
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Bachelor’s Thesis

FPGA Based CAN Bus Channels Mutual Latency Tester and
Evaluation

Martin Jeřábek

Supervisor: Ing. Pavel Píša, Ph.D.

Study Programme: Open Informatics, Bachelor

Field of Study: Computer and Information Science

May 27, 2016

iv

Aknowledgements
I would like to thank my supervisor, Ing. Pavel Píša, Ph.D., for providing invaluable consul-
tations and offering detailed analyses of many peculiar problems; the author of the original
testing system, Ing. Michal Sojka, Ph.D., for introduction to the whole system, providing
support, and his valuable advice. I would also like to thank Ing. Petr Porazil, who helped
me with assembling the boards. Lastly, I must not forget to thank my family for their
support throughout my whole study.

v

Declaration
I declare that the presented work was developed independently and I have listed all sources
of information used within it in accordance with the methodical instructions for observing
the ethical principles in the preparation of university theses.

Prague, on May 27, 2016 .

Abstract

This thesis describes design and development of software and hardware system for pre-
cise measuring of processing latency of various CAN bus gateway implementations, with
sub-microsecond precision. The intended application is evaluation of the software gateway
implemented in the Linux kernel. This work extends the previous software-only PC-based
tester. Xilinx Zynq SoC with integrated FPGA is used as the new development platform,
which brings a significant increase in measurement precision. Latency measurements ob-
tained with this system are compared to those from the previous software-based solution.
Experimental results show 60 % improvement in measurement stability. The developed
system is deployed in as a complete setup continuously monitoring latencies of the Linux
kernel. The results, as well as all the source code, hardware schematics, PCB layouts and
other materials, are freely available.

Keywords: CAN bus, Linux, RTEMS, Xilinx Zynq, MicroZed, latency, gateway, SJA1000,
CAN IP Soft Core, UIO

Abstrakt
Tato práce popisuje podobu a vývoj softwarového a hardwarového systému pro přesné měření
latence různých implementací brány (gateway) pro sběrnici CAN, a to s rozlišením na
mikrosekundy. Účel projektu je především testování softwarové brány implementované v
Linuxu. Tato práce rozšiřuje předchozí čistě softwarový tester. Jako vývojová platforma
je použit Xilinx Zynq SoC s integrovaným FPGA, což přináší značné zvýšení přesnosti
měření. Latence získané tímto systémem jsou pak porovnány s výsledky z předchozího čistě
softwarového řešení. Experimentální výsledky ukazují zvýšení přesnosti měření o 60 %. Vy-
vinutý systém je začleněn do testovací konfigurace pro souvislé monitorování latencí Linux-
ového jádra. Výsledky, spolu se všemi zdrojovými kódy, hardwarovými schematy a výkresy
desky plošných spojů, jsou volně dostupné.

Klíčová slova: CAN bus, Linux, RTEMS, Xilinx Zynq, MicroZed, latence, brána, SJA1000,
CAN IP Soft Core, UIO

vi

Contents

1 Introduction 1
1.1 Testbed setup . 2
1.2 Project goals . 2

2 Theoretical background 3
2.1 CAN bus overview . 3

2.1.1 Implementation in Operating Systems 4
2.1.1.1 Linux: SocketCAN . 4

2.2 Xilinx Zynq SoC . 4
2.3 AXI4 . 5
2.4 Message timestamps in Linux networking subsystem 5

3 MicroZed CAN-BENCH System Description 7
3.1 CAN-BENCH Carrier Card . 8

3.1.1 Power Supply . 8
3.1.2 CAN bus bridging . 8
3.1.3 Reset Buttons . 8

3.2 Peripherals . 9
3.2.1 Embedded Xilinx CAN Controllers . 9

3.2.1.1 Linux driver . 9
3.2.2 SJA1000 IP Soft Core . 10

3.2.2.1 Register overview . 10
3.2.2.2 Interrupts . 10
3.2.2.3 Linux driver . 11

3.2.3 CAN Crossbar Soft Core . 11
3.2.3.1 Functional description . 11
3.2.3.2 Register Overview . 12
3.2.3.3 Linux driver . 13

3.3 Booting process . 13
3.4 Software . 14

3.4.1 latester: the benchmarking application 14
3.5 Building the system . 14

vii

viii CONTENTS

4 Development and Implementation Choices 15
4.1 Hardware . 15

4.1.1 Form of hardware solution . 15
4.1.2 CAN bus Transceiver . 16

4.1.2.1 CAN bus termination and testing 16
4.1.3 I/O protection and isolation . 16
4.1.4 Power Supply . 16

4.1.4.1 Power Supply Sequencing . 17
4.1.5 General Purpose User I/O . 18

4.2 Software . 18
4.2.1 Tools Used for Development . 18
4.2.2 Configuring the Processing System in Vivado 18

4.3 Creating PetaLinux Build . 20
4.4 Extending the Xilinx CAN Linux driver . 20
4.5 Adapting the SJA1000 IP Core . 21
4.6 Extending latester . 21
4.7 Debugging . 22

4.7.1 Testing the Embedded Xilinx CAN Controllers 22
4.7.2 Testing the SJA1000 IP Core . 22
4.7.3 Debugging the xilinx_can driver timestamping patch 22
4.7.4 Deployment of binary images . 22

5 Running the Benchmarks 24
5.1 Continuous Testing System at DCE Servers 24
5.2 Results . 25

6 Conclusion 27
6.1 Future improvements . 27

Bibliography 29

Nomenclature 31

A Contents of attached CD 33

B CAH-BENCH Schematics 35

C CAH-BENCH PCB Layout 46

D CAN-BENCH Bill of Material 52

E Official Assignment 55

List of Figures

1.1 Original testbed configuration . 2
1.2 Extended testbed configuration . 2

2.1 CAN sub-layers . 4
2.2 Example of AXI-Lite transactions . 5

3.1 CAN-BENCH Carrier Card . 7
3.2 SJA1000 IP Soft Core Block Diagram . 10
3.3 MicroZed Boot Mode Jumper Settings . 13

4.1 Power Architecture and Sequencing Diagram 17

5.1 Comparison of different gateways latencies in history 25
5.2 Comparison of individual gateway latencies between the original and extended

system . 26

ix

List of Tables

3.1 CAN-BENCH Carrier Card Reset Buttons . 9
3.2 CAN bus network interfaces in Linux . 14

x

Chapter 1

Introduction

Controller Area Network (CAN) is still by far the most widespread networking standard used
in the automotive industry today, even in the most recent vehicle designs. Although there
are more modern solutions available on the market (such as FlexRay or various industrial
Ethernet standards), CAN represents a reliable, cheap, proven and well-known network.
Thanks to its non-destructive and strictly deterministic medium arbitration, CAN also ex-
hibits very predictable behavior, making it ideally suited for real-time distributed systems.
Because of these indisputable qualities, it is unlikely that the CAN is going to be phased
out in foreseeable future (cited from [12]).

Linux is often used in embedded devices since it offers more flexibility and supports a
huge number of user-space applications, thus speeding up the development process. While
not a real-time operating system, many applications require decent performance in terms
of average and especially worst-case latencies. In distributed systems interconnected with
multiple CAN buses, such as in cars, the latency of processing CAN frames is important.
The Linux kernel is, however, a complex project and as it is not primarily targeted at real-
time systems, the latency profile changes significantly with each released version. The only
practical way to determine its latency profile is by benchmarking.

Despite this, there exists a patch set called RT Linux, which enables to compile the
kernel as fully preemptive, lowering the worst case latencies and making the Linux kernel
more suitable for (soft) real-time systems.

As the development of Linux goes rapidly forward, there is a need to continually test
each new version.

Benchmarking also has the potential to discover bugs or regressions introduced into the
kernel, as has already happened with the previous software-only system [12].

This work aims at extending the previously used testbed for CAN bus latency mea-
surements. Software source codes of the extended system, as well as all hardware-related
materials (such as schematics and PCB layout) are publicly available in GIT1 repositories
[23, 22].

1https://git-scm.com/

1

https://git-scm.com/

CHAPTER 1. INTRODUCTION

Figure 1.1: Original testbed configuration [12] Figure 1.2: Extended testbed configuration

1.1 Testbed setup
The original testbed consists of the gateway under test and a standard PC. For the extended
version, the testing instead takes place in a dedicated MicroZed board (based on Zynq SoC)
with specially designed carrier card and the PC serves merely to coordinate the testing
process. Diagrams of both testbeds are depicted in figures 1.1 and 1.2.

The testing platform – in this case the MicroZed board – needs the total of 3 CAN bus
interfaces: one for transmission and two for reception. The additional reception interface is
connected to the same bus as the transmission one so that the exact time when the frame
actually appears on the bus is captured. This could be instead implemented with a CAN bus
controller capable of reporting exact timestamp for transmitted frames or a timestamping
controller capable of self-reception.

While the need for 3 interfaces could be eliminated in the hardware-assisted system, in
the previous software-only system this was a necessity, as the timestamping was performed in
software interrupt handler. The transmitted frame would be enqueued into TX FIFO of the
CAN controller and its transmission could be delayed by waiting for preceding transmissions
to be finished or even by retransmissions in case of bus error or arbitration loss.

The CAN-to-CAN gateway, whose latency is being measured, is an embedded board
based on MPC5200B (PowerPC) microcontroller running at 400 MHz [12].

The benchmarking application running on MicroZed dedicated hardware transmits CAN
frames via can0. The frame is then received by the gateway and at the same time on can1,
which is connected to the same bus as can0. After the gateway processes and forwards the
frame, it is received on can2. The difference of timestamps of the two frames received on
can1 and can2 then gives the total latency, which besides the measured gateway processing
latency also includes the frame transmission time.

Bitrate of all buses is configured to 1 Mbps.

1.2 Project goals
The main goal of this project is to increase the precision of measuring timestamps of all
sent and received frames, moving the timestamping to hardware and eliminating additional
latencies introduced by the host system.

2

Chapter 2

Theoretical background

2.1 CAN bus overview

CAN is a multi-master serial bus with high reliability and an arbitration mechanism allowing
for minimal latency when transmitting a high-priority message [6]. The first CAN specifica-
tion originated in 1986, later in 1993 the updated specification, CAN 2.0, was standardized
as ISO 11898.

An extensive description of all CAN sub-layers is given in [6, 5, 15], and the CAN 2.0
specification is freely available on Robert Bosch GmbH website [3]. Overview of the physical
layer is also available in [4].

CAN bus consists of several layers as shown in Figure 2.1. The link layer assumes the
bus may be in two states – recessive or dominant. If two nodes are transmitting recessive
and dominant bits at the same time, the bus will be in dominant state. This is similar to
wired-AND. Zero bits are dominant, ones are recessive. If a node transmitting a recessive
bit detects a dominant bit on the bus, it loses arbitration and the node transmitting the
higher-priority message will take over the transmission.

CAN specifies 4 frame types: data frames, remote frames, error frames and overflow
frames. A data frame consists of Start of Frame bit (SOF), header, data, footer, 7 End of
Frame bits (EOF) and 3-bit intermission field (IMF). The header contains most importantly
a 11bit or 29bit long frame identifier, CAN ID. This serves as unique message type identifier
and at the same time determines the frame priority. Frames with lower CAN IDs have higher
priority. A CAN frame may contain 0–8 data bytes. The footer contains a 15bit CRC field.
All one-bit errors are guaranteed to be detected, most two-bit errors will also be detected
[6]. After the CRC follows ACK bit. The transmitting node sends this bit as recessive, and
all receiving nodes must acknowledge correct reception of the frame by sending a dominant
bit.

CAN bus uses non-return-to-zero (NRZ) signal encoding, and no clock signal is part of
the physical interface. Therefore, it must be ensured that the maximum permissible interval
between two edges is not exceeded. This is achieved by a process called bit stuffing. After
5 consecutive bits of the same value, one additional bit of the opposite polarity must be
inserted. The receiver must then undo this process. This is important for synchronization
purposes.

One bit time consists of several time quanta and is separated into 4 segments – Sync,

3

CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1: CAN sub-layers. The AUI (Attachment Unit Interface)is the interface between
CAN controller and CAN transceiver; the MDI(Medium-Dependent Interface) is the inter-
face to physical bus-lines [6].

Propagation, Phase 1, Phase 2. Their durations are configuration-dependent. These are
important for node synchronization. More information is available in [6]. For the arbitration
process to function correctly, the signal must be able to propagate from the transmitting
node to every other node and back in less that one bit time so that a node transmitting a
recessive bit can detect if the bus is in dominant state and interrupt its transmission. This
effectively limits the length of the bus.

A new standard, CAN FD 1.0, was approved in 2015. It offers higher throughput by
adding second (higher) bitrate for data and increasing maximal data length to 64 bytes.

