tc filter add dev ${DEV} parent 1:0 prio 2 \

u32 match u8 0x02 0xff at 4 flowid 1:2

Here, frames with 1 byte of data payload are classified into class 1:1 and frames with
2 bytes of data payload into class 1:2.

3.2.2. can filter

To overcome the deficiencies of the u32 filter and to make the command line syntax
more natural, we have developed a filter designated especially for classification of CAN
frames. This filter can be combined with existing queueing disciplines.

16

3. Using qdiscs for controlling CAN traffic

typedef __u32 canid_t;

struct can_frame {

canid_t can_id; /* 32 bit CAN_ID + EFF/RTR/ERR flags */

__u8 can_dlc; /* data length code: 0 .. 8 */

__u8 data[8] __attribute__((aligned(8)));

};

Figure 3.1.: The exact position of particular fileds in CAN frame (defined in
include/linux/can.h).

The sources of the filter are available in our repository2. To use the filter, it is necessary
to modify the tc tool. The necessary modifications are available in another repository3.

The can filter can be added to a qdisc with tc tool as any other filter, i.e. by using
command

tc filter add dev ... parent ... prio ... FILTER

The syntax of can filter configuration is as follows:

can [MATCHSPEC] [flowid FLOWID]

Where: MATCHSPEC := { sffid FILTERID | effid FILTERID | MATCHSPEC ... }

FILTERID := CANID[:MASK]

MATCHSPEC represents one or more (up to 128) filtering rules. Keywords sffid

and effid determine the type of CAN frame to match. CAN IDs and masks are parsed
only as hexadecimal numbers. When matching exact CAN ID, mask (e.g. 0x7ff for SFF
frame) is optional.

An example of the command configuring can filter is:

tc filter add dev can0 parent 1:0 prio 1 \

can sffid 0x123 \

sffid 0x500:0x700 \

effid 0x00:0xff flowid 1:1

This filter matches SFF frames with CAN IDs 0x123 and 0x500 – 0x5ff and EFF
frames whose IDs end with 0x00. All those frames will be classified into class 1:1.

2https://rtime.felk.cvut.cz/gitweb/lisovros/linux_canprio.git/blob/canprio:/net/sched/

cls_can.c
3https://rtime.felk.cvut.cz/gitweb/lisovros/iproute2_canprio.git/blob/HEAD:/tc/f_can.c

17

https://rtime.felk.cvut.cz/gitweb/lisovros/linux_canprio.git/blob/canprio:/net/sched/cls_can.c
https://rtime.felk.cvut.cz/gitweb/lisovros/linux_canprio.git/blob/canprio:/net/sched/cls_can.c
https://rtime.felk.cvut.cz/gitweb/lisovros/iproute2_canprio.git/blob/HEAD:/tc/f_can.c

3. Using qdiscs for controlling CAN traffic

Filter internals

The filtering rules are stored in an array, which is traversed during classification. This
means that the worst-case time needed for classification increases with the number of
configured rules.

The filter implements an optimization for matching SFF frames using a bitmap with
one bit for every ID. With this optimization, the classification time for SFF frames is
nearly constant independently of the number of rules. Rules for EFF frames are stored
in an array.

The decision whether to use the bitmap- or array-based implementation needs to
be done at compile time. The comparison for both implementations can be seen in
Section 4.3.

3.2.3. Socket priority

Some qdiscs, such as prio or pfifo fast can classify packets according to skb->priority
field. For IP networks, this field is set automatically by the IP stack based on Type Of
Service (TOS) field of the IP header. Alternatively, it can by set by the originating socket
by setting SO PRIORITY socket option in user-space. To use this type of classification for
CAN traffic, a simple patch4 for the kernel is needed.

3.3. Qdiscs and virtual CAN interface

It is possible to use qdiscs with virtual CAN interface (vcan). This can be used, for
example, to roughly simulate the transmission delay of real CAN interfaces. One only
needs to insert vcan module with echo parameter set to 1, e.g.:

modprobe vcan echo=1

ip link add vcan0 type vcan

ip link set vcan0 up txqueuelen 100

ip link show dev vcan0

12: vcan0: <NOARP,UP,LOWER_UP,ECHO> mtu 16 qdisc noqueue state UNKNOWN qlen 100

link/can

By default, there is no qdisc attached (which is different from real CAN interfaces).
The qdisc can be attached the same way as shown above, e.g.:

tc qdisc add dev vcan0 root tbf rate 1mbit burst 24b limit 10000

This command makes vcan0 to behave almost like real 1 Mbit CAN interface. See
Section 3.1.5 for description of TBF parameters.

