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Abstract—The time-triggered Ethernet gains in popularity in
many different industrial applications. While several hardware
implementations exist, software implementations are also very at-
tractive for their price-to-performance ratio. The main parameter
that influences the performance of time-triggered protocols is the
transmission jitter, which is greater in software implementations.

In this paper we evaluate one source of transmission jitter
occurring in such software implementations – the PCI Express
bus, which interconnects the CPU, memory and the network
interface card in modern multi-core computers. We show that
the contribution of the PCI Express to the transmission jitter
of Ethernet frames is significant and is in the same order of
magnitude as the scheduling jitter of modern real-time operating
systems. PCI Express latency and jitter are evaluated under
various loads produced by virtual machines running on dedicated
CPU cores. We use the IEEE 1588 feature of the network card
for precise timing measurements.

I. INTRODUCTION

Ethernet-based networks are becoming more and more
popular in industrial communication. This is because it is a
historically well proven technology, it offers high bandwidth
and many real-time (RT) extensions that make the Ethernet
communication deterministic exist. Unfortunately, there is no
single universal real-time Ethernet extension. Several compa-
nies offer their proprietary solutions [1]. Together with the high
price of those solutions, this might be the reason why software-
based real-time Ethernet implementations are so popular [2–6].

We investigate the possibility of implementing a software-
based real-time Ethernet protocol while utilizing the exten-
sive virtualization capabilities of modern x86 hardware. Our
focus is on the commercial-off-the-shelf (COTS) networking
and computing hardware, which is gaining in popularity for
industrial automation, not only because its favorable price
and widespread availability but also because of the familiar
environment when used with any of the real-time Linux
derivatives.

One way of achieving deterministic medium access is to
use time division multiple access method employed by the so
called time-triggered (TT) protocols [7, 8]. TT protocols need
to maintain a notion of global time in order to synchronize
the transmission in all nodes. One way to achieve this is
to use Precision Time Protocol (PTP), standardized in IEEE
1588 [9], that allows one to synchronize the time with sub-
microsecond precision over the Ethernet. The advantages of TT
networks are determinism and trivial evaluation of the worst-
case behavior. A disadvantage is inefficient use of available

bandwidth, because temporarily unused slots must be either
retained in the schedule or complex rules for their skipping
must be introduced. In addition, if the used technology exhibits
transmission (TX) jitter1, which is common with software-
based solutions, it is necessary to insert large inter-frame gaps
that decrease bandwidth utilization even more. Examples of
TT protocols are TTEthernet [8], ProfiNet IRT [10] or FlexRay
[11].

Some of the drawbacks of TT protocols are mitigated
by event-triggered protocols. There, the medium access is
controlled by the reception of specific messages from other
nodes. For example Ethernet Powerlink [5] has a managing
node that controls it when so called controlled nodes can access
the medium. In Node Ordered Protocol [12], the medium
access is determined by the predefined order of nodes. Another
principle is used in Avionics Full-Duplex Switched Ethernet
(AFDX) [4], which employs bandwidth limiting to ensure that
the network is not overloaded and latencies remain low.

For today’s industry, determinism of the network communi-
cation is necessary but not sufficient. The efficiency of resource
usage is also important but it contradicts the demand for
determinism. Therefore, there are attempts to integrate multiple
subsystems of different criticality in a single platform to
improve the efficiency. This contrasts to the federated principle
applied so far, where every subsystem was implemented as a
separate node. The examples of modern integrated architec-
tures are IMA [13] in avionics and AUTOSAR [14] in the
automotive domain. One of the means for efficient integration
of subsystems is the use of virtualization. Here, hypervisors
are used to provide strict separation of independent subsystems
[15] allowing one to build a mixed-criticality system.

In the past, it was believed that the biggest source of
TX jitter occurring in software implementations of the real-
time Ethernet was the operating system’s (OS) scheduler [3].
With appropriate hardware and modern RT operating systems,
the worst-case scheduling latencies are below 30µs [16].
Nowadays, with the advent of multi-core CPUs, it is possible
to dedicate one or more cores for network processing and
completely eliminate the non-determinism of the OS scheduler.
We have performed this by using a NOVA microhypervisor
[17]. We isolate one CPU from all unrelated activities such as
timer interrupts. This is not yet possible with standard Linux
and their virtualization platforms such as KVM. Moreover, the

1Transmission jitter is the difference between maximum and minimum
deviation from the intended transmission time.



minimalist design of NOVA, together with a small memory
footprint of our network processing code, ensures that all the
network processing code and related data can be fetched from
the CPU’s private level-2 cache memory without interference
caused by memory traffic from other cores. Additionally, the
isolation and fault-containment properties of the NOVA system
make it suitable for use in safety-critical environments, which
would be impossible for systems such as Linux or RTAI,
where a huge amount of code (Linux kernel) runs in the most
privileged CPU mode.