2.1.1 Implementation in Operating Systems

2.1.1.1 Linux: SocketCAN

Linux CAN subsystem is built upon the networking subsystem. The basic idea is that
similarly as in networking, higher-level protocols may be implemented upon the CAN link
layer. Moreover, the advantage of this approach is that many applications may use the
CAN interface simultaneously. This could be achieved by implementing the CAN controller
drivers as character devices, but a significant portion of the networking subsystem would
have to be duplicated

The networking subsystem is not, however, optimized for small messages and has rather
large overhead. The performance in conjunction with CAN is thus substantially sub-optimal.
There exist an alternative CAN subsystem, called LinCAN1, which design its own generic
API, avoiding the bottleneck. Further information and motivation behind SocketCAN may
be found in [7].

2.2 Xilinx Zynq SoC

Xilinx Zynq is an integrated SoC including two ARM Cortex-A9 CPU cores, an FPGA and
lots of integrated peripheral controllers, most importantly two CAN bus controllers, UART,
and Ethernet.

1http://ortcan.sourceforge.net/lincan/

4

2.3. AXI4

ACLK

ARESETN

M_ARADDR addr

M_ARPROT prot

M_ARVALID

S_ARREADY

S_RDATA data

S_RRESP OK

S_RVALID

M_RREADY

R
ea
d
A
dd
re
ss

R
ea
d
D
at
a

(a) AXI-Lite read transaction. Note that
if M_RREADY was asserted together with
M_ARVALID, the slave would not have to wait
for it and the transaction would take 2 cycles
less.

ACLK

ARESETN

M_AWADDR addr

M_AWPROT prot

M_AWVALID

S_AWREADY

M_WDATA data

M_WSTRB strobe

M_WVALID

S_WREADY

S_BRESP OK

S_BVALID

M_BREADY

W
rit
e
A
dd
re
ss

W
rit
e
D
at
a

W
rit
e
R
es
po
ns
e

(b) AXI-Lite write transaction. Master may set
address and data independently of each other,
however the AXI-Lite slave waits until both
channels have a valid value.

Figure 2.2: Example of AXI-Lite transactions. All signals beginning with M_ are driven by
master, these beginning with S_ are driven by slave.

The SoC consists of Processing System (PS) and Programmable Logic (PL). All the
embedded peripherals belong to PS. Signals to peripherals may be connected via MIO pins
(Multiplexed IO) or through EMIO interface (Extended MIO) which goes through PL.

2.3 AXI4

AXI is an on-chip bus with master-slave architecture, used to connect CPU and peripherals.
It is part of AMBA specification and three subtypes exist: AXI, AXI-Lite, AXI-Stream. All
subtypes are fully duplex, allowing parallel read and write access. The peripherals on AXI
bus are memory-mapped. AXI-Lite, which was used to connect peripherals in this project, is
the least complex and serves to access fixed-size peripheral registers. (Full) AXI then maps
a memory region and adds support for transaction reordering, cache control and supports
burst transactions. AXI-Stream is used for streaming large amounts of data from or to a
peripheral.

The full specification may be downloaded from ARM website [1] after registration and
accepting the license agreement. An example of single read and write AXI-Lite transactions
is depicted in figure 2.2.

2.4 Message timestamps in Linux networking subsystem

There exist several standard methods of acquiring incoming packet timestamp from userspace.
All of them use the so-called control messages (retrievable via recvmsg(2)) to pass the

5

CHAPTER 2. THEORETICAL BACKGROUND

timestamp to user space. Different methods are enabled with so-called socket options (SO).
The following list is taken directly from [8], where detailed information is available.

• SO_TIMESTAMP
Generates a timestamp for each incoming packet in (not necessarily monotonic) system
time. Reports the timestamp via recvmsg() in a control message as struct timeval (usec
resolution).

• SO_TIMESTAMPNS
Same timestamping mechanism as SO_TIMESTAMP, but reports the timestamp as struct
timespec (nsec resolution).

• IP_MULTICAST_LOOP + SO_TIMESTAMP[NS]
Only for multicast:approximate transmit timestamp obtained by reading the looped
packet receive timestamp.

• SO_TIMESTAMPING
Generates timestamps on reception, transmission or both. Supports multiple times-
tamp sources, including hardware. Supports generating timestamps for stream sockets.

In this project, hardware timestamping using SO_TIMESTAMPING is implemented.

6

Chapter 3

MicroZed CAN-BENCH System
Description

Hardware of the MicroZed CAN-BENCH measuring system consists of a MicroZed board
featuring Zynq SoC with embedded FPGA and a custom-designed CAN-BENCH carrier
card, which has been developed in the scope of this project. The device is running PetaLinux,
an embedded Linux distribution from Xilinx. The kernel version used is 4.0.0-xlnx.

Figure 3.1: CAN-BENCH Carrier Card

7

CHAPTER 3. MICROZED CAN-BENCH SYSTEM DESCRIPTION

3.1 CAN-BENCH Carrier Card
Features:

• 4x CAN bus interface: high-speed CAN Transceiver (CAN FD ready), standard
D-SUB connector, optional on-board bus termination, each optionally connectable
to on-board common bus

• on-board common CAN bus with optional double-sided termination
• 8x General purpose DIP switch
• 4x General purpose push button
• 8x General purpose LED (red)
• 8V–40V Power supply via 5.5/2.5mm barrel jack connector
• 1x Raspberry Pi Expansion Header connector
• 2x PMOD connector (PL side)
• 1x PS PMOD connector (same as on MicroZed)
• Power Good indicator LED (green)
• FPGA DONE indicator LED (blue)
• Reset buttons

3.1.1 Power Supply

Power supply for the CAN-BENCH Carrier Card is connected via 5.5/2.5mm barrel jack
connector. The input voltage in the range from 8V to 40V is converted to 5V by LM2676-
5.0 buck DC-DC regulator. The board has no overvoltage protection; however, a series diode
is present to prevent damage if power supply with reversed polarization is used.

The 5V supply is routed via board-to-board connectors to MicroZed, where it serves as
the main power supply. The USB UART on MicroZed is separated by a diode, so the USB
UART may be used simultaneously with the carrier card power supply connected.

Voltages for both PL I/O Banks are also generated. Proper power sequencing is main-
tained, as required in [20].

3.1.2 CAN bus bridging

The particular CAN interfaces may be bridged together either at hardware side or in soft-
ware. While the former way requires manual jumper setting and is mainly useful for hard-
ware testing or hard setting, the latter may be used from applications for various reasons
and is actually used by latester for broadcasting a frame for synchronizing hardware times
between CAN interfaces.

3.1.3 Reset Buttons

The board design includes three distinct reset buttons, each having a slightly different
effect. The INIT# button was adopted from AvNet I/O Carrier Card, although its function
is unclear, as the Zynq TRM explicitly states that it should not be externally held low [17].

8

3.2. PERIPHERALS

Button / Signal name Function
SRST# Soft-reset. Resets only the Processing Systems,
POR Power-on-Reset. Resets the whole device.
INIT# Delay the initialization of PL.

Table 3.1: CAN-BENCH Carrier Card Reset Buttons

3.2 Peripherals

3.2.1 Embedded Xilinx CAN Controllers

The Zynq SoC contains two independent embedded CAN controllers, with RX and TX FIFO
and support for hardware timestamping of RX frames [16]. The timestamp is captured from
a free-running 16bit counter register which is incremented once per every peripheral clock
cycle. The clock is set to the frequency of 20 MHz in this project, so the overflow period is
3.768ms.

Despite the official documentation stating that the timestamp is sampled at last EOF
bit [16], this was experimentally found to be untrue – the timestamp is sampled at the
beginning of CAN frame.

That is because minima of delays between sampling the timestamp and receiving an
interrupt were found to differ significantly for frames of unequal lengths. This difference
very precisely corresponds to the time required to transmit the additional data bits, including
bit stuffing.

The possibility that the timestamps are instead sampled at the end of the previous frame
was refuted by the following experiment:

1. can0 and can1 are bridged together in PL.

2. Timestamps of RX packets on can0 are recorded.

3. A program sends repeatedly bursts of two frames on can1 with a short delay between
each pair. The delay should be longer than the frames transmission time. For the
frames in the burst to be sent tightly following each other it is necessary that can1 be
associated to Xilinx CAN.

4. Differences between receive timestamps are printed out. The values should form a
regular pattern. The difference should be higher for the first frame in a burst than for
the second one. If timestamps of the preceding frame were erroneously captured, the
pattern would be reversed (i.e. shifted by one). This behavior was not observed.

RX and TX signals of the controller are routed to PL via EMIO interface. Here they
are connected through CAN Crossbar to physical CAN interfaces.

3.2.1.1 Linux driver

Driver for Xilinx CAN Controller is present in mainline Linux kernel, although an extended
version is available in the Xilinx tree. Neither, however, implements retrieving the RX frame
timestamp provided by hardware.

9

CHAPTER 3. MICROZED CAN-BENCH SYSTEM DESCRIPTION

Figure 3.2: SJA1000 IP Soft Core Block Diagram [9]

This functionality had to be added, with the mainline driver version as the base. For
general mechanism of handling message timestamps in Linux networking subsystem, refer
to section 2.4. The patch for the xilinx_can driver is then described in section 4.4.

3.2.2 SJA1000 IP Soft Core

The soft core CAN controller used in this project is based on SJA1000 implementation
in Verilog, available at Opencores.org [9]. The core is fully compatible with its hardware
counterpart, including support for both compatibility and extended mode (PeliCAN).

Currently, the SJA1000 core is used only for transmission.

3.2.2.1 Register overview

The register layout and function is the same as for the original hardware SJA1000 part,
with the exception that the 8bit registers are mapped into memory as 32bit registers. Future
versions of the IP core may extend the functionality and use reserved space in some registers
or add new registers into the mapping (see 6.1).

The registers may be accessed by 32bit, 16bit or 8bit access, however only the least
significant bits are used by the peripheral. When read, the higher bits are zero and any
value written into them is ignored.

The complete register description, as well as general structure of the SJA1000 chip, is
not included here and may be found in [10].

3.2.2.2 Interrupts

Each SJA1000 IP core uses one Shared Peripheral Interrupt (SPI) line to signal all interrupt
types. The interrupt source is then determined by reading the Interrupt Register (IR).

10

3.2. PERIPHERALS

The interrupt is level-triggered active-high and is connected to SPI #61 and #62 for
sja1000_0 and sja1000_1, respectively. The interrupt is active if any bit in IR is set. After
the Interrupt Register is read by the CPU all bits are reset, except for the receive interrupt
bit, which is left intact[10].

3.2.2.3 Linux driver

Linux includes support for SJA1000 chips in mainline, supporting multiple ways of con-
necting the chip to the system. Some of the connection options are PCI, ISA or direct
memory mapping. The sja1000_platform driver expects that the device registers are
directly mapped into memory space, which is the case when using the soft core implemen-
tation. The device parameters for the driver are described in device tree. In this project,
the configuration looks as follows:

sja1000_0: sja1000@43c00000 {
compatible = "nxp,sja1000";
reg = <0x43c00000 0x1000>;
nxp,external-clock-frequency = <100000000>;
interrupt-parent = <&intc>;
interrupts = <0 29 4>;
reg-io-width = <4>;

};

This means that an SJA1000 device is present in the system and

• has registers mapped in memory in address range 0x43c00000–0x43c00FFF

• is clocked by 100MHz clock

• has active-high level-triggered interrupt #61 (the interrupt numbers are biased by −32
for some reason)

• registers are 32bits wide

The configuration is partly automatically generated1 and partly written manually2. Fur-
ther information on SJA1000 binding may be found in [11].

3.2.3 CAN Crossbar Soft Core

As mentioned in 3.1.2, the device supports configurable bridging of CAN interfaces. This is
implemented by the can_crossbar IP core in PL. Additionally, CAN_STBY output pin is
driven by this peripheral.

3.2.3.1 Functional description

The can_crossbar soft core peripheral enables to arbitrarily interconnect physical CAN
bus interfaces (denoted ifcN) with embedded CAN controllers (denoted canN) in an M:N

1<canbench-sw>/petalinux/subsystems/linux/configs/device-tree/pl.dtsi
2<canbench-sw>/petalinux/subsystems/linux/configs/device-tree/system-top.dts

11

CHAPTER 3. MICROZED CAN-BENCH SYSTEM DESCRIPTION

mapping. This is achieved by mapping both physical interfaces and controllers to virtual
interconnect buses (denoted lineN).

Alternatively, the physical interfaces may be disconnected and the respective TX and
RX lines in one bus connected together in PL.

All inputs to each bus line (canN_TX, ifcN_RX) are merged together by an AND gate.
If any one of the inputs is in the state of logical zero, then, in terms of the CAN bus
Specification, the whole bus is in the dominant state.

3.2.3.2 Register Overview

All registers are 32bits wide and should only be accessed by 32bit words.