4http://rtime.felk.cvut.cz/gitweb/lisovros/linux_canprio.git/commit/

da8161bbd1a4b1b13ddba598e8c3f24657ea9878

18

http://rtime.felk.cvut.cz/gitweb/lisovros/linux_canprio.git/commit/da8161bbd1a4b1b13ddba598e8c3f24657ea9878
http://rtime.felk.cvut.cz/gitweb/lisovros/linux_canprio.git/commit/da8161bbd1a4b1b13ddba598e8c3f24657ea9878

3. Using qdiscs for controlling CAN traffic

3.4. Blocking the application when the queue is full

Many SocketCAN users experience a problem with write()/send() failing with ENOBUFS

error. Since this is related to the use of queueing disciplines, this section describes why
it happens and what can be done against it.

So what is the cause of ENOBUFS errors? In the default configuration, CAN interfaces
have attached pfifo fast queuing discipline which, when enqueueing the packet, checks
whether the number of queued packets is greater then dev->tx queue len (which is 10
for CAN devices by default). If it is so, it returns NET XMIT DROP which is translated to
-ENOBUFS in net xmit errno() called from can send(). The problem is, that there is
no way for the application to be blocked until the queue becomes empty again.

How can be the application made to block when the queue is full instead of getting
ENOBUFS error? In general there are two mechanisms that limit the number of queued
packets. The already mention per-device tx queue len limit and per-socket SO SNDBUF

limit. The application only blocks when the latter limit is reached. Therefore, the
solution is to set SO SNDBUF low enough that this limit is reached before tx queue len

limit.
Now, the question is what value set the SO SNDBUF to. First, the minimum value is

SOCK MIN SNDBUF/2, i.e. 1024. When the user supplies a smaller value the minimum is
used instead. The more tricky thing is how is the value interpreted. The value represents
maximum socket send buffer in bytes. The kernel always doubles the supplied value (i.e.
for the kernel the minimum is 2048) and stores it as sk->sk sndbuf. When a packet is
sent, a per-socket counter is increased by sizeof(can frame) + sizeof(skb) (which
is a value around 200, depending on kernel configuration and architecture). When the
counter is greater or equal to sk->sk sndbuf, the application blocks.

The following piece of code sets the SO SNDBUF value to its minimum:

int sndbuf = 0;

if (setsockopt(s, SOL_SOCKET, SO_SNDBUF, &sndbuf, sizeof(sndbuf)) < 0)

perror("setsockopt");

Typically, the minimum value causes the application to block when there are about
15 frames queued. If we want all CAN applications in the system to block instead
of receiving ENOBUFS, it is necessary to set the txqueuelen (see Section 3.1.2) to the
number of simultaneously used CAN sockets in the system multiplied by 15.

If the application does not wish to block, it sets O NONBLOCK flag on the socket by
using fcntl() call. After that, when the SO SNDBUF is reached, the application receives
EAGAIN error instead of ENOBUFS.

3.5. Summary

To summarize this section, we return to Figure 1.1 and match the blocks from that figure
to the particular qdiscs described above.

19

3. Using qdiscs for controlling CAN traffic

The rectangle labeled “Priority” can be implemented by prio qdisc configured as a
root qdisc. The clock symbols can be implemented by tbf and round-robin scheduling
(even with throttling) by htb. If it is not required to throttle individual applications
(clock symbols left to round-robin boxes), the round-robin can be also implemented by
sfq. The queues in the figure (five rectangles) are created as default child qdiscs of prio
or tbf. If it is desired to limit their length or change the behavior, they can be created
explicitly, perhaps as pfifo or pfifo head drop qdiscs.

The selection of which qdisc should handle which frames can be configured by attaching
can filters to the root prio qdisc and/or to htb qdisc(s).

20

4. Benchmarks

In order to evaluate the cost of individual queueing disciplines and of our can filter, we
conducted several experiments to measured the time spent in can send() function (in
the kernel) when the system was configured with different qdiscs. Measurements were
done for 5000 CAN frames generated by cangen utility.

Measurements were performed by using function graph tracer in ftrace – the Linux
kernel function tracer. This particular tracer timestamps entry and exit points of the
traced functions and stores the duration of the function execution. Ftrace was configured
in dynamic mode as shown in Figure 4.1. This allows us to trace only can send()

function, not affecting the performance of any other (not traced) functions.

FTRDIR=/sys/kernel/debug/tracing

sysctl kernel.ftrace_enabled=1

echo "function_graph" > ${FTRDIR}/current_tracer

sleep 1

echo "can_send" > ${FTRDIR}/set_ftrace_filter

echo 1 > ${FTRDIR}/tracing_on

Figure 4.1.: Exact configuration of ftrace function tracer.