We believed that our implementation outlined in the pre-
vious paragraph would provide very good performance, espe-
cially in terms of TX jitter figures. To our surprise, the real
jitter was greater than 10µs, which was comparable to other
Linux-based solutions found in the literature. Therefore, we
decided to investigate the cause of it.

The contributions of this paper are: We evaluate the prop-
erties of the PCI Express bus (PCIe), which interconnects the
CPU, memory and the network interface card (NIC). We show
that the contribution of the PCIe to the TX jitter of Ethernet
frames is significant. PCIe latency and jitter are evaluated
under various loads produced by virtual machines running
on other CPU cores. We use the IEEE 1588 feature of the
NIC for precise timing measurements. Our findings are useful
for all SW-based real-time protocols implemented on modern
x86 hardware. For time-triggered networks our results can be
used to determine the proper size of inter-frame gaps. For
event-triggered networks, the TX jitter influences the timing
precision, which might be an important parameter for many
applications.

The paper is structured as follows: After reviewing the
related work in Section II, we describe the architecture of
modern computers and of our hardware and software used for
measurements in Section III. The results of our experiments
are presented in Section IV and we conclude with Section V.

II. RELATED WORK

Many software implementations of real-time Ethernet exist.
Probably, the most well known is RTnet [18]. It is a generic
networking stack for RTAI and Xenomai – real-time extensions
of Linux. As RTnet is implemented as a kernel module sharing
an address space with the Linux kernel, it is not well suited
for safety-critical applications.

Grillinger, Ademaj, Steinhammer, et al. [3] describe soft-
ware implementation of the Time-Triggered Ethernet (TTE)
implemented in RTAI. The authors evaluated the achieved
latencies and jitters and found them in the order of tenths of
microseconds. They claim that the main bottleneck of their
implementation is the interrupt latency that influences the
precision of software packet timestamping and that hardware
time stamping would help. In this paper, we show that despite
the fact that hardware timestamping is used, the PCI Express
causes significant jitter.

Bartols, Steinbach, Korf, et al. [19] analyzed the latencies
of the TTE hardware by using a Linux kernel with rt preempt
patches. They implemented software-based timestamping of
the packets and report that the precision of their measurements
is in units of microseconds. Since the system used for their

measurement was based on a PCI Express bus, it is question-
able whether the precision was really so low. We show that a
PCI Express can introduce jitter over 10µs.

Cena, Cereia, Bertolotti, et al. [20] describe a software
implementation of the IEEE 1588 time synchronization pro-
tocol based on RTnet. The accuracy of their implementation
is assessed by generating a signal on a parallel port of a
PC and measuring the properties of that signal. Since the
parallel port is connected over a slow LPC bus as detailed in
Section III-A, the jitter of the parallel port’s generated signal
is also influenced by the PCI Express jitter, which can be quite
high.

Pure software implementation of the OpenPOWERLINK,
open source Industrial Ethernet solution, are described in [5].
Safety-certifiable software implementation of the AFDX stack
and the achieved latencies are analyzed in [4]. None of those
papers give sufficient details on the CPU-NIC interconnect.

III. ARCHITECTURE

A. Today’s PC architecture

The architecture of the modern PC and of many industrial
computers is determined by the architecture of the PCI Express
(PCIe) bus [21]. The central component called a root complex
connects the CPU cores with memory controllers and other
peripherals (Fig. 1). It is usually integrated on the same chip as
the CPU. The other components of the PCIe topology are end-
points, which usually represent devices, and switches, which
are responsible for interconnecting all of the endpoints with
the root complex. All those components are interconnected
via PCIe links that are formed by one or more lanes. The
more lanes the higher bandwidth of the link. N -lane link is
denoted as xN . All PCIe communication is packet-based and
packets are routed from the root complex via switches to the
destination endpoints and back. Since one link can transfer
only one packet in one direction at a time, packets may be
delayed by waiting for a free link.

Root complex typically has several PCIe links. In PCs,
one is dedicated to a graphics adapter, another is connected
to a so called platform controller hub [22] (or chipset in
short). It contains PCIe switch(es) interconnecting different
PCIe endpoints and conceivably a bridge to the legacy PCI bus.
PCH also integrates other controllers such as USB, SATA, LPC
(low pin count interface – used to connect legacy peripherals
such as a parallel port or a PS/2 keyboard). Those additional
controllers appear to the operating system as PCI devices.
Besides PCI devices, PCH also contains non-PCI devices such
as high-precision event timers (HPET).

