
Em_canid ematch benchmark

Introduction

In order to evaluate the cost of our filter implementations, we conducted several experiments to
measure the time spent in can_send() function (in the kernel) for different filter configurations.

Measurements were performed by using function graph tracer in ftrace – the Linux kernel function
tracer. This particular tracer timestamps entry and exit points of the traced functions and stores the
duration of the function execution. Ftrace was configured in dynamic mode (as shown later).

This allows us to trace only can_send() function, not affecting the performance of any other (not
traced) functions.

Ftrace configuration:

 FTRDIR=/sys/kernel/debug/tracing
 sysctl kernel.ftrace_enabled=1
 echo "function_graph" > ${FTRDIR}/current_tracer
 sleep 1
 echo "can_send" > ${FTRDIR}/set_ftrace_filter
 echo 1 > ${FTRDIR}/tracing_on

The benchmarks were performed on an embedded computer with MPC5200 – embedded PowerPC
CPU (e300 core, G2 LE), 396 MHz, with 128 MiB of RAM running 3.4.2 Linux kernel with custom
.config file.

CAN traffic was generated with the command:

 cangen can0 -I $ID -L 8 -D i -g $GAP -n 10000

where

• $ID sets CAN frame ID, it was set to the fixed value to be classified either by the first instance
of a filter or the last one

• $GAP sets the delay in milliseconds between each sent frame – value 0 and 1 were used in the
two test performed

Results

Measured values are in μs units. These values (mean, min, max) are counted from 10000 measurements
of time spent in can_send() function.

de
fa

ult
_q

di
sc

pr
io

_0

pr
io

_1
firs

t

pr
io

_1
la

st

pr
io

_2
firs

t

pr
io

_2
las

t
0.000

20.000

40.000

60.000

80.000

100.000

120.000

Time spent in can_send() measured by ftrace

Can traffic generated with gap = 1 ms

emc_sff mean
emc_eff mean
cls_sff mean
cls_eff mean

Different qdisc&filter configurations

T
im

e
[m

s]

mean min max mean min max
40.541 39.392 130.944 41.502 40.160 163.392
41.396 39.520 140.448 43.064 40.512 135.424
55.691 53.920 168.416 56.482 54.848 173.376
66.679 60.480 244.768 71.026 67.424 193.056
65.128 58.720 228.224 63.577 60.288 180.288
90.802 85.472 211.008 130.836 128.576 146.976

mean min max mean min max
40.992 39.168 158.112 41.824 40.192 135.584
52.564 50.848 169.760 52.865 50.976 178.112
54.041 52.672 226.528 55.422 53.728 172.896
57.071 54.720 176.000 56.952 54.816 169.376

emc_sff emc_eff

default_qdisc
prio_0
prio_1first
prio_1last
prio_2first
prio_2last

cls_sff cls_eff

default_qdisc
prio_0
prio_1first
prio_1last

Notation explanation:

• emc_sff – em_canid ematch used, SFF only frames generated by candump

• emc_eff – em_canid ematch used, EFF only frames generated by candump

• cls_sff – cls_can classifier1 used, SFF only frames generated by candump

• cls_eff – cls_can classifier used, EFF only frames generated by candump

• default_qdisc – Default qdisc – nowadays quite always pfifo_fast

• prio_0 – Prio qdisc with minimal configuration (2 bands – one for classification, one set as
default)

• prio_1first – Prio qdisc with 10 bands – for each class (i.e. band) there is one classifier attached
to it. All traffic is classified into the first class.

• prio_1last – Same as above, except all traffic is classified into the last class.

For em_canid only:

• prio_2first – Prio qdisc with 10 bands – each class has 1 classifier (basic) with 10 ematch rules
(joined with OR) attached to it. All traffic is classified into the first class.

• prio_2last – Same as above, except all traffic is classified into the last class.

1 cls_can – Stand-alone classifier of AF_CAN packets according to their identifiers. The purpose of this classifier was the
same as of the em_canid, however the source code was twice as long with no known benefits.

	Em_canid ematch benchmark
	Introduction
	Results