CAN Configuration Register

Address offset: 0x000
Reset value: 0x000fe4e4

Register 3.1: CCR (0x000)

Re
ser
ved

0

31 21

ST
BY

0

20

OE
_L
IN
E4

1

19

OE
_L
IN
E3

1

18

OE
_L
IN
E2

1

17

OE
_L
IN
E1

1

16

CA
N4
_L
IN
E

1 1

15 14

CA
N3
_L
IN
E

1 0

13 12

CA
N2
_L
IN
E

0 1

11 10

CA
N1
_L
IN
E

0 0

9 8

IF
C4
_L
IN
E

1 1

7 6

IF
C3
_L
IN
E

1 0

5 4

IF
C2
_L
IN
E

0 1

3 2

IF
C1
_L
IN
E

0 0

1 0

Reset

STBY CAN Transceivers standby mode. If set to 1, all CAN
Transceivers are put into standby mode and are not operational.

OE_LINEn LINEn Output Enable. If set to 1, the line is connected to its
assigned physical interface. If set to 0, the line TX signal is
connected to its RX signal and the physical interface is discon-
nected. This effectively connects all CAN controllers attached
to the line together.

CANn_LINE Specifies which line is the physical interface connected to:
00: The physical interface is connected to LINE1
01: The physical interface is connected to LINE2
10: The physical interface is connected to LINE3
11: The physical interface is connected to LINE4

IFCn_LINE Specifies which line is the CAN controller connected to:
00: The CAN Controller is connected to LINE1
01: The CAN Controller is connected to LINE2
10: The CAN Controller is connected to LINE3
11: The CAN Controller is connected to LINE4

12

3.3. BOOTING PROCESS

3.2.3.3 Linux driver

As the core has very limited functionality and simple interface, a full-featured driver is
unnecessary. Instead Userspace I/O (UIO) driver is used. The UIO driver basically offers
user-space applications to map a region of physical address range, belonging to a given
peripheral, to the application’s virtual memory. The driver is informed of which memory
regions belong to a device from device tree. The application then calls mmap(2) on the driver
device file descriptor [14]. Peripheral registers may then be accessed by the application
directly. Interrupt forwarding is also supported by the driver, however, is not used for this
peripheral.

3.3 Booting process

The boot process is configured in a way to allow most flexibility. Linux kernel image, device
tree blob, and FPGA configuration bitstream are loaded from network via TFTP. The root
filesystem is then accessed remotely via NFS. Only the bootloader (generated FSBL and
U-Boot) is stored on the SD card together with configuration.

The boot mode jumpers JP3–JP1 on MicroZed should be configured to SD card boot
mode, as shown in Figure 3.3. The SD card should be formatted with FAT32 filesystem and
contain two files:

• BOOT.BIN – the bootloader image

• uEnv.txt – U-Boot configuration

1-2

2-3

Figure 3.3: MicroZed Boot Mode Jumper Settings [2]

In the configuration file are stored the device IP address, TFTP server IP address, and
a path to a bootscript file. The addresses may also be chosen to be configured via DHCP.

When the device is powered on, the bootloader reads uEnv.txt from the SD card and
optionally retrieves the device and TFTP server IP addresses via DHCP. Then a bootscript
is downloaded and executed. This offers maximal flexibility, as the bootscript may contain
any sequence of U-Boot commands.

The default bootscript included in canbench-sw repository then proceeds to download
a packed image via TFTP, which contains Linux kernel, flattened device tree blob and
compressed FPGA bitstream. The bitstream is loaded into the FPGA chip via U-Boot
built-in command. Finally, the Linux kernel is executed, with root filesystem device set to
an NFS server specified in the bootscript.

The FPGA configuration may also be updated later from the running system, as de-
scribed later in 4.7.4.

13

CHAPTER 3. MICROZED CAN-BENCH SYSTEM DESCRIPTION

Interface Driver Support for HW timestamping
can1 xilinx_can Yes
can2 xilinx_can Yes
can3 sja1000_platform No
can4 sja1000_platform No

Table 3.2: CAN bus network interfaces in Linux

3.4 Software
Standard Linux command-line tools are installed, together with Midnight Commander,
Dropbear (an SSH server), and canutils. An overview of CAN interfaces is listed in Ta-
ble 3.2.

3.4.1 latester: the benchmarking application

latester is the application responsible for sending and receiving CAN frames and generat-
ing files with results. The basic concept of the testing method was given in section 1.1.

The frames may be generated one at a time or with a given fixed period. A unique
identifier is stored in the first 2 bytes of each frame and is later used to match the received
frame with the sent one.

3.5 Building the system
The exact steps for building the whole system are described in <canbench-sw>/README.txt
in detail. All the steps (except user configuration and setting up external services) are fully
automated. Here is a brief summary:

1. Build Hardware Description File (system.hdf)

• Recreate the Vivado project
• Build system.hdf

2. Configure a TFTP server
3. Configure an NFS server

The server must support NFSv2, otherwise the MicroZed board will not boot, and no
sensible error message will be printed.

4. Modify the module IP, server IPs and paths in u-boot environment and bootscript
5. Modify the NFS server IP and path in bootscript (petalinux/bootscript.txt)
6. Configure PetaLinux and applications
7. Build PetaLinux and applications
8. Copy kernel, FPGA bitstream, device tree and compiled bootscript into /tftpboot
9. Copy boot files to SD card

14

Chapter 4

Development and Implementation
Choices

4.1 Hardware

The whole design was made with simplicity and future reusability in mind. The parts were
selected to be available from Farnell.com and TME.eu, with regards to their qualities and
price. KiCad1 was used for designing the schematics and PCB layout.

Board schematics and PCB layout are enclosed in Appendix B and Appendix C and
may be found in publicly available repository [22].

Board revision A contains some minor errors, which will be fixed in the next revision
and made available in the repository. The only serious error is swapping of power supply
pins of all voltage supervisor circuits. This may be fixed by connecting the parts to the
correct inputs by wires.

4.1.1 Form of hardware solution

There was a fundamental choice to be decided during the project analysis phase, namely
whether a full-featured carrier card would have to be designed, a commercially available
carrier card used together with a simple CAN I/O board or if the need for a carrier card
could be eliminated altogether.

The two embedded Xilinx CAN Controllers may have their I/O signals routed to PS
MIO pins which are accessible via J5 PMOD connector on MicroZed. However, for the
purpose of this project at least one additional CAN bus controller is required and must
be implemented in FPGA. Unfortunately, MIO signals cannot be routed to Programmable
Logic [19], and thus a need for a carrier card arises.

The second alternative was to purchase MicroZed I/O Carrier Card from AvNet and
design only a small board with CAN transceivers and connectors and a PMOD connector.
It soon became apparent that the dimensions of the CAN expansion board would be com-
parable to the size of the carrier card itself. Moreover, disregarding the development, the
price of a custom full-fledged carrier card would be far lower. Considering this all and the

1http://kicad-pcb.org/

15

http://kicad-pcb.org/

CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION CHOICES

fact that the board might be reused in the future as a multi-purpose evaluation board, the
variant of designing a custom carrier card was finally chosen.

4.1.2 CAN bus Transceiver

There were several criteria for CAN bus transceiver selection:

• Availability
• Separate VIO supply pin to interface directly to 3.3V logic
• High maximal frequency (for future testing of CAN FD)
• Simple interface

The following chips were considered:

• MCP2562FD
• TJA1057GTJ
• TJA1041AT

MCP2562FD finally showed as the best candidate by all criteria and was selected for the
design.

4.1.2.1 CAN bus termination and testing

A 120Ω terminator may optionally be connected to each bus by closing the associated
jumper. Additionally, each CAN bus interface may be connected to a common internal bus
via two jumpers (for CAN-LO and CAN-HI). The common bus may be optionally terminated
at either or both sides. This allows for easy testing of hardware by looping a frame from
one interface to another.

4.1.3 I/O protection and isolation

Galvanic isolation on CAN bus interface was considered, but for simplicity and cost reasons
was deemed unnecessary and finally omitted from the design.

PMOD connectors and Raspberry Pi Expansion Header connector are not ESD pro-
tected. This would mean additional cost and would add extra capacitive load to the pins,
lowering the maximal transmission rate.

The pins leading to a screw terminal block are, however, protected by a serial ESD-
protection circuit and a serial 100Ω resistor.

4.1.4 Power Supply

The device was required to be able to operate from 12–24V power supply; MicroZed, how-
ever, requires a 5 V supply. An extra step-down DC-DC regulator thus had to be incorpo-
rated into the design. The MicroZed itself may draw up to 1.2A at 5V [20]. To be able
to provide sufficient power at the same time acceptable efficiency, the LM2676-5.0 fixed-
voltage Buck regulator with the maximal output current of 3A was finally chosen as the
best candidate.

16

4.1. HARDWARE

Figure 4.1: Power Architecture and Sequencing Diagram [20]

Each of the two PL I/O Banks in Zynq 7010 has separate power supply – VCCIO_34 and
VCCIO_35 – which may be 1.8V, 2.5V or 3.3V. On CAN-BENCH board, both voltages
are fixed to 3.3V but may be reconfigured to another voltage by resoldering the reference
voltage divider resistors if the need should arise.

Although only one regulator would be sufficient for both banks, for greater flexibility and
better robustness an independent regulator circuit is used for each bank. TPS62260DDC
adjustable voltage synchronous buck regulator with the maximal output current of 1A has
been selected.

4.1.4.1 Power Supply Sequencing

Proper sequencing must be followed on power-up as well as on power-down, as specified in
MicroZed Carrier Card Design Guide [20].

An open-collector voltage supervisor (U4) guards the output of the main 5V regulator
and is connected to the PWR_EN signal, which enables the regulators following in the
power-up sequence.

The VCCIO voltage regulators are enabled by VCCIO_EN signal tied to JX2 pin 10,
which is the open-collector PGOOD output of 1.8V regulator on MicroZed, pulled up to
1.5V by 1K/4K99 voltage divider. The Enable input of VCCIO regulators must thus be
compatible with these levels. PGOOD outputs of voltage supervisors for both VCCIO
voltages (U6, U7) are tied to PG_MODULE signal, as on Figure 4.1.

There is one additional voltage supervisor U5, which together with protection diodes D4,
D5 serves to maintain proper power-down sequencing, i.e. that the VCCIO voltages are shut
down before the main power supply. When the main power goes down, the VCCIO_EN
signal is pulled low as soon as possible. The protection diodes ensure that the VCCIO
voltages are always lower than the voltage of the 5V supply network. This could happen
on shutdown when excessive charge is stored in capacitors connected to VCCIO network.

17

CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION CHOICES

4.1.5 General Purpose User I/O

Some additional I/O connectors and peripherals have been included in the design to make
the board usable even for future applications and experiments.

All the buttons and switches have transient spike suppression and are pulled up by
3.3 kΩ resistors to VCCIO_35, which is 3.3V, and are thus active in logical 0. The inputs
are connected to JX2 header with additional series resistance to prevent damage in case of
misconfigured pins.

The LEDs are connected through 74HCT245 octal 3-state bus transceiver, which serves
here simply as a buffer. Its power supply is connected to 5V and its TTL-compatible inputs
are routed to 3.3 V CMOS FPGA outputs. All LEDs are active in the input state of logical
one.

4.2 Software

The software development was divided into following tasks:

• Preparation of necessary IP Cores

• Configuration of the Processing System

• Modifying device drivers and device tree

• Configuring and building bootloaders and Linux kernel

• Modifying and building applications

4.2.1 Tools Used for Development

Xilinx Vivado Design Suite has been used for FPGA development and PS configuration. This
software is available for download after registration on Xilinx website. The free WebPACK
license should be sufficient for purposes of this project. The SDK must also be installed by
explicitly selecting it in the installer.

Linux distribution PetaLinux from Xilinx is used. It offers user-friendly configuration
and building of all necessary components (FSBL, U-Boot, Linux kernel, rootfs). In addition,
it provides good interoperability with outputs of Vivado. This software is available for
download after registration on Xilinx website.

4.2.2 Configuring the Processing System in Vivado

This section brings brief description how the Vivado project for CAN-BENCH system was
created. Most of the information could be gathered elsewhere as these steps do not differ
significantly from creating a generic project targeted at the MicroZed board. A great source
of knowledge has been [13] and numerous Xilinx user guides.

Note that it is not necessary to repeat these steps to build the software components for
the CAN-BENCH measuring system. Automatic scripts, which are part of the canbench-sw
repository, take full care of this task.

18

4.2. SOFTWARE

1. Download MicroZed board definition files from MicroZed website2 and extract them
into Vivado installation directory. Download the PS Preset TCL file as well and save
it for later use.

2. Open Vivado and create new RTL project. Add constraints file
microzed_CAN-CC_RevA.xdc which may be found in the canbench-sw repository [23].
This file creates named I/O ports assigned to Zynq I/O pins, compatible with the
CAN-BENCH Carrier Card. In the Select Default Part dialog, select MicroZed 7010
Board.

3. Create a Block Design and add ZYNQ7 Processing System IP. Now source the PS Pre-
set file downloaded in step 1 by executing source MicroZed_PS_properties_v03.tcl
in the TCL console. This configures the PS IP Core according to the hardware choices
made on the MicroZed board.