Due to the packet-based character of the PCIe communica-
tion, sharing of PCI links between devices and several sources
of latency in the PCIe communication protocol [23] (e.g. the
need for acknowledging received packets), the total latency of
PCIe communication can be relatively high compared to an
older parallel PCI bus.

B. Intel 82576 Gigabit Ethernet Controller

In our experiments, presented in Section IV, we used a
modern network interface card (NIC) based on Intel’s 82576
Gigabit Ethernet controller. The main reason we chose this
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Figure 1. Typical architecture of a modern PC

COTS NIC was the built-in hardware support for the IEEE
1588 standard. This support was used for precise measure-
ments of the PCIe latencies in this paper. The NIC contains
two Ethernet controllers but in our experiments we use only
one of them.

The key features supporting the implementation of PTP on
this device are an adjustable clock and hardware timestamping.

The adjustable clock is implemented as a 64-bit up counter.
The readout is possible through two 32-bit registers (the higher
half of the value is latched when the lower half is read). The
clock is periodically incremented. Both, the period and the
increment are configurable. The increment period can be set
as a multiple of 16 ns.

The hardware timestamping feature allows one to capture
timestamps (i.e. the value of clock described above) of the
received PTP packets and of arbitrary transmitted packets.
Only one RX and TX timestamp may be stored at the same
time in dedicated pairs of 32-bit wide registers. The hardware
responsible for timestamping is as close as possible to the
PHY circuit, which performs the conversion between logical
signals and the physical layer. This ensures a high precision
of the captured timestamps, which are taken immediately after
transmitting/receiving the Ethernet Start of frame delimiter.

C. Software architecture

Our longer-term goal is to build a software-based time-
triggered Ethernet stack on COTS x86 computers with a NOVA
microhypervisor. While this stack is not yet implemented,
we outline its planned software architecture in this section,
because it is the same as in our experimental setup for this
paper.

The software architecture is depicted in Figure 2. The
lowest level consists of a NOVA microhypervisor [17]. It is
responsible for hardware resource management and scheduling
and it is the only component that runs in privileged processor
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Figure 2. Software architecture of our implementation

mode (kernel mode). Its very small trusted computing base (9
kLoC) together with the virtualization support makes it a very
interesting solution for safety-critical applications. Note that
in NOVA, device drivers are not the part of the kernel.

NOVA can execute applications in two modes: native mode
and virtual machines (VM). Virtual machine monitor (VMM)
is a NOVA application running in the user mode comprising
the native part that emulates the PC platform and the VM part
that executes the VM code.

The code implementing the real-time Ethernet functionality
is placed in RTEth application running in the user mode. It
is a native NOVA application and besides other things, it
contains the device driver for the NIC. The application is
responsible for managing the transmission and reception of
the Ethernet frames according to the predefined schedule. It
is important to note, that the application does not touch (i.e.
copy) the data to be transmitted or received. The data to be
transmitted is stored in the main system memory directly by
the application that produces it (e.g. a virtual machine). This
application only notifies the RTEth application that the data is
ready in the memory and RTEth instructs the NIC to transmit
it. A similar principle is applied for packet reception. This is
possible because of the use of the shared memory between
the RTEth application and its clients. The implementation is
simplified by the use of IOMMU.

The RTEth application itself is pinned to one CPU core,
which is reserved solely for it. The size of application’s code
and data is 40 KiB, which means it fits into the CPU’s 256 KiB
of L2 cache. Note that the kernel code used for inter-process
communication and scheduling is less than 2 KiB in size and
it fits into the cache together with the application. This means
that the application does not suffer from interference caused by
memory traffic from other cores in the system. This reduces the
execution time jitter of the application and makes its execution
more predictable.

D. Testbed setup

The computer used for the evaluation was a common PC
computer equipped with an Intel i5-3550 CPU (IvyBridge, 4
cores, no hyper-threading), 4 GiB of RAM and a network
add-on card with an Intel 82576 GbE controller (NIC in the
following). The NIC is equipped with an x4 PCIe connector.

The computer comprises two PCIe slots. One of them is
an x16 slot connected directly to the root complex inside the
CPU, the other, an x4 slot, is connected to the chipset (PCH).