4.1. Test environment

The tests were conducted on two different computers:

PC-P4 is a PC with Intel(R) Pentium(R) 4 CPU 2.40 GHz with 1 GB of RAM running
2.6.36.2 Linux kernel with custom .config. The used CAN interface card was
PCIcan-Q card from Kvaser AB (PCI ID 10e8:8406).

MPC5200 is an embbeded PowerPC CPU (e300 core, G2 LE), 396 MHz, with 128 MiB
of RAM running 2.6.36.2 Linux kernel with custom .config.
Root filesystem of this embedded computer was stored on a remote computer,
accessed through NFS protocol. To not influence networking subsystem during
benchmarks, all the measured data were stored into directory mounted as tmpfs

(located only in RAM) and copied to the NFS filesystem afterwards.

In both computers CAN devices were configured with the following commands:

21

4. Benchmarks

ip link set can0 type can bitrate 1000000

ip link set can0 txqueuelen 1000

CAN traffic was generated with the command:

cangen can0 -I $ID -L 8 -D i -g $GAP -n 5000

where

� ID sets CAN frame ID, it was set either to some fixed value or as i which increments
the ID for every frame.

� GAP sets the delay in miliseconds between each sent frame – different tests used
different values (e.g. 0, 1, 2).

4.2. Conducted tests

The configurations of different tests are summarized in Table 4.1. The tests differ in
qdisc and filter configuration and cangen parameter -i (CAN frame ID). All tests except
prio128 array were performed with CAN filter compiled with SFF frames rules stored
as a bitmap. For prio128 array, the SFF frame rules were stored in the array (see
Section 3.2.2 for details).

4.3. Experiment results

4.3.1. Qdiscs comparison

The graphs in Figures 4.5 and 4.7 show the execution times of can send() function for
different queueing disciplines and platforms. They show the minimum measured time

tc qdisc add dev ${DEV} root handle 1: prio

tc filter add dev ${DEV} parent 1:0 prio 1 handle 0xa \

can sffid 0x123:0xffff sffid 0x124:0xffff flowid 1:1

tc filter add dev ${DEV} parent 1:0 prio 2 handle 0xb \

can sffid 0x125:0x7ff effid 0x125:0x7ff flowid 1:2

tc filter add dev ${DEV} parent 1:0 prio 3 \

can sffid 0x223:0xffff flowid 1:2

tc filter add dev ${DEV} parent 1:0 prio 4 \

can sffid 0x0:0x0 effid 0x0:0x0 flowid 1:3

Figure 4.2.: Qdisc configuration of prio1 experiment.

22

4. Benchmarks

Test Qdisc configuration cangen
params.

pfifo fast The default qdisc (pfifo fast) automatically set when
running tc qdisc del dev $DEV root.

-I 123

pfifo fast inc Same as pfifo fast. -I i

prio1 Simple prio qdisc with four priorities. Configured with
the commands from Figure 4.2.

-I 123

prio1 inc Same as prio1. -I i

prio128 Prio qdisc with similar configuration as the one above,
using 128 rules for each filter.

-I i

prio128 array Same as prio128 except that the can filter was recom-
piled to store SFF rules in an array instead of in a
bitmap.

-I i

htb HTB qdisc configured as shown in Figure 4.3. -I 123

htb inc Same as for htb experiment. -I i

prio sfq Prio and SFQ qdiscs configured as shown in Figure 4.4.
Because of fixed size of SFQ qdisc, modified cangen
(able of setting SO SNDBUF) was used.

-I 123

prio sfq inc Same as for prio sfq experiment. -I i

Table 4.1.: Configurations of the experiments.

#Create root qdisc

tc qdisc add dev ${DEV} root handle 1: htb

#Create individual HTB classes

tc class add dev ${DEV} parent 1: classid 1:1 \

htb rate 100kbps ceil 100kbps

tc class add dev ${DEV} parent 1:1 classid 1:10 \

htb rate 30kbps ceil 100kbps

tc class add dev ${DEV} parent 1:1 classid 1:11 \

htb rate 10kbps ceil 100kbps

tc class add dev ${DEV} parent 1:1 classid 1:12 \

htb rate 60kbps ceil 100kbps

#Add filters

tc filter add dev ${DEV} parent 1:0 prio 1 \

can sffid 0x123:0x7ff effid 0x123:0x7ff flowid 1:10

tc filter add dev ${DEV} parent 1:0 prio 2 \

can sffid 0x124:0x7ff effid 0x124:0x7ff flowid 1:11

tc filter add dev ${DEV} parent 1:0 prio 3 \

can sffid 0x125:0x7ff effid 0x125:0x7ff flowid 1:12

tc qdisc add dev ${DEV} parent 1:12 handle 40: sfq perturb 10

Figure 4.3.: Qdisc configuration of htb experiment.