4. In Customize Block dialog, enable CAN0 and CAN1 peripherals, assigning their I/O
ports to EMIO. Then in the PS-PL Configuration tab enable the option AXI Non-
secure Enablement → GP Master AXI Interface → M AXI GP0 Interface. This will
make a master AXI interface available in the block design and allows to connect custom
peripherals to the AXI bus.

5. After closing the Customize Block dialog, automatic connection of signals is offered
by Vivado. Full automation works well.

6. Add the desired IP cores and connect them or let Vivado connect them automatically.
7. Right-click on the top-level block design file in Sources and select Create HDLWrapper

and "Let Vivado manage and auto-update". Now the synthesis, implementation and
bitstream generation may be run.

8. The resulting bitstream file, as well as the hardware definition file, is created in Imple-
mentation Run directory, local to project root. From there it may be copied manually
or by exporting it via File → Export → Export Hardware → Include Bitstream.

The Vivado project files are impractical to be directly stored in version control systems.
There exist two officially suggested ways to solve this problem [21]:

1. Abandon the project workflow and use the so-called Non-project workflow, i.e. write
custom TCL build scripts and manage every aspect of the project manually.

2. Export the project to a TCL script which is able to recreate the project from scratch.
There is rarely a need to change the script and project-mode offers automatic man-
agement of sources, included IPs and compilation runs. The build script may thus be
very simple.

While the first option offers most flexibility, at the time of project beginnings I had
no previous experience with the Vivado Design Suite and chose the simpler second option,
which for purposes of this project is fully sufficient.

The generated script was then manually edited and simple build script was created.
Both are part of the project build process and may be found in directory /system/scripts
in the canbench-sw repository.

2http://zedboard.org/support/documentation/1519

19

http://zedboard.org/support/documentation/1519

CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION CHOICES

The CAN-BENCH Makefile copies the resulting hardware definition file and bitstream
file to /system/system.bit and /system/system.hdf, respectively.

Learn the script commands and language syntax is greatly simplified by the fact that
commands for all operations made in Vivado GUI are printed to TCL Console.

4.3 Creating PetaLinux Build

PetaLinux SDK must be installed. This is only available for GNU/Linux operating system.
The steps below assume that both Vivado SDK tools and PetaLinux SDK tools have been
added to execution path. This may be done by sourcing the appropriate settings.sh files
in their installation directories.

The PetaLinux project was created as usual, and then system configuration was loaded.

$ petalinux-create -t project -n canbench --template zynq
$ mv canbench petalinux
$ cd petalinux
$ petalinux-config --get-hw-description ../system --oldconfig

All necessary components – U-Boot, Linux kernel, and basic user-space applications
– are part of the PetaLinux SDK. To support a fully customized network boot, it was,
however, necessary to hook into the build process encapsulated by the petalinux-build
command. Many times this presented quite a challenge, as the system is very tightly inte-
grated. Nonetheless, after the U-Boot auto-configuration was disabled in configuration and
the relevant parts copied from the respective Makefile, the build process could be altered,
and U-Boot configuration is now being patched to include the necessary features. The code
may be found in /petalinux/Makefile in canbench-sw repository.

4.4 Extending the Xilinx CAN Linux driver

As has been already stated in 3.2.1.1, the xilinx_can driver both in mainline and Xilinx
tree lacks support for retrieving hardware timestamps from the peripheral. This support is
added by a custom patch which might in the future be merged into the mainline kernel.

The embedded Xilinx CAN Controller passes 16bit frame timestamps in the two least
significant bytes of the DLC field of an incoming frame. Detailed information on the times-
tamp resolution and sampling have already been provided in 3.2.1.

After the hardware timestamp is retrieved, it is converted to a 64bit timestamp with
nanosecond resolution. Overflows of the 16bit timestamp must be handled properly.

The algorithm goes as follows:

ktime_t get_frame_timestamp(u16 frame_cantime, ktime_t frame_ktime) {
if first frame

ref_ktime = frame_ktime
ref_cantime = frame_cantime
exact_frame_ktime = frame_ktime;

else
frame_cantime_full = ktime_to_cantime(frame_ktime) - ref_cantime

20

4.5. ADAPTING THE SJA1000 IP CORE

replace 16 least significant bits of frame_cantime_full by frame_cantime
frame_cantime_full += ref_cantime
exact_frame_ktime = cantime_to_ktime(frame_cantime_full)

return exact_frame_ktime
}

This algorithm has proven to be superior to an earlier version, as that had suffered slight
problems at hardware counter overflows.

The frame_ktime is retrieved by software in device interrupt handler and thus represents
a time point after the actual frame timestamp. This delay (latency) is not constant, and
it must be noted that the references – ref_ktime and ref_cantime – do not represent the
same timepoint either. Forgetting this may introduce anomalies into calculations, as was
the case with the previous algorithm.

This algorithm will, however, experience problems if the hardware clock and ktime start
to diverge. If the drift exceeds half the hardware counter overflow period, some timestamps
may then be off by one overflow period. While this is unlikely when ktime is provided
directly by a hardware timer, there may exist scenarios where this poses a real danger,
such as when the time flow speed gets altered by NTP to compensate for hardware clock
frequency inaccuracies. In that case, the reference times must be periodically updated or
adjusted.

Dynamic adjustment of references is, however, unsuitable for this project, as the time
drift between interfaces must remain constant during a test. For this reason, as the CAN-
BENCH board is intended to run non-stop, the driver is reloaded before each measurement
to eliminate any potential inaccuracies.

4.5 Adapting the SJA1000 IP Core

The original SJA1000 IP core provides either Wishbone3 interface or the 8051 interface. For
interfacing with the Zynq SoC, AXI wrapper needed to be implemented.

As the AXI bus supports full duplex communication, the IP core was modified to provide
read and write register access simultaneously, and the CAN clock is set to the same source
as the AXI clock so that clock domain crossing is avoided. This is the simplest way of
porting the core, as this allows to use auto-generated AXI peripheral template from Vivado.
Also, this solution offers more performance compared to arbitrating between read and write
accesses and synchronizing over clock domains. It also leaves less room for errors.

4.6 Extending latester

The benchmarking application itself is a slightly extended version of the original application
called latester, developed at Department of Control Engineering, FEE CTU.

latester is used with only minor modifications:

• Added support for retrieving hardware timestamps of RX frames
• Determining time offset between the two hardware time counters
3http://cdn.opencores.org/downloads/wbspec_b4.pdf

21

http://cdn.opencores.org/downloads/wbspec_b4.pdf

CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION CHOICES

4.7 Debugging

4.7.1 Testing the Embedded Xilinx CAN Controllers

The two embedded CAN controllers were enabled, and their I/O pins were configured to
EMIO, i.e. programmable logic, where the two CAN buses may be bridged together.

If the controllers are not properly connected, the associated network interfaces will fail
to start as the controller fails to enter NORMAL mode on chip startup, which is detected
by the driver. This is because that "After the CEN bit is set to 1 the CAN controller waits
for a sequence of 11 recessive bits before exiting configuration mode." [TRM 18.3.2].

The controllers were then tested by looping a frame from one interface to another. The
SJA1000 controllers were then tested the same way.

canconfig can0 bitrate 1000000
canconfig can1 bitrate 1000000
canconfig can0 start
canconfig can1 start
candump can0 &
cansend can1 0x55 0x88

4.7.2 Testing the SJA1000 IP Core

Only minimal modifications have been made to the SJA1000 Core. Furthermore, the AXI
slave interface was automatically generated by Vivado. Both parts were assumed to be
functioning correctly, and thus only their interaction had to be tested. This proved to be
feasible directly in hardware, without simulations. As expected, no significant problems
were encountered.

4.7.3 Debugging the xilinx_can driver timestamping patch

For debugging the timestamp calculation code in xilinx_can driver, the RX and TX signals
of all CAN bus controllers – two embedded Xilinx CAN controllers and two soft core SJA1000
controllers – were tied together in PL fabric. This ensured that all the controllers would
receive a frame in exactly the same moment.

When latester was run in this configuration, using the Xilinx CAN controllers for re-
ception, the difference in reception timestamps on the two interfaces should be exactly zero.
To be more precise, the difference always has a constant offset, because the software times-
tamps used in calculations are not synchronized between the devices. This synchronization
is done in latester as described in Section 3.4.1.

As the algorithm did not work the first time, debugging information had to be retrieved
from the driver. To prevent undesired delays caused by printing to kernel log, the relevant
values were embedded directly into the received frame, overwriting the data, and then parsed
and displayed by latester.

4.7.4 Deployment of binary images

As with every development, there was a large amount of modify–compile–test cycles. Since
the programs had to be run on external hardware, it was essential that the deployment

22

4.7. DEBUGGING

procedure be as much automated as possible.
The MicroZed CAN-BENCH board boots via TFTP from network and then mounts

its root filesystem via NFS. Both TFTP and NFS servers were configured to be on the
development PC, and the board could be connected to via SSH. Deploying a modified
binary was thus as simple as copying it to the NFS root on the local machine.

The FPGA bitstream may also be updated without restarting the system. The generated
bitstream file must first be converted into a different format, and is then simply written to
/dev/xdevcfg, which will cause the FPGA reconfiguration. This conversion is performed
automatically by the build scripts and is described in [18]. The driver is not included in
mainline Linux kernel and the Xilinx version must be used.

23

Chapter 5

Running the Benchmarks

The configuration of the testbed used to run all the tests has already been described in
section 1.1. In this chapter, the framework for automatic continuous testing (and even
backtesting) will be described. Evaluated test cases, the results, and their comparison with
the measurements obtained by the original software-only system will then be presented.

5.1 Continuous Testing System at DCE Servers

The continuous testing system resides in its own repository, together with latester, and is
included in the canbench-sw repository as a submodule.

The tests are run periodically every 8 hours on a DCE server from a Cron job. The
testing job consists of the following steps:

1. Testing is initiated by Cron on DCE compile server.

2. New Linux kernel version is fetched from its main repository and compiled for the
testing platform (PowerPC).

3. The compiled kernel is uploaded to the PC connected to the PowerPC evaluation
board.

4. The target board is reset, boots the desired image, and starts the selected gateway.

5. latester is run on MicroZed CAN-BENCH board. The relevant measurement results
are printed to standard output, which is captured to a logfile.

6. Steps 4–5 are repeated for each tested gateway type.

7. The log file is parsed, and graphs including the new values are generated and published
to the website1.

At the time of writing this thesis, only the results of the original system are available on
the website. However, the testing platform will be migrated in the foreseeable future and
the website updated accordingly.

1https://rtime.felk.cvut.cz/can/perf/

24

5.2. RESULTS

2011
2012

2013
2014

2015
2016

0

20

40

60

80

100

120

140

160

180
Av

er
ag

e
la

te
nc

y
[

s]
Comparison of all gateways

Kernel
RTEMS
mmap-mmap
nonblocking read-write
read-write
recvmmsg-sendmmsg

(a) Measurements from extended system

2011
2012

2013
2014

2015
2016

0

20

40

60

80

100

120

140

160

180

Av
er

ag
e

la
te

nc
y

[
s]

Comparison of all gateways

Kernel
RTEMS
mmap-mmap
nonblocking read-write
read-write
recvmmsg-sendmmsg

(b) Measurements from original system

Figure 5.1: Comparison of different gateways latencies in history

5.2 Results
For re-evaluating the tests with the extended system, all tagged Linux versions (releases and
release candidates) from version 2.6.33-rc1 to 4.6 were tested. The PowerPC testing board
cannot boot with older kernels. Also note that the kernel CAN gateway is available since
version 3.2-rc1 and some of the user space gateways also require a higher kernel version.

The comparison of latencies of all tested gateways may be observed in 5.1 for both the
original and extended testing system. Figure 5.2 then shows latencies of each gateway type
in a separate graph.

The RTEMS gateway always runs the same RTEMS version and serves as a reference and
is very deterministic, as can be seen from results of the hardware-assisted system. Several
“steps” are noticeable in the plotted results of the software-based system. These probably
represent the host computer upgrades, as the testing environment had then changed. Spikes
are also clearly visible and the overall spread of measured latencies is rather big, compared
to the new results.

We may assume that the measurements of the extended system are exact. This should
be true by design and have been proven empirically by testing with CAN interfaces bridged
together in PL, as described in 4.7.3. Under this assumption, we may compare the two
datasets and determine the difference in means, ranges2, and standard deviations. For the
software-only system, only the samples after the last “step” were considered, with the spikes
filtered out. The averages of both data sets differ by approximately 1.5µs and the range
and standard deviation are both reduced by approximately 60 %.

A similar test was performed with the Linux kernel gateway: one kernel version was
repeatedly tested with both the original and extended systems and the same analysis was
performed. The results were similar, only the spreads were naturally bigger due to Linux
being less deterministic.

