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Abstract

Linux kernel contains a full featured CAN bus networking subsystem. It can be accessed
from applications via several different interfaces. This paper compares the performance
of those interfaces and tries to answer the question, which interface is most suitable
for capturing traffic from a big number of CAN buses. Motivation for this work is the
development of various CAN traffic analyzers and intrusion detection systems. Besides
traditional UNIX interfaces we also investigate the applicability of recently introduced
“low-latency sockets” to the Linux CAN subsystem. Although the overhead of Linux in
general is quite large, some interfaces offer significantly better performance than others.



1 Introduction

Controller Area Network (CAN) is still the most widespread automotive networking
standard today, even in the most recent vehicle designs. Although there are more modern
solutions available on the market [1, 2], CAN represents reliable, cheap and proven
solution, making it the preferred choice in the industry. Although the newer technologies
such as FlexRay or Ethernet are used more and more, it seems unlikely that CAN is
going to be phased out in foreseeable future.

Linux kernel contains a full featured CAN bus networking subsystem. Together with
can-utils package, it represents versatile and user friendly way for working with CAN
networks. Linux CAN subsystem is based on Linux networking subsystem and shares a
lot of code with it. This is a source of significant overhead [3], because the networking
subsystem is tuned for high throughput Ethernet networks with big packets and not for
up to eight byte long CAN frames. For example, one sk buff structure that represents
one CAN frame in the Linux kernel has size 448 bytes on our system. Nevertheless, due
to user friendliness and widespread availability of Linux, its CAN subsystem is used a
lot.

Recently, after publishing information about CAN bus-related attacks on automotive
electronic control units [4, 5], automobile manufacturers started taking cybernetic se-
curity more seriously. Not only that people started proposing message authentication
techniques for CAN bus [6, 7, 8], but various other techniques to increase automobile
security are discussed. One possibility is to use intrusion detection systems (IDS) that
analyze CAN bus traffic and try to detect anomalies. Before developing an IDS one
needs a way to efficiently receive CAN frames from the whole car so that IDS can pro-
cess them. It is natural to use Linux for prototyping the IDS and the goal of this paper
is to evaluate which Linux system calls have the lowest overhead and are thus suitable
for logging of big number of CAN interfaces.

The contribution of this paper is manifold. First, we present comprehensive perfor-
mance evaluation of multiple Linux system calls that allow an application to interact
with CAN networks. Second, we investigate the applicability of recently introduced
“low-latency sockets” to the Linux CAN subsystem. Third, we compare the overhead
of the whole Linux CAN subsystem with the raw hardware performance represented by
lightweight RTEMS executive.

This paper is structured as follows. Section 2 provides a brief introduction to the
internals of the Linux networking stack. We describe our methodology for system call
evaluation in Section 3, followed by results and discussion in Section 4. The paper is
concluded in Section 5.



2 Linux networking stack

The architecture of the Linux networking stack is depicted in Figure 2.1. We describe
the main components of the stack, which are necessary for understanding the remainder
of this paper.

First, we describe the transmission path (green arrows on the left). Application initi-
ates transmission process by invoking send() or write() system call on a socket. Both
calls end up in the socket layer. In case of CAN raw sockets this is raw sendmsg()

function in can/raw.c. This function allocates an sk buff structure, copies the CAN
frame to it and passes the result to the lower layer. Protocol layer (af can.c) immediately
forwards the received sk buff to the queuing discipline. If the device driver can accept
a CAN frame for transmission, queueing discipline just passes the frame to the driver,
which instructs the CAN controller (hardware) to transmit the frame. Then, send()
returns. If, on the other hand, the device is busy, queuing discipline stores the frame
and send() returns at that time. Later, when the device is ready, the devices driver
asks the queueing discipline to supply a frame for transmission.

The reception path is shown with red arrows on the right. When a CAN frame is
received by the CAN controller, it signals to the CPU an interrupt request (IRQ), which
is handled by the device driver in the interrupt service routine (ISR). The ISR runs in the
so called hard-IRQ context of the Linux kernel. It checks the reason of the interrupt and
in case of receiving a new frame it asks Linux to schedule a so called NETRX soft-IRQ at
some time later. In normal situation, soft-IRQ is executed just after exiting the ISR. It
calls device driver’s poll() function, which reads the CAN frames out of the hardware,
stores them into sk buffs and passes them to the protocol layer. Protocol layer clones
the received sk buf in order to deliver it to every socket interested in receiving this
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Figure 2.1: Linux networking stack architecture. Solid green arrows represent transmit
data flow, red ones receive data flow. Dotted arrows represent notifications.
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frame. Then, the cloned sk buff is passed to the socket layer for storing the frame
in the socket queue. When an application invokes read() or recv() system calls, it
receives the frame from the socket queue.
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3 Methodology

We developed two methods for system call performance evaluation. One serves mainly
for comparison of system call overhead and does not require any special hardware setup.
The second method takes into account all components involved in communication such
as device drivers, protocol layer and system calls, but requires complex hardware setup.

