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Abstract—Our work considers a scheduling problem in which
manufacturing companies with large energy demand are obli-
gated to comply with total energy consumption limits in specified
time intervals, e.g. 15 minutes. Moreover, the problem is compli-
cated by the fact that in reality the production schedules are not
executed exactly as planned due to unexpected disturbances such
as machine breakdowns or material unavailability. Therefore,
the goal is to find a robust schedule which guarantees that the
energy consumption limits are not violated if the start times
of operations are arbitrary delayed within a given limit. To
circumvent the problem of an exponential number of constraints
in the mixed integer linear programming formulation, we propose
an exact algorithm based on a decomposition approach. The
decomposition approach exploits the fact that the robustness of
a given schedule can be checked in a pseudo-polynomial time.
We evaluated the proposed algorithm on instances with varying
bound of the start times delays.

I. INTRODUCTION

This work focuses on a scheduling problem faced by man-
ufacturing companies with large energy consumption. In this
problem some of the operations that have to be scheduled on
the available machines consume a substantial amount of elec-
tric energy. Therefore, the electricity provider needs to know
the amount of electric energy required by the manufacturing
company so that the maximum demand of the company can be
guaranteed. This information is provided by the company to
the electricity provider in form of load curves, which represent
how much energy is demanded in specific time intervals during
the day. Based on the load curves, the electricity provider
computes a maximum energy consumption limit in each 15
minutes metering interval that must not be exceeded by the
customer otherwise he pays a large penalty fee. Therefore,
an energy-aware schedule of the operations for the machines
is needed so that the energy limits are not violated; such a
schedule is called baseline. The baseline schedule may contain
idle times between the operations with a high energy demand
so that the energy consumption is spread among neighbouring
15 minutes metering intervals, e.g. see Fig. 1a.

However, in reality unexpected events (see [1]) such as a
machine breakdown or a delay caused by material unavailabil-
ity may occur, which can cause a deviation of the baseline start
times of the operations. It is possible that in such a realised
schedule some energy demanding operations will get closer to

each other in some metering interval and therefore increasing
the total consumed energy in that metering interval above the
energy limit, e.g. see Fig. 1b that shows a realised schedule
in which operation 2 deviated from its baseline start time by
3 time units.

A possible way of dealing with the unexpected events
is to monitor the manufacturing process by a scheduling
system and when an operation deviates, the remaining ones
are rescheduled so that the energy consumption limits are not
violated in the new baseline schedule. For example, consider
the schedule in Fig. 1b. The scheduling system detects that
starting operation 3 at completion of deviated operation 2
would violate the energy consumption limit, therefore it should
shift operation 3 further to the future so that part of it will
be allocated in metering interval 3 thus decreasing the total
energy consumption in metering interval 2. However, if the
initial baseline schedule proposed by the scheduling system is
not devised in a robust way, e.g. energy demanding operations
are scheduled in close time proximity to each other, then even
in case of small deviations a large idle times could be needed.
Moreover, it is not always the case that the manufacturing
process is controlled by some on-line scheduling system, i.e.
the manufacturing process is only represented by one baseline
schedule that workers receive at the start of their shift. By
inserting small idle times and having a more suitable order
of the operations, it is possible to make the baseline schedule
robust against such disturbances, i.e. a robust baseline schedule
guarantees that if the start times are arbitrary delayed within
the given limits, then the energy consumption limits are not
violated.

In this work we consider that the power consumption of the
operations is not changing over time; incorporating nonlinear
power consumption is a possible direction for future research.

A. Motivation

Motivation of the problem comes from a glass production
company. This company has production orders that represent a
final products from a glass panel. To complete an order, a glass
panel goes through two stages: preprocessing and tempering.
In the preprocessing stage, the glass panels are cut and drilled
while in the tempering stage, the preprocessed glass panels
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(a) Example of a feasible baseline schedule.
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(b) Example of a realised schedule in which the en-
ergy consumption limit is violated in metering interval
2.