2https://en.wikipedia.org/wiki/Range_(statistics)

25

https://en.wikipedia.org/wiki/Range_(statistics)

CHAPTER 5. RUNNING THE BENCHMARKS

2011
2012

2013
2014

2015
2016

15

20

25

30

35

40

Av
er

ag
e

la
te

nc
y

[
s]

Kernel gateway
software-only
hardware-assisted

2011
2012

2013
2014

2015
2016

13.5

14.0

14.5

15.0

15.5

16.0

16.5

17.0

Av
er

ag
e

la
te

nc
y

[
s]

RTEMS gateway

software-only
hardware-assisted

2011
2012

2013
2014

2015
2016

20

40

60

80

100

120

140

160

180

Av
er

ag
e

la
te

nc
y

[
s]

User-space gateway (mmap-mmap)
software-only
hardware-assisted

2011
2012

2013
2014

2015
2016

20

40

60

80

100

120

140

160

Av
er

ag
e

la
te

nc
y

[
s]

User-space gateway (nonblocking read-write)
software-only
hardware-assisted

2011
2012

2013
2014

2015
2016

20

40

60

80

100

120

140

Av
er

ag
e

la
te

nc
y

[
s]

User-space gateway (read-write)
software-only
hardware-assisted

2011
2012

2013
2014

2015
2016

100

110

120

130

140

150

160

170

Av
er

ag
e

la
te

nc
y

[
s]

User-space gateway (recvmmsg-sendmmsg)
software-only
hardware-assisted

Figure 5.2: Comparison of individual gateway latencies between the original and extended
system

26

Chapter 6

Conclusion

The goal of this project was to increase the precision of measuring processing latency of
software CAN-to-CAN gateways. This was successfully achieved. The new solution has
been integrated into the system for continuous testing and will be migrated to in close
future.

6.1 Future improvements
There is always room for improvements. Some the more prominent ones are briefly described
in this section.

Adding TX FIFO to SJA1000 IP

As SJA1000 has only one TX buffer, it would be benefitial to amend this by implementing
a TX FIFO similar to the RX FIFO already present in the extended mode (PeliCAN). This
would, in its simplest form, require no modifications to the Linux driver as the interface
would remain (mostly) unchanged.

The frame to be transmitted is written into TX registers, then the Transmission Request
(TR) bit is set in the Command register. The software has to wait until the Transmit Buffer
Status (TBS) bit in the Status register is set to indicate that the buffer is available. With
standard SJA1000 this happens after the transmission is complete. The extended version
would simply move the window to next free slot in the TX FIFO, set the TBS bit and issue
an interrupt immediately (if the queue is not full).

The meaning of transmission abort request would have to be slightly redefined to either
abort the whole queue or somehow shift the frames in the TX FIFO to allow to inject a
more urgent frame to the front.

Precise Frame Transmission Timing

To allow precise frame timing with resolution to CAN bittime clock, the SJA1000 Soft Core
could be extended by adding a new field to TX frame registers, representing the number
of ticks since the last frame end to wait before transmitting current frame. This obviously
assumes the TX FIFO is implemented as the software is not able to enqueue next frame so
quickly and is the reason why this feature would be useful in the first place.

27

CHAPTER 6. CONCLUSION

Extending the Test Cases

It would be beneficial to integrate collecting best-case and worst-case latencies to the contin-
uous testing and graphs. Currently only average latencies are collected. With the increased
accuracy, it would be possible to extend the system to continuously measure performance of
gateways based on real-time operating systems, for instance RTEMS, already used for tests
in signle version.

Also detailed test with cummulative latency histograms as outputs, as performed before
with the software-only systems, could be re-evaluated with increased precision. The testing
had been done for various combinations of kernel version, bus saturation, ethernet traffic,
and CPU load. The results, which may in the future be updated, are publicly available at
WWW1.

1http://rtime.felk.cvut.cz/can/benchmark/3.0/, http://rtime.felk.cvut.cz/can/benchmark/1/

28

http://rtime.felk.cvut.cz/can/benchmark/3.0/
http://rtime.felk.cvut.cz/can/benchmark/1/

Bibliography

[1] ARM. AMBA AXI and ACE Protocol Specification AXI3, AXI4, and AXI4-Lite, ACE
and ACE-Lite. http://infocenter.arm.com/help/topic/com.arm.doc.ihi0022d
[Online; accessed 2016-05-27].

[2] AvNet. MicroZed Zynq™ Evaluation and Development and System on Module Hard-
ware User Guide, Figure 8, 2015. http://microzed.org/sites/default/files/
documentations/MicroZed_HW_UG_v1_6.pdf [Online; accessed 2016-05-27].

[3] CAN specification, Version 2.0. http://www.kvaser.com/software/7330130980914/
V1/can2spec.pdf [Online; accessed 2016-05-27].

[4] CAN bus Physical Layer. https://support.dce.felk.cvut.cz/pub/hanzalek/
_private/ref/canphy.pdf [Online; accessed 2016-05-27].

[5] CAN data link layers. http://www.can-cia.org/can-knowledge/can/
can-data-link-layers/ [Online; accessed 2016-05-27].

[6] CAN physical layer. http://www.can-cia.org/can-knowledge/can/
systemdesign-can-physicallayer/ [Online; accessed 2016-05-27].

[7] Linux SocketCAN. https://git.kernel.org/cgit/linux/kernel/git/torvalds/
linux.git/tree/Documentation/networking/can.txt [Online; accessed 2016-05-27].

[8] Message timestamping in Linux networking subsystem. https://git.kernel.org/
cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/
timestamping.txt [Online; accessed 2016-05-27].

[9] Mohor, I. SJA1000-compatible CAN Protocol Controller IP Core. http://opencores.
org/project,can,overview [Online; accessed 2015-11-04].

[10] Philips Semiconductors. SJA1000 Stand-alone CAN controller Data Sheet, Jan. 2000.
https://www.nxp.com/documents/data_sheet/SJA1000.pdf [Online; accessed 2016-
05-27].

[11] Devicetree memory mapped SJA1000 CAN controller bindings. https://git.
kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/
devicetree/bindings/net/can/sja1000.txt [Online; accessed 2016-05-27].

[12] M. Sojka, P. Píša, O. Špinka, O. Hartkopp, and Z. Hanzálek. Timing Analysis of a
Linux-Based CAN-to-CAN Gateway. In Thirteenth Real-Time Linux Workshop, pages
165–172, Schramberg, 2011. Open Source Automation Development Lab eG.

29

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0022d
http://microzed.org/sites/default/files/documentations/MicroZed_HW_UG_v1_6.pdf
http://microzed.org/sites/default/files/documentations/MicroZed_HW_UG_v1_6.pdf
http://www.kvaser.com/software/7330130980914/V1/can2spec.pdf
http://www.kvaser.com/software/7330130980914/V1/can2spec.pdf
https://support.dce.felk.cvut.cz/pub/hanzalek/_private/ref/canphy.pdf
https://support.dce.felk.cvut.cz/pub/hanzalek/_private/ref/canphy.pdf
http://www.can-cia.org/can-knowledge/can/can-data-link-layers/
http://www.can-cia.org/can-knowledge/can/can-data-link-layers/
http://www.can-cia.org/can-knowledge/can/systemdesign-can-physicallayer/
http://www.can-cia.org/can-knowledge/can/systemdesign-can-physicallayer/
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/can.txt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/can.txt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/timestamping.txt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/timestamping.txt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/timestamping.txt
http://opencores.org/project,can,overview
http://opencores.org/project,can,overview
https://www.nxp.com/documents/data_sheet/SJA1000.pdf
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/devicetree/bindings/net/can/sja1000.txt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/devicetree/bindings/net/can/sja1000.txt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/devicetree/bindings/net/can/sja1000.txt

BIBLIOGRAPHY

[13] Taylor, A. Adam Taylor’s MicroZed Chronicles. http://adiuvoengineering.com/
?page_id=285 [Online; accessed 2016-05-27].

[14] How to Design and Access a Memory-Mapped Device in Programmable Logic
from Linaro Ubuntu Linux on Xilinx Zynq on the ZedBoard, Without Writ-
ing a Device Driver — Part Two, May 2013. http://fpga.org/2013/05/
28/how-to-design-and-access-a-memory-mapped-device-part-two/ [Online; ac-
cessed 2016-05-27].

[15] Wikipedia. Can bus — wikipedia, the free encyclopedia, 2016. https://en.wikipedia.
org/w/index.php?title=CAN_bus&oldid=719551093 [Online; accessed 2016-05-27].

[16] Xilinx. Zynq-7000 All Programmable SoC Technical Reference Manual, v1.10 edi-
tion, Feb. 2015. http://www.xilinx.com/support/documentation/user_guides/
ug585-Zynq-7000-TRM.pdf [Online; accessed 2016-05-27].

[17] Xilinx. Zynq-7000 All Programmable SoC Technical Reference Manual, Table 6-24,
v1.10 edition, Feb. 2015. http://www.xilinx.com/support/documentation/user_
guides/ug585-Zynq-7000-TRM.pdf.

[18] Zynq-7000 Example Design - Program the PL using the Linux driver for DEVCFG.
http://www.xilinx.com/support/answers/46913.html [Online; accessed 2016-05-
27].

[19] ZedBoard forum thread on impossibility of routing PS PMOD signals to PL. http:
//zedboard.org/content/pmod-0.

[20] MicroZed™ Carrier Design Guide, 2014. http://zedboard.org/sites/default/
files/documentations/MicroZed_Carrier_Design_Guide_rev_1_5.pdf [Online;
accessed 2016-05-27].

[21] Using Vivado Design Suite with Version Control Systems. http://www.xilinx.com/
support/documentation/application_notes/xapp1165.pdf [Online; accessed 2016-
05-27].

[22] CAN Benchmark hardware repository. http://rtime.felk.cvut.cz/gitweb/fpga/
zynq/canbench-hw.git.

[23] CAN Benchmark software repository. http://rtime.felk.cvut.cz/gitweb/fpga/
zynq/canbench-sw.git.

30

http://adiuvoengineering.com/?page_id=285
http://adiuvoengineering.com/?page_id=285
http://fpga.org/2013/05/28/how-to-design-and-access-a-memory-mapped-device-part-two/
http://fpga.org/2013/05/28/how-to-design-and-access-a-memory-mapped-device-part-two/
https://en.wikipedia.org/w/index.php?title=CAN_bus&oldid=719551093
https://en.wikipedia.org/w/index.php?title=CAN_bus&oldid=719551093
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/answers/46913.html
http://zedboard.org/content/pmod-0
http://zedboard.org/content/pmod-0
http://zedboard.org/sites/default/files/documentations/MicroZed_Carrier_Design_Guide_rev_1_5.pdf
http://zedboard.org/sites/default/files/documentations/MicroZed_Carrier_Design_Guide_rev_1_5.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1165.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1165.pdf
http://rtime.felk.cvut.cz/gitweb/fpga/zynq/canbench-hw.git
http://rtime.felk.cvut.cz/gitweb/fpga/zynq/canbench-hw.git
http://rtime.felk.cvut.cz/gitweb/fpga/zynq/canbench-sw.git
http://rtime.felk.cvut.cz/gitweb/fpga/zynq/canbench-sw.git

Nomenclature

AMBA Advanced Microcontroller Bus Architecture

AXI Advanced eXtensible Interface

CAN Controller Area Network

DCE Department of Control Engineering

EMIO Extended Multiplexed I/O

FIFO First In Last Out

FPGA Field Programmable Gate Array

FSBL First Stage Bootloader

GUI Graphical User Interface

HDL Hardware Description Language

I/O Input/Output

IDE Integrated Development Environment

IP Intellectual Property

IR Interrupt Register

IRQ Interrupt Request

ISR Interrupt Service Routine

MIO Multiplexed I/O

NFS Network File System

NTP Network Time Protocol

PCB Printed Circuit Board

PL Programmable Logic

PS Processing System

31

BIBLIOGRAPHY

RTEMS Real-Time Executive for Multiprocessor Systems

RX Reception

SDK Software Development Kit

SoC System on Chip

SPI Shared Peripheral Interrupt

SSH Secure SHell

TCL Tool Command Language

TFTP Trivial File Transfer Protocol

TX Transmission

UIO Userspace I/O

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

32

Appendix A

Contents of attached CD

/
|−− canbench−hw Hardware−r e l a t e d sourc e s
| |−− canbench−BOM. ods B i l l o f Mater ia l
| |−− canbench−hw. kicad_pcb PCB Layout
| |−− canbench−hw. pro KiCad p r o j e c t
| |−− canbench−hw. sch Top−l e v e l schemat ics f i l e
| |−− l i b KiCad part / f o o t p r i n t l i b r a r i e s
| | +−− [. . .]
| |−− README. txt
| |−− [. . .]
| +−− x s l
| +−− bom2groupedCsv . x s l Template f o r gene ra t ing BOM
|−− canbench−sw CAN−BENCH source codes
| |−− can−benchmark Submodule o f t e s t i n g system with l a t e s t e r
| | |−− cont inuous S c r i p t s f o r cont inuous t e s t i n g
| | |−− l a t e s t e r l a t e s t e r sou r c e s
| | +−− [. . .]
| |−− peta l inux PetaLinux SDK pro j e c t d i r e c t o r y
| | |−− boo t s c r i p t . i t s U−Boot c on f i gu r a t i on f o r packaging boo t s c r i p t
| | |−− boo t s c r i p t . txt Defau l t b oo t s c r i p t
| | |−− components
| | | |−− apps Make f i l e s f o r a pp l i c a t i o n s to be bu i l t
| | | | |−− bc GNU bc
| | | | |−− canhwtstamp Tool f o r dumping CAN frames with HW timestamps
| | | | |−− c a nu t i l s c a nu t i l s precompi led f o r Zynq
| | | | |−− l a t e s t e r Bui ld f i l e s f o r l a t e s t e r
| | | | +−− mc Midnight Commander
| | | |−− g ene r i c
| | | | +−− s c r i p t s I n i t and u t i l i t y s c r i p t s
| | | |−− l i b s Make f i l e f o r l i b r a r i e s to be bu i l t
| | | | +−− t a l l o c
| | | +−− modules
| | | +−− xi l inx_can Patched xi l inx_can Linux ke rne l module
| | |−− Makef i l e
| | |−− subsystems Subsystems con f i gu r a t i on
| | |−− uboot−extra−env . h Extra environment to bu i ld in to U−Boot