23

4. Benchmarks

qdisc add dev ${DEV} root handle 1: prio

tc filter add dev ${DEV} parent 1:0 prio 1 \

can sffid 0x111 effid 0x111 flowid 1:1

tc filter add dev ${DEV} parent 1:0 prio 2 \

can \

sffid 0x123 effid 0x123 \

sffid 0x124 effid 0x124 \

sffid 0x125 effid 0x125 \

flowid 1:2

tc filter add dev ${DEV} parent 1:0 prio 3 \

can sffid 0x0:0x0 effid 0x0:0x0 flowid 1:3 # default class

SFQ

tc qdisc add dev ${DEV} parent 1:2 handle 10: sfq perturb 10

tc qdisc add dev ${DEV} parent 1:3 handle 11: sfq perturb 10

Figure 4.4.: Qdisc configuration of prio sfq experiment.

and its 50th (median) and 90th percentile. Maximums are not shown as the measured
time included not only the execution of can send() but also all hard- and soft-irqs that
interrupted the execution of can send(). Therefore, the real maximum was an order of
magnitude higher than 90th percentile and as such it is not important for interpretation
of the results.

Figure 4.5 shows the results for virtual CAN interface (vcan). In those tests, the
measured times include processing both in the qdisc (enqueued and dequeue operations1)
and in vcan driver. The task of vcan driver was to determine that nobody is interested
in the sent frame and discarding it.

The top graph depicts the times measured on PC. The gray (left) bars show the results
for flood traffic (i.e. frames were sent as fast as possible), yellow (right) bars show the
results when frames were sent with 1 ms delay. In case of vcan interface, there is no
fundamental difference between these two cases. It can be seen that pfifo fast is really
fast and the other qdiscs are slower. In the case of traffic with delays, the measured times
are higher, perhaps because the CPU caches were trashed by some activities that run
during the delay.

The bottom graph in Figure 4.5 shows the same experiments but this time run on
MPC5200. The results are very similar to those measured on PC (expect for that
MPC5200 is much slower).

Figure 4.7 shows the performance on real CAN hardware. The top graph shows the PC
with flood traffic and the middle one compares this to the case with 1 ms delay between
frames. Now, the differences between those two cases is that in the first case (flood
traffic) the queue is almost always full and the frames are only enqueued for processing

1The exception was pfifo fast, because is has TCQ F CAN BYPASS flag set, which means that the qdisc
was completely bypassed in this case.

24

4. Benchmarks

 0

 1

 2

 3

 4

pfifo_fast
pfifo_fast_inc

prio1 prio1_inc
prio128

prio128_array

htb htb_inc
prio_sfq

prio_sfq_inc

T
im

e
[µ

s]
PC-P4; vcan; 0 ms PC-P4; vcan; 1 ms

 0

 50

 100

 150

 200

pfifo_fast
pfifo_fast_inc

prio1 prio1_inc
prio128

prio128_array

htb htb_inc
prio_sfq

prio_sfq_inc

T
im

e
[µ

s]

MPC5200; vcan; 0 ms
MPC5200; vcan; 1 ms
MPC5200; vcan; 2 ms

Figure 4.5.: Time spent in can send() (minimum, 50th and 90th percentiles) with vir-
tual CAN interface, depending on qdisc configuration, platform and traf-
fic. CAN filter was compiled with SFF rules stored in a bitmap except from
prio128 array experiment where the filtering rules were stored in an array.

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 50 100 150 200 250 300 350 400

T
im

e
sp

en
t i

n
ca

n_
se

nd
()

 [
µ

s]

Number of configured rules in CAN filter

CAN filter; SFF rules stored in a BITMAP
CAN filter; SFF rules stored in an ARRAY
Linear fit for bitmap match
Linear fit for array match

Figure 4.6.: Time spent in can send() function (on MPC5200) depending on number of
SFF rules in a filter (each filter has maximum count of 128 rules).

