
Linux-Based CAN-Ethernet Gateway

R. Matějka, M. Sojka
Czech Technical University in Prague

February 6, 2015
Version 6400f84-dirty

Contents

1. Assignment 3

2. Project overview 4
2.1. Gateway architecture . 4
2.2. Associated programs . 5

3. Design issues 6

4. Benchmark 8

A. Repository contents 9

2

1. Assignment

The goal is to implement CAN-Ethernet gateway based on Linux’s AF CAN subsystem
with the following features:

1. Both user- and kernel-space implementations will be developed. User-space one
will contain only the most basic functionality.

2. Ethernet side will use UDP datagrams to carry the CAN messages. Later it will
be extended to support also TCP.

3. Initial version will route all CAN frames to Ethernet side and all received UDP
datagrams to CAN messages. Later, filtering capabilities will be added.

4. UDP frames will contain timestamps of the time when the CAN message was
received.

5. For kernel-based gateway, implement a user-space configuration tool, similar to
cangw tool from can-utils.

3

2. Project overview

2.1. Gateway architecture

The software architecture of canethgw is illustrated on figure 2.1. This section describes
what can be seen on this figure.

The can-ethernet gateway (canethgw) is comprised of two kernel threads. One thread
is serving the can to ethernet routing (can → eth) and the other thread is serving the
oposite direction (eth → can).

The gateway uses berkley sockets as network interaces. There are two sockets in the
program. One socket is binded to can network and the other one to ethernet. These two
sockets are shared by kernel threads.

To get a better notion about canethgw operation a working cycle description is given.
The working cycle of the can → eth kernel thread is as follows. The thread is waiting for
incoming data on can socket. When data are received, they are put to udp packet and
are sent to ethernet. There can be more than one recipient in ethernet network. The
program holds list of recipients and sends copy of incoming data to all of them. This
working cycle description can be analogically applied to eth → can thread.

The gateway is configured over netlink with cegw tool. More on cegw is in section 2.2

can ethernet

can->eth thread

eth->can thread

cegw (config tool)

netlink

Figure 2.1.: Software architecture of canethgw.

4

2. Project overview

2.2. Associated programs

The project consists not only from canethgw, but also from configuration utility cegw,
userspace implementation of the gateway, benchmarking program and other utils. These
associated programs are presented below.

cegw Cegw is a configuration utility for canethgw. Its syntax is similar to cangw tool
from can-utils. The difference from cangw is that every interface has to be defined
with type-prefix. This can be explained well using an example. Figure 2.2 displays
commands to do a simple setup of canethgw. This setup sends all can frames re-
ceived on vcan0 to 127.0.0.1:10502 and all can frames received from 127.0.0.1:10501
to vcan0.

listen for incomping udp at 127.0.0.1 port 10501

cegw --listen udp@127.0.0.1:10501

all from vcan0 route to 127.0.0.1 port 10502

cegw --add -s can@vcan0 -d udp@127.0.0.1:10502

all from source address .. route to vcan0

cegw --add -s udp@127.0.0.1:10502 -d can@vcan0

Figure 2.2.: Simple setup using cegw.

userspace implementation To measure a performance of canethgw, another implementation
of gateway was done in userspace. This implementation resembles the kernel imple-
mentation but poll is used instead of threads. How to start a simple setup is in figure
2.3.

canethgw -s can@vcan0 -d udp@127.0.0.1:10502 -l udp@127.0.0.1:10501

Figure 2.3.: Command to run userspace canethgw.

cegwbench This is a benchmarking program. It sends can frames to defined interface and
listens on another interface for reception. Then it prints the transmission duration to
stdout. How to start simple cegwbench session is in figure 2.4. This program was used
for benchmark described in section 4.

cegwbench -s udp@127.0.0.1:10501 -d can@vcan0 -n 100 -m oneattime

Figure 2.4.: cegwbench example.

cesend Sends a can frame over udp to localhost:10501. This is based on cansend from can-utils
and the can frame specification string is the same.

5

3. Design issues

This chapter encompasses problems which came up during development. This knowledge
may be helpful in further research.

The original cangw was designed in modular way, so the first attempt to design
canethgw was done on cangw basis. The original cangw works with sk buff structure
and in softirq. However, there are some issues, which complicate applicability of this
approach for canethgw. These problems are listed below:

sending udp packet in softirq The original cangw is receiving can frames in softirq. If
one wanted to send such a can frame to ethernet with udp/ip packet, he have to
avoid sleeping which is not easy. I have not found a way how to send a udp packet
using the protocol stack without sleeping. I also think that bypassing protocol
stack and reimplementing udp and ip is not a good idea, because it will induce
bugs.

receiving udp packet The gateway have to hook somewhere to receive udp or tcp pack-
ets. I have not found any convenient method to do this.