3.1 Virtual CAN interface method

This method can be used for performance comparison of read() system call with
recvmmsg() and of write() with sendmmsg(). The difference between those system
calls is that read() and write() operate on a single message (CAN frame) whereas their
mmsg counterparts can operate on multiple messages (hence the name). This method re-
quires the use of virtual CAN interface (vcan). Therefore, it evaluates only the overhead
of the system calls and the socket and protocol layers. It does not take into account the
overhead of device drivers and queuing disciplines.

The method works as depicted in Figure 3.1. Two raw CAN sockets are created, one for
transmission and one for reception. Both are bound to the same virtual CAN interface.
For the reception socket we set the maximum size of the reception socket queue so that it
can hold all frames that we plan to send. This is accomplished by calling setsockopt()

with SO RCVBUFFORCE parameter. Then we send the planned number of CAN frames to
the transmission socket and measure the time of this operation. Every send operation
involves copying the CAN frame from the application to the kernel, creating sk buff

structure representing the sent frame and storing it in the reception queue of the receiving
socket (green arrow in the figure). The latter step is performed by the af can.c when it
detects that the socket is bound the virtual CAN interface. Once all frames are sent, we
start reading them out of the reception socket. We measure how long does the reading
take (red arrow).

The source code of the application implementing this method is available in our repos-

Application

Kernel

RX socket

RX queue

TX socket

vcan

af_can.c, raw.c

write/send
read/recv

Figure 3.1: Virtual CAN method.



3.2 Gateway-based method

Figure 3.2: Testbed configuration.

itory1.

3.2 Gateway-based method

This method evaluates the CAN system call performance by creating a Linux-based
CAN gateway and measuring how long does it take for the gateway to route a frame
from one CAN bus to another. We use the same hardware for the gateway but change
the software that implements it. This method evaluates the performance of all network
stack layers i.e. device driver, queuing discipline, protocol layer and sockets.

3.2.1 Test bed

The test bed used for this method is depicted in Figure 3.2. There is a PC with Kvaser
PCI quad-CAN SJA1000-based card and the CAN gateway running on a MPC5200
(PowerPC) system. The PC and the gateway (GW) are connected via a dedicated
Ethernet network (“crossed” cable) which is used only for booting the GW over network.
This is not used when running the experiments. The gateway is implemented either in
Linux or in RTEMS. In case of Linux, only the gateway application and the Linux kernel
are running in the system. No other user processes are run.

The PC is an old Pentium 4 box running at 2.4 GHz with hyper-threading, 2 GB
RAM. The second Ethernet interface is connected to the local LAN. This interface is
also disabled while running the experiments. The application that runs on the PC
generates the test traffic and measure the gateway latency (as detailed below). It has
assigned real-time priority (SCHED FIFO) and all its memory is locked i.e. it cannot
be swapped out to the disk.

1https://rtime.felk.cvut.cz/gitweb/can-benchmark.git/blob/HEAD:/recvmmsg/can_recvmmsg.c
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3.2 Gateway-based method

CAN bus 0

CAN bus 1

time

msg 1

Duration

msg 1'

CAN gateway
(Linux)

 GW latency

RX timestamp 1 RX timestamp 2

Total latency

Figure 3.3: Definition of latency.

3.2.2 Gateway latency measurements

The PC sends frames from the can0 interface and receives them on the can1 interface as
well as on can2, after passing through the gateway. We measure the latency of the frame,
which is the time interval between receptions of the frame on can1 and can2. The time of
frame reception is determined from the timestamps taken by the kernel at interrupt time
and is accessed from the user-space via SO TIMESTAMPNS socket option. Figure 3.3 shows
the measured latency in the time chart. The final latency of the gateway is calculated as
the difference of the two timestamps decreased by the duration (including bit stuffing)
of the frame on the bus.