+-00.0 Intel Corp. Ivy Bridge DRAM Controller
+-01.0-[01]--+-00.0 Intel Corp. 82576 Gigabit Network Connection
| \-00.1 Intel Corp. 82576 Gigabit Network Connection
+-02.0 Intel Corp. Ivy Bridge Graphics Controller
+-14.0 Intel Corp. Panther Point USB xHCI Host Controller
+-16.0 Intel Corp. Panther Point MEI Controller #1
+-19.0 Intel Corp. 82579LM Gigabit Network Connection
+-1a.0 Intel Corp. Panther Point USB Enhanced Host Controller #2
+-1b.0 Intel Corp. Panther Point High Definition Audio Controller
+-1d.0 Intel Corp. Panther Point USB Enhanced Host Controller #1
+-1e.0-[02]--
+-1f.0 Intel Corp. Panther Point LPC Controller
+-1f.2 Intel Corp. Panther Point 6 port SATA AHCI Controller
\-1f.3 Intel Corp. Panther Point SMBus Controller

Figure 3. Logical PCIe topology as shown by lspci -tv command

For the purpose of this paper we call the former the GFX slot
and the latter the IO slot.

Besides experimenting with the NIC, we also utilized
the SATA controller to generate interfering PCIe traffic. We
connected a common rotating hard drive with a SATA 3.0
interface to one of the on-board SATA ports.

We tried to extract the physical PCIe topology of our
system, but it does not provide the relevant PCIe capabilities to
do that. The logical PCI topology presented to the operating
system is flattened and does not correspond to the physical
topology. Nevertheless, Figure 3 shows the output of the
lspci tool. In this case, the NIC was connected to the GFX
slot, which is denoted as PCI bus number 1 ([01] in the
figure). When the NIC was connected to the IO slot, the
corresponding entries appeared on bus 2 ([02] in the figure).

In our measurements, we did not identify any anomalies
that could be caused by System Management Interrupts, so
we did not attempt to eliminate or mitigate them.

IV. EVALUATION

This section presents the results of our measurements of the
PCI Express latencies. We measured two types of latencies in
our experiments: the latency of the NIC clock register readout
and the hardware TX latency. The experiments are described
in more details in the following subsections.

All measurements were performed under several different
loads of the system:

• No load: No intentional load was placed on the PCIe
or CPU.

• CPU load: Three Linux 3.6 VMs running on dedi-
cated CPUs (VM1-3 in Fig. 2) run a Sysbench CPU
benchmark2.

• Disk load: One Linux 3.6 VM with direct ac-
cess to the SATA controller (connected to the PCIe
bus) was run on a dedicated CPU. This VM was
executing a dd if=/dev/sda of=/dev/null
bs=8M count=1 iflag=direct command in
an infinite loop. The size of the block (8 MB) was
chosen on purpose to fit into the on-disk cache. This

2Available from http://sysbench.sourceforge.net/; the command was
sysbench --test=cpu --cpu-max-prime=999999999 run
--num-threads=1
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Figure 4. Latency profile of the NIC clock register readout (for NIC in two
different PCIe slots). System with no load.
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Figure 5. Latency profile of the NIC clock register readout (for NIC in two
different PCIe slots). System with CPU load.

way, the disk traffic consumes the maximum possible
PCIe bandwidth.

• Combined load: A combination of disk and CPU load
– one VM with disk load and two VMs with CPU
load.

• Disk + serial load: The same as disk load but the
output of the dd command (about 100 characters) was
sent to the serial line.

Besides changing the load, we also changed the PCIe slot
where the NIC was plugged in during the experiment (the GFX
and IO PCIe slot).

We present the results of some experiments in the form
of a latency profile. This is a cumulative histogram of the
measured values with a reversed vertical axis in log scale. The
advantage over a plain cumulative histogram is that the worst-
case latencies are magnified by the log scale (see for instance
lower right hand corner of Fig. 4).

A. Latency of NIC clock register readout

In this experiment, we measured the time spent by reading
the clock register located in the NIC. The resulting latency
was calculated as the difference between the values obtained
from two consecutive reads of the whole 64-bit clock register
(tclk2−tclk1 in Fig. 6). Despite the fact we do not exactly know
how big a fraction of the total time was spent in the NIC’s
internal logic and what was caused by the PCIe latencies, we
believe that the measured time represents the lower bound of
the communication latencies between the CPU and the NIC.