Figure 1: Example of a baseline and realised schedule. Energy consumption limits are denoted by dashed horizontal red lines.

are heated in a furnace up to 620 ◦C and then rapidly cooled
down. The contract with the electricity provider requires that
the energy consumption of the production in each 15 minutes
metering interval is less than the given energy consumption
limit.

Since the energy consumption of the preprocessing stage is
negligible compared to the energy demand of the tempering
stage, we consider scheduling of the operations only in the
tempering stage. However, the preprocessing stage is not
completely omitted because the completion time of the last
step in the preprocessing stage represents the time when a
preprocessed glass is available for tempering, i.e. it represents
a release time.

Due to logistical reasons, groups of orders should be com-
pleted up to some due date. Therefore, our goal is to provide
a robust baseline schedule for a single machine that minimises
the sum of tardiness.

Although the problem is motivated by a specific real-world
problem from the production domain, it is possible to apply
the results to similar scheduling problems where availability
limits on partially renewable resources can be represented by
energy consumption limits.

B. Related Work

In general, the significance of energy-aware scheduling
increases due to scarcity of energy resources [2]. The energy
consumption limits have been previously studied in [3], [4],
[5], [6]. In [3], an integer linear programming formulation was
proposed which was improved in [4]. A two-stage approach
combining integer linear programming and constraint pro-
gramming was presented in [5]. A similar problem to energy
consumption limits is the problem of a maximal instantaneous

power consumption [7], [8]. However, start times deviations
are not considered in any of these works.

Robust scheduling is a well-studied problem in the domain
of project scheduling [9], [10]. The robustness is achieved
either by a robust resource allocation or inserting time buffers
between activities. However, the existing literature mostly
focuses on stochastic optimisation of expected deviation of
the realised start times from the baseline start times, whereas
we are concerned with satysfing the energy limit in all possible
discrete situations. This problem is known in the literature as
optimisation with uncertainty sets, e.g. in [11] a logic-based
Benders decomposition approach is employed in a scheduling
problem with release time delays, which are modelled using
uncertainty sets.

C. Contribution and Outline

Our contributions are the following: (i) a pseudo-polynomial
algorithm for checking whether a given baseline schedule is
robust and (ii) a relaxation of the problem and feasibility cuts.
Both contributions are the foundations of a decomposition
approach that we use for solving the proposed scheduling
problem.

The paper is organised as follows. Section II states the
problem in formal way. Section III describes the solution
approach and which is then evaluated in Sect. IV. Section V
discusses the integration of the proposed algorithm into pro-
duction process. Finally, the last section concludes the paper.

II. PROBLEM STATEMENT

First, the scheduling problem considering only the energy
consumption limits without robustness will be described.
Then, the scheduling problem is extended with the deviation
of the start times.



A. Non-robust Scheduling with Energy Consumption Limits

Let J = {1, 2, . . . , n} be a set of operations that have
to be scheduled on a single machine without preemption.
For each operation j ∈ J we define release time rj ∈ N,
processing time pj ∈ N>0 and due date dj ∈ N. For
each operation j we also define power consumption Pj that
represents an instantaneous power consumption of the machine
when processing operation j.

The operations have to be scheduled within scheduling
horizon H , i.e. the operations must complete at most at time
H . The scheduling horizon is divided into set of metering
intervals Ω = {1, 2, . . . , HD } with equal length of D ∈ N>0

(it is assumed that H is a multiple of D). For each metering
interval ω ∈ Ω, maximum energy consumption is denoted as
Emax
ω , which represents the energy consumption limit on the

total energy consumption in metering interval ω. Moreover, let
us denote start and end of interval ω as ωs = (ω− 1) ·D and
ωe = ωs +D, respectively.