Since the frames are generated and received in the same computer, the TX and RX
timestamps are measured with the same clock (TSC/HPET) and thus the measured
latencies are very accurate. We evaluated the accuracy of this method in [9] by comparing
our results with an independent measurement with a CAN analyzer. The worst case error
of our method was 10µs and this error occurred in less than 0.1% of measurements. Since
then, we improved the accuracy even more by disabling all unrelated Ethernet traffic
during experiments.

Whenever a frame is received on interface can2, it is necessary to find the other
timestamp associated with that frame in order to calculate the frame latency. This
procedure must be immune to frame losses and changes in the reception order. Therefore
we use the first two bytes of every frame to store a unique number which allows the frame
to be tracked.

3.2.3 Traffic generator

In our experiments, we generated the traffic by periodically sending CAN frames. The
period differed depending on the experiment, but in general it was between 120 and
500µs. We used the frames in standard (SFF) format with two bytes of data and the
CAN bus bit rate was 1 Mbps. The average length of such frames is 65 bits, which
corresponds to 65µs of transmission time (i.e. “duration” in Fig. 3.3).
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3.2 Gateway-based method

3.2.4 Gateway implementations

We used several implementations of the gateway in order to compare various Linux
system calls. In addition to the user space gateway, we compare our results with the
gateway implemented in the kernel space and with a non-Linux gateway implemented
in RTEMS executive. All implementations are described bellow and summarized in
Table 3.1.

rtems This gateway is not based on Linux. Instead, it uses RTEMS [10] executive, which
is more lightweight than Linux. We believe that the performance of this gateway
is very close to raw hardware performance. We include it in our experiments to
see the overhead of Linux in general. The sources of the gateway are available in
our repository2.

kernel The gateway that is a part of the Linux kernel3 configured with the following
command:

cangw -A -s can0 -d can1

read-write The simplest possible user space gateway. It uses read() system call to
receive CAN frames and write() system call to forward them to another CAN
interface.

readnb-write The same as read-write, but with the O NONBLOCK flag set for the receiving
socket. This flag causes the socket to be non-blocking, which means that when-
ever there is no frame in the socket queue, the call returns immediately with an
error instead of blocking the caller until a frame is received. This means that the
application busy-waits in a loop around the read() in the user space.

readbusy-write The same as read-write, but with SO BUSY POLL (a.k.a. low-latency
sockets) option set for the receiving socket. This option was added to the Linux
kernel recently (in version 3.11) and its effect is similar to the readnb-write, except
that the busy-waiting happens transparently in the kernel. In order for this to
work, it was necessary to patch the Linux kernel. For more details see the discussion
in Section 4.3. The timeout for polling was set to 300µs.

mmap-mmap This gateway uses PF PACKET sockets which store or read packets (CAN
frames) to/from a ring buffer memory that is shared between the kernel and the
user space (via mmap() system call). With these sockets, extra copying of the
frames between the kernel and the application is avoided and the application can
receive or send multiple packets in one system call or, in case of reception, without
calling the system at all.

Whenever the kernel receives a frame, it stores its content together with some
metadata in the ring buffer and the user space application can immediately ac-
cess it without any system call. If there is no frame available in the ring buffer,

2https://rtime.felk.cvut.cz/gitweb/can-benchmark.git/tree/HEAD:/rtems/gw/cangw
3https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/net/can/gw.c
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3.2 Gateway-based method

the application can call the poll() system call to wait for some frame to arrive.
Transmission happens similarly. The application writes one or more frames into
the ring buffer and calls send() on the socket. The kernel then sends all the frames
at once. Details of this type of socket are provided in [11].

Our mmap-mmap gateway works as follows. It reads frames from the reception
ring buffer and copies them to the transmission ring buffer. Once the reception
ring buffer is empty or when there is no space in the transmission ring buffer, the
send() system call is called and the process starts anew. Then, if the reception
ring buffer is still empty, we call poll() to wait for a new frame.

mmap-write The same as mmap-mmap, but frame transmission is carried out with the
write() system call on a raw CAN socket instead of the PF PACKET socket.

mmapbusy-mmap The same as mmap-mmap, but when the reception ring-buffer is
empty, it does not call poll() but busy waits in a loop until a frame appears in
the ring buffer.

mmapbusy-write Combination of mmapbusy-mmap and mmap-write.

readnb-mmap Non-blocking read for reception together with the mmap() PF PACKET

socket for transmission. send() is called only when read() returns that there are
no more frames.

readbusynoirq-write The same as readbusy-write but the kernel was patched to disable
receive interrupts during busy waiting. See Section 4.3 for details.

mmsg-mmsg This gateway use a combination of recvmmsg() and sendmmsg() to per-
form its job. Similarly to mmap-mmap, it can handle multiple CAN frames with
one system call.