Figure 4 shows the values measured for the no load
scenario whereas Figure 5 contains values measured with CPU

http://sysbench.sourceforge.net/
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Figure 6. Explanation of the measured latencies

load. It can be seen that there are significant differences in
the latency and jitter figures between the PCIe slots. We
summarize the measured values in the table below:

Avg. latency Jitter
Slot No load CPU load No load CPU load
GFX 1.38µs 1.41µs 5.31µs 5.76µs
IO 3.11µs 3.12µs 1.87µs 2.21µs

Figure 7 shows the results of the disk + serial load scenario
for the NIC in the IO slot. There are periodic spikes of
increased latency. Although we first thought that the spikes
are caused by disk transfers, it turned out that they are brought
about by communication over the serial port that we used as
a console for the VM. In NOVA, the serial driver uses polling
to wait for an empty TX buffer register and this results in a
high PCIe bus load. In production systems, polling is avoided
whenever possible but sometimes device drivers have to use
polling to work around hardware bugs [24].

A careful reader can also identify a small increase in
latencies (cca. 0.5µs) with a 40 ms period in Figure 7. This
was caused by updating the text screen in the VGA video RAM
of the integrated graphics adapter. If the VGA is configured in
NOVA, the screen of the foreground application gets copied
to the VGA memory 25 times per second. A similar increase
of latencies can also be seen in Fig. 4. If the external graphics
adapter and/or fully graphical mode was used, the latencies
could be much worse [25].

B. Hardware NIC TX latency

In this experiment, we measured the time needed by the
NIC to start the transmission of a frame. More precisely, we
measured the time between the moment when the NIC got the
information about a new frame to send (setting the NIC TX
descriptor register to point to the ready packet descriptor) and
the timestamp captured by the NIC while the frame was being
transmitted. During the transmission the NIC autonomously
fetches the frame payload from the RAM (via PCIe).

The results presented in this section are valid for 166 byte
long frames. When we increased the frame length to 1 KiB,
the latency increased by 1.5µs in both the GFX and IO slots.

Figures 8 and 9 show the latency profiles of the TX
latencies under different loads in the GFX and IO slots,
respectively. The latencies were calculated as a difference
between the TX timestamp and the value read from the NIC
clock register just before setting the NIC TX descriptor register

Figure 7. NIC clock readout latency in disk + serial load scenario (NIC was
in the IO slot)

(tTX − tclk2 in Fig. 6). The latencies for the GFX slot and IO
slot ranged from 5µs to 14µs and from 8.5µs to 19.5µs,
respectively.

The distribution of latencies in time is shown in Figure 10.
In the depicted experiment, the periods of no load and disk
load scenarios were interleaved with a period approximately
equal to 60 seconds. It can be seen that the distribution of the
increased latencies in time is uniform.

The precision of our measurement method is influenced
by the following factors: The end of the measured interval
is captured with very high precision (hardware timestamp),
but the start of the interval (NIC clock readout) suffers from
an error in the range of several microseconds as shown in
Section IV-A. If we wanted to decrease the error, we would
need another clock synchronised with an NIC clock having a
negligible readout time.

It is interesting to see that even a sole CPU load on
unrelated CPUs caused big increases in latencies. The reason
is that the CPU load makes the Linux scheduler to be invoked
frequently. This resulted in about 1500 timer interrupts per
second per VM. As NOVA uses HPET timers as a backend
for all virtual timers, the communication between the CPU and
HPET, located in the chipset, has an influence on the PCIe bus
and, therefore, also on the NIC latencies.

The worst latencies were achieved for the disk + serial load
although the sole disk load exhibits a low average latency. As
mentioned above, this is caused by polling in the serial port
driver. In summary, the jitter of the PCIe latency is similar for
both slots and is approximately 10µs.

V. CONCLUSION

With hardware support for IEEE 1588, it is possible
to synchronize NIC clocks with sub-microsecond precision.
However, if one wants to schedule the Ethernet traffic in the
software, as many popular real-time Ethernet software stacks
do, the achieved frame transmission precision is much worse.
It is believed that the main cause of the transmission jitter is the
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Figure 10. No load and disk load scenarios. Latencies calculated as tTX −
tclk2.

scheduler of the operating system. In this paper, we identified
another often neglected source of the transmission jitter, which
is the PCI Express bus. We measured its contribution to the
overall transmission jitter and found it to be around 10µs. This
value is in the same order of magnitude as the scheduling jitter
of modern real-time operating systems.

As for our future work, we will look at improving the
PCI Express induced jitter by using PCI Express QoS features
such as isochronous virtual channels mentioned in [21]. We
could not use them in this work, because our NIC does not
support them. We plan to use the NetFPGA [26] platform to
experiment with those.
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