Baseline start times BS ∈ Nn is a vector, where each
element BSj represents the baseline start time of operation
j. Baseline start times BS are called baseline schedule if
the operations are not overlapping and for all operations j
holds that rj ≤ BSj ≤ H − pj . If operation j starts at time
BSj in some schedule BS, then a processing time in metering
interval ω is denoted as pBSj,ω , which represents the length of
the overlap between metering interval ω and the interval in
which the operation j is scheduled if started at time BSj . A
feasible baseline schedule is a baseline schedule such that in
each metering interval ω the total energy consumption is at
most Emax

ω , i.e. ∑
j∈J

pBSj,ω · Pj ≤ Emax
ω , ω ∈ Ω (1)

The goal is to find a feasible baseline schedule
which minimises the sum of tardiness

∑
j∈J Tj , where

Tj = max{0, (BSj + pj)− dj}. We describe this problem in
Graham’s notation as 1|rj , Emax

ω |
∑
Tj .

B. Robust Scheduling with Energy Consumption Limits

Let δmax ∈ N be a maximum deviation of any operation.
Then ∆ = {0, 1, . . . , δmax}n = {δ1, δ2, . . . , δ|{0,1,...,δmax}n|} is
a set of all deviation situations. Deviation situation δi ∈ ∆
is a vector where each element δi,j represents a deviation of
operation j in deviation situation δi.

Let BS be some baseline schedule, then π ∈ Π(J ) is
a permutation of operations corresponding to the order of
operations defined by schedule BS, where Π(J ) is a set of
all permutations of J ; π(k) represents the operation at k-th
position in permutation π. Let δi be an arbitrary deviation
situation, then we define the corresponding realised schedule
RSi as follows

RSi,π(1) = BSπ(1) + δi,π(1) (2)

RSi,π(k) = max{BSπ(k), RSi,π(k−1) + pπ(k−1)}+ δi,π(k)

k ∈ J , k 6= 1
(3)

where RSi,π(k) is the realised start time of operation π(k) in
realised schedule RSi.

Eq. (2) and (3) state that an operation must start as early as
possible but not before its baseline start time and not before
the end of the previous operation. Therefore, it represents a
reactive policy [9] that is very simple to follow by the workers.

For the purpose of Sect. III we also define a latest
start time of operation π(k) as LSπ(k) = RSi,π(k), where
δi = (δmax, δmax, . . . , δmax). The latest start time represents the
maximum starting time over all realised schedules for a fixed
baseline schedule.

The goal is to find feasible baseline schedule BS such that
the energy consumption limits are not violated in any metering
interval for any deviation situation, i.e.∑

j∈J
pRSij,ω · Pj ≤ E

max
ω , ω ∈ Ω, δi ∈ ∆ (4)

and for which
∑
j∈J Tj is minimal. Such baseline schedule is

called robust. We describe this problem in Graham’s notation
as 1|rj , Emax

ω , δmax
j = δmax|

∑
Tj .

We illustrate the notation on a simple example with 5 oper-
ations J = {1, 2, 3, 4, 5}. Let D = 15, Ω = {1, 2}, δmax = 3
and Emax

1 = Emax
2 = 120. The values of the operations are

provided in Tab. I. A feasible baseline schedule is shown in
Tab. II and a realised schedule computed using Eq. (2) and
(3) for deviation situation δi = (3, 0, 3, 2, 0) is provided in
Tab. III. Notice that RSi,4 −BS4 = 5 > δmax since operation
4 is shifted by operation 3. Moreover, RSi,5−BS5 > 0 even
though δi,5 = 0; this is due to deviation of the preceding
operations. The total tardiness equals to 4 and the total energy
consumption in the realised schedule in metering intervals 1
and 2 are 69 and 117, respectively. The visualisation of the
baseline and realised start times are in Fig. 2.

Problem 1|rj , Emax
ω , δmax

j = δmax|
∑
Tj is NP-hard which

can be shown by a reduction from problem 1||
∑
j Tj which

is also NP-hard [12]. Problem 1|rj , Emax
ω , δmax

j = δmax|
∑
Tj

solves any instance of problem 1||
∑
j Tj if D =

∑
j∈J pj ,

Ω = {1}, Emax
1 =

∑
j∈J pj · Pj , δmax = 0 and

∀j ∈ J : rj = 0.