All Linux-based gateways used kernel 3.12.3 patched with board support patches for
our MPC5200-based board4. The kernel configuration is available in our repository5.
The source code for all above mentioned user space gateways is also in our repository6.
It is a single program and different variants of the gateway are selected with command
line switches.

4https://rtime.felk.cvut.cz/gitweb/shark/linux.git/shortlog/refs/heads/shark/3.12.x
5https://rtime.felk.cvut.cz/gitweb/can-benchmark.git/blob/HEAD:/kernel/build/shark/3.

12/.config
6https://rtime.felk.cvut.cz/gitweb/can-benchmark.git/blob/HEAD:/ugw/ugw.c
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4 Results

In this section we present and discuss the results obtained from the experiments described
above.

4.1 Advantages of *mmsg() system calls

We applied the method described in Section 3.1 to a varying number of frames and
plotted the measured times to the graph in Figure 4.1.

The left graph shows the performance of a PC, the right graph of the MPC5200-based
(embedded) system. On the PC, reading 50 thousand of frames with read() takes 15 ms,
whereas using a single recvmmsg() call takes about 14 ms. Sending the same number of
frames with write() takes 40 ms and with sendmmsg() 35 ms. For all system calls the
time depends almost linearly on the number of frames. The recvmmsg() system call is
7% faster than read(), sendmmsg() is 12% faster than write().

On MPC5200, the situation is similar but the difference is bigger. recvmmsg() is 19%
faster and sendmmsg() even 35% faster.

Note that this method measures only a fraction of full RX and TX paths and especially
that the measured RX latency comprises only the very last step of the full RX path. See
Figures 2.1 and 3.1 to compare the difference between measured and full paths.

Furthermore, we looked whether the *mmsg() system calls can have higher overhead
than read()/write() for a small number of frames. The result is that *mmsg() system
calls are always slightly faster even for a single frame.

4.2 Comparison of gateway implementations

We measured the latency of the gateway as described in Section 3.2. In each experiment
we sent 3 200 frames. The measured latency represents the time needed by the gateway
for reception and transmission of a single frame. In the graphs below, we show medians
of the measured latencies.

The results for low CAN traffic, i.e. a new frame was only sent to the gateway after
the previous one was received from it, are depicted in Figure 4.2.

The lowest latency of 15µs is achieved with the RTEMS-based gateway. The second
lowest value (49µs) belongs to the kernel-based gateway. These two values are provided
only for comparison and the properties of these gateways are outside the scope of this
paper.

Classical read-write gateway performs rather badly with its 180µs, similarly as all
implementations that use some form of blocking, i.e. mmap-write, mmap-mmap and



4.2 Comparison of gateway implementations

(a) PC (x86 64)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  5  10 15 20 25 30 35 40 45 50
 0

 5

 10

 15

 20

 25

 30

 35

 40
T

im
e 

[m
s]

Frames [×1000]

read
recvmmsg
write
sendmmsg

(b) MPC5200

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0  5  10 15 20 25 30 35 40 45 50
 0

 500

 1000

 1500

 2000

 2500

 3000

T
im

e 
[m

s]

Frames [×1000]

read
recvmmsg
write
sendmmsg

Figure 4.1: Comparison of read()/write() and recvmmsg()/sendmmsg() performance
on a virtual CAN (vcan) interface. The straight lines show linear fit of the
measured data. Note that reception times correspond to the left axis and
send times to the right one.

mmsg-mmsg. A slightly better latency around 100µs can be achieved if some form of
busy waiting is employed.

The simplest form of busy waiting is to use non-blocking sockets as in the readnb-write
implementation. The increased performance is caused by the fact that the application
thread never blocks and when a new frame arrives, there is no overhead of switching the
context from the idle thread back to the application and perhaps also for waking the
CPU from some power saving mode.

Other busy waiting implementations perform similarly. The readbusy-write implemen-
tation (a.k.a. low-latency sockets) is discussed separately in Section 4.3.

It was determined that having ftrace compiled in the kernel (but disabled at runtime)
caused about 20% performance degradation. Therefore, ftrace was not compiled into
the kernels used in this paper.

The situation is different for heavier traffic (see Figure 4.3) when frames were sent
every 120µs. All write()-based implementations have very long latencies (caused by
queueing delays in overflowed socket queues) and also loose up to one third of frames.
Implementations that use mmap() or sendmmsg() perform much better and when mmsg-
or mmap-based operations are used for both reception and transmission no packet is lost.
Surprisingly, no frame is lost even for readnb-mmap gateway.