33

APPENDIX A. CONTENTS OF ATTACHED CD

| | |−− uboot−image . i t s U−Boot c on f i gu r a t i on f o r packaging boot image
| | |−− uEnv . txt Defau l t runtime U−Boot environment
| | +−− [. . .]
| |−− README. txt
| +−− system Sources f o r Vivado p r o j e c t
| |−− ip IP Cores
| | |−− canbench_cc_gpio
| | |−− can_crossbar_1 . 0
| | |−− can_merge
| | +−− sja1000_1 . 0
| |−− s c r i p t Vivado TCL s c r i p t s to r e c r e a t e and bu i ld p r o j e c t
| | |−− bu i ld . t c l
| | |−− d i s t . t c l
| | +−− r e c r e a t e . t c l
| |−− s r c
| | |−− con s t r s
| | | +−− microzed_CAN−CC_RevA. xdc
| | +−− top
| | +−− top . bd Top−l e v e l b lock des ign
| +−− system . b i f Conf igurat ion f o r packaging FPGA bits t ream
| Jerabek−t h e s i s −2016. pdf Text o f t h i s t h e s i s
+−− r e s u l t s Raw measured data and pro c e s s i ng s c r i p t s

|−− ana lyze . py Sc r i p t to ana lyze RTEMS data and pr in t summary
|−− h ighs tock . j s
|−− index . html HTML page with graphs
|−− kerne l−gateway . j son
|−− o r i g Data from the o r i g i n a l system
|−− p lo t . py Sc r i p t to produce graphs from the data
|−− rtems−gateway . j son
|−− user−space−gateway−mmap−mmap. j son
|−− user−space−gateway−non−block ing−read−wr i t e . j son
|−− user−space−gateway−read−wr i t e . j son
+−− user−space−gateway−recvmmsg−sendmmsg . j son

34

Appendix B

CAH-BENCH Schematics

35

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 25.4.2016
KiCad E.D.A. kicad 4.0.2-stable

Rev: RevASize: A4
Id: 1/10

Title: CANbus MicroZed CarrierCard
File: canbench-hw.sch
Sheet: /

Power

power.sch

VCCIO_EN

PG_MODULE

PWR_EN

SW1

SW_PUSH
C21

10n

GND

PG_CARRIER

POR# Button

MicroHeader JX1

jx1.sch

PWR_ENABLE

MicroHeader JX2

jx2.sch

VCCIO_EN
INIT#
PG_MODULEPWR_ENABLE

VCCIO_EN
INIT#
PG_CARRIER

System Power Good

12

D1

LED_GREEN

+5V

G
1

S 2
D 3

Q1
BSS138PG_CARRIER

R1
560R

GND

VCCIO_EN

PG_CARRIER

PWR_ENABLE

SW2

SW_PUSH
C22

10n

GND

INIT#

INIT# Button

MH1
HOLE

GND

MH2
HOLE

GND

MH3
HOLE

GND

MH4
HOLE

GND

MH5
HOLE

GND

MH6
HOLE

GND

MH7
HOLE

GND

MH8
HOLE

GND

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 25.4.2016
KiCad E.D.A. kicad 4.0.2-stable

Rev: RevASize: A4
Id: 2/10

Title: CANbus MicroZed CarrierCard
File: power.sch
Sheet: /Power/

1

2
3

CON1

FC681477

C4

10n

C3

470n

GND

C5

10n

L3

DE1207-33
C6

220u

GND

C2

10u

C7

100n

C8

10u

GND GNDGND

VIN_24

VIN_24

GND GND GND

PWR_FLAG

+5V

PWR_FLAG

D3

SK34

GND
PWR_FLAG

VCCIO_35

PWR_EN

GND

VOUT 1

V
S

S
2

VDD3

U4
MCP120T-450I/TT

VCCIO_EN

PWR_ENABLE:
Vlmax = 0.3V
Vhmin = 0.9V

VI1

GND2
EN3 FB 4

SW 5

U2
TPS62260DDC+5V

C15

10u

C16

100n

GND

C18

10u

C19

10u

C20

100n

GND GND GND

GNDGND

+5V

PWR_FLAG
D5

SK13

R
6

15
K

 0
.1

%

R
7

3K
3

0.
1%

GND

C17

22p

VCCIO_35

GND

VCCIO_EN

VCCIO_EN

PG_MODULE PG_MODULE

PG_MODULE

VCCIO_EN

JP1

R
2

5K
6

+5V

R
3

2K
4

GND

Power output testing
without MicroZed inserted
Generate 1.5V on VCCIO_EN

W5
TEST_1P

VCCIO_EN pulled up to 1.5V
by 1K/4K99 voltage divider
(from 1.8V). Maximal Iol is thus
1.8mA -> Vol < 0.2V
(MCP120 datasheet, Figure 2-6)

VOUT 1

V
S

S
2

VDD3

U5
MCP120T-450I/TT

VOUT 1

V
S

S
2

VDD3

U7
MCP120T-315I/TT

PWR_EN is pulled up to 5V
on MicroZed by 10K R87

W3
TEST_1P

W2
TEST_1P

W1
TEST_1P

VCCIO_34

VI1

GND2
EN3 FB 4

SW 5

U1
TPS62260DDC+5V

C9

10u

C10

100n

GND

L1

DLG-0403-2R2
C12

10u

C13

10u

C14

100n

GND GND GND

GNDGND

+5V

PWR_FLAG
D4

SK13

R
4

15
K

 0
.1

%

R
5

3K
3

0.
1%

GND

C11

22p

VCCIO_34

GND

PG_MODULE

VCCIO_EN

W4
TEST_1P

VOUT 1

V
S

S
2

VDD3

U6
MCP120T-315I/TT

L2

DLG-0403-2R2

VSW 1

VIN2

CB 3

G
N

D
4

FB 6

ON/OFF7

U3
LM2676S-5.0

LM2676 has internal pull-up
20uA on ON/OFF

C1

220u

GND

GND

D2

SK34

LM2675_FB

Feedback:
3.3V: 15K/3K3

2.5V or 1.8V may be
used instead

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 25.4.2016
KiCad E.D.A. kicad 4.0.2-stable