III. SOLUTION APPROACH

First, we formulated the problem as a monolithic Mixed
Integer Linear Programming (MILP) model. The underlying
concept is that for each deviation situation, an independent
realised schedule is constructed which is checked against the
energy consumption limits. The main issue with the monolithic
model is that due to size of ∆, the number of constraints grows
exponentially in the number of the operations.

Therefore, a decomposition scheme is used in which the
original problem is split into a master problem and a subprob-
lem. The master problem solves optimally a relaxed problem
of the original problem. Let BS′ be an optimal solution to
the master problem. The subproblem checks whether schedule



Table I
Values of the operations.

j rj dj pj Pj

1 0 5 2 5
2 0 10 2 7
3 0 15 7 15
4 0 17 4 12
5 0 30 3 3

Table II
Baseline schedule.

j BSj

1 0
2 6
3 9
4 16
5 20

Table III
Realised schedule for δi = (3, 0, 3, 2, 0).

j RSi,j p
RSi
j,1 p

RSi
j,2 p

RSi
j,1 · Pj p

RSi
j,2 · Pj

1 3 2 0 10 0
2 6 2 0 14 0
3 12 3 4 45 60
4 21 0 4 0 48
5 25 0 3 0 9
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(a) Baseline schedule.
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(b) Realised schedule for δi = (3, 0, 3, 2, 0).

Figure 2: Visualisation of the example.

BS′ is feasible in the original problem. If yes, then since
the master problem is a relaxation of the original problem,
schedule BS′ is optimal in the original problem. If no, the
subproblem generates cutting constraints based on schedule
BS′ which are then added to the master problem. The master
problem is then solved again and the whole process repeats
unless the master problem is infeasible or the subproblem
proves that the current schedule is feasible in the original
problem. The decomposition is a special case of logic-based
Benders decomposition [13], in which bounding functions only
determine, whether the solution is feasible or not.

The key aspects to identify are how the original problem
should be relaxed in the master problem and what cutting
constraints should be generated.

A. Master Problem

Essentially, the master problem is 1|rj , Emax
ω |

∑
Tj which

is modelled as MILP using time-indexed formulation with
additional constraints for deviations caused by a single opera-
tion. We use the time-indexed formulation because it is more
suitable for generating the cutting constraints.

There are three types of variables in the master problem: (i)
a binary baseline start time of operation j in time t defined
as bsj,t = 1 iff j starts at t, (ii) an energy consumed in
time t denoted as Etime

t , and (iii) tardiness variables Tj . To
ensure that no operation could complete outside of the horizon
even if all operations deviated, we define maximum start time
BSmax = H − (n · δmax + maxj∈J pj).

The MILP model of the master problem is in Fig. 3. The

objective of the master problem is minimisation of the sum
of tardiness. Constraint (6) ensures that each operation starts
in some time that is at least its release time and at most the
maximum start time. Constraint (7) enforces that each time
unit can be occupied by at most one operation. Computation of
consumed energy in time t is in Constraint (8). Constraint (9)
ensures that the energy consumption limit in each metering
interval is not violated.

The master model in Fig. 3 does not take the deviations of
the start times into account. However, we can strengthen the
model by adding the following constraint

ωe−1−δ∑
t=max{0,ωs−δ}

Etime
t ≤ Emax

ω , ∀δ ∈ {1, . . . , δmax},∀ω ∈ Ω

(12)
that considers deviations of a single operation. The idea is the
following: assume that j is the first operation that has non-zero
intersection with interval [ωs− δ, ωs) in baseline schedule BS
(see Fig. 4a). Let RSi be a realised schedule corresponding to
deviation situation δi defined as δi,j′ = δ if j′ = j, δi,j′ = 0
otherwise (see Fig. 4b). All parts of the operations that are
allocated in time interval [ωs − δ, ωe − δ) in baseline schedule
BS (the operation parts are enclosed by the hatched grey box
in Fig. 4a) will be right-shifted into interval [ωs, ωe) in realised
schedule RSi. The constraint is also valid when there are idle
times between the operations, although the constraint is weaker
in a such case.