The reason for good performance of mmsg- or mmap-based operations is that it is not
required to perform a system call for every frame. Receiving side can be implemented
completely without system calls as in mmapbusy-* implementations. Transmission side
requires a system call, but one send*() can (and in our implementations does) transmit
several frames.

To evaluate how various system calls scale to higher bandwidth, we measured how
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Figure 4.2: Latencies of various gateway implementations on MPC5200. A new frame
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way. Bars show median, error bars span from the minimum value to 90th

percentile.

 0

 5000

 10000

 15000

 20000

 25000

rtems
kernel

mmapbusy-mmap

mmapbusy-write

readnb-write

readbusy-write

readbusynoirq-write

readnb-mmap

read-mmap

read-write

mmap-write

mmap-mmap

mmsg-mmsg

 0
 5
 10
 15
 20
 25
 30
 35
 40

G
W

 la
te

nc
y 

[µ
s]

L
os

t f
ra

m
es

 [
%

]

GW implementation

Latency
Lost frames

Figure 4.3: Latencies of various gateway implementations on MPC5200 when frames are
sent with the period of 120µs. Bars show median, error bars span from the
minimum value to 90th percentile. The exact height of small bars can be
seen at the bottom of Figure 4.4. The high latencies (e.g. 23 ms) are caused
by queueing delays when the gateway was overloaded.

16



4.2 Comparison of gateway implementations

 20

 50
 100
 200

 500
 1000
 2000

 5000
 10000
 20000

 120  125  130  135  140  145  150  155  160

G
W

 la
te

nc
y 

[µ
s]

 ±
 p

ac
ke

t l
os

s

Frame period [µs]

kernel
mmsg-mmsg
mmap-mmap
mmapbusy-mmap

mmap-write
mmapbusy-write
readnb-mmap
readbusynoirq-write

read-write
readbusy-write
readnb-write

Figure 4.4: Latency and packet loss depending on the frame rate. Measured on
MPC5200. The latency is the median of 3 200 measurements. Packet loss is
drawn as error bars. For the sake of readability, error bars are magnified ten
times.

does the gateway latencies and lost frames depend on the frame rate. The result is in
Figure 4.4.

As it was already discussed, read*-write implementations cannot sustain higher frame
rates (lower frame periods). The gateway throughput is saturated for periods between
150 and 155µs. Only kernel-based gateway and mmap/mmsg-based gateways can sustain
the higher frame rates.

Both mmap*-write gateways drop off around 127µs. By comparing mmap-write with
readnb-mmap, one can conclude that write() has a bigger overhead than read(). This
matches with the results in Section 4.1, where the write is 3 to 6 times longer than read.

Gateways mmap*-mmap and mmsg-mmsg perform almost exactly the same. They all
benefit from the fact that they can handle multiple frames per system call. Interestingly
readnb-mmap, survives the highest frame rate1 even though it needs to use one system
call for each received frame. Probably frame coalescing on transmission side is sufficient
here.

Although the kernel gateway is not evaluated in this paper, it is interesting to see the
increase in latencies around period of 135µs. This is caused by a TX interrupt on the
output CAN interface (see RX timestamp 2 in Figure 3.3) that happens to interrupt the
processing of the next received frame on the input CAN interface.

One may also wonder why the mmapbusy-write curve jumps up and down around

1Our test bed cannot generate higher frame rates reliably.
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130µs. We do not have the exact explanation, but in general, close to the point where
the gateway throughput get saturated the measurements are quite unstable. The reason
is that at this point the main factor that determines the measured latency changes
from processing delay to queuing delay. We tried to find a high enough number of
measurements to average out this instability, but we have to make a compromise between
the number of measurements and the duration of the experiment.

4.3 Busy polling of CAN sockets

Busy polling, previously known as low-latency sockets, is a feature that was added
to Linux recently, in version 3.11. It was designed for latency sensitive applications
communicating over Ethernet. The question that we try to answer in this section is
how beneficial is this feature for CAN bus networking. It is shown, that for most CAN
applications, there are no big advantages of using this feature.

When busy polling is enabled for a socket (e.g. with setsockopt(SO BUSY POLL)) then
the behavior of read() or poll() system calls is changed if the socket receive queue
is empty. Instead of blocking the caller, the device driver is invoked directly from the
application context to poll for new packets (without busy polling enabled, such polling is
only invoked from hard or soft IRQ context). This happens in a busy loop until either a
packet is received or a specified timeout elapses. When a new packet arrives, it is pushed
to the network stack (protocol layer in Figure 2.1) as in the standard situation and the
application finds new data in the socket queue when leaving the busy loop. Device
independent functionality of busy poll is implemented in include/net/busy poll.h2.