25

4. Benchmarks

 0

 0.2

 0.4

 0.6

 0.8

 1

pfifo_fast
pfifo_fast_inc

prio1 prio1_inc
prio128

prio128_array

htb htb_inc
prio_sfq

prio_sfq_inc

T
im

e
[µ

s]

PC-P4; 0 ms

 0
 2
 4
 6
 8

 10
 12
 14
 16

pfifo_fast
pfifo_fast_inc

prio1 prio1_inc
prio128

prio128_array

htb htb_inc
prio_sfq

prio_sfq_inc

T
im

e
[µ

s]

PC-P4; 0 ms PC-P4; 1 ms

 0

 50

 100

 150

 200

pfifo_fast
pfifo_fast_inc

prio1 prio1_inc
prio128

prio128_array

htb htb_inc
prio_sfq

prio_sfq_inc

T
im

e
[µ

s]

MPC5200; 0 ms
MPC5200; 1 ms
MPC5200; 2 ms

Figure 4.7.: Time spent in can send() (minimum, 50th and 90th percentiles) with real
CAN interface depending on qdisc configuration, platform and traffic.
CAN filter was compiled with SFF rules stored in a bitmap except from
prio128 array experiment where the filtering rules were stored in an array.

26

4. Benchmarks

later. In the case with delay between frames, the queue is always empty and frames
are enqueued, dequeued and send to the driver. It can be seen that the driver part is
dominant in this case and the difference between qdiscs is negligible.

The fastest qdisc is again pfifo fast, the slowest is prio sfq and (surprisingly) prio
alone. It can also be seen that the overhead of 128 filters stored in an array (in case of
prio128 array) is significant, when compared to bitmap (see also Figure 4.6).

The situation on slower MPC5200 platform (bottom graph) is different. pfifo fast is
again the fastest, the slowest is htb when all frames are classified into a single class. Even
prio with 128 filters stored in array is faster than htb. On the other hand, when frames
fall into more classes htb performs faster than prio. However, these differences are quite
small and are probably caused by some cache effects than by the qdiscs algorithms.

What is interesting on MPC5200 platform, and we are not able to explain it, is that
with flood traffic (left bars, 0 ms) the time spent in can send() is most of the time
greater than in case of throttled traffic. This is the opposite of what happens on PC.
The minimum is smaller, but for the median of the measured times is greater.

A careful reader may also notice the big difference between 90th percentiles in 1 ms and
2 ms cases (e.g. for htb experiment). We suppose that this is due to some interference
between hard- or soft-irqs and can send(). For example, a TX IRQ from CAN controller
could interrupt the can send() of the next frame with high probability. It can be seen
that by changing the period of sending frames (either from 1 to 2 ms or vice versa), this
“anomaly” disappears.

4.3.2. CAN filter

Figure 4.6 shows how the time spent in can send() depends on the number of filters
configured in can filter. It was measured on MPC5200 platform with prio root qdisc.
As the array implementation of the filter can match up to 128 rules, in the experiment,
we attached four filters to the qdisc. The rules were arranged in such a way, that only
the last rule matched.

It can be seen, that the bitmap implementation has constant overhead irrespective of
the number of filters. For a small number of rules (20 or so) the difference between both
implementations in negligible.

27

5. Conclusion

In this document, we described how can be the Linux traffic control subsystem used for
managing of CAN traffic. The goal was to solve priority inversion problems that happen
with default configuration. This goal was successfully fulfilled. Almost all necessary
building blocks of the solution are already included in the mainline Linux kernel. The
only missing piece was a filter for easy classification of CAN frames. This filter was
developed within this project and we will try to get it merged into mainline.

We have also benchmarked different qdiscs. All qdiscs are implemented quite efficiently
and their overhead it typically no more than two times the overhead of the default qdisc
pfifo fast. With some hardware (PC, Kvaser PCI card), the overhead of networking
stack with all the qdiscs is negligible when compared to the overhead of the driver.

28

A. Example configurations of queueing
disciplines

This section contains a set of working examples. Each of the examples consists of the
exact command code used for creating the particular qdisc, an image showing the qdisc
configuration and a short description.

A.1. Prio qdisc with multiple classes

Description

This example shows how to set prio qdiscs with more than 3 (the default) bands/classes.
The number of classes of prio qdisc may be set only on creation – later modification is
not possible. The qdisc has filters which are responsible for classifying CAN frames into
different classes according their CAN IDs.

When CAN frame is enqueued, each filter (according to its priority) is tried until a
match is found. The matching rule causes the frame to be enqueued into the specified
in the rule.

When CAN frame is being dequeued out of the prio qdisc, first class is asked to
perform dequeue. Only when there are no frames in the first class, second one is asked.

Achieved result

High priority traffic (classified into the first class) is always served in the first place.