min
∑
j∈J

Tj (5)

s.t.
BSmax∑
t=rj

bsj,t = 1, ∀j ∈ J (6)

∑
j∈J

t∑
t′=max{0,t−pj+1}

bsj,t′ ≤ 1, ∀t ∈ {0, . . . ,H − 1} (7)

∑
j∈J

t∑
t′=max{0,t−pj+1}

bsj,t′ · Pj = Etime
t , ∀t ∈ {0, . . . ,H − 1} (8)

ωe−1∑
t=ωs

Etime
t ≤ Emax

ω , ∀ω ∈ Ω (9)

Tj ≥

(
pj +

BSmax∑
t=0

t · bsj,t

)
− dj , ∀j ∈ J (10)

Tj ≥ 0,∀j ∈ J . (11)

Figure 3: MILP formulation of the master model.
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(a) Baseline schedule BS.
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(b) Realised schedule RSi.

Figure 4: Illustration of the concept behind Constraint (12),
δ = 2, D = 5.

B. Subproblem

1) Feasibility check: In this section we provide a pseudo-
polynomial algorithm that is able to detect whether baseline
schedule BS found by the master problem is not violating
the energy limit in any metering interval for any deviation
situation.

The following theorem shows that whenever a baseline
schedule violates the energy consumption limit in some devi-
ation situation δi1 , there exists deviation situation δi2 that has
a specific form and in which the energy consumption limit
is also violated (if δi1 has this specific form then δi1 = δi2 ).

Therefore, the main idea behind the algorithm is that only the
deviation situations of the specific form are checked.

Theorem 1. Let BS be the baseline schedule and π be a
corresponding permutation of operations. Let δi1 be a devi-
ation situation in which the corresponding realised schedule
RSi1 violates the energy consumption limit in some metering
interval ω. Then there exists deviation situation δi2 and
karb ∈ J defined as

1) ∀k ∈ [1, karb − 1] : δi2,π(k) = δmax

2) 0 ≤ δi2,π(karb) ≤ δmax

3) ∀k ∈ [karb + 1, n] : δi2,π(k) = 0

such that realised schedule RSi2 also violates the energy
consumption limit in metering interval ω.

Proof. Let kfirst be the first operation that has
non-zero intersection with metering interval ω in
RSi1 . For given permutation π we define function
ϕ : J × {0, . . . , δmax} → {1, 2, . . . , |∆|} such that

δϕ(k,δ),π(k′) =


δmax k′ ∈ [1, k − 1]

δ k′ = k

0 k′ ∈ [k + 1, n]

. (13)

For any k ∈ [1, kfirst] and 0 ≤ δ < δmax we prove the
following properties
(P1) RSϕ(1,0),π(kfirst) ≤ RSi1,π(kfirst): holds from

BSπ(kfirst) ≤ RSi1,π(kfirst) (14)

and
RSϕ(1,0),π(kfirst) = BSπ(kfirst) . (15)

(P2) RSϕ(kfirst,δmax),π(kfirst) ≥ RSi1,π(kfirst): holds from

LSπ(kfirst) ≥ RSi1,π(kfirst) (16)



and
RSϕ(kfirst,δmax),π(kfirst) = LSπ(kfirst) . (17)

(P3) RSϕ(k,δ),π(kfirst) ≤ RSϕ(k,δ+1),π(kfirst): Let
k′ ∈ [k + 1, kfirst] be a first position such that

RSϕ(k,δ),π(k′) > RSϕ(k,δ+1),π(k′) ; (18)

obviously this cannot happen for k′ = k. From the
assumption it holds that

RSϕ(k,δ),π(k′−1) ≤ RSϕ(k,δ+1),π(k′−1) , (19)

therefore we get a contradiction

RSϕ(k,δ),π(k′) =

= max{BSπ(k′), RSϕ(k,δ),π(k′−1) + pπ(k′−1)}
≤ max{BSπ(k′), RSϕ(k,δ+1),π(k′−1) + pπ(k′−1)}
= RSϕ(k,δ+1),π(k′) .