Rev: RevASize: A4
Id: 3/10

Title: CANbus MicroZed CarrierCard
File: jx1.sch
Sheet: /MicroHeader JX1/

GND
GND

+5V
+5V

VCCIO_34
VCCIO_34

P11

P22

P33

P44

GND5

VCC6

P7 7

P8 8

P9 9

P10 10

GND 11

VCC 12

PA1

PMOD

VCCIO_34 VCCIO_34

GNDGND

PA1_2_P
PA1_2_N
PA3_4_P
PA3_4_N

PA7_8_P
PA7_8_N

PA9_10_P
PA9_10_N

P11

P22

P33

P44

GND5

VCC6

P7 7

P8 8

P9 9

P10 10

GND 11

VCC 12

PB1

PMOD

VCCIO_34 VCCIO_34

GNDGND

PB1_2_P
PB1_2_N
PB3_4_P
PB3_4_N

PB7_8_P
PB7_8_N

PB9_10_P
PB9_10_N

+5VVCCIO_34

GNDGND

3.3V1 5V 2

GPIO2_SDA3 5V 4

GPIO3_SCL5 GND 6

GPIO47 GPIO14_TXD 8

GND9 GPIO15_RXD 10

GND 20

GND 30

GPIO21 40

GPIO1711

GPIO9_MISO21

GPIO631

GPIO18_PWM 12

GPIO25 22

GPIO12 32

GPIO2713

GPIO11_SCLK23

GPIO1333

GND 14

GPIO8_CE0 24

GND 34

GPIO2215

GND25

GPIO1935

GPIO23 16

GPIO7_CE1 26

GPIO16 36

3V317

ID_SD27

GPIO2637

GPIO24 18

ID_SC 28

GPIO20 38

GPIO10_MOSI19

GPIO529

GND39

PP1

RPI_GPIO_HEADER_02X20

PB1_2_P
PB1_2_N

PB3_4_P

PB7_8_P

PB9_10_P

PB3_4_N

PB7_8_N

PB9_10_N

PX1
PX2

PX3
PX4

PA1_2_P
PA1_2_N

PA3_4_P
PA3_4_N

PA7_8_P
PA7_8_N

PA9_10_P
PA9_10_N

VCCIO_34

GND

PP_GPIO2_SDA
PP_GPIO3_SCL
PP_GPIO4

PP_GPIO17
PP_GPIO27
PP_GPIO22

PP_GPIO10_MOSI
PP_GPIO9_MISO
PP_GPIO11_SCLK

PP_ID_SD
PP_GPIO5
PP_GPIO6
PP_GPIO13
PP_GPIO19
PP_GPIO26

PP_GPIO14_TXD
PP_GPIO15_RXD

PP_GPIO18_PWM

PP_GPIO23
PP_GPIO24

PP_GPIO25
PP_GPIO8_CE0
PP_GPIO7_CE1

PP_ID_SC

PP_GPIO12

PP_GPIO16
PP_GPIO20
PP_GPIO21

PP_GPIO2_SDA
PP_GPIO3_SCL

PP_GPIO17
PP_GPIO27

PP_GPIO22PP_GPIO10_MOSI

PP_GPIO9_MISO

PP_GPIO11_SCLK

PP_ID_SD
PP_GPIO5

PP_GPIO6

PP_GPIO13

PP_GPIO19

PP_GPIO26

PP_GPIO14_TXD

PP_GPIO15_RXD
PP_GPIO18_PWM

PP_GPIO23PP_GPIO24

PP_GPIO25

PP_GPIO8_CE0

PP_GPIO7_CE1
PP_ID_SC

PP_GPIO12

PP_GPIO16

PP_GPIO20

PP_GPIO21

PP_GPIO4

CARRIER_SRST# PWR_ENABLE
FPGA_DONE

PWR_ENABLE

C23

10n

GND

CARRIER_SRST#

Reset Ctrl

GND

R8
270R

FPGA_DONE G
1

S 2
D 3

Q2
BSS138

+5V

12

D6

LED_BLUE

DONE LED
SW3

SW_PUSH

JTAG_TCK 1JTAG_TMS2

JTAG_TDO 3JTAG_TDI4

PWR_ENABLE 5CARRIER_SRST#6

FPGA_VBATT 7FPGA_DONE8

JX1_SE_0 9JX1_SE_110

JX1_LVDS_3_N20

JX1_LVDS_7_P30

GND40

JX1_LVDS_13_N50

VIN_HDR60

JX1_LVDS_19_N70

VCCO_3480

BANK13_LVDS_1_N90

JX1_LVDS_0_P 11

GND 21

JX1_LVDS_6_N 31

JX1_LVDS_10_P 41

GND 51

JX1_LVDS_16_P 61

GND 71

JX1_LVDS_22_P 81

BANK13_LVDS_2_P 91

JX1_LVDS_1_P12

GND22

JX1_LVDS_7_N32

JX1_LVDS_11_P42

GND52

JX1_LVDS_17_P62

GND72

JX1_LVDS_23_P82

BANK13_LVDS_3_P92

JX1_LVDS_0_N 13

JX1_LVDS_4_P 23

GND 33

JX1_LVDS_10_N 43

JX1_LVDS_14_P 53

JX1_LVDS_16_N 63

JX1_LVDS_20_P 73

JX1_LVDS_22_N 83

BANK13_LVDS_2_N 93

JX1_LVDS_1_N14

JX1_LVDS_5_P24

GND34

JX1_LVDS_11_N44

JX1_LVDS_15_P54

JX1_LVDS_17_N64

JX1_LVDS_21_P74

JX1_LVDS_23_N84

BANK13_LVDS_3_N94

GND 15

JX1_LVDS_4_N 25

JX1_LVDS_8_P 35

GND 45

JX1_LVDS_14_N 55

GND 65

JX1_LVDS_20_N 75

GND 85

GND 95

GND16

JX1_LVDS_5_N26

JX1_LVDS_9_P36

GND46

JX1_LVDS_15_N56

GND66

JX1_LVDS_21_N76

GND86

GND96

JX1_LVDS_2_P 17

GND 27

JX1_LVDS_8_N 37

JX1_LVDS_12_P 47

VIN_HDR 57

JX1_LVDS_18_P 67

GND 77

BANK13_LVDS_0_P 87

VP_0_P 97

JX1_LVDS_3_P18

GND28

JX1_LVDS_9_N38

JX1_LVDS_13_P48

VIN_HDR58

JX1_LVDS_19_P68

VCCO_3478

BANK13_LVDS_1_P88

DXP_0_P98

JX1_LVDS_2_N 19

JX1_LVDS_6_P 29

GND 39

JX1_LVDS_12_N 49

VIN_HDR 59

JX1_LVDS_18_N 69

VCCO_34 79

BANK13_LVDS_0_N 89

VP_0_N 99DXP_0_N100

JX1

MicroZed_JX1

1
2
3
4
5
6
7
8

PX1

C
O

N
N

_0
1X

08

+5V

R55
100R

R56
100R

R57
100R

R58
100R

CON_PX1
CON_PX2
CON_PX3
CON_PX4

PX2

PX1I/O1
1

GND
2

I/O2
3

I/O2
4

VBus
5

I/O1
6

D15

USBLC6-2SC6
CON_PX2

CON_PX1

PX4

PX3I/O1
1

GND
2

I/O2
3

I/O2
4

VBus
5

I/O1
6

D16

USBLC6-2SC6
CON_PX4

CON_PX3

VCCIO_34

GND

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 25.4.2016
KiCad E.D.A. kicad 4.0.2-stable

Rev: RevASize: A4
Id: 4/10

Title: CANbus MicroZed CarrierCard
File: jx2.sch
Sheet: /MicroHeader JX2/

GND
GND

+5V
+5V

VCCIO_35 VCCIO_35

CAN1_RXD
CAN1_TXD

CAN2_RXD
CAN2_TXD

CAN3_RXD
CAN3_TXD

CAN4_RXD
CAN4_TXD

VCCIO_35

SW1
SW2
SW3
SW4
SW5
SW6
SW7
SW8

KEY1
KEY2
KEY3
KEY4

CAN Interfaces

can.sch

CAN1_RXD
CAN1_TXD
CAN2_RXD
CAN2_TXD
CAN3_RXD
CAN3_TXD
CAN4_RXD
CAN4_TXD

CAN_STBY

CAN1_RXD
CAN1_TXD
CAN2_RXD

CAN3_RXD

CAN4_RXD

CAN2_TXD

CAN3_TXD

CAN4_TXD

CAN_STBY

User I/O

user-io.sch

VCCIO
SW1
SW2
SW3
SW4
SW5
SW6
SW7
SW8

KEY1
KEY2
KEY3
KEY4

LED2
LED3
LED4
LED5
LED6
LED7
LED8

LED1LED1
LED2
LED3
LED4
LED5
LED6
LED7
LED8

LED1
LED2

LED3
LED4

LED5
LED6

LED7
LED8

SW4
KEY2

SW2
SW1

SW8
KEY4

SW7
SW6

KEY3
SW5

SW3
KEY1

INIT#
PG_MODULE

VCCIO_EN INIT#
PG_MODULE

P11

P22

P33

P44

GND5

VCC6

P7 7

P8 8

P9 9

P10 10

GND 11

VCC 12

PS1

PMOD

GNDGND

PS1
PS2
PS3
PS4

PS7
PS8
PS9

PS10

Note: VCCIO_35 must be 3.3V!

PS2
PS4
PS8
PS10

PS1
PS3
PS7
PS9

PMOD_D0 1PMOD_D12

PMOD_D2 3PMOD_D34

PMOD_D4 5PMOD_D56

PMOD_D6 7PMOD_D78

INIT# 9VCCIO_EN10

JX2_LVDS_1_N20

JX2_LVDS_5_P30

GND40

JX2_LVDS_11_N50

VIN_HDR60

JX2_LVDS_17_N70

VCCO_3580

JX2_LVDS_23_N90

PG_MODULE 11

GND 21

JX2_LVDS_4_N 31

JX2_LVDS_8_P 41

GND 51

JX2_LVDS_14_P 61

GND 71

JX2_LVDS_20_P 81

GND 91

VIN_HDR12

GND22

JX2_LVDS_5_N32

JX2_LVDS_9_P42

GND52

JX2_LVDS_15_P62

GND72

JX2_LVDS_21_P82

GND92

JX2_SE_0 13

JX2_LVDS_2_P 23

GND 33

JX2_LVDS_8_N 43

JX2_LVDS_12_P 53

JX2_LVDS_14_N 63

JX2_LVDS_18_P 73

JX2_LVDS_20_N 83

BANK13_LVDS_4_P 93

JX2_SE_114

JX2_LVDS_3_P24

GND34

JX2_LVDS_9_N44

JX2_LVDS_13_P54

JX2_LVDS_15_N64

JX2_LVDS_19_P74

JX2_LVDS_21_N84

BANK13_LVDS_5_P94

GND 15

JX2_LVDS_2_N 25

JX2_LVDS_6_P 35

GND 45

JX2_LVDS_12_N 55

GND 65

JX2_LVDS_18_N 75

GND 85

BANK13_LVDS_4_N 95

GND16

JX2_LVDS_3_N26

JX2_LVDS_7_P36

GND46

JX2_LVDS_13_N56

GND66

JX2_LVDS_19_N76

GND86

BANK13_LVDS_5_N96

JX2_LVDS_0_P 17

GND 27

JX2_LVDS_6_N 37

JX2_LVDS_10_P 47

VIN_HDR 57

JX2_LVDS_16_P 67

GND 77

JX2_LVDS_22_P 87

BANK13_LVDS_6_P 97

JX2_LVDS_1_P18

GND28

JX2_LVDS_7_N38

JX2_LVDS_11_P48

VIN_HDR58

JX2_LVDS_17_P68

VCCO_3578

JX2_LVDS_23_P88

VCCO_1398

JX2_LVDS_0_N 19

JX2_LVDS_4_P 29

GND 39

JX2_LVDS_10_N 49

VIN_HDR 59

JX2_LVDS_16_N 69

VCCO_35 79

JX2_LVDS_22_N 89

BANK13_LVDS_6_N 99BANK13_SE_0100

JX2

MicroZed_JX2

+5V

VCCIO_35VCCIO_35

CAN_STBY

VCCIO_35

JX2.98 is for
VCCIO_13, assign
same voltage as
VCCIO_35

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 25.4.2016
KiCad E.D.A. kicad 4.0.2-stable

Rev: RevASize: A4
Id: 5/10

Title: CANbus MicroZed CarrierCard
File: can.sch
Sheet: /MicroHeader JX2/CAN Interfaces/

CAN 1

can-interface.sch

RXD
TXD
STBY COM_CAN-

COM_CAN+

CAN_STBY

CAN1_RXD
CAN1_TXD

CAN2_RXD
CAN2_TXD

CAN3_RXD
CAN3_TXD

CAN4_RXD
CAN4_TXD

CAN 2

can-interface.sch

RXD
TXD
STBY COM_CAN-

COM_CAN+

CAN 3

can-interface.sch

RXD
TXD
STBY COM_CAN-

COM_CAN+

CAN 4

can-interface.sch

RXD
TXD
STBY COM_CAN-

COM_CAN+

COM_LO
COM_HI

COM_LO
COM_HI

COM_LO
COM_HI

COM_LO
COM_HI

R9

120R 250mW
COM_HICOM_LO

Common CANbus termination

R10

120R 250mW

COM_HICOM_LO JP3

JP2

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 25.4.2016
KiCad E.D.A. kicad 4.0.2-stable

Rev: RevASize: A4
Id: 6/10

Title: CANbus MicroZed CarrierCard
File: can-interface.sch
Sheet: /MicroHeader JX2/CAN Interfaces/CAN 1/

TXD1

V
S

S
2

V
D

D
3

RXD4

Vio5

CANL 6

CANH 7

STBY8

U8 MCP2562FD

GND

+5V

C24

100n

+5V

GND

C25

100n

GND

RXD
TXD

VCCIO_35 VCCIO_35

CAN-

CAN+

CAN-

CAN+

STBY

GND

JP
6

R
11

12
0R

 2
50

m
W

JP4

JP5
COM_CAN-

COM_CAN+

1

2

3

4

5

6

7

8

9

J1

DB9

Populate either the common-mode choke
or the 2 0R resistors.

R12

0R 250mW

R13

0R 250mWWhen high-speed CAN FD (8Mbit)
is desired, the jumpers (if open)
might cause unbearable signal reflections
and might need to be depopulated.

12
3 4

T
1

D
P

W
C

12
06

-X
X

X

C
O

N
N

_C
A

N
+

C
O

N
N

_C
A

N
-

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 25.4.2016
KiCad E.D.A. kicad 4.0.2-stable

Rev: RevASize: A4
Id: 7/10

Title: CANbus MicroZed CarrierCard
File: can-interface.sch
Sheet: /MicroHeader JX2/CAN Interfaces/CAN 2/

TXD1

V
S

S
2

V
D

D
3

RXD4

Vio5

CANL 6

CANH 7

STBY8

U9 MCP2562FD

GND

+5V

C26

100n

+5V

GND

C27

100n

GND

RXD
TXD

VCCIO_35 VCCIO_35

CAN-

CAN+

CAN-

CAN+

STBY

GND

JP
9

R
14

12
0R

 2
50

m
W

JP7

JP8
COM_CAN-

COM_CAN+

1

2

3

4

5

6

7

8

9

J2

DB9

Populate either the common-mode choke
or the 2 0R resistors.

R15

0R 250mW

R16

0R 250mWWhen high-speed CAN FD (8Mbit)
is desired, the jumpers (if open)
might cause unbearable signal reflections
and might need to be depopulated.

12
3 4

T
2

D
P

W
C

12
06

-X
X

X

C
O

N
N

_C
A

N
+

C
O

N
N

_C
A

N
-

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 25.4.2016
KiCad E.D.A. kicad 4.0.2-stable

Rev: RevASize: A4
Id: 8/10

Title: CANbus MicroZed CarrierCard
File: can-interface.sch
Sheet: /MicroHeader JX2/CAN Interfaces/CAN 3/

TXD1

V
S

S
2

V
D

D
3

RXD4

Vio5

CANL 6

CANH 7

STBY8

U10 MCP2562FD

GND

+5V

C28

100n

+5V

GND

C29

100n

GND

RXD
TXD

VCCIO_35 VCCIO_35

CAN-

CAN+

CAN-

CAN+

STBY

GND

JP
12

R
17

12
0R

 2
50

m
W

JP10

JP11
COM_CAN-

COM_CAN+

1

2

3

4

5

6

7

8

9

J3

DB9

Populate either the common-mode choke
or the 2 0R resistors.

R18

0R 250mW

R19

0R 250mWWhen high-speed CAN FD (8Mbit)
is desired, the jumpers (if open)
might cause unbearable signal reflections
and might need to be depopulated.

12
3 4

T
3

D
P

W
C

12
06

-X
X

X

C
O

N
N

_C
A

N
+

C
O

N
N

_C
A

N
-

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 25.4.2016
KiCad E.D.A. kicad 4.0.2-stable

Rev: RevASize: A4
Id: 9/10

Title: CANbus MicroZed CarrierCard
File: can-interface.sch
Sheet: /MicroHeader JX2/CAN Interfaces/CAN 4/

TXD1

V
S

S
2

V
D

D
3

RXD4

Vio5

CANL 6

CANH 7

STBY8

U11 MCP2562FD

GND

+5V

C30

100n

+5V

GND

C31

100n

GND

RXD
TXD

VCCIO_35 VCCIO_35

CAN-

CAN+

CAN-

CAN+

STBY

GND

JP
15

R
20

12
0R

 2
50

m
W

JP13

JP14
COM_CAN-

COM_CAN+

1

2

3

4

5

6

7

8

9

J4

DB9

Populate either the common-mode choke
or the 2 0R resistors.

R21

0R 250mW

R22

0R 250mWWhen high-speed CAN FD (8Mbit)
is desired, the jumpers (if open)
might cause unbearable signal reflections
and might need to be depopulated.