1:0
prio

refcnt 2 bands 5 priomap 1 2 2
2 1 2 0 0 1 1 1 1 1 1 1 1

1:1

protocol can pref 1
can handle 0x10000

sffid 0x0

1:2

protocol can pref 2
can handle 0x10000

sffid 0x80

1:3

protocol can pref 3
can handle 0x10000

sffid 0x0:0x400

1:4

protocol can pref 4
can handle 0x10000

sffid 0x1:0x400

1:5

protocol can pref 5
can handle 0x10000

effid 0x0:0x0 sffid
0x0:0x0

Figure A.1.: Prio qdisc with 5 classes.

29

A. Example configurations of queueing disciplines

Create root qdisc

tc qdisc add dev ${DEV} root handle 1: prio bands 5

Add filter to each class

tc filter add dev ${DEV} parent 1:0 prio 1 \

can sffid 0x0 flowid 1:1 # CANopen NMT object

tc filter add dev ${DEV} parent 1:0 prio 2 \

can sffid 0x80 flowid 1:2 # CANopen SYNC object

tc filter add dev ${DEV} parent 1:0 prio 3 \

can sffid 0x0:0x400 flowid 1:3 #CANopen EMERGENCY -- PDO3(tx)

tc filter add dev ${DEV} parent 1:0 prio 4 \

can sffid 0x1:0x400 effid 0x126 flowid 1:4

#CANopen PDO3(rx) -- NMT Error Control

tc filter add dev ${DEV} parent 1:0 prio 5 \

can sffid 0x0:0x0 effid 0x0:0x0 flowid 1:5 # Default class

A.2. Prio qdisc with TBF child qdiscs

Description

This configuration of qdiscs (Figure A.2) uses prio qdisc with the default value of 3
classes as its main component. The behavior of the prio qdisc (described in A.1) may
not be desirable because the lower priority classes would starve when there is trafic with
higher priority. To avoid starvation the lower priority traffic/classes, it is possible to
throttle the bandwidth of higher priority traffic. For this purpose TBF qdisc is used.
This configuration uses TBF qdiscs for 2nd and 3rd class.

Achieved result

The 3rd class should not starve unless there is high priority (1st class) traffic.

tc qdisc add dev ${DEV} root handle 1: prio

tc filter add dev ${DEV} parent 1:0 prio 1 \

can sffid 0x80:0x780 flowid 1:1 # CANopen EMERGENCY objects

tc filter add dev ${DEV} parent 1:0 prio 2 \

can sffid 0x0:0x400 flowid 1:2 # CANopen PDO1(tx) -- PDO3(tx)

tc filter add dev ${DEV} parent 1:0 prio 3 \

can sffid 0x0:0x0 effid 0x0:0x0 flowid 1:3 # default class

TBF

tc qdisc add dev ${DEV} parent 1:2 handle 10: \

tbf rate 0.1mbit burst 5kb latency 70ms

tc qdisc add dev ${DEV} parent 1:3 handle 11: \

tbf rate 0.05mbit burst 5kb latency 70ms

30

A. Example configurations of queueing disciplines

1:0
prio

refcnt 2 bands 3 priomap 1 2 2
2 1 2 0 0 1 1 1 1 1 1 1 1

1:1

protocol can pref 1
can handle 0x10000

sffid 0x80:0x780

1:2

protocol can pref 2
can handle 0x10000

sffid 0x0:0x400

1:3

protocol can pref 3
can handle 0x10000

effid 0x0:0x0 sffid
0x0:0x0

10:0
tbf

rate 100000bit burst 5Kb lat
70.0ms

10:1

11:0
tbf

rate 50000bit burst 5Kb lat
69.9ms

11:1

Figure A.2.: Prio qdisc with TBF child qdiscs.

A.3. Prio qdisc with SFQ child qdiscs

Description

When using prio qdisc, CAN frames are classified into different classes to ensure that
higher priority frames reach the bus before lower priority ones. It is also useful to
provide some kind of fairness for traffic within the same priority class – e.g. CAN
frames from different application of middle priority will be dequeued in fair manner, so
that each application will have the same chance to be dequeued first. This behavior can
be achieved by using SFQ qdisc. The configuration is shown in Figures A.3 and ??.