(20)

(P4) RSϕ(k,δ+1),π(kfirst) ≤ RSϕ(k,δ),π(kfirst) + 1: Let
k′ ∈ [k + 1, kfirst] be a first position such that

RSϕ(k,δ+1),π(k′) > RSϕ(k,δ),π(k′) + 1 ; (21)

obviously this cannot happen for k′ = k. From the
assumption it holds that

RSϕ(k,δ+1),π(k′−1) ≤ RSϕ(k,δ),π(k′−1) + 1 , (22)

therefore we get a contradiction

RSϕ(k,δ+1),π(k′) =

= max{BSπ(k′), RSϕ(k,δ+1),π(k′−1) + pπ(k′−1)}
≤ max{BSπ(k′), RSϕ(k,δ),π(k′−1) + 1 + pπ(k′−1)}
≤ max{BSπ(k′), RSϕ(k,δ),π(k′−1) + pπ(k′−1)}+ 1

= RSϕ(k,δ),π(k′) + 1 .
(23)

The following property holds only for k ∈ [1, kfirst − 1]

(P5) RSϕ(k,δmax),π(kfirst) ≤ RSϕ(k+1,1),π(kfirst) ≤
RSϕ(k,δmax),π(kfirst) + 1: since

RSϕ(k,δmax),π(kfirst) = RSϕ(k+1,0),π(kfirst) , (24)

this was already proven.
Construct a sequence of pairs (k, δ)

(1, 0), (1, 1), (1, 2) . . . , (1, δmax), (2, 1), (2, 2), . . . , (kfirst, δmax)
(25)

Properties (P3), (P4) and (P5) ensure that if (k, δ), (k′, δ′) are
two consecutive pairs, then

RSϕ(k,δ),π(kfirst) ≤ RSϕ(k′,δ′),π(kfirst) ≤ RSϕ(k,δ),π(kfirst) + 1 .
(26)

Since RSϕ(1,0),π(kfirst) ≤ RSi1,π(kfirst) and
RSϕ(kfirst,δmax),π(kfirst) ≥ RSi1,π(kfirst), there must be a pair
(karb, δarb) such that RSϕ(karb,δarb),π(kfirst) = RSi1,π(kfirst).
Therefore we set δi2 = δϕ(karb,δarb). This implies that the
energy consumption of operation π(kfirst) in metering interval
ω is the same in both schedules RSi1 ,RSi2 .

1: procedure CHECKBASELINESCHEDULE(BS)
2: (karb, δarb)← (1, 0)
3: while karb ≤ n ∧ δarb ≤ δmax do
4: RS ← createRealisedSchedule(BS, karb, δarb)
5: for all ω ∈ Ω do
6: if energyLimitV iolated(RS, ω) then
7: return INFEASIBLE
8: end if
9: end for

10: if δarb < δmax then
11: δarb ← δarb + 1
12: else
13: (karb, δarb)← (karb + 1, 1)
14: end if
15: end while
16: return FEASIBLE
17: end procedure

Figure 5: Algorithm for checking whether a baseline
schedule violates the energy limits in any interval.

Now it remains to show that the energy consumption in
metering interval ω of operations on positions [kfirst + 1, n]
in RSi2 is not less than the energy consumption in RSi1 .
A key observation is that shifting any operation on po-
sition k ∈ [kfirst + 1, n] to the left up to ωs will not
decrease the total energy consumption in metering inter-
val ω. We show that ∀k ∈ [kfirst, n] : RSi1,π(k) ≥ RSi2,π(k)

holds. Assume that k ∈ [kfirst + 1, n] is the first posi-
tion for which RSi1,π(k) < RSi2,π(k). Then from assumption
RSi1,π(k−1) ≥ RSi2,π(k−1) we get a contradiction

RSi2,π(k) = max{BSπ(k), RSi2,π(k−1) + pπ(k−1)}
≤ max{BSπ(k), RSi1,π(k−1) + pπ(k−1)}
= RSi1,π(k) .