12
3 4

T
4

D
P

W
C

12
06

-X
X

X

C
O

N
N

_C
A

N
+

C
O

N
N

_C
A

N
-

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 25.4.2016
KiCad E.D.A. kicad 4.0.2-stable

Rev: RevASize: A4
Id: 10/10

Title: CANbus MicroZed CarrierCard
File: user-io.sch
Sheet: /MicroHeader JX2/User I/O/

User LEDs

12

D7 LED_RED

R23
560R

12

D8 LED_RED

R24
560R

12

D9 LED_RED

R25
560R

12

D10 LED_RED

R26
560R

VCCIO VCCIO

VCCIO

GND
R

32
3K

3

R31
100R

C33

10n

GND

SW4

SW_PUSH

1
2
3
4
5
6
7
8 9

10
11
12
13
14
15
16

S1

SW_DIP_x8

R43
100R SW1

R
39

3K
3

C37

10n

SW1

GND

VCCIO

R
40

3K
3

C38

10n

SW2

GND

R
41

3K
3

C39

10n

SW3

GND

R
42

3K
3

C40

10n

SW4

GND

R
51

3K
3

C41

10n

SW5

GND

R
52

3K
3

C42

10n

SW6

GND

R
53

3K
3

C43

10n

SW7

GND

R
54

3K
3

C44

10n

SW8

GND

R44
100R SW2

R45
100R SW3

R46
100R SW4

R47
100R SW5

R48
100R SW6

R49
100R SW7

R50
100R SW8

GND

SW1
SW2
SW3
SW4
SW5
SW6
SW7
SW8

KEY1

VCCIO

GND

R
34

3K
3

R33
100R

C34

10n

GND

SW5

SW_PUSH
KEY2

VCCIO

GND

R
36

3K
3

R35
100R

C35

10n

GND

SW6

SW_PUSH
KEY3

VCCIO

GND

R
38

3K
3

R37
100R

C36

10n

GND

SW7

SW_PUSH
KEY4

LED1

LED2

LED3

LED4

12

D11 LED_RED

R27
560R

12

D12 LED_RED

R28
560R

12

D13 LED_RED

R29
560R

12

D14 LED_RED

R30
560R

LED5

LED6

LED7

LED8

C46

100n

+5V

GND

DIR1

A02

A13

A24

A35

A46

A47

A68

A79

G
N

D
10

V
C

C
20

B7 11

B6 12

B5 13

B4 14

B3 15

B2 16

B1 17

B0 18

OE 19

U12 74HCT245PW

+5V

GND
GND

+5V

Appendix C

CAH-BENCH PCB Layout

46

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 20.4.2016
KiCad E.D.A. kicad 4.0.2-stable

Rev: RevASize: A4
Id: 1/1

Title: MicroZed CAN Carrier Board
File: canbench-hw.kicad_pcb
Sheet:
FEE CTU

M
icro

Z
ed

C
A

N
-B

E
N

C
H

C
arrier C

ard
R

evA
V

U
T

 F
E

L

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 20.4.2016
KiCad E.D.A. kicad 4.0.2-stable

Rev: RevASize: A4
Id: 1/1

Title: MicroZed CAN Carrier Board
File: canbench-hw.kicad_pcb
Sheet:
FEE CTU

M
icro

Z
ed

C
A

N
-B

E
N

C
H

C
arrier C

ard
R

evA
V

U
T

 F
E

L

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 20.4.2016
KiCad E.D.A. kicad 4.0.2-stable

Rev: RevASize: A4
Id: 1/1

Title: MicroZed CAN Carrier Board
File: canbench-hw.kicad_pcb
Sheet:
FEE CTU

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 20.4.2016
KiCad E.D.A. kicad 4.0.2-stable

Rev: RevASize: A4
Id: 1/1

Title: MicroZed CAN Carrier Board
File: canbench-hw.kicad_pcb
Sheet:
FEE CTU

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 20.4.2016
KiCad E.D.A. kicad 4.0.2-stable

Rev: RevASize: A4
Id: 1/1

Title: MicroZed CAN Carrier Board
File: canbench-hw.kicad_pcb
Sheet:
FEE CTU

DONEINIT#PORSRST#
PWR GOOD

P
A

1

U
3

C
38

SW7

R37

C22C23

D
16

S1

P
S

1

SW5

J4

JP3 U
11

R
10

J1J3

C
1

R24

C21

C
3

C
4

C
5

R
1

R
8

SW1

U
8

C7 C8

C33

C34

C
37

C
39

C35

C
40

C
41

C
42

C36

C
43

C
44

C
25

C
26

C
27

C
28

C
29

C
30

C
31

D
1

D
6

D7

D8

D9

D10

Q1

Q
2

R44

R45

R46

R47

R48

R49
R50

R32

R33

R34

R39

R25

R40

R35

R41

R36

R42

R26

R51

R52

R38

R53

R54

R
9

SW4

SW6

U
9

U
10

R23

R31

R43

JX
1

100

99

2
1

JX
2

100

99

2
1

C15

C16

C
17

C
18

C
19

C
20

U
2

SW2

R
2

R3

W5

C9

C10

C
11

C
12

C
13

C
14

L1

L2
U

1
U

5

U
4

U
6

U
7

W1

W2

W3

W4

D11

D12

D13

D14

R27

R28

R29

R30

C
46

R4

R5

R
6

R
7

C
2

C6

U12

L3

J2

T1T2T3T4

R
11

R
14

R
17

R
20

JP
1

JP2JP4 JP5 JP6JP7 JP8 JP9JP10 JP11 JP12JP13 JP14 JP15

P
B

1

D
15

R
55

R56 R57

R
58

P
X

1

P
P

1

C
O

N
1

D
2

K
A

D3

KA

D4

KA

D5

K A

Appendix D

CAN-BENCH Bill of Material

Reference CNT Value Description Footprint
C11 C17 2 22p C_0805
C1 1 220u 220u 35V c_elec_8x10
C4 C5 C21
C22 C23
C33 C34
C35 C36
C37 C38
C39 C40
C41 C42
C43 C44

17 10n C_0805

C2 1 10u 10uF 35V C_1206
C3 1 470n 30V C_0805
C6 1 220u 16V c_elec_6.3x7.7
C7 C10 C14
C16 C20
C24 C25
C26 C27
C28 C29
C30 C31
C46

14 100n 6V C_0805

C8 C9 C12
C13 C15
C18 C19

7 10u 6V C_0805

CON1 1 2.5mm DC Barrel Jack Socket, FC681477
D15 D16 2 USBLC6-2SC6 SOT-23-6
D1 1 LED_GREEN LED_0805
D2 D3 2 SK34SMA-DIO 30V, 3A DO-214AB
D4 D5 2 TME:SK13-DIO 10V, 1A SMB
D6 1 LED_BLUE LED_0805
D7 D8 D9
D10 D11
D12 D13
D14

8 LED_RED LED_0805

Continued on next page

52

Table D.1 – continued from previous page
Reference CNT Value Description Footprint
J1 J2 J3 J4 4 D-SUB9 Female
JP1 JP2 JP3
JP4 JP5 JP6
JP7 JP8 JP9
JP10 JP11
JP12 JP13
JP14 JP15

15 0.1" 1x2 Pin Header

JX1, JX2 1 FCI BERGSTAK 100p 0.8mm Pitch Plug 61083_10x
L1 L2 2 DLG-0403-2R2 2.2u, >1.2A Choke_SMD_0403
L3 1 DE1207-33 33uH, 3A Choke_SMD_12x12mm
PA1 PB1
PS1 3 PMOD 0.1" 2x6 Socket

Header

PP1 1 0.1" 2x20 Pin
Header

PX1 1 CONN_01X08 8x screw terminal
block 2.54mm

Q1 Q2 2 BSS138 SOT-23
R12 R13
R15 R16
R18 R19
R21 R22

8 0R 250mW Populate instead of
T1 T2 T3 T4 R_0805

R1 R23 R24
R25 R26
R27 R28
R29 R30

9 560R R_0805

R2 1 5K6 R_0805
R32 R34
R36 R38
R39 R40
R41 R42
R51 R52
R53 R54

12 3K3 R_0805

R3 1 2K4 R_0805
R31 R33
R35 R37
R43 R44
R45 R46
R47 R48
R49 R50
R55 R56
R57 R58

16 100R R_0805

R4 R6 2 15K 0.1% R_Uni_0805_1206
R5 R7 2 3K3 0.1% R_Uni_0805_1206
R8 1 270R R_0805
R9 R10 R11
R14 R17
R20

6 120R 0,25W R_0805

S1 1 SW_DIP_x8 SW_DIP_x8_Slide
Continued on next page

53

APPENDIX D. CAN-BENCH BILL OF MATERIAL

Table D.1 – continued from previous page
Reference CNT Value Description Footprint
SW1 SW2
SW3 SW4
SW5 SW6
SW7

7 SW_PUSH SW_SPST_EVQP0

T1 T2 T3
T4 4 DPWC1206-XXX

or
DPWC0805-XXX
or DNP

Choke_Dual_1206

U12 1 74HCT245PW TSSOP20
U1 U2 2 TPS62260DDCTG4 SOT-23-5
U3 1 LM2676S-5.0 TO-263-7-TEXAS
U4 U5 2 MCP120T-450I/TT SOT-23
U6 U7 2 MCP120T-315I/TT SOT-23
U8 U9 U10
U11 4 MCP2562FD-E/SN SOIC-8-N

W1 W2 W3
W4 W5 5 TEST_1P

15 JUMPER

54

Appendix E

Official Assignment

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Martin J e ř á b e k

Study programme: Open Informatics

Specialisation: Computer and Information Science

Title of Bachelor Project: FPGA Based CAN Bus Channels Mutual Latency Tester
 and Evaluation

Guidelines:

The goal of this thesis is to replace system for measurement of throughput and latencies of
CAN devices connected to multiple CAN buses. An original software only system has been
developed on request of Volkswagen Research to test Linux CAN gateway implementation and
drivers.
Microsecond time resolution is required for new system.

1. Select appropriate FPGA platform for three-channel CAN bus tester.
2. Design CAN transceivers board which connects to FPGA SBC and provides at least two
 channels for messages time-stamping and at least one separate for messages traffic
 generation.
3. Adapt and implement FPGA logical design and Linux kernel drivers for designed solution.
4. Integrate solution into continuous integration tester running on server of Department of
 Control Engineering.

Bibliography/Sources:
[1] Sojka, M. - Píša, P. - Hanzálek, Z.: Performance evaluation of Linux CAN-related system
 calls. In Proceedings of the 10th IEEE International Workshop on Factory Communication
 Systems. Piscataway: IEEE, 2014, art. no. 6837608, p. 1-8. ISBN 978-1-4799-3235-1.
[2] Sojka, M. - Píša, P. - Špinka, O. - Hartkopp, O. - Hanzálek, Z.: Timing Analysis of a Linux-
 Based CAN-to-CAN Gateway. In Thirteenth Real-Time Linux Workshop. Schramberg: Open
 Source Automation Development Lab eG, 2011, p. 165-172. ISBN 978-3-00-036193-7.
[3] MicroZed Zynq™ Evaluation and Development and System on Module Hardware User
 Guide, Version 1.6, Avnet Inc./Zedboard.org, January 2015, available online:
 http://zedboard.org/product/microzed6787

Bachelor Project Supervisor: Ing. Pavel Píša, Ph.D.

Valid until: the end of the summer semester of academic year 2016/2017

 L.S.

prof. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 4, 2016

	Introduction
	Testbed setup
	Project goals

	Theoretical background
	CAN bus overview
	Implementation in Operating Systems
	Linux: SocketCAN

	Xilinx Zynq SoC
	AXI4
	Message timestamps in Linux networking subsystem

	MicroZed CAN-BENCH System Description
	CAN-BENCH Carrier Card
	Power Supply
	CAN bus bridging
	Reset Buttons

	Peripherals
	Embedded Xilinx CAN Controllers
	Linux driver

	SJA1000 IP Soft Core
	Register overview
	Interrupts
	Linux driver

	CAN Crossbar Soft Core
	Functional description
	Register Overview
	Linux driver

	Booting process
	Software
	latester: the benchmarking application

	Building the system

	Development and Implementation Choices
	Hardware
	Form of hardware solution
	CAN bus Transceiver
	CAN bus termination and testing

	I/O protection and isolation
	Power Supply
	Power Supply Sequencing

	General Purpose User I/O

	Software
	Tools Used for Development
	Configuring the Processing System in Vivado

	Creating PetaLinux Build
	Extending the Xilinx CAN Linux driver
	Adapting the SJA1000 IP Core
	Extending latester
	Debugging
	Testing the Embedded Xilinx CAN Controllers
	Testing the SJA1000 IP Core
	Debugging the xilinx_can driver timestamping patch
	Deployment of binary images

	Running the Benchmarks
	Continuous Testing System at DCE Servers
	Results

	Conclusion
	Future improvements

	Bibliography
	Nomenclature
	Contents of attached CD
	CAH-BENCH Schematics
	CAH-BENCH PCB Layout
	CAN-BENCH Bill of Material
	Official Assignment