For CAN networking, busy polling does not work out of the box. It is necessary to
add support for it to the network stack as well as to device drivers. We implemented
support for CAN raw sockets3 and for the mscan device driver4.

As can be seen from Figure 4.2, the performance of readbusy-write implementation is
not very different from other non-blocking implementations, namely from readnb-write,
which also uses busy polling but in the user space instead of in the kernel. The reason is
that when the application busy-polls for the frames in the read() call, receive IRQs are
not disabled and the system still needs to handle an IRQ when a frame arrives. Soft-
IRQs are disabled when busy-polling but since every MSCAN interrupt service routine
(ISR) schedules a soft-IRQ, the soft-IRQ is always invoked after the busy-polling exits
and a frame was received. Usually, this soft-IRQ has no work to do because all work was
already performed during the busy-polling. The difference in the sequence of operations
during blocking and busy-polling read is depicted in Figure 4.5 a) and b).

Since it is not necessary to handle receive interrupts while polling, we were interested
in whether eliminating the interrupt overhead brings significant advantage. We imple-

2http://lxr.free-electrons.com/source/include/net/busy_poll.h?v=3.12
3https://rtime.felk.cvut.cz/gitweb/shark/linux.git/commitdiff/154a6ad59e506835b6b812a3128f16e5786291e5?

hp=f6d51c347e2b35680619906000622401bf5f6cc5
4https://rtime.felk.cvut.cz/gitweb/shark/linux.git/commitdiff/d40550253b8ea0434100b496528b35759eff07e5?

hp=154a6ad59e506835b6b812a3128f16e5786291e5
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read() {

block()

:

hard IRQ {}

soft IRQ {

poll_for_frames() {

push_to_stack() {

wake_up()

}

}

}

copy_to_user()

}

(a) Blocking read

read() {

poll_for_frames()

poll_for_frames()

poll_for_frames()

hard IRQ {}

poll_for_frames() {

push_to_stack()

}

soft IRQ {

poll_for_frames()

}

copy_to_user()

}

(b) Read with busy-poll

read() {

irq_disable()

poll_for_frames()

poll_for_frames()

poll_for_frames()

poll_for_frames() {

push_to_stack()

}

irq_enable()

copy_to_user()

}

(c) Read with busy-poll, no IRQ

Figure 4.5: Comparison of blocking and busy-poll reception path.

mented a patch5 that disables hard-IRQs during polling. The results on the gateway
with this patch applied are named readbusynoirq-write. Detailed examination of Fig-
ure 4.2 reveals that the latency is 7µs smaller when compared to readbusy-write, which
is not a significant improvement. Also in Figure 4.4, although the readbusynoirq-write
line drops off at the highest frame rate (150µs) among all read*-write implementations,
the difference is not significant.

The reason why busy-polling sockets are useful for Ethernet and not for CAN (or
at least for the MSCAN device) is that Ethernet devices implement so called interrupt
coalescing. In this mode, the device does not interrupt the host with every received
packet but enforces minimum inter-IRQ time. For example Intel’s ixgbe driver supports
125, 50 and 10µs as minimum inter-IRQ time. When a packet arrives at the beginning
of the no-IRQ interval, the application might end up waiting for it until the end of the
interval. With busy-polling sockets, this extra latency can be eliminated at the price of
higher CPU utilization.

5https://rtime.felk.cvut.cz/gitweb/shark/linux.git/commitdiff/busy_poll_noirq
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5 Conclusion

From our results, it can be clearly seen that kernel interfaces that can handle multiple
CAN frames per invocation are superior to the simple read()/write() interface. Those
interfaces are PF PACKET sockets and recvmmsg()/sendmmsg() and both perform al-
most the same. The shiny new “low-latency sockets” are not very interesting for CAN
bus. CAN traffic processing in the Linux kernel is about 3 times slower than in RTEMS
and when the processing is done in the Linux user space, it can be even 13 times slower.

As for the future work, it might be interesting to propose a new interface that would
be the combination of SO BUSY POLL (i.e. polling the driver directly from the task
context) and memory mapped sockets. With such an interface, it might be possible
to bypass the Linux networking stack completely and achieve very good receive perfor-
mance. Such interface would be suitable for logging of big number of CAN interfaces
even on low-end hardware.
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