(27)

Since RSi2,π(kfirst) = RSi1,π(kfirst) and ∀k ∈ [kfirst + 1, n]

ωs ≤ RSi2,π(kfirst) + pπ(kfirst) ≤ RSi2,π(k) ≤ RSi1,π(k) (28)

holds, the energy consumption in metering interval ω in
realised schedule RSi2 is not less than the energy consumption
in RSi1 .

The algorithm for checking the baseline schedule is shown
in Fig. 5. The algorithm uses the idea from proof of Theorem 1
by iteratively trying all pairs from (25). From pair (karb, δarb),
the realised schedule for the deviation situation defined
as (13) is created using function createRealisedSchedule.
The energy consumption limits for each metering inter-
val in realised schedule RS are checked using function
energyLimitV iolated at the start of each iteration.

Since in the worst case the number of iterations of the
loop in lines 3-15 is n · δmax (this can be easily derived
from the space of the explored deviation situations corre-
sponding to the pairs (25)), the complexity of the algorithm is
O(n2 · δmax · (|Ω|+ 1)).



2) Cutting constraints: For the decomposition approach to
remain exact, the only requirement on the cutting constraints
generated from the subproblem is that if BS∗ is an optimal
schedule for the original problem, no cutting constraint is
violated in BS∗.

In our subproblem, 2 types of cutting constraints are gen-
erated. The first type of cutting constraint is a lower bound
cut. If Z ′ is the objective value of relaxed solution BS′ that
is infeasible in the original problem, then the cut has a form
Z ′ ≤

∑
j∈J Tj . The idea is to speed up the master problem

by providing lower bound Z ′ on the original problem.
The second type of cutting constraint is a partial solution

cut. Let RS′i be a realised schedule corresponding to deviation
situation δi in which the energy consumption limit is violated
in some metering interval ω. Then BS′ can be cut from the
master problem using the following cutting constraint∑

j∈J

∑
t∈{0,...,H−1}:bs′j,t=1

bsj,t ≤ n− 1 , (29)

which enforces that at least one operation starts at different
time than in BS′. This cut can be strengthened by observing
that not all operations are responsible for violating the energy
limit. Let π′(kfirst) and π′(klast) be the first and the last
operation that has non-zero intersection with interval ω in
RS′i, respectively. Furthermore, let khead ≤ kfirst be a maximum
position such that LS′π′(khead−1) + pπ′(khead−1) ≤ BS′π′(khead). If
no such a position exists, then khead = 1. The meaning of khead

is that even if all operations on positions k < khead deviate by
δmax, the earliest start time of π′(khead) will be the same as the
baseline start time, i.e. the operation will not be shifted due to
deviations of the previous operations. It can be shown that only
operations [π′(khead), π′(khead + 1), . . . , π′(klast)] are responsi-
ble for violating the energy limit; either directly by intersecting
metering interval ω or indirectly by shifting the subsequent
operations. Therefore, the partial solution cut cuts out solutions
in which operations [π′(khead), π′(khead + 1), . . . , π′(klast)] (i)
have the same order as in π′, (ii) all other operations start after
π′(klast) or before π′(khead), and (iii) the length of intersection
of the operations [π′(khead), π′(khead + 1), . . . , π′(klast)] with
metering interval ω in some realised schedule is at least the
length of intersection in RS′i. Therefore, the partial solution
cut can be written as ∑
k∈(J\{khead,...,klast})

BS′
π′(khead)∑
t=0

bsπ′(k),t +

BSmax∑
t=t̄

bsπ′(k),t


+

klast−1∑
k=kfirst

BS′
π′(k+1)

+pπ′(k+1)−1∑
t=BS′

π′(k)

bsπ′(k),t +

t̄∑
t=BS′

π′(klast)

bsπ′(klast),t

≤ n− 1
(30)

where t̄ = min{RS′i,π′(klast), BS
′
π′(klast+1)} if klast + 1 ≤ n,

t̄ = RS′i,π′(klast) otherwise.