Achieved result

Frames of low priority class Its purpose is to mix frames belonging to one class so they
will be dequeued in quasi-round-robin manner. SFQ is used to ensure dequeue out of
one class in quasi-round-robin manner.

tc qdisc add dev ${DEV} root handle 1: prio

tc filter add dev ${DEV} parent 1:0 prio 1 \

can sffid 0x80:0x780 flowid 1:1 # CANopen EMERGENCY objects

tc filter add dev ${DEV} parent 1:0 prio 2 \

can sffid 0x0:0x400 \

sffid 0x400:0x780 flowid 1:2 # CANopen PDO1(tx) -- PDO3(rx)

tc filter add dev ${DEV} parent 1:0 prio 3 \

can sffid 0x0:0x0 effid 0x0:0x0 flowid 1:3 # default class

SFQ

tc qdisc add dev ${DEV} parent 1:2 handle 10: sfq perturb 10

tc qdisc add dev ${DEV} parent 1:3 handle 11: sfq perturb 10

31

A. Example configurations of queueing disciplines

1:0
prio

refcnt 2 bands 3 priomap 1 2 2
2 1 2 0 0 1 1 1 1 1 1 1 1

1:1

protocol can pref 1
can handle 0x10000

sffid 0x80:0x780

1:2

protocol can pref 2
can handle 0x10000

sffid 0x0:0x400
sffid 0x400:0x780

1:3

protocol can pref 3
can handle 0x10000

effid 0x0:0x0 sffid
0x0:0x0

10:0
sfq

limit 127p quantum 16b divisor
1024 perturb 10sec

11:0
sfq

limit 127p quantum 16b divisor
1024 perturb 10sec

Figure A.3.: Prio qdisc with SFQ child-qdiscs.

A.4. Prio qdisc with TBF and SFQ child qdiscs

Description

This configuration shows the possibility of chaining classful qdiscs. To ensure fairness
among frames which are in class with limited (throttled) bandwidth, one class consists
of TBF qdiscs including SFQ qdisc.

Achieved result

Maximum throughput of the class is limited, moreover basic fairness is provided to
frames being dequeued.

tc qdisc add dev ${DEV} root handle 1: prio

tc filter add dev ${DEV} parent 1:0 prio 1 \

can sffid 0x80:0x780 flowid 1:1 # CANopen EMERGENCY objects

tc filter add dev ${DEV} parent 1:0 prio 2 \

can sffid 0x0:0x400 flowid 1:2 # CANopen PDO1(tx) -- PDO3(tx)

tc filter add dev ${DEV} parent 1:0 prio 3 \

can sffid 0x0:0x0 effid 0x0:0x0 flowid 1:3 # default class

TBF

tc qdisc add dev ${DEV} parent 1:2 handle 10: \

tbf rate 0.1mbit burst 5kb latency 70ms

tc qdisc add dev ${DEV} parent 1:3 handle 11: \

tbf rate 0.1mbit burst 5kb latency 70ms

SFQ

tc qdisc add dev ${DEV} parent 10:1 handle 101: sfq perturb 10

tc qdisc add dev ${DEV} parent 11:1 handle 102: sfq perturb 10

32

A. Example configurations of queueing disciplines

1:0
prio

refcnt 2 bands 3 priomap 1 2 2
2 1 2 0 0 1 1 1 1 1 1 1 1

1:1

protocol can pref 1
can handle 0x10000

sffid 0x80:0x780

1:2

protocol can pref 2
can handle 0x10000

sffid 0x0:0x400

1:3

protocol can pref 3
can handle 0x10000

effid 0x0:0x0 sffid
0x0:0x0

10:0
tbf

rate 100000bit burst 5Kb lat
70.0ms

10:1

11:0
tbf

rate 100000bit burst 5Kb lat
70.0ms

11:1

101:0
sfq

limit 127p quantum 16b divisor
1024 perturb 10sec

102:0
sfq

limit 127p quantum 16b divisor
1024 perturb 10sec

Figure A.4.: Prio qdisc with HTB child-qdiscs which have SFQ child-qdiscs.

A.5. HTB qdisc

Description

HTB qdisc may represent a complex hierarchical structure of internal classes.
The main reason why to use the HTB qdisc is that each class has defined its guaran-

teed and maximal bandwidth. The class 1:1 in this example is used for sharing excess
bandwidth among its children. It is also possible to attach another qdisc to HTB classes,
e.g. SFQ qdisc as in this example.

It is possible to use the HTB qdisc hierarchy, e.g. the one shown in this example, as
a qdisc attached to one class of a prio qdisc.

Achieved result

The overall CAN traffic from this interface is limited to ca. 100 kbit/s. This bandwidth
is fairly distributed between three traffic classes with the ratio of 3/1/6. If some class
does not fully use its share, the unused bandwidth from this class is distributed to the
other two classes. Additionally, the bandwidth in not only fairly distributed between
classes but the actual bandwidth of class 1:12 is also fairly distributed between all sockets
that happen to send frames into this class. This is ensured by attaching SFQ to this
class.