These problems led me to search for a different approach. The found solution is
based on berkley sockets. Even this approach has some issues, which cause difficuties.
These difficulties are listed below. For more complete information about this solution
see section 2.1.

socket creation It is not possible to create a can socket in a netlink callback. Such an
attempt will cause rtnl lock deadlock. rtnl lock is being held when netlink callback
is processing, but the same lock is needed by register netdevice notifier [4] function
when can socket is being created. This problem can be solved by postponing the
creation process.

socket rebinding Once the socket is binded to a particular address it cannot be changed.
Rebinding is not possible. The overcome for this is to release the old socket and
create a new one.

netlink feedback This problem is tightly linked to the socket creation issue described
above. If some operation cannot be done in netlink handler and have to be post-
poned, the netlink handler can hardly return any feedback about an operation re-
sult. That is why the configuration tool (cegw) doesn’t return information about
an operation result.

6

3. Design issues

terminating thread The termination of kernel thread is not straightforward in this case,
because the needs are slightly different than kernel api. The standard kernel thread
is working in a cycle waiting for kthread should stop(..) to return true. This
approach is not possible because the thread can be sleeping in kernel sendmsg
function and therefore not responding to kthread stop. Waking using wake process
won’t work, because no incoming data will cause sleep again. The socket shutdown
is used for waking from receiving.

7

4. Benchmark

To evaluate canethgw a benchmark was conducted. The objective was to compare per-
formance of the gateway implementated in userspace and in the kernel.

The benchmark was designed as a set of four measurements. There is a separete
measurement for each of both directions, that is eth→can and can→eth. These both
directions are measured with userspace and kernel implementation. In every of four
measurements 100 can frames were transceived.

The benchmark was performed on dedicated computer running very bare, single-
purpose distribution to avoid external effects. The results show that kernel implementa-
tion is approximately 10% faster. Figure 4.1 shows transmission duration of every can
frame sent.

Furher information, including benchmark source code, can be found in bench folder
in repository[1].

Figure 4.1.: canethgw performance.

8

A. Repository contents

Repository can be found at [1]. Below is a list of folders and their content.

bench/ Scripts which prepare and perform benchmark on dedicated com-
puter are here.

distro/ Linux distribution used for testing and benchmarking. Busybox
and kernel configuration files can be found here.

doc/ Folder with documentation.
can-utils/ CAN utitilities with the userspace cegw tool (Git submodule [3]).
linux/ CAN-Ethernet gateway kernel implementation (Git submodule

[2]).
test/ Contatins scripts used in debuging to test functionality.
user/ CAN-Ethernet gateway userspace implementation.
utils/cegwbench/ Program used for benchmark.
utils/cesend/ Sends can frame over udp.

9

Bibliography

[1] Project repository: https://rtime.felk.cvut.cz/gitweb/can-eth-gw.git

[2] Kernel driver: https://rtime.felk.cvut.cz/gitweb/can-eth-gw-linux.git/

blob/HEAD:/net/can/canethgw.c

[3] CAN utilities with cegw tool: https://rtime.felk.cvut.cz/gitweb/can-utils.

git/shortlog/refs/heads/cegw

[4] register netdevice notifier(..): http://lxr.linux.no/linux+v3.5.3/net/core/

dev.c#L1351

10

https://rtime.felk.cvut.cz/gitweb/can-eth-gw.git
https://rtime.felk.cvut.cz/gitweb/can-eth-gw-linux.git/blob/HEAD:/net/can/canethgw.c
https://rtime.felk.cvut.cz/gitweb/can-eth-gw-linux.git/blob/HEAD:/net/can/canethgw.c
https://rtime.felk.cvut.cz/gitweb/can-utils.git/shortlog/refs/heads/cegw
https://rtime.felk.cvut.cz/gitweb/can-utils.git/shortlog/refs/heads/cegw
http://lxr.linux.no/linux+v3.5.3/net/core/dev.c#L1351
http://lxr.linux.no/linux+v3.5.3/net/core/dev.c#L1351

	Assignment
	Project overview
	Gateway architecture
	Associated programs

	Design issues
	Benchmark
	Repository contents