IV. EXPERIMENTS

The proposed decomposition approach was evaluated on
randomly generated instances inspired by a real-world scenario
from a glass production company. The number of operations
was fixed to 15 and the length of metering interval was
fixed to 15. Parameters of each operation j were sampled
as following: pj from discrete uniform distribution U{3, 7},
Pj from continuous uniform distribution U(10, 15), rj from
U{0, 0.5 ·

∑
pj} and for generating dj value of dj − (rj +pj)

from U{0, 0.75 ·
∑
pj}. Energy consumption limit Emax

ω was
set to D · γ ·maxj∈J Pj , where γ is an energy limit tightness
(for simplicity, one value of the energy limit is generated for
all metering intervals).

We experimented with various values of δmax and γ.
For each values δmax and γ, 100 instances were gener-
ated. The results of the experiment are in Tab. IV. Col-
umn % represents the percentage of the instances solved
optimally within the time limit of 10 minutes. Columns
min(RT), ave(RT),max(RT) represents the minimum, aver-
age and maximum solver runtime on the solved instances,
respectively. Similarly, min(IT), ave(IT),max(IT) represents
the minimum, average and maximum number of iterations be-
tween master problem and subproblem on the solved instances,
respectively. The experiments were performed on Intel Xeon
E5-2620 v2 @ 2.10 GHz processor with 64 GB of RAM.
Gurobi Optimizer 6.5 was used for solving the master problem
while the rest of the algorithms was programmed in C++ and
compiled with GCC 4.9.3.

From the results we can see that lower value of energy limit
tightness increases the complexity of the instances, while the
effect of increasing the maximum deviation is less significant.
However, decreasing the energy limit tightness considerably is
not practical since it increases the total tardiness.

We also measured the relative execution time of the master
problem and the feasibility check algorithm. In the experiment
with γ = 0.9 and δmax = 3, 99.4% of the total experiment
execution time was spent in solving the master problem while
0.3% of the time was spent in the feasibility check algorithm.

V. INTEGRATION INTO PRODUCTION PROCESS - SCALING
TO LARGER INSTANCES

Although the number of operations in the experiments may
seem to be low for the real-world scenarios, our approach can
be easily scaled to larger instances using a rolling-horizon
heuristic scheduling. First, sort the operations increasingly
according to their due dates. Then, select the first 10-15 oper-
ations, solve the smaller scheduling problem with the selected
operations and execute the proposed baseline schedule. After
the last operation of this schedule is finished, select the next
10-15 operations and perform the same steps as above. The
justification of such method is that due to possible distur-
bances, it could be more advantageous to perform rescheduling
every k hours, therefore the advantage of solving a larger
instance at once is virtually lost. Moreover, the rolling-horizon



Table IV: Experiment results

γ δmax % min(RT) [s] ave(RT) [s] max(RT) [s] min(IT) ave(IT) max(IT)
0.9 1 78 0.0 13.14 360 1 11.86 216
0.9 2 66 0.0 30.82 592 1 24.26 191
0.9 3 63 0.0 34.98 558 1 28.10 299

0.88 1 56 0.0 57.12 555 1 37.98 353
0.88 2 39 0.0 28.82 255 1 25.79 236
0.88 3 37 0.0 46.76 577 1 29.24 212

approach can be easily employed in online setting where the
production orders are arriving progressively through time.

VI. CONCLUSION

We studied a novel problem of satisfying the energy con-
sumption limits by manufacturing companies with high energy
demand under production uncertainties. Such problem often
occurs in reality since the realised schedule is usually different
from the proposed baseline schedule.

For solving this problem we designed a decomposition
approach, in which our main contributions are (i) a pseudo-
polynomial algorithm for checking whether the given base-
line schedule is robust considering the uncertainties and (ii)
feasibility cuts. In the experiments we showed that our ap-
proach is able to solve optimally majority of instances with
15 operations if the the energy consumption limit is not
very tight. For the real-world scenarios with substantially
more operations, our decomposition method can be integrated
into a rolling-horizon scheduling in which the production is
iteratively planned for shorter time periods.
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