33

A. Example configurations of queueing disciplines

1:0
htb

refcnt 2 r2q 10 default 0
direct_packets_stat 0

1:11
htb

prio 0 rate 80000bit ceil
800000bit burst 1600b cburst

1599b

protocol can pref 2
can handle 0x10000

sffid 0xf:0x70f

1:1
htb

rate 800000bit ceil 800000bit
burst 1599b cburst 1599b

1:10
htb

prio 0 rate 240000bit ceil
800000bit burst 1599b cburst

1599b

protocol can pref 1
can handle 0x10000

sffid 0x0:0x7f0

1:12
htb

prio 0 rate 480000bit ceil
800000bit burst 1599b cburst

1599b

protocol can pref 3
can handle 0x10000

effid 0x0 sffid 0x0

40:0
sfq

limit 127p quantum 16b divisor
1024 perturb 10sec

Figure A.5.: HTB qdisc with its HTB classes.

tc qdisc add dev ${DEV} root handle 1: htb

tc class add dev ${DEV} parent 1: classid 1:1 htb rate 100kbps ceil 100kbps

tc class add dev ${DEV} parent 1:1 classid 1:10 htb rate 30kbps ceil 100kbps

tc class add dev ${DEV} parent 1:1 classid 1:11 htb rate 10kbps ceil 100kbps

tc class add dev ${DEV} parent 1:1 classid 1:12 htb rate 60kbps ceil 100kbps

tc filter add dev ${DEV} parent 1:0 prio 1 can sffid 0x0:0x7f0 flowid 1:10

tc filter add dev ${DEV} parent 1:0 prio 2 can sffid 0x0f:0x70f flowid 1:11

tc filter add dev ${DEV} parent 1:0 prio 3 can sffid 0x0 effid 0x0 flowid 1:12

tc qdisc add dev ${DEV} parent 1:12 handle 40: sfq perturb 10

Figure A.6.: Commands used to configure hierarchical structure of HTB qdisc.

34

B. Queueing disciplines available in Linux
TC not suitable for SocketCAN

This section shortly describes queueing disciplines available in Linux traffic control sub-
system which were examined as a part of this work and they were found as not useful
for purposes of SocketCAN.

SFB

Stochastic Fair Blue qdisc seems to behave similar to SFQ (i.e. provides fairness in
dequeueing). The truth is it does not treat every flow the same way – it penalizes
inelastic (i.e. large traffic) flows.

Multiq

This queueing discipline dequeues packets in round-robin fashion. It apparently works
only for Intel NICs with hardware support of multiple queues.

mq

This queueing discipline dequeues packets in round-robin fashion. The main disadvan-
tage is that it is available only for NICs with more than 1 TX queue.

drr

Deficit Round-Robin Scheduler may provide fairness when enqueueing packets from
multiple flows. It is classful although all classes have to be of type “drr”.

CBQ

Class Based Queueing has similar usage as HTB qdisc. Its main disadvantage is that
it is too complex (everybody discourages from using it). It seems there is no reason for
using CBQ instead of HTB.

35

Bibliography

[1] W. Almesberger, “Linux network traffic control – implementation overview,” in
Proceedings of 5th Annual Linux Expo, Raleigh, NC, May 1999, pp. 153–164.
[Online]. Available: http://www.almesberger.net/cv/papers/tcio8.pdf

[2] B. Hubert et al., “Linux advanced routing & traffic control howto.” [Online].
Available: http://lartc.org/howto/

36

http://www.almesberger.net/cv/papers/tcio8.pdf
http://lartc.org/howto/

	Introduction
	The problem
	Proposed solution
	Acknowledgment

	Linux traffic control basics
	Terminology
	Packet flow through qdiscs
	The tc tool
	Configuring qdiscs/filters
	Obtaining information about configured qdiscs

	Using qdiscs for controlling CAN traffic
	Suitable qdiscs
	pfifo/bfifo
	pfifo_fast
	pfifo_head_drop
	prio
	TBF
	SFQ
	HTB

	Classifying CAN frames
	u32 filter
	can filter
	Socket priority

	Qdiscs and virtual CAN interface
	Blocking the application when the queue is full
	Summary

	Benchmarks
	Test environment
	Conducted tests
	Experiment results
	Qdiscs comparison
	CAN filter

	Conclusion
	Example configurations of queueing disciplines
	Prio qdisc with multiple classes
	Prio qdisc with TBF child qdiscs
	Prio qdisc with SFQ child qdiscs
	Prio qdisc with TBF and SFQ child qdiscs
	HTB qdisc

	Queueing disciplines available in Linux TC not suitable for SocketCAN

